
 

On Stokes flow driven by surface tension in the presence of a
surfactant
Citation for published version (APA):
Prokert, G. (2003). On Stokes flow driven by surface tension in the presence of a surfactant. (RANA : reports on
applied and numerical analysis; Vol. 0321). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/3fac1f66-07b5-4359-9441-ba3780ea7aff




On Stokes flow driven by surface tension

in the presence of a surfactant

G. Prokert
Technische Universiteit Eindhoven, Faculteit Wiskunde en Informatica

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
g.prokert@tue.nl

Published in European Journal of Applied Mathematics (2004), vol. 15,
pp. 791–819, by Cambridge University Press. The copyright has been
transferred to the publisher.

Abstract: We consider short-time existence, uniqueness, and regular-
ity for a moving boundary problem describing Stokes flow of a free
liquid drop driven by surface tension. The surface tension coefficient
is assumed to be a nonincreasing function of the surfactant concentra-
tion, and the surfactant is insoluble and moves by convection along the
boundary.
The problem is reformulated as a fully nonlinear, nonlocal Cauchy prob-
lem for a vector-valued function on a fixed reference manifold. This
problem is, in general, degenerate parabolic. Existence and uniqueness
results are obtained via energy estimates in Sobolev spaces of suffi-
ciently high order. In the two-dimensional case, the problem is strictly
parabolic, and we prove instantaneous smoothing of the free boundary,
using maximal regularity results in little Hölder spaces.

1 Introduction and problem formulation

The moving boundary problem of Stokes flow (in its simplest form) of a viscous, in-
compressible liquid consists of the Stokes equations together with the incompressibil-
ity condition. These equations form a linear elliptic system. We will consider surface
tension as the only driving mechanism. Mathematically, this is described by an inho-
mogeneous boundary condition on the normal stress. Up to now, most attention has
been given to the case of a constant surface tension coefficient γ > 0. In this case, γ is
just a proportionality factor linking the normal stress to the curvature vector at the
boundary (and can be normalized to 1). The two-dimensional version of this problem
has been discussed in e.g. [3, 4, 12, 14], and short-time solvability in the general case
was proved in [10, 15].

For various applications, it is also of interest to consider a nonconstant surface
tension coefficient γ. In this case, the surface gradient of γ also occurs in the boundary
condition for the normal stress, giving rise to the so-called Marangoni effect, a well-
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known cause for which is a temperature dependent γ [4].
The possibly simplest reasonable model with nonconstant surface tension co-

efficient has been discussed in [11]. There it is assumed that fixed values of γ are
assigned to the particles at the boundary, i.e. γ is transported along with these par-
ticles. (This situation arises from the temperature-dependent case if heat conduction
is negligible.) Recently, there is increasing interest in the case where γ is a function
of the concentration of a surfactant, i.e. a surface-active substance which decreases
surface tension. For examples of applications we refer to [18], where, in particular, the
delivery of surfactant in the human lung for medical purposes is modeled.

We discuss short-time well-posedness and regularity for the problem with a sur-
factant in a simple topology, namely, for a free drop of finite volume. We assume that
the surfactant is insoluble and its diffusion on the surface of the drop is negligible,
i.e. it is transported by the tangential component of the liquid velocity (cf. [18]).

The original problem will be transformed to a Cauchy problem for a fully non-
linear pseudodifferential evolution equation on a fixed compact reference manifold.
As remarked in [11], the cases of constant and nonconstant surface tension lead to
evolution equations of different types: For γ = const, the problem can be transformed
to a scalar parabolic equation for an unknown representing the local distance of the
moving boundary from the reference manifold. In the general case, however, where
tangential transport in the boundary has to be considered, one arrives at a vector-
valued equation which is degenerate parabolic in the following sense: the principal part
of the linearization of the right hand side in the evolution equation has an infinite-
dimensional kernel, hence no coercive estimates can be obtained. In the situation
discussed here, under some natural assumptions on our data, this kernel is given by
the divergence free tangential velocity fields. As there are no nontrivial divergence
free vector fields on curves, in the two-dimensional case we obtain a parabolic system
for an R

2-valued function.

The structure of this paper is as follows: After the formulation of our moving
boundary problem, in Section 2 we transform the problem to a nonlocal evolution
equation ((2.20)). In Section 3, this evolution equation is linearized, an L2-energy
estimate for the linearization is derived. This estimate together with a nonlocal chain
rule is used in Section 4 to obtain energy estimates for the nonlinear problem in higher
order Sobolev norms. The necessary estimates for the lower order terms (Lemma 4.1)
are somewhat tedious but essentially straightforward. At the end of Section 4, the
existence results are obtained by Galerkin approximations in a fashion oriented at
[13]. Sections 2–4 are to some extent parallel to [11], therefore some proofs are just by
reference to that paper. The parabolic problem arising in the plane case is addressed
in Section 5. Apart from a slightly larger class of admissible initial data, our main
interest there is in the proof of the smoothing property one expects for a parabolic
equation: For smooth data, the solution will be smooth for all positive times in the
existence interval. We prove this, both for C∞-smoothness and for analyticity, using a
general theorem on parabolic smoothing which has been proved in [7]. This theorem is
a generalized version of a “parameter trick” due to Angenent [1, 2] which is based on
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the property of maximal regularity for the linearized problem. Therefore, in Section 5
we change the functional analytic framework and use little Hölder spaces as in these
spaces the maximal regularity property can be established in a standard way. Finally,
the appendix summarizes some results on solution operators for various standard
elliptic boundary value problems on fixed, bounded smooth domains which are used
in Section 5 but are otherwise independent of the moving boundary problem.

We start by giving a precise description of our problem (cf. [11]). For given
Ω(0) ⊂ R

m+1 and given ρ̃(·, 0) ≥ 0 defined on ∂Ω(0), one looks for

• a family of bounded domains Ω(t) ⊂ R
m+1 parametrized by time t ≥ 0 with

C2-boundaries Γ(t) which move with velocity Vn(t) in the direction of the outer
normal n(t),

• (nonnegative) functions ρ̃(·, t) ∈ C1(Γ(t)), and

• functions ũ(·, t) ∈ C2(Ω(t),Rm+1), p̃(·, t) ∈ C1(Ω(t))

such that

−∆ũ(·, t) + ∇p̃(·, t) = 0 in Ω(t),
div ũ(·, t) = 0 in Ω(t),(

T (ũ(·, t), p̃(·, t))n(t)
)

i
= divΓ(t)(γ̃(·, t)∇Γ(t)xi(t)) on Γ(t),

γ̃(·, t) = σ(ρ̃(·, t)),∫
Ω(t) ũ(·, t) dx = 0,∫

Ω(t) rot ũ(·, t) dx = 0,

Vn(t) = ũ(·, t) · n(t) on Γ(t).





(1.1)

Here, Ω(t) represents the domain occupied by the liquid drop at time t ≥ 0, ρ̃ is the
surfactant concentration on Γ(t), ũ and p̃ represent the velocity and pressure field, T
is the stress tensor given by

(T (u, p))ij = ∂iuj + ∂jui − pδij ,

and γ̃(·, t) is a scalar function on Γ(t) representing the surface tension coefficient. The
differential operators ∆, ∇, and div are applied with respect to the spatial coordinates,
the operators divΓ(t) and ∇Γ(t) are the divergence and gradient on Γ(t) with respect
to its Riemannian metric induced from the ambient space, and x(t) : Γ(t) ↪→ R

m+1

denotes the natural embedding of Γ(t) into R
m+1.

The surface tension coefficient γ̃ depends on ρ̃ via σ ∈ C∞([0,∞)) satisfying the
structural assumptions

σ ≥ 0, σ′ ≤ 0, (1.2)

i.e. γ̃ is a nonnegative and nonincreasing function of the surfactant concentration.
(The assumption that σ is defined on [0,∞) is just for the sake of simplicity, its
domain of definition may be restricted to a suitable interval.)

The problem is completed by an evolution equation for the surfactant concentra-
tion on the moving boundary. As we assume that the surfactant is insoluble and that
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the surfactant diffusion is negligible, the evolution of ρ̃ is given by two mechanisms:
surfactant transport and local change of the surface area, both induced by the flow
at the boundary. To be more precise, let us introduce Lagrangian coordinates by

Ẋ(t, ξ) = ũ(X(t, ξ), t),

X(0, ξ) = ξ

for ξ ∈ Γ(0), t ≥ 0. Write the material derivative of ρ̃ as

Dtρ̃(X(t, ξ), t) :=
d

dt
(ρ̃(X(t, ξ), t)),

this makes sense as (1.1)7 ensures X(t,Γ(0)) = Γ(t). Then the mass conservation
equation for the surfactant reads (see e.g. [5], Ch. 10)

Dtρ̃(·, t) + ρ̃(·, t)(divΓ(t)ũT (·, t) − κ(t)ũ(·, t) · n(t)) = 0 on Γ(t), (1.3)

t ≥ 0, where ũT denotes the component of ũ tangential to Γ(t) and κ(t) is the (m-fold)
mean curvature of Γ(t) with the sign taken negative if Ω(t) is convex.

2 Transformation and evolution equation

We fix the following notation and recall some basic estimates; for the proofs see [11].
Let Ω ⊂ R

m+1 be a bounded smooth domain, Γ := ∂Ω and let TrΓ denote the
trace operator from function spaces on Ω to the corresponding spaces on Γ. For τ ∈ R,
we denote by Hτ (Γ) and Hτ (Γ,Rm+1) the usual L2-based Sobolev spaces of order τ
with values in R and R

m+1, respectively. The norms of these spaces are denoted by
‖·‖Γ

τ . If z is a function defined on Ω, we write ‖z‖Γ
τ instead of ‖TrΓz‖Γ

τ . For τ ≥ 0,

Hτ (Ω), Hτ (Ω,Rm+1), and ‖·‖Ω
τ are defined analogously, and for z ∈ L2(Ω) we define

‖z‖Ω
−τ := sup

‖v‖Ω
τ
=1

∣∣∣∣
∫

Ω

zv dx

∣∣∣∣.

We recall the estimates

‖∂iz‖Ω
τ ≤ C

(
‖z‖Ω

τ+1 + ‖z‖Γ
τ+ 1

2

)
(2.1)

for τ ≤ −1, z ∈ H1(Ω),
‖zv‖M

τ ≤ C‖z‖M
τ ‖v‖M

s (2.2)

for |τ | ≤ s, s > m
2 , z ∈ Hτ+

(M), v ∈ Hs(M), and

‖z1z2 . . . zk‖M
t ≤ C

k∏

i=1

‖zi‖M
si
, (2.3)
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where M is Ω or Γ, 0 ≤ τ ≤ si, τ − dimM
2 <

∑k

i=1(si − dimM
2 ), zi ∈ Hsi(M).

Moreover, we introduce a right inverse E of TrΓ by Eh := w, h ∈ H
1
2 (Γ), where

w solves
∆w = 0 in Ω,
w = h on Γ,

}

and recall the estimate

‖Eh‖Ω
τ+ 1

2
+ ‖∇Eh‖Γ

τ−1 +
∥∥∇2Eh

∥∥Γ

τ−2
≤ C‖h‖Γ

τ (2.4)

for h ∈ Hτ (Γ) ∩Hs(Γ), s > 2.
Let us fix s0 >

m
2 , s ≥ s0 +4 integer. Let U be a small open neighborhood of the

identity in Hs+1(Γ,Rm+1) which will be shrunken in the sequel whenever necessary
without further mentioning. For φ ∈ U , set

Φ := E(φ − IdΓ) + IdΩ

(with E acting componentwise on R
m+1-valued functions) and note that

Φ ∈ C3(Ω,Rm+1) ∩ Diff(Ω,Φ(Ω))

due to the Sobolev embedding theorem and the smallness of U .
Let (ξi) be a local parametrization of Γ (in Cartesian coordinates.) The mappings

Φ and φ induce on Ω and Γ the Riemannian metrics g and g̃, respectively, having
Cartesian coordinates

gij = ∂iΦ
k∂jΦ

k, g̃αβ = ∂αξ
igij∂βξ

j ,

i, j = 1, . . . ,m + 1, α, β = 1, . . . ,m. Furthermore, we set G = (gij), g = detG,
gij = (G−1)ij , and introduce analogous notation for g̃. Moreover, let

ai
k := ∂k(Φ−1)i ◦ Φ = ((DΦ)−1)ik.

(Clearly, all these quantities depend on φ but we are going to suppress this dependence
in our notation for the sake of brevity.) In order to transform the moving boundary
problem to the fixed domain Ω, we introduce the spaces

V :=
{
(cij) | i, j = 1, . . . , N, cij ∈ R, cij = −cji

}
,

Xτ := Hτ+ 1
2 (Ω,Rm+1) ×Hτ− 1

2 (Ω) × (Rm+1 × V ),

Yτ := Hτ− 3
2 (Ω,Rm+1) ×Hτ− 1

2 (Ω) ×Hτ−1(Γ,Rm+1) × R
m+1 × V

for τ ≥ 1
2 and the operator L : U −→ L(Xs, Ys), using the notation of covariant

calculus, by

L(φ)(u, p, λ) :=




−∇k∇ku
i + ∇ip+ λk

1a
i
k

∇iu
i

(∇iuj + ∇jui − gijp+ λkl
2 a

i
ka

j
l )nj∫

Ω

√
g∂kΦiuk dx∫

Ω

√
g∂kΦi∂lΦ

j(∇kul −∇luk) dx




T

. (2.5)
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We denote the canonical projection of Xτ onto its i-th component by Πi and by E3 the
operator in L(Hτ−1(Γ,Rm+1), Yτ ) mapping H to E3H := (0, 0, H, 0, 0). For Banach
spaces E and F , let Lis(E,F ) denote the set of continuous isomorphisms from E to
F with the topology inherited from L(E,F ). It is shown in [11], Lemma 2.4., that

L ∈ C∞(U ,Lis(Xs, Ys)). (2.6)

Furthermore, fix a nonnegative function ρ ∈ Hs(Γ) and define

γ := σ

(
ρ

√
g̃(Id)√
g̃(φ)

)
, (2.7)

fk :=
1√
g̃
∂α(
√
g̃γg̃αβ∂βΦk), k = 1, . . . ,m+ 1, (2.8)

f := (f1, . . . , fm+1). (2.9)

Using the fact that Hτ (Γ) is a Banach algebra for τ > m
2 , one can show as in the

proof of Lemma 2.3 in [11] that

[
φ 7→ ρ

√
g̃(Id)√
g̃(φ)

]
∈ C∞(U , Hs(Γ)). (2.10)

Applying additionally Theorem II.4.3 in [17] on the smoothness of superposition op-
erators given by smooth functions we also get

γ ∈ C∞(U , Hs(Γ)), (2.11)

f ∈ C∞(U , Hs−1(Γ,Rm+1)). (2.12)

To account for the pull-back of vector fields, we introduce the mapping DΦ given by

(DΦz)i = ∂jΦ
izj

and note that

[φ 7→ DΦ] ∈ C∞(U ,Lis(H
s+ 1

2 (Ω,Rm+1))) ∩ C∞(U ,Lis(H
s− 3

2 (Ω,Rm+1)))

∩C∞(U ,Lis(H
s−1(Γ,Rm+1))). (2.13)

Now we can transform our moving boundary problem to a nonlocal evolution equation
on a fixed manifold. For this purpose, we change notation slightly and consider φ as
a function of time t ∈ [0, T ], valued in U .

Lemma 2.1 (Transformation) For φ ∈ C1([0, T ],U) the following statements are
equivalent:
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(i) For the family of domains Ω(t) := Φ(·, t)[Ω], t ∈ [0, T ], there are functions

ũ(·, t) ∈ C2(Ω(t),Rm+1),

p̃(·, t) ∈ C1(Ω(t)),

ρ̃(·, t) ∈ C1(Γ(t))

such that

φ̇(·, t) = ũ(X(φ(·, 0), t), t)|Γ, (2.14)

ρ̃(·, 0) = φ(0)∗

(
ρ

√
g̃(Id)√
g̃(φ(0))

)
, (2.15)

and (1.1), (1.3) hold.

(ii) There are functions

(u, p) ∈ C1([0, T ], Hs+ 1
2 (Ω,Rm+1) ×Hs− 1

2 (Ω)) (2.16)

such that, with f from (2.8), (2.9),

L(φ)(u, p, 0) = E3(DΦ)−1f, (2.17)

φ̇ = (DΦ)TrΓu =: F(φ) =: G(φ, γ). (2.18)

Proof: (i)⇒(ii): Let Φ(t) := IdΩ + E(φ(t) − IdΓ) and let Φ(t)∗ and Φ(t)∗ denote the
pull-back and push-forward operators induced by Φ(t) (both for scalar functions and
for vector fields). Set

u(·, t) := Φ(t)∗ũ(·, t),
p(·, t) := Φ(t)∗p̃(·, t).

On Γ we introduce the time-dependent functions

ρ1(·, t) := ρ

√
g̃(Id)√
g̃(φ(t))

,

ρ2(·, t) := φ(t)∗ρ̃(·, t).

Let us denote by D(
√
g̃) the Fréchet derivative of the map φ 7→

√
g̃. Furthermore,

Ξ(·, t) := X(t, φ(·, 0)). Then Ξ(·, t) = φ(t) and

d

dt

√
g̃(φ(t)) = D(

√
g̃)[φ̇]

= D(
√
g̃)[ũT (Ξ(·, t), t) + ũ(Ξ(·, t), t) · n(Ξ(·, t), t)n(Ξ(·, t), t)]

= [divΓ(t)ũ(Ξ(·, t), t) − κ(Ξ(·, t), t)ũ(Ξ(·, t), t) · n(Ξ(·, t), t)n(Ξ(·, t), t)]
√
g̃

= [divg̃uT − κgu
i(ng)i]

√
g̃,

7



where divg̃ denotes the divergence in the Riemannian manifold (Γ, g̃), and κg and ng

are the curvature and the outer unit normal vector of Γ with respect to g. The third
equality follows from the transport theorem in a Riemannian manifold (see e.g. [16],
Ch. 2.2) and the well-known “first variation of area formula” for variations in normal
direction. Hence

ρ̇1 = −ρ
√
g̃(Id)

g̃(φ(t))

d

dt

√
g̃ = −ρ1(divg̃uT − κgu

i(ng)i). (2.19)

If (1.3) is transformed to Γ by φ(t)∗ we get the same equation for ρ2, and as we have
assumed ρ1(0) = ρ2(0) we get ρ1 = ρ2 from the uniqueness of the solution of (2.19)
for given initial datum, hence

ρ̃(·, t) = φ(t)∗

(
ρ

√
g̃(Id)√
g̃

)
.

Now it is a routine task to check that (1.1) and (2.14) transform (at first formally) to
(2.17) and (2.18) (see [11]). The regularity result (2.16) follows then from (2.10) and
(2.6).

(ii)⇒(i): We set

ũ(·, t) := Φ(t)∗u(·, t),
p̃(·, t) := Φ(t)∗p(·, t),

ρ̃(·, t) := φ(t)∗

(
ρ

√
g̃(Id)√
g̃

)
.

Then it is straightforward to check all statements in (i).
The proof of Lemma 2.1 also provides a translation for any solution to (2.18) to

a solution of our original moving boundary problem. Conversely, given (sufficiently
smooth) initial data Ω(0), ρ̃(·, 0), one chooses a smooth domain Ω near Ω(0), an initial
function φ0 such that φ0 is near the identity and φ0(Γ) = Γ(0), and ρ ∈ Hs(Γ) such
that (2.15) is satisfied. Then, by the above lemma, our problem is reduced to the
Cauchy problem

φ̇ = F(φ),
φ(0) = φ0,

}
(2.20)

which will be investigated in the sequel.
At first, we conclude from (2.6), (2.11) (2.12) and (2.13) that

F ∈ C∞(U , Hs(Γ,Rm+1)),

G ∈ C∞(U ×Hs(Γ), Hs(Γ,Rm+1)). (2.21)
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3 Linearization

To give the necessary estimates on F ′(φ), we start with an additional regularity
result on the Stokes equations with traction boundary conditions which might be of
interest in its own right (Lemma 3.1 below). To ensure uniformity of the estimates
with respect to perturbations of the domain, we work with a general metric g induced
by an arbitrary φ ∈ U on the fixed domain Ω.

We will also work with the measure on Γ induced by g, given by ωg dΓ where

ωg :=

√
g̃√

g̃(Id)
.

We denote by ∆g := ∇i∇i the Laplace-Beltrami operator with respect to g and
introduce the operators A(φ) and B(φ) by

A(φ) := TrΓΠ1L(φ)−1E3,

B(φ)θ := TrΓ(∆g, ∂n)−1(0, θ − θ)

with

θ :=

∫
Γ
ωgθ dΓ∫

Γ
ωg dΓ

and ∂n := ni
g
TrΓ∂i. Moreover, we will write P g for the g-orthogonal projection of

R
m+1–valued vector fields onto TΓ, given by

(P gv)j = ∂αφ
i g̃αβ∂βφ

jvi,

and ∇g for the gradient in (Ω,g). Note that then ∇g̃ := P g∇gE is the gradient in
(Γ, g̃) if tangent vectors on Γ are identified with their images under the embedding
in the ambient space.

We recall that the operator A maps the traction boundary data of solutions to
the homogeneous Stokes equations to the corresponding Dirichlet data. The operator
B is the solution operator for the Neumann problem of the Laplace equation, for
details we refer to [11]. In particular, it follows from [11], Lemma 3.1. that

‖Bθ‖Γ
0 ≤ C‖θ‖Γ

−1 (3.1)

with C independent of θ and φ ∈ U .
The following lemma can be informally stated as follows: the subspace of po-

tential tangential vector fields is invariant under the principal part of A, and its
restriction to this space is conjugate to 1

2B under the gradient map ∇g̃. Note that
standard regularity results would only provide an estimate with C‖θ‖Γ

0 on the right.

Lemma 3.1 (The operator A on gradients) There is a C > 0 such that for all φ ∈ U
and all θ ∈ L2(Γ)

‖(A∇g̃ − 1
2∇g̃B)θ‖Γ

0 ≤ C‖θ‖Γ
−1.
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Proof: Suppressing the argument φ again, we set

(u, p, λ) := L−1E3∇g̃θ,

ψ := 1
2 (∆g, ∂n)−1(0, θ − θ).

Applying Lemma 3.5.(ii) in [11] and writing n instead of ng, we get

‖(A∇g̃ − 1
2∇g̃B)θ‖Γ

0 ≤
∥∥∥nniA

i∇g̃θ
∥∥∥

Γ

0
+
∥∥∥P g(A∇g̃ − 1

2∇g̃B)θ
∥∥∥

Γ

0

≤ C‖θ‖Γ
−1 + ‖P g(u−∇gψ)‖Γ

0 .

It remains to estimate the last term on the right. For this purpose, we extend n as
a C2-function to the interior of Ω, such that ‖n‖C2(Ω) is bounded uniformly with
respect to φ ∈ U , and calculate

∆g(∇iψ) = ∇k∇k∇iψ = Rij∇jψ,

divg(∇gψ) = ∆gψ = 0,

in Ω, where Rij are the coordinates of the Ricci tensor of g, and

(∇i∇jψ + ∇j∇iψ)nj = 2∇i∇jψnj = 2(∇i(∇jψnj) −∇iψ∇jnj)

= 2(∇g)i(∇jψnj) − 2∇iψ∇jnj

= 2(∇g̃)i(∇jψnj) + 2∇k(∇jψnj)nkn
i − 2∇iψ∇jnj

= (∇g̃)iθ + 2∇k(∇jψnj)nkn
i − 2∇iψ∇jnj

on Γ. Hence

L(u−∇gψ, p, λ) =




−Rij∇jψ
0

−2∇k(∇jψnj)nkn
i + 2∇iψ∇jnj∫

Ω

√
g∂kΦi∇kψ dx

0




T

,

and applying first [11], Lemmas 3.2 with t = 1 and 3.5.(i) with t = 0 and then [11],
Lemma 3.1. with t = 0 we get

‖P g(u−∇gψ)‖Γ
0 ≤ C

(∥∥Rij∇jψ
∥∥Ω

− 3
2

+
∥∥∇k(∇jψnj)nk

∥∥Γ

−2
+
∥∥∇gψ∇jnj

∥∥Γ

−1

+

∣∣∣∣
∫

Ω

√
g∂kΦi∇kψ dx

∣∣∣∣
)

≤ C
(
‖ψ‖Ω

− 1
2

+ ‖ψ‖Γ
0

)
≤ C‖θ‖Γ

−1.
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We start the linearization by linearizing the right side of (2.17) with respect to
an (vector-valued) perturbation h. For this purpose, we introduce the notation

ρ̂ := ρ

√
g̃(Id)

g̃
=

ρ

ωg

, k := (DΦ)−1h, ν̃ := DΦng = DΦn.

Lemma 3.2 (Linearization of f) We have

(DΦ)−1f ′(φ)[h] = γ∆g̃(hiν̃i)n−∇g̃(σ′(ρ̂)ρ̂ divg̃P
gk) +R1(φ)h,

where R1(φ) is a first order differential operator whose coefficients are smooth func-
tions of φ and its derivatives up to order 3.

Proof: As in the proof of Lemma 3.4 in [11] we have

f = g̃αβ∂αγ∂βφ+ γg̃αβ∂αβφ
j ν̃j ν̃,

and, using the same results on D(
√
g̃) as in the proof of Lemma 2.1,

f ′[h] = g̃αβ∂α

(
−σ′(ρ̂)

ρ̂√
g̃
D(
√
g̃)[h]

)
∂βφ+ γg̃αβ∂αβh

j ν̃j ν̃ +R2(φ)h

= −g̃αβ∂α

(
σ′(ρ̂)ρ̂(divg̃P

gk − κgk
ini)

)
∂βφ+ γg̃αβ∂αβh

j ν̃j ν̃ +R2(φ)h

= −DΦ∇g̃
(
σ′(ρ̂)ρ̂divg̃P

gk
)

+ γg̃αβ∂αβh
j ν̃jDΦn+R2(φ)h,

where R2(φ)h denotes varying first-order differential operators whose coefficients are
smooth functions of φ and its derivatives up to order 3. Thus

(DΦ)−1f ′[h] = −∇g̃
(
σ′(ρ̂)ρ̂divg̃P

gk
)

+ γg̃αβ∂αβh
j ν̃jn+R2(φ)h,

and the proof proceeds further as the proof of Lemma 3.4 in [11].
Now the key estimate for the linearized evolution operator can be proved:

Lemma 3.3 (L2-energy estimate for F ′(φ)) There is a C > 0 such that for all φ ∈ U
and all h ∈ Hs+1(Γ,Rm+1)

(F ′(φ)[h], h)H0(Γ,Rm+1) ≤ C‖h‖Γ
0

2
.

Proof: We introduce the notation

Ã(φ) := DΦA(φ)(DΦ)−1,

A(φ) := ∂n(∆g,TrΓ)−1,

and recall from the proof of Lemma 3.6 in [11] that for any nonnegative χ ∈ C2(Γ)
we have the estimate ∫

Γ

ωgχψAψ dΓ ≥ −C‖ψ‖Γ
0

2
(3.2)

11



for all ψ ∈ H0(Γ), where C depends only on ‖χ‖C2(Γ). We have

F(φ) = Ã(φ)f(φ)

and hence, using Lemma 3.2,

F ′(φ)[h] = F ′
(1)(φ)[h] + F ′

(2)(φ)[h],

F ′
(1)(φ)[h] := Ã′(φ)[h]f(φ) + Ã(φ)DΦ(γ∆gk

inin+R1[h]),

F ′
(2)(φ)[h] := −DΦA(φ)∇g̃σ′(ρ̂)ρ̂divg̃P

gk.

It can be shown in complete analogy to the proof of Lemma 3.6 in [11] that

(F ′
(1)(φ)[h], h)H0(Γ,Rm+1) ≤ C‖h‖Γ

0

2
,

thus it remains to show a parallel estimate for F ′
(2). Setting χ := − 1

2σ
′(ρ̂)ρ̂ and noting

that this is nonnegative due to (1.2), one gets

(F ′
(2)(φ)[h], h)H0(Γ,Rm+1) = 2

∫

Γ

ωgA
i(∇g̃(χdivg̃P

gk))ki dΓ

=

∫

Γ

ωgg(∇g̃B(χdivg̃P
gk), k) dΓ +R3

=

∫

Γ

ωgg(∇g̃B(χdivg̃P
gk), P gk) dΓ +R3

= −
∫

Γ

ωgB(χdivg̃P
gk) divg̃P

gk dΓ +R3

with

R3 :=

∫

Γ

ωgg(2A∇g̃ −∇g̃B)(χdivg̃P
gk), k) dΓ,

and thus, due to Lemma 3.1,

|R3| ≤ C
∥∥∥(2A∇g̃ −∇g̃B)χdivg̃P

gk
∥∥∥

Γ

0
‖k‖Γ

0 ≤ C
∥∥χdivg̃P

gk
∥∥Γ

−1
‖k‖Γ

0 ≤ C‖h‖Γ
0

2
.

It follows from Green’s formula that B is symmetric with respect to the inner product

(u, v) 7→
∫

Γ

ωgg(u, v) dΓ.

Hence, using AB = Id, (3.2) and (3.1), we obtain

(F ′
(2)(φ)[h], h)H0(Γ,Rm+1) = −

∫

Γ

ωgχB(divg̃P
gk) divg̃P

gk dΓ +R3

=

∫

Γ

ωgχB(divg̃P
gk)ABdivg̃P

gk dΓ +R3

≤ C
∥∥Bdivg̃P

gk
∥∥Γ

0

2
≤ C

∥∥divg̃P
gk
∥∥Γ

−1

2
≤ C‖h‖Γ

0

2
.
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4 Main result in the general case

On the basis of Lemma 3.3 we can give corresponding energy estimates in higher
Sobolev norms for the nonlinear operator. This will be done essentially parallel to [11],
and not all the details given there will be repeated here. However, we will describe
the main arguments and point out the new aspects.

Let D1, . . . , Dm+1 be m+1 smooth vector fields on Γ, identified with first order
differential operators, such that

span{D1, . . . , Dm+1} = TxΓ ∀x ∈ Γ.

We recall the definition of the operator G from (2.18) and the following facts from
[11]:

• For all n ∈ N, the scalar product ( · , · )n defined by

(u, v)n :=
∑

|α|≤n

(Dαu,Dαv)H0(Γ),

Dα := Dα1
1 . . .D

αm+1

m+1 , |α| := α1 + . . . + αm+1, generates a norm on Hn(Γ)
which is equivalent to the usual one.

• For sufficiently smooth φ ∈ U and γ, we have

DαG(φ, γ) = G′(φ, γ) [(Dαφ,Dαγ)]

+

|α|∑

k=2

∑

α1+...+αk=α

Cα1...αk
G(k)(φ, γ) [(Dα1φ,Dα1γ), . . . , (Dαkφ,Dαkγ)] .

(4.1)

• As G is linear in the second argument,

G(k)(φ, γ) [(Dα1φ,Dα1γ), . . . , (Dαkφ,Dαkγ)] = F (k)(φ)[Dα1φ, . . . , Dαkφ]

+
k∑

j=1

(
∂k−1

φ G
)

(φ,Dαjγ)[Dα1φ, . . . , Dαj−1φ,Dαj+1φ, . . . , Dαkφ], (4.2)

where ∂l
φ denotes the l-th Fréchet derivative with respect to the first argument.

Now our main effort is to give estimates for the higher Fréchet derivatives of G.
Essentially, we will show that the terms can be estimated like terms of order zero.

For any multiindex α ∈ N
m+1 we define the “nonlinear commutator”

Rα := Dα(γ(φ)) − γ′(φ)[Dαφ]. (4.3)

Recall that we have fixed s0 >
m
2 , s ≥ s0 + 4 integer.
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Lemma 4.1 (Lower order terms) Assume k, r ∈ N, r ≥ s, φ ∈ U ∩ Hr+1(Γ), ρ ∈
Hr(Γ), α0, . . . , αk ∈ N

m+1, α1, . . . , αk > 0, α := α0 + . . . + αk, 1 ≤ |α| ≤ r. Then
there is a C = Cρ,r,U ,Γ such that

(i) ∥∥∂k
φG(φ,Dα0γ)[Dα1φ, . . . , Dαkφ]

∥∥Γ

0
≤ C(‖φ‖Γ

r + 1) (4.4)

for α 6= α0 and α 6= α1,

(ii)

‖G(φ,Rα)‖Γ
0 ≤ C(‖φ‖Γ

r + 1). (4.5)

Proof: 1. Define the operators S(φ), T (φ), L̃(φ) by

S(φ)(u, p, λ) := (DΦu, p, λ),

T (φ)(F,K,H,M1,M2) := (DΦF,K,DΦH,M1,M2),

L̃(φ) := T (φ)L(φ)S(φ)−1.

We recall from [11] that L̃ ∈ C∞(U ,Lis(Xs, Ys)) and note that G(φ, γ) = u, where

L̃(u, p, 0) = E3f(φ, γ). (4.6)

This equation defines u and p implicitly as functions of φ and γ, and we introduce
the notation

(u, p)(j)(φ, γ)[h1, . . . , hj ] := (∂j
φu(φ, γ)[h1, . . . , hj ], ∂

j
φp(φ, γ)[h1, . . . , hj ]).

Moreover, for t ∈ [0, s0 + 2], (u, p) ∈ Hs+ 1
2 (Ω,Rm+1) × Hs− 1

2 (Ω), we introduce the
aggregated norm

9(u, p)9t := ‖u‖Γ
t + ‖u‖Ω

t+ 1
2

+ ‖∇u‖Γ
t−1 + ‖p‖Γ

t−1 + ‖p‖Ω
t− 1

2
.

We are going to prove the estimate

9(u, p)(k)(φ,Dα0γ)[Dα1φ, . . . , Dαkφ]9t ≤
{

C(‖φ‖Γ
t+|α| + 1), α 6= α0 ∧ α 6= α1,

C(‖φ‖Γ
t+|α|+1 + 1), α = α0 ∨ α = α1

(4.7)
for all t ∈ [0, s0 + 2] and all multiindices α, α0, . . . , αk ∈ N

m+1 such that

α = α0 + . . .+ αk, α1, . . . , αk > 0, t+ |α| ≤ r. (4.8)

(Note that we also allow α = α0 = 0 here.) The estimate (4.7) with t = 0 implies
(4.4).
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2. Fix t ∈ [0, s0 + 2], α, α0, . . . , αk ∈ N
m+1 such that (4.8) holds. As a first step,

we will show

∥∥∂k
φf(φ,Dα0γ)[Dα1φ, . . . , Dαkφ]

∥∥Γ

t−1
≤
{

C(‖φ‖Γ
t+|α| + 1), α 6= α0 ∧ α 6= α1,

C(‖φ‖Γ
t+|α|+1 + 1), α = α0 ∨ α = α1,

(4.9)
and

‖f(φ,Rα)‖Γ
−1 ≤ C(‖φ‖Γ

r + 1) (α 6= 0). (4.10)

From (2.7) we find that Dα0γ is a finite sum of terms of the form

a(∇Φ, ρ)

l∏

i=1

Dα0iρ

ι∏

i=1

∂νi
0EDαi

0φ

with |ν1
0 | = 1,

∑
α0i +

∑
αi

0 = α0, and a is smooth. The nonlinear commutator
Rα also has this structure, and we have α1

0 6= α0 for all summands occurring there.
Consequently, both ∂k

φf(φ,Dα0γ)[Dα1φ, . . . , Dαkφ] and f(φ,Rα) are finite sums of
terms

T := a(∇Φ,∇2Φ, ρ)

l∏

i=1

∂ν0iDα0iρ

ι∏

i=1

∂νi
0EDαi

0φ

k∏

i=1

∂νiEDαiφ

with 0 ≤ |ν0i| ≤ 1, 1 ≤ |νi
0| ≤ 2, 1 ≤ |νi| ≤ 2,

∑ |ν0i|+
∑ |νi

0|+
∑ |νi| = l+ ι+ k+ 1.

To estimate these terms, we distinguish three cases:
Case 1: α = 0: Then

‖T ‖Γ
t−1 = ‖f(φ, γ)‖Γ

t−1 ≤ C(‖φ‖Γ
t+1 + 1).

Case 2: α = α1
0 > 0 or α = α1. In this case, T contains just one factor with a derivative

of φ of order at most |α| + 2, hence

‖T ‖Γ
t−1 ≤ C‖φ‖Γ

t+|α|+1.

Case 3: Otherwise, set

βi := |α0i| + |ν0i|, 1 ≤ i ≤ l,
βl+i := |αi

0| + |νi
0|, 1 ≤ i ≤ ι,

βl+ι+i := |αi| + |νi|, 1 ≤ i ≤ k.

Then βi ≤ |α| + 1 for i = 1, . . . , l + ι+ k. Define I := {j |βj > 3}, m := #I .
Case 3.1.: m ≤ 1: Then I ⊂ {i} for some i, and, using (2.3) we get

‖T ‖Γ
t−1 ≤ Cmax{‖ρ‖Γ

t+βi−1, ‖φ‖
Γ
t+βi−1} ≤ C(‖φ‖Γ

t+|α| + 1).

Case 3.2: m ≥ 2: We proceed as in step 1.2. of the proof of Lemma 4.1 in [11] and set

b :=
∑

j∈I

βj , λj :=
(βj − 3)+

b− 3m
, τ := (t− 1)+, sj := (1 − λj)(s0 + 1) + λjτ.
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Then 0 ≤ τ ≤ s0 + 1, τ ≤ sj ,
∑k

j=1 sj = τ + (k − 1)(s0 + 1) > τ + (k − 1)m
2 , and by

(2.3)

‖T ‖Γ
t−1 ≤ ‖T ‖Γ

τ ≤ C
∏

j∈I,j≤l

‖ρ‖Γ
sj+βj

∏

j∈I,j>l

‖φ‖Γ
sj+βj

.

Using now that
sj + βj ≤ (1 − λj)(s0 + 4) + λj(τ + |α|) ≤ r

we get, using the corresponding interpolation inequalities for the Sobolev scale H t(Γ),

‖T ‖Γ
t−1 ≤ C

∏

j∈I,j>l

‖φ‖Γ
sj+βj

≤ C‖φ‖Γ
s0+4

1−λ‖φ‖Γ
t+|α|

λ ≤ C(‖φ‖Γ
t+|α| + 1),

where λ :=
∑

j>l λj ∈ [0, 1].

Thus, ‖T ‖Γ
t−1 is estimated in all possible cases. Assume now α 6= 0 and consider

only the terms from f(φ,Rα). This excludes cases 1 and 2, and (4.10) follows. Assume
now α 6= α0 and α 6= α1. This also excludes cases 1 and 2, and (4.9) follows.

3. The estimate (4.10) and Lemma 3.2 in [11] imply

‖G(φ,Rα)‖Γ
0 =

∥∥∥Π1L̃(φ)−1E3f(φ,Rα)
∥∥∥

Γ

0
=
∥∥Π1S(φ)L−1(φ)T (φ)E3f(φ,Rα)

∥∥Γ

0

≤ C‖f(φ,Rα)‖Γ
−1 ≤ C(‖φ‖Γ

r + 1),

thus (4.5) is proved.
4. Finally, we prove (4.7) by induction over k. For k = 0, one immediately gets

from Lemma 3.2 in [11] and (4.9)

9(u, p)(φ,Dαγ)9t ≤ C‖f(φ,Dαγ)‖Γ
t−1 ≤ C(‖φ‖Γ

t+|α|+1 + 1).

Assume now (4.7) for the derivatives up to order k − 1. Taking the k-th Fréchet
derivative of (4.6) with respect to φ and applying it to (Dα1φ, . . . , Dαkφ) yields

L̃(φ)(u, p)(k)(φ,Dα0γ)[Dα1φ, . . . , Dαkφ] = E3f
(k)(φ,Dα0γ)[Dα1φ . . . ,Dαkφ]

−
k∑

l=1

∑

π∈Sk

L̃(l)(φ,Dα0γ)[Dαπ(1)φ, . . . , Dαπ(l)φ]

(u, p)(k−l)(φ,Dα0γ)[Dαπ(l+1)φ, . . . , Dαπ(k)φ].

Now all the terms on the right can be estimated by a similar technique as in step 2,
and (4.7) for (u, p)(k) follows from [11], Lemma 3.2. For the details we refer to the
analogous arguments in the proof of Lemma 4.1 in [11].

Considering now the nonlinear commutator

[Dα,F ] := DαF(φ) −F ′(φ)[Dαφ]
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and taking into account (4.1), (4.2), and (4.3) we find

[Dα,F ] = DαG(φ, γ) − ∂φG(φ, γ)[Dαφ] − ∂γG(φ, γ)[γ′[Dαφ]]

= G(φ,Rα) +

|α|∑

k=2

∑

α1+...+αk=α

Cα1...αk
∂

(k)
φ G(φ, γ)[Dα1φ, . . . , Dαkφ]

+

|α|∑

k=2

∑

α1+...+αk=α

Cα1...αk

k∑

j=1

∂
(k−1)
φ G(φ, γ)[Dα1φ, . . . ,

Dαj−1φ,Dαj+1φ, . . . , Dαkφ].

To all the terms on the right hand side we can apply Lemma 4.1 and obtain

‖[Dα,F ]‖Γ
0 ≤ C(‖φ‖Γ

r + 1) (4.11)

for α ≤ r.
As in [11], this implies the following a priori estimate:

Lemma 4.2 ( Hr - a priori estimate for F) Let r ≥ s+ 1 be integer. Then

(F(φ), φ)r ≤ Cr

(
1 + ‖φ‖Γ

r

2
)
, φ ∈ U ∩Hr+1(Γ,Rm+1).

Proof: It is sufficient to show the estimate for smooth φ ∈ U . For such φ, we have
from Lemma 3.3, the definition of (·, ·)r, and (4.11)

(F(φ), φ)r

=
∑

|α|≤r

(DαF(φ), Dαφ)0 = (F(φ), φ)0 +
∑

1≤|α|≤r

(DαF(φ), Dαφ)0

= (F(φ), φ)0 +
∑

1≤|α|≤r

(F ′(φ)[Dαφ], Dαφ)0 +
∑

1≤|α|≤r

([Dα,F ](φ), Dαφ)0

≤ Cr

(
1 + ‖φ‖Γ

r

2
)
.

For the formulation of our main result, we introduce the following notation: Let
r ≥ r0 := s+ 1 be integer and set V := U − Id, where we assume that V is a ball of
radius δ > 0 around 0 in Hr0(Γ,Rm+1). As usual, we will denote the open ball in X
around 0 with radius K by B0(K,X).

Setting ψ := φ− Id, instead of (2.20) we consider the equivalent problem

ψ̇ = F(ψ + Id),
ψ(0) = ψ0 := φ0 − Id.

}
(4.12)

Theorem 4.3 (Existence, uniqueness, and regularity of solutions to (4.12))
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(i) For any ψ0 ∈ V∩Hr(Γ,Rm+1) with ‖ψ0‖Γ
r0

≤ K < δ there is a T = T (K, r) > 0
such that (4.12) has a unique solution

ψ = Ψ(·, ψ0) ∈ C
(
[0, T ],V ∩Hr(Γ,Rm+1)

)
∩ C1

(
[0, T ], Hr−1(Γ,Rm+1)

)
.

(ii) For any r ≥ r0, K ∈ (0, δ), and t ∈ [0, T (K, r)], the mappings Ψ(t, ·) are con-
tinuous from B0

(
K,Hr0(Γ,Rm+1)

)
∩Hr(Γ,Rm+1) to Hr(Γ,Rm+1), uniformly

with respect to t.

(iii) Suppose ψ ∈ C ([0, T ],V) is a solution to (4.12) with ψ0 ∈ Hr(Γ,Rm+1). Then
ψ ∈ C

(
[0, T ], Hr(Γ,Rm+1)

)
.

The proof is literally the same as for Theorem 4.3 in [11].
We repeat the remark from [11] that this result implies, in particular, the fact

that solutions starting from smooth initial data are smooth in space and time.

5 The plane case

In the case m = 1, Γ is a smooth curve which can be parametrized by its arclength
s. If smooth functions and vector fields on Γ are identified via ψ=̃ψ∂s, both divΓ and
∇Γ reduce to the arclength derivative ∂s, and the second order differential operator
∇ΓdivΓ, which is degenerate elliptic form > 1, reduces to the strongly elliptic operator
∂2

s = ∆Γ.
This observation enables us to prove, under natural assumptions, that the plane

version of our problem (1.1) yields a parabolic surface motion having the smoothing
property, i.e. the moving boundary becomes smooth in space and time immediately
after the initial time. For this purpose we use the approach described in [7] which
is also applicable to the proof of analyticity. In particular, we will use (continuous)
maximal regularity, therefore it is convenient to change our analytic framework to the
so-called little Hölder spaces hθ(Γ), hθ(Ω) which for θ ∈ R+\N are defined as closures
of C∞(Γ) and C∞(Ω) := BUC∞(Ω) in the usual Cθ-Hölder norms which we will
denote by ‖ · ‖θ and ‖ · ‖θ,Ω, respectively.

In order to discuss the C∞-case and the real-analytic case simultaneously, we
fix K ∈ {∞, ω} and demand that Γ is a CK -manifold. On our data, we impose the
smoothness assumptions

ρ ∈ CK(Γ), σ ∈ CK [0,∞), (5.1)

and the nondegeneracy assumptions

σ > 0, σ′ < 0, ρ > 0, (5.2)

which are sharpenings of our earlier demands.
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We start with a brief description of the abstract results which will be used; for
further details, we refer to [7], Sections 2 and 3. Let E0 and E1 be two Banach spaces
with continuous and dense embedding E1 ↪→ E0. Let D ⊂ E1 be open, and suppose

P ∈ C1(D,E0). (5.3)

We fix u0 ∈ D and consider the abstract Cauchy problem

∂tu+ P (u) = 0,
u(0) = u0.

}
(5.4)

The parabolicity assumption on (5.4) is

P ′(v) ∈ H(E1, E0), v ∈ D (5.5)

i.e. −P ′(v) (considered as an in general unbounded operator on E0 with domain E1)
generates a strongly continuous analytic semigroup on E0.

For fixed T > 0 we introduce the Banach spaces

E0 := C([0, T ], E0),

E1 := C([0, T ], E1) ∩ C1([0, T ], E0),

and the trace operator at t = 0, Trt=0 ∈ L(E0, E0), given by w 7→ w(0). We assume
that the linearization of (5.4) has the so-called maximal regularity property:

(∂t + P ′(v),Trt=0) ∈ Lis(E1,E0 ×E1), v ∈ D. (5.6)

(Note that the validity of this condition does not depend on T .) Then, the following
holds:

Theorem 5.1 (Da Prato-Grisvard [6]) Assume (5.3), (5.5), (5.6). There is a
t+ = t+(u0) > 0 such that (5.4) has a unique maximal solution in

C([0, t+), D) ∩ C1([0, t+), E0).

To show the smoothing property, we make the following further assumptions:

E1 ↪→ (C1(Γ))n, E0 ↪→ (C(Γ))n (A1)

for some n ∈ N. Next we fix a suitable N ∈ N and a mapping

S ∈ CK(RN × R × Γ,Γ)

having the following properties:

S(µ, ·, ·) is a flow on Γ for all µ ∈ R
N ,

S(µ, t, ·) ∈ Diff K(Γ), (µ, t) ∈ R
N × R,

{ ∂
∂t
S(µ, t, p)|t=0 ; µ ∈ R

N
}

= TpΓ, p ∈ Γ,

[
µ 7→ ∂

∂t
S(µ, t, ·)|t=0

]
∈ Hom(RN ,VK(Γ)),
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where VK(Γ) denotes the set of CK -vector fields on Γ. For K = ω, the existence of
such an S is shown in [7], Lemma 3.1, for K = ∞ the proof is simpler and proceeds
along the same lines. (For our application, we will give a simple explicit construction
of S with N = 1 below. Here, however, we prefer to describe the general result
independently from this.)

As S(µ, ·, ·) is a flow, the family of mappings Wµ(t) ∈ Isom(Ej), j = 0, 1
(parametrized by t) given by

Wµ(t)v := S(µ, t, ·)∗v := v ◦ S(µ, t, ·), v ∈ Ej , j = 0, 1,

form a one-parameter group with respect to composition. We demand its strong con-
tinuity:

[t 7→Wµ(t)] is a strongly continuous group on Ej , j = 0, 1. (A2)

Let Vµ denote the infinitesimal generator of t 7→ Wµ(t), considered as a group of
operators on E0. We assume that

E1 ↪→ dom(Aµ) for any µ ∈ R
N . (A3)

and
[(µ,w) 7→ Aµw] ∈ L2(RN ×E1, E0). (A4)

In order to formulate the crucial condition on P we set for µ ∈ R
N

Sµ := S(µ, 1, ·) ∈ DiffK(Γ),

S∗
µv := v ◦ Sµ, v ∈ Ej , j = 0, 1,

Sµ
∗ := (S∗

µ)−1.

Recall that S0 is the identity. Hence, by continuity, there is an r0 > 0 and and open
neighborhood D0 ⊂ D of u0 such that Wµ(1)[D0] ⊂ D for all µ ∈ BRN (0, r0). Hence
we can define the mapping

Q : BRN (0, r0) ×D0 −→ E0

by
Q(µ, v) := S∗

µPS
µ
∗ v.

We shall assume
Q ∈ CK(BRN (0, r0) ×D0, E0). (A5)

Note that (A5) implies Q(0, ·) = P |D0 ∈ CK(D0, E0). More generally, (A5) can be
seen as a compatibility condition between P and “spatial shifts” given by Sµ. If P is
a (linear) differential operator, (A5) implies a smoothness demand on the coefficients
of P . (For a simple but illuminating example, see Remark 3.7 b) in [9].)

To formulate now the result on the smoothing property which we will apply, let
u be as in Theorem 5.1 and define û ∈ C([0, t+) × Γ,Rn) by

û(t, p) := u(t)(p).

The following result holds:
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Theorem 5.2 (Smoothing property, [7], Theorem 3.9) Under the assumptions of The-
orem 5.1 and (A1)–(A5), we have

û|(0,t+)×Γ ∈ CK((0, t+) × Γ,Rn).

(Note that in [7] only the case n = 1 is considered. The result in the vector-valued
case follows from a straightforward modification of the proof of Theorem 3.9 of that
paper.)

We are going to apply Theorems 5.1 and 5.2 to (2.20), where we will set n = 2,
θ ∈ (0, 1),

E0 := (h2+θ(Γ))2, E1 := (h3+θ(Γ))2, P = −F , u0 := φ0. (5.7)

The little Hölder spaces are stable under continuous interpolation. It follows from
this fact and Théorème 3.1 in [6] that in our application, the validity of (5.5) for
all θ ∈ (0, 1) implies (5.6) for all θ ∈ (0, 1), see Remark 2.2.j) in [7]. Moreover, it is
straightforward to check that conditions (A1)–(A4) hold. Hence, it remains to check
(A5) and (5.5).

To simplify the technicalities, suppose Γ is parametrized by arclength s. Then
g̃(Id) ≡ 1. Moreover, let t denote the (positively oriented) unit tangent vector field
on Γ, let N = 1 and let S(µ, ·, ·) be the flux generated by µt, thus Sµ is a translation
along Γ by arclength µ. This implies, in particular, that ∂s and S∗

µ commute.
We recall the definition of G from (2.18) and begin the proof of (A5) by showing

smoothness of G in little Hölder spaces. (Although we use different function spaces
we keep the same notation for corresponding functions and operators.)

Lemma 5.3 (Smoothness of G in little Hölder spaces) There is an open neighborhood
D of the identity in (h3+θ(Γ))2 such that

G ∈ CK(D × h2+θ(Γ), (h2+θ(Γ))2).

Here and in the sequel, we shrink D when necessary without explicit mentioning.

Proof: The proof proceeds along the same lines as the proof of (2.21). First we
note that the spaces hθ(Γ), hθ(Ω), θ ∈ R+\N, are Banach algebras with respect to
pointwise multiplication. This fact is the basis of the following considerations.

We introduce the Banach spaces

V := {(cij) | i, j = 1, . . . ,m+ 1, cij ∈ R, cij = −cji},
X θ := (h2+θ(Ω))m+1 × h1+θ(Ω) × (Rm+1 × V ),

Yθ := (hθ(Ω))m+1 × h1+θ(Ω) × (h1+θ(Γ))m+1 × R
m+1 × V,

and for φ ∈ D we will consider the operator L(φ) given by (2.5) as an operator on
X θ now. Using the analyticity of the inversion of regular matrices and square root of
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positive functions, one straightforwardly checks

gij ,
√
g,

1√
g

∈ CK(D,h2+θ(Ω)),

g̃,
√
g̃,

1√
g̃

∈ CK(D,h2+θ(Γ)),

L ∈ CK(D,L(X θ,Yθ)).

By Lemma A.1 in [7] we have

L(Id) ∈ Lis

(
X θ,Yθ

)
(5.8)

and consequently, as Lis(X θ,Yθ) is open in L(X θ ,Yθ),

L ∈ CK(D,Lis(X θ,Yθ)).

Moreover, we have

[L 7→ L−1] ∈ CK(Lis(X θ ,Yθ)),Lis(Yθ,X θ))

and DΦ ∈ CK(D,Lis(h
τ (Ω))2) for τ ≤ 2 + θ, τ /∈ N. Considering

f :=
1√
g̃
∂s(γ

1√
g̃
∂sφ

k)ek

as a function of φ and γ we get

[(φ, γ) 7→ f ] ∈ CK(D × h2+θ(Γ), (h1+θ(Γ))2).

Now the assertion of the lemma follows from

G(φ, γ) = DΦTrΓL(φ)−1E3(DΦ)−1f(φ, γ).

We recall that in our application we have

γ = γ(φ) = σ

(
ρ√
g̃

)

and prove a result similar to (A5) for the mapping [φ 7→ γ].

Lemma 5.4 (Compatibility of γ and Sµ) Assume (5.1). Then there is a r0 > 0 such
that

[(µ, ζ) 7→ S∗
µγ(S

µ
∗ ζ)] ∈ Ck((−r0, r0) ×D,h2+θ(Γ)).
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Proof: Set φ := Sµ
∗ ζ and note that

S∗
µγ(S

µ
∗ ζ) = γ(φ) ◦ Sµ = σ

(
ρ ◦ Sµ√
g̃ ◦ Sµ

)
= σ

(
ρ ◦ Sµ√

(∂s(φ+ Id)i∂s(φ+ Id)i) ◦ Sµ

)

= σ

(
ρ ◦ Sµ√

∂s(ζ + Sµ)i∂s(ζ + Sµ)i

)
.

It follows from (5.1) and Lemma 4.4 in [7] together with the analyticity of the square
root operation that

[
(µ, ζ) 7→ ρ ◦ Sµ√

∂s(ζ + Sµ)i∂s(ζ + Sµ)i

]
∈ CK((−r0, r0) ×D,h2+θ(Γ)).

The lemma follows from this by the fact that the superposition operator induced by
σ is CK in Hölder spaces (and thus, by an approximation argument, also in little
Hölder spaces), see e.g. [17], Theorems II.4.4 or II.5.2, respectively.

Now it is straightforward to check the validity of (A5). Writing φ := Sµ
∗ ζ again

and using the equivariance of G with respect to arbitrary smooth diffeomorphisms of
Γ (cf. [11], Eq. (4.1)) we get

Q(µ, ζ) = G(φ, γ(φ)) ◦ Sµ = G(ζ, γ(φ) ◦ Sµ) = G(ζ, S∗
µγ(S

µ
∗ ζ)),

and (A5) follows from Lemmas 5.3 and 5.4.
Our next aim is to show (5.5) in the case of our application. As

H((h3+θ(Γ))2, (h2+θ(Γ))2) is open in L((h3+θ(Γ))2, (h2+θ(Γ))2),

it is sufficient for this purpose to show

−F ′(Id) ∈ H((h3+θ(Γ))2, (h2+θ(Γ))2). (5.9)

Parallel to the calculations in Section 3, we obtain

F ′(Id)[h] = A0(σ(ρ)∂2
s (h · n)n− ∂sσ

′(ρ)ρ∂s(h · t)t) +R4h (5.10)

with

A0 := A(Id) = TrΓΠ1L(Id)−1E3,

R4 ∈ L((h3+θ(Γ))2, (h3+θ(Γ))2).

We introduce the operators At
0, A

n
0 ∈ L(h3+θ(Γ), h2+θ(Γ)) by

At
0ψ := t ·A0(ψt),

An
0ψ := n · A0(ψn)
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and write Q ∈ C∞(Γ,R2×2) for the orthogonal matrix mapping the unit vectors to t

and n, respectively. Then we find from (5.10)

F ′(Id)[h] = Q

[
−At

0∂s(σ
′(ρ)ρ∂s) 0

0 An
0 (σ(ρ)∂2

s )

]
QTh+R5h (5.11)

with

R5h := R4h− n · A0(∂s(σ
′(ρ)ρ∂s(h · t)t)n+ t · A0(σ(ρ)∂2

s (h · n)n]t.

From Lemma A.1 of the present paper and Lemma A.2 in [7] we conclude that

R5 ∈ L((h3+θ(Γ))2, (h3+θ(Γ))2). (5.12)

The crucial step in the proof of (5.9) is the following generation result for the
scalar operators on the diagonal in the first term of (5.11).

Lemma 5.5 (Scalar generators) Assume (5.2). Then we have

(i) [ψ 7→ At
0∂s(σ

′(ρ)ρ∂sψ)] ∈ H(h3+θ(Γ), h2+θ(Γ)),
(ii) [ψ 7→ −An

0 (σ(ρ)∂2
sψ)] ∈ H(h3+θ(Γ), h2+θ(Γ)).

Proof: (i): We write α := −σ′(ρ)ρ and note that α is a positive smooth function.
Moreover, we introduce the operators B0 and A0 by

B0ψ := B(Id)ψ = TrΓ(∆, ∂n)−1(0, ψ − ψ), ψ :=

∫
Γ ψ dΓ∫
Γ
dΓ

,

A0 := A(Id) = ∂n(∆,TrΓ)−1(0, ·).

Identifying tangential vector fields and scalar functions on Γ, we get

At
0∂s(α∂sψ) = 1

2∂sB0(α∂sψ) + (t ·A0∂s(α∂sψ) − 1
2∂sB0(α∂sψ))

= −α
2A0ψ + 1

2 (αA0ψ + ∂sB0(α∂sψ))

+(t ·A0∂s(α∂sψ) − 1
2∂sB0(α∂sψ)).

Consequently, by Lemmas A.2 and A.4,

‖α
2A0ψ +At

0∂s(α∂sψ)‖3+θ ≤ C‖ψ‖3+θ, ψ ∈ h3+θ(Γ).

It can be shown as in [7], Appendix B, that for any positive β ∈ C∞(Γ) we have

βA0 ∈ H(h3+θ(Γ), h2+θ(Γ)). (5.13)

(The result is shown there only for β = const, the proof is by “freezing of coefficients”
and therefore immediately generalizable to the case of variable β.)
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By continuous interpolation, for any given θ ∈ (0, 1), θ′ ∈ (0, θ), and any ε > 0
there is a C such that

‖α
2A0ψ −At

0∂s(σ
′(ρ)ρ∂sψ)‖2+θ

≤ ‖α
2A0ψ −At

0∂s(σ
′(ρ)ρ∂sψ)‖3+θ′ ≤ ‖ψ‖3+θ′ ≤ ε‖ψ‖3+θ + C‖ψ‖2+θ.

By a well-known perturbation result for analytic generators, this estimate together
with (5.13) implies (i).

(ii): Writing σ := σ(ρ) for brevity, we have

An
0 (σ∂2

sψ) = An
0∂

2
s (σψ) +An

0 [∂2
s , σ]ψ

= − 1
2A0(σψ) + ( 1

2A0 +An
0∂

2
s )(σψ) +An

0 [∂2
s , σ]ψ

= −σ
2A0ψ + [σ

2 ,A0] + ( 1
2A0 +An

0∂
2
s )(σψ) +An

0 [∂2
s , σ]ψ.

Now we obtain from Lemma A.3 of the present paper and Lemma 5.4 in [7] that

‖σ
2A0ψ +An

0 (σ∂2
sψ)‖3+θ ≤ C‖ψ‖3+θ, ψ ∈ h3+θ(Γ).

From this and (5.13) we conclude the assertion by the same argument as in (i).
To finish the proof of (5.9), we note that Lemma 5.5 obviously implies

[
−At

0∂s(σ
′(ρ)ρ∂s) 0

0 An
0 (σ(ρ)∂2

s )

]
∈ H((h3+θ(Γ))2, (h2+θ(Γ))2)

and, as Q is an isomorphism both on (h2+θ(Γ))2 and (h3+θ(Γ))2, also

Q

[
−At

0∂s(σ
′(ρ)ρ∂s) 0

0 An
0 (σ(ρ)∂2

s )

]
QT ∈ H((h3+θ(Γ))2, (h2+θ(Γ))2).

Now (5.9) and, consequently, (5.5) for our application follows from (5.11) by a per-
turbation argument parallel to the ones in the proof of Lemma 5.5.

We have shown that all assumptions of Theorems 5.1 and 5.2 are satisfied in our
situation given by (5.7). These theorems yield the following final result:

Theorem 5.6 (Well-posedness and smoothing for (2.20) in the plane case)
Assume K ∈ {∞, ω} and (5.1), (5.2). There is an open neighborhood D of the

identity in (h3+θ(Γ))2 such that for any φ0, there are a t+ = t+(φ0) > 0 and a unique
maximal solution

φ ∈ C([0, t+), D) ∩ C1([0, t+), (h2+θ(Γ))2)

of (2.20). Moreover,

[(t, p) 7→ φ(t)(p)]
∣∣
(0,t+)×Γ

∈ CK((0, t+) × Γ,R2).
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Conclusion

Let us compare the approaches and the resulting evolution equations for the cases
γ = const., as discussed in [10], with the case γ = σ(ρ) (and purely convective
surfactant transport), as discussed here. (For simplicity, we assume (5.2).)

γ = const. γ = σ(ρ)

Description of
moving boundary

normal perturbation Lagrangian coordinates

Evolution equation
valued in

R R
m+1

Type
parabolic in any
space dimension

parabolic if m = 1
degenerate parabolic if m > 1

It would clearly be interesting to investigate the effect of surfactants on the long
time behavior of the flow, at least in the neighborhood of an equilibrium. However, one
easily sees that our model (1.1), (1.3) does not posess equlibria if γ is not constant on
the moving surface. This property results from neglecting the surfactant diffusion. An
analysis including this effect would result in a coupled system of evolution equations
where (2.18) is augmented by a diffusion equation for ρ whose coefficients depend on
φ. It seems reasonable to conjecture that in this case the equilibria are given by balls
with constant surfactant density, and that these are stable, at least in the strictly
parabolic case.

A Appendix:

Some auxiliary estimates for the Stokes and La-

place equations in Hölder spaces

In this appendix, we collect the results on linear, nonlocal operators arising from solu-
tions of the Stokes and Laplace equations on a fixed, smooth domain that are needed
in Section 5. All these results can also be proved using the calculus of pseudodifferen-
tial operators on (smooth, compact) manifolds, however, to carry out the necessary
details would be more technical than direct proofs. Although we will apply the results
in the case m = 1 only, we prefer to give the results in arbitrary dimension where this
is possible without additional difficulties.

We recall the following definitions: For θ ∈ R+\N, we set

V := {(cij) | i, j = 1, . . . ,m+ 1, cij ∈ R, cij = −cji},
X θ := (h2+θ(Ω))m+1 × h1+θ(Ω) × (Rm+1 × V ),
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Yθ := (hθ(Ω))m+1 × h1+θ(Ω) × (h1+θ(Γ))m+1 × R
m+1 × V.

and we have L0 := L(Id) ∈ Lis

(
X θ,Yθ

)
given by

L0(u, p, λ) :=




−∆u+ ∇p+ λ1

divu

(∂iuj + ∂jui − pδij + λij
2 )nj∫

Ω
u dx∫

Ω
(∂iuj − ∂jui) dx




T

(cf. (5.8)). Moreover, we have defined A0, B0 and A0 by

A0 := A(Id) = TrΓΠ1L
−1
0 E3,

B0h := B(Id)h = TrΓ(∆, ∂n)−1(0, h− h),

A0 := A(Id) = ∂n(∆,TrΓ)−1(0, ·),

and P denotes the orthogonal projection of Γ × R
m+1 onto TΓ.

Our first result concerns the Neumann problem for Stokes flow and is comple-
mentary to Lemma A.2 in [7]. It is completely parallel to Lemma 3.5 (i) in [11], but
here we work in Hölder spaces, and can restrict ourselves to the unperturbed domain.

Lemma A.1 (Diagonal structure of A0) We have f 7→ PA0(fn) ∈ L
(
h1+θ(Γ), (h3+θ(Γ))m+1

)
.

Proof: Assume f ∈ C∞(Γ) and let (u, p, λ) be given by

L0(u, p, λ) = (0, 0, fn, 0, 0).

As A0 maps smooth functions to smooth functions, it is sufficient to show

‖Pu‖3+θ ≤ C‖f‖1+θ

with C independent of f .
Define ψ ∈ C∞(Ω) by

∆ψ = 0 in Ω,

∂nψ = 1
2 (f − f) on Γ,∫

Ω ψ = 0.



 (A.1)

Let d ∈ C∞(Ω) be such that d = 0 and ∇d = n at Γ. (Such a d can be constructed by
using the signed distance function near Γ and cutting it off away from Γ.) We extend
n into the interior of Ω by ∇d. Define now

v := ψn− d∇ψ,
q := −2∇ψ · n.
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Then it is straightforward to calculate (with summation over indices occurring twice)

−∆vi + ∂iq = −2∂jψ∂jni − ψ∆ni + ∆d∂iψ − 2∂kψ∂ink,

divv = ψ divn,

and on Γ
(∂ivj + ∂jvi)nj − qni = ψnj(∂inj + ∂jni) + (f − f)ni.

Moreover, ∫

Ω

(∂ivj − ∂jvi) dx =

∫

Γ

(nivj − njvi) dΓ = 0.

Hence

L0(u− v, p− q, λ) =




2∂jψ∂jni + ψ∆ni − ∆d∂iψ + 2∂kψ∂ink

−ψ divn

−ψnj(∂inj + ∂jni) + fni

−
∫
Ω(ψn− d∇ψ) dx

0




T

.

Note that Pv = 0 on Γ, hence by (5.8) and well-known regularity results on the
Neumann problem for the Laplacian

‖Pu‖3+θ = ‖P (u− v)‖3+θ ≤ C‖u− v‖3+θ ≤ C‖(u− v, p− q, λ)‖X 1+θ

≤ C‖L0(u− v, p− q, λ)‖Y1+θ ≤ C(‖ψ‖2+θ,Ω + ‖f‖0) ≤ C‖f‖1+θ.

The following lemma, as well as its proof, is parallel to Lemma 3.1. We will write
∇Γ for the surface gradient in Γ and recall that ∇ΓTrΓ = PTrΓ∇.

Lemma A.2 (The operator A0 on gradients II) We have A0∇Γ− 1
2∇ΓB0 ∈ L

(
h2+θ(Γ), (h3+θ(Γ))m+1

)
.

Proof: Fix f ∈ C∞(Γ), define ψ as in (A.1), v := ∇ψ, and (u, p, λ) by

L0(u, p, λ) = (0, 0,∇Γf, 0, 0).

Then (cf. the proof of Lemma 3.1)

L0(u− v, p, λ) =




0
0

−∂2
nψn+ 2∂jψ∇nj∫

Ω
∇ψ dx
0




T

.

Hence, by (5.8), Lemma A.1, and Lemma A.2 in [7]

‖(A0∇Γ − 1

2
∇ΓB0)f‖3+θ ≤ ‖(n ·A0∇Γf)n‖3+θ + ‖P (u− v)‖3+θ

≤ C(‖∂2
nψ‖1+θ + ‖∇ψ‖2+θ,Ω) ≤ C‖ψ‖3+θ,Ω ≤ C‖f‖2+θ.
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This implies the result.
Our next lemma concerns a simple commutator property of the Dirichlet-Neu-

mann operator A0 (cf. e.g. [8] Lemma 6.5.)

Lemma A.3 (Commutator estimate for A0) For any α ∈ C∞(Γ), we have αA0 −
A0α ∈ L

(
h2+θ(Γ)

)
.

Proof: Fix f ∈ C∞(Γ) and let u, v ∈ C∞(Ω) be the harmonic extensions of f and αf
into Ω, respectively. We extend both α and n smoothly into Ω and define w := αu−v.
Then w vanishes at Γ and, by straightforward calculations and standard estimates,

‖∂nw‖2+θ,Ω ≤ C‖w‖3+θ,Ω ≤ C‖∆w‖1+θ,Ω ≤ C‖∇u‖1+θ,Ω ≤ C‖u‖2+θ,Ω,

and

‖(αA0 −A0α)f‖2+θ ≤ ‖α∂nu− ∂nv‖2+θ,Ω = ‖∂nw + [α, ∂n]u‖2+θ,Ω

≤ C‖u‖2+θ,Ω ≤ C‖f‖2+θ.

This implies the lemma.
In our last lemma, we restrict ourselves to the case m = 1 and denote by ∂s the

tangential derivative along Γ with respect to arclength.

Lemma A.4 (Relating B0 and A0) Assume m = 1, α ∈ C∞(Γ). Then we have
∂sB0α∂s + αA0 ∈ L

(
h2+θ(Γ)

)
.

Proof: For arbitrary f ∈ C∞(Γ), let u ∈ C∞(Ω) be given by

∆u = 0 in Ω,

∂nu = α∂sf − α∂sf on Γ,∫
Γ
u dΓ = 0,





and let v be the harmonic extension of f into Ω. Extend α, n, and the positively
oriented unit tangent vector field from Γ to smooth functions on Ω such that we
can consider now ∂s and ∂n as first-order differential operators on Ω. Define w :=
∂su+ α∂nv. Then

‖∆w‖θ,Ω ≤ C(‖u‖2+θ,Ω + ‖v‖2+θ,Ω)

and on Γ

∂nw = ∂s(α∂sf) + ∂n(α∂nv) + [∂n, ∂s]u

= α(∂2
sf + ∂2

nv) + [∂s, α]∂sf + [∂n, α]∂nv + [∂n, ∂s]u

= α(∂2
s + ∂2

n)v + [∂s, α]∂sf + [∂n, α]∂nv + [∂n, ∂s]u

= −ακ∂nv + [∂s, α]∂sf + [∂n, α]∂nv + [∂n, ∂s]u,

where we have used the identity

TrΓ∆ = (∂2
s + ∂2

n + κ∂n)TrΓ
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with κ denoting the curvature of Γ. Consequently, using the standard Schauder esti-
mate for the Laplacian with Neumann boundary conditions, we get

‖(∂sB0α∂s + αA0)f‖2+θ ≤ ‖w‖2+θ,Ω ≤ C(‖∆w‖θ,Ω + ‖∂nw‖1+θ + ‖w‖0,Ω)

≤ C(‖f‖2+θ + ‖u‖2+θ,Ω + ‖v‖2+θ,Ω) ≤ C‖f‖2+θ.

This implies the lemma.
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