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ABSTRACT 

Th is thesis is concerned with four topics from coding theory. The 

first one of these, treated in Chapter 1, is that of coding in an imperfect 

computer memory with stuck-at-defect3 and random errors. This coding 

problem finds its crigin in a paper by Kusnetsov and Tsybakov ( 1974). After 

a short historica! overview in Sectien 1.1, a description of the prÓblem 

and some related problems is given in Sectien 1.2. The Sectiens 1.3 up to 

1.5 deal with lower (i.e., constructions) and upper bounds for the various 

functions defined in Sectien 1.2. The function A(n,d), i.e., the largast 

size of any binary code of length n and minimum distance d, plays an 

important rdle in these sections. 

In Chapter 2 we treat two constructions for constant'weight codes. 

These constructions result in improved lower bounds on the function Atn,d,w), 

i.e., the largest size of any binary constant weight codè of lèngth n, 

minimum distance d and constant weight w. This function plays an important 

röle in determining upper bounds ·on the function A (n, d) (e.g.: Linear 

Programming Sound and Johnson bound). 

In Chapter 3 we give the complete salution of a problem formulated 

by Ahlswede, El Gamal and Pang in 1984. They define a constant distance 

code pair (A,B) as a pair of binary codes of length n such that for some 

ê E N, 0 :> o :> n, 

They prove that for such a code pair JA\ • \B\ . Wi th the help 

of coding theory Hall and van Lint gave a nice proef of this inequality 

and moreover characterized all code pairs for which equality holds. 

Since for these code pairs ó = L%J or r%1, the question remained: "what 

happens when o is fixed?". Chapter 3 gives an answer to this question. 

In Chapter 4 we discuss a problem which arose in conneetion with 

camma-free codes. Let Wn(q) denote the maximal number of codewordsin 

any q-ary cernma-free code of length n. Eastman (1965) proved that 



Wn(q) =.!. I: ll(d)qn/d=: B (q) if n is odd, 
n dln n 

For even wordlength n the situation is much more complicated. In 1984 

Golomb and Tang proved that 

where t(kl is the maximal cardinality of any {0,1,*} tournament code of 

length k. Chapter 4 deals with the problem of determining lower and 

upper bounds on t(k), k E :ti'. 

In order to make this thesis self-contained, we start with a short 

introduetion to coding theo:ry in Chapter 0. 
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CHAPTER 0 

INTRODUCT!ON 

The purpose of this introduetion is to make the_ reader familiar 

with some of the notions of coding theory; for a course in coding 

theory we refer the reader to [1] and [2]. We restricted ourselves 

to the binary case. 

Let~ be the n-dimensional vector space over F2 • A bleek code 

C of length n over F 
2 

n is a subset of lF 2 . The elements of C are called 

codewords. The set of elements of F <! is called the alphabet of the code 
n A k-dimensional linear subspace of lF 2 is called a binary linear 

bleek code or binary {n,k]-code. 

c. 

The Hamming-weight wt{~) of a vector ~ 1': ~ is the number of non-zero 

coordinates of x.·The Hamming-distance d(~·Xl of two veetors ~ and x· 
in JF~ is defined by d(,!!,Xl :=wt(,!!IBX). In words: d(~·Xl is the number 

of coordinate places in which .!! and X differ. The minimum distance d 

of a code C is defined by 

d:= min {d(_!!,ï_) I ~E:C, xEC, ~"'X}. 

A bleek code of length n and minimum distance d is called an 

(n,d)-code. An (n,d)-code with M codewords, we call an (n,M,d)-code. 

An (n,M,d)-code of which all codewords have the same Hamming-weight, 

w say, is called a constant _weight code or an (n,M,d,w)-code. A linear 

[n,k]-code with minimum distance d is called an [n,k,d]-code (the 

minimum distance in a linear code equals the minimum w.:ight among all 

non-zero codewords) . 
n. In the vector space lF 
2 

we define an innerproduct ( , l in the 

usual way • 



where • denotes the usual addition in F 2 • If C is an [n,k]-code, then 

the dual code <f of C is defined by 

.L 
'!'he code C is an [n,n- k]-code. 

A generator matrix G of an [n,k]-code C is a k x n matrix, the rows 

of which farm a basis of C. A parity-check matrix H of a linear code C 
is a generator matrix of the code <f. Both G and H define the code C. 

'!'he matrices G and H satisfy GHT = 0 (evaluated il'l F
2
). 

Bleek codes are used for reliable transmission of information over 

noisy channels. Examples of noisy channels are: telephone wires, 

2 

telegraph wires, computer memories, etc. A simple model of stich a channel 

is the binary symmetrie channel, i.e., a channel over which we can send two 

different symbols 0 and and for which there is a probability p that a 

transmitted 0 (resp.1) is interpretee by the receiver as a 1 (resp.O). 

The following figure illustrates the information-transmission scheme. 

u ,E. G .!! I Decoder.! 
V 

Eneader 

r~ 
noise 

Fig. 1. 

We use the following notation: 

u E {O, 1, •.• ,M- 1}=: U the input message set, E. E F~ a channel 

input word, x E F~ a channel output word, v E {0, 1, •. ,M- 1} the 
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n 
output message and ~ € ll!' 2 an error vector descr ibing the noise 

on the binary symmetrie channel. 

The channel input word c and channel output werd ~ are related as fellows 

where E& is the usual addition in Jl!' 
2 

which operates on the veetors 

componentwise. 

In order toproteet the information, sent over the BSC channel, 

one can use the codewords of a binary (n,M,d)-code C as channel input 

words. A one-to-one mapping <P, <P: U-.. C, is used to map any message 

u € u onto a codeword <!>(u) = .::_ E C. The funètion <P is called an encoding 

function for .. C. A particular deedding function · 'I', 'i' : ll!'~ + u, for C 

can be defined by 

where .::_' is the (not necessarily unique) codeword of C which lies closest 

to ~ .::_ + ~· If wt(§L) $. then one easily sees that c' is equal to c 

L
d- 11 - -

and hence v is equal to u. We say that C is a -
2
- - error-correcting 

code. 

The decading principle described above is known as maximum likeli­

hood decoding. It requires the determination of the (not necessarily 

unique) codeword .::_' of C, which lies closest to the received channel 

output word ~· This is a laborieus task if the cardinality of C is big 

and C has na structure wha tsoe7er ~ The linear structure of a code can 

be utilized to make the decodL,g somewhat easier •. 

Let C be a binary linoear code with parity check matrix H. For every 

x E ll!'~ we call ~HT the syndrcme of ~· From the above we have that the 

codewords of C are characterized by syndrome 0. The syndrome is an important 
n tool in decading received veetors x. Since C is a sub-group of Jl!' 
2 

we can 
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partition :n:i into cosets of C. Two veetors =. and Ï. are in the same coset 

iff they have the same syndrome <=.aT = ï_fF .. =.et ï. € C) . Therefore, if a 

vector =. is received, where =. = .!:_ $ !.' .!:_ E: C, then =. and !. have the same 

syndrome. It fellows, that for maximum likelihoed decading of =. one 

must choose a vector e' of minimal weight in the coset with syndrome 
T - -1 

x!:l and then decode x as <!> (x 1t e 'l • The vector e • is called the coset 
- - d-1- - - --
leader. Again if wt (.!!_) :> -

2
- then e • is equal to e and hence we will 

decode =. correctly. 

Since time is money, we must in general keep the time needed for 

the transmission of information as short as possible. Let C be a binary 

(n,M,d)-code. Then the rate R of C,defined by 

R := n- 1 log M, 

is a measure for the efficiency of the code C. Since, fora mes'sage 

uEu, with lul =M, weneed on the average log M bits to distinguish u 

from all ether messages in u, the number n(l-R) gives an indication of 

the loss of time in transmission when the code C is used for error 

protection. It wi11 be clear that the higher the rate of C the lower 

the error-correcting capability of C. So knowledge of the following 

two functions is of the utmost importance. 

A(n,d) : = maximum number of codewords in any binary co<ie (linear 

or non-linear) of length n and minimum distance d, 

and 

B(n,d) :=maximum number of codewords in any linear binary 

code of length n and distance d. 
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CHAPTER 1 

COMPUTER· MEMORIES WITH "STUCK-AT" DEFECTS · AND RANDOM ERRORS 

1.1 INTRODUeTION 

In this chapter we consider the problem of reliable starage of 

infonation in an imperfect binary computer memory. we consider a 

memory that is composed of a very large number of binary memory cells 

which are partitioned into memory units of n cells. (n the block-length 

of the error-correcting code to be used) • we are concerned with two 

types of imperfections that affect individual memory cells. The first 

type is a defective memory cell that is unable to store information 1 

its current value cannot be changed. such cells are called stuck-at 

cells. We distinguish between stuck-at-a and stuck-at-1 cells. When 

a 1 is.written into a stuck-at-a cell an error results. The secend 

type of imperfection is a noisy cell which is occasionally in error. 

The distinction between these two types of imperfections is that ~ 

at defects are permanent, while errors caused by noise are transient. 

By testing a memory unit it is possible to determine the locations 

and natures of the stuck-at cells. The side information that describes 

the state of the defects can be incorporated in the decod~g or in the 

encoding of block codes. Depending on how this stuck-at information is 

exactly used, this gives rise to a number of different coding (reliable 

storage) problerns. We mention the two most "interesting" on es. 

In the first one, the locations of the stuck-at-cells are assumed 

to be known only at the decoder. These cells then act as erasures. Thus, 

it makes sense to apply known techniques for decading bleek codes with 

random errors·and erasures in this case. We will net go into this 

problem. The intèrested reader is refered to [2]. We consider the 

complementary problem of incorporating stuck-at information in the 

encodino process. 

6 
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This last problem was originated by Kusnetsov and Tsybakov in [11]. 

They consider coding for binary memory units that have a number t of 

stuck-at cells, where t :ii pn,O < p < 1, p fixed. The assumption is that the 

locations and natures of the defects are known at the eneader but not at 

the decoder. By allowing the size of the memory unit n to become large, 

they prove the existence of codes that are capable of storing inforrnation 

without error, for any ra te R < 1 - p. !-!oreover, they prove that such codes 

can be found within the class of additive codes (see [11]). In Sectien 

1.2 we give an outline of this paper. At the end of this sectien we 

introduce the related problem of exhaustive test pattem generation. In 

bath problems so-called t-defect-compatible matrices play a very impor­

tant rêle. Also the equivalencè of the notion of t-defect-compatibility 

and that of t-independence of sets is mentioned. This fact seems to be 

almest unknown. 

In Sectien 1.3 we prove an upper bound for the largest possible 

length of a t-defect-compatible matrix with m rows. This bound gives a 

slight impravement on the one given in [9]. Sectien 1.4 deals with 

constructions for additive codes, capable of correcting all word defects 

of multiplicity t or less and hence by nature, also constructions for 

exhaustive pattem testing schemes. The constructions described there, 

in fact generate separable t-defect-compatible matrices. 

In [ 19] Tsybakov introduces the prablem of coding for binary memory 

units with both defects and random errors. ounce again the locations and 

natures of the defects are assumed to be known at the encoder but not at 

linear 

the decoder. He introduces the concept of "matched adjacent 

solve this problem. In [ 7] Heegard calls these codes .::...._ _____ _ 
bleek codes. We will stick to that name. In Sectien 1.5 we use their 

ideas and one of our construction methods of Sectien 1.4 to construct 

codes that have a better performance than those given in [7]. With 

these codes the encoding process will take more time, the decading 

process on the ether hand not. 

The problem of determining the capacity of imperfect computer 

memories when complete or partial defect information is available at 
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the eneader or at the decoder is not studied here. For this problem, we 

refer the interested reader to [6]. 

1.2 CODING FOR AN IMPERFECT COMPUTER MEMORY 

§1.2.1 An algebraic model 

The following figure illustrates the information-transmission 

(storage) scheme we are concerned with. 

u -
Supplemental 
Info. Souree 

We u se the following notatien :' 

Channel 
{memory unit) 

noise 

Fig. 1. 

uE{O,l, •.• ,M 1}= the input message set, ~ElF~ a ch~nnel input 

word, x_E lF~ a channel output word, vE{0,1, •• ,M-1}, the output 

message, ~ E JF~ an error vector descrihing the noise on the 

channel and ~= E:{O,l,ê}n a word defect descrihing the statesof 

the memory cells to be used. 

The word defect ~=(d1 ,d2 , .. ,dn) E{O,l,ê}n has to be interpreted as 

follows: 

V -
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r· then the ith cell of the memory unit is stuck-at-0, 

if d = 1' then the ith cell of the memory unit is stuck-at-1, 
~ 

o, then the .th cell of the unit is defect-free • ~ memory 

The number t of coordinates of ~ equal to 0 or 1 is called the multiplicity 

of the word defect d. By On we denote the set of word defects _dE {0., 1 ,o}n 
- t 

with multiplicity tor less. Let the '"o" operator o: lF
2 

x {0,1,o} --+lF
2 

be 

defined by 

x 0 d:= j : if d>'o 

if d= 0 ' 

l 

The relation between the channel input word ~ and channel output word 

z can then be described by 

( 1) 

The errors, described by the error vector~· occur when reading the memory, 

so they affect the memory contents of defect-fTee cells as well as that of 

stuck-at cells. 

EXAMPLE 1. Let n=6, ~= (0,0,0,0,0,0), ~= (o,o,0,1,1,0) and 

e = ( 0, 1, 0, 0, 1, 1) • Th en "i...= (.!!_ 0 ~ E& ~ = ( 0, 1, 0, 1 , 0, 1) • 

§ 1.2.2 The class of additive codes 

During the rest of this sectien we assume that there is no noise on 

the channel (memory) ; so ~ = Q in ( 1) ., Furthermore, we assume that the 

stuck-at cells are randomly distributed over the memory. In [11] Kusnetsov 

and Tsybakov define a block code of length n for this memory as a 



partition of JF~ into M subsets Au, u= 0, 1, ••• ,M- 1. They use the defect 

information, known at the encoder, to assign to a message u a channel 

inP.Ut word~ € Au in such a way that the stuck-at cells of the memory 

unit to be used do,not alter~· The decoder, receiving the unaltered 

10 

~~ recognizes that ~ belongs to the subset Au and so reeovers the message 

u correctly. The rate R of the code is given by R= (log M)/n. To find 

suitable partitions ofJF~, Kusnetsov and Tsybakov make use of so-called 

separable t-defect-compatible matrices, leading to the introduetion of 

the class of additive codes. We need some definitions. 

A word x= (x
1 
,x2, ••• ,xn) E JF~ is said to be compatible with 

the word defect2. (d
1

,d2 , ••• ,dn) E{O,l,ó}n if ~=~02.; so 

xi =di, for all iE{1,2, ••• ,n} with di =0 or 1. A binary 

m '"n matrix c is called a t-defect~compatible matrix,if for 
n 

any word defect 2. E Dt ,there is a row of C which is compatible 

with d. 

We are now ready to define the class of additive codes. 

Let c be a 2r x n binary matrix in which the first r elements 

of each row form the binary representation of the number i 

of that row (i= 0, 1, ... - 1). A matrix with this property 

is said to be a separable matrix. Let, for any 

uEU {0,1, .. ,2n-r_1} and any {O,!,ó}n, ~(u,2.l be.a 

specified row of c. This specificatien will be made clear 

later on. For any u EU, the vector u 

is given by 

n-r 
0(i=1,2, ••• ,r) and u= 1: ur+i 21 - 1 • 

i=l 

The encoding function ~, ~: u x {O,!,o}n-+ JF~, is defined by 

~(u,!!l==~~~(u,il. 

n The code (partition of JF
2

J defined by C is clearly given by 



lFn = 
2 

2n-r,..1 

U {~ • ~ I ~ a row of c}. 
u=O 

The ra te R of this code is equal to R = (n-r) /n 1-r/n. Different 

separable matrices c define a,class of codes, which we call the 

class of additive codes. 
n 

The decading function 'f, 'f :lF 
2 

+ U, for the additive code is 

defined by 

'f (y_) := 
n-r i-1 
!: (y r+i ~0r+i) • 2 ' 

i=l 

,where ~= (ç
1
,c2 , ••• ,cn) is that row of c with 

c i= y i for i= 1, 2, .•• ,r. 

From the above it will be clear that a necessary and sufficient 

condition for the additive code, defined by the separable matrix c, to 

correct all word defects of multiplicity t or less is that c is a 
n 

separable t-defect-compatible matrix. For any uEu and ~EDt the row 

~(u,~ from C must then be the (nat necessarily unique) row of c which 

is compatible with the word defect ~· defined by 

éi, 

di= 0 ar 1, 

where ui is the i th component of the vector u defined above. 

EXAMI'LE 2. 
ro o o ol 

Let n = 4, r = 1, t = 1, C = u. 1 1 1J, u 3 and ~ = (éi,ê,O,ê). 

Encoding: To eneode we determine !!. = (0,1,1,0), d' (ê ,Ö ,l,Ö). 

and ~(u,È_) = (1,1,1,1). We stor.e 

~='Î'(U,È_) = (0,1,1,0) $ (1,1,1,1) (1,0,0,1). 

11 



Decoding: To decode retrieve from the computer memory the 

vector l. = .:!". o .9_ ( 1,0 ,0 ,1) and from C the row ::._ with index 

1·1 = 1; so _::.. (1,1,1,1). Now compute the value 

V= 'J' (,:{_) (0 $ 1) 1 + (0 !11 1) 2 + (1 $ 1) 4 = 3 U. 

EXAMPLE 3. 

Let n = 3 ,r=2, t 

@ 
2, C=u 1 1 0~ 01 ,u=1and:;'!=(l,o,l). 

1 0 

Encoding: .';1_= (O,Q,l), .:;'!' (1,6,0) and .::_(u,:;!l = (1,1,0). 

So store the vector 

.:!". <l>(u,:;!l (0,0,1) !11 (1,1,0) = (1,1,1), 

Decoding: Retreive ;:[=,'!!".0.:;'!= (1,1,1) and the row_::..of C with 

index 1·1+1•2 3; so _::..=,(1,1,0). Compute 

V= '!'IX) = 1 ·1 = 1 =u. 

We define the function R(n,t) by 

R(n,t):= the maximal value of R for which there exists a code 

with rate R that is capable of correcting all word­

defeces of multiplicity t ar less. 

In [11] Kusnetsov'and Tsybakov prove the following surprising result. 

THEbREM 1. For any n,t€ :tl, 1;;it:>n, 

t + flog ln 2t(~)1 
- - :ó R(n,t) 

n 
1-! 

n 

12 

(2} 

0 

The up9er bound in Theorem 1 is obvious. The lower bound ,is a consequence 

of the existence of separable t-defect-compatible matrices of si~e 

2r x n, with 

(3) 
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The existence of such matrices is proved by using a probabilistic 

"counting" argument. Since 1 for any fixed p€ [0,1] 1 

t + flog ln 2t(n)l 
_______ it. :1 - p + o (n- ~ , for ! "'p and n-+ 00 

n 
n 

we have the following consequence of this theorem. 

Let p be any f ixed number in [ 0, 1] and let E > 0. Th en 1 for 

n sufficiently large (depending on p and E) 1 there exists an additive 

code of length n that is capable of correcting all word defects of 

multiplicity np or less 1 for a ra te R1 1- p E R 1- p. 

§ 1.2.3 Some related problems 

From § 1.2.2,it will be clear that separable t-defect-compatible 

matrices play an important role in the reliable storage of information 

in an imperfect computer memory with stuck-at defects. Therefore 1 we 

define 

r(n,t) := the minimal value of r for which there exists a 2r x n 

separable t-defect-c<;>mpatible matrix, n ,t€ JN, 

1 :!.î t n. 

The functions R(n,t) and r(n,t) are related by 

nR(n,t) :l: n- r(n,t). 

0 

In the conventional approach to logic circuit testing, a set of test 

vectors,to be applied at the circuit inputs,is derived from an analysis 

made on the circuit under test. Typical faults one wishes to determine 

are stuck-at-0 and stuck-at-1 faults at the gate level. Such a test­

generation procedure requires a substantial amount of computer time due 



to the necessary analysis and simulation to be carried out. Due to the 

growth of the number of logic circuits on a VLSI-chip, the conventional 

way of logic test generation beoomes more and more impractical. Not 

14 

only the computer time grows excessively, also the single stuck-at fault 

model becomes more inadequate. A partial solution to this problem is, to 

use exhaustive pattem testing schemes for testing several logic circuits 

simultaneously. 

In this approach a VLSI-chip is considered to have n binary inputs. 

Each input may influence many outputs, but due to certain partitioning 

techniques each output is assumed to depend on atmost t inputs (t < n) . 

To test the chip, any set of t or less inputs feeding an output is 

provided with all possible input patterns. By checking the correctness 

of the outputs, any single hard fault or combination of hard faults, 

which results in a permanent alteratien of the thruth table,associated 

with an output function, is noticed. So we are left with the problem of 

generating a minimal set of test veetors of length n, to provide 

simultaneouly all input patterns to each of a colleetien of input subsets 

of size t or less. From the above, it may be clear that the rows of an 

mx n t-defect-c:ompat:ible matrix form .. such a set. Therefore, wedefine 

m(n,t) := the minimal value of m for which there exists an mx n 

t-defect-compatible matrix. 

The relation between the functions R(n,t) and m(n,t) is given by 

nR(n,t) Sn-log m(n,t). 

Fora more detailed description of the problem of logic circuit testing, the 

reader is refered to [5,15]. 

Most authors who work on these two fields of research do not seem 

to be aware of the fact that the notion of t-defect-coropatibility is 

equivalent to that of t-independence of sets. consider the ith column of 



15 

an m x n t-defect-compatible matrix as the characteristic vector of a 

subset Ai of the set A = { 1, 2, .•• ,m}. Let F denote the colleetien of subsets 

Ai of A, i 1,2, .•• ,n, i.e., F={A
1

,A
2

, ... ,An}. The t-defect-compatibility 

property can then be formulated as 

For any t-tuple of subsetsAk ,Ak , ••• ,Ak 
1 2 t 

intersections 

t 
n 

i=l 

from F, all 

are non-empty, where each Bk can be either ~ , or A\~ • 
i i i 

In [9] Kleitman and Spencer call such a colleetien a t-independent 

colleetien of subsets of an m-element set. In [9] a lower bound on the 

size of such a colleetien is proved that coincides with the upper bound 

on r(n,t) given by (3). In Sectien 1.3 we mention some of their results 

translated in the terminology of t-defect-compatible matrices. 

For later use we give two more definitions. For any r,m,tE :N we 

define 

n(r,t) := the maximal value of n for which there exists a 2rxn 

separable t-defect-compatible matrix, and 

nf (m, t) : = the maximal value of n for which there exists an m x n 

t-defect-compatible matrix. 

The relations between r(n,t) and n(r,t) respectively m(n,t) and nf(m,t) 

are given by 

and 



We conclude this sectien with a table of known values of r(n,t), m(n,t) 

and R(n,t), for t~O,l,n- 1 and n. 

t. r(n,t) : m(n,t) R(n 1 t) 

() - - 1 

1 1 2 1- 1/n 

n-1 n-1 2
n-1 1/n 

n n 2n 0 

Table 1. 

1.3 UPPER BOUNDS ON nf(m,t) 
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In [9] Kleitman and Spencer consider the problem of determining the 

largest size of a t-independent family of subsets of an m-element set. 

From the previous section we know that this is equivalent with determining 

the largest value of n, for Which there exists an m x n t-defect-compatible 

matrix. we have àenoted this maximal value by nf(m,t). In [9] Kleitman and 

Spencer solve this problem for t = 2 (see Theerem 3) and give asymptotic 

upper and lower bounds for nf (m, t), Where t :<; 3 is fixed and m tends to 

infinity. Although, from a coding point of view, determination of such 

bounds is of almest no interest, we found this problem intèresting enough 

to work on. In this sectien we prove a slight impravement on the upper 

bound given in [9). 

We first give the solution fort 2 in Theerem 3. Because of our 

interest in seperable t-defect compatible matrices, the value of n(r,2) 

is also mentioned. 

THEOREM 3. [9] For all m,r E :N, m :<; 4 and r :<; 2 we have 

(
m- 1) nf(m,2) = and n(r,2) 
rjl 

0 



The values of nf(m,2) and n(r,2) are attained by the following 

construction. 

Construction. 

Let m€ :N, m 4. Wedefine C to be the mx(f~~) matrix with 

as columns all binary veetors of length m and Hamming weight 

r~l. of Which the first coordinate is equal to zero (see 

Fig.2. below). 

[~ ~ ~ ~ ~ ~ ~ ~ g ~1 
1 1 1 0 0 0 1 1 1 0 
1 0 0 1 1 0 1 1 0 1 
0 1 0 1 0 1 0 1 1 
0 0 0 1 0 1 1 1 

Fig.2. A 6 x 10, 2-defect-compatible matrix. 

From the above figure,it is easy to see that this construction indeed 

yields a 2-defect-compatible matrix. If m = 2r the matrix is separable. 

17 

As a consequence of Theorem 3 we find the following values for m(n,2), 

r(n,2) and R(n,2) (see also § 1.2.3). Let, for any n€ :N, m
0

€ :N be 

defined by 

( 

and take ro = r log mo 1. Th en 

n 

m(n,2) = m
0 

r(n,2) = r
0 

and 
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We now aim otir attention at the case t;;: 3. In BIJ Kleitman and Spencer 

prove the following lower and upper bound on nf(m,t). 

THEOREM 4. For'all t€ :N, t$: 3, t fixed, we have 

nf(m,t) ;;: 2 
(tt+0(1)}m 

,m-+oo, 

and 

nf(m,t) ::.; 
(ut+O(l) lm 

2 , m + oo, 

where tt"' (log (1 2-t))/t and ut= (H(2-(t-l)) -2-(t-2))/(t-2), 

with H(p) := -p log p- (1-p) log,(l-p), the well-known binary entropy 

function. 0 

~et, as defined in Chapter ~ A(m,d) denote the largest val?e of M 

for which there exists a binary (n:,M,d) code. The following theerem uses 

the function A:,(m,d) to derive an upper bound on nf(m,t), t$:4. 

THEOREM 5. For any m, tE: :N, 4 :\i t :\i m, 

nf(m,t) :> max min {nf<l%J, t-2) +2, !A(m,d)}. 
0:.; d:> !m 

(4) 

PROOF. Let c be an m x nf (m, t) t-defect canpa tible matrix. Let A be the 

binary code with as codewords all the columns of C and ë. From the 

defihition of a t-defecb-compatible matrix, it fellows that C and Chave 

no columns in common. Let d be the minimum distance of A. Then, 

2nf(m,t) lAl:> A(m;d). (5) 

Since A has minimum distance d, there are two columns of C, w.l.o.g. 

the first two columns .!:!_
1 

and !!_
2

, with d(Èc
1

,.!:!_2l =dor n-d. Assume 

d(.!:!_
1 

,.!:!_
2

1 = d (the case d(.!:!_
1 

= n-' d goes analogously). Consider the 

matrices c
1 

respectively c
2 

consisting of these rows of c for which 
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the first entry is equal to 0 and the secend entry is equal te 1, 

respectively the first entry equal te 1 and the secend en try equal to 0. 

From the t-defect-compatibility of C, it fellows immediately that the 

matrices Ci and c2, which are formed by deleting the first two columns 

of c
1 

respectively , are (t- 2)- defect-compatible matrices. Let mi be 

the number of rows of Cf.• i=l,2. Then m
1 

+m
2

=d. Since bath matrices 

have nf(m,t) - 2 columns, we have 

,t- 2)} nf(m,t) -2::; min { nf(m
1
,t-2) ,nf 

::; nf(l~J ,t-2). (6) 

The last inequality fellows from the fact that for fixed t,nf(m,t) is an 

increasing function of m. Together, (5) and (6) give the desired 

inequality (4). 

As a consequence of Theerem 5, we have 

COROLLARY 6. Let u) =u
3

, u4 =u4 and let,for tl: 5,u~ be defined by 

Then, for any tE: JN, t;::: 5, 

(u~+ 0(1) )m 
nf(m,t) :> 2 , t fixed and m +«> 

0 

~· Use induction on t and the well-known ~I.RRW upper hound t 14] as an 

est~te for A(m,d) in• (4). 

Có'rollary 6 gives a slight impravement on the upper bound on nf(m,t) 

of Theerem 4, when t is greater than or equal te 4. In Table 2 we list 

the values of _et' ut and u~ for t 3,4,5,6,8 and 10. 

D 
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t ,et ut u' t 

I 3 0.0642 0.3112 0.3112 

4 0.0232 0.1467 0.1467 

5 0.00916 0.0707 0.0643 

6 0.00378 0.0345 0.0322 

8 7.058. 10-4 8.382·10-3 
! 7.635 10-3 

10 1 .409 • 10 -4 2.o6o .to -3 1 .865 • 10-3 

Table 2. 

1.4 CONSTRUCTIONS FOR (SEPARABLE) t-DEFECT-COMPATIBLE MATRICES WITH t ~ 3. 

Many authors have considered the problem of constructing (separable) 

t-defect-compatible matrices [1,3,4,13,18]. In this sectien we describe 

two construction methods that, to our knowledge, yield the best results. 

The first one is due to Busschbach [3]. This construction uses a small 

t-defect-compatible matrix to generata a larger one. So t stays fixed, 

while the length n grows. The second construction allows t to grow 

proportionaly with n and is therefore used te determine a "constructive" 

asymptotic lower bound on r(n,np) for p fixed, 0 < p:;; t and n + "'· We 

also use this construction to derive some lower bounds on n(~,t), for 

r:>20.and 3:>t::>tO. 

§ 1.4.1 A constructionfort-defect-compatible matrices of length n, 

with t< <· n 

In this paragraph we describe the construction method, for t-defect­

compatible matrices, found by Busschbach in [3]. The adjustments necessary 

to make the resulting matrix separable are ours. The construction uses 

a small t-defect-compatible matrix to generate a larger one. These small 



matrices can, for instance, be constructed by the method of§ 1.4.2. 

Let A 

prime 

be a mo x flo 
t2 

power ;;; 4 . 

Construction. 

t-defect-compatible matrix' where no is a 

Let B be an n
0
-ary linear MDS code with 

~0 ~ 
dimension k, 2 :;;k :;;t2 +1 and length m = (k -1) l4J + 1. 

Since m:;; n
0 

+ 1, these codes are easy to construct ( see [ 14]) • 

Let B be the mx n~ matrix with as columns the codewords of B. 

Let tp: lFn ~ {columns of A} be a bijeetion. Construct the 

mm
0 

x n~ b~ary matrix C by replacing each entry b of B by !jl(b). 

THEOREM 7. The matrix C, constructed above, is a t-defect-compatible 

matrix. 

PROOF. To prove the t-defect-compatibility of c, let C' be any mm
0
xt 

submatrix of C and let d' be any binary vector of length t. We have to 

show that d' is contained in the row set of C'. To prove this we go 
j j j j 

back to the code B. Let !?. = (b
1 

,b
2

, ... ,bm) be that codeword of B that 
th j 

corresponds to the j column of C'. Since every coordinate bi , 

1:;; j:;; t, is replaced by a column of the t-defect-compatible matrix A, 

we are done if we can show that there is an i, 1 ::> i:;; m, such that 

{b ~ 1 d ~ =O} n {b j d ~ = 1} = ~ • 
~ J ~ J 

(7) 

From the t-defect-compatibility of A we then have that d' is contained 

in the row set of the submatrix C" = (Cj)(b~) ((l(b~) ..... tp~b~)) of C'. 
~ ~ ~ 
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_So suppose that ( 7) does not hold for any iE: { 1, 2, .•. ,m}; _ so ~· "'.2_,.!_. 

We calculate the sum 

r 
i d.' = 0 

~ 

r 
d .' = 1 

J 
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in.twodifferent ways. Firstly, since (7) does not hold for any coordinate 

iE:{1,2, ••• ,m}, each coordinate contributes at most n0 (~'l• n 1 (~')-t 
to the sum, wilere n, (d'l: l{i I d~ =À} I, À=O,t. Hence 

1\- ~ 

Secondly, since the minimum di stance of B is equal to m- k + 1 (8 is MDS) 1 

we also have 

!: 
i I dj_= o 

Thus, we may conclude that 

n0 (~'l • n
1 
(~') • (m k + 1) :3 m • cn0 (~'l • n 1 (~')- 1) 

or equivalently 

t2 
A contradietien with m= (k-!Jl4J +1. [] 

The bounds on nf(m,t) and n(m,t), that result from this construction are 

so untransparent that we do not give them here. We confine ourselves to 

an example for t 3 and 'refer the interestad reader to [3]. 

EXAMPLE 4.·. Let A be the. 8 x 4 3-defect-compatible matrix with as rows 

the codewords of the [4,3,2] binary code. Let m
1 

x ni denote the size of 

the 3-defec~-compatible matrix after i succesive applications of the 

above construction with maximal k; so m
0 

8 and n
0 

= 4. Th en we find the 

following values for mi and ni, i= 1 ,2,3. 



i 1 2 3 

mi 3·23 45·23 ;: 241 

ni 24 232 
;;: 2 
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We see that the number n
1 

grows excessively with respect to the 

number mi' but neverthè less, it does not result in a lower bound on 

nf(m,3) of the form nf(m,3) <: 2a.m, a. fixed. 

Although, we feel that Busschbach's construction is of little 

importance (t is too small eeropared to n) for the construction. of 

additive codes, we adjusted the construction somewhat in order to make 

it yield {weak) separable t-defect-compatible matrices. A binary n x m 

matrix is called weakly separable if there exists a n x flog n 1 
submatrix of A that has n different rows. Matrices like ·this can also 

be used to define an additive code. 

Construction. 

ra 
2 x na separable t-defect-compatible 

t2 
Let A be a matrix, where no 

is a prime power ;;: T Let B be a r;a-ary linear MDS code with 

dimension 
4n 

2 < k :> ___Q + 1 and word length m; (k 
~ - t2 

t2 
1ll4 J + 1 such that 

1 E B. Th is is net a serieus restrietion when m :i!. na. Let B be the 

m xn~ matrix with as columns the codewords of B. Let the elements 

ofF belabelled by a.
1
,a

2
, •.• ,an

0 
and the columns of A by 

na 

~1'~2 I ••• •.!:n and let s; r log m 1- Assume ra + s ;;; na (this will 

almost alwayg be the case). For any v E {a,1, •.. ,m- 1} we define 

·the vector v E Fno by 
2 

v:;(O,O, ••. ,o, "r +1' V 2, ..• ,v I o,o, ... ,O), o ro+ ra+s 

s i-1 
where v ; I: v + . 2 , 

i=1 ro l. 
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And q>v: GF(n
0

) ..,. {columns of. A} by 

$V. • 1 
~ - i=1121··· 1n01 

ro 
where ..!_ is the all-one vector of length 2 Construct the 

ro k 
m • 2 x n

0 
binary matrix C by réplacing each entry b 

in the vth row of B by lflv (b) 1 v = 0111 ••• 1m- 1. 

THEOREM 8. The matrix C 1 defined above 1 is a weak separable t-defect­

compatible matrix, if r 0 + s Jin
0

• 

~· Since the entries in each row of .B are mapped on the columns of 

a t-defect•compatible matrix, the t-defect-compatibility of the matrix 

Cis a direct consequence of the proof of Theerem 7. 
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To prove the weak separability of C we consider the codewords ~1• l• 
~2 • 11 ••• ,~ • 1 of B. From the separability of A and the definition 

- r 0 +s -

ro 
of <f>v' v € {O, 1 ,2, ••• ,m 1} ,one immediately sees that the 2 • m x (r

0 
+ s) 

submatrix of c which corresponds with these codewords, consists of 2 ro • m 

differents rows 

§ 1.4.2 À generalization of a construction method found by 

Ku~etsov in [10]. 

From Corollary 2 we have that, for any pE [0,1] and n sufficiently 

large, there exists an additive code of length n that is capable of 

correcting all word defects of multiplicity np or less, for a rate R 

very close to 1 - p. aowever, the question remains : "how to construct 

such a code?". In this section we describe a construction method for 

separable t-defect-compatible matrices that gives a partial solution 

0 
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to this problem. 

As a first reaction we and many ethers with us tried to solve this 

problem with the help of linear codes. Let C be a binary [n,k] code for 

which the dual code has minimum distance t + 1. Then the 2k x n matrix c 
with as rows the codewords of the code C is easily seen to be a separable 

t-defect-compatible matrix. From the Gilbert-Varshamov bound ene easily 

derives that this construction yields the following asymptotic upper 

bound on r(n,np), 

r(n,np);;;n(H(p)+o(l)), forpfixed, o<p<L andn+oo (8) 

and so 

R(n,np) l:n(l-H(p) +o(l)), for p fixed, O<p<L andn +oo. 

However, not only the bound is poer, it is also cheating; no ene as yet 

has found a construction of a family of binary linear codes that 

realizes the promises of the Gilbert-Varshamov bound. At present we 

only know that such families of goed codes exist and can 1 for instance 1 

be found within the class of Goppa codes [ 14, Ch .12.]. 

To our surprise, the following ob servation shows that it is rather 

simple to find such a construction for t-defect-compatible matrices; the 

resulting upper bound for m(n,np) is even sharper than (8). Let C be the 

matrix with as rows all binary words of length n 1 which h~ve weight LfJ 
or weight n • It is clear that C is a t-defect-compatible matrix 

L2
3
nJ. The asymptotic upper bound on m(n 1 np) 1 O<p<f, 

that results from this construction reads 

m(n 1 np) s 2n(H(l?.2l +o(lll wh · f' d o< < 2 d 
_ 1 ere p 1s J.Xe 1 p 3 an Jl + co 

Although, this bound "improves" (8), it is net really sharp. The 

resulting t-defect-compatible matrices, however, may be of interest for 

the generation of exhaustive test patterns; because of the simple 
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structure, the resultingtest setscan be effectively implemented (see [17]). 

Since we believe that 2r(n,t) is about as big as m{n,t), for all 

values of tand n, O<t:>n, the simplicity of the above construction 

convineed us, that it must be possible to find a silnilar construction 

methad for separable t-defect-compatible matrices. A generalization of a 

construction methad for separable 3-defect--compatible matrices found 

by Kustnetsov in (10], does the trick. 

Construction. 

Let A be a binary [ 2r ,k, d] code with l E A and minimum di stance 

d i! r ( 2 t - 2- 1 ) 2r I ( 2 t - 1 1) l· Let G b: a genera tor matrix of A 

with the all-one vector as top-row. Let H be a parity check 

matrix.of.an [n,n-k,2rt; 11J binary even weight code which has 

the all-ene vector as top-row. We define the 2r + 1 x n matrix C 

by 

where GTH is the complementary matrix of GTH. 

THEOREM 9. The matrix c defined above is a t-defect-compatible matrix if 

ti! 3. If G contains the generator matrix of RM(1,rl as a submatrix, then 

C can be made separable. 

~· To prove the t-defect-compatibility, it suffices to show that for 

any subset JC{1,2, ... ,n} with IJl =tand any !:_E JF~, there is an 

iE {1,2, ••. ,2r} such that 

(9) 

where HJ is the k x t matrix that consists of these columns of H which have 

a column index belonging to J and where ~i is the basis vector of JF~r. 



Suppose there is a Jc{1,2, .•• ,n), IJl =tand a 

not hold for any iE {1,2, ... ,2r}. Then 

so 

't.l:. 
:!_€lF2' 

wt(:!_) "0 mod 2 

On the otherhand,we have 

ti: 
:!_ElF 2 , ,:?'.Q., 

wt(:!_) "'0 mod 2 

t!: 
:!_ E:JF

2 
, :!_-'.Q., 

wt(:!_) "'0 mod 2 

2 

t!: 
:!_ElF 2 , ,:?'.Q.. 

wt(:!_) "'0 mod 2 
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such that (9) does 

(10) 

(11) 

The inequality is consequence of the fact, that for any :!_ E lF~ \ {.Q_} with 

wt(x) "0 mod 2, the word x HTG$ (x,zl • 1 € A\{o,l}. For, since H has the 
- - J -- - --

all-one vector as top-row, wt(:!_) "'0 mod 2 and :!."' .Q_, the first coordinate 

of xHT is equal to 0 and xHT >' 0. So, since the top-row of G is also _1, we 
- J - J -

may conclude that xHTG $ Á \{ 0, 1}. 
-J --

Together (10) and (11) give 
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or equivalently 

(2t-2_1)2r 
This is a contradietien with d = f t _ 

1 
1 if t <: 3. So C is a t:-defect-

2 -1 
compatible matrix if t <: 3. 

The separability of C, when G conta.ins the generator matrix of RM( 1 ,r) 

as a submatrix, is obvious. 0 

~· For the case t 3, the above construction can somewhat be 

rm + 11 simplified. Let A be a binary (m,n, -
3
- )code with the property tha.t for 

all !_E:A.also _!.$ A. Let A
0 

respectively 11
1 

denote· tne matrix with 

as columns thé códewords of A of which the first coordinate is to 0 

respectively equal to 1. Th en the 2m x n matrix C defined by 

is a 3-defect-compatible matrix. When m = 2r and A contains RM( 1 ,r) as 

a subcode, the matrix c can be made separable. This is in essence the 

construction for 3-defec·t-compatible matrices l<usnetsov gave in [ 10]. 

In order to make the above construction work we have to generate 

the matrices G and H which are mentioned there. The matrix G is the 

most important one. Suitable candidates for G are the generator matrices 

of the codes we describe in Theerem 10. For a proef of this theerem and 

construction of these codes we refer to [14]. 

THEOREM 10. Let r = 2t + 1 and let i be any number in the range 1 :> i ;'i, .t. 
Then there exists two 



subcodes of RM(2 ,r).These subcodes contain RM(l,r) as·a· subcode. 

0 

Let A be ene of the two , r (i- i + 2) + 1 , 2r- 1- 2r - i- 11 codes 

of Theerem 10. Then .!_EA, since RM(l,r) c: A. Since 2r 1-zr-i-l <: 

(2t-2_1)2r r t- 1 1' if t:;; i + 1' we have, according to Theerem 9, that the 
2 -1 

existei:\ce of an [n, n-(i- i+ 2)r- 1, 2ft; 111 binary code, 3 :St :Si+ 1, 

gives rise to the exi~tence of a 2r + 
1 

x n separable t-defeot-compatible 

matrix. 

In Table 3 we give some lower bounds on n(r,t), for moderate 

values of r and t, which result from this construction. To generata the 

matrices G, we did not only use the codes from Theerem 10, but we also 

used codes that result from Wisernan's construction method, which we 

described in [16]. For thematrices H we used a table search [14,20]. 
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The letter h in the upper left corner of an entry indicates that the 

eerrasponding lower bound on n (r, tl is a.ttained by a linear code whose dual. 

code has minimum. distance t + 1 and dimension r. The letter k indicates 

that this lower bound is attained by the construction of Kusnetsov [10]. 
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[?s_ 3 4 :5 6 7 8 9 10 

h 
4 - -- ili - -
8 

h 5 - - -
27 kh h 6 5 6 - - - -

6 210 h 
8 

h 7 h 
7 - - - --- 212 h h h 

7 24 9 8 ? - - -
8 221 1 2'9 h 12 h 9 h 

9 
h 

9 - -
9 229 231 k 272 66 h 10 h 

10 h 10 h 
10 -

10 236 213 513 h 15 h 
12 hll h 

11 
h 

11 

11 210 36 
h 

16 h 12 h 12 
h 

12 

12 129 
h 

24 h 14 h 
13 

h 
13 

13 258 68 h 15 h 
15 

h 14 

14 213 312 h17 h 
16 

h 
15 

15 513 46 
h 

18 
h 

17 

16 215 143 
h 

21 
h 

18 

17 257 74 h 20 

18 212 275 h 23 

t9 513 64 

20 214 150 

21 257 

;12 

Table 3. Lower bounds on n(r,t) 



We concltide this section with the promised "constructive" lower 
b b • 2l + 1 bound for R(n,np). Let G be a ( (2<.. + 1) (<-- J. + 2) + 1) x 2 generator 

matrix of one of the codes mentioned in Theerem 10 with the all-one 

vector as top-row. Let H be any ((2l+l) {!-i+2)+1) x ((2l+1) (l-i+2)+1) 

regular binary matrix with the all-one vector as top-row. Then, from 

Theerem 9, the matrix C defined by 

c 

is a separable ( 1 + 1) -defect-compatible matrix of si ze 

2 2i+ 2 x ((2l+1)(l-i+2) +1). 

Let n = ( 2l + 1) cl i + 2) + 1, then the above construction shows 

r (n, i + 1) :S 2l + 2. 

Now take i=l-k, k fixed and let t tend to infinity. Then, since 

Lim .f.- k + 1 
l +"' n 

kEJNU{O} 

r 

t-k+l 
(2l+1)(k+2) 

we find, for any 

1 
:Sn(k+

2 
+o(l)) ,kfixedandn-><». 

Since r (n, t) is an increasing function of n if t is f ixed, we 

constructively showed 

r(n,np) n(2p+o(l)) ,p fixed,O<p:S! and n_,.""· 
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Hence, for any p, 0 < p :S 1, the above construction can be used to generate 



a family of additive codes of length n, n € Ji1, that are capable of 

correcting all word defects of multiplicity np or less, for a rate 

R(n,p),for which 

Lim R(n,p) 
n .... oo 

~ 
n 

1.5 GENERALIZED PARTITIONED LINEAR BLOCK CODES 

§ 1.5.1 Partitioned linear block codes 
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In [19] Tsybakov introduces the problem of coding for binary 

computer memory units with both defects an.d random errors. The locations 

and natures of the defects are assumed to be known at the encoder but 

not at the decoder. Reeall from Sectien 1.1 that such an n-cell 

memory unit is defined by 

:l. = (!_ 0 ~) $ ~· 

n 
where!. E:F 2 is a channel input word, a channel output word, 9: a word 

defect E and e an error vector of weight s or less. To solve this problem 
Tsybakov uses the codewordsof a binary (n,K,d=2s+l) code C as 

channel input words. The code C is partitioned into a number of 

subcodes C0 ,C1, ••. ,CM_ 1 each of which forms a t-defect-compatible set. 

He uses the defect information, known at the encoder, to assign to each 

message u € { 0,1, ••. ,M 1} =U a channel input word !. E Cu which is 

compatible with 9:· The decCider, receiving :l. = (!_ o 9:> <11 ~ !. <11 ~ sees that 

d(x_,Cu) < d(:t..,Cv), for all v"' u, and so reeovers the message u correctly. 

The rate R is defined by R= log M/n. 

Since linear bleek codes are very suited.for this coding strategy, 

Tsybakov introduces the concept of partitioned linear block codes 



(in [ 19] these codes are called matched adjacent) .We give a forma! 

definition. 

An [n,k
0

,k
1

] partitioned linear block code is a pair of linear 
n C n codes C

0 
c::: lF 

2
, 

1 
c::: lF 

2 
of dimension k

0 
and k

1 
respectively such 

that C
0

nc
1 

{.Q_}. The direct sum C C
0

;tC1 := {~$~1 1~EC0 ,~EC 1 } 

forms the set of channel input words.The partition of C into 

subcodes is described by 

The rate R is equal to k 1/n. 
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To define an encoding 4>, <1>: U x {O,t;ö}n-+-C and a decading 'l', 'l': lF~ +U we 

need some more definitions. 

Let GO and Gl be generator matrices for C0 and C1 respectively. 

Let H be a parity check matrix for C = C
0 

$ C 
1 

and let <l
1 

be any 

k
1 

x n binary matrix such that G
1

GT =Ik and G0G~ = '1.: k • 
1 1 0, 1 

We are ready to define the encoding and decading functions <!> and 'l' resp .. 

kl 
Take the message set U equal to F

2 
and let, for 

and any {O,l,ó}n,~(~,2) be a specified vector 

the proof of Theerem 11). 
k 

Theencoding IJ>, <!>: lF 1 x (0,1,/l}n+C, is defined by 
2 

<!>(.::_,_:!):= 

n kt 
The decading 'l', 'l' : lF 2 + lF 2 , is defined by 

where ê E F~ is chosen to minimize wt(~) subject to êBT ~:=zaT, 



the syndrome of z with respect to the code C. The vector ê 

is an estimate for the error e in (1). 
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For any [n,k
0

,k
1

] partitioned linear bleek code (C
0

,C
1

) a pair of minimum 

distances (d/5,d) is adjoined, where d is the minimum of the code C and 

d~ is the minimum distance of the dual code c; of C
0

• 

THEOREM 11. Let (C0 ,C1> be an [n,k
0

,k
1

] partitioned linear block code with 

minimum distance pair (d*,d), Then cC0 ,C1l is capable of correcting all 

word defects of multiplicity t or less and random errors of weight s ar 

less, if 

.L 
t < d

0 
and 2s < d. 

PROOF. 
kl n ko 

For any ~E F 2 and .:!_E:Dt we take~(~,.:!_) equal to ~E F 2 such 
n that ~0 is compatible with the word defect .:!_' € Dt defined by 

ö if di= ó, 

(~G 1 ) i ili di if di 0 or 1 , i = 1 , 2, .•. ,n. 

Since any t-columns of G0 are linearly independent this is possible. 

With this choice of.~(~,.:!_) it is clear, from the definitions 

of <Pand f, that (C0 ,C 1) is indeed at-defect-, s-error-correcting code. 

EXAMPLE 5. Let (C0 ,C1) be the [7,1,3] partitioned linear bleek code 

defined by 

G0 = u 1 1 1 1 1) and G1 

IJ 
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Then (C0 ,C1> has minimum distance pair (2,3). Note that Cis the [7,4,3] 

single error-correcting Bamming code. We can take H and G
1 

equal to 

l
i ~ ~ ~ 

0 0 1 

0 0 

0 0 

0 0 

Let:=_= (1,0,1) be the message to be stored in a computer memory unit with 

word defect d (o,ó,O,ö,ó,ó,o) and error vector.~= (0,0,0,1,0,0,0). 

Encoding: To store the message :=_ = (1,0,1) we first compute the word 

defect d' defined in the proef of Theerem 11 and the vector~(:=_,~. 

We find d' (ó,o,t,ó,ó,o,Ö) and so ~(:=_,!!J = (1). Hence 

= (1,0,1.0,0,1,0) iB (1,1,1,1,1,1,1) = (0,1,0,1,1,0,1). 

Decoding: To decode retrieve the vecor :f..= (!_0~ $~ (0,1,0,0,1,0,1) 

from the memory unit and calculate the syndrome ~ = :f..HT. We find 

~= (1,0,1). Since ~is egual to the fourth column of H, the 

decoder estimates ~ by _!= (0,0,0,1,0,0,0) =~· Hence 

(1 ,0,1) =u. 

§ 1.5.2 Generalized partitioned linear bleek codes 

In the coding of an [n,k0 ,k
1

] partitioned linear block code (C0 ,C1), 

the entire code C0 is used for masking the defects of the memory unit. 

As we have seen in § 1 .4.2, this is not always necessary. The class of 

generalized partitioned linear block codes makes advantage of this 

observation. We start with a definition. 

An [n,k0 ,k1 ,k2] generalized linear block code consistsof a 



triple of b:inary l:inear codes C
0

,C
1 

,C
2 

c: JF~ of dimension 

k
0

,k1 andk
2 

respectively such that CinCj={S!_}, i,j€{0,1,2}, 

i>' j,and a binary code Z of length k
0 

+ k
1

, which is separable 

on the first k
0 

coord:inate places. The direct sum 

C = C
0 

$ C
1 

$ C
2 

farms the set of channel :input words. Let G
0

,G
1 

and G
2 

be generator matrices of the codes C
0

,C
1 

and C
2 

respectively. Then C is partitioned into 

Z}. 

The ra te R is equal to (k 
1 

+ k
2

) /n. 

Let H be a parity check matrix of the direct sum C = C
1 

e C
2 

e C
3

• 

- G -T Let G
0 

be any k
0 

x n matrix such that 0G
0 

= Ik and 
0 . 
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flt\ è7 =0 and -\ëi
2
J 0 kl +k

2
,k

0 
let G1 , 2 be any (k1 +k2 ) x n matrix such that 

where ~(~,~) is a specified codeword of Z (see the proef of 

Theerem 12) and 

where ê is chosen to jll:inimize wt(~_) subjected to !HT "'.:! :=x_FJ.T 

and z is that codeword of Z that on the first k
0 

coordinate 

places is equal to the vector (x_ e !l 



linear bleek code, for which 

i) the direct sum c co~ cl !t c2 has minimum distance d = 2s + 1' 

ii} the dual code of co~ cl has minimum distance d~l =2ft; 11' 
(iii) .! E C

0 
and G

0 
contains 1 as top row, 

. k
0

- 1 
( iv) the (k

0 
+ k

1
) x 2 matrix, with as columns these codewords 

of Z that have a 1 as first coordinate, is the generator 
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k - 1 (·2 t 2-1) k - 1 
matrix of a binary [2 ° , k 0 +k1 ,f t _ 1 2 ° llcode and 

2 -1 

v) for any ~EZ also 1 € Z. 

~· From the properties ii) - (v) and Theerem 9 of § 1.4 .2 we have 

that. { z to) I z EZ} forms a separable t-defect-compatible s~t. Hence 
- \G -1 1\;1 + kz n (Go) 

for any E,E F 2 and any ~EDt there is a ~EZ such that ~ G b 
1 

compatible with the word defect ~· defined by 

= 0 or 11 i = 1 , 2 , ..• ,n . 

Choose ~(E,,~) to be equal to ~· With this choice for ~(E,,~) and the 

definitions of~ and ~,the assertien of Theerem 12 is immediate. 
I] 

With the help of.primitive binary BCH codes of length n 31,63,127 

and 255 we constructed the following [n,k
0

,k
1

,k
2
l generalized partitioned 

t-defect-,s-er'ror-correcting linear block codes listed in Tables 4,5,6 

and 7. The rate of such a code is equal to (k
1 

+k
2
J/n. The rate of the 

corresponding partitioned t-defect-,s-error-correcting code of the same 

length n, given in [7], is equal tok/nor (k2 + 1)/n. So the gain in 
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i:ate is at least (k
1 

-1)/n. 

On the other hand, the encoding process of a generalized partitioned 

linear block code is more complicated than the encoding process of a 

partitioned linear block code. In both cases, the determination of the 

vector ~(~,~) (see Theerem 11 and 12), amounts to solving an equation 

like 

z G' = d" 

where the matrix G' and the vector ~" are directly determined by the 

vector~~ the word defect d and the code used. Bowever, in the case of 

a partitioned linear block code any salution z will do, while in the 

case of a generalized partitioned linear block code one has to find a 

solution z of the above equation within the set Z. Th is will take more 

time. 

The decoding process is in both cases the same. 



! k
0 kl 

5 1 

5 1 

5 1 

5 1 

5 1 

8 3 

8 3 

ko kl 

6 1 

6 1 

6 1 

6 1 

6 1 

6 1 

6 1 

6 1 

6 1 

6 1 

6 1 

8 5 

k2 t s ko kl k2 t s ko kl k2 t s ko kl k2 

20 3 1 8 3 5 4 3 11 5 5 6 2 17 4 5 

15 3 2 8 3 0 4 5 11 5 0 6 3 17 Ij 0 

10 3 3 9 :2 15 5 1 13 3 10 7 1 19 2 5 

5 3 5 9 2 10 5 2 13 3 5 7 2 19 2 0 

0 3 7 9 .2 5 5 3 13 3 0 7 3 

15 4 1 9 2 0 5 5 15 6 5 8 1 

10 4 2 11 5 10 6 1 15 6 0 8 2 

Table 4. Generalized partitioned t-dèfect,s-error­

córrecting linear block codes o-f length n ::;31. 

k2 t s ko kl k2 t s ko k1 k2 t s ko k1 k2 

50 3 1 8 5 38 4 2 9 4 11 5 7 13 6 17 

44 3 2 8 5 32 4 3 12 7 38 6 1 13 6 11 

38 3 3 8 5 26 4 4 12 7 32 6 2 13 6 5 

32 3 4 8 5 23 4 5 12 7 26 6 3 16 9 32 

29 3 5 8 5 17 4 6 12 7 20 6 4 16 9 26 

23 3 6 8 5 11 4 7 12 7 17 6 5 16 9 20 

17 3 _7 9 4 44 5 1 12 7 11 6 6 17 8 32 

11 3 10 9 4 38 5 2 12 7 5 6 7 17 8 26 • 

9 3 l1 9 4 32 5 3 13 6 38 7 1 17 8 20 

3 3 13 9 4 26 5 4 13 6 32 7 2 19 9 29 

0 3 15 9 4 23 5 5 13 6 26 7 3 19. 9 23 

44 4 1 9 4 17 5 6 13 6 20 7 4 19 9 17 

Table 5. r.eneralized partitioned t-defect,s-error­

correcting linèar block codes of length n 63. 
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:t s 

9 1 

9 2 

10 1 

10 2 

t s 

7 5 

7 6 

7 7 

8 1 

8 2 

8 3 

9 1 

9 2 

9 3 

10 1 

10 2 

10 3 



s 

6 2 112 3 8 7 63 4 16 13 91 8 

6 2 105 3 2 8 7 56 4 8 2 

6 2 98 3 3 8 7 49 4 16 13 77 8 3 

6 2 91 3 4 8 7 42 4 16 13 70 8 4 

6 2 84 3 5 8 7 35 4 13 12 10 49 6 9 16 13 63 8 5 

6 2 77 3 6 8 7 28 4 15 12 10 42 6 10 16 13 56 8 6 

6 2 70 3 7 8 7 21 4 15 12 10 35 6 11 16 13 49 8 7 

6 2 63 3 9 10 5 105 5 12 10 28 6 13 18 11 91 9 

6 2 56 3 10 10 5 98 5 2 12 10 21 6 15 18 11 84 9 2 

6 2 49 3 11 10 5 91 5 3 12 10 14 6 15 18 11 77 9 3 

6 2 42 3 13 10 5 84 5 4 14 8 98 7 18 11 70 9 4 

6 2 35 3 15 10 5 77 5 5 14 8 91 7 2 18 11 63 9 5 

6 2 28 3 15 10 5 70 5 6 14 8 84 7 3 18 11 56 9 6 

6 2 21 3 21 10 5 63 5 7 14 8 77 7 4 18 11 49 9 7 

6 2 5 56 5 9 14 8 70 7 5 20 16 84 10 

i 6 2 7 77 10 2 

6 2 0 70 10 3 

8 7 105 63 10 4 

8 7 98 56 10 5 

8 7 91 49 10 6 

8 7 84 42 10 7 

8 7 77 

8 7 70 

Table 6. Generalized partitioned t-defect, s-error­

correcting linear bleek codes of length n = 127. 
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ko k1 kz t s ko k1 k2 t s ko kl k2 ·t. s .ko k1 k2 t s 

i 
6 3 

6 3 

16 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

I 6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 3 

6 .3 

6 3 

6 3 

6 3 

6 3 

6 3 

238 3 1 6 3 20 3 47 14 11 222 7 1 18 15 182 9 5 

230 3 2 6 3; 12 3 55 14 11 214 7 2 18 15 174 \l 6 

222 3 3 6 3. 4 3 59 14 11 206 7 3 18 15 166 9 7 

214 3 4 6 3 0 3 63 14 11 198 7 4 18 15 158 9 8 

206 3 5 10 7 230 5 1 14 11 190 7 5 18 15 154 9 9 

198 3 6 10 7 222 5 2 14 11 182 7 6 18 15 146 9 10 

190 3 7 10 7 214 5 3 14 11 174 7 7 18 15 138 9 11 

182 3 8 10 7 206 5 4 14 11 166 7 8 18 15 130 9 12 

178 3 9 10 7 198 5 5 14 11 162 7 9 18 15 122 9 13 

170 3 10 10 7 190 5 6 14 11 154 7 10 18 15 114 9 14 

162 3 11 10 7 182 5 7 14 11 146 7 11 18 15 106 9 15 

154 3 12 10 7 174 5 8 14 11 138 7 12 22 19 206 11 1 

146 3 13 10 7 170 5 9 14 11 130 7 13 22 19 198 11 2 

138 3 14 10 7 162 5 10 14 11 122 7 14 22 ·19 190 11 3 

130 3 15 10 7 154 5 11 14 11 114 7 15 22 19 182 11 4 

122 3 18 10 7 146 5 12 14 11 106 7 18 22 19 174 11 5 

114 3 19 10 7 138 5 13 14 11 98 7 19 22 19 166 11 6 

106 3 21 10 7 130 5 14 14 11 90 7 21 22 19 158 11 7 

98 3 22 ·10 7 122 5 15 14 11 82 7 22 22 19 150 11 8 

90 3 23 10 7 114 5 18 14 11 74 7 23 22 19 146 11 9 

82 3 25 10 7 106 5 19 14 11 66 7 25 22 19 138 11 10 

78 3 26 10 7 98 5 21 14 11 62 7 26 22 19 130 11 11! 

70 3 27 10 7 90 5 22 14 11 54 7 27 22 19 122 11 12 

62 3 29 10 7 82 5 23 14 11 46 7 29 22 19 114 

~ 54 3 30 10 7 74 5 25 14 11 38 7 30 22 19 106 4 

46 3 31 10 7 70 5 26 18 15 214 9 1 22 19 98 11 

38 3 42 10 7 62 5 27 18 15 206 9 2 

36 3 4.3 10 7 54 5 29 18 15 198 9 3 

28 3 45 10 7 46 5 30 18 15 190 9 3 

Table 7. Generalized partitioned t-defect, s-error­

correcting linear bleek codes of length n 255. 

15 
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CHAPTER 2. 

TWO CONSTRUCTIONS FOR CONSTANT WEIGHT CODES 

2.1 INTRODUCTION 

In this chapter we discuss two construction methods for constant 

weiqht codes, which imprave several of the best known lower bounds on 

A(n,d,w) in [1,3,6],where A(n,d,w} denotes the maximal cardinality of 

any binary constant weight code of lengtb n, minimum distance d and 

constant weight w. Altbough, our interest in the function A(n,d,w) finds 

its crigin in the fact that this function plays an important rêle in the 

determination of upper bounds on A(n,d) (e.g.: Johnson bound, 1inear 

programming bound), the function A(n,d,w) is also interesting in its own 

right. Besides the obvious conneetion with t-designs and Hadamard 

matrices we would like to mention the application of constant weight 

codes as a set of protocol sequences for the multiple-acces collisen 

channels without feedback [5,7]. 

The first construction method, treated in Sectien 2.2, results from 

proving a generalization of the well-known Johnson upper bound on 

A(n,d,w). Unlike the generalization, the resulting construction does 

imprave several of the best known results on A(n,d,w) in [1,3,6]. A table 

of improved results is given. 

In Sectien 2.3 we treat a construction methad for constant weight 

codes with minimum distance 4. In order to make this construction werk, 

one needs to partition the set Vn, n,wE :N with w:in,in an as smallas 
w 

possible number of constagt weight codes with minimum distance 4. For 

n = 6m + 1 or 6m + 3 and w 3 tbis last problem is equivalent to that of 

determining a packing of Steiner triple systems of order n. Since the 

construction metbod results in many improvements of the lower bounds on 



A(nl4 1 w) 1 n :> 24, given in [1,3,6}. a revised table of the function 

A(n,4,w) 1 n :> 24 1 is included. 

2.2 A GENERALIZATION OF THE JOHNSON BOUND FOR CONSTANT WEIGHT CODES 
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Let A(n,2ó,w) denote the maximum number of codewords in any binary 

code of length n, minimum distance 2o and constant weight w. The following 

upper bound on A(n,2o,w) is well known [4]. 

THEOREM 1 • {Jahnson bound) 

A (n 1 20 ,w) L.!!. A(n-1,2o,w-1)j:>.!!. A(n-1,2o,w-1). 
w w 0 

Applying Theerem 1 k times we obtain the following bound: 

A(n,2Ö,w) < ln1!!::!! ln-k+1 J JJJ<(~\ = :::~.-:-::-;-1 L ••• -k 
1 

A(n-k,2o,w-k • • - ':../ A{n-k,2o,w-kl. 
w w- w- + (:) 

(1) 

At the International Workshop "Convolutional Codes Multi-User 

Communication" Zinoviev [8] presented the following generalization of the 

Johnson bound (1). 

THEOREM 2. For any integers k and t with 0 :> t :> k :> n, the following 

inequality holds 

A(n,2o,w) :>~n A{n -k,2u,w-t), w n -w 
t k-t) 

where u = o t if t ::; k/2 and u = 6 - k + l if t > k/2. 

If we take t = k in Theerem 2 we get the Johnson bound ( 1) . 

I] 
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We now give a further improvement of the Johnson bound stated in the 

next theorem. 

THEOREM 3. For any two integers k and t with 0 < t :> k < n, we have 

i) A(n,2Ö,w) :îî 
(.~.) 

.,--~,..:...-.;--- A(n- k,2(Ö- tJ ,w- t) if l :i k/2 

f (·~) (n=w) 
i=O l. k i 

and 

A(n-k,2(o-k+l),w-l) if l>k/2. 

REMARK. Note that the denominators in Theorem 3 are greater than the 

corresponding denominators in Theorem 2. 

PROOF. Let C be an {n,2Ö,w) binary constant weight code with ICI =A(n,2Ö,w) 

and let I.. :i min {~,w}. For every binary vector ;!! of length n and weight k 

(notation ;!! E V~J we define the code Cji by 

where .s.e;!!:= (c
1
b 1 ,c2b 2 , ••• ,cnbn). To make things clear we give an example. 

Let ;!!r E. E F~ be given by 

":: k -» + n -k -» 
!:!_= o·,l, ... ,l,l,l, ••• ;t,o,ó, ... ,o,o,o, ... ,o), 

+ :il. ... 
E. = (1,1, •• .,1,0,0, ••• ,0,1,1, ••• ,1,0,0, ••• ,0). 

Th en 

E.EBE.s!:!_= (O,o,· ... ,o,o,o, ... ,o,1,1, ... ,1,0,o, ... ,o). 

From the above it will be clear that, for any two codewords .s.1 EB eb 

and E.2 $ E.2@)!:!. <.s.l "'.s.2J of c~ we have 
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So if 1 for every E. <11 E. e eb 1 an arbitrary set of ! - wt (E_ e ~ coordinates 

that are one are changed into zeros, we get a code eh with constant 

weight w-! and minimum distance at least 2 (5- !} • 

From the definition of Cb one easily sees that all codewords of Cb 
have zeros where !:!. has on es. So certainly all codewords of Ct, have zer~s 

wilere}?. has ones. Thi!!' means that we can puncture the code eb k times 

(delete the k coordinates Where È. has ones) to get a constant weight code 

'bof length n-k 1 minimum distance at least 2(Ö -!) and constant weight 

w-!. Thus 

We now show that there is a !:_ E: ~ such that 

t (wXn -w) 
. L i) k- i 

IC I >l."'Û A(n 1 20 1 w) • 

. !:. - (~) 

To do this1 we calculate the number N of pairs {E_,!:_} of the set 

f{_;~!:.}IE_E'C,!:_E.V~, wt(E_®~ :>t} in two different ways . 

.e. 
Since, for any E. E: C, there are i: 0(~)(: = ~) veetors in ~ that have 

not more theri ! ones in common with E.• we have 

t (w)(n-~ .f. (w)(n-w) N"' L .L ik-i) =A(n,2o,w).r ik i . 
cE:C 1=0 1=0 

On the otherhand,this number also equals 
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Hence we have 

Hence,there is a ~EI{ with IC~I 1: (A(n,2o,w)/(~} 1 L(~)(~::). 
Tagether with ICbl :l~A(n -k,2o,w-l) this last inequality proves the first 

part of the theorem. 

To prove the second inequality of the theorem, we apply the first 

one to the complementary code ë of C, with l' = k -l and k. Th is gives 

A(n,2o,w) A(n-k,2(Ö-k+l) ,n-w-k+l) 

As in [8] the proef of the above theerem has an immediate 

consequence, which is stated in the next theorem. 

0 

THEOREM 4. Let there exists an (n,2Ö,w) constant weight code with N 

codewords and let k ,l be arbitrary integers with 0 :> l :> k < n. Th en there 

exists an (n -k,2u,w !) constant weight code with N' codewords, where 
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One of the codes eb, b E: vn defined in the proef of Theerem 3 does 
- k 

the job. (] 

The·next table contains the improved (according to the table in [6]) 

lower bounds on A(n,6,w) that fellow from Theerem 4, using the constant 

weight codes formed by the codewords of weight 8 respectively 12 froill the 

[24,12,8] Golay code. For completeness we also mention the lower bounds 

that can be found in [6] (second column) and the improvements given by 

A.V. Zinoviev in [8] (third column). OUr improved results are stated in 

the fourth column. The values of k and !, needed to obtain these r.esults, 

are given in the last column. 

!l.(n,2o,w) Upper and lower Lower bound Lower bound values of 
bounds from [6] from [8] from Th. 4 k .t: 

1'.(22,6,7) 675-1100 - 682 2 1 
!1.(21,6,7} 465- 828 - 570 3 1 
!1.(20,6,7) 310- 651 320 450 4 1 
!A<19,6,7) 228- 520 260 338 5 1 
!A(18,6,7> 160- 349 198 243 6 1 
!AU7,6, 7) 119- 240 141 166 7 1 
~ (16,6, 7) 90- 156 95 108 8 1 
A(22,6,11) 1574-5064 - 1960 2 1 
!11.<21,6,10) 1286-2702 - 1288 3 2 
A(20,6,9) 736-1362 - 760 4 3 
lA09,6,8l 332- 734 360 408 5 4 
A(18 ,6,8) 232- 428 - 239 * 5 4 

Table 1. Improved lower bounds on A(n,6,w). 

Ta find the lower bound A(18,6,8) !i: 239 (*) one uses Theerem 4, starting 

wi'th the (23,1288,8,12) constant weight code, taking k;S and t=4. 
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2.3 LOWER BOUNDS FOR A(n,4,w) 

§ 2.3.1 Introduetion 

In this paper we describe a construction methad for constant weight 

codes with minimum distance 4 that impraves several of the known results 

in (1], [3] and [6]. ~e methad is basedon the following observation. 

LEMMA 5. Let n
1 

and n
2 

be two positive integers and let n n
1 

+n
2

• Then 

Jl w; SJ l 
A(n,4,w);?;maKl i:O T(Ö+2i,n1 ,w-li-2i,n2 ,4Jiö=O,l , 

,_ 

where T(w
1

,n
1

,w
2

,n
2

,4) the maKimal number of codewordsin anybinarycode 

of length n
1 

+n
2

, minimum distance 4, with exactly w
1 

l's in the first 

n
1 

coordinate places and exactly w
2 

l's inthelast n
2 

coordinate places 

(such a code will be denote by an (n
1
,n

2
;4;w

1
,w

2
J code). 

PROOF. Let Ccw
1

,n
1

,w
2

,n
2

) denote a binaocy Cn
1

,n
2

;4;w
1

,w
2

J code. The lemma 

is proved if we can show that the codes C(o) and C(l) defined by 

C(ê) := (2) 

bath· have minimum distance 4. We will prove this for li = 0. 

I I r= ' }n 1 { }n2 Let~= (!:!_
1 

, v = (!_
1 

_!zl , !:!,
1

, ::!:
1 

_ t0,1 and !:!,2 , ::!:2 E 0,1 

be two distinct codewordsof C(O). Suppose that wt(!:!_
1

l = 2i and wt(_!
1

l = 2j, 

so wt(!:!_2 J = w- 2i and wt(_!
2

) = w- 2j. Then if i= j we have 

!:!.•::!: E C (2i , n
1 

, w- 2i, n
2

J and so d(!:!_._!) ;: 4, while if i"' j we have 
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d·(.::_,_!) =d(.::_
1

,_!
1

) +d(.::_
2

,_!
2

) G lwt(.::_
1

l -wt(_!1J I+ lwt(.::_
2

J -wt(~2 J I= 12i- 2jl + 

lw-2i-w+2jl =4 li-jl G 4. 

From this it is clear that our construction method involves the 

construction of (n
1

,n
2

;4;w
1

,w
2

J binary codes, which wetreatin § 2.3.2. 

Let vn denote the set of all binary veetors of length n and weight 
. w 1 

w. {C~ (w,n) }~-
0 

denotes a partition of vn into k mutually disjoint 
~ w 

constant weight codes, each with minimum distance 4 and constant weight 

w. Assume that the constant weight codes are numbered in such a way that 

IC
0

cw,n) I i: 1C1 (w,n) I<: ••• <:ICk-l(w,n) I holds. The construction of a 

Cn1 ,n2141w1 ,w
2

J code is as follows: 

then defined by 

0 

min{k
1 

,k
2

} 

u 
i=O 

(3) 

where A@> B: { A,~ € 8}. 

LEMMA 6. The code Ccw
1

,n
1

,w
2

,n
2

J defined in (3) is a binary Cn
1

,n
2

;4;w
1

,w
2

J 

code. The number of codewords is given by 

min{k
1 

,k
2

} 

r 
i= 0 

(4) 
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PROOF. We only proef that the minimum distance is 4. The rest then fellows 
. . i 

immediately. Let (!!ti E.zl E c~ (Wl ,nl) 11 c (w2 ,n2) 

and v~ jy_
2

l E (w
1

,n
1

J ®Cj(w
2

,n
2

J be two distinct codewordsof 

C(w
1

,n
1

,w
2

,n
2
J. Then there are two cases: 

i) i=j, then E_
1

,y_
1 

ECi(w 1n ), E_21 v
2

ECi(w21n
2

J and 

E-t ""y_1 or E.z ""y_2 • Hence d (E_, y_l = d (E_1 1 y1l + d <~2 <;: 4 1 

iil i>' j 1 then ~1 ""y_1 and ~2 "'y_2 • Hence d(~,y_l = d(E_l 1Y,1l + 

d<E.2 ~y_2 J ~ 2 + 2 =4. IJ 

REMARK. In (3) we used the codes 
i i 

direct sum C (w1 ~n2 J 11C <w
2

,n
2
J, 

i . 
C (w

1
,n

1
J and C~(w2 ,n 2 ) to form the 

i 0,1, .• , min {k
1

,k
2
}-1. Other 

combinations are possible. However, from (3) and the assumption about the 

ordering of the codes in a partition 1 it fellows that no other combination 

gives a larger code C(w1 ,n 1 ,w2 ~n2 J. 

we are left with the problem of finding suitable partitions of vn 
w 

for 0 < w < n. One way of solving this problem is to look at the 

construction methad for constant weight codes that Graham and Sloane 

described in [3]. This methad partitions vn into n mutually disjoint 
w 

constant weight codes with minimum distance 4,which gives a partition 

{C1 (w,n)}~ ; of v: (O<w<n). Using these partitions in (3), we find 

(n 1,n2 ;4;w1 ;w2J codes C(w11n 1 ,w2 ,n2 ) with IC<w1,n11 w21 n2Jj ;;:(:~)(:~)/n 11 
for every n

1
,n

2
,w

1 
and w

2 
with n

1 
l:n

2
, O<w

1 
<n

1 
and O<w

2
<n

2
• 

Taking n
1 

=n
2 

n and O<w<2n we find codes C(O) and C(l) with 

jC(Ol I+ jC(ll! <;:e::)fn, from which we conclude that A(2n,4,w) ;;:(;;)/ 2n. 

This lower bound was also found by Graham and Sloane [3] . From the above 

it will be clear that we can expect to find better results if, for 

instance, we are able to find partitions of vn into fewer than n mutually 
w 

disjoint constant weight codes. The determination. of such partitions 

is postponed to the appendix. 

EXAMPLE 1· Let n = 16 and w = 7. From [3) we have A( 16,4, 7) l: 715. Taking 

nl =n2=8 and using the partitions of v~,,w' =0,1,2,. .. ,7, as determined 



in the appendix, we find codes C(2i,8,7-2i,8), 1=0,1,2,3, with · 

0 
IC(O,B, 7,8) I= !: lci<0,8) I . IC

1
(7,8) I= 1, 

i 0 

6 
IC(2,8,5,8) I= !: lci(2,8) I • IC

1
(5,8} I 7.4.8 = 224, 

i=O 

5 
IC(4,8,3,8) I= l: IC

1
(4,8) I • IC

1
(3,8) I= 

i 0 

2.14.8 + 2.12.8 + 10.8 +8.8 = 560 and 

6 
IC(6,8,1,8) I= !: IC

1
(6,8) I \Ci(1,8) I =7.4.1 =28. 

i=O 

Hence, for the code C(O) defined in (2) we find 

3 
IC(O) = !: \C(2i,8, 7- 21,8) I= 813, 

i 0 

giving us the improved lower bound A( 16,4, 7) ;;; 813. 
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EXAMPLE 2. Let n=l9 and w 5. From [6] we have A(l9,4,5) ?;612. Take n
1 

9 

and n
2 

10. With the help of the appendix, we find codes 

C(2i + 1,9,4- 21,10), i 0,1,2, with 

8 . . 
\C(1,9,4,10) I= I: IC].(1,9) I IC].(4,10) I 

i=O 

: 3 ,1. 27 + 1. 26 + 3 • 1. 25 + 2 ,1 ,12 : 2061 

6 . . 
IC(3,9,2,1C) I I: IC].(3,9) I· IC].(2,1PJ I =7.12.5=420, 

i=O 

0 i . 
IC(5,9,0,10) I= I: IC (5,9) I IC].(0,10) I= 16.1 = 16. 

i=O 



Thus, for the code C(l} defined by (2) we find 

2 
jC(1JI= L jC(2i+1,9,4-2i,10)j=642. 

i 0 

Hence, we have A(19,4,5} 6:642. 
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However, since any constant weight code A of length 9, minimum 

distance 4 and constant weight 5, can be transformed into (9,10;4;5,0)­

code by adding to each codeword of A a tail of 10 zeros, it is easy to 

find a (9,10;4;5,0)-code C''(5,9,0,10) with jC•(5,9,0,10}! =A(9,4,5) =.18. 

Replacing C<5,9,0,10) by C'(5,9,0,10) in the above construction, gives 

A(19,4,5) 6:644. 

We conclude this paragraph with a revised table of lower and upper 

bounds for the function A(n,4,w) in the range n::>24. The entries in this 

table with an asterisk in the upper left corner are the improved lower 

bounds found by the above described method, using the partitions given in 

the appendix.. on checking these entries the reader must be a ware of the fact 

that we have used the trick explained in Example 2 several times. The 

entries without an asterisk are from [1],[3] and (6]. 
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i 3 4 5 6 7 9 9 10 1l 12 ! 

• i 2 I 1 

5 2 2 1 1 
-

6 3 • 3 1 1 

7 7 3 1 1 

8 4 8 14 8 • 1 1 

9 4 12 18 !8 12 • ! 1 

10 5 13 30 36 30 l3 5 1 1 
~ 

' ll 5 17 JS 66 66 35 17 5 1 i 1 

12 6 20 5! 75-84 132 
I 

75-84 51 20 6 ! 1 l ! 
158- ! 

I 

'-
118- 158- 118-

1) 6 26 65 
! 

65 26 6 ! 
-132 -182 -182 -132 

---
! 169- 275- 316- 275- 169-

I 

14 7 28 91 91 28 7 
-182 -308 -364 -308 -182 

' -
2Z2- 370- 582- 582- 370- 222- I 

15 7 35 105 105 35 
I -271 -455 -660 -660 -455 -271 . 

305- 592- 813- 1164- 813- 592- 305-

I 

16 8 )7 140 140 
-JJG -722 -1040 -·1320 -1040 -722 -336 

I 
154- 424- 854- 1320- 1608- 1608- 1320~ 854- 424-

17 8 44 

-157 ~476 -952 -1753 -2210 -2210 -1753 -952 -476 . 
504- t260- 1936- 2760- 3150- 2760- 1936 1260-

18 9 48 198 
-565 -1428 -2448 -3944 -4420 -3944 -2448 -1428 

I 
• • . • • 664- 1496- 3024- 4330- 5490- 5490- 4330- 3024-

19 9 

I 
57 228 

-752 -1789 -3876 -5814 -8326 -8326 -5814 -3876 

! • * • • • • 63!- 2120- 4 tOJ~ ?lt2- 9197- 10536- 9197- 7112-

20 10 60 

I 
285 

-912 -2506 -5111 -9690 -!2920 -16652 -12920 -9690 

• • 
1071- 2BS6- 5708- 10045- 15143- "• 18057- 1805?- 15143-

2l 10 70 315 
-1197 -3192 -7518 -i3416 -22610 ~27!32 -27132 -22610 

• • . • 32442- : .. 32442-)927- 7889- 15124- 23458- 35136-

22 1l 73 385 1)86 
-4]89 -10032 -20674 -32794 -49742 -54264 . ' • • • 62782- : 416- 11266- 22530•' 38006- 52978- 62782-

23 l1 83 1771 5313 
-4t9 -14421 -28842 -52833 -75426 -104006 -104006 

• • 

I 

• - • ,, • • 1898- 15267- 33795~ 56267- 89816- 1054.99- 124052-
24 l2 BB 498 7084 

-2011 -18216 -43263 -76912 -126 799 -164565 -208012 

Table 2. Bounds on A(n,4,w) 
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§ 2.3.3 An optimal (18,21,8,6)-code 

We conclude this chapter with an (18,21,8,6)-code. From [6] we have 

that A(18,8,6) :S21; so the code is optimal. The (18,21,8,6)-code is given 

by the matrix A below, the rows of which are the codewords. 

A :-' 

Q,; 

Q,; 

Al A3 

A3 Al A2 

A2 A3 Al 

where A
1

, 1 :Si :S 3 are circulant matrices with top row ~i given, by 

~1 = (101000), ~2 = (110000) and = (001100). 

It is easy to prove that the rows of A indeed ferm an (18,21,8,6)-code. 



APPENDIX 

In this appendix a partition of Vn is understood to be a partition 
w 

of vn into constant weight codes of length n, minimum distance 4 and 
w 

constant weight was defined in§ 2.3.2. The partitions of vn which we 
w 

give here, are used in our construction method of Sectien 2.3 to find 

the results stated in Table 2. 

DEFINITION' Let {ei (w ,n)} i; O, 1 , ... ,k _ 1 be a partition of V:. Then the 

number vector K of {ei (w ,n) } . _ O l k _ 
1 

is defined by 
--'lll,n ~- , , ..• , 

K := (1e
0

(w,n) I, le1 (w,nl I, ... , lek -l (w,n) 1) • -w,n 
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For the determination of the number of codewords in the codes e(O) and C(1) aE 

(2) and hence for the determination of a lower bound on A(n',4,w'), these 

number veetors are all we have to know. The next lemma gives the number 

veetors of partitions of Vn for w :o; 2. The proef is simple and is left to 
w 

the reader. 

~- For every w 

satisfying: 

i) 

ii) 

iii) 

iv) 

K 

n there are partitions of vn with number veetors 
w 

-w,n - w,n' 

,n (1)' 

,n 

,n l •lu _ 
1

, if n is even. 

In the following we give the partitions of v: , 6 n :o; 12 and 3 ;;; w;;; ~ , 

0 

of which the number veetors are given in Table 3. That these are indeed 

partitions of Vn as we have defined in § 2.3.2 is straight-forward to check. 
w 
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Ir. order to limit the amount of writing we frequently use the 

following notation. Let C be a binary code of length n with coordinate 

set x {0,1, ••• ,n-1} and let p be a permutation of X. Then we denote by 

p(=.), ~ (c
0

,c1 , .•. ,cn_ 1l EC the vector 

p (::) : = ( c - 1 , c - 1 , .•. ,c - 1 ) 
p (0) p (1) p (n-1) 

and by p(C) the code 

p(C) :={p(.s) I~ € C}. 

n 6 k number vector K see 
-,n 

6 3 6 (4,4,4,4,2,2) A.1 

7 3 6 (7,7,6,6,5,4) A.l 

8 3 7 (8,8,8,8,8,8,8) A.2 

8 4 6 (14,14,12,12,10,8) A.1 

9 3 7 (12,12,12,12,12,12,12) A.2 

9 4 8 (16,16,16,16,16,16,16,14) A.3 

10 3 10 (13,13,13,13,13,13,13,13,13,3) A.4 

10 4 10 (27,27,27,26,25,25,25,12,12,4) A.S 

10 5 10 (36,34,32,30,28,26,24,14,14,14) A.6 

11 3 11 (17,17,17,17,17,14,14,14,14,12,12) A. 7 

11 4 11 (34,34,34,34,34,28,28,26,26,26,26) A.7 

11 5 11 (66,60,55,50,47,44,41,32,32,30,5) A.6 

12 3 11 (20,20,20,20,20,20,20,20,20,20,20) A.2 

12 4 11 (51,51,51,51,51,40,40,40,40,40,40) A.7 

12 5 12 (70,70,70,70,64,64,64,64,64,64,64,64) A.7 

12 6 11 (92,90,90,90,90,84,80,80,76,76,76) A.7 

Table 3. Number veetors 
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A.l Partitions of V~, V~ and V~ 

The six arrays below forma partition of V~ into six mutually disjoint 

constant weight codes with minimum distance :i: 4. The number vector of the 

partition is 

' < 1 1 1 
1 1 

1 1 
1 

1 
1 

1 1 

' 1 1 1 
1 

1 
1 1 
1 1 

1 

,7= (7,7,6,6,5,4). 

1 
1 

1 1 
1 1 

1 1 
1 

1 1 
1 1 

1 
1 
1 1 

1 

1 

1 

c1 
(3, 7J 

1 
1 

1 

1 
1 1 

1 1 
1 1 

1 
1 

1 1 1 
1 

1 
1 

11 1 1 

I~ 
1 

1 1 
1 1 1 

1 

, 

1 1 
1 

1 
1 

1 

1 

1 
1 

1 

1 
1 

If we consider the veetors that have a zero in the Sthcoordinate place 

we find, after deleting this coordinate, a partition of V~ with number 

vector ,6 (4,4,4,4,2,2). 

Since the distance between two distinct veetors in the same code 

Ci(3,7) (i 0,1, ••• ,5) is exactly four, we may adjoin toeach C1 (3,7) 

(i=0,1, .•. ,5) the complementsof its codewords. Adding the overall parity 

check then yields a partition of V~ with number vector 

~.8 (14,14,12,12,10,8). 
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A.2 Partitions of V
8
3

, V9 
and V

12 
3 3 

n 
The problem of finding a partition of V 

3
• for n 6m + 1 or n = 6m + 3 

into a number (as small as possible) of mutually disjoint constant weight 

codes, is the same as trying to find a packing with Steiner triple systems 

of order n,(i.e.,a partition of thesetof triads of n elements into n-2 

disjoint Steiner triple systems). In [2] Denniston gives the salution of 

the above problem foreleven values of n, including n= 13. This salution 

is given on the following page and is used to determine a partition of V~2 

with number vector !
3

,
12 

(20,20,20,20,20,20,20,20,20,20,20). One can also 

find several references to the above problem in [2].The existence of a 

packing of order 9 was found by Kirkman (see [2]) and rediscovered several 

times (also by us). This packing is given below. We use our terminology. 

Let C be the constant weight code shown in Fig. 1 and let, p
1 

be the 

permutation (0,1,2,3,4,5,6)(7) {8) (so p
1 
{i)= i+ 1 {mod 7), i 0,1,2, ..• ,6, 

p
1

{7) =7 and p
1

(8) =8. Then wedefine the codes C1 (3,9), 1=0,1, ••• ,6, by 

i i C (3,9) :=p
1

(CJ, i=0,1, .•• ,6. 

These codes fonn a partition of v; with number vector ! 3 , 9 = (12,12,12,12, 

12,12,12)., 

The codewords with a zero in the last coordinate form,after deleting 

this coordinate, a partition of V~ with number vector ! 3 ,8 = (8,8,8,8,8,8,8). 

0 1 2 3 4 5 6 7 8 
1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 1 1 

Fig. 1. 
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Let V be the code shown in Fig. 2 and let p
2 

be the permutation 

(0,1,2,3,4,5,6,7,8,9,10)(11){12). Thenthe codesC1 (3,13), 0~1~10, defined 

below forma partitan of v~3 • 

i= 0,1, ••• ,10. 

Shortening these codes give a partition of V
12 

with number vector 
3 

,12 = (20,20,20,20,20,20,20,20,20,20,20). 

0 1 2 3 4 5 6 7 8 9 10 11 12 
1 

1 1 

1 
1 

1 1 
1 1 

1 

1 
1 

1 
1 

1 
1 
1 

1 

A.3 A partition of V
9 
4 

1 

1 
1 

1 
1 

1 

1 
1 1 

1 1 
1 

1 
1 1 

1 

1 
1 

1 1 
1 

1 1 
1 1 1 

1 1 
1 1 

1 1 1 
1 
1 

1 1 1 
1 1 

1 

1 

1 1 
1 1 

1 1 
1 1 

1 
1 

1 
1 1 

1 1 
1 1 

1 

Fig. 2. 

Let C be the (9,16,4,4) code shown in Fig. 3 and let p be the 

permutation (0 1 1,2 ,3 ,4, 5 ,6) ( 7) (8) • Th en the partition {èi(4 ,9)} i 
0

, 1 , ... , 7 , 
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with number vector ~.9 = (16,16,16,16,16,16,16,14) is defined. by 

ei (4,9> :=pi<CJ, i=0,1, .•. ,6, 

c7 
(4,9> :={pi((1,t,o,o,o,t,o 1 1,o1J 1 i=O,t, ... ,6} 

U{Pi((l ,1,0,1,0,0,0 \0,1)) I i= 0,1, ... ,6},, 

0 1 2 3 4 5 6 7 8 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
.1 1 1 1 

1 1 1 1 

c 1 1 1 1 
1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 

11 
1 1 1 1 
1 1 1 

Fig. 3. 

A.4 A pa'rtition of !1~ 0 

We now give a partition of V~0 with number vector!5_
3

,
10

= (13,13,13,13, 

13,13,13,13,13,3). Let p be the permutation (0,1,2,3,4,5,6,7,8) (9) and let 

V
0

, V
1

, V
2 

and V
3 

be the constant weight codes shown in Fig. 4. Then the 

partition of v;0 is given by 
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0123456789·· 0123456789 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 

0 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 
1 1 1 

1 1 1 
1 1 1 [

1 

1 11 
1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 

1 1 1 

Fig. 4. 

A.5 A partition of V!O 

Let C be the (10,27,4,4) constant weight code shown in Fig. 5 and let 

p be the permutation (0,1,2,3,4,5,6) (7) (8) (9). Wedefine the codes Ci(4,10), 

0 $i:;; 6, by 

C3 (4,10J 

C
5

c4,10J 

C6
(4,10J 

and ~2 are as defined in Fig. 5) 

6 6 4 
:=p (CJ\{p (~2 )},C (4,10) :=p(CJ\{pC~1 J 

3 3 3 
: = p (C) \ {p (~1 ) , p } and 

5 5 
:= (Cl \{p <~1) ,p (~2J}. 



Together with C
7

(4,10), C
8

(4,10) and C9 (4,10), defined by the arrays 

shown in Fig. Sa, they define a partition of V10 with number vector 
4 

~,10= (27,27,27,26,25,25,25,12,12,4). 

0 1 2 3 4 s 6 7 8 9 
1 1 1 1 

1 1 1 1 
1 1 l 1 

1 l l 1 
1 1 l 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
.1 1 1 1 

c 1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 

1 1 1 1 
1 l 1 1 

1 1 1 1 
=:c .. -· ' =:~=p(~) 

Fig. 5. 

c7 
(4,10J C

8
(4,10J C9 (4,10} 

0 1 2 3 4 s 6 7 8 9 0 1 2 3 4 s 6 7 8 Q 

rtl"-'' 1 1 
-

1 1 1 1 
0 1 2 3 4 5 6 7 8 9 
1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 
1 l 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

Fig. Sa, 
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A.6 A partition of V
10 

and V
11 

5 5 

From [6] we have, that the rows of A (see the "figure below) and the 

sums of pairs of rows of A forma (11,66,4,6) constant weight code. 

0 1 2 3 4 5 6 7 8 9 10 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 

A 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

Taking the complements of all these codewords and permuting the coordinates 

{0,1,2, ••. ,10} with the permutation (0,10)(1,7)(2,8,4)(3,6)(5,9) one finds 

the (11,66,5)-code V shown in Fig. 6 ( the coordinates are renumbered). 

Let V• be the subcode V• :=V\{~1 ,~2 , ••• ,E_
28

}, where the 

i= 1,2,. •. ,28, are defined in Fig. 6. Let p be the permutation 

(0,1,2,3,4,5,6) (7) (8) (9) (10). then we define the following partition of v~ 1 • 

<E.
1

J I i 1,3,4,5,6,7,8,9,1o,12,t3,14,16,17, 

18,19,20,22,23,24,25,27}, 

C2 5 V r 5 ) ( 5 t 11 ) ; "' P ( I ) u lP ( E.i i= 2,3,4,5,8,9,10,11 ,13 ,14 ,15,18, 

20,21,23,24,26}, 

-c3 
<5,11) 

C4
(5,11J 

4 4 
:= p <V'J u {p <E_

1
J 1 i 1,3,6,7,9,12,13,16,17,19,22,23l, 

:= p 1 <V I) u i= 1,2,11,12,15,16,21,22} u 
U { (0,1,1, 1,0,0,0I1,0,0,1)}, 

5 3 3 I C (5,11) := p <V'J U {p (E_il i= 5,8,18,20} u 

u tco,1,1,o,o,t,o io,1,0,1J,o,o,1,o,1,o,o 1 o,o,1,1Jl, 
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C
6

(5,11) := (V'l U {(1,1,0,0,0,0,1 j1,0,0,1), 

<o,1,o,o,1,1,o I o,1,o,1l ,<1,o,o,t,o,1,o 1 o,o,1,1)}, 

C7
(5,11), C8 (5,11), C9

(5,11) and c10
(5,11) are defined by the array: 

shown in.Fig. 6a. 

The number vector is 
11 

0 1 2 ~ 4 5 6 7 8 9 10 ~ 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 l 1 

1 1 1 1 1 
1 1 1 1 1 

.1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

1 1 11 1 1 
1 1 1 ; 1 1 
1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

(66,60,55,50,47,44,41,32,32,30,5). 

=:.::_1 
=:E.2 

=:.::.J 
=:~ 

=:.::_s 
=: .:26 

= '.:0.11 
=:.!:..12 

=:.::_u 
=:.::_14 

Fig. 6. 

0 1 2 3 4 5 6 7 8 9 10 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 . 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 l 

l 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 l 1 1 1 

1 1 1 1 1 

=:8_25 

'8..26 
= '8..27 
=:8_28 



c7
(5,11) C

8
(5,1ll 

0 1 2 3 4 5 6 7 8 9 10 0 1 2 j 4 5 6 7 8 9 10 
c9 

(5,1tl 
0 1 2 3 4 5 6 7 8 9 18 

1 1 1 1 1 i 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

1 1 1 
1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 lr 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

c10
<5,11l 

0 1 2 3 4 5 6 7 8 9 10 

Fig. 6a. 

The codewords with a zero in the 10th coordinate form, after 

deleting, this coordinate, a partition of V10 with number vector 
5 

~. 10 = (36 ,34,32,30,28 ,26 ,24' 14' 14' 14) • 

1 1 1 
1 1 
1 r 

1 1 
1 1 
1 1 
1 
1 
1 

1 
1 

1 1 
1 1 

1 1 
1 1 
1 1 

1 

1 

1 
1 

1 
1 

1 
1 
1 
1 
1 
1 

67 
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A.7 Partitions found with help of the method described in Sectien 2.3 

Since the partitions in Table 3, with A.7 as reference, are all 

found in the same way, we only give one,namely that of V~ 1 • The ethers 

are left to the rea.der. 
. i 

Let{C
1
(w,S)}.=Ol k-

1
and{C(w,6)}. 01 ._

1 
be the 

1. I I~ •" I ~ I I'" • • 1-l. 

5 w 6 w 
pa:rtitions of Vw (w=0,1,2,3) respectively Vw (w=0,1,2,3) which 

in A.l or just preceding. Then we define the following partition 

we found 

of v11 
3 ' 

U ( ~ Cj(1,5} ti>C(j +i) mod 5 (2,6) ), i=0,1,2,3,4, 
j 0 

CÏ+ 5
c3,11) :=C

0
(0,5l ®C

1
(3,6l 

U ( ~ Cj(2,5) 8C(j +i) mod 6 (1,6}), 1=0,1, ••• ,5. 
j=O 

From §2.3.2 it follows that every Ci(3,11), i 0,1, ••• ,10, is a 

constant weight code of length 11, minimum distance <: 4 and constant 

weight 3. From this we also have 

\Ci(3,11) I= 17, i =0,1,2,3,4, lci(3,11) I= 14, i= 5,6,7,8 

and 

\C 1
(3,11) I= 12, i 9,10. 

One further easily sees that all words of weight 3 are different and 

so {C
1

C3,11l} 1 =0,l, .•• , 10 is a partition of V~ 1 
with number vector 

,11 {17,17,17,17,17,14,14,14,14,12,12}. 
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CliAPTER 3 

CONSTANT DISTANCE CODE PAIRS 

3 • 1 INTRODUeTION 

In this chapter we are concerned with a problem, forrnulated by 

Ahlswede, El Gmal and Pang [1} in 1984. They defined a constant distance 

code pair {A,B) as a pair of binary codes of length n such that, for some 

cE:N,O::iê:;n, 

If (Ä,Bl,A,Bc JF~, is a code pair for which the abo"il'e property holds, we 

write Ó(A,B) =o. They were interested in the following function defined 

below 

M(n,o) ;=max {lAl . !BI I Ac F~, BeF~' ll(A,B) o}. 

In [1] Ahlswede, El Gamal and Pang proved the following upper bound on 

M(n,Ö). 

THEOREM 1. 

M(n,o) ;;; 2 2 l~J , for all n,c E :N with o:;; o;; n. 
0 

'rhey gave the following examples, where equality holds in Theerem I. 
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n 

Ai:={(O,O) '(1,1)}l2J 11 {O}E ' for i= 0,1, 
n 

B
0

:={(0,1) '(1,0) }l2J 11 {o}E, 

n 

B
1

:={(0,1) '(1,0J}l2J 11 {l}E' 

where E=O if n is even and E = 1 if n is odd. One immediately sees that 

n n . I 2L}-J 
Ai,Bi c JF2 , t>.(Ai,Bi) = l2J + ~E and Ai\ · \Bi\= 2 , i= 0,1. 

In [2] Hall and van Lint proved Theorem 1 using the observation that 

for an equidistant code pair (A,B), for any ~EA and ~EB, the codes a$ A 

and ~ $ B are orthogonal even weight codes. Moreover, they proved that 

essentially the only code pairs for which equality holds in Theorem 1 are 

the ones given in the example above. Ta be more precise weneed a 

definition. 

Two code pairs (A,B) and (A' ,B'), A,B,A' ,B' c JF~ are called equivalent 

if there exists a permutation cr of the positions of codewords and an x E JF~ 

such that 

whereO'(A}={(aO'(l)'acr( 2 )'"""'aO'(n)) \<a 1 ,a2 , ... ,an) EA}. In [2] Halland van 

Lint proved that any code pair for which equality holds in Theorem 1 is 

equivalent to one of the code pairs given in the example above. Since for 

these examples o = L%J ar o = r%1, the questian remained:"what is the exact 

value of M(n,o)' for 0 ;t L%J ar r%1 ?" 0 

In this chapter we will give an answer to this question. In Section 

3.2 wedetermine the exact value of M(n,o) for all n and o with O:So:Sn. 

InSection 3.3 we additionaly characterize all constant distance code pairs 

(A,B) of length n and constant distance o with 

\Al · \BI M(n,o). 
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3.2 THE EXACT VALUE OF M(n,o) 

From now on A and B will always denote two binary codes of length n 

such that ll(A,BJ ~ë and IAI·IBI =M(n,c). Such a code pair is called 

optimal. The following lemma shows that withoutlossof generality we can 

0 •<.!!. assume u~ 
2 

• 

LEMMA 2. For any n,o EN, 0$8 $n, we have 

M(n,o) M(n,n- o) • 

PROOF. Let (A,B) be a constant distance code pair with constant distance 

ê. Then obviously ll(,!.flA,Bl =n-ó. The result follows. 0 

From now on we assume 0 $ o $ %· The following examples give a lower 

bound on M(n,Ö). 

EXAMPLE 1. 

Bi {(01) (lOJ} 1 •vn- 2 i f i 012 ö n, o '= , , , ~ ó - i , or = I I , •• • ' 

where vn ,~ 
w wt(~) ~ wL 

Ai Bi n A Ai "i 5: I Ai I . I si I We have n,ö' n,öc 1F2, u( n,8'lJn,Ö) ~u and n,o n,ö 

Hence 

( "l > {22i(n-2i)lo<. <ó} o<-"<.!l Mn,u ~rnax \tS-i -J.- , _u_ 2 

The following theorern states that this bound is tight 

(1) 
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n THEOREM 3. For all nE JN, ÖE :N with O:>ê:> 2 , we have 

.- { 2i(n-2i) I M(n,u) =max 2 \ê-i 0 ;.>i:;; ö}. 

REMARK. one easily checks that 

max ö}= <:$>, if n(n 1 ) <: 4Ö (n - Ö) • 

For this reasen the inequality n(n- 1) <: 4o (n- o) will play an important 

rele in the proef of Theerem 3. 

Befere we can prove Theerem 3 we need to do some preliminary werk. 

Looking at the code pairs given in Example 1, it seems more or less natural 

to consider pairs of positions of codewords. That is why we define, for 

every i,j with i,jE{l,2, ••• ,n} and i•'j, 

a .. := the number of pairs {~A:}, 
~ J 

A, bEB with 

The condition a
1 

+ aj +bi +bj •1 mod 2 says that the positions i and 

contribute exactly 1 to the Bamming distance between ~ and ~· i.e., 

d((ai,aj), (b
1

,bj)) =1. Since 1\(A,B) =Ö,we have 

I: o'i j = ó(n- ó) lAl · IBI Ö(n- Ö)M(n,o) • 
OH<j:>n 

It fellows that there is an j with et
1

j;;; 2o(n -o) M(n,oJ/n(n-1). 

Using a permutation of the positions of codewords we can take care that 

o)M(n,o) 

We now try to find an upper bound on a 12 . For this reasen we 

partition the codes A and B as follows: 

(2) 



and 

where AE:]J , B e:u S: JF~ 2
, e:,).! E { 0,1}. Notice that some of the sets Asu , 

B8U may he empty. With this terminology we can write a
12 

as 

., 

The following two lemmas are useful in finding an upper bound on a
12

• 

LEMMA 4. For every E, u E ( 0, 1} the following holds: 

where ê = 1 + e: mod 2 and Ç = 1 +u mod 2. By symmetry, the röles of the 

A
8
u's and Be:u's are interchangeable. 

Without loss of generality we may take E and ]J equal to 0. Since 

A
00

nA
11

,.0, there is an ~·E ~- 2 
such that (0,0\~') and (1,1\~') bath 

_n- 2 
belang to A~ But, for any .e_• E: ,n,'2 we then have 

d((O,o!~'l. (o,o!e.•n =d<O,tl!!:.'l, (o,ole.'» -2 

and 

d((O,O\!!;.'l, {l,l!.e_'J) =d((l,ll!!:.'l, (1,1!!:_')) +2. 

sa B 00 = B 11 = 0 . , 

From B
00

=B
11 

0 and \A\·\B\ =M(n,o), it now easily fellows that 

(0,0\_s'l EA • (1,1:_s') EA. sa A00 A11 . 0 

The following lemma is obvious. 
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are constant distance code pairs of length n- 2 and constant distance 

ö 1. 

We are now ready to give an upper bound on a 12 and so indirectly 

an upper bound on M(n,o). We have to consider three cases, the first 

one of Which is special. 

CASE I: A f'lA--"'ll' and B -f'lB- >'\3, forsome <:,!1€{0,1}. 
€!1 E:ll €!1 E\l 

!oith Lemma 4 we then have 

ll <IB -1 + IB- ll E:\l E\l 

4IA I . IB -1· E\l' Ell 

And so with Lemma 5 

M(n,ol; a.12 ·" 4 M(n- 2,8 ll. 

0 

CASE II: A nA-- >'0 and B -nB- =\3, forsome E,\l€{0,1}. Exchanging 
Ell E\l Ell Ell 

the AE:ll's and BEll's gives an equivalent situation. 

With Lemma 4 and 5 we then have 

a.l2 <IAElll + IAë:iiiHIBEill + IBë;jlll 

2IA I· IB -UB- I :>2 M(n-2 I o-1). E\l E\l E].J 

CASEIII: A nA-- \3andB nB--=0,forallE,llE:{O,l}. 
El.l E:\.l E:IJ q_: 

Lemwa 5 now gives 

Tagether with (2) case rr and case rrr give 
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M(n,o) ;;;n(n-1) M(n 2,8-1) 

0 (n- o) 

Hence, we have proved the following inequality 

~ < { 4 n(n-1)} ., 
M(n,") - max 'ó(n _ o) M(n- 2,u- 1), 

An inductien argument new completes the preof of Theerem 3. 

(3) 

PROOF OF THEOREM 3. We use inductienon o. First note that the theerem 

is obviously true for o ~ 0 and all n E l'!. 

Let o 5:: 1 and suppose that fer all n E l'l with n- 2?; 2(o- 1) .the 

follewing equality helds 

From (3) it fellows that, for any nli: 2o, 

1

4M(n-2, ê-1) if n(n-1) 4Ö(n-o), 

M(n,o) ;;; 

n(n-1) M(n-2,6-1) ifn(n l)li:4o(n-o). 
o(n- o) 

Sc we have te distinquish two cases. 

First suppose n(n- 1) S 40 (n- Ó). We then have 

M(n,ê) :> 4 M(n- 2,o- 1) S 4 max {2
2

i ( ~-; :i) la:> i:> ó- 1} 

Secondly, suppose n(n -1);;; 4o(n- o). Then (n- 2) (n- 3) 
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n(n-ll -4(n-1) +1>4ó(n o) -4(n-1) =4(6 1) (n-1-Ö). From the remark 

directly below Theerem 3 we have 



max { 22i(n-2 2i\lo5:·<~-l}=(n-2) 
\ó-1-i} -l.~u Ó 1 · 

so 
~ < n (n- 1) ~ 

M(n,u)~Ó(n-Ö) M{n-2,u l)- n(n-1) (n-2) 
- ê (n- 6) ó 1 

-(n\ < { 22i(n-2i)lo<·<-"} - 0} - max Ó-i -].-V • 

Tagether with (1) both cases give 

.,. { 2i ( n - 2i) I . o} M{n,u) =rnax 2 ê-i 0 ::i l.::; · 
[] 

3.3 OPTIMAL CONSTANT DISTANCE CODE PAIRS 

In this sectien we shall prove that the code p~irs of Exarnple 

are essentially the only optima! constant distance code pairs. The 

observation at the beginning of Sectien 3.2 showsus that we only need 

to consider the case 2ê :> n. So we assurne 2ê ::; n. In the following {A ,B) 

is an optirnal constant distance code pair with constant distance ö. 

The lemma below deals with a sirnple case. 

LEMMA 6. If lAl :5 2 or IBI 2, then (A,Bl is equivalent to (A
0 

...,B0 ~~ 
n,u n,u 

or (A
1 

.,.,B
1 

.,.) defined in Sectien 3.2. n,u n,u 

~ Without loss of generality we may assume that lAl :5 2. If IA! 
n 0 0 

then B !:cffl V0 with {!:c} =A and hence (Ä,B) is equivalent to (An,o'Bn,ê). 

So suppose lAl =2. Then A={!:c1 ,~2 } with d(!:ct•!'!.zl =2À, forsome 

À E :N with 1;;; À;;; o. Since (A,B) is easily seen to be equivalent to 
1 1 

(An,ê'Bn,o) if d(!:ct•!:czl =2, we only need to prove À=L 

Counting the number of words !:_F: JF~ with d(~1 ,!:_) =d(~2 .~l =ê 

we •find I BI = eÀÀ) (nó -
2
ÀÀ) • Hence with Theerem 3 

77 



ma x { 22i (n- 2i \ 0 < . < ~} 
oi):~~~u 

(
n-2.\)< { 22i(n-2i) I o<. 6-.\ ~max o-i -l. 

So equality must occur everywhere, which implies À 1. 

As a consequence of Lemma 5 we have: 

6}. 

COROLLARY 7. If 6 = 1, then (A, 8) is equivalent 

er (A1 
1
,81 

1
J defined in Sectien 3.2. 

0 0 
te either (A 

1
,8 1> n, n 1 

n, n, 

PROOF. If o = 1 1 then one "easily" sees that IA I :> 2 er I BI :> 2, 

The following Lemma is very useful in proving Theerem 9. 
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[] 

0 

LEMMA 8. Using the notatien of Section 3.2 we have, for every E:,\lE {0,1} 
n-2 

and JF 
2 

IB u E:)l 
I ;;; 1, 

provided n (n- 1) ti: 46 (n - 6) and éi ;;: 2. The same holds if we interchange the 

Ac)l's and Bc\l's. 

PROOF. Without loss of generality we may take e = ll = 0 and ~ = 2.· With 

Lemma 4 we have 8
00 

n 8
1 

L = 0. If 8
00 

U 8
11 

=(i! there is nothing to be proved. 

So, let !:,' E B00 U 8 11 . 'nlen, for any ~· € A00 U A11 = VÖ =; we have 

d(~',!:,'l ö-2 or 6. Since,n(n-1) <:4o(n-o) implies n-2<:2(6-1) +2 the 

above observation gives us wt(!:,'l 1. so V~_~ is partitioned into A
00 

and A
11 

(by Lemma 4, A
00 

n A
11 

= (i!) , where A
00 

and A 
11 

are given by 



ar 

A { n-2 
oo=!!.'EVo-1 

Since any ether ~" E JF~- 2 
with wt(~") = 1 involves a similar but 

79 

n-2 I I different partition of V 
0 

_ 
1 

, we have B
00 

U B
11 

:> 1. (] 

We are now ready te give the characterization of all optimal constant 

distance code pairs. 

THEOREM 9. Any optimal constant di stance code pair of length n and 

constant di stance o, 2o :> n, is equivalent te one of the code pairs 

(Ai ..,,Bi..,), i=0,1, ... ,o, defined in Sectien 3.2. 
n,u n,u · 

PROOF. We use induction on o. With Corollary 7 we have that the theerem 

holds for o :> 1. Suppose the theerem is true for o- 1 i;; 1 and let (A,B) 

be an optimal constant distance code pair of length n and constant 

distance o. Without loss of generality we may assume that (see Sectien 3.2) 

>2o(n-o) M(n,o) 
a12- n(n-1) 

As in the proef of Theerem 3 we consider three cases. 

CASE I: A nA--= lil and B- n B - >' (il, for some e:, ]J E { 0, 1}. 
E]J E]J E]J E]J 

Then M(n,o) =a
12

=<1A I+IA--Il<IB- I+IB -ll~IA I·IB- [=4~I(n-2,o-1). 
E]J' E]J E]J E]J E]J E]J 

And sa with Lemma 4,5 and the induction hypothesis we have (A,B) is 

equivalent te (Ai ..,,Bi..,) forsome iE{1,2, ... ,ê}. 
n,u n,u 

CASE II: AE]JnAËiJ"0 and Be:iJnBE]J=0, forsome E,]JE{O,l}. 

From Sectien 3.2 wethen have n(n-1) i;;4ê(n-o), AE]J=AËiJ' BE]J=BËjj=0 
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anda12 =2IA 1·18- U8-I=2M(n-2,Ö-1). Since, n(n-l)l:4Ö(n-Ö) 
€:1.1 El.l El.l 

implies (n- 2) (n - 3) <: 4 ( ö - 1) (n- ö - 1) Lemma 5 and the induction 

hypothesis give, either 

or 

_n-2 8 n-2 
A =A--={x}, xE .11''- and -UB--=xtV_., 

E]J ElJ - - 2 E\l El.l - u - 1 

8- u 
El.l 

n-2 A n 2 
= {~), x E lF 2 and E\l = Aêil !, "' V 0 _ 1 

With Lemma 8, (4) gives (~) = M(n,o) = IAI·IBI ;> 3(~ = n. which 

contradiets n (n 1) <: 4a (n - Ö) • So ( 5j must held. But then I BI = 1 

(Lemma 8) and so with Lemma 5, (A,B) equivalent to (A0 
,, 8° _.,). 

n,u n,u 

CASE III: A nA-- lif and 8 n =lil, for all E,).IE{0,1}. 
E).l EU EU 

From Section 3.2 we have n(n 1) <:4a(n-ê) and 

(4) 

(5) 

a
12 

= IA
00 

u A
11

1·1B
01 

u B
10

1+1A
01 

u A
10 

I· iB
00 

u 8
11

1 = 2M(n- 2,0 -ll. 

Lemma 5 and the induction hypothesis now give that cA
00 

U A
11 

,B
01 

U 8"
10

> 

and cA01 U A10 ,B00 U 811 J are equivalent to (1\~_2 ,ö-l ,8~_2 ,o-l l, 

((n- 2) (n- 3) > 4(Ö -1) (n -ó 1)). So withoutlossof generality we may 

assume that A00 U A11 = {_Q) and 801 U 810 = ~ = ~. But then with Lemma 8, 

IA
01 

UA
10

1 = 1, so that lAl= 2. Hence, with Lemma 6, (A,Bl is equivalent 

1 1 
<An,ó' 8n,ol · 

I] 
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CHAPTER 4 

TOURNAMENT CODES 

4.1 INTRODUCTION 

In this chapter we discuss a problem which arose in conneetion with 

camma-free codes. A q-ary code V of length n is said to be camma-free if, 

for every pair of words (a 1 , ... ,an) and (b1 ,b2 , ••• ,bn) of V the words 

(ak,ak+l, ••• ,an,bl, ••• ,bk_ 1l , (k~2,3, •. ,n), are not in !! • conuna-free 

codes were first introduced by Griek, Griffith and Orgel [5] as a 

possible genetic coding scheme for protein syntbesis. The general mathe­

matical setting of such codes was presented by Golomb, Gordon and Welch 

in [3]. They considered the problem of finding tbe maximal cardinality 

of such a code. 

Let Wn(q) denote the maximal number of codeworcts in any q-ary 

camma-free code of length n. From the ctefinition of a camma-free code V 

we have tbat no twc codeworcts of V are a cyclic permutation of each 

other and every codeword ~=(a 1 ,a2 , •• ,an) of V is non-periodic, i.e., 

there is no i, O<i<n, such that 

Hence 

where 

B (q) = l L ~(ct)qn/d 
n n ctln 

is the nuwber of.non-periodic cyclic equivalence classes of sequences 

( 1) 

of length n formed from an alphabet of q letters. The summatien in (1} is 

taken over all divisors dof n and ~(d) is the Möbius function. In (3] 

Golomb, Gordon and Welch proved that Wn(ql attains the u~per bound Bn(q) 



for arbitrary q if n 1,3,5,7,9,11,13,15 and conjectured that this is 

indeed the case for all odd n. This conjecture was first proved by 

Eastman [2], whogave a construction for maximal comma-free codes of 

odd wordlength. A simpler construction for these codes was found by 

Scholtz [8]. 

For cómma-free codes of even length, the situation beoomes 

surprisingly complicated. It was proved by Golomb, Gordon and Welch 
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[3] that Wn(q) < (q) if q> • In particular w2 (q) =L~tJ<s2 (q) :(~2 ), 
W

4
(q) =B

4
(q) if q= 1,2,3 and w

4
(q) < (q) if q;; 5. The case n=4 and 

q: 4 was later solved in [6] by exhaustive computer search, which found 

w
4

(4) = 57 < s
4

(4). 

An impravement on the relation between k and n such that Wn (q) < Bn (q) 

for even n was given by Jiggs [6]: 

w (q} < B (q) if q> 2n/Z + n/2. 
n n 

A further impravement basedon Jiggs' proof was given by Golomb and 

Tang [4]: 

Wn (q) < Bn (q) if q > (n/2) c log n/Z + n/2, n;;; 8, 

where c= (ln2)/0.71. In Sectien 4.3 we give a proef of this result for 

c = 0.5. Moreover the proef is much simpler than that of Golomb and Tang 

[4]. We first present Jiggs' result. The modifications are due to Golomb 

and Tang. 

We consider the simpler problem of finding the maximal cardinality 

of a q-ary camma-free code V' of length n = 2k (k E N) in which every word 

is a cyclic shift of a word of the form (a,O,O, ... ,O,b,O, .•. ,O), where a 

and b are two different symbols of the alphabet separated by n/2- 1 zeros. 

So IV' I S (i)· Clearly, if IV•I <(i), th.,n wn (q) < Bn (q). 

A half-word in V• is a k-tuple which is either the initial or final 

half of some word in V' • For each symbol d of the alphabet and r E JN, 

r;;;: k, let ~(d,r) denote the half-word with d at the r-th position 
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and 0 everywhere else. The half-word ~(d,r) is called initial resp. 

final if it equals the initial half resp. final half of some word in V'. 
d d d d d) r {O 2 *}k To each symbol d we assign a wor ~ = (x

1
,x

2
, ••• ,xk c , 1, , , 

Where xd is defined in the following way 
r 

r 
2 if ~(d,r) is both initial and final, 

d if ~(d,r) is final only, 
x ::e: 

l 0 if ~(d,r) is initial only, r 

* if ~(d,r) is neither initial nor final. 

EXAMPLE. Let q; 5, n = 2k = 4 and let V• be given by 

Th en 

Jiggs 

1 x 

4 
x 

v· 

(0,*) 

( 1, 2) 

1 
1 
2 
2 
2 
0 
0 
0 

2 
x 

0 
0 
0 
0 
0 
0 
0 
3 
3 
4 

2 0 
3 0 
4 0 
5 0 
3 0 

I . 4 0 
5 0 
0 4 
0 5 
0 5 

(2,*) , x
3 

(1 ,0) 

(1,1). 

showed that the words xd have the following two properties if 

(i): 

.(i) If d"'b, then xd and xb cannot both be 2,for any 1:>r:>k. 
r r 

(ii) If d"'b, there exists an r, 1 :>rSk, such that (x~, x~)"' (0,1) 

or (xd, xb) =(0,1). 
r r 

(In particular distinct letters of the alphabet must have 

distinct words) • 
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The first property implies that the number of distinct words containing 

a 2 is smaller than or equal to k while the secend one implies that the 

number of words xd containing no 2 is smaller than or equal to 2k. So, 

if IV' I (q) - < 2n/2 1 n/2 
2 ,then q ~. + n 2. Hence Wn (q) < Bn (q) if q > 2 + n/2. 

The impravement of Jiggs' results by Golomb and Tang is a consequence 

of the following observation. 

THEOREM 1. If IV' I (i),then for every two different symbols b, dof 

the alphabet and every two d~fferent coordinates r and s we do not have 

This observation led to the definition of a {0,1,*} tournament code. 

A {0,1,*} tournament code C of length k is a subset of {O,l,*}k such 

that for any two distinc·t codewords ~,!::_ E C: 

(ii) ~1H<j$k (~ ~)}] 

where o(~,!::_):= I{ il(ai, bi) E{(O,l) , (1,0)}}1 is the distance between 

~ and !::_. Let t(k) denote the maximum number of codewords in any {0,1,*} 
n n tournament code of length k. Then we have W (q) <B (q) if q>t(2) + 2· 

1 kn n 
In [ 4] Golomb and Tang prove t (k) ::; kc og , (logarithm to base 2) , 

k;:4, w.ith c =(ln2)./0.71; (This upper bound and method for establishing 

it were suggested by R;t.. Graham.). In Sectien 4.3 111e give a simple proof 

of this upper bound for c~o.s. To be complete we first give some 

constructions for {0,1,*} tournament codes in Sectien 4.2. We conclude this 

chapter 'llith the determination of the exact value of t(k) for k~t,2,3, .. ,9 

in sectien 4. 4 . 
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4 • 2 A LOlvER BOUND 

We repeat the definition of a {0,1,*} tournament code C of length k. 

DEFINITION 1. A code C of length k over the alphabet {0,1,*} is called 

a tournament code if, for any two distinct codewords ~~~ the following 

two conditions hold: 

( i) (2) 

(ii) 

Since Ö(~,~) > 1, there is at least one coordinate i, 1 ;l; i :S k, such that' 

(a
1

,bj) (0,1) or (1,0). If (a
1

,b
1

l = (0,1), it fellows from condition 

(ii) that (aj,bj) "'(1,0) for all j,l:Sj:Sk, and we shall say ~.,.~; 

this defines the tournament. 

DEFINITION 2. The maximal value of ICI over all tournament codes of 

length k is called t(k) . 

From now on C will always denote a {0,1,*} tournament code. The matrix 

with as rows the codewords of C will be denoted by c • If ICI = t(k), 

we call the code optimal. 

LEMMA 3. For every k E:N there is an optimal code C of length k wi th 

E_ E C, 1 E C. 

PROOF. If C is optimal and 2. '1. C, then clearly C must contain a word with 

distance 0 to E_.Replace this word by 2_ to obtain a new optimal code. 

Similarly for 1. 

0 
The following lemma is trivial. 

LEMMA 4. If C is optimal then ë is optimal. 
0 
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Until recently Theerem 5 gave the best lower bound on t(k). The 

proof consists of a construction that produces a long tournament code 

from two shorter ones. 

THEOREM 5. t(k +i) ;;: t(k) + t(t)- 1. 

PROOF. Let C be optima! of length k and let~ be the top row of C and 

l the bottem row. Similarly with V for length e. Consider the code 

with corresponding matrix, 

k t 

t(k) I c 0 

'h 1 1 .•. 

! 

J D t(tJ 

Clearly, this is a tournament code of leng·th k+t and cardinality 

t(k) + t(t) -1. 

CORDLLARY 6. t(nk) ~ 1 +n(t(k)- 1). 

This shows that k- 1t(k) exists (possibly 00). Fora while it 

[] 

[] 

was 

believed that this limit was 2 until Golomb and Tang (1982) found that 

t(7J ~ 16. The following theerem found by Collins et al. (1984) shows 

that in fact the limit is oo. 

THEOREM 7. For nE:N we have t(n
2

+n+1) ;;:n(n
2

+n+l) +2. 



PROOF. The following constructionfora tournament code C of length 

n2+n+l is due to Collins et al. (1984). The adjustments: are from van 

Lint [7]. We will notprove that the construction indeed gives a 

tournament code of size n(n2+n+l); we refer to [7]. 

The code C,we shall construct 

shifts of the words of a set {.s.0 

consists of Q•! and all the cyclic 

, .•• ,.s_n-1} • To define these 

words we number the coordinates with the integers mod n
2

+n+1, starting 

with -1 (i.e., for the first coordinate). The coordinates ~-1 will 

have their index written in the (n+1)-ary system. So (x,y) denotes the 

coordinate with index (n+l)x+y. Therefore o,;x,;n-1, O:>y:>n. The 

definition of the words is as fellows 

i) each i i 
= 1 For take .s_ _

1 I 

0 in coordinate place (x,y) if x ;;: i and x + y ;;;: n 1 , 
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J i has in coordinate place (x,y) .s. if x :/; i - 1 and x + y ;;: n - 1 , ii) 

l * otherwise. 

0 

To be complete we mention that the first code in this class is the 

code of length 7 found by Golomb and Tang {1982). The secend one of length 

13 was, indepa~dently of collins et al., found by Abels, Janse and 

Verbakel (1984). From their work we copied the following list of 

tournament codes of length k 2,3, .•• ,13, the first eight of which are 

optimal ( see Sectien 4. 4) • Obv iously t ( 1) = 2. The optimal { 0, 1 , *} 

tournament code cl of length 1 is equal to cl= { (0) '(1)}. 
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c2 c3 c4 es c6 c7 es 

r ~n 000 0000 00000 000000 0000000 00000000 
1*0 0*01 1*1*0 1**1*0 **1*110 *11*1**0 
*01 001* *0*01 *1**01 *1*110* *1*1**01 
01* 01*0 *101* **101* 1 *110** 1*1**011 
111 0111 10*11 1*0*11 *110**1 *1**011* 

1111 0*11* *011*1 110**1 * 1 **011 *1 
0001* 01*11* 10**1*1 1 *0 11 * 1 * 
11111 0*001* 0**1*11 1011*1** 

00*1*0 00*0**1 0***1 *11 
*00*01 0*0**10 0**0*001 
111111 *0**100 0*0*001* 

0**100* *0*001** 
**100*0 0*001**0 
*100*0* *001**0* 
100*0** *01**0*0 
1111111 *1**0*00 

1000*0** 
11111111 

c9 c1o 
000000000 0000000000 
000111*** 0**00*0001 
*111**1 *0 **00*0001 * 
1*1*1**01 *00*0001** 
11***101* 00*0001*** 
***1*0*11 0*0001***0 
****011 *1 i *0001***0* 
***01*11* 0001***0** 
1*01111** 001***0**0 
*01111 *1 * 01***0**00 
01*111**1 1***0**001 
0***00*01 0**0011**1 
*0*0*001* 011**1***0 
**000*1*0 11 **1 ***01 
000*010** 1**1***011 
00001**0* **1***0111 
0001*0**0 *1***0111* 
*01****00 1 ***0111 *1 
01****0*0 ***0111*11 
1*0***00* **0111*11* 
111111111 *0111*11** 

0111*11**1 
1111111111 

Fig. 1. List of {0,1,*} tournament codes Ck of length k, 1<=2,3, ... ,10. 
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Cu c12 c13 
00000000000 000000000000 0000000000000 
*0**00*0001 **0**00*0001 ***0**00*0001 
0**00*0001* *0**00*0001* **0**00*0001* 
**00*0001** 0**00*0001** *O**ÓO*OOOl** 
*00*0001*** **00*0001*** 0**00*0001*** 
00*0001***0 *00*0001***0 **00*0001***0 
0*0001***0* 00*0001***0* *00*0001***0* 
*0001***0** 0*0001***0** 00*0001***0** 
0001***0**0 *0001***0**0 0*0001***0**0 
001***0**00 0001***0**00 *0001***0**00 
*1***0**001 001***0**00* 0001***0**00* 
1**1***0**0 01***0**00*0 001***0**00*0 
1***0**0011 1***0**00*00 01***0**00*00 
*0**0011**1 *1***0**0011 1***0**00*000 
0**0011**1* 1***0**0011* 11 **1 ***0**00 
0011**1***0 **0**0011**1 1**1***0**001 
*11**1***01 *0**0011**1* **1***0**0011 
11**1***011 0**0011**1** *1 ***0**0011 * 
1 **1 ***0111 *0011**1***0 1***0**0011** 
**1***0111* 0011**1***0* ***0**0011**1 
*l ***0111 *1 11*11**1***0 **0**0011**1* 
1 ***0111 * 11 1*11**1***01 *0**0011**1** 
***0111 *11 * *11**1***011 0**0011 ** 1 *** 
**0111*11** 11**1***0111 **0011**1***0 
*0111*11**1 1**1***0111* *0011 **1 ***0* 
0111 *11 **1 * **1***0111*1 0011**1***0** 
11111111111 *1***0111*11 011**1***0**0 

1***0111*11* 111*11**1***0 
***0111*11** 11*11**1***01 
**0 111 *11 **1 1 *11 **1 ***011 
*0111*11**1* *11**1***0111 
0111 *11 **1 ** 11**1***0111* 
111111111111 1**1***0111*1 

**1 ***0111 *11 
*1***0111*11* 
1 ***0111 * 11 ** 
***0111*11**1 
**0111*11**1* 
*0111*11**1** 
0111*11**1*** 
1111111111111 

Fig. 2. List of {0,1,*} tournament code Ck of length k, k: 11,12,13. 
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4.3 AN OPPER BOUND 

In this section we give a simple proof of Grahams upper bound on 

t(k) mentioned in Section 4 .1. We first note that clearly t(k) is stricktly 

increasing. The following observation essentially proves Grahams result. 

Let C be a tournament code of length k with .2_, l E C (Lemma 3) . By 

permuting rows and columns, the corresponding matrix c can be put in the 

following "stanàard form". 

+--- t ---++k 1-t-+ 
-

A B 

0 

c D E 

I 
* 

J 
F G 

* ..... 

Fig. 1. 

Here, every column of A contains a 1 but no column of B contains a 1. 
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From definition 1, in particular condition (ii), it fellows that 

no column of D has a 0, while every column of E may have a 0. This 

shows that C or ë has a standard ferm with l :> l k;t J . 

THEOREM 8. t(k) ~ t(k- 1) + t(l.), forsome i, 0 l~lk;tJ 

PROOF. Let C be an optimal code with c in "standard form" with l :> lk;tJ 

(see Fig. 1). By the definition of B the rows of the matrix A forma 

tournament code of length l. SoA has at most t(.f.) rows. Clearly the 

rows of(~!) forma tournament code of length k-1. The result fellows. 

COROLLARY 9 • t(k) 

PROOF. Applying Theerem 8 rk ; 11 times and using the fact that. t is 

a strictly increasing function, we have 

t(k) :à t(k -

+ 
r~1 2 

I: 
i = 1 

lk - iJ 1';(-2-) 

THEOREM 10. t(k) <k0 •5 log k for k> 7 (logarithm to base 2). 

PROOF. We use induction on k. In Sectien 4.4 we will show that t(4)=6, 

t(5)=8, t(6)=11, t(7)=16, t(8)=18 and t(9)=21. With Theerem 8 and the 

above values of t(k), k=4,5, .•. ,9, one easily checks that the assertien 

u 

[J 



is true for 8 :ik ,; 16 ( see also Table 1 of Sectien 4 .4) . 

Let k ;;: 17, then from Corollary 9 and the induction hypothesis 

we have 

tk - lj 
k + 3 lk -2 1J0.5 leg ---2---:;; r-2-1 < 

0.5 log (~) 
( (~) 2 ) :;; 

2 

ko.s log k ~ ko .s log k 

0 

There is a tremendous gap between the upper bound of this sectien and 

the lower bound of Sectien 4.2. The upper bound is probably nat too 

good but iroproving it does not look easy. The following sectien gives 

an indication. 

4.4 T'!E EXACT VALUE 'OF t(k) FO!l k ~ 2,3, ••• ,9. 
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In this sectien we will prove tha t the codes of length k, 2 ::i k ~ 9, 

of Sectien 4.2 are optimal. It is clear that this is indeed the case 

for k = 2, while the case k = 3 fellows directly from Theerem 8 ·and t( 1) = 2. 

To prove t(4)=6 and t(5)=8, we use the following obvious lemma. 

LEMMA 11. For any tournament code C of length k we have, 

*}I . 
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~ Since any two codewords from C have distance greater than or 

equal to 1, any binary word of length k can have di stance 0 to at most 

one codeword of C • For each codeword E. E C there are ,clearly Zn* {_::) 

different binary words of length k having distance 0 to c. The result 

fellows. 

D 

we will use this lemma to show that t(4) ~6. From Theerem 6 we have 

t(4) ;i; t( 3) + t( 1) = 7. Assume t(4) = 7 and let C be an optimal code 

of length 4 with .Q_,l E C. Since equality holds in Theerem 8 every 

column of C can contain at most t(1) + t(2) = 2+3 = 5 non * elements. 

Hence C contains at least 4 x ( 7-5) 

we then have 

8 *' s. From Lemma 11 and .Q.•l E C 

2,+ r 
.<::. E C, 

2n*(E_) :> 24 and r n*(_::);: 8. 
.<::. E C, 

This is impossible. Hence t(4)= 6. The cas.e k=5 is similar. 

The case k=6 and k=7 are again a direct consequence of Theerem 8 

and Sectien 4.2. So we are left with k=8 and k=9. For these cases we 

need some more machinery. 

Let C be a tournament code of length k and let the coordinates 

be numbered from 1 up to k •. Then we define 

i<j : éO 0 and cj = 1 ] • 

Furthermore we define the veetors ~r, , E { 0, 1 , *} k, r = 1, 2, .• ,k, by: 

i 
0 in coordinate place r, 

r has in coordinate place i if r< i, ~ 

* otherwise 

and · 

1 
in coordinate place r, 

br has 0 in coordinate place i if i<r, 

* otherwise. 



REMARK. The words ar .!;{, r 1,2, .. ,k satisfy condition (ii) of (2). 

LEMMA 12. let C be an optimal tournament code of length k,for which 

0 
fC n*(~) is minimal among all optimal codes of length k and let ~r 

and ~r, r =1,2 •• ,k, bedefinedas above. Then the set of words 

{~r Ir= 1,2, •.. ,k} U {~r Ir 1,2, ••. ,k} U Csatisfies condition (ii) 

of (2). FUrthermore, for every r = 1,2, .•• ,k there is a unique word 

E. € C wi th di stance 0 to • Similarly for 

PROOF. The first assertien of Lemma 12 is a direct consequence of the 

definitions of respectively 1 r = 1,2, •• ,k. So we only have to 

prove the secend one. 

Since C is optimal, there is at least one word of C that has 

distance 0 to ar. Assume there are two different codewords ~ and ~ 

in C that have distance 0 to ~r· Since ~ and d have distance greater 

than or equal to 1, there is an s, 

Since c and d both have distance 0 to 

of ar we then have r-'s and r 1- s. So 

s :ik, where 

, ar=*. From 
s 

d =*. Now de fine r . 

and d
9

=1 say. 

the definition 

d' Ë {O,l,*}k by 

Si f 11 i ith d ' 0 1 d 0 and so ar=*, it fellows r-f.i. nee 1 or a w i = , a so i i 

So the wordsof {d'} UC satisfy condition (ii) of (2). 

But then C':= {~'}UC\{_2) is an optimal tournament of length k with 

!: n.*Ccl -1. A contradiction. 
s:. e:c -

The following lemma is "trivia!". The words ar 

as defined above. 

0 

' r 1 , 2 , . ~ , k, are 
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LEMMA 1:3. A codeword .::_ E C, .::_ "'~·..!. that has distance greater than or 

equal to 1 to all the wordsof {~r Ir= 1,2, •• ,k}U~r Ir= 1,2, .• ,k} 

has at least three coordinates equal to 0 and at least three coordinates 

equal to 1. 

Fo-r any À E {o, 1 , *} and .:::_ E: {o, 1, * }k, let '\ (.::_) den_ote the number of 

coordinate places i with c
1

= À. The following lemma is obvious. 

LEMMA 14. Let C be an optimal code of length_ k. Then for all c € C 

[] 

PROOF. By permuting rows and columns one can achieve that C looks like _ 

0 0 ••• 0 1 1. •. 1 * * ... * ... c 

A B D 

c 

E F G 

Where each row of A contains at least one 1. It follows that B is a 

matrix with all entries equal to 1 or * and E is a matrix with all 

entries equal to 0 or *· Hence the rows 

(.!..:...:_! I * · · *) form a tournament code of 

f (o .. o I*··*> . o ~ --0-- respect1vely 

F G 
length n-n

1 
(.::_) respectively 

n-n0 (.::_). The result fellows, 
0 

COROLLARLY 15. t(8) 18 and t(9) 21. 



PROOF. From Sectien 4.2 we already have t(8) ~ 18. 

Let C b:e an optimal code of length 8 for which the sum I: n* (E_) 
c E C 

is minimal among all optimal codes of length 8. Let the words ~rand 

~r, r = 1,2, .. ;8, bedefinedas above. From Lemma 14 and t(8) ~ 18 

it fellows that there is na codeword E. ( C with bath n
0 

(E_) ~ 3 and 

n 1 (E_) ~ 3. Hence with Lemma 12 and 13,t(8) ;:i I { Ir= 1,2, .• ,8} I+ 
l{~rl r = 1,2, •• ,8}1 + 2:i8 + 8 + 2 = 18. 

The proef of t(9) = 21 is similar to that of t(8) 18. 
0 

We conclude this sectien with a small table of lower and upper 

bounds on t(k) for k=10,11, •. ,21. Inthelast column of Table 1 we 

indicate the theorems and lemmas we used to derive the upper bound. 

The lower bounds are from Abels, Janse and Verbakel [1]. 

k 
Lower bound Upper bound Cernment 

on t(k) on t(k) 

10 23 27 Th 8 

11 27 33 Th 8 + L 11 

12 33 40 Th 8 + L 11 

13 41 48 Th8 + L 11 

14 43 57 Th 8 

15 46 73 Th8 

16 48 81 Th8 + L 11 

17 54 92 Th 8 + L 11 

18 59 108 Th 8 + L 11 

19 66 124 Th8 + L 11 

20 75 141 Th 8 + L 11 

21 86 
i 

159 Th 8 + L 11 

Table. 1. 
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SAMENVATTING 

In dit proefschrift worden vier problemen uit de coderingstheorie 

behandeld, met als voornaamste doel het bepalen van bovengrenzen voor 

de maximale cardinaliteit van en het vinden van goede constructie 

methoden voor de betreffende codes. Het begrip afstand speelt hierbij 

een belangrijke rol. Om de lezer enigszins vertrouwd te maken met de" in 

dit proefschrift gebruikte terminologie, geven we in hoofdstuk 0 een 

korte inleiding in de coderingstheorie. 

In hoofdstuk 1 houden wij ons voornamelijk bezig met het bepalen van 

blok codes voor de betrouwbare opslag van informatie in computer 

geheugens met defecten en random errors. De hier behandelde constructie 

methoden doen een stevig beroep op reeds bestaande constructies voor 

lineaire en niet-lineaire codes voor het binair symmetrisch kanaal. 

In hoofdstuk 2 behandelen we twee constructie methoden voor 

constante gewichts codes. Vooral de tweede constructie geeft scherpe 

verbeteringen op reeds bestaande ondergrenzen voor A(n,4 1 w). Het bepalen 

van partities van V::;{.=_ E JF~ J wt(.=_) = w} in zo weinig mogelijk constant 

gewicht codes met"minim1l!l1 afstand 4 is in deze constructie van cruciaal 

belang. 

In hoofdstuk 3 geven we de volledige classificatie van alle optimale 

code paren ván lengte n en constante afstand ê, n 1 Ö 1';: JM I 0 :i ö :i n. Daartoe 

bepalen we eerst de waarde van M(n 1 Ö) 1 

M(n 1 Ö) ={JAJ.JBJJ A1 Bc Jl"~ 1 ll<A~B) =ÖL 

In het laatste hoofdstuk houden we ons bezig met het bepalen van 

bovengrenzen voor de maximale cardinaliteit t(k) van {0,1,*} tournament 

codes van lengte k 1 k E :N. We geven een verscherping van Graham' s 

bovengrens voor t(k), k > 7 1 en bepalen vervolgens de exacte waarden 

van t(k) voor k = 1,2, •.• ,9. 
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STELLINGEN 

Zij C een binaire lineaire code met woord lengte 26, dimensie k 

en minimum afstand 8. Dan geldt: k < 13_, en dus 

B(26,8) = 212 

HELGERT, B.J. and STINAFF, R.D.: Minimum Distance Bounds for BiQary 

Linear Codes. IEEE. Trans. on Info. Theory, vol. IT-19, May 1973, 

344-356. 

2 Er bestaat een uniek decodeerbaar code paar (C,Vl voor het two-acces 

binary adder- channel met woord lengte 6 waarvan de som rata R
1

+ R2 
gelijk is aan 

Rl + R
2 

= 0.59749 + 0. 72032 = 1.31781 

(IC I = 12 en IV I = 20) • Dit is een nieuw record. 

COEBERGB van den BRAAK, P.A.B.M. and van TILBORG, B.C.A.: A Familg 

of Good Uniquely Decodable Code Pairs for tbe Two-Acces Binary Adder 

Cbannel. IEEE Trans. on Info. Theory, vol. IT-31, Jan. 1985, 3-9. 

3 Zij C een {0,1,*} tournament code van lengte 10. Dan geldt ICI:,; 23. 

Dus volgt uit tabel 1 van hoofdstuk 4 dat 

t(10) =23. 

4 Zij C een constant gewicht code van lengte 17, min~ afstand 8 en 

constant gewicht 8. Dan geldt: IC I :0 34, en dus 

A(17 ,8,8) = 34. 

MacWILLIAMS, F. J. and SLOliNE, N .J .A. : The Theory of Error-correcting 

Codes. Amsterdam -New York- Oxford: North Bolland, 1977. 

5 Zij ~(n,o) :=max {IAI·IBII A,B€{0,1, ••• ,k-1}n, t.cA,B> =o}. 

Vermoedelijk is de waarde van ~(n,o} gelijk aan 



{1é (n- )i) i- 2i lo:;; i:> min {.§.
2

, 
\Ö- 2i 

} als k = 3, 

alsk~4. 

voor k = 4, 5 is dit bewezen door Ahlswede (to appear) en voor k <: 10 

door van Pul (unpublished) . 

6 De lineaire programmeringsgrens voor binaire codes is een generalisatie 

van de Plotkin grens. 

7 Zij C een binaire [n,k,d]-code met overdekkingsstraai p. 

Zij C~:={;:_ECic 1 =e:l, is1,2, ••• ,n en e:sO,l. De norm N van de code C 

wordt gedefinieërd'door 

Dan geldt 

N := min 
l:iii:iin 

N ::> 2p - 1 + r~l-

AJ.s N $ 2p + 1, dan noemen we de code C normaal. Uit bovenstaande 

ongelijkheid volgt dat iedere binaire lineaire code met minimum afstand 

:> 4 normaal is. Vermoedelijk zijn alle binaire lineaire codes normaal. 

GRAHAM, R.L. and SLOANE, N.J.A.: On the Cover:ing Radius o:f Codes •. IEEE 

Trans. on Info. Theory, vol. IT-31, May 1985, 385-401. 

8 Standaardisatie van cryptesystemen leidt tot diversificatie. 

9 Ondanks de resultaten van Tsfasman, Vlädut en Zink, is het vermoedelijk 

waar dat de Gilbert-Varshamov grens voor binaire codes scherp is. 

TSFASMAN, M.A., VLADUT, S.G. and ZINK, Th.: Modular aurves,Shimura 

curves and Goppa codes, better tban Varshamov-G.ilbert bound. Math. 

Nachr. vol. 104, 1982, 13-28. 

10 De AID-regeling voor jonge onderzoekers is equivalent met de BKR­

regeling voor beeldende kunstenaars. 




