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The survival probability for critical spread-out oriented
percolation above 4 + 1 dimensions. II. Expansion

Remco van der Hofstad *
Frank den Hollander T*
Gordon Slade §

September 19, 2005

Abstract

We derive a lace expansion for the survival probability for critical spread-out oriented
percolation above 4+1 dimensions, i.e., the probability 6, that the origin is connected to the
hyperplane at time n, at the critical threshold p.. Our lace expansion leads to a nonlinear
recursion relation for 6,,, with coefficients that we bound via diagrammatic estimates. This
lace expansion is for point-to-plane connections and differs substantially from previous lace
expansions for point-to-point connections. In particular, to be able to deduce the asymptotics
of 6, for large n, we need to derive the recursion relation up to quadratic order.

The present paper is Part II in a series of two papers. In Part I, we use the recursion
relation and the diagrammatic estimates to prove that lim,_, n6, = 1/B € (0, 00), and also
deduce consequences of this asymptotics for the geometry of large critical clusters and for
the incipient infinite cluster.

1 Introduction and results

For oriented bond percolation on Z? x Z . with parameter p, the survival probability 6, = 6,(p) at
time n € Z, is the probability that there exists an 2 € Z¢ such that (0,0) is connected to (x,n).
In the oriented setting, it is known that there is no percolation at the critical threshold p = p.
12, 4], so that lim, ,o 0, (p.) = 0. Our goal is to study the manner in which 6,(p.) tends to zero
as n — oo when d > 4.

In the present paper, we derive a lace expansion for 6,(p), valid in all dimensions d > 1 and
for quite general models of oriented percolation. This lace expansion gives a nonlinear recursion
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relation for 0,(p). If the expansion is to be useful, then the coefficients in the recursion relation
need to be estimated. We prove estimates valid at p = p. in dimensions d > 4, for sufficiently
“spread-out” oriented bond percolation (defined below), with the degree to which connections are
spread out in space parameterized by a sufficiently large L € N.

In Part I [7], we have shown how these results can be used in an induction analysis for the
recursion relation to conclude that there is a constant B = B(d, L) such that, as n — oo,

1
0 (pe) — Oni1(pe) = Bt [1 +O(n 'logn) + L’dO(én)] for d > 4 and L sufficiently large,
(1.1)

where
n~=D21ogn (4 < d < 6),

6p =4 n'log’n (d = 6), (1.2)
n~'logn (d > 6).

In other words, the critical extinction probability 6, (p.) — 0,1 (p.), which is the probability that
the cluster of the origin survives to time n but not to time n + 1, is asymptotic to 1/(Bn?) as
n — oo, with accurate error bounds. By summing over n, we conclude that

0,(p.) = % [1 +O(n 'logn) + L’dO(én)] for d > 4 and L sufficiently large, (1.3)
which is the main conclusion of Part I. In terms of the critical exponent p, defined by the conjecture
that 6,(p.) behaves like n=1/? as n — oo, (1.3) implies that p exists and is equal to 1, for d > 4
and L sufficiently large.

Also in Part I, interesting consequences for the geometry of large critical clusters and for the
incipient infinite cluster were deduced from (1.3), using results from [8]. In particular, (1.3) implies
that two constructions for the incipient infinite cluster coincide and that, conditionally on survival
up to time n, the number of vertices to which the origin is connected at time n scales like n times
an exponential random variable.

1.1 The model

The spread-out oriented percolation model is defined as follows. Let Z, = {n € Z : n > 0}.
Consider the graph with vertices Z¢ x Z, and with directed bonds ((x,n), (y,n + 1)), for n € Z
and z,y € Z% Let D be a fixed function D: Z? — [0, 1], satisfying

> D(@) =1 (1.4)

xcZd

The function D will be assumed to be invariant under the symmetries of Z¢ (permutation and
reflection of coordinates). Let p € [0, ] D||'], where || - ||.. denotes the supremum norm, so that
pD(x) < 1 for all z € Z% We associate to each directed bond ((x,n), (y,n + 1)) an independent
random variable taking the value 1 with probability pD(y — z) and the value 0 with probability
1 —pD(y — x). We say that a bond is occupied when the corresponding random variable is 1 and
vacant when it is 0. Note that p is not a probability. Rather, p is the average number of occupied
bonds from a given vertex. The joint probability distribution of the bond variables will be denoted
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by P, and the corresponding expectation by E,, with the parameter p usually suppressed from the
notation.

For the diagrammatic estimates, we need to make further assumptions on D. We will refer to
the assumptions on D in the previous paragraph as the weak assumptions on D. We define the
spread-out model of oriented percolation to be the model in which D obeys the weak assumptions
together with Assumption D in [12, Section 1.2] (whose precise form is not important for the
present paper), and [13, Equation (1.2)]. Assumption D in [12, Section 1.2] involves a parameter
L € N, which serves to spread out the connections and which will be taken to be fixed and large.
A simple and basic example is

. (15)
0 otherwise.

2L + 1)~ if <L

”@Zg 1) if ]l < L,

In this example, the bonds are given by ((z,n), (y,n + 1)) with ||z — y|l. < L, and a bond is

occupied with probability p(2L+1)~%. Assumption D also allows for certain infinite range models.
For the spread-out model, we will use

B=L" (1.6)

as a small parameter. Assumption D implies that there is a finite positive constant C' such that

sup D(z) < Cp. (1.7)

xcZd

We say that (x,n) is connected to (y,m), and write (z,n) — (y,m), if there is an oriented path
from (x,n) to (y, m) consisting of occupied bonds. Note that this is only possible when m > n.
By convention, (z,n) is connected to itself. We write

C(z,n) ={(y,m) € Z4 x Z, : (x,n) — (y,m)} (1.8)

to denote the forward cluster of (z,n). We also write (z,n) — m to denote the event that there
is a y € Z% such that (z,n) — (y, m).

The event {(0,0) — oo} is the event that {(0,0) — n} occurs for all n. There is a critical
threshold p. € (0,00) such that the event {(0,0) — oc} has probability zero for p < p. and has
positive probability for p > p.. The parametrization we have chosen is convenient, since for the
spread-out model it is known that

pe=14+cL™+0O(L™"") as L — oo, (1.9)

for d > 4, with the positive constant ¢ given explicitly in terms of the Green function for the
random walk with step distribution D [10].
The survival probability at time n is defined by

0 (p) = B,((0,0) — n). (1.10)

General results of [2, 4] imply that lim, ,. 0,(p.) = 0. For the spread-out model in dimension
d > 4, with L sufficiently large, the same conclusion was shown in [1] to follow from the triangle
condition. The triangle condition was verified under the above hypotheses in [13, 15], yielding an
alternate proof that lim, . 6,(p.) = 0 for d > 4, and L sufficiently large.
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1.2 Main theorem

Forn € Z,, v € Z¢% and p € [0, || D||Z!], we define the two-point function
7 (z) = P,((0,0) — (x,n)). (1.11)

We write

Tw = Y Tu(x) (1.12)

r€Zd

for the expected number of vertices in C'(0,0) at time n. The lace expansion for the two-point
function [5] (see also [13]) yields a recursion relation for 7,,, which reads

n—1

Tn = Z TmPTn—-m—1 + Tn, (113)

m=0

where (7,,,) are certain p-dependent coefficients. In fact, (1.13) uniquely defines (7,,,), but the lace
expansion provides a useful representation for (7,,). In [13, Proposition 2.2|, this representation
was used to prove that my = 1,7 = 0 and that there exists a finite positive constant C) such that

Cxp

P L —
‘Wm‘ = (m_|_ 1)d/2

(p = pe, m > 2), (1.14)

for the spread-out model in dimensions d > 4, with ( of (1.6) sufficiently small. In addition, under
the same assumptions, it is shown in [13, Equation (2.11)] that

> Tmpe = 1. (1.15)
m=0

In the present paper, we obtain a lace expansion for the survival probability 6,, with good
bounds valid for the spread-out model in dimensions d > 4 at p = p.. Our main result is the
following theorem. In its statement, we use the notation

n~ =D/ 1ogn (4 < d < 6),
A, =< n'logn (d=6), (1.16)
n! (d > 6).

Theorem 1.1 (Lace expansion and diagrammatic estimates). (i) Ford > 1, p € [0, || D||.'],
and n > 1, and under the weak assumption on D,

n—1 [n/2]  n
en(p) = Z 71-m(p)penflfm (p) - Z ¢m1,m2 (p)enfrm (p)enme (p) + en(p)a (117)
m=0 mi=1ma2=m1

where () are as in (1.13), and (¢m, m,) and (e,) are given by explicit formulas (see Sections 4
5).

(ii) For the spread-out model in dimensions d > 4, at the critical value p = p., there are finite
positive constants Cy, Ce, and By such that, for 0 < § < By, the coefficients (¢m, m,) and the error
terms (e,) satisfy the following estimates:



o ¢11(pe) = 3P; Laeza D(2)(1 — D(x)) = 3[1 + O(B)] and, for my > my > 1 such that
(mlamQ) 7& (1’ 1))

Pnsamy ()| < CoB(mr + 1) (my — my 4 1)7@722, (1.18)
o If0(p.) < Cy(m+1)"" for 0 < m < n and some Cy > 1, then

ensi(pe)| £ CChn+1)2 [0+ 1)+ B (1.19)

Note that the diagrammatic estimate (1.19) for e, 1, which is the error term in (1.17) for 6,4,
assumes a bound for 6, only for 0 < m < n. This is precisely what opens up the possibility of
the inductive analysis employed in Part I. Namely, in Part I, (1.1) is deduced from Theorem 1.1
by applying an induction analysis to (1.17), which makes use of the bounds in (1.14), (1.18) and
(1.19) in order to moderate the coefficients of the recursion.

When we derive (1.17) in Sections 2-5, we will fix an arbitrary p € [0,/ D||.!] and assume
only the weak assumption on D. In Sections 6-8, where we prove the diagrammatic estimates
(1.18)—(1.19), we will specialise to the spread-out model with d > 4, p = p., and small f.

We expect that Theorem 1.1 has implications also for the critical contact process in spatial
dimension d > 4. Indeed, it has been shown in [9] that the lace expansion for the two-point
function can be applied to the oriented percolation model resulting from time discretization of the
contact process. We expect that part (i) of the theorem can be applied similarly to study the
survival probability for the critical contact process, in conjunction with a suitable modification of
part (ii).

1.3 The constant B
It was shown in [7, Equation (1.36)] that the constant B in (1.3) is given by

B — mi=1 Zmiml ¢m1’m2 (pc) . (120)
14 ped e mmpy, (,’Dc)

It follows from (1.9), (1.14) and (1.18) that B < oc for d > 4 and f sufficiently small, with
B=1+0(p)as 0. )

The survival probability 6, of a Galton-Watson branching process whose offspring distribution
has mean 1, variance 62, and finite third moment, obeys the simple recursion relation

by =0,y — %93_1 +én, (1.21)
where e, = O(63_,). This leads to the conclusion that lim,_,« nf, = 26~2. We sketch the proof of
these well-known facts in Part I. Consider the branching process with offspring distribution ), I,,
where the I, are independent Bernoulli random variables with parameter D(z). This has mean 1,
by the normalisation assumption for D, and has variance 6> = ¥, D(z)(1 — D(z)) = 1+ O(B), as
L — oo in the spread-out model, by (1.7). We regard the critical spread-out oriented percolation
model in dimensions d > 4 as a small perturbation of this critical branching process—the former
allows at most one particle per vertex, whereas the latter allows multiple occupancy. The recursion
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relation (1.17) can be viewed as a perturbation of (1.21). The fact that B = £[1+O(8)] as L — oo
shows that the solution to (1.17) for the spread-out model remains close to the solution of (1.21),
to leading order, for L large.

Let N, denote the number of vertices in C'(0,0) at time n, when p = p., and define the constants
A and V by

A= lim E, [N,], V = lim ﬁEpc [N2]. (1.22)

n—oo n— 00
It is part of the results in [13] that these constants exist when d > 4 and L is sufficiently large. It
is shown in [8] that, given nf,(p.) — 1/B (which follows from (1.3)),

A
B= TV (1.23)

It is shown in [13, Equations (2.12) and (2.49)] that

1
P+ PR, mm(pe)

=Y Z my.ms (0,0), (1.24)
mi1=2 mo=2

where (J)mhm) are coefficients arising in the lace expansion for the critical three-point function
Ty o (1, 22) =P, ((0,0) = (x1,11), (0,0) = (72,n2)). (1.25)

It follows from (1.20) and (1.23)—(1.24) that

o

= Z_ Z_ my mz 0 0 = 2p, Z Z ¢m1,m2(pC)- (1-26)

mip=1ma=mi

This implies that the coefficients (¢m, m,) in our lace expansion for the survival probability are
related to those appearing in the lace expansion for the three-point function. However, our ap-
proach does not reveal an explicit relation between ﬁml,mQ(O, 0) and @y, m, for fixed my,my. In
[11], an alternate expansion for the three-point function is derived, which is quite different from
the expansion of [13] and closer in spirit to the expansion derived here for the survival probability.
The expansion of [11] leads to a direct proof that

o

V= 2pc Z i ¢m1,m2 (pc) (127)

mi=1ma2=mi

1.4 Organisation

The remainder of the paper is devoted to the proof of Theorem 1.1. The proof is divided into two
main parts: (a) the derivation of the expansion (1.17) for 6,,, and (b) the proof of the diagrammatic
estimates (1.18)—(1.19) for the expansion coefficients. The basic steps in the proof of each part are
as follows.



(a) Derivation of the lace expansion (1.17). The starting point for the expansion is the
percolation lace expansion of [5] for the two-point function. This expansion was applied to oriented
percolation in [13], where a derivation of (1.13) can be found. We will extend this lace expansion for
the two-point function (a point-to-point expansion) to a lace expansion for the survival probability
(a point-to-plane expansion). There are alternate expansions for the two-point function of oriented
percolation, due to [15] and [16] (see [17] for a description of all three expansions), but we do not
know how to use these alternate expansions to obtain an expansion for the survival probability.

The expansion of [5] is based on a factorisation lemma, which we isolate in Section 2. In
Section 3, we extract the linear term in (1.17) using a relatively minor extension of the lace
expansion for the two-point function. This produces an equation

n—1
0, = Z TmPOn—1—m + Xn, (1'28)
m=0

where the term y,, involves configurations with two connections to the hyperplane at time n. These
two connections lead to the quadratic term in (1.17), but two further expansions are required to
obtain the two factors 0, ., 0, m,.

The first of these expansions for y,, is the most delicate and novel part of our method. A crucial
role is played by a random set P, of bonds, which is defined in Section 4 for any fixed subset A of
74 x 7,,.. Using P,, we extract a factor 6,_,,, from y, in Section 4, completing the first expansion
for x,,. Then, in Section 5, we perform a second expansion for y,, to extract the additional factor
0r—m,. Our treatment of this second expansion is different in spirit than the expansion methods
used in [6, 13], and is simpler due to a careful use of independence due to the orientation.

This part of the argument applies for general p and d, and makes only the weak assumption
on D.

(b) The diagrammatic estimates (1.18)—(1.19). Asis usual in lace expansion analyses, we will
prove (1.18)—(1.19) by bounding ¢, ,m, and e, ;1 by diagrams of the same character as the Feynman
diagrams of physics, i.e., by sums of products of two-point functions and survival probabilities.
The two-point functions are bounded using estimates proved in [13], and the survival probabilities
are bounded using the assumption on 6,,(p.) given above (1.19).

The first step in this procedure is carried out in Section 6, where we generalise the bound on
mm of [13], stated above in (1.14), and prove related bounds on x,,. The bounds on ¢,,, ,m, and e,
are in terms of diagrams that are built from the diagrams encountered in Section 6 using certain
diagrammatic constructions. Using these, in Section 7, we complete the proof of the bound (1.18)
ON Py m,, and in Section 8, we complete the proof of the bound (1.19) on e, 4.

This part of the argument is for the spread-out model. It relies on d > 4 and small 3, and the
bounds we obtain apply at p = p..

2 The Factorisation Lemma

This section contains some preliminaries that will be crucial in the expansion for the survival
probability. The main result is the Factorisation Lemma stated in Lemma 2.2 below. Throughout

the rest of the paper, we write
AN=7Z %17, (2.1)

7



and we use bold letters such as «,y, z for elements of A. To be able to state the Factorisation
Lemma, we need some definitions.

Definition 2.1. (i) Given a (deterministic or random) set of vertices A and a bond configura-
tion w, we define wy, the restriction of w to A, to be

N B 22)

otherwise,

for every x,y such that {x,y} is a bond. In other words, w4 is obtained from w by making
every bond that does not have both endpoints in A vacant.

(ii) Given a (deterministic or random) set of vertices A and an event E, we say that E occurs
in A, and write {E in A}, if wy € E. In other words, {E in A} means that E occurs on the
(possibly modified) configuration in which every bond that does not have both endpoints in
A is made vacant. We adopt the convenient convention that {x — = in A} occurs if and
only if x € A.

(iii) Given a bond configuration and & € A, we define C'(x) to be the set of vertices to which
x is connected, i.e.,, C(x) = {y € A : © — y}. Given a bond configuration and a bond b,
we define C*(z) to be the set of vertices y € C() to which 2 is connected in the (possibly
modified) configuration in which b is made vacant.

We will often use the following easily verified rules for occurs in:

(Ein BYN{Fin B} = {ENF in B}, (2.3)
{EF'in BJU{F in B} = {E U F in B},
(E in BY* = {E° in B).
Equations (2.3)—(2.5) imply that “occurs in” is well behaved under set operations.

The following Factorisation Lemma lies at the heart of the expansion method.! We write I[E]
for the indicator function of an event E.

Lemma 2.2 (Factorisation Lemma). Fiz p € [0,]|D||.}], a bond (u,v), a vertez y, a positive
integer n, and events E, F which depend only on the status of bonds whose vertices have time
variables at most n. Then

E(I[E in C®) (y), F in A\C*(uw(y)}) — (I[E in ) (y)|E, (I[F in A\égw(y)])). (2.6)

Moreover, when E C {u € C™?)(y), vgC®?)(y)}, the event on the left-hand side of (2.6) is
independent of the occupation status of (u,v).

!Some versions of Lemma 2.2 published previously [5, 6, 13] contain non-essential errors. However, on each
occasion in these papers where the Factorisation Lemma has been applied, the claimed factorisation does in fact
hold.



Proof. Because of our assumption on the events F and F, we can replace the set C(®)(y) in (2.6)
by its restriction to vertices which are endpoints of bonds whose vertices have time variables at
most 7 (i.e., we set all other bonds to be vacant). We denote this restriction by C{*?)(y), and
note that this is a finite set with probability 1. The proof proceeds by conditioning on C{*?)(y).
We emphasize that C(*?)(y) is a set of vertices. Thus, C(*%)(y) = S does not determine the
occupation status of all the bonds b with both vertices in S. The left-hand side of (2.6) equals

ZIP’({E in 5} N {F in A\S}

Co(y) = 5 )P(CI(y) = S), 2.7)

where the sum over S is over finite subsets of A containing y.

By Definition 2.1(ii), the event {E in S} depends only on bonds with both endpoints in S,
while the event {F in A\S} depends only on bonds with both endpoints in A\S. The latter is
equivalent to saying that {F in A\S} depends only on bonds that have no endpoints in S. Thus,
by the independence of the bond variables, we obtain that

IP’({E in 5} N {F in A\S)

C)(y) = S) (2.8)

=P(E in S|C¥)(y) = S)P(F in A\S|C{*")(y) = S).

Moreover, the event {C(**)(y) = S} depends only on bonds that have at least one endpoint in S.
Therefore, for fixed S, the events {F in A\S} and {C(*?)(y) = S} are independent, and hence

P(F in A\S

Clm9)(y) = S) = P(F in A\S). (2.9)

Thus, we obtain

IP’({E in S} N {F in A\S}CE)(y) = s) = B,(E in S0 (y) = S)P,(F in A\S), (2.10)
where we have added subscripts to the probabilities on the right-hand side to distinguish the
different expectations. We substitute (2.10) into (2.7), perform the sum over S, and replace C, by
C, to get (2.6).

Finally, when E C {u € C®™%(y),v¢C®™?) (y)}, the event on the left-hand side of (2.6) is
independent of the occupation status of the bond (u,v). For {E in C**)(y)}, this is because
vgC™?)(y), and, for {F in A\C'®*?)(y)}, it is because u € C'*?)(y). O

Although we do not need it here, we note that Lemma 2.2 also applies (both for oriented and
unoriented percolation) to arbitrary events E and F', if we replace the assumption that E and F
are determined by bonds lying below n by the assumption that P,(|/C(0)| = oc) = 0.

We will refer to a bond (u,v) to which we can effectively apply Lemma 2.2 as a cutting bond.
In the nested expectation on the right-hand side of (2.6), the set C{*")(y) is random with respect
to the outer expectation, but deterministic with respect to the inner expectation. We have added
a subscript “0” to C’é“’v)(y) and subscripts “0” and “1” to the expectations on the right-hand side
of (2.6) to emphasize this distinction. The inner expectation on the right-hand side effectively
introduces a second percolation model on a second lattice, which is coupled to the first percolation
model via the set C{**)(y).



0
Figure 1: Schematic representation of the event 0 — n as a string of sausages.

3 The linear term

In this section, we prove (1.28) by expanding the survival probability to linear order. In Section 3.1,
we define pivotal bonds, and rewrite events dealing with pivotal bonds using Definition 2.1. In
Section 3.2, we perform a first expansion step, and in Section 3.3, we iterate this expansion step
indefinitely to obtain (1.28).

3.1 Pivotal bonds

Definition 3.1. (i) Given a bond configuration, we say that x is doubly connected to y, written
x = y, if there are at least two bond-disjoint paths from « to y consisting of occupied
bonds. By convention, we say that £ = « for all . Similarly, we say that y is doubly
connected to n, and write y = n, if there exist z;,2o € Z¢ (possibly equal) and two
bond-disjoint paths from y to (z1,n) and (x4, n).

(ii) Given a bond configuration, we say that a bond is pivotal for x — y if 2 — y in the (possibly
modified) configuration in which the bond is made occupied, whereas & is not connected to
y in the (possibly modified) configuration in which the bond is made vacant. Similarly, we
say that a bond is pivotal for y — n if y — n in the (possibly modified) configuration in
which the bond is made occupied, whereas vy is not connected to n in the (possibly modified)
configuration in which the bond is made vacant.

The set of pivotal bonds for  — y or y — n is ordered in time, which allows us to speak
about the first pivotal bond having a certain property. We can visualize a configuration where
0 — n as consisting of a string of sausages, the strings representing the pivotal bonds, and the
sausages the parts of the cluster of 0 that are separated by the pivotal bonds. See Figure 1 for a
schematic representation of the event 0 — n as a string of sausages.

In terms of Definitions 2.1 and 3.1, we have a characterization of a pivotal bond for v — y as

{(u', ) pivotal for v — y} = {v — o' in CN'(“"”/>(U)} N {v' — y in A\CN’(“"”/>(U)}. (3.1)

Similarly, we have a characterization of a pivotal bond for v — n as
{(w',v") pivotal for v — n} = {{v = u'} N {v = n}* in C™*(w)} N {v' = nin ACH ) (v)}.
(3.2)

The right-hand sides of (3.1)—(3.2) are convenient for application of the Factorisation Lemma 2.2.

10



v

Figure 2: (a) Schematic representation of the event E’'(v,ax; A). The intersection of A with the
fourth sausage is optional, while the intersection with the sixth is required. (b) Schematic repre-
sentation of the event F)(v; A). The intersection of A with the third sausage is optional, while the
other intersection is required.

3.2 The first expansion step

The following definition will be crucial throughout the expansion.

Definition 3.2. Given a bond configuration and a set A C A, we say that y is connected to x
through A, and write y 4 x, if every occupied path connecting y to « has at least one bond with
an endpoint in A. By convention, x A 2 holds if and only if € A. Similarly, we say that y is

connected to n through A, and write y A n, if every occupied path connecting y to a vertex in
7% x {n} has at least one bond with an endpoint in A, or if y € (Z¢ x {n}) N A.

It will be convenient to expand not only 6,,, but also the generalised survival probability P(v EN
n) for a fixed vertex v and set of vertices A. We note that, with 0 = (0,0), we have

0}

P(0 — n) = 0,. (3.3)

To analyze P(v A, n), we define the events
E'(v,x: A) = {v 3 )} N {# pivotal bond (', v') for v — @ such that v 2 u'}, (3.4)
F!(v; A) = {v 3 n} N {3 pivotal bond (u',v') for v — n such that v = u'}, (3.5)

which are depicted schematically in Figure 2.
Given a configuration in which v A n, the cutting bond (u',v') is defined to be the first
occupied and pivotal bond for v — n such that v Al Tt is possible that no such bond exists.

By partitioning {v 4 n} according to the location of the cutting bond (or the lack of a cutting
bond), we obtain the decomposition given in the following lemma. Here and elsewhere, we write
U for a disjoint union.

Lemma 3.3 (The partition). For anyv € A, AC A,n >0,

{v 3 n)=F (v;4) U U [E'(v, u'; A) N {(u',v") occupied and pivotal for v — n}] (3.6)

(u'0')
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Proof. We decompose the event {v A n} depending on whether there is a cutting bond or not.
The event F)(v; A) is the contribution where such a cutting bond does not exist. Otherwise, let

(u', v') be the cutting bond. Then, (u’, v') is occupied and pivotal for v — n and {v ELN u'} holds.
Moreover, there cannot be a previous pivotal bond satisfying the same requirements. The latter
is equivalent to the statement that, for all b that are occupied and pivotal for v — u’, the event

{v 2 b} cannot hold. Therefore, E'(v, u’; A) holds. O

Define
~O (v; A) = P(F! (v; A)). (3.7)

Then (3.6) implies that

P(v 5 n) =70 (v; A) + > P(E'(v,u’; A) N {(u',v") occupied and pivotal for v — n}). (3.8)

(u'0')

We next note that the event that b is pivotal for v — n is independent of the occupation status
of the bond b. Moreover, also E'(v,u’; A) is independent of the occupation status of the bond
(u',v'"), due to the orientation. Therefore, (3.8) becomes

=Y JuwP(E'(v,u'; A) N {(u',v) pivotal for v — n}) + 7 (v; A), (3.9)

(u' ")
where we make the abbreviation
Jwm) (vn) = PD(0 = 0)0nm 1. (3.10)

We note that, by the orientation of the bonds, the event E’(v,u’; A) is independent of the
bonds above u’, so that

E'(v,u'; A) = {E'(v,u; A) in O (v)}. (3.11)

We use (3.2), together with (3.11) and (2.3), to rewrite the event on the right-hand side of (3.9)
as

E'(v,u'; A) N { (v, v") pivotal for v — n} (3.12)
={{E'(w.u;4) 0 {v = n}} in O ()} 0 {o" = nin A\NCH ) (v)}.

Using Lemma 2.2, we obtain from (3.9) and (3.12) the important rewrite

Plo dn)= 3 JuoE ( [E'(v,4'; A) N {v — n}°} in &) (v)]

(u',v')
x P, (v’ —n in A\CN’(E“””’)(U)D + 40 (v; A). (3.13)
We next use the inclusion-exclusion relation

I{v = n}]=1-I[{v — n}, (3.14)

12



which brings us to
P(o A n) = Z ot oy ( [E' (v, u'; A)YP, (v = n in A\éé“'””(v)))
+ 7(0)(1) A) — pl(v; A), (3.15)
where

Z T By ( [E'(v,u'; A) 0 {v = n}} in O ()P, (v = n in A\C*g“””"(v))).

(3.16)
We have omitted “in C’éul’”l)('v)” in the sum in (3.15), which is possible due to (3.11).
Finally, let 6,,(v) = P(v — n). Then, for every A C A,
P(v — n in A\A) = 6,(v) — P(v 2 n). (3.17)
If we define
(v, 2; A) = P(E'(v, 2; A)), (3.18)
then (3.15) and (3.17) yield the identity
P(v 5 n) = 79 (v; A) — p©(v; A) + > T (v, u'; A)f, (V')
(u' ")
el (v)
R ) ( B/ (v, s AP, (v S n)). (3.19)

(u' ")

This completes the first expansion step.

3.3 Iteration

In the right-hand side of (3.19), we again see a term of the form P,(v 5 n), but now with

A = ") (v) and with v replaced by v'. Thus, we can iterate (3.19). To write down this
iteration, we first define, for any random variable X,

My a(X) = Bo (I[E' (v, y; A))X). (3.20)
For N > 2, we define M) ,(X) recursively by
MI(’]:]?J)A(X) - Z JUN—?avN—QM’l()I,V’I;]\;i%A (M£113]72’y;C~,N72(X)), (321)

(un_2,9N_2)

where, for j > 0, we make the abbreviation C; = C’J(uj’vj)(vj,l), with v_, = v, and where the

expectation occurring in M“]i siC (X) is labelled N — 1. For example, when N = 2, X =1,
v =0, and A = {0},
ME 011 = JugwoBo (1[E'(0, uy: {OD)]E, (1[E'(ve, y: C,)]) ). (3.22)
(wo,v0)
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Note that, by (3.4),
E'(0,u,; {0}) = {0 = u,}. (3.23)

According to [13, Equation (3.25)], the coefficients of the lace expansion for the two-point function
in (1.13) are given in terms of the above notation by

Tm = 3 (=1)Na", (3.24)
N=0
with, for N > 0,
- Z T (Y), T (y) = M(N(Zlm) {0}(1) (3.25)
yeZd
Note that here we adopt the convention that 7% (y) = P(0 = (y, m)), rather than the convention

m9(y) = P(0 = (y,m)) — d0,mb0,y used in [13].
We define, for N > 1,

%(zN)( ;A) = Z JuN_l,vN_lMél,VdN,l;A('YT(LO)(UN—MéN—l)) (3.26)

(un—1,9Nn_1)

with vV (v; A) defined in (3.7), and, for N > 1,

™M (v, @y A) = M (1), (3.27)
PR (Wi A) = D0 Tuy o M, u),N 1A(p( (vw- 1=éN—1))= (3.28)
(un-1,08-1)
with 79 (v, x; A) and p!® (v; A) defined in (3.18) and (3.16). We let
Xo (05 A) = 7,7 (v A) = p," (03 A). (3.29)

We omit the superscript “(N)” to denote the alternating sum over N, e.g.,

(—D)N7™ (v, 27 A), (3.30)

K

(v, x; A) =
0

Xn(vi A) = 3 (1) (v; ). (3.31)

N=0

g 7

In the special case v = 0 and A = {0}, we omit the variables v and A and write

m(@) =m(0,2:{0}), X0 =xa(0;{0}),  m=m(0;{0}),  pn=pa(0;{0}), (3.32)

and similarly for 7™ (x), x\V, 7" and p(". In particular, v = P(0 = n). A schematic
representation of 7™ (x) for N = 0,1 is depicted in Figure 3, and schematic representations of
YN and pi¥) for N = 0,1 are depicted in Figures 4 and 5.

The result of the first expansion is given in the following proposition. Recall that 6, (v) was
defined above (3.17).

Proposition 3.4 (The linear term). For allve A, ACA, n>1,

PoBn)= 3 7(v,u; A)Juw wln (') + xn(v; A). (3.33)

(u'0")
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() 70 (z)

0 0

Figure 3: Schematic representations of 7@ (x) for N = 0,1. For #V(«), the bold and thin lines
correspond to the different expectations.

n n

0 1
ol ¥

Figure 4: Schematic representation of vV for N = 0, 1. For 7", the bold and thin lines correspond
to different expectations.

Proof. The identity (3.19) can be rewritten, using (3.20), (3.27), and (3.29), as

Po 1) = 3 JupwoMygsa(1)0n(v0) + X5 (05 )

(u0,v0)

o Z Juo,voMz(yl,Lo;A(Pl('Uo ﬁ>n)) (3.34)

(u0,v0)

Recalling (3.27), we see that the first line on the right-hand side of (3.34) is equal to the N = 0
contribution to the right-hand side of (3.33). We will iterate (3.34) to obtain (3.33). For this, it
is useful to note that a shift of indices in (3.21) gives

S Junron M A (M (X)) = MO0 L (X). (3.35)

vn_1,un;Cn_1
(un—_1,9N_1)

For N > 1, it follows from (3.34)-(3.35), together with (3.26)-(3.29) and the linearity of X

15
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0 1
Py Py

0 0

Figure 5: Schematic representation of p(¥) for N = 0, 1. For p{* there are two distinct expectations,
and for p{"’ there are three.

MY (X), that

vaun_1;A

Z J'U'Nfly'UN 1M(N12N 1 A(PN(UN—l % n)) (3.36)

(un-1,9n-1)

— Z Junwon TS (0, uy; A)Op (vy) + X0V (v; A)

(uNyvN)

C
- Z Jun wx ;NJ;)A(PN+1(UN — n))

(UN 7UN)

We use (3.36) in (3.34) repeatedly until the last term vanishes. This must happen before N = n+1,
because the time variable of v is strictly larger than the time variable of vy_,, and the last term
is zero when the time variable of v, exceeds n. O

According to (3.25) and (3.27), 7(y) is equal to the coefficient 7,,(y) of the lace expansion for
the two-point function, where y = (y, m). We use the notation 7, (y) and 7, = ¥, 7, (y) when
we wish to emphasize the role of the time variable. Since 6, (y, m) = 6,,_,, for every y € Z<, and
since Yo Juw v = p by (3.10), (3.33) reduces in this special case to to

- Z 71-mpanflfm + Xn- (337)

m=0

This proves (1.28), and we have extracted the linear term in the expansion for 6,.
Finally, for future reference, we prove the recursion relation

MO = 3 Junson My a (M (X)), (3.38)

vN-1,4;CN-1
(uny—1,9n8-1)

valid for M, N > 1. The proof is by induction on M. We first note that (3.38) holds for all N > 1
when M = 1, since in this case it is identical to (3.35). We assume as induction hypothesis that

M’l()Nu+1\][\/{A1)(Y) - Z JUN71,0N71M1()I,2N,1;A (M(Mil) .C (Y))a (339)

vN-1,uN;CN 1
(un—1,9Nn_1)
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holds for all N > 1. To advance the induction, we substitute

Y= 3 Juvon M, yien X) (3.40)

(un,vN)

into (3.39). By (3.35), the left-hand side equals M,,*\"(X), while the right-hand side equals the

right-hand side of (3.38). This advances the induction hypothesis, and proves (3.38).

4 The quadratic term: The first expansion for y,

In (3.37), we have established the identity

n—1

0, = Z megn—l—m + Xn- (41)

m=0
To prove the identity (1.17) of Theorem 1.1(i), we will show that

n/2 n

Z Z ¢m1 ma Tl mi n mo +6n ); (42)

mip=1 ma=m

where ¢{))  are certain expansion coefficients, and e is an error term. The desired result (1.17)
then follows from (4.1)-(4.2), with

o o

€n = Z (_1)N6£LN): Py my = Z (_1)N¢7(~fzvl),m2- (4.3)

N=0 N=0
In this section, we will go part way to proving (4.2), by showing that

[n/2]
X == 3 R By + (1) 4 (D) + (3. (1.4

mi=1

The coefficients «{,y)  and the error terms e[ (1), e[ (2), e’ (3) are defined in Section 4.2 below.
The proof of (4. 2) W111 then be completed in Section 5, Vla an expansion for ;) ,

Recall from (3.29) that x("' = 7% — p™ where 4" and p{™ are deﬁned in terms of v
and p{” in (3.26) and (3.28). We begin in Section 4.1 with an analysis of p{*, and continue in
Section 4.2 with «{". Section 4.3 contains the proof of a key proposition involving an important

set P4 introduced in Section 4.2. Finally, in Section 4.4, we prepare for an analysis of error terms.

4.1 The first expansion for p,
For A, B C A, we define

KO0 A, B) = Y uss ( 1B/ (v, w5 B) N {v 25 0} in G4 (0 (v,) — P (v, < m)), (4.5)

(u0,v0)
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where as usual C, = C{*** (v). By (3.16)(3.17), and the facts that {v AKIN n} = {v — n} and
{v'¢C* ") (v)} = {{v'2C™ ™) (v)} in O ()}, we have
p (v; A) = k) (v; {v}, A). (4.6)

We write m,, for the time coordinate of a vertex v, and define

M (v; A) = O, — 2 Y 7(v, (y,m = 1); A), (4.7)
yezd

kO, (v; A, B) Z Juo v (T[E' (v, u0; B) N {v 5 n} in C,|TL, (vy; Cy)), (4.8)

e (v; A, B) Z Juo woBo (T[E' (v, 10; B) N {v 2 n} in Cy]xa(ve; Co)). (4.9)

Lemma 4.1. Forn>1,v € A and A,B C A,

kW (v; A, B) Z Ky (V3 A, B)On i, + e (v; A, B). (4.10)

mi1=1

Proof. We use Proposition 3.4 to extract one factor of 0, ,,, from the factor 6, (v,) — P, (v, Co, n)
in k9 (v; A, B). Explicitly,

O (v0) = P, (05 <% 0) = 0,(00) = D Juy (V0 13 Co)On (v1) = X (55 Co)
(u1,01)
= Z I, ('vo; é’o)gn—ml - Xn(v(J; éo)a (4-11)
mi
using (4.7) in the second equality. Substitution into (4.5) gives (4.10). O

We use the abbreviations

K (A) = Ky (0:A,{0}),  e(A) = €;’(0; A,{0}), (4.12)

n

and, for N > 1, we define

K/sj,)n (A) = Z JUN—l,’UN—lM((]I,Vu)N_l;{O} <’%7($z),n(vN1; A? éNl)) ) (413)
(un—-1,9N-1)

€A = o MO 1{0}< O gy 11 A, C*Nl)). (4.14)
(un—-1,9N-1)

An abuse of notation: It will be convenient in what follows to make an abuse of notation in which
we write, e.g., ki) ({vy_,}) to denote the result of setting A = {vy_,} in (4.13). The variable
vy_, is the summation index, so that x{¥ ({vN 1}) does not actually depend on vy_,. Also, we

will use the convention B
v, =0, C_, ={0}. (4.15)

With the above abuse of notation, the following proposition gives the first expansion for p{™.

18



Proposition 4.2 (The first expansion for p,). Forn>1 and N > 0,

P = Zlfﬁmln {vae i Dnm, + €, ({vn1}). (4.16)
mi
Proof. By (4.6) and Lemma 4.1, we obtain
Z o n (Vi {v}, )0y, + € (v; {v}, A). (4.17)
mi=1
The identity (4.16) then follows by substitution of (4.17) into (3.28), using (4.13)—(4.14) with the

abuse of notation. O

For N > 1, we note for future reference that

EO(A) = 3 Juwn ﬁ&m@mqﬁnmémmwmmo, (4.18)
(UN ,'UN)

e (4) == % JuNmNAJSE§EO}<”vN_1jg?lin(iﬁxm(vN;C})>, (4.19)
('U'Na'vN)

where, in the last equality, we have used (4.9) (with (uy,vy) instead of (u,, v,)), (3.20), and (3.35).
In addition, we have repeated our abuse of notation, since the variable v,_, is summed over in
the definition of Mg%") o, (see (3.21)). For N = 0, recalling (4.12), we see that the equalities in
(4.18) and (4.19) also hold, using the convention (4.15).

4.2 The first expansion for v,

In this section, we derive the first expansion for 7,. This requires a new concept: the important
set P,.

Throughout the remainder of the paper, given a bond b = ((z,n), (y,n + 1)), we will write
b = (y,n + 1) for its “top” and b = (x,n) for its “bottom.” Given a vertex v, a non-negative
integer n, and a subset A C A, we define the random set of bonds P, by

P, = {bonds b ‘ E'(v,b; A) N {b occupied} N {b — n in A\C’b(v)}}. (4.20)

Thus P, consists of those occupied bonds b such that E'(v,b; A) occurs (see Figure 2(a)) and
the top of b is connected to n in the complement of C®(v). By decomposing the event F!(v; A)
according to the size of P,, and using (3.7), we obtain

(Fy(vi A))
= P(F(v: 4) ﬁ{ﬂ—@})-ﬁ-i

=1

Z(PvAmwePn+wwA) (4.21)

Y (v; A) =P

e~ =

S P(Ey(v; A)n{be RIN{|P|=1})
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where
e (v; A) = P(Fy(v: A) N {P = 2}) + Z

We also define, for N > 1,
ey (1) = €,(0;{0}) (4.23)
e, (1) = Z JuN_l,vN—1M((JNu)N 1; {0}( R 1;éN—1))- (4.24)

(un—1,9Nn_1)

Nl)—.\

) S B(Er(v; Ay {be RYN{IRI =1}). (4.22)

[\DI»—A

The following proposition, whose proof is deferred to Section 4.3, is a crucial ingredient in the
first expansion for ,. Proposition 4.3 derives its name “the first cutting bond” from the fact that
the bond b in P, will serve as the cutting bond in Proposition 4.4.

Proposition 4.3 (The first cutting bond). For ACA, v € A, n>1 and b,
Fy(w; A)n{be B} = {E'(v,b; A)n {v % n} in C*(v)} 0 {b oce.} N {b—n in A\C"(v) }.
(4.25)

The following proposition, whose proof uses Proposition 4.3, gives the result of the first expan-
sion for ,. On the right-hand side of (4.26), there is agaln an abuse of notation: when we put
A = Cy_, in (4.13)-(4.14), the quantities ) (Cx_y) and e (Cy_,) do not actually depend on

Cy . (this random set is integrated over).

Proposition 4.4 (The first expansion for v,). Forn>1 and N > 0,

Z K (Co)Bu oy + ey y) + (1), (4.26)

n
m11 2

Proof. By (4.21), Proposition 4.3, and the independence stated in Lemma 2.2,

O ZJuo o ( (v, u; A) N {v 2 n} in C)I[v, — n in A\C’O]) (4.27)
(Uo vo)

+ e (v; A).
By Lemma 2.2, (3.17), and (4.5), this implies that
1
T (0 A) = Sy (03 A, A) + e (03 A). (4.28)

By Lemma 4.1, (4.15) and (3.32), this proves (4.26) for N = 0. For N > 1, we substitute (4.28)
for v (vy_,; Cy_y) in (3.26). The desired result then follows from (4.13)-(4.14) and (4.24). O

To combine the expansions for p, and 7, given in Propositions 4.2 and 4.4 into a first expansion
for x(¥), we introduce the following notation. Let

0 = (001 }) = SREAC). (4.29)
1 -
en (2) = 5en (Cnan) — e ({on}), (4.30)
e/ (3) =~ ;]jl)ngn my - (4.31)
mi=[n/2|+
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Figure 6: Schematic representation of the event F(v; A) N {b € P,}.

Corollary 4.5 (The first expansion for x,). Forn >0 and N > 0,

[n/2]
X = = 3 Ky e (1) + () + (3) (4.32)

mi1=1

Proof. Since () =~y — ptN) by (3.29), we can combine the conclusions of Propositions 4.2 and

4.4 with (4.29)-(4.30) to arrive at

n
O = = 3 K s + (1) + €0(2). (4.33)

mi=1

Then (4.32) follows from (4.31). O

4.3 Proof of Proposition 4.3

The proofis divided into 2 steps. See Figure 6 for a schematic representation of the event F (v; A)N

{be P}

Step 1: The left-hand side of (4.25) is a subset of the right-hand side of (4.25). Suppose
that the left-hand side of (4.25) occurs. It is clear from (4.20) that all the events on the right-hand

side of (4.25) occur, apart from the event {v A nin C*(v)}. To see that {v A nin Ch(v)}
occurs, note from (3.5) that F, (v; A) implies that {v A, n}. Also, by (4.20), b — b — n on the
left-hand side of (4.25). Since F!(v; A) occurs and v -5 b, it follows from (3.5) that b cannot be
pivotal for v — n. Thus {v — n in C’(v)} must occur. Since v 2 n, every occupied path v — n

must contain an element in A, in particular the paths in C*(v). We conclude that {v A nin
C®(v)}. This proves that the left-hand side of (4.25) is a subset of the right-hand side.

Step 2: The right-hand side of (4.25) is a subset of the left-hand side of (4.25). Suppose
that the right-hand side of (4.25) occurs. Then b € P, by the definition of P, in (4.20). It remains

to check that F! (v; A) occurs. To achieve this, we need to verify that (a) v = n, and (b) the “no
previous pivotal” condition in (3.5) holds (i.e., there does not exists a & which is occupied and

pivotal for v — n such that v 4, b).
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For (a), we note that since v - n in C®(v), all connections that do not use the bond b are
through A. Thus, we need only investigate the connections that do use the bond b. But (3.11)

implies that v EN b, so the connections using the bond b are indeed through A, and hence v Ao,

We are left to check (b). We first note that if 8’ is pivotal for v — n on the right-hand side of
(4.25), then ¥’ is also pivotal for v — b. Indeed, suppose that after removal of b', the connection
v — b still occurs. The bond &' cannot equal b since v — n in C’b(v), so that b is not pivotal for
v — n, whereas b’ is. Thus, since b’ is pivotal for v — n, the removal of b’ must destroy both
connections v — n in C®(v) and b — n in A\C®(v), which is impossible.

To prove (b), we need to show that if 8’ is pivotal for v — n, then v is not connected to b’
through A. Let b’ be pivotal for v — n. Then, as noted above, V' is also pivotal for v — b. By
(3.11) and the second event in (3.4), {v < b’} must occur. This proves (b) and completes the
proof.

4.4 Preparation for bounds on e (v; A)

In this section, we set the stage for the diagrammatic estimates of Section 8, by proving estimates
for the error term e(”(v; A) of (4.22). We begin by making the decomposition

ey (v; A) = e (v; A1) + € (v; A; 2) + €, (v5 45 3), (4.34)
where
1

e (v; A;1) = P(F(v; A) N {P = 2}) + 519(1:,;(1;; A n{pl=1}), (4.35)

* 1 1
e (v 4;2) = Y (5 - HP(F(vi A n{be RIN{R=1}), (4.36)

b>[2]+11=3 ! 2

1 1
e (widi3) = > > (7~ 5)P(F,2(v;A) n{be RYN{RI=1}), (4.37)
b<|3] 1=3

and where we abuse notation by writing b < m for the sum over bonds b such that m;, < m (recall
that m, denotes the temporal component of b). Then

e?(v; A; 1)] < B(Fy (v; A) N {|P] < 1}), (4.38)
e (v; A;2)| < ! > P(E'(anQ A)n{b— ”})a (4.39)
255
1
e’ (03 4:3)| < 5 P(F)(v; A)n {b e R} N {|R| >3}), (4.40)
b<| 3]

using Proposition 4.3 in (4.39). We consider these three quantities in sequence in Sections 4.4.1-
4.4.3.

4.4.1 Estimate for e!”(v; A; 1)

To prove that e (v; A; 1) produces an error term, we will use the following proposition.
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Proposition 4.6. Forve A, ACA andn > 1,

Fiw: A)n {[Bl <1} € | (v, (2.n); A). (4.41)

xcZd

Proof. By partitioning (3.5) according to the last pivotal bond for the connection v — n, we may
write

Fi(v; 4) = {v =5 n} O ({b oce. and piv. for v = n} 0 {v 3 b}n (5= n}),  (4.42)

where {v =2 n} = {v 5 n} N {v => n}. We define v’ by setting v = v when the first event on
the right-hand side of (4.42) occurs, and v’ = b otherwise.

Suppose that F)(v; A) N {|Py| < 1} occurs. There must be z,y such that v’ is disjointly
connected through A to (z,n) and (y,n). Due to these disjoint connections, no pivotal bond for
v’ — (z,n) can also be pivotal for v’ — (y,n). Since |P,| < 1, we may therefore assume without
loss of generality that among the pivotal bonds for v — (2, n) (if there are any) there is no element
of P,.

According to (3.4), it suffices to show that there is no pivotal bond ¥ for v — (z,n) such
that v 25 b', since this implies that E'(v, (z,n); A) occurs. We will establish that this sufficient
condition holds, by arguing by contradiction.

Suppose that o' is pivotal for v — (z,n) and that v A . Then there must be a first such
pivotal bond, which, we claim, is an element of P,. Indeed, since ' is pivotal for v — (z,n), it
follows from (3.1) that ¥’ is occupied, E'(v,b; A) occurs, and b — (x,n) occurs in A\C?(v). This
shows that b’ € P,.

By definition of v’, the pivotal bonds for v — (z,n) include the pivotal bonds for v’ — (z,n).
The latter include no element of P, so ' must lie below v’ (and hence v' # v). This then implies
that b is occupied and pivotal for v — v'. However, by (4.42), the latter implies that {v LN b'}e

occurs. This contradicts the assumption that v LN b’, and completes the proof. O

4.4.2 Estimate for e!”(v; A;2)

The right-hand side of (4.39) is already simple and nothing more is required at this stage.

4.4.3 Estimate for e{”(v; A; 3)

We prove three lemmas, Lemmas 4.7-4.9 below, before proving the main estimate in Proposi-
tion 4.10 below.

Lemma 4.7. If b € P,, then there exists an x € Z% such that b is occupied and pivotal for
v — (x,n).

Proof. The definition of P, in (4.20) implies that v — b occurs in Ch(v), while b — n occurs in
A\C?(v). Therefore, there exists an z € Z? for which b — (z,n) occurs in A\C?(v). By (3.1), this
proves the claim. O

For two bonds b and ', we write b < b’ when their temporal components obey m;, < my .
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Lemma 4.8. Fort! <b and b’ # b,
(b, € P} C {{V € B} in C*(v)}. (4.43)

Proof. We first note that if b and o' are distinct elements of P, then it is not possible that b = b
Indeed, by Lemma 4.7 there is an x such that b is pivotal for v — (z,n). But if b =D then it
follows from the fact that b’ € P, that there is a connection from v to b via b’ that persists after
b is made vacant, and this means that b cannot be pivotal for v — (z,n). Thus we may assume
that b £ 5.

Since b’ € Py, we have that (a) {0 is occupied} occurs, (b) E'(v;b': A) occurs, and (¢) {8 = n
in A\C” (v)} occurs. The event {b' is occupied} also occurs in C*(v) since b # ', and the event
E'(v:b'; A) also occurs in C?(v) since ' < b and b # 5. It remains to show that the event

{{E’ S nin A\CY (v)} in éb(v)} (4.44)

occurs. We show that (4.44) occurs by intersecting with the events (i) {6 — b in A\C? (v)}*, and
(i) {6’ — b in A\C? (v)}, which we refer to as cases (i) and (ii).
On the event (i),

{{EI — nin A\CN”’/(U)} in C’b(v)} = {5’ — n in A\Cw(v)}, (4.45)

since maklng b vacant does not change C'(5') N (A\C (v)), and b — n in A\C" (v) is determined
by C(5) N (A\C? (v)). But the right-hand side of (4.45) occurs by (c) above, and hence (4.44)
occurs.

We complete the proof by showing that case (ii) is empty, arguing by contradiction. Suppose
that b0’ € P, and that b — b occurs in A\C?(v). Then E'(v:b; A) occurs since b € Py, and
v 5 b occurs since V' € P,. Since E'(v;b; A) N {w 4 b'} occurs, b’ cannot be pivotal for v — b.
Since v — b, we conclude that b € C? (v). However, when b — b in A\C? (v), either b € A\C? (v)
orb =b In the latter case, since b’ € P, it follows from Proposition 4.3 that b = E’Qé’b'(v).
Therefore b € A\C? (v) in either case, which contradicts b € C? (v) and completes the proof. [

Lemma 4.9. Forve A, ACA, n>0,
{v 5y n{|P| > 2} C Fl(v; A). (4.46)
Proof. By Lemma 3.3,
{v 50} {|R| > 2} = (F(v; A)n {|| > 2}) (4.47)

UU{E' ,b; A) N {b occ. and piv. forv—>n}ﬂ{\PA\>2}]

It suffices to show that the contribution from the union over b is empty. For this, it suffices to
show that if E'(v,b; A) N {b occ. and piv. for v — n} occurs, then P, = {b}.

To prove the latter statement, assume that E’(v,b; A) N {b occ. and piv. for v — n} occurs.
Then clearly b € P, since all the events in (4.20) occur by (3.2). Also, if b' € P,, then the event
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E'(v,b'; A) occurs, and, by Lemma 4.7, V' is occupied and pivotal for v — (x,n) for some x € Z<.

Therefore, 0 is the first occupied and pivotal bond for v — (x,n) for which v LN b'. However,
since E’'(v,b; A) N {b occ. and piv. for v — n} occurs, b is the first occupied and pivotal bond for

v — (2, n) such that v 2 b for all z € Z* for which v — (z,n). Therefore, b = b. O

To formulate the next proposition, we define
PP ={be P, : 3y, by € P\ {b} such that by # bo, by, by < b}. (4.48)

In words, P? is the subset of bonds b € P, for which there are at least two distinct elements in
P, with time variables smaller than or equal to b. Note that if |P,| > 3 then P{» # @&. Therefore,
writing & < b to mean both &' < b and b’ # b, we have

(hePIN{|P|>3) = ({b ePHIn |V e R}) U ( Ut eP®n{be R}). (4.49)

b'<b b'>b

We recall (4.40) and conclude from (4.49) that
e A:3) < Y S P(F(v;A) (b e RN {bePVY), (4.50)

b<[n] bzl

where we replace b <[] by 0’ <[] for the contribution due to the first event in the right-hand
side of (4.49), and the roles of b and ¥’ are interchanged for the contribution due to the second
event.

The following proposition gives an estimate on the event appearing in the right-hand side
of (4.50). In the right-hand side of (4.51) below, three connections to n are apparent. One is
due to {b — n in A\C®(v)}, and the other two are due to the event {F!(v;A) in C®(v)}. The
advantage of the right-hand side of (4.51) is that it is well suited for application of the Factorisation
Lemma 2.2. In Section 8.7, we will exploit this formula to prove that e(”(wv; A;3) gives an error
term.

Proposition 4.10 (Factorisation for three cutting bonds). For AC A, v € A, n > 1 and
b < b,

Fl(v; AN {b € Py {be P>} (4.51)
C{E'(v,b; A)n F(v; A) N {t' € B} in C"(v)} N {b oce.} N {b— n in A\C*(v)}.
Proof. By Lemma 4.8,

(W ePIN{beP™ ={beP)n{lcP}n ( U (e PA}) (4.52)
C{he Py {{t' e P} in C'(v)} N ( U {t"er}in éb(v)})
— (beP)n {{ U {0 eR}}in éb(v)}

c { em}n{Inl > 2} in C'()},

25



where we used (2.3)-(2.4) in the third line. Now we use Proposition 4.3, (4.52), (2.3), and
Lemma 4.9 to arrive at

F (v;A)n{b e B,}n{be P} (4.53)
= (Fi(v; A)n{beP})n ({t e Byn{be PV})
C {E'(v,b; A)n{v 5 n}in C'(v)} N {b occ.} N {b = n in A\C'(v)}
N{{¥ e R} (IR 2 2} in C(w))
= {F'(v,b;4) n{v S n}n{|R| > 2} n{V' € P} in C*(v)}
N {b oce.} N {B— nin A\C(v)}
C{E'(v,b; A)n Fj(v; A) N {t € B} in C*(v)} 0 {b oce.} N {B = n in A\C*(v)},

which is the desired result. O

5 The quadratic term: The second expansion for Yy,

In this section, we complete the proof of Theorem 1.1(i) by proving (4.2). To do so, we will

determine coefficients @) and d)  such that
n
m1, Z ¢m1,mg n—mo dﬁffl, (5.1)
mo=m1

Then (4.2) follows from (4.32), with

[n/2]
B;N) = B;N)(l) + B;N)(z) + e(N) Z d;]’zvfngn my- (52)
mi=1

We will also prove the first statement of Theorem 1.1(ii), namely that ¢y ; = $p? >, D(z)(1—D(x)).
By (1.4), (1.7) and (1.9), this implies that ¢;; = % +O(B).

5.1 The second cutting bond for y,

To prove (5.1), we will define a second cutting bond for

(0 ('UN 1A, CN 1 Z J’U,N,’UNEN (I[E’(UN—U Uy, CN—I) N {'UN—1 £> n} in CN]Hm(vN; CN))
(un,vN)

(5.3)
(see (4.8)), which is the argument of M) 0.un_1:{0y @ppearing in (4.13). The set Cy_, can be any
deterministic set in (5.3), but we write it in this form with (4.13) in mind. The definition of the
second cutting bond will be simpler than the definition of the first cutting bond in Proposition 4.3,
due to the fact that we have already extracted a factor of ,,_,,, and any remaining contribution
with a double connection to n will be an error term.
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We first rewrite s(y), (vy_1; 4, Cy_,) in a more convenient form. Let Py be the conditional
probability P given that (uy,vy) is vacant, and let Ey be expectation with respect to Py. Since

Cy = Cly (vy_,) holds P,-a.s, and since the event E' (vn_ Ly Cy D) N{vy, N n} only depends
on forward connections from vy_, to later vertices, it follows that

K (Ui A, Cs) = 3 oy By (11 (0os, i Crsy) N {vnsy 2 0y (051 Cy)). (5.4)
(un,oN)

The second cutting bond is defined as follows.

Definition 5.1. (i) For m > 0, the m-cutting bond for v,_, LN n, if it exists, is the first occupied
and pivotal bond b for vy, — n for which mz > m and vy, A b. Similarly, for y € A, the
m-cutting bond for vy_, EiN y, if it exists, is the first occupied and pivotal bond b for vy_, = y
for which my; > m and vy, EN b. We use the abbreviation “b is m-cutting for vy_, A for the
statement that “b is the m-cutting bond for v, _, A pr
(ii) The second cutting bond for (5.4) is the m-cutting bond for vy_, <5 n.

Note that, under Py, the event that b is an m-cutting bond implies that b # (uy,vy), since b

must be occupied whereas (uy,vy) is vacant.
Several definitions are required to formulate the result of the second expansion. Let

Hp(v,y; A) = {v 2 y} 0 {# m-cutting bond for v 2 y}. (5.5)
Hpn(v; A) = {v A n} N {# m-cutting bond for v 2 n}. (5.6)
Recall our convention (4.15) that v_; = 0 and C_; = {0}. For N > 0, let
(N) (4 A) N(I[E,(UN—lauN;CN’N—l) mHm,n(vN—l;A)}Hm(vN;CN’N))a (5-7)
(N) (5 A) Z JQ’EIEN (I[EI(UN—lauN;éN—I) N Hm(vN—lab; A)]Xn(ga CN’Z)Hm('vN;CN’N))a
b#(un,vN)
(5.8)
where C? = C? (vN,l). Forj =4,5and N > 1, let
d;(”JL)l n Z']UO;'UO 5‘?1)1 n ] A)’ (59)
(uo,v0)
CHCIEVED DI NN DRSS I ) CHMCEE) ) (5.10)
(un—1,9N-1) (un,vN)

For N > 1, we also define

M) (X)) =B (IT{0 = u, }]X), (5.11)
M((f;?N (X) = Z JUN—1,’UN 1M(()N12N 1;{0} (INE ([[E’(’UN*U Uy éNl)]X>> (5'12)

(un-1,9N-1)

Finally, for N > 0 we define
%Vl),mg (A) = Z JUN,UN Z ']b bM((iV;?N)(I[Hml (vN—lab; A)]HTM (E’ CN’](:,)HmI (vN; ON)) (513)

(un,vn) b#(un,vN)

Now we are ready to state the result of the second expansion.
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Proposition 5.2 (The second expansion for x,). Forn,m >0, N >0 and A C A,

Z Prnmy (A)On—ms, — [d7, (45 A) + d).75, (55 A)]. (5.14)

mao=m

The proof of Proposition 5.2 is given below in Section 5.3. Let

dﬁjlv)n(A) = d(N) (45 A) + dslv’)n(5; A), (5.15)
dﬁff,n = _§dnlzv)n(éN—1) + d%({vm}), (5.16)

and
;{Lvl,mz - __¢m1,mg( N— 1) + ¢m1 mz({val})' (517)

Then (5.1) follows immediately from Proposition 5.2 and (4.29). As noted below (5.1), this in turn
completes the proof of Theorem 1.1(i).
For j = 4.5, we define

[n/2]
NY( . 1 N) ~ N)
e, ()= [ - §d£m n (75 O ) +di) (5 {'UN—l})]gnfml- (5.18)
mi=1

Then (5.2) can be rewritten as
el =el7(1) +e{7(2) + eV (3) + €57 (4) 4+ el (5). (5.19)

Our proof of (1.19) in Section 8 is based on the decomposition (5.19).

5.2 Identification of ¢

We now prove the first statement of Theorem 1.1(ii), namely that ¢1, = 1p? >, D(z)(1 — D(x)).
By (1.4), (1.7) and (1.9), it then follows that ¢, = 5 + O(ﬁ) According to (5.13) and (4.15),
17(A) = 0 unless N = 0. Also, by (5.17) and (4.15), ¢11 = $¢{1({0}). Thus, it suffices to show
that ¢1"1({0}) = p2 2, D(2)(1 — D(x)).
For this, we use (5.13). Note that IT; (b; C?) = Om-1 and TT; (vy; C,) = Omag.1, DY (4.7). Therefore,
by (4.15), we have Hy(vy_,,b; {0}) = H;(0,0;{0}), which is the trivial event by (5.5). Also, since
My, = 1, u, must be 0, so that {0 = u,} in (5.11) is trivially satisfied. We conclude that

M2 oy (T1H o, (0,1 DI (B GO (w5 Co) ) = 1. (5.20)

(ug,v0)

It then follows from (5.13) that

Y ({o}) ZJMO > Joi —chD (7)), (5.21)

b#’vo

as required.
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5.3 Proof of Proposition 5.2

To simplify the notation, for N > 0, we write
B = FE'(vy_,,uy; Cy_,). (5.22)

In particular, according to (3.23) and the convention (4.15), E! = {0 = wu,}. For the second

expansion, the following proposition plays the role that was played for the first expansion by
Proposition 4.3.

Proposition 5.3 (The second cutting bond). For all AC A, N >0, m>0,n>1, and for
all bonds b,

E’, N {b is m-cutting for vy_, 4, n} (5.23)
= {E\ N Hp(vy,, b A) in Cly(vy_y) b0 {b oce.} 0 {b— nin A\Ch(vyoi) )

Proof. By (3.2), it suffices to prove that

E'. N {b is m-cutting for vy , 2> n}
= {E;V N Hp(vy_y,b; A) in C’Ibv(vN_l)} N {b occ. and piv. for vy_, — n}. (5.24)

Since mj > m, and since E; depends only on the occupation status of bonds below my,, <m —1,
we have

E\, = {E, in C}(vy )} (5.25)
Also, for b such that mj; > m, we have

{b is m-cutting for vy_, 2 n} = {b occ. and piv. for vy_, — n} N {vy_, = b} (5.26)

N {3 previous m-cutting bond for v_, A n}.

Since the pivotal bonds for vy_, — n are ordered, any previous m-cutting bond for vy_, A
must be pivotal for vy_, — b. Therefore,

{# previous m-cutting bond for vy_, 2 n} (5.27)
= {# m-cutting bond for vy_, > b}

= {{ﬂ m-cutting bond for vy_, 2 b} in CN’JI’V(UN_l)},
where the last equality again follows from the orientation. Since
{vy B0 ={vy, Bbin C(vy )}, (5.28)
we conclude from (5.5) that

{vy_, 2 b}N{# previous m-cutting bond for vy_, 2 n} = {Hp(vy_., b A) in C%(vy_,)}. (5.29)
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Then (5.24) follows from (2.3) and (5.29), and the proof is complete. O
Proof of Proposition 5.2. We will show that

By (1B} 0 {vams 2 )T (vy; C)

= > Y JE(IEy 0 Hp vy, by A, (5 CE) (v C) )iy
m2:mb;é(uN,'vN)

+ e (4 A) + el (55 A), (5-30)
This suffices, since substitution of (5.30) into (5.4) gives
K/£7oz),n (,UNfl; A, C’N—l)

= Y Juyon 2 Y il (1B 0 Hyy (v, by ATy, (B; Co) T (v C) ) s

(un,oN) m2=m p£(un,vN)
D Tupwnle) (4 A) + €l (5; A)], (5.31)
(un,vN)

and substitution of (5.31) into (4.13), together with (5.13) and (5.9)—(5.10), gives the desired result
(5.14).
To prove (5.30), we use the partition

{vy_y EN n} = Hpyn(vy ;3 A) U U ({b is m-cutting for vy_, EN n}) (5.32)
b

By (5.32) and (5.7),

E, (I[E’ N {vyos 2 0}l (vy: Cy)) (5.33)
eon (45 A) + ZE ( I[E', N {b is m-cutting for vy_, = n}]II (vN;C’N)).
Let 3 .
Cyvm={x € Cy:myz <m}. (5.34)

Then - -
Hm(vN; CN) = Hm(vN; CN,m—l)a (535)

since the first term in (4.7) does not depend on C\, while the second only depends on Cy up to
time m — 1. Conditioning on the set Cy ,,,_; then gives

E, (I[E’ N{vy, 2 n}mm(vN;éN)) (5.36)
(N) (4; A) +ZZH vy C (E N {b is m-cutting for v_, —>n}ﬂ{CNm 1 —C’})

We again write C% = C%(vy_,). Since m < my,
{Crxmr =C} = {{Cym-1=C} in CL}. (5.37)
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By Proposition 5.3 and the independence stated in Lemma 2.2, for b # (uy,vy), it follows that

P, (E;\, N {b is m-cutting for vy_, 2 n} N {Cym_1 = C}) (5.38)
= J,3Px ({E4 N Hyn(vy1, b A) N {Cy oy = C} in Ch} 0 {b = n in A\CEY).
(Note that, according to the comment below Definition 5.1, the left-hand side of (5.38) is zero

if b = (uy,vy), but the right-hand side need not be zero.) Next we apply Lemma 2.2 to the
right-hand side to obtain, for b # (uy,vy),

P, (E;\, N {b is m-cutting for vy_, 2 n} N {Cxm_1 = C}) (5.39)
~ ~ - — Cb
= J, 5 <I[Ejv A Ho(ws 1,55 4) 0 {Covmt = CH (0 () = Bas(b =5 n))>,
where we have used (3.17) and the fact that {E), N H,,(vy_,,0; A) N {C’N,m,l = C}in CN',’{,} =

E\ N Hy(vy 1,0, A) N {Cym 1 = C}, again due to the orientation. We conclude from (5.36) and
(5.39) that

By (T1E% 0 {vxy 2 n}|Tn(vy; Cn) ) — el (4; A) (5.40)
=Y il (vy O)F, (I[Ejv A Hyp (015 A) N {Coumt = CY(0(B) — P, (b5 n))>
C bZ(un,vN)

~ ~ _ _
= Y J,k (I[Ejv A H(0y -1, AT (055 Cov ) (6 (5) — Py (5 n))>.
b£(uy,vn)

&b
Finally, we rewrite Py , (b a, n) using Proposition 3.4, as in (4.11). The subscript on Py, indicates
the arrival of a new oriented percolation model, coupled to Py via the set C?. With (5.8) and
(5.35), this gives (5.30), and thus completes the proof. O

6 Diagrammatic estimates: Bounds for 7 and y

In this section, we begin to set the stage for the proof of the bounds on ¢, n, and e, stated
in Theorem 1.1(ii). In Section 6.1, we prove bounds on 7(v,y; A), and in Section 6.2, we prove
bounds on x,(v; A). These bounds are in terms of certain Feynman diagrams P (v, y; A), which
are closely related to diagrams appearing in [13, Section 4]. These diagrams are defined recursively,
which is natural given that 7 is defined in terms of the recursively defined M™*" (see (3.25)).
Later, the recursive nature of the diagrams will be instrumental in bounding the diagrams.

The discussion in this section applies for arbitrary p and d, under the weak assumption on D.

6.1 Bounds on 7

In this section, we obtain bounds on the function 7 (v, y; A) defined in (3.27). For the special case
in which v = 0 and A = {0}, the function 7(0,y;{0}) is identical to the function 7(y) of [13,
Equation (3.25)], apart from the minor change that we have 7(0) = 1 whereas [13] has 7(0) = 0
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(recall the comment below (3.25)). It is proved in [13, Equation (4.10)] and [13, Equation (4.29)]
that for N > 0 and m > 0,
T (y) < PR (y). (6.1)

Here, PV (y) = P™(y) (for y = (y,m)) is a sum of diagrams which, for p = p., d > 4 and
sufficiently small, obey the bound

ST PM(y) < Smodno + (CB)NY (m +1)792, (6.2)

Y

Together, these estimates give (1.14).

Our goal now is to generalise (6.1) to m(v,y; A). The generalisation is in terms of Feynman
diagrams P™) (v, y; A) which are defined as follows. We start with N = 0, and, keeping the bond
orientation in mind, define

PPv,y;a) = ;T(t —v)r(a—t)7(y —a)r(y — t), (6.3)

POv,y; A) => Ila € A]P”(v,y;a). (6.4)

We refer to the two-point functions appearing in the right-hand side of (6.3) as lines. In the diagram
P©®(v,y;a), we declare the lines 7(t —v) and 7(y —t) appearing in (6.3) to be 0-admissible (below
this is generalised to N-admissibility). We also define

Plu,z.y) => 7(w - 2)Juo PO (v, y; w), (6.5)

w,v

where .J,,, is given by (3.10), and where we continue to regard the lines 7(¢ — v) and 7(y — ¢)
appearing in P (v, y;w) in (6.5) as 0-admissible. See Figure 7 for depictions of (6.3) and (6.5).

Definition 6.1. (i) Given a diagram and any line \ of the diagram, Construction 1*(y) is the
operation in which a new vertex y is inserted in line A. Explicitly, this means that the two-point
function 7(v — u) corresponding to line \ is replaced by 7(v — y)7(y — u).

(i) Given a diagram F'(v,y) with two vertices carrying labels v,y and any line A of the diagram,
we write F(v,y;1*(2)) for the diagram where Construction 1*(2) is performed to the diagram
F(v,y).

(iii) Construction 1*(1) is the operation in which Construction 1*(y,1) is performed followed by
summation over y with [ fixed. Explicitly, this means that 7;_;(v — u) corresponding to line A is
replaced by 3, 7;_i(v — y)7_i(y — u). We also write Construction 1([) for the operation in which
Construction 1*(I) is performed, and then a sum over all lines A in the diagram is performed
(resulting in a sum of diagrams).

For N > 1, given P9 (v,y;a) with its set of admissible lines, we define P (v, y;a) with
its set of admissible lines recursively, as follows. First, let P®~Y(v,y;a,1*(z)) denote the result
of applying Construction 1*(2) to P¥~Y(v,y;a). Then, for N > 1, let

PMv,y;a) =Y > PV (v, w:a, 1M(2))P(w, z,y), (6.6)

A zZw

where the sum over A runs over the (IV — 1)-admissible lines, and where the N-admissible lines
are by definition the 0-admissible lines in the factor P(w, z,y) appearing in (6.6). See Figure 7.
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v

Figure 7: Diagrams for P (v,y;a), P(u,z,y), and examples of diagrams that contribute to
P"(v,y;a), P®(v,y;a). The N-admissible lines are shown in bold.

We also define, for N > 0,
PM(v,y; A) =Y Ila€ AJP™M(v,y;a),  P™(y) = P™(0,y;{0}). (6.7)

a

The P™)(y) appearing in (6.7) is identical to the right-hand side of (6.1), when y = (y,m). By
(6.5), we can alternatively write, for N > 1,

PYvy A =33 Y Juyon PV V(0 uy 1 AN 2)T(w — 2) PO (v, g w).

A ZW (un_1,9N-1)
(6.8)
An identical formula holds for P™) (v, y; a), where A on both sides is replaced by a.

Remark 6.2. When P (v,y;a,1*(z)) appears inside a sum over ), our convention is that ) is
summed over the M-admissible lines.

The following proposition gives our main bound on 7 (v, y; A), and generalises (6.1).

Proposition 6.3. For N >0, v,y € A, and A C A,
(v, y; A) < P (v, y: A). (6.9)

Proof. We will prove the two statements

Myyi(1) < P (v, y; A), (6.10)
MY (Iw e Cy]) <N PM (v, y; 4,17 (2))7(w — 2), (6.11)
A z
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simultaneously, using induction on N (recall Remark 6.2). The first immediately gives (6.9), by
(3.27).
To verify (6.10) for N = 0, we first recall (3.4) and observe that

Ewy;A) CEl(w,y;A)= |J (w=t)o(t—a)o(a—=y)o(t—y), (6.12)

where, for events F' and G, F' o GG denotes disjoint occurrence of F' and G. By the BK inequality
(see [3]), this gives

Myya() =P(E'(v,y54)) < 3 r(t—v)r(a—t)r(y —a)r(y — 1)

acAteEN
= Ila € A]P(v,y;a), (6.13)

a

which is (6.10) for N = 0.
To verify (6.11) for N = 0, we use the standard fact (see [5, Lemma 2.5] or [14, Lemma 5.5.8]
for details) that

E(I[E'(v,y; ATw e C]) < > r(w—2)r(y — a)7(a —t) (6.14)

x (1(t = v)r(z = )r(y — 2) + 7(2 — v)7(t — 2)7(y — 1)).

The right-hand side of (6.14) is the same as the right-hand side of (6.11) for N = 0, where the
two terms in (6.14) correspond to the two terms in the sum over admissible lines in (6.11).

To advance the induction, we fix N > 1 and assume that (6.10)—(6.11) hold for N — 1. The
recursion relation (3.35) implies that

( ) _ (N) (1)
Mv],\ry+11¢1(1) - Z JUN—l,UN—leI,VuN,l;A(leNil’y;éNil(1))' (615)

(un—_1,9N_1)

Application of (6.13) gives

1(}Ny+X < Z Z Juy_ 1L,UN— 1M(NziN 1 A( ['w € CN’N_l])P(O)(vN_l,y;w). (6-16)

W (uy_1,9N-1)

We use (6.11) for N — 1 to estimate the right-hand side (using Cy_, € Cy_,), and use (6.8) to
complete the advancement of (6.10).
Similarly, for (6.11), we have

My Iw € O) = 3 Jun o My pa(My) e (Tw e C])). (6.17)

v,y;A vun-1;4 vN-1,4;CN—1
(un-1,9N-1)

Substitution of the bound (6.11) for N = 0 (again using Cy ., C Cy_,) leads to

MyIw e G <Y Y Juy yon Mty (Il € CyL])  (6.18)

A zw’ (’U,N 1, ON— 1)

x PO(vy i ysw', 1(2))7(w - 2),
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where the sum over A runs over the N-admissible lines. We use the induction hypothesis (6.11)
for N —1 to bound MY . (Ifw" € Cy_,]), and then rewrite the resulting bound noting that by
(6.8),
P (v,y;4,1(2)) (6.19)
—Y Y Y Ju PO A () — )P vy s w 1(2),

N ozZhaw' (uy_1,on-1)

where the sum over A’ runs over the (N — 1)-admissible lines (recall Remark 6.2). This leads to

My iIlw e Cy]) <33 P™M(v,y: A, 1 (2))m(w — 2), (6.20)
Az
which completes the advancement of (6.11). O

Later, we will use the recursion formula, for M > 1 and N > 0,

Y Y Juan PV (i 1 (w)r(a —w) PO vy, yra) = PO (), (6.21)

A ’wa(uN ’UN)

To prove (6.21), we apply induction on M. For M = 1, the claim follows from (6.8). To advance
the induction, we note from (6.7)—(6.8) that

PN (y) =33 PO0,yi8) 3o Juo PN (ui 1Y (2))7(E - 2). (6.22)

Nzt (u,)

An application of the induction hypothesis yields that

PO 1N (2) =35 Y Jupaon PV (uy; 1M (w))7(a — w)PY ) (vy, u; a, 1 (2)).
A WA (uy,vN)
(6.23)
We substitute (6.23) into (6.22), and use the fact that

SN PO®wyit) Y Juw PV (vy,wi a1 (2))7( — 2) = PY (v, g5 a). (6.24)

Nzt (u.v)

This then advances the induction and proves the claim in (6.21).

6.2 Bounds on Yy,

In this section, we prove bounds on x,. The proof will use the following lemmas and definition.
Recall the definitions of F (v; A) and P, in (3.5) and (4.20).

Lemma 6.4. For ACA, veA, andn >0,

F)(v;A) C |J F'(v,y; A) N ((v —n)o(y — n)) (6.25)
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Proof. Suppose that F! (v; A) occurs. When P, = &, the claim follows from Proposition 4.6, which
says that then there exists x for which E'(v, (z,n); A) = E'(v, (z,n); A)N ((v —n)o((z,n) = n))
holds, and this is a subset of the event on the right-hand side of (6.25). Thus, we are left to prove
that, for every bond b, {b € P,} N F)(v; A) is a subset of the right-hand side of (6.25). For this we
use Proposition 4.3 to see that this event is a subset of the event in the right-hand side of (6.25)
with y = b. O

The following definition introduces a construction that adds a connection to n in a diagram.

Definition 6.5. (a) Given a diagram F'(u) with a vertex carrying label u, Construction 6, (u) is
the diagram obtained by multiplying F'(u) by 0, ...

(b) Given a diagram, the result of applying Construction 6, is the diagram obtained by Construc-
tion 1*(u) followed by Construction #,(u) and a summation over w and over all lines A in the
diagram. Explicitly, this means that the two-point function 7(v — w) associated with line A is
replaced by >, 7(v — u)7(u — w)0,(u), followed by a sum over A.

We write PN (v, y; a,0,) for the result of an application of Construction 6, to P™ (v, y;a),
and P™M(v,y; A, 0,) =Y, I[la € A]P™(v,y;a,b,).

Lemma 6.6. For ACA, N >0, v,uy € A andn > 0,

MO (Ifonoy = n]) < P™(0,uy; A, 6,), (6.26)

’UUN

where we recall the abuse of notation above (4.15), and, for N = 0, we set v_, = v and C, = {v}.

Proof. This is a minor modification of the bound on M, ( [w € C'N]) in (6.11), using the
inequality

Py (B (01, uni Coy) N {vny = n}) < PO(vy 1y Oy, 0) (6.27)
instead of (6.14), and we omit the details. O

The following proposition gives an upper bound for x,(v; A) that is written as a minimum. In
its statement, we write P (v,y; A) = P")(v,y; A), when v = (v,m) and y = (y,k). Later we

will make use of both alternatives in the minimum, depending on the index k in (6.28).

Proposition 6.7. For ACA, N>0,v=(v,m)€ A andn >0,
@A 3 (X P wA0) A (S PR ))JAVPir (629)
k=m yeZd yezZd
where, by convention, we set _; = 1.

Proof. By (3.29), x!V(v; A) = 4 (v; A) — p¥)(v; A). Since these two terms have opposite sign,
it suffices to prove that v\ (v; A) and p{™(v; A) are each bounded above by the right-hand side
of (6.28).

We start with p{™(v; A), which is defined in (3.28). We write vy = (2, k + 1) and use

Py, (vy = nin A\Cy) < Op_p_1 (6.29)
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and
I{vy_, = n} N {oy gCy} in Cy] < T[vy_, — nl. (6.30)

Performing the sum over vy in (3.28), we get (recall also (3.16))
S( ZM,,”J]?, (TTow-r = 7)) Pbo—ma, .- (6.31)

One alternative in the upper bound then follows from (6.26). On the other hand, by (6.10),

M (TToney = n]) < ML (1) < PO (0, uy; A), (6.32)

v,uN;A v,un;A

which gives the other alternative and completes the proof for p(¥ (v; A).
We proceed with v¥)(v; A), which is defined in (3.26). Since

UA E'(v,y;4A)n ((v = n)o(y —n)) = UA (E'(v,y;4) 0 (v —=n)) o (y—n), (6.33)

it follows from Lemma 6.4 and the BKR inequality that

P(F)(v; A)) < 3 P(E'(v.y; A) N (v = n)) 0 (y). (6.34)

Substitution of the above bound into (3.26) yields (recall also (3.20) and (6.15))

(N)(v A) Z JUN—l;'UN 1M(Nu)N 1A(P (FTIL(UN—I;CN—I))
(un—1,9Nn-1)

< Z Z JUN 1, VN — 1M'vNu)N 1;A (PN (El(valiy;CNfl) N (’UNfl — n))>9n(y)

YEA (un_1,vn-1)

=3 MU (Iosy = n])nom,. (6.35)
yeA

The right-hand side of (6.35) is identical to the right-hand side of (6.31), apart from the fact that
On—m, in (6.35) is replaced by pb,_,,—1 in (6.31). Since ,_p, < Op_p,—1 (using the convention
below (6.28) when m, = n), the desired estimate for ’y(N’(v A) follows. This completes the
proof. O

7 Diagrammatic estimates: Bounds for ¢

In this section, we prove the bound on ¢, n, stated in (1.18). We have already proved the
statement above (1.18), that ¢y, (pe) = $p2 S peza D(x)(1 — D(x)), in Section 5.2. Henceforth, we
simplify the notation by writing

MUY (X) = MY 0 (X). (7.1)
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7.1 The main estimate

The following proposition gives the main estimate needed to prove (1.18). In its statement, we use
the notation
by my = I[my < mo|(my + 1)’(d’2)/2(m2 —my + 1)’(d’2)/2. (7.2)

Recall from (5.17) that

Slvl),mQ - m1 MQ({UN 1}) - _d)ml mQ( )’ (73)
with ¢3) . (A) given by (5.13). Also, according to (4.3),
¢m1,m2 = Z (_1)N 57]‘:]1),777,2' (74)
N=0

Proposition 7.1 (The bounds on ¢")). Let p = p., d > 4, for the spread-out model with [
sufficiently small. For mo > mq > 1 and N > 1,

Pty ({V3-1)]
‘¢m1 m2( N— 1)|

Also, ¢7)({vn_1}) = (N)( vo1) =0 for N > 1, and

(C ) brmy ms s (7.5)

<
< (CB) by ms - (7.6)

Pe Xpeza D(2)(1 = D(z))  if (m1,me) = (1,1)
O(Bbml,m2) Zf (mlﬂmQ) 7£ (17 1)
(7.7)

The case (my, my) = (1,1) in (7.7) has been proved already in Section 5.2. The remainder of
Section 7 is devoted to the proof of Proposition 7.1. Before proceeding with the proof, we note
that it implies (1.18).

Proof of (1.18). By (7.5)-(7.7), the contributions when (my, ms) # (1,1) sum up to O(Sbm, m.,)-
This is precisely the assertion of (1.18). O

0 {0 1}) = 60, a(C) = ;;g,m({op:{

The proof of Proposition 7.1 consists of two main steps: (i) bounds on ¢y . (A) by certain
Feynman diagrams, and (ii) bounds on the Feynman diagrams. We describe these two steps in the
next section, and show that they are sufficient to prove Proposition 7.1.

7.2 Reduction of proof of the main estimate

We carry out step (i) (mentioned above) in Section 7.2.1 and step (ii) in Section 7.2.2. In Sec-
tion 7.2.3, we show that these steps are sufficient to prove Proposition 7.1 subject to Proposi-
tions 7.6-7.7 below. The latter are proved in Sections 7.3-7.4.
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7.2.1 Diagrams for ¢’

my,m2

The results of this section apply for general p and d under the weak assumption on D.

We will use several constructions to define the diagrams needed to bound ¢g) .

Definition 7.2. (i) Given a diagram and any line \ of the diagram, Construction (*(y) is the
operation in which a line to y is inserted into line A. Explicitly, this means that the two-point
function 7(v — u) corresponding to line A is replaced by >, 7(v — 2)7(2 — u)7(y — z). We omit
the superscript ), and write Construction /(y), when we perform Construction /*(y) followed by
a sum over all possible lines \. We write F'(v, y; {(x)) for the diagram where Construction ¢(x) is
performed on the diagram F(v,y).

(ii) Similarly, for 4 = (y,,...,y;), Construction £(g) is the repeated application of Constructions
€(y,);---,€(y;)- Note that the order of application of the different Constructions /(y,) is irrelevant.

For example, it follows directly from (6.11) that

MY (Ia € Cy)) <3 P™M(y; 0 (a)), (7.8)

where the sum over A runs over the N-admissible lines for P (y) (recall Remark 6.2).

Definition 7.3. (i) Given a diagram F'(u) with two vertices carrying labels 0 and » and with a
certain set of admissible lines indexed by A, Construction 2 (w) and 2{(w), applied to F(u),
respectively produce the diagrams

FO>w) =33 F(u; 1(2))7(w — u)7T(w — 2), (7.9)

A u,z

FO( Z S JupF(u; 1 (2)7(w — 2)7(w — v), (7.10)

A (u),z

where the sum over A runs over the admissible lines.
(ii) Given a diagram F'(v,y) with two vertices carrying labels v and y and with a certain set of
admissible lines indexed by A, Construction E,(w) produces the diagram

= 3 Flv.y: 1(2)) Plu, z.w)

A Yz

—ZZ > Juowo F(v,u0; 02 (a)) P (vo, w; @), (7.11)

@ (uo,v0)

where the sum over A runs over the admissible lines, and we recall (6.5).

Construction E,(w) is the same as Construction 2{(w) followed by Construction 23 (y), where
the unique admissible line prior to the application of Construction 2{’(y) is the line from v to w
added to the diagram in the application of Construction 2{}(w) in (7.10).

Remark 7.4. By (6.6), the diagram P™ (v, y; A) is obtained by performing N Constructions E
to the diagram P (v, y; A).
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Figure 8: Examples of diagrams that contribute to R® (y,,y,) and Q™ (y,, y,)-

Definition 7.5. Given a diagram F'(y,) with two vertices carrying labels 0 and y,, Construc-
tion V;,(y,) and Construction &, (y,) produce the diagrams

F(yy; Vin(ys)) = Z: F(y; 6(v),1(2))7(y, — v)7(y, — 2), (7.12)
Fly;;Em(ys)) = 3 Z> F(y; 1(2),0(a)) P" (2, y5; a). (7.13)

Let
I (v; A) = Smm I00(v; A) =p > 7™ (v, (y,m — 1); A), (7.14)

so that, by (4.7),

I, (v; A) = ;0(—1)MH;;”>(U;A). (7.15)

Denote by ¢N:*25)(A) the contribution to ¢2) . (A) in (5.13) of T2 (vy; Cy) and M) (b; CY).

mi,m2 mi,ma2
Then

‘ (N) ‘< Z (NMK) (716)

mlst my,m2
M,K=0

The lowest order contributions to ¢{Y) . . namely, ¢4 ({vy_,}) and @5 (Cy_.), are treated

in the following proposition. For its statement, we define

R™(yy,45) = PN (Y1 Viny, (92)) =2 Y P™(y;;4(v),1(2))7(yy — v)7(y, — 2), (7.17)

Z ViMy=my,

Q™ (Y1, ys) = PV (y1:Emy, (2)) =3 D PV (y1;1(2),L(a)) PV (2, y5; a). (7.18)

zZ ama>my,

See Figure 8.
We denote by R (yy ) the result of K applications of Construction E to the second

mi,msa

argument of R(N+M)(y1, ) (thus, R™X) actually depends on N + M and K). Similarly, we

mi,l
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denote by Q") (y y,) the result of K applications of Construction E to the second argument

my,m2

of Qslvff“( ,v). The diagrammatic bounds for ¢ are given in the following proposition, whose

proof is deferred to Section 7.4.

Proposition 7.6 (Diagrammatic bounds for ¢®). Let p and d be arbitrary and assume the
weak assumption on D. For me > mqy > 1 and N,M,K > 0,

Gmroms ({x ) <07 D0 R0, (1, 2). (7.19)
Y1,9Y2

Formoy>my>1and N >1, M,K >0,

;7]‘:]11?7/17,7,;()(6’]\7—1) S p2 Z R;T];flMlIi?)”Lg 1(y1’y2 +p2 Z Q;{:{lMlKn)”Lg 1(y1’y2) (720)
Y1,9Y2 Y1,Y2

Also, for p = p. and d > 4, for the spread-out model with B sufficiently small, if (mq,ms) # (1,1),
then ¢pim, ({0}) = O(Bbm, ms)-

7.2.2 Bounds on diagrams for ¢

mi,Mm23
The following proposition gives bounds on the Feynman diagrams that were used above to estimate
®my .msy- Its proof is deferred to Section 7.3.

Proposition 7.7 (Bounds on R™M"% and QWMX)). Let p = p. and d > 4, for the spread-out
model with B sufficiently small. For mo > mq >0 and N, M, K > 0,

> Ry (i ye) < COBNMHEY . (7.21)
Y1.,Y2
Formoy>my>0and N > 1, M,K >0,
> Qi (v y2) < (CB)Y M Kby, . (7.22)
Y1,Y2

7.2.3 Proof of Proposition 7.1

We now prove Proposition 7.1, subject to Propositions 7.6-7.7. Let p = p., d > 4, for the
spread-out model with / sufficiently small. Let A denote either {vy ,} or Cy_,. By (7.16) and
Proposition 7.6,

D) (A)] < Z > R 1y, ye) + v} Z > Qi1 (1, y2)- (7.23)

MK 0Y1,Y2 M,K=0Y1,Y2

By Proposition 7.7, each of the sums on the right-hand side of (7.23) is at most C(C' )by, 1.m, 1.
Since by, —1.my—1 < Chiy m,, this proves (7.5)—(7.6).

The first two equalities in (7.7) follow from the convention (4.15). We have already noted
in Section 5.2 that ¢{"}({0}) = p?, and that ¢{"/(A4) = 0 if N > 1, so it remains only to prove
(7.7) when (mq,ms) # (1,1). For the remainder of the proof we assume that (m, ms) # (1,1).
By (7.21)-(7.22), the contributions to ¢®**)({0}) with M + K > 1 contain at least one factor

mi,m2

B, so it suffices to prove that ¢°%% ({0}) = O(Bbm,m,). But this is the final statement of

mi,m2

Proposition 7.6. 0
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7.3 Proof of Proposition 7.7

In this section, we prove Proposition 7.7. We begin in Section 7.3.1 with some general techniques
for extending bounds on simple diagrams to bounds on more complicated ones, and we use these
techniques in Section 7.3.2 to prove the proposition.

7.3.1 Convolution bounds

In this section, we prove three lemmas which provide bounds on a diagram after a Construction
has been performed on it, given a bound on the original diagram. In the proofs of the lemmas, we
will use the following bounds on the two-point function, which follow from [13, Theorem 1.1]:

KB(m+1)"%% (m>1),
;Tm(x) <K, 1Tl < {K(m+ D (s 0). (7.24)

We use the first bound on ||7,,||.. when a line is guaranteed to have length m > 1, and use the
second bound on ||7,,||. otherwise.

We say that a diagram has at most L lines at any fixed time when, for every m, the number of
factors (v — w) with m, < m and m, > m is at most £. For example, it is a simple consequence
of the construction of P®(y) that it has at most 4 lines at any fixed time.

Lemma 7.8. Let 0 < | < k with k > 1, and assume (7.24). Let G and Fy(z) be diagrams
such that G and ¥, Fy.(x) can be bounded by B and B(k + 1)~%2, respectively, by associating ['-
and [*®°-norms to diagram lines and by using (7.24) to estimate these norms. Then the following
statements hold.

(a) Application of Construction 1*(l) to G produces a diagram that is bounded by 2(4+2/2K B,
where K is the constant of (7.24).

(b) Suppose that the diagram Fy(u) has at most L lines at any fized time, and that all diagram
lines have time variables at most k. If ¥, Fp(u) < BB(k +1)=%2, then

ZFk w; ((x,m)) < CLB(k 4+ 1) (=272, (7.25)

with C' independent of F', B, k, m and L.
In each of (a)-(b), the bound on the new diagram is obtained by associating I'- and [°°-norms to
diagram lines and by using (7.24) to estimate these norms.

Proof. (a) This is [13, Lemma 4.6(a)].
(b) By definition,
Fie(u; 6(z,m)) =Y Fi(u; 1) Tmi(z — 2), (7.26)
(z:0)
and hence

ZFkuéxm Z(ZFkulzl )(ZTmZSE—Z) (7.27)

z,u

The second factor is at most K, by (7.24). The first factor is bounded uniformly in 0 <1 < k by
CLB(k +1)~%2, by part (a). Finally, the sum over [ gives rise to a factor k + 1. O
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Lemma 7.9. Let d > 4 and p < C. Suppose that a diagram Fp,, m,(Y1,y2) satisfies the inequal-
Y Yy o Frnme (1, Y2) < Crbpymy, with this bound obtained by associating I'- and 1™°-norms
to diagram lines and by using (7.24) to estimate these norms. Then application of Construc-
tion 28k)(y2,m2) to Fi, k(y1,v), followed by summation over y, and ys, produces a diagram
that is bounded by CB'Crpbpm, m,, with C independent of F' and Cr. The bound on the new di-
agram is obtained by associating I'- and [*°-norms to diagram lines and by using (7.24) to esti-
mate these norms. As a consequence, application of Construction E to a diagram which obeys
> Foyms (Y1, Y2) < Crbiy m, produces a new diagram that is bounded by CBCrby, m,, with C
independent of F' and C.

Proof. For m > 0, let
T (2) = T (), ch U)Tm—1(x — u)I[m > 1]. (7.28)

Let E%  (y1,y2) be the diagram obtained by application of Construction 222’k)(y2,m2) to the

mi,ma

diagram F,, x(y1,v). By definition,

k

Z 1m2 (Y1, 92) < Z Z Zlek Y1, 95 1(ZJ))Tm2 ](y2 —2) 7(71)2 k(Y2 — v). (7.29)

Y1,Y2 Y1,Y2,0,2 k=m1 j=0

It follows from (7.24) that Y, 79 (z) < pK < CK, and that

ZTmz Cilyr = 2)78) _(ye —v) < OB (my — 5 + 1), (7.30)

since j < my for i = 1. This leads to

ma k
Z F?El)1 mo U,l‘) S Z Z ZFrm,k(?/l:U;1(z,j))062(m2 _j+1)7d/2- (731)
Y1,Y2 Y1,0,2 k=m; j=0

By Lemma 7.8(a),
Z le,k(yla v; 1(z,])) S CCFbml,k (732)

Y1,v,2

holds uniformly in 0 < j < k. Therefore,

ma k
N ED (i, y2) S CCRB Y by e S (my — j + 1)742

Y1,Y2 k=m1 ]:0

. m2

< CCB Y by s — k4 1) 7422,
k=m1

m2
= CCB (my + 1)*(d72)/2 Z (k—my + 1)*(d72)/2(m2 — k4 1)7(d72)/2
k=m1
S CCFﬁibmhmw (7.33)

where we used [7, Lemma 2.6(i)] and d > 4 in the last step.
The statement concerning Construction E then follows from the comment under Definition 7.3.
O
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Lemma 7.10. Let d > 2 and assume that my > my. Suppose that the diagram F,,(y) satisfies
Yy Fin(y) < Cr(m+1)"%2, with this bound obtained by associating I'- and I*-norms to diagram
lines and by using (7.24) to estimate these norms. Let

Fm1 ma yl; y? Z Z Fm1 y1; 1 ) 1(w7 k))TTIlQ*k(yQ - w)Tm2*j(y2 - 'Z) (734)
k,j=0 z,w
Then N
Z Fm1,m2 (?Jla yQ) < CCF/@bml,m27 (7.35)
Y1,Yy2

with C independent of F and Cy, and with the bound obtained by associating I*- and I°°-norms to
diagram lines and by using (7.24) to estimate these norms.

Proof. By the symmetry between k and 7,

mi1 Mmi

le,mg y1,y2 <2ZZZTmz k )Tmz J(yQ_w)Fm1(y1;1(Zaj)71(w7k))' (736)

2w k=0 j=k

Therefore, by (7.24) and the fact that my > my > j,

mi mi

Z ﬁmlme(y17 y2) S 2 Z Z KZﬁ(mQ —k + 1)7d/2 Zle (yl; 1(k): 1(])) (737)
Y1,Y2 k=0 j=k Y1
It follows from Lemma 7.8(a) that
3" oy (915 1(k), 1)) < OCp(my +1)792, (7.38)
Y1
uniformly in k, j. Since my > mq, we conclude that
> Foyms (U1, 90) < CCORB(my + )73 3 (my — k + 1) 792 (7.39)
Y1,Y2 k=0 j=k
mi
< COWB(my + 1) DN (my — f + 1)/
k=0

S CCFﬁbml NUPN

7.3.2 Proof of Proposition 7.7

Now we prove Proposition 7.7. According to the definitions below (7.18), it suffices to prove that,
for N >0,

> B i, (y1.y2) < C(CB) by s (7.40)
Y1,Yy2

and that for N > 1,
Z S‘:rl) ma (y17y2) S (C/B)N+1bm1,m2a (741)
Y1,Yy2
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since (7.21)-(7.22) then follow from Lemma 7.9.
We start with the proof of (7.40). Let

Sr(;zvl)mg (ylayQ) P(N)(ylag(y%ml))éml,mr (742)
By (7.17), R{) . (y1,y2) is obtained from Sm1 «(y1,v) by applying Construction 28)’k)(y2,m2).
Therefore, by Lemma 7.9, to prove (7.40) it suffices to show that
Z S;ﬁ)mz(yla?ﬁ) < C(Cﬁ)mehmz- (7.43)
Y1,Y2

Lemma 7.8(b), together with (6.2) and the fact that P“(y) has £ < 4 (as noted above Lemma 7.8),
gives the desired result that

Z S;ﬁ),mz ylayQ Z p(N) yl: y27m1))5m1,m2 (744)

Y1,9Y2 Y1.,Y2

S C(C/B)N(ml + 1)7(d72)/25m17m2 = C(C/B)melme(sml,mQ'

Next, we prove (7.41). In (7.18), a factor 7(a — w) P (z, y,; a) arises, where w is the location
where Construction ¢(a) is applied. We write a = (a, m) and y,; = (y1,m1), and note that (7.18)
requires that m > m;. We regard 7(a — w)P”(z,y,;a) as the result of Construction 2 (y,)
applied to 7(a — w)7(a — z), where the unique admissible line is 7(a — z). Let

mi
Sr(g’l)m(yl, a) =Y, P (yi;1(2, 5), Lw, k) Tk (a — w)Tmj(a — 2). (7.45)
k,j=0
Then Q) ., (Y1, y2) arises from an application of Construction 23(y,) to the second argument of
Sr(évl)m(yl, a). By Lemma 7.9, it suffices to prove that if m > my, then
> Sy, a) < (CBN b, . (7.46)
yi.a

The bound (7.46) follows from Lemma 7.10 and (6.2), and this completes the proof of (7.41).

7.4 Proof of Proposition 7.6

In this section, we prove Proposition 7.6. We begin in Section 7.4.1 with some key estimates for the
proof. In Section 7.4.2, we prove (7.19)—(7.20) for the case K = 0, and we extend these inequalities
to K > 1 in Section 7.4.3. In Section 7.4.4, we prove the final statement of Proposition 7.6.
7.4.1 Key estimates for proof of Proposition 7.6

For v, £ and m > 0 such that m,, < m < my, let

Vin(v, @) = U< {v = z = =z}, (7.47)
Emv,z;A)=) | w—2)o(z—>2)o(2—>a)o(a—x). (7.48)

a€cA zzmz>m
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v v
Figure 9: Schematic representations of the events (a) V;, (v, ) and (b) &, (v, x; A).

The events V,, (v, x) and &, (v, z; A) are depicted in Figure 9. By (6.12),
E(w,x; A) =&, (v, A). (7.49)
Also, for later use, we note that

Vmwz) S | U (v—2) ((v—)t)o(t—)m)o(z—)m)). (7.50)

zmz<m t:mg=m

To prove (7.50), we observe that if m, < m < mg, then

(z=2z)= |J (z>2t)o(t—>z)o(z—z), (7.51)

t:mi=m

and hence, by (7.47),

Vi(v,z) = | U (v—2) ((z—)t)o(t—)m)o(z—)m))

zmz<m t:mi=m

< U U (v—2) ((v—)t)o(t—)m)o(z—)m)). (7.52)

zmz<m t:mg=m

The following proposition provides the key estimates for the proof of Proposition 7.6.

Proposition 7.11. Let p and d be arbitrary and assume the weak assumption on D. For N, M > 0,
my > 1, and a,y, € A,

> Tunion MG (Vi <1 (0o, y )T (045 Cy)) < p SRS ((yr,mn — 1), 95), (7.53)

(uN,vN) Y1

> Tunon MO TV, 1 (x4, 9@ € CyITG0 (vy; )

(UN,’UN)

<pY R ((y1,mi — 1), y,: ((a)), (7.54)

Y1

> union MO (1Em, (Vnos, Y3 O )N (03 Cx ) ) < p D2 QY ™ (g, — 1), 5,), (7.55)

(un,vN) Y1
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Z JUN;”NM’I(LI;[V+1)([[£777«1 ('Uan Yo; CN’N,l)][[a € CN]H%)(UNS CN’N))

(un,vN)

<pY QMM ((y1,m1 — 1),y ((a)). (7.56)

Y1

The proof of Proposition 7.11 relies on three lemmas which we state and prove before proving
the proposition. Lemmas 7.12-7.13 are used to prove (7.53)—(7.54), and Lemma 7.14 is used to
prove (7.55)—(7.56).

Lemma 7.12. Let p and d be arbitrary and assume the weak assumption on D. For N > 0,
my > 1, vy_i, Uy, Yy €A, and & with 0, 1 or 2 components in A,

Py (E'(0no1, i Cror) N Vi —1 (021, y,) N {E € Co}) (7.57)
S Z P(O) ('vala Uy, C'Nflag/\(:ﬁ); lefl(yQ)):
A

where Construction (*(Z) is obtained by performing Construction (*(x1) followed by Construc-
tions £(x;) for all other components x; with i > 1, and the sum over A follows the convention of
Remark 6.2.

Proof. By (6.12) and (6.3)—(6.4), the event E'(vy_,, uy; Cy_,) implies that the disjoint connections
necessary to obtain an upper bound P®(vy_,, uy; CN'N,I) are present. The additional connections
implied by {& € C’N} can be accounted for in an upper bound by an application of Construc-
tion A(Z) to PO(vy_,, uy; C’N_l). To understand the effect of the event Vi, _1(vy_y,¥y5y), we use
(7.50). The connection vy_;, — t = (t,m; — 1) in (7.50) can be accounted for by an application of
Construction £(t), and the remaining connections in (7.50) can then be accounted for by an appli-
cation of Construction 2§ (y,). By the equivalent definition of Construction V,,, 1(y,) formulated
below Definition 7.5, this completes the proof. 0

Lemma 7.13. Under the same conditions as in Lemma 7.12,

M IV, 1 (01, ) T[E € ) < 30 P (ay; (F), Vin, -1 (w12)). (7.58)

Proof. For N = 0, we must bound M) (T[le,l(O, yo)|I[2 € C’O]) For N > 1, (3.35) gives
M (I Vi, —1 (V- yo)I[E € Ci]) (7.59)

= X uewn ML (Mo (T (s w1 € CL)) ).

(un-1,9N-1)

The statement of Lemma 7.12 can be rewritten as

M ([[lefl(’UN—la y2)]1[£ € éN]) < Z P (,UNfla Uny; CN’N—lJ é/\(i); lefl(yQ))- (7-60)
A

vN-1,uN;CN 1

With (4.15) and (6.4), this proves (7.58) for N = 0. For N > 1, we substitute (7.60) into (7.59)
to obtain

M (Vi 21 (02, o) [ € C)) (7.61)
< ZZ Z JUN—l,UN—le(L]jV),l([[wI € C~’Nfl])F)(O) (’UNA,UN;w',fA(f),le,l(yQ)).

A w (uny_1,9n8-1)
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Application of (6.11) then gives

M (Vi 21 (v, o)) [E € Cy)) (7.62)
S ZZ Z ']UN—l,’UNAP(N_l)(uN—l;g/\’(wl))P(O) (vN—lauN;w,agk(i)avm1—l(ly2)>

AN w' (un_1,0N8-1)

<3P (i (&), Vi, 1 ().
A

where we used a slight extension of (6.21) in the last inequality. This proves (7.58). 0

Lemma 7.14. Under the same conditions as in Lemma 7.12, and with the additional assumption
that Mg, , My, < My

Mfﬁvﬂ) (I[‘gﬂn (vN—la Yo; C’N—l)]][:ﬁ € CN’N]) < Z P(N)(UNQ g/\(wl); 5m1 (yg), é(azg)) (7.63)

Proof. For N = 0 and my > 1, the event &, (Vy_., Yo; Cny) = Em, (0,y,; {0}) is empty, so we
may assume that N > 1. For N = 1, we must bound M}/’ (I[Em1 (v,,Y0; C)I[Z € C’l]) For
N > 2, it follows from (3.38) that

M (T[Em, (0y-1, 92 Cu )11 € C)) (7.64)
R P A Ve (M;}Z_LHN;C,N_Q(I[gml(vN_l,yQ;C’N_l)]l[i:’ e éN])>.

(uny_—2,9N_2)

We will show below that if mg,, m,, < my, then

Ml(,iiimumé]vd (I[5m1 (V-1 Yo C’N—l)}l[i € CN’ND
< Z pP®Y ('UN—27 Uy, CN’N—?, f/\(ibl), gm1 (yQ)a g(mQ))- (7-65)
A

Then (7.63) follows from (7.65), as in (7.61)—(7.62).
It remains to prove (7.65). For simplicity, we consider in detail the case & = x;. By (3.35),

M'l(’i\)/f%uN;éN—2 (I[gml (‘UN*“ Yas C’Nfl)]l[ml € CN’ND (766)
= Z JUN—l,'”N—lle(,lj\)]72’uN71;c~tN72 (PN (E’(,UN—I; Uy éN—l)

(un—1,9Nn_1)

N Em, (UN—la Yo éN—l) N {331 € éN}))
By (7.48),

Crnot) N Emy (Ui, Yo; Cuoy) N {my € Oy }) (7.67)
< Z Z Py ( (Vy_1,uy;Cy_ )N {z, 2, € Cy}N{(z = w)o (z—>y2)o(w—>y2)}).

Z:Mz2>M1 weCn_

/\
@
2
g
2
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Using (6.14), the Markov property, the fact that mg,, m,, < m,, and the BK inequality, we
obtain
Py (E'(vy 1,1y Cy 1) N {z, @1 € Cy} N {(z = w) 0 (2 = y,) 0 (w — y,)}) (7.68)
=Py (E’(vN sy Cyo )Nz x € C’N})PN ((z — w)o(z— 1y, o(w— yQ))
< ZP(O’ (’UN AR TIEY oI (ml),ﬂ(z))T(w —2)7(y, — 2)7(y, — w).

Also, it is a straightforward extension of (6.14) that

v

My A(Io = w, v = w) <3 PO(v,y; A, X (w), ((w')). (7.69)
AI

We substitute (7.68) into (7.67) and substitute the result into (7.66). This gives

M® o (T[Em, (nor, yo; O [ € Cy)) (7.70)

VN -—2,uN;CON-2

1) / ~
DD 2 Mvzv_z,uzv_u(:’zv—?(][w’w ECN_J)

(un—1,oN1) w,w',z:my>my

> Z PO (’UN T /w” Z/\(:cl),ﬂ(z))T(’w — Z)T(yQ - z)T(y2 - w)

< Z Z JuN LON—1 Z p(o)('UmeuNfl;CmeéX(w’):g(w))

AN (UN 1,UN - 1 w,w',z:mz>my

x P© ('UN,l, Uy; W ,Ek(ml),é(z))T(w — 2)7(yy — 2)7(y, — w),

where we used (7.69) in the second inequality. It can then be concluded from (7.13), (6.21) and
(6.3), by drawing the picture, that
M2 s (TEm (0n g5, O )T [@n € Cy]) <37 PP vy, s ooy @1, Emy (9)).
X
(7.71)

Finally, if £ has an additional element @5, then this can be accounted for in an upper bound by a
final application of Construction ¢(xs), leading to (7.65). O

Proof of Proposition 7.11. We first prove (7.53). For M = 0, the left-hand side of (7.53) is equal
to

Z JuN UNM(N+1 ([[lefl(vN—la yQ)]) 5m1,mvN S pZP(N)((ylaml - 1)7 lefl(yQ))
Y1

(un,oN)

= pZR(N)((?Jh my —1),Y,), (7.72)

Y1

with R defined in (7.17). For M > 1, we use (4.7) and (6.9) to obtain

H%)(‘UN, ) < Z['w € C pZPM Y(vy, (y1,my — 1);w). (7.73)

Y1
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By (7.58), the left-hand side of (7.53) is at most

P00 D Juywn PO (i (W), Viny -1 (y)) D2 P (v, (y1,m1 — 1); w) (7.74)

(un,vN) Y1

<pY P (g mn = 1) Vi (y2)) = p 3 R (g1, ma — 1), ),

Y1 Y1

where the inequality has used (6.21) together with the observation that in the application of
Construction Vi, —1(y,) to PV (y;, m; — 1) there are more available lines than if Construc-
tion V,,,,_1(y,) is applied only to P®(yy, m; — 1). This proves (7.53).

The proof for (7.54) is the same as the proof of (7.53), with the observation that in (7.57) the
order of application of the constructions can be interchanged on the right-hand side.

For (7.55), consider first the case M = 0. In this case, the left-hand side of (7.55) is equal to

> Tunwon MO (TEmy (01,92 C 1) Oy <P QW ((y1,my = 1),55),  (T.75)
Y1

(uN ,'UN)

by (7.63) (note that m,, = m;—1 < my as required), and with R™ defined in (7.18). For M > 1,
by (7.73) the left-hand side of (7.55) is at most

pZ Z JUN,”NMl(L]jv+1) (I[gml (Vw1 Yo; On-) [T [w € CN]) ZP(MA)('UN: (y1,m1 — 1); w).
w( )

UN, VN Y1

(7.76)

The factor PY~Y(vy, (y1, m; — 1); w) guarantees that my — 1 > My, My, and (7.63) can now be
applied to complete the proof of (7.55) as in the proof of (7.53). The proof of (7.56) is similar. O
7.4.2 Proof of (7.19)—(7.20) for K =0

We begin with the following lemma. Recall the definitions of the events H,, and V,, in (5.5) and
(7.47).

Lemma 7.15. For v,y € A with m, < m < m,,,
Hm(va Y; {’U}) g Vm—l(va y) (777)

Proof. Let b denote the last pivotal bond for v — y, if it exists. The contribution where such
a pivotal bond does not exist is equal to {v = y} C V,,_1(v,y), since m, < m — 1. Thus, it
suffices to show that

H,,(v,y;{v}) N {blast occ. and piv. bond for v — y} (7.78)

is a subset of V,, 1 (v, y) for every b. When H,,(v,y;{v}) occurs, b cannot be an m-cutting bond
for v — y. Therefor_e, my < m — 1. Since b = y, this proves that V},_;(v,y) occurs with z in
(7.47) given by z = b. O

Recall that If"N is the conditional law given that (uy,wvy) is vacant. We also use the following
lemma.
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Lemma 7.16. Let F' be an increasing event, and let X be a non-negative random variable which
is independent of the occupation status of the bond (uy,vy). Then

E. (XI[F)) <, (XI[F]). (7.79)

Proof. We condition on (uy,vy) to see that

Ey (XI[F]) = JyyuyEy (XI[F]|(uy,vy) occupied) + (1 — Jyy uy ) Ex (XI[F]|(uy, vy) vacant).
(7.80)
By assumption,
Ey (XI[F]|(uy,vy) occupied) > Ey (XI[F]|(uy,vy) vacant), (7.81)
and the claim follows. 0

Proof of (7.19) for K = 0. To estimate ¢\ ({vy_,}), we first note that by definition (recall
(5.13) and (7.14)—(7.15)),

SUMD(A) = Y Juywn D JpMYE (T Hum, (v, b AT (035 C0) ) omymy- (7.82)
(un,oN) bA(un,vnN)

We are concerned here with A = {vy_,}. By Lemma 7.15,
Hml (valab; {UN—I}) C lefl(vaub)- (783)

The event V,,,, 1(vy_y, b) is increasing, and the event F!, = E'(vy_;, uy; QN’N,l) does not depend on
the occupation status of (uy,vy). Also, the random variable II}" (vy; Cy) is independent of the
occupation status of (uy,vy), since Cy = C’fV“N’vN)(vN,I) is. Therefore, by Lemma 7.16, the Ey

expectation in M((u;v)m implicit in (7.82) can be bounded above by the corresponding expectation

without the tilde, i.e.,
B (I[E} N Viny—1 (0, DI (01 C)) < By (1[Ejy 0 Vi, _1 (050 B)IIGD (053 C)). - (7.84)
Omitting the restriction b # (uy,vy), it follows that

G0 Ly, ) < Z Ty5 3 T ion MG (1Vin, -1 (031, DI (05 C) )Gy (7.85)

(un,vN)

=Y > Junwon MO (V-1 (021, (g2, m2 = DI (033 C) ) S ms

b
Y2 (UN,UN)
where we have written b = (y2, my — 1) and have used Y37.J,7 = p. The bound (7.19) for K =0
now follows from (7.53). ) O

Next, we prepare for the proof of (7.20) for K = 0. Let N > 1. To partition the event
H,,(vy_y,b;Cy_,) occurring in (7.82) (for A = Cy_,), we define

Go(vn_1,b) = Hp
G;;?(”N—lab) = Hm(

)N Vi1 (vx 1, b), (7.86)

Uy 4, b é
(N 1ab' CN’N-1) N Vm—l('UN—ub)c- (787)
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In terms of these events, H,,(vy_;, b; CN'N,I) is given by the disjoint union
Hp(vy_1,b;Cyly) = GU(vy_y,b) U G (vy_y, D). (7.88)
Clearly,
G (Vn-1,b) C Vi (vn s b). (7.89)
For G2 (vy_,,b), we will use the following lemma. Recall that the event &,, was defined in (7.48).

Lemma 7.17. For vy_,,y, € A and m > 1 such that my,_, < m < my,,
GE-‘,ZL)('UNA; y2) - 5m('UN71; Yo C’N—l)' (7-90)

Proof. Suppose that G®(vy_,,y,) occurs. It cannot be the case that vy_, = y,, since this
contributes instead to G\ (vy_,,y,). Thus there is at least one occupied pivotal bond for vy_, —
Yo, and we denote the last such bond by b. Then {vy_, — b = y,}. It must be the case that
mg > m — 1, since otherwise G{)(vy_,, ys) occurs. By the definition of H,,(vy_,,b; Cy_,) in (5.5),

) Cn_ Cn_ ) Cn_
b cannot be m-cutting for vy_, e, Y, and hence {vy_, A b} occurs. Since vy_, e Yo

occurs by (5.5), we conclude that b AN Y,. Therefore, &, (Vy_.,Yo; Cx_,) occurs, with z = b in
(7.48). O

Proof of (7.20) for K = 0. Let N > 1. We estimate (7.82) for A = Cy_., using the partition
(7.88) for the event H,,(vy_,,b; C’N,l).

Consider first the contribution due to G} (vy_,,b). The inclusion (7.89) plays a role identical
to the inclusion (7.83), and the analysis of (7.84)—(7.85) then applies in an identical fashion to
give the first term on the right-hand side of (7.20) as an upper bound for this contribution.

It remains to show that the contribution to (7.82) due to G (vy_,,b), namely

Z Jb b Z JUN YN M((ivljlv),\,) ([[ng)l (vala b)]H%)(UN; CN))5MQ,mga (7'91)
(unon)
is bounded by the second term on the right-hand side of (7.20). By Lemma 7.17,
IG2 (0y_1, )] < I[Emy (Vy_y, b; Cx_y)]- (7.92)

Slnce Em,(Uy_1,b; CN 1) is increasing, we may apply Lemma 7.16 as before to conclude that the
E, expectation in M((f;i,)m implicit in (7.91) obeys

By (I[E}y 0 G2 0y, TS (0y; Cn)) < By (I[Eg 0 Em, (0n-i, b Co TG (031 Cy)), - (7.93)
and hence

M VD ( [Gg)l(vN_l,b)]H%)(vN,C )) < M(N+1)(I[5m1(vN b Oy ]I )(UN’CN’N))_ (7.94)

(un vN)
It follows that the contribution to (7.82) due to G is bounded above by
Z Jb b Z Jun wx M(NH) (I[‘gnu (’UNflab; éN—l)]H%)(vN; CN))émQ,mE (7'95)
(uy o)

= pz Z JuN,vNM(N+1)(I[gm1 (UN—la (yQamQ - 1); CN’N—1)]H%)(UN; C~1N))(Sm2,m— )

b
Y2 (UN,UN)

where we have written b = (y, my — 1) and used 35 J,5 = p. The bound (7.20) now follows from
Proposition 7.11. ) 0
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7.4.3 Proof of (7.19)—(7.20) for K > 1
We first prove (7.19) for K = 1. For this, we note that

DA = 3,0 5 T B, (1T (o b AN 5 OO i o). (190
(UN,’UN)
By (6.9) and (7.14),
) < pz (12, mg — 1): C%) = pY Ilac ] > POb, (y2,m2 — 1);@).  (7.97)
a Y2

It then follows from (7.83), Lemma 7.16 and (7.54) that

Sy (o1 }) <p* 30 ZZJ B (y1,ma = 1),5:0(a)) PO (b, (y2,m2 — 1);a). (T.98)

Y1,y2 a

By (7.11), Construction {(a) followed by multiplication by .J, ;P (b, (32, mz—1); @) and summation
over a and b is equivalent to Construction E. This shows that

g{%’l?({vz\f—l}) < p2 Z Rszlell)m (Y1, 92), (7.99)
Y1,y2
which proves (7.19) for K = 1. )

To extend the proof of (7.19) to K > 1, we estimate II{)(b; C?%) using (6.9) and (7.14).
According to Remark 7.4, the resulting bound on II{%) (b; C?) is the same as K — 1 applications of
Construction E to p ¥, P (b, (z,my — 1); C%). Therefore, by definition of RO (g1, y2), (7.19)
for K > 1 follows from (7.19) for K = 1.

The proof of (7.20) proceeds similarly, with (7.56) used in place of (7.54).

7.4.4 Proof of final statement of Proposition 7.6
Finally, we suppose that (my, ms) # (1,1), and show that in this case ¢{*% ({0}) < CBbm, m,-

mi,ma

We have already seen in (7.19) and (7.21) that ¢{*%% ({0}) < Cby, my, and the only issue is to

my,m2
establish that a factor § can be inserted into this upper bound. A factor [ arises in diagrammatic

estimates when the bound (7.24) is used to estimate ||7,,||oc With m > 1. According to (7.17), the
diagrammatic upper bound p? ¥, RY™°) (y1,y2) on @2 ({0}) given by (7.19) is equal to

Y1,y2 “tmi—1,mo—1 mi,mo

Zszf V(Y1 €(v,my — 1), 1(2)) Ty —my (V2 = 0) Ty —1-m. (Y2 — 2). (7.100)

When (mq, mg) # (1,1), there is at least one line with length greater than zero, and a factor g
then results from standard estimates.

8 Diagrammatic estimates: Bounds for e,
In this section, we prove the bound (1.19) on e, 1(p.). We assume throughout that

Om(pe) < Co(m +1)"" forall 0 <m < n, (8.1)
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which is a hypothesis of Theorem 1.1(ii). Throughout this section, we fix d > 4, p = p., and
consider the spread-out model with § sufficiently small, although some of our arguments apply
more generally. Note that we can extend (8.1) to m = n + 1 by conditioning on a vertex at time
1 and using the Markov property and (1.9) to obtain

Oni1(pe) < D peD ()0, (pe) = pebn(pe) < 2Cy(n + 1) <4C(n+2) 1 (8.2)

veZd

We absorb the constant 4 into Cp and regard (8.1) as applying also when m = n + 1 in what
follows.

In Section 8.1, we reduce (1.19) to bounds on ei¢;(1),...,e%;(5). In Section 8.2, we provide
some preliminary convolution bounds. Then we estimate the five error terms in order of increasing

(V) (N) (N) (V) (N)

difficulty, namely e, (3), e,41(5), €,41(2), eny1(4), eny1(1), in Sections 8.3-8.7, respectively.

8.1 Reduction of proof of (1.19)
Let

logn (d =6), (8.3)
1 (d > 6).

The following proposition will be proved in Sections 8.3-8.7.

{ (n+1)6=9/2 (4 < d < 6),
AL =

Proposition 8.1 (Bounds on error terms). Let d > 4, p = p,, for the spread-out model with (
sufficiently small. Letn > 1 and N > 0, and assume that 0,,(p.) < Co(m+1)"" for all0 < m < n.
Then

e ()] < CCF(n+ 1) oxo + CHCBN (4 1) logn + (n+1) *A |, (84)
2] < CCHn+1)Poxg + CHCBN! [(n+ 1) logn + (n+ 1) *AL ], (8.5)
e1(3)] < CCy(CHYNV (n + 1)~ 1ogn, (8.6)
(@) < COY(n+1) Pong + CHCHN (n+ 1) P logn + (n+ 1) A, ], (8.7)
e (5)] < CCH(n+1)Pone + CHCBN [(n+ 1) logn + (n+ 1) A, (8:8)

Proof of (1.19) subject to Proposition 8.1. Tt follows from (5.19) that |e, | is bounded above
by the sum of the right-hand sides of (8.4)—(8.8). The elementary inequalities (n + 1)73A! | <
(n+1)"2A,41 and (n+1)"%2logn < (n 4+ 1)72A,4; then yield (1.19) (recall (1.16)). O

8.2 Convolution bounds

This section contains several convolution bounds to be used in Sections 8.3-8.7.
Lemma 8.2. Suppose that F,, obeys F,, < Cp(m +1)~%2. If (8.1) holds, then

n+1
3 Frbpii—m < CCyCr(n+1)"?1ogn, (8.9)
m=|(n+1)/2]+1

where C s a constant that only depends on d.
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Proof. We use the two assumptions to obtain the upper bound

n+1 n+1
S Ce(m+1)2C(n—m+2)"t < CCyCp(n + 1) 42 S n-m+2)!
m=|(n+1)/2/+1 m=|(n+1)/2/+1
< CCyCr(n+ 1) "?logn. (8.10)

O

Let F,(0n11,0n11) denote the result of two applications of Construction 6,1 to F,. (According

to Definition 6.5, each of the two added connections to n is added to lines originally in F,,, i.e.,
the second added connection to n cannot be attached to the first added connection to n.)

Lemma 8.3. Suppose that F,, is a diagram such that F,, < Cp(m + 1)_d/2. Suppose that F,,
contains at most L lines at any fized time, that the largest time coordinate of a vertex in F,, is m,
and assume (8.1). Then

[n/2]
S Fon(Onsr, O )0nm < CCICL2(n+1)3A! (8.11)

m=0
where C' is a constant that only depends on d.

Proof. Each factor 6 appearing in Fy, (6,41, 0n11)0n—m has subscript at least n — |n/2|. Therefore,
by (8.1).

n/2] /2] m
> Fou(0ns1.0n11)0n-m < CCln+ 1) > N Fu(1(lh), 1(l2)). (8.12)
m=0 m=0 [1,l2=0

By Lemma 7.8(a), for each Iy, 5, we have

Fn(1(h),1(l2)) < CCRL*(m + 1) 2, (8.13)
Therefore,
[n/2] [n/2]
ST Fon(Oni1, 0n1)0nom < CCHC LA +1)73 S (m+ 1)~ 972, (8.14)
m=0 m=0
Performing the sum gives
Lnfj(m +1)"@=N2 < oAl (8.15)
m=0
and this completes the proof. 0

Corollary 8.4. Suppose that F,, is a diagram such that F,,, < Cp(m + 1)_d/2. Suppose that F,,
contains at most L lines at any fixed time, that the largest time coordinate of a verter in Fy, is m,
and assume (8.1). Then

> [P (Oni1, 0n1) A Fl0 m < CCRCL[L2(n+ 1) PN + (n 4+ 1) logn], (8.16)

m=0

where C' is a constant that only depends on d.
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Proof. For m < | 5| we use Lemma 8.3, and for m > | 5] + 1 we use Lemma 8.2. Adding the two
contributions proves the claim (we assume that Cy > 1). O

Let F,,(0,51) denote the result of an application of Construction 6, to Fy,.

Lemma 8.5. Suppose that F,, is a diagram such that F,, < Cp(m + 1)"%2. Suppose that F,
contains at most L lines at any fized time, that the largest time coordinate of a vertex in F,, is m,
and assume (8.1). Then

n/2]
> Fo(0p11)07_,, < CCiCrL(n+1)72, (8.17)

m=0
where C s a constant that only depends on d.

Proof. The proof is a straightforward adaptation of the proof of Lemma 8.3. Each factor 6 ap-
pearing in F,(6,,1)02_,, has subscript at least n — |n/2|. Therefore, by (8.1),

[n/2] n/2] m
> FulOn1)0i < CCln+1)72 30 3" Fu(1(lh)). (8.18)
m=0 m=0 [1=0
By Lemma 7.8(a),
Z Fn(1(l)) < CCRL(m +1)~4=2/2, (8.19)
11=0
and the claim follows from (8.15). O

Lemma 8.6. Suppose that Fy,, m, s a diagram such that Fp,| m, < Cebp, m,. Suppose that Fr,, m,
contains at most L lines at any fized time, that the largest time coordinate of a vertex in Fy,, m,
is my V- my, and assume (8.1). Then

[(n+1)/2]  n+1

Z Z [le m2 ml msa (9n+1)] 9n+17m1 9n+17m2

m;=0 ma2=m1

< ocgoFc[(n +1)7 logn + (n+1)7°AL, ], (8.20)
where C s a constant that only depends on d.

Proof. Since my < |(n+1)/2], (8.1) implies that 6,1 ., < CC’g(n +1)~'. We divide the sum
over my according to whether |3n/4| +1 < my <n+1orm; <my < L3n/4j
Suppose first that |[3n/4] +1 < my < n+ 1. In this case,

Dinymy < C(my +1)74=2/2(p 4 1)=(d=2/2, (8.21)

We bound the minimum in (8.20) by F,, m, to see that this case contributes at most

[(n+1)/2] nt1
CCCr(n+ 1)~ % (mi+1)7W22 3" (n42—my)™!
m1=0 m2:\_3n/4j+1
< CC3CH(n+1)"%*1ogn (8.22)
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to the left-hand side of (8.20).
In the remaining case, we have m; < mo < [3n/4], and hence 0,4 1_pm, < CCy(n + 1)1 We
bound the minimum in (8.20) by Fyn, m,(fns1) to see that this case contributes at most

[(n+1)/2] [3n/4] [(n+1)/2] [3n/4]
Z Z Fm1,mz (gn-l—l)gn-l—l—mlgn-l—l—mz < CCGQ(” + 1)_2 Z Z le,m2(9n+1)- (8-23)
m1=0 ma=my m1=0 ma=my

By Lemma 7.8(a) and the fact that my < [3n/4],

m2
Foy iy (Ons1) = Z Fry oy (L)) 0ni1 4 < CCy(n+ 1) L(my + 1)Crbpmy m,- (8.24)
1=0
Therefore,
L(n+1)/2] [3n/4] L(n+1)/2] [3n/4]
Z Z Frngims (On1)0n1—my On1—m, < CCgCF’C(n + 1)_3 Z Z (ma + 1)bimy m, -
m1=0 ma=m m1=0 ma=my
(8.25)
It follows from (8.15) that
L(n+1)/2] [3n/4] L(n+1)/2] [3n/4]
Y A Dbmme < Y [ma 1)+ (ma—mi+ 1) by my < CALy, (8.26)
m1=0 ma=m m1=0 ma2=m1
and this completes the proof. O

It is a consequence of their definitions in (7.17)—(7.18) that R"™(y,,y,) and Q™ (y,, y,) have
at most £ = 6 lines at any fixed time. Also, RV (y,,y,) and Q™" ) (y,,y,) have L = 7. For
this reason, factors of £ will be unimportant in our applications of the above lemmas.

8.3 Bound on e{}(3)
Proof of (8.6). Fix N > 0. It is an immediate consequence of (4.31) and (4.29) that

n+1

lent1(3)] < > [t st Qom0 1 (Covz) [ P 1 =m, (8.27)
mi=|(n+1)/2/+1

In the definition (4.18) of (), ,,(A), we estimate the indicator function by 1 to obtain

TS NED> ZJWN e (T80 (0 Cy) ), (8.28)

M=0 (un,vn)

for all A C A. For M = 0, it follows from (7.14) that

Z JUN,'UN H;”?l)l (vN7 CN’N) = pcémuN mp—1- (829)

UN

For M > 1, we use (3.27), (7.14) and (3.38) to rewrite the right-hand side of (8.28). This gives

| ml,n-l—l | < De Z ZW;\T—A{) (830)

M=0 ¥y
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The combination of (8.27), (8.30) and (6.9) gives

n+1
‘en-l—l | < 2pc Z Z mel\iﬂ\l/[) n+17m1- (831)

M=0mi=|(n+1)/2]+1 ¥

It now follows from Lemma 8.2 and (6.2) that if 3 is sufficiently small, then

)1 (3)] < CCy Y= (CRIHIVE(n 4 1)~ logn < CCy(CB)NV (n + 1) logn, (8.32)

M=0

as required. 0

8.4 Bound on e{};(5)

Proof of (8.8). The error term e,,\;(5) is defined in (5.18) in terms of the quantities given in (5.8)~
(5.10). Let e,1""(5) denote the contribution to e} (5) due to 1" (vy; Cy) and x,y;(b; C%) in
(5.8), so that
enn(5) < Z lensi™ (5)]- (8.33)
M,K=0

Apart from the sum over m; and factor 6y, 41—, in (5.18), e}, (5) has the same form as ¢{))

(defined in (5.17) and (5.13)), except that the factor y, 11 in (5.8) for e, (5) is replaced by I1,,,
in (5.13) for ¢{) . We will estimate e,71""*’(5) by determining the effect of this replacement. Let

T (Y, y2) = R (yns y2) + Qs (1 2) (8.34)
and
T7‘(fl]\i),m2 _pc Z Z T?Elj\i MlIv(v)zQ 1 ylay2)- (835)
KM 0Y1,y2

For N > 0, it follows from (7.16) and Propositions 7.6-7.7 that

D) | STy < CCB)Y by my (8.36)

mi,msa

If the factor X (b; C%) appearing in (5.9)—(5.10) were replaced by I (b; C%), then we would
have as upper bound
[(n+1)/2]

Z Tml\i AnlmK Pebnt1-m - (8.37)

mi=1

The upper bound on x4, (b; C?) in Proposition 6.7 is given explicitly in terms of the diagrams

used to bound TI¢¥ (b Cb) The appropriate modification for e, (5) is thus
[(n+1)/2] n+1
|6;z]\—]|—)1(5)‘ < pi Z Z ( m1 ma n+1) A Tén m2)9n+1—m19n+1—m2- (8-38)

mi=1 ma=my

It then follows from (8.36) and Lemma 8.6 that
01 (5)] < CCHCB)N (n+ 1) [AL + (n+ 1) logn] . (8.39)
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When N = 0, the only contribution without a positive power of 3 arises when m; = my = 1 in
(8.38), and this contribution is bounded above by CCj(n + 1)~3. Therefore,

[0, (5)] < CCHn+1)73 [ono + (CBM [AL L + (n + 1) logn]] | (8.40)

which completes the proof of (8.8). O

8.5 Bound on e{}(2)
(N)

We prove a lemma before proving the bound (8.5) on e,";(2). The lemma generalises (6.21). Note
that the order in which constructions are applied can be important, since, e.g., P™ (y; ¢*(a), 0,11)
is not equal to P™ (y; 0,1, 0*(a)).

Lemma 8.7. For N M >0,y € A, andn > 0,

Z Z Z JUN ’UN (uNa é)\(a)a 9n+1)P(M)(’UN; Yy;a, 9n+1) S p(N+M+1)(y; 0n+1; 0n+1): (841)

UN ’UN
where the sum over X is over the N-admissible lines for P™)

Proof. Equation (8.41) is similar to (6.21), but now with two extra Constructions 6, performed.
The equality in (6.21) is replaced by an upper bound in (8.41), since on the right-hand side there
are more possibilities for the lines on which the two Constructions 6,1 can be performed. O

Proof of (8.5). The error term e, (2) is defined in (4.30) and (4.19). For A = Cy_, or A = {vy_,},
we use .
Iv S n+1in Cy) < Ifv = n+ 1] (8.42)

to obtain

2 <2 Y Tugan MO (Tow 1 = 1+ 1 (vx; Cn))

(UN vN)

<2 Z > Juywn NH)(””N—l = 1+ 1 xn (v CN)|) (8.43)

0 (un,vN)

We use Proposition 6.7 to bound |x!',(vy; Cy)|, using the second alternative for the minimum
in (6.28) when £ > |n/2| + 1, and the first alternative in (6.28) when k& < |n/2]. Denote the
contribution due to k& > |n/2] + 1 by ei?(2,1), and the contribution due to k < |n/2] by
elV1(2,2), so that

2] < 2 (42, 1) + e (2,2)) (8.44)
For €\")1(2,1), we use (6.28) and (7.8) to obtain

n+1
Z uNstM(N+1) [a € C Z Z P(M) (O, (Y, k); @)peln_y,  (8.45)
0°a (uroon) k=n/2]+1 yezd
n+1

Z Z ZZ Z JUN,vNP(N)(uN;g/\(a))P(M)(/vNa (yak);a)pcgn—ka

0k=[n/2|+1yeZd X @ (un,vn)

(N)
en+1

IN

M8 §M8

g
I

59



where we recall Remark 6.2. By (6.21), (6.2) and Lemma 8.2,

n+1 o0
eb1(2,1) < Z >y P ()pbn ik < CCy > (CB)N+MIVL(p 4 1)~ 2 ogn
M=0k=|n/2|+1 yc74d M=0
< CCH(CRNVE(n + 1) % 1ogn. (8.46)

(N)

For e,(2,2), we use the minor extension of (7.8) that, for N > 0, @,y € A and n > 0,

MZ(/NH)(I[G’ S éNa VUy_y — N + 1]) S Z P(N)(y; é)\(a)a 9n+1)' (847)
A

By (8.47) and (6.28),

oo [n/2]
511\21(2 2) Z Z Z ']’U,N,’UNP(N)(UN; g/\(a)a 9n+1) Z P(M)(vNa (ya k), a, Hn-l-l)pcgn—k-
M=0 k=0 X @ (uy,vn) y€eZd
(8.48)
It then follows from Lemma 8.7, Lemma 8.3 and (6.2) that
GEH_)l Z Z Z Pli * )(y: 9n+1; 0n+1)p00n7k (849)

M=0 k=0 yEZd

< CCy Y (CH)T M (n+1)7 AL, < CCHCB)Y (n+1) ALy,

M=0

When N = 0, the only contribution without a positive power of /3 arises when k = 0 in (8.49). This
requires that y = 0 and M = 0, and contributes at most CCj(n + 1)~3. With this observation, we
can improve (8.49) to

e1(2,2) < CCH(n + 1) oo + (CBNV'ALL]. (8.50)

Substitution of (8.46) and (8.50) into (8.44) then gives (8.5). O

8.6 Bound on e.(4)
In this section, we prove the bound (8.7) on the error term el (4). By (5.18),

[(n41)/2 )
env1(4) < D0 |ldin) i (4 {on P+ 5 Idmn+1(4;CN_1)I]9n+1—m1- (8.51)

mi=1

We denote the contribution due to d,;),.1(4; {vy_,}) by e,y1(4,1) and the contribution due to

Ay it (45 Cx-.) by €?,(4,2). We prove bounds on e, (4,1) in Sections 8.6.1-8.6.2, and on
;?1(4 2) in Section 8.6.3. The proof of (8.7) is completed at the end of Section 8.6.3.
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8.6.1 Preliminaries for €. (4,1)

Our bound on ef};(4,1) uses the following two lemmas.

Lemma 8.8. Let vy_,,y € A and let my < my, <n. Let F = F(y) be an event that depends only
on bonds with time variables at most my. Then

Bx (1P () {(wx-) = m) o (y = ]I (05 Cr) (8:52)
< By (I @[5 = ]I (03 Cx) ) bn(y)
Proof. Let Cy(v) = {& € C(v) : mgy = my}. By the Markov property,
By (IF )0y = ) o (y = n)]II0 (w33 C)) (8.53)
= 3 B (TP W)y (or-2) = CI 08 Co) JPal(C > ) o (0 = )

since H%) (vy; Cy) is independent of bonds with time variables exceeding m,, because m,, > m;—1.
By the BK inequality,

Py((C = n)o(y = n)) <Py(C = n)b,(y). (8.54)
The inequality (8.52) can then be concluded from substitution of (8.54) into (8.53) followed by
summation over C'. O

For m, < m < n, we define

Vin(0) = U {v—2z=n} (8.55)

zZmz<m

For later use, we note that it follows from (8.55) that

Van(w)= | {v=y}n{ly—=n)o(v—n)} (8.56)

Y:my=m
The following lemma is reminiscent of Lemma 7.15.

Lemma 8.9. For vy_, € A and m,n > 1 such that m,, , <m <n,

Hm,n(vN—l; {UN—I}) C mel,n(vN—l)- (857)

Proof. When H,, ,(vx_,;{vx_,}) occurs, there is no m-cutting bond for vy_, — n. Let b be the
last pivotal bond for vy_, — n, if it exists. If such a bond does not exist, then vy_;, = n, which is
a subset of V,;,_1 ,(vy_,). On the other hand, if there is such a bond b, then b = n, and therefore
my < m — 1, since otherwise b would be the m-cutting bond for vy, — n. Thus, V,,_1,(vy_,)
occurs. ]

We also use the minor modification of (8.47) that for every a,y € A, N > 0, and n > 0,
ngv-i—l) (I[(le — 0,) N (’UN—I — y) N (’UN—l — n)]) < Z P(N)(uN; E)‘(a), f(y), Gn)a (858)
)
where the sum over A runs over the N-admissible lines for P®)(wy).
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8.6.2 Bound on €/, (4,1)

In this section, we prove that

e (4, D] < CHCA (n+1) 7, (8.59)
The definitions (5.9)f(5.10) and (5.7) imply that
Ao 1 (4 ZJuO woBy (T{0 = we} N Hon, (05 AT, (053 o)), (8.60)
(uo0,v0)
while, for N > 1,
d7(’7’];71),n-|—1(4;A) - Z JUN_l,’UN_l Z JUN,UN (861)
(un—1,9N-1) (un,vN)

Mi(t]jv) L <IEN (I[EI(UN—U Uny; CN’N—I) N Hml,n(val; A)]Hml (’UN; éN)))

We denote by df"", | (4; A) the contribution due to IIQD (v y; Cy) in (8.60)-(8.61), so that

|dm1 n-|—1(4 A | < Z dm1 n-I—l(4 A) (862)

M=0
Using Lemma 8.9, (8.56) and Lemmas 7.16 and 8.8, we obtain

Ex (T1E' (vx 1, i G ) 0 Hony o (035 AL (v, ON)) (8.63)

<X By (I s ; Coc (00 = )Moy = 1) 0 (02 I ;) )

< Y Ey (I[E'(UN,I,UN; Crv ) I[(vx1 = yo) N (vy, = )T (vy; C’N)>9n(y2).

YoiMyy=mi—1

Using (7.14) and (6.9), it follows that, for M > 1,
Ex (I1E' (@1t Cs) N Hog o (01 )T (0 éN)) (8.64)
< ZZE (T1E' (W1, 1y C ) N {vn s = @} N {wy s = (y2,m1 = 1)} N {vy = n}]

X Y PP (v, (Y1, ma = 1); @) (y,).
Y1

When M = 0, a similar bound holds with both the sum over a and the indicator that vy_, — a
removed, and with p.P“~Y(vy, (y1,m1 — 1);a) replaced by dm, m, . This causes only minor
modifications, and in the remainder of the proof of (8.59) we consider only the case M > 1
explicitly.

Now we specialise to A = {vy_,}, as in the definition of e}, (4,1). For N = 0, we use the
convention (4.15) and apply (8.64) and (8.58) to obtain

dgfn,n-l-l 4 {0} < ZZ ZJUO UOZP(O) Uy é)\ g(y%ml - 1):0n+1) (8'65)

A (’u,g ’Uo)

X ZPCP(M71 (UOa (ylaml - ]-)a a)gn-l—l(yQa my — ]-)
Y1
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For N > 1, we substitute (8.64) into (8.61), use the recursion (3.35) in the form

Z JUN 1,UN - 1M1(1]jv) 1<EN ([[E’(’UNfIJuN;CN'Nfl)

(un—_1,9N_1)

{031 = @) Oy, = 1) N (3o — )] )

= ML <I[(vN_1 @) N (Unos = Yy) M (Vs — n)]> (8.66)

and apply (8.58), to obtain

dsjlﬂ;[zzrl(él {onvoi}) < ZZ Z UN, VN ZP(N)(UNEEA(a)aE(?JQaml —1),0n41) (8.67)

A (’u,N,’UN)

X chP(M 1)(/vNa (yla my — ]-), a)9n+1(y27m1 - ]-)
Y1

Thus, the bounds for N = 0 and N > 1 in (8.65) and (8.67) agree, and we can henceforth treat
all N > 0 simultaneously.
By (8.67) and a slight generalisation of (6.21) (similar to Lemma 8.7),

A (4 {vnoa}) < pe Y Pt (yis (ya, ma — 1), 0pg1) Ot (Y2, my — 1). (8.68)
Y1,Yy2
Let
B%HM) = Z pézMM)(yl;g(ym m)) (8-69)
Y1,Yy2

By the definition of e/, (4,1) below (8.51), we therefore obtain

‘62\21(& 1)‘ < Pe Z Z Béﬁtj\f)(gn-l—l)gz my* (8-70)
M=0 mi—1
By (6.2) and Lemma 7.8(b),
BN < (CRYNIM (1 4 1)~ (4=2)/2 (8.71)

so it follows from (8.70) and Lemma 8.5 that

@D < S CHOB)N M+ 1) = CHCB) N (n+ 1), (8.72)
M=0
This proves (8.59).
8.6.3 Bound on €,/ (4,2)
In this section, we prove that
01 (4,2)] < CCH(n+1) oy + CHCAN! [(n+ 1) logn+ (n+ 1) °AL,, | (8.73)
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Similarly to (7.86)—(7.88), we define

Gsl)’n(vN—l) = Hm,n('UN—l; éN—l) N mel,n(,UNfl); (874)

Gv(fz),n(val) = HTTL,TL(’UN—I; éN—l) N mel,n(’UN—l)C; (875)
so that 5

Hyn (0513 Cs) = GO (0y-1) U G2, (wy,). (8.76)

For the contribution due to Gy (vy_,uy), we recall the argument beginning with (8.63) to see
that the inclusion G'), (vy_,) € Vi 1n(vy_,) implies that this term obeys the same bound as
)

eny1(4,1)[. Thus, it remains to bound the contribution due to G\ (vy_,). Note that, by (4.15),
C_, = {v_,} = {0}, so that, by Lemma 8.9 and (8.75), Gy, (v_y) = @. Thus, we consider only
N > 1 in the following.

Let e, (4, 3) denote the contribution to el (4, 2) (defined below (8.51)) due to GG 41 (Vy_1),

m,n+1
ie.,
N 1 Unt1)/2] N ~
651421 (47 3) = 5 Z dinl),n+1(4; CN—I; 3)pcgn+1—m17 (877)
mi1=1
where, as in (8.61), for N > 1,
dslvl),n+1(4§ C~1N—1a3) = Z JUN—I;'UN—I Z JUN,vN (8-78)
(un-1,9n-1) (un,vN)
M) (EN (1B (05 1 uns Co 1) N G, (0n )Ty (0 éN))) |

It remains to estimate e}, (4,3) for N > 1. The following analogue of Lemma 7.17 will be useful

for this. Recall that the event &, was defined in (7.48).
Lemma 8.10. Forvy_, € A and m,n > 1,

G (0x) € U (Enor 1092 Cu ) 1 (w2 = 1) 0 (0, = ) ). (8.79)

Proof. Suppose that G;‘i{n(v,v_l) occurs. It cannot be the case that vy_, = n, since this con-
tributes instead to G, (vy_,). Thus there is at least one occupied pivotal bond for vy, — n,

and we denote the last such bond by b. Then {vy_, — b = n} occurs. It must be the case

that mz > m — 1, since otherwise G{}), (vy_,) occurs. By the definition of Hy,,(vy_1;Cy_ ;) in
. Cn_ Cn_ .
(5.6), b cannot be an m-cutting bond for vy_, —— n, and hence {v,_, —— b}¢ occurs. Since

Cn — Cn-
vy_, —— n occurs by (5.6), we conclude that b —— n.
Fix w such that b — (w, n) (such a w must exist since b — n). Let 0 be the first occupied pivotal

bond for b — (w,n), if it exists, such that b Onty b'. It b does not exist, then &, (vy_,, (w, n); C’N_l)
occurs, which is contained in the right-hand side of (8.79) with y, = (w,n). On the other hand,
if ¥’ does exist, then, since m; > m — 1, the event

(x> BN E GV Cr ) N ((g’ e n) o (vys — n)> (8.80)
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occurs, which implies that the event on the right-hand side of (8.79) occurs with y, = b'. O
In view of Lemma 8.10 and (8.78), it is useful to estimate, for N > 1 and M > 0,

ZE (T[B' Wt Co) 1 Emy (01,9 Co) 1 (g = 1) © (0yy = ) )| T (w0 éN)).

(8.81)
By Lemmas 7.16 and 8.8,

Ex (T[By 1 Emy (031095 O ][y = n) 0 (vx s = n)]IL0 (v ON)) (8.82)
< Ey (I[E;v N Emy (Va1 Yy CN'Nfl) N(vy_, — n)]H( )('UN: éN)>9n(y2)-
The recursion relation (3.38) implies that

Z Jun_1on1 My, (EN (I[E;v N Emy (Vno1s Yo éN—l) N (vy = o) (v éN)))

(un-1,9N-1)

= Mg]vv+1><1[5m1 (Un 1, Y2 Cn 1) N (v — n)]TIED (UN,CN)>, (8.83)
Let
s =22 QYT ((yr, M), (y2, ma)). (8.84)
Y1,Y2

If we simply ignore the indicator that vy_, — n, then it follows from Proposition 7.11 that

5 uwos M (T (0r 193 Co (s =m0 Cr))

(un,vN)

<pe ) QYT ((y1,my — 1), 9). (8.85)

Y1

On the other hand, it is a minor extension of Proposition 7.11 that the extra connection to n
can be accounted for by an application of Construction 6, so that the upper bound of (8.85) can
alternately be replaced by the upper bound p, >, Q™ ((y1,mi —1),y:6,). Therefore, replacing
nbyn+1,

1 oo [(nt1)/2] n
e (4,3)] < Spe 3R> (@ s 1) A QI oy 1) Onstami B (5:56)
M=0 mp=1 ma2=m1
By (7.41),
7(7];71'1;]\/1[?”1271 S (Cﬁ)N—I—Mbml—l,mg—l S C(C/B)N-I—Mbml,mg (887)

Finally, by Lemma 8.6, for N > 1 we have
enti(4.3)] < CHCHN [(n+ 1) logn + (n+1) A ] (8.88)
The combination of (8.59) and (8.88) then gives the bound (8.73) on e, (4, 2).

Proof of (8.7). This immediately follows from summation of (8.59) and (8.73). O
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8.7 Bound on e{}(1)

In this section, we prove the bound (8.4) on the error term e\, (1), which is defined in (4.22)—(4.24).
Recall (4.35)—(4.37). For j = 1,2, 3, let

enr1(1,5) = ent1(0;{0}; ), (8.89)

and, for N > 1,

(L) = X uwan M (e (01 O ). (8.90)

(un—1,9Nn_1)

It follows from (4.34) and (4.23)—(4.24) that
enpi (1) = enti(1,1) +enti (1,2) + enys (1, 3). (8.91)

We estimate e, (1,1) and el (1,2) in Sections 8.7.1 and 8.7.2. The more delicate e("'(1,3) is
estimated in Section 8.7.3. The proof of (8.4) is given at the beginning of Section 8.7.3.

8.7.1 Bound on €, (1,1)

The error term e, (1,1) is nonnegative by definition. For N = 0,

W1(1,1) < P(F(0;{0}) N {|Proy| < 1}) < ZIP’(E’(O, (z.n+1);{0})) (8.92)
— anﬁl ) < ZP ) < CB(n+ 1)
by (4.38), Proposition 4.6, (6.9) and (6.2). For N > 1,

;z]\—ll—)l(l 1) Z JUN 1, UN— IM’I(L];]\]) 1<ZP(E’(’UNla(x:n+1);CN’Nl))>

(un—1,9Nn_1)

= Migain() = 2mii() < 3 Paki(@) < (CF) N(n+1)"92, (8.93)
by (8.90), Proposition 4.6, (6.9) and (6.2).

8.7.2 Bound on €/ (1,2)
For N =0, we use (4.39) to see that

e (L2 < 3 P(E'(0,5;{0})0ns (y). (8.94)

y:myZ\_%J-I-l

Therefore,
n+1 n+1
lenta(1,2)] < Z > T (Y)Ons1m < > PR (W)0n1-m < CB(n+1)"logn,
m=[%2]+1 ¥ m=[3]+1 ¥

(8.95)



by (6.9), (6.2), and Lemma 8.2. For N > 1,

|€n+1(1 2)| < Z JUN—ly”N—lM’l(LIjV)1< Z P(E'(le,y;C’Nl))>9n+1(y)
(un—-1,9N-1) yimy>| 3] +1
n+1

= Z MZ(INH)(l)gn—l—l(y) = Z Zﬂg)(y)9n+l—m

yimy>| 5| +1 m=[3]+1 ¥
n+1

< 3 Y P W) ni1om < (CB)V(n+1)"logn, (8.96)

m=[%]+1 ¥

by (8.90), (4.39), (6.9), (6.2) and Lemma 8.2.

8.7.3 Bound on €/ (1,3)

In this section, we prove that, for N > 1,
e (1,3)] < CCF[(n+1)° + B(n+ 1) logn + B(n+1)*A7,]. (8.97)
e (1,3) < CCHCB)N[(n+1) Plogn + (n+1) A, (8.98)

Proof of (8.4). For N = 0, (8.4) follows from (8.91), (8.92), (8.95) and (8.97). For N > 1, (8.4)
follows from (8.91)-(8.93), (8.96) and (8.98). O

To prove (8.97)-(8.98), in view of (8.89)-(8.90) and (4.15), we start with e (vy_,; Cy_,;3).
According to (4.50),

e, (v; A; 3)| < Z z (Fi(: A n{y e RIn{be PP}, (8.99)
b<| ) b2Y
Let
F, . (v,z. b A) = E'(v,z; A) N F,,,(v; A) N {t' € B,}. (8.100)
It follows from (8.99), Proposition 4.10, Lemma 2.2, and the inequality
P(b — n+1in A\C®(D)) < 0,,41(b) (8.101)
that
e (v; A; 3)] < Z Z $P(Fpya (0,0, A) in C(v)) 0,41 (D) (8.102)
b <[ 2L b2
= X Z i (Fiea(0,0,1'5 4) ) 0,51(5),
b <[ 2] b2t

where P? denotes P conditioned on b being vacant. By Proposition 4.3,

Fy (0 A)n{t e B} CE @b An{(w—n+1)o({occ}n(@ =n+1))}, (3103
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since, on the right-hand side of (4.25), (v — n + 1) occurs in C(v), and therefore (v — n + 1)
occurs disjointly from {0 occ.} N (B — n +1). Then (6.12), (8.100) and (8.103) imply that

Flyi(0,0,654) C E' (0,0 A)nE(w,b; A) N {(v > n+1)0 ({# occ.} N (T = n+1))}. (8.104)

The event £(v,b; A) N {(v = n+1)o ({8 occ.} N (B — n+ 1))} is increasing, and, for b’ < b, the
event E'(v,b'; A) is independent of the occupation status of b. Therefore, by Lemma 7.16,

el A;3)[ < Y 3 P (B (v, b5 A) NE(w, b A) (8.105)

o< g b2V
N{(w—=n+1)o({t occ} N (@ = n+1))})0nsa (D).

In particular, by (8.89) and (3.20),

ARG TS Sl 9P ARV CICIUN () (8.106)
| b2b!

<2
A= n+1)0({H occ}n( —n+ 1))}])9n+1(5).

Also, by (8.90), (8.105), (3.20) and (3.35), for N > 1,

‘6’5'11\21(]"3)‘ S Z Z JuN,l,vN,lt]Q’EMz(L]leI (P(E,(UN—lﬂbl;CN’N—l) (8107)

b <[ 2EL b2 (uy 1o 1)

A E@s1. b Cx) N {(oay =+ 1) o ({6 oce.} N (5 = n+1)) }))9n+1(5)

SHD SR SE ALY/ Sl (] NN YoM

1 {(wn s = n+1)0 ({8 oce} N (F = n+ 1))}]>9n+1(5).

We insert
1=1I[(6 — b)°] + I[(6 — b)] (8.108)

in the right-hand sides of (8.106)—(8.107). We denote the contribution to (8.106) due to the first
and second terms of (8.108) by e} (1,3,1) and el},(1,3,2), respectively. Similarly, for N > 1,
we denote the contribution to (8.107) due to the first and second terms of (8.108) by el (1,3,1)
and e(}(1,3,2), respectively.

To estimate M) and M, *" in (8.106)—(8.107), we will use the following proposition, whose
proof is deferred to the end of the section. Its statement involves a small modification of PX(y),
in which the last Construction E can be applied to all diagram lines rather than only to the
(N — 1)-admissible lines. We denote this modification by P®(y). The methods in [13] easily

adapt to show that the bound (6.2) extends to P{(y), namely

S PY(y) < dmodno + (CB)N (m +1) 72, (8.100)
Yy
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Proposition 8.11. (a) For all bonds b, y € A with my > my, N >0, and n > 0,

MQ(NH) ([[5(1)N1, Y; C’N—l)} N (E — y)c N (('UN—l — n) © ({b OCC-} N (E — n)))]) (8'110)
< ([R™(b,y) + Q™ (b, )] A R (b, y; 0,) + Q™ (b, y; 0)]) J, 56 (D),

where, by convention, Q® = 0.
(b) Fory e A, N >0, andn >0,

> My (I[é‘(vN_l, Y. Co )N (b= y)N ((vy_, —n)o({bocec) N (b— n)))]) (8.111)
< PN (y) A PO (y; 6, 6,).

Before proving Proposition 8.11, we first prove (8.97)—(8.98).
1

Proof of (8.97). By the definition below (8.108), e\};(1,3) = ey (1,3,1) + efr1(1,3,2). By
(8.106) and Proposition 8.11(a) (with N =0,y =b, b=1'),

e (L3, D[ < > Y gy [ROW,5) A ROW, b 011) |01 ()01 (B) (8.112)

b<| L b>b'

= pc Z Z [ mi,ma A RSJz)l ma (en-l—l)] Hn—mlen—mga

m1=0 ma2=m

where R =3, ., B (Y1, 92). By Proposition 7.7 (with additional attention paid to the
factor 3),
R(O) S C(Sml,[]émg,[] + C/Bbml’mQ- (8113)

mi,ma2

The contribution due to (my, my) = (0, 0) gives rise to at most CCj(n+1)~*. For the contribution
due to (my, my) # (0,0), we apply Lemma 8.6 to obtain a bound

CCiB[(n+1)"logn+ (n+1) A, ). (8.114)
Adding the two contributions yields
€94(1,3, 1] < CO}[(n+ 1) 4+ Bln+ 1) logn + Bln + 1) AL, . (8.115)

Similarly, by Proposition 8.11(b) (with N = 0, y = b = (y2, m2), and the summation index b
in (8.111) equal to ' in (8.106)),

601(1,3.2) < 3 T3 [POG) A PO b, 0,1)) 0011 (D) (8.116)

b
n

= Pe Z |:ﬁ7§;; A f)g; (9n+1; 9n+1)] 9n7m2,

mo=0

where we write 15,5;; =2, P PO (15). By (8.109) and Corollary 8.4, we therefore obtain

m2

e (1,3,2)] < chﬁ[(n+ D)7ALL + B(n+1)792 1ogn}. (8.117)
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Addition of (8.115) and (8.117) gives (8.97). O

Proof of (8.98). By (8.107) and Proposition 8.11(a),
L

o3
[

LD < S Y (IR + Q] AR s i) & Qs (O] o O
e (8.118)
By Proposition 7.7 and Lemma 8.6, it follows that
1 (1,3, 1) < CCHCB)N [(n+ 1) logn + (n+ 1) A, ). (8.119)

Similarly, by Proposition 8.11(b) (with y = b = (y2, m2), and the summation index b in (8.111)
equal to b in (8.107)),

‘6;]\_]'_)1(]_, 3a 2)‘ S Pe Z [-ﬁr(,l]\;+l) A -ﬁél]\;+l)(9n+la 0n+1)] Hn—mQ- (8120)

mo=0

It then follows from (8.109) and Corollary 8.4 that
len1(1,3,2)| < CCHCBN [(n+ 1) logn + (n +1)*AL, . (8.121)
Addition of (8.119) and (8.121) gives (8.98). O

It remains to prove Proposition 8.11. For this, we will use the following lemma.

Lemma 8.12. For any bond b, v,y € A\, ACA, n>0,

Ew,y; A)N (B —y) N ((v—n)o({bocc}n (b —n)) (8.122)
C (5(1}, y; A)N (v — n)) o ({b oce.} N (b — n)),
E(v,y; A)N (b — y) N {b occ.} (8.123)

C (({b oce.} N (b= y)) o (v =) U ({b occ.} N E(b,y; ).
Proof. To prove (8.122), we note that
E(,y; A)N (b= y) N {boce}n (b—n) CEw,y;A)o ({bocc}n (b—n)), (8.124)

since, when (b — )¢ occurs, b and the connections from b cannot be required in the event
E(v,y; A). Therefore,

Ew,y; A)n(b—y) N ((v—n)o({boce} N (b—n)) (8.125)
(g(v, y: A) N (5 — y)° N {boce.) N (b — n)> N <(v —n)o ({bocc.}n (b n))>
(5(1), y; A) o ({b oce.} N (b— n))) N <('v —n)o ({b oce.} N (b— n))) Nnb—y)°

(S(U, y; AN (v — n)) o ({b oce.} N (b — n)),

N

N
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where, in the last step, we used (b — y)° to conclude that the occupied path from b to n that is
disjoint from (v — n) is also disjoint from a set of paths realizing (v, y; A). This proves (8.122).

Next, we prove (8.123). If there is no pivotal bond for v — y, then v = y, and thus
({bocc.} N (b — y)) o (v — y) occurs. This leaves the case where there is a pivotal bond for
v — y, and in this case, we let b’ denote the last pivotal bond. If the left-hand side of (8.123)
occurs and b — b, then b is occupied and £ (b, y; A) occurs (since there is a vertex in A on one of
the paths from b to y). If, on the other hand, the left-hand side of (8.123) and (b — )¢ both
occur, then ({b oce.} N (b — y)) o (v — y) occurs, since ({bocc.} N (b — y))o (B — y) occurs

as in the case of no pivotal bond and since the connection from v to b must also be disjoint from
({b occ.} N (b — y)). This proves (8.123). O

Proof of Proposition 8.11. (a) By (8.122) and (3.35),

M (1 [E@rer,y: Cru) N (0= y)° N ((vyoy = ) o ({boce.} N — n))]) (8.126)
< M (I[(E(Wnmny: Cos) N (0 = m)) o ({boce.} N (B — n))])

= Z JUN—I:”N—IM’I(L];IV)_l (P(El(va b; CN’Nfg)

(un—1,o9N-1)

A ((E@rr:Ca) P (wa = m) o (b oce} 01 (55 ) ).

where we assume for convenience in this paragraph that N > 1 (the case N = 0 is similar). Due
to the orientation of the bonds, the events on the right-hand side of (8.126) can be rewritten as

E'(0y0,b; Cy2) N (E(wy 1,43 Cy 1) N (v = m)) o ({boce.} N (5 — n)) (8.127)
= (E' (052, b Cy_a) NEWxoy,y; Cry) N (05 = ) o ({boce} N (B —n)).
By the BKR inequality,
P((EI(UN2,Q; Cyo) NEWx_1,y;Cx ) N (Vy_, — n)) o ({b oce.} N (b — n))) (8.128)
< P(E,('Umeb; éN—2) N 5('01\1715 Yy, CN'Nfl) N (’UN—I — n))JQ,Een(E)-
We then substitute (8.128) into (8.126), and again use (3.35), to see that
MM (I[EWxor,y: Cos) N (0= 1)° N ((vaoy = n) o ({b oce.} NB — n))]) (8.129)
< MO (T[E (a1, 45 Cua) N (Vs = 1)]) T30 (D)

Since m, > my, we can use the definitions in (6.12) and (7.47)—(7.48) to see that

IE(vn_1, y: éN—l)] < ][Vmé(/vN—la y)] + I[gmé-l—l(’vN—la y; Cy_i)l, (8.130)

where, for N = 0, the second contribution is identically zero. If we bound I[(vy_, — n)] by 1 in
(8.129), it then follows from Lemma 7.13 that the contribution due to [V, (vy_:,y)] is bounded by
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P (b; Vin, (y)) = R (b, y). Also, by Lemma 7.14, the contribution due to I[€m,11(vy_1, y; Cy_1)]
is bounded by P™(b; Em,11(y)) = Q™ (b, y). Adding these, we obtain

M (1€ (03or, 93 Coma)]) < BV (b ) + Q™ (), (8.131)

which gives the upper bound [R™ (b, y) + Q™ (b, y)]J, 50, (b) of (8.110). Also, the bounds
MQ(N+1) (I[Vmg(vN—u Y; CN’N—l) N ('UN—l — n)]) < R(N)(ba Y Hn), (8'132)
M (103, 920 N (s = 0)]) < Q0. :0,) (8.13)

are minor adaptations of (7.58) and (7.63). This proves (a).
(b) We bound the contributions to (8.111) due to both terms in (8.123) separately. Using (3.35),
the contribution to (8.111) due to the first term on the right-hand side of (8.123) is

MY (1[(({b oce} N (5= y)) o (vyoy = ) N (vnr =)o (b n))]) (8.134)

: > Ju)N_l,leM;%h (M:,til,b;ém (71(({b oce.} N (B = g)) o (vyos = )
UN—-1,UN-1

A (vn_y = 1) o (- n))])).
We temporarily omit the two connections to n inside the above expression, and observe that

zb; MW (T1({b oce.} N (B — y)) o (vy-1 = y)]) (8.135)

vN-1,b;CN 1

< P(O)(UN—UQ; CN’N—U Z(QI)(y)) < p(l)(,UNflay; éN—l)'
Thus, once we take into account the two connections to n, we obtain

ZM(U (I[(({b occ.} N (E —y))o (vy_y — y)) N ((vy_y — n)o (5 N n))])

vN-1:0;CNn 1

S P(l)(vala y: CN—I; 077,; 077,) A P(l)(vala y: éN—l)- (8136)
We substitute (8.136) into the summation of equation (8.134) over b. With (6.11) and (6.21), this
gives

SO M (1[5(%_1, y: Cy_) N {boce Y N (B = y) N (s —n)o (b— n))]) (8.137)

S Z JUN71,UN71M1(L];IV)—1 (P(l)(vN—l’ Y CN’N-“ 971’ Hn) N P(l)(vN—l’ Y, éN_l))

(un—1,o98-1)

< P (y; 0, 0,) A PN (y).

The obvious inequality P+ < P+ completes the analysis for the first term in (8.123).
For the contribution to (8.111) due to second term in (8.123), (3.35) gives

MM (I[S(E, y: Crv_) N {bocc} N (g, = n)o (b — n))]) (8.138)

S A Ve (M;I;I von (TE@y:Co ) N (b oce.} N (vy 1 =)o (5 — n))])>.

(un—1,9Nn_1)
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By (6.13),

Mo (TE®,y; Cuy) N {b oce} N ((v-y = n) o (b= n))]) (8.139)

UN-1,0;CN -

< P(E(vy1,b;Cxy) N {b oce.} NED,y; Cr i) N ((vy-4 = n) 0 (b n))).

We again temporarily omit the two connections to n inside the above expression, and observe that,
by the Markov property,

P(£(v,b; A) N {b oce.} N E(b,y; A)) = ;P (v,b; A)PO (b, y; A), (8.140)
which leads to an upper bound

z > Tunrwn s ME (Pa (@i b o) N{b oce }NE (D, y; Cy 1)) < PY*0(y). (8.141)

(un—1,9N_1)

Note that P(V+D occurs, rather than P+ due to the fact that the two events £(vy_,, b; Chy. 1) and
£(b,y;Cx_,) depend on the same set of vertices Cy_,, whereas, for P*"*) the event 8(1), y; Cy_y)
would be replaced by £ (b, y: C*(vy_,)). This change can be bounded by lettlng the last Construc-
tion E be applied to all lines, rather than only the N-admissible lines. It is not difficult to see
that if we now take into account the two connections to n, we obtain

S 2 (I[g(vw, y: Gy )N {bocc} N (B = y) N ((vy_, —n)o (B — n))]) (8.142)
< P (y;0,,0,) A PO (y),

Together, (8.137) and (8.142) prove (8.111). O
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