Some distance problems in coding theory

Citation for published version (APA):

Pul, van, C. L. M. (1987). Some distance problems in coding theory. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR256674

DOI:

10.6100/IR256674

Document status and date:

Published: 01/01/1987

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

SOME DISTANCE PROBLEMS IN CODING THEORY

C.L.M. van PUL

SOME DISTANCE PROBLEMS

IN CODING THEORY

SOME DISTANCE PROBLEMS IN CODING THEORY

PROEFSCHRIFT
ter verkrijg*ing van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof. dr. F.N. Hooge, voor een commissie a angewezen door het college van dekanen in het openbaar te verdedigen op vxijdag 16 januari 1987 te 16.00 uur
door
CORNELIS LEONARDUS MARIA van PUL geboren te Rotterdam.

Dit proefschrift is goedgekeurd
door de promotoren:
Prof. dr. J.H. van Lint
en
Prof. dr. ir. H.C.A. van Tilborg

ABSTRACI

This thesis is concerned with four topics from coding theory. The first one of these, treated in chapter 1 , is that of coaing in an imperfect computer memory with stuck-at-defects and random errors. This coding problem finds its origin in a paper by Kusnetsov and Tsybakov (1974). After a short historical overview in Section 1.1. a description of the problem and some related problems is given in Section 1.2 . The Sections 1.3 up to 1.5 deal with lower (i.e., constructions) and upper bounds for the various functions defined in Section 1.2. The function $A(n, d)$, i.e., the largest size of any binary code of length n and minimum distance d, plays an important role in these sections.

In chapter 2 we treat two constructions for constant weight codes. These constructions result in improved lower bounds on the function $A(n, d, w)$, i.e., the largest size of any binary constant weight code of length n, minimum distance d and constant weight w. This function plays an important role in determining upper bounds on the function $A(n, d)$ fe.g.: Linear Programming Bound and Johnson bound).

In Chapter 3 we give the complete solution of a problem formulated by Ahlswede, El Gamal and Pang in 1984. They define a constant distance code pair (A, B) as a pair of binary codes of length n such that for some $\delta \in \mathbf{N}_{,} 0 \leqq \delta \leqq n$,

$$
\forall_{\underline{a}} \in A \quad \forall_{\underline{b}} \in B[d(\underline{a}, \underline{b})=\delta]
$$

They prove that for such a code pair $|A| \cdot|B|<2^{2\left\lfloor\frac{n}{2}\right\rfloor}$. With the help of coding theory Hall and van Iint gave a nice proof of this inequality and moreover characterized all code pairs for which equality holds. since for these code pairs $\delta=\left\lfloor\frac{n}{2}\right\rfloor$ or $\left\lceil\frac{n}{2}\right\rceil$, the question remained: "what happens when δ is fixed?". Chapter 3 gives an answer to this cuestion.

In Chapter 4 we discuss problem which arose in connection with comma-free codes. Let $W_{n}(q)$ denote the maximal number of codewords in any q-ary coma-free code of length n. Eastman (1965) proved that

$$
N_{n}(q)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}=: B_{n}(q) \text { if } n \text { is odd. }
$$

Fox even wordlength n the situation is much more complicated. In 1984 Golomb and Tang proved that

$$
W_{2 k}(q)<B_{2 k}(q) \text { if } q>t(k)+k
$$

where $t(k)$ is the maximal cardinality of any $[0,1, *]$ toumament code of length k. Chapter 4 deals with the problem of determining lower and upper bounds on $t(k), k \in \mathbb{N}$.

In order to make this thesis self-contained, we start with a short introduction to coding theory in chapter 0 .

CONTENTS

Chapter 0 INRRODUCTION 1
Chapter 1 COMPUTER MEMORIES WITH "STUCK-AT" DEFECTS AND RANDOM ERRORS
1.1 Introduction 6
1.2 Coding for an imperfect computer memory 8
1.3 Upper bounds on $n f(m, t)$ 16
1.4 Constructions for (separable) t-defect-compatible matrices 20 with $t \geq 3$
1.5 Generalized partitioned linear block codes 32
References 42
Chapter 2 TwO CONSTRUCTIONS FOR CONSTANT WEIGHT CODES
2.1 Introduction 44
2.2 A generalization of the Johnson bound for constant weight codes 45
2.3 Lower bounds for A(n,4,w) 50
Appendix 57
References 69
Chapter 3 CONSTANT DISTANCE CODE PAIRS
3.1 Introduction 70
3.2 The exact value of $M(n, 0)$ 72
3.3 Optimal constant distance code pairs 77
References 81
Chapter 4 TOURNAMENE CODES
4.1 Introduction 82
4.2 A lower bound 86
4.3 An upper bound 91
4.4 The exact value of $t(k)$ for $k=2,3, \ldots, 9$ 93
References 98
Samenvatting 99
Curriculum Vitae 100

CHAPPER 0

INTRODUCTION

The purpose of this introduction is to make the reader familiar with some of the notions of coding theory; for a course in coding theory we refer the reader to [1] and [2]. We restricted ourselves to the binary case.

Let E_{2}^{n} be the n-dimensional vector space over F_{2}. A block code C of length n over F_{2} is a subset of F_{2}^{n}. The elements of C are called codewords. The set of elements of F_{2} is called the alphabet of the code C.

A k-dimensional linear subspace of \mathbb{F}_{2}^{n} is called a binary linear block code or binary $[n, k]$-code.

The Eamming-weight $w t(x)$ of a vector $x \approx_{2}$ is the numbex of non-zero coordinates of x. The Hamming-distance $d(x, y)$ of two vectors x and \underline{y} in \mathbb{F}_{2}^{n} is defined by $d(x, y):=w t(x \not y)$. In words: $d(x, y)$ is the number of coordinate places in which x and y differ. The minimum distance d of a code C is defined by

$$
d:=\min \left\{d(\underline{x}, \underline{y}) \mid x \in C, \underline{y} \in C, x^{\neq y}\right\} .
$$

A block code of length n and minimum distance d is called an (n, d)-code. An (n, d)-code with M codewords, we call an (n, M, d-code. An (n, M, d)-code of which all codewords have the same Hamming-weight, w say, is called a constant weight code or an (n, M, d, w-code. A linear [n,k]-code with minimum distance d is called an $[n, k, d]$-code (the minimum distance in a linear code equals the minimum weight among all non-zero codewords).

In the vector space \mathbb{F}_{2}^{n} we define an innerproduct (,) in the usual way .

$$
\underset{x}{\forall} \in \mathbb{F}_{2}^{n} \quad \forall_{y} \in \mathbb{F}_{2}^{n} \quad\left[\underline{(\underline{x}, \underline{y})}:=x_{1} y_{1} \otimes x_{2} y_{2} \otimes \ldots \oplus x_{n} y_{n}\right]
$$

where denotes the usual addition in \mathbb{F}_{2}. If C is an $[n, k]$-code, then the dual code C^{\perp} of C is defined by

$$
C^{\perp}:=\left\{\underline{x} \in \mathbb{F}_{2}^{n} \mid \forall_{y} \in C^{[(\underline{x}, y)=0]\}}\right.
$$

The code C^{\perp} is an $[n, n-k]$-code.
A generator matrix G of an $[n, k]$-code C is a $k \times n$ matrix, the rows of which form a basis of C. A parity-check matrix H of a linear code C is a generator matrix of the code C^{\perp}. Both G and H define the code C. The matrices G and H satisfy $G H^{T}=0$ (evaluated in \mathbb{F}_{2}).

Block codes are used for reliable transmission of information over noisy channels. Examples of noisy channels are: telephone wires, telegraph wires, computer memories, ete. A simple model of such a channel is the binary symmetric chamel, i.e., a channel over which we can send two different symbols 0 and 1 and for which there is a probability p that a transmitted 0 (resp.1) is interpreted by the receiver as a 1 (resp.0). The following figure illustrates the information-transmission scheme.

Fig. 1.

We use the following notation:
$u \in\{0,1, \ldots, M-1\}=$: v the input message set, $c \in F_{2}^{n}$ a channel
input word, $x \in \mathbb{F}_{2}^{n}$ a channel output word, $v \in\{0,1, \ldots, M-1\}$ the
output message and $e \in \mathbb{F}_{2}^{\mathrm{n}}$ an error vector describing the noise on the binary symmetric channel.

The channel input word c and channel output word x are related as follows

$$
x=c ⿻ 日 .
$$

where is the usual addition in \mathbb{F}_{2} which operates on the vectors componentwise.

In ordex to protect the information, sent over the BSC channel, one can use the codewords of a binary (n, M, d)-code \mathcal{C} as channel input words. A one-to-one mapping $\bar{\dagger}, \phi: U \rightarrow C$, is used to map any message $u \in U$ onto a codeword $\Phi(u)=c \in C$. The function Φ is called an encoding function for C. A particular decoding function $\Psi, \Psi: \mathbb{F}_{2}^{n} \rightarrow U$, for C can be defined by

$$
\mathrm{v}=\Psi(\underline{\mathrm{x}}):=\Phi^{-1}\left(\underline{c}^{\prime}\right)
$$

where c^{\prime} is the (not necessarily unique) codeword of C which lies closest to $x=c+e$. If $w t(e) \leq \frac{d-1}{2}$ then one easily sees that c^{\prime} is equal to c and hence v is equal to u. We say that C is a $\left\lfloor\frac{d-1}{2}\right\rfloor$ - error-correcting code.

The decoding principle described above is known as maximum likelihood decoding. It requires the determination of the (not necessarily unique) codeword c^{\prime} of C, which lies closest to the received channel output word x. This is a laborious task if the cardinality of C is big and Chas no structure whatsoefer . The linear structure of a code can be utilized to make the decoding somewhat easier.

Let C be a binary linear sode with parity check matrix E . For every $\underline{x} \in \mathbb{F}_{2}^{\mathrm{n}}$ we call $\underline{x H}^{T}$ the syndrome of \underline{X}. From the above we have that the codewords of C are characterized by syndrome 0 . The syndrome is an important tool in decoding received vectors \underline{x}. Since C is a sub-group of $\mathbb{F}_{2}^{\mathrm{n}}$ we can
partition F_{2}^{n} into cosets of C. Two vectors \underline{x} and \underline{y} are in the same coset iff they have the same synarome $\left(\underline{x} H^{T}=y H^{T} \not \underline{x}^{\oplus} \underline{y} \in C\right)$. Therefore, if a vector \underline{x} is received, where $\underline{x}=\underline{c}$ ㅇ, $\underline{c} \in \mathcal{C}$, then \underline{x} and e have the same syndrome. It follows, that for maximum likelihood decoding of x one must choose a vector e^{\prime} of minimal weight in the coset with syndrome $\underline{X H}^{T}$ and then decode \underline{x} as $\Phi^{-1}\left(\underline{x} \underline{E}^{\prime}\right)$. The vector \underline{E}^{\prime} is called the coset leader. Again if $w t(\underline{e}) \leqq \frac{d-1}{2}$ then e^{\prime} is equal to e and hence we will decode x correctly.

Since time is money, we must in general keep the time needed for the transmission of information as short as possible. Let C be a binary ($n, M, d)$-code. Then the rate R of C, defined by

$$
\mathrm{R}:=\mathrm{n}^{-1} \log M
$$

is a measure for the efficiency of the code C. Since, for a message $u \in U$, with $|u|=M$, we need on the average $\log M$ bits to distinguish u from all other messages in U, the number $n(1-R)$ gives an indication of the loss of time in transmission when the code C is used for error protection. It will be clear that the higher the rate of C the lower the error-correcting capability of C. So knowledge of the following two functions is of the utmost importance.

$$
\begin{aligned}
A(n, d):= & \text { maximim number of codewords in any binaxy code (linear } \\
& \text { or non-linear) of length } n \text { and minimum distance } d,
\end{aligned}
$$

and

$$
\begin{aligned}
B(n, d):= & \text { maximum number of codewords in any linear binary } \\
& \text { code of length } n \text { and distance } a .
\end{aligned}
$$

REFERENCES

[1] van LINT, J.H. : Introduction to Coding Theory. New York Heidelberg Berlin: Springex, 1982.
[2] MacWILLIAMS, F.J. and SLoANE, N.J.A.: The Theory of Erwor-correcting Codes. Amsterdam-New York-Oxford: Noxth-Holland, 1977.

CHAPTER 1

COMPUTER MEMORIES WITH "STUCK-AT" DEFECTS AND RANDOM ERRORS

1.1 INTRODUCTION

In this ohapter we consider the problem of reliable storage of information in an imperfect binary computer memory. We consider a memory that is composed of a very large number of binary memory cells which are partitioned into memory units of n cells. (n the block-length of the error-correcting code to be used). We are concerned with two types of imperfections that affect individual memory cells. The first type is a defective memory cell that is unable to store information; its current value cannot be changed. Such cells are called stuck-at cells. We distinguish between stuck-at-0 and stuck-at-1 cells. When a 1 is.written into a stuck-at-0 cell an exror results. The second type of imperfection is a noisy cell which is occasionally in error. The distinction between these two types of imperfections is that stuckat defects are permanent, while errors caused by noise are transient.

By testing a memory unit it is possible to determine the locations and natures of the stuck-at cells. The side information that describes the state of the defects can be incorporated in the decoding or in the encoding of block codes. Depending on how this stuck-at information is exactly used, this gives rise to number of different coding (reliable storage) problems. We mention the two most "interesting" ones.

In the first one, the locations of the stuck-at-cells are assumed to be known only at the decoder. These cells then act as exasures. Thus. it makes sense to apply known techniques for decoding block codes with random errors and erasures in this case. We will not go into this problem. The interested reader is refered to [2]. We consider the complementary problem of incorporating stuck-at information in the encoding process.

This last problem was originated by Kusnetsov and Tsybakov in [11]. They consider coding for binary memory units that have a number t of stuck-at cells, where $\mathrm{t} £ \mathrm{pn}, 0<\mathrm{p}<1, \mathrm{p}$ fixed. The assumption is that the locations and natures of the defects are known at the encoder but not at the decoder. By allowing the size of the memory unit n to become large, they prove the existence of codes that are capable of storing information without error, for any rate $R<1-p$. Noreover, they prove that such codes can be found within the class of additive codes (see [11]). In Section 1.2 we give an outline of this paper. At the end of this section we introduce the related problem of exhaustive test pattern generation. In both problems so-called t-defect-compatible matrices play a very important role. Also the equivalence of the notion of t-defect-compatibility and that of t-independence of sets is mentioned. This fact seems to be almost unknown.

In section 1.3 we prove an upper bound for the largest possible length of a t-defect-compatible matrix with m rows. This bound gives a slight improvement on the one given in [9]. Section 1.4 deals with constructions for additive codes, capable of correcting all word defects of multiplicity t or less and hence by nature, also constructions for exhaustive pattem testing schemes. The constructions described there, in fact generate separable t-defect-compatible matrices.

In [19] Tsybakov introduces the problem of coding for binary memory units with both defects and random errors. Ounce again the locations and natures of the defects are assumed to be known at the encoder but not at the decoder. He introduces the concept of "matched adjacent codes" to solve this problem. In [7] Heegard calls these codes partitioned linear block codes. We will stick to that name. In Section 1.5 we use their ideas and one of our construction methods of Section 1.4 to construct codes that have a better performance than those given in [7]. With these codes the encoding process will take more time, the decoding process on the other hand not.

The problem of determining the capacity of imperfect computer memories when complete or partial defect information is avallable at
the encoder or at the decoder is not studied here. For this problem, we refer the interested reader to [6].

1.2 CODTMG FOR AN IMPERFECT COMPUTER MEMORY

61.2.1 An algebraic model

The following figure illustrates the information-transmission (storage) scheme we are concemed with.

Fig. 1.

We use the following notation:
$u \in\{0,1, \ldots, M-1\}=$ the input message set, $x \in \mathbb{F}_{2}^{n}$ a channel input word, $\underline{y} \in F_{2}^{n}$ a channel output word, $v \in\{0,1, \ldots M-1\}$, the output message, $E \in \mathbb{F}_{2}^{n}$ an exror vector describing the noise on the channel and $d=E[0,1, \delta\}^{n}$ a word defect describing the states of the memory cells to be used.

The word defect $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in\{0,1, \delta\}^{n}$ has to be interpreted as follows:
if $d_{i}=\left\{\begin{array}{l}0, \text { then the } i^{\text {th }} \text { cell of the memory unit is stuck-at-0, } \\ 1, \text { then the } i^{\text {th }} \text { cell of the memory unit is stuck-at-1, } \\ \delta, \text { then the } i^{\text {th }} \text { cell of the memory unit is defect-free. }\end{array}\right.$
The number t of coordinates of d equal to 0 or 1 is called the multiplicity of the word defect d. By D_{t}^{n} we denote the set of word defects $a \in\{0,1, \delta\}^{n}$ with multiplicity t or less. Let the " 0 " operator $0: \mathbb{F}_{2} \times\{0,1, \delta\} \rightarrow \mathbb{F}_{2}$ be defined by

$$
x \circ d:=\left\{\begin{array}{lll}
x & \text { if } & d=\delta, \\
d & \text { if } & d \neq \delta .
\end{array}\right.
$$

The relation between the channel input word x and channel output word y can then be described by

$$
\begin{equation*}
\underline{y}=(\underline{x} \circ \underline{d}) \oplus \underline{e} . \tag{1}
\end{equation*}
$$

The errors, described by the error vector e, occur when reading the memory, so they affect the memory contents of defect-free cells as well as that of stuck-at cells.

EXAMPLE 1. Let $n=6, \underline{x}=(0,0,0,0,0,0), \underline{a}=(\delta, \delta, 0,1,1,0)$ and $\underline{e}=(0,1,0,0,1,1)$. Then $\underline{y}=(\underline{x} \bigcirc \underline{d}) \oplus \underline{e}=(0,1,0,1,0,1)$.

§ 1.2.2 The class of additive codes

During the rest of this section we assume that there is no noise on the channel (memory); so $\underline{e}=\underline{0}$ in (1). Furthermore, we assume that the stuck-at cells are randomiy distributed over the memory. In [11] Kusnetsov and Tsybakov define a block code of length n for this memory as a
paxtition of F_{2}^{n} into M subsets $A_{u}, u=0,1, \ldots, M-1$. They use the defect information, known at the encoder, to assign to a message u a channel input word $x \in A_{u}$ in such a way that the stuck-at cells of the memory unit to be used do not alter \underline{x}. The decoder, receiving the unaltered \underline{x}, recognizes that x belongs to the subset A_{u} and so xecovers the message u correctly. The rate R of the code $i s$ given by $R=(\log M) / n$. To find suitable partitions of \mathbb{F}_{2}^{n}, Kusnetsov and Tsybakov make use of so-called separable t-defect-compatible matrices, leading to the introduction of the class of additive codes. We need some definitions:

A word $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$ is said to be compatible with the word defect $a=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in\{0,1, \delta\}^{n}$ if $\underline{x}=\underline{x} 0 \underline{d}$; so $x_{1}=d_{i}$, for all $i \in\{1,2, \ldots, n\}$ with $d_{i}=0$ or 1. A binary m xn matrix C is called a t-defectmompatible matrix, if for any word defect $d \in D_{t}^{n}$, there is a row of C which is compatible with d.

We are now ready to define the class of additive codes.

Let C be a $2^{Y} \times n$ binary matrix in which the first x elements of each row form the binary representation of the numbex i of that row $\left(i=0,1, \ldots, 2^{x}-1\right)$. A matrix with this property is said to be a separable matrix. Let, for any $u \in U=\left\{0,1, \ldots, 2^{n-r}-1\right\}$ and any $a \in\{0,1, \delta\}^{n}, c(u, d)$ be, a specified row of C. This specification will be made clear later on. For any $u \in U$, the vector $\underline{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{F}_{\dot{2}}^{n}$ is given by

$$
u_{i}=0(i=1,2, \ldots, r) \text { and } u=\sum_{i=1}^{n-r} u_{r+i} 2^{i-1}
$$

The encoding function $\Phi, \Phi: U \times\{0,1, \delta\}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is defined by

$$
\underline{\varphi}(u, \underline{a}):=\underline{u} \oplus \underline{c}(u, \underline{a})
$$

The code (partition of F_{2}^{n}) defined by c is clearly given by

$$
F_{2}^{n}={\underset{u}{2^{n-x}}-1}_{u=0}^{\underline{u} \oplus \underline{c} \mid \leq \text { a row of } c\} . . . ~}
$$

The rate R of this code is equal to $R=(n-r) / n=1-r / n$. Different separable matrices C define class of codes, which we call the class of additive codes.
The decoding function $\Psi, \Psi: \mathbb{F}_{2}^{n} \rightarrow$, for the additive code is deffined by

$$
\Psi(\underline{y}):=\sum_{i=1}^{n-x}\left(y_{r+i} \cdot c_{r+i}\right) \cdot 2^{i-2}
$$

where $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is that row of c with

$$
c_{i}=y_{i} \text { for } i=1,2, \ldots, r .
$$

From the above it will be clear that a necessary and sufficient condition for the additive code, defined by the separable matrix C, to correct all word defects of multiplicity t or less is that C is a separable t-cefect-compatible matrix. For any $u \in U$ and $d \in D_{t}^{n}$ the row c(u,d) from c must then be the (not necessarily unique) row of c which is compatible with the word defect d' defined by

$$
d_{i}:=\left\{\begin{array}{l}
\delta \text { if } d_{i}=\delta, \\
u_{i} \not d_{i} \text { if } a_{i}=0 \text { or } 1_{i}
\end{array}\right.
$$

where u_{i} is the $i^{\text {th }}$ component of the vector u defined above.

EXAMPLE 2. Let $n=4, r=1, t=1, c=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right], u=3$ and $d=(8,6,0,8)$. Encoding: To encode we determine $\underline{u}=(0,1,1,0), \underline{a}^{\prime}=(\delta, \delta, 1, \delta)$. and $\mathrm{c}(\mathrm{u}, \mathrm{d})=(1,1,1,1)$. We store

$$
\underline{x}=\Phi(u, \underline{d})=(0,1,1,0) \oplus(1,1,1,1)=(1,0,0,1)
$$

Decoding: To decode retrieve from the computer memory the vector $\underline{y}=\underline{x} \circ \underline{d}=(1,0,0,1)$ and from C the row \underline{w} whth index $1 \cdot 1=1 ;$ so $\leq(1,1,1,1)$. Now compute the value

$$
v=\Psi(\underline{y})=(0-1) 1+(0 \oplus 1) 2+(1 \oplus 1) 4=3=u
$$

EXAMPLE 3.
Let $n=3 ; x=2, t=2, C=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right], u=1$ and $a=(1, \delta, 1)$.
Encoding: $\underline{u}=(0,0,1), \underline{a}^{\prime}=(1, \delta, 0)$ and $\underline{c}(u, d)=(1,1,0)$.
So store the vector:

$$
\underline{x}=\Phi(u, \underline{d})=(0,0,1) \oplus(1,1,0)=(1,1,1):
$$

Decoding: Retreive $\underline{x}=x \quad \mathrm{~d}=(1,1,1)$ and the row of c with index $1 \cdot 1+1 \cdot 2=3 ;$ so $\underline{c}=(1,1,0)$. Computa

$$
v=\Psi(y)=1 \cdot 1=1=u
$$

We define the function $R(n, t)$ by
$R(n, t):=$ the maximal value of R for which there exists a code with rate R that is capable of correcting all worddefects of multiplicity t or less.

In [11] Kusnetsov and Tsybakov prove the following suxprising result.

THEOREM 1. FOX any $n, t \in \mathbb{N}, 1 \leqq t \leq n$,

$$
\begin{equation*}
1-\frac{t+\left[\log \ln 2^{t}\binom{n}{t}\right\rceil}{n} \leq R(n, t) \leq 1-\frac{t}{n} \tag{2}
\end{equation*}
$$

The upper bound in Theorem 1 is obvious. The lower bound is a consequence of the existence of separable t-defect-compatible matrices of size $2^{r} \times n$, with

$$
\begin{equation*}
t \leq r \leqq t+\left[\log \ln 2^{t}\binom{n}{t}\right] \tag{3}
\end{equation*}
$$

The existence of such matrices is proved by using a probabilistic "counting" argument. Since, for any fixed $p \in[0,1]$,

$$
1-\frac{t+\left[\log \ln 2^{t}\binom{n}{t}\right]}{n}=1-p+o\left(n^{-\frac{1}{5}}, \text { for } \frac{t}{n}=p \text { and } n \rightarrow \infty\right.
$$

we have the following consequence of this theorem.

COROLAARY 2. Let p be any fixed number in [0,1] and let $\varepsilon>0$. Then, for n sufficiently large (depending on p and ε), thexe exists an additive code of length n that is capable of correcting all word defects of multiplicity $n p$ or less, for a rate $R, 1-p-\varepsilon \leqq R \leqq 1-p$.

\$1.2.3 Some related problems

From § 1.2 .2 , it will be clear that separable t-defect-compatible matrices play an important role in the reliable storage of information in an imperfect computer memory with stuck-at defects. Therefore, we define

$$
\begin{aligned}
r(n, t):= & \text { the minimal value of } r \text { for which there exists a } 2^{r} \times n \\
& \text { separable } t \text {-defect-compatible matrix, } n, t \in \mathbb{N}, \\
& 1 \leqq t \leq n .
\end{aligned}
$$

The functions $R(n, t)$ and $r(n, t)$ are related by

$$
n R(n, t) \geqq n-r(n, t) .
$$

In the conventional approach to logic circuit testing, a set of test vectors, to be applied at the circuit inputs, is derived from an analysis made on the circuit under test. Typical faults one wishes to determine are stuck-at-0 and stuck-at-1 faults at the gate level. Such a testgeneration procedure requires a substantial amount of computer time due
to the necessary analysis and simulation to be carried out. Due to the growth of the number of logic circuits on a VLSI-chip, the conventional way of logic test generation becomes more and more impractical. Not only the computer time grows excessively, also the single stuck-at fault model becomes more inadequate. A partial solution to this problem is, to use exhaustive pattern testing schemes for testing several logic circuits simultaneously.

In this approach a VLSI-chip is considered to have n binary inputs. Each input may influence many outputs, but due to certain partitioning techniques each output is assumed to depend on atmost t inputs ($t<n$). To test the chip, any set of t or less inputs feeding an output is provided with all possible input pattems, By checking the correctness of the outputs, any single hard fault ox combination of hard faults, which results in a permanent alteration of the thruth table,associated with an output function, is noticed. So we are left with the problem of generating a minimal set of test vectors of length n, to provide simultaneouly all input pattexns to each of a collection of input subsets of size t or less. From the above, it may be clear that the rows of an $m \times n$ t-defect-compatible matrix form. such a set. Therefore, we define

```
m(n,t) := the minimal value of m}\mathrm{ for which there exists an mxn
    t-defect-compatible matxix.
```

The relation between the functions $R(n, t)$ and $m(n, t)$ is given by

$$
n \mathbb{R}(n, t) \leqq n-\log m(n, t)
$$

For a more detailed description of the problem of logic circuit testing, the reader is refered to $[5,15]$.

Most authors who work on these two fielas of research do not seem to be waxe of the fact that the notion of t-defect-compatibility is equivalent to that of t-independence of sets. Constder the $i^{\text {th }}$ colum of
an $m \times n$ t-defect-compatible matrix as the characteristic vector of a subset A_{i} of the set $A=\{1,2, \ldots, m$. Let F denote the collection of subsets A_{i} of $A, i=1,2, \ldots, n$, i.e., $F=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. The t-defect-compatibility property can then be formulated as

For any t-tuple of subsets $A_{k_{1}}, A_{k_{2}}, \ldots, A_{k_{t}}$ from F, all 2^{t} intersections

$$
{\underset{i=1}{t}}_{\mathrm{n}_{1}} \mathrm{~B}_{\mathrm{i}}
$$

are non-empty, where each $B_{k_{i}}$ can be either $A_{k_{i}}$, or $A \backslash A_{k_{i}}$.

In [9] Kleitman and Spencer call such a collection a t-independent collection of subsets of an m-element set. In [9] a lower bound on the size of such a collection is proved that coincides with the upper bound on $x(n, t)$ given by (3). In Section 1.3 we mention some of their results translated in the terminology of t-defect-compatible matrices.

For later use we give two more definitions. For any $x, m, t \in \mathbb{N}$ we define

$$
\begin{aligned}
n(r, t):= & \text { the maximal value of } n \text { for which there exists a } 2^{r} \times n \\
& \text { separable t-defect-compatible matrix, and } \\
n f(m, t):= & \text { the maximal value of } n \text { for which there exists an } m \times n \\
& t \text {-defect-compatible matrix. }
\end{aligned}
$$

The relations between $r(n, t)$ and $n(r, t)$ respectively $m(n, t)$ and $n f(m, t)$ are given by

$$
n\left(x_{0}, t\right) \geqq n_{0} \quad \text { iff } \quad r\left(n_{0}, t\right) \leqq r_{0}
$$

and

$$
n f\left(m_{0}, t\right) \geqq n_{0} \text { iff } m\left(n_{0}, t\right) \leqq m_{0} .
$$

We conclude this section with a table of known values of $x(n, t), m(n, t)$ and $R(n, t)$, for $t=0,1, n-1$ and n.

t	$r(n, t)$	$m(n, t)$	$R(n, t)$
0	-	-	1
1	1	2	$1-1 / n$
$n-1$	$n-1$	2^{n-1}	$1 / n$
n	n	2^{n}	0

Table 1.

1.3 UPPER BOUND ON $n f(m, t)$

In [9] Kleitman and Spencer consider the problem of determining the largest size of a t-independent family of subsets of an m-element set. From the previous section we know that this is equivalent with determining the largest value of n, for which there exists an $m \times n t$-defect-compatible matrix. We have denoted this maximal value by $n f(m, t)$. In [9] kleitman and Spencer solve this problem for $\mathrm{t}=2$ (see Theorem 3) and give asymptotic upper and lower bounds for $n f(m, t)$, where $t \geq 3$ is fixed and m tends to infinity. Although, from a coding point of view, determination of such bounds is of almost no interest, we found this problem interesting enough to work on. In this section we prove a slight improvement on the upper bound given in [9].

We first give the solution for $t=2$ in Theorem 3. Because of our interest in seperable t-defect compatible matrices, the value of $n(r, 2)$ is also mentioned.

THEOREM 3. [9] For all m,x $\mathbb{N}, m \geqq 4$ and $r \geq 2$ we have

$$
n f(m, 2)=\binom{m-1}{\left\lceil\frac{m}{2}\right\rceil} \text { and } n(x, 2)=\binom{2^{x}-1}{2^{x-1}} .
$$

The values of nf(m,2) and $n(x, 2)$ are attained by the following construction.

Construction.

Let $m \in \mathbf{N}, m \geq 4$. We define C to be the $m \times\binom{ m-1}{\left[\frac{m}{2}\right\rceil}$ matrix with as colums all binary vectors of length m and Hamming weight $\left\lceil\frac{\mathrm{m}}{2}\right\rceil$, of which the first coordinate is equal to zero (see . Fig. 2, below).

$$
\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Fig.2. A 6×10, 2 -defect-compatible matrix.

From the above figure, it is easy to see that this construction indeed Yields a 2 -defect-compatible watrix. If $m=2^{r}$ the matrix is separable.

As a consequence of Theorem 3 we find the following values for $m(n, 2)$, $r(n, 2)$ and $R(n, 2)$ (see also $\$ 1.2 .3$). Let, for any $n \in \mathbf{N}^{\prime} m_{0} \in \mathbb{N}$ be defined by

$$
\binom{m_{0}-2}{\left\lceil m_{0}-1\right\rceil}<n \leqq\binom{ m_{0}-1}{\left\lceil\frac{m_{2}}{2}\right\rceil}
$$

and take $r_{0}=\left\lceil\log m_{0}\right\rceil$. Then

$$
\begin{gathered}
m(n, 2)=m_{0} \quad \\
r(n, 2)=r_{0} \quad \text { and } \\
1-\frac{x_{0}}{n} \leqq R(n, 2) \leq 1-\frac{r_{0}-1}{n}
\end{gathered}
$$

We now aim our attention at the case $t \geqslant 3$. In 0$]$ Kleitman and spencer prove the following lower and upper bound on $n(m, t)$.

THEOREM 4. FOX all $t \in \mathrm{~N}_{\mathrm{F}} \mathrm{t} \geqq 3$, t fixed, we have

$$
n f^{*}(m, t) \geq 2^{\left(\ell_{t}+0(1)\right) m}, m \rightarrow \infty
$$

and

$$
n f(m, t) \leqq 2^{\left(u_{t}+o(1)\right) m}, m \rightarrow \infty
$$

where $P_{t}=\left(\log \left(1-2^{-t}\right)\right) / t$ and $u_{t}=\left(H\left(2^{-(t-1)}\right)-2^{-(t-2)}\right) /(t-2)$, with $H(p):=-p \log p-(1-p)$ log. $(1-p)$, the well-known binary entropy function.

Let, as defined in chapter $0, A(m, d)$ denote the largest value of M for which there exists binary ($n, \mathrm{M}, \mathrm{d}$) code. The following theorem uses the function $A(m, d)$ to derive an upper bound on $n f(m, t), t \geq 4$.

THEOREM 5. For any m, $t \in \mathbb{N}, 4 \leq t \leq m$,

$$
\begin{equation*}
\left.n f(m, t) \leqq \max _{0 \leqq d \leqq \frac{1}{2} m} \min \left\{\operatorname{nf}\left\{\frac{d}{2}\right\rfloor, t-2\right)+2, \frac{1}{2} A(m, d)\right\} \tag{4}
\end{equation*}
$$

PROOF. Let c be an $m x n f(m, t)$ t-defect conpatible matrix. Let A be the binary code with as codewords all the columns of \bar{C} and \bar{C}. From the definition of a t-defect-compatible matrix, it follows that C and \bar{C} have no colums in common. Let d be the minimum distance of A. Then,

$$
\begin{equation*}
2 \mathrm{nF}(m, t)=|A| \leqq A(m ; d) \tag{5}
\end{equation*}
$$

Since A has minimum distance $\mathrm{a}_{\text {, }}$ there are two colums of C. w.l.o.g. the first two columns \underline{h}_{1} and h_{2}, with $d\left(h_{1}, h_{2}\right)=d$ or $n-d$. Assume $d\left(\underline{h}_{1}, \underline{h}_{2}\right)=d$ (the case $d\left(\underline{h}_{1}, \underline{h}_{2}\right)=n-d$ qoes analogously). Consider the matrices C_{1} respectively C_{2} consisting of those rows of C for which
the first entry is equal to 0 and the second entry is equal to 1 , respectively the first entry equal to 1 and the second entry equal to 0 . From the t-defect-compatibility of C, it follows immediately that the matrices C_{1}^{\prime} and C_{2}^{\prime}, which are formed by deleting the first two columns of C_{1} respectively C_{2}, are ($t-2$)-defect-compatible matrices. Let m_{i} be the number of rows of $c_{1}, i=1,2$. Then $m_{1}+m_{2}=d$. Since both matrices have $n f(m, t)-2$ columns, we have

$$
\begin{align*}
n f\left(m_{1} t\right)-2 & \leqq \min \left\{n f\left(m_{1}, t-2\right), n f\left(m_{2}, t-2\right)\right\} \\
& \leqq n f\left(\left\lfloor\frac{d}{2}\right\rfloor, t-2\right) \tag{6}
\end{align*}
$$

The last inequality follows from the fact that for fixed $t, n f(m, t)$ is an increasing function of m. Together, (5) and (6) give the desixed inequality (4) *

As a consequance of Theorem 5, we have
COROLLARY 6, Let $u_{3}^{\prime}=u_{3}, u_{4}^{\prime}=u_{4}$ and let, for $t \geq 5, u_{t}$ be defined by

$$
u_{t}^{\prime}=\max _{0 \leqq \delta \leqq \frac{1}{2}} \min \left\{\frac{\delta}{2} u_{t-2}^{\prime}, H\left(\frac{1}{2}-\sqrt{\delta}(1-\delta)\right)\right\} .
$$

Then, for any $t \in \mathbb{N}, t \geq 5$,

$$
n f(m, t) \leqq 2^{\left(u_{t}^{\prime}+o(1)\right) m}, \text { fixed and } m \rightarrow \infty
$$

PROOF. Use induction on t and the well-known MRFW upper bound [14] as an estimate for $A(m, d)$ in. (4).

Corollary 6 gives a slight improvement on the upper bound on $n f(m, t)$ of Theorem 4, when t is greater than or equal to 4. In Table 2 we list the values of ℓ_{t}, u_{t} and u_{t}^{\prime} for $t=3,4,5,6,8$ and 10 .

t	k_{t}	u_{t}	$u_{t}^{\prime \prime}$
3	0.0642	0.3112	0.3112
4	0.0232	0.1467	0.1467
5	0.00916	0.0707	0.0643
6	0.00378	0.0345	0.0322
8	$7.058 \cdot 10^{-4}$	$8.382 \cdot 10^{-3}$	$7.635 \cdot 10^{-3}$
10	$1.409 \cdot 10^{-4}$	$2.060 \cdot 10^{-3}$	$1.865 \cdot 10^{-3}$

Table 2.
1.4 CONSTRUCTIONS FOR (SEPARABLE) E -DEFECT-COMPATIBLE MATRTCES WITH $t \geq 3$.

Many authors have considered the problem of constructing (separable) t-defect-compatible matrices $[1,3,4,13,18]$. In this section we describe two construction methods that, to our knowledge, yield the best results. The first one is due to Busschbach [3]. This construction uses a small t - Cefect-compatible matrix to generate a larger one. So t stays fixed, while the length n grows. The second construction allows to grow proportionaly with n and is thexefore used to detemine a "constructive" asymptotic lowex bound on $r(n, n p)$ for p fixed, $0<p \leqq \frac{1}{2}$ and $n \rightarrow \infty$, We also use this construction to dexive some lower bounds on $n(x, t)$, for $x \leq 20$ and $3 \leqq t \leq 10$.
$\S 1.4 .1$ A construction for t-defect-compatible matrices of length n,
with $t \lll n$

In this paragraph we describe the construction method, for t-defectcompatible matrices, found by Busschbach in [3]. The adjustments necessary to make the resulting matrix separable are ours. The construction uses a mall t-defect-compatible matrix to generate a largex one. These small
matrices can, for instance, be constructed by the method of § 1.4.2.

Construction.

Let A be a $m_{0} \times n_{0} t$-defect-compatible matrix, where n_{0} is a prime power $\geqq \frac{t^{2}}{4}$. Let B be an n_{0}-ary linear MDS code with dimension $k, 2 \leqq k \leqq \frac{4 n_{0}}{t^{2}}+1$ and length $m=(k-1)\left\lfloor\frac{t^{2}}{4}\right\rfloor+1$.
Since $m \leqq n_{0}+1$, these codes are easy to construct (see [14]).
Let B be the $m \times n_{0}^{k}$ matrix with as columns the codewords of B.
Let $\varphi: \mathbb{F}_{n_{0}} \rightarrow\{$ columns of $A\}$ bea bijection. Construct the $m_{0} \times n_{0}^{k}$ binary matrix c by replacing each entry b of B by $\dot{\varphi}(b)$.

THEOREM 7. The matrix C, constructed above, is a t-defect-compatible matrix.

PROOF. To prove the t-defect-compatibility of C, let C ' be any mm $\times t$ submatrix of C and let $d '$ be any binary vector of length t. We have to show that d^{\prime} is contained in the row set of C^{\prime}. To prove this we go back to the code B. Let $\underline{b}^{j}=\left(b_{1}^{j}, b_{2}^{j}, \ldots, b_{m}^{j}\right)$ be that codeword of B that corresponds to the $j^{\text {th }}$ column of C^{\prime}. Since every coordinate b_{i}^{j}, $1 \leqq j \leqq t$, is replaced by a column of the t-defect-compatible matrix A, we are done if we can show that there is an i, $1 \leqq i \leqq m$, such that

$$
\begin{equation*}
\left\{b_{i}^{j} \mid d_{j}^{\prime}=0\right\} \cap\left\{b_{i}^{j} \mid d_{j}^{\prime}=1\right\}=\emptyset \tag{7}
\end{equation*}
$$

From the t-defect-compatibility of A we then have that d^{\prime} is contained in the row set of the submatrix $c^{\prime \prime}=\left(\varphi\left(b_{i}^{1}\right) \varphi\left(b_{i}^{2}\right) \ldots \ldots \varphi\left(b_{i}^{t}\right)\right)$ of c^{\prime}.

So suppose that (7) does not hold for any $i \in\{1,2, \ldots, m\}$; so $d^{\prime} \neq \underline{0}, 1$. We calculate the sum

$$
i\left|\sum_{i}^{\prime}=0 \quad j\right| \sum_{j}^{\prime}=1 \quad d\left(\underline{b}^{i} \cdot \underline{b}^{j}\right)
$$

in two different ways. Firstly, since (7) does not hold for any coordinate $i \in\{1,2, \ldots, m\}$, each coordinate contributes at most $n_{0}\left(d^{\prime}\right), n_{1}\left(a^{\prime}\right)-1$ to the sum, whexe $n_{\lambda}\left(\underline{a}^{\prime}\right):=\left|\left\{i \mid d_{i}^{\prime}=\lambda\right\}\right|, \lambda=0,1$. Hence

$$
i\left|\sum_{i}^{j}=0 \quad j\right| a_{j}^{i}=1 \quad\left(\underline{b}^{i}, \underline{b}^{j}\right) \leqq m \cdot\left(n_{0}\left(\underline{a}^{\prime}\right) \cdot n_{1}\left(a^{\prime}\right)-1\right)
$$

Secondly, since the minimum aistance of B is equal to $m-k+1$ (B is MDS), we also have

$$
i\left|a_{1}^{\prime}=0 \quad j\right| \sum_{j}^{j}=1 \quad d\left(\underline{b}^{1} \cdot \underline{b}^{j}\right) \geqq n_{0}\left(\underline{a}^{\prime}\right) \cdot n_{1}\left(\underline{a}^{\prime}\right) \cdot(m-k+1):
$$

Thus, we may conclude that

$$
n_{0}\left(a^{t}\right) \cdot n_{1}\left(a^{t}\right) \cdot(m-k+1) \leqq m \cdot\left(n_{0}\left(a^{*}\right) \cdot n_{1}\left(a^{\prime}\right)-1\right)
$$

or equivalently

$$
m \leqq(k-1) \cdot n_{0}\left(\underline{a}^{\prime}\right) \cdot n_{1}\left(\underline{a}^{\prime}\right) \leqq(k-1)\left[\frac{t^{2}}{4}\right]
$$

A contradiction with $m=(k-1)\left\lfloor\frac{t^{2}}{4}\right\rfloor+1$.

The bounds on $n f(m, t)$ and $n(m, t)$, that result from this construction are so untransparent that we do not give them here. We confine ourselves to an example for $t=3$ and refer the interested reader to [3].

EXAMPLE 4: Let A be the 8×4-defect-compatible matrix with as rows the codewords of the $[4,3,2]$ binary code. Let $m_{i} \times n_{i}$ dencte the size of the 3-defect-compatible matrix after 1 succesive appiications of the above construction with maximal k_{i} so $m_{0}=8$ and $n_{0}=4$. Then we find the following values for m_{i} and $n_{i}, i=1,2,3$.

i	1	2	3
m_{i}	$3 \cdot 2^{3}$	$45 \cdot 2^{3}$	$\geq 2^{41}$
n_{i}	2^{4}	2^{32}	$\geq 2^{2^{35}}$

We see that the number n_{i} grows excessively with respect to the number m_{i}, but neverthe less, it does not result in a lower bound on nf(m,3) of the form nf($m, 3$) $2^{\alpha m}, \alpha$ fixed.

Although, we feel that Busschbach's construction is of little importance (t is too small compared to n) for the construction of additive codes, we adjusted the construction somewhat in order to make it yield (weak) separable t-defect-compatible matrices. A binary $n \times m$ matrix is called weakly separable if there exists a $n \times\lceil 109 \mathrm{n}\rceil$ submatrix of A that has n different rows. Matrices like this can also be used to define an additive code.

Construction.

Let A be a $2^{r_{0}} \times n_{0}$ separable t-defect-compatible matrix, where n_{0} is a prime power $\geq \frac{t^{2}}{4}$. Let B be a n_{0}-ary linear mDS code with dimension $2 \leq k \leqq \frac{4 n_{0}}{t^{2}}+1$ and word length $m=(k-1)\left\lfloor\frac{t^{2}}{4}\right\rfloor+1$ wuch that $1 \in B$. This is not a sexious restriction when $m \leq n_{0}$. Let B be the $m \times n_{0}^{k}$ matrix with as columns the codewords of B. Let the elements of $\boldsymbol{F}_{n_{0}}$ be labelled by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n_{0}}$ and the columns of A by $\underline{a}_{1}, \underline{a}_{2}, \ldots, n_{n}$ and let $s=\lceil\log m\rceil$. Assume $r_{0}+s \leqq n_{0}$ (this will almost always be the case). For any $v \in\{0,1, \ldots, m-1\}$ we define the vector $v \in F_{2}^{n_{0}}$ by

$$
\underline{v}:=\left(0,0, \ldots, 0, v_{x_{0}+1}, v_{x_{0}+2}, \ldots, v_{r_{0}+5}, 0,0, \ldots, 0\right)
$$

$$
\text { where } v=\sum_{i=1}^{s} v_{r_{0}+1} 2^{i-1}
$$

And $\varphi_{\underline{v}}: \operatorname{GF}\left(n_{0}\right) \rightarrow\{$ columns of $A\}$ by

$$
\varphi_{\underline{v}}\left(\alpha_{i}\right)=\underline{a}_{i} \oplus v_{i} \cdot 1, i=1,2, \ldots, n_{0}
$$

where 1 is the all-one vector of length $2^{r_{0}}$. Construct the $m \cdot 2^{r_{0}} \times n_{0}{ }^{k}$ binary matrix c by replacing each entry b in the $v^{\text {th }}$ row of B by $\varphi_{\underline{y}}(b), v=0,1, \ldots, m-1$.

THEOREM 8. The matrix C, defined above, is a weak separable t-defectcompatible matrix, if $r_{0}+s \sum_{n_{0}}$.

Proof. Since the entries in each row of B are mapped on the columns of a t-defect-compatible matrix, the t-defect-compatibility of the matrix C is a direct consequence of the proof of theorem 7 .

To prove the weak separability of C we consider the codewords $\alpha_{1}{ }_{1}$, $\alpha_{2}+1, \ldots,{ }_{r_{0}+s} \cdot 1$ of B. From the separability of A and the definition of $\varphi_{\underline{v}^{\prime}} v \in\{0,1,2, \ldots, m-1\}$, one immediately sees that the $2^{r_{0}} \cdot \mathrm{~m} \times\left(x_{0}+s\right)$ submatrix of c which corresponds with these codewords, consists of $2^{x_{0}} \cdot \mathrm{~m}$ differents rows

§1.4.2 A generalization of a construction method found by Kusnetsov in [10].

From Corollary 2 we have that, for any $p \in[0,1]$ and n sufficiently large, there exists an additive code of length n that is capable of correcting all word defects of multiplicity np or less, for a rate R very close to $1-\mathrm{p}$. However, the question remains :"how to construct such a code?". In this section we describe a construction method for separable t-defect-compatible matrices that gives a partial solution
to this problem.
As a first reaction we and many others with us tried to solve this problem with the help of linear codes. Let C be a binary $[n, k]$ code for which the dual code has minimum distance $t+1$. Then the $2^{k} \times n$ matrix c with as rows the codewords of the code C is easily seen to be a separable t-defect-compatible matrix. From the Gilbert-Varshamov bound one easily derives that this construction yields the following asymptotic upper bound on $r(n, n p)$,

$$
\begin{equation*}
r(n, n p) \leqq n(H(p)+o(1)), \text { for } p \text { fixed, } 0<p<\frac{1}{2}, \text { and } n \rightarrow \infty \tag{8}
\end{equation*}
$$

and so

$$
R(n, n p) \geq n(1-H(p)+o(1)), \text { for } p \text { fixed, } 0<p<\frac{1}{2} \text {, and } n \rightarrow \infty \text {. }
$$

However, not only the bound is poor, it is also cheating; no one as yet has found a construction of a family of binary linear codes that realizes the promises of the Gilbert-Varshamov bound. At present we only know that such families of good codes exist and can, for instance, be found within the class of Goppa codes [14, Ch.12].

To our surprise, the following observation shows that it is rather simple to find such a construction for t-defect-compatible matrices; the resulting upper bound for $m(n, n p)$ is even sharper than (8). Let C be the matrix with as rows all binary words of length n, which have weight $\left\lfloor\frac{t}{2}\right\rfloor$ or weight $n-\left\lfloor\frac{t-1}{2}\right\rfloor$. It is cleax that C is a t-defect-compatible matrix for any $t, 1 \leqq t \leqq\left\lfloor\frac{2 n}{3}\right\rfloor$. The asymptotic upper bound on $m(n, n p), 0<p<\frac{2}{3}$, that results from this construction reads

$$
\left.m(n, n p) \leqq 2^{n\left(H\left(\frac{p}{2}\right)\right.}+o(1)\right) \text {, where } p \text { is fixed, } 0<p<\frac{2}{3} \text { and } n \rightarrow \infty \text {. }
$$

Although, this bound "improves" (8), it is not really sharp. The resulting t-defect-compatible matrices, however, may be of interest for the generation of exhaustive test patterns; because of the simple
structure, the resultingtest sets can be effectively implemented (see [17]). Since we believe that $2^{x(n, t)}$ is about as big as m(n,t), for all values of t and $n, 0<t \leqq n$, the simplicity of the above construction convinced us, that it must be possible to find a similar construction method for separable t-defect-compatible matrices. A generalization of a construction method for separabie 3 -aefect-compatible matrices found by Kustnetsov in [10], does the trick.

Construction.

Let A be a binary $\left[2^{x}, k, d\right]$ code with $1 \in A$ and minimum distance $d \geq\left\lceil\left(2^{t-2}-1\right) 2^{r} /\left(2^{t-1}-1\right)\right\rceil$. Let G be a generator matrix of A with the ail-one vector as top-row. Let a be a parity check matrix of an $\left[n, n-k, 2\left\lceil\frac{t+1}{2}\right]\right]$ binary even weight code which has the all-one vector as top-xow. We define the $2^{x+1} \times n$ matrix c by

$$
C:=\left[\frac{\overline{G^{T}} \mathrm{H}}{G^{\mathrm{T}_{\mathrm{B}}}}\right]
$$

where $\overline{\mathrm{G}^{\mathrm{T}} \mathrm{H}}$ is the complementary matrix of $\mathrm{G}^{\mathrm{T}} \mathrm{H}$.

THEOREM 9. The matrix C defined above is a t-defect-compatible matrix if $t \geqq 3$. If G contains the generator matrix of $R M(1, r)$ as a submatrix, then C can be made separable.

PROOF. To prove the t-defect-oompatibility, it suffices to show that for any subset $J \in\{1,2, \ldots, n\}$ with $|J|=t$ and any $z \in \mathbb{F}_{2}^{t}$, there is an $i \in\left\{1,2, \ldots, 2^{r}\right\}$ such that

$$
\begin{equation*}
e_{1} G^{T} H_{J}=z \text { or } \underline{I}^{\Phi} \underline{z} \tag{9}
\end{equation*}
$$

where H_{J} is the $k \times t$ matrix that consists of those columns of H which have a column incex belonging to J and where e_{i} is the $i^{\text {th }}$ basis vector of $\mathbb{F}_{2} 2^{2}$.

Suppose there is a $J \subset[1,2, \ldots, n),|J|=t$ and a $\underset{Z}{\in} F_{2}^{t}$ such that (9) does not hold for any $i \in\left\{1,2, \ldots, 2^{r}\right\}$. Then

$$
\begin{aligned}
& \underline{x} \in F_{2}^{t^{\Sigma}}, \underline{x \neq 0}, \quad\left(e_{i} G^{T} H_{J} \underline{z}, \underline{x}\right)=2^{t-2} . \\
& \text { wt }(\underline{x}) \equiv 0 \bmod 2
\end{aligned}
$$

So

$$
\sum_{i=1}^{\sum_{i}^{r} \quad \in_{2}^{t^{z}}, \underline{x} \neq 0, \quad\left(e_{i} G^{T} H_{J} \oplus \underline{z}, \underline{x}\right)=2^{r} \cdot 2^{t-2} .} \begin{aligned}
& w t(\underline{x})=0 \bmod 2
\end{aligned}
$$

on the otherhand, we have

$$
\begin{align*}
& \omega t(\underline{x})=0 \bmod 2 \\
& ={\underline{x} \in \mathbb{F}_{2}^{t^{\Sigma}}, \underline{x} \neq \underline{0}, \quad w t\left(\underline{x} H_{J}^{T} G(\underline{x}, \underline{z}) \underline{1}\right) \leq\left(2^{t-1}-1\right) \cdot\left(2^{x}-d\right) ~ . ~ . ~}_{x} \tag{11}\\
& w t(\underline{x}) \equiv 0 \bmod 2
\end{align*}
$$

The inequality is consequence of the fact, that for any $x \in F_{2}^{t} \backslash\{\underline{0}$ wi.th $w t(\underline{x}) \equiv 0$ mod 2 , the word $\underline{x} H_{J}^{T} G(\underline{x}, \underline{z}) \cdot \underline{1} \in A \backslash(\underline{0}, \underline{1})$. For, since $⿴$ 日 has the all-one vector as top-row, wt $(\underline{x}) \equiv 0$ mod 2 and $\underline{x} \neq \underline{0}$, the first coordinate of $\underline{x H}_{J}^{T}$ is equal to 0 and $\underline{X H}_{J}^{T} \neq 0$. So, since the top-row of G is also 1 , we may conclude that $\mathrm{xf}_{\mathrm{J}}^{\mathrm{T}} \mathrm{G} \otimes \mathrm{A} \backslash\{\underline{0}, 1\}$.

Together (10) and (11) give

$$
2^{r}-d \geq\left|\frac{2^{t-2} \cdot 2^{r}}{2^{t-1}-1}\right|
$$

or equivalently

$$
a \leq 2^{r}-\left\lceil\frac{2^{t-2} \cdot 2^{r}}{2^{t-1}-1}\right\rceil=\left\lfloor\frac{\left(2^{t-2}-1\right) 2^{r}}{2^{t-1}-1}\right\rfloor
$$

This is a contradiction with $a=\left\lceil\frac{\left(2^{t-2}-1\right) 2^{x}}{2^{t-1}-1}\right\rceil$ if $t \geqq 3$. So c is a t-aefectcompatible matrix if $t \geq 3$.

The separability of C, when G contains the genexator matrix of $R M(1, r)$ as a submatrix, is obvious.

REMARK. Fox the case $t=3$, the above construction can somewhat be simplified. Let A be a binary $\left(m, n,\left\lceil\frac{m+1}{3}\right\rceil\right)$ code wish the property that for all a $\in A_{\text {. also }}^{1} \operatorname{a} \in A$. Let A_{0} respectively A_{1} denote the matrix with as columns the codewords of A of which the first coordinate is equal to 0 respectively equal to 1 . Then the $2 m \times n$ matrix c defined by

$$
c:=\left(\frac{A_{0}}{A_{1}}\right)
$$

is a 3 -defect-compatible matrix. When $m=2^{2}$ and A contains RM(1,r) as a subcode, the matrix C can be made separable. This is in essence the construction for 3 -defect-compatible matrices Kusnetsov gave in [10].

In order to make the above construction work we have to generate the matrices G and H which are mentioned thexe. The matrix G is the most important one. Suitable candidates for G are the generator matrices of the codes we describe in Theorem 10 . For a proof of this theorem and construction of these codes we refer to [14].

THEOREM 10 . Let $r=2 \ell+1$ and let i be any number in the range $1 \leqq i \leqq \ell$. Then there exists two

$$
\left[2^{x}, x(\ell-i+2)+1,2^{r-1}-2^{r-i-1}\right]
$$

subcodes of RM(2,x). These subcodes contain RM(1,x) as a subcode.

Let A be one of the two $\left[2^{r}, r(\ell-i+2)+1,2^{r-1}-2^{r-1-1}\right]$ codes of Theorem 10 . Then $1 \in A$, since $R M(1, r) \in A$. Since $2^{r-1}-2^{r-i-1} \geq$ $\left\lceil\frac{\left(2^{t-2}-1\right) 2^{x}}{2^{t-1}-1}\right\rceil$, if $t \leqq i+1$, we have, according to Theorem 9 , that the existence of an $\left[n, n-(t-i+2) x-1,2\left[\frac{t+1}{2}\right\rceil\right]$ binary code, $3 \leq t \leq i+1$, gives rise to the existence of a $2^{x+1}{ }_{\times n}{ }^{2}$ separable t-defect-compatible matrix.

In Table 3 we give some lower bounds on $n(x, t)$, For moderate values of r and t, wich result from this construction. To generate the matrices G, we did not on 1 y use the codes from Theorem 10 , but we also used codes that result from Wiseman's construction method, which we described in [16]. For the matrices E we used a table search [14, 20]. The letter h in the upper left comer of an entry indicates that the corresponding lower bound on $n(r, t)$ is attained by a linear code whose dual. code has minimum distance $t+1$ and dimension x. The letter k indicates that this lower bound is attained by the construction of Kusnetsoy [10].

x^{t}	3	4	5	6	7	8	9	10
3	h 4	-	-	-	-	-	-	-
4	¢ 8	${ }^{\text {h }} 5$	-	-	--	-	-	-
5	$2^{5} 2^{7} k$	${ }^{\text {h }} 6$	${ }^{\mathrm{h}} 6$	-	-	-	-	-
6	2^{10}	${ }^{\text {h }} 8$	${ }^{\text {h }} 7$	${ }^{1} 7$	-	-	-	-
7	2^{12}	24	${ }^{\text {h }} 9$	${ }^{\text {h }} 8$	${ }^{\text {h }} 8$	-	-	-
8	2^{21}	129	${ }^{\text {h }} 12$	${ }^{\text {h }} 9$	${ }^{\text {h }} 9$	${ }^{\text {h }} 9$	-	-
9	$2^{29} 2^{31 \mathrm{k}}$	272	66	${ }^{h_{10}}$	${ }^{\text {h }} 10$	h_{10}	${ }^{\text {h }} 10$	-
10	2^{36}	2^{13}	513	h_{15}	${ }^{\text {h }} 12$	${ }^{\mathrm{h}_{11}}$	${ }^{\text {h }} 11$	${ }^{\text {h }} 11$
11			2^{10}	36	${ }^{\text {h }} 16$	${ }^{h_{12}}$	${ }^{\text {h }} 12$	${ }^{\text {h }} 12$
12				129	h 24	h_{14}	h 13	${ }^{\text {h }} 13$
13				258	68	${ }^{\mathrm{h}} 15$	${ }^{\text {h }} 15$	${ }^{\text {h }} 14$
14				2^{13}	312	h_{17}	${ }^{\text {h }} 16$	${ }^{\text {h }} 15$
15					513	46	${ }^{\text {h }} 18$	${ }^{\text {b }} 17$
16					2^{15}	143	${ }^{\text {h }} 21$	${ }^{\text {h }} 18$
17						257	74	${ }^{\text {h }} 20$
18						2^{12}	275	${ }^{12} 23$
19							513	64
20							2^{14}	150
21								257
22								2^{12}

Table 3. . Lower bounds on $n(x, t)$

We conclude this section with the promised "constructive" lower bound for $\mathrm{R}(\mathrm{n}, \mathrm{np})$. Let G be a $((2 \ell+1)(\ell-1+2)+1) \times 2^{2 \ell+1}$ generator matrix of one of the codes mentioned in Theorem 10 with the all-one vector as top-row. Let H be any $((2 \ell+1)(\ell-i+2)+1) \times((2 \ell+1)(\ell-i+2)+1)$ regulax binary matrix with the all-one vector as top-row. Then, from Theorem 9 , the matrix C defined by

$$
c=\left[\frac{\sigma^{T} H}{\sigma^{T} H}\right],
$$

is a separable $(i+1)$-defect-compatible matrix of size

$$
2^{2 l+2} \times((2 \ell+1)(\ell-i+2)+1)
$$

Let $n=(2 \ell+1)(\ell-i+2)+1$, then the above construction shows

$$
x(n, i+1) \leqq 2 \ell+2
$$

Now take $i=\ell-k, k$ fixed and Iet ℓ tend to infinity. Then, since $\lim _{\ell \rightarrow \infty} \frac{\ell-k+1}{n}=\lim _{\ell \rightarrow \infty} \frac{\ell-k+1}{(2 \ell+1)(k+2)}=\frac{1}{2(k+2)}$ we find, for any $\mathrm{k} \in \mathbb{N} \cup\{0\}$

$$
r\left(n, \frac{n}{2(k+2)}\right) \leqq n\left(\frac{1}{k+2}+o(1)\right), k \text { fixed and } n \rightarrow \infty
$$

Since $r(n, t)$ is an increasing function of n if t is fixed, we constructively showed

$$
r(n, n p) \leqslant n(2 p+0(1)), p \text { fixed, } 0<p \times \frac{1}{2} \text { and } n \rightarrow \infty
$$

Hence, for any $p, 0<p \leq \frac{1}{2}$, the above construction can be used to generate
a family of adaitive codes of length $n, n \in N$, that are capable of correcting all word defects of multiplicity $n p$ or less, for a rate $R(n, p)$ for which

$$
\operatorname{Lim}_{n \rightarrow \infty} R(n, p)=\frac{2 p}{n}
$$

1.5 GENERALIZED PARTYTIONED IINEAR BLOCK CODES

§ 1.5.1 Partitioned linear block codes

In [19] Tsybakov introduces the problem of coding for binary computer memory units with both defects and random errors. The locations and natures of the defects are assumed to be known at the encoder but: not at the decoder. Recall from Section 1.1 that such an n-cell. memory unit is defined by

$$
\underline{Y}=(x \circ a) \in \underline{x}
$$

where $x \in \mathbb{F}_{2}^{n}$ is a channel input word, $X_{E} \mathbb{F}_{2}^{n}$ a channel output word, a a word defect $\in D_{t}^{n}$ and e an error vector of weight s or less. To solve this problem Tsybakov uses the codewords of a binary ($\mathrm{n}, \mathrm{K}, \mathrm{d}=2 \mathrm{~s}+1$) code C as channel input words. The code C is partitioned into a number of subcodes $C_{0}, C_{1} \ldots \ldots C_{M-1}$ each of which forms a t-defect-compatible set. He uses the defect information, known at the encoder, to assign to each message $u \in\{0,1, \ldots, M-1\}=0$ a channel input word $x \in C_{u}$ which is compatible with d. The decoder, receluing $y=(x$ d d e $=x$ sees that $d\left(X, C_{u}\right)<d\left(X, C_{v}\right)$, for all $v \neq u$, and so recovers the message u correctly. The rate $R i s$ defined by $R=\log M / n$.

Since linear block codes are very suited. for this coding strategy, Tsybakov introduces the concept of partitioned lineax block codes
(in [19] these codes are called matched adjacent). We give a formal definition.

An [n, k_{0}, k_{1}] partitioned linear block code is a pair of linear codes $C_{0} \subset \mathbb{F}_{2}^{n}, C_{1} \in \mathbb{F}_{2}^{n}$ of dimension k_{0} and k_{1} respectively such that $C_{0} \cap C_{1}=\{\underline{0}\}$. The direct sum $C=C_{0} \notin C_{1}:=\left\{\underline{c}_{0} \not \underline{E}_{1} \mid \underline{c}_{0} \in C_{0}, \mathcal{C}_{1} \in C_{1}\right\}$ forms the set of channel input words.The partition of \mathcal{C} into subcodes is described by

$$
\mathcal{C}={\underset{c_{1}}{u} \in C_{1}}_{\left\{\underline{c}_{1} \oplus C_{0}\right\}}
$$

The rate R is equal to k_{1} / n.

To define an encoding $\Phi, \phi: 0 \times\{0,1 ; \delta\}^{n} \rightarrow C$ and a decoding $\Psi, \Psi: \mathbb{F}_{2}^{\mathrm{n}} \rightarrow 0$ we need some more definitions.

Let G_{0} and G_{1} be generator matrices for C_{0} and C_{1} respectively. Let H be a parity check matrix for $C=C_{0} \oplus C_{1}$ and let \tilde{G}_{1} be any $k_{1} \times n$ binary matrix such that $G_{1} G_{1}^{T}=I_{k_{1}}$ and $G_{0} G_{1}^{T}=q_{k_{0}}, k_{1}$.

We are ready to define the encoding and decoding functions Φ and ψ resp..
Take the message set u equal to $F_{2}^{k_{1}}$ and let, for any ${ }_{k} \in F_{2}^{k_{1}}$ and any $d \in\{0,1, \delta)^{n}, \underline{z}(\underline{u}, \underline{d})$ be a specified vector of \mathbb{F}_{2}^{k} (see the proof of Theorem 11).
The encoding $\Phi, T: F_{2} \times\{0,1,5\}^{n} \rightarrow C$, is defined by

$$
\Phi(\underline{u}, \underline{a}):=\underline{u} G_{1} \in \underline{z}(\underline{u}, \underline{a}) G_{0} .
$$

The decoding $\Psi, \Psi: \mathbb{F}_{2}^{n} \rightarrow \mathrm{~F}_{2}$, is defined by

$$
\Psi(\underline{y}):=(\underline{y} \oplus \underline{e}) \tilde{G}_{1}^{T} .
$$

where $\underline{E} \in F_{2}^{n}$ is chosen to minimize wt(e) subject to $E_{H}^{T}=s:=y H^{T}$,
the synarome of y with respect to the code C. The vector e is an estimate for the exror e in (1).

For any $\left[n, k_{0}, k_{1}\right]$ partitioned linear block code $\left(C_{0}, C_{1}\right)$ a pair of minimum distances ($\left.d_{0}, d\right)$ is adjoined, where d is the minimum of the code C and $d_{0}^{\frac{1}{0}}$ is the minfmum distance of the dual code C_{0}^{1} of C_{0}.

THEOREM 11. Let $\left(C_{0}, C_{1}\right)$ be an $\left[{ }_{n, k} k_{0}, k_{1}\right]$ partitioned linear block code with minimum distance pair $\left(d_{0}^{1}, d\right)$. Then $\left(C_{0}, C_{i}\right)$ is capable of correcting all word defects of mitiplicity t or less and random errors of weight s or léss; if

$$
t<d_{0}^{1} \text { and } 2 s<d
$$

PROOF. For any $\underline{u} \in F_{2}^{k_{1}}$ and $d \in D_{t}^{n}$ we take $z\left(\underline{u}\right.$, a) equal to $z \in F_{2}^{k_{0}}$ such that ZG_{0} is compatible with the word defect $d^{\prime} \in D_{t}^{n}$ defined by

$$
d_{i}^{\prime}:=\left\{\begin{array}{l}
\delta \text { if } d_{i}=\delta, \\
\left(\underline{u} G_{1}\right)_{i} d_{i} \text { if } d_{i}=0 \text { or } 1, i=1,2, \ldots, n
\end{array}\right.
$$

Since any t-columns of G_{0} are linearly independent this is possible.
With this choice of $z(\underline{u}, \underline{d})$ it is clear, from the definitions of 4 and Ψ, that $\left(C_{0}, C_{1}\right)$ is indeed a t-defect-, s-error-correcting code.

EXAMPLE 5. Let $\left(C_{0}, C_{1}\right)$ be the $[7,1,3]$ paxtitionea linear block code. defined by

$$
G_{0}=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \text { and } G_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Then $\left(C_{0} C_{1}\right)$ has minimum distance pair (2,3). Note that C is the $[7,4,3]$ single error-correcting Eamming code. We can take H and \tilde{G}_{1} equal to

$$
\mathrm{H}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right], \quad \tilde{G}_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

Let $\underline{u}=(1,0,1)$ be the message to be stored in a computer memory unit with word defect $\underline{a}=(\delta, \delta, 0, \delta, \delta, \delta, \delta)$ and error vector $\underline{e}=(0,0,0,1,0,0,0)$.

Encoding: To store the message $\underline{u}=(1,0,1)$ we first compute the word defect \underline{d}^{\prime} defined in the proof of Theorem 11 and the vector \underline{z} ($\underline{u}, \underline{d}$). We find $\underline{a}^{\prime}=(\delta, \delta, 1, \delta, \delta, \delta, \delta)$ and so $\underline{z}(\underline{u}, \underline{a})=(1)$. Hence

$$
\begin{aligned}
\underline{x} & =\Phi(\underline{u}, \underline{d})=\underline{u} G_{1} \oplus \underline{z}(\underline{u}, \underline{a}) G_{0}= \\
& =(1,0,1,0,0,1,0) \oplus(1,1,1,1,1,1,1)=(0,1,0,1,1,0,1) .
\end{aligned}
$$

Decoding: To decode retrieve the vecor $\underline{y}=(\underline{x} 0$ d $) \oplus=(0,1,0,0,1,0,1)$
from the memory unit and calculate the syndrome $\underline{s}=\chi^{H^{T}}$. We find $s=(1,0,1)$. Since s is equal to the fourth column of H, the decoder estimates e by $\underline{\underline{e}}=(0,0,0,1,0,0,0)=$ e. Hence

$$
\Psi(\underline{y})=(\underline{y} \oplus \underline{e}) \tilde{G}_{1}^{T^{T}}=(1,0,1)=\underline{u}
$$

§ 1.5.2 Generalized partitioned linear block codes

In the coding of an $\left[n, k_{0}, k_{1}\right]$ partitioned innear block code $\left(C_{0}, C_{1}\right)$, the entire code \mathcal{C}_{0} is used for masking the defects of the memory unit. As we have seen in §1.4.2, this is not always necessary. The class of generalized partitioned linear block codes makes advantage of this observation, we start with a definition.

An $\left[n, k_{0}, k_{1}, k_{2}\right]$ generalized linear block code consists of a
triple of binary linear codes $C_{0}, C_{1}, C_{2} \subset \mathbb{F}_{2}^{n}$ of dimension k_{0}, k_{1} and k_{2} respectively such thet $C_{i} \cap C_{j}=\{0\}, i, j \in\{0,1,2\}$, $i \neq j$, and a binary code Z of length $k_{0}+k_{1}$, which is separable on the first k_{0} coordinate places. The direct sum $\mathcal{C}=C_{0} \oplus C_{1} \oplus C_{2}$ forms the set of channel input words. Let G_{0}, G_{1} and G_{2} be generator matrices of the codes $C_{0} C_{1}$ and C_{2} respectively. Then C is partitioned into

The rate R is equal to $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) / \mathrm{n}$.
Let H be a parity check matrix of the direct sum $C=C_{1} * C_{2} \otimes C_{3}$. Let \tilde{G}_{0} be any $k_{0} \times n$ matrix such that $G_{0} G_{0}^{T}=r_{k_{0}}$ and $\left(\frac{G_{1}}{G_{2}}\right) \tilde{G}_{0}^{T}=0_{k_{1}}+k_{2}, k_{0}$ and let $\tilde{G}_{1,2}$ be any $\left(k_{1}+k_{2}\right) \times n$ matrix such that $\left(\frac{G_{1}}{G_{2}}\right) \tilde{G}_{12}^{T}=I_{k_{1}}+k_{2}$. Then we can define the encoding ©, $\boldsymbol{F}_{2} \mathrm{~F}_{2}{ }^{+\mathrm{k}_{2}} \times\{0,1, \delta\}^{\mathrm{n}} \rightarrow \mathrm{C}$ and the decoding $\Psi, \Psi: \mathbb{F}_{2}^{\mathrm{n}} \rightarrow \mathrm{Cby}$

$$
\Phi(\underline{u}, \underline{a}):=\underline{u}\left(\frac{G_{1}}{G_{2}}\right) \oplus \underline{z}(\underline{u}, \underline{a})\left(\frac{G_{0}}{G_{1}}\right) .
$$

where $\underline{Z}(\underline{u}, \underline{d})$ is a specified codeword of Z (see the proof of Theorem 12) and

$$
\Psi(\underline{y}):=(\underline{y} \notin \underline{\hat{E}}) \vec{G}_{12}^{\mathrm{T}}
$$

where \underline{e} is chosen to minimize wt(e) subjected to $\underline{e ́ n}^{T}=\underline{s}:=\mathrm{yH}^{\mathrm{T}}$ and \underline{z} is that codeword of Z that on the first k_{0} coordinate places is equal to the vector ($\mathrm{y} *$) $\overrightarrow{\mathrm{G}}_{0}^{\mathrm{T}}$.

THEOREM 12. Let $\left(C_{0}, C_{1}, C_{2}, z\right)$ be a $\left[n, k_{0}, k_{1}, k_{2}\right]$ generalized partitioned
linear block code, for which
(i) the direct sum $C=C_{0} \oplus C_{1} \oplus C_{2}$ has minimam distance $d=2 s+1$,
(ii) the dual code of $C_{0} C_{1}$ has minimum distance $a_{01}^{1}=2\left\lceil\frac{t+1}{2}\right]$,
(iii) $1 \in C_{0}$ and G_{0} contains 1 as top row,
(iv) the $\left(k_{0}+k_{1}\right) \times 2^{k_{0}^{-1}}$ matrix, with as columns those codewords of 2 that have a 1 as first coordinate, is the generator matrix of a binary $\left[2^{k_{0}-1}, k_{0}+k_{1},\left[\frac{\left(2^{t-2}-1\right)}{2^{t-1}-1} 2^{k_{0}-1}\right]\right]$ code and (v) for any $z \in Z$ also $1 \in Z$.

Then $\left(C_{0}, C_{1}, C_{2}, Z\right)$ is a t-defect, s-exrox-correcting code

PROOF. From the properties ii) - (v) and Theorem 9 of $\$ 1.4 .2$ we have that $\left\{\left.\underline{z}\left(\frac{G_{0}}{G_{1}}\right) \right\rvert\, \underset{k_{1}+k_{2}}{z \in Z}\right.$ forms a separable t-defect-compatible set. Hence for any $\underline{m}^{\in} \in \mathbb{F}_{2}+k_{2}$ and any $d \in D_{t}^{n}$ there is $a \underline{z} \in Z$ such that $\frac{2}{}\left(\frac{G_{0}}{G_{1}}\right)$ is compatible with the word defect a' $^{\text {defined by }}$

$$
d_{i}^{\prime}:=\left\{\begin{array}{l}
\delta \text { if } d_{i}=s, \\
\left(\underline{u}\left(\frac{G_{1}}{G_{2}}\right)_{i} a_{i} \text { if } a_{i}=0 \text { or } 1, i=1,2, \ldots, n\right.
\end{array}\right.
$$

Choose $\underline{z}(\underline{u}, \underline{d})$ to be equal to \underline{z}. With this choice for $\underline{z}(\underline{u}, \underline{d})$ and the definitions of Φ and Ψ, the assertion of Theorem 12 is immediate.

With the help of primitive binary BCH codes of length $\mathrm{n}=31,63,127$ and 255 we constructed the following $\left[n, k_{0}, k_{1}, k_{2}\right]$ generalized partitioned $t-d e f e c t-$,s-error-correcting linear block codes listed in Tables 4,5,6 and 7. The rate of such a code is equal to $\left(k_{1}+k_{2}\right) / n$. The rate of the corresponding partitioned t-defect-s-error-correcting code of the same length n, given in $[7]$, is equal to k_{2} / n or $\left(k_{2}+1\right) / n$. So the gain in
rate is at least $\left(k_{1}-1\right) / n$.
On the other hand, the encoding process of a generalized partitioned linear block code is more complicated than the encoding process of a partitioned linear block code. In both cases, the determination of the vector $\underline{\underline{Z}}(\underline{u}, \underline{d})($ see Theorem 11 and 12), amounts to solving an equation like

$$
\underline{z} G^{\mathrm{i}}=\underline{d}^{\mathrm{n}},
$$

where the matrix G^{\prime} and the vector $d^{\prime \prime}$ are directly determined by the vector \underline{u}, the word defect \underline{a} and the code used. However, in the case of a partitioned linear block code any solution z will do, while in the case of a genexalized partitioned linear block code one has to find a solution \underline{z} of the above equation within the set Z. This will take more time.

The decoding process is in both cases the same.

k_{0}	k_{1}	k_{2}	t	s	k_{0}	k_{1}	k_{2}	t	s	k_{0}	k_{1}	k_{2}	t	s	k_{0}	k_{1}	k_{2}	t
5	1	20	3	1	8	3	5	4	3	11	5	5	6	2	17	4	5	9
5	1	15	3	2	8	3	0	4	5	11	5	0	6	3	17	4	0	9
5	1	10	3	3	9	2	15	5	1	13	3	10	7	1	19	2	5	10
5	1	5	3	5	9	2	10	5	2	13	3	5	7	2	19	2	0	10
5	1	0	3	7	9	2	5	5	3	13	3	0	7	3				
8	3	15	4	1	9	2	0	5	5	15	6	5	8	1				
8	3	10	4	2	11	5	10	6	1	15	6	0	8	2				

Table 4. Generalized partitioned t-defect, s-errorcorrecting linear block codes of length $n=31$.

| k_{0} | k_{1} | k_{2} | t | s | k_{0} | k_{1} | k_{2} | t | s | k_{0} | k_{1} | k_{2} | t | s | k_{0} | k_{1} | k_{2} | t | s |
| :---: |
| 6 | 1 | 50 | 3 | 1 | 8 | 5 | 38 | 4 | 2 | 9 | 4 | 11 | 5 | 7 | 13 | 6 | 17 | 7 | 5 |
| 6 | 1 | 44 | 3 | 2 | 8 | 5 | 32 | 4 | 3 | 12 | 7 | 38 | 6 | 1 | 13 | 6 | 11 | 7 | 6 |
| 6 | 1 | 38 | 3 | 3 | 8 | 5 | 26 | 4 | 4 | 12 | 7 | 32 | 6 | 2 | 13 | 6 | 5 | 7 | 7 |
| 6 | 1 | 32 | 3 | 4 | 8 | 5 | 23 | 4 | 5 | 12 | 7 | 26 | 6 | 3 | 16 | 9 | 32 | 8 | 1 |
| 6 | 1 | 29 | 3 | 5 | 8 | 5 | 17 | 4 | 6 | 12 | 7 | 20 | 6 | 4 | 16 | 9 | 26 | 8 | 2 |
| 6 | 1 | 23 | 3 | 6 | 8 | 5 | 11 | 4 | 7 | 12 | 7 | 17 | 6 | 5 | 16 | 9 | 20 | 8 | 3 |
| 6 | 1 | 17 | 3 | 7 | 9 | 4 | 44 | 5 | 1 | 12 | 7 | 11 | 6 | 6 | 17 | 8 | 32 | 9 | 1 |
| 6 | 1 | 11 | 3 | 10 | 9 | 4 | 38 | 5 | 2 | 12 | 7 | 5 | 6 | 7 | 17 | 8 | 26 | 9 | 2 |
| 6 | 1 | 9 | 3 | 11 | 9 | 4 | 32 | 5 | 3 | 13 | 6 | 38 | 7 | 1 | 17 | 8 | 20 | 9 | 3 |
| 6 | 1 | 3 | 3 | 13 | 9 | 4 | 26 | 5 | 4 | 13 | 6 | 32 | 7 | 2 | 19 | 9 | 29 | 10 | 1 |
| 6 | 1 | 0 | 3 | 15 | 9 | 4 | 23 | 5 | 5 | 13 | 6 | 26 | 7 | 3 | 19 | 9 | 23 | 10 | 2 |
| 8 | 5 | 44 | 4 | 1 | 9 | 4 | 17 | 5 | 6 | 13 | 6 | 20 | 7 | 4 | 19 | 9 | 17 | 10 | 3 |

Table 5. feneralized partitioned t-defect,s-errorcorrecting linear block codes of Iength $\mathrm{n}=63$.

		k_{2}		s	k_{0}	k_{1}	k_{2}	t	s	k_{0}	k_{1}	k_{2}			s		k_{1}	k_{2}	t	s
6	2	112	3	1	8	7	63	4	7	12	10	77	6		4	16	13	91	8	1
6	2	105	3	2	8	7	56	4	9	12	10	70	6		5	16	13	84	8	2
6	2	98	3	3	8	7	49	4	10	12	10	63	6		6	16	13	77	8	3
6	2	91	3	4	8	7	42	4	11	12	10	56	6		7	16	13	70	8	4
6	2	84	3	5	8	7	35	4	13	12	10	49	6		9	16	13	63	8	5
6	2	77	3	6	8	7	28	4	15	12	10	42	6		10	16	13	56	8	6
6	2	70	3	7	8	7	21	4	15	12	10	35	6		11	16	13	49	8	7
6	2	63	3	9	10	5	105	5	1	12	10	28	6		13	18	11	91	9	1
6	2	56	3	10	10	5	98	5	2	12	10	21	6		15	18	11	84	9	2
6	2	49	3	11	10	5	91	5	3	12	10	14			15	18	11	77	9	3
6	2	42	3	13	10	5	84	5	4	14	8	98	7		1	18	11	70	9	4
6	2	35	3	15	10	5	77	5	5	14	8	91	7		2	18	11	63	9	5
6	2	28	3	15	10	5	70	5	6	14	8	84	7		3	18	11	56	9	6
6	2	21	3	21	10	5	63	5	7	14	8	77	7		4	18	11	49	9	7
6	2	14	3	23	10	5	56	5	9	14	8	70	7		5	20	16	84	10	1
6	2	7	3	27	10	5	49	5	10	14	8	63	7		6	20	16	77	10	2
6	2	0	3	31	10	5	42	5	11	14	8	56	7		7	20	16	70	10	3
8	7	105	4	1	10	5	35	5	13	14	8	49			9	20	16	63	10	4
8	7	98	4	2	10	5	28	5	15	14	8	42	7		10	20	16	56	10	5
8	7	91	4	3	10	5	21	5	15	14	8	35	7		11	20	16	49	10	6
8	7	84	4	4	12	10	98	6	1	14	8	28			13	20	16	42	10	7
8	7	77	4	5	12	10	91	6	2	14	8	21			15					
8	7	70	4	6	12	10	84	6	3	14	8	14			15		*			

Table 6. Generalized partitioned t-defect, s-errorcorrecting linear block codes of length $n=127$.

Table 7. Generalized partitioned t-defect, s-errorcorrecting Inear block codes of length $n=255$.

REFERENCES

[1] BELOV, I.B. and SKASHIN, A.M.: Codes that Correct Triple Defects in Memory, translated from prob. Pereảach. Info., vol. 13, no 4. oct.Dec. 1977, 62-65.
[2] BERLEKAMP, E.R.: Algebraic Coding Theory. New York: MCGraw-Hill, 1968.
[3] BUSSCbBACH, P.: Constructive Methods to solve the Problems of: s-surjectivity, conflict resolution, coding in defective memories. Internal Report, Eindhoven University of Technology, Dec. 1984.
[4] CHEN, C.L.: Linear Codes for Masking Memory Defects, preprint.
[5] CHEN, C.L. and TANG, D.T.: Iterative Exhaustive Pattern Generation for Logic Testing. IBM J. Res. Develop., vol. 28, March 1984, 212-213.
[6] EL GAMAL, A.A. and HEEGAPD, C.: on the capacity of Computer memory with Defects. IEEE Trans. on Info. Theory, vol. IT-29, Sept. 1983, 731-739.
[7] GEEGARD. C.: Partitioned Linear Block Codes for Computer Memory with "Stuck-at" Defects. IEEE Trans. on Info. Theory, vol. IT-29, Nov. 1983. 831-842.
[8] KLEITMAN. D.J., on subsets Contained in a Family of Non-commensurable Subsets of a Finite Set. J. of Combinatorial Theory, vol. 7, 1969, 181-183.
[9] KLEITMAN, D.J. and SPENCER, J.: Families of k-independent sets. Discrete Mathematic, vol. 6, 1973, 255-262.
[10] KUSNETSOV, A.V.: private communication.
[11] KuSNETSOV, A.V. and TSYBAKOV, B.S.: Coding in a Memory with Defective Cells. translated from Prob. Peredach. Info., vol. 10, no. 2, AprilJune, 1974, 52-60.
[12] van LINT, J.H.: Introduction to Coding Theory, New York Heidelberg Berlin: Springex, 1982.
[13] LOSEV, V.V., KONOPEL'KO, V.K. and DARYAKIN, Yu.D.: DOuble-and Triple-Defect-Correcting Codes. translated from Prob. Peredach. Info., vol. 14, no. 4, oct.-Dec. 1978, 98-101.
[14] MacWILLIAMS, F.J. and SLOANE, N.J.A.: The Theory of Error-correcting Codes. Amsterdam-New York-Oxford: North Holland, 1977.
[15] MUEHLDORF, E.I. and SAVKAR, A.D.: LSI Logic Testing-An Overview. IEEE Trans. on Comput., vol. C-30, 1-7, Jan. 1981.
[16] van PUL, C.L.M. : On bounds on Codes. Master's Thesis, Eindhoven University of Technology, 1982.
[17] TANG, D.T. and woo, L.S. : Exhaustive Test pattern Generation with Constant Weight Vectors. IEEE Trans. on Comput., vol. C-32, no. 12 , Dec. 1983.
[18] TSYBAKOV, B.S.: Additive Group Codes for Defect Correction. translated from Prob. Peredach. Info., vol. 11, no. 1, Jan.-March 1975, 111-113.
[19] TSYBAKOV, B.S.: Defect and Error Correction. translated from Prob. Peredach. Info. vol. 11, no. 13, July-Sept, 1975, 21-30.
[20] VERHOEFF, T.: Updating a Table of Bounds on the Minimum Distance : of Binary Linear Codes. EuT Report 85-Wsk-01, Eindhoven University of Technology, 1985.

TWO CONSTRUCTIONS FOR CONSTANT WEIGHT CODES

2.1 INTRODUCTION

In this chapter we discuss two construction methods for constant weight codes, which improve several of the best known lower bounds on $A(n, d, w)$ in $[1,3,6]$, where $A(n, d, w)$ denotes the maximal cardinality of any binary constant weight code of length n, minimum distance d and constant weight w. Although, our interest in the function $A(n, 0, w)$ finds its origin in the fact that this function plays an important role in the determination of upper bounds on $A(n, d)$ (e.g.: Johnson bound, linear programming bound), the function $A(n, d, w)$ is also interesting in its own right. Besides the obvious comection with t-designs and Hadamard matrices we would like to mention the application of constant weight codes as a set of protocol sequences for the multiple-acces collison channels without feedback [5,7].

The first construction method, treated in Section 2.2, results from proving a generalization of the well-known Johnson upper bound on $A(n, d, w)$. Unlike the generalization, the resulting construction does improve several of the best known results on $A(n, d, w)$ in $[1,3,6]$. A table of improved results is given.

In Section 2.3 we treat a construction method for constant weight codes with minimum distance 4. In order to make this construction work, one needs to partition the set $V_{w}^{n} n, w \in N$ with $w \leq n$, in an as small as possible number of constant weight codes with minimum distance 4 . Fox $n=6 m+1$ or $6 m+3$ and $w=3$ this last problem is equivalent to that of determining a packing of steiner triple systems of ordex n. Since the construction method results in many improvements of the lower bounds on
$A(n, 4, w), n \leq 24$, given in $[1,3,6]$, a revised table of the function $A(n, 4, w), n \leqq 24$; is included.
2.2 A GENERALIZATION OF THE JOHNSON BOUND FOR CONSTANT WEIGET CODES

Let $A(n, 2 \delta, w)$ denote the maximum number of codewords in any binary code of length n, minimum distance 2δ and constant weight w. The following upper bound on $A(n, 2 \delta, w)$ is well known [4].

THEOREM 1. (Johnson bound)

$$
A(n, 2 \delta, w) \leqq\left\lfloor\frac{n}{w} A(n-1,2 \delta, w-1)\right\rfloor \leq \frac{n}{w} A(n-1,2 \delta, w-1)
$$

[

Applying Theorem 1 k times we obtain the following bound:

$$
\begin{equation*}
A(n, 26, w) \leq\left\lfloor\frac{n}{w}\left[\frac{n-1}{w-1}\left\lfloor\ldots\left\lfloor\frac{n-k+1}{w-k+1} A(n-k, 26, w-k\rfloor \ldots\right\rfloor\right\rfloor\right\rfloor \leq \frac{\binom{n}{k}}{\binom{w}{k}} A(n-k, 26, w-k)\right. \tag{1}
\end{equation*}
$$

At the Intemational Workshop "Convolutional Codes Multi-User Communication" zinoviev [8] presented the following generalization of the Johnson bound (1).

THEOREM 2. FOr any integers k and ℓ with $0 \leq \ell \leq k \leq n$, the following inequality holds

$$
A(n, 2 \delta, w) \leqq \frac{\binom{n}{k}}{\binom{w}{\ell}\binom{n-n}{k-\ell}} A(n-k, 2 u, w-\ell) .
$$

where $u=s-\ell$ if $\ell \leq k / 2$ and $u=d-k+\ell$ if $\ell>k / 2$.
0

If we take $\ell=k$ in Theorem 2 we get the Johnson bound (1).

We now give a further improvement of the Johnson bound stated in the next theorem.

THEOREM 3. For any two integers k and ℓ with $0<\ell \leqq k<n$, we have

$$
\text { i) } A(n, 2 \delta, w) \leq \frac{\binom{n}{k}}{\sum_{i=0}^{\ell}\binom{w}{i}\binom{n-w}{k-i}} A(n-k, 2(\delta-\ell), w-\ell) \text { if } \ell \leq k / 2
$$

and

$$
\text { ii) } A(n, 2 \delta, w) \leqq \frac{\binom{n}{k}}{\sum_{i=\ell}^{k}\binom{w}{i}\binom{n-w}{k-i}} A(n-k, 2(\delta-k+\ell), w-\ell) \text { if } \ell>k / 2 \ldots
$$

REMARK. Note that the denominators in theorem 3 are greater than the corresponding denominators in Theorem $2 *$

PROOF, Let C be an ($n, 2 \delta$, w) binary constant weight code with $|C|=A(n, 2 \delta, w)$ and let $l \leq \min \left\{\frac{k}{2}, w\right\}$. For every binary vector b of length n and weight k (notation $\underline{b} \in V_{k}^{n}$) we define the code $C_{\underline{b}}^{\prime \prime}$ by

$$
\hat{C}_{\underline{b}}^{n}:=\{\underline{c} \otimes \underline{c} \mid c \in C, w t(c o b) \leq \ell\}
$$

where $c-b:=\left(c_{1} b_{1}, c_{2} b_{2}, \ldots, c_{n} b_{n}\right)$. To make things clear we give an example. Let $b, \underline{c} \in F_{2}^{n}$ be given by

$$
\begin{aligned}
& \underset{(1,1, \ldots, 1,0,0, \ldots, 0,1,1, \ldots, 1,0,0, \ldots, 0)}{+} .
\end{aligned}
$$

Then

$$
\underline{c}^{*} \underline{c} \bullet b=(0,0, \ldots, 0,0,0, \ldots, 0,1,1, \ldots, 1,0,0, \ldots, 0)
$$

From the above it will be clear that, for any two codewords $G_{1} \underline{c}_{1}$ ob

$$
\begin{gathered}
a\left(\underline{c}_{1} \underline{c}_{1} \circ \underline{b}, \underline{c}_{2} \underline{c}_{2} \underline{b}\right)=a\left(\underline{c}_{1}, \underline{c}_{2}\right)-d\left(\underline{c}_{1} \odot \underline{b}, \underline{c}_{2} \circ \underline{b}\right) \geq \\
\geq 2 \delta-w t\left(\underline{c}_{1} \bullet \underline{b}\right)-w t\left(\underline{c}_{2} \circ \underline{b}\right)
\end{gathered}
$$

 that are one are changed into zeros, we get a code $\mathcal{C}_{\underline{b}}$ with constant. weight $w-\ell$ and minimum distance at least $2(\delta-\ell)$.

From the definition of $C_{\underline{b}}^{\prime \prime}$ one easily sees that all codewords of $C_{b}^{\prime \prime}$ have zeros where b has ones. So certainly all codewords of C ' have zeros where b has ones. This means that we can puncture the code ${ }^{-} C$ b times (delete the k coordinates where b has ones) to get a constant weight code Cof length $n-k$, minimum distance at least $2(\delta-\ell)$ and constant weight w- \&. Thus

$$
\left|C_{\underline{b}}\right|=\left|C_{\underline{b}}\right|=\left|C_{b}\right| \leqq A(n-k, 2(\delta-\ell), w-\ell), \text { for all } b \in V_{k}^{n}
$$

We now show that there is $a b \in V_{k}^{n}$ such that

To do this, we calculate the number N of pairs $\{c, b\}$ of the set $\left[(\underline{c}, \underline{b}] \mid \underline{c} \in \mathbb{C}, b \in U_{k}^{n}, w t(c \ominus b) \leqq \ell\right\}$ in two different ways.

Since, for any $c \in C$, there axe $\begin{gathered}\sum \\ i=0\end{gathered}\binom{w}{i}\binom{n-w}{k-i}$ vectors in v_{k}^{n} that have not more then ℓ ones in common with c, we have

$$
N=\sum_{\underline{c} \in C} \sum_{i=0}^{\ell}\binom{w}{i}\binom{n-w}{k-i}=A(n, 20, w) \sum_{i=0}^{\ell}\binom{w}{i}\binom{n-w}{k-i} .
$$

On the otherhand, this number also equals

$$
\mathrm{N}=\left.\sum_{\underline{\mathrm{b}}}^{\underline{\Sigma} \in v_{\mathrm{k}}^{\mathrm{n}}}\right|_{\underline{b}} \mid
$$

Hence we have

Hence, there is a $\underset{b}{ } \in V_{k}^{n}$ with $\left|C_{b}\right| \geq\left(A(n, 2 \delta, w) /\binom{n}{k} \sum_{i=0}^{\sum}\binom{w}{i}\binom{n-w}{k-i}\right.$.
Together with $\left|C_{b}\right| \leq A(n-k, 2 \delta, w-l)$ this last inequality proves the first part of the theorem.

To prove the second inequality of the theorem, we apply the first one to the complementary code \bar{C} of C, with $\ell^{\prime}=k-\ell$ and k. This gives

$$
A(n, 2 \delta, w)=A(n, 2 \delta, n-w) \leqq \frac{\binom{n}{k}}{\sum_{i=0}^{k-l}\binom{n-w}{i}\binom{w}{k-i}} A(n-k, 2(\delta-k+\ell), n-w-k+\ell)
$$

$$
\left.=\frac{\binom{n}{k}}{\sum_{j=\ell}^{k}\binom{w}{j}\binom{n-w}{k-j}} A(n-k), 2(0-k+l), w-l\right)
$$

As in [8] the proof of the above theorem has an immediate consequence, which is stated in the next theorem.

THEOREM 4. Let there exists an $(n, 2 \delta, w)$ constant weight code with N codewords and let k, ℓ be arbitrary integers with $0 \leqq \ell \leqq k<n$. Then there exists an ($n-k, 2 u, w-l$) constant weight code with N ' codewords, where

Proof. One of the codes $C_{b}, b \in V_{k}^{n}$ defined in the proof of meorem 3 does the job.

The next table contains the improved (according to the table in [6]) lower bounds on $A(n, 6, w)$ that follow from Theorem 4, using the constant weight codes formed by the codewords of weight 8 respectively 12 from the $[24,12,8]$ Golay code. For completeness we also mention the lower bounds that can be found in [6] (second column) and the improvements given by A.V. Zinoviev in [8] (third colum). Our improved resuits are stated in the fourth column. The values of k and ℓ, needed to obtain these xesults, are given in the last column.

$A(n, 2 \delta, w)$	Upper and lower bounds Erom [6]	Lower bound from [8]	Lower bound from Th. 4	values of	
$A(22,6,7)$	$675-1100$	-	682	2	1
$A(21,6,7)$	$465-828$	-	570	3	1
$A(20,6,7)$	$310-651$	320	450	4	1
$A(19,6,7)$	$228-520$	260	338	5	1
$A(18,6,7)$	$160-349$	198	243	6	1
$A(17,6,7)$	$119-240$	141	166	7	1
$A(16,6,7)$	$90-156$	95	108	8	1
$A(22,6,11)$	$1574-5064$	-	1960	2	1
$A(21,6,10)$	$1286-2702$	-	1288	3	2
$A(20,6,9)$	$736-1362$	-	760	4	3
$A(19,6,8)$	$332-734$	360	408	5	4
$A(18,6,8)$	$232-428$	-	$239 *$	5	4

Table 1. Improved lower bounds on $A(n, 6, w)$.

To find the lower bound $A(18,6,8) \geq 239$ (*) one uses Theorem 4 , starting with the $(23,1288,8,12)$ constant weight code, taking $k=5$ and $\ell=4$.

2.3 LOWER BOUNDS FOR A($n, 4, w)$

§ 2.3.1 Introduction

In this paper we describe a construction method for constant weight codes with minimum distance 4 that improves several of the known results in [1], [3] and [6]. The method is based on the Eollowing observation.

LEMMA 5. Let n_{1} and n_{2} be two positive integers and let $n=n_{1}+n_{2}$. Then

$$
A(n, 4, w) \geqq \max \left\{\begin{array}{l}
\left\lfloor\frac{w-\delta}{2}\right\rfloor \\
\left.\sum_{i=0} T\left(\delta+2 i, n_{1}, w-\delta-2 i, n_{2}, 4\right) \mid \delta=0,1\right\}, ~
\end{array}\right\}
$$

where $T\left(w_{1}, n_{1}, w_{2}, n_{2}, 4\right)=$ the maximal number of codewords in any binary code of length $n_{1}+n_{2}$, minimum distance 4 , with exactly $w_{1} 1^{\prime} s$ in the first n_{1} coordinate places and exactly $w_{2} 1^{\prime} s$ in the last n_{2} coordinate places (such a code will be denote by an $\left(n_{1}, n_{2}, 4 ; w_{1}, w_{2}\right)$ code).
proof. Let $C\left(w_{1}, n_{1}, w_{2}, n_{2}\right)$ denote a binary ($n_{1}, n_{2} ; 4 ; w_{1}, w_{2}$) code. The lemma is proved if we can show that the codes $C(0)$ and $C(1)$ defined by

$$
\mathcal{C}(\delta):=\sum_{i=0}^{\left\lfloor\frac{w-\delta}{2}\right\rfloor} \mathcal{C}\left(2 i+\delta, n_{1}, w-2 i-\delta, n_{2}\right), \delta=0,1,
$$

both have minimum distance 4 . We will prove this for $\delta=0$.
Let $\underline{u}=\left(\underline{u}_{1} \mid \underline{u}_{2}\right), v=\left(\underline{v}_{1} \mid \underline{\underline{q}}_{2}\right), \underline{u}_{1}, \underline{v}_{1} \in\{0,1\}^{n_{1}}$ and $\underline{u}_{2}, \underline{v}_{2} \in\{0,1\}^{n_{2}}$ be two distinct codewords of $C(0)$. Suppose that $w t\left(\underline{u}_{i}\right)=2 i$ and $w t\left(\underline{y}_{1}\right)=2 j$, so $w t\left(\underline{u}_{2}\right)=w-2 i$ and $w t\left(\underline{y}_{2}\right)=w-2 j$. Then if $i=j$ we have $\underline{u}, \underline{v} \in C\left(2 i, n_{1}, w-2 i, n_{2}\right)$ and so $d(\underline{u}, \underline{v}) \geq 4$, while if $i \neq j$ we have
$d(\underline{u}, \underline{v})=d\left(\underline{u}_{1}, \underline{v}_{1}\right)+d\left(\underline{u}_{2}, \underline{v}_{2}\right) \geq\left|w t\left(\underline{u}_{1}\right)-w t\left(\underline{v}_{1}\right)\right|+\left|w t\left(\underline{u}_{2}\right)-w t\left(\underline{v}_{2}\right)\right|=|2 i-2 j|+$ $|w-2 i-w+2 j|=4|i-j| \geqq 4$.

From this it is clear that our construction method involves the construction of $\left(n_{1}, n_{2} ; 4 ; w_{1}, w_{2}\right)$ binary codes, which we treat in $\$ 2.3 .2$.

\S 2.3.2 The construction of ($\left.n_{1}, n_{2} ; 4 ; w_{1}, w_{2}\right)$ codes

Let V_{w}^{n} denote the set of all binary vectors of length n and weight w. $\left\{C^{i}(w, n)\right\}_{i=0}^{k-1}$ denotes a partition of V_{W}^{n} into k mutually disjoint constant weight codes, each with minimum distance 4 and constant weight w. Assume that the constant weight codes are numbered in such a way that $\left|C^{0}(w, n)\right| \geq\left|C^{1}(w, n)\right| \geq \ldots \geq\left|C^{k-1}(w, n)\right|$ holds. The construction of a $\left(n_{1}, n_{2} ; 4 ; w_{1} ; w_{2}\right)$ code is as follows:

Let $\left\{C^{i}\left(w_{1}, n_{1}\right)\right\}^{k_{1}-1}{ }_{i=0}$ and $\left\{C^{i}\left(w_{2}, n_{2}\right)\right\}^{k_{2}-1} \begin{aligned} & i=0\end{aligned}$ be partitions of $v_{w_{1}}^{n_{1}}$
resp. $V_{w_{2}}^{n_{2}}$ as we have defined above. The code $C\left(w_{1}, n_{1}, w_{2}, n_{2}\right)$ is
then defined by

$$
C\left(w_{1}, n_{1}, w_{2}, n_{2}\right):=\int_{i=0}^{\min \left[k_{1}, k_{2}\right\}-1} C^{i}\left(w_{1}, n_{1}\right) \otimes C^{i}\left(w_{2}, n_{2}\right)
$$

where $A \otimes B:=\{(\underline{a} \mid \underline{b}) \mid \underline{a} \in A, \underline{b} \in B\}$.

LEMMA 6. The code $\left({ }^{(}\left(w_{1}, n_{1}, w_{2}, n_{2}\right)\right.$ defined in (3) is a binary $\left(n_{1}, n_{2} ; 4 ; w_{1}, w_{2}\right)$ code. The number of codewords is given by

$$
\left|C\left(w_{1}, n_{1}, w_{2}, n_{2}\right)\right|=\sum_{i=0}^{\min \left\{k_{1}, k_{2}\right\}-1}\left|C^{\frac{1}{2}}\left(w_{1}, n_{1}\right)\right| \cdot\left|C^{\frac{1}{2}}\left(w_{2}, n_{2}\right)\right|
$$

PROOF. We only proof that the minimum distance is 4. The rest then follows immediately. Let $\underline{u}=\left(\underline{u}_{1} \mid \underline{u}_{2}\right) \in C^{i}\left(w_{1}, n_{1}\right) * C^{i}\left(w_{2}, n_{2}\right)$ and $v=\left(\underline{v}_{1} \mid \underline{y}_{2}\right) \in C^{j}\left(w_{1}, n_{1}\right) C^{j}\left(w_{2}, n_{2}\right)$ be two distinct codewords of $C\left(w_{1}, n_{1}, w_{2}, n_{2}\right)$. Then there are two cases:
i) $i=j$, then $\underline{u}_{1}, \underline{v}_{1} \in C^{i}\left(w_{1}, n_{1}\right), \underline{u}_{2}, v_{2} \in C^{i}\left(w_{2}, n_{2}\right)$ and $\underline{u}_{1} \neq \underline{v}_{1}$ or $\underline{u}_{2} \neq \underline{v}_{2}$. Hence $d(\underline{u}, \underline{v})=d\left(\underline{u}_{1}, \underline{v}_{1}\right)+d\left(\underline{u}_{2}, \underline{v}_{2}\right) \geq 4$,
i1) $i \neq j$, then $\underline{u}_{1} \neq \underline{v}_{1}$ and $\underline{u}_{2} \neq \underline{v}_{2}$. Hence $a(\underline{u}, \underline{v})=d\left(\underline{u}_{1}, \underline{v}_{1}\right)$ + $a\left(\underline{u}_{2}, \underline{v}_{2}\right)=2+2=4$.

REMARK. In (3) we used the codes $C^{i}\left(w_{1}, n_{1}\right)$ and $C^{i}\left(w_{2}, n_{2}\right)$ to form the direct $\operatorname{sum} C^{i}\left(w_{1}, n_{2}\right) \propto C^{i}\left(w_{2}, n_{2}\right), i=0,1, \ldots$ min $\left\{k_{1}, k_{2}\right\}-1$. other combinations are possible. However, from (3) and the assumption about the ordering of the codes in a partition, it follows that no other combination gives a larger code $C\left(w_{1}, n_{1}, w_{2}, n_{2}\right)$.

We are left with the problem of finding suitable partitions of U_{w}^{n} for $0<w<n$. One way of solving this problem is to look at the construction method for constant weight codes that Graham and sloane described in [3]. This method partitions V_{w}^{n} into n mutually disjoint constant weight codes with minimum distance 4 , wich gives a partition $\left\{C^{i}(w, n)\right\}_{i=0}^{n-1}$ of $V_{w}^{n}(0<w<n)$. Using these partitions in (3), we find $\left(n_{1}, n_{2} ; 4 ; w_{1}, w_{2}\right)$ codes $C\left(w_{1}, n_{1}, w_{2}, n_{2}\right)$ with $\left|C\left(w_{1}, n_{1}, w_{2}, n_{2}\right)\right| \geqq\binom{ n_{1}}{w_{1}}\binom{n_{2}}{w_{2}} / n_{1}$, for every n_{1}, n_{2}, w_{1} and w_{2} with $n_{1} \geqslant n_{2}, 0<w_{1}<n_{1}$ and $0<w_{2}<n_{2}$. Taking $n_{1}=n_{2}=n$ and $0<w<2 n$ we find codes $C(0)$ and $C(1)$ with $|C(0)|+|C(1)| \geq\binom{ 2 n}{w} / n$, from which we conclude that $A(2 n, 4, w) \geq\binom{ 2 n}{w} / 2 n$. This lower bound was also found by Graham and Sloane [3]. From the above it will be clear that we can expect to find better results if, for inctance, we are able to find partitions of V_{w}^{n} into fewer than n mutually disjoint constant weight codes. The determination of such partitions is postponed to the appendix.

EXAMPLE 1. Let $n=16$ and $w=7$. From [3] we have A $(16,4,7) \geqq 715$. Taking $n_{1}=n_{2}=8$ and using the partitions of $V_{w^{\prime \prime}}^{8}, w^{\prime}=0,1,2, \ldots, 7$, as determined
in the appendix, we find codes $C(2 i, 8,7-2 i, 8), i=0,1,2,3$, with

$$
\begin{aligned}
|C(0,8,7,8)|= & \sum_{i=0}^{0}\left|C^{i}(0,8)\right| \cdot\left|C^{i}(7,8)\right|=1 \\
|C(2,8,5,8)|= & \sum_{i=0}^{6}\left|C^{i}(2,8)\right| \cdot\left|C^{i}(5,8)\right|=7.4 .8=224, \\
|C(4,8,3,8)|= & \sum_{i=0}^{5}\left|C^{i}(4,8)\right| \cdot\left|C^{i}(3,8)\right|= \\
= & 2.14 .8+2.12 .8+10.8+8.8=560 \text { and } \\
|C(6,8,1,8)|= & \sum_{i=0}^{6}\left|C^{i}(6,8)\right|=\left|C^{i}(1,8)\right|=7.4 .1=28
\end{aligned}
$$

Hence, for the code $\mathcal{C}(0)$ defined in (2) we find

$$
\left|C(0)=\sum_{i=0}^{3}\right| C(2 i, 6,7-2 i, 8) \mid=813
$$

giving us the improved lower bound $A(16,4,7) \geq 813$.

EXAMPLE 2. Let $n=19$ and $w=5$. From [6] we have $A(19,4,5) \geq 612$. Take $n_{1}=9$ and $n_{2}=10$. With the help of the appendix, we find codes $\mathrm{C}(2 i+1,9,4-2 i, 10), i=0,1,2$, with

$$
\begin{aligned}
|C(1,9,4,10)|= & \sum_{i=0}^{8}\left|C^{i}(1,9)\right| \cdot\left|C^{i}(4,10)\right| \\
= & 3.1 .27+1.26+3.1 .25+2.1 .12=206, \\
|C(3,9,2,10)|= & \sum_{i=0}^{6}\left|C^{i}(3,9)\right| \cdot\left|C^{i}(2,10)\right|=7.12 .5=420, \\
|C(5,9,0,10)|= & \sum_{i=0}^{0}\left|C^{i}(5,9)\right| \cdot\left|C^{i}(0,10)\right|=16.1=16 .
\end{aligned}
$$

Thus, for the code $C(1)$ defined by (2) we find

$$
|C(1)|=\sum_{i=0}^{2}|C(2 i+1,9,4-2 i, 10)|=642
$$

Hence, we have $A(19,4,5) \geq 642$.
However, since any constant weight code A of length 9 , minimum distance 4 and constant welght 5 , can be transformed into $(9,10,4 ; 5,0)-$ code by adding to each codeword of A a tail of 10 zeros, it is easy to find a $(9,10,4,5,0)-\operatorname{code} C^{*}(5,9,0,10)$ with $\left|C^{\prime}(5,9,0,10)\right|=A(9,4,5)=18$. Replacing $C(5,9,0,10)$ by $C \cdot(5,9,0,10)$ in the above construction, gives

$$
A(19,4,5) \geqq 644
$$

We conclude this paragraph with a revised table of lower and upper bounds for the function $A(n, 4, w)$ in the range $n \leq 24$. The entries in this table with an asterisk in the upper left corner are the improved lower bounds found by the above described method, using the partitions given in the appendix. on checking these entries the reader must be aware of the fact that we have used the trick explained in Example 2 several times. The entries without an asterisk are from [1], [3] and [5].

n	2	3	4	5	6	7	3.	9	10	11	12
4	2	1	1								
5	2	2	1	1							
6	3	4	3	1	1						
7	3	7	7	3	1	1					
8	4	8	14	ε	4	1	1				
9	4	12	18	18	12	4	1	1			
10	5	13	30	36	30	13	5	1	1		
$1]$	5	17	35	66	66	35	17	5	1	1	
12	5	20	51	75-84	132	75-84	51	20	6	1	:
13	6	26	65	$\begin{gathered} 118- \\ -132 \end{gathered}$	$\begin{array}{r} 158- \\ -182 \end{array}$	$\begin{array}{r} 158- \\ -182 \end{array}$	$\begin{array}{r} 118- \\ -132 \end{array}$	65	26	ϵ	1
14	7	28	91	$\begin{gathered} 169- \\ -182 \end{gathered}$	$\begin{array}{r} 275 m \\ -308 \end{array}$	$\begin{array}{r} 316- \\ -364 \end{array}$	$\begin{array}{r} 275- \\ -308 \end{array}$	$\begin{gathered} 169 \\ -182 \end{gathered}$	91	28	7
15	7	35	105	$\begin{aligned} & 222 \\ & -271 \end{aligned}$	$\begin{array}{r} 370- \\ -455 \end{array}$	$\begin{aligned} & 582- \\ & -660 \end{aligned}$	$\begin{aligned} & 582- \\ & -660 \end{aligned}$	$\begin{array}{r} 370 \\ -455 \end{array}$	$\begin{array}{r} 222- \\ -27! \end{array}$	105	35
16	9	37	140	$\begin{gathered} 305 m \\ -336 \end{gathered}$	$\begin{aligned} & 592- \\ & -722 \end{aligned}$	$\begin{array}{r} 813- \\ -1040 \end{array}$	1164- -1320	813 -1040	$\begin{array}{r} 592- \\ -722 \end{array}$	$\begin{aligned} & 305- \\ & -336 \end{aligned}$	140
17	8	44	$\begin{array}{r} 154- \\ -157 \end{array}$	$\begin{aligned} & 424- \\ & -476 \end{aligned}$	$\begin{array}{r} 054- \\ -952 \end{array}$	$\begin{gathered} 1320- \\ -1753 \end{gathered}$	$\begin{aligned} & 1608- \\ & -2210 \end{aligned}$	$\begin{array}{r} 1608 \\ -2210 \end{array}$	$\begin{aligned} & 1320 m \\ & -1753 \end{aligned}$	854- -952	424- -476
18	9	48	198	$\begin{aligned} & 504 m \\ & -565 \end{aligned}$	$\begin{gathered} 1260- \\ -1428 \end{gathered}$	$\begin{gathered} 1936- \\ -2448 \end{gathered}$	$\begin{gathered} 2760- \\ -3944 \end{gathered}$	$\begin{array}{r} 3150- \\ -4420 \end{array}$	$\begin{array}{r} 2760- \\ -3944 \end{array}$	1936- -2448	$\begin{array}{r} 1260 \\ -1428 \end{array}$
19	9	57	228	* $664-$ -752	*$1496-$ -1789	* $3024-$ -3876	* $4330-$ -5814	$\begin{array}{r} 5490- \\ -8326 \end{array}$	$\begin{gathered} 5490- \\ -8326 \end{gathered}$	$\begin{gathered} 4330- \\ -5814 \end{gathered}$	$\begin{aligned} & 3024- \\ & -3876 \end{aligned}$
20	10	60	285	* $831-$ -912	$\begin{aligned} & 2120 \\ & -2506 \end{aligned}$	$\begin{aligned} & \hline \text { * } 4103 * \\ &-5111 \end{aligned}$	$\begin{aligned} & 7112- \\ & -9690 \end{aligned}$	$\begin{array}{r} 9197 \\ -12920 \end{array}$	$\begin{aligned} & 10536- \\ & -16652 \end{aligned}$	$\begin{array}{r} 9197 m \\ -12920 \end{array}$	$\begin{array}{r} 7112 \\ -9690 \end{array}$
21	10	70	315	$\begin{aligned} & 1071- \\ & -1197 \end{aligned}$	$\begin{gathered} 2856- \\ -3192 \end{gathered}$	$5708-$ -7518	$\begin{gathered} \text { * } 10045 \cdots \\ -13415 \end{gathered}$	$\begin{gathered} 15143 m \\ -22610 \end{gathered}$	$\begin{array}{r} 10057- \\ -27132 \end{array}$	$\begin{aligned} & 18057- \\ & -27132 \end{aligned}$	$\begin{array}{r} 15143- \\ -22610 \end{array}$
22	11	73	385	1386	$\begin{aligned} & 3927- \\ & -4389 \end{aligned}$	* $7889-$ -10032	* $15124-$ -20674	$\begin{aligned} & 23458 \\ & -32794 \end{aligned}$	$\begin{array}{r} 32442- \\ -49742 \end{array}$	$\begin{array}{r} 35136- \\ -54264 \end{array}$	$\begin{array}{r} 32442- \\ -49742 \end{array}$
23	11	83	$\begin{gathered} 416 m \\ -419 \end{gathered}$	1771	5313	$\begin{gathered} 11266- \\ -14421 \end{gathered}$	$\begin{gathered} 22530 m \\ -28842 \end{gathered}$	$\begin{aligned} & 38006 m \\ & -52833 \end{aligned}$	$\begin{aligned} & 52978- \\ & -75426 \end{aligned}$	$\begin{array}{r} 62782- \\ -104006 \end{array}$	$\begin{array}{r} 62782- \\ -104006 \end{array}$
24	12	88	498	$\begin{gathered} 1888- \\ -2011 \end{gathered}$	7094	$\begin{gathered} 15267- \\ -18216 \end{gathered}$	$\begin{gathered} * 37795 \\ -43263 \end{gathered}$	$\begin{aligned} & 56257 \\ & -76912 \end{aligned}$	$\begin{array}{r} \text { * } 99816- \\ -126799 \end{array}$	$\begin{array}{r} 105499- \\ -164565 \end{array}$	$\begin{array}{r} 124052- \\ -208012 \end{array}$

Table 2. Hounds on A(n,4, w)
$\S 2.3 .3$ An optimal $(18,21,8,6)$ mode

We conclude this chapter with an $(18,21,8,6)$-code. From $[6]$ we have that $A(18,8,6) \leq 21$; so the code is optimal. The (18, $21,8,6)$-code is given by the matrix A below, the rows of which are the codewords.

$$
A:=\left[\begin{array}{lll}
1_{6} & 0_{6} & 0_{6} \\
0_{6} & 1_{6} & \underline{n}_{6} \\
0_{6} & 0_{6} & \dot{1}_{6} \\
A_{1} & A_{2} & A_{3} \\
A_{3} & A_{1} & A_{2} \\
A_{2} & A_{3} & A_{1}
\end{array}\right],
$$

where $A_{i}, 1 \leqq i \leqq 3$ are circulant matrices with top row ${\underset{i}{i}}^{\text {given }}$ by

$$
a_{1}=(101000), a_{2}=(110000) \text { and } \underline{a}_{3}=(001100)
$$

It is easy to prove that the rows of A indeed form an $(18,21,8,6)$ code.

APPENDIX

In this appendix a partition of V_{w}^{n} is understood to be a partition of V_{W}^{n} into constant weight codes of length n, minimum distance 4 and constant weight w as defined in $\S 2.3 .2$. The partitions of V_{w}^{n} which we give here, are used in our construction method of section 2.3 to find the results staced in Table 2.

DEFINTMTON: Let $\left\{C^{i}(w, n)\right]_{i}=0,1, \ldots, k-1$ be a partition of V_{w}^{n} Then the number vector $K_{k, n}$ of $\left\{\mathrm{C}^{i}(w, n)\right\}_{i=0,1, \ldots, k-1}$ is defined by

$$
K_{w, n}:=\left(\left|C^{0}(w, n)\right|,\left|C^{1}(w, n)\right|, \ldots,\left|C^{k-1}(w, n)\right|\right)
$$

For the detemination of the number of codewords in the codes $C(0)$ and $C(1)$ of (2) and hence for the determination of a lower bound on $A\left(n^{\prime}, 4, w^{\prime}\right)$, these number vectors are all we have to know. The next lemma gives the number vectors of partitions of V_{w}^{n} for $w \leqq 2$. The proof is simple and is left to the reader.

LEMMA. Fox every $w n$ there are partitions of V_{w}^{n} with number vectors satisfying:

$$
\begin{align*}
& \text { i) } K_{w, n}=K_{n}-w, n \\
& \text { ii) } K_{0, n}=(1), \\
& \text { iii) } K_{1, n}=\underbrace{}_{n}, \\
& \text { iv) } K_{2, n}=\left\{\begin{array}{l}
\left(\frac{n-1}{2}\right) \cdot 1_{n}, \text { if } n \text { is odd, } \\
\left(\frac{n}{2}\right) \cdot 1_{n}-1, \text { if } n \text { is even. }
\end{array}\right.
\end{align*}
$$

In the following we give the partitions of $V_{w}^{n}, 6 \leq n \leq 12$ and $3 \leq w \leq \frac{n}{2}$, of which the number vectors are given in Table 3. That these are indeed partitions of V_{w}^{n} as we have defined in $\$ 2.3 .2$ is straight-forward to check.

In order to limit the amount of writing we frequently use the following notation. Let C be a binary code of length n with coordinate set $X=\{0,1, \ldots, n-1\}$ and let p be permutation of X. Then we cienote by $p(\underline{c}), c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$ the vector

$$
p(c):=\left(c_{p}-1_{(0)}{ }^{c} p_{p}^{-1}(1) \quad \cdots c_{p}-1(n-1)\right)
$$

and by $p(C)$ the code

$$
p(C):=\{p(c) \mid c \in C\}
$$

n	6	k	number vector $K_{w, n}$	see
6	3	6	$(4,4,4,4,2,2)$	A. 1
7	3	6	$(7,7,6,6,5,4)$	A $=1$
8	3	7	$(8,8,8,8,8,8,8)$	A. 2
8	4	6	$(14,14,12,12,10,8)$	A. 1
9	3	7	$(12,12,12,12,12,12,12)$	A. 2
9	4	8	$(16,16,16,16,16,16,16,14)$	A. 3
10	3	10	$(13,13,13,13,13,13,13,13,13,3)$	A. 4
10	4	10	$(27,27,27,26,25,25,25,12,12,4)$	A. 5
10	5	10	$(36,34,32,30,28,26,24,14,14,14)$	A. 6
11	3	11	$(17,17,17,17,17,14,14,14,14,12,12)$	A. 7
11	4	11	$(34,34,34,34,34,28,28,26,26,26,26)$	A. 7
11	5	11	$(66,60,55,50,47,44,41,32,32,30,5)$	A. 6
12	3	11	$(20,20,20,20,20,20,20,20,20,20,20)$	A. 2
12	4	11	$(51,51,51,51,51,40,40,40,40,40,40)$	A. 7
12	5	12	$(70,70,70,70,64,64,64,64,64,64,64,64)$	A. 7
12	6	11	$(92,90,90,90,90,84,80,80,76,76,76)$	A. 7

Table 3. Number vectors
A. 1 Partitions of v_{3}^{6}, v_{3}^{7} and v_{4}^{8}

The six arrays below form a partition of V_{3}^{7} into six mutually disjoint constant weight codes with minimum distance 24 . The number vector of the partition is $\underline{K}_{3,7}=(7,7,6,6,5,4)$.

If we consider the vectors that have a zero in the $5^{\text {th }}$ coordinate place we find, after deleting this coordinate, a partition of V_{3}^{6} with number vector $\mathrm{K}_{3,6}=(4,4,4,4,2,2)$.

Since the distance between two distinct vectors in the same code $C^{i}(3,7) \quad(i=0,1, \ldots, 5)$ is exactly four, we may adjoin to each $C^{i}(3,7)$ ($i=0,1, \ldots, 5$) the complements of its codewords. Adaing the overall parity check then yields a partition of V_{4}^{8} with number vector $\underline{K}_{4,8}=(14,14,12,12,10,8)$.
A. 2 partitions of v_{3}^{8}, v_{3}^{9} and v_{3}^{12}

The problem of finding a partition of U_{3}^{n}. for $n=6 m+1$ or $n=6 m+3$ into a number (as small as possible) of matually disjoint constant weight codes, is the same as trying to find a packing with steiner triple systems of order $n,(1, e ., a$ partition of the set of triads of n elements into $n-2$ disjoint Steiner triple systems). In [2] Denniston gives the solution of the above problem for eleven values of n, including $n=13$. This solution is given on the following page and is used to determine a paxtition of V_{3}^{12} with number vector $\underline{K}_{3,12}=(20,20,20,20,20,20,20,20,20,20,20)$. One can also find several references to the above problem in [2]. The existence of a packing of order 9 was found by kixkman (see [2]) and rediscovered several times (also by us). This packing is given below. We use our terminology.

Let C be the constant weight code show in Fig. 1 and let p_{1} be the permutation $(0,1,2,3,4,5,6)(7)(8)\left(50 p_{1}(i)=i+1(\bmod 7), i=0,1,2, \ldots, 6\right.$, $p_{1}(7)=7$ and $p_{1}(8)=8$. Then we define the codes $C^{i}(3,9), i=0,1, \ldots, 6$, by

$$
C^{i}(3,9):=p_{1}^{i}(C), \quad i=0,1, \ldots, 6
$$

These codes form a partition of V_{3}^{9} with number vector $\mathrm{K}_{3}, 9=(12,12,12,12$, 12.12.12) .

The codewords with a zero in the last coordinate form, after deleting this coordinate, a partition of V_{3}^{8} with number vector $K_{3,8}=(8,8,8,8,8,8,8)$.

0	1	2	3	4	5	6	7	8
1							1	1
				1	1		1	
	1		1				1	
		1				1	1	
		1	1				1	
				1		1	1	
	1				1		1	
1	1					1		
1		1			1			
1			1	1				
	1	1		1				
			1		1	1		

Fig. 1.

Let D be the code shown in Fig. 2 and let P_{2} be the permutation $(0,1,2,3,4,5,6,7,8,9,10)(11)(12)$. Then the codes $C^{i}(3,13), 0 \leqq i \leqq 10$, defined below form a partiton of v_{3}^{13}.

$$
\mathrm{C}^{i}(3,13):=\mathrm{p}_{2}^{\mathrm{i}}(\mathrm{D}), \quad \quad i=0,1, \ldots, 10
$$

Shortening these codes give a partition of V_{3}^{12} with number vector $\mathbb{K}_{3,12}=(20,20,20,20,20,20,20,20,20,20,20)$.

Fig. 2.
A. 3 A partition of V_{4}^{9}

- Let C be the $(9,16,4,4)$ code shown in Fig. 3 and let p be the permutation $(0,1,2,3,4,5,6)(7)(8)$. Then the partition $\left\{\mathrm{C}^{i}(4,9)\right\}_{i=0,1, \ldots, 7}$
with number vector $\mathbb{K}_{4,9}=(16,16,16,16,16,16,16,14)$ is defined by

$$
\begin{aligned}
C^{i}(4,9):= & p^{i}(C), \quad i=0,1, \ldots, 6, \\
C^{7}(4,9):= & \left\{p^{i}((1,1,0,0,0,1,0 \mid 1,0)) \mid i=0,1, \ldots, 6\right\} \\
& \cup\left\{p^{i}((1,1,0,1,0,0,0 \mid 0,1)) \mid i=0,1, \ldots, 6\right\} .
\end{aligned}
$$

$C=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | 1 | | | | 1 | 1 | |
| | | 1 | | | | 1 | 1 | 1 |
| | | | | 1 | 1 | | 1 | 1 |
| 1 | 1 | 1 | | | | | 1 | |
| 1 | | | 1 | | | 1 | 1 | |
| | 1 | | | 1 | | 1 | 1 | |
| | | 1 | 1 | | 1 | | 1 | |
| 1 | 1 | | | 1 | | | 1 | |
| 1 | | 1 | | | 1 | | 1 | |
| | | 1 | 1 | 1 | | | 1 | |
| | | | 1 | | 1 | 1 | 1 | |
| 1 | 1 | | | | 1 | 1 | | |
| 1 | | 1 | | 1 | | 1 | | |
| 1 | | | 1 | 1 | 1 | | | |
| | 1 | 1 | | 1 | 1 | | | |
| | 1 | 1 | 1 | | | 1 | | |

Fig. 3.
A. 4 A partition of V_{3}^{10}

We now give a partition of V_{3}^{10} with number vector $\underline{K}_{3,10}=(13,13,13,13$, $13,13,13,13,13,3)$. Let p be the permutation ($0,1,2,3,4,5,6,7,8$) (9) and let D_{0}, D_{1}, D_{2} and D_{3} be the constant weight codes shown in Fig. 4. Then the partition of $V_{3}^{10^{3}}$ is given by

$$
C^{i+3 j}(3,10):=p^{i}(0, j), \quad i=0,1,2 \text { and } j=0,1,2, \text { and } \quad C^{9}(3,10):=D_{3}
$$

Fig. 4.

A. 5 A partition of V_{4}^{10}

Let C be the $(10,27,4,4)$ constant weight code shown in Fig. 5 and let p be the permutation $(0,1,2,3,4,5,6)(7)(8)(9)$. We define the codes $C^{i}(4,10)$, $0 \leqq i \leqq 6$, by $\left(\mathrm{c}_{1}\right.$ and c_{2} are as defined in Fig. 5)

$$
\begin{aligned}
& C^{0}(4,10):=C, C^{1}(4,10):=p^{2}(C), c^{2}(4,10):=p^{4}(C), \\
& C^{3}(4,10):=p^{6}(C) \backslash\left\{p^{6}\left(\underline{c}_{2}\right)\right\}, C^{4}(4,10):=p(C) \backslash\left\{p\left(\underline{c}_{1}\right), p\left(\underline{c}_{2}\right)\right\}, \\
& C^{5}(4,10):=p^{3}(C) \backslash\left\{p^{3}\left(\underline{c}_{1}\right), p^{3}\left(c_{2}\right)\right\} \text { and } \\
& C^{6}(4,10):=p^{5}(C) \backslash\left\{p^{5}\left(\underline{c}_{1}\right), p^{5}\left(\underline{c}_{2}\right)\right\} .
\end{aligned}
$$

Together with $C^{7}(4,10), c^{8}(4,10)$ and $C^{9}(4,10)$, defined by the arrays shown in Fig. 5a, they define a partition of V_{4}^{10} with number vector $\underline{K}_{4,10}=(27,27,27,26,25,25,25,12,12,4)$.

Fig. 5.

Fig: 5a.
A. 6 A partition of V_{5}^{10} and V_{5}^{11}

From [6] we have, that the rows of A (see the figure below) and the sums of pairs of rows of A form a $(11,66,4,6)$ constant weight code.

$$
A=\left[\begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 1 & & 1 & 1 & 1 & & & & 1 & \\
& 1 & 1 & & 1 & 1 & 1 & & & & \\
1 & & 1 & 1 & & 1 & 1 & 1 & & & \\
& 1 & & 1 & 1 & & 1 & 1 & 1 & & \\
& & 1 & & 1 & 1 & & 1 & 1 & 1 \\
& & & 1 & & 1 & 1 & & 1 & 1 & 1 \\
1 & & & & 1 & & 1 & 1 & & 1 & 1 \\
1 & 1 & & & & 1 & & 1 & 1 & & 1 \\
1 & 1 & 1 & & & & 1 & & 1 & 1 & \\
& 1 & 1 & 1 & & & & 1 & & 1 & 1 \\
1 & & 1 & 1 & 1 & & & & 1 & & 1
\end{array}\right]
$$

Taking the complements of all these codewords and permuting the coordinates $\{0,1,2, \ldots, 10\}$ with the permutation $(0,10)(1,7)(2,8,4)(3,6)(5,9)$ one finds the (11,66,5)-code 0 shown in Fig. 6 (the coordinates are renumbered).

Let D^{\prime} be the subcode $D^{\prime}:=D \backslash\left\{\underline{c}_{1}, \underline{c}_{2}, \ldots,{ }_{-2}\right\}$, where the \underline{c}_{1}, $i=1,2, \ldots, 28$, are defined in Fig. 6. Let p be the permutation $(0,1,2,3,4,5,6)(7)(8)(9)(10)$, then we define the following partition of V_{5}^{11}.

$$
\begin{aligned}
& \mathcal{C}^{0}(5,11):=D=D \cdot U\left\{\underline{c}_{1}: \underline{c}_{2}, \ldots, \underline{c}_{28}\right\} \text {, } \\
& C^{1}(5,11):=p^{2}\left(D^{\prime}\right) \cup\left(p^{2}\left(c_{i}\right) \quad i=1,3,4,5,6,7,8,9,10,12,13,14,16,17\right. \text {, } \\
& 18,19,20,22,23,24,25,27\} \text {, } \\
& C^{2}(5,11):=p^{5}(0) \cup\left(p^{5}\left(\mathrm{c}_{1}\right) \mid \quad i=2,3,4,5,8,9,10,11,13,14,15,18,\right. \\
& 20,21,23,24,263 \text {. } \\
& C^{3}(5,11):=p^{4}(0,) \cup\left\{p^{4}\left(\underline{c}_{i}\right) \mid i=1,3,6,7,9,12,13,16,17,19,22,23\right\}, \\
& \mathrm{C}^{4}(5,11):=\mathrm{p}^{1}(\mathrm{D}) \cup\left(\mathrm{p}\left(\underline{c}_{1}\right) \mid i=1,2,11,12,15,16,21,22\right\} \cup \\
& \cup\{(0,1,1,1,0,0,0 \mid 1,0,0,1)\} \text {, } \\
& C^{5}(5,11):=p^{3}\left(D^{1}\right) \cup\left\{p^{3}\left(c_{i}\right) \mid i=5,6,18,20\right\} \cup \\
& \cup\{(0,1,1,0,0,1,0 \mid 0,1,0,1),(1,0,1,0,1,0,0 \mid 0,0,1,1)\},
\end{aligned}
$$

$$
\begin{aligned}
& C^{6}(5,11):= p^{6}(0) \cup\{(1,1,0,0,0,0,1 \mid 1,0,0,1), \\
&(0,1,0,0,1,1,0 \mid 0,1,0,1),(1,0,0,1,0,1,0 \mid 0,0,1,1)\}, \\
& C^{7}(5,11), c^{8}(5,11), C^{9}(5,11) \text { and } C^{10}(5,11) \text { are defined by the array: } \\
& \text { shown in Fig. 6a. }
\end{aligned}
$$

The number vector is $\mathrm{K}_{5,11}=(66,60,55,50,47,44,41,32,32,30,5)$.

Fig. 6.

Fig. 6a.

The codewords with zexo in the $10^{\text {th }}$ coordinate form, after deleting, this coordinate, a partition of V_{5}^{10} with number vector $\underline{K}_{5,10}=(36,34,32,30,28,26,24,14,14,14)$.

A. 7 Partitions found with help of the method described in section 2.3

Since the partitions in Table 3 , with A. 7 as reference, are all found in the same way, we only give one, namely that of V_{3}^{11}. The others are left to the reader.
$\operatorname{Let}\left\{C^{i}(w, 5)\right\}_{i=0}, 1, \ldots, k_{w}-1$ and $\left\{C^{i}(w, 6)\right\}_{i=0,1, \ldots, \ell_{w}-1}$ be the partitions of $V_{W}^{5}(w=0,1,2,3)$ respectively $V_{W}^{6}(w=0,1,2,3)$ which we found in A. 1 or just preceding. Then we define the following partition of V_{3}^{11},

$$
\begin{aligned}
& C^{i}(3,11):=C^{i}(3,5) \quad C^{0}(0,6) \\
& U\left(\begin{array}{c}
4 \\
j=0
\end{array} C^{j}(1,5) c^{(j+i)} \bmod 5(2,6)\right), \quad i=0,1,2,3,4, \\
& C^{i+5}(3,11):=C^{0}(0,5) \otimes C^{i}(3,6) \\
& U\left(\begin{array}{l}
4 \\
U=0
\end{array} c^{j}(2,5) * c^{(j+i) \bmod 6}(1,6)\right), i=0,1, \ldots, 5 .
\end{aligned}
$$

From § 2.3 .2 it follows that every $C^{i}(3,11), i=0,1, \ldots, 10$, is a constant weight code of length 11 , minimum distance ≥ 4 and constant weight 3. From this we also have

$$
\left|\mathfrak{C}^{i}(3,11)\right|=17, \quad i=0,1,2,3,4, \quad\left|C^{i}(3,11)\right|=14, \quad i=5,6,7,8
$$

and

$$
\left|C^{i}(3,11)\right|=12, \quad i=9,10 .
$$

One further easily sees that all words of weight 3 are different and so $\left\{C^{i}(3,11)\right\}_{i=0,1, \ldots, 10}$ is a partition of V_{3}^{11} with number vector $\mathrm{K}_{3,11}=(17,17,17,17,17,14,14,14,14,12,12)$.

REFERENCES

[1] BEST, M.R., BROUWER, A.E., MacWTLLIAMS, F.J., ODLYZKO, A.M. and SLOANE, N.J.A.: Bounds for binary codes of length less than 25. IEEE Trans. Info. Theory, vol. IT-24, Jan. 1970, 81-93.
[2] DENNISTON, R.G.F.: Some packings with Steiner triple systens. Discrete Math., vol. 9. 1974, 213-227.
[3] GRAHAM, R.L. and SLOANE, N.J.A.: Lowex bounds for constant weight codes. IEEE Trans. Info. Theory, vol. IT-26, Jan. 1980, 37-43.
[4] JOMNSON, S.M.: On upper bounds for unrestricted binary errorcorrecting codes. IEEE Trans. Info. Theory, vol. IT-27, 1971, 446-478.
[5] KAUTZ, W.H. and SINGLEION, R.C.: Nonrandom Binary Superimposed Codes. IEEE Trans. Info. Theory, vol. IT-10, 1964, 363-377.
[6] MacWILLIAMS, F.J. and SLOANE, N.J.A.: The Theory of Error-Cormecting Codes. Ansterdam - New York - Oxford : North-Holland, 1977.
[7] NGUYEN QUANG A., GYORFI, L. and MASSEY, J.L. : performances of protocol sets for collosion channel without feedback. Submitted to IEEE Trans, Info. Theory, 1985.
[8] ZIWOVYEV, V.A.: On a generalization of the Johnson bound for constant weight codes. Proc. of the International Workshop "Convolutional Codes Multi-user Communication", sochi, 1983, 206-208.

CHAPTER 3

CONSTANT DISTANCE CODE PAIRS

3.1 INTRRODUCTION

In this chapter we are concemed with a problem, formulated by Ahlswede, El Gmal and Pang [1] in 1984. They defined constant distance code pair (A, B) as a pair of binary codes of length n such that, for some $\delta \in N, 0 \leqq \delta \leqq n$,

$$
\forall_{\underline{\mathrm{a}}} \in A \quad \forall_{\underline{\mathrm{b}}} \in B \quad[\mathrm{a}(\underline{a}, \underline{b})=\delta] .
$$

If (A, B), $A, B \subset F_{2}^{n}$, is a code pair for which the abowe property holds, we write $\Delta(A, B)=\delta$. They were interested in the following function defined below

$$
M(n, \delta):=\max \left\{|A| \cdot|B| \mid A \subset \mathbb{F}_{2}^{n}, B \subset \mathbb{F}_{2}^{n}, \Delta(A, B)=\delta\right\}
$$

In [1] Ahlswede, El Gamal and Pang proved the following upper bound on $M(n, \delta)$.

THEOREM 1.

$$
M(n, \delta) \leqq 2^{2\left\lfloor\frac{n}{2}\right\rfloor}, \text { for all } n, \delta \in N \text { with } 0 \leqq \delta \leqq n
$$

They gave the following examples, where equality holds in Theorem 1.

$$
\begin{aligned}
& \left.A_{i}:=\{(0,0),(1,1)\}^{\left\lfloor\frac{n}{2}\right.}\right\rfloor \otimes\{0\}^{\varepsilon}, \text { for } i=0,1, \\
& \left.B_{0}:=\{(0,1),(1,0)\}^{\left\lfloor\frac{n}{2}\right.}\right\rfloor \otimes\{0\}^{\varepsilon}, \\
& \left.B_{1}:=\{(0,1),(1,0)\}^{\left\lfloor\frac{n}{2}\right.}\right\rfloor \otimes\{1\}^{\varepsilon},
\end{aligned}
$$

where $\varepsilon=0$ if n is even and $\varepsilon=1$ if n is odd. One immediately sees that $A_{i}, B_{i} \subset \mathbb{F}_{2}^{n}, \Delta\left(A_{i}, B_{i}\right)=\left\lfloor\frac{n}{2}\right\rfloor+i \varepsilon$ and $\left|A_{i}\right| \cdot\left|B_{i}\right|=2^{2\left\lfloor\frac{n}{2}\right\rfloor}, \quad i=0,1$.

In [2] Hall and van Lint proved Theorem 1 using the observation that for an equidistant code pair (A, B), for any $\underline{a} \in A$ and $\underline{b} \in B$, the codes $a \in A$ and $\underline{b} \oplus B$ are orthogonal even weight codes. Moreover, they proved that essentially the only code pairs for which equality holds in Theorem 1 are the ones given in the example above. To be more precise we need a definition.

Two code pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right), A, B, A^{\prime}, B^{\prime} \subset \mathbb{F}_{2}^{n}$ are called equivalent if there exists a permutation σ of the positions of codewords and an $\underline{x} \in \mathbb{F}_{2}^{n}$ such that

$$
(\underline{x} \oplus \sigma(A), \underline{x} \oplus \sigma(B))=\left(A^{\prime}, B^{\prime}\right),
$$

where $\sigma(A)=\left\{\left(a_{\sigma(1)} a_{\sigma(2)}, \ldots, a_{\sigma(n)}\right) \mid\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A\right\}$. In [2] Hall and van Lint proved that any code pair for which equality holds in Theorem 1 is equivalent to one of the code pairs given in the example above. Since for these examples $\delta=\left\lfloor\frac{n}{2}\right\rfloor$ or $\delta=\left\lceil\frac{n}{2}\right\rceil$, the question remained:"what is the exact value of $M(n, \delta)$, for $\delta \neq\left\lfloor\frac{n}{2}\right\rfloor$ or $\left\lceil\frac{n}{2}\right\rceil$?".

In this chapter we will give an answer to this question. In Section 3.2 we determine the exact value of $M(n, \delta)$ for all n and δ with $0 \leqq \delta \leqq n$. In Section 3.3 we additionaly characterize all constant distance code pairs (A, B) of length n and constant distance δ with

$$
|A| \cdot|B|=M(n, \delta) .
$$

3.2 the exact value of M(n, δ)

From now on A and B will always denote two binary codes of length n such that $\Delta(A, B)=\delta$ and $|A| \cdot|B|=M(n, \delta)$. Such a code pair is called optimal. The following lemma shows that without loss of generality we can assume $0 \leq \delta \leq \frac{n}{2}$.

LEMMA 2. For any $n, \delta \in \mathbb{N}, 0 \leq \delta \leq n$, we have

$$
M(n, \delta)=M(n, n-\delta)
$$

proof. Let (A, B) be a constant distance code pair with constant distance δ. Then obviously $\Delta(1 \oplus A, B)=n-\delta$. The result follows.

From now on we assume $0 \leqq \delta \leqq \frac{n}{2}$. The following examples give a lower bound on $M(n, 5)$.

EXAMPLE 1.

$$
\begin{aligned}
& A_{n, \delta}^{i}:=\{(0,0),(1,1)\}^{i} \otimes\{0\}^{n-2 i} \\
& B_{n, \delta}^{i}:=\{(0,1),(1,0)\}^{i} \otimes v_{\delta-i}^{n-2 i}, \text { for } i=0,1,2, \ldots, \delta,
\end{aligned}
$$

where $V_{w}^{n}:=\left\{c \in \mathbb{F}_{2}^{n} \mid\right.$ wt $\left.(c)=w\right\}$.
We have $A_{n, \delta}^{i}, B_{n, \delta}^{i} \subset F_{2}^{n}, \Delta\left(A_{n, \delta}^{i}, B_{n, \delta}^{i}\right)=\delta$ and $\left|A_{n, \delta}^{i}\right| \cdot\left|B_{n, \delta}^{i}\right|=2^{2 i}\binom{n-2 i}{\delta-i}$.
Hence

$$
\begin{equation*}
M(n, \delta) \geq \max \left\{\left.2^{2 i}\binom{n-2 i}{\delta-i} \right\rvert\, 0 \leq i \leq \delta\right\}, \quad 0 \leq \delta \leq \frac{n}{2} \tag{1}
\end{equation*}
$$

The following theorem states that this bound is tight

THEOREM 3. For all $n \in \mathbb{N}, \delta \in \mathbf{N}$ with $0 \leq \delta \leqq \frac{n}{2}$, we have

$$
M(n, \delta)=\max \left\{\left.2^{2 i}\binom{n-2 i}{\delta-i} \right\rvert\, 0 \leq i \leq \delta\right\}
$$

REMARK. One easily checks that

$$
\max \left\{2^{2 i(n-2 i}(\delta-i) \mid 0 \leq i \leq \delta\right\}=\binom{n}{\delta}, \text { if } n(n-1) \geq 4 \delta(n-\delta) .
$$

For this reason the inequality $n(n-1) \geqq 4 \delta(n-\delta)$ will play an important role in the proof of Theorem 3 .

Before we can prove Theorem 3 we need to do some preliminary work. Looking at the code pairs given in Example 1, it seems more or less natural to considex pairs of positions of codewords. That is why we define, for every i, j with $i, j \in\{1,2, \ldots, n\}$ and $i \neq j$,
$\alpha_{i j}:=$ the number of pairs $\{a, b\}, a \in A, \underline{b} \in B$ with $a_{i}+a_{j}+b_{i}+b_{j} \equiv 1 \bmod 2$.

The condition $a_{i}+a_{j}+b_{i}+b_{j}=1 \bmod 2$ says that the positions i and j contribute exactly 1 to the Eamming distance between \underline{a} and \underline{b}, i.e., $d\left(\left(a_{i}, a_{j}\right),\left(b_{i}, b_{j}\right)\right)=1$. Since $\Delta(A, B)=\delta$, we have

$$
\sum_{0 \leq i<j \leq n} \alpha_{i j}=\delta(n-\delta)|A| \cdot|B|=\delta(n-\delta) M(n, \delta)
$$

It follows that there is an $\alpha_{i j}$ with $\alpha_{i j} \geq 2 \delta(n-\delta) M(n, \delta) / n(n-1)$. Using a permutation of the positions of codewords we can take care that

$$
\begin{equation*}
\alpha_{12} \geq \frac{2 \delta(n-\delta) M(n, \delta)}{n(n-1)} . \tag{2}
\end{equation*}
$$

We now try to find an upper bound on α_{12}. For this reason we partition the codes A and B as follows:

$$
A=\{(0,0)\} A_{00} \cup\{(1,1)\} \otimes A_{11} \cup\{(0,1)\} \otimes A_{01} \cup\{(1,0)\} A_{10}
$$

and

$$
B=\{(0,0)\} \otimes B_{O O} \cup[(1,1)) \otimes B_{11} \cup\{(0,1)\} B_{01} \cup\{(1,0)\} \otimes B_{10^{\prime}}
$$

where $A_{\varepsilon \mu}, B_{\varepsilon \mu} \subseteq \mathbb{F}_{2}^{n-2}, \varepsilon, \mu \in\{0,1\}$. Notice that some of the sets $A_{\varepsilon \mu}$, $B_{c \mu}$ may be empty. With this terninology we can write α_{12} as

$$
a_{12}=\left(\left|A_{00}\right|+\left|A_{11}\right|\right)\left(\left|B_{01}\right|+\left|B_{10}\right|\right)+\left(\left|A_{01}\right|+\left|A_{10}\right|\right)\left(\left|B_{00}\right|+\left|B_{11}\right|\right)
$$

The following two lemmas are useful in finding an upper bound on ${ }_{12}$.
LBMMA 4. For every $\varepsilon_{,} \mu \in\{0,1\}$ the following holds:

$$
\text { if } A_{\varepsilon \mu} \cap A_{\varepsilon \mu} \neq \emptyset_{\text {, then }} B_{\varepsilon \mu}=B_{\varepsilon \mu}^{-\mu}=\emptyset \text { and } A_{\varepsilon \mu}=A_{\varepsilon \mu} \text {, }
$$

where $\overline{\bar{y}} \equiv 1+\varepsilon \bmod 2$ and $\bar{\mu} \equiv 1+\mu \bmod 2$. By symmetry, the roles of the $A_{\varepsilon \mu}$'s and $B_{\varepsilon \mu}$'s are interchangeable.

PROOF. Without loss of generality we may take ε and μ equal to 0 . Since $A_{00} n A_{11} \neq \emptyset$, there is an $\underline{a}^{\prime} \in \bar{F}_{2}^{n-2}$ such that ($0,0 \mid \underline{a}^{\prime}$) and (1,1 |a') both belong to A : But, for any $\underline{b}^{\prime} \in F_{2}^{n-2}$ we then have

$$
d\left(\left(0,0 \mid \underline{a}^{\prime}\right),\left(0,0 \mid \underline{b}^{\prime}\right)\right)=a\left(\left(1,1 \mid \underline{a^{\prime}}\right),\left(0,0 \mid \underline{b}^{\prime}\right)\right)-2
$$

and

$$
a\left(\left(0,0 \mid \underline{a}^{\prime}\right),\left(1,1 \mid \underline{b}^{\prime}\right)\right)=d\left(\left(1,1 \mid \underline{a}^{\prime}\right),\left(1,1 \mid \underline{b}^{\prime}\right)\right)+2
$$

So $B_{00}=B_{11}=\emptyset$.
From $B_{00}=B_{11}=$ and $|A| \cdot|B|=M(n, \delta)$, it now easily follows that $\left(0,0 \mid \underline{c}^{*}\right) \in A \Leftrightarrow\left(1,1 \mid \underline{c}^{\prime}\right) \in A$, so $A_{00}=A_{11}$.

The following lemma is obvious.

Lemma 5. The code pairs ($\left.A_{00} \cup A_{11}, B_{01} \cup B_{10}\right)$ and $\left(A_{01} \cup A_{10}, B_{00} \cup B_{11}\right)$
are constant distance code pairs of length $n-2$ and constant distance反-1.

We are now ready to give an upper bound on α_{12} and so indirectly an upper bound on $M(n, \delta)$. We have to consider three cases, the first one of wich is special.

CASE I: $A_{\varepsilon \mu} \cap A_{\bar{\varepsilon}} \neq \emptyset$ and $B_{\varepsilon \mu} \cap B_{\bar{E} \mu} \neq \emptyset$, for some $\varepsilon_{, ~} \mu \in\{0,1\}$. With Lemma 4 we then have

$$
\begin{aligned}
M(n, \delta) & =|A| \cdot|B|=\alpha_{12}=\left(\left|A_{\varepsilon \mu}\right|+\left|B_{\varepsilon \mu}\right|\right)\left(\left|B_{\varepsilon \mu}\right|+\left|B_{\overline{\varepsilon \mu}}\right|\right) \\
& =4\left|A_{\varepsilon \mu}\right| \cdot\left|B_{\varepsilon \mu}\right| .
\end{aligned}
$$

And so with Lemma 5

$$
M(n, \delta)=\alpha_{12} \leq 4 M(n-2, \delta-1) .
$$

CASE II: $A_{\varepsilon \mu} \cap A_{\bar{\varepsilon} \bar{\mu}} \neq \emptyset$ and $B_{\varepsilon \mu} \cap B_{\bar{\varepsilon} \mu}=\emptyset$, for some $\varepsilon, \mu \in\{0,1\}$. Exchanging the $A_{\varepsilon \mu}$'s and $B_{\varepsilon \mu}$'s gives an equivalent situation. With Lemma 4 and 5 we then have

$$
\begin{aligned}
\alpha_{12} & =\left(\left|A_{\varepsilon \mu}\right|+\left|A_{E \mu}\right|\right)\left(\left|B_{\varepsilon \mu}\right|+\left|B_{\varepsilon \mu}\right|\right)= \\
& =2\left|A_{E \mu}\right| \cdot\left|B_{E \mu} \cup B_{E \mu}\right| \leq 2 M(n-2, \delta-1)
\end{aligned}
$$

CASE III: $A_{\varepsilon \mu} \cap A_{\varepsilon \mu}=\varnothing$ and $B_{\varepsilon \mu} \cap B_{\bar{\varepsilon}-\mu}=\varnothing$, for all $\varepsilon, \mu \in\{0,1\}$.
Lemma 5 now gives

$$
\begin{aligned}
\alpha_{12} & =\left(\left|A_{00}\right|+\left|A_{11}\right|\right)\left(\left|B_{01}\right|+\left|B_{10}\right|\right)+\left(\left|A_{01}\right|+\left|A_{10}\right|\right)\left(\left|B_{00}\right|+\left|B_{11}\right|\right\rangle= \\
& =\left|A_{00} \cup A_{11}\right| \cdot\left|B_{01} \cup B_{10}\right|+\left|A_{01} \cup A_{10}\right| \cdot\left|B_{00} \cup B_{11}\right| \leq 2 m(n-2, \delta-1) .
\end{aligned}
$$

Together with (2) case II and case III give

$$
M(n, \delta) \cong \frac{n(n-1) M(n-2 ; \delta-1)}{\delta(n-\delta)}
$$

Hence, we have proved the following inequality

$$
\begin{equation*}
M(n, \delta) \leqq \max \left\{4, \frac{n(n-1)}{\delta(n-\delta)}\right\} M(n-2, \delta-1), \quad 1 \leqq \delta \leq \frac{n}{2} \tag{3}
\end{equation*}
$$

An induction argument now completes the proof of Theorem 3 .

PROOF OF THEOREM 3. We use induction on 5 . First note that the theorem i.s obviously true for $\delta=0$ and all $n \in M$.

Let $\delta \geqq 1$ and suppose that for all $n \in \mathbb{N}$ with $n-2 \geq 2(\delta-1)$ the following equality holds

$$
\operatorname{M(n-2}, \delta-1)=\max \left(\left.2^{2 i}\binom{n-2-2 i}{\delta-1-1} \right\rvert\, 0 \leq i \leq \delta-1\right\}
$$

From (3) it follows that, for any n 226 ,

$$
M(n, \delta) \leq\left\{\begin{array}{l}
4 M(n-2, \delta-1) \text { if } n(n-1) \leq 4 \delta(n-\delta) \\
\frac{n(n-1)}{\delta(n-\delta)} M(n-2, \delta-1) \text { if } n(n-1) \geq 4 \delta(n-\delta)
\end{array}\right.
$$

So we have to distinquish two cases.
Eirst suppose $n(n-1) \leqq 4 \delta(n-\delta)$. We then have

$$
\begin{aligned}
M(n, \delta) & \leqq 4 M(n-2, \delta-1) \leq 4 \max \left\{\left.2^{2 i}\binom{n-2-21}{\delta-1-1} \right\rvert\, 0 \leq i \leq \delta-1\right\} \\
& =\max \left\{\left.2^{2 j}\binom{n-2 j}{\delta-j} \right\rvert\, 1 \leq j \leq \delta\right\} \leq \max \left\{\left.2^{2 j}\binom{n-2 j}{\delta-j} \right\rvert\, 0 \leq j \leqq \delta\right\}
\end{aligned}
$$

Secondly, suppose $n(n-1) 34 \delta(n-8)$, mhen $(n-2)(n-3)=$ $n(n-1)-4(n-1)+1>4 \delta(n-\delta)-4(n-1)=4(\delta-1)(n-1-\delta)$. From the remark directly below theorem 3 we have

$$
\max \left\{\left.2^{2 i}\binom{n-2-2 i}{\delta-1-i} \right\rvert\, 0 \leq i \leq \delta-1\right\}=\binom{n-2}{\delta-1} .
$$

So

$$
\begin{aligned}
M(n, \delta) & \leqq \frac{n(n-1)}{\delta(n-\delta)} M(n-2, \delta-1)=\frac{n(n-1)}{\delta(n-\delta)}\binom{n-2}{\delta-1} \\
& =\binom{n}{\delta} \leqq \max \left\{\left.2^{21}\binom{n-2 i}{\delta-i} \right\rvert\, 0 \leqq i \leqq \delta\right\}
\end{aligned}
$$

Together with (1) both cases give

$$
M(n, \delta)=\max \left[\left.2^{2 i}\binom{n-2 i}{\delta-i} \right\rvert\, 0 \leq i \leqq 5\right\}
$$

3.3 OPTIMAL CONSTANT DISTANCE CODE PAIRS

In this section we shall prove that the code pairs of Example 1 are essentially the only optimal constant distance code pairs. The observation at the beginning of Section 3.2 shows us that we only need to consider the case $2 \delta \leq n$. So we assume $2 \delta \leq n$. In the following (A, B) is an optimal constant distance code pair with constant distance δ. The lemma below deals with a simple case.

LEMMA 6. If $|A| \leq 2$ or $|B| \leq 2$, then (A, B) is equivalent to $\left(A_{n, S^{0}}^{0} B_{n, \delta}^{0}\right)$ or $\left(A_{n, \delta}^{1}, B_{n, g}^{1}\right)$ defined in Section 3.2.

PROOF. Without loss of generality we may assume that $|A| \leqq 2$. If $|A|=1$ then $B=a \neq V_{\delta}^{n}$ with $\{a\}=A$ and hence (A, B) is equivalent to $\left(A_{n, \delta}^{0}, B_{n, \delta}^{0}\right)$.

So suppose $|A|=2$. Then $A=\left\{\underline{a}_{1}, a_{2}\right\}$ with $d\left(a_{1}, \underline{a}_{2}\right)=2 \lambda$, for some $\lambda \in \mathbb{N}$ with $1 \leq \lambda \leq \delta$. Since (A, B) is easily seen to be equivalent to $\left(A_{n, \delta}^{1}, B_{n, \delta}^{1}\right)$ if $d\left(a_{1}, a_{2}\right)=2$, we only need to prove $\lambda=1$.
counting the numbex of words $\underline{E} F F_{2}^{n}$ with $d\left(\underline{a}_{1}, \underline{b}\right)=d\left(\underline{a}_{2}, \underline{b}\right)=\delta$ we find $|B|=\binom{2 \lambda}{\lambda}\binom{n-2 \lambda}{\delta-\lambda}$. Hence with Theorem 3

$$
\begin{gathered}
\max \left\{2^{2 i}\binom{n-2 i}{\delta-i}(0 \leqq i \leqq \delta\}=M(n, \delta)=|A| \cdot|B|=2\binom{2 \lambda}{\lambda}\binom{n-2 \lambda}{\delta-\lambda}\right. \\
\leqq 2^{2 \lambda}\binom{n-2 \lambda}{\delta-\lambda} \leqq \max \left(\left.2^{2 i}\binom{n-2 i}{\delta-i} \right\rvert\, 0 \leqq i \leqq \delta\right]
\end{gathered}
$$

So equality must occur everywhere, which implies $\lambda=1$.
I

As a consequence of Lemma 5 we have:

COROLLARY 7. If $\delta=1$, then (A, B) is equivalent to either $\left(A_{n, 1}^{0}, B_{n, 1}^{0}\right)$ or $\left(A_{n, 1}^{1}, B_{n, 1}^{1}\right)$ defined in section 3.2 .

PROOF, If $\delta=1$, then one "easily" sees that $|A| \leqq 2$ or $|B| \leqq 2$.

The following Lema is very useful in proving Theorem 9.

LEMMA 8. Using the notation of Section 3.2 we have, for every $\in, H \in\{0,1\}$ and $x \in \mathbb{F}_{2}^{n-2}$:

$$
\text { if } A_{E \mu} U A_{E \mu}=x \cup V_{\delta-1}^{n-2}, \text { then }\left|B_{E \mu}\right|+\left|B_{E \mu}\right|=\left|B_{E \mu} \cup B_{E \mu}\right| \leqq 1
$$

provided $n(n-1) \geq 4 \delta(n-\delta)$ and $\delta \geq 2$. The same holds if we interchange the $A_{\varepsilon \mu} ' s$ and $B_{\varepsilon \mu}{ }^{\prime} \leq$.

PROOF: Without loss of generality we may take $\varepsilon=\mu=0$ and $x=0$. With Lemme 4 we have $B_{00} \cap B_{11}=\emptyset$. If $B_{00} \cup B_{11}=\emptyset$ there is nothing to be proved. so, let $b^{\prime} \in B_{00} \cup B_{11}$. Then, for any a $\in A_{00} \cup A_{11}=V_{d-1}^{n-2}$ we have $a\left(\underline{a}^{\prime} \cdot \underline{b}^{\prime}\right)=\delta-2$ or δ. Since, $n(n-1) \geq 4 \delta(n-6)$ implies $n-2 \geq 2(\delta-1)+2$ the above observation gives us wt $\left(b^{\prime}\right)=1$. So $V_{\delta-1}^{n-2}$ is partitioned into $A_{o o}$ and A_{11} (by Lemma $4, A_{00} \cap A_{11}=\emptyset$), whexe A_{00} and A_{11} are given by

$$
A_{00}=\left\{\underline{a}^{\prime} \in V_{\delta-1}^{n-2} \mid\left(\underline{a}^{\prime}, \underline{b}^{\prime}\right)=1\right\} \text { and } A_{11}=\left\{\underline{a}^{\prime} \in V_{\delta-1}^{n-2} \mid\left(\underline{a}^{\prime}, \underline{b}^{\prime}\right)=0\right\} \text { if } \underline{b}^{\prime} \in B_{11}
$$

or

$$
A_{00}=\left\{\underline{a}^{\prime} \in V_{\delta-1}^{n-2} \mid\left(\underline{a}^{\prime}, \underline{b}^{\prime}\right)=\underline{0}\right\} \text { and } A_{11}=\left\{\underline{a}^{\prime} \in V_{\delta-1}^{n-2} \mid\left(\underline{a}^{\prime}, \underline{b}^{\prime}\right)=1\right\} \text { if } \underline{b}^{\prime} \in B_{00}
$$

Since any other $\underline{b}^{\prime \prime} \in \mathbb{F}_{2}^{n-2}$ with $w t\left(\underline{b}^{\prime \prime}\right)=1$ involves a similar but different partition of $v_{\delta-1}^{n-2}$, we have $\left|B_{00} \cup B_{11}\right| \leqq 1$.

We are now ready to give the characterization of all optimal constant distance code pairs.

THEOREM 9. AnY optimal constant distance code pair of length n and constant distance $\delta, 2 \delta \leqq n$, is equivalent to one of the code pairs $\left(A_{n, \delta}^{i}, B_{n, \delta}^{i}\right), i=0,1, \ldots, \delta$, defined in Section 3.2.

PROOF. We use induction on δ. With Corollary 7 we have that the theorem holds for $\delta \leqq 1$. Suppose the theorem is true for $\delta-1 \geqq 1$ and let (A, B) be an optimal constant distance code pair of length n and constant distance δ. Without loss of generality we may assume that (see Section 3.2)

$$
\alpha_{12} \geq \frac{2 \delta(n-\delta) M(n, \delta)}{n(n-1)}
$$

As in the proof of Theorem 3 we consider three cases.

CASE I: $A_{\varepsilon \mu} \cap A_{\varepsilon \mu} \neq \emptyset$ and $B_{\varepsilon \mu} \cap B_{\varepsilon \bar{\mu}} \neq \emptyset$, for some $\varepsilon, \mu \in\{0,1\}$.
Then $M(n, \delta)=\alpha_{12}=\left(\left|A_{\varepsilon \mu}\right|+\left|A_{\bar{\varepsilon}-}\right|\right)\left(\left|B_{\varepsilon_{\mu}}\right|+\left|B_{\varepsilon \mu}^{-}\right|\right)=4\left|A_{\varepsilon \mu}\right| \cdot\left|B_{\bar{\varepsilon} \mu}\right|=4 M(n-2, \delta-1)$. And so with Lemma 4,5 and the induction hypothesis we have (A, B) is equivalent to $\left(A_{n, \delta}^{i}, B_{n, \delta}^{i}\right)$ for some $i \in\{1,2, \ldots, \delta\}$.

CASE II: $A_{\varepsilon \mu} \cap A_{\bar{\varepsilon} \mu} \neq \emptyset$ and $B_{\varepsilon \mu} \cap B_{\bar{\varepsilon} \mu}=\emptyset$, for some $\varepsilon, \mu \in\{0,1\}$.
From Section 3.2 we then have $n(n-1) \geqq 4 \delta(n-\delta), A_{\varepsilon \mu}=A_{\bar{\mu}}, B_{\varepsilon \mu}=B_{\bar{\mu}}=\emptyset$
and $\alpha_{12}=2\left|A_{\varepsilon \mu}\right| \cdot\left|B_{\varepsilon \mu} \cup B_{\varepsilon \mu}\right|=2 M(n-2, \delta-1)$. Since, $n(n-1) \geq 4 \delta(n-\delta)$ implies $(n-2)(n-3) \geqq 4(\delta-1)(n-\delta-1)$ Lemma 5 and the induction hypothesis give, either

$$
\begin{equation*}
A_{\varepsilon \mu}=A_{\bar{\varepsilon} \mu}=\{\underline{x}\}, \underline{x} \in \mathbb{F}_{2}^{n-2} \text { and } B_{\varepsilon \bar{\mu}} \cup B_{\varepsilon \mu}=\underline{x} \oplus V_{\delta-1}^{n-2} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathcal{B}_{\varepsilon \mu} \cup \mathcal{B}_{\varepsilon \mu}=\{\underline{x}\}, \underline{x} \in \mathbb{F}_{2}^{\mathrm{n}-2} \text { and } A_{\varepsilon \mu}=A_{\varepsilon \mu}=\underline{x} \oplus U_{\delta-1}^{n-2} . \tag{5}
\end{equation*}
$$

With Lemma 8, (4) gives $\binom{n}{\delta}=M(n, \delta)=|A| \cdot|B| \leqq 3\binom{n-2}{\delta-1}$, which contradicts $n(n-1) \geq 4 \delta(n-\delta)$. So (5) must hold. But then $|B|=1$ (Lemma 8) and so with Lemma $5,(A, B)$ equivalent to $\left(A_{n, \delta}^{0}, B_{n, \delta}^{0}\right)$.

CASE III: $A_{\varepsilon \mu} \cap A_{\bar{\varepsilon}}=\varnothing$ and $B_{\varepsilon \mu} \cap B_{-\mu}=\varnothing$, for all $\varepsilon, \mu \in\{0,1\}$.
From Section 3.2 we have $n(n-1) \geq 4 \delta(n-6)$ and
$\alpha_{12}=\left|A_{00} \cup A_{11}\right| \cdot\left|B_{01} \cup B_{10}\right|+\left|A_{01} \cup A_{10}\right| \cdot\left|B_{00} \cup B_{11}\right|=2 M(n-2, \delta-1)$. Lemma 5 and the induction hypothesis now give that $\left(A_{00} \cup A_{11}, B_{01} \cup B_{10}^{*}\right)$ and $\left(A_{01} \cup A_{10}, B_{00} \cup B_{11}\right)$ are equivalent to ($\left.A_{n-2, \delta-1}^{0}, B_{n-2, \delta-1}^{0}\right)$, $((n-2)(n-3)>4(\delta-1)(n-\delta-1))$. So without loss of generality we may assume that $A_{00} \cup A_{11}=\{\underline{0}\}$ and $B_{01} \cup B_{10}=V_{\delta-1}^{\mathrm{n}-2}$. But then with Lemna B, $\left|A_{01} \cup A_{10}\right|=1$, so that $|A|=2$. Hence, with Lemma $6,(A, B)$ is equivalent $\left(A_{n, \delta}^{1}, B_{n, \delta}^{1}\right)$.

REFERENCES

$[1]$ AHLSWEDE, R., EL GAMAL, A. and PANG, K.F.: A Two-family Extremal problem in Hamming-space.Discrete Math, vol. 49, 1984, 1-5.
$[2]$ HALL, J.I. and van LINP, J.H.: Constant Distance Code pairs. proc. Kon. Ned. Akad. V. Wetenschappen vel. A 88, 1985, 41-45.

CHAPTER 4

TOURNAMENT CODES

4.1 Introdection

In this chapter we discuss a problem which arose in connection with comma-free codes. A q-axy code D of length n is said to be comma-free if, for every pair of words ($a_{1}, a_{2}, \ldots, a_{n}$) and ($b_{1}, b_{2}, \ldots, b_{n}$) of D the words $\left(a_{k}, a_{k+1}, \ldots, a_{n}, b_{1}, \ldots, b_{k-1}\right),(k=2,3, \ldots, n)$, are not in 0 . Comma-free codes were first introduced by Grick, Griffith and orgel [5] as a possible genetic coding scheme for protein synthesis. The general mathematical setting of such codes was presented by Golomb, Gordon and Welch in [3]. They considered the problem of finding the maximal cardinality of such a code.

Let $W_{n}(q)$ denote the maximal number of codewords in any q-ary comm-free code of length n. From the definition of a coma-free code \mathcal{D} we have that no two codewords of D are a cyclic pexmutation of each other and every codeword $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of 0 is non-periodic, i.e., there is no i, $0<i<n$, such that

$$
\left(a_{i+1}, a_{i+2}, \ldots, a_{n}, a_{1}, \ldots, a_{i}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

Hence

$$
W_{n}(q) \leqq B_{n}(q),
$$

where

$$
\begin{equation*}
B_{n}(q)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d} \tag{1}
\end{equation*}
$$

is the number of non-periodic cyclic equivalence classes of sequences of length n formed from an alphabet of q letters. The summation in (1) is taken over all divisors d of n and $p(d)$ is the Moblus function. In [3] Golomb, Gordon and Welch proved that $W_{n}(q)$ attains the upper bound $B_{n}(q)$
for arbitrary q if $n=1,3,5,7,9,11,13,15$ and conjectured that this is indeed the case for all odd n. This conjecture was first proved by Eastman [2], who gave a construction for maximal comm-free codes of odd wordlength. A simpler construction for these codes was found by Schcltz [9].

For coma-free codes of even length, the situation becomes surprisingly complicated. It was proved by Golomb, Gordon and Welch [3] that $W_{n}(q)<B_{n}(q)$ if $q>3^{n / 3}$. In particular $W_{2}(q)=\left\lfloor\frac{q^{2}}{3}\right\rfloor<B_{2}(q)=\left(\frac{q^{2}}{2}\right)$, $W_{4}(q)=B_{4}(q)$ if $q=1,2,3$ and $W_{4}(q)<B_{4}(q)$ if $q \geqslant 5$. The case $n=4$ and $q=4$ was later solved in [6] by exhaustive computer search, which found $W_{4}(4)=57<B_{4}(4)$.

An improvement on the relation between k and n such that $W_{n}(q)<B_{n}(q)$ for even n was given by Jiggs [6]:

$$
W_{n}(q)<B_{n}(q) \text { if } q>2^{n / 2}+n / 2
$$

A further improvement based on Jiggs' proof was given by Golomb and Tang [4]:

$$
W_{n}(q)\left\langle B_{n}(q) \text { if } q>(n / 2)^{c} \log n / 2+n / 2, n \geqslant B\right. \text {. }
$$

where $c=(\ln 2) / 0.71$. In Section 4.3 we give a proof of this result for $c=0.5$. Moreover the procf is much simpler than that of Golomb and Tang [4]. We first present Jiggs' result. The modifications are due to Golomb and Tang.

We consider the simpler problem of finding the maximal cardinality of a q-ary coma-free code D^{\prime} of length $n=2 k(k \in W)$ in which every word is a cyclic shift of a word of the form ($a, 0,0, \ldots, 0, b, 0, \ldots, 0)$, where a and b are two different symbols of the alphabet separated by $n / 2-1$ zeros. So $|D \cdot| \leqq\binom{ q}{2}$. clearly, if $\left|D^{\prime}\right|<\binom{q}{2}$, then $W_{n}(q)<B_{n}(q)$.

A half-word in D ' is a k-tuple wich is either the initial or final half of some word in D^{\prime}. For each symbol d of the alphabet and $r \in \mathbb{N}$, $1 \leq x \leq k$, let $u(d, r)$ denote the half-word with a at the r-th position
and 0 everywhere else. The half-word $\underline{u}(d, r)$ is called initial resp. final if it equals the initial half resp. final half of some word in D^{\prime}. To each symbol a we assign a word $\underline{x}^{d}=\left(x_{1}^{d}, x_{2}^{d} \ldots, x_{k}^{d}\right) \in\{0,1,2, *\}^{k}$, where x_{r} is defined in the following way

$$
x_{r}^{d}:=\left\{\begin{array}{l}
2 \text { if } \underline{u}(d, r) \text { is both initial and final, } \\
1 \text { if } \underline{u}(d, r) \text { is final only, } \\
0 \text { if } \underline{u}(d, r) \text { is initial only, } \\
* \text { if } \underline{u}(d, r) \text { is neither initial nor final. }
\end{array}\right.
$$

EXAMPLE: Let $q=5, n=2 k=4$ and let D, be given by

$$
D^{\prime}=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
1 & 0 & 3 & 0 \\
1 & 0 & 4 & 0 \\
1 & 0 & 5 & 0 \\
2 & 0 & 3 & 0 \\
2 & 0 & 4 & 0 \\
2 & 0 & 5 & 0 \\
0 & 3 & 0 & 4 \\
0 & 3 & 0 & 5 \\
0 & 4 & 0 & 5
\end{array}\right]
$$

Then

$$
\begin{aligned}
& x^{1}=(0, *), \underline{x}^{2}=(2, *), \underline{x}^{3}=(1,0) \\
& \underline{x}^{4}=(1,2), \underline{x}^{5}=(1,1) .
\end{aligned}
$$

Jiggs showed that the words x have the following two properties if $|D:|=\binom{q}{2}:$
(i) If $d \neq b$, then x_{r}^{d} and x_{x}^{b} cannot both be 2 , for any $i \leqq r \leqq k$.
(ii) If $d \neq b$, there exists an $x, 1 \leq x \leq k$, such that $\left(x_{x}^{d}, x_{x}\right)=(0,1)$ or $\left(x_{r}^{d}, x_{r}^{b}\right)=(0,1)$.
(In particular distinct letters of the alphabet must have distinct words).

The first property implies that the number of distinct words x^{d} containing a 2 is smaller than or equal to k while the second one implies that the number of words x^{d} containing no 2 is smaller than or equal to 2^{k}. So, if $|D|=\binom{q}{2}$, then $q \leq 2^{n / 2}+n / 2$. Hence $W_{n}(q)<B_{n}(q)$ if $q>2^{n / 2}+n / 2$.

The inprovement of Jiggs' results by colomb and Tang is a consequence of the following observation.

THEOREM 1. If $\left|D^{\prime}\right|=\binom{q}{2}$, then for every two different symbols b, d of the alphabet and every two different coorainates x and s we do not have

$$
x_{r}^{a}=x_{s}^{b}=0 \text { and } x_{r}^{b}=x_{s}^{d}=1
$$

This observation led to the definition of a $\{0,1, *\}$ tournament code. A $\{0,1, *\}$ tournament code C of length k is a subset of $\{0,1, *\}^{k}$ such that for any two distinct cocewords $\underline{a}, \underline{b} \in C$:
(i) $\delta(\underline{a}, \underline{b}) \geq 1$,
(ii) $\forall_{1 \leq i<j \leq k}\left[\left(\begin{array}{ll}a_{i}^{i} & a_{j} \\ b_{i} & b_{j}\end{array}\right) \notin\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}\right]$,
where $\delta(\underline{a}, \underline{b}):=\left|\left(i \mid\left(a_{i}, b_{i}\right) \in\{(0,1),(1,0)\}\right\}\right|$ is the distance between a and b. Let $t(k)$ denote the maximun number of codewords in any $\{0,1, *\}$ toumament code of length k. Then we have $w_{n}(q)<B_{n}(q)$ if $q>+\left(\frac{n}{2}\right)+\frac{n}{2}$. In [4] Golomb and Tang prove $t(k) \leqq k^{c} \log k^{n}$, (logarithm to base 2), $k \geqq 4$, with $c=(\ln 2) / 0.71$; (This upper bound and method for establishing it were suggested by RH, Graham.). In Section 4.3 we give a simple proof of this upper bound for $c=0.5$. To be complete we first give some constructions for $\{0,1, *\}$ tournament codes in Section 4.2. We conclude this chapter with the determination of the exact value of $t(k)$ for $k=1,2,3, \ldots, 9$ in section 4.4.

4.2 A LONER BOUMD

We repeat the definition of a $\{0,1, *\}$ tournament code C of length k.

DEEINITION 1. A code C of length k over the alphabet $\{0,1, *$ is called a tournament code if, for any two distinct codewords a, b the following two conditions hold:
(i) $\delta(\underline{a}, \underline{b})>1$,
(ii) $\forall_{1 \leq i<j \leq k}\left[\left(\begin{array}{ll}a_{i} & a^{j} \\ b_{i} & b_{j}\end{array}\right) \&\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}\right]$.

Since $\delta(\underline{a}, \underline{b})>1$, there $i s$ at least one coorainate $i, 1 \leq i \leq k$, such that $\left(a_{i}, b_{j}\right)=(0,1)$ or $(1,0)$. If $\left(a_{i}, b_{i}\right)=(0,1)$, it follows from condition (ii) that $\left(a_{j}, b_{j}\right) \neq(1,0)$ for $a l l j, 1 \leq j \leqq k$, and we shall say $a \rightarrow b$; this defines the tournament.

DEFINITION 2. The maximal value of $|C|$ over all toumament codes of length k is called $t(k)$.

From now on C will always denote a $\{0,1, *\}$ tournament code. The matrix with as rows the codewords of C will be denoted by c. If $|\hat{C}|=t(k)$, we call the code optimal.

LEMMA 3. For every $k \in \mathbb{N}$ there is an optimal code \mathcal{C} of length k with $\underline{O} \in C, 1 \in C$.
pROOE, If C is optimal and $0 \& C$, then clearly C must contain a word with aistance 0 to 0 . Replace this wora by \underline{O} to obtain a new optimal code. similarly for 1 .

The following lemma is trivial.

LEMMA 4. If \mathcal{C} is optimal then \vec{C} is optimal.

Until recently Theorem 5 gave the best lower bound on $t(k)$. The proof consists of a construction that produces a long tournament code from two shorter ones.

THEOREM 5. $t(k+l) \geqq t(k)+t(\ell)-1$.
proof. Let C be optimal of length k and let $\underline{0}$ be the top row of C and 1 the bottom row. Similarly with D for length ℓ. Consider the code with corresponding matrix,

Clearly, this is a tournament code of length $k+\ell$ and cardinality $t(k)+t(l)-1$.

COROLARY 6. $t(n k) \geqslant 1+n(t(k)-1)$.

This shows that $\lim _{k \rightarrow \infty} k^{-1}+(k)$ exists (possibly ∞). For a while it was believed that this limit was 2 until Golomb and Tang (1982) found that $t(7)=16$. The following theorem found by collins et al. (1984) shows that in fact the limit is ∞.

THEOREM 7. For $n \in N$ we have $t\left(n^{2}+n+1\right) \geq n\left(n^{2}+n+1\right)+2$.

PROOF. The following construction for a tournament code C of length $n^{2}+n+1$ is due to collins et al. (1984). The adjustments: are from van Lint [7]. We will not prove that the construction indeed gives a tournament code of size $n\left(n^{2}+n+1\right)$; we refer to [7].

The code C, we shall construct consists of $\underline{O}, 1$ and all the cyclic shifts of the words of $\operatorname{set}\left\{c^{0}, c^{1}, c^{2}, \ldots, c^{n-1}\right\}$. To define these words we number the coordinates with the integers mod $n^{2}+n+1$, starting with -1 (i.e., for the first coordinate) . The coordinates $\neq-1$ will have their index wititen in the $(n+1)$-ary system. So (x, y) denotes the coordinate with index $(n+1) x+y$. Therefore $0 \leqq x \leqq n-1,0 \leq y \leq n$. The definition of the words e^{i} is as follows
i.) For each i take $c_{-1}^{i}=1$,
ii) ${\underset{c}{i}}^{i}$ has $\left\{\begin{array}{l}0 \text { in coordinate place }(x, y) \text { if } x \geq i \text { and } x+y \leqq n-1, \\ 1 \text { in coordinate place }(x, y) \text { if } x \leq i-1 \text { and } x+y \geq n-1, \\ * \text { otherwise. }\end{array}\right.$

To be complete we mention that the first code in this class is the code of length 7 found by Golomb and Tang (1982). The second one of length 13 was, independently of collins et al., found by Abels, Janse and Verbakel (1984). From their work we copied the following list of tournament codes of length $k=2,3, \ldots, 13$, the first eight of which are optimal (see section 4.4). Obviously $t(1)=2$. The optimal $\{0,1, *\}$ tournament code C_{1} of length 1 is equal to $C_{1}=\{(0),(1)\}$.

c_{2}	C_{3}	C_{4}	C_{5}	C_{6}	c_{7}	C_{8}
(00)	(000)	(0000)	(00000)	(000000)	(0000000)	(00000000
01	1*0	$0 * 01$	1*1*0	1**1*0	**1*110	*11*1**0
(11)	*01	001*	*0*01	*1**01	* 1 * 110 *	*1*1**01
	01*	01*0	*101*	**101*	1*110**	1*1**011
	(111)	0111	10*11	1*0*11	*110**1	*1**011*
		(1111)	0*11*	*011*1	110**1*	1**011*1
			0001*	01*11*	10**1*1	1*011*1*
			(11111)	0*001*	$0 * * 1 * 11$	1011*1**
				00*1*0	00*0**1	0***1*11
				*00*01	$0 * 0 * * 10$	$0 * * 0 * 001$
				(111111)	*0**100	$0 * 0 * 001 *$
					0**100*	*0*001**
					100*0	0*0010
					* $100 * 0 *$	*001**0*
					100*0**	$* 01 * * 0 * 0$
					1111111	$* 1 * * 0 * 00$
						1000*0**
						(11111111)

C_{9}	C_{10}
(000000000)	0000000000)
$000111 * * *$	$0 * * 00 * 0001$
*111**1*0	**00*0001*
1*1*1**01	*00*0001**
11***101*	00*0001***
***1*0*11	$0 * 0001 * * * 0$
****011*1	*0001***0*
01*11*	00010**
1*01111**	001***0**0
*01111*1*	01***0**00
01*111**1	1***0**001
0***00*01	0**0011**1
*0*0*001*	011**1***0
**000*1*0	$11 * * 1 * * * 01$
000*010**	$1 * * 1 * * * 011$
00001**0*	**1***0111
$0001 * 0 * * 0$	*1***0111*
*01****00	1***0111*1
01****0*0	***0111*11
1*0***00*	**0111*11*
(11111111)	*0111*11**
	0111*11**1
	. 1111111111

Fig. 1. List of $\{0,1, *\}$ tournament codes C_{k} of length $k, k=2,3, \ldots, 10$.

\mathcal{C}_{11}	c_{12}	C_{13}
(00000000000)	(000000000000 $\}$	(0000000000000
*0**00*0001	**0**00*0001	$* * * 0 * * 00 * 0001$
0**00*0001*	*0**00*0001*	**0**00*0001*
00*0001	0**00*0001**	*0**00*0001**
*00*0001***	**00*0001***	0**00*0001***
00*0001***0	*00*0001***0	**00*0001***0
0*0001***0*	00*0001***0*	*00*0001***0*
*0001***0**	0*0001***0**	00*0001***0**
0001***0**0	*0001***0**0	0*0001***0**0
001***0**00	0001***0**00	*0001***0**00
*1***0**001	001***0**00*	$0001 * * * 0 * * 00 *$
1**1***0**0	01***0**00*0	001***0**00*0
$1 * * * 0 * * 0011$	$1 * * * 0 * * 00 * 00$	01***0**00*00
*0**0011**1	*1***0**0011	1***0**00*000
$0 * * 0011 * * 1 *$	1***0**0011*	$11 * * 1 * * * 0 * * 00$
$0011 * * 1 * * * 0$	**0**0011**1	1**1***0**001
*11**1***01	*0**0011**1*	**1***0**0011
11**1***011	0**0011**1**	*1***0**0011*
1**1***0111	*0011**1***0	1***0**0011**
1*0111*	0011**1***0*	***0**0011**1
*1***0111*1	$11 * 11 * * 1 * * * 0$	**0**0011**1*
1***0111*11	1*11**1***01	*0**0011**1**
0111*11*	*11**1011	0**0011**1***
0111*11	11**1***0111	**0011**1***0
*0111*11**1	1**1***0111*	*0011**1***0*
0111*11**1*	**1***0111*1	$0011 * * 1 * * * 0 * *$
11111111111	*1***0111*11	011**1***0**0
	1***0111*11*	$111 * 11 * * 1 * * * 0$
	0111*11**	11*11**101
	0111*111	$1 * 11 * * 1 * * * 011$
	*0111*11** ${ }^{*}$	*11**1***0111
	0111*11**1**	11**1***0111*
	11111111111)	1**1***0111*1
		1*0111*11
		*1***0111*11*
		1***0111*11**
		***0111*11**1
		0111*111*
		*0111*11**1**
		0111*11**1***
		1111111111111)

Fig. 2. List of $\{0,1, *\}$ toumament code C_{k} of Iength $k, k=11,12,13$.

4.3 AN UPPER BOUND

In this section we give a simple proof of Gxahams upper bound on $t(k)$ mentioned in Section 4.1. We first note that clearly $t(k)$ is stricktly increasing. The following observation essentially proves Grahams result.

Let C be a tournament code of length k with $0,1 \in C$ (Lemma 3). By permuting rows and columns, the corresponding matrix c can be put in the following "standard form".

Fig. 1.

Here, every column of A contains a 1 but no column of B contains a 1 .

From definition 1, in particular condition (ii), it follows that no column of D has a 0 , while every colum of E may have a. This shows that C or \bar{C} has a standard form with $\ell \leq\left\lfloor\frac{k-1}{2}\right\rfloor$.

THEOREM $8, t(k) \leqq t(k-1) \div t(\ell)$, For some $\ell, 0 \leqq \ell \leqq\left\lfloor\frac{k-1}{2}\right\rfloor$.

PROOF. Let C be an optimal code with C in "standard form" with $\ell \leqq\left\lfloor\frac{k-1}{2}\right\rfloor$ (see fig. 1). By the definition of B the rows of the matrix A form a tournament code of length 2 . So A has at most $t(\ell)$ rows. Clearly the rows of $\left(\begin{array}{ll}D & E \\ F & G\end{array}\right)$ form a toumament code of length $k-1$. The result follows.

COROLLARY 9. $\quad t(k) \leqq\left\lceil\frac{k+3}{2}\right\rceil t\left(\left\lfloor\frac{k-1}{2}\right\rfloor\right)$.

PROOF. Applying Theoxem $8\left\lceil\frac{k+1}{2}\right\rceil$ times and using the fact that is a strictly increasing function, we have

$$
\begin{align*}
& t(k) \leq t\left(k-\left\lceil\frac{k+1}{2}\right\rceil\right)+\left[\frac{k+1}{\frac{k}{2}}\right\rceil \quad t\left(\left\lfloor\frac{k-i}{2}\right\rfloor\right)= \\
& =t\left(\left[\frac{k-1}{2}\right]\right)+\left[\frac{k+1}{\frac{2}{=}}\right\rceil\left(\left[\frac{k-i}{2}\right\rfloor\right) \leq \\
& \leq \quad\left\lceil\frac{k+3}{2}\right\rceil t\left(\left\lfloor\frac{k-1}{2}\right\rfloor\right) \text {. }
\end{align*}
$$

THEOREM 10. $t(k)<k .0 .5 \log k$ for $k>7$ (logarithm to base 2).
proof. We use induction on k. In Section 4.4 we will show that $t(4)=6$, $t(5)=0, t(6)=11, t(7)=16, t(8)=18$ and $t(9)=21$. With Theorem 8 and the above values of $k(k), k=4,5, \ldots, 9$, one easily checks that the assertion
is true for $8 \leq k \leq 16$ (see also Table 1 of Section 4.4). Let $k \geqq 17$, then from corollary 9 and the induction hypothesis we have

$$
\begin{aligned}
t(k) & \leqq\left[\frac{k+3}{2}\right\rceil t\left(\left[\frac{k-1}{2}\right]\right) \leqq \\
& \leqq\left[\frac{k+3}{2}\right\rceil\left(\left\lfloor\frac{k-1}{2}\right]^{0.5 \log \left\lfloor\frac{k-1}{2}\right\rfloor}\right) \leq \\
\leqq & \left(\frac{k+4}{2}\right)\left(\frac{k}{2}\right) \\
& \left.\left(\frac{k+4}{2}\right) \frac{\sqrt{2}}{k} k^{0.5 \log k\left(\frac{k}{2}\right)}\right) \leqq
\end{aligned}
$$

There is a tremendous gap between the upper bound of this section and the lower bound of Section 4.2. The upper bound is probably not too good but improving it does not look easy. The following section gives an indication.

4.4 THE EXACT VALUE OF $t(k)$ FOR $k=2,3, \ldots, 9$.

In this section we will prove that the codes of length k, $2 \leq k \leqq 9$, of Section 4.2 are optimal. It is clear that this is indeed the case for $k=2$, while the case $k=3$ follows directly from Theorem 8 and $t(1)=2$. To prove $t(4)=6$ and $t(5)=8$, we use the following obvious lemma.

LEMMA 11. For any tournament code C of length k we have,

$$
\sum_{\underline{c} \in C} 2^{n *(c)} \leq 2^{k}
$$

where $n_{*}\left(\underline{c}=\left|\left\{i \mid c_{i}=*\right\}\right|\right.$.

PROOF. Since any two codewords from C have distance greater than or equal to 1 , any binary word of length k can have distance 0 to at most one codeword of C. For each codeword $q \in C$ there are clearly 2^{n} (c) different binary words of length k having distance 0 to c. The result follows.

1]

We will use this lema to show that $t(4) \leq 6$. From Theorem 6 we have $t(4) \leq t(3)+t(1)=7$. Assume $t(4)=7$ and let C be an optimal code of length 4 with $\underline{0}, 1 \in C$, Since equality holds in Theorem 8 every colum of C can contain at most $t(1)+t(2)=2+3=5$ non $*$ elements. Hence C contains at least $4 \times(7-5)=8 * * \mathrm{~s}$. From Lemma 11 and $\underline{0}, \underline{1} \in$ we then have

$$
\begin{aligned}
& 2+\sum_{\subseteq \in C,} 2^{n_{*}(c)} \leqq 2^{4} \text { and } \sum_{C} n_{*}(c) \geq 8 . \\
& \underline{c} \neq \underline{0}, \underline{1} \neq \underline{0}, 1
\end{aligned}
$$

This is impossible. Hence t(4) $=6$. The case $k=5$ is similar.
The case $k=6$ and $k=7$ are again a direct consequence of Theorem 8 and section 4.2. So we are left with $k=8$ and $k=9$. For these cases we need some more machinery.

Let C be a toumament code of length k and let the coordinates be numbered from 1 up to k. Then we define

$$
i<j: \Leftrightarrow \exists_{\underline{c}} \in C^{\left[c_{i}=0 \text { and } c_{j}=1\right]}
$$

Furthermore we define the vectors $\underline{a}^{r}, \underline{b}^{r}, \in\{0,1, *\}^{k}, r=1,2, \ldots, k$, by:

$$
\underline{a}^{x} \text { has }\left\{\begin{array}{l}
0 \text { in coordinate place } r \\
1 \text { in coordinate place } i \text { if } r<i \\
* \text { otherwise }
\end{array}\right.
$$

and.

$$
\underline{b}^{r} \text { has }\left\{\begin{array}{l}
1 \text { in coordinate place } r, \\
0 \text { in coordinate place } i \text { if } i<r, \\
* \text { otherwise } .
\end{array}\right.
$$

REMARK. The woras $\underline{a}^{r}, \underline{b}^{r}, r=1,2, \ldots, k$ satisfy condition (ii) of (2).

LEMMA 12. Let C be an optimal tournament code of length k, for which
 and $\underline{b}^{\mathbf{r}}, x=1,2, \ldots k$, be defined as above. Then the set of words $\left\{\underline{a}^{r} \mid r=1,2, \ldots, k\right\} \cup\left\{\underline{\underline{b}}^{\mathbf{r}} \mid \mathbf{r}=1,2, \ldots, k\right\} \cup \mathcal{C}$ satisfies condition (ii) of (2). Furthermore, for every $x=1,2, \ldots, k$ there is a unique word $c \in C$ with aistance 0 to a^{x}. Similarly for \underline{b}^{x}.

PROOF. The first assertion of Lemma 12 is a direct consequence of the definitions of \underline{a}^{r} respectively $\underline{b}^{r}, r=1,2, \ldots, k$. So we only have to prove the second one.

Since C is optimal, there is at least one word of C that has distance 0 to a^{r}. Assume there are two different codewords \subseteq and d in C that have distance 0 to \underline{a}^{r}. Since \subseteq and d have distance greater than or equal to 1 , there is an $s, 1 \leqq s \leq k$, where $c_{s}=0$ and $d_{s}=1$ say. Since \underline{c} and \underline{a} both have distance 0 to $\underline{a}^{r}, a_{s}^{r}=*$. From the definition of \underline{a}^{r} we then have $r \neq s$ and $r k s$. So $d_{r}=*$. Now define $\underline{d} \in\{0,1, *\}^{k}$ by

$$
d_{i}:= \begin{cases}1 & \text { if i } i=r \\ d_{i} & \text { if } i \neq r\end{cases}
$$

Since, for all i with $d_{i}^{\prime}=0$, also $d_{i}=0$ and so $a_{i}^{r}=*$, it follows $x \nless i$. So the words of $\left\{d^{\prime}\right\} \cup C$ satisfy condition (ii) of (2).

But then $C^{\prime}:=\left\{d^{\prime}\right\} \cup C \backslash\{d\}$ is an optimal tournament of length k with $\left.\underline{\underline{c}}^{\prime} \in \mathcal{C}^{n_{*}} \underline{c}^{\prime}\right)=\sum_{\underline{c} \in C^{n}{ }^{n}(\underline{c})-1 \text {. A contradiction. }}$

The following lemma is "trivial". The words $\underline{a}^{r} \underline{b}^{5}, r=1,2, \ldots, k$, are as defined above.

LEMMA 13. A codeword $c \in \mathcal{C}, \subseteq \neq 0, \frac{1}{r}$ that has distance greater than or equal to 1 to all the words of $\left\{\underline{a}^{r} \mid x=1,2, \ldots, k\right\} \cup\left\{\underline{b}^{r} \mid r=1,2, \ldots, k\right\}$ has at least three coordinates equal to 0 and at least three coordinates equal to 1 .

For any $\lambda \in\{0,1, *\}$ and $\underline{E} \in\{0,1, *\}^{k}$, let $r_{\lambda}(\underline{c})$ denote the number of coordinate places i with $c_{i}=\lambda$. The following lenma is obvious.

LEMMA 14. Let C be an optimal code of length k. Then for all $\mathrm{c} \in \mathrm{C}$

$$
t(k) \leq t\left(k-n_{0}(\underline{c})\right)+t\left(k-n_{1}(c)\right)-1
$$

Proof. By permuting rows and columns one can achieve that C looks like

where each row of A contains at least one 1 . It follows that B is a matrix with all entries equal to 1 or $*$ and E is a matrix with all entries equal to 0 or *. Hence the rows of $\left(\frac{0.0}{A} \left\lvert\, \frac{* . .^{*}}{D}\right.\right)$ respectively $\left(\frac{1 \ldots 1}{F} \left\lvert\, \frac{*_{n}^{*}}{G}\right.\right)$ form a tournament code of length $n-n_{1}$ (\subseteq) respectively $n-n_{0}(c)$. The result follows.

COROIEARLY 15. $t(8)=18$ and $t(9)=21$.

PROOF . From Section 4.2 we already have $t(8) \geq 18$.
Let C be an optimal code of length g for which the sum $\Sigma n_{*}(c)$ $\subset \in C$ is minimal among all optimal codes of length 8 . Let the words a^{c} and $\underline{b}^{r}, r=1,2, \ldots 8$, be defined as above. From Lemma 14 and $t(8) \geq 18$ it follows that there is no codeword $\mathrm{c} \in \mathrm{C}$ with both $\mathrm{n}_{0}(\mathrm{c}) \geqslant 3$ and $n_{1}(c) \geqq 3$. Hence with Lemma 12 and $13, t(8) \leqq\left|\left(\underline{a}^{r} \mid x=1,2, \ldots, 8\right)\right|+$ $\left|\left[\underline{b}^{r} \mid x=1,2, \ldots, 8\right]\right|+258+8+2=18$.

The proof of $t(9)=21$ is similar to chat of $t(8)=18$.

We conclude this section with a small table of lower and upper bounds on $t(k)$ for $k=10,11, \ldots, 21$. In the last column of Table 1 we indicate the theorems and lemmas we used to derive the upper bound. The lower bounds are from Abel, Janse and verbakel [1].

Table. 1.

REFERENCES

[1] ABELS, F:, JANSE, W. and VERBAKEL, J.: Opdracht Discrete Wiskunde IT. Internal Report Technological University Eindhoven, 1984.
[2] EASTMAN, W.L. : On the construction of commatree codes. IEEE Trans. Info. Theory, vol. TT-11. Apr. 1965, 263-266.
[3] GOLOMB, S.W., GORDON, B., WELCH, L.R.: Comma-Free Codes. Can. J. Math., vol. 10, 1958, 202-209.
[4] GOLOMB, S.W, and TANG, B.: A New Result on Conma-Free Codes of Even Word-length. To appear.
[5] GRTCK, F.H.C., GRIERITH, J.S. and ORGES, L.E.: Codes without Commas. Proc. Nat. Acad. Sci., vol. 43, 1957, 416-421.
[6] JIGGS, B.H.: Recent Results in Coma-Free Codes. Can. J. Math., vol. 15. 1963, 178-187.
[7] Van LINY, J.E.:"\{0,1,*\} Distance Problems in Combinatorics". Internal Report Technological University Eindhoven.
[8] SCHOLTZ. R.A.: Maximal and Vaxiable Word-length Comma-Free Codes. IEEE Trans. Info. Theory, vol. TT-15, Mar. 1969, 300-306.

SAMENVATEING

In dit proefschrift worden vier problemen uit de coderingstheorie behandeld, met als voornaamste doel het bepalen van bovengrenzen voor de maximale cardinaliteit van en het vinden van goede constructie methoden voor de betreffende codes. Het begrip afstand speelt hierbij een belangrijke rol. Om de lezer enigszins vertrouw te maken met de in dit proefschrift gebruikte terminologie, geven we in hoofastuk 0 een koxte inleiding in de coderingstheorie.

In hoofdstuk 1 houden wif ons voornamelijk bezig met het bepalen van blok codes voor de betrouwbare opslag van informatie in computer geheugens met defecten en random errors. De hier behandelde constructie methoden doen een stevig beroep op reeds bestaande constructies voor Lineaire en niet-lineaire codes voor het binair symmetrisch kanaal.

In hoofdstuk 2 behandelen we twee constructie methoden voor constante gewichts codes. Vooral de tweede constructie geeft scherpe verbeteringen op reeds bestaande ondergrenzen voor $A(n, 4, w)$. Het bepalen van partities van $V_{w}^{n}=\left\{c \in \mathbb{F}_{2}^{n} \mid w t(c)=w\right\}$ in zo weinig mogelijk constant gewicht codes met minimum afstand 4 is in deze constructie van cructaal belang.

In hoofdstuk 3 geven we de volledige classificatie van alle optimale code paren ván lengte n en constante afstand $\delta, n, \delta \in \mathbb{N}, 0 \leq \delta \leqq n$. Daartoe bepalen we eerst de warde van $M(n, \delta)$,

$$
M(n, B)=\left\{|A| \cdot|B| \mid A, B \subset \mathbb{F}_{2}^{n}, \Delta(A, B)=\delta\right\}
$$

In het laatste hoofdstuk houden we ons bezig met het bepalen van bovengrenzen voor de maximale cardinaliteit $t(k)$ van $\{0,1, *\}$ toumament codes van lengte k, $k \in N$. We geven een verscherping van Graham's bovengrens voor $t(k), k>7$, en bepalen vervolgens de exacte warden van $t(k)$ voor $k=1,2, \ldots, 9$.

CURRICULUM VITEA

De schrijver van dit proefschrift werd geboren op 29 april 1953 te Rotterdam. Na in 1969 het Mulo-A diploma behaald te hebben, volgde hijde HBS-B opleiding aan het Moller-lyceum in Bergen op Zoom, die hij in 1972 beeindigde. Hierna leverde hij een verplichte bijdrage van $1 \frac{1}{2}$ jaar aan 's lands verdediging. . Vanaf 1974 studeerde hij wiskunde aan de Tachnische Hogeschool in Eindhoven, war hif in 1982 zijn doctoraal examen aflegde. Tijdens zijn studie was hij gedurende 2 jaar studentassistent.

Van september 1982 tot september 1986 was hij wetenschappelijk assistent bij de onderafdeling der wiskunde en informatica van de bovengenoemde hogeschool. Thans is hij werkzaam bij Philips-Usfa, Eindhoven.

1
Zij C een binaire lineaire code met woord lengte 26 , aimensie k en minimum afstand 8. Dan geldt: $k<13$, en dus

$$
\mathrm{B}(26,8)=2^{12}
$$

HELGERT, H.J. and SmMNFF, R.D.: Minimum Distance Bounds for bipary Linear Codes. IEEE, Trans. on Info. Theory, vol. IT-19. May 1973, 344-356.

2 Er bestaat een uniek decodeerbaar code paax (C, D) voor het two-acces binary adder channel met woord lengte 6 waarvan de som rate $R_{1}+R_{2}$ gelijk is aan

$$
\mathrm{R}_{1}+\mathrm{R}_{2}=0.59749+0.72032=1.31781
$$

$(|C|=12$ en $|0|=20)$. Dit is een nieuw record.
COEBERGE van den BRAAK, P.A.B.M. and van TIIBORG, H.C.A.: A Family of Good Uniquely Decodable Code Pairs for the tho-Acces Binary Adder Channel. IEEE Trans, on Info. Theory, vol. IT-31, Jan. 1985, 3-9.

3 Zij C een $\{0,1, *\}$ tournament code van lengte 10 . Dan geldt $|\mathbb{C}| \leqslant 23$. Dus volgt uit tabel 1 van hoofdstuk 4 dat

$$
t(10)=23
$$

Zij C een constant gewicht code van lengte 17 . minimum afstand 8 en constant gewicht 8 . Dan geldt: $|C| \leqq 34$, en dus

$$
A(17,8,8)=34
$$

MacWLLLIAMS, F.J. and SLoANE, N.J.A.: The Theory of Error-correcting Codes. Amsterdam-New York-Oxford: North Holland, 1977.
$\operatorname{Zij} M_{k}(n, \delta):=\max \left\{|A| \cdot|B| \mid A, B \in(0,1, \ldots, k-1\}^{n}, \Delta(A, B)=\delta\right\}$. Vermoedelijk is de waarde van $M_{k}(n, \delta)$ gelijk aan

$$
M_{k}(n, \delta)=\left\{\begin{array}{l}
\max \left\{\left.18^{i}\binom{n-3 i}{\delta-2 i} 2^{\delta-2 i} \right\rvert\, 0 \leqq i \leqq \min \left\{\frac{\delta}{2}, \frac{n}{3}\right\}\right\} \text { als } k=3, \\
\left.\left.\max \left\{\left(\left[\frac{k}{2}\right\rceil \frac{k}{2}\right\}\right)^{i}\binom{n-i}{\delta-i}(k-1)^{\delta-i} \right\rvert\, 0 \leqq i \leqq \delta\right\} \text { als } k \geq 4 .
\end{array}\right.
$$

Voor $k=4,5$ is dit bewezen door Ahlswede (to appear) en voor $k \geq 10$ door van Pul (unpublished).

6 De lineaire programmeringsgrens voor binaire codes is een generalisatie van de plotkin grens.

7 zij C een binaire $[n, k, d]$-code met overdekiningsstraal p. zij $C_{\varepsilon}^{i}:=\left\{\underline{c} \in C \mid c_{1}=\varepsilon\right\}, i=1,2, \ldots, n$ en $\varepsilon=0,1$. De norm N van de code C wordt gedefinieerd door

$$
N:=\min _{1 \leq i \leq n} \max _{x \in \mathbb{F}_{2}^{n}}\left\{d\left(\underline{x}, c_{0}^{i}\right)+d\left(\underline{x}, C_{1}^{i}\right)\right\}
$$

Dan geldt

$$
\mathrm{N} \leq 2 \rho-1+\left\lceil\frac{d}{2}\right\rceil
$$

Als $N \leq 20+1$, dan noemen we de code C normaal. Uit bovenstaande ongelijkheid volgt dat iedere binaire lineaire code met minimam afstand ≤ 4 normal is. Vermoedelijk zijn alle binaire lineaire codes normal. GRABAM, R.L. and SLOANE, N.J.A.: On the Covering Radius of Codes. IEEE Trans. on Info. Theory, vol. IT-31, May 1985, 385-401.

Standaardisatie van cryptosystemen leidt tot diversificatie.

Ondanks de resultaten van Tsfasman, Vladut en Zink, is het vermoedelijk waar dat de Gilbert-Varshamov grens voor binaire codes scherp is. TSFASMAN, M.A., VLADUT, S.G. and ZINK, Th.: Modulax curves,Shimura curves and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr. vol. 104, 1982, 13-28.

De Alo-regeling voor jonge onderzoekers is equivalent met de BKRregeling voor beeldende kunstenaars.

