EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Correctness of real time systems by construction

Citation for published version (APA):
Hooman, J. J. M. (1994). Correctness of real time systems by construction. (Computing science notes; Vol.
9429). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/133c074e-584a-4796-ad2c-41d6bd5d1076

Eindhoven University of Technology

Department of Mathematics and Computing Science

Correctness of Real Time Systems by Construction

by
J. Hooman

94/29

Computing Science Note 94/29
Eindhoven, July 1994

Correctness of Real Time Systems by
Construction*

Jozel Hlooman

Dept. of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: wsinjh@win.tue.nl

Abstract. To design distributed real-time systems in a top-down way,

we present a mixed formalism in which programs and assertional specifi-

cations are combined. Specifications consist of an assumption-commitment
pair, extending Hoare logic to real-time and progress properties. By defin-

ing the theory in the PVS specification language, the interactive proof
checker of PVS can be used to reason in this framework, We show how

this tool can be used during the design of real-iime systems to derive

programs that are correct by coustruciion.

1 TIntroduction

A formal framework for the top-down design of distributed real-time systems
is presented. By verifying all design steps during the process ol program devel-
oprent, a real-lime system iz obtained which is correet by construction. This
requires a compositional proof method in which the specification of a compound
prografummng coustruct can be derived from the specilication of its components
without knowing the implementation of these components.

Inspired by the compaositional framework of classical Hoare triples (precon-
dition, program, posteondition) for partial correctuess [2], we have developed an
assertional method for tle specification and verification of real-tine systems. The
assertion fanguage has been extended with timing primilives and the interpre-
tation of triples has been adapted such that properties of both terminating and
nonterminating computations can be verified. To indicate the differences with
traditional Hoare logic, we use Lthe words “assumption” and “commitment” in-
stead of, respectively, “precondition™ and “postcondition”. The resulting frame-
work has been applied to several exanmiples such as a water level monitoring
system [4], a distributed real-time arbitration protocot [5], and a chemical batch
processing system [0].

In this paper we reformulate this approach slightly to obtain a mixed formal-
5111 1n which programs and specifications are combined in a unified framework.
(Stmilar to, e.g., the mixed terns of Qlderog [8].) Tn such a framework one can

* To appear in: Proceedings Symposium FTRTFT?94 (Formal Techniques in Real Time
and Fault Tolerant Systems), LNCS, Springer-Verlag, 1994,

b

freely mix assertional specifications and constructs from the programming lan-
guage. This makes it possible to express the intermediate stages during program
design and to formalize the process of program design. We extend the work on
mixed formalisms to real-time and show that top-down program derivation is
also possible for distributed real-time systems.

The application of this formal method to large realistic systems clearly re-
quires some form of mechanical support. For instance, one would like to check
proofs mechanically, to construct proofs interactively, and to discharge simple
verification conditions automatically. Therefore we report in this paper about
the use of the verification system PVS (Prototype Verilication System) [9] dur-
ing top-down design in our assumplion-conumitment framework. The PVS spec-
ification language is a strongly-typed higher-order logic. Specifications can be
structured into a hicrarchy of parameterized theories. There are a number of
built-in theories (e.g., reals, lists, sets, ordering relations, etc.) and a mechanism
for autoratically generating theories for abstract, dalatypes. The PVS system
contains an interactive proof checker with, for instance, induction rules, auto-
matic rewriting, and decision procedures for aritlunetic. Further PVS proof steps
can be composed into proof strategies.

We describe how onr mixed assertional frainework can be defined in PVS
and how PVS can be used during the top-down design of distributed real-time
systetns. Tlence we formulate our theory divectly in PVS. In Section 2 we start
with the definition of the hasie framework in PVS, considering only sequential
programs. We give the semantics of programs, deftne specifications, and for-
mulate a refinement relation. Proof rules for these programs are formulated in
Section 3 (soundness of these rules has been proved in PVS), We indicate that
the siandard refinement, caleulus [7] {or non-real-lime programs is embedded in
our framework, illustrated by a shinple example of integer division. An extension
to parallelisru with asynchronous communication via channels 1s presented in
Section 4. In Section 5 we give a top-down derivation of a distributed real-time
control systein in PVS, namely the chemical batch processing system (inspired
by a description of this example in {1}). Concluding remarks can be found in
Section 6.

2 A Mixed Formalism for Sequential Programs .

Inn this scction we consider only sequential real-tiime programs and define our
mixed formalisn in the PVS specification language. In general, a PVS specifi-
cation consists of a number of theories. A theory can import other theories. In
Section 2.1 we formnlate the basic theory defining values and time constructs.
Section 2.2 conlains the main points of a theory for sequential real-time pro-
grams. Specilications aud program refinement. are defined in Section 2.3, A small
example of semantic reasoning and the use of the PVS proof checker can be found
in Section 2.4,

2.1 Values and Time

In this paper we consider a domam of values which equals the real numbers. In
the PVS theory rtealc below this is specified by defining the type Value to be
equal to the bhnlt-in type real. As a titne domain, represented by Time, we use
the nonnegative reals. Further we define time intervals, using co to represent
left-elosed right-open intervals, cte. The types setof [Time]l and pred{Timel
are equivalent to the type [Time -> beol] denocting functions from Time to the

built-in type bool.

The standard PVS operators NOT, AND, OR, IMPLIES on bool are over-
loaded in rtcalc and now also defincd on predicates over Time. (The semicolon
after the definition is needed to avoid ambiguity for the infix operators.) Finally
we define when a tiine predicate holds inside or during an interval,

rtcal
BEGIN
Value
Time

Interval

t
vo ,

cC
co
ocC
[e]e]

P s

P,Q

NOT (P)
AND (P, Q)

<

vi

vQ
vO
v0
vO

OR (P, Q)
IMPLIES (P, Q)

inside (P, I)
I)

dur (

END rtcalc

P

! VAR pred[Time]

: pred{Time]
pred[Timel
: pred[Time]

THEORY

: TYPE = real

: TYPE = { r : real | r »>= 0 }

: TYPE = setof[Time]

: VAR Time

: VAR Value

vl) Interval = { t | vO <= t AND t <= v1 }
vl) Interval = { t | vO <= t AND t < v1 }
vi) Interval = { t | vO < t AND t <= v1 }
vl) Interval = { t [vO < t AND ¢t < vi }

(LAMBDA t : NOT P{(t)) ;
(LAMBDA t : P(t) AND Q{t)) ;
(LAMBDA v : P(t) OR Q{t)) ;

: pred[Time] = (LAMBDA t : P(t) IMPLIES Q(t)) ;

: VAR Interval

: bool
: bool

(EXISTS t : I(t) AND P(t))
(FORALL t : I(t) IMPLIES P(t))

The PVS parser and typechecker can be applied to such a theory to check syn-

tactic and semantic consistency.

4

2.2 Sequential Programs

Next we introduce sequential real-time programs in the theory programs which
imports the theory rtcalc. The set of program variables Vars is introduced here
as a parameter of the theory. The reason for this will be discussed in Section 2.4.

For the defimtion of programs i PVS there are several possibilities. For
instance, on could define the syntactic structure of programs as an abstract
datatype. PYS supports a powerful miechanism for abstract datatypes, includ-
ing the generation of a function for inductive definitions on the datatype. This
function can be used to deline the semantics of programs by structural induc-
tion. After some experiments with this approach we found it simpler, and more
flexille, to identify programs and their semantics. Henee in this paper a (real-
time) program is sinply a relation on states, i.e., a function from pairs of states
to boel in PVS.

A stale is a record with three lields: a val field which gives the values of vari-
ables, a now field which records the current time, and a term ficld which is used
to indicate termination. For a state s, these fields are denoted by, respectively,
val(s). now{(s), and term(s).

programs [Vars TYPE] THEORY

BEGIN
IMPORTING rtcalc

State : TYPE = [# val [Vars->Valuel, now : Time, term : bool #]

program : TYPE = [State , State -> bool]

Henceforthh we use the following variables:

v, ve , vl , w2 VAR Value

t , t0 , t1 , t2 : VAR Time

s , 80 , s1 , s2 . VAR State

prog, progl, prog2 VAR program

b VAR [State => bool]
vvar VAR Vars

exp VAR [State -> Value]

Atomic actions are defined as a relailon between nitial state s0 and final
state s1. When defining programming constructs we will only specify the case
that the statenrent starts in a terminated stale, i.e., term(s0) holds. For the
case that term(s0) doocs not hold we give a general axiom, lahelled nonterm_ax,
which specifies that a nonterminabing state is not changed. {This is used later
to obhtain a convenient forimulation of sequential composition.)
nonterm_ax : AXIOM NOT term(s0O) IMPLIES (prog (s0,sl1) IFF s0 = si}

Free variables are implicitly universally quantified. E.g., axiom nonterm.ax is
equivalent to (FORALL prog, s0O, sl : NOT term(sO) IMPLIES ...).

Below we define a few programming constructs in PVS. The execution time
of an assignment 18 represented by a constant Ta. Purther the override expression
val(s0) WITH [(vvar) := exp(s0)] denotes the function from Vars to Value
wlich is the same as val(s0) except that ihe value of vvar is given by exp(s0).

Ta : Time

assign{vvar,exp) : program = (LAMBDA sO , st : term(s0) IMPLIES
term(s1) AND val(sl} = val(s0) WITH [(vvar) := exp(s0)] AND
now(sl) = now(s0) + Ta)

delay(exp) : program = (LAMBDA sO , sl : term(s0) IMPLIES
term(s1) AND val(s1l) = val(s0) AND
now(s1) = now(s0) + IF exp(s0) >= 0 THEN exp(s0) ELSE 0 ENDIF)

seq(progl,prog2) : program = (LAMBDA sO , s1 : term(s0) IMPLIES
(EXISTS s : progl(sO,s) AND progz(s,si}))

ifthen{b,prog) : program = (LAMBDA s0 , sl : term(s0) IMPLIES
IF b(s0) THEN prog(s0,s1) ELSE sl = s0 ENDIF)

In the semaniics of a while statement we use a constant Tw, representing the time
it takes to evaluate the boolean condition, and the buili-in {polymorplic) type
sequence of mfinite sequences. The semantics of while(b,prog) i1s described
using a sequence ol states, representing executions of prog after evaluation of
b. We distingmish three cases: termination after k iterations hecause b evaluates
to false, nontermination after k iterations becanse prog docs not terminate, and
nonternination because b never evaluates Lo false anid prog always terminates,

Tw : Time

while{(b,prog) : program = {LAMBDA s0 , st : term(s0) IMPLIES
(EXISTS (ss :sequence[State]l) : s0 = ss(0) AND
((EXISTS (k : nat)
(FORALL (j : nat) : j < k IMPLIES
seq(delay(LAMBDA s : Tw), prog)(ss{j),ss{j+1)) AND
b(ss(3)) AND term(ss(j)) AND
((term{=ss(k)) AND NOT b(ss(k)) AND
delay(LAMBDA s : Tw}(ss(k},s1))
OR (NOT term(ss(k)) AND s1 = ss(k)))))}
OR
(NOT term(si) AND (FORALL (j : nat)
seq(delay(LAMBDA s : Tw), prog){(ss(j),ss(j+1)) AND
b(ss(j)) AND term(ss(j))})))))

Given these detinitions we can prove certain semantic properties. E.g., for sequen-
tial composition we can use axiom nonterm_ax to obtain the following lemma
with label seq prop:

seq_prop : LEMMA seq(progl,prog2)(s0,sl1) IFF
(EXISTS s : progi(s0,s) AND prog2(s,si))

How to prove properties in PVS will be explained i Seclion 2.4.

2.3 Specifications

To specify real-time systems we use assertions which are predicates over states.
The logical connectives are also overfoaded for state predicatles, and we define a
notion of validily. To support the mixed approach, a specification is also consid-
ered as a prograin, i.e., a relation on states. A specification is a pair {(A,C) with
the meaning that if the initial state satisfies assumption A then the final state

should satisly commitment C.

A, A1, A2 , C : VAR pred{State]

true : pred[State] = (LAMBDA s : true)

false : pred[State] = (LAMBDA s : false)

NOT (&) : pred[State] = (LAMBDA s : NOT A(s)) ;

AND (A1, A2) : pred[State] = (LAMBDA s : A1(s) AND A2(s)) ;
OR (41, A2) : pred[State] = (LAMBDA s : A1(s) OR A2(s)}) ;
IMPLIES (A1, A2) : pred[State} = (LAMBDA s A1(s) IMPLIES A2(s));
Valid (A) : bool = (FORALL s : A(s)) ;

spec (4 , C) : program = (LAMBDA s0O, st : A(s0) IMPLIES C(s1))

As usual one should be able to express that o program saiisfies a specification,
and in general, that one program refines another. For refinement we overload the
wfix operator => and prove a few sunple properties.

=> : [program , program -> bool] =
{LLAMBDA progl , prog2 :
(FORALL s0, si1 : progl (s0,s1) IMPLIES prog2 (=0,s1) }) ;

ref_refl : THEOREM prog => prog

ref_trans : THEOREM (prog0 => prog2) IFF
(EXISTS progl : (prog0d => progil) AND (progl => prog2))

2.4 Example Scinantic Reasoning

We give a simple example to show the notation in an example and the proof of
a refinciment relation using semantic reasoning.

rtex1l : THEORY
BEGIN
Vars : TYPE = {x,y}

IMPORTING programs [Vars]

s : VAR State

4 : pred[State] = (LAMBDA s : val(s)(x) = 1 AND val(s)(y) = 2 ARD
now(s) = 5 AND term(s))

C : pred[State] = (LAMBDA s : val(s)(x) = 6 AND val{(s)(y) = 2 AND

now(s) = 5 + Ta AND term(s))
expr : [State -> Value) = (LAMBDA s : val(s)(x) + val(s)(y) + 3)

corl : THEOREM assign(x,expr)} => spec(4 , C}
END rtexi

To prove cori, onc can use a PVS connmand which creates a new EMAcs buffer
(PVS uses EMACS as its interface), displays the formula, and asks the user for a
commuand by the Rule? prompl.

corl

{1} assign(x, expr) => spec(4, C)

Rule?
Now a proof command of PVS can be imveked. Typing (expand "=>") leads to

Rule? {expand "=>")

Expanding the definition of =>
this simplifies to:

corl

{1} (FORALL (s0: State{Vars, Chanl), (s1: Statel[Vars, Chan]):
assign(x, expr){so0, s1) IMPLIES spec(4, C)(s0, s1))

By the {skolem!) command we can introduce Skolent constants s0!1 and s111
for 50 and s1 and then apply (flatten):

corl

{1} assign{(x, expr)(s0fi, s1!1) IMPLIES spec(4, C)(s0!1, s1'1)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,
this simplifies to:

corl

{1} spec(h, C){(s0'1, s1!1)

Expanding the definitious of spec, assign, expr, 4, and C, and applying the
command (flatten) this leads to

corl

[-1] term{s0!1)
IMPLIES val(si!l) =
val(s0'1) WITH [x := val(s0'1}(x) + val(s0!1)(y) + 3]
AND now(s1!1) = now(s0'1) + Ta AND term(si'i)

{-2} val(s0'1)(x) = 1

{-3} val(s0t1)(y) = 2

{-4} now(s0'1) = 5

{-5%} term{s0!1)

{1} val(si'1)(x)

= 6 AND val(si1!i)(y) = 2
AND now{si!'1) = 5

+ Ta AND term(si'1l)

Reasoning in PVS is based on the sequent caleulus; the sequent above consists
of antecedents numbered -1 through -5 and a suceedent numbered 1.

The current, proofl can now be finished by invoking the I’VS decision proce-
dures which, e.g., can antomatically decide certain fragments of arithmetic. In
this case, application of (ground) proves the succedent.

It is imporbant to note that the proof of val(s1'1)(y) = 2 requires that
x and y are dilferent. variables, since the value of x is changed by the override
expression in —1. Therefore we have defined Vars as an enumcration type {x,y},
since 1 PVS this implics that the identifiers x and y are distinet. Typechecking
of the emnneration type generates the axiom x /= y which is used automatically
by the decision pracedures. (In fact, an emunneration type is a special case of the
datatype mechanism in PVS.)

In a prefominary version of this work we have defined variables as an unin-
terpreted type and x and y as constants of Lhat type, i.e.

Vars : TYPE
X,y : Vars

Then, however, one has to provide the axiom x /= y explicitly (and, moreover,
this has to be done for each pair of variables).

Pinally, note thal the proof of cor1 essentially expands the definitions, Skolem-
izes universally quantified variables, and invokes the decision procedures. This
turns out to be a general approach lor the verification of sequential programs
without while constructs. Therefore we have defined in PVS a strategy, called
{seqprog), which performs these steps. Tu this strategy first the definitions of

the current theory, the overloaded operators NOT, etc. {or assertions, and the def-
inilions of progratmimmg constructs are declared as automatic rewrite rules for
the decision procedures. Next => 1s expanded, Then Skolemization and the invo-
calion of decision procedures is repeated until nothing changes. With strategy
{seqprog) theoremn cori is proved automabically.

3 Proof Rules for Sequential Programs

Semantic reasoning, as done in the previous scction, is not suitable for top-down
program design where one would like to reason with the specifications of compo-
nents without knowing their implementation. Therelore we derive proof rules for
compound programming constructs using specifications of the components. The
proof rules below are formulated as theorems in PVS, that is, they are proved
by means of the semantic definitions.

Tn addition to the varjables of the previous section, we use

A, A0, 81, B,C,cCOo, Cl : VAR pred[State]

First we formulate a general consequence rule which allows strengthening of
asanmptions and weakening of commitments.

rules [Vars : TYPE] : THEORY
BEGIN
IMPORTING programs [Vars]

consequence : THEOREM Valid(A IMPLIES AO) AND Valid(CO IMPLIES C)
IMPLIES
(spec(40, CO) => spec(4, C J)

For scqueniial composition and choice we can derive theorems which reflect the
classical prool rules ol Hoare logic.

seq_comp_rule : THEOREM seq{ spec(&, B), spec{ B, €))
=> spec(A, C)

if_then_rule : THEOREM ifthen(b, spec(4 AND b, C))
=> spec(A, C OR (A AND NOT b))

Clearly the rule for the while construct is more complicated, since in our frame-
work also timing and progress properties can be expressed. First we define, for
an assertion I0 : VAR pred[State], a state predicate infinite (I0) which
holds il I0 allows arbilrary large values of now.

infinite (I0) ; prediStatel] = (LAMBDA s
(FORALL t1 : (EXISTS t2 : t2 > t1 AND I0 (s WITH [now := £21))}))

Then we formulate the while rule using & loep invariant I, an assertion I0 which
follows from I bul should not restrick program variales or term, and assertion
Cterm which holds il the while program terminates.

10

while_xrule : THEOREM

(seq(delay(LAMBDA s : Tw)}, prog) => spec{I AND b AND term, I)) AND

{delay(LAMBDA s : Tw) => spec(I AND NOT b AND term, Cterm)) AND

(FORALL s0, s1 : I(s0) AND now(s0) = now(si) IMPLIES IO(s1))

IMPLIES

while(b, prog) => spec{ I, Cterm OR (I AND NOT term) OR
{(infinite(I0) AND NOT term))

To prove soundness of this while rule we need an axiom 1o express that programs
never decrease time. Further we require that Tw is posilive (Lo be able to prove
progress propertics) and postulate the axiom of Archimedes, since this i1s not
part of the built-in properties of reals in PVS.

now_ax : AXIOM prog(s0,sl1) AND term(sO) IMPLIES now(sl1) >= now{s0)
Tw_pos : AXIOM Tw > O

archim : AXIOM (FORALL {(epsilon : Time) : epsilon > ¢ IMPLIES
{(FORALL t : (EXISTS (k : nat) : k * epsilon > t)))

Next we give a fow examples of monotonicity properties which are necded to
formalize top-down design.

mono_seq : THEOREM (prog3 => progl) AND (prog4 => prog2)
IMPLIES
{seq(prog3,progt} => seq(progl,prog2))

mono_while : THEOREM (prog => prog0)
IMPLIES
(while(b,prog) => while(b,prog0))

Although the framework given above is intended for the verification of timing
properties, it includes a mixed formalisin for the partial correciness of non-real-
time programs. We formulate a theory Hoarelogic which can be applied if
nssertions do nol refer to Wiming or termination, as characterized by predicate
nonrt.

Hoare_logic [Vars : TYPE] : THEORY
BEGIN
IMPORTING rules [Varsl

P : VAR pred[Statel

nonrt { p) : bool = (FORALL s0 , si
val(s0) = val(s1) AND p{s0) IMPLIES p(si))

The definition of nonrt{p) expresses that assertion p only depends on the val
field of a state, that is, it. does not restrict the now and term fields. Then we can
prove the classical while rule.

11

while_nonrt : THEOREM nonrt(p) IMPLIES
while(b, spec(p AND b AND term, term IMPLIES p))
=>
spec(p, term IMPLIES p AND NOT b)

3.1 Example Integer Division

As an illustration of top-down design of non-real-time programns in {his mixed
approach we derive a shuple program for integer division. 'I'lhe abin is to design
a program which computes, for given x and y, values for the variables z and r
suchthat x = 2 x y + rwitho < r < y.

ex_div : THEORY

BEGIN

Variables : TYPE = {x,y,z,r}
IMPORTING Hoare_logic[Variables]

p : pred[State] = (LAMBDA s: val{s){(x) >= O AND term(s))

q : pred[State] = (LAMBDA s:
val(s){(x) = val{s){(z) * val{s)(y) + val(s)(r) AND
0 <= val(s)(r) AND val(s)(r) < val(s){y))

Then partial correctness is specified by spec(p, term IMPLIES q). To tmple-
ment this by means of o while loop, we transform postecondition q into a loop
mvariant inv and take the negation of parl of the posteondilion as the boolean
condition of a while coustruct. Here we define

inv : pred[State]l = (LAMBDA s:
val(s)(x) = val(s}(z) * val(s)(y)} + val{s)(r) AND
0 <= val(s)(x))}

b : pred[Statel = (LAMBDA s : val(s)(xr} >= val{s)(y))

Then the desived program can be split up into a part which realizes inv and
a sccond part winell Jeads to g in case of termination. We show, using rule
while nonrt, that the sccond parl can be implemented by a while construct.,

cor_top : LEMMA
seq(spec{ p, inv)}, spec(inv, term IMPLIES g)})
=> spec(p, term IMPLIES q)

cor_whi : LEMMA
while{ b, spec(inv AND b AND term, term IMPLIES inv))
=> gpec(inv, term IMPLIES q)

Next the mitial part and the body of the while construet are implemented by
assignments.

12

2 0),
: val(s)(x)))

1]

init : program = seq(assign(z, LAMBDA
assign(r, LAMBDA

t

cor_init : LEMMA init => spec(p, inv }

body : program = seq(assign(r, LAMBDA s : val(s}(r)-val(s){y)),
assign(z, LAMBDA s : val(s)(z)}+1))

w

cor_body : LEMMA
body => spec(inv AND b AND term, term IMPLIES inv)

The letninas cor_init and cor_body can he proved automalically by strategy
{seqprog) mentioncd at the end aof Section 2.4,
Using monotonicity prapertics awd ransitivity of => the leinmas above lead to

cor_part : THEOREM seq({ init, while(b, body))
=> spec{ p, term IMPLIES q)

The proof of this theorem can also be automated by defining a strategy which,
anong others, parses the goal to be able to apply the right monotonicity rule
It iz casy to prove that the resulting program does not change x and y.

x0 , y0 : Value

pfreeze : pred[State] = (LAMBDA s:
val(s){(x) = x0 AND val(s)(y)

yO AND term(s))

gfreeze : pred[State] = (LAMBDA s:
val(s)(x) = x0 AWD val(s)(y)

yo)
cor_freeze : THEOREM seq(init, while{ b, body))
=> spec{ pfreeze, term IMPLIES qfreeze }

Next, we sliow that we can also prove timing properties of this program. For
instanee, ihal terminabion nnplics a certain termination time {termination itself
is proved later)

prt : pred[State] = (LAMBDA s: now(s) = O AND term(s))

qrt : pred[Statel] = (LAMBDA s:
now(s) = 2 * Ta + val(s)(z) * (Tw + 2 * Ta) + Tw)

cor_rt : THEOREM seq{ init, while(b, body))
=> spec{ prt, term IMPLIES qrt }
This thearem has been proved with ¢hilerule using the following invariant

invrt : pred[State] = (LAMBDA s: term(s) AND
now(s) = 2 ¥ Ta + val(s){z) * (Tw + 2 * Ta))

i3

The next atm 1s to show termination. Essentially this is done by showing that
now is bounded. For simplicity, we assume thal y is positive. Deline

pxy : pred[State]l = (LAMBDA s: x0 >= 0 AND yO > O AND term(s))

pterm : pred[State] = p AND prt AND pfreeze AND pxy
To prove nontermination, i.¢., spec{pterm, term), lel

invxyz : pred[State] = (LAMBDA s:
x0 >= 0 AND y0 > 0 AND val(s)(z) >= Q)

invterm : pred[State] = inv AND invrt AND gfreeze AND invxyz

Then we can show thal invtermis an invariant of the while construct, and that
invterm nuplies TO which s defined by

I0 : pred[State]l = (LAMBDA s: x0 >= O AND yO > O AND
now(s) <= 2 * Ta + {(x0/y0) * (Tw + 2 % Ta))

It is not difficult to prove
I0_lem : LEMMA Valid(infinite(I0) IMPLIES false)
and then whilerule leads to

cor_term : THEOREM seq(init, while(b, body))
=> spec(pterm, term)

Combining the results above we obtain

A : pred[State] = (LAMBDA s: val(s)(x) = x0 AND val(s){y) = yO AND
x0 >= O AND yO > 0 AND term(s) AND now(s) = 0)

C : pred[State] = (LAMBDA s: val(s)(x) = x0 AND val(s)(y} = yO AND
x0 = val(s)(z) * yO + val{s)(r) AND
0 <= val(s){(r) AND val(s){(r) < yO AND term(s) AND
now(s) = (val(s){(z) + 1) * (Tw + 2 * Ta))

cor_tot : THEOREM seq(init, while(b, body))
=> spec(A , C)
END ex_div

4 Parallel Programs

Tu this section we extend our approach to parallel programs which communi-
cale via message passing along nnidirectional channels. Commumnication is asyn-
chronous, that s, a sender does nol wait for synchronization bul sends the

14

message nimedialely. A receiver waits until a message is available. We assume
that there is no buffering of messages; a message gets lost 1l there is no receiver.

Similar Lo the treatment of program variables, it is convenient to define chan-
nels as an enumeration type in examples. Hence the theory programs is extended
wilh a parameier for the set of channels. First we define primitives to describe
asynchronous conmimunication, that is, to express when a process starts sending
a value, when it is wailing to receive, and when ii starls recelving a value.

programs [Vars : TYPE , Chan : TYPE] : THEORY

sendv : [Chan,Value ~> pred[Time]]
waitrec : [Chan -> pred[Time]]
recv : [Chan,Value -> pred[Time]]

1t 15 often convenient o abstract from the values commmunicated.

ch : VAR Chan
send(ch) : pred[Time] (LAMBDA t: (EXISTS v : sendv(ch,v)(t)))
rec(ch) : pred[Time] = (LAMBDA t: (EXISTS v : recv(ch,v}(t)))

Nexio we define mput and outpul statements, again by identifying themn with
their semantics. Nole that an input statement need notb lerminate because it
might have to wait forever

Tc : Time
Tc_pos : AXIOM Tc > O

output (ch, vvar) : program = (LAMBDA sO, s1 : term(s0) IMPLIES
term{s1) AND val(s1) = val(s0) AND
sendv(ch,val{s0)(vvar)){(now(s0)) AND now(sl) = now(sQ) + Tc)

input { ¢h, vvar } : program = (LAMBDA s0, sl : term(s0) IMPLIES
(NOT term(s1) AND
(FORALL t : t >= now(s0) IMPLIES waitrec(ch)(t)))
OR
(term(s1) AND now(sl) - Tc >= now(s0O) AND
dur(waitrec(ch), c¢o(now(s0), now(s1) - Tec)) AND
(BXISTS v : val(s1) = val(s0) WITH [(vvar) := v] AND
recv(ch,v}(now(sl) - Tc)) })

Further we have to extend the meaning of constructs to be able to show that
nothing happens on a channel during certain periods of time. A few examples:

neio (t¢ , t1) : bool = (FORALL ch :
dur(NOT rec{ch) AND ROT send{ch) AND NOT waitrec(ch) ,
co{ t0 , t1 }))

chan_inv_assign : AXIOM assign(vvar,exp)(s0,st) AND term(s0)

15
IMPLIES noio { now(s0) , now(si))

chan_inv_delay : AXIDM delay{exp)(sO,s1) AND term(s0)
IMPLIES noio (now(s0) , now{st))

We do not give Lhe semantics of paraltlel composition here, but directly formulate
the rule for parallel composition as an axiom. Also, for simplicity, we have omit-
ted the syntactic constraints which require thal the assertions of one process do
not refer 1o observables of the other process. Additionally, assume that now and
term do not occur in the commitments. We refer to [3] for more details and a
soundness proof of the parallel composition rule. Here we concentrale on the use
of this rule during top-down program design of distribuled systems.

rules [Vars : TYPE , Chan : TYPE] : THEORY
BEGIN
IMPORTING programs [Vars,Chan]

par_comp : AXIOM par(spec(At,Cl), spec{42,C2})
=> spec(A1 AND A2, C1 AND C2)

Moareover there is o monotonicity axiom {or parallel composition.

By par_comp we can combine assertions about input aud output actions on
a particular chaunel, and for furtler reasoning we need axioms Lo relate the
communication primitives. In the theory asyn we axiomatize the properties of
asynclironous convmunication.,

asyn [Vars : TYPE , Chan : TYPE] : THEORY
BEGIN
IMPORTING rules [Vars,Chan]

val_id : AXIOM sendv{ch,vi}(t) AND sendv(ch,v2)(t) IMPLIES vl = v2
min_wait : AXIOM KOT { send(ch}(t) AND waitrec(ch)(t))

rec_send : AXIOM recv(ch,v)(t) IMPLIES sendv(ch,v)(t)
Next we define a few useful abbreviations.

awaitrec (ch) : pred[Time] = (LAMBDA t
(FORALL t1 : t1 >= t IMPLIES waitrec(ch)(t1)) OR
(EXISTS t1 : t1 >= t AND dur(waitrec{ch), co(t,t1)) AND
rec{ch)(t1)))

Start , Period , T , T1 , T2 : VAR Time
maxsend (ch,Start,Period) : pred[Time] = (LAMBDA t

send{(ch){t) IMPLIES
t >= Start AND dur(NOT(send(ch)), co{t-Period,t}))

16

minawait (ch,Start,Period) : pred[Time] = (LAMBDA t
t >= Start IMPLIES inside(awaitrec{ch), oc{t-Period,t))})

The next lemma expresses thad under ceriain conditions no message gets lost.

send_rec : LEMMA (FORALL t : maxsend(ch,Start,Period}(t)) AND
(FORALL t : minawait(ch,Start,Period)(t))
IMPLIES
(FORALL t : send(ch)(t) IFF rec(ch)(t))

Finally we give a few abbrevialions and a lemma to express that a message is
received at least once v a cerbalu period of time.

sendperiod{ch,T)(t) : bool = inside(send(ch), co(t,t+T))

waitperiod(ch,T)(t) : bool = inside(awaitrec{(ch), co(t,t+T))}

I

commperiocd(ch,T)(t) : bool inside(rec(ch), cof{t,t+T))
comm_per_lem : LEMMA (FORALL t : sendperiod(ch,T1)(t)) AND
(FORALL t : waitperiod(ch,T2)(t))
IMPLIES
(FORALL t : commperiod{ch,T1+T2)(t)})
END asyn

5 Example Chemical Batch Processing

To illustrate top-down design of distributed real-time sysiems in our framework,
we constder u chemical batcll processing example which is inspired by a descrip-
tion in [1]. 16 consists of a Dateh processing plant which has a reaction vessel
filled with chemicals. Heating two chemicals produces a third chemical which
is hazardous and might lead to an explesion. We use a titne predicate expl to
denote that an explosion oceurs in the vessel at a certain point of time.

chem : THEORY

BEGIN

Vars : TYPE = { x }

Chan : TYPE = { thermchan , actchan }
IMPORTING asyn [Vars,Chan]

expl : pred[Time]

The top-level specification of the chemical batch processing system requires that
there should he no explosion, expressed by spec{a, CTL) with

A . pred(State] = (LAMBDA s : now(s) = O AND term(s))

CTL : pred[State] = (LAMBDA s : (FORALL t : HOT expl(t}))

17

To implement a control system which establishes this praperty, we first. specify a
physical property of the chemicals in the vessel, Suppose soue chemical analysis
yields that there will be no explosion if the temperature is below a certain value,
say ExpTemp, or if the vessel is emply.

temp i [Time -> Value] % temperature in vessel
empty : pred[Timel % empty vessel
ExpTemp : Value % explosion temperature

CV : pred{State] = (LAMBDA s : (FORALL t
temp(t) <= ExpTemp OR empty(t) IMPLIES NOT expl{t)))

Given this property, there are several possible strategies for a control system
when it detects thal the temperature is loo high. Tor instance it. might cool the
chemicals while they are in the vessel. Here we follow [1] and decide to empty
the contents into a cooled vat. This sirategy 18 specilied by the commitment

CS : pred[State] = (LAMBDA =
(FORALL t : temp(t) > ExpTemp IMPLIES empty(t)))

The correctness ol this design step is formulated by the following theorem, which
is proved by axiom par_comp and lenima cor CTL.

cor_CTL : LEMMA Valid(CV AND CS IMPLIES CTL)

cor_TL : THEOREM par{ spec(A,CV), spec(A,CS)) => spec(4,CTL)

Suppose we have a thermoteter which measures the iemperature and sends the
measured values along chiimel thermchan, We assume that the value of the
thermometer does not deviate more than ThermDev from the real temperature.
Here we only need an apper bound. The thermometer will send values at least
onece every DelTherm time units. Further there are two assumptions about the
maximal change of the temperature, using a positive paramecter MaxRise, and
the inilial temperature al time 0, using a salcly temperature SafeTemp.

ThermDev : Value % deviation of thermometer

DelTherm : Time % delay of thermometer

MaxRise : Value % max rise of temperature per second
SafeTemp ¢ Value % safety temperature

CSEN1 : pred[State] = (LAMBDA s : (FORALL t, v :
sendv(thermchan,v){t) IMPLIES v > temp(t} - ThermDev))

1]

(LAMBDA s : (FORALL t
sendperiod(thermchan,DelTherm){t) })

CSEN2 : pred[Statel

(LAMBDA s : (FORALL tO, t1 : t0 < t1 IMPLIES
temp(t1) - temp (t0) < MaxRise * (t1 - t0)))

ti

CSEN3 : pred[State]

18

CSEN4 : pred[State] = (LAMBDA s : temp(0) <= SafeTemp + ThermDev)

CSEN : pred[State] = CSEN1 AND CSEN2 AND CSEN3 AND CSEN4

To obtain specification spec(4,¢S8), we design in parallel with the thermometer
a flow control component which is ready to receive input from the sensor along
thermchan at least onee every DelReadTherm {ime units, Further we specily that
when an unsafe temperature is detected, i.e, above safety temperature SafeTemp,
the vessel is emplied in at most DelEmpty time units.

DelReadTherm , DelEmpty : Time

CFC1 : pred[State] = (LAMBDA s : (FORALL t
waitperiod{thermchan,DelReadTherm)(t))}

EmptyVessel : pred[Time] = (LAMBDA tO :
(FORALL t1 : t1 >= t0 IMPLIES empty{(ti)))

CFC2 : pred[State] = (LAMBDA s : (FORALL t, v
recv(thermchan,v)(t) AND v > SafeTemp IMPLIES
inside (EmptyVessel , cc(t,t+DelEmpty}) })

CFC : pred{Statel = CFC1 AND CFC2
For the correctness ol this step, first define

COMTHERM : pred[State] = (LAMBDA s
(FORALL t : commperiod{thermchan,DelTherm+DelReadTherm)(t) })

Then CSEN2 and CFC1 lead by lemma comm_per lem of theory asyn to obtain:
comm_thermchan : LEMMA Valid(CSEN2 AND CFC1 IMPLIES COMTHERM)
Further we need a relation between thmiug parameters and an axiom.

TDbound : bool = ExpTemp - (SafeTemp + ThermDev) >=
(DelTherm + DelReadTherm + DelEmpty) * MaxRise

MR_pos : AXIOM MaxRise > O
Then we can prove

corCS: LEMMA TDbound AND DelEmpty > O IMPLIES
Valid(CSEN AND CFC IMPLIES CS)

corS : THEOREM TDbound AND DelEmpty > O IMPLIES
par{ spec(A,CSEN) , spec(a,CFC))
=> spec(A,CS)

19

To implement spec(4,CFC) we use an actuator to empty khe vessel. Suppose
the actuator can be aclivaled by sending a message along channel actchan. We
assume that the actuator is ready to receive input periodically, using parameters
InitialPeriod and RepPeriod. Further the actuator will respond {o a signal
along actchan by emptying ihe vessel in at most DelAct Lime unils.

InitialPeriod , RepPeriod , DelAct : Time

CA1l : pred[State] = (LAMBDA s :
(FORALL t : minawait{actchan,InitialPeriod,RepPeriod)(t)))

CAZ : pred{State] = (LAMEDA s
(FORALL t : rec{actchan)(t) IMPLIES
inside (EmptyVessel , cc(t,t+Deldct))))

CA : pred[State] = CA1 AND CA2

In parallel with {his actnator we design a control cornponent which sends signals
to the actnator along actchan. 'To guarantee that no message gets lost, we
specify, i view of CAL, the maxumal frequency with which it will send messages
along actchan. The main task of the control component is to send a signal along
actchan, in at mosl DelContr time units, if il reccives a value via thermchan
which 1s greater than SafeTemp.

DelContr : Time

CC1 : pred[Statel (LAMBDA s
(FORALL t : maxsend(actchan,InitialPeriod,RepPeriod)(t) })

CC2 : pred[State] (LAMBDA s : (FORALL t, v :
recv(thermchan,v)(t) AND SafeTemp < v IMPLIES
inside (send(actchan) , cc(t,t+DelContr))))

CC : pred[State] = CC1 AND CC2 AND CFC1
Further we need the following velation between Liming parameters.
Del_bound : AXIOM DelEmpty >= Deldct + DelContr

Note that €A1 and €C1 imply, by lemrua send rec of asyn, that no message
along actchan gets lost. This leads to the correctness of this design step.

corCC: LEMMA Valid(CA AND CC IMPLIES CFC)

corC : THEDREM par(spec(A,CA) , spec(4,CC))
=> spec(4,CFC)

It remains to design a program satisfving spec(4,CC). Here we directly give a
program, called controlprog, and prove its correctness.

20
high : predfState] = (LAMBDA s : val(s){(x) > SafeTemp)

body : program = seq(input(thermchan,x),
ifthen(high, output(actchan,x)})

controlprog : program = while(true , body)

To prove that it meels the requived specification, we define an invariant Inv
using ICC1, ICC2, ICFC1, and ICC defined as follows.

I¢C1 : pred[State] = (LAMBDA s
(FORALL t : t <= now(s) - Tc IMPLIES
maxsend{actchan,InitialPeriod,RepPeriod){t)) AND
dur(NOT send(actchan) , oo(now(s)~Tec,now(s)))

ICC2 : pred[State] = (LAMBDA s
(FORALL t, val : t < now(s) IMPLIES
recv{thermchan,v)(t) AND SafeTemp < v IMPLIES
inside (send(actchan) , ce¢{t,t+DelContr)) })

ICFC1 : pred[State] = (LAMBDA s
(FORALL t : t <= now(s) - 2 * Tc¢ IMPLIES
waitperiod(thermchan,DelReadTherm) (t)))

ICC1 AND ICC2 AND ICFC1

I¢C : pred[State]

Inv : pred[Statel (ICC AND term) OR (CC AND NOT term)
For the correetniess proaf we define the following values for the time parameters.

IP_bound : AXIOM InitialPeriod = Tw + Te¢
RP_bound : AXIOM RepPeriod = Tw + 2 * Tc
DC_bound : AXIOM DelContr = Tc

DRT_bound : AXIOM DelReadTherm = Tw + 2 * Tc
Then we can derive

cor_control : THEOREM controlprog => spec(4,CC)
which [eads to the linal conclusion:

cor_total : THEOREM SafeTemp <=
ExpTemp - ThermDev - (DelTherm + 3 * Tc + Tw + Delhct) * MaxRise
IMPLIES par(spec(4,CV) ,
par(spec{4,CSEN) ,
par{ spec(4,Ch) ,
controlprog })) => spec(A,CTL)

21

Hence we have obtained a systemn which 1implements the tap-level specification,
assumning specifications of the physical propertics of the vessel, the thermometer,
and the actuator, and provided SafeTemp is sufficiently smaller than the explo-
sion temperature ExpTemp in order to cope with delays in the thermometer, the
program, and the actuator, and with the maximal rise of the tenperature.

6 Conclusion

We have presented o wmixed formalisin for the correct. construction of distributed
real-time systems. By defining the theory in PVS, proofs can be checked me-
chanically and simple details are proved automatically using the PVS decision
procedures (and errors arc found in apparently trivial delatls). This improves
the speed of the design and the verification and allows the user to concentrate
on the essential structure of prools.

The possibility to build hierarchies of parameterized {heories turns out to be
very useful. I future work we intend 1o extend the framework with more theories
{or parallel prograns, e.g. dealing with various connnnnication mechanisms, and
to add theories for general reasoning about real-time progriuns such as a caleulus
for timne mtervals. Using the powerful higher-order specification language of PVS
it 18 eagy to formulate general patterns and schemas.

Since we have identified programis and their semantics, we can easily define
abstract statements which can be refined during later stages of the design process
into conerele progranuning constructs. For instance, for an output statement, we
can abstract from the value iransmitied and define

output(ch) : program = (LAMBDA s0, sl : term(s0Q) IMPLIES
term{s1) AND val(s1) = val(s0) AND send({ch)(now(s0)} AND
now(s1l) = now(s0) + Tc)

Then output(ch, vvar) => output(ch). To give another example, we can de-
fine a statement which terminates between certain bounds:

bounds{t1,t2) : program = (LAMBDA s0 , s1 : term{s0) IMPLIES
term{s1) AND now(s0) + t1 <= now(s1) AND now(s1) <= now{s0) + t2)

This makes it, for mstance, possible to express gencral properties of a program
of the form

while(true, seq{input(inch), seq(bounds(t1,t2), output(outch))})

which represents a control loop that receives input, perlorms some computation
and then produces ontput.

Another topic of future rescarch s the developrient of a nice user interface
which allows the use of the conventional notations for assertions and programs
(hiding, e.g., the explicit references to the state in assertions). 'T'his is strongly
related to the work presented in [H0] where the PVS lool has been adapted to
obtain a prool assistant for the Duration Caleulus,

22
Acknowledgement

Many thanks go to Sreeranga Rajan for interesting discussions and valuable sup-
port on the use of PVS, expecially concerning the formulation of proof strategies.

References

1. T\ Aunderson, R.de Lemos, 1.8, Fidsgerald, aud A. Saced. On formal support for
industrial-scale reguirements analysis. In Workshop on Theory of Hybrid Systems,
pages 426-451. LNCS 736, 1993,
. C.AR. Hoare. An axiomatic basis for compnter programming. Communications
of the ACM, 12(10):576-580,583, 1469,
3. J. Hooman. Specification and Compositional Verification of Real-Time Systems.
LNCS 5538, Springer-Verlag. 1991,

4. 1. Hoomanu. A compositional approach to the design of hybrid systems. In Work-
shop on Theory of Hybrid Systems, pages 121-148. LNCS 736, 1993,

5. 1L Hooman. Compositional verification of a distributed real-time arbitration pro-
tocol. RHeal- Thme Systems, 6:173-205, 1994,

6. J. Hooman. Extending Hoare logic to real-time. Formal Aspects of Computing, To

appear, 1994,

C. Morgan. Progranuning from Specifications. Preatice Tall, 1980,

8 T. R. Olderog. Process theory: semantics, specification and verification. In ES-
PRIT/LPC Advanced School on Current Trends in Concurrency, pages 509-519,
LNCS 194, Springer-Verlag, 1985,

9. 5. Owre, B Rushby, and N. Shankar. PVS: A prototype verification system. In
Lith Conference on Automated Deduction, volmme 607 of Lecture Notes in Artificial
Dtelligence, pages T48-752. Springer-Verlag, 1992,

10. .U, Skakkebazk and N. Shankar. Towards a duration calculus proof assistant in

PVS, In Formal Techniyues in Real-Time and Faull Tolevanl Systems. LNCS, This
Volume, Springer-Verlag, 1994,

L]

This articte was processed nsing the WIEN macro package with LLNCS style

91/17

91/18

91/19

91/20

91/21

91/22

91/23

91/24

91/25

91/26

91727

91/28

91/29

91/30

91/31

01/32

91/33

91/34

A TM. Aerts
P.M.E. de Bra
K.M. van Hee

Rik van Geldrop

Erik Poll

A.E. Eiben
R.V. Schuwer

J. Coenen
W.-P. de Roever
J.Zwiers

G. Wolf

K.M. van Hee
L.J. Somers
M. Voorhoeve

ATM. Aerts
D. de Reus

P. Zhou

J. Hooman
R. Kuiper
P. de Bra
G.J. Houben
J. Paredaens

F. de Boer
C. Palamidessi

F. de Boer
H. Ten Eikelder
R. van Geldrop

J.C.M. Baeten
F.W. Vaandrager
H. ten Eikelder
P. Struik

W. v.d. Aalst

J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.
Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 3L

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14,

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15,

91/35

92/01

92/02

92/03

92/04

92/05

92/06

92107

92/08

92/09
92/10

92/11

92/12
92113
92/14

92/15

92/16

92117

92/18

92/19

92/20

F.S. de Boer
J.W. Klop

C. Palamidessi
J. Coenen

J. Zwiers

W.-P. de Roever

J. Coenen
J. Hooman

J.C.M. Baeten
J.A. Bergstra

I.P.H W . v.dEijnde

JP.H.W.v.d.Eijnde

J.C.M. Baceten
J.A. Bergstra

R.P. Nederpelt

R.P. Nederpelt
F. Kamareddine

R.C. Backhouse
P.M.P. Rambags

R.C. Backhouse
J.S.C.P.v.d.Woude

F. Kamareddine
F. Kamareddine
J.C.M. Baeten

F. Kamareddine

R.R. Seljée

W.M.P. van der Aalst

R.Nederpelt
F. Kamareddine

J.C.M.Baeten
J.A Bergstra
S.A.Smolka

F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42,

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.
Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.
Set theory and nominalisation, Part II, p.22.
The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases, an exposition,
p-32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21

92/22

92/23

92/24

92/25

92/26

92/27

93/01

93/02

93/03

93/04

93/05

93/06
93/07

93/08

93/09

93/10

93/11

93/12

93/13

F.Kamareddine

R. Nederpelt
F.Kamareddine

F.Kamareddine
E Klein

M.Codish
D.Dams

Eyal Yardeni
E.Poll

T.H.W .Beelen
W.1.1.Stut
P.A.C.Verkoulen

B. Watson
G. Zwaan

R. van Geldrop

T. Verhoeff
T. Verhoeff
E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Veltkamp
P.D. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,

p. 33.

A Programming Logic for Fw, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p- 15.

A taxonomy of keyword pattern matching algorithms,

p- 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner’s Dilemma, p. 17
Quicksort for linked lists, p. 8.

Deterministic and randemized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29
Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44,

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach

93/14

93/15

93/16

93/17

93/18

93/19

93/20

93/21

93/22
93/23
93/24
93/25

93/26
93/27

03/28

93/29

93/30

93/31

93/32

J.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-J. Houben

F.S. de Boer

M. Codish

D. Dams

G. Filé

M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst
T. Xloks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra
J. Deogun

T. Kloks

D. Kratsch

H. Miiller

W. Koérver

H. ten Eikelder and
H. van Geldrop

Part V: Specification Language, p. 89.
On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p- 19.

A congruence theorem for structured operational
semantics with predicates and negative premnises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program-
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct-
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.
Relational Algebra and Equational Proofs, p. 23.
Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.
Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p. 49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 1L

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

L. Loyens and J. Moonen

J.CM. Baeten and
J.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts

D.A.A. van Erp Taalman Kip

K.M. van Hee
P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

A. Bijlsma

P.M.P. Rambags

B.W. Watson

B.W. Watson

E.J. Luit
JM.M. Martin

T. Kioks
D. Kratsch
J. Spinrad

W. v.d. Aalst
P. De Bra

G.J. Houben
Y. Kornatzky

R. Gerth

ILIAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in P/T Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower” Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

qx

94/01

94/02

94/03

94/04

94/05

94/06

94/07

94/08

94/09

94/10

94/11

94/12

94/13

94/14

94/15

94/16

94/17

P. America

M. van der Kammen
R.P. Nederpelt

0.S. van Roosmalen
H.C.M. de Swart

F. Kamareddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

J.C.M. Baeten
J.A. Bergstra

P. Zhou
J. Hooman

T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

KR. Apt
R. Bol

0.S. van Roosmalen

J.C.M. Baeten
J.A. Bergstra

T. verhoeff

J. Peleska
C. Huizing
C. Petersohn

T. Kloks
D. Kratsch
H. Miiller

R. Seljée

W. Peremans

R.JIM. Vaessens
E.H.L. Aarts
J.K. Lenstra

R.C. Backhouse
H. Doornbos

S. Mauw
M.A. Reniers

The object-oriented paradigm, p. 28.

Canonical typing and IT-conversion, p. 51.
Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.

p- 31

A Comparison of Ward & Mellor’s Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

94/18

94/19

94/20

94/21

94/22

04/23

94/24

94/25

94/26

94/27

94/28

F. Kamareddine
R. Nederpelt

B.W. Watson
R. Bloo

F. Kamareddine
R. Nederpelt

B.W. Watson

B.W. Watson

8. Mauw and ML.A. Reniers

D. Dams
O. Grumberg
R. Gerth
T. Kloks

R.R. Hoogerwoord

S. Mauw and H. Mulder

C.W.AM. van QOverveld
M. Verhoeven

Refining Reduction in the Lambda Calculus, p. 15.
The performance of single-keyword and multipie-
keyword pattern matching algorithms, p. 46.

Beyond B-Reduction in Church’s A—, p. 22.

An introduction to the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi-
ons.

An algebraic semantics of Message Sequence Charts, p.
43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving YCTL*, 3CTL* and CTL*, p. 28.
K, ;free and W,-free graphs, p. 10.

On the foundations of functional
programmer’s point of view, p. 54.

programming: a

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfimite techniques for surface modelling, p. 20.

	Abstract
	1. Introduction
	2. A Mixed Formalism for Sequential Programs
	2.1 Values and Time
	2.2 Sequential Programs
	2.3 Specifications
	2.4 Example Semantic Reasoning
	3. Proof Rules for Sequential Programs
	3.1 Example Integer Division
	4. Parallel Programs
	5. Example Chemical Batch Processing
	6. Conclusion
	Acknowledgement
	References

