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The survival probability for ritial spread-out orientedperolation above 4 + 1 dimensions. II. ExpansionRemo van der Hofstad �Frank den Hollander y zGordon Slade xSeptember 19, 2005AbstratWe derive a lae expansion for the survival probability for ritial spread-out orientedperolation above 4+1 dimensions, i.e., the probability �n that the origin is onneted to thehyperplane at time n, at the ritial threshold p. Our lae expansion leads to a nonlinearreursion relation for �n, with oeÆients that we bound via diagrammati estimates. Thislae expansion is for point-to-plane onnetions and di�ers substantially from previous laeexpansions for point-to-point onnetions. In partiular, to be able to dedue the asymptotisof �n for large n, we need to derive the reursion relation up to quadrati order.The present paper is Part II in a series of two papers. In Part I, we use the reursionrelation and the diagrammati estimates to prove that limn!1 n�n = 1=B 2 (0;1), and alsodedue onsequenes of this asymptotis for the geometry of large ritial lusters and forthe inipient in�nite luster.1 Introdution and resultsFor oriented bond perolation on Zd�Z+ with parameter p, the survival probability �n = �n(p) attime n 2 Z+ is the probability that there exists an x 2 Zd suh that (0; 0) is onneted to (x; n).In the oriented setting, it is known that there is no perolation at the ritial threshold p = p[2, 4℄, so that limn!1 �n(p) = 0. Our goal is to study the manner in whih �n(p) tends to zeroas n!1 when d > 4.In the present paper, we derive a lae expansion for �n(p), valid in all dimensions d � 1 andfor quite general models of oriented perolation. This lae expansion gives a nonlinear reursion�Department of Mathematis and Computer Siene, Eindhoven University of Tehnology, P.O. Box 513, 5600MB Eindhoven, The Netherlands. E-mail: rhofstad�win.tue.nlyEURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: denhollander�eurandom.tue.nlzMathematial Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands. E-mail:denhollander�math.leidenuniv.nlxDepartment of Mathematis, University of British Columbia, Vanouver, BC V6T 1Z2, Canada. E-mail:slade�math.ub.a 1



relation for �n(p). If the expansion is to be useful, then the oeÆients in the reursion relationneed to be estimated. We prove estimates valid at p = p in dimensions d > 4, for suÆiently\spread-out" oriented bond perolation (de�ned below), with the degree to whih onnetions arespread out in spae parameterized by a suÆiently large L 2 N .In Part I [7℄, we have shown how these results an be used in an indution analysis for thereursion relation to onlude that there is a onstant B = B(d; L) suh that, as n!1,�n(p)� �n+1(p) = 1Bn2 h1 +O(n�1 logn) + L�dO(Æn)i for d > 4 and L suÆiently large;(1.1)where Æn = 8>>>><>>>>: n�(d�4)=2 logn (4 < d < 6);n�1 log2 n (d = 6);n�1 logn (d > 6): (1.2)In other words, the ritial extintion probability �n(p)� �n+1(p), whih is the probability thatthe luster of the origin survives to time n but not to time n + 1, is asymptoti to 1=(Bn2) asn!1, with aurate error bounds. By summing over n, we onlude that�n(p) = 1Bn h1 +O(n�1 logn) + L�dO(Æn)i for d > 4 and L suÆiently large; (1.3)whih is the main onlusion of Part I. In terms of the ritial exponent �, de�ned by the onjeturethat �n(p) behaves like n�1=� as n ! 1, (1.3) implies that � exists and is equal to 1, for d > 4and L suÆiently large.Also in Part I, interesting onsequenes for the geometry of large ritial lusters and for theinipient in�nite luster were dedued from (1.3), using results from [8℄. In partiular, (1.3) impliesthat two onstrutions for the inipient in�nite luster oinide and that, onditionally on survivalup to time n, the number of verties to whih the origin is onneted at time n sales like n timesan exponential random variable.1.1 The modelThe spread-out oriented perolation model is de�ned as follows. Let Z+ = fn 2 Z : n � 0g.Consider the graph with verties Zd � Z+ and with direted bonds ((x; n); (y; n+ 1)), for n 2 Z+and x; y 2 Zd. Let D be a �xed funtion D : Zd ! [0; 1℄, satisfyingXx2ZdD(x) = 1: (1.4)The funtion D will be assumed to be invariant under the symmetries of Zd (permutation andreetion of oordinates). Let p 2 [0; kDk�11 ℄, where k � k1 denotes the supremum norm, so thatpD(x) � 1 for all x 2 Zd. We assoiate to eah direted bond ((x; n); (y; n + 1)) an independentrandom variable taking the value 1 with probability pD(y � x) and the value 0 with probability1� pD(y � x). We say that a bond is oupied when the orresponding random variable is 1 andvaant when it is 0. Note that p is not a probability. Rather, p is the average number of oupiedbonds from a given vertex. The joint probability distribution of the bond variables will be denoted2



by Pp and the orresponding expetation by E p , with the parameter p usually suppressed from thenotation.For the diagrammati estimates, we need to make further assumptions on D. We will refer tothe assumptions on D in the previous paragraph as the weak assumptions on D. We de�ne thespread-out model of oriented perolation to be the model in whih D obeys the weak assumptionstogether with Assumption D in [12, Setion 1.2℄ (whose preise form is not important for thepresent paper), and [13, Equation (1.2)℄. Assumption D in [12, Setion 1.2℄ involves a parameterL 2 N , whih serves to spread out the onnetions and whih will be taken to be �xed and large.A simple and basi example isD(x) = 8<:(2L+ 1)�d if kxk1 � L;0 otherwise: (1.5)In this example, the bonds are given by ((x; n); (y; n + 1)) with kx � yk1 � L, and a bond isoupied with probability p(2L+1)�d. Assumption D also allows for ertain in�nite range models.For the spread-out model, we will use � = L�d (1.6)as a small parameter. Assumption D implies that there is a �nite positive onstant C suh thatsupx2ZdD(x) � C�: (1.7)We say that (x; n) is onneted to (y;m), and write (x; n)! (y;m), if there is an oriented pathfrom (x; n) to (y;m) onsisting of oupied bonds. Note that this is only possible when m � n.By onvention, (x; n) is onneted to itself. We writeC(x; n) = f(y;m) 2 Zd � Z+ : (x; n)! (y;m)g (1.8)to denote the forward luster of (x; n). We also write (x; n) ! m to denote the event that thereis a y 2 Zd suh that (x; n)! (y;m).The event f(0; 0) ! 1g is the event that f(0; 0) ! ng ours for all n. There is a ritialthreshold p 2 (0;1) suh that the event f(0; 0) ! 1g has probability zero for p � p and haspositive probability for p > p. The parametrization we have hosen is onvenient, sine for thespread-out model it is known thatp = 1 + L�d +O(L�d�1) as L!1; (1.9)for d > 4, with the positive onstant  given expliitly in terms of the Green funtion for therandom walk with step distribution D [10℄.The survival probability at time n is de�ned by�n(p) = Pp((0; 0)! n): (1.10)General results of [2, 4℄ imply that limn!1 �n(p) = 0. For the spread-out model in dimensiond > 4, with L suÆiently large, the same onlusion was shown in [1℄ to follow from the triangleondition. The triangle ondition was veri�ed under the above hypotheses in [13, 15℄, yielding analternate proof that limn!1 �n(p) = 0 for d > 4, and L suÆiently large.3



1.2 Main theoremFor n 2 Z+, x 2 Zd, and p 2 [0; kDk�11 ℄, we de�ne the two-point funtion�n(x) = Pp((0; 0)! (x; n)): (1.11)We write �n = Xx2Zd �n(x) (1.12)for the expeted number of verties in C(0; 0) at time n. The lae expansion for the two-pointfuntion [5℄ (see also [13℄) yields a reursion relation for �n, whih reads�n = n�1Xm=0 �mp�n�m�1 + �n; (1.13)where (�m) are ertain p-dependent oeÆients. In fat, (1.13) uniquely de�nes (�m), but the laeexpansion provides a useful representation for (�m). In [13, Proposition 2.2℄, this representationwas used to prove that �0 = 1; �1 = 0 and that there exists a �nite positive onstant C� suh thatj�mj � C��(m + 1)d=2 (p = p; m � 2); (1.14)for the spread-out model in dimensions d > 4, with � of (1.6) suÆiently small. In addition, underthe same assumptions, it is shown in [13, Equation (2.11)℄ that1Xm=0 �mp = 1: (1.15)In the present paper, we obtain a lae expansion for the survival probability �n, with goodbounds valid for the spread-out model in dimensions d > 4 at p = p. Our main result is thefollowing theorem. In its statement, we use the notation�n = 8>>>><>>>>: n�(d�4)=2 logn (4 < d < 6);n�1 logn (d = 6);n�1 (d > 6): (1.16)Theorem 1.1 (Lae expansion and diagrammati estimates). (i) For d � 1, p 2 [0; kDk�11 ℄,and n � 1, and under the weak assumption on D,�n(p) = n�1Xm=0 �m(p)p�n�1�m(p)� bn=2Xm1=1 nXm2=m1 �m1;m2(p)�n�m1(p)�n�m2(p) + en(p); (1.17)where (�m) are as in (1.13), and (�m1;m2) and (en) are given by expliit formulas (see Setions 4{5).(ii) For the spread-out model in dimensions d > 4, at the ritial value p = p, there are �nitepositive onstants C�, Ce, and �0 suh that, for 0 < � � �0, the oeÆients (�m1;m2) and the errorterms (en) satisfy the following estimates: 4



� �1;1(p) = 12p2Px2ZdD(x)(1 � D(x)) = 12 [1 + O(�)℄ and, for m2 � m1 � 1 suh that(m1; m2) 6= (1; 1),j�m1;m2(p)j � C��(m1 + 1)�(d�2)=2(m2 �m1 + 1)�(d�2)=2: (1.18)� If �m(p) � C�(m + 1)�1 for 0 � m � n and some C� � 1, thenjen+1(p)j � CeC3� (n+ 1)�2 h(n+ 1)�1 + ��n+1i : (1.19)Note that the diagrammati estimate (1.19) for en+1, whih is the error term in (1.17) for �n+1,assumes a bound for �m only for 0 � m � n. This is preisely what opens up the possibility ofthe indutive analysis employed in Part I. Namely, in Part I, (1.1) is dedued from Theorem 1.1by applying an indution analysis to (1.17), whih makes use of the bounds in (1.14), (1.18) and(1.19) in order to moderate the oeÆients of the reursion.When we derive (1.17) in Setions 2{5, we will �x an arbitrary p 2 [0; kDk�11 ℄ and assumeonly the weak assumption on D. In Setions 6{8, where we prove the diagrammati estimates(1.18){(1.19), we will speialise to the spread-out model with d > 4, p = p, and small �.We expet that Theorem 1.1 has impliations also for the ritial ontat proess in spatialdimension d > 4. Indeed, it has been shown in [9℄ that the lae expansion for the two-pointfuntion an be applied to the oriented perolation model resulting from time disretization of theontat proess. We expet that part (i) of the theorem an be applied similarly to study thesurvival probability for the ritial ontat proess, in onjuntion with a suitable modi�ation ofpart (ii).1.3 The onstant BIt was shown in [7, Equation (1.36)℄ that the onstant B in (1.3) is given byB = P1m1=1P1m2=m1 �m1;m2(p)1 + pP1m=2m�m(p) : (1.20)It follows from (1.9), (1.14) and (1.18) that B < 1 for d > 4 and � suÆiently small, withB = 12 +O(�) as � # 0.The survival probability �̂n of a Galton{Watson branhing proess whose o�spring distributionhas mean 1, variane �̂2, and �nite third moment, obeys the simple reursion relation�̂n = �̂n�1 � �̂22 �̂2n�1 + ên; (1.21)where en = O(�̂3n�1). This leads to the onlusion that limn!1 n�̂n = 2�̂�2. We sketh the proof ofthese well-known fats in Part I. Consider the branhing proess with o�spring distribution Px Ix,where the Ix are independent Bernoulli random variables with parameter D(x). This has mean 1,by the normalisation assumption for D, and has variane �̂2 = PxD(x)(1�D(x)) = 1+O(�), asL!1 in the spread-out model, by (1.7). We regard the ritial spread-out oriented perolationmodel in dimensions d > 4 as a small perturbation of this ritial branhing proess|the formerallows at most one partile per vertex, whereas the latter allows multiple oupany. The reursion5



relation (1.17) an be viewed as a perturbation of (1.21). The fat that B = 12 [1+O(�)℄ as L!1shows that the solution to (1.17) for the spread-out model remains lose to the solution of (1.21),to leading order, for L large.Let Nn denote the number of verties in C(0; 0) at time n, when p = p, and de�ne the onstantsA and V by A = limn!1 E p [Nn℄; V = limn!1 1A3nE p [N2n℄: (1.22)It is part of the results in [13℄ that these onstants exist when d > 4 and L is suÆiently large. Itis shown in [8℄ that, given n�n(p)! 1=B (whih follows from (1.3)),B = AV2 : (1.23)It is shown in [13, Equations (2.12) and (2.49)℄ thatA = 1p + p2P1m=2m�m(p) ; V = 1Xm1=2 1Xm2=2  ̂m1;m2(0; 0); (1.24)where ( ̂m1;m2) are oeÆients arising in the lae expansion for the ritial three-point funtion�n1;n2(x1; x2) = Pp((0; 0)! (x1; n1); (0; 0)! (x2; n2)): (1.25)It follows from (1.20) and (1.23){(1.24) thatV = 1Xm1=2 1Xm2=2  ̂m1 ;m2(0; 0) = 2p 1Xm1=1 1Xm2=m1 �m1;m2(p): (1.26)This implies that the oeÆients (�m1;m2) in our lae expansion for the survival probability arerelated to those appearing in the lae expansion for the three-point funtion. However, our ap-proah does not reveal an expliit relation between  ̂m1;m2(0; 0) and �m1;m2 for �xed m1; m2. In[11℄, an alternate expansion for the three-point funtion is derived, whih is quite di�erent fromthe expansion of [13℄ and loser in spirit to the expansion derived here for the survival probability.The expansion of [11℄ leads to a diret proof thatV = 2p 1Xm1=1 1Xm2=m1 �m1;m2(p): (1.27)1.4 OrganisationThe remainder of the paper is devoted to the proof of Theorem 1.1. The proof is divided into twomain parts: (a) the derivation of the expansion (1.17) for �n, and (b) the proof of the diagrammatiestimates (1.18){(1.19) for the expansion oeÆients. The basi steps in the proof of eah part areas follows.
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(a) Derivation of the lae expansion (1.17). The starting point for the expansion is theperolation lae expansion of [5℄ for the two-point funtion. This expansion was applied to orientedperolation in [13℄, where a derivation of (1.13) an be found. We will extend this lae expansion forthe two-point funtion (a point-to-point expansion) to a lae expansion for the survival probability(a point-to-plane expansion). There are alternate expansions for the two-point funtion of orientedperolation, due to [15℄ and [16℄ (see [17℄ for a desription of all three expansions), but we do notknow how to use these alternate expansions to obtain an expansion for the survival probability.The expansion of [5℄ is based on a fatorisation lemma, whih we isolate in Setion 2. InSetion 3, we extrat the linear term in (1.17) using a relatively minor extension of the laeexpansion for the two-point funtion. This produes an equation�n = n�1Xm=0 �mp�n�1�m + �n; (1.28)where the term �n involves on�gurations with two onnetions to the hyperplane at time n. Thesetwo onnetions lead to the quadrati term in (1.17), but two further expansions are required toobtain the two fators �n�m1�n�m2 .The �rst of these expansions for �n is the most deliate and novel part of our method. A ruialrole is played by a random set PA of bonds, whih is de�ned in Setion 4 for any �xed subset A ofZd�Z+. Using PA, we extrat a fator �n�m1 from �n in Setion 4, ompleting the �rst expansionfor �n. Then, in Setion 5, we perform a seond expansion for �n to extrat the additional fator�n�m2 . Our treatment of this seond expansion is di�erent in spirit than the expansion methodsused in [6, 13℄, and is simpler due to a areful use of independene due to the orientation.This part of the argument applies for general p and d, and makes only the weak assumptionon D.(b) The diagrammati estimates (1.18){(1.19). As is usual in lae expansion analyses, we willprove (1.18){(1.19) by bounding �m1;m2 and en+1 by diagrams of the same harater as the Feynmandiagrams of physis, i.e., by sums of produts of two-point funtions and survival probabilities.The two-point funtions are bounded using estimates proved in [13℄, and the survival probabilitiesare bounded using the assumption on �m(p) given above (1.19).The �rst step in this proedure is arried out in Setion 6, where we generalise the bound on�m of [13℄, stated above in (1.14), and prove related bounds on �n. The bounds on �m1;m2 and en+1are in terms of diagrams that are built from the diagrams enountered in Setion 6 using ertaindiagrammati onstrutions. Using these, in Setion 7, we omplete the proof of the bound (1.18)on �m1;m2 , and in Setion 8, we omplete the proof of the bound (1.19) on en+1.This part of the argument is for the spread-out model. It relies on d > 4 and small �, and thebounds we obtain apply at p = p.2 The Fatorisation LemmaThis setion ontains some preliminaries that will be ruial in the expansion for the survivalprobability. The main result is the Fatorisation Lemma stated in Lemma 2.2 below. Throughoutthe rest of the paper, we write � = Zd � Z+; (2.1)7



and we use bold letters suh as x;y; z for elements of �. To be able to state the FatorisationLemma, we need some de�nitions.De�nition 2.1. (i) Given a (deterministi or random) set of verties A and a bond on�gura-tion !, we de�ne !A, the restrition of ! to A, to be!A(fx;yg) = ( !(fx;yg) if x;y 2 A;0 otherwise; (2.2)for every x;y suh that fx;yg is a bond. In other words, !A is obtained from ! by makingevery bond that does not have both endpoints in A vaant.(ii) Given a (deterministi or random) set of verties A and an event E, we say that E oursin A, and write fE in Ag, if !A 2 E. In other words, fE in Ag means that E ours on the(possibly modi�ed) on�guration in whih every bond that does not have both endpoints inA is made vaant. We adopt the onvenient onvention that fx ! x in Ag ours if andonly if x 2 A.(iii) Given a bond on�guration and x 2 �, we de�ne C(x) to be the set of verties to whihx is onneted, i.e., C(x) = fy 2 � : x ! yg. Given a bond on�guration and a bond b,we de�ne ~Cb(x) to be the set of verties y 2 C(x) to whih x is onneted in the (possiblymodi�ed) on�guration in whih b is made vaant.We will often use the following easily veri�ed rules for ours in:fE in Bg \ fF in Bg = fE \ F in Bg; (2.3)fE in Bg [ fF in Bg = fE [ F in Bg; (2.4)fE in Bg = fE in Bg: (2.5)Equations (2.3){(2.5) imply that \ours in" is well behaved under set operations.The following Fatorisation Lemma lies at the heart of the expansion method.1 We write I[E℄for the indiator funtion of an event E.Lemma 2.2 (Fatorisation Lemma). Fix p 2 [0; kDk�11 ℄, a bond (u; v), a vertex y, a positiveinteger n, and events E; F whih depend only on the status of bonds whose verties have timevariables at most n. ThenE�I[E in ~C(u;v)(y); F in �n ~C(u;v)(y)℄� = E 0�I[E in ~C(u;v)0 (y)℄E 1�I[F in �n ~C(u;v)0 (y)℄��: (2.6)Moreover, when E � fu 2 ~C(u;v)(y); v 62 ~C(u;v)(y)g, the event on the left-hand side of (2.6) isindependent of the oupation status of (u; v).1Some versions of Lemma 2.2 published previously [5, 6, 13℄ ontain non-essential errors. However, on eahoasion in these papers where the Fatorisation Lemma has been applied, the laimed fatorisation does in fathold.
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Proof. Beause of our assumption on the events E and F , we an replae the set ~C(u;v)(y) in (2.6)by its restrition to verties whih are endpoints of bonds whose verties have time variables atmost n (i.e., we set all other bonds to be vaant). We denote this restrition by ~C(u;v)n (y), andnote that this is a �nite set with probability 1. The proof proeeds by onditioning on ~C(u;v)n (y).We emphasize that ~C(u;v)n (y) is a set of verties. Thus, ~C(u;v)n (y) = S does not determine theoupation status of all the bonds b with both verties in S. The left-hand side of (2.6) equalsXS P�fE in Sg \ fF in �nSg��� ~C(u;v)n (y) = S�P� ~C(u;v)n (y) = S�; (2.7)where the sum over S is over �nite subsets of � ontaining y.By De�nition 2.1(ii), the event fE in Sg depends only on bonds with both endpoints in S,while the event fF in �nSg depends only on bonds with both endpoints in �nS. The latter isequivalent to saying that fF in �nSg depends only on bonds that have no endpoints in S. Thus,by the independene of the bond variables, we obtain thatP�fE in Sg \ fF in �nSg��� ~C(u;v)n (y) = S� (2.8)= P�E in S��� ~C(u;v)n (y) = S�P�F in �nS��� ~C(u;v)n (y) = S�:Moreover, the event f ~C(u;v)n (y) = Sg depends only on bonds that have at least one endpoint in S.Therefore, for �xed S, the events fF in �nSg and f ~C(u;v)n (y) = Sg are independent, and heneP�F in �nS��� ~C(u;v)n (y) = S� = P(F in �nS): (2.9)Thus, we obtainP�fE in Sg \ fF in �nSg��� ~C(u;v)n (y) = S� = P0�E in S��� ~C(u;v)n (y) = S�P1�F in �nS�; (2.10)where we have added subsripts to the probabilities on the right-hand side to distinguish thedi�erent expetations. We substitute (2.10) into (2.7), perform the sum over S, and replae ~Cn by~C, to get (2.6).Finally, when E � fu 2 ~C(u;v)(y); v 62 ~C(u;v)(y)g, the event on the left-hand side of (2.6) isindependent of the oupation status of the bond (u; v). For fE in ~C(u;v)(y)g, this is beausev 62 ~C(u;v)(y), and, for fF in �n ~C(u;v)(y)g, it is beause u 2 ~C(u;v)(y).Although we do not need it here, we note that Lemma 2.2 also applies (both for oriented andunoriented perolation) to arbitrary events E and F , if we replae the assumption that E and Fare determined by bonds lying below n by the assumption that Pp(jC(0)j =1) = 0.We will refer to a bond (u; v) to whih we an e�etively apply Lemma 2.2 as a utting bond.In the nested expetation on the right-hand side of (2.6), the set ~C(u;v)0 (y) is random with respetto the outer expetation, but deterministi with respet to the inner expetation. We have addeda subsript \0" to ~C(u;v)0 (y) and subsripts \0" and \1" to the expetations on the right-hand sideof (2.6) to emphasize this distintion. The inner expetation on the right-hand side e�etivelyintrodues a seond perolation model on a seond lattie, whih is oupled to the �rst perolationmodel via the set ~C(u;v)0 (y). 9



0
n

Figure 1: Shemati representation of the event 0! n as a string of sausages.3 The linear termIn this setion, we prove (1.28) by expanding the survival probability to linear order. In Setion 3.1,we de�ne pivotal bonds, and rewrite events dealing with pivotal bonds using De�nition 2.1. InSetion 3.2, we perform a �rst expansion step, and in Setion 3.3, we iterate this expansion stepinde�nitely to obtain (1.28).3.1 Pivotal bondsDe�nition 3.1. (i) Given a bond on�guration, we say that x is doubly onneted to y, writtenx =) y, if there are at least two bond-disjoint paths from x to y onsisting of oupiedbonds. By onvention, we say that x =) x for all x. Similarly, we say that y is doublyonneted to n, and write y =) n, if there exist x1; x2 2 Zd (possibly equal) and twobond-disjoint paths from y to (x1; n) and (x2; n).(ii) Given a bond on�guration, we say that a bond is pivotal for x! y if x! y in the (possiblymodi�ed) on�guration in whih the bond is made oupied, whereas x is not onneted toy in the (possibly modi�ed) on�guration in whih the bond is made vaant. Similarly, wesay that a bond is pivotal for y ! n if y ! n in the (possibly modi�ed) on�guration inwhih the bond is made oupied, whereas y is not onneted to n in the (possibly modi�ed)on�guration in whih the bond is made vaant.The set of pivotal bonds for x ! y or y ! n is ordered in time, whih allows us to speakabout the �rst pivotal bond having a ertain property. We an visualize a on�guration where0 ! n as onsisting of a string of sausages, the strings representing the pivotal bonds, and thesausages the parts of the luster of 0 that are separated by the pivotal bonds. See Figure 1 for ashemati representation of the event 0! n as a string of sausages.In terms of De�nitions 2.1 and 3.1, we have a haraterization of a pivotal bond for v ! y asf(u0; v0) pivotal for v ! yg = nv ! u0 in ~C(u0;v0)(v)o \ nv0 ! y in �n ~C(u0;v0)(v)o: (3.1)Similarly, we have a haraterization of a pivotal bond for v ! n asf(u0; v0) pivotal for v ! ng = nfv ! u0g \ fv ! ng in ~C(u0;v0)(v)o \ nv0 ! n in �n ~C(u0;v0)(v)o:(3.2)The right-hand sides of (3.1){(3.2) are onvenient for appliation of the Fatorisation Lemma 2.2.10
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Figure 2: (a) Shemati representation of the event E 0(v;x;A). The intersetion of A with thefourth sausage is optional, while the intersetion with the sixth is required. (b) Shemati repre-sentation of the event F 0n(v;A). The intersetion of A with the third sausage is optional, while theother intersetion is required.3.2 The �rst expansion stepThe following de�nition will be ruial throughout the expansion.De�nition 3.2. Given a bond on�guration and a set A � �, we say that y is onneted to xthrough A, and write y A! x, if every oupied path onneting y to x has at least one bond withan endpoint in A. By onvention, x A! x holds if and only if x 2 A. Similarly, we say that y isonneted to n through A, and write y A! n, if every oupied path onneting y to a vertex inZd � fng has at least one bond with an endpoint in A, or if y 2 (Zd � fng) \ A.It will be onvenient to expand not only �n, but also the generalised survival probability P(v A�!n) for a �xed vertex v and set of verties A. We note that, with 0 = (0; 0), we haveP(0 f0g��! n) = �n: (3.3)To analyze P(v A�! n), we de�ne the eventsE 0(v;x;A) = fv A! xg \ f� pivotal bond (u0; v0) for v ! x suh that v A! u0g; (3.4)F 0n(v;A) = fv A! ng \ f� pivotal bond (u0; v0) for v ! n suh that v A! u0g; (3.5)whih are depited shematially in Figure 2.Given a on�guration in whih v A�! n, the utting bond (u0; v0) is de�ned to be the �rstoupied and pivotal bond for v ! n suh that v A�! u0. It is possible that no suh bond exists.By partitioning fv A! ng aording to the loation of the utting bond (or the lak of a uttingbond), we obtain the deomposition given in the following lemma. Here and elsewhere, we write_[ for a disjoint union.Lemma 3.3 (The partition). For any v 2 �; A � �; n � 0,fv A! ng = F 0n(v;A) _[ �[(u0;v0) hE 0(v;u0;A) \ f(u0; v0) oupied and pivotal for v ! ngi: (3.6)11



Proof. We deompose the event fv A! ng depending on whether there is a utting bond or not.The event F 0n(v;A) is the ontribution where suh a utting bond does not exist. Otherwise, let(u0; v0) be the utting bond. Then, (u0; v0) is oupied and pivotal for v ! n and fv A�! u0g holds.Moreover, there annot be a previous pivotal bond satisfying the same requirements. The latteris equivalent to the statement that, for all b that are oupied and pivotal for v ! u0, the eventfv A! bg annot hold. Therefore, E 0(v;u0;A) holds.De�ne (0)n (v;A) = P(F 0n(v;A)): (3.7)Then (3.6) implies thatP(v A! n) = (0)n (v;A) + X(u0;v0)P(E 0(v;u0;A) \ f(u0; v0) oupied and pivotal for v ! ng): (3.8)We next note that the event that b is pivotal for v ! n is independent of the oupation statusof the bond b. Moreover, also E 0(v;u0;A) is independent of the oupation status of the bond(u0; v0), due to the orientation. Therefore, (3.8) beomesP(v A! n) = X(u0;v0) Ju0;v0P(E 0(v;u0;A) \ f(u0; v0) pivotal for v ! ng) + (0)n (v;A); (3.9)where we make the abbreviation J(u;m);(v;n) = pD(v � u)Æn;m+1: (3.10)We note that, by the orientation of the bonds, the event E 0(v;u0;A) is independent of thebonds above u0, so that E 0(v;u0;A) = fE 0(v;u0;A) in ~C(u0;v0)(v)g: (3.11)We use (3.2), together with (3.11) and (2.3), to rewrite the event on the right-hand side of (3.9)as E 0(v;u0;A) \ f(u0; v0) pivotal for v ! ng (3.12)= nnE 0(v;u0;A) \ fv ! ngo in ~C(u0;v0)(v)o \ fv0 ! n in �n ~C(u0;v0)(v)g:Using Lemma 2.2, we obtain from (3.9) and (3.12) the important rewriteP(v A! n) = X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A) \ fv ! ngg in ~C(u0;v0)0 (v)℄� P1�v0 ! n in �n ~C(u0;v0)0 (v)��+ (0)n (v;A): (3.13)We next use the inlusion-exlusion relationI[fv ! ng℄ = 1� I[fv ! ng℄; (3.14)12



whih brings us toP(v A! n) = X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A)g℄P1�v0 ! n in �n ~C(u0;v0)0 (v)��+ (0)n (v;A)� �(0)n (v;A); (3.15)where�(0)n (v;A) = X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A) \ fv ! ngg in ~C(u0;v0)0 (v)℄P1�v0 ! n in �n ~C(u0;v0)0 (v)��:(3.16)We have omitted \in ~C(u0;v0)0 (v)" in the sum in (3.15), whih is possible due to (3.11).Finally, let �n(v) = P(v ! n). Then, for every A � �,P(v ! n in �nA) = �n(v)� P(v A�! n): (3.17)If we de�ne �(0)(v;x;A) = P�E 0(v;x;A)�; (3.18)then (3.15) and (3.17) yield the identityP(v A! n) = (0)n (v;A)� �(0)n (v;A) + X(u0;v0) Ju0;v0�(0)(v;u0;A)�n(v0)� X(u0;v0) Ju0;v0E 0�I[E 0(v;u0;A)℄P1�v0 ~C(u0;v0)0 (v)������! n��: (3.19)This ompletes the �rst expansion step.3.3 IterationIn the right-hand side of (3.19), we again see a term of the form P1(v A�! n), but now withA = ~C(u0;v0)0 (v) and with v replaed by v0. Thus, we an iterate (3.19). To write down thisiteration, we �rst de�ne, for any random variable X,M (1)v;y;A(X) = E 0�I[E 0(v;y;A)℄X�: (3.20)For N � 2, we de�ne M (N)v;y;A(X) reursively byM (N)v;y;A(X) = X(uN�2;vN�2)JuN�2;vN�2M (N�1)v;uN�2;A�M (1)vN�2;y; ~CN�2(X)�; (3.21)where, for j � 0, we make the abbreviation ~Cj = ~C(uj ;vj)j (vj�1), with v�1 = v, and where theexpetation ourring in M (1)vN�2;y; ~CN�2(X) is labelled N � 1. For example, when N = 2, X = 1,v = 0, and A = f0g,M (2)0;y;f0g(1) = X(u0;v0) Ju0;v0E 0�I[E 0(0;u0; f0g)℄E 1�I[E 0(v0;y; ~C0)℄��: (3.22)13



Note that, by (3.4), E 0(0;u0; f0g) = f0 =) u0g: (3.23)Aording to [13, Equation (3.25)℄, the oeÆients of the lae expansion for the two-point funtionin (1.13) are given in terms of the above notation by�m = 1XN=0(�1)N�(N)m ; (3.24)with, for N � 0, �(N)m = Xy2Zd�(N)m (y); �(N)m (y) =M (N+1)0;(y;m);f0g(1): (3.25)Note that here we adopt the onvention that �(0)m (y) = P(0 =) (y;m)), rather than the onvention�(0)m (y) = P(0 =) (y;m))� Æ0;mÆ0;y used in [13℄.We de�ne, for N � 1,(N)n (v;A) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�(0)n (vN�1; ~CN�1)� (3.26)with (0)n (v;A) de�ned in (3.7), and, for N � 1,�(N)(v;x;A) =M (N+1)v;x;A(1); (3.27)�(N)n (v;A) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A��(0)n (vN�1; ~CN�1)�; (3.28)with �(0)(v;x;A) and �(0)n (v;A) de�ned in (3.18) and (3.16). We let�(N)n (v;A) = (N)n (v;A)� �(N)n (v;A): (3.29)We omit the supersript \(N)" to denote the alternating sum over N , e.g.,�(v;x;A) = 1XN=0(�1)N�(N)(v;x;A); (3.30)�n(v;A) = 1XN=0(�1)N�(N)n (v;A): (3.31)In the speial ase v = 0 and A = f0g, we omit the variables v and A and write�(x) = �(0;x; f0g); �n = �n(0; f0g); n = n(0; f0g); �n = �n(0; f0g); (3.32)and similarly for �(N)(x); �(N)n ; (N)n and �(N)n . In partiular, (0)n = P(0 =) n). A shematirepresentation of �(N)(x) for N = 0; 1 is depited in Figure 3, and shemati representations of(N)n and �(N)n for N = 0; 1 are depited in Figures 4 and 5.The result of the �rst expansion is given in the following proposition. Reall that �n(v) wasde�ned above (3.17).Proposition 3.4 (The linear term). For all v 2 �, A � �, n � 1,P(v A! n) = X(u0;v0) �(v;u0;A)Ju0;v0�n(v0) + �n(v;A): (3.33)14
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0Figure 4: Shemati representation of (N)n for N = 0; 1. For (1)n , the bold and thin lines orrespondto di�erent expetations.Proof. The identity (3.19) an be rewritten, using (3.20), (3.27), and (3.29), asP(v A! n) = X(u0;v0) Ju0;v0M (1)v;u0;A(1)�n(v0) + �(0)n (v;A)� X(u0;v0) Ju0;v0M (1)v;u0;A�P1(v0 ~C0�! n)�: (3.34)Realling (3.27), we see that the �rst line on the right-hand side of (3.34) is equal to the N = 0ontribution to the right-hand side of (3.33). We will iterate (3.34) to obtain (3.33). For this, itis useful to note that a shift of indies in (3.21) givesX(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (1)vN�1;uN ; ~CN�1(X)� =M (N+1)v;uN ;A(X): (3.35)For N � 1, it follows from (3.34){(3.35), together with (3.26){(3.29) and the linearity of X 7!

15



�(0)n 0
n

0�(1)n
n

Figure 5: Shemati representation of �(N)n for N = 0; 1. For �(0)n there are two distint expetations,and for �(1)n there are three.M (N)v;uN�1 ;A(X), that X(uN�1;vN�1) JuN�1;vN�1M (N)v;uN�1;A�PN(vN�1 ~CN�1���! n)� (3.36)= X(uN ;vN )JuN ;vN�(N)n (v;uN ;A)�n(vN) + �(N)n (v;A)� X(uN ;vN )JuN ;vNM (N+1)v;uN ;A�PN+1(vN ~CN��! n)�:We use (3.36) in (3.34) repeatedly until the last term vanishes. This must happen before N = n+1,beause the time variable of vN is stritly larger than the time variable of vN�1, and the last termis zero when the time variable of vN exeeds n.Aording to (3.25) and (3.27), �(y) is equal to the oeÆient �m(y) of the lae expansion forthe two-point funtion, where y = (y;m). We use the notation �m(y) and �m = Py �m(y) whenwe wish to emphasize the role of the time variable. Sine �n(y;m) = �n�m for every y 2 Zd, andsine Pv0 Ju0;v0 = p by (3.10), (3.33) redues in this speial ase to to�n = n�1Xm=0 �mp�n�1�m + �n: (3.37)This proves (1.28), and we have extrated the linear term in the expansion for �n.Finally, for future referene, we prove the reursion relationM (N+M)v;y;A (X) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (M)vN�1;y; ~CN�1(X)�; (3.38)valid for M;N � 1. The proof is by indution on M . We �rst note that (3.38) holds for all N � 1when M = 1, sine in this ase it is idential to (3.35). We assume as indution hypothesis thatM (N+M�1)v;uN ;A (Y ) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (M�1)vN�1;uN ; ~CN�1(Y )�; (3.39)16



holds for all N � 1. To advane the indution, we substituteY = X(uN ;vN )JuN ;vNM (1)vN ;y; ~CN (X) (3.40)into (3.39). By (3.35), the left-hand side equals M (N+M)v;y;A (X), while the right-hand side equals theright-hand side of (3.38). This advanes the indution hypothesis, and proves (3.38).4 The quadrati term: The �rst expansion for �nIn (3.37), we have established the identity�n = n�1Xm=0 �mp�n�1�m + �n: (4.1)To prove the identity (1.17) of Theorem 1.1(i), we will show that�(N)n = � bn=2Xm1=1 nXm2=m1 �(N)m1;m2�n�m1�n�m2 + e(N)n ; (4.2)where �(N)m1;m2 are ertain expansion oeÆients, and e(N)n is an error term. The desired result (1.17)then follows from (4.1){(4.2), withen = 1XN=0(�1)Ne(N)n ; �m1;m2 = 1XN=0(�1)N�(N)m1;m2 : (4.3)In this setion, we will go part way to proving (4.2), by showing that�(N)n = � bn=2Xm1=1�(N)m1;n�n�m1 + e(N)n (1) + e(N)n (2) + e(N)n (3): (4.4)The oeÆients �(N)m1;n and the error terms e(N)n (1); e(N)n (2); e(N)n (3) are de�ned in Setion 4.2 below.The proof of (4.2) will then be ompleted in Setion 5, via an expansion for �(N)m1;n.Reall from (3.29) that �(N)n = (N)n � �(N)n , where (N)n and �(N)n are de�ned in terms of (0)nand �(0)n in (3.26) and (3.28). We begin in Setion 4.1 with an analysis of �(N)n , and ontinue inSetion 4.2 with (N)n . Setion 4.3 ontains the proof of a key proposition involving an importantset PA introdued in Setion 4.2. Finally, in Setion 4.4, we prepare for an analysis of error terms.4.1 The �rst expansion for �nFor A;B � �, we de�ne�(0)n (v;A;B) = X(u0;v0)Ju0;v0E 0�I[E 0(v;u0;B) \ fv A�! ng in ~C0℄��n(v0)� P1(v0 ~C0�! n)��; (4.5)
17



where as usual ~C0 = ~C(u0;v0)0 (v). By (3.16){(3.17), and the fats that fv fvg��! ng = fv ! ng andfv0 62 ~C(u0;v0)0 (v)g = ffv0 62 ~C(u0;v0)0 (v)g in ~C(u0;v0)0 (v)g, we have�(0)n (v;A) = �(0)n (v; fvg; A): (4.6)We write mv for the time oordinate of a vertex v, and de�ne�m(v;A) = Æm;mv � p Xy2Zd�(v; (y;m� 1);A); (4.7)�(0)m;n(v;A;B) = X(u0;v0)Ju0;v0E 0�I[E 0(v;u0;B) \ fv A�! ng in ~C0℄�m(v0; ~C0)�; (4.8)e(0)n (v;A;B) = � X(u0;v0)Ju0;v0E 0�I[E 0(v;u0;B) \ fv A�! ng in ~C0℄�n(v0; ~C0)�: (4.9)Lemma 4.1. For n � 1, v 2 � and A;B � �,�(0)n (v;A;B) = nXm1=1 �(0)m1;n(v;A;B)�n�m1 + e(0)n (v;A;B): (4.10)Proof. We use Proposition 3.4 to extrat one fator of �n�m1 from the fator �n(v0)�P1(v0 ~C0�! n)in �(0)n (v;A;B). Expliitly,�n(v0)� P1(v0 ~C0�! n) = �n(v0)� X(u1;v1)Ju1;v1�(v0;u1; ~C0)�n(v1)� �n(v0; ~C0)=Xm1 �m1(v0; ~C0)�n�m1 � �n(v0; ~C0); (4.11)using (4.7) in the seond equality. Substitution into (4.5) gives (4.10).We use the abbreviations�(0)m;n(A) = �(0)m;n(0;A; f0g); e(0)n (A) = e(0)n (0;A; f0g); (4.12)and, for N � 1, we de�ne�(N)m;n(A) = X(uN�1;vN�1)JuN�1 ;vN�1M (N)0;uN�1;f0g��(0)m;n(vN�1;A; ~CN�1)�; (4.13)e(N)n (A) = X(uN�1;vN�1)JuN�1 ;vN�1M (N)0;uN�1;f0g�e(0)n (vN�1;A; ~CN�1)�: (4.14)An abuse of notation: It will be onvenient in what follows to make an abuse of notation in whihwe write, e.g., �(N)m1;n(fvN�1g) to denote the result of setting A = fvN�1g in (4.13). The variablevN�1 is the summation index, so that �(N)m1;n(fvN�1g) does not atually depend on vN�1. Also, wewill use the onvention v�1 = 0; ~C�1 = f0g: (4.15)With the above abuse of notation, the following proposition gives the �rst expansion for �(N)n .18



Proposition 4.2 (The �rst expansion for �n). For n � 1 and N � 0,�(N)n = nXm1=1 �(N)m1;n(fvN�1g)�n�m1 + e(N)n (fvN�1g): (4.16)Proof. By (4.6) and Lemma 4.1, we obtain�(0)n (v;A) = nXm1=1 �(0)m1;n(v; fvg; A)�n�m1 + e(0)n (v; fvg; A): (4.17)The identity (4.16) then follows by substitution of (4.17) into (3.28), using (4.13){(4.14) with theabuse of notation.For N � 1, we note for future referene that�(N)m;n(A) = X(uN ;vN )JuN ;vNM (N+1)0;uN ;f0g�I[vN�1 A�! n in ~CN ℄�m(vN ; ~CN)�; (4.18)e(N)n (A) = �X(uN ;vN )JuN ;vNM (N+1)0;uN ;f0g�I[vN�1 A�! n in ~CN ℄�n(vN ; ~CN)�; (4.19)where, in the last equality, we have used (4.9) (with (uN ; vN) instead of (u0; v0)), (3.20), and (3.35).In addition, we have repeated our abuse of notation, sine the variable vN�1 is summed over inthe de�nition of M (N+1)0;uN ;f0g (see (3.21)). For N = 0, realling (4.12), we see that the equalities in(4.18) and (4.19) also hold, using the onvention (4.15).4.2 The �rst expansion for nIn this setion, we derive the �rst expansion for n. This requires a new onept: the importantset PA.Throughout the remainder of the paper, given a bond b = ((x; n); (y; n + 1)), we will writeb = (y; n + 1) for its \top" and b = (x; n) for its \bottom." Given a vertex v, a non-negativeinteger n, and a subset A � �, we de�ne the random set of bonds PA byPA = nbonds b ��� E 0(v; b;A) \ fb oupiedg \ fb! n in �n ~Cb(v)go: (4.20)Thus PA onsists of those oupied bonds b suh that E 0(v; b;A) ours (see Figure 2(a)) andthe top of b is onneted to n in the omplement of ~Cb(v). By deomposing the event F 0n(v;A)aording to the size of PA, and using (3.7), we obtain(0)n (v;A) = P(F 0n(v;A))= P�F 0n(v;A) \ fPA = ?g�+ 1Xl=1 1l Xb P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�= 12Xb P�F 0n(v;A) \ fb 2 PAg�+ e(0)n (v;A); (4.21)19



wheree(0)n (v;A) = P�F 0n(v;A) \ fPA = ?g�+ 1Xl=1(1l � 12)Xb P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�: (4.22)We also de�ne, for N � 1,e(0)n (1) = e(0)n (0; f0g) (4.23)e(N)n (1) = X(uN�1;vN�1)JuN�1;vN�1M (N)0;uN�1;f0g�e(0)n (vN�1; ~CN�1)�: (4.24)The following proposition, whose proof is deferred to Setion 4.3, is a ruial ingredient in the�rst expansion for n. Proposition 4.3 derives its name \the �rst utting bond" from the fat thatthe bond b in PA will serve as the utting bond in Proposition 4.4.Proposition 4.3 (The �rst utting bond). For A � �, v 2 �, n � 1 and b,F 0n(v;A) \ fb 2 PAg = nE 0(v; b;A) \ fv A�! ng in ~Cb(v)o \ fb o.g \ nb! n in �n ~Cb(v)o:(4.25)The following proposition, whose proof uses Proposition 4.3, gives the result of the �rst expan-sion for n. On the right-hand side of (4.26), there is again an abuse of notation: when we putA = ~CN�1 in (4.13){(4.14), the quantities �(N)m1;n( ~CN�1) and e(N)n ( ~CN�1) do not atually depend on~CN�1 (this random set is integrated over).Proposition 4.4 (The �rst expansion for n). For n � 1 and N � 0,(N)n = 12 nXm1=1 �(N)m1;n( ~CN�1)�n�m1 + 12e(N)n ( ~CN�1) + e(N)n (1): (4.26)Proof. By (4.21), Proposition 4.3, and the independene stated in Lemma 2.2,(0)n (v;A) = 12 X(u0;v0)Ju0;v0E�I[E 0(v;u0;A) \ fv A�! ng in ~C0℄I[v0 ! n in �n ~C0℄� (4.27)+ e(0)n (v;A):By Lemma 2.2, (3.17), and (4.5), this implies that(0)n (v;A) = 12�(0)n (v;A;A) + e(0)n (v;A): (4.28)By Lemma 4.1, (4.15) and (3.32), this proves (4.26) for N = 0. For N � 1, we substitute (4.28)for (0)n (vN�1; ~CN�1) in (3.26). The desired result then follows from (4.13){(4.14) and (4.24).To ombine the expansions for �n and n given in Propositions 4.2 and 4.4 into a �rst expansionfor �(N)n , we introdue the following notation. Let�(N)m;n = �(N)m;n(fvN�1g)� 12�(N)m;n( ~CN�1); (4.29)e(N)n (2) = 12e(N)n ( ~CN�1)� e(N)n (fvN�1g); (4.30)e(N)n (3) = � nXm1=bn=2+1 �(N)m1;n�n�m1 : (4.31)20
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Figure 6: Shemati representation of the event F 0n(v;A) \ fb 2 PAg.Corollary 4.5 (The �rst expansion for �n). For n � 0 and N � 0,�(N)n = � bn=2Xm1=1�(N)m1;n�n�m1 + e(N)n (1) + e(N)n (2) + e(N)n (3): (4.32)Proof. Sine �(N)n = (N)n � �(N)n by (3.29), we an ombine the onlusions of Propositions 4.2 and4.4 with (4.29){(4.30) to arrive at�(N)n = � nXm1=1 �(N)m1;n�n�m1 + e(N)n (1) + e(N)n (2): (4.33)Then (4.32) follows from (4.31).4.3 Proof of Proposition 4.3The proof is divided into 2 steps. See Figure 6 for a shemati representation of the event F 0n(v;A)\fb 2 PAg.Step 1: The left-hand side of (4.25) is a subset of the right-hand side of (4.25). Supposethat the left-hand side of (4.25) ours. It is lear from (4.20) that all the events on the right-handside of (4.25) our, apart from the event fv A�! n in ~Cb(v)g. To see that fv A�! n in ~Cb(v)gours, note from (3.5) that F 0n(v;A) implies that fv A�! ng. Also, by (4.20), b ! b ! n on theleft-hand side of (4.25). Sine F 0n(v;A) ours and v A�! b, it follows from (3.5) that b annot bepivotal for v ! n. Thus fv ! n in ~Cb(v)g must our. Sine v A�! n, every oupied path v ! nmust ontain an element in A, in partiular the paths in ~Cb(v). We onlude that fv A�! n in~Cb(v)g. This proves that the left-hand side of (4.25) is a subset of the right-hand side.Step 2: The right-hand side of (4.25) is a subset of the left-hand side of (4.25). Supposethat the right-hand side of (4.25) ours. Then b 2 PA by the de�nition of PA in (4.20). It remainsto hek that F 0n(v;A) ours. To ahieve this, we need to verify that (a) v A�! n, and (b) the \noprevious pivotal" ondition in (3.5) holds (i.e., there does not exists a b0 whih is oupied andpivotal for v ! n suh that v A�! b0). 21



For (a), we note that sine v A�! n in ~Cb(v), all onnetions that do not use the bond b arethrough A. Thus, we need only investigate the onnetions that do use the bond b. But (3.11)implies that v A�! b, so the onnetions using the bond b are indeed through A, and hene v A�! n.We are left to hek (b). We �rst note that if b0 is pivotal for v ! n on the right-hand side of(4.25), then b0 is also pivotal for v ! b. Indeed, suppose that after removal of b0, the onnetionv ! b still ours. The bond b0 annot equal b sine v ! n in ~Cb(v), so that b is not pivotal forv ! n, whereas b0 is. Thus, sine b0 is pivotal for v ! n, the removal of b0 must destroy bothonnetions v ! n in ~Cb(v) and b! n in �n ~Cb(v), whih is impossible.To prove (b), we need to show that if b0 is pivotal for v ! n, then v is not onneted to b0through A. Let b0 be pivotal for v ! n. Then, as noted above, b0 is also pivotal for v ! b. By(3.11) and the seond event in (3.4), fv A�! b0g must our. This proves (b) and ompletes theproof.4.4 Preparation for bounds on e(0)n (v;A)In this setion, we set the stage for the diagrammati estimates of Setion 8, by proving estimatesfor the error term e(0)n (v;A) of (4.22). We begin by making the deompositione(0)n (v;A) = e(0)n (v;A; 1) + e(0)n (v;A; 2) + e(0)n (v;A; 3); (4.34)where e(0)n (v;A; 1) = P�F 0n(v;A) \ fPA = ?g�+ 12P�F 0n(v;A) \ fjPAj = 1g�; (4.35)e(0)n (v;A; 2) = Xb�bn2 +1 1Xl=3(1l � 12)P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�; (4.36)e(0)n (v;A; 3) = Xb�bn2  1Xl=3(1l � 12)P�F 0n(v;A) \ fb 2 PAg \ fjPAj = lg�; (4.37)and where we abuse notation by writing b � m for the sum over bonds b suh that mb � m (reallthat mb denotes the temporal omponent of b). Thenje(0)n (v;A; 1)j � P�F 0n(v;A) \ fjPAj � 1g�; (4.38)je(0)n (v;A; 2)j � 12 Xb�bn2 +1 P�E 0(v; b;A) \ fb! ng�; (4.39)je(0)n (v;A; 3)j � 12 Xb�bn2 P�F 0n(v;A) \ fb 2 PAg \ fjPAj � 3g�; (4.40)using Proposition 4.3 in (4.39). We onsider these three quantities in sequene in Setions 4.4.1{4.4.3.4.4.1 Estimate for e(0)n (v;A; 1)To prove that e(0)n (v;A; 1) produes an error term, we will use the following proposition.22



Proposition 4.6. For v 2 �, A � � and n � 1,F 0n(v;A) \ fjPAj � 1g � [x2ZdE 0(v; (x; n);A): (4.41)Proof. By partitioning (3.5) aording to the last pivotal bond for the onnetion v ! n, we maywriteF 0n(v;A) = fv A=) ng _[ _[b �fb o. and piv. for v ! ng \ fv A! bg \ fb A=) ng�; (4.42)where fv A=) ng = fv A�! ng \ fv =) ng. We de�ne v0 by setting v0 = v when the �rst event onthe right-hand side of (4.42) ours, and v0 = b otherwise.Suppose that F 0n(v;A) \ fjPAj � 1g ours. There must be x; y suh that v0 is disjointlyonneted through A to (x; n) and (y; n). Due to these disjoint onnetions, no pivotal bond forv0 ! (x; n) an also be pivotal for v0 ! (y; n). Sine jPAj � 1, we may therefore assume withoutloss of generality that among the pivotal bonds for v0 ! (x; n) (if there are any) there is no elementof PA.Aording to (3.4), it suÆes to show that there is no pivotal bond b0 for v ! (x; n) suhthat v A�! b0, sine this implies that E 0(v; (x; n);A) ours. We will establish that this suÆientondition holds, by arguing by ontradition.Suppose that b0 is pivotal for v ! (x; n) and that v A�! b0. Then there must be a �rst suhpivotal bond, whih, we laim, is an element of PA. Indeed, sine b0 is pivotal for v ! (x; n), itfollows from (3.1) that b0 is oupied, E 0(v; b0;A) ours, and b0 ! (x; n) ours in �n ~Cb(v). Thisshows that b0 2 PA.By de�nition of v0, the pivotal bonds for v ! (x; n) inlude the pivotal bonds for v0 ! (x; n).The latter inlude no element of PA, so b0 must lie below v0 (and hene v0 6= v). This then impliesthat b0 is oupied and pivotal for v ! v0. However, by (4.42), the latter implies that fv A�! b0gours. This ontradits the assumption that v A�! b0, and ompletes the proof.4.4.2 Estimate for e(0)n (v;A; 2)The right-hand side of (4.39) is already simple and nothing more is required at this stage.4.4.3 Estimate for e(0)n (v;A; 3)We prove three lemmas, Lemmas 4.7{4.9 below, before proving the main estimate in Proposi-tion 4.10 below.Lemma 4.7. If b 2 PA, then there exists an x 2 Zd suh that b is oupied and pivotal forv ! (x; n).Proof. The de�nition of PA in (4.20) implies that v ! b ours in ~Cb(v), while b ! n ours in�n ~Cb(v). Therefore, there exists an x 2 Zd for whih b! (x; n) ours in �n ~Cb(v). By (3.1), thisproves the laim.For two bonds b and b0, we write b � b0 when their temporal omponents obey mb � mb0 .23



Lemma 4.8. For b0 � b and b0 6= b,fb; b0 2 PAg � ffb0 2 PAg in ~Cb(v)g: (4.43)Proof. We �rst note that if b and b0 are distint elements of PA, then it is not possible that b = b0.Indeed, by Lemma 4.7 there is an x suh that b is pivotal for v ! (x; n). But if b0 = b then itfollows from the fat that b0 2 PA that there is a onnetion from v to b via b0 that persists afterb is made vaant, and this means that b annot be pivotal for v ! (x; n). Thus we may assumethat b 6= b0.Sine b0 2 PA, we have that (a) fb0 is oupiedg ours, (b) E 0(v; b0;A) ours, and () fb0 ! nin �n ~Cb0(v)g ours. The event fb0 is oupiedg also ours in ~Cb(v) sine b 6= b0, and the eventE 0(v; b0;A) also ours in ~Cb(v) sine b0 � b and b 6= b0. It remains to show that the event�nb0 ! n in �n ~Cb0(v)o in ~Cb(v)� (4.44)ours. We show that (4.44) ours by interseting with the events (i) fb0 ! b in �n ~Cb0(v)g, and(ii) fb0 ! b in �n ~Cb0(v)g, whih we refer to as ases (i) and (ii).On the event (i),�nb0 ! n in �n ~Cb0(v)o in ~Cb(v)� = nb0 ! n in �n ~Cb0(v)o; (4.45)sine making b vaant does not hange C(b0) \ (�n ~Cb0(v)), and b0 ! n in �n ~Cb0(v) is determinedby C(b0) \ (�n ~Cb0(v)). But the right-hand side of (4.45) ours by () above, and hene (4.44)ours.We omplete the proof by showing that ase (ii) is empty, arguing by ontradition. Supposethat b; b0 2 PA and that b0 ! b ours in �n ~Cb0(v). Then E 0(v; b;A) ours sine b 2 PA, andv A�! b0 ours sine b0 2 PA. Sine E 0(v; b;A) \ fv A�! b0g ours, b0 annot be pivotal for v ! b.Sine v ! b, we onlude that b 2 ~Cb0(v). However, when b0 ! b in �n ~Cb0(v), either b 2 �n ~Cb0(v)or b0 = b. In the latter ase, sine b0 2 PA, it follows from Proposition 4.3 that b = b0 62 ~Cb0(v).Therefore b 2 �n ~Cb0(v) in either ase, whih ontradits b 2 ~Cb0(v) and ompletes the proof.Lemma 4.9. For v 2 �, A � �, n � 0,fv A�! ng \ fjPAj � 2g � F 0n(v;A): (4.46)Proof. By Lemma 3.3,fv A! ng \ fjPAj � 2g = �F 0n(v;A) \ fjPAj � 2g� (4.47)_[ �[b hE 0(v; b;A) \ fb o. and piv. for v ! ng \ fjPAj � 2gi:It suÆes to show that the ontribution from the union over b is empty. For this, it suÆes toshow that if E 0(v; b;A) \ fb o. and piv. for v ! ng ours, then PA = fbg.To prove the latter statement, assume that E 0(v; b;A) \ fb o. and piv. for v ! ng ours.Then learly b 2 PA, sine all the events in (4.20) our by (3.2). Also, if b0 2 PA, then the event24



E 0(v; b0;A) ours, and, by Lemma 4.7, b0 is oupied and pivotal for v ! (x; n) for some x 2 Zd.Therefore, b0 is the �rst oupied and pivotal bond for v ! (x; n) for whih v A�! b0. However,sine E 0(v; b;A) \ fb o. and piv. for v ! ng ours, b is the �rst oupied and pivotal bond forv ! (x; n) suh that v A�! b for all x 2 Zd for whih v ! (x; n). Therefore, b0 = b.To formulate the next proposition, we de�neP (3)A = fb 2 PA : 9b1; b2 2 PA n fbg suh that b1 6= b2; b1; b2 � bg: (4.48)In words, P (3)A is the subset of bonds b 2 PA for whih there are at least two distint elements inPA with time variables smaller than or equal to b. Note that if jPAj � 3 then P (3)A 6= ?. Therefore,writing b0 � b to mean both b0 � b and b0 6= b, we havefb 2 PAg \ fjPAj � 3g = �fb 2 P (3)A g \ [b0�bfb0 2 PAg� [ � [b0bfb0 2 P (3)A g \ fb 2 PAg�: (4.49)We reall (4.40) and onlude from (4.49) thatje(0)n (v;A; 3)j � Xb0�bn2 Xbb0 P�F 0n(v;A) \ fb0 2 PAg \ fb 2 P (3)A g�; (4.50)where we replae b � bn2  by b0 � bn2  for the ontribution due to the �rst event in the right-handside of (4.49), and the roles of b and b0 are interhanged for the ontribution due to the seondevent.The following proposition gives an estimate on the event appearing in the right-hand sideof (4.50). In the right-hand side of (4.51) below, three onnetions to n are apparent. One isdue to fb ! n in �n ~Cb(v)g, and the other two are due to the event fF 0n(v;A) in ~Cb(v)g. Theadvantage of the right-hand side of (4.51) is that it is well suited for appliation of the FatorisationLemma 2.2. In Setion 8.7, we will exploit this formula to prove that e(0)n (v;A; 3) gives an errorterm.Proposition 4.10 (Fatorisation for three utting bonds). For A � �, v 2 �, n � 1 andb0 � b, F 0n(v;A) \ fb0 2 PAg \ fb 2 P (3)A g (4.51)� nE 0(v; b;A) \ F 0n(v;A) \ fb0 2 PAg in ~Cb(v)o \ fb o.g \ nb! n in �n ~Cb(v)o:Proof. By Lemma 4.8,fb0 2 PAg \ fb 2 P (3)A g = fb 2 PAg \ fb0 2 PAg \ � [b00�b:b00 6=b;b0 fb00 2 PAg� (4.52)� fb 2 PAg \ nfb0 2 PAg in ~Cb(v)o \ � [b00�b:b00 6=b;b0 nfb00 2 PAg in ~Cb(v)o�= fb 2 PAg \ �n [b00�b:b00 6=b;b0fb0; b00 2 PAgo in ~Cb(v)�� nfb0 2 PAg \ fjPAj � 2g in ~Cb(v)o ;25



where we used (2.3){(2.4) in the third line. Now we use Proposition 4.3, (4.52), (2.3), andLemma 4.9 to arrive atF 0n(v;A) \ fb0 2 PAg \ fb 2 P (3)A g (4.53)= �F 0n(v;A) \ fb 2 PAg� \ �fb0 2 PAg \ fb 2 P (3)A g�� nE 0(v; b;A) \ fv A�! ng in ~Cb(v)o \ fb o.g \ nb! n in �n ~Cb(v)o\ �fb0 2 PAg \ fjPAj � 2g in ~Cb(v)�= nE 0(v; b;A) \ fv A�! ng \ fjPAj � 2g \ fb0 2 PAg in ~Cb(v)o\ fb o.g \ nb! n in �n ~Cb(v)o� nE 0(v; b;A) \ F 0n(v;A) \ fb0 2 PAg in ~Cb(v)o \ fb o.g \ nb! n in �n ~Cb(v)o;whih is the desired result.5 The quadrati term: The seond expansion for �nIn this setion, we omplete the proof of Theorem 1.1(i) by proving (4.2). To do so, we willdetermine oeÆients �(N)m1;m2 and d(N)m1;n suh that�(N)m1;n = nXm2=m1 �(N)m1;m2�n�m2 � d(N)m1;n: (5.1)Then (4.2) follows from (4.32), withe(N)n = e(N)n (1) + e(N)n (2) + e(N)n (3) + bn=2Xm1=1 d(N)m1;n�n�m1 : (5.2)We will also prove the �rst statement of Theorem 1.1(ii), namely that �1;1 = 12p2PxD(x)(1�D(x)).By (1.4), (1.7) and (1.9), this implies that �1;1 = 12 +O(�).5.1 The seond utting bond for �nTo prove (5.1), we will de�ne a seond utting bond for�(0)m;n(vN�1;A; ~CN�1) = X(uN ;vN )JuN ;vNEN �I[E 0(vN�1;uN ; ~CN�1) \ fvN�1 A�! ng in ~CN ℄�m(vN ; ~CN)�(5.3)(see (4.8)), whih is the argument of M (N)0;uN�1;f0g appearing in (4.13). The set ~CN�1 an be anydeterministi set in (5.3), but we write it in this form with (4.13) in mind. The de�nition of theseond utting bond will be simpler than the de�nition of the �rst utting bond in Proposition 4.3,due to the fat that we have already extrated a fator of �n�m1 and any remaining ontributionwith a double onnetion to n will be an error term.26



We �rst rewrite �(0)m;n(vN�1;A; ~CN�1) in a more onvenient form. Let ePN be the onditionalprobability PN given that (uN ; vN) is vaant, and let eEN be expetation with respet to ePN . Sine~CN = CN(vN�1) holds ePN -a.s, and sine the event E 0(vN�1;uN ; ~CN�1) \ fvN�1 A�! ng only dependson forward onnetions from vN�1 to later verties, it follows that�(0)m;n(vN�1;A; ~CN�1) = X(uN ;vN )JuN ;vN eEN �I[E 0(vN�1;uN ; ~CN�1) \ fvN�1 A�! ng℄�m(vN ; ~CN)�: (5.4)The seond utting bond is de�ned as follows.De�nition 5.1. (i) For m � 0, the m-utting bond for vN�1 A�! n, if it exists, is the �rst oupiedand pivotal bond b for vN�1 ! n for whih mb � m and vN�1 A�! b: Similarly, for y 2 �, them-utting bond for vN�1 A�! y, if it exists, is the �rst oupied and pivotal bond b for vN�1 ! yfor whih mb � m and vN�1 A�! b. We use the abbreviation \b is m-utting for vN�1 A�! n" for thestatement that \b is the m-utting bond for vN�1 A�! n."(ii) The seond utting bond for (5.4) is the m-utting bond for vN�1 A�! n.Note that, under ePN , the event that b is an m-utting bond implies that b 6= (uN ; vN), sine bmust be oupied whereas (uN ; vN) is vaant.Several de�nitions are required to formulate the result of the seond expansion. LetHm(v;y;A) = fv A�! yg \ f� m-utting bond for v A�! yg: (5.5)Hm;n(v;A) = fv A�! ng \ f� m-utting bond for v A�! ng: (5.6)Reall our onvention (4.15) that v�1 = 0 and ~C�1 = f0g. For N � 0, lete(N)m;n(4;A) = eEN �I[E 0(vN�1;uN ; ~CN�1) \Hm;n(vN�1;A)℄�m(vN ; ~CN)�; (5.7)e(N)m;n(5;A) = � Xb6=(uN ;vN ) Jb;b eEN �I[E 0(vN�1;uN ; ~CN�1) \Hm(vN�1; b;A)℄�n(b; ~CbN)�m(vN ; ~CN)�;(5.8)where ~CbN = ~CbN(vN�1). For j = 4; 5 and N � 1, letd(0)m1;n(j;A) = X(u0;v0)Ju0;v0e(0)m1;n(j;A); (5.9)d(N)m1;n(j;A) = X(uN�1;vN�1)JuN�1;vN�1 X(uN ;vN )JuN ;vNM (N)0;uN�1;f0g�e(N)m1;n(j;A)�: (5.10)For N � 1, we also de�nefM (1)(u0;v0)(X) = eE 0�I[f0 =) u0g℄X�; (5.11)fM (N+1)(uN;vN )(X) = X(uN�1;vN�1)JuN�1;vN�1M (N)0;uN�1;f0g�eEN �I[E 0(vN�1;uN ; ~CN�1)℄X��: (5.12)Finally, for N � 0 we de�ne�(N)m1;m2(A) = X(uN ;vN )JuN ;vN Xb6=(uN ;vN )Jb;bfM (N+1)(uN;vN )�I[Hm1(vN�1; b;A)℄�m2(b; ~CbN)�m1(vN ; ~CN)�: (5.13)Now we are ready to state the result of the seond expansion.27



Proposition 5.2 (The seond expansion for �n). For n;m � 0, N � 0 and A � �,�(N)m;n(A) = nXm2=m�(N)m;m2(A)�n�m2 � [d(N)m;n(4;A) + d(N)m;n(5;A)℄: (5.14)The proof of Proposition 5.2 is given below in Setion 5.3. Letd(N)m;n(A) = d(N)m;n(4;A) + d(N)m;n(5;A); (5.15)d(N)m;n = �12d(N)m;n( ~CN�1) + d(N)m;n(fvN�1g); (5.16)and �(N)m1;m2 = �12�(N)m1;m2( ~CN�1) + �(N)m1;m2(fvN�1g): (5.17)Then (5.1) follows immediately from Proposition 5.2 and (4.29). As noted below (5.1), this in turnompletes the proof of Theorem 1.1(i).For j = 4; 5, we de�nee(N)n (j) = bn=2Xm1=1 h� 12d(N)m1;n(j; ~CN�1) + d(N)m1;n(j; fvN�1g)i�n�m1 : (5.18)Then (5.2) an be rewritten ase(N)n = e(N)n (1) + e(N)n (2) + e(N)n (3) + e(N)n (4) + e(N)n (5): (5.19)Our proof of (1.19) in Setion 8 is based on the deomposition (5.19).5.2 Identi�ation of �1;1We now prove the �rst statement of Theorem 1.1(ii), namely that �1;1 = 12p2PxD(x)(1�D(x)).By (1.4), (1.7) and (1.9), it then follows that �1;1 = 12 + O(�). Aording to (5.13) and (4.15),�(N)1;1 (A) = 0 unless N = 0. Also, by (5.17) and (4.15), �1;1 = 12�(0)1;1(f0g). Thus, it suÆes to showthat �(0)1;1(f0g) = p2PxD(x)(1�D(x)).For this, we use (5.13). Note that �1(b; ~Cb0) = Æmb;1 and �1(v0; ~C0) = Æmv0 ;1, by (4.7). Therefore,by (4.15), we have H1(vN�1; b; f0g) = H1(0; 0; f0g), whih is the trivial event by (5.5). Also, sinemv0 = 1, u0 must be 0, so that f0 =) u0g in (5.11) is trivially satis�ed. We onlude thatfM (1)(u0;v0)�I[Hm1(0; b; f0g)℄�1(b; ~Cb0)�1(v0; ~C0)� = 1: (5.20)It then follows from (5.13) that�(N)1;1 (f0g) =Xv0 J0;v0 Xb6=v0 J0;b = p2Xx D(x)(1�D(x)); (5.21)as required. 28



5.3 Proof of Proposition 5.2To simplify the notation, for N � 0, we writeE 0N = E 0(vN�1;uN ; ~CN�1): (5.22)In partiular, aording to (3.23) and the onvention (4.15), E 00 = f0 =) u0g. For the seondexpansion, the following proposition plays the role that was played for the �rst expansion byProposition 4.3.Proposition 5.3 (The seond utting bond). For all A � �, N � 0, m � 0, n � 1, and forall bonds b,E 0N \ fb is m-utting for vN�1 A�! ng (5.23)= nE 0N \Hm(vN�1; b;A) in ~CbN(vN�1)o \ fb o.g \ nb! n in �n ~CbN(vN�1)o:Proof. By (3.2), it suÆes to prove thatE 0N \ fb is m-utting for vN�1 A�! ng= nE 0N \Hm(vN�1; b;A) in ~CbN(vN�1)o \ fb o. and piv. for vN�1 ! ng: (5.24)Sine mb � m, and sine E 0N depends only on the oupation status of bonds below muN � m� 1,we have E 0N = fE 0N in ~CbN(vN�1)g: (5.25)Also, for b suh that mb � m, we havefb is m-utting for vN�1 A�! ng = fb o. and piv. for vN�1 ! ng \ fvN�1 A�! bg (5.26)\ f� previous m-utting bond for vN�1 A�! ng:Sine the pivotal bonds for vN�1 ! n are ordered, any previous m-utting bond for vN�1 A�! nmust be pivotal for vN�1 ! b. Therefore,f� previous m-utting bond for vN�1 A�! ng (5.27)= f� m-utting bond for vN�1 A�! bg= nf� m-utting bond for vN�1 A�! bg in ~CbN(vN�1)o;where the last equality again follows from the orientation. SinefvN�1 A�! bg = fvN�1 A�! b in ~CbN(vN�1)g; (5.28)we onlude from (5.5) thatfvN�1 A�! bg\f� previous m-utting bond for vN�1 A�! ng = fHm(vN�1; b;A) in ~CbN(vN�1)g: (5.29)29



Then (5.24) follows from (2.3) and (5.29), and the proof is omplete.Proof of Proposition 5.2. We will show thateEN�I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)�= nXm2=m Xb6=(uN ;vN ) Jb;b eEN �I[E 0N \Hm(vN�1; b;A)℄�m2(b; ~CbN)�m(vN ; ~CN)��n�m2+ e(N)m;n(4;A) + e(N)m;n(5;A): (5.30)This suÆes, sine substitution of (5.30) into (5.4) gives�(0)m;n(vN�1;A; ~CN�1)= X(uN ;vN )JuN ;vN nXm2=m Xb6=(uN ;vN ) Jb;b eEN �I[E 0N \Hm(vN�1; b;A)℄�m2(b; ~CbN)�m(vN ; ~CN)��n�m2+ X(uN ;vN )JuN ;vN [e(N)m;n(4;A) + e(N)m;n(5;A)℄; (5.31)and substitution of (5.31) into (4.13), together with (5.13) and (5.9){(5.10), gives the desired result(5.14).To prove (5.30), we use the partitionfvN�1 A�! ng = Hm;n(vN�1;A) _[ �[b �fb is m-utting for vN�1 A�! ng�: (5.32)By (5.32) and (5.7),eEN �I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)� (5.33)= e(N)m;n(4;A) +Xb eEN �I[E 0N \ fb is m-utting for vN�1 A�! ng℄�m(vN ; ~CN)�:Let ~CN;m = fx 2 ~CN : mx � mg: (5.34)Then �m(vN ; ~CN) = �m(vN ; ~CN;m�1); (5.35)sine the �rst term in (4.7) does not depend on ~CN , while the seond only depends on ~CN up totime m� 1. Conditioning on the set ~CN;m�1 then giveseEN �I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)� (5.36)= e(N)m;n(4;A) +Xb XC �m(vN ;C)ePN�E 0N \ fb is m-utting for vN�1 A�! ng \ f ~CN;m�1 = Cg�:We again write ~CbN = ~CbN(vN�1). Sine m � mb,f ~CN;m�1 = Cg = nf ~CN;m�1 = Cg in ~CbNo: (5.37)30



By Proposition 5.3 and the independene stated in Lemma 2.2, for b 6= (uN ; vN), it follows thatePN�E 0N \ fb is m-utting for vN�1 A�! ng \ f ~CN;m�1 = Cg� (5.38)= Jb;bePN�fE 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg in ~CbNg \ fb! n in �n ~CbNg�:(Note that, aording to the omment below De�nition 5.1, the left-hand side of (5.38) is zeroif b = (uN ; vN), but the right-hand side need not be zero.) Next we apply Lemma 2.2 to theright-hand side to obtain, for b 6= (uN ; vN),ePN�E 0N \ fb is m-utting for vN�1 A�! ng \ f ~CN;m�1 = Cg� (5.39)= Jb;b eEN�I[E 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg℄��n(b)� PN;1(b ~CbN��! n)��;where we have used (3.17) and the fat that fE 0N \ Hm(vN�1; b;A) \ f ~CN;m�1 = Cg in ~CbNg =E 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg, again due to the orientation. We onlude from (5.36) and(5.39) thateEN �I[E 0N \ fvN�1 A�! ng℄�m(vN ; ~CN)�� e(N)m;n(4;A) (5.40)=XC Xb6=(uN ;vN )Jb;b�m(vN ;C)eEN�I[E 0N \Hm(vN�1; b;A) \ f ~CN;m�1 = Cg℄��n(b)� PN;1(b ~CbN��! n)��= Xb6=(uN ;vN )Jb;b eEN�I[E 0N \Hm(vN�1; b;A)℄�m(vN ; ~CN;m�1)��n(b)� PN;1(b ~CbN��! n)��:Finally, we rewrite PN;1(b ~CbN��! n) using Proposition 3.4, as in (4.11). The subsript on PN;1 indiatesthe arrival of a new oriented perolation model, oupled to PN via the set ~CbN . With (5.8) and(5.35), this gives (5.30), and thus ompletes the proof.6 Diagrammati estimates: Bounds for � and �In this setion, we begin to set the stage for the proof of the bounds on �m1;m2 and en+1 statedin Theorem 1.1(ii). In Setion 6.1, we prove bounds on �(v;y;A), and in Setion 6.2, we provebounds on �n(v;A). These bounds are in terms of ertain Feynman diagrams P (N)(v;y;A), whihare losely related to diagrams appearing in [13, Setion 4℄. These diagrams are de�ned reursively,whih is natural given that �(N) is de�ned in terms of the reursively de�ned M (N+1) (see (3.25)).Later, the reursive nature of the diagrams will be instrumental in bounding the diagrams.The disussion in this setion applies for arbitrary p and d, under the weak assumption on D.6.1 Bounds on �In this setion, we obtain bounds on the funtion �(v;y;A) de�ned in (3.27). For the speial asein whih v = 0 and A = f0g, the funtion �(0;y; f0g) is idential to the funtion �(y) of [13,Equation (3.25)℄, apart from the minor hange that we have �(0) = 1 whereas [13℄ has �(0) = 031



(reall the omment below (3.25)). It is proved in [13, Equation (4.10)℄ and [13, Equation (4.29)℄that for N � 0 and m � 0, �(N)m (y) � P (N)m (y): (6.1)Here, P (N)m (y) = P (N)(y) (for y = (y;m)) is a sum of diagrams whih, for p = p, d > 4 and �suÆiently small, obey the boundXy P (N)m (y) � Æm;0ÆN;0 + (C�)N_1(m+ 1)�d=2: (6.2)Together, these estimates give (1.14).Our goal now is to generalise (6.1) to �(v;y;A). The generalisation is in terms of Feynmandiagrams P (N)(v;y;A) whih are de�ned as follows. We start with N = 0, and, keeping the bondorientation in mind, de�neP (0)(v;y;a) =Xt �(t� v)�(a� t)�(y � a)�(y � t); (6.3)P (0)(v;y;A) =Xa I[a 2 A℄P (0)(v;y;a): (6.4)We refer to the two-point funtions appearing in the right-hand side of (6.3) as lines. In the diagramP (0)(v;y;a), we delare the lines �(t�v) and �(y�t) appearing in (6.3) to be 0-admissible (belowthis is generalised to N -admissibility). We also de�neP (u; z;y) =Xw;v �(w � z)Ju;vP (0)(v;y;w); (6.5)where Ju;v is given by (3.10), and where we ontinue to regard the lines �(t � v) and �(y � t)appearing in P (0)(v;y;w) in (6.5) as 0-admissible. See Figure 7 for depitions of (6.3) and (6.5).De�nition 6.1. (i) Given a diagram and any line � of the diagram, Constrution 1�(y) is theoperation in whih a new vertex y is inserted in line �. Expliitly, this means that the two-pointfuntion �(v � u) orresponding to line � is replaed by �(v � y)�(y � u).(ii) Given a diagram F (v;y) with two verties arrying labels v;y and any line � of the diagram,we write F (v;y; 1�(z)) for the diagram where Constrution 1�(z) is performed to the diagramF (v;y).(iii) Constrution 1�(l) is the operation in whih Constrution 1�(y; l) is performed followed bysummation over y with l �xed. Expliitly, this means that �j�i(v � u) orresponding to line � isreplaed by Py �j�l(v � y)�l�i(y � u). We also write Constrution 1(l) for the operation in whihConstrution 1�(l) is performed, and then a sum over all lines � in the diagram is performed(resulting in a sum of diagrams).For N � 1, given P (N�1)(v;y;a) with its set of admissible lines, we de�ne P (N)(v;y;a) withits set of admissible lines reursively, as follows. First, let P (N�1)(v;y;a; 1�(z)) denote the resultof applying Constrution 1�(z) to P (N�1)(v;y;a). Then, for N � 1, letP (N)(v;y;a) =X� Xz;wP (N�1)(v;w;a; 1�(z))P (w; z;y); (6.6)where the sum over � runs over the (N � 1)-admissible lines, and where the N-admissible linesare by de�nition the 0-admissible lines in the fator P (w; z;y) appearing in (6.6). See Figure 7.32
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Figure 7: Diagrams for P (0)(v;y;a), P (u; z;y), and examples of diagrams that ontribute toP (1)(v;y;a), P (2)(v;y;a). The N -admissible lines are shown in bold.We also de�ne, for N � 0,P (N)(v;y;A) =Xa I[a 2 A℄P (N)(v;y;a); P (N)(y) = P (N)(0;y; f0g): (6.7)The P (N)(y) appearing in (6.7) is idential to the right-hand side of (6.1), when y = (y;m). By(6.5), we an alternatively write, for N � 1,P (N)(v;y;A) =X� Xz;w X(uN�1;vN�1)JuN�1;vN�1P (N�1)(v;uN�1;A; 1�(z))�(w � z)P (0)(vN�1;y;w):(6.8)An idential formula holds for P (N)(v;y;a), where A on both sides is replaed by a.Remark 6.2. When P (M)(v;y;a; 1�(z)) appears inside a sum over �, our onvention is that � issummed over the M -admissible lines.The following proposition gives our main bound on �(N)(v;y;A), and generalises (6.1).Proposition 6.3. For N � 0, v;y 2 �, and A � �,�(N)(v;y;A) � P (N)(v;y;A): (6.9)Proof. We will prove the two statementsM (N+1)v;y;A (1) � P (N)(v;y;A); (6.10)M (N+1)v;y;A (I[w 2 CN ℄) �X� Xz P (N)(v;y;A; 1�(z))�(w � z); (6.11)33



simultaneously, using indution on N (reall Remark 6.2). The �rst immediately gives (6.9), by(3.27).To verify (6.10) for N = 0, we �rst reall (3.4) and observe thatE 0(v;y;A) � E(v;y;A) � [a2A;t2�(v ! t) Æ (t! a) Æ (a! y) Æ (t! y); (6.12)where, for events F and G, F ÆG denotes disjoint ourrene of F and G. By the BK inequality(see [3℄), this givesM (1)v;y;A(1) = P�E 0(v;y;A)� � Xa2A;t2� �(t� v)�(a� t)�(y � a)�(y � t)=Xa I[a 2 A℄P (0)(v;y;a); (6.13)whih is (6.10) for N = 0.To verify (6.11) for N = 0, we use the standard fat (see [5, Lemma 2.5℄ or [14, Lemma 5.5.8℄for details) thatE�I[E 0(v;y;A)℄I[w 2 C0℄� � Xa2A;z;t2� �(w � z)�(y � a)�(a� t) (6.14)� ��(t� v)�(z � t)�(y � z) + �(z � v)�(t� z)�(y � t)�:The right-hand side of (6.14) is the same as the right-hand side of (6.11) for N = 0, where thetwo terms in (6.14) orrespond to the two terms in the sum over admissible lines in (6.11).To advane the indution, we �x N � 1 and assume that (6.10){(6.11) hold for N � 1. Thereursion relation (3.35) implies thatM (N+1)v;y;A (1) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (1)vN�1;y; ~CN�1(1)�: (6.15)Appliation of (6.13) givesM (N+1)v;y;A (1) �Xw X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�I[w 2 ~CN�1℄�P (0)(vN�1;y;w): (6.16)We use (6.11) for N � 1 to estimate the right-hand side (using ~CN�1 � CN�1), and use (6.8) toomplete the advanement of (6.10).Similarly, for (6.11), we haveM (N+1)v;y;A (I[w 2 CN ℄) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�M (1)vN�1;y; ~CN�1(I[w 2 CN ℄)�: (6.17)Substitution of the bound (6.11) for N = 0 (again using ~CN�1 � CN�1) leads toM (N+1)v;y;A (I[w 2 CN ℄) �X� Xz;w0 X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1 ;A�I[w0 2 CN�1℄� (6.18)� P (0)(vN�1;y;w0; 1�(z))�(w � z);34



where the sum over � runs over the N -admissible lines. We use the indution hypothesis (6.11)for N � 1 to bound M (N)v;uN�1;A(I[w0 2 CN�1℄), and then rewrite the resulting bound noting that by(6.8),P (N)(v;y;A; 1�(z)) (6.19)=X�0 Xz0;w0 X(uN�1;vN�1)JuN�1 ;vN�1P (N�1)(v;uN�1;A; 1�0(z0))�(w0 � z0)P (0)(vN�1;y;w0; 1�(z));where the sum over �0 runs over the (N � 1)-admissible lines (reall Remark 6.2). This leads toM (N+1)v;y;A (I[w 2 CN ℄) �X� Xz P (N)(v;y;A; 1�(z))�(w � z); (6.20)whih ompletes the advanement of (6.11).Later, we will use the reursion formula, for M � 1 and N � 0,X� Xw;a X(uN ;vN ) JuN ;vNP (N)(uN ; 1�(w))�(a�w)P (M�1)(vN ;y;a) = P (N+M)(y): (6.21)To prove (6.21), we apply indution on M . For M = 1, the laim follows from (6.8). To advanethe indution, we note from (6.7){(6.8) thatP (N+M)(y) =X�0 Xz;t P (0)(v;y; t) X(u;v) Ju;vP (N+M�1)(u; 1�0(z))�(t� z): (6.22)An appliation of the indution hypothesis yields thatP (N+M�1)(u; 1�0(z)) =X� Xw;a X(uN ;vN ) JuN ;vNP (N)(uN ; 1�(w))�(a�w)P (M�2)(vN ;u;a; 1�0(z)):(6.23)We substitute (6.23) into (6.22), and use the fat thatX�0 Xz;t P (0)(v;y; t) X(u;v) Ju;vP (M�2)(vN ;u;a; 1�0(z))�(t� z) = P (M�1)(vN ;y;a): (6.24)This then advanes the indution and proves the laim in (6.21).6.2 Bounds on �nIn this setion, we prove bounds on �n. The proof will use the following lemmas and de�nition.Reall the de�nitions of F 0n(v;A) and PA in (3.5) and (4.20).Lemma 6.4. For A � �, v 2 �, and n � 0,F 0n(v;A) � [y2�E 0(v;y;A) \ �(v ! n) Æ (y ! n)�: (6.25)
35



Proof. Suppose that F 0n(v;A) ours. When PA = ?, the laim follows from Proposition 4.6, whihsays that then there exists x for whih E 0(v; (x; n);A) = E 0(v; (x; n);A)\�(v ! n)Æ((x; n)! n)�holds, and this is a subset of the event on the right-hand side of (6.25). Thus, we are left to provethat, for every bond b, fb 2 PAg\F 0n(v;A) is a subset of the right-hand side of (6.25). For this weuse Proposition 4.3 to see that this event is a subset of the event in the right-hand side of (6.25)with y = b.The following de�nition introdues a onstrution that adds a onnetion to n in a diagram.De�nition 6.5. (a) Given a diagram F (u) with a vertex arrying label u, Constrution �n(u) isthe diagram obtained by multiplying F (u) by �n�mu.(b) Given a diagram, the result of applying Constrution �n is the diagram obtained by Constru-tion 1�(u) followed by Constrution �n(u) and a summation over u and over all lines � in thediagram. Expliitly, this means that the two-point funtion �(v � w) assoiated with line � isreplaed by Pu �(v � u)�(u�w)�n(u), followed by a sum over �.We write P (N)(v;y;a; �n) for the result of an appliation of Constrution �n to P (N)(v;y;a),and P (N)(v;y;A; �n) = Pa I[a 2 A℄P (N)(v;y;a; �n).Lemma 6.6. For A � �, N � 0, v;uN 2 � and n � 0,M (N+1)v;uN ;A�I[vN�1 ! n℄� � P (N)(v;uN ;A; �n); (6.26)where we reall the abuse of notation above (4.15), and, for N = 0, we set v�1 = v and ~C�1 = fvg.Proof. This is a minor modi�ation of the bound on M (N+1)v;uN ;A�I[w 2 ~CN ℄� in (6.11), using theinequality PN�E 0(vN�1;uN ; ~CN�1) \ fvN�1 ! ng� � P (0)(vN�1;uN ; ~CN�1; �n) (6.27)instead of (6.14), and we omit the details.The following proposition gives an upper bound for �n(v;A) that is written as a minimum. Inits statement, we write P (N)(v;y;A) = P (N)m;k(v; y;A), when v = (v;m) and y = (y; k). Later wewill make use of both alternatives in the minimum, depending on the index k in (6.28).Proposition 6.7. For A � �, N � 0, v = (v;m) 2 � and n � 0,j�(N)n (v;A)j � nXk=m�� Xy2ZdP (N)m;k(v; y;A; �n)� ^ � Xy2ZdP (N)m;k(v; y;A)��(1 _ p)�n�k�1; (6.28)where, by onvention, we set ��1 = 1.Proof. By (3.29), �(N)n (v;A) = (N)n (v;A) � �(N)n (v;A). Sine these two terms have opposite sign,it suÆes to prove that (N)n (v;A) and �(N)n (v;A) are eah bounded above by the right-hand sideof (6.28).We start with �(N)n (v;A), whih is de�ned in (3.28). We write vN = (z; k + 1) and usePN+1(vN ! n in �n ~CN) � �n�k�1 (6.29)36



and I[fvN�1 ! ng \ fvN�1 62 ~CNg in ~CN ℄ � I[vN�1 ! n℄: (6.30)Performing the sum over vN in (3.28), we get (reall also (3.16))�(N)n (v;A) �XuN M (N+1)v;uN ;A�I[vN�1 ! n℄�p�n�muN�1 : (6.31)One alternative in the upper bound then follows from (6.26). On the other hand, by (6.10),M (N+1)v;uN ;A�I[vN�1 ! n℄� �M (N+1)v;uN ;A(1) � P (N)(v;uN ;A); (6.32)whih gives the other alternative and ompletes the proof for �(N)n (v;A).We proeed with (N)n (v;A), whih is de�ned in (3.26). Sine[y2�E 0(v;y;A) \ �(v ! n) Æ (y ! n)� = [y2� �E 0(v;y;A) \ (v ! n)� Æ (y ! n); (6.33)it follows from Lemma 6.4 and the BKR inequality thatP(F 0n(v;A)) � Xy2�P�E 0(v;y;A) \ (v ! n)��n(y): (6.34)Substitution of the above bound into (3.26) yields (reall also (3.20) and (6.15))(N)n (v;A) = X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�PN (F 0n(vN�1; ~CN�1)�� Xy2� X(uN�1;vN�1)JuN�1;vN�1M (N)v;uN�1;A�PN�E 0(vN�1;y; ~CN�1) \ (vN�1 ! n)���n(y)= Xy2�M (N+1)v;y;A�I[vN�1 ! n℄��n�my : (6.35)The right-hand side of (6.35) is idential to the right-hand side of (6.31), apart from the fat that�n�my in (6.35) is replaed by p�n�my�1 in (6.31). Sine �n�my � �n�my�1 (using the onventionbelow (6.28) when my = n), the desired estimate for (N)n (v;A) follows. This ompletes theproof.7 Diagrammati estimates: Bounds for �In this setion, we prove the bound on �m1;m2 stated in (1.18). We have already proved thestatement above (1.18), that �1;1(p) = 12p2Px2ZdD(x)(1�D(x)), in Setion 5.2. Heneforth, wesimplify the notation by writing M (N)y (X) =M (N)0;y;f0g(X): (7.1)
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7.1 The main estimateThe following proposition gives the main estimate needed to prove (1.18). In its statement, we usethe notation bm1;m2 = I[m1 � m2℄(m1 + 1)�(d�2)=2(m2 �m1 + 1)�(d�2)=2: (7.2)Reall from (5.17) that �(N)m1;m2 = �(N)m1;m2(fvN�1g)� 12�(N)m1;m2( ~CN�1); (7.3)with �(N)m1;m2(A) given by (5.13). Also, aording to (4.3),�m1;m2 = 1XN=0(�1)N�(N)m1;m2: (7.4)Proposition 7.1 (The bounds on �(N)). Let p = p, d > 4, for the spread-out model with �suÆiently small. For m2 � m1 � 1 and N � 1,j�(N)m1;m2(fvN�1g)j � (C�)Nbm1;m2 ; (7.5)j�(N)m1;m2( ~CN�1)j � (C�)Nbm1;m2 : (7.6)Also, �(N)1;1 (fvN�1g) = �(N)1;1 ( ~CN�1) = 0 for N � 1, and�(0)m1;m2(fv�1g) = �(0)m1;m2( ~C�1) = �(0)m1;m2(f0g) = 8<:p2Px2ZdD(x)(1�D(x)) if (m1; m2) = (1; 1)O(�bm1;m2) if (m1; m2) 6= (1; 1):(7.7)The ase (m1; m2) = (1; 1) in (7.7) has been proved already in Setion 5.2. The remainder ofSetion 7 is devoted to the proof of Proposition 7.1. Before proeeding with the proof, we notethat it implies (1.18).Proof of (1.18). By (7.5){(7.7), the ontributions when (m1; m2) 6= (1; 1) sum up to O(�bm1;m2).This is preisely the assertion of (1.18).The proof of Proposition 7.1 onsists of two main steps: (i) bounds on �(N)m1;m2(A) by ertainFeynman diagrams, and (ii) bounds on the Feynman diagrams. We desribe these two steps in thenext setion, and show that they are suÆient to prove Proposition 7.1.7.2 Redution of proof of the main estimateWe arry out step (i) (mentioned above) in Setion 7.2.1 and step (ii) in Setion 7.2.2. In Se-tion 7.2.3, we show that these steps are suÆient to prove Proposition 7.1 subjet to Proposi-tions 7.6{7.7 below. The latter are proved in Setions 7.3{7.4.
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7.2.1 Diagrams for �(N)m1;m2The results of this setion apply for general p and d under the weak assumption on D.We will use several onstrutions to de�ne the diagrams needed to bound �(N)m1;m2 .De�nition 7.2. (i) Given a diagram and any line � of the diagram, Constrution `�(y) is theoperation in whih a line to y is inserted into line �. Expliitly, this means that the two-pointfuntion �(v � u) orresponding to line � is replaed by Pz �(v � z)�(z � u)�(y � z). We omitthe supersript �, and write Constrution `(y), when we perform Constrution `�(y) followed bya sum over all possible lines �. We write F (v;y; `(x)) for the diagram where Constrution `(x) isperformed on the diagram F (v;y).(ii) Similarly, for ~y = (y1; : : : ;yi), Constrution `(~y) is the repeated appliation of Construtions`(y1); : : : ; `(yi). Note that the order of appliation of the di�erent Construtions `(yj) is irrelevant.For example, it follows diretly from (6.11) thatM (N+1)y (I[a 2 ~CN ℄) �X� P (N)(y; `�(a)); (7.8)where the sum over � runs over the N -admissible lines for P (N)(y) (reall Remark 6.2).De�nition 7.3. (i) Given a diagram F (u) with two verties arrying labels 0 and u and with aertain set of admissible lines indexed by �, Constrution 2(0)u (w) and 2(1)u (w), applied to F (u),respetively produe the diagrams~F (0)(w) =X� Xu;z F (u; 1�(z))�(w � u)�(w � z); (7.9)~F (1)(w) =X� X(u;v);z Ju;vF (u; 1�(z))�(w � z)�(w � v); (7.10)where the sum over � runs over the admissible lines.(ii) Given a diagram F (v;y) with two verties arrying labels v and y and with a ertain set ofadmissible lines indexed by �, Constrution Ey(w) produes the diagram~F (v;w) =X� Xy;z F (v;y; 1�(z))P (u; z;w)=X� Xa X(u0;v0) Ju0;v0F (v;u0; `�(a))P (0)(v0;w;a); (7.11)where the sum over � runs over the admissible lines, and we reall (6.5).Constrution Ey(w) is the same as Constrution 2(1)y (w) followed by Constrution 2(0)w (y), wherethe unique admissible line prior to the appliation of Constrution 2(0)w (y) is the line from v to wadded to the diagram in the appliation of Constrution 2(1)u (w) in (7.10).Remark 7.4. By (6.6), the diagram P (N)(v;y;A) is obtained by performing N Construtions Eto the diagram P (0)(v;y;A).
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0Figure 8: Examples of diagrams that ontribute to R(2)(y1;y2) and Q(2)(y1;y2).De�nition 7.5. Given a diagram F (y1) with two verties arrying labels 0 and y2, Constru-tion Vm(y2) and Constrution Em(y2) produe the diagramsF (y1;Vm(y2)) = Xv:mv=mF (y1; `(v); 1(z))�(y2 � v)�(y2 � z); (7.12)F (y1; Em(y2)) =Xz Xa:ma�mF (y1; 1(z); `(a))P (0)(z;y2;a): (7.13)Let �(0)m (v;A) = Æm;mv ; �(M)m (v;A) = p Xy2Zd�(M�1)(v; (y;m� 1);A); (7.14)so that, by (4.7), �m(v;A) = 1XM=0(�1)M�(M)m (v;A): (7.15)Denote by �(N;M;K)m1;m2 (A) the ontribution to �(N)m1;m2(A) in (5.13) of �(M)m1 (vN ; ~CN) and �(K)m2 (b; ~CbN).Then j�(N)m1;m2(A)j � 1XM;K=0�(N;M;K)m1;m2 (A): (7.16)The lowest order ontributions to �(N)m1;m2 , namely, �(N;M;0)m1;m2 (fvN�1g) and �(N;M;0)m1;m2 ( ~CN�1), are treatedin the following proposition. For its statement, we de�neR(N)(y1;y2) = P (N)(y1;Vmy1 (y2)) =Xz Xv:mv=my1 P (N)(y1; `(v); 1(z))�(y2 � v)�(y2 � z); (7.17)Q(N)(y1;y2) = P (N)(y1; Emy1 (y2)) =Xz Xa:ma>my1P (N)(y1; 1(z); `(a))P (0)(z;y2;a): (7.18)See Figure 8.We denote by R(N;M;K)m1;m2 (y1; y2) the result of K appliations of Constrution E to the seondargument of R(N+M)m1;l (y1; v) (thus, R(N;M;K) atually depends on N + M and K). Similarly, we40



denote by Q(N;M;K)m1;m2 (y1; y2) the result of K appliations of Constrution E to the seond argumentof Q(N+M)m1;l (y1; v). The diagrammati bounds for �(N) are given in the following proposition, whoseproof is deferred to Setion 7.4.Proposition 7.6 (Diagrammati bounds for �(N)). Let p and d be arbitrary and assume theweak assumption on D. For m2 � m1 � 1 and N;M;K � 0,�(N;M;K)m1;m2 (fvN�1g) � p2 Xy1;y2R(N;M;K)m1�1;m2�1(y1; y2): (7.19)For m2 � m1 � 1 and N � 1, M;K � 0,�(N;M;K)m1;m2 ( ~CN�1) � p2 Xy1;y2R(N;M;K)m1�1;m2�1(y1; y2) + p2 Xy1;y2Q(N;M;K)m1�1;m2�1(y1; y2): (7.20)Also, for p = p and d > 4, for the spread-out model with � suÆiently small, if (m1; m2) 6= (1; 1),then �(0;0;0)m1;m2(f0g) = O(�bm1;m2).7.2.2 Bounds on diagrams for �(N)m1;m2The following proposition gives bounds on the Feynman diagrams that were used above to estimate�m1;m2 . Its proof is deferred to Setion 7.3.Proposition 7.7 (Bounds on R(N;M;K) and Q(N;M;K)). Let p = p and d > 4, for the spread-outmodel with � suÆiently small. For m2 � m1 � 0 and N;M;K � 0,Xy1;y2R(N;M;K)m1;m2 (y1; y2) � C(C�)N+M+Kbm1 ;m2 : (7.21)For m2 � m1 � 0 and N � 1, M;K � 0,Xy1;y2Q(N;M;K)m1;m2 (y1; y2) � (C�)N+M+Kbm1;m2 : (7.22)7.2.3 Proof of Proposition 7.1We now prove Proposition 7.1, subjet to Propositions 7.6{7.7. Let p = p, d > 4, for thespread-out model with � suÆiently small. Let A denote either fvN�1g or ~CN�1. By (7.16) andProposition 7.6,j�(N)m1;m2(A)j � p2 1XM;K=0 Xy1;y2R(N;M;K)m1�1;m2�1(y1; y2) + p2 1XM;K=0 Xy1;y2Q(N;M;K)m1�1;m2�1(y1; y2): (7.23)By Proposition 7.7, eah of the sums on the right-hand side of (7.23) is at most C(C�)Nbm1�1;m2�1.Sine bm1�1;m2�1 � Cbm1;m2, this proves (7.5){(7.6).The �rst two equalities in (7.7) follow from the onvention (4.15). We have already notedin Setion 5.2 that �(0)1;1(f0g) = p2, and that �(N)1;1 (A) = 0 if N � 1, so it remains only to prove(7.7) when (m1; m2) 6= (1; 1). For the remainder of the proof we assume that (m1; m2) 6= (1; 1).By (7.21){(7.22), the ontributions to �(0;M;K)m1;m2 (f0g) with M + K � 1 ontain at least one fator�, so it suÆes to prove that �(0;0;0)m1;m2(f0g) = O(�bm1;m2). But this is the �nal statement ofProposition 7.6. 41



7.3 Proof of Proposition 7.7In this setion, we prove Proposition 7.7. We begin in Setion 7.3.1 with some general tehniquesfor extending bounds on simple diagrams to bounds on more ompliated ones, and we use thesetehniques in Setion 7.3.2 to prove the proposition.7.3.1 Convolution boundsIn this setion, we prove three lemmas whih provide bounds on a diagram after a Construtionhas been performed on it, given a bound on the original diagram. In the proofs of the lemmas, wewill use the following bounds on the two-point funtion, whih follow from [13, Theorem 1.1℄:Xx �m(x) � K; k�mk1 � 8<:K�(m + 1)�d=2 (m � 1);K(m + 1)�d=2 (m � 0): (7.24)We use the �rst bound on k�mk1 when a line is guaranteed to have length m � 1, and use theseond bound on k�mk1 otherwise.We say that a diagram has at most L lines at any �xed time when, for every m, the number offators �(v�u) with mu � m and mv � m is at most L. For example, it is a simple onsequeneof the onstrution of P (N)(y) that it has at most 4 lines at any �xed time.Lemma 7.8. Let 0 � l � k with k � 1, and assume (7.24). Let G and Fk(x) be diagramssuh that G and Px Fk(x) an be bounded by B and B(k + 1)�d=2, respetively, by assoiating l1-and l1-norms to diagram lines and by using (7.24) to estimate these norms. Then the followingstatements hold.(a) Appliation of Constrution 1�(l) to G produes a diagram that is bounded by 2(d+2)=2KB,where K is the onstant of (7.24).(b) Suppose that the diagram Fk(u) has at most L lines at any �xed time, and that all diagramlines have time variables at most k. If Pu Fk(u) � B�(k + 1)�d=2, thenXx;u Fk(u; `(x;m)) � CLB(k + 1)�(d�2)=2; (7.25)with C independent of F , B, k, m and L.In eah of (a){(b), the bound on the new diagram is obtained by assoiating l1- and l1-norms todiagram lines and by using (7.24) to estimate these norms.Proof. (a) This is [13, Lemma 4.6(a)℄.(b) By de�nition, Fk(u; `(x;m)) = X(z;l)Fk(u; 1(z;l))�m�l(x� z); (7.26)and hene Xx;u Fk(u; `(x;m)) = kXl=0 �Xz;u Fk(u; 1(z;l))��Xx �m�l(x� z)�: (7.27)The seond fator is at most K, by (7.24). The �rst fator is bounded uniformly in 0 � l � k byCLB(k + 1)�d=2, by part (a). Finally, the sum over l gives rise to a fator k + 1.42



Lemma 7.9. Let d > 4 and p � C. Suppose that a diagram Fm1;m2(y1; y2) satis�es the inequal-ity Py1;y2 Fm1;m2(y1; y2) � CFbm1;m2, with this bound obtained by assoiating l1- and l1-normsto diagram lines and by using (7.24) to estimate these norms. Then appliation of Constru-tion 2(i)(v;k)(y2; m2) to Fm1;k(y1; v), followed by summation over y1 and y2, produes a diagramthat is bounded by C�iCFbm1;m2 , with C independent of F and CF . The bound on the new di-agram is obtained by assoiating l1- and l1-norms to diagram lines and by using (7.24) to esti-mate these norms. As a onsequene, appliation of Constrution E to a diagram whih obeysPy1;y2 Fm1;m2(y1; y2) � CFbm1;m2 produes a new diagram that is bounded by C�CFbm1;m2 , with Cindependent of F and CF .Proof. For m � 0, let� (0)m (x) = �m(x); � (1)m (x) =Xu pD(u)�m�1(x� u)I[m � 1℄: (7.28)Let F (i)m1;m2(y1; y2) be the diagram obtained by appliation of Constrution 2(i)(v;k)(y2; m2) to thediagram Fm1 ;k(y1; v). By de�nition,Xy1;y2 F (i)m1;m2(y1; y2) � Xy1;y2;v;z m2Xk=m1 kXj=0Fm1;k(y1; v; 1(z;j))�m2�j(y2 � z)� (i)m2�k(y2 � v): (7.29)It follows from (7.24) that Px � (i)m (x) � pK � CK, and thatXy2 �m2�j(y2 � z)� (i)m2�k(y2 � v) � C�i(m2 � j + 1)�d=2; (7.30)sine j < m2 for i = 1. This leads toXy1;y2 F (i)m1;m2(u; x) � Xy1;v;z m2Xk=m1 kXj=0Fm1;k(y1; v; 1(z;j))C�i(m2 � j + 1)�d=2: (7.31)By Lemma 7.8(a), Xy1;v;z Fm1 ;k(y1; v; 1(z;j)) � CCFbm1;k (7.32)holds uniformly in 0 � j � k. Therefore,Xy1;y2 F (i)m1;m2(y1; y2) � CCF�i m2Xk=m1 bm1;k kXj=0(m2 � j + 1)�d=2� CCF�i m2Xk=m1 bm1;k(m2 � k + 1)�(d�2)=2:= CCF�i(m1 + 1)�(d�2)=2 m2Xk=m1(k �m1 + 1)�(d�2)=2(m2 � k + 1)�(d�2)=2� CCF�ibm1;m2 ; (7.33)where we used [7, Lemma 2.6(i)℄ and d > 4 in the last step.The statement onerning Constrution E then follows from the omment under De�nition 7.3.43



Lemma 7.10. Let d > 2 and assume that m2 > m1. Suppose that the diagram Fm(y) satis�esPy Fm(y) � CF (m + 1)�d=2, with this bound obtained by assoiating l1- and l1-norms to diagramlines and by using (7.24) to estimate these norms. LeteFm1;m2(y1; y2) = m1Xk;j=0Xz;w Fm1(y1; 1(z; j); 1(w; k))�m2�k(y2 � w)�m2�j(y2 � z): (7.34)Then Xy1;y2 eFm1;m2(y1; y2) � CCF�bm1;m2 ; (7.35)with C independent of F and CF , and with the bound obtained by assoiating l1- and l1-norms todiagram lines and by using (7.24) to estimate these norms.Proof. By the symmetry between k and j,eFm1;m2(y1; y2) � 2Xz;w m1Xk=0 m1Xj=k �m2�k(y2 � z)�m2�j(y2 � w)Fm1(y1; 1(z; j); 1(w; k)): (7.36)Therefore, by (7.24) and the fat that m2 > m1 � j,Xy1;y2 eFm1;m2(y1; y2) � 2 m1Xk=0 m1Xj=kK2�(m2 � k + 1)�d=2Xy1 Fm1(y1; 1(k); 1(j)): (7.37)It follows from Lemma 7.8(a) thatXy1 Fm1(y1; 1(k); 1(j)) � CCF (m1 + 1)�d=2; (7.38)uniformly in k; j. Sine m2 > m1, we onlude thatXy1;y2 eFm1;m2(y1; y2) � CCF�(m1 + 1)�d=2 m1Xk=0 m1Xj=k(m2 � k + 1)�d=2 (7.39)� CCF�(m1 + 1)�(d�2)=2 m1Xk=0(m2 � k + 1)�d=2� CCF�bm1;m2 :7.3.2 Proof of Proposition 7.7Now we prove Proposition 7.7. Aording to the de�nitions below (7.18), it suÆes to prove that,for N � 0, Xy1;y2R(N)m1;m2(y1; y2) � C(C�)Nbm1;m2 ; (7.40)and that for N � 1, Xy1;y2Q(N)m1;m2(y1; y2) � (C�)N+1bm1 ;m2; (7.41)44



sine (7.21){(7.22) then follow from Lemma 7.9.We start with the proof of (7.40). LetS(N)m1;m2(y1; y2) = P (N)m1 (y1; `(y2; m1))Æm1;m2: (7.42)By (7.17), R(N)m1;m2(y1; y2) is obtained from S(N)m1;k(y1; v) by applying Constrution 2(0)(v;k)(y2; m2).Therefore, by Lemma 7.9, to prove (7.40) it suÆes to show thatXy1;y2 S(N)m1;m2(y1; y2) � C(C�)Nbm1;m2 : (7.43)Lemma 7.8(b), together with (6.2) and the fat that P (N)(y) has L � 4 (as noted above Lemma 7.8),gives the desired result thatXy1;y2 S(N)m1;m2(y1; y2) = Xy1;y2 P (N)m1 (y1; `(y2; m1))Æm1;m2 (7.44)� C(C�)N(m1 + 1)�(d�2)=2Æm1;m2 = C(C�)Nbm1;m2Æm1;m2 :Next, we prove (7.41). In (7.18), a fator �(a�w)P (0)(z;y2;a) arises, where w is the loationwhere Constrution `(a) is applied. We write a = (a;m) and y1 = (y1; m1), and note that (7.18)requires that m > m1. We regard �(a � w)P (0)(z;y2;a) as the result of Constrution 2(0)a (y2)applied to �(a�w)�(a� z), where the unique admissible line is �(a� z). LeteS(N)m1;m(y1; a) = m1Xk;j=0P (N)m1 (y1; 1(z; j); 1(w; k))�m�k(a� w)�m�j(a� z): (7.45)Then Q(N)m1;m2(y1; y2) arises from an appliation of Constrution 2(0)a (y2) to the seond argument ofeS(N)m1;m(y1; a). By Lemma 7.9, it suÆes to prove that if m > m1, thenXy1;a eS(N)m1;m(y1; a) � (C�)N+1bm1;m: (7.46)The bound (7.46) follows from Lemma 7.10 and (6.2), and this ompletes the proof of (7.41).7.4 Proof of Proposition 7.6In this setion, we prove Proposition 7.6. We begin in Setion 7.4.1 with some key estimates for theproof. In Setion 7.4.2, we prove (7.19){(7.20) for the ase K = 0, and we extend these inequalitiesto K � 1 in Setion 7.4.3. In Setion 7.4.4, we prove the �nal statement of Proposition 7.6.7.4.1 Key estimates for proof of Proposition 7.6For v, x and m � 0 suh that mv � m � mx, letVm(v;x) = [z:mz�mfv ! z =) xg; (7.47)Em(v;x;A) = [a2A [z:mz�m(v ! z) Æ (z ! x) Æ (z ! a) Æ (a! x): (7.48)45
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Figure 9: Shemati representations of the events (a) Vm(v;x) and (b) Em(v;x;A).The events Vm(v;x) and Em(v;x;A) are depited in Figure 9. By (6.12),E(v;x;A) = Emv(v;x;A): (7.49)Also, for later use, we note thatVm(v;x) � [z:mz�m [t:mt=m(v ! z) \ �(v ! t) Æ (t! x) Æ (z ! x)�: (7.50)To prove (7.50), we observe that if mz � m � mx, then(z =) x) = [t:mt=m(z ! t) Æ (t! x) Æ (z ! x); (7.51)and hene, by (7.47),Vm(v;x) = [z:mz�m [t:mt=m(v ! z) \ �(z ! t) Æ (t! x) Æ (z ! x)�� [z:mz�m [t:mt=m(v ! z) \ �(v ! t) Æ (t! x) Æ (z ! x)�: (7.52)The following proposition provides the key estimates for the proof of Proposition 7.6.Proposition 7.11. Let p and d be arbitrary and assume the weak assumption on D. For N;M � 0,m1 � 1, and a;y2 2 �,X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1;y2)℄�(M)m1 (vN ; ~CN)� � pXy1 R(N+M)((y1; m1 � 1);y2); (7.53)X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1;y2)℄I[a 2 ~CN ℄�(M)m1 (vN ; ~CN)�� pXy1 R(N+M)((y1; m1 � 1);y2; `(a)); (7.54)X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄�(M)m1 (vN ; ~CN)� � pXy1 Q(N+M)((y1; m1 � 1);y2); (7.55)46



X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[a 2 ~CN ℄�(M)m1 (vN ; ~CN)�� pXy1 Q(N+M)((y1; m1 � 1);y2; `(a)): (7.56)The proof of Proposition 7.11 relies on three lemmas whih we state and prove before provingthe proposition. Lemmas 7.12{7.13 are used to prove (7.53){(7.54), and Lemma 7.14 is used toprove (7.55){(7.56).Lemma 7.12. Let p and d be arbitrary and assume the weak assumption on D. For N � 0,m1 � 1, vN�1;uN ;y2 2 �, and ~x with 0, 1 or 2 omponents in �,PN�E 0(vN�1;uN ; ~CN�1) \ Vm1�1(vN�1;y2) \ f~x 2 ~CNg� (7.57)�X� P (0)�vN�1;uN ; ~CN�1; `�(~x); Vm1�1(y2)�;where Constrution `�(~x) is obtained by performing Constrution `�(x1) followed by Constru-tions `(xi) for all other omponents xi with i > 1, and the sum over � follows the onvention ofRemark 6.2.Proof. By (6.12) and (6.3){(6.4), the event E 0(vN�1;uN ; ~CN�1) implies that the disjoint onnetionsneessary to obtain an upper bound P (0)(vN�1;uN ; ~CN�1) are present. The additional onnetionsimplied by f~x 2 ~CNg an be aounted for in an upper bound by an appliation of Constru-tion `�(~x) to P (0)(vN�1;uN ; ~CN�1). To understand the e�et of the event Vm1�1(vN�1;y2), we use(7.50). The onnetion vN�1 ! t = (t;m1� 1) in (7.50) an be aounted for by an appliation ofConstrution `(t), and the remaining onnetions in (7.50) an then be aounted for by an appli-ation of Constrution 2(0)t (y2). By the equivalent de�nition of Constrution Vm1�1(y2) formulatedbelow De�nition 7.5, this ompletes the proof.Lemma 7.13. Under the same onditions as in Lemma 7.12,M (N+1)uN �I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� �X� P (N)(uN ; `�(~x); Vm1�1(y2)): (7.58)Proof. For N = 0, we must bound M (1)u0�I[Vm1�1(0;y2)℄I[~x 2 ~C0℄�. For N � 1, (3.35) givesM (N+1)uN �I[Vm1�1(vN�1;y2)I[~x 2 ~CN ℄� (7.59)= X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�M (1)vN�1;uN ; ~CN�1�I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄��:The statement of Lemma 7.12 an be rewritten asM (1)vN�1;uN ; ~CN�1�I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� �X� P (0)�vN�1;uN ; ~CN�1; `�(~x); Vm1�1(y2)�: (7.60)With (4.15) and (6.4), this proves (7.58) for N = 0. For N � 1, we substitute (7.60) into (7.59)to obtainM (N+1)uN �I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� (7.61)�X� Xw0 X(uN�1;vN�1) JuN�1;vN�1M (N)uN�1�I[w0 2 ~CN�1℄�P (0)�vN�1;uN ;w0; `�(~x); Vm1�1(y2)�:47



Appliation of (6.11) then givesM (N+1)uN �I[Vm1�1(vN�1;y2)℄I[~x 2 ~CN ℄� (7.62)�X�;�0Xw0 X(uN�1;vN�1) JuN�1 ;vN�1P (N�1)(uN�1; `�0(w0))P (0)�vN�1;uN ;w0; `�(~x); Vm1�1(y2)��X� P (N)�uN ; `�(~x); Vm1�1(y2)�;where we used a slight extension of (6.21) in the last inequality. This proves (7.58).Lemma 7.14. Under the same onditions as in Lemma 7.12, and with the additional assumptionthat mx1 ; muN � m1M (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄� �X� P (N)(uN ; `�(x1); Em1(y2); `(x2)): (7.63)Proof. For N = 0 and m1 � 1, the event Em1(vN�1;y2; ~CN�1) = Em1(0;y2; f0g) is empty, so wemay assume that N � 1. For N = 1, we must bound M (2)u1�I[Em1(v1;y2; ~C0)℄I[~x 2 ~C1℄�. ForN � 2, it follows from (3.38) thatM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄� (7.64)= X(uN�2;vN�2)JuN�2;vN�2M (N�1)uN�2�M (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄��:We will show below that if mx1 ; muN � m1, thenM (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[~x 2 ~CN ℄��X� P (1)�vN�2;uN ; ~CN�2; `�(x1); Em1(y2); `(x2)�: (7.65)Then (7.63) follows from (7.65), as in (7.61){(7.62).It remains to prove (7.65). For simpliity, we onsider in detail the ase ~x = x1. By (3.35),M (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[x1 2 ~CN ℄� (7.66)= X(uN�1;vN�1)JuN�1;vN�1M (1)vN�2;uN�1 ; ~CN�2�PN�E 0(vN�1;uN ; ~CN�1)\ Em1(vN�1;y2; ~CN�1) \ fx1 2 ~CNg��:By (7.48),PN�E 0(vN�1;uN ; ~CN�1) \ Em1(vN�1;y2; ~CN�1) \ fx1 2 ~CNg� (7.67)� Xz:mz�m1 Xw2 ~CN�1 PN�E 0(vN�1;uN ; ~CN�1) \ fz;x1 2 ~CNg \ f(z ! w) Æ (z ! y2) Æ (w ! y2)g�:48



Using (6.14), the Markov property, the fat that mx1 ; muN � mz, and the BK inequality, weobtain PN�E 0(vN�1;uN ; ~CN�1) \ fz;x1 2 ~CNg \ f(z ! w) Æ (z ! y2) Æ (w! y2)g� (7.68)= PN�E 0(vN�1;uN ; ~CN�1) \ fz;x1 2 ~CNg�PN�(z ! w) Æ (z ! y2) Æ (w! y2)��X� P (0)�vN�1;uN ; ~CN�1; `�(x1); `(z)��(w � z)�(y2 � z)�(y2 �w):Also, it is a straightforward extension of (6.14) thatM (1)v;y;A�I[v ! w; v ! w0℄� �X�0 P (0)(v;y;A; `�0(w); `(w0)): (7.69)We substitute (7.68) into (7.67) and substitute the result into (7.66). This givesM (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[x1 2 ~CN ℄� (7.70)� X(uN�1;vN�1)JuN�1 ;vN�1 Xw;w0;z:mz�m1M (1)vN�2;uN�1; ~CN�2�I[w;w0 2 ~CN�1℄��X� P (0)�vN�1;uN ;w0; `�(x1); `(z)��(w � z)�(y2 � z)�(y2 �w)�X�;�0 X(uN�1;vN�1)JuN�1;vN�1 Xw;w0;z:mz�m1 P (0)�vN�2;uN�1; ~CN�2; `�0(w0); `(w)�� P (0)�vN�1;uN ;w0; `�(x1); `(z)��(w � z)�(y2 � z)�(y2 �w);where we used (7.69) in the seond inequality. It an then be onluded from (7.13), (6.21) and(6.3), by drawing the piture, thatM (2)vN�2;uN ; ~CN�2�I[Em1(vN�1;y2; ~CN�1)℄I[x1 2 ~CN ℄� �X� P (1)�vN�2;uN ; ~CN�2; `�(x1); Em1(y2)�:(7.71)Finally, if ~x has an additional element x2, then this an be aounted for in an upper bound by a�nal appliation of Constrution `(x2), leading to (7.65).Proof of Proposition 7.11. We �rst prove (7.53). For M = 0, the left-hand side of (7.53) is equalto X(uN ;vN )JuN ;vNM (N+1)uN (I[Vm1�1(vN�1;y2)℄) Æm1;mvN � pXy1 P (N)((y1; m1 � 1);Vm1�1(y2))= pXy1 R(N)((y1; m1 � 1);y2); (7.72)with R(N) de�ned in (7.17). For M � 1, we use (4.7) and (6.9) to obtain�(M)m1 (vN ; ~CN) �Xw I[w 2 ~CN ℄pXy1 P (M�1)(vN ; (y1; m1 � 1);w): (7.73)49



By (7.58), the left-hand side of (7.53) is at mostpX� Xw X(uN ;vN )JuN ;vNP (N)(uN ; `�(w); Vm1�1(y2))Xy1 P (M�1)(vN ; (y1; m1 � 1);w) (7.74)� pXy1 P (N+M)((y1; m1 � 1);Vm1�1(y2)) = pXy1 R(N+M)((y1; m1 � 1);y2);where the inequality has used (6.21) together with the observation that in the appliation ofConstrution Vm1�1(y2) to P (N+M)(y1; m1 � 1) there are more available lines than if Constru-tion Vm1�1(y2) is applied only to P (N)(y1; m1 � 1). This proves (7.53).The proof for (7.54) is the same as the proof of (7.53), with the observation that in (7.57) theorder of appliation of the onstrutions an be interhanged on the right-hand side.For (7.55), onsider �rst the ase M = 0. In this ase, the left-hand side of (7.55) is equal toX(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄� Æm1;mvN � pXy1 Q(N)((y1; m1 � 1);y2); (7.75)by (7.63) (note that muN = m1�1 � m1 as required), and with R(N) de�ned in (7.18). ForM � 1,by (7.73) the left-hand side of (7.55) is at mostpXw X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1;y2; ~CN�1)℄I[w 2 ~CN ℄�Xy1 P (M�1)(vN ; (y1; m1 � 1);w):(7.76)The fator P (M�1)(vN ; (y1; m1� 1);w) guarantees that m1� 1 � mw; muN , and (7.63) an now beapplied to omplete the proof of (7.55) as in the proof of (7.53). The proof of (7.56) is similar.7.4.2 Proof of (7.19){(7.20) for K = 0We begin with the following lemma. Reall the de�nitions of the events Hm and Vm in (5.5) and(7.47).Lemma 7.15. For v;y 2 � with mv < m � my,Hm(v;y; fvg) � Vm�1(v;y): (7.77)Proof. Let b denote the last pivotal bond for v ! y, if it exists. The ontribution where suha pivotal bond does not exist is equal to fv =) yg � Vm�1(v;y); sine mv � m � 1. Thus, itsuÆes to show that Hm(v;y; fvg) \ fb last o. and piv. bond for v ! yg (7.78)is a subset of Vm�1(v;y) for every b. When Hm(v;y; fvg) ours, b annot be an m-utting bondfor v ! y. Therefore, mb � m � 1. Sine b =) y, this proves that Vm�1(v;y) ours with z in(7.47) given by z = b.Reall that ePN is the onditional law given that (uN ; vN) is vaant. We also use the followinglemma. 50



Lemma 7.16. Let F be an inreasing event, and let X be a non-negative random variable whihis independent of the oupation status of the bond (uN ; vN). TheneEN (XI[F ℄) � EN (XI[F ℄): (7.79)Proof. We ondition on (uN ; vN) to see thatEN (XI[F ℄) = JvN ;uNEN (XI[F ℄j(uN ; vN) oupied) + (1� JvN ;uN )EN (XI[F ℄j(uN ; vN) vaant):(7.80)By assumption, EN (XI[F ℄j(uN ; vN) oupied) � EN (XI[F ℄j(uN ; vN) vaant); (7.81)and the laim follows.Proof of (7.19) for K = 0. To estimate �(N;M;0)m1;m2 (fvN�1g), we �rst note that by de�nition (reall(5.13) and (7.14){(7.15)),�(N;M;0)m1;m2 (A) = X(uN ;vN )JuN ;vN Xb6=(uN ;vN )Jb;bfM (N+1)(uN;vN )�I[Hm1(vN�1; b;A)℄�(M)m1 (vN ; ~CN)�Æm2;mb: (7.82)We are onerned here with A = fvN�1g. By Lemma 7.15,Hm1(vN�1; b; fvN�1g) � Vm1�1(vN�1; b): (7.83)The event Vm1�1(vN�1; b) is inreasing, and the event E 0N = E 0(vN�1;uN ; ~CN�1) does not depend onthe oupation status of (uN ; vN). Also, the random variable �(M)m1 (vN ; ~CN) is independent of theoupation status of (uN ; vN), sine ~CN = ~C(uN ;vN )N (vN�1) is. Therefore, by Lemma 7.16, the eENexpetation in fM (N+1)(uN;vN ) impliit in (7.82) an be bounded above by the orresponding expetationwithout the tilde, i.e.,eEN �I[E 0N \ Vm1�1(vN�1; b)℄�(M)m1 (vN ; ~CN)� � EN �I[E 0N \ Vm1�1(vN�1; b)℄�(M)m1 (vN ; ~CN)�: (7.84)Omitting the restrition b 6= (uN ; vN), it follows that�(N;M;0)m1;m2 (fvN�1g) �Xb Jb;b X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1; b)℄�(M)m1 (vN ; ~CN)�Æm2;mb (7.85)= pXy2 X(uN ;vN )JuN ;vNM (N+1)uN �I[Vm1�1(vN�1; (y2; m2 � 1))℄�(M)m1 (vN ; ~CN)�Æm2;mb ;where we have written b = (y2; m2 � 1) and have used Pb Jb;b = p. The bound (7.19) for K = 0now follows from (7.53).Next, we prepare for the proof of (7.20) for K = 0. Let N � 1. To partition the eventHm(vN�1; b; ~CN�1) ourring in (7.82) (for A = ~CN�1), we de�neG(1)m (vN�1; b) = Hm(vN�1; b; ~CN�1) \ Vm�1(vN�1; b); (7.86)G(2)m (vN�1; b) = Hm(vN�1; b; ~CN�1) \ Vm�1(vN�1; b): (7.87)51



In terms of these events, Hm(vN�1; b; ~CN�1) is given by the disjoint unionHm(vN�1; b; ~CN�1) = G(1)m (vN�1; b) _[ G(2)m (vN�1; b): (7.88)Clearly, G(1)m (vN�1; b) � Vm�1(vN�1; b): (7.89)For G(2)m (vN�1; b), we will use the following lemma. Reall that the event Em was de�ned in (7.48).Lemma 7.17. For vN�1;y2 2 � and m � 1 suh that mvN�1 < m � my2,G(2)m (vN�1;y2) � Em(vN�1;y2; ~CN�1): (7.90)Proof. Suppose that G(2)m (vN�1;y2) ours. It annot be the ase that vN�1 =) y2, sine thisontributes instead to G(1)m (vN�1;y2). Thus there is at least one oupied pivotal bond for vN�1 !y2, and we denote the last suh bond by b. Then fvN�1 ! b =) y2g. It must be the ase thatmb > m� 1, sine otherwise G(1)m (vN�1;y2) ours. By the de�nition of Hm(vN�1; b; ~CN�1) in (5.5),b annot be m-utting for vN�1 ~CN�1���! y2, and hene fvN�1 ~CN�1���! bg ours. Sine vN�1 ~CN�1���! y2ours by (5.5), we onlude that b ~CN�1���! y2. Therefore, Em(vN�1;y2; ~CN�1) ours, with z = b in(7.48).Proof of (7.20) for K = 0. Let N � 1. We estimate (7.82) for A = ~CN�1, using the partition(7.88) for the event Hm(vN�1; b; ~CN�1).Consider �rst the ontribution due to G(1)m1(vN�1; b). The inlusion (7.89) plays a role identialto the inlusion (7.83), and the analysis of (7.84){(7.85) then applies in an idential fashion togive the �rst term on the right-hand side of (7.20) as an upper bound for this ontribution.It remains to show that the ontribution to (7.82) due to G(2)m1(vN�1; b), namelyXb Jb;b X(uN ;vN )JuN ;vN fM (N+1)(uN;vN )�I[G(2)m1(vN�1; b)℄�(M)m1 (vN ; ~CN)�Æm2;mb; (7.91)is bounded by the seond term on the right-hand side of (7.20). By Lemma 7.17,I[G(2)m1(vN�1; b)℄ � I[Em1(vN�1; b; ~CN�1)℄: (7.92)Sine Em1(vN�1; b; ~CN�1) is inreasing, we may apply Lemma 7.16 as before to onlude that theeEN expetation in fM (N+1)(uN;vN ) impliit in (7.91) obeyseEN �I[E 0N \G(2)m (vN�1; b)℄�(M)m1 (vN ; ~CN)� � EN �I[E 0N \ Em1(vN�1; b; ~CN�1)℄�(M)m1 (vN ; ~CN)�; (7.93)and henefM (N+1)(uN;vN )�I[G(2)m1(vN�1; b)℄�(M)m1 (vN ; ~CN)� �M (N+1)uN �I[Em1(vN�1; b; ~CN�1)℄�(M)m1 (vN ; ~CN)�: (7.94)It follows that the ontribution to (7.82) due to G(2) is bounded above byXb Jb;b X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1; b; ~CN�1)℄�(M)m1 (vN ; ~CN)�Æm2;mb (7.95)= pXy2 X(uN ;vN )JuN ;vNM (N+1)uN �I[Em1(vN�1; (y2; m2 � 1); ~CN�1)℄�(M)m1 (vN ; ~CN)�Æm2;mb ;where we have written b = (y2; m2 � 1) and used Pb Jb;b = p. The bound (7.20) now follows fromProposition 7.11. 52



7.4.3 Proof of (7.19){(7.20) for K � 1We �rst prove (7.19) for K = 1. For this, we note that�(N;M;1)m1;m2 (A) =Xb Jb;b X(uN ;vN )JuN ;vN fM (N+1)(uN;vN )�I[Hm1(vN�1; b;A)℄�(1)m2(b; ~CbN)�(M)m1 (vN ; ~CN)�: (7.96)By (6.9) and (7.14),�(1)m2(b; ~CbN) � pXy2 P (0)m2(b; (y2; m2 � 1); ~CbN) = pXa I[a 2 ~CbN ℄Xy2 P (0)(b; (y2; m2 � 1);a): (7.97)It then follows from (7.83), Lemma 7.16 and (7.54) that�(N;M;1)m1;m2 (fvN�1g) � p2 Xy1;y2Xa Xb Jb;bR(N+M)((y1; m1 � 1); b; `(a))P (0)(b; (y2; m2 � 1);a): (7.98)By (7.11), Constrution `(a) followed by multipliation by Jb;bP (0)(b; (y2; m2�1);a) and summationover a and b is equivalent to Constrution E. This shows that�(N;M;1)m1;m2 (fvN�1g) � p2 Xy1;y2R(N;M;1)m1�1;m2�1(y1; y2); (7.99)whih proves (7.19) for K = 1.To extend the proof of (7.19) to K � 1, we estimate �(K)m2 (b; ~CbN) using (6.9) and (7.14).Aording to Remark 7.4, the resulting bound on �(K)m2 (b; ~CbN) is the same as K � 1 appliations ofConstrution E to pPx P (0)(b; (x;m2 � 1); ~CbN). Therefore, by de�nition of R(N;M;K)m1;m2 (y1; y2), (7.19)for K � 1 follows from (7.19) for K = 1.The proof of (7.20) proeeds similarly, with (7.56) used in plae of (7.54).7.4.4 Proof of �nal statement of Proposition 7.6Finally, we suppose that (m1; m2) 6= (1; 1), and show that in this ase �(0;0;0)m1;m2(f0g) � C�bm1;m2 .We have already seen in (7.19) and (7.21) that �(0;0;0)m1;m2(f0g) � Cbm1;m2 , and the only issue is toestablish that a fator � an be inserted into this upper bound. A fator � arises in diagrammatiestimates when the bound (7.24) is used to estimate k�mk1 with m � 1. Aording to (7.17), thediagrammati upper bound p2Py1;y2 R(0;0;0)m1�1;m2�1(y1; y2) on �(0;0;0)m1;m2(f0g) given by (7.19) is equal toXv Xz P (0)m1�1(y1; `(v;m1 � 1); 1(z))�m2�m1(y2 � v)�m2�1�mz(y2 � z): (7.100)When (m1; m2) 6= (1; 1), there is at least one line with length greater than zero, and a fator �then results from standard estimates.8 Diagrammati estimates: Bounds for en+1In this setion, we prove the bound (1.19) on en+1(p). We assume throughout that�m(p) � C�(m + 1)�1 for all 0 � m � n; (8.1)53



whih is a hypothesis of Theorem 1.1(ii). Throughout this setion, we �x d > 4, p = p, andonsider the spread-out model with � suÆiently small, although some of our arguments applymore generally. Note that we an extend (8.1) to m = n + 1 by onditioning on a vertex at time1 and using the Markov property and (1.9) to obtain�n+1(p) � Xv2Zd pD(v)�n(p) = p�n(p) � 2C�(n+ 1)�1 � 4C�(n+ 2)�1: (8.2)We absorb the onstant 4 into C� and regard (8.1) as applying also when m = n + 1 in whatfollows.In Setion 8.1, we redue (1.19) to bounds on e(N)n+1(1); : : : ; e(N)n+1(5). In Setion 8.2, we providesome preliminary onvolution bounds. Then we estimate the �ve error terms in order of inreasingdiÆulty, namely e(N)n+1(3), e(N)n+1(5), e(N)n+1(2), e(N)n+1(4), e(N)n+1(1), in Setions 8.3{8.7, respetively.8.1 Redution of proof of (1.19)Let �0n = 8><>: (n + 1)(6�d)=2 (4 < d < 6);logn (d = 6);1 (d > 6): (8.3)The following proposition will be proved in Setions 8.3{8.7.Proposition 8.1 (Bounds on error terms). Let d > 4, p = p, for the spread-out model with �suÆiently small. Let n � 1 and N � 0, and assume that �m(p) � C�(m+1)�1 for all 0 � m � n.Then je(N)n+1(1)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.4)je(N)n+1(2)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.5)je(N)n+1(3)j � CC�(C�)N_1(n+ 1)�d=2 logn; (8.6)je(N)n+1(4)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.7)je(N)n+1(5)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1h(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i: (8.8)Proof of (1.19) subjet to Proposition 8.1. It follows from (5.19) that jen+1j is bounded aboveby the sum of the right-hand sides of (8.4){(8.8). The elementary inequalities (n + 1)�3�0n+1 �(n+ 1)�2�n+1 and (n+ 1)�d=2 logn � (n + 1)�2�n+1 then yield (1.19) (reall (1.16)).8.2 Convolution boundsThis setion ontains several onvolution bounds to be used in Setions 8.3{8.7.Lemma 8.2. Suppose that Fm obeys Fm � CF (m+ 1)�d=2. If (8.1) holds, thenn+1Xm=b(n+1)=2+1 Fm�n+1�m � CC�CF (n+ 1)�d=2 logn; (8.9)where C is a onstant that only depends on d. 54



Proof. We use the two assumptions to obtain the upper boundn+1Xm=b(n+1)=2+1CF (m+ 1)�d=2C�(n�m+ 2)�1 � CC�CF(n + 1)�d=2 n+1Xm=b(n+1)=2+1(n�m+ 2)�1� CC�CF(n + 1)�d=2 logn: (8.10)Let Fm(�n+1; �n+1) denote the result of two appliations of Constrution �n+1 to Fm. (Aordingto De�nition 6.5, eah of the two added onnetions to n is added to lines originally in Fm, i.e.,the seond added onnetion to n annot be attahed to the �rst added onnetion to n.)Lemma 8.3. Suppose that Fm is a diagram suh that Fm � CF (m + 1)�d=2. Suppose that Fmontains at most L lines at any �xed time, that the largest time oordinate of a vertex in Fm is m,and assume (8.1). Thenbn=2Xm=0 Fm(�n+1; �n+1)�n�m � CC3�CFL2(n+ 1)�3�0n+1; (8.11)where C is a onstant that only depends on d.Proof. Eah fator � appearing in Fm(�n+1; �n+1)�n�m has subsript at least n�bn=2. Therefore,by (8.1), bn=2Xm=0 Fm(�n+1; �n+1)�n�m � CC3� (n+ 1)�3 bn=2Xm=0 mXl1;l2=0Fm(1(l1); 1(l2)): (8.12)By Lemma 7.8(a), for eah l1; l2, we haveFm(1(l1); 1(l2)) � CCFL2(m+ 1)�d=2: (8.13)Therefore, bn=2Xm=0 Fm(�n+1; �n+1)�n�m � CC3�CFL2(n + 1)�3 bn=2Xm=0 (m + 1)�(d�4)=2: (8.14)Performing the sum gives bn=2Xm=0 (m + 1)�(d�4)=2 � C�0n+1; (8.15)and this ompletes the proof.Corollary 8.4. Suppose that Fm is a diagram suh that Fm � CF(m + 1)�d=2. Suppose that Fmontains at most L lines at any �xed time, that the largest time oordinate of a vertex in Fm is m,and assume (8.1). ThennXm=0[Fm(�n+1; �n+1) ^ Fm℄�n�m � CC3�CF hL2(n + 1)�3�0n+1 + (n + 1)�d=2 logni; (8.16)where C is a onstant that only depends on d. 55



Proof. For m � bn2  we use Lemma 8.3, and for m � bn2 + 1 we use Lemma 8.2. Adding the twoontributions proves the laim (we assume that C� � 1).Let Fm(�n+1) denote the result of an appliation of Constrution �n+1 to Fm.Lemma 8.5. Suppose that Fm is a diagram suh that Fm � CF (m + 1)�d=2. Suppose that Fmontains at most L lines at any �xed time, that the largest time oordinate of a vertex in Fm is m,and assume (8.1). Then bn=2Xm=0 Fm(�n+1)�2n�m � CC3�CFL(n+ 1)�3; (8.17)where C is a onstant that only depends on d.Proof. The proof is a straightforward adaptation of the proof of Lemma 8.3. Eah fator � ap-pearing in Fm(�n+1)�2n�m has subsript at least n� bn=2. Therefore, by (8.1),bn=2Xm=0 Fm(�n+1)�2n�m � CC3� (n+ 1)�3 bn=2Xm=0 mXl1=0Fm(1(l1)): (8.18)By Lemma 7.8(a), mXl1=0Fm(1(l1)) � CCFL(m+ 1)�(d�2)=2; (8.19)and the laim follows from (8.15).Lemma 8.6. Suppose that Fm1;m2 is a diagram suh that Fm1;m2 � CFbm1;m2 . Suppose that Fm1;m2ontains at most L lines at any �xed time, that the largest time oordinate of a vertex in Fm1;m2is m1 _m2, and assume (8.1). Thenb(n+1)=2Xm1=0 n+1Xm2=m1 hFm1;m2 ^ Fm1;m2(�n+1)i�n+1�m1�n+1�m2� CC3�CFLh(n+ 1)�d=2 logn + (n+ 1)�3�0n+1i; (8.20)where C is a onstant that only depends on d.Proof. Sine m1 � b(n + 1)=2, (8.1) implies that �n+1�m1 � CC�(n + 1)�1. We divide the sumover m2 aording to whether b3n=4+ 1 � m2 � n+ 1 or m1 � m2 � b3n=4.Suppose �rst that b3n=4 + 1 � m2 � n+ 1. In this ase,bm1;m2 � C(m1 + 1)�(d�2)=2(n+ 1)�(d�2)=2: (8.21)We bound the minimum in (8.20) by Fm1;m2 to see that this ase ontributes at mostCC2�CF(n + 1)�d=2 b(n+1)=2Xm1=0 (m1 + 1)�(d�2)=2 n+1Xm2=b3n=4+1(n+ 2�m2)�1� CC2�CF (n+ 1)�d=2 logn (8.22)56



to the left-hand side of (8.20).In the remaining ase, we have m1 � m2 � b3n=4, and hene �n+1�m2 � CC�(n + 1)�1: Webound the minimum in (8.20) by Fm1;m2(�n+1) to see that this ase ontributes at mostb(n+1)=2Xm1=0 b3n=4Xm2=m1 Fm1;m2(�n+1)�n+1�m1�n+1�m2 � CC2� (n+ 1)�2 b(n+1)=2Xm1=0 b3n=4Xm2=m1 Fm1;m2(�n+1): (8.23)By Lemma 7.8(a) and the fat that m2 � b3n=4,Fm1;m2(�n+1) = m2Xl=0 Fm1;m2(1(l))�n+1�l � CC�(n+ 1)�1L(m2 + 1)CFbm1;m2 : (8.24)Therefore,b(n+1)=2Xm1=0 b3n=4Xm2=m1 Fm1;m2(�n+1)�n+1�m1�n+1�m2 � CC3�CFL(n + 1)�3 b(n+1)=2Xm1=0 b3n=4Xm2=m1(m2 + 1)bm1;m2 :(8.25)It follows from (8.15) thatb(n+1)=2Xm1=0 b3n=4Xm2=m1(m2+1)bm1;m2 � b(n+1)=2Xm1=0 b3n=4Xm2=m1 h(m1+1)+ (m2�m1+1)ibm1;m2 � C�0n+1; (8.26)and this ompletes the proof.It is a onsequene of their de�nitions in (7.17){(7.18) that R(N)(y1;y2) and Q(N)(y1;y2) haveat most L = 6 lines at any �xed time. Also, R(N;M;K)(y1;y2) and Q(N;M;K)(y1;y2) have L = 7. Forthis reason, fators of L will be unimportant in our appliations of the above lemmas.8.3 Bound on e(N)n+1(3)Proof of (8.6). Fix N � 0. It is an immediate onsequene of (4.31) and (4.29) thatje(N)n+1(3)j � n+1Xm1=b(n+1)=2+1 hj�(N)m1;n+1(fvN�1g)j+ j�(N)m1;n+1( ~CN�1)jip�n+1�m1 : (8.27)In the de�nition (4.18) of �(N)m1 ;n+1(A), we estimate the indiator funtion by 1 to obtainj�(N)m1;n+1(A)j � 1XM=0 X(uN ;vN )JuN ;vNM (N+1)uN ��(M)m1 (vN ; ~CN)�; (8.28)for all A � �. For M = 0, it follows from (7.14) thatXvN JuN ;vN�(0)m1(vN ; ~CN) = pÆmuN ;m1�1: (8.29)For M � 1, we use (3.27), (7.14) and (3.38) to rewrite the right-hand side of (8.28). This givesj�(N)m1;n+1(A)j � p 1XM=0Xy �(N+M)m1�1 (y): (8.30)57



The ombination of (8.27), (8.30) and (6.9) givesje(N)n+1(3)j � 2p2 1XM=0 n+1Xm1=b(n+1)=2+1Xy P (N+M)m1�1 (y)�n+1�m1: (8.31)It now follows from Lemma 8.2 and (6.2) that if � is suÆiently small, thenje(N)n+1(3)j � CC� 1XM=0(C�)(N+M)_1(n + 1)�d=2 logn � CC�(C�)N_1(n + 1)�d=2 logn; (8.32)as required.8.4 Bound on e(N)n+1(5)Proof of (8.8). The error term e(N)n+1(5) is de�ned in (5.18) in terms of the quantities given in (5.8){(5.10). Let e(N;M;K)n+1 (5) denote the ontribution to e(N)n+1(5) due to �(M)m1 (vN ; ~CN) and �(K)n+1(b; ~CbN) in(5.8), so that e(N)n+1(5) � 1XM;K=0 je(N;M;K)n+1 (5)j: (8.33)Apart from the sum over m1 and fator �n+1�m1 in (5.18), e(N)n+1(5) has the same form as �(N)m1;m2(de�ned in (5.17) and (5.13)), exept that the fator �n+1 in (5.8) for e(N)n+1(5) is replaed by �m2in (5.13) for �(N)m1;m2 . We will estimate e(N;M;K)n+1 (5) by determining the e�et of this replaement. LetT (N;M;K)m1;m2 (y1; y2) = R(N;M;K)m1;m2 (y1; y2) +Q(N;M;K)m1;m2 (y1; y2) (8.34)and T (N)m1;m2 = p2 1XK;M=0 Xy1;y2 T (N;M;K)m1�1;m2�1(y1; y2): (8.35)For N � 0, it follows from (7.16) and Propositions 7.6{7.7 thatj�(N)m1;m2 j � T (N)m1;m2 � C(C�)Nbm1;m2 : (8.36)If the fator �(K)n+1(b; ~CbN) appearing in (5.9){(5.10) were replaed by �(K)m2 (b; ~CbN), then we wouldhave as upper bound b(n+1)=2Xm1=1 T (N;M;K)m1;m2 p�n+1�m1 : (8.37)The upper bound on �(K)n+1(b; ~CbN) in Proposition 6.7 is given expliitly in terms of the diagramsused to bound �(K)m2 (b; ~CbN). The appropriate modi�ation for e(N)n+1(5) is thusje(N)n+1(5)j � p2 b(n+1)=2Xm1=1 n+1Xm2=m1 �T (N)m1;m2(�n+1) ^ T (N)m1;m2��n+1�m1�n+1�m2 : (8.38)It then follows from (8.36) and Lemma 8.6 thatje(N)n+1(5)j � CC3� (C�)N(n+ 1)�3 h�0n+1 + (n+ 1)6�d=2 logni : (8.39)58



When N = 0, the only ontribution without a positive power of � arises when m1 = m2 = 1 in(8.38), and this ontribution is bounded above by CC3� (n+ 1)�3. Therefore,je(N)n+1(5)j � CC3� (n+ 1)�3 hÆN;0 + (C�)N_1 h�0n+1 + (n+ 1)6�d=2 lognii ; (8.40)whih ompletes the proof of (8.8).8.5 Bound on e(N)n+1(2)We prove a lemma before proving the bound (8.5) on e(N)n+1(2). The lemma generalises (6.21). Notethat the order in whih onstrutions are applied an be important, sine, e.g., P (N)(y; `�(a); �n+1)is not equal to P (N)(y; �n+1; `�(a)).Lemma 8.7. For N;M � 0, y 2 �, and n � 0,X� Xa X(uN ;vN ) JuN ;vNP (N)(uN ; `�(a); �n+1)P (M)(vN ;y;a; �n+1) � P (N+M+1)(y; �n+1; �n+1); (8.41)where the sum over � is over the N-admissible lines for P (N).Proof. Equation (8.41) is similar to (6.21), but now with two extra Construtions �n+1 performed.The equality in (6.21) is replaed by an upper bound in (8.41), sine on the right-hand side thereare more possibilities for the lines on whih the two Construtions �n+1 an be performed.Proof of (8.5). The error term e(N)n+1(2) is de�ned in (4.30) and (4.19). For A = ~CN�1 or A = fvN�1g,we use I[v A�! n+ 1 in ~CN ℄ � I[v ! n+ 1℄ (8.42)to obtain je(N)n+1(2)j � 2 X(uN ;vN ) JuN ;vNM (N+1)uN �I[vN�1 ! n+ 1℄j�n+1(vN ; ~CN)j�� 2 1XM=0 X(uN ;vN ) JuN ;vNM (N+1)uN �I[vN�1 ! n + 1℄j�(M)n+1(vN ; ~CN)j�: (8.43)We use Proposition 6.7 to bound j�(M)n+1(vN ; ~CN)j, using the seond alternative for the minimumin (6.28) when k � bn=2 + 1, and the �rst alternative in (6.28) when k � bn=2. Denote theontribution due to k � bn=2 + 1 by e(N)n+1(2; 1), and the ontribution due to k � bn=2 bye(N)n+1(2; 2), so that je(N)n+1(2)j � 2 �e(N)n+1(2; 1) + e(N)n+1(2; 2)� : (8.44)For e(N)n+1(2; 1), we use (6.28) and (7.8) to obtaine(N)n+1(2; 1) � 1XM=0Xa X(uN ;vN )JuN ;vNM (N+1)uN (I[a 2 ~CN ℄) n+1Xk=bn=2+1 Xy2ZdP (M)(vN ; (y; k);a)p�n�k (8.45)� 1XM=0 n+1Xk=bn=2+1 Xy2ZdX� Xa X(uN ;vN ) JuN ;vNP (N)(uN ; `�(a))P (M)(vN ; (y; k);a)p�n�k;59



where we reall Remark 6.2. By (6.21), (6.2) and Lemma 8.2,e(N)n+1(2; 1) � 1XM=0 n+1Xk=bn=2+1 Xy2ZdP (N+M)k (y)p�n�k � CC� 1XM=0(C�)(N+M)_1(n + 1)�d=2 logn� CC�(C�)N_1(n+ 1)�d=2 logn: (8.46)For e(N)n+1(2; 2), we use the minor extension of (7.8) that, for N � 0, a;y 2 � and n � 0,M (N+1)y (I[a 2 ~CN ; vN�1 ! n+ 1℄) �X� P (N)(y; `�(a); �n+1): (8.47)By (8.47) and (6.28),e(N)n+1(2; 2) � 1XM=0 bn=2Xk=0 X� Xa X(uN ;vN )JuN ;vNP (N)(uN ; `�(a); �n+1) Xy2ZdP (M)(vN ; (y; k);a; �n+1)p�n�k:(8.48)It then follows from Lemma 8.7, Lemma 8.3 and (6.2) thate(N)n+1(2; 2) � 1XM=0 bn=2Xk=0 Xy2ZdP (N+M)k (y; �n+1; �n+1)p�n�k (8.49)� CC3� 1XM=0(C�)N+M(n+ 1)�3�0n+1 � CC3� (C�)N(n + 1)�3�0n+1:When N = 0, the only ontribution without a positive power of � arises when k = 0 in (8.49). Thisrequires that y = 0 and M = 0, and ontributes at most CC3� (n+1)�3. With this observation, wean improve (8.49) to e(N)n+1(2; 2) � CC3� (n+ 1)�3 hÆN;0 + (C�)N_1�0n+1i : (8.50)Substitution of (8.46) and (8.50) into (8.44) then gives (8.5).8.6 Bound on e(N)n+1(4)In this setion, we prove the bound (8.7) on the error term e(N)n+1(4). By (5.18),e(N)n+1(4) �b(n+1)=2Xm1=1 hjd(N)m1;n+1(4; fvN�1g)j+ 12 jd(N)m1;n+1(4; ~CN�1)ji�n+1�m1 : (8.51)We denote the ontribution due to d(N)m1;n+1(4; fvN�1g) by e(N)n+1(4; 1) and the ontribution due tod(N)m1;n+1(4; ~CN�1) by e(N)n+1(4; 2). We prove bounds on e(N)n+1(4; 1) in Setions 8.6.1{8.6.2, and one(N)n+1(4; 2) in Setion 8.6.3. The proof of (8.7) is ompleted at the end of Setion 8.6.3.
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8.6.1 Preliminaries for e(N)n+1(4; 1)Our bound on e(N)n+1(4; 1) uses the following two lemmas.Lemma 8.8. Let vN�1;y 2 � and let m1 < my � n. Let F = F (y) be an event that depends onlyon bonds with time variables at most my. ThenEN �I[F (y)℄I[(vN�1 ! n) Æ (y ! n)℄�(M)m1 (vN ; ~CN)� (8.52)� EN �I[F (y)℄I[(vN�1 ! n)℄�(M)m1 (vN ; ~CN)��n(y):Proof. Let Cy(v) = fx 2 C(v) : mx = myg. By the Markov property,EN �I[F (y)℄I[(vN�1 ! n) Æ (y ! n)℄�(M)m1 (vN ; ~CN)� (8.53)= XC 6=? EN �I[F (y)℄I[Cy(vN�1) = C℄��(M)m1 (vN ; ~CN)�PN ((C ! n) Æ (y ! n));sine �(M)m1 (vN ; ~CN) is independent of bonds with time variables exeeding my beause my � m1�1.By the BK inequality, PN((C ! n) Æ (y ! n)) � PN(C ! n)�n(y): (8.54)The inequality (8.52) an then be onluded from substitution of (8.54) into (8.53) followed bysummation over C.For mv � m � n, we de�ne Vm;n(v) = [z:mz�mfv ! z =) ng: (8.55)For later use, we note that it follows from (8.55) thatVm;n(v) = [y:my=mfv ! yg \ f(y ! n) Æ (v ! n)g: (8.56)The following lemma is reminisent of Lemma 7.15.Lemma 8.9. For vN�1 2 � and m;n � 1 suh that mvN�1 < m � n,Hm;n(vN�1; fvN�1g) � Vm�1;n(vN�1): (8.57)Proof. When Hm;n(vN�1; fvN�1g) ours, there is no m-utting bond for vN�1 ! n. Let b be thelast pivotal bond for vN�1 ! n, if it exists. If suh a bond does not exist, then vN�1 =) n, whih isa subset of Vm�1;n(vN�1). On the other hand, if there is suh a bond b, then b =) n, and thereforemb � m � 1, sine otherwise b would be the m-utting bond for vN�1 ! n. Thus, Vm�1;n(vN�1)ours.We also use the minor modi�ation of (8.47) that for every a;y 2 �, N � 0, and n � 0,M (N+1)uN �I[(vN�1 ! a) \ (vN�1 ! y) \ (vN�1 ! n)℄� �X� P (N)(uN ; `�(a); `(y); �n); (8.58)where the sum over � runs over the N -admissible lines for P (N)(uN).61



8.6.2 Bound on e(N)n+1(4; 1)In this setion, we prove that je(N)n+1(4; 1)j � C3� (C�)N(n+ 1)�3: (8.59)The de�nitions (5.9){(5.10) and (5.7) imply thatd(0)m1;n+1(4;A) = X(u0;v0)Ju0;v0 eEN �I[f0 =) u0g \Hm1;n(0;A)℄�m1(v0; ~C0)�; (8.60)while, for N � 1,d(N)m1;n+1(4;A) = X(uN�1;vN�1)JuN�1;vN�1 X(uN ;vN )JuN ;vN (8.61)M (N)uN�1�eEN �I[E 0(vN�1;uN ; ~CN�1) \Hm1;n(vN�1;A)℄�m1(vN ; ~CN)��:We denote by d(N;M)m1;n+1(4;A) the ontribution due to �(M)m1 (vN ; ~CN) in (8.60){(8.61), so thatjd(N)m1;n+1(4;A)j � 1XM=0 d(N;M)m1;n+1(4;A): (8.62)Using Lemma 8.9, (8.56) and Lemmas 7.16 and 8.8, we obtaineEN �I[E 0(vN�1;uN ; ~CN�1) \Hm1;n(vN�1;A)℄�(M)m1 (vN ; ~CN)� (8.63)� Xy2:my2=m1�1eEN �I[E 0(vN�1;uN ; ~CN�1)℄I[(vN�1 ! y2)℄I[(vN�1 ! n) Æ (y2 ! n)℄�(M)m1 (vN ; ~CN)�� Xy2:my2=m1�1EN �I[E 0(vN�1;uN ; ~CN�1)℄I[(vN�1 ! y2) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)��n(y2):Using (7.14) and (6.9), it follows that, for M � 1,EN �I[E 0(vN�1;uN ; ~CN�1) \Hm1;n(vN�1;A)℄�(M)m1 (vN ; ~CN)� (8.64)�Xy2 Xa EN �I[E 0(vN�1;uN ; ~CN�1) \ fvN�1 ! ag \ fvN�1 ! (y2; m1 � 1)g \ fvN�1 ! ng℄�Xy1 pP (M�1)(vN ; (y1; m1 � 1);a)�n(y2):When M = 0, a similar bound holds with both the sum over a and the indiator that vN�1 ! aremoved, and with pP (M�1)(vN ; (y1; m1 � 1);a) replaed by Æm1;mvN . This auses only minormodi�ations, and in the remainder of the proof of (8.59) we onsider only the ase M � 1expliitly.Now we speialise to A = fvN�1g, as in the de�nition of e(N)n+1(4; 1). For N = 0, we use theonvention (4.15) and apply (8.64) and (8.58) to obtaind(0;M)m1;n+1(4; f0g) �Xy2 X� X(u0;v0)Ju0;v0 Xa P (0)(u0; `�(a); `(y2; m1 � 1); �n+1) (8.65)�Xy1 pP (M�1)(v0; (y1; m1 � 1);a)�n+1(y2; m1 � 1):62



For N � 1, we substitute (8.64) into (8.61), use the reursion (3.35) in the formX(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�EN �I[E 0(vN�1;uN ; ~CN�1)\ f(vN�1 ! a) \ (vN�1 ! y2) \ (vN�1 ! n)g℄��=M (N+1)uN �I[(vN�1 ! a) \ (vN�1 ! y2) \ (vN�1 ! n)℄� (8.66)and apply (8.58), to obtaind(N;M)m1;n+1(4; fvN�1g) �Xy2 X� X(uN ;vN )JuN ;vN Xa P (N)(uN ; `�(a); `(y2; m1 � 1); �n+1) (8.67)�Xy1 pP (M�1)(vN ; (y1; m1 � 1);a)�n+1(y2; m1 � 1):Thus, the bounds for N = 0 and N � 1 in (8.65) and (8.67) agree, and we an heneforth treatall N � 0 simultaneously.By (8.67) and a slight generalisation of (6.21) (similar to Lemma 8.7),d(N;M)m1;n+1(4; fvN�1g) � p Xy1;y2 P (N+M)m1�1 (y1; `(y2; m1 � 1); �n+1)�n+1(y2; m1 � 1): (8.68)Let B(N+M)m = Xy1;y2 P (N+M)m (y1; `(y2; m)): (8.69)By the de�nition of e(N)n+1(4; 1) below (8.51), we therefore obtainje(N)n+1(4; 1)j � p 1XM=0 b(n+1)=2Xm1=1 B(N+M)m1�1 (�n+1)�2n�m1 : (8.70)By (6.2) and Lemma 7.8(b), B(N+M)m � (C�)N+M(m + 1)�(d�2)=2; (8.71)so it follows from (8.70) and Lemma 8.5 thatje(N)n+1(4; 1)j � 1XM=0C3� (C�)N+M(n+ 1)�3 = C3� (C�)N(n+ 1)�3: (8.72)This proves (8.59).8.6.3 Bound on e(N)n+1(4; 2)In this setion, we prove thatje(N)n+1(4; 2)j � CC3� (n+ 1)�3ÆN;0 + C3� (C�)N_1 h(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i : (8.73)63



Similarly to (7.86){(7.88), we de�neG(1)m;n(vN�1) = Hm;n(vN�1; ~CN�1) \ Vm�1;n(vN�1); (8.74)G(2)m;n(vN�1) = Hm;n(vN�1; ~CN�1) \ Vm�1;n(vN�1); (8.75)so that Hm;n(vN�1; ~CN�1) = G(1)m;n(vN�1) _[ G(2)m;n(vN�1): (8.76)For the ontribution due to G(1)n;1(vN�1;uN), we reall the argument beginning with (8.63) to seethat the inlusion G(1)m;n(vN�1) � Vm�1;n(vN�1) implies that this term obeys the same bound asje(N)n+1(4; 1)j. Thus, it remains to bound the ontribution due to G(2)m;n(vN�1): Note that, by (4.15),~C�1 = fv�1g = f0g, so that, by Lemma 8.9 and (8.75), G(2)m;n(v�1) = ?. Thus, we onsider onlyN � 1 in the following.Let e(N)n+1(4; 3) denote the ontribution to e(N)n+1(4; 2) (de�ned below (8.51)) due to G(2)m;n+1(vN�1);i.e., e(N)n+1(4; 3) = 12 b(n+1)=2Xm1=1 d(N)m1;n+1(4; ~CN�1; 3)p�n+1�m1 ; (8.77)where, as in (8.61), for N � 1,d(N)m1;n+1(4; ~CN�1; 3) = X(uN�1;vN�1)JuN�1;vN�1 X(uN ;vN )JuN ;vN (8.78)M (N)uN�1�eEN�I[E 0(vN�1;uN ; ~CN�1) \G(2)m1;n(vN�1)℄�m1(vN ; ~CN)��:It remains to estimate e(N)n+1(4; 3) for N � 1. The following analogue of Lemma 7.17 will be usefulfor this. Reall that the event Em was de�ned in (7.48).Lemma 8.10. For vN�1 2 � and m;n � 1,G(2)m;n(vN�1) � [y2 �Em(vN�1;y2; ~CN�1) \ �(y2 ! n) Æ (vN�1 ! n)��: (8.79)Proof. Suppose that G(2)m;n(vN�1) ours. It annot be the ase that vN�1 =) n, sine this on-tributes instead to G(1)m;n(vN�1). Thus there is at least one oupied pivotal bond for vN�1 ! n,and we denote the last suh bond by b. Then fvN�1 ! b =) ng ours. It must be the asethat mb > m � 1, sine otherwise G(1)m;n(vN�1) ours. By the de�nition of Hm;n(vN�1; ~CN�1) in(5.6), b annot be an m-utting bond for vN�1 ~CN�1���! n, and hene fvN�1 ~CN�1���! bg ours. SinevN�1 ~CN�1���! n ours by (5.6), we onlude that b ~CN�1���! n.Fix w suh that b! (w; n) (suh a w must exist sine b! n). Let b0 be the �rst oupied pivotalbond for b! (w; n), if it exists, suh that b ~CN�1���! b0. If b0 does not exist, then Em(vN�1; (w; n); ~CN�1)ours, whih is ontained in the right-hand side of (8.79) with y2 = (w; n). On the other hand,if b0 does exist, then, sine mb > m� 1, the event(vN�1 ! b) \ E 0(b; b0; ~CN�1) \ �(b0 ! n) Æ (vN�1 ! n)� (8.80)64



ours, whih implies that the event on the right-hand side of (8.79) ours with y2 = b0.In view of Lemma 8.10 and (8.78), it is useful to estimate, for N � 1 and M � 0,Xy2 eEN�IhE 0(vN�1;uN ; ~CN�1) \ Em1(vN�1;y2; ~CN�1) \ �(y2 ! n) Æ (vN�1 ! n)�i�(M)m1 (vN ; ~CN)�:(8.81)By Lemmas 7.16 and 8.8,eEN �I[E 0N \ Em1(vN�1;y2; ~CN�1)℄I[(y2 ! n) Æ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)� (8.82)� EN �I[E 0N \ Em1(vN�1;y2; ~CN�1) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)��n(y2):The reursion relation (3.38) implies thatX(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�EN �I[E 0N \ Em1(vN�1;y2; ~CN�1) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)��=M (N+1)uN �I[Em1(vN�1;y2; ~CN�1) \ (vN�1 ! n)℄�(M)m1 (vN ; ~CN)�; (8.83)Let Q(N+M)m1;m2 = Xy1;y2Q(N+M)((y1; m1); (y2; m2)): (8.84)If we simply ignore the indiator that vN�1 ! n, then it follows from Proposition 7.11 thatX(uN ;vN ) JuN ;vNM (N+1)uN �I[Em1(vN�1;y; ~CN�1)℄I[(vN�1 ! n)℄�(M)m1 (vN ; ~CN)�� pXy1 Q(N+M)((y1; m1 � 1);y): (8.85)On the other hand, it is a minor extension of Proposition 7.11 that the extra onnetion to nan be aounted for by an appliation of Constrution �n, so that the upper bound of (8.85) analternately be replaed by the upper bound pPy1 Q(N+M)((y1; m1�1);y; �n). Therefore, replaingn by n + 1,je(N)n+1(4; 3)j � 12p 1XM=0 b(n+1)=2Xm1=1 nXm2=m1 �Q(N+M)m1�1;m2�1(�n+1)^Q(N+M)m1�1;m2�1��n+1�m1�n+1�m2 : (8.86)By (7.41), Q(N+M)m1�1;m2�1 � (C�)N+Mbm1�1;m2�1 � C(C�)N+Mbm1;m2 : (8.87)Finally, by Lemma 8.6, for N � 1 we haveje(N)n+1(4; 3)j � C3� (C�)N h(n + 1)�d=2 logn + (n+ 1)�3�0n+1i : (8.88)The ombination of (8.59) and (8.88) then gives the bound (8.73) on e(N)n+1(4; 2).Proof of (8.7). This immediately follows from summation of (8.59) and (8.73).65



8.7 Bound on e(N)n+1(1)In this setion, we prove the bound (8.4) on the error term e(N)n+1(1), whih is de�ned in (4.22){(4.24).Reall (4.35){(4.37). For j = 1; 2; 3, lete(0)n+1(1; j) = e(0)n+1(0; f0g; j); (8.89)and, for N � 1, e(N)n (1; j) = X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�e(0)n (vN�1; ~CN�1; j)�: (8.90)It follows from (4.34) and (4.23){(4.24) thate(N)n+1(1) = e(N)n+1(1; 1) + e(N)n+1(1; 2) + e(N)n+1(1; 3): (8.91)We estimate e(N)n+1(1; 1) and e(N)n+1(1; 2) in Setions 8.7.1 and 8.7.2. The more deliate e(N)n (1; 3) isestimated in Setion 8.7.3. The proof of (8.4) is given at the beginning of Setion 8.7.3.8.7.1 Bound on e(N)n+1(1; 1)The error term e(N)n+1(1; 1) is nonnegative by de�nition. For N = 0,e(0)n+1(1; 1) � P�F 0n(0; f0g) \ fjPf0gj � 1g� �Xx P�E 0(0; (x; n+ 1); f0g)� (8.92)=Xx �(0)n+1(x) �Xx P (0)n+1(x) � C�(n+ 1)�d=2;by (4.38), Proposition 4.6, (6.9) and (6.2). For N � 1,e(N)n+1(1; 1) � X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�Xx P�E 0(vN�1; (x; n + 1); ~CN�1)��=M (N+1)(x;n+1)(1) =Xx �(N)n+1(x) �Xx P (N)n+1(x) � (C�)N(n + 1)�d=2; (8.93)by (8.90), Proposition 4.6, (6.9) and (6.2).8.7.2 Bound on e(N)n+1(1; 2)For N = 0, we use (4.39) to see thatje(0)n+1(1; 2)j � Xy:my�bn2 +1P(E 0(0;y; f0g))�n+1(y): (8.94)Therefore,je(0)n+1(1; 2)j � n+1Xm=bn2 +1Xy �(0)m (y)�n+1�m � n+1Xm=bn2 +1Xy P (0)m (y)�n+1�m � C�(n+ 1)�d=2 logn;(8.95)66



by (6.9), (6.2), and Lemma 8.2. For N � 1,je(N)n+1(1; 2)j � X(uN�1;vN�1)JuN�1 ;vN�1M (N)uN�1� Xy:my�bn2 +1P�E 0(vN�1;y; ~CN�1)���n+1(y)= Xy:my�bn2 +1M (N+1)y (1)�n+1(y) = n+1Xm=bn2 +1Xy �(N)m (y)�n+1�m� n+1Xm=bn2 +1Xy P (N)m (y)�n+1�m � (C�)N(n+ 1)�d=2 logn; (8.96)by (8.90), (4.39), (6.9), (6.2) and Lemma 8.2.8.7.3 Bound on e(N)n+1(1; 3)In this setion, we prove that, for N � 1,je(0)n+1(1; 3)j � CC3� h(n+ 1)�3 + �(n+ 1)�d=2 logn + �(n+ 1)�3�0n+1i: (8.97)je(N)n+1(1; 3)j � CC3� (C�)Nh(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.98)Proof of (8.4). For N = 0, (8.4) follows from (8.91), (8.92), (8.95) and (8.97). For N � 1, (8.4)follows from (8.91){(8.93), (8.96) and (8.98).To prove (8.97){(8.98), in view of (8.89){(8.90) and (4.15), we start with e(0)n (vN�1; ~CN�1; 3).Aording to (4.50),je(0)n+1(v;A; 3)j � Xb0�bn+12 Xbb0 P�F 0n+1(v;A) \ fb0 2 PAg \ fb 2 P (3)A g�: (8.99)Let F 0n+1(v;x; b0;A) = E 0(v;x;A) \ F 0n+1(v;A) \ fb0 2 PAg: (8.100)It follows from (8.99), Proposition 4.10, Lemma 2.2, and the inequalityP(b! n+ 1 in �n ~Cb(b)) � �n+1(b) (8.101)that je(0)n+1(v;A; 3)j � Xb0�bn+12 Xbb0 Jb;bP�F 0n+1(v; b; b0;A) in ~Cb(v)��n+1(b) (8.102)= Xb0�bn+12 Xbb0 Jb;bePb�F 0n+1(v; b; b0;A)��n+1(b);where ePb denotes P onditioned on b being vaant. By Proposition 4.3,F 0n+1(v;A) \ fb0 2 PAg � E 0(v; b0;A) \ n(v ! n+ 1) Æ �fb0 o.g \ (b0 ! n+ 1)�o; (8.103)67



sine, on the right-hand side of (4.25), (v ! n + 1) ours in ~Cb0(v), and therefore (v ! n + 1)ours disjointly from fb0 o.g \ (b0 ! n + 1). Then (6.12), (8.100) and (8.103) imply thatF 0n+1(v; b; b0;A) � E 0(v; b0;A) \ E(v; b;A) \ n(v ! n+ 1) Æ �fb0 o.g \ (b0 ! n + 1)�o: (8.104)The event E(v; b;A) \ f(v ! n+ 1) Æ (fb0 o.g \ (b0 ! n+ 1))g is inreasing, and, for b0 � b, theevent E 0(v; b0;A) is independent of the oupation status of b. Therefore, by Lemma 7.16,je(0)n+1(v;A; 3)j � Xb0�bn+12 Xbb0 Jb;bP�E 0(v; b0;A) \ E(v; b;A) (8.105)\ n(v ! n+ 1) Æ �fb0 o.g \ (b0 ! n + 1)�o��n+1(b):In partiular, by (8.89) and (3.20),je(0)n+1(1; 3)j � Xb0�bn+12 Xbb0 Jb;bM (1)b0 �IhE(0; b; f0g) (8.106)\ n(0! n+ 1) Æ �fb0 o.g \ (b0 ! n+ 1)�oi��n+1(b):Also, by (8.90), (8.105), (3.20) and (3.35), for N � 1,je(N)n+1(1; 3)j � Xb0�bn+12 Xbb0 X(uN�1;vN�1)JuN�1;vN�1Jb;bM (N)uN�1�P�E 0(vN�1; b0; ~CN�1) (8.107)\ E(vN�1; b; ~CN�1) \ n(vN�1 ! n + 1) Æ �fb0 o.g \ (b0 ! n+ 1)�o���n+1(b)= Xb0�bn+12 Xbb0 Jb;bM (N+1)b0 �IhE(vN�1; b; ~CN�1)\ n(vN�1 ! n + 1) Æ �fb0 o.g \ (b0 ! n + 1)�oi��n+1(b):We insert 1 = I[(b0 ! b)℄ + I[(b0 ! b)℄ (8.108)in the right-hand sides of (8.106){(8.107). We denote the ontribution to (8.106) due to the �rstand seond terms of (8.108) by e(0)n+1(1; 3; 1) and e(0)n+1(1; 3; 2), respetively. Similarly, for N � 1,we denote the ontribution to (8.107) due to the �rst and seond terms of (8.108) by e(N)n+1(1; 3; 1)and e(N)n+1(1; 3; 2), respetively.To estimate M (1)b0 and M (N+1)b0 in (8.106){(8.107), we will use the following proposition, whoseproof is deferred to the end of the setion. Its statement involves a small modi�ation of P (N)m (y);in whih the last Constrution E an be applied to all diagram lines rather than only to the(N � 1)-admissible lines. We denote this modi�ation by eP (N)m (y). The methods in [13℄ easilyadapt to show that the bound (6.2) extends to eP (N)m (y), namelyXy eP (N)m (y) � Æm;0ÆN;0 + (C�)N_1(m+ 1)�d=2: (8.109)68



Proposition 8.11. (a) For all bonds b, y 2 � with my � mb, N � 0, and n � 0,M (N+1)b �I[E(vN�1;y; ~CN�1)g \ (b! y) \ ((vN�1 ! n) Æ (fb o.g \ (b! n)))℄� (8.110)� �[R(N)(b;y) +Q(N)(b;y)℄ ^ [R(N)(b;y; �n) +Q(N)(b;y; �n)℄�Jb;b�n(b);where, by onvention, Q(0) = 0.(b) For y 2 �, N � 0, and n � 0,Xb M (N+1)b �I[E(vN�1;y; ~CN�1) \ (b! y) \ ((vN�1 ! n) Æ (fb o.g \ (b! n)))℄� (8.111)� eP (N+1)(y) ^ eP (N+1)(y; �n; �n):Before proving Proposition 8.11, we �rst prove (8.97){(8.98).Proof of (8.97). By the de�nition below (8.108), e(0)n+1(1; 3) = e(0)n+1(1; 3; 1) + e(0)n+1(1; 3; 2). By(8.106) and Proposition 8.11(a) (with N = 0, y = b, b = b0),je(0)n+1(1; 3; 1)j � Xb0�bn+12 Xbb0 Jb;bJb0;b0hR(0)(b0; b) ^R(0)(b0; b; �n+1)i�n+1(b)�n+1(b0) (8.112)= p2 bn=2Xm1=0 nXm2=m1 hR(0)m1;m2 ^ R(0)m1;m2(�n+1)i�n�m1�n�m2 ;where R(0)m1;m2 = Py1;y2 R(0)m1;m2(y1; y2). By Proposition 7.7 (with additional attention paid to thefator �), R(0)m1 ;m2 � CÆm1;0Æm2 ;0 + C�bm1;m2 : (8.113)The ontribution due to (m1; m2) = (0; 0) gives rise to at most CC3� (n+1)�3. For the ontributiondue to (m1; m2) 6= (0; 0); we apply Lemma 8.6 to obtain a boundCC3��h(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.114)Adding the two ontributions yieldsje(0)n+1(1; 3; 1)j � CC3� h(n + 1)�3 + �(n+ 1)�d=2 logn + �(n+ 1)�3�0n+1i: (8.115)Similarly, by Proposition 8.11(b) (with N = 0, y = b = (y2; m2), and the summation index bin (8.111) equal to b0 in (8.106)),je(0)n+1(1; 3; 2)j �Xb Jb;bh eP (1)(b) ^ eP (1)(b; �n+1; �n+1)i�n+1(b) (8.116)= p nXm2=0 h eP (1)m2 ^ eP (1)m2(�n+1; �n+1)i�n�m2 ;where we write eP (1)m2 = Py2 eP (1)m2(y2). By (8.109) and Corollary 8.4, we therefore obtainje(0)n+1(1; 3; 2)j � CC3��h(n+ 1)�3�0n+1 + �(n+ 1)�d=2 logni: (8.117)69



Addition of (8.115) and (8.117) gives (8.97).Proof of (8.98). By (8.107) and Proposition 8.11(a),je(N)n+1(1; 3; 1)j � p2 bn2 Xm1=0 nXm2=m1 �[R(N)m1 ;m2 +Q(N)m1;m2 ℄ ^ [R(N)m1;m2(�n+1) +Q(N)m1;m2(�n+1)℄��n�m1�n�m2 :(8.118)By Proposition 7.7 and Lemma 8.6, it follows thatje(N)n+1(1; 3; 1)j � CC3� (C�)Nh(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.119)Similarly, by Proposition 8.11(b) (with y = b = (y2; m2), and the summation index b in (8.111)equal to b0 in (8.107)),je(N)n+1(1; 3; 2)j � p nXm2=0 h eP (N+1)m2 ^ eP (N+1)m2 (�n+1; �n+1)i�n�m2 : (8.120)It then follows from (8.109) and Corollary 8.4 thatje(N)n+1(1; 3; 2)j � CC3� (C�)Nh(n+ 1)�d=2 logn+ (n + 1)�3�0n+1i: (8.121)Addition of (8.119) and (8.121) gives (8.98).It remains to prove Proposition 8.11. For this, we will use the following lemma.Lemma 8.12. For any bond b, v;y 2 �, A � �, n � 0,E(v;y;A) \ (b! y) \ �(v ! n) Æ (fb o.g \ (b! n))� (8.122)� �E(v;y;A) \ (v ! n)� Æ �fb o.g \ (b! n)�;E(v;y;A) \ (b! y) \ fb o.g (8.123)� �(fb o.g \ (b! y)) Æ (v ! y)� [ �fb o.g \ E(b;y;A)�:Proof. To prove (8.122), we note thatE(v;y;A) \ (b! y) \ fb o.g \ (b! n) � E(v;y;A) Æ �fb o.g \ (b! n)�; (8.124)sine, when (b ! y) ours, b and the onnetions from b annot be required in the eventE(v;y;A). Therefore,E(v;y;A) \ (b! y) \ �(v ! n) Æ (fb o.g \ (b! n))� (8.125)= �E(v;y;A) \ (b! y) \ fb o.g \ (b! n)� \ �(v ! n) Æ �fb o.g \ (b! n)��� �E(v;y;A) Æ �fb o.g \ (b! n)�� \ �(v ! n) Æ �fb o.g \ (b! n)�� \ (b! y)� �E(v;y;A) \ (v ! n)� Æ �fb o.g \ (b! n)�;70



where, in the last step, we used (b ! y) to onlude that the oupied path from b to n that isdisjoint from (v ! n) is also disjoint from a set of paths realizing E(v;y;A). This proves (8.122).Next, we prove (8.123). If there is no pivotal bond for v ! y, then v =) y, and thus(fb o.g \ (b ! y)) Æ (v ! y) ours. This leaves the ase where there is a pivotal bond forv ! y, and in this ase, we let b0 denote the last pivotal bond. If the left-hand side of (8.123)ours and b! b0, then b is oupied and E(b;y;A) ours (sine there is a vertex in A on one ofthe paths from b0 to y). If, on the other hand, the left-hand side of (8.123) and (b ! b0) bothour, then (fb o.g \ (b ! y)) Æ (v ! y) ours, sine (fb o.g \ (b ! y)) Æ (b0 ! y) oursas in the ase of no pivotal bond and sine the onnetion from v to b0 must also be disjoint from(fb o.g \ (b! y)). This proves (8.123).Proof of Proposition 8.11. (a) By (8.122) and (3.35),M (N+1)b �IhE(vN�1;y; ~CN�1) \ (b! y) \ �(vN�1 ! n) Æ (fb o.g \ b! n)�i� (8.126)�M (N+1)b �Ih�E(vN�1;y; ~CN�1) \ (v ! n)� Æ �fb o.g \ (b! n)�i�= X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�P�E 0(vN�2; b; ~CN�2)\ ��E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o.g \ (b! n)����;where we assume for onveniene in this paragraph that N � 1 (the ase N = 0 is similar). Dueto the orientation of the bonds, the events on the right-hand side of (8.126) an be rewritten asE 0(vN�2; b; ~CN�2) \ �E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o.g \ (b! n)� (8.127)= �E 0(vN�2; b; ~CN�2) \ E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o.g \ (b! n)�:By the BKR inequality,P��E 0(vN�2; b; ~CN�2) \ E(vN�1;y; ~CN�1) \ (vN�1 ! n)� Æ �fb o.g \ (b! n)�� (8.128)� P�E 0(vN�2; b; ~CN�2) \ E(vN�1;y; ~CN�1) \ (vN�1 ! n)�Jb;b�n(b):We then substitute (8.128) into (8.126), and again use (3.35), to see thatM (N+1)b �IhE(vN�1;y; ~CN�1) \ (b! y) \ �(vN�1 ! n) Æ (fb o.g \ b! n))℄� (8.129)�M (N+1)b �I[E(vN�1;y; ~CN�1) \ (vN�1 ! n)℄�Jb;b�n(b):Sine my � mb, we an use the de�nitions in (6.12) and (7.47){(7.48) to see thatI[E(vN�1;y; ~CN�1)℄ � I[Vmb(vN�1;y)℄ + I[Emb+1(vN�1;y; ~CN�1)℄; (8.130)where, for N = 0, the seond ontribution is identially zero. If we bound I[(vN�1 ! n)℄ by 1 in(8.129), it then follows from Lemma 7.13 that the ontribution due to I[Vmb(vN�1;y)℄ is bounded by71



P (N)(b;Vmb(y)) = R(N)(b;y). Also, by Lemma 7.14, the ontribution due to I[Emb+1(vN�1;y; ~CN�1)℄is bounded by P (N)(b; Emb+1(y)) = Q(N)(b;y). Adding these, we obtainM (N+1)b �I[E(vN�1;y; ~CN�1)℄� � R(N)(b;y) +Q(N)(b;y); (8.131)whih gives the upper bound [R(N)(b;y) +Q(N)(b;y)℄Jb;b�n(b) of (8.110). Also, the boundsM (N+1)b �I[Vmb(vN�1;y; ~CN�1) \ (vN�1 ! n)℄� � R(N)(b;y; �n); (8.132)M (N+1)b �I[Emb+1(vN�1;y; ~CN�1) \ (vN�1 ! n)℄� � Q(N)(b;y; �n) (8.133)are minor adaptations of (7.58) and (7.63). This proves (a).(b) We bound the ontributions to (8.111) due to both terms in (8.123) separately. Using (3.35),the ontribution to (8.111) due to the �rst term on the right-hand side of (8.123) isM (N+1)b �Ih�(fb o.g \ (b! y)) Æ (vN�1 ! y)� \ ((vN�1 ! n) Æ (b! n))i� (8.134)= X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�M (1)vN�1;b; ~CN�1�I[�(fb o.g \ (b! y)) Æ (vN�1 ! y)�\ ((vN�1 ! n) Æ (b! n))℄��:We temporarily omit the two onnetions to n inside the above expression, and observe thatXb M (1)vN�1;b; ~CN�1�I[(fb o.g \ (b! y)) Æ (vN�1 ! y)℄� (8.135)� P (0)(vN�1; b; ~CN�1; 2(1)b (y)) � P (1)(vN�1;y; ~CN�1):Thus, one we take into aount the two onnetions to n, we obtainXb M (1)vN�1;b; ~CN�1�Ih�(fb o.g \ (b! y)) Æ (vN�1 ! y)� \ ((vN�1 ! n) Æ (b! n))i�� P (1)(vN�1;y; ~CN�1; �n; �n) ^ P (1)(vN�1;y; ~CN�1): (8.136)We substitute (8.136) into the summation of equation (8.134) over b. With (6.11) and (6.21), thisgives Xb M (N+1)b �I[E(vN�1;y; ~CN�1) \ fb o.g \ (b! y) \ ((vN�1 ! n) Æ (b! n))℄� (8.137)� X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�P (1)(vN�1;y; ~CN�1; �n; �n) ^ P (1)(vN�1;y; ~CN�1)�� P (N+1)(y; �n; �n) ^ P (N+1)(y):The obvious inequality P (N+1) � eP (N+1) ompletes the analysis for the �rst term in (8.123).For the ontribution to (8.111) due to seond term in (8.123), (3.35) givesM (N+1)b �I[E(b;y; ~CN�1) \ fb o.g \ ((vN�1 ! n) Æ (b! n))℄� (8.138)= X(uN�1;vN�1)JuN�1 ;vN�1M (N)uN�1�M (1)vN�1;b; ~CN�1�I[E(b;y; ~CN�1) \ fb o.g \ ((vN�1 ! n) Æ (b! n))℄��:72



By (6.13),M (1)vN�1;b; ~CN�1�I[E(b;y; ~CN�1) \ fb o.g \ ((vN�1 ! n) Æ (b! n))℄� (8.139)� P�E(vN�1; b; ~CN�1) \ fb o.g \ E(b;y; ~CN�1) \ ((vN�1 ! n) Æ (b! n))�:We again temporarily omit the two onnetions to n inside the above expression, and observe that,by the Markov property,P�E(v; b;A) \ fb o.g \ E(b;y;A)� = Jb;bP (0)(v; b;A)P (0)(b;y;A); (8.140)whih leads to an upper boundXb X(uN�1;vN�1)JuN�1;vN�1M (N)uN�1�PN(E(vN�1; b; ~CN�1)\fb o.g\E(b;y; ~CN�1))� � eP (N+1)(y): (8.141)Note that eP (N+1) ours, rather than P (N+1), due to the fat that the two events E(vN�1; b; ~CN�1) andE(b;y; ~CN�1) depend on the same set of verties ~CN�1, whereas, for P (N+1), the event E(b;y; ~CN�1)would be replaed by E(b;y; ~Cb(vN�1)). This hange an be bounded by letting the last Constru-tion E be applied to all lines, rather than only the N -admissible lines. It is not diÆult to seethat if we now take into aount the two onnetions to n, we obtainXb M (N+1)b �I[E(vN�1;y; ~CN�1) \ fb o.g \ (b! y) \ ((vN�1 ! n) Æ (b! n))℄� (8.142)� eP (N+1)(y; �n; �n) ^ eP (N+1)(y):Together, (8.137) and (8.142) prove (8.111).AknowledgementsThe work of RvdH was supported in part by the Netherlands Organisation for Sienti� Researh(NWO), and was performed in part while visiting Mirosoft Researh in July 2004. The work ofGS was supported in part by NSERC of Canada and by the Thomas Stieltjes Institute in TheNetherlands. RvdH and FdH thank the University of British Columbia, Vanouver, Canada, andGS thanks EURANDOM, Eindhoven, The Netherlands, for hospitality. The authors thank AntalJ�arai for onversations during the early stages of this work, and Akira Sakai for several stimulatingonversations later on.Referenes[1℄ D.J. Barsky and M. Aizenman. Perolation ritial exponents under the triangle ondition.Ann. Probab., 19:1520{1536, (1991).[2℄ C. Bezuidenhout and G. Grimmett. The ritial ontat proess dies out. Ann. Probab.,18:1462{1482, (1990).[3℄ G. Grimmett. Perolation. Springer, Berlin, 2nd edition, (1999).73
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