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ABSTRACT

This thesis is concerned with four topics from coding theory. The
first one of these, treated in Chapter 1, is that of coding in an imperfect
computer memory with stuck-at-defects and random errors; Thig coding
problem finds its origin in a paper by Kusnetsov and Tsybakov (1974). After
a short historical overview in Section 1.1, a description of the préblem
and some related problems is given in Section 1.2. The Sections 1.3 up to .
1.5 deal with lower (i.e., constructions) and upper bounds for the varicus
functions defined in Section 1.2, The function A(m,d), i.e., the largest
size of any binary code of length n and minimum distance 4, plays an
important rdle in these sections.

In Chapter 2 we treat two construcﬁions for constant weight codes.
These constructions result in improved lower bounds on the function Atfn,d,w),
i.e., the larxgest size of any binary cons\tant weight code of léngth n, k
minimum distance 4 and constant weight w. This function plays an important
r8le in determining upper bounds-on the function A(n,d) te.g.: Linear
Programming Bound and Johnson bound). ;

In Chapter 3 we give the complete solution of a problem formulated

- by ahlswede, El Gamal and Pang in 1984. They define a constant distance
code pair (A,3) as a palr of binary codes of length n such that for some
§ € N, 0£8<n,

V&“ VgeB {atapy =61 .

23]
They prove that for such a code pair IM . \5| s 2 2 . with the help

of coding theory Hall and van Lint gave a nice proof of this inequality
and moreover characterized all code pairs for which equality holds.
Since for these code pairs §= l_-g—J or [%'l, the guestion remained: "what
happens when § is fixed?". Chapter 3 gives an answer to this question.
In Chapter 4 we discuss a problem which arose in connection with
comma~free codes. Let Wn(q) denote the maximal number of codewords in

any g-ary comma-free code of length n. Eastman (1965) proved that



L n/a_,
Wn(q) = T u(dg ~.Bn(q) if n is odqd.

d[n
For even wordlength n the situation is much more complicated. In 1984
Golomb and Tang proved that

ng(q) <sz(q) if g> t(k) +k,

where t{k) is the maximal cardinality of any {0,1,*} tournament code of
length k. Chapter 4 deals with the problem of determining lower and
upper bounds on t(k)}, k€ W,

In order to make this thesis self—containeq, we start with a short

introduction to coding theory in Chapter Q.
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CHAPTER 0
INTRODUCTION

The purpose of this introduction is to make the reader familiar
with some of the notions of coding theory; for a course in coding
theory we refer the reader to [1] band [2]. Wwe restricted ourselves
to the binary case.

LetF’z‘ be the n~dimensional vector space over F . A block code

2
C of length n over JF2 is a subset of ]Fg. The elements of C are called
codewords. The set of elements of ‘.II.-"z is called the alphabet of the code C.

A k-dimensional linear subspace of IFI; is called a binary linear

block code or binary [n,k]-code.

The Hamming-weight wt(x) of a vector x€ I-:Zl is the number of non-zero
coordinates of x. The Hamming-distance d{x,y) of two vectors x and y~
m]E'g is defined by d{x,y) :=wt(xey). In words: 4d(x,y) is the number
of coordinate places in which x and y differ. The minimum distance 4

of a code C is defined by
d:= min {d(x,y) | x€C, y€C, z=y}.

A block code of length n and minimur distance d is called an
{n,d}-code. An {(n,d)-code with M codewords, we call an (n,M,d)-code.
An (n,M,d)~code of which all codewords have the same Hamming-weight,

w say, is called @ constant weight code or an (n,M,d,w}-code. A linear

[n,k]l-code with minimum distance @ is called an [n,k,dl~code (the
minin;um distance in a linear code equals the minimum weight among all

non-zere codewords).
n.

P we define an innerproduct { , } in the

In the vector space I

usual way .



V?EE Frzl YX.E Fg [x,y) := XYy BV, @ ..exnynl v

where # denotes the usual addition in ¥,. 1f C is an .[n,k]-code, then
the dual code C'L of { is defined by

1 .

s
The code ' is an [n,n -k]-code.
A generxator matrix G of an [n,kl~code C is a kX n matrix, the rows

of which form a basis of C. A parity-check matrix H of a linear code C

is a generator matrix of the code C'L Both G and B define the code C.
The matrices G and B satisfy GHT =0 {evaluated in 15‘2) .

Block codes are used for reliable transmission of information over
noisy channels. Examples of noisy channels are: telephone wires,
telegraph wires, computer memories, etc. A simple model of sucﬁ a channel
is the binary symmetric channel, i.e., a channel over which we can send two
different symbols 0 and 1 and for which there is a probabi:lity p that a.
transmitted 0 (resp.l) is interpreted by the receiver as a 1 (resp.0).

The following figure illustrates the information-transmission scheme.

c X
| ERCOARY e BSC  |mmemm | DECOGRY, | et

hd
noise
Fig. 1.

We use the following notation:

u€{0,1,...,M~1}=: U the input message set, ¢ € ]Fg a channel
input word, x € ]Fg a channel output word, v€ {0,1,..,M~1} the



n
output message and e € 15‘2 an error vector describing the noise
on the binary symmetric channel.

The channel input word ¢ and channel output word X are related as follows

x=cte ,

vhere ¢ is the usual addition in JFZ which operates on the vectors

componentwise .

in order to protect the information, sent over thg BSC channel,
one can use the codewords of a binary (n,M,d)-code C as channgl input
words. A one-to—ohe mapping ¢, $: U~+C, is used to map any message
u€U onto a codeword d(u) =c€ C. The function ¢ is called an encoding

function for C. a particular decdding function ¥, ¥ zE‘g

+ u, for C
can be defined by

vy = 87N

where ¢' is the (not necessarily unique) codeword of C which lies closest
- a-1 -
to x=c+e. If wk{e) £ - 5~ then one easily sees that ¢' is equal to ¢
ad-1
2

and hence v is equal to u. We say that C is a |

}— erxor-correcting

code.

The decoding principle described above is known as maximum likeli-
hood decoding. It requires the determination of the (not necessarily
unique) codeword c' of C, vhich lies éiosest to the received channel
output word x. This is a laborious task if the cardinality of C is big
and Chas no structure whatscever , The linear structure of a code can
be utilized to make the decoding somewhat easier. )
Let C be a binary linear code with parity check matrix H. For every
x€ Fg we call EHT the syndrcme of x., From the above we have that the
codewords of C are characterized by syndrome 0. The syndrome is an important

tool in decoding received vectors %. Since C is a sub-group of ]E‘g we can



partitionlf‘g into cosets of {. Two vectors X and y are in the same coset
iff they have the same syndrome (EHT =y_HT ® x ey £C(). Therefore,if a
vector ® is received, where x=cee, _c_€ C, then X and e have the same
syndrome. It follows, that for maximum likelihood decoding of x one

must choose a vector e' of minimal weight in the coset with syndrome

ggiT and then deéode X as ®-1(§eg'} . The vector g’ is called the coset
leadex. Again if wt(e) £ d;l then e' iz equal to e and hence we will

decode x correctly.

Since time is money, we must in general keep the time needed for
the transmission of information as short as possible, Let C be a binary
{n,M,d)~code, Then the rate R of (,defined by

is a measure for the efficiency of the code (. Since, for a message
ufy, with lU] =M, we need on the average log M bits to distinguish u
from all other messages in U, the pumber n{(l-R) gives an indication of .
the loss of time in transmission when the code { is used for error
protection. It will be clear that the higher the rate of C the lower
the error-correcting capability of . So knowledge of the following

two functions is of the utmost importance.

A(n,d) :=maximum number of codewords in any binary code (linear
or non-linear) of length n and minimum distance d,
and
B(n,d) :=maximum number of codewords in any linear binary

code of length n and distance d.
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CHAPTER 1

COMPUTER - MEMORIES WITH "STUCK-AT" DEFECTS- AND RANDOM ERRORS

1.1 INTRODUCTION

In this chapter we consider the problem of reliable storage of
information in an imperfect binary computer memory. We consider a
memory that is composed of a very large number of binary memory cells
which are partitioned into memoiy units of n cells. (n the block-length
of the error-correcting code to be used). We are concerned with two
types of imperfections that affect individual memory cells. The first
type is a defective memory cell that is unable to store information;
its current value cannot be changed. Such cells are calleé stuck—at
cells. We distinguish between stuck-at-0 and stuck-at-l cells. When
a 1 is.written into a stuck-at-0 cell an error results. The second
type of imperfection is a noisy cell which is occasionally in error.
The distinction between these two types of imperfections is that stuck-
at defects are pérmanent, while errors caused by noise are tiansient.

By testing a memory unit it is possible to determine the locations
and natures of the stuck-at cells. The side information that describes
the state of the defects can be incorporated in the decodipg or in the
encoding of block codes. Depending on hew this stuck-at information is

.yexéctly used, this gives rise to a number of different coding (reliable
storage) problems. We mention the two most "interesting™ ones.

In the first one, the locations of the stuck-at-cells are assumed
to be known only at the decoder. These cells then act as erasures. Thus,
it makes sense to apply known technigques for decoding block codes with
random errors and erasures in this case. We will not go into this
prcblem. The interested reader is refered to [2]. We consider the
complementary problem of incorporating stuck-at information in the

encoding process.



This last problem was originated by Kusnetsov and Tsybakov in [11],
They consider coding for binary memory units that have a number t of
stuck-at cells, where £3pn,0<p<1, p fixed. The assumption is that the
locations and natures of the defects are known at the encoder but not at
the decoder. By allowing the size of the memory unit n to become large,
they prove the existence of codes that aie capable of storing information
without error, for any rate R< 1 -p. Horeover, they érove that such codes
can be found within the class of édditive codes (see {11]). In Section
1.2 we give an outline of this paper. At the end of this section Qe
introduce the related problem of exhaustive test pattern generation. In

both problems so-~called t-defect-compatible matrices play a very impor-

tant réle. Also the equivalencé of the notion of t~defect-compatibility
and that of t-independence of sets is mentioned. This fact seems to be
almost unknown.

In Section 1.3 we prove an upper bound for the largest possible
length of a t-defect-compatible matrix with m rows. This bound &ives a
slight improvement on the one given in [9]. Section 1.4 deals with
constructions for additive codes, capable of correcting all word defects
of multiplicity t or less and hence by nature, also constructions for
exhaustive pattern testing schemes. The constructions described there,
in fact generate separable t-~defect-compatible matrices.

‘ in [19] Tsybakov introduces the problem of coding for binary memory
units with both defects and random errors. Ounce again the locations and
natures of the defects are assumed to be known at the encoder but not at

the decoder. He introduces the concept of "matched adijacent codes" to

solve this problem. In t?] Heegard calls these codes partitioned linear

block codes. We will stick to that name. In Section 1.5 we use their
ideas and one of our construction methods of Section 1.4 to construct
codes that have a better performance than those given in [7]. with
these codes the encoding piocess will take more time, the decoding
process on the other hand not.

The problem of determining the capacity of imperfect computer

memories when complete or partial defect information is available at



the encoder or at the decoder is not studied here. For this prohlem, we

refer the interested reader to [6].

1.2 CODING FOR AN IMPERFECT COMPUYTER MEMORY

§1.2.1 An algebraic model

The following figure illustrates the information~transmission

{storage) scheme we are concerned with.

x ; ¥
—— ‘Encoder ——— Channel e Decoder ——

{memory unit)
2|

T 2
Supplemental noise
Info. Source

Fig. 1.
We use the following notations

nu€{0,1,...,M~1}= the input message set, x€ ]1:‘;l a channel input
word, y € E"g a channel output word, v€{0,1,..,M-1}, the output

n
message, e€ 15‘2

channel and d= €{0,1,5}n a word defect describing the states of

an error vector describing the noise on the
the memory cells to be used.

The word defect d=(d,,d,,..,d) € {0,1,6}" has to be interpreted as

follows:



0, then the ith cell of the memory unit is stuck-at-0,
if di= 1, then the ith cell of the memory unit is stuck-at-1,

S, then the ith cell of the memory unit is defect-free.

The number t of coordinates of d equal to 0 or I is called the multiplicity
of the word defect d. By D: we denote the set of word defects §_€{0_,1,6}n

with multiplicity t or less. Let the "o" operator 0O: ]F2 X {0,1,6}_ —>]E‘2 be
defined by

x if 4a=6,

X 0 d:=

a if d=¢§ .
‘The relation between the channel input ward x and channel output word
y can then be described by

y=(xod oe . (

The errors, described by the error vector e, occur when reading the memory,
so they affect the memory contents of defect-free cells as well as that of

stuck-at cells.

EXAMPLE 1. Let n=6, x = (0,0,0,0,0,0), d=(5,8,0,1,1,0) and

€=1(0,1,0,0,1,1). Then y=(x0d) ee=(0,1,0,1,0,1).

§ 1.2.2 The class of additive codes

During the rest of this section we assume that there is no noise on
the channel (memory); so =0 in (1). Furthermore, we assume that the
stuck-at cells are randomly distributed over the memory. In [11] Kusnetsov

and Tsybakov define a block code of length n for this memory as a
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partition of }Fg into M subsets Au' u=0,1,...,M- 1. They use the defect

information, known at the encoder, to assign to a message u a channel
input word x &ZAu in such a way that the stuck-at cells of the memory
unit to be used do not alter %x. The decoder, receiving the unaltered
X, recognizes that ES belongs to the subset Au and s0 recovers the message
u correctly. The rate R of the code is given by R= {log M)/n. To find
suitable partitions of Fn, Kusnetsov and Tsybakov make use of so-called
separable t~defect-compatible matrices, leading to the introduction of
the class of additive ccdes. We need some definitions.

A word x = (xl,x’z, . ..,xn) € ]Fg is said to be compatible with

the word defect d= (di’d2""'dn) €{0,1,8}" if 2=x04d; so

x, =4, for all i€{1,2,...,n} witt}; 4, =0 or 1. A binary

.mxn matrix C is called a t-defect-compatible matrix, if for

any word defect 4€ DI: ,there is a row of C which is compatible

with d.

We are now ready to define the class of additive codes.

Let C be a 2°%n binary matrix in which the first r elements
of each row form the binary representation of the number i
of that row (i=0,1,...,2r- 1)} . A matrix with this property
is said to be a separable matrix. Let, for any
w€v=1{0,1,..,2°""-1} and any 4€{0,1,81", c(u,d) be a

specified row of ¢. This specification will be made clear

later on. For any u€ U, the vector u= (ul ,uz,...,un) € :lFlEZl
is given by
n-r {4
ui=0(i=1,2,...,r) and u=i£1 wo 2i s,

The encoding function ®, &: Ux%{0,1,8}" — Fg, is defined by

P(u,diz=ueciu,d .

The code (partition of ]Fg) defined by C is clearly given by
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n—r_l

V= oy {uec|c a row of C}.

u=0
The rate R of this code is equal to R= (n-r)/n=1-r/n. Different
separable matrices ¢ define aclass of codes, which we call the

class of additive codes.

The decoding function ¥, ¥ :Iﬁ‘g =+ U, for the additive code is
defined by
nox i-1
¥(y):= o (y“_iwcwi} -2 R

 vwhere ¢ = (gl,cz,...,cn) is that row of C with

c11‘=yi for i=1,2.,...,r.

From the above'it will be clear that a necessary and sufficient .
condition for the additive code, defined by the separable‘ matrik c, to
correct all word defects of multiplicity t or less is that C is a
separable t-~defect-compatible matrix. For any u&U and 5802 the row
clu,d) from C must then be the (not necessarily unique) row of C which

is compatible with the word defect d' defined by
§ if a, =98,
i

uisdi if di=0 or 1,

where u, is the ith component of the vector u defined above.

Mooo :
EXAMPLE 2. Letn=4, r=1, t=1,C=/ /' /|, u=3 and a=1(48,8,0,9).

Encoding: To encode we determine u=(0,1,1,0), 4'=(§,6,1,8).

and c{u,d) = (1,1,1,1). We store

x=%u,d) =(0,1,1,0) ® (1,1,1,1) = (1,0,0,1),



Decoding: To decode retrieve from the computer memory the
vector y=x0d=(1,0,0,1) and from C the row ¢ with index

1.1=1; so c= (1,1,1,1). Now compute the value

v=¥(y) =081+ (081)2 + (181)d=3=u.

EXAMPLE 3.

Let n=3 ;r=2, t=2, C= ;u=1and d=(1,5,1}.

HHOQ’
Ll =)
3 b )

Encoding: u= (0,0,1), 4'=(1,§,0) and o(u,d) = (1,1,0).

So store the vector
=¢(ur§) ={0,0,1) & (1,1,0) = (1,1,1).,
Decoding: Retreive y=x0d={1,1,1) and the rowCof C with
index 1.1+1-2=3; so ¢=(1,1,0). Compute )

v= Y{y)=1-1=1=qp

wWe define the function R(n,t)} by

R(n,t):= the maximal value of R for which there exists a code
with rate R that is capable of correcting all word-
defects of multiplicity t or less.

In {11] Rusnetsov and Tsybakov prove the following surprising result.

THEOREM {. For any n,t€ N, 1$t<n

t+[1ogln2() N
1~ £ R(n,E)S1-2 .

12

(2}

The upper bound in Theorem 1 is obvious. The lower bound is a consequence

of the existence of separable t-defect-compatible matrices of size

r s
2" xn, with

t<rse t(n
r +flog In 2 (t>]

(3)
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The existence of such matrices is proved by using a probabilistic

"counting" argument. Since, for any fixed p€[0,1],

t+[log 1n 21 2)] _ N
- st-ptotn”h, for S=pandnve

n

we have the following consequence of this thecorem. .

CORCLLARY 2. Let p be any fixed number in [0,1] and let £> 0. Then, for
n sufficiently large {(depending on p and &), there exists an additive
code of length n that is capable of correcting all word defects of
multiplicity np or less, for a rate R, 1~p-&SRE1~p. 0

§ 1.2.3 Some related problems

From § 1.2.2‘11: will be clear that separable t-defect-compatible
matrices play an important r&le in the reliable storage of information
in an imperfect computer memory with stuck-at defects. Therefore, we

define

r(n,t) := the minimal value of r for which there exists a 2r><n
separable t-defect-compatible matrix, n ,t€ N,

1$tS€n., -
The functions Rin,t} and r{n,t) are related by
nR{n,t) 2n-r{n,t).

In the conventional approach to logic circuit testing, a set of test
vectors to be applied at the circuit inputs,is derived from an analysis
made on the circuit under test. Typical faults one wishes to determine
are stuck-at-0 and stuck-at-1 faults at the gate level. Such a test-

generation procedure requires a substantial amount of computer time due
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to the necessary analysis and simulation to be carried out. Due to the
growth of the number of logic circuits on a VL8I-chip, the conventional
way of logic test generation becomes more and more impractical. Not
only the computer time grows excessively, also the single stuck-at fault
model becomes more inadegquate. A partial solution to this problem is, to
use exhaustive pattern testing schemes for testing several logic circuits
simultanecusly. »

In this approach a VLSI-chip is considered to have n binary inputs.
Each input may influence many outputs, but due to certain partitioning
techniques each output is assumed to depend on atmost t inputs (t <n}.
To test the chip, any set of t or less inputs feeding an output is
provided with all possible inpuﬁ patterns, By checking the correctness
of the outputs, any single hard fault or combination of hard faults,
which results in a permanent alteration of the thruth table,associated
with an output function, is noticed. So we are left with the problem of
generating a minimal set of test vectors of length n, to érovide
simultaneculy all input patterns to each of a collection of input subsets
of size t or less. From the above, it may be clear that the rows of an

mXn t-defect-compatible matrix form.such a set. Therefore, we define

m{n,t) := the minimal value of m for which there exists an mxn

t-defect~compatible matrix.
The relation betwsen the functions R{n,t} and m{n,t) is given by
nR{n,t} Sn-1log mn,t).

For a more detailed description of the problem of logic circuit testing, the

reader is refered to [5,15].

Most authors who work on these two fields of research do not seem
to be aware of the fact that the notion of t-defect-compatibility is
equivalent to that of t~independence of sets. Consider the ;‘Lth column of
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an mxn t-defect-compatible matrix as the characteristic vector of a
subset A, of the set a= {1,2,...,n}. Let F dencte the collection of subsets
Ai of A, i=1,2,...,n, i.e., F= {Al,Az, - "An}' The t-defect-compatibility

property can then be formulated as

For any t-tuple of subsets Ak 'Ak "'”Ak from F, all P
. 1 2 t .
intersections

t

n B
i=1 Ky

are non-empty, where each Bk can be either Ak , or A\ Ak .
i i i

In [9] Kleitman and Spencer call such a collection a t-independent
collection of Vsubsets of an m-element set. In [9] a lower bound on the
size of such a collection is proved that coincides with the upper bound
on r(n,t} given by (3). In Secticn 1.3 we mention some of their'results
translated J'.nk the terminclogy of t-defect-compatible matrices.

For later use we give two more definitions., For any r,m,t € N we

define

n(r,t) := the maximal value of n for which there exists a 2rx n
separable t-defect-compatible matrix, and
nf(m,t) := the maximal value of n for which there exists an mxn

t-defect-compatible matrix.

The relations between r(n,t) and n(r,t) respectively m{n,t) and nf{m,t)
are given by
2 i <
n(re,t) _n0 iff r(no,t) =r0
and

nf(mo,t} Zn ifE m(no,t) émo .

0
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We conclude this section with a table of known values of r(n,t), m(n,t)

and Ri(n,t), for £=0,1,n~-1 and n.

3 r{n,t) | m{n,t} | Rin,t)
0 - - 1
1 1 2 1-1/n
n-1| n-1 Pty i/a
n n 2 )
Table 1.

1.3 UPPER BOUNDS ON nf (m,t)

In [9] Kleitman and Spencer consider the problem of determining the
largest size of a t-independent family of subsets of an m~element set,
From the previous section we know that this is equivalent with determining
the largest value of n, for which there exists an m x n t-defect-compatible
matrix. We have denoted this maximal value by nf(m,t}. In [9] Kleitman and
Spencer solve this problem for t=2 (see Theorem 3} and give asymptotic
upper and lower bounds for nfim,t), where t23 is fixed and m tends to
infinity. Although, from a coding point of view, determination of such
bounds is of almost no interest, we found this problem intéresting enough
to work on. In this section we prove a slight improvement on the upper
bound given in [9].

wWe first give the solution for t=2 in Theorem 3. Because of our
interest in seperable t~defect compatible matrices, the value of n(r,2)

is also mentioned.
THEOREM 3. [9] For all m,r€ N, m24 and r2 2 we have

21‘_1\

r=~1/"

nf (m,2) =<m; 1> and n(r,2) = (
51 2
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The values of nf{m,2) and n{r,2) are attained by the following

construction.

Construction.

1) matrix with
m

Let m€ N, m24. We define C to be the mx(m—

as columé all binary vectors of length m and Hémming weight

I'%], of which the first coordinate 1§ equal to zero (see -

Fig.2. below).

000000000GC
1111110000
1110001110
1001101101
0101011011
0010110111

Fig.2. A 6 x 10, 2-defect-compatible matrix.

From the above figure,it is easy to see that this construction indeed
yields a 2-defect-compatible matrix. If m=2" the matrix is separable.

As a consequence of Theorem 3 we find the following values for m(n,2),
r{n,2) and R{n,2) (see also § 1.2.3). Let, for any n€ N, moe N be
defined by

.

min,2) =my
ri{n,2) =¥ and
Ty . roml

1-— £ R@,2) $1-—0 .
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We now aim our attention at the case t23. In [B] Kleitman and Spencer

prove the following lower and upper bound on nf{m,t).

THEOREM 4, For all t€ W, ©t23, t fixed, we have

(£ ro(13)m
nf(m,t) 2. 2- e Mo,
and (ut+o(1) )in
nf(m,t) £ 2 , m®,
where "itc (log {1~ Z_t'})[t and u, = (H(Z-(t-“) - 2-(t_2))/(t~2) ’

with H(p) := -p log p- (1=-p} log.(1l-p}, the well~known binary entropy

function.
]

Let, as defined in Chapter 0, A(m,8) denote the largest value of M
for which there exists a binary {ri.-,M,a) code, The following theorem uses

the function Afm,d) to derive an upper bound on nf(m,t), t24.
THEOREM 5. For any m, t€ W, 4$t<m,

nf{m,t) £ max min {nf(tg—_{ ,t=2)+2, ¥a(m,a}. (4
0£dsim

PROOF. Let C be an mxnf(m,t) t-defect campatible matrix. Let A be the
binary code with as codewords all the columns of C and C. F::'om the
definition of a t~defect-compatible matrix, it follows that ¢ and ¢ have

no columns in common. Let 4 be the minimum distance of A. Then,
2nf(m,t) = [A] € A(m, Q. (5)

Since A has minimum distance 4, there are two columns of ¢, w.l.o.g.
the first two columns .}_1_1 and 32, with d(nl'.‘,i ,13_2) =d or n~-d. Assume
<:'|.(§1 ,32) = d (the case d(hl ,_}32) =n~d goes analcogously) . Consider the

matrices CI respectively C, consisting of those rows of C for which
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the first entry is equal to 0 and the second entry is egual to 1,
respectively the first entry equal to 1 and the second entry equal to 0.
From the t-defect-compatibility of C, it follows immediately that the
matrices Ci and ¢!, which are formed by deleting the first two columns
of c1 respectively Cz, are (t - 2}~ defect-compatible matrices. Let m, be
the number of rows of ci, i=1,2. Then m, +m2=d. Since both matrices

have nf(m,t) - 2 columns, we have

nf(m,t) -2 £ min { nf (ml,t-Z) ,nf(mz,t—g)}

A

nf(f_%_] ,t-2). (6)

The last inequality follows from the fact that for fixed t mf(m,t) is an
increasing function of m. Together, (5) and (6} give the desired

inequality (4). 1)

As a consequence of Theorem 5, we have

COROLLARY 6, Let ul! =u3, u‘;=u

3 and let, for t2 5,u; be defined by

4

ur 3= max  min {% ul e H(3~V8(1 =81},
064
Then, for any t€ W, t25,
(ué+o(1})m
nf{m,t) =2 , t fixed and m +<.

PROOF, Use induction on t and the well-known MRRW upper bound [14] as an
estimate for A{m,d) in- {4). o

Cdérollary 6 gives a slight improvement on the upper bound on nf(m,t)
of Theorem 4, when t is greater than or egqual to 4. In Table 2 we list
the values of Kt' ut and ui': for t=3,4,5,6,8 and 10 .
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t £ & u ué
3 | 0.0642 0.3112 0.3112
4 | 0.0232 0.1467 0.1467
5 | 0.00916 0.0707 0.0643
6 | 0.00378 0.0345 0.0322
g | 7.058-107% | .32 107> | 7.635 - 107>
10 | 1.409 107 | 2.060 -10™° | 1.865 - 107>

Table 2.

1.4 CONSTRUCTIONS FOR (SEPARABLE) t-DEFECT~-COMPATIBLE MATRICES WITH t2 3.

Many authors have considered the problem of constructing (separable)
t~defect~compatible matrices {1,3,4,13,18). In this section we describé
two construction methods that, to our knowledge, yield the best results.
The first one is due to Busschbach {3]. This construction uses a small
t-defect~compatible matrix to generate a larger one., 50 t stays fixed,
while the length n grows, The second construction allows t to grow
proportionaly with n and is therefore used to determine a "constructive"
asymptotic lower bound on rx{(n,np) for p fixed, 0<ps$t and n ~ =, We
also use this construction to derive some lower bounds on ni{x,t), for

r$20 and 35£510.

§ 1.4.1 A construction for t-defect-compatible matrices of length n,

with £t<<n

In this parégraph we describe the construction method, for t-defect~
compatible matrices, found by Busschbach in [3]. The adjustments necessary
to make the resulting matrix separable are ours. The construction uses

a small t-defect-compatible matrix to generate a larger one. These small
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matrices can, for instance, be constructed by the method of § 1.4.2.

Construction.
Let A be a mox a4 t-defect-compatible matrix, where no is a
. 2
prime power 2 % . Let B be an no-ary linear MDS code with

. in 2
dimension k, 2 £k gt—zo +1 and length m = (k- 1) [S-] +1.

Since mgno +1, these codes are easy to construct (see [14]).
Let B be the mx nlé matrix with as columns the codewords of B.
Let ¢: Ty, > {columns of A} bea bijection. Construct the

x nls binary matrix C by replacing each entry b of B by ‘(b(b) .

By
THEOREM 7. The matrix C, constructed above, is a t-defect-compatible

matrix.

PROQF. To prove the t-defect-compatibility of C, let C' be any ~mmox t
submatrix of C and let 4' be any binary vector of length t. We have to
show that 4' is contained in the row set of C'. To prove this we go
back to the code B. Let p_j = (bi,bg,...,bi) be that codeword of B that
corresponds to the jth column of C'. Since every coordinate bi y
1£j5$t, is replaced by a column of the t-defect-compatible matrix A,

we are done if we can show that there is an i, 1£i<$m, such that
3 areg) 0 (o3 | @t =1 = ;
{bildj o}n{bildj }=90. (7

From the t-defect-compatibility of A we then have that d' is contained
in the row set of the submatrix C" = ((p(bi) gp(bi) ..... gp(b{;)) of C'.
S0 suppose that (7) does not hold for any i€{1,2,...,m};_so a'=0,1.

We calculate the sum

£ T antpd)
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intwo different ways. FPirstly, since (7) does not hold for any coordinate
i€{1,2,...,m}, each coordinate contributes at most ny(d"n - ny(d -1

to the sum, where nk{g‘) i= [ {1 ] di=l}l ,A=0,1. Hence

b £ am'p)) smimg@on @ -0,
ilay=0 j[d:‘.‘=1

Secondly, since the minimum distance of B is equal to m-k+1 (B is MDS),

we also have

b I aeteh 2@ -0, @) - m-k+1).
il d;=0 3 | aj=

Thus, we may conclude that

nyd) *n1(§‘) c{m~k+1)$m s ng (@ rn(dh) - 1)

or equivalently‘ 2
: t
mE(k-1) +ny(d" -n @< k- nlf

2
A contradiction with m= (k- 1) [%‘“J +1. 0

The bounds on nf(m,t) and n{m,t), that result from this construction are
f-e] unttansparent that we do not give them here. We confine ourselves to

an example for t =3 and refer the interested reader to [3].

EXAMPLE 4. Leﬁ A be the 8% 4 3-defect-compatible matrix with as rows
the codewords of the [4,3,2] binary code. Let mix n, dencte the size of
the 3~defect-compatible matrix after 1 succesive applications of the
above construction with maximal k; so mo=8'and n0=4,'1’hen we find the

following values for xni and ni, 1=1,2,3.



1 1 2 3

m, 327 | 452 | z2%
2 32 35

ny 2 2 3 22

We see that the number ni grows excessively with respect to the
number mi, but neverthe less, it does not regult in a lower bound on
nf(m,3) of the form nf(m,3) 2 2or.m' o fixed.

Although, we feel that Busschbach's construction is of littlé
importance (t is too small compared ta n) for the constrﬁction of
additive codes, we adjusted the construction somewhat in order to make
it yield ({weak) separable t-defect-compatible matrices. A binary nxmnm
matrix is called weakly separable if there exists a nx flcg n]
submatrix of A that has n different rows. Matrices like-this can also

be used to define an additive code.

Construction.

0

Let A be a 2 xn,
is a prime power 2

sgparable t-defect-compatible matrix, where no

. Let B be 2 n_-ary linear MDS code with

3
4n0
t2
1€B. This is not a serious restriction when mEn

Q

. 2
dimension 2 ¢k % +1 and word length m={k - 1} I_%-J +1 such that

0" Let B be the
m Xng matrix with as columns the codewords of B. Let the elements
of ]Fn be labelled by al S0

"'Qn and the columns of A by
4}

20"

31,32,...,9_“ and let s= I—log m]. Assume 1:0 +s §n0 (this will

almost always be the case). For any v€ {0,1,...,m-1} we define
the vector vE Fgo by

.

v :=(0,0,...,0, vroﬂ, Vr0+2" r0+s’ 0,0,...,0),

i-1

23
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And @ :GF(n ) - {columns of a} by

®, (@)=a 8v, -1 , i=1,2,...,n

v 1 i~ ('
o
vhere _1_ is the all-one vector of length 2 7. Construct the
e
m-2 0 % nOk binary matrix C by reéplacing each entry b

in the vth row of B by f.pv(b), v=0,1,,..,m=1.

THEQOREM 8. The matrix C, defined above, is a weak separable t-defect-

compatible matrix, if r +sgn

0 0"
PROOF. Since the entries in each row of B are mapped on the columns of
a te-defect<compatible matrix, the t-defect-compatibility of the matrix
C is a direct consequence of the proof of Thecorem 7.

To prove the weak separability of C we consider the codewords o

1,

1

az -l,...,o&r s 1 of B. From the separability of A and the definition

ot

. ro

of @ v€{0,1,2,...,m~1},0ne irmediately se&s that the 2 ~ *mX (xy+s)
- r

submatrix of C which corresponds with these codewords, consists of 2 0 ~m

differents rows 1

§1.4.2 4 generalizétien of a construction method found by
Kusnetsov in [10].

From Corollary 2 we have that, for any p € [0,1] and n sufficiently
large, there exists an additive code of length n that is capable of
corrécting all word defects of multiplicity np or less, for a rate R
very close to 1~ p. However, the guestion remains :"how to construct
such a code?”, In this section we describe a construction method for

geparable t-defect-compatible matrices that gives a partial solution
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to this pro»blr.emf

Ag a first reaction we and many others with us tried to solve this
problem with the help of linear codes. Let C be a binary [n,k] code for
which the dual code has minimum distance t+ 1. Then the 2k Xn matrix €
with as rows the codewords of the code { is easily seen to be a separable
t-defect-compatible matrix. From the Gilbert-Varshamov bound one easily
derives that this construction yields the following asymptotic upper

bound on r(n,np),

r(n,np) Sn(H{p) +o(l)), for p fixed, 0<p<}, and n » = (8)
and so

Ri{n,np) 2n(1 -H{p) +0(1}), for p kfixed, O<p<%, andn + »

However, not only the bound is poor, it is also cheating; no one as yet
has found a construction of a family of binary linear codes that
realizes the promises of the Gilbert-Varshamov bound. At present we
only know that such families of good codes exist and can, for instance,
be found within the class of Goppa codes [14, ch.1z2]l. .
To our suri:rise, the following observation shows that it is rather
simple to find such a construction for t-defect-compatible matrices; the
resulting upper bound for m(n,np) is even sharper than (8). Let C be the
matrix with as rows all binary words of length n, which have weight']_gj
or weight n - L%ij It is clear that C is a t-defect-compatible matrix
fc;r any £, 1t s [-%!lj. The asymptotic upper bound on m(n,np}, 0<p<2-,
that results from this construction reads

2,
D(H(Z) +O(1}},where p is fixed, 0<p<3 and n - ¢,

’ mi{n,np) £ 2 3

Although, th:LS bound "improves" (8), it is not really sharp. The
resulting t~defect-compatible matrices, however, may be of interest for

the generation of exhaustive test patterns; because of the simple
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structure, the resulting test sets can be effectively implemented (see [17]).
Since we believe that 2r(n,t) is about as big as m(n,t), for all
values of ¢t and n, 0<t<n, the simplicity of the above construction
convinced us, that it must be possible to find a similar construction
method for separable t-defect-compatible matrices. A generalization of a
congtruction method for separable 3~defect-compatible matrices found

by Kustnetsov in {10], does the trick.

Construction.

Let A be a binary [2%,k,d] code with 1€A and minimum distance
daz [(2t -2, 1 )2r/ (2t -1l 1)]. Let G be a generator matrix of A
with the all-one vector as top-row. Let H be a gar‘ity check

matrix of. an [n,n-k,z[s—;-—l-h binary even weight code which has

the ail—one vector as top-~row. We define the 2r+ 1 Xn matrix ¢
by
|
GTH
C = T ,
G H

vhere GTH is the complementary matrix of GTH.

THECREM 9. The matrix C defined above is a t-defect-compatible matrix if
t2 3. If 6 contains the generator matrix of RM(1,r) as a submatrix, then

C can be made separable.

PROOF. To prove the t-defect-compatibility, it suffices to show that for
any subset J<{1,2,...,n} with [J| =t and any z€ ]E‘t, there is an
1€{1,2,...,2%} such that

T
ﬁiGHJ—g_oxie_z_, {9)

where HJ is the k X t matrix that consists of those columns of H which have

a column index belonging to J and where _e_i is the ith basis vector of JF%r.
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Suppose there is a J<{1,2,...,n}, |J] =t and a _{‘E]E‘; such that (9) does
not hold for any i€ {1,2,...,2"}. Then

oL (_e_eiGTHJsg,g} =2t %,
XEF, , x70,
wt(x}) =0mod 2
So
2 T r t~2
z o (e,G'H, @ 2,%) =2 + 2 . (10)
i=1 x €W, x#0,
ENE e 2T
wt(x} =0mod2
On the otherhand,we have
2 T 2r T
z o te R 2,0 = & z (g6 Ho#z,x) =
i=l 5(—7]5‘2 » X#0, 3_€_€JF2 » X#0, i=1 .
wt{x) = 0mod 2 wt(x) # Omod 2
2 T
= o z {(g@ BJ,;_z_}'e(g'gt_)} =
§‘€]}?2 , x#0, i=1
;¢rt(_) =0mod2
= x we e e (xmD € 257y - @fia. an

561‘?; r 220,
wt(x) = 0mod 2

The inequality is consequence of the fact,that for any x€ Fg\{g} with
wt(x) =0 mod 2, the word x H§G@ (x,2) 1€ A\{g,i}. For, since H has the
all-one vector as top-row, wt{x} =0 mod 2 and §¢g, the first coordinate
of §H§ is equal to O and §H§¢g. 8o, since the top~row of G i-s also 1, we
may conclude that §H,§G o A\(0,1}.

Together (10) and (11) give
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gz {-2 - 1' 2 1.
2870
or sguivalently
’ t-2,,.r t - r
as2t - Ay . [z
277 2 1
(21:-2_1}21‘ .
This is a contradiction with d=[=5——=""2] if £23. 5o C is a t-defect~
277

compatible matrix if t2 3.
The separability of C,when G contains the generator matrix of RM{1,r)

as a submatrix, is obvious. 0

REMARK. For the case t =3, the above construction can somewhat be
+
simplified., Let A be a binary (m,n,[gﬁ——l—])code with the property that for

all a € A.also _1_@3€A. Let A, redpectively A, denote the matrix with

] 1
as columns thé codewords of A of which the first cooxrdinate ig equal to O

respectively eqﬁal to 1. Then the 2m*Xn matrix € defined by

of

is a 3~defect-compatible matrix. When m= 2% ang A contains RM({1,r) as

e ! O.'ﬂ
S

a subcode, the matrix C can be made separable. This is in essence the

construction for 3-defect-compatible matrices Kusnetsov gave in [10].

In order tc make the above construction work we have to generate
the matrices G and H which are mentiocned there, The matrix G is the
most important one. Suitable candidates for ¢ are the generator matrices
of the codes we describe in Theorem 10. For a proof of this theorem and

construction of these codes we refer to [14].

THEOREM 10. Let r=2€+1 and let i be any number in the range 1 S$i$4£.

Then there exists two
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(25, r(0-i+2)+1,2° " L5 i1

subcodes of RM(2 ,r).These subcodes contain RM{1,r) as.a subcode.

i

r- 1-2r - i“}'] codes

1_,r-i-l,

Let A be one of the two [2r, ch-i+2)y+1,2
of Theorem 10. Then 1 €A, since RM{1,r)< A, Since 2t~

l’(2t"2~1)2r ‘]
t-1 1

existefice of an [n,n-(£-1i+2)r-1,2[

, 1f £t21i+1, we have, according to Theorem 9, that the

t+l
. 2
gives rise to the existence of a ot 1xn separable t-defect-compatible

1] binary code, 3St<i+1,

matrix.

In Table 3 we give some lower bounds on ni{r,t}, for moderate
values of r and t, vwhich result from this construction. To generate the
matrices G, we did not only use the codes from Theorem 10, but we also
used codes that result from Wiseman's construction method, which we

described in [16]. For the matrices H we used a table search [14,20].

The letter h in the upper left corner of an entry indicates that the
corresponding lower bound onn(xr,t)is attained by a linear code whose dual.
code has minimum distance t+1 and dimension r. The letter k indicates

that this lower bound is attained by the construction of Kusnetsov [10].



r 3 4 5 6 7 8 9 10
3 [P - - - - - - -
P E - - - - - -
s | 5 o7 Kn o R B : : ; :
6 210 B g [Py By - R - -
7 212 24 |Pg | Dy 8 - - -
8 2%t 129 | P12 | Po 9 9 - -
9 | 222 31k 590 | e |Pao 10 10 10 -

10 236 213 | 513 | Pus 12 11 1 P

11 201 36 16 12 P2 |

12 120 P 24 URR R E RN L F

13 258 | 68 | Pis 15 |P1a

14 213 | 312 17 16 |®1s

15 513 | 46 18 |0 17

16 A% 1a3 P oo |Pus

17 257 | 74 |P 20

18 212 | 295 [P oas

19 513 | 64

20 2] 150

21 257

" iz

Table 3. |

Lower bounds on n{r,t)

30
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We conclude this section with the promised “"constructive" lower
bound for R(n,np). Let G be a ((28+ 1N (£ ~-1+2) +1) % 22£ +1 generator
matrix of one of the codes mentioned in Theorem 10 with the all-one
vector as top-row. Let H be any ((2£+1) (£~1+2)+1) x ((28+1) (£~142) +1)
regular binary matrix with the all-one vector as top-row. Then, from

Theorem 9, the matrix C defined by

oo
iy

is a separable (i+ 1)~defect-compatible matrix of size

2262, opaty(-142) 4 1),

Let n= (28 +1) (£~ i+2) +1, then the above construction shows
r{n,i+1)$28+2,

Now take i=4£~k, k¥ fixed and let £ tend to infinity. Then, since

tim £-k+1 _ Lim B-k+1 . 1 find, £
2> n . f4e (rn(kr2) Tk + 3y e tind, tor any
k€ wu{o}

n 1 ’
r(mm) ES n(m +0(1)) , k fixed and n>=.

Since r(n,t) is an increasing function of n if t is fixed, we

constructively showed

rinmp) $n(Zp+0o(1)) ,p fixed ,0<p5 3 and n>r»,

Hence, for any p, 0<p5}, the above construction can be used to generate
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a family of additive codes of length n, n€ W, that are capable of
correcting all word defects of multiplicity np or less, for a rate

R{n,p), for which

Lim R{n,p) = —g-P- .
n > = n

1.5 GENERALIZED PARTITIONED LINEAR BLOCK CODES

§ 1.5.1 Partitioned linear block codes

In [19] Teybakov introduces the problem of coding for binary
computer memory units with both defects and random errors. The locations
and natures of the defects are assumed to be known at the encoc’fer but
not at the decoder, Recall from Section 1.1 that such an n-cell

memory unit is defined by

y=(xod ee,

where X €F, is a channel input word, X‘EF; a channel output word, d a word

defect € Dz and e an error vector of weight s or less. To solve this problem
Tsybakov uses the codewords of a binary (n,K,d=2s+1) code C as
channel input words. The code C is partitioned intc a number of
subcodes CO,Cl,...,CM_ , each of which forms a t~defect-compatible set.
He uses the defect information, known at the encoder, to assign to each
message u € {0,1,...,M~1} =U a channel input word x € Cu which is
compatible with d. The deceder, receiving y=(xod)ee=x#e sees that
d(X'Cu) < d(x_,Cv}, for all v#u, and so recovers the message u correctly.
The rate R is defined by R=1log M/n.

Since linear block codes are very suited for this coding strategy,

Tsybakov introduces the concept of partiticned linear block codes
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{in [19] these codes are called matched adjacent).We give a formal
definition.

an [n,ko,kl] partitioned linear block code is a pair of linear
codes CE)C ]Fg, Cic ]Fg of dimension ko and ki respectively such
that COHCI“-“fQ}. The direct sum C=C0&Clz= {goag_l!%ECO,g_fcl}
forms the set of chamnel input words.The partition of C into
subcodes is described by

C= u {g oCil.

g €6

The rate R is egual to kl/n.

To define an encoding ¥, %: Ux {0,1,‘6}“4C and a decoding ¥, ¥: IE’g +U we

need some more definitions.

Let G, and G, be generator matrices for CO and C1 respectively.

Let H be a parity check matrix for C=COQ€.’1 and let 61 be any
¢ i wT: ~T= .
kl ¥ n binary matrix such that G.G I and Gocl Ci( -

Tk 0%y

We are ready to define the encoding and decoding functions ® and ¥ resp..
ky ky
Take the message set U equal to FZ and let, for anykgE Fz
and any .’.3.6 {O,I,G}n’g._(g,_(_i_) be a specified vector of JFQQ {zee
. the proof of Theorem 11}.
The encoding ©, &: }E‘zl x {0,1,5}n+C, is defined by

@(3,3):=g.<31,@ z(u,d) GG‘
. R X;
The decoding ¥, ¥ : Fy, *F, ig defined by

P T
vhere &€ Fg is chosen to minimize wt(&) subject to 8H =3s:=yH ,
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the syndrome of y with respect to the code C. The vector &

is an estimate for the error e in (1.

For any [n,ko,kl] partitioned linear block code {CO ;Cl) a pair of minimum
distances (d*é“,d) is adjoined, where 4 is the minimum of the code C and

dé- is the minimum distance of the dual code C':.; of Co.

THEOREM 11. Let (CO,CI) be an [n'kO'kl} partitioned linear block code with

minimum distance pair (&o,d). Then (CO'Ci) is capable of correcting all
word defects of multiplicity t or less and random errors of weight s or

1éss, if

L
t<d0 and 2s < d.

. k k
PROOF. For any 36 ¥ 1 and QEDZ we take z(u,d) equal to z€ on such

2
that 2G, is compatible with the word defect d' €Dté defined by

o

i § if dizﬁ,
(EGI)iQdi if di=0 or 1, i=1,2,.,.,n.

Since any t-columns of G, are linearly independent this is possible.

Q
With this choice of z(u,d) it is clear, from the definitions

of ¢ and ¥, that (CO,Cl) is indeed a t-defect~, s-erroxr-correcting code.

EXAMPLE 5. Let (C,,C,) be the [7,1,3] partitioned linear block code .
defined by

1000111
GO=(1111111)andG1=0100011
0010101

i
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Then (CO‘Cl) has minimum distance pair (2,3). Note that C is the [7,4,3]

single error-correcting Hamming code. We can take H and @1 equal to
1011100 | 1001000
H={1101010 ,(;1: 0101000 .
1110001 0011000

Let u=(1,0,1) be the message to be stored in a computer memory unit with
word defect 4= (8,§,0,8,5,8,8) and error vector e=(0,0,0,1,0,0,0).

Encoding: To store the message u=(1,0,1) we first compute the word
defect g* defined in the proof of Theorem 11 and the vector 2(u,d) .
We find 4*' = (6,8,1,5,8,8,8) and so z(u,d) = (1). Hence

x=0(u,Q) =uG, 8 z(u,dIG, =
=(1,0,1,0,0,1,0) 8 (1,1,1,1,1,1,1)=1(0,1,0,1,1,0,1).

Decoding: To decode retrieve the vecor y=(x0d)ee= {0,1,0,0,1,0,1)
from the memory unit and calculate the syndrome §=xHT. We f£ind
5=1(1,0,1). Since s is egqual to the fourth colum of H, the

decoder estimates e by &€= (0,0,0,1,0,0,0) =e. Hence

¥(y) = (o) =(1,0,) =u.
§ 1.5.2 Generalized partitioned linear block codes

In the coding of an [n,ko,kll partitioned linear block code (CO'Cl) .
the entire code CO is used for masking the defects of the memory unit.
As we have seen in § 1.4.2, this is not always necessary. The class of
generalized paftitioned linear block codes makes advantage of this

observation, We start with a definition.

an [n‘ko’ki'k}_‘] generalized linear block code consists of a
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triple of binary linear codes CO,C1,02C ]Fg of dimension
kysk, and k, respectively such that Cin Cj ={0}, 1,5€{0,1,2},

i# j,and a binary code I of length k0+k which is separable

1}
on the first ko coordinate places. The direct sum

Cz(,’oe(f1 eC2 forms the set of channel input words. Let G.,G

Q71

and G, be generator matrices of the codes CO ,_C1 and C2

respectively. Then ( is partitioned into

%o
C= u {3@5(&-—)‘362}.
E_EC10C2 1

The rate R is equal to (k1 +k2)/n.

Let H be a parity check matrix of the direct sum C = C1 QCZ ® C3.

Let G. be any k. xn matrix such that GO§T= T and
0 o . 0 "k .
e
1) & -0 . and let G be any (k, +k.) x n matrix such that
G,/ 70T Tk +ky kg 1,2 1772

1\ &T " .
(22) G12_Ik1 +k2' Then we can define the encoding

k1+k2 a n
%, ¢: T %{0,1,8Y7>C and the deceding¥, ¥: ¥, »Chy

1 G0
lu,d)=u (z—-) ® _z_(g,g_)(a-) .
. 2 1

where z(u,d) is a specified codeword of 2 (see the proof of
Theorem 12) and

=T

Ci2

where & is chosen to pinimize wt(8) subjected to _é_HT=§ 1= yH
and % is that codeword of I that on the first k, coordinate

o
places is equal to the vector {y ¢ &) 53

THEOREM 12. Let (CO,CI,CZ,Z} be a [n,ko,ki,kzl generalized partitioned
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linear block code, for which

( i) the direct sum C= C eC aC has minimum dlstance d=2s+1,

( ii) the dual code of C GC has minimum distance d -2!'t+ 1],

(iii) 1€ CO and Gy contams }_as top row,
. ki=1
( iv) the {k0+k1) x 2 matrix, with as columns those codewords
of Z that have a 1 as first coordinate, is the generator
k, -1 -2 k

matrix of a binary [2 0 e [(2 1_” 2

0—1
]]code and

( v) for any 2€7 also 1€Z.

Then (C CI' 2,2} is a t-defect, s-error-correcting code

PROOF. From the properties ii) = (v} and Theorem 9 of § 1.4.2 we have
that {z (—ci)-) |_z_€2.} forms a separable t-defect-compatible set. Hence

ki +k2
for any u€ F,

compatible with the word defect d' defined by

G
0

and any d€ D: there is a z€ 7 such that z (a") is
i

§ i£ @, =3,

pe G
1
(E(G—z))lel if di=0 o 1’ i=1,2,....0.

Choose z(u,d) to be equal to z. With this choice for z{u,d} and the
definitions of ¢ and ¥ the assertion of Theorem 12 is immediate.

With the help of primitive binary BCH codes of length n =31,63,127
and 255 we constructed the folléwing [n,ko,kl,kzl' generalized partitioned
t-defect-,s-error-correcting linear block codes listed in Tables 4,5,6
and 7. The raté of such a code is equal to (k1 +k2}/n. The rate of the
corresponding partitioned t-defect~,s-error-correcting code of the same

length n, given in [7], is equal to k2f'n oxr (k2+ 1}/n. So the gain in
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rate is at least (1»:1 ~1)/n.

On the other hand, the encoding process of a generalized partitioned
linear block code is more complicated than the encoding process of a
partitioned linear block code. In both cases, the determination of the
vector z{u,d) (see Theorem 11 and 12}, amounts to solving an equation

like

vhere the matrix G' and the vector d" are directly determined by the
vector u, the word defect _d_ and the code used. However, in the case of
a §artitioned linear block code any solution z will do, while in the
case of a generalized partitioned linear block code one has to find a
soiution 2 of the above equation within ﬂle set Z. This ;«ill take more
time.

The decoding process is in both casés the same.
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correcting linéar block codes of length n =63.

o Ky Kyt s kg 'kl k, & s|ky k, k, t siky k k, £t s
5 1 2013 1 8 3 4 3111 5 516 2117 4 51 9 1
5 "1 1513 2 8 3 0l4 5111 S5 0O}l6 3[17 4 0] 9 2
5 1 10]3 3 9 2 15!5 1113 3 10]l7 1119 2 s5l1o 1]
5 1 513 5 9 2 10]5 2]13 3 517 2]19 2 o]0 2
5 1 ol3 7 9 2 5 3/13 3 Q|7 3

8 3 15/4 1 9 2 0]5 5115 & 518 1

8 3 10]4 2 (11 5 1016 1|15 6 018 2

Table 4. Generalized partitioned t-défect,s-error-
* correcting linear block codes of length n =31.
ko kl k2 t s k0 k1 k2 t sk 1 k2 t s ko k1 kz t s
6 1 50,3 1] 8 S5 38/4 2 4 1115 7113 6 17| 7 5
6 1 44 (3 2! 8 5 3214 3{12 7 3816 1113 6 11| 7 &
6 1 383 3| 8 5 26]|4 4|12 7T 321:6 2]13 6 5| 71 7
6 1 3213 4, B 5 23/4 5112 7 26|66 3/16 9 32| 8 1
3 1 293 5| 8 5 17|14 6|12 7 20|6 4|16 9 26| 8 2
6 1 2313 6; 8 S5 11|4 712 7 17!6 5|16 9 20 8 3
6 1 17|13 .71 9 4 44|5 1]12 7 11]|6 6|17 8 32| 9 1
6 1 1113 10l ¢ 4 385 2|12 7 5i& 7/17 8 26 9 2
6 1 913 11] 9 4 32|5 3|13 & 38B|7 1|17 8 20/ 9 3
& 1 313 13| 9 4 265 4113 6 32(7 2/19 9 29110 1
6 1 013 15 9 4 23|15 5|13 6 267 3] 1% 9 23|10 2
8 S5 444 1] 9 4 17[ 5 6|13 6 2017 4|19 9 17|10 3
Table 5. feneralized partitioned t-defect,s-error-




Kok k, € s |k k k, £ s [k k Kk, € s |k k k, t s
6 2 113]3 1| 8 7 e3[4 7|12 10 776 4|16 13 91| & 1
6 2 1053 2| 8 7 564 9|1z 10 70]6 5|16 13 84| 8 2
6 2 8|3 3| 8 7 49(4 10|12 10 63]6 6|16 13 77| 8 3
6 2 o913 4| 8§ 7 42|4 11|12 10 5616 |16 13 70| & 4
6 2 84]|3 5| 8 7 354 13|12 10 49|6 5|16 13 63| 8 5
6 3 773 6| B8 7 284 15|12 10 42|6 10|16 13 56| 8 6
6 2 70]3 7| 8 7 21|4 15|12 10 35]|6 11|16 13 40| 8 7
& 2 &3]3 9|10 5 105[5 1]1z 10 2|6 13|18 1L o1 3 1
6 2 6|3 10[16 5 98|5 2|1z 10 216 15|18 11 84| 9 2
6 2 49|3 11|10 5 9i|5 3|12 10 146 15|18 11 77| 9 3
6 2 42]3 13|10 5 84|5 4|14 8 987 1|18 11 70| 9 4
5 2 353 15|10 5 77|s 5|14 8 O91|7 2|18 11 63| 9 5
6 2 8|3 15|10 5 TJ0[5 6|14 B 84|7 3|18 11 56| 9 6
% 2 21|3 31|10 5 63|5 7|14 8 777 4|18 11 4| 9 7
& 2 14|35 23|10 5 6|5 9|14 8 707 5|20 16 B4|10 1
5 2 7|3 27|10 5 49]5 10|14 & 63 |7 6|20 16 77|10 2
6 2 0|3 31|10 5 42|5 11|14 8 567 7|20 16 70|10 3
5 7 105|4a 1]10 5 35|5 13|14 8 497 9|20 16 &3 |10 4
5 7 98la 2|10 5 2|5 15|14 B 42|7 10]20 16 %6 |10 5
§ 7 9ila 3|10 5 21|5 15|14 @ 35|7 11|20 16 49|10 &
8 7 8ald 4|12 10 98l6 1|14 8 2|7 13|20 16 42|10 7
8 7 77|a 5|1z 10 91|6 2|1d 8 2|7 15

8 7 70|14 6|12 10 84j6 3|14 B 1a|7 15

Table 6. Generalized partitioned t~defect, s-error-

correcting linear block codes of length n =127,




kokyky t s 1ky koky t s kg ki ok, £ s |k, k, k, t s

6 3 238|3 1] 6 3 2013 47|14 11 222{7 1|18 15 1829 s
6 3 23013 2| 6 3% 1213 55|14 11 214{7 2{18 15 74| 9 &
6 3 222|13 3] & 3 413 5914 11 206|7 3|18 15 166/ 9 7
6 3 214|3 4| 6 3 0|3 63|14 11 1987 4|18 15 158] 3 8
6 3 206|3 5|10 7 230/5 114 11 1907 5/[18 15 154 9 9
6 3 198|3 6|10 7 222[5 2|14 11 182|7 6|18 15 146]| 9 10
6 3 190|3 7/10 7 2145 3|14 11 174|7 7|18 15 138 9 11
&€ 3 182|3 e |10 7 206|5 4|14 11 1667 8|18 15 130 9 12
6 3 17813 9|10 7 198|s 5|14 11 162|7 9|18 15 122 ¢ 13
6 3 170{3 10,10 7 1905 614 11 154]7 10|18 15 114] 9 14
6 3 1623 1110 7 1825 7|14 11 146|7 11|18 15 106] 9 15
6 3 154|3 1210 7 174|5 8 |14 .11 138]7 12]22 19 206|11 1
6 3 146/3 13[10 7 170{5 9|14 11 130[7 13[22 19 19811 2
6 3 138[3 1410 7 162(5 1014 11 122|7 14]22 19 190/11 3
6 3 130(3 1510 7 1545 11|14 11 114]7 15|22 19 182|114
6 3 12213 18|10 7 1465 12 |14 11 1067 1822 19 17411 5
6 3 1143 1910 7 1385 13|14 11 98]7 19/22 19 166|il &
6 3 106/3 21|10 7 130[5 14|14 11 90|77 2122 19 15811 7
6 3 98/3 22,10 7 122/5 15|14 1t 827 22|22 19 150|11 8
6 3 90[3 23]10 7 114f5 18}14 11 747 23]22 19 146]11 9
& 3 82|3 25|10 7 106|5 19 |14 11 66|7 25|22 19 13811 10
& 3 78[3 26}10 7 98(5 21|14 11 62|7 26|22 19 130/11 11
6 3 70[3 27]10 7 905 2214 11 547 27[22 49 122]11 12
6 3 62|3 29|10 7  B2|5 23 14 11 46|7 29|22 19 11411 13
6 3 5413 30|10 7 745 25114 11 38|7 30(22 19 106|Il 14
6 3 46(3 31|10 7  70|5 26|18 15 214|9 1|22 19 98|l 15
€ 3 38/3 42|10 7  62|5 27|1B 15 2068|9 2

& 3 36|3 43|10 7 s4l5s 20118 15 198/9 3

& 3 28(3 45|10 7 465 30|18 15 190(9 3

Table 7. Generalized partitioned t-defect, s-error-

correcting linear block codes of length n =255,
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CHAPTER 2.

TWO CONSTRUCTIONS FOR CONSTANT WEIGHT CODES

2.1 INTRODUCTION

In this chapter we discuss two construction methods for constant
weight codes, which improve several of the best known lower bounds on
atn,d,w) in [1,3,6],vhere At(n,d,w) denotes the maximal cardinality of
any binary constant weight code of length n, minimum distance d and
constant weight w. Although, our interest in the function A{n,d,w) finds
its origin in the fact that this function plays an important réle in the
determination of upper bounds on A(n,d) ke.g.: Johnson bound, linear
programming bound), the function A(n,d,w) is also interesting in its own
right. Besides the obvious connection with t-designs and Hadamard
matrices we would like to mention the application of constant weight
codes as a set of protocol sequences for the multiple-acces collison
channels without feedback [5,7].

‘ The first construction method, treated in Section 2.2, resultg from
proving a generalization of the well-known Johnson upper bound on
A{n,d,w}. Unlike the generalization, the resulting construction does
improve several of the best known results on A(n,d,w} in [1,3,6]. a table
of improved results is given.

In Section 2.3 we treat a construction method for constant weight
codes with minimum distance 4. In order to make this construction work,
one needs to partition the set V:, n,w& N with wén, in an as small as
possible number of constant weight codes with minimum distance 4. For
n=6m+1 or ém+3 and w=23 this last problem is equivalent to that of
determining a packing of Steiner triple systems of order n. Since the

construction method results in many improvements of the lower bounds on
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A(n,4,w), n$24, given in [1,3,6], a revised table of the function
A(n,4,w), n <24, is included.

2.2 A GENERALIZATION OF THE JOHNSON BOUND FOR CONSTANT WEIGHT CODES

Let A(n,28,w) denote the maximum number of codewords in any binary
code of length n, minimum distance 28 and constant weight w. The following |

upper bound on A(n,28,w) is well known [4].

THEOREM 1. (Johnson bound)

am,28,w $[ = atm-1,28w-1)]5 % A(n-1,28,w-1).

Applying Thecrem 1 k times we obtain the following bound:

w1 w~k+1

n
A(n,28,w g[-f";{}"—l{...[n"k” A(n—k,26,w-kj..“_lé(]f.> aln-k,26,wk). (1)
w

X |

At the International Workshop “"Convolutional Codes Multi-User
Commnication" Zinoviev [8] presented the following generalization of the
Johnson bound (1},

THEOREM 2. For any integers k and £ with 0$ 2 <k $n, the following
inequality holds

A(n,28,w) £ oyl Aln -k, 2u,w -4},

£/ \x-2)]

where u=8§~£ if £<k/2 and u=8~k +£ if £>k/2.

If we take £ =k in Theorem 2 we get the Johnson bound (1).
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We now give a further improvement of the Johnson bound stated in the

next theorem.

THEOREM 3. For any two integers k and £ with 0<£$k<n, we have

)

iy an,28,w) $__ Aln-k,2(8- &) w42y if L£k/2

E ‘w n-~w
iio(i) (é‘"i
and (n\
ii) A(n,28,w) g__y'_i/_____ An-%,2(8 ~k +£),w=L2) if L>k/2.
5 w n-w
1t i k-1

REMARK. Note that the denominators in Theorem 3 are greater than the

correspending denominators ;in Theorem 2.

PROOF. Let C be an (n,28,w) binary constant weight code with IC] =am,28,w
and let £ Smin {%—,w}. For every binary vector b of length n.and weight k
(notation b€ Ef:} we define the code C]; by

Cg:={g_&39p_|g€€,wt(go§_) sL2},

where ceb:= (cibl,czbz,...,cnbn) . To make things clear we‘give an example,

Let b, ¢€ F% be given by

bt k > n-kx -+
B=(1,1,...,1,1,1,...;1,0,6,...,0,0,0,...,0),

« £ -
c={1,1,...,1,0,0,...,0,1,%,...,1,0,0,...,0).

Then
c#®ceob=(0,0,...,0,0,0,...,0,1,1,...,1,0,0,...,00.

From the above it will be clear that, for any two codewords 31 051 &b

and <, &_c_zeg (21:32) of Ch we have
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= e 2z
dlg, @c b, e, 80, 8b) =d{c,,c,)-d(c, @b,c, 0b) 2

220 ~wt(c, eb) - wtig,eb).

So if, for evexry cece _136 Cg . an arbitrary set of f.-wt(ge b)coordinates
that are one are changed into zerus, we get a code C’é with constant
weight w~£ and minimum distance at least 2(§-£8)}. »

From the definition of C]; one easily sees ‘that all ccdewords of C{;
have zeros where b has ones. So certainly all codewords of C’}') have zeros
where b has ones. This means that we can puncture the code C}; k times
{(delete the k coordinates where b has ones) to get a constant weight code
(Lof length n~k, minimum distance at least 2(§ - £) and constant weight

S-£. Thus
]cg:]cg:[_cgi $A(-k,2(8-8) ,w-8) , for all bEV).

We now show that there is a b€ V: such that

M ¢

it

L6

lc lgi = A(n,26,w),
k

To do this, we calculate the number N of pairs {g,b} of the set
{{c/b}c€C,pEV), wticob) £} in two different ways.

.- ik~ 4% k
i=0
not more then £ ones in common with ¢, we have

. . 2 .
Since, for any ¢ € C, there axe ¥ (w)(n- w) vectors in V" that have

‘e w n"w\ x W ne-w
N= X ¥ ( ( _i) =a(@m,28,w) I ()( _,.> .
EECi=Oi)k i/ A A

On the otherhand,this number also equals
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Hence we have

£
£ _lel=am,28,w % (w)(n—w)( .
pe® 2 1=0M/Ak= L
- k
n £ w\(n -w '
Hence,there is a b€ V;: with I‘Cgl% {A(n,Zé,w)/(k))izo(i>(k~ i)'

Together with chl $aln-%k,28,w-L) this last inequality proves the first
part of the theorem.

To prove the second inequality of ;he theorem, we apply the first
one to the cémplementary code 6 of C, with £' =k - £ and k. This gives

. n
A(n,ZS;w) =A{n,28,n-w) §k—-[—(¥—L A(n-k,2(8-k+L) ,n-w-k+l}

o (nlw)(kt'i)

n
=%L—-A(n—k) ,2(8-k+£} ,w-L) .

wifn-w
pug .
y=£ J/A\k-]

as in [8] the proof of the above theorem has an immediate

conseguence, which is stated in the next theorem.

THEOREM 4. Let there exists an (n,28,w) constant weight code with N
codewords and let k,f be arbitrary integers with 0SZ$k <n. Then there

exists an (n-%k,2u,w~-£) constant weight code with N' codewords, where
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£
us=8-2 anan'z(n lz(}(‘;’){i_?)/(ﬁ)] i# £5k/2,

u=8-k+£ and N* 2 [N i%ﬁ(‘;’)(i:‘:)/(z)] if £>%/2.

PROOF., One of the codes Cb" b€ V;: defined in the proof of Theorem 3 does
the job. - 0

The next table contains the improved (according to the table in [6])
lower bounds on A(n,6,w) that follow from Theorem 4, using the constant
weight codes formed by the codewords of weight 8 respectively 12 from the
[24,12,8] Golay code. For completeness we also mention the lower bounds
that can be found in [6] (second columﬂ) and the improvements given by
A.V. Zinoviev in [8] (third column). Our improved results are stated in
the fourth column. The values of k and £, needed tq obtain these results,

are given ‘in the last column.

(n,28,w) |Upper and lower | Lower bound | Lower bound |vaiunes of|
bounds from [6] | from [8] from Th. 4 x [ £
(22,6,7) 675~1100 - 682 211
(21,6,7) 465~ 828 - 570 3]1
(20,6,7) 310~ 651 320 450 411
{19,6,7) 228~ S20 260 338 511
(18,6,7) 160~ 349 198 243 611
(17,6,7 119~ 240 141 ) 166 711
{16,6,7) a0- 156 g5 108 g1
A{22,6,11) 1574-5064 - 1860 211
(21,6,10} 1286-2702 - 1288 312
2(20,6,9) 736-1362 - 760 413
(19,6,8) 332~ 734 360 408 514
A(18,6,8) 232~ 428 - 239 * 514

Table 1. Improved lower bounds on A(n,6,w).

To £ind the lower bound A(18,6,8) 2 239 (*) one uses Theorem 4, starting
with the (23,1288,8,12) constant weight cede, taking k=5 and L=4.
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2.3 LOWER BOUNDS FOR A(n,4,w)

§ 2.3.1 Introduction

In this paper we describeé a construction method for constant weight
codes with minimum distance 4 that improves several of the known results

in {11, [3] and [6]. The method is based on the following observation.

LEMMA 5. Let ny and n, be two positive integers and let n =n, +n2. Then

2
w-3
[%28)
A{n,4,w) 2max T T(<S+21,n1,w—6-2i,n2,4) [8=0,17 »
i=0
\
where '1‘(&71 ,nl,wz,ng,é) = the maximal number of codewords in any binary code

of length n1 +n2, minimum distance 4, with exactly wl 1's in the first

nl coordinate places and exactly vy 1's in the last n, coordinate places

(such a code will be denote by an (nl,n ;4w ,wz) code) .

2 1

PROOF. Let C(w1 my +¥W,,n,) denote a binéx‘y (nl,nzgd;wl,wz) code. The lemma
is proved if we can show that the codes €(0) and ({1) defined by

w-3
[——l

C(8) := u C2i+d,n, ,w=2i-8,n.) ,6=0,1, (2)
1=0 ! 2

both have minimum distance 4. We will prove this for §=0.
n n
= = eq{ 1 2
Let u=(u |u),v=(v, v, ,u ,v £{0,1} ! and u, , v, €{0,1}
be two distinct codewords of C(0). Suppose that wt(gl) = 21 and wt(y_l) =23,
so wt(gg) =w~2i and wt(y_z} =w=23. Then if i=3 we have

u,v €C(2i eny s W= 21 ,nz) and so &{u,v) 24, while Lf 1% j we have
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. = > - - =121 - 24
afu,¥) =d(g,,v,) +alu,,v,) 2 |wetu) —wety |+ fwtay) ~weivy) | =28~ 23]+
|lw-2i-w+23l =4 [1-3] 2 4. 0
FProm this it is cleax that our construction methed involves the
construction of (nl,nz;é;wl,wz} binary codes, which we treat in § 2.3.2.
§ 2.3.2 The construction of (nl,n2;4;w1,w2) codes
Let V:i denote the set of all binary vectors of length n and weight
w. {Cl(w.n)}ij:é denctes a partition of Va into k mutually disjoint
constant weight codes, each with minimum distance 4 and constant weight
w. Assume that the constant weight codes are numbered in such a way that
‘CO(W;n‘) |z ]Cl (w,n) |Z..'2|Ck - 1(w,n) | holds. The construction of a
{nl,n2:4;w1,w2) code is as follows:
i k-t i ky-t y
Let {C (wl,nl)} 1=p @nd {C (wz,nz)} i - be partitions of le
n, ’
resp. V © as we have defined above. The code Ciw, ,n. ,w,,n.) is
W, I A4
then defined by
min{kl,kz} -1 ) ) ,
C(wl,nl,wz,n2) T v Chtw m ) @ Cw,,n,), (2)
i=0
where Ao B:={(alb) | a€A,pEB}.
LEMMA 6. The code C(w1 ,nl,wz,nz) defined in (3) is a binary (nl,n2;4;w1,w2)

code. The number of codewords is given by

min{kl ,k2} -1

i ek .
1€y im0y imy) | = ifo [C tuymy |+ [Cwyemy) | (4)
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PROOF. We only proof that the minimum distance is 4. The rest then follows
. i i

immediately. Let u= (31| 11_2) € (w1 ,nl) 8 C {wz,nz)

apnd v= (v ]v yeed (w1 ,nl) 'R (wz,nz) be two distinct codewords of

C(wl,ni,w Then there are two cases:

2)

. i . i
i) i=3j, then 31,21EC (Wi'ni}’ _11_2,V2CC (wz,nz) and

By #y, or u,#v,. Hence d(u,v) =d(u,.,v,) +4a(u,,v,) 24,

1 ~1 -2 =2

- e s ” -

ii} i#j, then ul vi and 32’:1’-2’ Hence d(g,x} d(al’-":-l) +
d(uz,v2) 22+2=4, I

REMARK. In (3) we used the codes C (w my ) and C (wz,n ) to form the

2
direct sum CT (w n, )@C (w my), 1-0,1,.., min {kl,kRJ-I. Other

combinations are possa_ble. However, from (3) and the assumption about the
ordering of the codes in a partition, i}: follows that no other combination

gives a larger code C(wl,n Vo)

1772

We are left with the problem of finding suitable partitiolns of U:
for 0<w < n. One way of solving this procblem is to look at the
construction methoed for constant weight codes that Graham and Sloane
described in [3]. This method partitions V: intc n mutually disjoint
constant weight codes with minimum distance 4, which gives a partition
(¢t w,n) }n- Los Vn (D<w<n). Using these partitions in (3) j e find
{nl,n :4; wl,w 3 codes C(wl,nl,w } with lC(wl,nl,w )[ z w 22)/n1,
for every nl,nz,wl and w2 with n 2, 0< w1 <;\1 and 0<w2<n2
Taking a, =n,=n and 0<w< 2n we f£ind codes C(0) and C(1) with
1C{O}§ + {C(l) 5 2 (%:)/n, from which we conclude that A(2n,4,w) 2 2‘:)/ 2n.
This lower bound was also found by Graham and Sloane [3]. From the above-
it will be clear that we can expect to find better results if, for
instance, we are able to find partitions of Vz: into fewer than n mutually
disjoint constant weight codes. The determination of such partitions

is postponed to the appendix.

EXAMPLE 1. Let n=16 and w=7. From [3] we have A(16,4,7) 2 715. Taking

n1 =n2=8 and using the partitions of Vi,,w' =0,1,2,...,7, as determined
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in the appendix, we find codes ({(2i,8,7-2i,8), i=0,1,2,3, with

0 .
Ico,8,7.8 = £ [cto,e!-|ctir,e ] =1,
i=0 .
6 i i
IC(2,8,5.8y|= £ [C 2,8 ] 1|C(5,8)|=7.4.8=224,
i=0
5 i i
lca,8,3,8/= ¢ |cr@,s]-[ctiae]=
120
©2.14.8+2.12,8 +10.8 +8.8 = 560 and
6 . .
lce,8,1,800= £ |Ch6,&|-|Ch,8|=7.4.1=28.
‘ i=0

Hence, for the code C(0) defined in (2) we £ind

3
|Ctoy= £ |C(2i,8,7~2i,8)! =813,
i=0

giving us the improved lower bound A(16,4,7) 2813,

EXAMPLE 2. Let n=19 and w= 5. From [6] we have A(19,4,5) 2612, Take n1 =9

and n, = 10. With the help of the appendix, we find codes
C(2i+1,9,4-21,10}, 1=0,1,2, with

8 )

[C(1,9,4,100 = £ [CY1,9 ] - |Ch4a,10)]
1=0
=3.1.27+1.26+3.1.25+2.1.12 = 206,

6 . ‘
[C3,9,2,1)= £ [€53,9] - [C*@2ap ] =7.12.5 =420,
1=0

0 .
1€(5,9,0,100| = £ [ct(s,99] - |€t 0,100 | =16.1 = 16.
i=0
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Thus, for the code C{1) defined by (2) we f£ind

2
leyl= = [Cr2i+1,9,4-21,10)] =842,
L i=0

Hence, we have A{19,4,5) 2 642.

However, since any constant weight code A of length 2, minimum
distance 4 and constant welght 5, can be transformed into {(9,10:4:;5,0)-
code by adding to ‘each codeword of A a tail of 10 zeros, it is easy to
find a (9,10;4;5,0)~code (' (5,9,0,10) with [C*(5,9,0,10)! =A(3,4,5) = 18.
Replacing ((5,9,0,10) by €'(5,9,0,10) in the above construction, gives

5(19,4,5) 2644.

We conclude this paragraph with a revised table of lower and upper
bounds for the function A{n,4,w) in the range n s 24. The entrigs in this
table with an asterisk in the upper left corner are the improved lower
bounds found by the above described method, using the partitions given in
the appendix.On checking these entries the reader must be aware of the fact
that we have ugsed the trick explained in Example 2 several times. The

entries without an asterisk are from [1],[3] and [6].
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N 2| 3 4 5 & 7 5. 9 10 1 t2
0 2] 1 1
51 2| 2 1 ;
51 3| a 3 1 1
T 3] 7 7 3 ; :
g 4| @ 14 g 4 ! 1
91 4|1z 18 18 12 3 1 1
1w | 5113 10 3 0 13 5 i 1
o5 | 35 56 66 35 17 g i 1
121 8120 51 75-84 132 F5-B4 51 29 & 1 3
118~ 158 m 158 118-
130 8 | 26 65 55 26 & !
-132 -182 -182 ~132
169~ 275 316 275- 169-
14 7 28 41 a1 o8 7
-182 - I08 -364 -308 -182
25 370- 582- 582~ 170 222
15 | 7| as | 1os 108 35
—271 455 60 560 455 271
305 sape |7 aia- 1164- 813- 553 305-
16 g a7 149 140
' -336 a3 ~10a0 -1320 ~1048 -122 -336
*
154- 424~ 854~ 1320~ 1608 1608 1320~ 654 424
17 8 | 44
-157 476 ~852 ~1733 _2210 2210 ~1753 957 -478
504 1260~ | © 1936~ | | Z760- 3150 2760- 1936 1260
18 9 481 198
-585 -1428 -2448 ~1944 ~4420 ~3944 2448 ~1438
BhA- 1496~ | T 3024- | © 4330- 5490~ 5490~ 4330- 3024
19 857 28
-753 ~1789 -3876 -5814 -§326 8326 _s814 ~1376
BIlm 2120~ | ¥ 4103- | T ntiz- 9187~ | *  10536- 9197 7112~
20 | 10 | 88 | o2as
~512 ~2506 5111 ~5600 -l 2920 ~16652 ~12920 ~9690
1671 2856- | 5788~ | 10045- 15143« | * 1@057- 18057~ 15143~ |
2 1079 31s ’
-1197 ~3192 ~1518 ~13418 “32610 L27132 _27132 ~22610
1927 | 7888~ | 15124 23458- | © 32442~ 35136~ 32447
22 |11 | 73 | 385 1386
-4789 _10032 -20674 ~32794 —49742 ~54264 —A9742
&
416 11266~ 72530 3006~ | © 52978 £2782- 52782~
23 ] 51 | a3 17 5313
YE. ~14471 ~2884% ~§2873 ~75426 ~104006 ~104006
—
1888~ 15267~ 13795 56267~ 89816- 105499 L 2AUs -
29 | 12 | BB | 498 7084 _
~201t -18216 ~43263 ~TE912 -126799 -164585 ~POH012
Table 2. Bounds on Aln,d,w)
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§ 2.3.3 An optimal (18,21,8,6)-code

We conclude this chapter with an (18,21,8,6)-code. From [6] we have
that A(18,8,6) £21; so the code is optimal. The (18,21,8,8)~code is given

by the matrix A below, the rows of which are the codewords.

I
L o
& dode

»
iR
W

H
e

L8

>
W

Ll
-

o
[

b4

[N
i

o
ey

vhere Ai' 15123 are circulant matrices with top row a given. by

a, = (101000),

a,= (110000} and a;= (001100) .

.

It is easy to prove that the rows of A indeed form an {18,21,8,6)~code,
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APPENDIX

In this appendix a partition of Uz is understood to be a partition
of Vz into constant weight codes of length n, minimum distance 4 and
constant weight w as defined in § 2.3.2. The partitions of V: which we
give here, are used in our construction method of Section 2.3 to find
the results stated in Table 2.

pEFINTTION: Tet {CY(w,n)} be a partition of V:., Then the

i=0,1,...,k~-1

number vector X of {Ctw,m) .

n $=0,1,...,k-1 is defined by

Koon :=(1C0(w,n) ! ,‘Cl(w,n} | ,'.,.,iCk_ 1(w,n) [) .

For the determination of the number of codewords in the codes C(0) and €(1) of

(2} and hence for the determination of a lower bound on A(n',4,w'), these
number vectors are all we have to know. The next lemma gives the number
vectors of partitions of Vﬁ for ws 2. The proof is simple and is left to

the reader.

' - n .
‘LEMMA. For every win there are partitions of Vw with number vectors

satisfying:
i) K = K '
N - W, N
ii) ~1§0,n = (1},
1id) Ky oo iy v
EzLy.y L if n is oda,
2 “n
iv) K =
“-2,n

n . .
('5) 'J“‘n-l’ if n is even.

JIn the following we give the partitions of V: , 63n%12 and 3 swﬁ-% ’
of which the number vectors are given in Table 3. That these are indeed

partitions of Vs as we have defined in § 2.3.2 is straight-forward to check.
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I order to limit the amount of writing we frequently use the
following notation. Let { be a binary code of length n with coordinate
set X={0,1,...,n~- 1} and let p be a permutation of X. Then we denote by

ple), c=(eg,e ,--nuC ) EC the vector

plg)=le _, 'Sy I

p () pT 1) p " tm-n
and by p(C) the code

p(0:={ptg) | g€C}.

n| 6 k aumber vector K n I see
614 3 6| (4,4,4,4,2,2) a.1
7 3 6 (7,7,6,6,5,4) a.1
8 3 7 (8,8,8,8,8,8,8) VA.Z
8 4 [ (14,14,12,12,10,8) A.1
9 3 7 (12,12,12,12,12,12,12) A.2
9 4 8 (16,16,16,16,16,16,16,14) A.3
10 3 10 {13,13,13,13,13,13,13,13,13,3) A4
10| 4| 10| 27,27,27,26,25,25,25,12,12,4) A.5
10 5 10 (36,34,32,30,28,26,24,14,14,14) A.6
113l a7,17,17,17,17,14,14,14,14,12,12) a.7
11 4 11 (34,34,34,34,34,28,28,26,26,26,26) A.7
11 5 11 (66,60,55,50,47,44,41,32,32,30,5) A.6
12 3 11 (20,20,20,20,20,20,20,20,20,20,20) A.2
12 4 11 . (51,51,51,5%1,51,40,40,40,40,40,40) A.7
12 5 12 (70,70,70,70,64,64,64,64,64,64,64,64) A.7
12 6 11 (92,90,90,90,90,84,80,80,76,76,76) a7

Table 3. Number vectors
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2.1 partitions of Ui, V; and Vi

The six arrays below form a partition of V; into six mutually disjoint
constant. weight codes with minimum distance 2 4. The number vector of the

partition is K.

3’7= (7171616r514) .
BAER) ¢t %3,
11 1 11 1 111
11 1 11 1 1 11
11 1 1 11 1 11
11 1 1 11 1 11
1 11 1 11 1 1 1
1 11 1 11 1 1 1
ha 1 1 11
e ERS e,
111 . 111 n 1 1
111 111 11 1
1 11 11 1 11 1
1 1 1 1 1 [l 1 1
i 1 1 1 1 1
1 1 1

If we consider the vectors that have a zero in the Sthcoordinate place
we find, after deleting this coordinate, a partition of Ug with number

vector R ={4,4,4,4,2,2).

3,6

Since the distance between two distinct vectors in the same code
Ci(3,7) (i=0,1,...,5) is exactly four, we may adjoin to each Ci(3,7)
(i=0,1,...,5) the complements of its codewords. Adding the overall parity
check then yields a partition of Vi with number vector

K, g = (14,14,12,12,10,8) .
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A.2 Partitions of Vg, Ug and U;2

The problem of finding a partition of &’;‘ forn=6ém+1 or n=6m~+3
into a number (as small as possible) of mutwally disjoint constant weight
codes, is the same as trying to find a packing with Steiner triple systems
of order n,{(i.e.,a partition of the set of triads of n elements into n =2
disjoint Steiner triple systems). In [2] Denniston gives the solution of
the above problem for eleven values of n, including n=13. This sclution
is given on the following page and is used to determine a partition of U;g

with number vector K. = (20,20,20,20,20,20,20,20,20,20,20) . One can also

3,12
find several references to the above problem in [2].The existence of a
packing of order 9 was found by Kirkman (see [2]) and rediscovered several

times (also by us). This packing is givén below. We use our terminology.

et C be the constant weight code shown in Fig. ! and let B be the
permutation (0,1,2,3,4,5,6){(7}(8) (sc plgi) =i+1 {mod 7)), i=0,1,2,...,6,
pl(’l) =7 and 91(8) =8. Then we define the codes Ci(3,9), 1=0,1,...,6, by

)] :=pi’(C}, 120,1,...,6.

These codes form a partition of b’i with number vector 53'9 =(12,12,12,12,
12,12,12).
The codewords with a zero in the last coordinate form, after deleting

this coordinate, a partition of V§ with number vector 53 a= (8,8,8,8,8,8,8).
’

012345686

=
1

11 1
) 1
1
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Let D be the code shown in Fig. 2 and let P, be the permutation
(0,1,2,3,4,5,6,7,8,9,10) (11) (12) . Then the codes C*(3,13), 0£1i£10, defined
below form a partiton of V;3.

ct3,13) =5l D), 1=0,1,...,10.

Shortening these codes give a partition of V;Z with number vector

Ky 4, = (20,20,20,20,20,20,20,20,20,20,20) .

=3,

0123456789101112

11

[
-
P

-
[
L e =

Fig. 2.

9
A.3 A partition of V4

Let C be the {(9,16,4,4) code shown in Fig. 3 and let p be the

permutation (0,1,2,3,4,5,6)(7)(8). Then the partition {61(4,9>}i_0 ) 20
Nl gy
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with number vector X = (16,16,16,16,16,16,16,14) is defined by

-4,9

¢t (4,9 :=pN(0),

i%0,1,...,6,

¢’ (4,9 := (p%((1,1,0,0,0,1,0 | 1,0)) | 1=0,1,...,6}
u{p"((1,1,0,1,0,0,0 [0,1)) [i=0,1,...,6).

o

2

4 56

1
1

1

3
1

1

= b

—
o
I T pe)

[T

A.4 A partition of U;O

We now give a partition of V;O with number vector K.

Fig. 3.

3,107 (13,13,13,13,

13,13,13,13,13,3) .. Let p be the permutation (0,1,2,3,4,5,6,7,8)(9) and let

00,
partition of U%O is given by

Dl' DQ and 93 be the constant weight codes shown in Fig. 4. Then the

333,109 :=pl<£’j), 1=0,1,2 and §=0,1,2, and  C2(3,10) =0,
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0123456789 0123456789
1 111 1 11
1 R E 1 1 1
1 1 1 1 1|1
11 1 1 1 1
T 11 11 1
) T 1 1 11 1 )
= 1 11 1 11 =
0 11 1 11 !
1 11 111
1 1 1 1 1
11 1 1 1T 1
1 11 111
1 11 1011
012345678¢9 0123456789
1 1 i 1 1 1
11 1 1 1 1 =03
11 1 1 1 1
11 |1
111
g 111
= |1 11
2 T 1 1
1 11
1 1 1
T 1 1
1 11
1 11
Fig. 4.

A.5 A partition of Vio

Let C be the (10,27,4,4) constant weight code shown in Fig. 5 and let
p be the permatation (0,1,2,3,4,5,6)(7){8)(8). We define the codes Ci(4,10) '

0Sisé, by {SIV and ¢, are as defined in Fig. 5)

2
'C0(4,10) 2= C ,61(4,10) :=92(C) ,Cz(q,w) :mp4(C) .

34,10y :=p%(0) \p°(e 1}, € (4,100 1=\ (pte)) + pig I},
54,10 :=p3(C)\{Q3{9_1) . 5 (c,)} and

14,10 +=p>(© \p (e , 2 (e}
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Together with C7(4,10), C8(4,10) and C9(4,10}, defined by the arrays

with number vector

10
4

shown in Fig. 5a, they define a partition of V

(27,27,27,26,25,25,25,12,12,4) ,

%10

0123456789

1

1

1

1

1

1

1

-t

1

1

Fig. 5.

09(4,10)
0123456789

08(4, 10)

01234567829

6714,10)
0123456789

1

1

1

1

1

1

1

S5a.

Fig.
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A.6 A partition of V;O and V;l

From [6] we have, that the rows of A (see the‘figure below) and the

sums of pairs of rows of A form a (11,66,4,6) constant weight code.

012345678910
11 111 1

11 111 1
1 11 111

Taking the complements of all these codewords and permuting thé coordinates
{0,1,2,...,10} with the permutation (0,10)(1,7)(2,8,4)(3,6)(5,9) one finds
the (11,66,5)-code U shown in Fig. 6 { the coordinatses are renumbered).

Let D' be the subcode D' :=D\{c,,c,,...,c 0}, where the ¢,
i=1,2,...,28, are defined in Pig. 6. Let p be the permmtation
(0,1,2,3,4,5,6) (7) (8) (9) (10), then we define the Following partition of v;l.

c® ‘

(5,11 :=D=0"U{e ,e,, ...},

cts, 1 :'«"-pz(v')U{pz(g_i) | 1=1,3,4,5,6,7,8,9,10,12,13,14,16,17,
18,19,20,22,23,24,25,27}, ‘

82(5,11) :=p5(D‘)U{pS{Ei) | 1=2,3,4,5,8,9,10,11,13,14,15,18,
20,21,23,24,26},

»03(5,11) :=94(9") U{p4{£i) | 1=1,3,6,7,9,12,13,16,17,19,22,23},
C4(5,11) :=p1<v'> U{p(gi) li=1,2,11,12,15,16,21,22} U

v {(0,1,1,1,0,0,0|1,0,0,1},
C3(5,11) :=p> (D) U{pB(gi) | 1=5,8,18,20} U

v {(0,1,1,0,0,1,0 0,1,0,1),(1,0,1,0,1,0,0]0,0,1,1)},
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22 u{1,1,0,0,0,0,1]1,0,0,1),

®s,11)

(0,1,0,0,1,1,0 [ 0,1,0,1),(1,0,0,1,0,1,0 | 0,0,1,1)7,

C?(S,li}, C8(5,11} , C9(5,11) and C10(5,11) are defined by the array:

shown in'Fig. éa.

The number vector is K. ., = (66,60,55,50,47,44,41,32,32,30,5) .
r

0123456782910

45678910

=

012

w0 ™~ o o O o [N WY WMo
5151 ] 516l 7 AR ol
ulo vlol [S1R3] ul ui vio vivivia
] ) won 0o ) wonowon
wd ek wel et et fed w o et el -t et wed et e
el et et v e
P B SR B o ] vt oed e et
L B B Rt o I B B
- - -—t bl Ll el Ll -t g o | et Rl o et e -l
-4 Ll - —t et -t - ot - ey et R B IR i
Ll -t el =t gt - o -t et Lol et -t et
i oed -t -l et el -y - Ak wt ] g - -l
-t i = et o4 -t Eelial -t et et -l i e
-t et L k] it i i =t -t wod { et e et e
vy bl vt ham) fe ot el — et = R o -t —t
o N (el
et ™ e R -t e
ulu oiu oju vj o ojul vlu olol
no "o o ] uo %o no
vt ford et et femt wed wed o ed -t et
woi |eed = ek Jee] e et -l e D e B A e L I A I L ot
o fed et e Rl B o B L I -y e el =t ed e
i oot v el e e gt | el e et Jeed i et fed v e e el
-t -t - et -t vt e Rl -t gt
- Lo L] Ll L Ll i - -l -t - ;
it el Lol -t el Ll Aad bl -t -t
- 4t LT e et -t =t e | -t
vt - - -4 -t Rl ~i - -t -~
- el Ll - —t Al ot Rand o i g
R el | et R Rand et hd et e -t el

Fig. 6.
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5,10 (5,11
012345678910

012345678910 0123456788910

el (s,11)

bl (2 -t i i —t L B B B e B B ]
o et et et et | —t -
- « et - et et et e
et ed i i vt e e 3 led e )
-t -t ot et fot vt e =t — fet -t —
Saul -4 el Ll et 1.11 —t ol ot el
R Ll Rl —t vt - ey -t Rl o i
Ll - -l v Ll =t i -t - -y
vy i -t - -t et -l -t -t
- et et —t — e —rft IR I ]
-l el o ot fand -l vl e -l
s wd -t - il fet et et wl v wed od
-y et wd - L B Ll Aol i e
vl W e Rl B B -t Al ~—
-t wod et [t et e e -
- -t -t = -t — |t - — et et
et -y -l et - —t et Lalhal Rl -t
-t -t -t -~ et - -
- -t |ed -t Lol el v -t ot i vt -t
Lad i -t -t {eet —t ot § et vt ed e
-y - e et ]t — —t Pt ed et Rl
vl -l e il Al — ~ o et et
ER— -t it vt femt Lt Jomt ot et
e vt -l -t -t et — — et ot
e et PR P -t ot -t =
Lo lvlllo\bi et fet 3
R et §oand -t it -t i —t it -t et
- -t - i — -t - - e -
ot Rad Rad -t et R nilal i i i vt -t
bt -t ot t -t b fed i ]t -t ot et
- -4 ot e - e — -t o
Ead g e i Rt —t et -t et -4 et w4 -t
hand R i et et vt ~3 o =t — v

610(5,11)
012345678910

R Y

1111
1

Fig. 6a,

coordinate form, after

th

The codewords with a zero in the 10

deleting, this coordinate, a partition of Via with number vector

5

10:=(36,34,32,30,28,26,24,14,14,14).

13

Xy
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A.7 partitions found with help of the method described in Section 2.3

Since the partitions in Table 3, with A.7 as reference, are all
found in the same way, we only give one,namely that of U;l. fI‘}\e others
are left to the reader.

Let {Ci(w,S)]i

ana {CHw,6)}, _ be the
i -1

=0,1,...,k ~1 0,1,....L
5 w 6 w
partitions of Vw (w=0,1,2,3) respectively Vw (w=0,1,2,3) which we found

in A.1 or just preceding. Then we define the following partition of V;l,

et,11 =c43,5 8¢%0,6)

4 oy
u( v cda,s eeliti) mod 5(2,6)), 1=0,1,2,3,4,
j=0
¢t 33,11 =c%0,5 s i3,

4 . -
u ( u clz,5 ectiti) mod 6(1,5)), 1=0,1,...,5.
j=0
From §2.3.2 it follows that every Ci{3,11). i=0,1,...,10, is a
constant weight code of length 11, minimum distance 24 and constant

weight 3. From this we also have

|Ci<3,11)|=1?, i=0,1,2,3,4, ici<3,1:)1=14, i=5,6,7,8
and
¢t z,11y] =12, i=9,10.

One further easily sees that all words of weight 3 are different and
i
so {C (3'11)}i=0,1,...,10
1" (17,17,17,17,17,14,14,14,14,12,12) .

1
is a partition of V31 with number vector

X,
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CHAPTER 3

CONSTANT DISTANCE CODE PAIRS

3.1 INTRODUCTION

In this chapter we are concerned with a problem, formulated by

ahlswede, El Gmal and Pang [1] in 1984. They defined a constant distance

code pair (A,By as a pair of binary codes of length n such that, for some
§€ N, 0£68¢&n,

VgeA YoeB lata,b) =81,

1f (A,B),A,Bc JE‘g, is a code pair for which the aboge property nolds, we
write A(A,B) =&8. They were interested in the following function defined

below
M(n,8) s=max {|A! . |B| | Ac F‘; , Bc 15'2 , A(A,B) =8},

In {1] ahlswede, El Gamal and Pang proved the following upper bound on
M{n,8) .

THEOREM 1.

213)

M(n,8) £2 , for all n,6€ W with 058%n.
. a

They Vgave the following examples, where equality holds in Theorem 1.
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n
A :={00,0), (1,012 (0}%, for i-0,1,

B :=1c0,1, (1,012 4 (0)E,

0

5N

B, :={(0,1), (012 ¢ (1€,

where €=0 if n is even and € =1 if n is odd. One immediately sees that
n
23]
Bil =2 , i=0,1.

in [2] Hall and van Lint proved Theorem 1 using the observation that -

AB = Fy, MA,B) =|F]+ic ana |A,

for an equidistant code pair (A,B), for any a€A and b€8, the codes a¢ A
and b ® B are orthogonal even weight codes. Moreover, they proved that
essentially the only code pairs for which equality holds in Theorem 1 are
the ones given in the example above. To be more precise we need a
definition.

Two code pairs (A,B) and (A',B"), A,B,A'",B'c :11~"I2l are called eguivalent
if there exists a permutation 0 of the positions o{:‘ codewords and an x € :IF;‘

such that
(xe 0(A) ,x60(B)) = (A',B"),

where o(A) ={ (‘ac(i)’acf(Z o (n)

Lint proved that any code pair for which equality holds in Theorem 1 is

yroseod )|(a1,32,~--,an)€A}. In [2] Hall and van
equivalent to one of the code pairs given in the example above. Since for
these examples § = I_%J or § = [%‘I, the question remained:"what is the exact
value of M(n,8), for §# L%J or r%] ",

In this chapter we will give an answer to this question. In Section
3.2 we determine the exact value of M(n,8) for all n and § with 08 <n.
In Section 3.3 we additionaly characterize all constant distance code pairs

(A,B) of length n and constant distance § with

B| = M(n,S).

|A
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3.2 THE EXACT VALUE OF M(n,S)

Prom now on A and B will always denote two binary codes of length n
such that A(A,B) =8 and |A] - [B] =M(n,8). such a code pair is called
optimal. The following lemma shows that without loss of generality we can

assume O§6§% .
LEMMA 2. For any n,5 € W, 058 <n, we have
M(n,8) =M(n,n - 8§)

PROOF. Let (A,B) be a constant distance code pair with constant distance

§. Then obviously A(1#A,B) =n-3&. The result follows. i

From now on we assume 058 é%. The following examples give a lower

bound on M(n,8).

EXAMPLE 1.

AL e 10,00, (1,0} e {0} %

i -
n,S

. , Y
B;'é ={(0,1), (1,00} @ b"g_x", for 1=0,1,2,..,8,

n__ n .
vhere U :={c€ ¥ | wt(c) =wl.

i i n ioopi i | .qgl | o2ifn-2i
We have An,ﬁ’ Bn,ﬁc ¥, A(An,é'sn,ﬁ) =48 and lAn,Sl ‘Bn,ﬁl = 2 <(S—i )
Hence
M(n,6) 2 max {221{“‘?i>logiga}, 0gssl (1)
Ké-—l 2

The following theorem states that this bound is tight
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THEOREM 3. For all n€ W, §€ N with 0§6§-’2]— , we have

M(n,§) = max {22?(“6‘_?) | og1s8).

REMARK. One easily checks that

max {22i<“5:ii) |0sis8)= (D, ifnm-1)245m-9).

For this reason the inequality n{n- 1} 248(n~¢&) will play an important
r8le in the proof of Theorem 3. '

Before we can prove Theorem 3 we need to do some preliminary work.
Looking at the code pairs given in Example 1, it seems more or less natural
to consider pairs of positions of codewords. That is why we define, for
every i,j with 1,3€{1,2,...,n} and i#=73,

Oy 5 i=the number of pairs {a,bl, 2a€A, bEB with

a,+a.+b, +b,.=1 mod 2.
3 i 3

i

The condition ai+ aj +bi+bj #1 mod 2 says that the positions i and j

contribute exactly 1 to the Bamming distance between a and b, i.e.,
d((ai,aj) , (bi,bj)) =1. Since A{A,B) = §,we have

I a,, =6(m-6 |A|-
0gi<isn 13

Bl =8(n-8&um,§ .

It follows that there is an ocij with g > 28¢n ~8) M(n,8)/n(n-1).

Using a permutation of the positions of codewords we can take care that

28¢(n - 8)M({n, )

n{n-~1)

2

12 2

We now try to find an upper bound on O For this reason we

127
partition the codes A and B as follows:
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=
A={0,0}s Aeo u{(1, 1}e A” u{(0,13}s Ao1 uli1,0de Aw

and
- 1
B={(0,m}e B , ult1,1)}e B, ulto,n}e B ui(1,0}e8 B, .,

n-2 ) .
where Aep , Bau":“ F, . Eu€ {0,1}. Notice that scme of the sets Asu ,
geu may be empty. With this terminclogy we can write &y, as

oy = HAggl+ 1A D cIBy T+ By oy + (A [+ A 51 (B L+ B, D)

K4

The following two lemmas are useful in finding an upper bound on GIZ'
LEMMA 4. For every £,u€ {0,1} the following holds:
oy S = Bem = ——
if AeunAeu #, then Bsu Beu ¢ and At—:uwAeu ,

where £=1 +¢ mod 2 and GE 1 +1 mod 2. By symmetyy,the rdles of the
A 's and B_ 's are interchangeable.
EU €Y

PROOF. Without loss of generality we may take € and U equal to 0. Since
AOOQA“tQI, there is an a'€ 3}:‘3“2 such that (O,O|3') and (1,113’) both

belong to A, But, for any b'€ IE‘IZ1 =2 e then have

a(o,0]a" , (0,0/b") =ac(,1lan , (0,0/p") -2
and
aqe,ofa"y , (1,1l =aqe,tlaty, (1,1lpn)y +2.

so B. =8B =d¢.

Q0 11 N N

From BO():BIJ. =¢ and |A| - |B| =M(n,8), it now easily follows that
(0,0l €A @ (1,1lc") €A So Ay =A . 0

The following lemma is obwvious.

B_UB, )

LEMMA 5. The code pairs (AOOUA 10 Boo U84y

1 301 UBJ.G} and (AOluA



are constant distance code pairs of length n ~2 and constant distance

§-1. i

We are now ready to give an upper bound on ¢ and so indirectly

12
an upper bound on M{(n,8). We have to consider three cases, the first

one of which is special.

CASE I: AgunAgae-g and Baiﬂ BEU?WI, for some e,ue€{0,1}.
With Lemma 4 we then have

Mn,8) = |A '181=0‘12=(IAEUI*!EEQHH%QI*B b

£l

-alag,l - 1Bl

=]

And so with Lemma 5

M(n,$) =a12§4 M(n - 2,6 - 1Y,

CASE II: AsunAEﬁ # 0 and BeﬂnBEu=ﬁ' for some £,4 €{0,1}. Exchanging

the Aw's and Bw's gives an equivalent situation.

With Lemma 4 and 5 we then have

o= AL+ lAg D Al + 18z, =

ey

=2[A8u\ - !Baﬁuséu] $2 Mn-2,8~-1).

CASE III: AguﬂAEﬁ—"-(a and B Uan;{i:g' for all g,u€{0,1},

£
Lemma 5 now gives

%= (“Aoo| 1A D By L+ 1B Dy « Ay [+ 1A D (IBool + By 1) =

= A UA LBy B, |+ A VA

01 VAol ~ [BogUB

< - -
00 111-2M(n 2,8-1)

00 101

Together with (2) casé II and case III give

75
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n(n-1) Mn-2,8-1)
§tn-8)

M(n,8) S
Hence, we have proved the following inequality

M(n,8 Smax {4 ”(“'“}M(n~2,6-1), 1g§g% . (3)

'§(n-29)

An induction argument now completes the proof of Theorem 3.

PROOF OF THEOREM 3. We use induction on §. First note that the theorem

is obvicusly true for §=0 and all n€ N.
Let §21 and suppose that for all n€ N with n-222(8~1) the
following equality holds

Mn-2,8-1) = max {2°% (né—_21——2ii> losiss-1}.

From {3) it follows that, for any n2 2§,

aM{(n~-2,8-1) if n(n~1)£48(n-38),

M{n,8) £
i{;—ﬁz—:%g—m(mg,s—n if ntn-1)248(n-9).

So we have to distinquish two cases.

First suppose n{n-1) £48{n-38). We then have

M(n,8) $4 M(n-2,6-1) $4 max {221(’;'_21'_?) losis6-1}

= max {223(%123*} }1§j§6}§max{22j<z;:2jj) [62326)

Secondly, suppose n{n-1)248(n-8), Then (n-2}{n-3) =
n{n=1) =4{n-1) +1>46(n~8) -4(n-1) =4(8~1)(n~1-98). From the remark

directly below Theorem 3 we have



max {221fn 2-21\10<1<5-1} (n—?)'

Ls-1 ] §-1
5o
nn-1) _ n{n-1) -2
M8 Sy M 20D = Ty (6-1)
(“} {221(“6‘_§i) logiga).

Together with (1) both cases give

M(n,8) = max {22i(“6‘_§i) | 051358},

3.3 OPTIMAL CONSTANT DISTANCE CODE PAIRS

In this section we shall prove that the code pairs of Example 1
aré essentially the only optimal constant distance code pairs. The
observation at the beginning of Section 3.2 shows us that we only need
to consider the case 28 £n. So we assume 28 Sn. In the following (A,B)
is an optimal constant distance code pair with constant distance §.

The lemma below deals with a simple case.

LEMMA 6. If IAI $2 or |B| €2, then (A,B) is eguivalent to (A S’BS 6}
l r
or (Arll 8 6) defined in Section 3.2.

PROOF. Without loss of generality we may assume that |A| €2, 1f |Al=1
then B=ae Vg with {a} =A and hence (A,B) is equivalent to (Ag’a,Bg'ﬁ} .
So suppose |A|=2. Then A={§_1,a_12} with d(a,,a,) = 2%, for some
A€ W with 1 $X£8. Since (A,B)is easily seen to be equivalent to

(An G,Bl g if d(al,a ) =2, we only need to prove A=1.

Counting the number of words bF E‘ with d(a b} —d(_a_g,g) =8

2

we Eind |B] =(2>\A) (nﬁ-z_;\) . Hence with Theorem 3

77
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max {224 ("6‘_31) 05138} =M(n,8) = |A] - |B] =2 (2;3‘) (“6'_:";‘)

g 22 (”{S‘_?)s max {22i<”5'_21i> | 0158,

So equality must occur everywhere, which implies A =1,

i
As a consequence of Lemma 5 we have:
CORCLLARY 7. If =1, then (A,B) is equivalent to either (Ag 1,82 1)
r z
or (A> ,B! ) Gefined in Section 3.2.
n,1" "n,1
PROOF. If 8=1, then one “easily” sees that |A| $2 or |B| 22, a

The following Lemma is very useful in proving Theorem 9.

LEMMA 8. Using the notation of Section 3.2 we have, for every ¢,u€ {0,1}

and x € ZIF‘S'2 :

n-2

if AQUUAE}] =§0?6_1,then IBEU[+IBEﬁ|=IB Uggﬁlﬁl,

Eu

provided n{n-1) 248(n -8} and § 22. The same holds if we interchange the
A ‘s and B_ ‘'s.
£H €1

PROOF. Without loss of generality we may take € =u =0 and x=0. With
Lemma 4 we have B _NB. _=¢, 1f B __UB =@ there is nothing to be proved.
00" 11 00" "1 o

t [ =
So, let b €BOOU811' Then, for any a sAOOUAll U5—1 we have
d(a',b'y=8~2 or §. Since,n(n-1) 246(n~95) implies n-222(S~1) +2 the
above observation gives us wt(b') =1. Se Ug:f is partitioned into AOO

and A“ (by Lemma 4, AODQAH = @), where AOO and Ali are given by
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00 =12’ ev |(a b=t} and A ={a' el/ |(a'b') 0} if b'€B,,

or
o=ta’ ev |(a /b')=0} and A -{a'ev [(a /") =1} if b’ €8, .

Since any other b" € ]Frzl_ 2 with wt(b") =1 involves a similar but
-2

different partition of Vg—l

, we have |300U311|§1. 0

We are now ready to give the characterization of all optimal constant

distance code pairs.

THEOREM 9. Any optimal constant distance code palr of length n and
constant distance §, 28 £n, is equivalent to one of the code pairs

(A ,B )y, i=0,1,...,8, defined in Section 3.2.
n,8' n,8 :

PROOF. We use induction on 6. With Corollary 7 we have that the theorem
holds for § £1. Suppose the theorem is true for §-121 and let (A,B)
be an optimal constant distance code pair of length n and constant

distance §. Without loss of generality we may assume that (see Section 3.2)

,28(n-8) M(n,s)

%2 TThm-1)

As in the proof of Theorem 3 we consider three cases.

. —— - - €
CASE 1I: AsunAeu @ and BE nBE =@, for seme £,u € {0,1}.
= = A1y _ ~|y= - |= - -
Then M(n,S) @, ('Asu!’“'Aeu!)('BeuMBeu')“‘”Aeu Beul aM(n-2,5-1) .
And so with Lemma 4, 5 and the induction hypothesis we have (A,B) is

equivalent to (An 5,8 ) for some i€1{1,2,...,8}.
CASE II: AeunAEazg and Beﬁntu=¢, for some €,u € {0,1}.

i -1) 2 - = Aem = Bem =
From Section 3.2 we then have n(n-1) 248(n-8§), Asu Asu' BE_U Beu [}



CASE IIX: AE

80

= B~ . - -1} . ~1) 2 -
and &, , zlAeu} 18€u08€p] 2M{n -~ 2,8 - 1) . Since, n{n~1) 248(n - §)
implies (n=2)(n~-3)24(8-1){n~-8~1) Lemma 5 and the induction
hypothesis give, either
-2

= —-—— 2
A=Az {x}, x€ JF;

B n -
and SquBaﬁ_xQU6—1 (4)
or
_ n-2 Ao = n -2
Baﬁuas':p'{x}' x € ¥, and Asu"Aep xev6_1 . (5)

With Lemma 8, (4) gives (2) =M(n,s) = [A]-]B] 23(225), which

contradicts n{n~-1) 246(n - §). so {51 must hold. But then |B|=1

(Lemma 8) and so with Lemma 5, {A,B) equivalent to (A: 5 82
’

1

8

= - = 3
unAsu ¢ and 8eunBeu 3, for all e,n€{0,1}.
From Section 3.2 we have n{n-1) 248(n~3§) and
o, = {AOOUAH} '1301U5101+1A01 UAw]-iBOOUBMI = 2M(n-2,8-1}.

Lemma 5 and the induction hypothesis now give that (AOOUA 501 UB;O)

11’
o} 0
n~2,§—1'8n—2,§-1} '
n-2Y(n=-3)>4(6 -1 {n-8~-1)). So without loss of generality we may

and (AOI UAIO'BOOUBH) are equivalent to (A
_ : _ -2 .

assume that AOOUAH ={0} ana 801 UBI()‘ ngl. But then with Lemma 8,

IAOIU"QIOI =1, so that |A|=2. Hence, with Lemma 6, (A,B) is equivalent

Al 1

¢ n,é'sn,ﬁ, v
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CHAPTER 4

TOURNAMENT CODES

4.1 INTRODUCTION

In this chapter we discuss a problem which arose in connection with
comma-free codes. A g-ary code D of length n is said to be comma-free if,
for every pair of words (al,az,...,an) and (bl,bz,...,bn) of D the words

{a (k=2,3,..,1), are not in P . Comma-free

k,akH,...,an,bl,.;.,bk__l) ‘
codes were first introduced by Grick, Griffith and Orgel [5] as a
possible genetic coding scheme for protein synthesis. The general mathe-
matical setting of such codes was presented by Golomb, Gorden and Welch
in [3]. They considered the problem of finding the maximal cardinality
of such a code. A ’
Let Wn(q) denote the maximal number of codewords in any g~ary
comma-free code of length n. From the definition of a comma~free code U
we have that no two codewords of P are a cyclic permutation of each
other and every codeword g=(a1,a2,..,an) of D is non—-periodic, i.e.,

there is no i, 0<i<n, such that

(@4 478 0r--sB 18 rees8) = (al.az,.-,an)-

Hence

Wni{q) £ Bplw .

where

E U(d}qn/d

Bn(q) =
is the number of non-periodic cyclic equivalence classes of segquences
of length n formed from an alphabet of g letters. The summation in (1} is
taken over all divisors d of n and H{d) is the MSbius function. In [3]

Golomb, Gordon and Welch proved that wn(q) attains the upper bound Bn(q)
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for arbitrary g if n=1,3,5,7,9,11,13,15 and conjectured that this is
indeed the case for all odd n. This conjecture was first proved by
Eastman [2], who gave a construction for maximal comma-free codes of
odd wordlength. A simpler construction for these codes was found by
scholtz [8].

For comma~free codes of even length, the situation becomes
surprisingly complicated. It was proved by Golomb, Gordon and Welch
[3] that W (a) <B (@) if g> 3 particular W,(q) = [_%ZJ <B,(q) = (%2),

w4<q) =}34(q} if g=1,2,3 and w4(q) <B4(q) if g2 5., The case n=4 and
g=4 was later solved in [6] by exhaustive computer search, which found

= <
W4(4) 57 84(4) .

An improvement on the relation between k and n such that wn(q) < Bn(q)
for even n was given by Jiggs [61:

W@ <B (@) if @> 2%+ ns2.

A further improvement based on Jiggs® proof was given by Golomb and
Tang [4]:

W@ <B (@ if 3> (/2% 9 M2y nya, nzs,

where ¢ = (1n2)/0.71. In Section 4.3 we give a proof of this result for
¢ =0.5. Moreover the proof is much simpler than that of Golomb and Tang
[4]. we first present Jiggs' result. The modifications are due to Golomb
and Tang. ' ’
We consider the ‘si.mpler problem of finding the maximal cardinality
of a g-ary comma-free code U' of length n=2k (k€ W) in which every word
is a cyclic shift of a word of the form (2,0,0,...,0,b,0,...,0), where a
and b are two differ.:ent symbols of the alphabet separated by n/2 -1 zeros.
So i'D‘| g 3) Clearly, if |P'|< g Jthen W (g) <B ().
A half-word in D' is a k-tuple which is either the initial or final
half of some word in D'. For each symbcl 4 of the alphabet and r € W,
1$rZk, let u(d,r) denote the half-word with 4 at the r-th position
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and 0 everywhere else. The half-word u(d,r) is called initial resp.
final if it equals the initial half resp. final half of some word in D'.

To each symbol & we assign a word 56‘3(:(?,::(1 .,x:} g {0,1,2,*}k,

gree
where xi is defined in the following way

if u(d,x} is both initial and final,

if u{d,r) is final only,

[

if u(d,r) is initial only,

* if w{d,r) is neither initial nor final.

EXAMPLE. Let g=5, n=2k=4 and let U’ be given by

1 0 2 0
1 0 3 0
1 0 4 ©
1 0 5 0
.l 2030
o = 2 0 4 0© -
2 0 5 0
0 3 0 4
0 3 0 5
¢ 4 ¢ 5
" Then
= om 22 = 2, = 1,0
2=, , 20 = (.

Jigygs showed that the words _{d have the following two properties if
TN AN
-

{ i} If 4= b, then xi and x: cannot both be 2, for any>1§r§k.

(ii) If d#b, there exists an z, 1 $r <k, such that (xg, xk;) ={0,1)

a4 b
or (xr, xr} ={0,1).

{In particular distinct letters of the alghabet must have

distinet words).
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The first property implies that the number of distinct words xd containing
a 2 is smaller than or equal to k while the second one implies that the

number of words gz_d containing no 2 is smaller than or egqual to Zk. So,
. /2
if 1D'] = <§>,then 35.2%“+ n/2. Hence W (@) <B_(q) if g> 2n/2

The improvement of Jiggs' results by Golomb and Tang is a consequence

+ n/z2.

of the following Vobservation.
THEOREM 1. If {D'| = (q>,then for every two different symbols b, 4 of

the alphabet and every two different coordinates r and s we do not have

xd=vxb=0 and xb—-xd:l.
r s r S

This observation led to the definition of a {0,1,*} tournament code.
s [0,1,%} tournament code C of length k is a subset of {Q,l,*}k such

that for any two distinct codewords a,b £ C:

(1) S(apy 21,

L a, a, g1 10
D) Vygioim Kb; b;) g{(1 o) ¢ (0 1)}] ’

where §(a,b):= | { igiai, bi) €{(¢0,1y , (1,00}}| is the distance between

a and b. Let t(k) denote the maximum number of codewords in any {0,1,%}
n

tournament c¢ode of length k. Then we have wn(q) < Bn(q) if q>t(%} + 5-

¢ log k
In [4] Golomb and Tang prove t(k) Sk °gx

{(logarithm to base 2),

k24, with ¢ =(ln2);/0_71; (This upper bound and method for establishing

it were suggested by RIL. Graham.). In Section 4.3 we give a simple proof
of this upper bound for ¢=0.5. To be complete we first give some
constructions for {0,1,*} tournament codes in Section 4.2. We conclude this
chapter with the determination of the exact value of t(k) for k=1,2,3,..,92

in Section 4.4,
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4.2 A LOWER BOUMD
We repeat the definition of a {0,1,*} tournament code ( of length k.

DEFINITION 1. A code { of length k over the alphabet {0,1,*} is called
a tournament code if, for any two distinct codewords 9_,13 the following

two conditions held:

(1) $Sa,by >1, V (2)

@ vgge [ 6 3) e {00) -G

Since §{a,b) >1, there is at least one coordinate i, 1 $i%k, such that’
(ai,bj) = {0,1} or (1,0). If {ai,bi) = (0,1}, it follows from condition
(ii) that (aj,bj) #(1,0) for all j,1 595k, and we shall say a+b;

this defines the tournament.

DEFINITION 2, The maximal value of IC{ aver all tournament codes of
length k is called t(k).

Prom now on € will always denote a {0,1,*} tournament code. The matrix
with as rows the codewords of { will be denoted by ¢ . If |C| = t(k},

we call the code optimal.

LEMMA 3. For every k €N there is an optimal code C of length k with
0€C 1eC.

PROOF. If C is optimal and 0 €C, then clearly C must contain a word with
distance 0 to 0.Replace this word by 0 to obtain a new optimal code.
Similarly for 1.

The following lemma is trivial.

LA 4. If C is optimal then C is optimal.



87

Until recently Theorem 5 gave the best lower bound on t(k). The
proof consists of a construction that produces a long tournament code

from two shorter ones.
THEOREM 5. t(k +L) 2 t(k) +t(&) - 1.
PROOF. Let C be optimal of length k and let 0 be the top row of C and

1 the bottom row. Similarly with P for length £. consider the code

with corresponding matrix,

t{k} Cc o}

11...100...0

J D ey

Clearly, this is a tournament code of length k+{ and cardinality
tik)y + t(hH -1,

i
COROLLARY 6. t{nk) 2 1+n(t(k)~-1). .

a
This shows that Lim kﬂlt(k} exists (possibly ). For a while it was

k4
believed that this limit was 2 until Golomb and Tang (1982) found that
£{7}) = 16. The following theorem found by Collins et al. (1984) shows

that in fact the limit is .

THEQOREM 7. Por n€'N we have t(n2 +n+ 1) zn{n2+n+1) +2 .
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PROOF. 'The following construction for a tournament code C of length
n2+n+1 is due to Collins et al. {1984} . The adjustmgnts; are fromw van
Lint [7]. we wiil not prove that the construction indeed gives a
tournament code of size n(n2+n+1); we refer to [7].

The code C,we shall construct consists of 0,1 and all the cyclic
shifts of the words of a set {So,_cf,g N ‘..,g'n-l} . To define these
words we number the coordinates with the integers mod n2+n+1, starting
with -1 (i.e., for the first coordinate). The goordinates #-1 will
have their index written in the (n+l}-ary system. So (x,y) denctes the
coordinate with index (n+l)x+y. ‘Therefore 0sx<n-1, 05y En. The

definition of the words gi is as follows

i} For each i take 33;1 =1,

0 in coordinate place (x,y) if x21i and x+ysSn-1,
ii) gl has 1 in coordinate place {x,y) if x $i-1 and x+y2n-1,

l * otherwise.

0

To be complete we mention that the first cede in this class ig the
code of length 7 found by Golomb and Tang (1982). The second one of length
13 was, indspendently of Collins et al., found by Abels, Janse and
Verbakel (1984). From their work we copled the following list of
tournament codes of length k=2,3,...,13, the first eight of which are
optimal (see Section 4.4). Obviously t{1) =2. The optimal {0,1,*}
tournament code C1 of length 1 is equal to C1 ={(0), (1},



CZ C3
00 000
01 1*0
11 *01
O1%*
111

c

0000
0%01
001%
01*%0
o111
1111

Fig. 1. List of {0,1,*}

00000
1*1%0
*0*Q01
*101%*
10%11
O*1i*
0001+
11111

%

000000000 )
000111 %%*
*111%%1%0
1*1%1%%01
L1x#*101%

LRSIl

2T IERS!
*kk()]*] | *
1#01111%*
*01111%1*
01%111*%1
O***00*01
*0*0*001*
**Q00%*1*0
000*010%**
COV0L**0*
0001*Q**0
* ] wFHNO0
SR L L e Ts]
1 *OxFRQO*

111111111

%

000000
1#%1%0
*1*%01
**{(Oi*
1*0*11
*011*1
Q1*it*
0*Q01*
QO*1%0
*0Q0*01
111111

CIO

[ 000000000C
0**00*0001
**00*0001 %
*00*0001 %%
QO%0001***
0*0001***0
*0001***0*
0001***9**
001***0**0
01***0**00
1***0**001
Q**Q011%*1

11**1***01
1**1***&11
k] HIR(111
*LRRFQIL
1¥+¥0111%1
**%0111%11
*XQT1L%] 1%
*0111%1 1w+
0111%11%%1

1111811111

2
8000000
**1*110
*1%110%
1%110%*
*110%%1
110%%1%
10%%1%1
Qr*1¥11
0O*0%*1
0*0**10
*Q**100
O**100%
**100*0
*100%0*
100*0**

011**1***0

| 1111211

89

C
'8

Q00000000
*11*1%*0
*1*1*%01
1*1**%011
*REL1H
1**011%1
1*QL1%1% |
1011%1%*
QF*k1x]]
’ 0**0*001
O*0*001*
*Q*DO1 %%
Q*001%+0
*Q01**0*
*Q1REQR(
*1**Q*00
100Q*0**
11111111

i

tournament codes Ck of length k, k=2,3,...,10.
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00060000000
*Q*%Q0*0001
0**Q0*0001*
**(30*0001 **
*Q0*000 1 ***
00*QQ01#**(
O*000L***Q%
#QQO1 A **O*%
0001 *** (¥ *]
001 ***(Q**(0
*]EARORA00]
L R% ] *RNRQREQ
1***0**(011
*0#*Q01 [ **]
O**Q0L 1 **1*
0011**1***(Q
*{ e ARQL
11%*]1***011
1R%]**®(111
*x]RHROL11%
FLERAQL11*]
1*%%Q111%11
*HRQLIL*1L1*
FRQLILI*II**
*O111*11%*]
QlLii*1]**1*
11111111111

Fig. 2. List of {0,1,*} tournament code Ck of

C12

000000000000
**O**(0*0001
*Q**Q0*0001*

O**QU*0001+* |

**00*0001***
*QO*Q0UL**+0
00*0001 A%
0*0001***0**
*QQOL***0**(
QOOL**x*(* %00
001***0**00*
01***0**00*0
1***0**00*0@
*1***0**0011
{**R0* 4001 1%
**O**OOlI**l
*0**0011**1*
0**0011**1**
*Q01 1 %% *R*]
0011**1***0*
11*11**1***0
1*11**1***01
*11**1***011
11x*]**%0111
1**1***0111*
**1***0111&1
epAkR(]11%11
1¥%*Q111%11%
***0111*11**
**Q111%11%%]
#OLL1* 1**1*>
0111%]1%*%]**
111111111111

CIB

4000000000000 )

*x*(F*Q0*0001
*XQ**OO*0001 ¥
*O*XGO*0001 **
O**QU*000 1 ***
**QQ*OD0L***0
*DO*0001 ***(*
0O*QO01 ***Q**
O*0001 ¥ **0**(
*QD01***Q*+00
0001 ***Q**00*
Q01 ***Q**Q0*0
Q1%***Q**QO*00
1*%2Q**Q0*000
11**1***0**00
1**1***0**001
**1***0**0011
*1***0**0011*
1***0**@011**
***0**0011**1
**0**0011**1*
*0**0011**1**
O**Oﬂll**l***
**0011**1***0
*0011**1***0*
0011**1***0**
011**1***0**0
IRER SRS R ELTs
11*11 %k *xx(]
1*] 1**1%*®Qf1
*]1ARIE*AQILL
S ERIEE T RN
1** *R0II1H]
*x]HAFOIII*1]
L HAKQLLLHLL*
1HFRGLIIx 1%
LSS EEZBEL]
*HD]LLRLIEN]*
EOIRRESSE SRS
OL11*11*% xwx
1111111111111

length k, k=11,12,13.

90
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4.3 AN UPPER BOUND

In this section we give a simple proof of Grahams upper bound on
t{k) mentioned in Section 4.1. We first note that clearly t(k) is stricktly
increasing. The fellowing observation essentially proves Grahams result,
Let C be a tournament code of length k with 0. 1€ C (Lemma 3). By
permuting rows and columns, the corresponding matrix C can be put in the

following "standarxrd form”.

— f —ck-1-0 >

o]
. A B
o}
1
c=1. D B .
1
*
: F G
o
Fig. 1.

Here, every column of A contains a 1 but no column of B contains a 1.



92

From definition 1, in particular condition (ii), it follows that
no column of D has a 0, while every column of E may have a 0. This

shows that € or C has a standard form with £§ L%}-J

THEOREM 8. t(k) $ t(k - 1) + t(£), for some &, 051&5[5-;-1-} .

PROOF. Let C be an optimal code with C in "standard form" with £ < L}%I—J

(see Fig. 1) . By the definition of B the rows of the matrix A form a
tournament code of length £. So A has at most ©({) rows. Clearly the

rows of g § form a tournament code of length k-1. The result follows.

COROLLARY 9. e s B3] e A

k +1
2
a strictly increasing function, we hawve

PROOF . Applying Theorem 8 f ] times and using the fact that, t is

(k + 1"
t s e - B Z e B2 -
A =1
e+ 1
k ~ 1 2 k - i
= g~ z sll=5—h =
2 i=1

A

[‘k ; 3*1 t(‘_k; 1_’) .

THEOREM 10. t(k) <x°-°> 199 ¥

for k> 7 (leogarithm to base 2}.
PROOF. We use induction on k. In Section 4.4 we will show that t{4)=6,
t(’:"{}=8, t{6)=11, t(7y=16, t(8)=18 and t(9)=21. With Theorem B and the

above values of t(k), k=4,5,...,9, one easily checks that the assertion
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is true for 8 £k $16 (see also Table 1 of Section 4.4).
Let k217, then from Corollary 9 and the induction hypothesis

we have
t{:%) gf%—;ii] t(f—%%ﬁ) <
T
) {&%_4) ( (%} 0.5 log i%)) )
(k—;%)_v;_z kO.S log kgkO.S log k

i

There is a tremendous gap between the upper bound of this section and
the lower bound of Section 4.2. The upper bound is probably not too
good but improving it does not look easy. The following section gives

an indication.

4.4 THE EXACT VALUE OF t{k) FOR k=2,3,...,9.

In this section we will prove that the codes of length k, 25k <9,
of Section 4.2 are optimal. It is clear that this is indeed the case
for k=2, while the case k=3 follows directly from Theorem 8 -and t{1) =2.

To prove t(4)=6 and t(5)=8, we use the following obvious lemma.

LEMMA 11. For any tournament code C of length k we have,

k

Mled o gk

A

oz
c€C

where n (o) = |{i] e, = *} .
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PROOF. Since any two codewords from C have distance greater than or
equal to 1, any binary word of length k can have distance 0 to at most
one codeword of { . For each codeword EG,C there are clearly 2“*(3}
different bmary words of length kX having distance 0 to <. The result

. follows.

0

We will use this lemma to show that t(4) £6. From Theorem & we have
£(4) $t{3) + £{1) = 7. Assume t{4) = 7 and let C be an optimal code
of length 4 with 0,1 €C, Since equality holds in Theorem 8 every
column of C can contaln at most t{l} + t{(2} = 2+3 = 5 non * elements.
Hence C contains at least 4 X {7-5) = 8 *'s, Prom Lemma 11 and g,lGC

we then have

2+ X 2n*{5;_} §24 and n,{c) 28,
€C,
#0,

M

£

fa o
ke
Hoom

|

23 21
This is impossible. Hence t{4)= 6. The case k=5 is similar.

The case k=6 and k=7 are again a direct consequence of Theorem 8
and Section 4.2. So we are left with k=8 and k=8. For these cases we
need some more machinery.

Let ¢ be a tournament code of length X and let the coordinates
be numbered from ! up to k. Then we define

i<y = aaséc,{cin()andcj= 11.
Furthermore we define the vectors gr, g_r, e{O,l,*}k, r=1,2,..,k by:

0 in coordinate place r,

a has 1 in coordinate place i if r< i,
}L * otherwise
and - .
1 in coordinate place r,
Ex has 0 in coordinate place 1 if i«<r,

* otherwise.



REMARK. The words 31:' _I_)_r, r = 1,2,..,k satisfy condition {(ii) of (2).

LEMMA 12. let C be an optimal tournament code of length k,for which
e é:C n,(c} is minimal among all 6ptimal codes of length k and let :_a_r
and _lg_r,' r =1,2..,k, be defined as above. Then the set of words

fa®|r=1,2,...x0U{" |r =1,2,...,k} U Csatisfies condition (ii)
of {2}. Purthermore, for every r = 1,2,...,k there is a unigque word

¢ €C with distance 0 to a’. Similarly for b'.

PROOF., The first assertion of Lemma 12 is a direct consequence of the
definitions of _a_r respectively Er’ r=1,2,..,k. S0 we only have to
prove the second one.

since € is optimal, there is at least one word of  that has
distance O to a’. Assume there are two different codewords ¢ and 4
in C that have distance 0 to g_r. Since ¢ and d have distance greater
than or equal to 1, there is an s, 1% s Sk, where cs=0 and ds=1A say.
Since ¢ and d both have distance 0 to ir' az =% Prom the definition

of gr we then have r#s and r£s. So d _=*. Now define 4’ € {0,1,."'}k by

1 it i=1r,

i d, if i #r .
1

Since, for all i with 4} = 0,also d =0 and so a§=*' it follows r#i.

S0 the words of {@'} UC satisfy condition (ii) of (2).

But then C':= {4‘}V C\{g} is an optimal tournament of length k with

I n e = £ nlc) -1. A contradiction.
creC c €C

The following lemma is "trivial®™. The words ér,gr, r=1,2,..,k are

as defined above.

95
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LEMMA 13, A codeword Q’EC, ¢ #0,1 that has distance greater than or
equal to 1 to all the words of fa” Iz = 1,2,..,k}U %" |r = 1,2,..,k}
has at least three coordinates equal to 0 and at least three coordinates

equal to 1. 0

For any A€ {0,1,*} and c€ {0,1,*}k,let m (¢) denote the number of

coordinate places i with c= X, The following lemma is cbvious.

LEMMA 14. Let( be an optimal code of length k. Then for all S_QC

(k1% tk - no(g_)) + tk - nl(g)) -1.
PROOF. By permuting rows and columns one can achieve that ¢ looks like.

FAy(e)r < m (e} >

c0...0 11...1 N, «

o

where each row of A contains at least one 1. It follows that B is a
matrix with all entries equal to 1 or * and £ is & matrix with all

* *

entries equal to O or *. Hence the xows of (9—;{—01 'D'
* *

(I—ZE,’—!‘ [ —a—-) form a tournament code of length n‘nifg) respectively

n-no(g} . The result follows,

} respectively

0

COROLLARLY 15. t(8) = 18 and t(9) = 21,



PROOF . From Section 4.2 we already have t(8) 2 18.

Let { be an cptimalcode of length 8 for which the sum I n (¢}
c €l
is minimal among all optimal codes of length 8. Let the words gr and

p_r, r=1,2,..,8, be defined as above. From Lemma 14 and t(8) 2 18
it follows that there is no codeword ¢ €C with both n,{c) 23 and
,(€) 2 3. Hence with Lemma 12 and 13, £(8) § | {(a"|r=1,2,..,8} ]+
Hplr=1,2,..,8} +258 +8 +2 =13,

The proof of t{9) = 21 is similar to that of t(8) = 18.

n

We conclude this section with a small table of lower and upper
bounds on t{k} for k=10,1%1,,.,21. In the last column of Table 1 we
indicate the theorems and lemmas we used to derive the upper bound.

The lower bounds are from Bbels, Janse and Verbakel [1].

’ % Lower bound | Upper bound Comment
on tik) on t(k)

10 23 27 Th 8

11 27 33 Th 8 + L 11
12 33 40 Th 8 + L 11
13 41 48 Th 8 + L 11
14 43 57 Th 8

15 46 73 Th8

16 48 81 Th 8 + L 11
17 54 92 Th 8 + L 11
18 59 108 Th 8 + L 11
19 66 124 Th 8 + L 11
20 75 141 Th 8 +L 11
21 86 159 Th 8 + L 11

Table. 1,
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SAMENVATTING

in dit proefschrift worrden vier problemen uit de coderingstheorie
behandeld, met als voornaamste doel het bepalen van bovengrenzen voor
de maximale cardinaliteit van en het vinden van goede constructie
methoden voor de betreffende codes. Het begrip afstand speelt hierbij
een belangrijke rol. Om de lezer enigszins vertrouwd te maken met de in
dit proefschrift gebruikte terminclogie, geven we in hoofdstuk O een
koxte inleiding in de coderingstheorie.

In heoofdstuk 1 houden wij ons voornameliik bezig met het bepalen van
blok codes voor de betrouwbare opslag van informatie in computer
geheugens met defecten en random errors. De hier behandelde constructie
methoden doen een stevig beroep op reeds bestaande constructies voor
lineaire en niet-lineaire codes voor het binair symmetrisch kanaal.

In hoofdstuk 2 behandelen we twee constructie methoden voor
constante gewichts codes. Vooral de tweede constructie geeft scherpe
verbeteringen op reeds bestaande ondergrenzen voor a(n,4,w). Het bepalen
van partities van VI‘::{_C_G :[E‘rz1 | wticy =w} in zo weinig mogelijk constant
gewicht codes met-minimum afstand 4 is ¥n deze constructie van cruciaal
belang.

In hoofdstuk 3 geven we de volledige classificatie van alle optimale
code parsn van lengte n enconstante afstand §, n,8€ N, 058 $n. Daartoe

bepalen we eerst de waarde van M(n,§),
M(n,8) ={|A]-|B] |A,B= ¥, , A(A,B) =8,

In het laatste hcoofdstuk houden we ons bezig met het bepalen van
bovengrenzen voor de maximale cardinaliteit t{k) wvan {0,1,*} tournament
codes van lengte k, XK€ N. We geven een verscherping van CGraham's
bovengrens voor t(k), k> 7, en bepalen vervelgens de exacte waarden

van t{k) voor k=1,2,...,9.
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STELLINGEN

zij C een binaire lineaire code met woord lengte 26, dimensie k
en minimum afstand 8. Dan geldt: k<13, en dus '

8(26,8) =2%2
HELGERT, H.J. and STINAFF, R.D.: Minimum Distance Bounds for Binary
Linear Codes. IEEE. Trans. on Info. Theory, vol. IT-19, May 1973,
344-356.

Er bestaat een uniek decodeerbaar code paar ((,0) voor het two-acces
binary adder channel met woord lengte 6 waarvan de som xate R1+ R,

gelijk is aan

R1 +R, = 0.59749 +0.,72032=1.31781

{|C] =12 en |P] =20). Dit is een nieuw record.

COEBERGH van den BRAAK, P.A.B.M. and van TILBORG, H.C.A.: A Family
of Good Uniguely Decodable Code Pairs Ffor the Two-Acces Binary Adde:.;
Channel. IEEE Trans. on Info. Theory, vol. IT—31,7 Jan. 1985, 3.9,

zij C een {0,1,*} tournament code van lengte 10. Dan geldt |C] ¥ 23,
Dus volgt ult tabel 1 van hoofdstuk 4 dat

+{10} = 23.

i1

zi3 C een constant gewicht code van lengte 17, minimum afstand 8 en
constant gewicht 8. Dan geldt: |C| 34, en dus

a{17,8,8) = 34.
MacWILLIAMS, F.J. and SLOANE, WN.J.A.: The Theory of Error-correcting

Codes. Amsterdam - New York - Oxford: North Holland, 1977,

zij M (n,8) :=max {|A|-|B] |A,BE{0,1,...,k-1}", A(A,B) =86},
Vermoedelijk is de waarde van Mk(n,ﬁ) gelijk aan




10

! ifn~3iy 6=~28 | ... 8 ny _
max {18 (5_21)2 lois min (5,3} } als x=3,

Mk(n,ﬁ) =

max {([E1E)* (’g:i) k-15"1 |051<6} als k24.

Voor k=4,5 is dit bewezen door Ahlswede (to appear) en voor k210
door van Pul (unpublished).

De lineaire programmeringsgrens voor binaire codes is een generalisatie

van de Plotkin grens.

2zij C een binaire [n,k,d]l-code met overdekkingsstraal p.
2i3 C;:={5_€C]c1 =e}, i=1,2,...,n en €=0,1. De norm N van de code C

wordt gedefinieérd door

o ol i
N:= min max {d(g‘g,co)*-d(_}i,cl)}.

hii3

12isn x € 1!-"2

pan geldt -

ns20-1+[5].

Als N£2p +1, dan noemen we de code C normaal. Uit bovenstaande
on«jelijkheid volgt dat iedere binaire lineaire code met minimum afstand
£4 normaal is. Vermoedelijk zijn alle binaire lineaire codes normaal.
GRAHAM, R.L. and SLOANE, N.J.A.: On the Covering Radius of Codes. .IEEE
Trans. on Info. Theory, vol. IT-31, May 1985, 385-401.

Standaardisatie van cryptosystemen leidt tot diversificatie.

Ondanks de resultaten van Tsfaéman, V1iddut en Zink, is het vermoedeliijk
waar dat de Gilbert-Varshamov grens véor binaire codes scherp is.
TSFASMAN, M.A., VLADUT, S.G. and 2INK, Th.: Modular curves,Shimura
curves and Goppa codes, better than Varshamov-Gilbert bound. Math.
Nachr.‘ vol. 104, 1982, 13-28.

De AIO-regeling voor jonge onderzoekers is equivalent met de BRR~

regeling voor beeldende kunstenaars.





