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The survival probability for 
riti
al spread-out orientedper
olation above 4 + 1 dimensions. II. ExpansionRem
o van der Hofstad �Frank den Hollander y zGordon Slade xSeptember 19, 2005Abstra
tWe derive a la
e expansion for the survival probability for 
riti
al spread-out orientedper
olation above 4+1 dimensions, i.e., the probability �n that the origin is 
onne
ted to thehyperplane at time n, at the 
riti
al threshold p
. Our la
e expansion leads to a nonlinearre
ursion relation for �n, with 
oeÆ
ients that we bound via diagrammati
 estimates. Thisla
e expansion is for point-to-plane 
onne
tions and di�ers substantially from previous la
eexpansions for point-to-point 
onne
tions. In parti
ular, to be able to dedu
e the asymptoti
sof �n for large n, we need to derive the re
ursion relation up to quadrati
 order.The present paper is Part II in a series of two papers. In Part I, we use the re
ursionrelation and the diagrammati
 estimates to prove that limn!1 n�n = 1=B 2 (0;1), and alsodedu
e 
onsequen
es of this asymptoti
s for the geometry of large 
riti
al 
lusters and forthe in
ipient in�nite 
luster.1 Introdu
tion and resultsFor oriented bond per
olation on Zd�Z+ with parameter p, the survival probability �n = �n(p) attime n 2 Z+ is the probability that there exists an x 2 Zd su
h that (0; 0) is 
onne
ted to (x; n).In the oriented setting, it is known that there is no per
olation at the 
riti
al threshold p = p
[2, 4℄, so that limn!1 �n(p
) = 0. Our goal is to study the manner in whi
h �n(p
) tends to zeroas n!1 when d > 4.In the present paper, we derive a la
e expansion for �n(p), valid in all dimensions d � 1 andfor quite general models of oriented per
olation. This la
e expansion gives a nonlinear re
ursion�Department of Mathemati
s and Computer S
ien
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ouver, BC V6T 1Z2, Canada. E-mail:slade�math.ub
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relation for �n(p). If the expansion is to be useful, then the 
oeÆ
ients in the re
ursion relationneed to be estimated. We prove estimates valid at p = p
 in dimensions d > 4, for suÆ
iently\spread-out" oriented bond per
olation (de�ned below), with the degree to whi
h 
onne
tions arespread out in spa
e parameterized by a suÆ
iently large L 2 N .In Part I [7℄, we have shown how these results 
an be used in an indu
tion analysis for there
ursion relation to 
on
lude that there is a 
onstant B = B(d; L) su
h that, as n!1,�n(p
)� �n+1(p
) = 1Bn2 h1 +O(n�1 logn) + L�dO(Æn)i for d > 4 and L suÆ
iently large;(1.1)where Æn = 8>>>><>>>>: n�(d�4)=2 logn (4 < d < 6);n�1 log2 n (d = 6);n�1 logn (d > 6): (1.2)In other words, the 
riti
al extin
tion probability �n(p
)� �n+1(p
), whi
h is the probability thatthe 
luster of the origin survives to time n but not to time n + 1, is asymptoti
 to 1=(Bn2) asn!1, with a

urate error bounds. By summing over n, we 
on
lude that�n(p
) = 1Bn h1 +O(n�1 logn) + L�dO(Æn)i for d > 4 and L suÆ
iently large; (1.3)whi
h is the main 
on
lusion of Part I. In terms of the 
riti
al exponent �, de�ned by the 
onje
turethat �n(p
) behaves like n�1=� as n ! 1, (1.3) implies that � exists and is equal to 1, for d > 4and L suÆ
iently large.Also in Part I, interesting 
onsequen
es for the geometry of large 
riti
al 
lusters and for thein
ipient in�nite 
luster were dedu
ed from (1.3), using results from [8℄. In parti
ular, (1.3) impliesthat two 
onstru
tions for the in
ipient in�nite 
luster 
oin
ide and that, 
onditionally on survivalup to time n, the number of verti
es to whi
h the origin is 
onne
ted at time n s
ales like n timesan exponential random variable.1.1 The modelThe spread-out oriented per
olation model is de�ned as follows. Let Z+ = fn 2 Z : n � 0g.Consider the graph with verti
es Zd � Z+ and with dire
ted bonds ((x; n); (y; n+ 1)), for n 2 Z+and x; y 2 Zd. Let D be a �xed fun
tion D : Zd ! [0; 1℄, satisfyingXx2ZdD(x) = 1: (1.4)The fun
tion D will be assumed to be invariant under the symmetries of Zd (permutation andre
e
tion of 
oordinates). Let p 2 [0; kDk�11 ℄, where k � k1 denotes the supremum norm, so thatpD(x) � 1 for all x 2 Zd. We asso
iate to ea
h dire
ted bond ((x; n); (y; n + 1)) an independentrandom variable taking the value 1 with probability pD(y � x) and the value 0 with probability1� pD(y � x). We say that a bond is o

upied when the 
orresponding random variable is 1 andva
ant when it is 0. Note that p is not a probability. Rather, p is the average number of o

upiedbonds from a given vertex. The joint probability distribution of the bond variables will be denoted2



by Pp and the 
orresponding expe
tation by E p , with the parameter p usually suppressed from thenotation.For the diagrammati
 estimates, we need to make further assumptions on D. We will refer tothe assumptions on D in the previous paragraph as the weak assumptions on D. We de�ne thespread-out model of oriented per
olation to be the model in whi
h D obeys the weak assumptionstogether with Assumption D in [12, Se
tion 1.2℄ (whose pre
ise form is not important for thepresent paper), and [13, Equation (1.2)℄. Assumption D in [12, Se
tion 1.2℄ involves a parameterL 2 N , whi
h serves to spread out the 
onne
tions and whi
h will be taken to be �xed and large.A simple and basi
 example isD(x) = 8<:(2L+ 1)�d if kxk1 � L;0 otherwise: (1.5)In this example, the bonds are given by ((x; n); (y; n + 1)) with kx � yk1 � L, and a bond iso

upied with probability p(2L+1)�d. Assumption D also allows for 
ertain in�nite range models.For the spread-out model, we will use � = L�d (1.6)as a small parameter. Assumption D implies that there is a �nite positive 
onstant C su
h thatsupx2ZdD(x) � C�: (1.7)We say that (x; n) is 
onne
ted to (y;m), and write (x; n)! (y;m), if there is an oriented pathfrom (x; n) to (y;m) 
onsisting of o

upied bonds. Note that this is only possible when m � n.By 
onvention, (x; n) is 
onne
ted to itself. We writeC(x; n) = f(y;m) 2 Zd � Z+ : (x; n)! (y;m)g (1.8)to denote the forward 
luster of (x; n). We also write (x; n) ! m to denote the event that thereis a y 2 Zd su
h that (x; n)! (y;m).The event f(0; 0) ! 1g is the event that f(0; 0) ! ng o

urs for all n. There is a 
riti
althreshold p
 2 (0;1) su
h that the event f(0; 0) ! 1g has probability zero for p � p
 and haspositive probability for p > p
. The parametrization we have 
hosen is 
onvenient, sin
e for thespread-out model it is known thatp
 = 1 + 
L�d +O(L�d�1) as L!1; (1.9)for d > 4, with the positive 
onstant 
 given expli
itly in terms of the Green fun
tion for therandom walk with step distribution D [10℄.The survival probability at time n is de�ned by�n(p) = Pp((0; 0)! n): (1.10)General results of [2, 4℄ imply that limn!1 �n(p
) = 0. For the spread-out model in dimensiond > 4, with L suÆ
iently large, the same 
on
lusion was shown in [1℄ to follow from the triangle
ondition. The triangle 
ondition was veri�ed under the above hypotheses in [13, 15℄, yielding analternate proof that limn!1 �n(p
) = 0 for d > 4, and L suÆ
iently large.3



1.2 Main theoremFor n 2 Z+, x 2 Zd, and p 2 [0; kDk�11 ℄, we de�ne the two-point fun
tion�n(x) = Pp((0; 0)! (x; n)): (1.11)We write �n = Xx2Zd �n(x) (1.12)for the expe
ted number of verti
es in C(0; 0) at time n. The la
e expansion for the two-pointfun
tion [5℄ (see also [13℄) yields a re
ursion relation for �n, whi
h reads�n = n�1Xm=0 �mp�n�m�1 + �n; (1.13)where (�m) are 
ertain p-dependent 
oeÆ
ients. In fa
t, (1.13) uniquely de�nes (�m), but the la
eexpansion provides a useful representation for (�m). In [13, Proposition 2.2℄, this representationwas used to prove that �0 = 1; �1 = 0 and that there exists a �nite positive 
onstant C� su
h thatj�mj � C��(m + 1)d=2 (p = p
; m � 2); (1.14)for the spread-out model in dimensions d > 4, with � of (1.6) suÆ
iently small. In addition, underthe same assumptions, it is shown in [13, Equation (2.11)℄ that1Xm=0 �mp
 = 1: (1.15)In the present paper, we obtain a la
e expansion for the survival probability �n, with goodbounds valid for the spread-out model in dimensions d > 4 at p = p
. Our main result is thefollowing theorem. In its statement, we use the notation�n = 8>>>><>>>>: n�(d�4)=2 logn (4 < d < 6);n�1 logn (d = 6);n�1 (d > 6): (1.16)Theorem 1.1 (La
e expansion and diagrammati
 estimates). (i) For d � 1, p 2 [0; kDk�11 ℄,and n � 1, and under the weak assumption on D,�n(p) = n�1Xm=0 �m(p)p�n�1�m(p)� bn=2
Xm1=1 nXm2=m1 �m1;m2(p)�n�m1(p)�n�m2(p) + en(p); (1.17)where (�m) are as in (1.13), and (�m1;m2) and (en) are given by expli
it formulas (see Se
tions 4{5).(ii) For the spread-out model in dimensions d > 4, at the 
riti
al value p = p
, there are �nitepositive 
onstants C�, Ce, and �0 su
h that, for 0 < � � �0, the 
oeÆ
ients (�m1;m2) and the errorterms (en) satisfy the following estimates: 4



� �1;1(p
) = 12p2
Px2ZdD(x)(1 � D(x)) = 12 [1 + O(�)℄ and, for m2 � m1 � 1 su
h that(m1; m2) 6= (1; 1),j�m1;m2(p
)j � C��(m1 + 1)�(d�2)=2(m2 �m1 + 1)�(d�2)=2: (1.18)� If �m(p
) � C�(m + 1)�1 for 0 � m � n and some C� � 1, thenjen+1(p
)j � CeC3� (n+ 1)�2 h(n+ 1)�1 + ��n+1i : (1.19)Note that the diagrammati
 estimate (1.19) for en+1, whi
h is the error term in (1.17) for �n+1,assumes a bound for �m only for 0 � m � n. This is pre
isely what opens up the possibility ofthe indu
tive analysis employed in Part I. Namely, in Part I, (1.1) is dedu
ed from Theorem 1.1by applying an indu
tion analysis to (1.17), whi
h makes use of the bounds in (1.14), (1.18) and(1.19) in order to moderate the 
oeÆ
ients of the re
ursion.When we derive (1.17) in Se
tions 2{5, we will �x an arbitrary p 2 [0; kDk�11 ℄ and assumeonly the weak assumption on D. In Se
tions 6{8, where we prove the diagrammati
 estimates(1.18){(1.19), we will spe
ialise to the spread-out model with d > 4, p = p
, and small �.We expe
t that Theorem 1.1 has impli
ations also for the 
riti
al 
onta
t pro
ess in spatialdimension d > 4. Indeed, it has been shown in [9℄ that the la
e expansion for the two-pointfun
tion 
an be applied to the oriented per
olation model resulting from time dis
retization of the
onta
t pro
ess. We expe
t that part (i) of the theorem 
an be applied similarly to study thesurvival probability for the 
riti
al 
onta
t pro
ess, in 
onjun
tion with a suitable modi�
ation ofpart (ii).1.3 The 
onstant BIt was shown in [7, Equation (1.36)℄ that the 
onstant B in (1.3) is given byB = P1m1=1P1m2=m1 �m1;m2(p
)1 + p
P1m=2m�m(p
) : (1.20)It follows from (1.9), (1.14) and (1.18) that B < 1 for d > 4 and � suÆ
iently small, withB = 12 +O(�) as � # 0.The survival probability �̂n of a Galton{Watson bran
hing pro
ess whose o�spring distributionhas mean 1, varian
e �̂2, and �nite third moment, obeys the simple re
ursion relation�̂n = �̂n�1 � �̂22 �̂2n�1 + ên; (1.21)where en = O(�̂3n�1). This leads to the 
on
lusion that limn!1 n�̂n = 2�̂�2. We sket
h the proof ofthese well-known fa
ts in Part I. Consider the bran
hing pro
ess with o�spring distribution Px Ix,where the Ix are independent Bernoulli random variables with parameter D(x). This has mean 1,by the normalisation assumption for D, and has varian
e �̂2 = PxD(x)(1�D(x)) = 1+O(�), asL!1 in the spread-out model, by (1.7). We regard the 
riti
al spread-out oriented per
olationmodel in dimensions d > 4 as a small perturbation of this 
riti
al bran
hing pro
ess|the formerallows at most one parti
le per vertex, whereas the latter allows multiple o

upan
y. The re
ursion5



relation (1.17) 
an be viewed as a perturbation of (1.21). The fa
t that B = 12 [1+O(�)℄ as L!1shows that the solution to (1.17) for the spread-out model remains 
lose to the solution of (1.21),to leading order, for L large.Let Nn denote the number of verti
es in C(0; 0) at time n, when p = p
, and de�ne the 
onstantsA and V by A = limn!1 E p
 [Nn℄; V = limn!1 1A3nE p
 [N2n℄: (1.22)It is part of the results in [13℄ that these 
onstants exist when d > 4 and L is suÆ
iently large. Itis shown in [8℄ that, given n�n(p
)! 1=B (whi
h follows from (1.3)),B = AV2 : (1.23)It is shown in [13, Equations (2.12) and (2.49)℄ thatA = 1p
 + p2
P1m=2m�m(p
) ; V = 1Xm1=2 1Xm2=2  ̂m1;m2(0; 0); (1.24)where ( ̂m1;m2) are 
oeÆ
ients arising in the la
e expansion for the 
riti
al three-point fun
tion�n1;n2(x1; x2) = Pp
((0; 0)! (x1; n1); (0; 0)! (x2; n2)): (1.25)It follows from (1.20) and (1.23){(1.24) thatV = 1Xm1=2 1Xm2=2  ̂m1 ;m2(0; 0) = 2p
 1Xm1=1 1Xm2=m1 �m1;m2(p
): (1.26)This implies that the 
oeÆ
ients (�m1;m2) in our la
e expansion for the survival probability arerelated to those appearing in the la
e expansion for the three-point fun
tion. However, our ap-proa
h does not reveal an expli
it relation between  ̂m1;m2(0; 0) and �m1;m2 for �xed m1; m2. In[11℄, an alternate expansion for the three-point fun
tion is derived, whi
h is quite di�erent fromthe expansion of [13℄ and 
loser in spirit to the expansion derived here for the survival probability.The expansion of [11℄ leads to a dire
t proof thatV = 2p
 1Xm1=1 1Xm2=m1 �m1;m2(p
): (1.27)1.4 OrganisationThe remainder of the paper is devoted to the proof of Theorem 1.1. The proof is divided into twomain parts: (a) the derivation of the expansion (1.17) for �n, and (b) the proof of the diagrammati
estimates (1.18){(1.19) for the expansion 
oeÆ
ients. The basi
 steps in the proof of ea
h part areas follows.
6



(a) Derivation of the la
e expansion (1.17). The starting point for the expansion is theper
olation la
e expansion of [5℄ for the two-point fun
tion. This expansion was applied to orientedper
olation in [13℄, where a derivation of (1.13) 
an be found. We will extend this la
e expansion forthe two-point fun
tion (a point-to-point expansion) to a la
e expansion for the survival probability(a point-to-plane expansion). There are alternate expansions for the two-point fun
tion of orientedper
olation, due to [15℄ and [16℄ (see [17℄ for a des
ription of all three expansions), but we do notknow how to use these alternate expansions to obtain an expansion for the survival probability.The expansion of [5℄ is based on a fa
torisation lemma, whi
h we isolate in Se
tion 2. InSe
tion 3, we extra
t the linear term in (1.17) using a relatively minor extension of the la
eexpansion for the two-point fun
tion. This produ
es an equation�n = n�1Xm=0 �mp�n�1�m + �n; (1.28)where the term �n involves 
on�gurations with two 
onne
tions to the hyperplane at time n. Thesetwo 
onne
tions lead to the quadrati
 term in (1.17), but two further expansions are required toobtain the two fa
tors �n�m1�n�m2 .The �rst of these expansions for �n is the most deli
ate and novel part of our method. A 
ru
ialrole is played by a random set PA of bonds, whi
h is de�ned in Se
tion 4 for any �xed subset A ofZd�Z+. Using PA, we extra
t a fa
tor �n�m1 from �n in Se
tion 4, 
ompleting the �rst expansionfor �n. Then, in Se
tion 5, we perform a se
ond expansion for �n to extra
t the additional fa
tor�n�m2 . Our treatment of this se
ond expansion is di�erent in spirit than the expansion methodsused in [6, 13℄, and is simpler due to a 
areful use of independen
e due to the orientation.This part of the argument applies for general p and d, and makes only the weak assumptionon D.(b) The diagrammati
 estimates (1.18){(1.19). As is usual in la
e expansion analyses, we willprove (1.18){(1.19) by bounding �m1;m2 and en+1 by diagrams of the same 
hara
ter as the Feynmandiagrams of physi
s, i.e., by sums of produ
ts of two-point fun
tions and survival probabilities.The two-point fun
tions are bounded using estimates proved in [13℄, and the survival probabilitiesare bounded using the assumption on �m(p
) given above (1.19).The �rst step in this pro
edure is 
arried out in Se
tion 6, where we generalise the bound on�m of [13℄, stated above in (1.14), and prove related bounds on �n. The bounds on �m1;m2 and en+1are in terms of diagrams that are built from the diagrams en
ountered in Se
tion 6 using 
ertaindiagrammati
 
onstru
tions. Using these, in Se
tion 7, we 
omplete the proof of the bound (1.18)on �m1;m2 , and in Se
tion 8, we 
omplete the proof of the bound (1.19) on en+1.This part of the argument is for the spread-out model. It relies on d > 4 and small �, and thebounds we obtain apply at p = p
.2 The Fa
torisation LemmaThis se
tion 
ontains some preliminaries that will be 
ru
ial in the expansion for the survivalprobability. The main result is the Fa
torisation Lemma stated in Lemma 2.2 below. Throughoutthe rest of the paper, we write � = Zd � Z+; (2.1)7



and we use bold letters su
h as x;y; z for elements of �. To be able to state the Fa
torisationLemma, we need some de�nitions.De�nition 2.1. (i) Given a (deterministi
 or random) set of verti
es A and a bond 
on�gura-tion !, we de�ne !A, the restri
tion of ! to A, to be!A(fx;yg) = ( !(fx;yg) if x;y 2 A;0 otherwise; (2.2)for every x;y su
h that fx;yg is a bond. In other words, !A is obtained from ! by makingevery bond that does not have both endpoints in A va
ant.(ii) Given a (deterministi
 or random) set of verti
es A and an event E, we say that E o

ursin A, and write fE in Ag, if !A 2 E. In other words, fE in Ag means that E o

urs on the(possibly modi�ed) 
on�guration in whi
h every bond that does not have both endpoints inA is made va
ant. We adopt the 
onvenient 
onvention that fx ! x in Ag o

urs if andonly if x 2 A.(iii) Given a bond 
on�guration and x 2 �, we de�ne C(x) to be the set of verti
es to whi
hx is 
onne
ted, i.e., C(x) = fy 2 � : x ! yg. Given a bond 
on�guration and a bond b,we de�ne ~Cb(x) to be the set of verti
es y 2 C(x) to whi
h x is 
onne
ted in the (possiblymodi�ed) 
on�guration in whi
h b is made va
ant.We will often use the following easily veri�ed rules for o

urs in:fE in Bg \ fF in Bg = fE \ F in Bg; (2.3)fE in Bg [ fF in Bg = fE [ F in Bg; (2.4)fE in Bg
 = fE
 in Bg: (2.5)Equations (2.3){(2.5) imply that \o

urs in" is well behaved under set operations.The following Fa
torisation Lemma lies at the heart of the expansion method.1 We write I[E℄for the indi
ator fun
tion of an event E.Lemma 2.2 (Fa
torisation Lemma). Fix p 2 [0; kDk�11 ℄, a bond (u; v), a vertex y, a positiveinteger n, and events E; F whi
h depend only on the status of bonds whose verti
es have timevariables at most n. ThenE�I[E in ~C(u;v)(y); F in �n ~C(u;v)(y)℄� = E 0�I[E in ~C(u;v)0 (y)℄E 1�I[F in �n ~C(u;v)0 (y)℄��: (2.6)Moreover, when E � fu 2 ~C(u;v)(y); v 62 ~C(u;v)(y)g, the event on the left-hand side of (2.6) isindependent of the o

upation status of (u; v).1Some versions of Lemma 2.2 published previously [5, 6, 13℄ 
ontain non-essential errors. However, on ea
ho

asion in these papers where the Fa
torisation Lemma has been applied, the 
laimed fa
torisation does in fa
thold.
8



Proof. Be
ause of our assumption on the events E and F , we 
an repla
e the set ~C(u;v)(y) in (2.6)by its restri
tion to verti
es whi
h are endpoints of bonds whose verti
es have time variables atmost n (i.e., we set all other bonds to be va
ant). We denote this restri
tion by ~C(u;v)n (y), andnote that this is a �nite set with probability 1. The proof pro
eeds by 
onditioning on ~C(u;v)n (y).We emphasize that ~C(u;v)n (y) is a set of verti
es. Thus, ~C(u;v)n (y) = S does not determine theo

upation status of all the bonds b with both verti
es in S. The left-hand side of (2.6) equalsXS P�fE in Sg \ fF in �nSg��� ~C(u;v)n (y) = S�P� ~C(u;v)n (y) = S�; (2.7)where the sum over S is over �nite subsets of � 
ontaining y.By De�nition 2.1(ii), the event fE in Sg depends only on bonds with both endpoints in S,while the event fF in �nSg depends only on bonds with both endpoints in �nS. The latter isequivalent to saying that fF in �nSg depends only on bonds that have no endpoints in S. Thus,by the independen
e of the bond variables, we obtain thatP�fE in Sg \ fF in �nSg��� ~C(u;v)n (y) = S� (2.8)= P�E in S��� ~C(u;v)n (y) = S�P�F in �nS��� ~C(u;v)n (y) = S�:Moreover, the event f ~C(u;v)n (y) = Sg depends only on bonds that have at least one endpoint in S.Therefore, for �xed S, the events fF in �nSg and f ~C(u;v)n (y) = Sg are independent, and hen
eP�F in �nS��� ~C(u;v)n (y) = S� = P(F in �nS): (2.9)Thus, we obtainP�fE in Sg \ fF in �nSg��� ~C(u;v)n (y) = S� = P0�E in S��� ~C(u;v)n (y) = S�P1�F in �nS�; (2.10)where we have added subs
ripts to the probabilities on the right-hand side to distinguish thedi�erent expe
tations. We substitute (2.10) into (2.7), perform the sum over S, and repla
e ~Cn by~C, to get (2.6).Finally, when E � fu 2 ~C(u;v)(y); v 62 ~C(u;v)(y)g, the event on the left-hand side of (2.6) isindependent of the o

upation status of the bond (u; v). For fE in ~C(u;v)(y)g, this is be
ausev 62 ~C(u;v)(y), and, for fF in �n ~C(u;v)(y)g, it is be
ause u 2 ~C(u;v)(y).Although we do not need it here, we note that Lemma 2.2 also applies (both for oriented andunoriented per
olation) to arbitrary events E and F , if we repla
e the assumption that E and Fare determined by bonds lying below n by the assumption that Pp(jC(0)j =1) = 0.We will refer to a bond (u; v) to whi
h we 
an e�e
tively apply Lemma 2.2 as a 
utting bond.In the nested expe
tation on the right-hand side of (2.6), the set ~C(u;v)0 (y) is random with respe
tto the outer expe
tation, but deterministi
 with respe
t to the inner expe
tation. We have addeda subs
ript \0" to ~C(u;v)0 (y) and subs
ripts \0" and \1" to the expe
tations on the right-hand sideof (2.6) to emphasize this distin
tion. The inner expe
tation on the right-hand side e�e
tivelyintrodu
es a se
ond per
olation model on a se
ond latti
e, whi
h is 
oupled to the �rst per
olationmodel via the set ~C(u;v)0 (y). 9



0
n

Figure 1: S
hemati
 representation of the event 0! n as a string of sausages.3 The linear termIn this se
tion, we prove (1.28) by expanding the survival probability to linear order. In Se
tion 3.1,we de�ne pivotal bonds, and rewrite events dealing with pivotal bonds using De�nition 2.1. InSe
tion 3.2, we perform a �rst expansion step, and in Se
tion 3.3, we iterate this expansion stepinde�nitely to obtain (1.28).3.1 Pivotal bondsDe�nition 3.1. (i) Given a bond 
on�guration, we say that x is doubly 
onne
ted to y, writtenx =) y, if there are at least two bond-disjoint paths from x to y 
onsisting of o

upiedbonds. By 
onvention, we say that x =) x for all x. Similarly, we say that y is doubly
onne
ted to n, and write y =) n, if there exist x1; x2 2 Zd (possibly equal) and twobond-disjoint paths from y to (x1; n) and (x2; n).(ii) Given a bond 
on�guration, we say that a bond is pivotal for x! y if x! y in the (possiblymodi�ed) 
on�guration in whi
h the bond is made o

upied, whereas x is not 
onne
ted toy in the (possibly modi�ed) 
on�guration in whi
h the bond is made va
ant. Similarly, wesay that a bond is pivotal for y ! n if y ! n in the (possibly modi�ed) 
on�guration inwhi
h the bond is made o

upied, whereas y is not 
onne
ted to n in the (possibly modi�ed)
on�guration in whi
h the bond is made va
ant.The set of pivotal bonds for x ! y or y ! n is ordered in time, whi
h allows us to speakabout the �rst pivotal bond having a 
ertain property. We 
an visualize a 
on�guration where0 ! n as 
onsisting of a string of sausages, the strings representing the pivotal bonds, and thesausages the parts of the 
luster of 0 that are separated by the pivotal bonds. See Figure 1 for as
hemati
 representation of the event 0! n as a string of sausages.In terms of De�nitions 2.1 and 3.1, we have a 
hara
terization of a pivotal bond for v ! y asf(u0; v0) pivotal for v ! yg = nv ! u0 in ~C(u0;v0)(v)o \ nv0 ! y in �n ~C(u0;v0)(v)o: (3.1)Similarly, we have a 
hara
terization of a pivotal bond for v ! n asf(u0; v0) pivotal for v ! ng = nfv ! u0g \ fv ! ng
 in ~C(u0;v0)(v)o \ nv0 ! n in �n ~C(u0;v0)(v)o:(3.2)The right-hand sides of (3.1){(3.2) are 
onvenient for appli
ation of the Fa
torisation Lemma 2.2.10
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Figure 2: (a) S
hemati
 representation of the event E 0(v;x;A). The interse
tion of A with thefourth sausage is optional, while the interse
tion with the sixth is required. (b) S
hemati
 repre-sentation of the event F 0n(v;A). The interse
tion of A with the third sausage is optional, while theother interse
tion is required.3.2 The �rst expansion stepThe following de�nition will be 
ru
ial throughout the expansion.De�nition 3.2. Given a bond 
on�guration and a set A � �, we say that y is 
onne
ted to xthrough A, and write y A! x, if every o

upied path 
onne
ting y to x has at least one bond withan endpoint in A. By 
onvention, x A! x holds if and only if x 2 A. Similarly, we say that y is
onne
ted to n through A, and write y A! n, if every o

upied path 
onne
ting y to a vertex inZd � fng has at least one bond with an endpoint in A, or if y 2 (Zd � fng) \ A.It will be 
onvenient to expand not only �n, but also the generalised survival probability P(v A�!n) for a �xed vertex v and set of verti
es A. We note that, with 0 = (0; 0), we haveP(0 f0g��! n) = �n: (3.3)To analyze P(v A�! n), we de�ne the eventsE 0(v;x;A) = fv A! xg \ f� pivotal bond (u0; v0) for v ! x su
h that v A! u0g; (3.4)F 0n(v;A) = fv A! ng \ f� pivotal bond (u0; v0) for v ! n su
h that v A! u0g; (3.5)whi
h are depi
ted s
hemati
ally in Figure 2.Given a 
on�guration in whi
h v A�! n, the 
utting bond (u0; v0) is de�ned to be the �rsto

upied and pivotal bond for v ! n su
h that v A�! u0. It is possible that no su
h bond exists.By partitioning fv A! ng a

ording to the lo
ation of the 
utting bond (or the la
k of a 
uttingbond), we obtain the de
omposition given in the following lemma. Here and elsewhere, we write_[ for a disjoint union.Lemma 3.3 (The partition). For any v 2 �; A � �; n � 0,fv A! ng = F 0n(v;A) _[ �[(u0;v0) hE 0(v;u0;A) \ f(u0; v0) o

upied and pivotal for v ! ngi: (3.6)11



Proof. We de
ompose the event fv A! ng depending on whether there is a 
utting bond or not.The event F 0n(v;A) is the 
ontribution where su
h a 
utting bond does not exist. Otherwise, let(u0; v0) be the 
utting bond. Then, (u0; v0) is o

upied and pivotal for v ! n and fv A�! u0g holds.Moreover, there 
annot be a previous pivotal bond satisfying the same requirements. The latteris equivalent to the statement that, for all b that are o

upied and pivotal for v ! u0, the eventfv A! bg 
annot hold. Therefore, E 0(v;u0;A) holds.De�ne 
(0)n (v;A) = P(F 0n(v;A)): (3.7)Then (3.6) implies thatP(v A! n) = 
(0)n (v;A) + X(u0;v0)P(E 0(v;u0;A) \ f(u0; v0) o

upied and pivotal for v ! ng): (3.8)We next note that the event that b is pivotal for v ! n is independent of the o

upation statusof the bond b. Moreover, also E 0(v;u0;A) is independent of the o

upation status of the bond(u0; v0), due to the orientation. Therefore, (3.8) be
omesP(v A! n) = X(u0;v0) Ju0;v0P(E 0(v;u0;A) \ f(u0; v0) pivotal for v ! ng) + 
(0)n (v;A); (3.9)where we make the abbreviation J(u;m);(v;n) = pD(v � u)Æn;m+1: (3.10)We note that, by the orientation of the bonds, the event E 0(v;u0;A) is independent of thebonds above u0, so that E 0(v;u0;A) = fE 0(v;u0;A) in ~C(u0;v0)(v)g: (3.11)We use (3.2), together with (3.11) and (2.3), to rewrite the event on the right-hand side of (3.9)as E 0(v;u0;A) \ f(u0; v0) pivotal for v ! ng (3.12)= nnE 0(v;u0;A) \ fv ! ng
o in ~C(u0;v0)(v)o \ fv0 ! n in �n ~C(u0;v0)(v)g:Using Lemma 2.2, we obtain from (3.9) and (3.12) the important rewriteP(v A! n) = X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A) \ fv ! ng
g in ~C(u0;v0)0 (v)℄� P1�v0 ! n in �n ~C(u0;v0)0 (v)��+ 
(0)n (v;A): (3.13)We next use the in
lusion-ex
lusion relationI[fv ! ng
℄ = 1� I[fv ! ng℄; (3.14)12



whi
h brings us toP(v A! n) = X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A)g℄P1�v0 ! n in �n ~C(u0;v0)0 (v)��+ 
(0)n (v;A)� �(0)n (v;A); (3.15)where�(0)n (v;A) = X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A) \ fv ! ngg in ~C(u0;v0)0 (v)℄P1�v0 ! n in �n ~C(u0;v0)0 (v)��:(3.16)We have omitted \in ~C(u0;v0)0 (v)" in the sum in (3.15), whi
h is possible due to (3.11).Finally, let �n(v) = P(v ! n). Then, for every A � �,P(v ! n in �nA) = �n(v)� P(v A�! n): (3.17)If we de�ne �(0)(v;x;A) = P�E 0(v;x;A)�; (3.18)then (3.15) and (3.17) yield the identityP(v A! n) = 
(0)n (v;A)� �(0)n (v;A) + X(u0;v0) Ju0;v0�(0)(v;u0;A)�n(v0)� X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A)℄P1�v0 ~C(u0;v0)0 (v)������! n��: (3.19)This 
ompletes the �rst expansion step.3.3 IterationIn the right-hand side of (3.19), we again see a term of the form P1(v A�! n), but now withA = ~C(u0;v0)0 (v) and with v repla
ed by v0. Thus, we 
an iterate (3.19). To write down thisiteration, we �rst de�ne, for any random variable X,M (1)v;y;A(X) = E 0�I[E 0(v;y;A)℄X�: (3.20)For N � 2, we de�ne M (N)v;y;A(X) re
ursively byM (N)v;y;A(X) = X(uN�2;vN�2)JuN�2;vN�2M (N�1)v;uN�2;A�M (1)vN�2;y; ~CN�2(X)�; (3.21)where, for j � 0, we make the abbreviation ~Cj = ~C(uj ;vj)j (vj�1), with v�1 = v, and where theexpe
tation o

urring in M (1)vN�2;y; ~CN�2(X) is labelled N � 1. For example, when N = 2, X = 1,v = 0, and A = f0g,M (2)0;y;f0g(1) = X(u0;v0) Ju0;v0E 0�I[E 0(0;u0; f0g)℄E 1�I[E 0(v0;y; ~C0)℄��: (3.22)13



Note that, by (3.4), E 0(0;u0; f0g) = f0 =) u0g: (3.23)A

ording to [13, Equation (3.25)℄, the 
oeÆ
ients of the la
e expansion for the two-point fun
tionin (1.13) are given in terms of the above notation by�m = 1XN=0(�1)N�(N)m ; (3.24)with, for N � 0, �(N)m = Xy2Zd�(N)m (y); �(N)m (y) =M (N+1)0;(y;m);f0g(1): (3.25)Note that here we adopt the 
onvention that �(0)m (y) = P(0 =) (y;m)), rather than the 
onvention�(0)m (y) = P(0 =) (y;m))� Æ0;mÆ0;y used in [13℄.We de�ne, for N � 1,
(N)n (v;A) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�
(0)n (vN�1; ~CN�1)� (3.26)with 
(0)n (v;A) de�ned in (3.7), and, for N � 1,�(N)(v;x;A) =M (N+1)v;x;A(1); (3.27)�(N)n (v;A) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A��(0)n (vN�1; ~CN�1)�; (3.28)with �(0)(v;x;A) and �(0)n (v;A) de�ned in (3.18) and (3.16). We let�(N)n (v;A) = 
(N)n (v;A)� �(N)n (v;A): (3.29)We omit the supers
ript \(N)" to denote the alternating sum over N , e.g.,�(v;x;A) = 1XN=0(�1)N�(N)(v;x;A); (3.30)�n(v;A) = 1XN=0(�1)N�(N)n (v;A): (3.31)In the spe
ial 
ase v = 0 and A = f0g, we omit the variables v and A and write�(x) = �(0;x; f0g); �n = �n(0; f0g); 
n = 
n(0; f0g); �n = �n(0; f0g); (3.32)and similarly for �(N)(x); �(N)n ; 
(N)n and �(N)n . In parti
ular, 
(0)n = P(0 =) n). A s
hemati
representation of �(N)(x) for N = 0; 1 is depi
ted in Figure 3, and s
hemati
 representations of
(N)n and �(N)n for N = 0; 1 are depi
ted in Figures 4 and 5.The result of the �rst expansion is given in the following proposition. Re
all that �n(v) wasde�ned above (3.17).Proposition 3.4 (The linear term). For all v 2 �, A � �, n � 1,P(v A! n) = X(u0;v0) �(v;u0;A)Ju0;v0�n(v0) + �n(v;A): (3.33)14



�(0)(x)
x
0 �(1)(x)

x
0Figure 3: S
hemati
 representations of �(N)(x) for N = 0; 1. For �(1)(x), the bold and thin lines
orrespond to the di�erent expe
tations.


(0)n n
0

n
(1)n
0Figure 4: S
hemati
 representation of 
(N)n for N = 0; 1. For 
(1)n , the bold and thin lines 
orrespondto di�erent expe
tations.Proof. The identity (3.19) 
an be rewritten, using (3.20), (3.27), and (3.29), asP(v A! n) = X(u0;v0) Ju0;v0M (1)v;u0;A(1)�n(v0) + �(0)n (v;A)� X(u0;v0) Ju0;v0M (1)v;u0;A�P1(v0 ~C0�! n)�: (3.34)Re
alling (3.27), we see that the �rst line on the right-hand side of (3.34) is equal to the N = 0
ontribution to the right-hand side of (3.33). We will iterate (3.34) to obtain (3.33). For this, itis useful to note that a shift of indi
es in (3.21) givesX(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (1)vN�1;uN ; ~CN�1(X)� =M (N+1)v;uN ;A(X): (3.35)For N � 1, it follows from (3.34){(3.35), together with (3.26){(3.29) and the linearity of X 7!
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�(0)n 0
n

0�(1)n
n

Figure 5: S
hemati
 representation of �(N)n for N = 0; 1. For �(0)n there are two distin
t expe
tations,and for �(1)n there are three.M (N)v;uN�1 ;A(X), that X(uN�1;vN�1) JuN�1;vN�1M (N)v;uN�1;A�PN(vN�1 ~CN�1���! n)� (3.36)= X(uN ;vN )JuN ;vN�(N)n (v;uN ;A)�n(vN) + �(N)n (v;A)� X(uN ;vN )JuN ;vNM (N+1)v;uN ;A�PN+1(vN ~CN��! n)�:We use (3.36) in (3.34) repeatedly until the last term vanishes. This must happen before N = n+1,be
ause the time variable of vN is stri
tly larger than the time variable of vN�1, and the last termis zero when the time variable of vN ex
eeds n.A

ording to (3.25) and (3.27), �(y) is equal to the 
oeÆ
ient �m(y) of the la
e expansion forthe two-point fun
tion, where y = (y;m). We use the notation �m(y) and �m = Py �m(y) whenwe wish to emphasize the role of the time variable. Sin
e �n(y;m) = �n�m for every y 2 Zd, andsin
e Pv0 Ju0;v0 = p by (3.10), (3.33) redu
es in this spe
ial 
ase to to�n = n�1Xm=0 �mp�n�1�m + �n: (3.37)This proves (1.28), and we have extra
ted the linear term in the expansion for �n.Finally, for future referen
e, we prove the re
ursion relationM (N+M)v;y;A (X) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (M)vN�1;y; ~CN�1(X)�; (3.38)valid for M;N � 1. The proof is by indu
tion on M . We �rst note that (3.38) holds for all N � 1when M = 1, sin
e in this 
ase it is identi
al to (3.35). We assume as indu
tion hypothesis thatM (N+M�1)v;uN ;A (Y ) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (M�1)vN�1;uN ; ~CN�1(Y )�; (3.39)16



holds for all N � 1. To advan
e the indu
tion, we substituteY = X(uN ;vN )JuN ;vNM (1)vN ;y; ~CN (X) (3.40)into (3.39). By (3.35), the left-hand side equals M (N+M)v;y;A (X), while the right-hand side equals theright-hand side of (3.38). This advan
es the indu
tion hypothesis, and proves (3.38).4 The quadrati
 term: The �rst expansion for �nIn (3.37), we have established the identity�n = n�1Xm=0 �mp�n�1�m + �n: (4.1)To prove the identity (1.17) of Theorem 1.1(i), we will show that�(N)n = � bn=2
Xm1=1 nXm2=m1 �(N)m1;m2�n�m1�n�m2 + e(N)n ; (4.2)where �(N)m1;m2 are 
ertain expansion 
oeÆ
ients, and e(N)n is an error term. The desired result (1.17)then follows from (4.1){(4.2), withen = 1XN=0(�1)Ne(N)n ; �m1;m2 = 1XN=0(�1)N�(N)m1;m2 : (4.3)In this se
tion, we will go part way to proving (4.2), by showing that�(N)n = � bn=2
Xm1=1�(N)m1;n�n�m1 + e(N)n (1) + e(N)n (2) + e(N)n (3): (4.4)The 
oeÆ
ients �(N)m1;n and the error terms e(N)n (1); e(N)n (2); e(N)n (3) are de�ned in Se
tion 4.2 below.The proof of (4.2) will then be 
ompleted in Se
tion 5, via an expansion for �(N)m1;n.Re
all from (3.29) that �(N)n = 
(N)n � �(N)n , where 
(N)n and �(N)n are de�ned in terms of 
(0)nand �(0)n in (3.26) and (3.28). We begin in Se
tion 4.1 with an analysis of �(N)n , and 
ontinue inSe
tion 4.2 with 
(N)n . Se
tion 4.3 
ontains the proof of a key proposition involving an importantset PA introdu
ed in Se
tion 4.2. Finally, in Se
tion 4.4, we prepare for an analysis of error terms.4.1 The �rst expansion for �nFor A;B � �, we de�ne�(0)n (v;A;B) = X(u0;v0)Ju0;v0E 0�I[E 0(v;u0;B) \ fv A�! ng in ~C0℄��n(v0)� P1(v0 ~C0�! n)��; (4.5)
17



where as usual ~C0 = ~C(u0;v0)0 (v). By (3.16){(3.17), and the fa
ts that fv fvg��! ng = fv ! ng andfv0 62 ~C(u0;v0)0 (v)g = ffv0 62 ~C(u0;v0)0 (v)g in ~C(u0;v0)0 (v)g, we have�(0)n (v;A) = �(0)n (v; fvg; A): (4.6)We write mv for the time 
oordinate of a vertex v, and de�ne�m(v;A) = Æm;mv � p Xy2Zd�(v; (y;m� 1);A); (4.7)�(0)m;n(v;A;B) = X(u0;v0)Ju0;v0E 0�I[E 0(v;u0;B) \ fv A�! ng in ~C0℄�m(v0; ~C0)�; (4.8)e(0)n (v;A;B) = � X(u0;v0)Ju0;v0E 0�I[E 0(v;u0;B) \ fv A�! ng in ~C0℄�n(v0; ~C0)�: (4.9)Lemma 4.1. For n � 1, v 2 � and A;B � �,�(0)n (v;A;B) = nXm1=1 �(0)m1;n(v;A;B)�n�m1 + e(0)n (v;A;B): (4.10)Proof. We use Proposition 3.4 to extra
t one fa
tor of �n�m1 from the fa
tor �n(v0)�P1(v0 ~C0�! n)in �(0)n (v;A;B). Expli
itly,�n(v0)� P1(v0 ~C0�! n) = �n(v0)� X(u1;v1)Ju1;v1�(v0;u1; ~C0)�n(v1)� �n(v0; ~C0)=Xm1 �m1(v0; ~C0)�n�m1 � �n(v0; ~C0); (4.11)using (4.7) in the se
ond equality. Substitution into (4.5) gives (4.10).We use the abbreviations�(0)m;n(A) = �(0)m;n(0;A; f0g); e(0)n (A) = e(0)n (0;A; f0g); (4.12)and, for N � 1, we de�ne�(N)m;n(A) = X(uN�1;vN�1)JuN�1 ;vN�1M (N)0;uN�1;f0g��(0)m;n(vN�1;A; ~CN�1)�; (4.13)e(N)n (A) = X(uN�1;vN�1)JuN�1 ;vN�1M (N)0;uN�1;f0g�e(0)n (vN�1;A; ~CN�1)�: (4.14)An abuse of notation: It will be 
onvenient in what follows to make an abuse of notation in whi
hwe write, e.g., �(N)m1;n(fvN�1g) to denote the result of setting A = fvN�1g in (4.13). The variablevN�1 is the summation index, so that �(N)m1;n(fvN�1g) does not a
tually depend on vN�1. Also, wewill use the 
onvention v�1 = 0; ~C�1 = f0g: (4.15)With the above abuse of notation, the following proposition gives the �rst expansion for �(N)n .18



Proposition 4.2 (The �rst expansion for �n). For n � 1 and N � 0,�(N)n = nXm1=1 �(N)m1;n(fvN�1g)�n�m1 + e(N)n (fvN�1g): (4.16)Proof. By (4.6) and Lemma 4.1, we obtain�(0)n (v;A) = nXm1=1 �(0)m1;n(v; fvg; A)�n�m1 + e(0)n (v; fvg; A): (4.17)The identity (4.16) then follows by substitution of (4.17) into (3.28), using (4.13){(4.14) with theabuse of notation.For N � 1, we note for future referen
e that�(N)m;n(A) = X(uN ;vN )JuN ;vNM (N+1)0;uN ;f0g�I[vN�1 A�! n in ~CN ℄�m(vN ; ~CN)�; (4.18)e(N)n (A) = �X(uN ;vN )JuN ;vNM (N+1)0;uN ;f0g�I[vN�1 A�! n in ~CN ℄�n(vN ; ~CN)�; (4.19)where, in the last equality, we have used (4.9) (with (uN ; vN) instead of (u0; v0)), (3.20), and (3.35).In addition, we have repeated our abuse of notation, sin
e the variable vN�1 is summed over inthe de�nition of M (N+1)0;uN ;f0g (see (3.21)). For N = 0, re
alling (4.12), we see that the equalities in(4.18) and (4.19) also hold, using the 
onvention (4.15).4.2 The �rst expansion for 
nIn this se
tion, we derive the �rst expansion for 
n. This requires a new 
on
ept: the importantset PA.Throughout the remainder of the paper, given a bond b = ((x; n); (y; n + 1)), we will writeb = (y; n + 1) for its \top" and b = (x; n) for its \bottom." Given a vertex v, a non-negativeinteger n, and a subset A � �, we de�ne the random set of bonds PA byPA = nbonds b ��� E 0(v; b;A) \ fb o

upiedg \ fb! n in �n ~Cb(v)go: (4.20)Thus PA 
onsists of those o

upied bonds b su
h that E 0(v; b;A) o

urs (see Figure 2(a)) andthe top of b is 
onne
ted to n in the 
omplement of ~Cb(v). By de
omposing the event F 0n(v;A)a

ording to the size of PA, and using (3.7), we obtain
(0)n (v;A) = P(F 0n(v;A))= P�F 0n(v;A) \ fPA = ?g�+ 1Xl=1 1l Xb P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�= 12Xb P�F 0n(v;A) \ fb 2 PAg�+ e(0)n (v;A); (4.21)19



wheree(0)n (v;A) = P�F 0n(v;A) \ fPA = ?g�+ 1Xl=1(1l � 12)Xb P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�: (4.22)We also de�ne, for N � 1,e(0)n (1) = e(0)n (0; f0g) (4.23)e(N)n (1) = X(uN�1;vN�1)JuN�1;vN�1M (N)0;uN�1;f0g�e(0)n (vN�1; ~CN�1)�: (4.24)The following proposition, whose proof is deferred to Se
tion 4.3, is a 
ru
ial ingredient in the�rst expansion for 
n. Proposition 4.3 derives its name \the �rst 
utting bond" from the fa
t thatthe bond b in PA will serve as the 
utting bond in Proposition 4.4.Proposition 4.3 (The �rst 
utting bond). For A � �, v 2 �, n � 1 and b,F 0n(v;A) \ fb 2 PAg = nE 0(v; b;A) \ fv A�! ng in ~Cb(v)o \ fb o

.g \ nb! n in �n ~Cb(v)o:(4.25)The following proposition, whose proof uses Proposition 4.3, gives the result of the �rst expan-sion for 
n. On the right-hand side of (4.26), there is again an abuse of notation: when we putA = ~CN�1 in (4.13){(4.14), the quantities �(N)m1;n( ~CN�1) and e(N)n ( ~CN�1) do not a
tually depend on~CN�1 (this random set is integrated over).Proposition 4.4 (The �rst expansion for 
n). For n � 1 and N � 0,
(N)n = 12 nXm1=1 �(N)m1;n( ~CN�1)�n�m1 + 12e(N)n ( ~CN�1) + e(N)n (1): (4.26)Proof. By (4.21), Proposition 4.3, and the independen
e stated in Lemma 2.2,
(0)n (v;A) = 12 X(u0;v0)Ju0;v0E�I[E 0(v;u0;A) \ fv A�! ng in ~C0℄I[v0 ! n in �n ~C0℄� (4.27)+ e(0)n (v;A):By Lemma 2.2, (3.17), and (4.5), this implies that
(0)n (v;A) = 12�(0)n (v;A;A) + e(0)n (v;A): (4.28)By Lemma 4.1, (4.15) and (3.32), this proves (4.26) for N = 0. For N � 1, we substitute (4.28)for 
(0)n (vN�1; ~CN�1) in (3.26). The desired result then follows from (4.13){(4.14) and (4.24).To 
ombine the expansions for �n and 
n given in Propositions 4.2 and 4.4 into a �rst expansionfor �(N)n , we introdu
e the following notation. Let�(N)m;n = �(N)m;n(fvN�1g)� 12�(N)m;n( ~CN�1); (4.29)e(N)n (2) = 12e(N)n ( ~CN�1)� e(N)n (fvN�1g); (4.30)e(N)n (3) = � nXm1=bn=2
+1 �(N)m1;n�n�m1 : (4.31)20
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Figure 6: S
hemati
 representation of the event F 0n(v;A) \ fb 2 PAg.Corollary 4.5 (The �rst expansion for �n). For n � 0 and N � 0,�(N)n = � bn=2
Xm1=1�(N)m1;n�n�m1 + e(N)n (1) + e(N)n (2) + e(N)n (3): (4.32)Proof. Sin
e �(N)n = 
(N)n � �(N)n by (3.29), we 
an 
ombine the 
on
lusions of Propositions 4.2 and4.4 with (4.29){(4.30) to arrive at�(N)n = � nXm1=1 �(N)m1;n�n�m1 + e(N)n (1) + e(N)n (2): (4.33)Then (4.32) follows from (4.31).4.3 Proof of Proposition 4.3The proof is divided into 2 steps. See Figure 6 for a s
hemati
 representation of the event F 0n(v;A)\fb 2 PAg.Step 1: The left-hand side of (4.25) is a subset of the right-hand side of (4.25). Supposethat the left-hand side of (4.25) o

urs. It is 
lear from (4.20) that all the events on the right-handside of (4.25) o

ur, apart from the event fv A�! n in ~Cb(v)g. To see that fv A�! n in ~Cb(v)go

urs, note from (3.5) that F 0n(v;A) implies that fv A�! ng. Also, by (4.20), b ! b ! n on theleft-hand side of (4.25). Sin
e F 0n(v;A) o

urs and v A�! b, it follows from (3.5) that b 
annot bepivotal for v ! n. Thus fv ! n in ~Cb(v)g must o

ur. Sin
e v A�! n, every o

upied path v ! nmust 
ontain an element in A, in parti
ular the paths in ~Cb(v). We 
on
lude that fv A�! n in~Cb(v)g. This proves that the left-hand side of (4.25) is a subset of the right-hand side.Step 2: The right-hand side of (4.25) is a subset of the left-hand side of (4.25). Supposethat the right-hand side of (4.25) o

urs. Then b 2 PA by the de�nition of PA in (4.20). It remainsto 
he
k that F 0n(v;A) o

urs. To a
hieve this, we need to verify that (a) v A�! n, and (b) the \noprevious pivotal" 
ondition in (3.5) holds (i.e., there does not exists a b0 whi
h is o

upied andpivotal for v ! n su
h that v A�! b0). 21



For (a), we note that sin
e v A�! n in ~Cb(v), all 
onne
tions that do not use the bond b arethrough A. Thus, we need only investigate the 
onne
tions that do use the bond b. But (3.11)implies that v A�! b, so the 
onne
tions using the bond b are indeed through A, and hen
e v A�! n.We are left to 
he
k (b). We �rst note that if b0 is pivotal for v ! n on the right-hand side of(4.25), then b0 is also pivotal for v ! b. Indeed, suppose that after removal of b0, the 
onne
tionv ! b still o

urs. The bond b0 
annot equal b sin
e v ! n in ~Cb(v), so that b is not pivotal forv ! n, whereas b0 is. Thus, sin
e b0 is pivotal for v ! n, the removal of b0 must destroy both
onne
tions v ! n in ~Cb(v) and b! n in �n ~Cb(v), whi
h is impossible.To prove (b), we need to show that if b0 is pivotal for v ! n, then v is not 
onne
ted to b0through A. Let b0 be pivotal for v ! n. Then, as noted above, b0 is also pivotal for v ! b. By(3.11) and the se
ond event in (3.4), fv A�! b0g
 must o

ur. This proves (b) and 
ompletes theproof.4.4 Preparation for bounds on e(0)n (v;A)In this se
tion, we set the stage for the diagrammati
 estimates of Se
tion 8, by proving estimatesfor the error term e(0)n (v;A) of (4.22). We begin by making the de
ompositione(0)n (v;A) = e(0)n (v;A; 1) + e(0)n (v;A; 2) + e(0)n (v;A; 3); (4.34)where e(0)n (v;A; 1) = P�F 0n(v;A) \ fPA = ?g�+ 12P�F 0n(v;A) \ fjPAj = 1g�; (4.35)e(0)n (v;A; 2) = Xb�bn2 
+1 1Xl=3(1l � 12)P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�; (4.36)e(0)n (v;A; 3) = Xb�bn2 
 1Xl=3(1l � 12)P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�; (4.37)and where we abuse notation by writing b � m for the sum over bonds b su
h that mb � m (re
allthat mb denotes the temporal 
omponent of b). Thenje(0)n (v;A; 1)j � P�F 0n(v;A) \ fjPAj � 1g�; (4.38)je(0)n (v;A; 2)j � 12 Xb�bn2 
+1 P�E 0(v; b;A) \ fb! ng�; (4.39)je(0)n (v;A; 3)j � 12 Xb�bn2 
P�F 0n(v;A) \ fb 2 PAg \ fjPAj � 3g�; (4.40)using Proposition 4.3 in (4.39). We 
onsider these three quantities in sequen
e in Se
tions 4.4.1{4.4.3.4.4.1 Estimate for e(0)n (v;A; 1)To prove that e(0)n (v;A; 1) produ
es an error term, we will use the following proposition.22



Proposition 4.6. For v 2 �, A � � and n � 1,F 0n(v;A) \ fjPAj � 1g � [x2ZdE 0(v; (x; n);A): (4.41)Proof. By partitioning (3.5) a

ording to the last pivotal bond for the 
onne
tion v ! n, we maywriteF 0n(v;A) = fv A=) ng _[ _[b �fb o

. and piv. for v ! ng \ fv A! bg
 \ fb A=) ng�; (4.42)where fv A=) ng = fv A�! ng \ fv =) ng. We de�ne v0 by setting v0 = v when the �rst event onthe right-hand side of (4.42) o

urs, and v0 = b otherwise.Suppose that F 0n(v;A) \ fjPAj � 1g o

urs. There must be x; y su
h that v0 is disjointly
onne
ted through A to (x; n) and (y; n). Due to these disjoint 
onne
tions, no pivotal bond forv0 ! (x; n) 
an also be pivotal for v0 ! (y; n). Sin
e jPAj � 1, we may therefore assume withoutloss of generality that among the pivotal bonds for v0 ! (x; n) (if there are any) there is no elementof PA.A

ording to (3.4), it suÆ
es to show that there is no pivotal bond b0 for v ! (x; n) su
hthat v A�! b0, sin
e this implies that E 0(v; (x; n);A) o

urs. We will establish that this suÆ
ient
ondition holds, by arguing by 
ontradi
tion.Suppose that b0 is pivotal for v ! (x; n) and that v A�! b0. Then there must be a �rst su
hpivotal bond, whi
h, we 
laim, is an element of PA. Indeed, sin
e b0 is pivotal for v ! (x; n), itfollows from (3.1) that b0 is o

upied, E 0(v; b0;A) o

urs, and b0 ! (x; n) o

urs in �n ~Cb(v). Thisshows that b0 2 PA.By de�nition of v0, the pivotal bonds for v ! (x; n) in
lude the pivotal bonds for v0 ! (x; n).The latter in
lude no element of PA, so b0 must lie below v0 (and hen
e v0 6= v). This then impliesthat b0 is o

upied and pivotal for v ! v0. However, by (4.42), the latter implies that fv A�! b0g
o

urs. This 
ontradi
ts the assumption that v A�! b0, and 
ompletes the proof.4.4.2 Estimate for e(0)n (v;A; 2)The right-hand side of (4.39) is already simple and nothing more is required at this stage.4.4.3 Estimate for e(0)n (v;A; 3)We prove three lemmas, Lemmas 4.7{4.9 below, before proving the main estimate in Proposi-tion 4.10 below.Lemma 4.7. If b 2 PA, then there exists an x 2 Zd su
h that b is o

upied and pivotal forv ! (x; n).Proof. The de�nition of PA in (4.20) implies that v ! b o

urs in ~Cb(v), while b ! n o

urs in�n ~Cb(v). Therefore, there exists an x 2 Zd for whi
h b! (x; n) o

urs in �n ~Cb(v). By (3.1), thisproves the 
laim.For two bonds b and b0, we write b � b0 when their temporal 
omponents obey mb � mb0 .23



Lemma 4.8. For b0 � b and b0 6= b,fb; b0 2 PAg � ffb0 2 PAg in ~Cb(v)g: (4.43)Proof. We �rst note that if b and b0 are distin
t elements of PA, then it is not possible that b = b0.Indeed, by Lemma 4.7 there is an x su
h that b is pivotal for v ! (x; n). But if b0 = b then itfollows from the fa
t that b0 2 PA that there is a 
onne
tion from v to b via b0 that persists afterb is made va
ant, and this means that b 
annot be pivotal for v ! (x; n). Thus we may assumethat b 6= b0.Sin
e b0 2 PA, we have that (a) fb0 is o

upiedg o

urs, (b) E 0(v; b0;A) o

urs, and (
) fb0 ! nin �n ~Cb0(v)g o

urs. The event fb0 is o

upiedg also o

urs in ~Cb(v) sin
e b 6= b0, and the eventE 0(v; b0;A) also o

urs in ~Cb(v) sin
e b0 � b and b 6= b0. It remains to show that the event�nb0 ! n in �n ~Cb0(v)o in ~Cb(v)� (4.44)o

urs. We show that (4.44) o

urs by interse
ting with the events (i) fb0 ! b in �n ~Cb0(v)g
, and(ii) fb0 ! b in �n ~Cb0(v)g, whi
h we refer to as 
ases (i) and (ii).On the event (i),�nb0 ! n in �n ~Cb0(v)o in ~Cb(v)� = nb0 ! n in �n ~Cb0(v)o; (4.45)sin
e making b va
ant does not 
hange C(b0) \ (�n ~Cb0(v)), and b0 ! n in �n ~Cb0(v) is determinedby C(b0) \ (�n ~Cb0(v)). But the right-hand side of (4.45) o

urs by (
) above, and hen
e (4.44)o

urs.We 
omplete the proof by showing that 
ase (ii) is empty, arguing by 
ontradi
tion. Supposethat b; b0 2 PA and that b0 ! b o

urs in �n ~Cb0(v). Then E 0(v; b;A) o

urs sin
e b 2 PA, andv A�! b0 o

urs sin
e b0 2 PA. Sin
e E 0(v; b;A) \ fv A�! b0g o

urs, b0 
annot be pivotal for v ! b.Sin
e v ! b, we 
on
lude that b 2 ~Cb0(v). However, when b0 ! b in �n ~Cb0(v), either b 2 �n ~Cb0(v)or b0 = b. In the latter 
ase, sin
e b0 2 PA, it follows from Proposition 4.3 that b = b0 62 ~Cb0(v).Therefore b 2 �n ~Cb0(v) in either 
ase, whi
h 
ontradi
ts b 2 ~Cb0(v) and 
ompletes the proof.Lemma 4.9. For v 2 �, A � �, n � 0,fv A�! ng \ fjPAj � 2g � F 0n(v;A): (4.46)Proof. By Lemma 3.3,fv A! ng \ fjPAj � 2g = �F 0n(v;A) \ fjPAj � 2g� (4.47)_[ �[b hE 0(v; b;A) \ fb o

. and piv. for v ! ng \ fjPAj � 2gi:It suÆ
es to show that the 
ontribution from the union over b is empty. For this, it suÆ
es toshow that if E 0(v; b;A) \ fb o

. and piv. for v ! ng o

urs, then PA = fbg.To prove the latter statement, assume that E 0(v; b;A) \ fb o

. and piv. for v ! ng o

urs.Then 
learly b 2 PA, sin
e all the events in (4.20) o

ur by (3.2). Also, if b0 2 PA, then the event24



E 0(v; b0;A) o

urs, and, by Lemma 4.7, b0 is o

upied and pivotal for v ! (x; n) for some x 2 Zd.Therefore, b0 is the �rst o

upied and pivotal bond for v ! (x; n) for whi
h v A�! b0. However,sin
e E 0(v; b;A) \ fb o

. and piv. for v ! ng o

urs, b is the �rst o

upied and pivotal bond forv ! (x; n) su
h that v A�! b for all x 2 Zd for whi
h v ! (x; n). Therefore, b0 = b.To formulate the next proposition, we de�neP (3)A = fb 2 PA : 9b1; b2 2 PA n fbg su
h that b1 6= b2; b1; b2 � bg: (4.48)In words, P (3)A is the subset of bonds b 2 PA for whi
h there are at least two distin
t elements inPA with time variables smaller than or equal to b. Note that if jPAj � 3 then P (3)A 6= ?. Therefore,writing b0 � b to mean both b0 � b and b0 6= b, we havefb 2 PAg \ fjPAj � 3g = �fb 2 P (3)A g \ [b0�bfb0 2 PAg� [ � [b0
bfb0 2 P (3)A g \ fb 2 PAg�: (4.49)We re
all (4.40) and 
on
lude from (4.49) thatje(0)n (v;A; 3)j � Xb0�bn2 
Xb
b0 P�F 0n(v;A) \ fb0 2 PAg \ fb 2 P (3)A g�; (4.50)where we repla
e b � bn2 
 by b0 � bn2 
 for the 
ontribution due to the �rst event in the right-handside of (4.49), and the roles of b and b0 are inter
hanged for the 
ontribution due to the se
ondevent.The following proposition gives an estimate on the event appearing in the right-hand sideof (4.50). In the right-hand side of (4.51) below, three 
onne
tions to n are apparent. One isdue to fb ! n in �n ~Cb(v)g, and the other two are due to the event fF 0n(v;A) in ~Cb(v)g. Theadvantage of the right-hand side of (4.51) is that it is well suited for appli
ation of the Fa
torisationLemma 2.2. In Se
tion 8.7, we will exploit this formula to prove that e(0)n (v;A; 3) gives an errorterm.Proposition 4.10 (Fa
torisation for three 
utting bonds). For A � �, v 2 �, n � 1 andb0 � b, F 0n(v;A) \ fb0 2 PAg \ fb 2 P (3)A g (4.51)� nE 0(v; b;A) \ F 0n(v;A) \ fb0 2 PAg in ~Cb(v)o \ fb o

.g \ nb! n in �n ~Cb(v)o:Proof. By Lemma 4.8,fb0 2 PAg \ fb 2 P (3)A g = fb 2 PAg \ fb0 2 PAg \ � [b00�b:b00 6=b;b0 fb00 2 PAg� (4.52)� fb 2 PAg \ nfb0 2 PAg in ~Cb(v)o \ � [b00�b:b00 6=b;b0 nfb00 2 PAg in ~Cb(v)o�= fb 2 PAg \ �n [b00�b:b00 6=b;b0fb0; b00 2 PAgo in ~Cb(v)�� nfb0 2 PAg \ fjPAj � 2g in ~Cb(v)o ;25



where we used (2.3){(2.4) in the third line. Now we use Proposition 4.3, (4.52), (2.3), andLemma 4.9 to arrive atF 0n(v;A) \ fb0 2 PAg \ fb 2 P (3)A g (4.53)= �F 0n(v;A) \ fb 2 PAg� \ �fb0 2 PAg \ fb 2 P (3)A g�� nE 0(v; b;A) \ fv A�! ng in ~Cb(v)o \ fb o

.g \ nb! n in �n ~Cb(v)o\ �fb0 2 PAg \ fjPAj � 2g in ~Cb(v)�= nE 0(v; b;A) \ fv A�! ng \ fjPAj � 2g \ fb0 2 PAg in ~Cb(v)o\ fb o

.g \ nb! n in �n ~Cb(v)o� nE 0(v; b;A) \ F 0n(v;A) \ fb0 2 PAg in ~Cb(v)o \ fb o

.g \ nb! n in �n ~Cb(v)o;whi
h is the desired result.5 The quadrati
 term: The se
ond expansion for �nIn this se
tion, we 
omplete the proof of Theorem 1.1(i) by proving (4.2). To do so, we willdetermine 
oeÆ
ients �(N)m1;m2 and d(N)m1;n su
h that�(N)m1;n = nXm2=m1 �(N)m1;m2�n�m2 � d(N)m1;n: (5.1)Then (4.2) follows from (4.32), withe(N)n = e(N)n (1) + e(N)n (2) + e(N)n (3) + bn=2
Xm1=1 d(N)m1;n�n�m1 : (5.2)We will also prove the �rst statement of Theorem 1.1(ii), namely that �1;1 = 12p2
PxD(x)(1�D(x)).By (1.4), (1.7) and (1.9), this implies that �1;1 = 12 +O(�).5.1 The se
ond 
utting bond for �nTo prove (5.1), we will de�ne a se
ond 
utting bond for�(0)m;n(vN�1;A; ~CN�1) = X(uN ;vN )JuN ;vNEN �I[E 0(vN�1;uN ; ~CN�1) \ fvN�1 A�! ng in ~CN ℄�m(vN ; ~CN)�(5.3)(see (4.8)), whi
h is the argument of M (N)0;uN�1;f0g appearing in (4.13). The set ~CN�1 
an be anydeterministi
 set in (5.3), but we write it in this form with (4.13) in mind. The de�nition of these
ond 
utting bond will be simpler than the de�nition of the �rst 
utting bond in Proposition 4.3,due to the fa
t that we have already extra
ted a fa
tor of �n�m1 and any remaining 
ontributionwith a double 
onne
tion to n will be an error term.26



We �rst rewrite �(0)m;n(vN�1;A; ~CN�1) in a more 
onvenient form. Let ePN be the 
onditionalprobability PN given that (uN ; vN) is va
ant, and let eEN be expe
tation with respe
t to ePN . Sin
e~CN = CN(vN�1) holds ePN -a.s, and sin
e the event E 0(vN�1;uN ; ~CN�1) \ fvN�1 A�! ng only dependson forward 
onne
tions from vN�1 to later verti
es, it follows that�(0)m;n(vN�1;A; ~CN�1) = X(uN ;vN )JuN ;vN eEN �I[E 0(vN�1;uN ; ~CN�1) \ fvN�1 A�! ng℄�m(vN ; ~CN)�: (5.4)The se
ond 
utting bond is de�ned as follows.De�nition 5.1. (i) For m � 0, the m-
utting bond for vN�1 A�! n, if it exists, is the �rst o

upiedand pivotal bond b for vN�1 ! n for whi
h mb � m and vN�1 A�! b: Similarly, for y 2 �, them-
utting bond for vN�1 A�! y, if it exists, is the �rst o

upied and pivotal bond b for vN�1 ! yfor whi
h mb � m and vN�1 A�! b. We use the abbreviation \b is m-
utting for vN�1 A�! n" for thestatement that \b is the m-
utting bond for vN�1 A�! n."(ii) The se
ond 
utting bond for (5.4) is the m-
utting bond for vN�1 A�! n.Note that, under ePN , the event that b is an m-
utting bond implies that b 6= (uN ; vN), sin
e bmust be o

upied whereas (uN ; vN) is va
ant.Several de�nitions are required to formulate the result of the se
ond expansion. LetHm(v;y;A) = fv A�! yg \ f� m-
utting bond for v A�! yg: (5.5)Hm;n(v;A) = fv A�! ng \ f� m-
utting bond for v A�! ng: (5.6)Re
all our 
onvention (4.15) that v�1 = 0 and ~C�1 = f0g. For N � 0, lete(N)m;n(4;A) = eEN �I[E 0(vN�1;uN ; ~CN�1) \Hm;n(vN�1;A)℄�m(vN ; ~CN)�; (5.7)e(N)m;n(5;A) = � Xb6=(uN ;vN ) Jb;b eEN �I[E 0(vN�1;uN ; ~CN�1) \Hm(vN�1; b;A)℄�n(b; ~CbN)�m(vN ; ~CN)�;(5.8)where ~CbN = ~CbN(vN�1). For j = 4; 5 and N � 1, letd(0)m1;n(j;A) = X(u0;v0)Ju0;v0e(0)m1;n(j;A); (5.9)d(N)m1;n(j;A) = X(uN�1;vN�1)JuN�1;vN�1 X(uN ;vN )JuN ;vNM (N)0;uN�1;f0g�e(N)m1;n(j;A)�: (5.10)For N � 1, we also de�nefM (1)(u0;v0)(X) = eE 0�I[f0 =) u0g℄X�; (5.11)fM (N+1)(uN;vN )(X) = X(uN�1;vN�1)JuN�1;vN�1M (N)0;uN�1;f0g�eEN �I[E 0(vN�1;uN ; ~CN�1)℄X��: (5.12)Finally, for N � 0 we de�ne�(N)m1;m2(A) = X(uN ;vN )JuN ;vN Xb6=(uN ;vN )Jb;bfM (N+1)(uN;vN )�I[Hm1(vN�1; b;A)℄�m2(b; ~CbN)�m1(vN ; ~CN)�: (5.13)Now we are ready to state the result of the se
ond expansion.27



Proposition 5.2 (The se
ond expansion for �n). For n;m � 0, N � 0 and A � �,�(N)m;n(A) = nXm2=m�(N)m;m2(A)�n�m2 � [d(N)m;n(4;A) + d(N)m;n(5;A)℄: (5.14)The proof of Proposition 5.2 is given below in Se
tion 5.3. Letd(N)m;n(A) = d(N)m;n(4;A) + d(N)m;n(5;A); (5.15)d(N)m;n = �12d(N)m;n( ~CN�1) + d(N)m;n(fvN�1g); (5.16)and �(N)m1;m2 = �12�(N)m1;m2( ~CN�1) + �(N)m1;m2(fvN�1g): (5.17)Then (5.1) follows immediately from Proposition 5.2 and (4.29). As noted below (5.1), this in turn
ompletes the proof of Theorem 1.1(i).For j = 4; 5, we de�nee(N)n (j) = bn=2
Xm1=1 h� 12d(N)m1;n(j; ~CN�1) + d(N)m1;n(j; fvN�1g)i�n�m1 : (5.18)Then (5.2) 
an be rewritten ase(N)n = e(N)n (1) + e(N)n (2) + e(N)n (3) + e(N)n (4) + e(N)n (5): (5.19)Our proof of (1.19) in Se
tion 8 is based on the de
omposition (5.19).5.2 Identi�
ation of �1;1We now prove the �rst statement of Theorem 1.1(ii), namely that �1;1 = 12p2
PxD(x)(1�D(x)).By (1.4), (1.7) and (1.9), it then follows that �1;1 = 12 + O(�). A

ording to (5.13) and (4.15),�(N)1;1 (A) = 0 unless N = 0. Also, by (5.17) and (4.15), �1;1 = 12�(0)1;1(f0g). Thus, it suÆ
es to showthat �(0)1;1(f0g) = p2
PxD(x)(1�D(x)).For this, we use (5.13). Note that �1(b; ~Cb0) = Æmb;1 and �1(v0; ~C0) = Æmv0 ;1, by (4.7). Therefore,by (4.15), we have H1(vN�1; b; f0g) = H1(0; 0; f0g), whi
h is the trivial event by (5.5). Also, sin
emv0 = 1, u0 must be 0, so that f0 =) u0g in (5.11) is trivially satis�ed. We 
on
lude thatfM (1)(u0;v0)�I[Hm1(0; b; f0g)℄�1(b; ~Cb0)�1(v0; ~C0)� = 1: (5.20)It then follows from (5.13) that�(N)1;1 (f0g) =Xv0 J0;v0 Xb6=v0 J0;b = p2
Xx D(x)(1�D(x)); (5.21)as required. 28



5.3 Proof of Proposition 5.2To simplify the notation, for N � 0, we writeE 0N = E 0(vN�1;uN ; ~CN�1): (5.22)In parti
ular, a

ording to (3.23) and the 
onvention (4.15), E 00 = f0 =) u0g. For the se
ondexpansion, the following proposition plays the role that was played for the �rst expansion byProposition 4.3.Proposition 5.3 (The se
ond 
utting bond). For all A � �, N � 0, m � 0, n � 1, and forall bonds b,E 0N \ fb is m-
utting for vN�1 A�! ng (5.23)= nE 0N \Hm(vN�1; b;A) in ~CbN(vN�1)o \ fb o

.g \ nb! n in �n ~CbN(vN�1)o:Proof. By (3.2), it suÆ
es to prove thatE 0N \ fb is m-
utting for vN�1 A�! ng= nE 0N \Hm(vN�1; b;A) in ~CbN(vN�1)o \ fb o

. and piv. for vN�1 ! ng: (5.24)Sin
e mb � m, and sin
e E 0N depends only on the o

upation status of bonds below muN � m� 1,we have E 0N = fE 0N in ~CbN(vN�1)g: (5.25)Also, for b su
h that mb � m, we havefb is m-
utting for vN�1 A�! ng = fb o

. and piv. for vN�1 ! ng \ fvN�1 A�! bg (5.26)\ f� previous m-
utting bond for vN�1 A�! ng:Sin
e the pivotal bonds for vN�1 ! n are ordered, any previous m-
utting bond for vN�1 A�! nmust be pivotal for vN�1 ! b. Therefore,f� previous m-
utting bond for vN�1 A�! ng (5.27)= f� m-
utting bond for vN�1 A�! bg= nf� m-
utting bond for vN�1 A�! bg in ~CbN(vN�1)o;where the last equality again follows from the orientation. Sin
efvN�1 A�! bg = fvN�1 A�! b in ~CbN(vN�1)g; (5.28)we 
on
lude from (5.5) thatfvN�1 A�! bg\f� previous m-
utting bond for vN�1 A�! ng = fHm(vN�1; b;A) in ~CbN(vN�1)g: (5.29)29



Then (5.24) follows from (2.3) and (5.29), and the proof is 
omplete.Proof of Proposition 5.2. We will show thateEN�I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)�= nXm2=m Xb6=(uN ;vN ) Jb;b eEN �I[E 0N \Hm(vN�1; b;A)℄�m2(b; ~CbN)�m(vN ; ~CN)��n�m2+ e(N)m;n(4;A) + e(N)m;n(5;A): (5.30)This suÆ
es, sin
e substitution of (5.30) into (5.4) gives�(0)m;n(vN�1;A; ~CN�1)= X(uN ;vN )JuN ;vN nXm2=m Xb6=(uN ;vN ) Jb;b eEN �I[E 0N \Hm(vN�1; b;A)℄�m2(b; ~CbN)�m(vN ; ~CN)��n�m2+ X(uN ;vN )JuN ;vN [e(N)m;n(4;A) + e(N)m;n(5;A)℄; (5.31)and substitution of (5.31) into (4.13), together with (5.13) and (5.9){(5.10), gives the desired result(5.14).To prove (5.30), we use the partitionfvN�1 A�! ng = Hm;n(vN�1;A) _[ �[b �fb is m-
utting for vN�1 A�! ng�: (5.32)By (5.32) and (5.7),eEN �I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)� (5.33)= e(N)m;n(4;A) +Xb eEN �I[E 0N \ fb is m-
utting for vN�1 A�! ng℄�m(vN ; ~CN)�:Let ~CN;m = fx 2 ~CN : mx � mg: (5.34)Then �m(vN ; ~CN) = �m(vN ; ~CN;m�1); (5.35)sin
e the �rst term in (4.7) does not depend on ~CN , while the se
ond only depends on ~CN up totime m� 1. Conditioning on the set ~CN;m�1 then giveseEN �I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)� (5.36)= e(N)m;n(4;A) +Xb XC �m(vN ;C)ePN�E 0N \ fb is m-
utting for vN�1 A�! ng \ f ~CN;m�1 = Cg�:We again write ~CbN = ~CbN(vN�1). Sin
e m � mb,f ~CN;m�1 = Cg = nf ~CN;m�1 = Cg in ~CbNo: (5.37)30



By Proposition 5.3 and the independen
e stated in Lemma 2.2, for b 6= (uN ; vN), it follows thatePN�E 0N \ fb is m-
utting for vN�1 A�! ng \ f ~CN;m�1 = Cg� (5.38)= Jb;bePN�fE 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg in ~CbNg \ fb! n in �n ~CbNg�:(Note that, a

ording to the 
omment below De�nition 5.1, the left-hand side of (5.38) is zeroif b = (uN ; vN), but the right-hand side need not be zero.) Next we apply Lemma 2.2 to theright-hand side to obtain, for b 6= (uN ; vN),ePN�E 0N \ fb is m-
utting for vN�1 A�! ng \ f ~CN;m�1 = Cg� (5.39)= Jb;b eEN�I[E 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg℄��n(b)� PN;1(b ~CbN��! n)��;where we have used (3.17) and the fa
t that fE 0N \ Hm(vN�1; b;A) \ f ~CN;m�1 = Cg in ~CbNg =E 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg, again due to the orientation. We 
on
lude from (5.36) and(5.39) thateEN �I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)�� e(N)m;n(4;A) (5.40)=XC Xb6=(uN ;vN )Jb;b�m(vN ;C)eEN�I[E 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg℄��n(b)� PN;1(b ~CbN��! n)��= Xb6=(uN ;vN )Jb;b eEN�I[E 0N \Hm(vN�1; b;A)℄�m(vN ; ~CN;m�1)��n(b)� PN;1(b ~CbN��! n)��:Finally, we rewrite PN;1(b ~CbN��! n) using Proposition 3.4, as in (4.11). The subs
ript on PN;1 indi
atesthe arrival of a new oriented per
olation model, 
oupled to PN via the set ~CbN . With (5.8) and(5.35), this gives (5.30), and thus 
ompletes the proof.6 Diagrammati
 estimates: Bounds for � and �In this se
tion, we begin to set the stage for the proof of the bounds on �m1;m2 and en+1 statedin Theorem 1.1(ii). In Se
tion 6.1, we prove bounds on �(v;y;A), and in Se
tion 6.2, we provebounds on �n(v;A). These bounds are in terms of 
ertain Feynman diagrams P (N)(v;y;A), whi
hare 
losely related to diagrams appearing in [13, Se
tion 4℄. These diagrams are de�ned re
ursively,whi
h is natural given that �(N) is de�ned in terms of the re
ursively de�ned M (N+1) (see (3.25)).Later, the re
ursive nature of the diagrams will be instrumental in bounding the diagrams.The dis
ussion in this se
tion applies for arbitrary p and d, under the weak assumption on D.6.1 Bounds on �In this se
tion, we obtain bounds on the fun
tion �(v;y;A) de�ned in (3.27). For the spe
ial 
asein whi
h v = 0 and A = f0g, the fun
tion �(0;y; f0g) is identi
al to the fun
tion �(y) of [13,Equation (3.25)℄, apart from the minor 
hange that we have �(0) = 1 whereas [13℄ has �(0) = 031



(re
all the 
omment below (3.25)). It is proved in [13, Equation (4.10)℄ and [13, Equation (4.29)℄that for N � 0 and m � 0, �(N)m (y) � P (N)m (y): (6.1)Here, P (N)m (y) = P (N)(y) (for y = (y;m)) is a sum of diagrams whi
h, for p = p
, d > 4 and �suÆ
iently small, obey the boundXy P (N)m (y) � Æm;0ÆN;0 + (C�)N_1(m+ 1)�d=2: (6.2)Together, these estimates give (1.14).Our goal now is to generalise (6.1) to �(v;y;A). The generalisation is in terms of Feynmandiagrams P (N)(v;y;A) whi
h are de�ned as follows. We start with N = 0, and, keeping the bondorientation in mind, de�neP (0)(v;y;a) =Xt �(t� v)�(a� t)�(y � a)�(y � t); (6.3)P (0)(v;y;A) =Xa I[a 2 A℄P (0)(v;y;a): (6.4)We refer to the two-point fun
tions appearing in the right-hand side of (6.3) as lines. In the diagramP (0)(v;y;a), we de
lare the lines �(t�v) and �(y�t) appearing in (6.3) to be 0-admissible (belowthis is generalised to N -admissibility). We also de�neP (u; z;y) =Xw;v �(w � z)Ju;vP (0)(v;y;w); (6.5)where Ju;v is given by (3.10), and where we 
ontinue to regard the lines �(t � v) and �(y � t)appearing in P (0)(v;y;w) in (6.5) as 0-admissible. See Figure 7 for depi
tions of (6.3) and (6.5).De�nition 6.1. (i) Given a diagram and any line � of the diagram, Constru
tion 1�(y) is theoperation in whi
h a new vertex y is inserted in line �. Expli
itly, this means that the two-pointfun
tion �(v � u) 
orresponding to line � is repla
ed by �(v � y)�(y � u).(ii) Given a diagram F (v;y) with two verti
es 
arrying labels v;y and any line � of the diagram,we write F (v;y; 1�(z)) for the diagram where Constru
tion 1�(z) is performed to the diagramF (v;y).(iii) Constru
tion 1�(l) is the operation in whi
h Constru
tion 1�(y; l) is performed followed bysummation over y with l �xed. Expli
itly, this means that �j�i(v � u) 
orresponding to line � isrepla
ed by Py �j�l(v � y)�l�i(y � u). We also write Constru
tion 1(l) for the operation in whi
hConstru
tion 1�(l) is performed, and then a sum over all lines � in the diagram is performed(resulting in a sum of diagrams).For N � 1, given P (N�1)(v;y;a) with its set of admissible lines, we de�ne P (N)(v;y;a) withits set of admissible lines re
ursively, as follows. First, let P (N�1)(v;y;a; 1�(z)) denote the resultof applying Constru
tion 1�(z) to P (N�1)(v;y;a). Then, for N � 1, letP (N)(v;y;a) =X� Xz;wP (N�1)(v;w;a; 1�(z))P (w; z;y); (6.6)where the sum over � runs over the (N � 1)-admissible lines, and where the N-admissible linesare by de�nition the 0-admissible lines in the fa
tor P (w; z;y) appearing in (6.6). See Figure 7.32
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Figure 7: Diagrams for P (0)(v;y;a), P (u; z;y), and examples of diagrams that 
ontribute toP (1)(v;y;a), P (2)(v;y;a). The N -admissible lines are shown in bold.We also de�ne, for N � 0,P (N)(v;y;A) =Xa I[a 2 A℄P (N)(v;y;a); P (N)(y) = P (N)(0;y; f0g): (6.7)The P (N)(y) appearing in (6.7) is identi
al to the right-hand side of (6.1), when y = (y;m). By(6.5), we 
an alternatively write, for N � 1,P (N)(v;y;A) =X� Xz;w X(uN�1;vN�1)JuN�1;vN�1P (N�1)(v;uN�1;A; 1�(z))�(w � z)P (0)(vN�1;y;w):(6.8)An identi
al formula holds for P (N)(v;y;a), where A on both sides is repla
ed by a.Remark 6.2. When P (M)(v;y;a; 1�(z)) appears inside a sum over �, our 
onvention is that � issummed over the M -admissible lines.The following proposition gives our main bound on �(N)(v;y;A), and generalises (6.1).Proposition 6.3. For N � 0, v;y 2 �, and A � �,�(N)(v;y;A) � P (N)(v;y;A): (6.9)Proof. We will prove the two statementsM (N+1)v;y;A (1) � P (N)(v;y;A); (6.10)M (N+1)v;y;A (I[w 2 CN ℄) �X� Xz P (N)(v;y;A; 1�(z))�(w � z); (6.11)33



simultaneously, using indu
tion on N (re
all Remark 6.2). The �rst immediately gives (6.9), by(3.27).To verify (6.10) for N = 0, we �rst re
all (3.4) and observe thatE 0(v;y;A) � E(v;y;A) � [a2A;t2�(v ! t) Æ (t! a) Æ (a! y) Æ (t! y); (6.12)where, for events F and G, F ÆG denotes disjoint o

urren
e of F and G. By the BK inequality(see [3℄), this givesM (1)v;y;A(1) = P�E 0(v;y;A)� � Xa2A;t2� �(t� v)�(a� t)�(y � a)�(y � t)=Xa I[a 2 A℄P (0)(v;y;a); (6.13)whi
h is (6.10) for N = 0.To verify (6.11) for N = 0, we use the standard fa
t (see [5, Lemma 2.5℄ or [14, Lemma 5.5.8℄for details) thatE�I[E 0(v;y;A)℄I[w 2 C0℄� � Xa2A;z;t2� �(w � z)�(y � a)�(a� t) (6.14)� ��(t� v)�(z � t)�(y � z) + �(z � v)�(t� z)�(y � t)�:The right-hand side of (6.14) is the same as the right-hand side of (6.11) for N = 0, where thetwo terms in (6.14) 
orrespond to the two terms in the sum over admissible lines in (6.11).To advan
e the indu
tion, we �x N � 1 and assume that (6.10){(6.11) hold for N � 1. There
ursion relation (3.35) implies thatM (N+1)v;y;A (1) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (1)vN�1;y; ~CN�1(1)�: (6.15)Appli
ation of (6.13) givesM (N+1)v;y;A (1) �Xw X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�I[w 2 ~CN�1℄�P (0)(vN�1;y;w): (6.16)We use (6.11) for N � 1 to estimate the right-hand side (using ~CN�1 � CN�1), and use (6.8) to
omplete the advan
ement of (6.10).Similarly, for (6.11), we haveM (N+1)v;y;A (I[w 2 CN ℄) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (1)vN�1;y; ~CN�1(I[w 2 CN ℄)�: (6.17)Substitution of the bound (6.11) for N = 0 (again using ~CN�1 � CN�1) leads toM (N+1)v;y;A (I[w 2 CN ℄) �X� Xz;w0 X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1 ;A�I[w0 2 CN�1℄� (6.18)� P (0)(vN�1;y;w0; 1�(z))�(w � z);34



where the sum over � runs over the N -admissible lines. We use the indu
tion hypothesis (6.11)for N � 1 to bound M (N)v;uN�1;A(I[w0 2 CN�1℄), and then rewrite the resulting bound noting that by(6.8),P (N)(v;y;A; 1�(z)) (6.19)=X�0 Xz0;w0 X(uN�1;vN�1)JuN�1 ;vN�1P (N�1)(v;uN�1;A; 1�0(z0))�(w0 � z0)P (0)(vN�1;y;w0; 1�(z));where the sum over �0 runs over the (N � 1)-admissible lines (re
all Remark 6.2). This leads toM (N+1)v;y;A (I[w 2 CN ℄) �X� Xz P (N)(v;y;A; 1�(z))�(w � z); (6.20)whi
h 
ompletes the advan
ement of (6.11).Later, we will use the re
ursion formula, for M � 1 and N � 0,X� Xw;a X(uN ;vN ) JuN ;vNP (N)(uN ; 1�(w))�(a�w)P (M�1)(vN ;y;a) = P (N+M)(y): (6.21)To prove (6.21), we apply indu
tion on M . For M = 1, the 
laim follows from (6.8). To advan
ethe indu
tion, we note from (6.7){(6.8) thatP (N+M)(y) =X�0 Xz;t P (0)(v;y; t) X(u;v) Ju;vP (N+M�1)(u; 1�0(z))�(t� z): (6.22)An appli
ation of the indu
tion hypothesis yields thatP (N+M�1)(u; 1�0(z)) =X� Xw;a X(uN ;vN ) JuN ;vNP (N)(uN ; 1�(w))�(a�w)P (M�2)(vN ;u;a; 1�0(z)):(6.23)We substitute (6.23) into (6.22), and use the fa
t thatX�0 Xz;t P (0)(v;y; t) X(u;v) Ju;vP (M�2)(vN ;u;a; 1�0(z))�(t� z) = P (M�1)(vN ;y;a): (6.24)This then advan
es the indu
tion and proves the 
laim in (6.21).6.2 Bounds on �nIn this se
tion, we prove bounds on �n. The proof will use the following lemmas and de�nition.Re
all the de�nitions of F 0n(v;A) and PA in (3.5) and (4.20).Lemma 6.4. For A � �, v 2 �, and n � 0,F 0n(v;A) � [y2�E 0(v;y;A) \ �(v ! n) Æ (y ! n)�: (6.25)
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Proof. Suppose that F 0n(v;A) o

urs. When PA = ?, the 
laim follows from Proposition 4.6, whi
hsays that then there exists x for whi
h E 0(v; (x; n);A) = E 0(v; (x; n);A)\�(v ! n)Æ((x; n)! n)�holds, and this is a subset of the event on the right-hand side of (6.25). Thus, we are left to provethat, for every bond b, fb 2 PAg\F 0n(v;A) is a subset of the right-hand side of (6.25). For this weuse Proposition 4.3 to see that this event is a subset of the event in the right-hand side of (6.25)with y = b.The following de�nition introdu
es a 
onstru
tion that adds a 
onne
tion to n in a diagram.De�nition 6.5. (a) Given a diagram F (u) with a vertex 
arrying label u, Constru
tion �n(u) isthe diagram obtained by multiplying F (u) by �n�mu.(b) Given a diagram, the result of applying Constru
tion �n is the diagram obtained by Constru
-tion 1�(u) followed by Constru
tion �n(u) and a summation over u and over all lines � in thediagram. Expli
itly, this means that the two-point fun
tion �(v � w) asso
iated with line � isrepla
ed by Pu �(v � u)�(u�w)�n(u), followed by a sum over �.We write P (N)(v;y;a; �n) for the result of an appli
ation of Constru
tion �n to P (N)(v;y;a),and P (N)(v;y;A; �n) = Pa I[a 2 A℄P (N)(v;y;a; �n).Lemma 6.6. For A � �, N � 0, v;uN 2 � and n � 0,M (N+1)v;uN ;A�I[vN�1 ! n℄� � P (N)(v;uN ;A; �n); (6.26)where we re
all the abuse of notation above (4.15), and, for N = 0, we set v�1 = v and ~C�1 = fvg.Proof. This is a minor modi�
ation of the bound on M (N+1)v;uN ;A�I[w 2 ~CN ℄� in (6.11), using theinequality PN�E 0(vN�1;uN ; ~CN�1) \ fvN�1 ! ng� � P (0)(vN�1;uN ; ~CN�1; �n) (6.27)instead of (6.14), and we omit the details.The following proposition gives an upper bound for �n(v;A) that is written as a minimum. Inits statement, we write P (N)(v;y;A) = P (N)m;k(v; y;A), when v = (v;m) and y = (y; k). Later wewill make use of both alternatives in the minimum, depending on the index k in (6.28).Proposition 6.7. For A � �, N � 0, v = (v;m) 2 � and n � 0,j�(N)n (v;A)j � nXk=m�� Xy2ZdP (N)m;k(v; y;A; �n)� ^ � Xy2ZdP (N)m;k(v; y;A)��(1 _ p)�n�k�1; (6.28)where, by 
onvention, we set ��1 = 1.Proof. By (3.29), �(N)n (v;A) = 
(N)n (v;A) � �(N)n (v;A). Sin
e these two terms have opposite sign,it suÆ
es to prove that 
(N)n (v;A) and �(N)n (v;A) are ea
h bounded above by the right-hand sideof (6.28).We start with �(N)n (v;A), whi
h is de�ned in (3.28). We write vN = (z; k + 1) and usePN+1(vN ! n in �n ~CN) � �n�k�1 (6.29)36



and I[fvN�1 ! ng \ fvN�1 62 ~CNg in ~CN ℄ � I[vN�1 ! n℄: (6.30)Performing the sum over vN in (3.28), we get (re
all also (3.16))�(N)n (v;A) �XuN M (N+1)v;uN ;A�I[vN�1 ! n℄�p�n�muN�1 : (6.31)One alternative in the upper bound then follows from (6.26). On the other hand, by (6.10),M (N+1)v;uN ;A�I[vN�1 ! n℄� �M (N+1)v;uN ;A(1) � P (N)(v;uN ;A); (6.32)whi
h gives the other alternative and 
ompletes the proof for �(N)n (v;A).We pro
eed with 
(N)n (v;A), whi
h is de�ned in (3.26). Sin
e[y2�E 0(v;y;A) \ �(v ! n) Æ (y ! n)� = [y2� �E 0(v;y;A) \ (v ! n)� Æ (y ! n); (6.33)it follows from Lemma 6.4 and the BKR inequality thatP(F 0n(v;A)) � Xy2�P�E 0(v;y;A) \ (v ! n)��n(y): (6.34)Substitution of the above bound into (3.26) yields (re
all also (3.20) and (6.15))
(N)n (v;A) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�PN (F 0n(vN�1; ~CN�1)�� Xy2� X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�PN�E 0(vN�1;y; ~CN�1) \ (vN�1 ! n)���n(y)= Xy2�M (N+1)v;y;A�I[vN�1 ! n℄��n�my : (6.35)The right-hand side of (6.35) is identi
al to the right-hand side of (6.31), apart from the fa
t that�n�my in (6.35) is repla
ed by p�n�my�1 in (6.31). Sin
e �n�my � �n�my�1 (using the 
onventionbelow (6.28) when my = n), the desired estimate for 
(N)n (v;A) follows. This 
ompletes theproof.7 Diagrammati
 estimates: Bounds for �In this se
tion, we prove the bound on �m1;m2 stated in (1.18). We have already proved thestatement above (1.18), that �1;1(p
) = 12p2
Px2ZdD(x)(1�D(x)), in Se
tion 5.2. Hen
eforth, wesimplify the notation by writing M (N)y (X) =M (N)0;y;f0g(X): (7.1)
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7.1 The main estimateThe following proposition gives the main estimate needed to prove (1.18). In its statement, we usethe notation bm1;m2 = I[m1 � m2℄(m1 + 1)�(d�2)=2(m2 �m1 + 1)�(d�2)=2: (7.2)Re
all from (5.17) that �(N)m1;m2 = �(N)m1;m2(fvN�1g)� 12�(N)m1;m2( ~CN�1); (7.3)with �(N)m1;m2(A) given by (5.13). Also, a

ording to (4.3),�m1;m2 = 1XN=0(�1)N�(N)m1;m2: (7.4)Proposition 7.1 (The bounds on �(N)). Let p = p
, d > 4, for the spread-out model with �suÆ
iently small. For m2 � m1 � 1 and N � 1,j�(N)m1;m2(fvN�1g)j � (C�)Nbm1;m2 ; (7.5)j�(N)m1;m2( ~CN�1)j � (C�)Nbm1;m2 : (7.6)Also, �(N)1;1 (fvN�1g) = �(N)1;1 ( ~CN�1) = 0 for N � 1, and�(0)m1;m2(fv�1g) = �(0)m1;m2( ~C�1) = �(0)m1;m2(f0g) = 8<:p2
Px2ZdD(x)(1�D(x)) if (m1; m2) = (1; 1)O(�bm1;m2) if (m1; m2) 6= (1; 1):(7.7)The 
ase (m1; m2) = (1; 1) in (7.7) has been proved already in Se
tion 5.2. The remainder ofSe
tion 7 is devoted to the proof of Proposition 7.1. Before pro
eeding with the proof, we notethat it implies (1.18).Proof of (1.18). By (7.5){(7.7), the 
ontributions when (m1; m2) 6= (1; 1) sum up to O(�bm1;m2).This is pre
isely the assertion of (1.18).The proof of Proposition 7.1 
onsists of two main steps: (i) bounds on �(N)m1;m2(A) by 
ertainFeynman diagrams, and (ii) bounds on the Feynman diagrams. We des
ribe these two steps in thenext se
tion, and show that they are suÆ
ient to prove Proposition 7.1.7.2 Redu
tion of proof of the main estimateWe 
arry out step (i) (mentioned above) in Se
tion 7.2.1 and step (ii) in Se
tion 7.2.2. In Se
-tion 7.2.3, we show that these steps are suÆ
ient to prove Proposition 7.1 subje
t to Proposi-tions 7.6{7.7 below. The latter are proved in Se
tions 7.3{7.4.
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7.2.1 Diagrams for �(N)m1;m2The results of this se
tion apply for general p and d under the weak assumption on D.We will use several 
onstru
tions to de�ne the diagrams needed to bound �(N)m1;m2 .De�nition 7.2. (i) Given a diagram and any line � of the diagram, Constru
tion `�(y) is theoperation in whi
h a line to y is inserted into line �. Expli
itly, this means that the two-pointfun
tion �(v � u) 
orresponding to line � is repla
ed by Pz �(v � z)�(z � u)�(y � z). We omitthe supers
ript �, and write Constru
tion `(y), when we perform Constru
tion `�(y) followed bya sum over all possible lines �. We write F (v;y; `(x)) for the diagram where Constru
tion `(x) isperformed on the diagram F (v;y).(ii) Similarly, for ~y = (y1; : : : ;yi), Constru
tion `(~y) is the repeated appli
ation of Constru
tions`(y1); : : : ; `(yi). Note that the order of appli
ation of the di�erent Constru
tions `(yj) is irrelevant.For example, it follows dire
tly from (6.11) thatM (N+1)y (I[a 2 ~CN ℄) �X� P (N)(y; `�(a)); (7.8)where the sum over � runs over the N -admissible lines for P (N)(y) (re
all Remark 6.2).De�nition 7.3. (i) Given a diagram F (u) with two verti
es 
arrying labels 0 and u and with a
ertain set of admissible lines indexed by �, Constru
tion 2(0)u (w) and 2(1)u (w), applied to F (u),respe
tively produ
e the diagrams~F (0)(w) =X� Xu;z F (u; 1�(z))�(w � u)�(w � z); (7.9)~F (1)(w) =X� X(u;v);z Ju;vF (u; 1�(z))�(w � z)�(w � v); (7.10)where the sum over � runs over the admissible lines.(ii) Given a diagram F (v;y) with two verti
es 
arrying labels v and y and with a 
ertain set ofadmissible lines indexed by �, Constru
tion Ey(w) produ
es the diagram~F (v;w) =X� Xy;z F (v;y; 1�(z))P (u; z;w)=X� Xa X(u0;v0) Ju0;v0F (v;u0; `�(a))P (0)(v0;w;a); (7.11)where the sum over � runs over the admissible lines, and we re
all (6.5).Constru
tion Ey(w) is the same as Constru
tion 2(1)y (w) followed by Constru
tion 2(0)w (y), wherethe unique admissible line prior to the appli
ation of Constru
tion 2(0)w (y) is the line from v to wadded to the diagram in the appli
ation of Constru
tion 2(1)u (w) in (7.10).Remark 7.4. By (6.6), the diagram P (N)(v;y;A) is obtained by performing N Constru
tions Eto the diagram P (0)(v;y;A).
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y1y2

0

y1y2

0Figure 8: Examples of diagrams that 
ontribute to R(2)(y1;y2) and Q(2)(y1;y2).De�nition 7.5. Given a diagram F (y1) with two verti
es 
arrying labels 0 and y2, Constru
-tion Vm(y2) and Constru
tion Em(y2) produ
e the diagramsF (y1;Vm(y2)) = Xv:mv=mF (y1; `(v); 1(z))�(y2 � v)�(y2 � z); (7.12)F (y1; Em(y2)) =Xz Xa:ma�mF (y1; 1(z); `(a))P (0)(z;y2;a): (7.13)Let �(0)m (v;A) = Æm;mv ; �(M)m (v;A) = p Xy2Zd�(M�1)(v; (y;m� 1);A); (7.14)so that, by (4.7), �m(v;A) = 1XM=0(�1)M�(M)m (v;A): (7.15)Denote by �(N;M;K)m1;m2 (A) the 
ontribution to �(N)m1;m2(A) in (5.13) of �(M)m1 (vN ; ~CN) and �(K)m2 (b; ~CbN).Then j�(N)m1;m2(A)j � 1XM;K=0�(N;M;K)m1;m2 (A): (7.16)The lowest order 
ontributions to �(N)m1;m2 , namely, �(N;M;0)m1;m2 (fvN�1g) and �(N;M;0)m1;m2 ( ~CN�1), are treatedin the following proposition. For its statement, we de�neR(N)(y1;y2) = P (N)(y1;Vmy1 (y2)) =Xz Xv:mv=my1 P (N)(y1; `(v); 1(z))�(y2 � v)�(y2 � z); (7.17)Q(N)(y1;y2) = P (N)(y1; Emy1 (y2)) =Xz Xa:ma>my1P (N)(y1; 1(z); `(a))P (0)(z;y2;a): (7.18)See Figure 8.We denote by R(N;M;K)m1;m2 (y1; y2) the result of K appli
ations of Constru
tion E to the se
ondargument of R(N+M)m1;l (y1; v) (thus, R(N;M;K) a
tually depends on N + M and K). Similarly, we40



denote by Q(N;M;K)m1;m2 (y1; y2) the result of K appli
ations of Constru
tion E to the se
ond argumentof Q(N+M)m1;l (y1; v). The diagrammati
 bounds for �(N) are given in the following proposition, whoseproof is deferred to Se
tion 7.4.Proposition 7.6 (Diagrammati
 bounds for �(N)). Let p and d be arbitrary and assume theweak assumption on D. For m2 � m1 � 1 and N;M;K � 0,�(N;M;K)m1;m2 (fvN�1g) � p2 Xy1;y2R(N;M;K)m1�1;m2�1(y1; y2): (7.19)For m2 � m1 � 1 and N � 1, M;K � 0,�(N;M;K)m1;m2 ( ~CN�1) � p2 Xy1;y2R(N;M;K)m1�1;m2�1(y1; y2) + p2 Xy1;y2Q(N;M;K)m1�1;m2�1(y1; y2): (7.20)Also, for p = p
 and d > 4, for the spread-out model with � suÆ
iently small, if (m1; m2) 6= (1; 1),then �(0;0;0)m1;m2(f0g) = O(�bm1;m2).7.2.2 Bounds on diagrams for �(N)m1;m2The following proposition gives bounds on the Feynman diagrams that were used above to estimate�m1;m2 . Its proof is deferred to Se
tion 7.3.Proposition 7.7 (Bounds on R(N;M;K) and Q(N;M;K)). Let p = p
 and d > 4, for the spread-outmodel with � suÆ
iently small. For m2 � m1 � 0 and N;M;K � 0,Xy1;y2R(N;M;K)m1;m2 (y1; y2) � C(C�)N+M+Kbm1 ;m2 : (7.21)For m2 � m1 � 0 and N � 1, M;K � 0,Xy1;y2Q(N;M;K)m1;m2 (y1; y2) � (C�)N+M+Kbm1;m2 : (7.22)7.2.3 Proof of Proposition 7.1We now prove Proposition 7.1, subje
t to Propositions 7.6{7.7. Let p = p
, d > 4, for thespread-out model with � suÆ
iently small. Let A denote either fvN�1g or ~CN�1. By (7.16) andProposition 7.6,j�(N)m1;m2(A)j � p2
 1XM;K=0 Xy1;y2R(N;M;K)m1�1;m2�1(y1; y2) + p2
 1XM;K=0 Xy1;y2Q(N;M;K)m1�1;m2�1(y1; y2): (7.23)By Proposition 7.7, ea
h of the sums on the right-hand side of (7.23) is at most C(C�)Nbm1�1;m2�1.Sin
e bm1�1;m2�1 � Cbm1;m2, this proves (7.5){(7.6).The �rst two equalities in (7.7) follow from the 
onvention (4.15). We have already notedin Se
tion 5.2 that �(0)1;1(f0g) = p2
, and that �(N)1;1 (A) = 0 if N � 1, so it remains only to prove(7.7) when (m1; m2) 6= (1; 1). For the remainder of the proof we assume that (m1; m2) 6= (1; 1).By (7.21){(7.22), the 
ontributions to �(0;M;K)m1;m2 (f0g) with M + K � 1 
ontain at least one fa
tor�, so it suÆ
es to prove that �(0;0;0)m1;m2(f0g) = O(�bm1;m2). But this is the �nal statement ofProposition 7.6. 41



7.3 Proof of Proposition 7.7In this se
tion, we prove Proposition 7.7. We begin in Se
tion 7.3.1 with some general te
hniquesfor extending bounds on simple diagrams to bounds on more 
ompli
ated ones, and we use thesete
hniques in Se
tion 7.3.2 to prove the proposition.7.3.1 Convolution boundsIn this se
tion, we prove three lemmas whi
h provide bounds on a diagram after a Constru
tionhas been performed on it, given a bound on the original diagram. In the proofs of the lemmas, wewill use the following bounds on the two-point fun
tion, whi
h follow from [13, Theorem 1.1℄:Xx �m(x) � K; k�mk1 � 8<:K�(m + 1)�d=2 (m � 1);K(m + 1)�d=2 (m � 0): (7.24)We use the �rst bound on k�mk1 when a line is guaranteed to have length m � 1, and use these
ond bound on k�mk1 otherwise.We say that a diagram has at most L lines at any �xed time when, for every m, the number offa
tors �(v�u) with mu � m and mv � m is at most L. For example, it is a simple 
onsequen
eof the 
onstru
tion of P (N)(y) that it has at most 4 lines at any �xed time.Lemma 7.8. Let 0 � l � k with k � 1, and assume (7.24). Let G and Fk(x) be diagramssu
h that G and Px Fk(x) 
an be bounded by B and B(k + 1)�d=2, respe
tively, by asso
iating l1-and l1-norms to diagram lines and by using (7.24) to estimate these norms. Then the followingstatements hold.(a) Appli
ation of Constru
tion 1�(l) to G produ
es a diagram that is bounded by 2(d+2)=2KB,where K is the 
onstant of (7.24).(b) Suppose that the diagram Fk(u) has at most L lines at any �xed time, and that all diagramlines have time variables at most k. If Pu Fk(u) � B�(k + 1)�d=2, thenXx;u Fk(u; `(x;m)) � CLB(k + 1)�(d�2)=2; (7.25)with C independent of F , B, k, m and L.In ea
h of (a){(b), the bound on the new diagram is obtained by asso
iating l1- and l1-norms todiagram lines and by using (7.24) to estimate these norms.Proof. (a) This is [13, Lemma 4.6(a)℄.(b) By de�nition, Fk(u; `(x;m)) = X(z;l)Fk(u; 1(z;l))�m�l(x� z); (7.26)and hen
e Xx;u Fk(u; `(x;m)) = kXl=0 �Xz;u Fk(u; 1(z;l))��Xx �m�l(x� z)�: (7.27)The se
ond fa
tor is at most K, by (7.24). The �rst fa
tor is bounded uniformly in 0 � l � k byCLB(k + 1)�d=2, by part (a). Finally, the sum over l gives rise to a fa
tor k + 1.42



Lemma 7.9. Let d > 4 and p � C. Suppose that a diagram Fm1;m2(y1; y2) satis�es the inequal-ity Py1;y2 Fm1;m2(y1; y2) � CFbm1;m2, with this bound obtained by asso
iating l1- and l1-normsto diagram lines and by using (7.24) to estimate these norms. Then appli
ation of Constru
-tion 2(i)(v;k)(y2; m2) to Fm1;k(y1; v), followed by summation over y1 and y2, produ
es a diagramthat is bounded by C�iCFbm1;m2 , with C independent of F and CF . The bound on the new di-agram is obtained by asso
iating l1- and l1-norms to diagram lines and by using (7.24) to esti-mate these norms. As a 
onsequen
e, appli
ation of Constru
tion E to a diagram whi
h obeysPy1;y2 Fm1;m2(y1; y2) � CFbm1;m2 produ
es a new diagram that is bounded by C�CFbm1;m2 , with Cindependent of F and CF .Proof. For m � 0, let� (0)m (x) = �m(x); � (1)m (x) =Xu p
D(u)�m�1(x� u)I[m � 1℄: (7.28)Let F (i)m1;m2(y1; y2) be the diagram obtained by appli
ation of Constru
tion 2(i)(v;k)(y2; m2) to thediagram Fm1 ;k(y1; v). By de�nition,Xy1;y2 F (i)m1;m2(y1; y2) � Xy1;y2;v;z m2Xk=m1 kXj=0Fm1;k(y1; v; 1(z;j))�m2�j(y2 � z)� (i)m2�k(y2 � v): (7.29)It follows from (7.24) that Px � (i)m (x) � pK � CK, and thatXy2 �m2�j(y2 � z)� (i)m2�k(y2 � v) � C�i(m2 � j + 1)�d=2; (7.30)sin
e j < m2 for i = 1. This leads toXy1;y2 F (i)m1;m2(u; x) � Xy1;v;z m2Xk=m1 kXj=0Fm1;k(y1; v; 1(z;j))C�i(m2 � j + 1)�d=2: (7.31)By Lemma 7.8(a), Xy1;v;z Fm1 ;k(y1; v; 1(z;j)) � CCFbm1;k (7.32)holds uniformly in 0 � j � k. Therefore,Xy1;y2 F (i)m1;m2(y1; y2) � CCF�i m2Xk=m1 bm1;k kXj=0(m2 � j + 1)�d=2� CCF�i m2Xk=m1 bm1;k(m2 � k + 1)�(d�2)=2:= CCF�i(m1 + 1)�(d�2)=2 m2Xk=m1(k �m1 + 1)�(d�2)=2(m2 � k + 1)�(d�2)=2� CCF�ibm1;m2 ; (7.33)where we used [7, Lemma 2.6(i)℄ and d > 4 in the last step.The statement 
on
erning Constru
tion E then follows from the 
omment under De�nition 7.3.43



Lemma 7.10. Let d > 2 and assume that m2 > m1. Suppose that the diagram Fm(y) satis�esPy Fm(y) � CF (m + 1)�d=2, with this bound obtained by asso
iating l1- and l1-norms to diagramlines and by using (7.24) to estimate these norms. LeteFm1;m2(y1; y2) = m1Xk;j=0Xz;w Fm1(y1; 1(z; j); 1(w; k))�m2�k(y2 � w)�m2�j(y2 � z): (7.34)Then Xy1;y2 eFm1;m2(y1; y2) � CCF�bm1;m2 ; (7.35)with C independent of F and CF , and with the bound obtained by asso
iating l1- and l1-norms todiagram lines and by using (7.24) to estimate these norms.Proof. By the symmetry between k and j,eFm1;m2(y1; y2) � 2Xz;w m1Xk=0 m1Xj=k �m2�k(y2 � z)�m2�j(y2 � w)Fm1(y1; 1(z; j); 1(w; k)): (7.36)Therefore, by (7.24) and the fa
t that m2 > m1 � j,Xy1;y2 eFm1;m2(y1; y2) � 2 m1Xk=0 m1Xj=kK2�(m2 � k + 1)�d=2Xy1 Fm1(y1; 1(k); 1(j)): (7.37)It follows from Lemma 7.8(a) thatXy1 Fm1(y1; 1(k); 1(j)) � CCF (m1 + 1)�d=2; (7.38)uniformly in k; j. Sin
e m2 > m1, we 
on
lude thatXy1;y2 eFm1;m2(y1; y2) � CCF�(m1 + 1)�d=2 m1Xk=0 m1Xj=k(m2 � k + 1)�d=2 (7.39)� CCF�(m1 + 1)�(d�2)=2 m1Xk=0(m2 � k + 1)�d=2� CCF�bm1;m2 :7.3.2 Proof of Proposition 7.7Now we prove Proposition 7.7. A

ording to the de�nitions below (7.18), it suÆ
es to prove that,for N � 0, Xy1;y2R(N)m1;m2(y1; y2) � C(C�)Nbm1;m2 ; (7.40)and that for N � 1, Xy1;y2Q(N)m1;m2(y1; y2) � (C�)N+1bm1 ;m2; (7.41)44



sin
e (7.21){(7.22) then follow from Lemma 7.9.We start with the proof of (7.40). LetS(N)m1;m2(y1; y2) = P (N)m1 (y1; `(y2; m1))Æm1;m2: (7.42)By (7.17), R(N)m1;m2(y1; y2) is obtained from S(N)m1;k(y1; v) by applying Constru
tion 2(0)(v;k)(y2; m2).Therefore, by Lemma 7.9, to prove (7.40) it suÆ
es to show thatXy1;y2 S(N)m1;m2(y1; y2) � C(C�)Nbm1;m2 : (7.43)Lemma 7.8(b), together with (6.2) and the fa
t that P (N)(y) has L � 4 (as noted above Lemma 7.8),gives the desired result thatXy1;y2 S(N)m1;m2(y1; y2) = Xy1;y2 P (N)m1 (y1; `(y2; m1))Æm1;m2 (7.44)� C(C�)N(m1 + 1)�(d�2)=2Æm1;m2 = C(C�)Nbm1;m2Æm1;m2 :Next, we prove (7.41). In (7.18), a fa
tor �(a�w)P (0)(z;y2;a) arises, where w is the lo
ationwhere Constru
tion `(a) is applied. We write a = (a;m) and y1 = (y1; m1), and note that (7.18)requires that m > m1. We regard �(a � w)P (0)(z;y2;a) as the result of Constru
tion 2(0)a (y2)applied to �(a�w)�(a� z), where the unique admissible line is �(a� z). LeteS(N)m1;m(y1; a) = m1Xk;j=0P (N)m1 (y1; 1(z; j); 1(w; k))�m�k(a� w)�m�j(a� z): (7.45)Then Q(N)m1;m2(y1; y2) arises from an appli
ation of Constru
tion 2(0)a (y2) to the se
ond argument ofeS(N)m1;m(y1; a). By Lemma 7.9, it suÆ
es to prove that if m > m1, thenXy1;a eS(N)m1;m(y1; a) � (C�)N+1bm1;m: (7.46)The bound (7.46) follows from Lemma 7.10 and (6.2), and this 
ompletes the proof of (7.41).7.4 Proof of Proposition 7.6In this se
tion, we prove Proposition 7.6. We begin in Se
tion 7.4.1 with some key estimates for theproof. In Se
tion 7.4.2, we prove (7.19){(7.20) for the 
ase K = 0, and we extend these inequalitiesto K � 1 in Se
tion 7.4.3. In Se
tion 7.4.4, we prove the �nal statement of Proposition 7.6.7.4.1 Key estimates for proof of Proposition 7.6For v, x and m � 0 su
h that mv � m � mx, letVm(v;x) = [z:mz�mfv ! z =) xg; (7.47)Em(v;x;A) = [a2A [z:mz�m(v ! z) Æ (z ! x) Æ (z ! a) Æ (a! x): (7.48)45



mx
v

m
v
� a2Ax

Figure 9: S
hemati
 representations of the events (a) Vm(v;x) and (b) Em(v;x;A).The events Vm(v;x) and Em(v;x;A) are depi
ted in Figure 9. By (6.12),E(v;x;A) = Emv(v;x;A): (7.49)Also, for later use, we note thatVm(v;x) � [z:mz�m [t:mt=m(v ! z) \ �(v ! t) Æ (t! x) Æ (z ! x)�: (7.50)To prove (7.50), we observe that if mz � m � mx, then(z =) x) = [t:mt=m(z ! t) Æ (t! x) Æ (z ! x); (7.51)and hen
e, by (7.47),Vm(v;x) = [z:mz�m [t:mt=m(v ! z) \ �(z ! t) Æ (t! x) Æ (z ! x)�� [z:mz�m [t:mt=m(v ! z) \ �(v ! t) Æ (t! x) Æ (z ! x)�: (7.52)The following proposition provides the key estimates for the proof of Proposition 7.6.Proposition 7.11. Let p and d be arbitrary and assume the weak assumption on D. For N;M � 0,m1 � 1, and a;y2 2 �,X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1;y2)℄�(M)m1 (vN ; ~CN)� � pXy1 R(N+M)((y1; m1 � 1);y2); (7.53)X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1;y2)℄I[a 2 ~CN ℄�(M)m1 (vN ; ~CN)�� pXy1 R(N+M)((y1; m1 � 1);y2; `(a)); (7.54)X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄�(M)m1 (vN ; ~CN)� � pXy1 Q(N+M)((y1; m1 � 1);y2); (7.55)46



X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[a 2 ~CN ℄�(M)m1 (vN ; ~CN)�� pXy1 Q(N+M)((y1; m1 � 1);y2; `(a)): (7.56)The proof of Proposition 7.11 relies on three lemmas whi
h we state and prove before provingthe proposition. Lemmas 7.12{7.13 are used to prove (7.53){(7.54), and Lemma 7.14 is used toprove (7.55){(7.56).Lemma 7.12. Let p and d be arbitrary and assume the weak assumption on D. For N � 0,m1 � 1, vN�1;uN ;y2 2 �, and ~x with 0, 1 or 2 
omponents in �,PN�E 0(vN�1;uN ; ~CN�1) \ Vm1�1(vN�1;y2) \ f~x 2 ~CNg� (7.57)�X� P (0)�vN�1;uN ; ~CN�1; `�(~x); Vm1�1(y2)�;where Constru
tion `�(~x) is obtained by performing Constru
tion `�(x1) followed by Constru
-tions `(xi) for all other 
omponents xi with i > 1, and the sum over � follows the 
onvention ofRemark 6.2.Proof. By (6.12) and (6.3){(6.4), the event E 0(vN�1;uN ; ~CN�1) implies that the disjoint 
onne
tionsne
essary to obtain an upper bound P (0)(vN�1;uN ; ~CN�1) are present. The additional 
onne
tionsimplied by f~x 2 ~CNg 
an be a

ounted for in an upper bound by an appli
ation of Constru
-tion `�(~x) to P (0)(vN�1;uN ; ~CN�1). To understand the e�e
t of the event Vm1�1(vN�1;y2), we use(7.50). The 
onne
tion vN�1 ! t = (t;m1� 1) in (7.50) 
an be a

ounted for by an appli
ation ofConstru
tion `(t), and the remaining 
onne
tions in (7.50) 
an then be a

ounted for by an appli-
ation of Constru
tion 2(0)t (y2). By the equivalent de�nition of Constru
tion Vm1�1(y2) formulatedbelow De�nition 7.5, this 
ompletes the proof.Lemma 7.13. Under the same 
onditions as in Lemma 7.12,M (N+1)uN �I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� �X� P (N)(uN ; `�(~x); Vm1�1(y2)): (7.58)Proof. For N = 0, we must bound M (1)u0�I[Vm1�1(0;y2)℄I[~x 2 ~C0℄�. For N � 1, (3.35) givesM (N+1)uN �I[Vm1�1(vN�1;y2)I[~x 2 ~CN ℄� (7.59)= X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�M (1)vN�1;uN ; ~CN�1�I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄��:The statement of Lemma 7.12 
an be rewritten asM (1)vN�1;uN ; ~CN�1�I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� �X� P (0)�vN�1;uN ; ~CN�1; `�(~x); Vm1�1(y2)�: (7.60)With (4.15) and (6.4), this proves (7.58) for N = 0. For N � 1, we substitute (7.60) into (7.59)to obtainM (N+1)uN �I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� (7.61)�X� Xw0 X(uN�1;vN�1) JuN�1;vN�1M (N)uN�1�I[w0 2 ~CN�1℄�P (0)�vN�1;uN ;w0; `�(~x); Vm1�1(y2)�:47



Appli
ation of (6.11) then givesM (N+1)uN �I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� (7.62)�X�;�0Xw0 X(uN�1;vN�1) JuN�1 ;vN�1P (N�1)(uN�1; `�0(w0))P (0)�vN�1;uN ;w0; `�(~x); Vm1�1(y2)��X� P (N)�uN ; `�(~x); Vm1�1(y2)�;where we used a slight extension of (6.21) in the last inequality. This proves (7.58).Lemma 7.14. Under the same 
onditions as in Lemma 7.12, and with the additional assumptionthat mx1 ; muN � m1M (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄� �X� P (N)(uN ; `�(x1); Em1(y2); `(x2)): (7.63)Proof. For N = 0 and m1 � 1, the event Em1(vN�1;y2; ~CN�1) = Em1(0;y2; f0g) is empty, so wemay assume that N � 1. For N = 1, we must bound M (2)u1�I[Em1(v1;y2; ~C0)℄I[~x 2 ~C1℄�. ForN � 2, it follows from (3.38) thatM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄� (7.64)= X(uN�2;vN�2)JuN�2;vN�2M (N�1)uN�2�M (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄��:We will show below that if mx1 ; muN � m1, thenM (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄��X� P (1)�vN�2;uN ; ~CN�2; `�(x1); Em1(y2); `(x2)�: (7.65)Then (7.63) follows from (7.65), as in (7.61){(7.62).It remains to prove (7.65). For simpli
ity, we 
onsider in detail the 
ase ~x = x1. By (3.35),M (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[x1 2 ~CN ℄� (7.66)= X(uN�1;vN�1)JuN�1;vN�1M (1)vN�2;uN�1 ; ~CN�2�PN�E 0(vN�1;uN ; ~CN�1)\ Em1(vN�1;y2; ~CN�1) \ fx1 2 ~CNg��:By (7.48),PN�E 0(vN�1;uN ; ~CN�1) \ Em1(vN�1;y2; ~CN�1) \ fx1 2 ~CNg� (7.67)� Xz:mz�m1 Xw2 ~CN�1 PN�E 0(vN�1;uN ; ~CN�1) \ fz;x1 2 ~CNg \ f(z ! w) Æ (z ! y2) Æ (w ! y2)g�:48



Using (6.14), the Markov property, the fa
t that mx1 ; muN � mz, and the BK inequality, weobtain PN�E 0(vN�1;uN ; ~CN�1) \ fz;x1 2 ~CNg \ f(z ! w) Æ (z ! y2) Æ (w! y2)g� (7.68)= PN�E 0(vN�1;uN ; ~CN�1) \ fz;x1 2 ~CNg�PN�(z ! w) Æ (z ! y2) Æ (w! y2)��X� P (0)�vN�1;uN ; ~CN�1; `�(x1); `(z)��(w � z)�(y2 � z)�(y2 �w):Also, it is a straightforward extension of (6.14) thatM (1)v;y;A�I[v ! w; v ! w0℄� �X�0 P (0)(v;y;A; `�0(w); `(w0)): (7.69)We substitute (7.68) into (7.67) and substitute the result into (7.66). This givesM (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[x1 2 ~CN ℄� (7.70)� X(uN�1;vN�1)JuN�1 ;vN�1 Xw;w0;z:mz�m1M (1)vN�2;uN�1; ~CN�2�I[w;w0 2 ~CN�1℄��X� P (0)�vN�1;uN ;w0; `�(x1); `(z)��(w � z)�(y2 � z)�(y2 �w)�X�;�0 X(uN�1;vN�1)JuN�1;vN�1 Xw;w0;z:mz�m1 P (0)�vN�2;uN�1; ~CN�2; `�0(w0); `(w)�� P (0)�vN�1;uN ;w0; `�(x1); `(z)��(w � z)�(y2 � z)�(y2 �w);where we used (7.69) in the se
ond inequality. It 
an then be 
on
luded from (7.13), (6.21) and(6.3), by drawing the pi
ture, thatM (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[x1 2 ~CN ℄� �X� P (1)�vN�2;uN ; ~CN�2; `�(x1); Em1(y2)�:(7.71)Finally, if ~x has an additional element x2, then this 
an be a

ounted for in an upper bound by a�nal appli
ation of Constru
tion `(x2), leading to (7.65).Proof of Proposition 7.11. We �rst prove (7.53). For M = 0, the left-hand side of (7.53) is equalto X(uN ;vN )JuN ;vNM (N+1)uN (I[Vm1�1(vN�1;y2)℄) Æm1;mvN � pXy1 P (N)((y1; m1 � 1);Vm1�1(y2))= pXy1 R(N)((y1; m1 � 1);y2); (7.72)with R(N) de�ned in (7.17). For M � 1, we use (4.7) and (6.9) to obtain�(M)m1 (vN ; ~CN) �Xw I[w 2 ~CN ℄pXy1 P (M�1)(vN ; (y1; m1 � 1);w): (7.73)49



By (7.58), the left-hand side of (7.53) is at mostpX� Xw X(uN ;vN )JuN ;vNP (N)(uN ; `�(w); Vm1�1(y2))Xy1 P (M�1)(vN ; (y1; m1 � 1);w) (7.74)� pXy1 P (N+M)((y1; m1 � 1);Vm1�1(y2)) = pXy1 R(N+M)((y1; m1 � 1);y2);where the inequality has used (6.21) together with the observation that in the appli
ation ofConstru
tion Vm1�1(y2) to P (N+M)(y1; m1 � 1) there are more available lines than if Constru
-tion Vm1�1(y2) is applied only to P (N)(y1; m1 � 1). This proves (7.53).The proof for (7.54) is the same as the proof of (7.53), with the observation that in (7.57) theorder of appli
ation of the 
onstru
tions 
an be inter
hanged on the right-hand side.For (7.55), 
onsider �rst the 
ase M = 0. In this 
ase, the left-hand side of (7.55) is equal toX(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄� Æm1;mvN � pXy1 Q(N)((y1; m1 � 1);y2); (7.75)by (7.63) (note that muN = m1�1 � m1 as required), and with R(N) de�ned in (7.18). ForM � 1,by (7.73) the left-hand side of (7.55) is at mostpXw X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[w 2 ~CN ℄�Xy1 P (M�1)(vN ; (y1; m1 � 1);w):(7.76)The fa
tor P (M�1)(vN ; (y1; m1� 1);w) guarantees that m1� 1 � mw; muN , and (7.63) 
an now beapplied to 
omplete the proof of (7.55) as in the proof of (7.53). The proof of (7.56) is similar.7.4.2 Proof of (7.19){(7.20) for K = 0We begin with the following lemma. Re
all the de�nitions of the events Hm and Vm in (5.5) and(7.47).Lemma 7.15. For v;y 2 � with mv < m � my,Hm(v;y; fvg) � Vm�1(v;y): (7.77)Proof. Let b denote the last pivotal bond for v ! y, if it exists. The 
ontribution where su
ha pivotal bond does not exist is equal to fv =) yg � Vm�1(v;y); sin
e mv � m � 1. Thus, itsuÆ
es to show that Hm(v;y; fvg) \ fb last o

. and piv. bond for v ! yg (7.78)is a subset of Vm�1(v;y) for every b. When Hm(v;y; fvg) o

urs, b 
annot be an m-
utting bondfor v ! y. Therefore, mb � m � 1. Sin
e b =) y, this proves that Vm�1(v;y) o

urs with z in(7.47) given by z = b.Re
all that ePN is the 
onditional law given that (uN ; vN) is va
ant. We also use the followinglemma. 50



Lemma 7.16. Let F be an in
reasing event, and let X be a non-negative random variable whi
his independent of the o

upation status of the bond (uN ; vN). TheneEN (XI[F ℄) � EN (XI[F ℄): (7.79)Proof. We 
ondition on (uN ; vN) to see thatEN (XI[F ℄) = JvN ;uNEN (XI[F ℄j(uN ; vN) o

upied) + (1� JvN ;uN )EN (XI[F ℄j(uN ; vN) va
ant):(7.80)By assumption, EN (XI[F ℄j(uN ; vN) o

upied) � EN (XI[F ℄j(uN ; vN) va
ant); (7.81)and the 
laim follows.Proof of (7.19) for K = 0. To estimate �(N;M;0)m1;m2 (fvN�1g), we �rst note that by de�nition (re
all(5.13) and (7.14){(7.15)),�(N;M;0)m1;m2 (A) = X(uN ;vN )JuN ;vN Xb6=(uN ;vN )Jb;bfM (N+1)(uN;vN )�I[Hm1(vN�1; b;A)℄�(M)m1 (vN ; ~CN)�Æm2;mb: (7.82)We are 
on
erned here with A = fvN�1g. By Lemma 7.15,Hm1(vN�1; b; fvN�1g) � Vm1�1(vN�1; b): (7.83)The event Vm1�1(vN�1; b) is in
reasing, and the event E 0N = E 0(vN�1;uN ; ~CN�1) does not depend onthe o

upation status of (uN ; vN). Also, the random variable �(M)m1 (vN ; ~CN) is independent of theo

upation status of (uN ; vN), sin
e ~CN = ~C(uN ;vN )N (vN�1) is. Therefore, by Lemma 7.16, the eENexpe
tation in fM (N+1)(uN;vN ) impli
it in (7.82) 
an be bounded above by the 
orresponding expe
tationwithout the tilde, i.e.,eEN �I[E 0N \ Vm1�1(vN�1; b)℄�(M)m1 (vN ; ~CN)� � EN �I[E 0N \ Vm1�1(vN�1; b)℄�(M)m1 (vN ; ~CN)�: (7.84)Omitting the restri
tion b 6= (uN ; vN), it follows that�(N;M;0)m1;m2 (fvN�1g) �Xb Jb;b X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1; b)℄�(M)m1 (vN ; ~CN)�Æm2;mb (7.85)= pXy2 X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1; (y2; m2 � 1))℄�(M)m1 (vN ; ~CN)�Æm2;mb ;where we have written b = (y2; m2 � 1) and have used Pb Jb;b = p. The bound (7.19) for K = 0now follows from (7.53).Next, we prepare for the proof of (7.20) for K = 0. Let N � 1. To partition the eventHm(vN�1; b; ~CN�1) o

urring in (7.82) (for A = ~CN�1), we de�neG(1)m (vN�1; b) = Hm(vN�1; b; ~CN�1) \ Vm�1(vN�1; b); (7.86)G(2)m (vN�1; b) = Hm(vN�1; b; ~CN�1) \ Vm�1(vN�1; b)
: (7.87)51



In terms of these events, Hm(vN�1; b; ~CN�1) is given by the disjoint unionHm(vN�1; b; ~CN�1) = G(1)m (vN�1; b) _[ G(2)m (vN�1; b): (7.88)Clearly, G(1)m (vN�1; b) � Vm�1(vN�1; b): (7.89)For G(2)m (vN�1; b), we will use the following lemma. Re
all that the event Em was de�ned in (7.48).Lemma 7.17. For vN�1;y2 2 � and m � 1 su
h that mvN�1 < m � my2,G(2)m (vN�1;y2) � Em(vN�1;y2; ~CN�1): (7.90)Proof. Suppose that G(2)m (vN�1;y2) o

urs. It 
annot be the 
ase that vN�1 =) y2, sin
e this
ontributes instead to G(1)m (vN�1;y2). Thus there is at least one o

upied pivotal bond for vN�1 !y2, and we denote the last su
h bond by b. Then fvN�1 ! b =) y2g. It must be the 
ase thatmb > m� 1, sin
e otherwise G(1)m (vN�1;y2) o

urs. By the de�nition of Hm(vN�1; b; ~CN�1) in (5.5),b 
annot be m-
utting for vN�1 ~CN�1���! y2, and hen
e fvN�1 ~CN�1���! bg
 o

urs. Sin
e vN�1 ~CN�1���! y2o

urs by (5.5), we 
on
lude that b ~CN�1���! y2. Therefore, Em(vN�1;y2; ~CN�1) o

urs, with z = b in(7.48).Proof of (7.20) for K = 0. Let N � 1. We estimate (7.82) for A = ~CN�1, using the partition(7.88) for the event Hm(vN�1; b; ~CN�1).Consider �rst the 
ontribution due to G(1)m1(vN�1; b). The in
lusion (7.89) plays a role identi
alto the in
lusion (7.83), and the analysis of (7.84){(7.85) then applies in an identi
al fashion togive the �rst term on the right-hand side of (7.20) as an upper bound for this 
ontribution.It remains to show that the 
ontribution to (7.82) due to G(2)m1(vN�1; b), namelyXb Jb;b X(uN ;vN )JuN ;vN fM (N+1)(uN;vN )�I[G(2)m1(vN�1; b)℄�(M)m1 (vN ; ~CN)�Æm2;mb; (7.91)is bounded by the se
ond term on the right-hand side of (7.20). By Lemma 7.17,I[G(2)m1(vN�1; b)℄ � I[Em1(vN�1; b; ~CN�1)℄: (7.92)Sin
e Em1(vN�1; b; ~CN�1) is in
reasing, we may apply Lemma 7.16 as before to 
on
lude that theeEN expe
tation in fM (N+1)(uN;vN ) impli
it in (7.91) obeyseEN �I[E 0N \G(2)m (vN�1; b)℄�(M)m1 (vN ; ~CN)� � EN �I[E 0N \ Em1(vN�1; b; ~CN�1)℄�(M)m1 (vN ; ~CN)�; (7.93)and hen
efM (N+1)(uN;vN )�I[G(2)m1(vN�1; b)℄�(M)m1 (vN ; ~CN)� �M (N+1)uN �I[Em1(vN�1; b; ~CN�1)℄�(M)m1 (vN ; ~CN)�: (7.94)It follows that the 
ontribution to (7.82) due to G(2) is bounded above byXb Jb;b X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1; b; ~CN�1)℄�(M)m1 (vN ; ~CN)�Æm2;mb (7.95)= pXy2 X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1; (y2; m2 � 1); ~CN�1)℄�(M)m1 (vN ; ~CN)�Æm2;mb ;where we have written b = (y2; m2 � 1) and used Pb Jb;b = p. The bound (7.20) now follows fromProposition 7.11. 52



7.4.3 Proof of (7.19){(7.20) for K � 1We �rst prove (7.19) for K = 1. For this, we note that�(N;M;1)m1;m2 (A) =Xb Jb;b X(uN ;vN )JuN ;vN fM (N+1)(uN;vN )�I[Hm1(vN�1; b;A)℄�(1)m2(b; ~CbN)�(M)m1 (vN ; ~CN)�: (7.96)By (6.9) and (7.14),�(1)m2(b; ~CbN) � pXy2 P (0)m2(b; (y2; m2 � 1); ~CbN) = pXa I[a 2 ~CbN ℄Xy2 P (0)(b; (y2; m2 � 1);a): (7.97)It then follows from (7.83), Lemma 7.16 and (7.54) that�(N;M;1)m1;m2 (fvN�1g) � p2 Xy1;y2Xa Xb Jb;bR(N+M)((y1; m1 � 1); b; `(a))P (0)(b; (y2; m2 � 1);a): (7.98)By (7.11), Constru
tion `(a) followed by multipli
ation by Jb;bP (0)(b; (y2; m2�1);a) and summationover a and b is equivalent to Constru
tion E. This shows that�(N;M;1)m1;m2 (fvN�1g) � p2 Xy1;y2R(N;M;1)m1�1;m2�1(y1; y2); (7.99)whi
h proves (7.19) for K = 1.To extend the proof of (7.19) to K � 1, we estimate �(K)m2 (b; ~CbN) using (6.9) and (7.14).A

ording to Remark 7.4, the resulting bound on �(K)m2 (b; ~CbN) is the same as K � 1 appli
ations ofConstru
tion E to pPx P (0)(b; (x;m2 � 1); ~CbN). Therefore, by de�nition of R(N;M;K)m1;m2 (y1; y2), (7.19)for K � 1 follows from (7.19) for K = 1.The proof of (7.20) pro
eeds similarly, with (7.56) used in pla
e of (7.54).7.4.4 Proof of �nal statement of Proposition 7.6Finally, we suppose that (m1; m2) 6= (1; 1), and show that in this 
ase �(0;0;0)m1;m2(f0g) � C�bm1;m2 .We have already seen in (7.19) and (7.21) that �(0;0;0)m1;m2(f0g) � Cbm1;m2 , and the only issue is toestablish that a fa
tor � 
an be inserted into this upper bound. A fa
tor � arises in diagrammati
estimates when the bound (7.24) is used to estimate k�mk1 with m � 1. A

ording to (7.17), thediagrammati
 upper bound p2
Py1;y2 R(0;0;0)m1�1;m2�1(y1; y2) on �(0;0;0)m1;m2(f0g) given by (7.19) is equal toXv Xz P (0)m1�1(y1; `(v;m1 � 1); 1(z))�m2�m1(y2 � v)�m2�1�mz(y2 � z): (7.100)When (m1; m2) 6= (1; 1), there is at least one line with length greater than zero, and a fa
tor �then results from standard estimates.8 Diagrammati
 estimates: Bounds for en+1In this se
tion, we prove the bound (1.19) on en+1(p
). We assume throughout that�m(p
) � C�(m + 1)�1 for all 0 � m � n; (8.1)53



whi
h is a hypothesis of Theorem 1.1(ii). Throughout this se
tion, we �x d > 4, p = p
, and
onsider the spread-out model with � suÆ
iently small, although some of our arguments applymore generally. Note that we 
an extend (8.1) to m = n + 1 by 
onditioning on a vertex at time1 and using the Markov property and (1.9) to obtain�n+1(p
) � Xv2Zd p
D(v)�n(p
) = p
�n(p
) � 2C�(n+ 1)�1 � 4C�(n+ 2)�1: (8.2)We absorb the 
onstant 4 into C� and regard (8.1) as applying also when m = n + 1 in whatfollows.In Se
tion 8.1, we redu
e (1.19) to bounds on e(N)n+1(1); : : : ; e(N)n+1(5). In Se
tion 8.2, we providesome preliminary 
onvolution bounds. Then we estimate the �ve error terms in order of in
reasingdiÆ
ulty, namely e(N)n+1(3), e(N)n+1(5), e(N)n+1(2), e(N)n+1(4), e(N)n+1(1), in Se
tions 8.3{8.7, respe
tively.8.1 Redu
tion of proof of (1.19)Let �0n = 8><>: (n + 1)(6�d)=2 (4 < d < 6);logn (d = 6);1 (d > 6): (8.3)The following proposition will be proved in Se
tions 8.3{8.7.Proposition 8.1 (Bounds on error terms). Let d > 4, p = p
, for the spread-out model with �suÆ
iently small. Let n � 1 and N � 0, and assume that �m(p
) � C�(m+1)�1 for all 0 � m � n.Then je(N)n+1(1)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.4)je(N)n+1(2)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.5)je(N)n+1(3)j � CC�(C�)N_1(n+ 1)�d=2 logn; (8.6)je(N)n+1(4)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.7)je(N)n+1(5)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i: (8.8)Proof of (1.19) subje
t to Proposition 8.1. It follows from (5.19) that jen+1j is bounded aboveby the sum of the right-hand sides of (8.4){(8.8). The elementary inequalities (n + 1)�3�0n+1 �(n+ 1)�2�n+1 and (n+ 1)�d=2 logn � (n + 1)�2�n+1 then yield (1.19) (re
all (1.16)).8.2 Convolution boundsThis se
tion 
ontains several 
onvolution bounds to be used in Se
tions 8.3{8.7.Lemma 8.2. Suppose that Fm obeys Fm � CF (m+ 1)�d=2. If (8.1) holds, thenn+1Xm=b(n+1)=2
+1 Fm�n+1�m � CC�CF (n+ 1)�d=2 logn; (8.9)where C is a 
onstant that only depends on d. 54



Proof. We use the two assumptions to obtain the upper boundn+1Xm=b(n+1)=2
+1CF (m+ 1)�d=2C�(n�m+ 2)�1 � CC�CF(n + 1)�d=2 n+1Xm=b(n+1)=2
+1(n�m+ 2)�1� CC�CF(n + 1)�d=2 logn: (8.10)Let Fm(�n+1; �n+1) denote the result of two appli
ations of Constru
tion �n+1 to Fm. (A

ordingto De�nition 6.5, ea
h of the two added 
onne
tions to n is added to lines originally in Fm, i.e.,the se
ond added 
onne
tion to n 
annot be atta
hed to the �rst added 
onne
tion to n.)Lemma 8.3. Suppose that Fm is a diagram su
h that Fm � CF (m + 1)�d=2. Suppose that Fm
ontains at most L lines at any �xed time, that the largest time 
oordinate of a vertex in Fm is m,and assume (8.1). Thenbn=2
Xm=0 Fm(�n+1; �n+1)�n�m � CC3�CFL2(n+ 1)�3�0n+1; (8.11)where C is a 
onstant that only depends on d.Proof. Ea
h fa
tor � appearing in Fm(�n+1; �n+1)�n�m has subs
ript at least n�bn=2
. Therefore,by (8.1), bn=2
Xm=0 Fm(�n+1; �n+1)�n�m � CC3� (n+ 1)�3 bn=2
Xm=0 mXl1;l2=0Fm(1(l1); 1(l2)): (8.12)By Lemma 7.8(a), for ea
h l1; l2, we haveFm(1(l1); 1(l2)) � CCFL2(m+ 1)�d=2: (8.13)Therefore, bn=2
Xm=0 Fm(�n+1; �n+1)�n�m � CC3�CFL2(n + 1)�3 bn=2
Xm=0 (m + 1)�(d�4)=2: (8.14)Performing the sum gives bn=2
Xm=0 (m + 1)�(d�4)=2 � C�0n+1; (8.15)and this 
ompletes the proof.Corollary 8.4. Suppose that Fm is a diagram su
h that Fm � CF(m + 1)�d=2. Suppose that Fm
ontains at most L lines at any �xed time, that the largest time 
oordinate of a vertex in Fm is m,and assume (8.1). ThennXm=0[Fm(�n+1; �n+1) ^ Fm℄�n�m � CC3�CF hL2(n + 1)�3�0n+1 + (n + 1)�d=2 logni; (8.16)where C is a 
onstant that only depends on d. 55



Proof. For m � bn2 
 we use Lemma 8.3, and for m � bn2 
+ 1 we use Lemma 8.2. Adding the two
ontributions proves the 
laim (we assume that C� � 1).Let Fm(�n+1) denote the result of an appli
ation of Constru
tion �n+1 to Fm.Lemma 8.5. Suppose that Fm is a diagram su
h that Fm � CF (m + 1)�d=2. Suppose that Fm
ontains at most L lines at any �xed time, that the largest time 
oordinate of a vertex in Fm is m,and assume (8.1). Then bn=2
Xm=0 Fm(�n+1)�2n�m � CC3�CFL(n+ 1)�3; (8.17)where C is a 
onstant that only depends on d.Proof. The proof is a straightforward adaptation of the proof of Lemma 8.3. Ea
h fa
tor � ap-pearing in Fm(�n+1)�2n�m has subs
ript at least n� bn=2
. Therefore, by (8.1),bn=2
Xm=0 Fm(�n+1)�2n�m � CC3� (n+ 1)�3 bn=2
Xm=0 mXl1=0Fm(1(l1)): (8.18)By Lemma 7.8(a), mXl1=0Fm(1(l1)) � CCFL(m+ 1)�(d�2)=2; (8.19)and the 
laim follows from (8.15).Lemma 8.6. Suppose that Fm1;m2 is a diagram su
h that Fm1;m2 � CFbm1;m2 . Suppose that Fm1;m2
ontains at most L lines at any �xed time, that the largest time 
oordinate of a vertex in Fm1;m2is m1 _m2, and assume (8.1). Thenb(n+1)=2
Xm1=0 n+1Xm2=m1 hFm1;m2 ^ Fm1;m2(�n+1)i�n+1�m1�n+1�m2� CC3�CFLh(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.20)where C is a 
onstant that only depends on d.Proof. Sin
e m1 � b(n + 1)=2
, (8.1) implies that �n+1�m1 � CC�(n + 1)�1. We divide the sumover m2 a

ording to whether b3n=4
+ 1 � m2 � n+ 1 or m1 � m2 � b3n=4
.Suppose �rst that b3n=4
 + 1 � m2 � n+ 1. In this 
ase,bm1;m2 � C(m1 + 1)�(d�2)=2(n+ 1)�(d�2)=2: (8.21)We bound the minimum in (8.20) by Fm1;m2 to see that this 
ase 
ontributes at mostCC2�CF(n + 1)�d=2 b(n+1)=2
Xm1=0 (m1 + 1)�(d�2)=2 n+1Xm2=b3n=4
+1(n+ 2�m2)�1� CC2�CF (n+ 1)�d=2 logn (8.22)56



to the left-hand side of (8.20).In the remaining 
ase, we have m1 � m2 � b3n=4
, and hen
e �n+1�m2 � CC�(n + 1)�1: Webound the minimum in (8.20) by Fm1;m2(�n+1) to see that this 
ase 
ontributes at mostb(n+1)=2
Xm1=0 b3n=4
Xm2=m1 Fm1;m2(�n+1)�n+1�m1�n+1�m2 � CC2� (n+ 1)�2 b(n+1)=2
Xm1=0 b3n=4
Xm2=m1 Fm1;m2(�n+1): (8.23)By Lemma 7.8(a) and the fa
t that m2 � b3n=4
,Fm1;m2(�n+1) = m2Xl=0 Fm1;m2(1(l))�n+1�l � CC�(n+ 1)�1L(m2 + 1)CFbm1;m2 : (8.24)Therefore,b(n+1)=2
Xm1=0 b3n=4
Xm2=m1 Fm1;m2(�n+1)�n+1�m1�n+1�m2 � CC3�CFL(n + 1)�3 b(n+1)=2
Xm1=0 b3n=4
Xm2=m1(m2 + 1)bm1;m2 :(8.25)It follows from (8.15) thatb(n+1)=2
Xm1=0 b3n=4
Xm2=m1(m2+1)bm1;m2 � b(n+1)=2
Xm1=0 b3n=4
Xm2=m1 h(m1+1)+ (m2�m1+1)ibm1;m2 � C�0n+1; (8.26)and this 
ompletes the proof.It is a 
onsequen
e of their de�nitions in (7.17){(7.18) that R(N)(y1;y2) and Q(N)(y1;y2) haveat most L = 6 lines at any �xed time. Also, R(N;M;K)(y1;y2) and Q(N;M;K)(y1;y2) have L = 7. Forthis reason, fa
tors of L will be unimportant in our appli
ations of the above lemmas.8.3 Bound on e(N)n+1(3)Proof of (8.6). Fix N � 0. It is an immediate 
onsequen
e of (4.31) and (4.29) thatje(N)n+1(3)j � n+1Xm1=b(n+1)=2
+1 hj�(N)m1;n+1(fvN�1g)j+ j�(N)m1;n+1( ~CN�1)jip
�n+1�m1 : (8.27)In the de�nition (4.18) of �(N)m1 ;n+1(A), we estimate the indi
ator fun
tion by 1 to obtainj�(N)m1;n+1(A)j � 1XM=0 X(uN ;vN )JuN ;vNM (N+1)uN ��(M)m1 (vN ; ~CN)�; (8.28)for all A � �. For M = 0, it follows from (7.14) thatXvN JuN ;vN�(0)m1(vN ; ~CN) = p
ÆmuN ;m1�1: (8.29)For M � 1, we use (3.27), (7.14) and (3.38) to rewrite the right-hand side of (8.28). This givesj�(N)m1;n+1(A)j � p
 1XM=0Xy �(N+M)m1�1 (y): (8.30)57



The 
ombination of (8.27), (8.30) and (6.9) givesje(N)n+1(3)j � 2p2
 1XM=0 n+1Xm1=b(n+1)=2
+1Xy P (N+M)m1�1 (y)�n+1�m1: (8.31)It now follows from Lemma 8.2 and (6.2) that if � is suÆ
iently small, thenje(N)n+1(3)j � CC� 1XM=0(C�)(N+M)_1(n + 1)�d=2 logn � CC�(C�)N_1(n + 1)�d=2 logn; (8.32)as required.8.4 Bound on e(N)n+1(5)Proof of (8.8). The error term e(N)n+1(5) is de�ned in (5.18) in terms of the quantities given in (5.8){(5.10). Let e(N;M;K)n+1 (5) denote the 
ontribution to e(N)n+1(5) due to �(M)m1 (vN ; ~CN) and �(K)n+1(b; ~CbN) in(5.8), so that e(N)n+1(5) � 1XM;K=0 je(N;M;K)n+1 (5)j: (8.33)Apart from the sum over m1 and fa
tor �n+1�m1 in (5.18), e(N)n+1(5) has the same form as �(N)m1;m2(de�ned in (5.17) and (5.13)), ex
ept that the fa
tor �n+1 in (5.8) for e(N)n+1(5) is repla
ed by �m2in (5.13) for �(N)m1;m2 . We will estimate e(N;M;K)n+1 (5) by determining the e�e
t of this repla
ement. LetT (N;M;K)m1;m2 (y1; y2) = R(N;M;K)m1;m2 (y1; y2) +Q(N;M;K)m1;m2 (y1; y2) (8.34)and T (N)m1;m2 = p2
 1XK;M=0 Xy1;y2 T (N;M;K)m1�1;m2�1(y1; y2): (8.35)For N � 0, it follows from (7.16) and Propositions 7.6{7.7 thatj�(N)m1;m2 j � T (N)m1;m2 � C(C�)Nbm1;m2 : (8.36)If the fa
tor �(K)n+1(b; ~CbN) appearing in (5.9){(5.10) were repla
ed by �(K)m2 (b; ~CbN), then we wouldhave as upper bound b(n+1)=2
Xm1=1 T (N;M;K)m1;m2 p
�n+1�m1 : (8.37)The upper bound on �(K)n+1(b; ~CbN) in Proposition 6.7 is given expli
itly in terms of the diagramsused to bound �(K)m2 (b; ~CbN). The appropriate modi�
ation for e(N)n+1(5) is thusje(N)n+1(5)j � p2
 b(n+1)=2
Xm1=1 n+1Xm2=m1 �T (N)m1;m2(�n+1) ^ T (N)m1;m2��n+1�m1�n+1�m2 : (8.38)It then follows from (8.36) and Lemma 8.6 thatje(N)n+1(5)j � CC3� (C�)N(n+ 1)�3 h�0n+1 + (n+ 1)6�d=2 logni : (8.39)58



When N = 0, the only 
ontribution without a positive power of � arises when m1 = m2 = 1 in(8.38), and this 
ontribution is bounded above by CC3� (n+ 1)�3. Therefore,je(N)n+1(5)j � CC3� (n+ 1)�3 hÆN;0 + (C�)N_1 h�0n+1 + (n+ 1)6�d=2 lognii ; (8.40)whi
h 
ompletes the proof of (8.8).8.5 Bound on e(N)n+1(2)We prove a lemma before proving the bound (8.5) on e(N)n+1(2). The lemma generalises (6.21). Notethat the order in whi
h 
onstru
tions are applied 
an be important, sin
e, e.g., P (N)(y; `�(a); �n+1)is not equal to P (N)(y; �n+1; `�(a)).Lemma 8.7. For N;M � 0, y 2 �, and n � 0,X� Xa X(uN ;vN ) JuN ;vNP (N)(uN ; `�(a); �n+1)P (M)(vN ;y;a; �n+1) � P (N+M+1)(y; �n+1; �n+1); (8.41)where the sum over � is over the N-admissible lines for P (N).Proof. Equation (8.41) is similar to (6.21), but now with two extra Constru
tions �n+1 performed.The equality in (6.21) is repla
ed by an upper bound in (8.41), sin
e on the right-hand side thereare more possibilities for the lines on whi
h the two Constru
tions �n+1 
an be performed.Proof of (8.5). The error term e(N)n+1(2) is de�ned in (4.30) and (4.19). For A = ~CN�1 or A = fvN�1g,we use I[v A�! n+ 1 in ~CN ℄ � I[v ! n+ 1℄ (8.42)to obtain je(N)n+1(2)j � 2 X(uN ;vN ) JuN ;vNM (N+1)uN �I[vN�1 ! n+ 1℄j�n+1(vN ; ~CN)j�� 2 1XM=0 X(uN ;vN ) JuN ;vNM (N+1)uN �I[vN�1 ! n + 1℄j�(M)n+1(vN ; ~CN)j�: (8.43)We use Proposition 6.7 to bound j�(M)n+1(vN ; ~CN)j, using the se
ond alternative for the minimumin (6.28) when k � bn=2
 + 1, and the �rst alternative in (6.28) when k � bn=2
. Denote the
ontribution due to k � bn=2
 + 1 by e(N)n+1(2; 1), and the 
ontribution due to k � bn=2
 bye(N)n+1(2; 2), so that je(N)n+1(2)j � 2 �e(N)n+1(2; 1) + e(N)n+1(2; 2)� : (8.44)For e(N)n+1(2; 1), we use (6.28) and (7.8) to obtaine(N)n+1(2; 1) � 1XM=0Xa X(uN ;vN )JuN ;vNM (N+1)uN (I[a 2 ~CN ℄) n+1Xk=bn=2
+1 Xy2ZdP (M)(vN ; (y; k);a)p
�n�k (8.45)� 1XM=0 n+1Xk=bn=2
+1 Xy2ZdX� Xa X(uN ;vN ) JuN ;vNP (N)(uN ; `�(a))P (M)(vN ; (y; k);a)p
�n�k;59



where we re
all Remark 6.2. By (6.21), (6.2) and Lemma 8.2,e(N)n+1(2; 1) � 1XM=0 n+1Xk=bn=2
+1 Xy2ZdP (N+M)k (y)p
�n�k � CC� 1XM=0(C�)(N+M)_1(n + 1)�d=2 logn� CC�(C�)N_1(n+ 1)�d=2 logn: (8.46)For e(N)n+1(2; 2), we use the minor extension of (7.8) that, for N � 0, a;y 2 � and n � 0,M (N+1)y (I[a 2 ~CN ; vN�1 ! n+ 1℄) �X� P (N)(y; `�(a); �n+1): (8.47)By (8.47) and (6.28),e(N)n+1(2; 2) � 1XM=0 bn=2
Xk=0 X� Xa X(uN ;vN )JuN ;vNP (N)(uN ; `�(a); �n+1) Xy2ZdP (M)(vN ; (y; k);a; �n+1)p
�n�k:(8.48)It then follows from Lemma 8.7, Lemma 8.3 and (6.2) thate(N)n+1(2; 2) � 1XM=0 bn=2
Xk=0 Xy2ZdP (N+M)k (y; �n+1; �n+1)p
�n�k (8.49)� CC3� 1XM=0(C�)N+M(n+ 1)�3�0n+1 � CC3� (C�)N(n + 1)�3�0n+1:When N = 0, the only 
ontribution without a positive power of � arises when k = 0 in (8.49). Thisrequires that y = 0 and M = 0, and 
ontributes at most CC3� (n+1)�3. With this observation, we
an improve (8.49) to e(N)n+1(2; 2) � CC3� (n+ 1)�3 hÆN;0 + (C�)N_1�0n+1i : (8.50)Substitution of (8.46) and (8.50) into (8.44) then gives (8.5).8.6 Bound on e(N)n+1(4)In this se
tion, we prove the bound (8.7) on the error term e(N)n+1(4). By (5.18),e(N)n+1(4) �b(n+1)=2
Xm1=1 hjd(N)m1;n+1(4; fvN�1g)j+ 12 jd(N)m1;n+1(4; ~CN�1)ji�n+1�m1 : (8.51)We denote the 
ontribution due to d(N)m1;n+1(4; fvN�1g) by e(N)n+1(4; 1) and the 
ontribution due tod(N)m1;n+1(4; ~CN�1) by e(N)n+1(4; 2). We prove bounds on e(N)n+1(4; 1) in Se
tions 8.6.1{8.6.2, and one(N)n+1(4; 2) in Se
tion 8.6.3. The proof of (8.7) is 
ompleted at the end of Se
tion 8.6.3.
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8.6.1 Preliminaries for e(N)n+1(4; 1)Our bound on e(N)n+1(4; 1) uses the following two lemmas.Lemma 8.8. Let vN�1;y 2 � and let m1 < my � n. Let F = F (y) be an event that depends onlyon bonds with time variables at most my. ThenEN �I[F (y)℄I[(vN�1 ! n) Æ (y ! n)℄�(M)m1 (vN ; ~CN)� (8.52)� EN �I[F (y)℄I[(vN�1 ! n)℄�(M)m1 (vN ; ~CN)��n(y):Proof. Let Cy(v) = fx 2 C(v) : mx = myg. By the Markov property,EN �I[F (y)℄I[(vN�1 ! n) Æ (y ! n)℄�(M)m1 (vN ; ~CN)� (8.53)= XC 6=? EN �I[F (y)℄I[Cy(vN�1) = C℄��(M)m1 (vN ; ~CN)�PN ((C ! n) Æ (y ! n));sin
e �(M)m1 (vN ; ~CN) is independent of bonds with time variables ex
eeding my be
ause my � m1�1.By the BK inequality, PN((C ! n) Æ (y ! n)) � PN(C ! n)�n(y): (8.54)The inequality (8.52) 
an then be 
on
luded from substitution of (8.54) into (8.53) followed bysummation over C.For mv � m � n, we de�ne Vm;n(v) = [z:mz�mfv ! z =) ng: (8.55)For later use, we note that it follows from (8.55) thatVm;n(v) = [y:my=mfv ! yg \ f(y ! n) Æ (v ! n)g: (8.56)The following lemma is reminis
ent of Lemma 7.15.Lemma 8.9. For vN�1 2 � and m;n � 1 su
h that mvN�1 < m � n,Hm;n(vN�1; fvN�1g) � Vm�1;n(vN�1): (8.57)Proof. When Hm;n(vN�1; fvN�1g) o

urs, there is no m-
utting bond for vN�1 ! n. Let b be thelast pivotal bond for vN�1 ! n, if it exists. If su
h a bond does not exist, then vN�1 =) n, whi
h isa subset of Vm�1;n(vN�1). On the other hand, if there is su
h a bond b, then b =) n, and thereforemb � m � 1, sin
e otherwise b would be the m-
utting bond for vN�1 ! n. Thus, Vm�1;n(vN�1)o

urs.We also use the minor modi�
ation of (8.47) that for every a;y 2 �, N � 0, and n � 0,M (N+1)uN �I[(vN�1 ! a) \ (vN�1 ! y) \ (vN�1 ! n)℄� �X� P (N)(uN ; `�(a); `(y); �n); (8.58)where the sum over � runs over the N -admissible lines for P (N)(uN).61



8.6.2 Bound on e(N)n+1(4; 1)In this se
tion, we prove that je(N)n+1(4; 1)j � C3� (C�)N(n+ 1)�3: (8.59)The de�nitions (5.9){(5.10) and (5.7) imply thatd(0)m1;n+1(4;A) = X(u0;v0)Ju0;v0 eEN �I[f0 =) u0g \Hm1;n(0;A)℄�m1(v0; ~C0)�; (8.60)while, for N � 1,d(N)m1;n+1(4;A) = X(uN�1;vN�1)JuN�1;vN�1 X(uN ;vN )JuN ;vN (8.61)M (N)uN�1�eEN �I[E 0(vN�1;uN ; ~CN�1) \Hm1;n(vN�1;A)℄�m1(vN ; ~CN)��:We denote by d(N;M)m1;n+1(4;A) the 
ontribution due to �(M)m1 (vN ; ~CN) in (8.60){(8.61), so thatjd(N)m1;n+1(4;A)j � 1XM=0 d(N;M)m1;n+1(4;A): (8.62)Using Lemma 8.9, (8.56) and Lemmas 7.16 and 8.8, we obtaineEN �I[E 0(vN�1;uN ; ~CN�1) \Hm1;n(vN�1;A)℄�(M)m1 (vN ; ~CN)� (8.63)� Xy2:my2=m1�1eEN �I[E 0(vN�1;uN ; ~CN�1)℄I[(vN�1 ! y2)℄I[(vN�1 ! n) Æ (y2 ! n)℄�(M)m1 (vN ; ~CN)�� Xy2:my2=m1�1EN �I[E 0(vN�1;uN ; ~CN�1)℄I[(vN�1 ! y2) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)��n(y2):Using (7.14) and (6.9), it follows that, for M � 1,EN �I[E 0(vN�1;uN ; ~CN�1) \Hm1;n(vN�1;A)℄�(M)m1 (vN ; ~CN)� (8.64)�Xy2 Xa EN �I[E 0(vN�1;uN ; ~CN�1) \ fvN�1 ! ag \ fvN�1 ! (y2; m1 � 1)g \ fvN�1 ! ng℄�Xy1 p
P (M�1)(vN ; (y1; m1 � 1);a)�n(y2):When M = 0, a similar bound holds with both the sum over a and the indi
ator that vN�1 ! aremoved, and with p
P (M�1)(vN ; (y1; m1 � 1);a) repla
ed by Æm1;mvN . This 
auses only minormodi�
ations, and in the remainder of the proof of (8.59) we 
onsider only the 
ase M � 1expli
itly.Now we spe
ialise to A = fvN�1g, as in the de�nition of e(N)n+1(4; 1). For N = 0, we use the
onvention (4.15) and apply (8.64) and (8.58) to obtaind(0;M)m1;n+1(4; f0g) �Xy2 X� X(u0;v0)Ju0;v0 Xa P (0)(u0; `�(a); `(y2; m1 � 1); �n+1) (8.65)�Xy1 p
P (M�1)(v0; (y1; m1 � 1);a)�n+1(y2; m1 � 1):62



For N � 1, we substitute (8.64) into (8.61), use the re
ursion (3.35) in the formX(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�EN �I[E 0(vN�1;uN ; ~CN�1)\ f(vN�1 ! a) \ (vN�1 ! y2) \ (vN�1 ! n)g℄��=M (N+1)uN �I[(vN�1 ! a) \ (vN�1 ! y2) \ (vN�1 ! n)℄� (8.66)and apply (8.58), to obtaind(N;M)m1;n+1(4; fvN�1g) �Xy2 X� X(uN ;vN )JuN ;vN Xa P (N)(uN ; `�(a); `(y2; m1 � 1); �n+1) (8.67)�Xy1 p
P (M�1)(vN ; (y1; m1 � 1);a)�n+1(y2; m1 � 1):Thus, the bounds for N = 0 and N � 1 in (8.65) and (8.67) agree, and we 
an hen
eforth treatall N � 0 simultaneously.By (8.67) and a slight generalisation of (6.21) (similar to Lemma 8.7),d(N;M)m1;n+1(4; fvN�1g) � p
 Xy1;y2 P (N+M)m1�1 (y1; `(y2; m1 � 1); �n+1)�n+1(y2; m1 � 1): (8.68)Let B(N+M)m = Xy1;y2 P (N+M)m (y1; `(y2; m)): (8.69)By the de�nition of e(N)n+1(4; 1) below (8.51), we therefore obtainje(N)n+1(4; 1)j � p
 1XM=0 b(n+1)=2
Xm1=1 B(N+M)m1�1 (�n+1)�2n�m1 : (8.70)By (6.2) and Lemma 7.8(b), B(N+M)m � (C�)N+M(m + 1)�(d�2)=2; (8.71)so it follows from (8.70) and Lemma 8.5 thatje(N)n+1(4; 1)j � 1XM=0C3� (C�)N+M(n+ 1)�3 = C3� (C�)N(n+ 1)�3: (8.72)This proves (8.59).8.6.3 Bound on e(N)n+1(4; 2)In this se
tion, we prove thatje(N)n+1(4; 2)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1 h(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i : (8.73)63



Similarly to (7.86){(7.88), we de�neG(1)m;n(vN�1) = Hm;n(vN�1; ~CN�1) \ Vm�1;n(vN�1); (8.74)G(2)m;n(vN�1) = Hm;n(vN�1; ~CN�1) \ Vm�1;n(vN�1)
; (8.75)so that Hm;n(vN�1; ~CN�1) = G(1)m;n(vN�1) _[ G(2)m;n(vN�1): (8.76)For the 
ontribution due to G(1)n;1(vN�1;uN), we re
all the argument beginning with (8.63) to seethat the in
lusion G(1)m;n(vN�1) � Vm�1;n(vN�1) implies that this term obeys the same bound asje(N)n+1(4; 1)j. Thus, it remains to bound the 
ontribution due to G(2)m;n(vN�1): Note that, by (4.15),~C�1 = fv�1g = f0g, so that, by Lemma 8.9 and (8.75), G(2)m;n(v�1) = ?. Thus, we 
onsider onlyN � 1 in the following.Let e(N)n+1(4; 3) denote the 
ontribution to e(N)n+1(4; 2) (de�ned below (8.51)) due to G(2)m;n+1(vN�1);i.e., e(N)n+1(4; 3) = 12 b(n+1)=2
Xm1=1 d(N)m1;n+1(4; ~CN�1; 3)p
�n+1�m1 ; (8.77)where, as in (8.61), for N � 1,d(N)m1;n+1(4; ~CN�1; 3) = X(uN�1;vN�1)JuN�1;vN�1 X(uN ;vN )JuN ;vN (8.78)M (N)uN�1�eEN�I[E 0(vN�1;uN ; ~CN�1) \G(2)m1;n(vN�1)℄�m1(vN ; ~CN)��:It remains to estimate e(N)n+1(4; 3) for N � 1. The following analogue of Lemma 7.17 will be usefulfor this. Re
all that the event Em was de�ned in (7.48).Lemma 8.10. For vN�1 2 � and m;n � 1,G(2)m;n(vN�1) � [y2 �Em(vN�1;y2; ~CN�1) \ �(y2 ! n) Æ (vN�1 ! n)��: (8.79)Proof. Suppose that G(2)m;n(vN�1) o

urs. It 
annot be the 
ase that vN�1 =) n, sin
e this 
on-tributes instead to G(1)m;n(vN�1). Thus there is at least one o

upied pivotal bond for vN�1 ! n,and we denote the last su
h bond by b. Then fvN�1 ! b =) ng o

urs. It must be the 
asethat mb > m � 1, sin
e otherwise G(1)m;n(vN�1) o

urs. By the de�nition of Hm;n(vN�1; ~CN�1) in(5.6), b 
annot be an m-
utting bond for vN�1 ~CN�1���! n, and hen
e fvN�1 ~CN�1���! bg
 o

urs. Sin
evN�1 ~CN�1���! n o

urs by (5.6), we 
on
lude that b ~CN�1���! n.Fix w su
h that b! (w; n) (su
h a w must exist sin
e b! n). Let b0 be the �rst o

upied pivotalbond for b! (w; n), if it exists, su
h that b ~CN�1���! b0. If b0 does not exist, then Em(vN�1; (w; n); ~CN�1)o

urs, whi
h is 
ontained in the right-hand side of (8.79) with y2 = (w; n). On the other hand,if b0 does exist, then, sin
e mb > m� 1, the event(vN�1 ! b) \ E 0(b; b0; ~CN�1) \ �(b0 ! n) Æ (vN�1 ! n)� (8.80)64



o

urs, whi
h implies that the event on the right-hand side of (8.79) o

urs with y2 = b0.In view of Lemma 8.10 and (8.78), it is useful to estimate, for N � 1 and M � 0,Xy2 eEN�IhE 0(vN�1;uN ; ~CN�1) \ Em1(vN�1;y2; ~CN�1) \ �(y2 ! n) Æ (vN�1 ! n)�i�(M)m1 (vN ; ~CN)�:(8.81)By Lemmas 7.16 and 8.8,eEN �I[E 0N \ Em1(vN�1;y2; ~CN�1)℄I[(y2 ! n) Æ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)� (8.82)� EN �I[E 0N \ Em1(vN�1;y2; ~CN�1) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)��n(y2):The re
ursion relation (3.38) implies thatX(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�EN �I[E 0N \ Em1(vN�1;y2; ~CN�1) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)��=M (N+1)uN �I[Em1(vN�1;y2; ~CN�1) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)�; (8.83)Let Q(N+M)m1;m2 = Xy1;y2Q(N+M)((y1; m1); (y2; m2)): (8.84)If we simply ignore the indi
ator that vN�1 ! n, then it follows from Proposition 7.11 thatX(uN ;vN ) JuN ;vNM (N+1)uN �I[Em1(vN�1;y; ~CN�1)℄I[(vN�1 ! n)℄�(M)m1 (vN ; ~CN)�� p
Xy1 Q(N+M)((y1; m1 � 1);y): (8.85)On the other hand, it is a minor extension of Proposition 7.11 that the extra 
onne
tion to n
an be a

ounted for by an appli
ation of Constru
tion �n, so that the upper bound of (8.85) 
analternately be repla
ed by the upper bound p
Py1 Q(N+M)((y1; m1�1);y; �n). Therefore, repla
ingn by n + 1,je(N)n+1(4; 3)j � 12p
 1XM=0 b(n+1)=2
Xm1=1 nXm2=m1 �Q(N+M)m1�1;m2�1(�n+1)^Q(N+M)m1�1;m2�1��n+1�m1�n+1�m2 : (8.86)By (7.41), Q(N+M)m1�1;m2�1 � (C�)N+Mbm1�1;m2�1 � C(C�)N+Mbm1;m2 : (8.87)Finally, by Lemma 8.6, for N � 1 we haveje(N)n+1(4; 3)j � C3� (C�)N h(n + 1)�d=2 logn + (n+ 1)�3�0n+1i : (8.88)The 
ombination of (8.59) and (8.88) then gives the bound (8.73) on e(N)n+1(4; 2).Proof of (8.7). This immediately follows from summation of (8.59) and (8.73).65



8.7 Bound on e(N)n+1(1)In this se
tion, we prove the bound (8.4) on the error term e(N)n+1(1), whi
h is de�ned in (4.22){(4.24).Re
all (4.35){(4.37). For j = 1; 2; 3, lete(0)n+1(1; j) = e(0)n+1(0; f0g; j); (8.89)and, for N � 1, e(N)n (1; j) = X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�e(0)n (vN�1; ~CN�1; j)�: (8.90)It follows from (4.34) and (4.23){(4.24) thate(N)n+1(1) = e(N)n+1(1; 1) + e(N)n+1(1; 2) + e(N)n+1(1; 3): (8.91)We estimate e(N)n+1(1; 1) and e(N)n+1(1; 2) in Se
tions 8.7.1 and 8.7.2. The more deli
ate e(N)n (1; 3) isestimated in Se
tion 8.7.3. The proof of (8.4) is given at the beginning of Se
tion 8.7.3.8.7.1 Bound on e(N)n+1(1; 1)The error term e(N)n+1(1; 1) is nonnegative by de�nition. For N = 0,e(0)n+1(1; 1) � P�F 0n(0; f0g) \ fjPf0gj � 1g� �Xx P�E 0(0; (x; n+ 1); f0g)� (8.92)=Xx �(0)n+1(x) �Xx P (0)n+1(x) � C�(n+ 1)�d=2;by (4.38), Proposition 4.6, (6.9) and (6.2). For N � 1,e(N)n+1(1; 1) � X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�Xx P�E 0(vN�1; (x; n + 1); ~CN�1)��=M (N+1)(x;n+1)(1) =Xx �(N)n+1(x) �Xx P (N)n+1(x) � (C�)N(n + 1)�d=2; (8.93)by (8.90), Proposition 4.6, (6.9) and (6.2).8.7.2 Bound on e(N)n+1(1; 2)For N = 0, we use (4.39) to see thatje(0)n+1(1; 2)j � Xy:my�bn2 
+1P(E 0(0;y; f0g))�n+1(y): (8.94)Therefore,je(0)n+1(1; 2)j � n+1Xm=bn2 
+1Xy �(0)m (y)�n+1�m � n+1Xm=bn2 
+1Xy P (0)m (y)�n+1�m � C�(n+ 1)�d=2 logn;(8.95)66



by (6.9), (6.2), and Lemma 8.2. For N � 1,je(N)n+1(1; 2)j � X(uN�1;vN�1)JuN�1 ;vN�1M (N)uN�1� Xy:my�bn2 
+1P�E 0(vN�1;y; ~CN�1)���n+1(y)= Xy:my�bn2 
+1M (N+1)y (1)�n+1(y) = n+1Xm=bn2 
+1Xy �(N)m (y)�n+1�m� n+1Xm=bn2 
+1Xy P (N)m (y)�n+1�m � (C�)N(n+ 1)�d=2 logn; (8.96)by (8.90), (4.39), (6.9), (6.2) and Lemma 8.2.8.7.3 Bound on e(N)n+1(1; 3)In this se
tion, we prove that, for N � 1,je(0)n+1(1; 3)j � CC3� h(n+ 1)�3 + �(n+ 1)�d=2 logn + �(n+ 1)�3�0n+1i: (8.97)je(N)n+1(1; 3)j � CC3� (C�)Nh(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.98)Proof of (8.4). For N = 0, (8.4) follows from (8.91), (8.92), (8.95) and (8.97). For N � 1, (8.4)follows from (8.91){(8.93), (8.96) and (8.98).To prove (8.97){(8.98), in view of (8.89){(8.90) and (4.15), we start with e(0)n (vN�1; ~CN�1; 3).A

ording to (4.50),je(0)n+1(v;A; 3)j � Xb0�bn+12 
Xb
b0 P�F 0n+1(v;A) \ fb0 2 PAg \ fb 2 P (3)A g�: (8.99)Let F 0n+1(v;x; b0;A) = E 0(v;x;A) \ F 0n+1(v;A) \ fb0 2 PAg: (8.100)It follows from (8.99), Proposition 4.10, Lemma 2.2, and the inequalityP(b! n+ 1 in �n ~Cb(b)) � �n+1(b) (8.101)that je(0)n+1(v;A; 3)j � Xb0�bn+12 
Xb
b0 Jb;bP�F 0n+1(v; b; b0;A) in ~Cb(v)��n+1(b) (8.102)= Xb0�bn+12 
Xb
b0 Jb;bePb�F 0n+1(v; b; b0;A)��n+1(b);where ePb denotes P 
onditioned on b being va
ant. By Proposition 4.3,F 0n+1(v;A) \ fb0 2 PAg � E 0(v; b0;A) \ n(v ! n+ 1) Æ �fb0 o

.g \ (b0 ! n+ 1)�o; (8.103)67



sin
e, on the right-hand side of (4.25), (v ! n + 1) o

urs in ~Cb0(v), and therefore (v ! n + 1)o

urs disjointly from fb0 o

.g \ (b0 ! n + 1). Then (6.12), (8.100) and (8.103) imply thatF 0n+1(v; b; b0;A) � E 0(v; b0;A) \ E(v; b;A) \ n(v ! n+ 1) Æ �fb0 o

.g \ (b0 ! n + 1)�o: (8.104)The event E(v; b;A) \ f(v ! n+ 1) Æ (fb0 o

.g \ (b0 ! n+ 1))g is in
reasing, and, for b0 � b, theevent E 0(v; b0;A) is independent of the o

upation status of b. Therefore, by Lemma 7.16,je(0)n+1(v;A; 3)j � Xb0�bn+12 
Xb
b0 Jb;bP�E 0(v; b0;A) \ E(v; b;A) (8.105)\ n(v ! n+ 1) Æ �fb0 o

.g \ (b0 ! n + 1)�o��n+1(b):In parti
ular, by (8.89) and (3.20),je(0)n+1(1; 3)j � Xb0�bn+12 
Xb
b0 Jb;bM (1)b0 �IhE(0; b; f0g) (8.106)\ n(0! n+ 1) Æ �fb0 o

.g \ (b0 ! n+ 1)�oi��n+1(b):Also, by (8.90), (8.105), (3.20) and (3.35), for N � 1,je(N)n+1(1; 3)j � Xb0�bn+12 
Xb
b0 X(uN�1;vN�1)JuN�1;vN�1Jb;bM (N)uN�1�P�E 0(vN�1; b0; ~CN�1) (8.107)\ E(vN�1; b; ~CN�1) \ n(vN�1 ! n + 1) Æ �fb0 o

.g \ (b0 ! n+ 1)�o���n+1(b)= Xb0�bn+12 
Xb
b0 Jb;bM (N+1)b0 �IhE(vN�1; b; ~CN�1)\ n(vN�1 ! n + 1) Æ �fb0 o

.g \ (b0 ! n + 1)�oi��n+1(b):We insert 1 = I[(b0 ! b)
℄ + I[(b0 ! b)℄ (8.108)in the right-hand sides of (8.106){(8.107). We denote the 
ontribution to (8.106) due to the �rstand se
ond terms of (8.108) by e(0)n+1(1; 3; 1) and e(0)n+1(1; 3; 2), respe
tively. Similarly, for N � 1,we denote the 
ontribution to (8.107) due to the �rst and se
ond terms of (8.108) by e(N)n+1(1; 3; 1)and e(N)n+1(1; 3; 2), respe
tively.To estimate M (1)b0 and M (N+1)b0 in (8.106){(8.107), we will use the following proposition, whoseproof is deferred to the end of the se
tion. Its statement involves a small modi�
ation of P (N)m (y);in whi
h the last Constru
tion E 
an be applied to all diagram lines rather than only to the(N � 1)-admissible lines. We denote this modi�
ation by eP (N)m (y). The methods in [13℄ easilyadapt to show that the bound (6.2) extends to eP (N)m (y), namelyXy eP (N)m (y) � Æm;0ÆN;0 + (C�)N_1(m+ 1)�d=2: (8.109)68



Proposition 8.11. (a) For all bonds b, y 2 � with my � mb, N � 0, and n � 0,M (N+1)b �I[E(vN�1;y; ~CN�1)g \ (b! y)
 \ ((vN�1 ! n) Æ (fb o

.g \ (b! n)))℄� (8.110)� �[R(N)(b;y) +Q(N)(b;y)℄ ^ [R(N)(b;y; �n) +Q(N)(b;y; �n)℄�Jb;b�n(b);where, by 
onvention, Q(0) = 0.(b) For y 2 �, N � 0, and n � 0,Xb M (N+1)b �I[E(vN�1;y; ~CN�1) \ (b! y) \ ((vN�1 ! n) Æ (fb o

.g \ (b! n)))℄� (8.111)� eP (N+1)(y) ^ eP (N+1)(y; �n; �n):Before proving Proposition 8.11, we �rst prove (8.97){(8.98).Proof of (8.97). By the de�nition below (8.108), e(0)n+1(1; 3) = e(0)n+1(1; 3; 1) + e(0)n+1(1; 3; 2). By(8.106) and Proposition 8.11(a) (with N = 0, y = b, b = b0),je(0)n+1(1; 3; 1)j � Xb0�bn+12 
Xb
b0 Jb;bJb0;b0hR(0)(b0; b) ^R(0)(b0; b; �n+1)i�n+1(b)�n+1(b0) (8.112)= p2
 bn=2
Xm1=0 nXm2=m1 hR(0)m1;m2 ^ R(0)m1;m2(�n+1)i�n�m1�n�m2 ;where R(0)m1;m2 = Py1;y2 R(0)m1;m2(y1; y2). By Proposition 7.7 (with additional attention paid to thefa
tor �), R(0)m1 ;m2 � CÆm1;0Æm2 ;0 + C�bm1;m2 : (8.113)The 
ontribution due to (m1; m2) = (0; 0) gives rise to at most CC3� (n+1)�3. For the 
ontributiondue to (m1; m2) 6= (0; 0); we apply Lemma 8.6 to obtain a boundCC3��h(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.114)Adding the two 
ontributions yieldsje(0)n+1(1; 3; 1)j � CC3� h(n + 1)�3 + �(n+ 1)�d=2 logn + �(n+ 1)�3�0n+1i: (8.115)Similarly, by Proposition 8.11(b) (with N = 0, y = b = (y2; m2), and the summation index bin (8.111) equal to b0 in (8.106)),je(0)n+1(1; 3; 2)j �Xb Jb;bh eP (1)(b) ^ eP (1)(b; �n+1; �n+1)i�n+1(b) (8.116)= p
 nXm2=0 h eP (1)m2 ^ eP (1)m2(�n+1; �n+1)i�n�m2 ;where we write eP (1)m2 = Py2 eP (1)m2(y2). By (8.109) and Corollary 8.4, we therefore obtainje(0)n+1(1; 3; 2)j � CC3��h(n+ 1)�3�0n+1 + �(n+ 1)�d=2 logni: (8.117)69



Addition of (8.115) and (8.117) gives (8.97).Proof of (8.98). By (8.107) and Proposition 8.11(a),je(N)n+1(1; 3; 1)j � p2
 bn2 
Xm1=0 nXm2=m1 �[R(N)m1 ;m2 +Q(N)m1;m2 ℄ ^ [R(N)m1;m2(�n+1) +Q(N)m1;m2(�n+1)℄��n�m1�n�m2 :(8.118)By Proposition 7.7 and Lemma 8.6, it follows thatje(N)n+1(1; 3; 1)j � CC3� (C�)Nh(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.119)Similarly, by Proposition 8.11(b) (with y = b = (y2; m2), and the summation index b in (8.111)equal to b0 in (8.107)),je(N)n+1(1; 3; 2)j � p
 nXm2=0 h eP (N+1)m2 ^ eP (N+1)m2 (�n+1; �n+1)i�n�m2 : (8.120)It then follows from (8.109) and Corollary 8.4 thatje(N)n+1(1; 3; 2)j � CC3� (C�)Nh(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.121)Addition of (8.119) and (8.121) gives (8.98).It remains to prove Proposition 8.11. For this, we will use the following lemma.Lemma 8.12. For any bond b, v;y 2 �, A � �, n � 0,E(v;y;A) \ (b! y)
 \ �(v ! n) Æ (fb o

.g \ (b! n))� (8.122)� �E(v;y;A) \ (v ! n)� Æ �fb o

.g \ (b! n)�;E(v;y;A) \ (b! y) \ fb o

.g (8.123)� �(fb o

.g \ (b! y)) Æ (v ! y)� [ �fb o

.g \ E(b;y;A)�:Proof. To prove (8.122), we note thatE(v;y;A) \ (b! y)
 \ fb o

.g \ (b! n) � E(v;y;A) Æ �fb o

.g \ (b! n)�; (8.124)sin
e, when (b ! y)
 o

urs, b and the 
onne
tions from b 
annot be required in the eventE(v;y;A). Therefore,E(v;y;A) \ (b! y)
 \ �(v ! n) Æ (fb o

.g \ (b! n))� (8.125)= �E(v;y;A) \ (b! y)
 \ fb o

.g \ (b! n)� \ �(v ! n) Æ �fb o

.g \ (b! n)��� �E(v;y;A) Æ �fb o

.g \ (b! n)�� \ �(v ! n) Æ �fb o

.g \ (b! n)�� \ (b! y)
� �E(v;y;A) \ (v ! n)� Æ �fb o

.g \ (b! n)�;70



where, in the last step, we used (b ! y)
 to 
on
lude that the o

upied path from b to n that isdisjoint from (v ! n) is also disjoint from a set of paths realizing E(v;y;A). This proves (8.122).Next, we prove (8.123). If there is no pivotal bond for v ! y, then v =) y, and thus(fb o

.g \ (b ! y)) Æ (v ! y) o

urs. This leaves the 
ase where there is a pivotal bond forv ! y, and in this 
ase, we let b0 denote the last pivotal bond. If the left-hand side of (8.123)o

urs and b! b0, then b is o

upied and E(b;y;A) o

urs (sin
e there is a vertex in A on one ofthe paths from b0 to y). If, on the other hand, the left-hand side of (8.123) and (b ! b0)
 botho

ur, then (fb o

.g \ (b ! y)) Æ (v ! y) o

urs, sin
e (fb o

.g \ (b ! y)) Æ (b0 ! y) o

ursas in the 
ase of no pivotal bond and sin
e the 
onne
tion from v to b0 must also be disjoint from(fb o

.g \ (b! y)). This proves (8.123).Proof of Proposition 8.11. (a) By (8.122) and (3.35),M (N+1)b �IhE(vN�1;y; ~CN�1) \ (b! y)
 \ �(vN�1 ! n) Æ (fb o

.g \ b! n)�i� (8.126)�M (N+1)b �Ih�E(vN�1;y; ~CN�1) \ (v ! n)� Æ �fb o

.g \ (b! n)�i�= X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�P�E 0(vN�2; b; ~CN�2)\ ��E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o

.g \ (b! n)����;where we assume for 
onvenien
e in this paragraph that N � 1 (the 
ase N = 0 is similar). Dueto the orientation of the bonds, the events on the right-hand side of (8.126) 
an be rewritten asE 0(vN�2; b; ~CN�2) \ �E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o

.g \ (b! n)� (8.127)= �E 0(vN�2; b; ~CN�2) \ E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o

.g \ (b! n)�:By the BKR inequality,P��E 0(vN�2; b; ~CN�2) \ E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o

.g \ (b! n)�� (8.128)� P�E 0(vN�2; b; ~CN�2) \ E(vN�1;y; ~CN�1) \ (vN�1 ! n)�Jb;b�n(b):We then substitute (8.128) into (8.126), and again use (3.35), to see thatM (N+1)b �IhE(vN�1;y; ~CN�1) \ (b! y)
 \ �(vN�1 ! n) Æ (fb o

.g \ b! n))℄� (8.129)�M (N+1)b �I[E(vN�1;y; ~CN�1) \ (vN�1 ! n)℄�Jb;b�n(b):Sin
e my � mb, we 
an use the de�nitions in (6.12) and (7.47){(7.48) to see thatI[E(vN�1;y; ~CN�1)℄ � I[Vmb(vN�1;y)℄ + I[Emb+1(vN�1;y; ~CN�1)℄; (8.130)where, for N = 0, the se
ond 
ontribution is identi
ally zero. If we bound I[(vN�1 ! n)℄ by 1 in(8.129), it then follows from Lemma 7.13 that the 
ontribution due to I[Vmb(vN�1;y)℄ is bounded by71



P (N)(b;Vmb(y)) = R(N)(b;y). Also, by Lemma 7.14, the 
ontribution due to I[Emb+1(vN�1;y; ~CN�1)℄is bounded by P (N)(b; Emb+1(y)) = Q(N)(b;y). Adding these, we obtainM (N+1)b �I[E(vN�1;y; ~CN�1)℄� � R(N)(b;y) +Q(N)(b;y); (8.131)whi
h gives the upper bound [R(N)(b;y) +Q(N)(b;y)℄Jb;b�n(b) of (8.110). Also, the boundsM (N+1)b �I[Vmb(vN�1;y; ~CN�1) \ (vN�1 ! n)℄� � R(N)(b;y; �n); (8.132)M (N+1)b �I[Emb+1(vN�1;y; ~CN�1) \ (vN�1 ! n)℄� � Q(N)(b;y; �n) (8.133)are minor adaptations of (7.58) and (7.63). This proves (a).(b) We bound the 
ontributions to (8.111) due to both terms in (8.123) separately. Using (3.35),the 
ontribution to (8.111) due to the �rst term on the right-hand side of (8.123) isM (N+1)b �Ih�(fb o

.g \ (b! y)) Æ (vN�1 ! y)� \ ((vN�1 ! n) Æ (b! n))i� (8.134)= X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�M (1)vN�1;b; ~CN�1�I[�(fb o

.g \ (b! y)) Æ (vN�1 ! y)�\ ((vN�1 ! n) Æ (b! n))℄��:We temporarily omit the two 
onne
tions to n inside the above expression, and observe thatXb M (1)vN�1;b; ~CN�1�I[(fb o

.g \ (b! y)) Æ (vN�1 ! y)℄� (8.135)� P (0)(vN�1; b; ~CN�1; 2(1)b (y)) � P (1)(vN�1;y; ~CN�1):Thus, on
e we take into a

ount the two 
onne
tions to n, we obtainXb M (1)vN�1;b; ~CN�1�Ih�(fb o

.g \ (b! y)) Æ (vN�1 ! y)� \ ((vN�1 ! n) Æ (b! n))i�� P (1)(vN�1;y; ~CN�1; �n; �n) ^ P (1)(vN�1;y; ~CN�1): (8.136)We substitute (8.136) into the summation of equation (8.134) over b. With (6.11) and (6.21), thisgives Xb M (N+1)b �I[E(vN�1;y; ~CN�1) \ fb o

.g \ (b! y) \ ((vN�1 ! n) Æ (b! n))℄� (8.137)� X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�P (1)(vN�1;y; ~CN�1; �n; �n) ^ P (1)(vN�1;y; ~CN�1)�� P (N+1)(y; �n; �n) ^ P (N+1)(y):The obvious inequality P (N+1) � eP (N+1) 
ompletes the analysis for the �rst term in (8.123).For the 
ontribution to (8.111) due to se
ond term in (8.123), (3.35) givesM (N+1)b �I[E(b;y; ~CN�1) \ fb o

.g \ ((vN�1 ! n) Æ (b! n))℄� (8.138)= X(uN�1;vN�1)JuN�1 ;vN�1M (N)uN�1�M (1)vN�1;b; ~CN�1�I[E(b;y; ~CN�1) \ fb o

.g \ ((vN�1 ! n) Æ (b! n))℄��:72



By (6.13),M (1)vN�1;b; ~CN�1�I[E(b;y; ~CN�1) \ fb o

.g \ ((vN�1 ! n) Æ (b! n))℄� (8.139)� P�E(vN�1; b; ~CN�1) \ fb o

.g \ E(b;y; ~CN�1) \ ((vN�1 ! n) Æ (b! n))�:We again temporarily omit the two 
onne
tions to n inside the above expression, and observe that,by the Markov property,P�E(v; b;A) \ fb o

.g \ E(b;y;A)� = Jb;bP (0)(v; b;A)P (0)(b;y;A); (8.140)whi
h leads to an upper boundXb X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�PN(E(vN�1; b; ~CN�1)\fb o

.g\E(b;y; ~CN�1))� � eP (N+1)(y): (8.141)Note that eP (N+1) o

urs, rather than P (N+1), due to the fa
t that the two events E(vN�1; b; ~CN�1) andE(b;y; ~CN�1) depend on the same set of verti
es ~CN�1, whereas, for P (N+1), the event E(b;y; ~CN�1)would be repla
ed by E(b;y; ~Cb(vN�1)). This 
hange 
an be bounded by letting the last Constru
-tion E be applied to all lines, rather than only the N -admissible lines. It is not diÆ
ult to seethat if we now take into a

ount the two 
onne
tions to n, we obtainXb M (N+1)b �I[E(vN�1;y; ~CN�1) \ fb o

.g \ (b! y) \ ((vN�1 ! n) Æ (b! n))℄� (8.142)� eP (N+1)(y; �n; �n) ^ eP (N+1)(y):Together, (8.137) and (8.142) prove (8.111).A
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