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1.1. Background and motivation

1.1.1. Remote sensing in the Earth’s atmosphere

In recent years a growing consensus is emerging that human activities on our planet are contributing
to climate change. In order to understand the chemical and physical processes that govern atmo-
spheric balance and to assess the anthropological impact on climate, it is essential to determine the
distributions of atmospheric constituents and to monitor these distributions on a long-term global
basis. In-situ measurements from ground-based instruments can give detailed local information about
the atmosphere. However, only passive remote-sensing instruments on satellites can generate the kind
of global record necessary for monitoring atmospheric constituents on a long-term basis.

Many determinations of atmospheric constituents are made from observations of radiance spectra of
scattered, reflected and absorbed sunlight (UV, visible and near infrared) or from attenuated thermal
emission spectra (infrared and beyond to radio waves). Scattering is produced by molecules and
various types of aerosol (including clouds). Molecular scattering cross-sections are characterized by
the Rayleigh λ�4 law, with aerosol scattering typically showing a much less strong dependence on
wavelength (� λ�1). The angular distribution of molecular scattering has a (1+ cos2Θ) dependence
on angle of scatter Θ; aerosol scattering distributions are much more variable, often exhibiting strong
peaks in the forward direction. Molecular scattering dominates in the UV (ultra violet), with aerosols
replacing molecules as the major source of scattered light in the visible and near infrared. Thermal
emission becomes important for wavelengths in excess of 2.4 microns. Molecular scattering has two
parts - the Cabannes line which accounts for 96% of scattering events, and the 4% inelastic rotational-
Raman component which is considered responsible for the Ring effect (“filling in” of Fraunhofer lines
in the earthshine spectra).

For constituents that also absorb light, the scattering is non-conservative. The combination of
scattering and absorption is termed the attenuation or extinction. Virtually all aerosols show some
absorption, though in the case of water-droplet clouds in the UV and visible, this is very small. The
degree of aerosol absorption is often characteristic of the aerosol type; for example, sooty particles
produced in biomass-burning and other combustion events are strongly absorbing and the presence
of such aerosols can be detected from backscatter measurements in the UV. In general, the molecular
scattering and aerosol scattering and absorption signatures are slowly varying with wavelength. In the
UV and visible, there is little information on aerosol properties to be gleaned from a single radiance
spectrum. Another contribution to the radiance spectrum is due to reflection by the surface. In general
the (bidirectional) surface reflection property is also smoothly dependent on wavelength, though its
angular distribution can vary enormously, particularly over a faceted sea-surface.

Of much greater significance is the selective absorption of sunlight by atmospheric gases. Molec-
ular absorption is a quantum physics phenomenon involving discrete transfers of energy to excited
quantum states; the frequencies of such transitions are characteristic for each molecule. In the
infrared, molecular excitation states are vibrational and rotational; transitions show up as sharply
defined lines which often occur in groups (bands). The strength or intensity of these lines is an
indication of the opacity of the atmosphere; a great deal of information about molecular abundances
can be deduced from high-resolution measurements taken over such absorption bands. Absorption is
so strong in certain bands (particularly CO2 and H2O in parts of the infrared) that the atmosphere is
actually opaque.

Though O2 and N2 make up the vast majority of air molecules, they are not significant as far as
line spectroscopy in the infrared (>1000 nm) is concerned. However there are three well-defined



3 Introduction

O2 absorption bands in the near infrared, of which the O2 A band around 760 nm is prominent. H2O
(water vapor) also has a number of absorption bands in the visible and near infrared. At higher photon
energies in the UV and visible, transitions to excited electronic states become available. Electronic
band systems are not so well-defined, largely because of superimposed vibrational fine structure.
O3 is the most important trace species here; the well-known Huggins bands in the soft UV show
moderately-resolved structure, whereas the hard-UV Hartley bands and the weak Chappuis bands in
the visible are nearly continuous.

Figure 1.1: Ozone absorption cross sections in the Huggins bands for six temperatures as indicated;
derived from measurements made with the GOME instrument during the pre-flight calibration phase.

In this work, we will focus on the Hartley-Huggins O3 absorption bands in our consideration of
ozone profile retrieval. Figure 1.1 displays O3 absorption cross sections in the Huggins bands from
310 to 340 nm; the temperature dependence of the cross sections is evident. These cross sections were
measured during the pre-flight calibration of the GOME instrument in 1994 (for details on instrument
specifics for GOME and other instruments considered in this thesis, see Appendix A). Despite the
comparative lack of fine structure in these UV/visible bands, a lot of information can be deduced
from a backscatter instrument with moderate spectral resolution. Several other chemically important
trace species have absorption signatures in the UV/visible, including NO2, HCHO, BrO, OClO and
SO2; atmospheric opacities for these species are generally small.

An example from the GOME instrument will illustrate the kind of spectral features to be expected
in the UV, visible and near infrared parts of the earthshine backscatter spectrum. In Figure 1.2, we
show two parts of a reflectivity spectrum taken by GOME on 27 September 1997 for a scene over
Borneo in South East Asia; this snapshot was taken at the time of a notable biomass burning event.
The reflectivity R(λ) is defined by:

R(λ) =
π

µ�
:

I(λ)
F(λ)

; (1.1)
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in terms of the earthshine radiance I(λ), the solar irradiance F(λ) as measured by GOME (perpen-
dicular to the solar direction), and the solar zenith angle cosine µ�. In this example, reflectivity
values were obtained by simple division of earthshine radiance measurements with nearest-neighbor
(in wavelength) solar irradiances; normally the two spectra have slightly different wavelength cali-
brations. The solar zenith angle was �20.6�, and the earthshine spectrum was taken for the direct
nadir footprint. The read-out time was 1.5 seconds; this limits the data to wavelengths above 307 nm.
[Because of signal-to-noise limitations, measurements in the range 240 to 307 nm are normally taken
every 12 seconds].

Figure 1.2: GOME reflectivity spectrum for orbit 12740 on 27 September 1997, pixel number 1162,
for a scene over Borneo during a biomass burning event. Note the overlap regions near 313 nm (Bands
1b/2), 400 nm (Bands 2/3), and 600 nm (Bands 3/4).

A number of features are of interest. In the top panel for Bands 1b and 2 (307 to 410 nm), the
Huggins-bands O3 absorption features are prominent for wavelengths up to 340 nm; below 307 nm,
increasingly strong O3 absorption in the Hartley bands limits the penetration of UV radiation through
the atmosphere (virtually no photons reach the surface at 300 nm). The Ca II Fraunhofer lines are
also noticeable at 393.4 nm and 396.8 nm.

In the lower panel of Figure 1.2 for Bands 3 and 4 covering the visible and near infrared near-
infrared parts of the spectrum, the O2 A band shows as a deep absorption feature in the 760-770 nm
range. The weaker O2 B and γ bands appear at 687.1 and 628 nm respectively, along with several
H2O bands centered around 590 nm, 650 nm and 720 nm. The shallow dip from 500 to 650 nm is
characteristic of Chappuis band O3 absorption. Some of the fine structures in the UV are due to NO2

absorption, others to inelastic Rotational-Raman scattering; features due to other minor trace species
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are too small to pick out by eye. Beyond 340 nm, gas absorption is generally weak with the exception
of H2O and O2. For this particular spectrum the continuum level from 340 to 790 nm is relatively flat;
this is characteristic of situations with strongly scattering layers in the lower atmosphere (in this case
the extensive smoke pall from forest burning).

1.1.2. Retrieval of atmospheric constituents

The process of deducing constituent distributions from observations of the Earth’s atmosphere is
termed retrieval. We confine our attention to observations of radiance spectra. At a basic level,
retrieval consists of making simulations of the earthshine backscatter for wavelengths in a spectral
window and matching them with a sample of measurements in the window. Since the dependence of
the backscatter on any given atmospheric parameter is usually complex, this matching has to be done
by a suitable optimization (fitting) process. Formally we write Y = F(X) for the relation between
simulated measurement vector Y and state vector X of constituent parameters to be retrieved; F is
the forward model, which encompasses our understanding of the physics behind the measurement
process. Retrieval involves the solution of the formal inverse problem X = F�1(Y).

In general, forward models depend in a complex and non-linear manner on the state vector. Pro-
vided the non-linearity of this dependence is not excessive, the inverse problem can proceed iteratively
using a series of linear inversion steps. The linearization of the forward model about state vector X0

is given by

Y�Y0 = K(X�X0) ; (1.2)

where the matrix K is the set of weighting functions (partial derivatives ∂Y=∂X of the radiances
with respect to the elements of the state vector X) evaluated at X0, and Y0 = F(X0) is the simulated
measurement vector at that point. The matrix K is a map from the space of state vectors X to the space
of measurements, subject to the presence of measurement errors. The linear inversion by optimal
estimation is based on Bayes’ theorem, which expresses the posterior probability density function
(pdf ) P(XjY) for state X given measurement Y, as the product of the prior pdf P(X) for x and the
conditional pdf P(YjX) for Y given X. The last quantity requires the forward model and measurement
error statistics. The optimal estimate is the state which maximizes P(XjY); in other words, the MAP
(maximum a posteriori) estimate [1].

For the measurement vector Ymeas, it is usual to assume Gaussian statistics with error covariance
matrix Smeas. If the prior pdf P(X) is Gaussian with mean value Xa (the a priori state vector) and
error covariance matrix Sa, then the posterior pdf is also Gaussian. In this case, it is straightforward
to show that by linearizing about state vector Xn, the optimal estimate for Xn+1 is given by:

Xn+1 =Xn +G�1
n

�
KT

n S�1
meas(Ymeas�Yn)�S�1

a (Xn�Xa)
�

; (1.3)

Gn =S�1
a +KT

n S�1
measKn: (1.4)

(Subscript “T” denotes matrix transpose). The iteration is stopped when a suitable convergence cri-
terion has been satisfied (for example, relative changes in the elements of the state vector from one
iteration to the next are all below a prescribed small threshold). Gn is known as the information
matrix or the solution error covariance matrix, and it is the principal source of diagnostic informa-
tion about the quality and accuracy of the retrieval. Optimal estimation is the most widely-used
method of inversion in the field of atmospheric measurements. Other fitting methods include the
Levenberg-Marquardt algorithm [2] which is a modified form of non-linear least squares fitting, and
the Phillips-Tikhonov regularization scheme [3].
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In the above formalism, the accuracy of the retrieval depends not only on errors resulting from the
measurement process but also on uncertainties concerning the a priori estimate. Additional sources
of error may be included in the retrieval; these are “model parameter” errors (due to uncertainties in
atmospheric quantities used in the forward model but not retrieved) and “forward model” errors due
to systematic bias inherent in the forward model. A vector b of model parameter errors may also
be assumed to have Gaussian statistics with error covariance Sb, in which case the term KT

b S�1
b Kb

must be added at each iteration step to the matrix G. Kb are weighting functions with respect to
model parameters b; in general they will depend on the current guess for the retrieval vector Xn. For
further details on the niceties of inverse methods in atmospheric retrieval problems, see the works of
Rodgers [4, 1].

The discussion here is quite general, and applicable to any atmospheric retrieval. The point is clear -
an iterative fitting method with linear inversion will require a forward model that must simultaneously
generate both simulated radiance measurements and matrices of weighting functions with respect to
state vector elements. Additional weighting functions will be required if we are to consider model
parameter uncertainties. The major part of the forward model is the theoretical radiative transfer (RT)
calculation of the light field at the entrance of the instrument; the lesser (but still important) part is
the instrument response function which takes the RT results and generates simulated measurements
as actually detected by the instrument. The response function is instrument specific; we shall be
concerned in this thesis with the RT modeling.

For the simulation of backscattered light in an anisotropic multi-layer medium requiring a full
multiple scatter RT treatment, the derivation of weighting functions is a major consideration. Tradi-
tionally, weighting functions have been determined using finite difference estimates typified by

KFD(ξ)' Y (ξ[1+ εFD])�Y (ξ[1� εFD])

2εFD
: (1.5)

where the two simulated backscatter radiances Y (ξ[1�εFD]) are calculated by applying perturbations
�εFD to parameter ξ which is either an element of the state vector X to be retrieved or an element of
the model parameter vector b. Definition (1.5) requires two separate RT simulations for each vector
element; in a complex multi-parameter retrieval problem, the number of radiance simulations will
multiply ten-fold and more. This can be prohibitively expensive on computer resources. There is also
the question of accuracy; finite difference estimates rely in an rather arbitrary way on the choice of
perturbation εFD (indeed some weighting functions are very poorly estimated by such simple finite
difference schemes).

What is required here is a linearized radiative transfer model that will be called just once at each
iteration step and that will generate all necessary weighting function matrices at the same time as the
simulated measurements. The model should produce weighting functions that are as accurately calcu-
lated as the simulated radiances, without the need for numerical estimates. This is then the motivation
for this thesis - to produce just such a linearized RT model, one that can be used in all generality for
a wide range of atmospheric retrieval problems based on backscatter earthshine measurements. The
large part of this thesis is concerned with the theoretical and practical development of such a model
(to be called LIDORT). We now discuss O3 profile retrieval in more detail; this will serve to introduce
the kind of output that the LIDORT model is capable of producing.

1.1.3. Introduction to O3 profile retrieval from space

In this work, the main application of the RT model is to the retrieval of O3 profiles from nadir view-
ing remote sensing instruments such as GOME [5], GOME-2 [6], SCIAMACHY [7] and OMI [8].
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The spectrum of measurements covers the O3 Hartley-Huggins bands from 270 nm to 340 nm. Re-
trieval state vector X will consist of O3 profile elements, either in the form of volume mixing ratios
at selected levels or in the form of partial (Umkehr) column densities, plus a small number of ad-
ditional parameters such as the surface albedo, the total aerosol optical depth and the total NO2

column density. [NO2 is the most important interfering trace species absorbing in this part of the
UV spectrum].

The radiative transfer part of the forward model should calculate simulated backscatter radiances
and associated weighting functions with respect to O3 profile elements. We illustrate RT model output
for this application in Figure 1.3; all results were generated using the LIDORT model developed in
this thesis. In the top panel, backscatter sun-normalized radiances have been calculated at a relatively
fine spectral resolution for a direct-nadir view and for solar zenith angle 50�. A clear sky atmosphere
with O3 absorption and Rayleigh and background aerosol scattering was assumed; the surface albedo
was 0.1. The Huggins-bands absorption features are evident; the general shape of this curve is similar
to the corresponding part of Figure 1.2 (top panel), though the general level of backscattered light is
much lower in the simulation because of the clear sky assumption.

Figure 1.3: (top panel) Simulated reflectivity spectrum for a clear sky scenario for a spectral range
295-335 nm; solar zenith angle 50�, direct nadir view; (lower panels) O3 volume mixing ratio
weighting functions for a selection of wavelengths.

The lower panels show weighting functions with respect to O3 volume mixing ratio, calculated
at a fine vertical resolution of 1 km. The wavelength range has been divided into two halves. The
lower left panel contains weighting functions for 10 wavelengths from 294.2 to 312.4 nm, with values
normalized to the peak sensitivity in the stratosphere. The lower right panel shows absolute weighting
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functions for 10 wavelengths from 314.4 to 333.3 nm. For decreasing wavelengths in the UV below
�314 nm (lower left panel) the increasingly strong O3 absorption in the Hartley bands progressively
raises the scattering penetration depth. Sensitivity to O3 absorption has a maximum value at increas-
ingly high pressure levels as one moves further into the UV. Beyond 314 nm, this height-dependent
sensitivity disappears; the peak sensitivity remains at the same level, becoming increasingly weaker
as the absorption falls off at higher wavelengths. The clear dependence of penetration depth with
wavelength allows O3 profiles to be retrieved accurately in the stratosphere.

In the lower right panel, the relative sensitivity in the troposphere is greater for higher wavelengths;
this effect depends not only on solar zenith angle and surface albedo, but also on the temperature
distribution in the troposphere (through the temperature dependence of the Huggins bands cross
sections). This indicates that retrieval accuracy and vertical resolution in the troposphere might be
improved by extending the upper limit of the fitting window to include these wavelengths. This is a
major issue for instruments such as GOME which measure this part of the spectrum; we will return
to this question in Chapter 5.

Initial feasibility studies for ozone profile retrieval were based on single scatter RT models [9]. The
first algorithm to return profiles on an operational basis was developed for the BUV instrument [10];
this work was then extended to the SBUV, SBUV-2 and SSBUV instruments (for a summary of these
developments, see [11]). This “BUV-type algorithm” uses optimal estimation and relies on look-
up tables of simulated radiances calculated with a dedicated pseudo-spherical radiation code [12];
all weighting functions are estimated by finite differences. SBUV has 12 spectral channels and 12
profile elements are retrieved; with only limited spectral information, accurate profiles of O3 that are
relatively free from prior influences are restricted to the pressure range 1-20 mbar.

The GOME instrument has more spectral information than SBUV; it has a resolution of �0.2 nm
in the range 240 - 350 nm. Signal to noise is severely restricted below 305 nm due to strong O3

absorption; measurements below this threshold are taken with a longer read-out (12 seconds). A
number of groups have looked at the retrieval of O3 profile data from GOME [13, 14, 15, 16]; most
use optimal estimation with a priori O3 profiles taken from a suitable climatology [17]. The retrieval
proceeds in two stages. A preliminary BUV-type retrieval is done for the short-wavelength pixels
below about 307 nm - this produces a stratospheric profile representative of the large air-mass scanned
during the 12-second read-out. The second step uses measurements in the Hartley-Huggins bands with
shorter read-out times (typically 1.5 seconds) and wavelengths out to 335 nm. The initially-retrieved
stratospheric profile is used as a priori for this second stage; complete atmosphere profiles can then be
retrieved for the smaller footprints. It is customary to include surface albedo and total aerosol optical
thickness as additional retrieved parameters. In an operational algorithm, the retrieval is improved by
including a fitting parameter for an additional “Ring spectrum” that characterizes the signature due
to inelastic Rotational-Raman scattering (this spectrum is present at every wavelength, but is seen
most clearly in the partly filled-in Fraunhofer lines of the backscatter spectrum). The Ring spectrum
can be determined either by using a simple semi-empirical method [18] or by simulations based on
appropriate radiative transfer modeling [19, 20].

Despite some years of study for the GOME project, there are a number of unresolved issues re-
garding the O3 profile retrieval. The GOME retrieval has been plagued by measurement uncertainties.
With the wide wavelength range and the use of measurements taken by two different serial read-out
detectors, the radiometric accuracy is critical. This has been seriously compromised in recent times
owing to the degradation of the instrument more than 5 years after launch. A second major source of
measurement error has been the polarization sensitivity of the GOME measurements [21, 22]. The
question of tropospheric sensitivity has not been investigated in any systematic way, nor has the issue
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of fitting window optimization. Some studies have been carried out to test the effect of temperature
profile and aerosol optical thickness model parameter errors, but the forward model error assessment
has received little attention (this includes the neglect of polarization in the radiative transfer model).
We address many of these issues in Chapters 4 and 5.

1.1.4. A note on DOAS-type retrievals

The DOAS (Differential Optical Absorption Spectroscopy) fitting method relies on a drastic sim-
plification of the forward model. Trace gas absorption is expressed in terms of the Beer-Lambert
law

Iλ(s;Ω) = Iλ(0)e
�τs(λ) (1.6)

for intensity Iλ at wavelength λ, and for a straight-line path with directionΩ and total length s through
the atmosphere. The path opacity τs(λ) is simply the slant path column density Cg(s;Ω) of gas g
multiplied by the appropriate trace gas absorption cross section σg(λ) at wavelength λ.

For GOME, Iλ(0) is usually taken to be the measured extraterrestrial solar spectrum. Leaving aside
issues to do with wavelength calibration of the solar and earthshine spectra, then from the extinction
law (1.6) and the definition of τs(λ), we see that the natural logarithm of the earthshine reflectivity
spectrum may be fitted to a reference trace gas absorption cross section using linear regression. This is
the basic DOAS fitting for the slant column density Cg(s;Ω). Smooth features in the reflectivity spec-
trum due to aerosol absorption and scattering, molecular scattering and surface reflectance properties
are filtered out with a low-order polynomial in wavelength. For more details on DOAS fitting, see the
review article by Platt [23]. Note that it is also possible to use non-linear least squares fitting to fit re-
flectivity directly against cross section reference spectra [24]. In both cases, division by a suitable Air
Mass Factor (AMF) will convert the slant result Cg(s;Ω) to a vertical column density Vg independent
of path direction Ω. This AMF conversion is normally a full radiative transfer computation, a pure
simulation that is divorced from the fitting process.

DOAS has been used for ground-based instruments to detect column distributions of trace species
such as O3 and NO2, HCHO and OClO and BrO (see [23] and references therein). The use of DOAS
with GOME measurements represents the first application of the method to remote sensing instru-
ments; the primary focus has been on total O3 column amounts [25]. Besides O3, a number of other
trace species column abundances have been recorded. NO2 [7], HCHO [26, 27] and BrO [24, 28, 29]
have all been measured by GOME on a global basis, and OClO [30] and SO2 [31] for special scenar-
ios. Related techniques have been used to derive H2O abundances [32, 33]. SCIAMACHY, GOME-2
and OMI will also employ this technique in various forms. See also the discussion in the Summary
and Outlook section.

1.2. Radiative transfer aspects

In section 1.2.1 we discuss general aspects of radiative transfer theory as they apply to the work
presented here. Following this background material, we summarize the discrete ordinate solution to
the radiative transfer equation (RTE). In section 1.2.3 we introduce the linearization of the discrete
ordinate model; this theme is the “Red Line” that runs through the thesis.
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1.2.1. Requirements in a planetary atmosphere

In general, a planetary atmosphere is inhomogeneous in both the vertical and horizontal directions.
In this work, we will not consider a full three-dimensional treatment of the radiative transfer equa-
tion (RTE) in such an atmosphere. We take the atmosphere to be stratified, that is, composed of a
number of homogeneous horizontal layers. The radiation field will then depend on a single vertical
coordinate (the vertical optical depth τ or the altitude) and the two directional variables µ (cosine
of the polar angle) and φ (azimuth angle with respect to a given direction). Radiative transfer in
planetary atmospheres is dominated by two light sources - thermal emission and the solar collimated
beam. In order to compute the radiation field I(τ;µ;φ) in the presence of a solar beam, we need to
specify the direction (�µ0;φ0) of the beam at the top of the atmosphere and the incident solar flux
πF� perpendicular to this direction.

We need also a wavelength grid at which the radiation field is to be found, plus a specification of
the optical properties of all atmospheric constituents at these wavelengths. This includes not only the
bulk properties such as the scattering and absorption cross sections of particulates in the atmosphere
(molecules and aerosols), but also a knowledge of their angular distribution of scattering (phase func-
tions). Finally the wavelength dependence and angular distribution of the surface reflectance must be
specified. For atmospheric thermal emission sources in local thermodynamic equilibrium, we require
black-body Planck functions and an indication of their dependence on vertical optical depth; thermal
emission is assumed isotropic. Kirchhoff’s relation between reflectance and emittance will hold at
surface boundary.

The stratification assumption allows RTE solutions to be determined in each layer. The complete
radiation field is then put together by means of a set of boundary conditions, namely: (1) the down-
ward diffuse radiation at the top of the atmosphere (TOA) is zero in the absence of thermal emission
sources; (2) at each intermediate layer boundary, the radiance is continuous in all polar (elevation)
and azimuthal directions; and (3) the upwelling radiance at the bottom of the atmosphere is a known
function of the incident downwelling radiance, the dependence being expressed in terms of the re-
flectance property of the surface. The simplest stratification assumes a plane-parallel medium that
neglects any sphericity due to the earth’s curvature. Plane-parallel RT models are valid for a wide
range of atmospheric problems. It is well known that this assumption breaks down for large solar
zenith angles, and also for wide off-nadir viewing angles. It has been shown that for viewing angles
close to nadir, the plane-parallel assumption is good to about 2% for solar zenith angles up to about
75� (see for example [34]).

The emphasis in this work is on nadir-viewing remote sensing applications from space; the plane-
parallel assumption is in general too restrictive to be applied on a consistent basis to simulations of
earthshine radiation. To allow for curvature effects, the simplest approach assumes that the atten-
uation of the direct solar beam is computed in a spherical-shell atmosphere, but that line-of-sight
attenuation and all scattering events continue to be treated for a plane-parallel medium. This is the
pseudo-spherical approximation; it has been shown to be valid close-to-nadir viewing for solar zenith
angles up to 90� [35]. In this work we also consider a sphericity correction for line-of-sight viewing
some distance from the nadir; attenuation in these directions is also treated for a curved stratified
atmosphere, and the radiation field is integrated along the line-of-sight direction instead of the nadir
direction assumed for the ordinary pseudo-spherical calculation.

Two further corrections will be used in this work. The first is the delta-M scaling procedure [36, 34]
which is useful for dealing with phase function angular distributions which are sharply peaked in the
forward direction. The delta-M transformation replaces the original phase function by a delta-function
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forward peak plus a smoother anisotropic residual; this results in a scaling (reduction) of the optical
depth and other optical properties. The second correction replaces approximate forms for the single
scatter contributions to the radiation field with more exact results based on precise specifications of
the phase function. The combination of these two corrections is the Nakajima-Tanaka single scatter
correction [37].

There are a number of different methods of solving the RTE in a multi-layer multiply-scattering
atmosphere, ranging from Monte-Carlo methods [38] through finite-difference techniques [39, 40] to
doubling and adding [41]. For a review of techniques, see the work by Lenoble [42]. Virtually all
these solution methods are intensity-only models, in that they generate only the radiance spectrum and
associated integrated quantities such as flux and mean intensity which are required for heating-rate
and radiative forcing simulations.

The generation of radiance derivatives in anisotropic scattering media has received much less at-
tention. The GOMETRAN finite-difference RT model was the first to generate simultaneous fields of
radiance derivatives without the need for finite difference approximations; GOMETRAN was devel-
oped by Rozanov and co-workers [40, 43, 44] for the GOME instrument. The present work reports
on the development of a generalized approach to weighting function derivation from the standpoint of
discrete ordinate tradiative transfer heory. Very recently, and again within the context of ozone profile
retrieval, perturbation methods have been applied to the Gauss-Seidel radiative transfer formalism to
generate analytic weighting functions [45].

For a given wavelength, light is properly described by a four-vector fI;Q;U;Vg of Stokes pa-
rameters. I is the intensity (radiance), and the customary polarization quantities (degree of linear
polarization, degree of circular polarization, direction of linear polarization) may be expressed in
terms of these Stokes parameters. For definitions, see [46] and [47]. Vector RT models are complex,
hard to implement and require large amounts of CPU time for their execution; most atmospheric RT
simulations have used the scalar intensity-only approximation. There have been very few remote
sensing instrument measuring polarized light, though this situation is changing. The intensity should
properly be calculated as the first component of the Stokes vector using a vector model; the scalar-
only assumption can lead to significant sources of error [48]. In this work, we develop linearization
and weighting function analysis for the scalar-only discrete ordinate radiative transfer equations. This
is a logical step to take before tackling the more complex problem of a vector model linearization
(research on this development has in fact already started). For further remarks on this paragraph, see
Chapter 6, Section 3.2.

Scattering will be regarded as non-conservative in this work; the case of conservative scattering
(no absorption) requires special mathematical treatment; it is never realized in practical situations in
the Earth’s atmosphere. We do not consider non-coherent (or inelastic) scattering, which involves a
certain proportion of photons changing frequency as a result of the scattering process. In the atmo-
sphere, Rotational-Raman (RR) scattering by air molecules results in a spectrum of discrete lines on
either side of the central Cabannes line. RR scattering contributions to earthshine radiance have been
modeled to first-order [20, 19], but there is still no comprehensive RT treatment of combined elastic
and inelastic scattering.

1.2.2. The discrete ordinate method

The discrete ordinate method of solving the radiative transfer equation in a scattering medium is
one of the oldest. It dates back to the pioneering work of Chandrasekhar in the 1940s [49]; he elevated
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the field of radiative transfer to a branch of mathematical physics in its own right. Chandrasekhar’s
book “Radiative Transfer” [46] is still an essential source text for scientists in this discipline.

For the diffuse radiance I(τ;µ;φ) (excluding the direct solar beam) in direction (µ;φ) and at optical
depth τ, the form of the integro-differential RTE used in this thesis is:

µ
dI(τ;µ;φ)

dτ
= I(τ;µ;φ)� J(τ;µ;φ) (1.7)

J(τ;µ;φ) =
ω
4π

Z 1

�1
dµ0
Z 2π

0
dφ0P (µ;φ;µ0;φ0)I(τ;µ0;φ0)+

ω
4π

P (µ;φ;�µ0;φ0)F�e�τspher(τ); (1.8)

where P (µ;φ;µ0;φ0) = P (Θs) is the phase function for scattering, which depends on scattering angle
Θs, and ω is the single scattering albedo. The scattering angle is given in terms of (incident and
scattered) directional variables through the usual relation:

cosΘs =�µµ0+
q

(1�µ2)
�
1�µ 02

�
cos
�
φ�φ0� : (1.9)

The source function J(τ;µ;φ) comprises the scattered diffuse light term (the multiple scatter integral),
the scattered light from the direct solar beam, and a thermal emission contribution (omitted here).
τspher(τ) is the slant path optical depth of the solar beam to the point of scatter, calculated in a curved
atmosphere (the pseudo-spherical approximation).

In common with a number of other radiative transfer solution methods, the azimuth dependence of
the radiation field is expressed as a Fourier cosine series in the relative azimuth angle:

I(τ;µ;φ) =
2N�1X
m=0

Im(τ;µ)cosm(φ0�φ): (1.10)

This requires the phase function to be expanded in a finite series of Legendre polynomials in the
cosine of the angle of scatter; the expansion coefficients are termed the phase function moments.
This reduces the problem to the solution of the Fourier components Im(τ;µ). The discrete ordinate
approach involves the use of a numerical quadrature scheme to approximate the integral over polar
directions in dealing with the multiple scatter source term. It is customary to use a double-Gauss
scheme, with quadrature abscissae and weights fµi;wig ; i = 1; : : : ;N defined separately for the up-
welling and downwelling hemispheres. The integer 2N is the total number of streams. The RTE is
then reduced further to the solution of a set of coupled linear first-order differential equations for the
stream components Im(τ;µi):

µi
dIm(τ;µi)

dτ
=Im(τ;µi)�

j=�NX
j=�1

wjΠm(µi;µ j)I
m(τ;µ j)�Qm(µi)e

�τspher(τ); (1.11)

Qm(µi) =
F�
2

(2�δm0)Πm(µi;�µ0); Πm(µ;µ0) =
ω
2

2N�1X
l=m

βlP
m
l (µ)Pm

l (µ0): (1.12)

with βl denoting the Legendre expansion phase function moments, and Pm
l (µ) the associated Legendre

polynomials in argument µ.

Homogeneous solutions are obtained by solving (1.11) without the solar beam term; in the general
case, the modern way uses eigensolution methods (see for example [34]). Particular solutions in the
presence of the solar term may be obtained by substitution methods (essentially trying a solution of
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the same form) or by the use of an infinite-medium Green’s function technique [50]. Both particular
solution methods have been implemented in the present work. Once this set of differential equations
is solved, the boundary conditions are invoked in order to establish the integration constants arising
from the solution. The stream components Im(τ;µi) may then be written down for any optical depth.
To establish the solution away from the quadrature streams, the source function integration technique
(again developed by Chandrasekhar) is used. This is essentially a smart interpolation; it ensures that
radiances at arbitrary µ satisfy continuity requirements at the boundaries.

Analytic two-stream solutions of the discrete ordinate equations have been worked out in detail
and applied to a number of atmospheric and ocean scenarios (for a summary, see [34]). A lim-
ited number of analytic 4-stream solutions have also developed [51]. With the advent of large and
powerful computers in the 1970s, it became possible to develop multiple scattering RT models for
multi-layer atmospheres. This was done for the 2N-stream plane-parallel discrete ordinate model
by Knut Stamnes and co-workers in a series of papers from 1980 onwards [52, 53, 54, 55, 56, 57],
culminating in the release of the DISORT plane-parallel radiative transfer package in 1988 [58].
DISORT is the most widely used RT code available to the atmospheric community. It is a generic
scattering formalism that does not require direct specification of atmospheric constituent inputs and
their optical properties at the microphysical level. Instead, it is only necessary to specify three optical
inputs for each layer - the total single scattering albedo, the vertical optical thickness and the total
phase function moments.

The philosophy behind the DISORT work was to build a general-purpose and flexible radiative
transfer package that could be used in a wide variety of atmospheric applications. The model applies
to a plane-parallel medium and includes both thermal and solar beam sources. The model is called as
a subroutine within an environment which the user tailors to his or her specific needs. The user will
then create the DISORT inputs from the set of atmospheric constituents and parameters appropriate
to the application. A pseudo-spherical version SDISORT has been developed [35], but unfortunately
this has not been packaged as a general-purpose tool in the same manner as DISORT itself. The
delta-M scaling is standard in DISORT. A second version of the code incorporates the single scatter
correction procedure of Nakajima-Tanaka [37].

1.2.3. Linearizing discrete ordinate theory: an introduction to LIDORT

As noted in Section 1.1.2, forward models used in iterative retrieval applications should be able to
generate weighting functions. These are partial derivatives of the radiance field with respect to pa-
rameters that will either be retrieved (elements of the state vector) or parameters that will contribute to
uncertainties in the retrieval. Weighting functions are also expressed in terms of Fourier components;
the definitions are:

Kξ (τ;µ;φ0�φ) =
2N�1X
m=0

K m
ξ (τ;µ)cosm(φ0�φ) ; (1.13)

K m
ξ (τ;µ) =ξ

∂Im(τ;µ)
∂ξ

or K m
ξ (τ;µ) = lim

ε!0

Im(τ;µ;ξ[1+ ε])� Im(τ;µ;ξ)
ε

: (1.14)

The parameter ξ may be anything from temperature to O3 volume mixing ratio or logarithm of the
column abundance, or aerosol scattering or extinction or asymmetry parameter. It can even be the
surface albedo. Recalling that the key inputs to a discrete ordinate model are the optical depth grid,
total single scattering albedos and total phase function moments, it is only necessary to first establish
the derivatives of these inputs with respect to ξ. Once this is done, chain-rule differentiation of
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the discrete ordinate radiances will yield the required weighting functions. Thus ∂ω=∂ξ, ∂τ=∂ξ and
∂βl=∂ξ are additional inputs required to generate weighting functions. As this thesis will show, the
entire discrete ordinate solution is explicitly differentiable at all places; no numerical approximations
are required. The level of accuracy (controlled largely by the number of streams) is the same for
radiance and weighting functions.

The first approach (Chapter 2 of this thesis) to the calculation of weighting functions used first-order
perturbation analysis; weighting functions are determined by relaxing the perturbation in (1.14) (sec-
ond part). This approach was first developed first for an analytic two-stream solution, then extended
to the general 2N-stream plane-parallel RT model. It was necessary to break down the entire radiance
solution in a multi-layer atmosphere into its component parts, and apply perturbation methods to each
part. The second approach (Chapter 3 of this thesis) was to generate radiance derivatives (1.14) by
direct explicit differentiation of the radiance field. This was done in the pseudo-spherical treatment,
and extended to produce output at arbitrary optical depth and direction.

On the basis of the linearization analysis, the numerical model LIDORT (LInearized Discrete Or-
dinate Radiative Transfer) has been developed and tested. The philosophy adopted for LIDORT is
the same as that for DISORT - to make a general-purpose and flexible radiative transfer package that
could be used in a wide variety of atmospheric applications, not just for simulating intensity, but also
for generating weighting functions that are necessary in so many retrieval applications. Like DIS-
ORT, LIDORT is a subroutine called from a user-defined environment. LIDORT too is a scattering
formalism; it does not need to know the number and nature of the atmospheric gases and particulates.
Validation of LIDORT is straightforward: radiances may be compared directly with DISORT and
SDISORT output, while weighting functions are validated using the finite-difference estimation (1.5)
and choosing εFD small enough.

Chapters 4 and 5 of the present work are concerned with the application of the linearized discrete
ordinate radiative transfer theory in the context of ozone profile retrieval from nadir viewing remote
sensing instruments such as GOME.

1.3. Scope of the thesis

1.3.1. Main goals of the work

The main goals of this work are:

1. To carry out a complete linearization of the discrete ordinate radiative transfer solution in
a multiply scattering multi-layer medium, with the purpose of deriving analytically accurate
weighting functions.

2. To develop a generalized radiative transfer forward model package (LIDORT) for the simul-
taneous and accurate generation of radiances and weighting function fields, for use in a wide
variety of atmospheric retrieval applications.

3. In the context of an O3 profile retrieval algorithm for nadir viewing space-borne instruments
measuring backscatter UV spectra, to investigate the accuracy of radiance and weighting func-
tion output from 4 and 6 stream versions of LIDORT.

4. Using an O3 profile retrieval algorithm based on 4-stream LIDORT, to carry out an error
assessment and some sensitivity studies of the retrieval.
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The work was divided into four stages:

1. The determination of analytic derivatives was first carried out for a plane-parallel atmosphere
for the TOA upwelling radiation field. This was done using perturbation analysis. This stage is
reported in Chapter 2 and resulted in the first LIDORT model.

2. Using direct differentiation of the discrete ordinate solution, the weighting function analysis
was generalized to include the pseudo-spherical treatment of the direct beam, and to produce
output anywhere in the atmosphere. The sphericity correction was developed at this stage. This
stage is reported in Chapter 3 and resulted in the second LIDORT model.

3. This covers the third goal above. TOA upwelling analytic radiances and derivatives were
worked out for 4 and 6 stream models and compared to 20-stream LIDORT output for a
wide range of scenarios in the UV spectral range. This stage includes incorporation of the
Nakajima-Tanaka single scatter correction.

4. This covers the fourth goal. Using optimal estimation methods, an examination was made
of temperature sensitivity and upper wavelength limits for the O3 profile retrieval algorithm.
The error assessment was carried out for forward model errors, measurement errors due to
polarization correction and model parameter errors such as temperature profile and aerosol
optical thickness uncertainties.

1.3.2. Thesis contents

In Chapter 2, we apply first-order perturbation analysis to the discrete ordinate TOA upwelling
radiance solution in a multiply-scattering multi-layer plane-parallel atmosphere. The homogeneous
and particular solutions in a given layer are examined and their first-order perturbations determined.
A new formalism is developed for the linearization of the eigenvalue equation that governs the homo-
geneous solution. The boundary value problem is then subject to the perturbation analysis, and this
yields the perturbed values of the integration constants; from these ingredients, weighting functions
at the discrete ordinate (quadrature) streams can be evaluated. A further step is then taken to develop
TOA weighting functions at arbitrary polar directions by applying the perturbation methods to the
post-processing source function integration which delivers radiances in these directions. A general
bidirectional treatment of the surface boundary condition is given; isotropic surface thermal emission
is included. In addition to the solar beam source, perturbation analysis is applied to the particular
solution pertinent to atmospheric thermal emission source terms; the treatment assumes a polynomial
dependence of the emission on optical depth.

Radiance output is validated against DISORT. Examples of weighting functions are presented for
a 5-layer test atmosphere; they are validated against finite difference estimates. A second example is
presented for a realistic terrestrial atmosphere with Rayleigh/aerosol scattering and O3 absorption in
the Hartley-Huggins band region of the UV spectrum; weighting functions for profiles of O3 volume
mixing ratio and temperature are given. Peak values of weighting functions in the UV below 320
nm are shown to possess the dependence of scattering penetration depth on wavelength that is a
cornerstone of the BUV retrieval algorithm for O3 profiles. A comparison with the GOMETRAN
model output is presented. This work resulted in the first version of the LIDORT model, and release
of a User’s Guide (Version 1.1).

In Chapter 3 we extend the linearization analysis to cover the generation of weighting function
output at arbitrary optical depth and viewing geometry, and to develop the analysis for a pseudo-
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spherical model. The emphasis is changed from perturbation methods to direct differentiation; the
linearization operator is introduced. A number of parameterizations for the pseudo-spherical atten-
uation of the direct solar beam are presented and their respective accuracies discussed. The Green’s
function particular solution is developed for the first time in a multi-layer atmosphere for the pseudo-
spherical treatment; the more traditional particular solution method due to Chandrasekhar is treated
in parallel. Derivatives and weighting function generation are worked out for the pseudo-spherical
average secant treatment; this requires some care in dealing with parameter dependencies from dif-
ferent layers (cross-layer derivative terms are largely absent in the plane-parallel situation). The
post-processing function is extended to generate upwelling and downwelling output of radiance and
weighting functions anywhere in the atmosphere. This allows the model to be used for ground-based
retrievals.

Validation of radiances is done against DISORT (plane-parallel) and SDISORT (pseudo-spherical).
A sphericity correction is developed for modeling TOA upwelling output at the wide-angle off-nadir
line-of-sight angles typical of GOME-2 and OMI viewing situations; this involves the use of multiple
scatter output from LIDORT in conjunction with more precise calculations of atmospheric upwelling
single scattering along the line-of-sight. Examples are presented for a 60-layer atmosphere with
Rayleigh and aerosol scattering and O3 absorption. Plane-parallel and pseudo-spherical radiance and
weighting function output are compared for a number of viewing geometries. The effect of refraction
is investigated. Examples are also presented showing the effect of the sphericity correction; it is
shown that this correction is essential for GOME-2 and OMI. This paper is the template for Version
2.1 of the numerical package LIDORT.

Chapters 2 and 3 are the “concept papers”. Chapter 4 is a major investigation of the forward model
accuracy required for the application of LIDORT to the O3 profile retrieval algorithm. In particular
we are interested in the use of 4 and 6 stream models for performance enhancement in fast-delivery
retrieval. The formalism developed in the previous two chapters is re-examined, with special emphasis
placed on the development of analytic homogeneous and particular solutions obtainable with the
use of low stream numbers. It is shown that additional weighting functions may be obtained with
respect to quantities such as the aerosol asymmetry parameter which affect the angular distribution
of scattering; this opens up the model to a wider range of potential aerosol retrieval problems. A
post-processing function is developed using the Nakajima-Tanaka single scatter correction; this uses
an exact form of the phase function, but with transmittance calculations evaluated in an atmosphere
with a (delta-M) scaled optical depth grid. This single scatter term is then combined with a multiple
scatter calculation from LIDORT to generate more accurate output. The sphericity correction from
Chapter 3 is extended to incorporate the NT correction.

With the same reference atmosphere as that used in the previous chapter, 4 and 6 stream TOA
upwelling output is compared with accurate 20-stream LIDORT results for a wide range of viewing
geometries. The wavelength range 299-335 nm is covered. The effect of cloud optical thickness is
examined for a cloud layer. Other scenarios involving optically thick layers superimposed on the
clear sky reference atmosphere are investigated (Saharan dust, volcanic, polluted boundary layer).
Radiance error limits are established for all scenarios. It is shown that the 4-stream radiance error is
generally in the range 1.5-2.0% for most scenarios; the NT procedure does not always improve the
accuracy. 6 stream accuracies in radiance are in general a factor of 3 better; the NT correction is very
successful for 6 streams. Weighting function errors are restricted to �2% in the 6 stream case. Wide-
angle sphericity-corrected output is examined in detail for the four instruments listed in Appendix
A; without this correction GOME-2 and OMI output can be 5-8% in error at swath extremes. This
research resulted in the current version of LIDORT (V2.3), and an updated User’s Guide to Version
2.3.
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Chapter 5 presents results using the operational O3 profile algorithm under development at KNMI
for the GOME-2 instrument. We review the main points of optimal estimation theory, concentrating
on the classification and derivation of error sources and on the singular value decomposition (SVD)
of the weighting function matrix. This allows a clear interpretation of the sources of information in
the retrieval. We define the degrees of freedom for signal (DFS) diagnostic as a measure of retrieval
precision. The 4 stream LIDORT RT model from Chapter 4 is used in the forward model. Syn-
thetic measurement data is created on a 34-layer grid using LIDORT simulations together with a high
resolution solar spectrum; noise and instrument response characteristics are taken for the GOME-2
instrument. The state vector profile is a series of partial O3 column densities; a priori values are taken
from a suitable O3 climatology. Surface albedo is retrieved simultaneously.

We use the DFS diagnostic to investigate profile precision and tropospheric profile resolution based
on the temperature dependence of the Huggins-band O3 cross-sections; the increase in DFS from
cold to warm tropospheric regimes is most apparent in the 313-322 nm range. Absolute values of
DFS depend on scenario variables such as solar zenith angle and albedo, and also on the degree of
regularization in the retrieval. The DFS is also used to optimize the choice of an upper wavelength
limit for the fitting; it is shown that the inclusion of wavelengths above 322 nm does little to increase
its value.

We look at the effect of forward model errors on the O3 profiles due to the assumption of a low
number of streams used in the discrete ordinate solutions; 4/20 stream errors are shown to be un-
acceptably large for wavelengths in excess of 320 nm. Using output from a polarization RT model,
we quantify the profile error due to the neglect of polarization in the RT modeling. We look at
profile accuracy as a function of calibration errors on GOME radiances due to the implementation
of polarization correction algorithms; this is shown to be a major source of error for tropospheric
profile elements. We investigate the effect of model parameter errors on the retrieval, concentrating
on temperature and aerosol optical thickness uncertainties. For aerosols, the optical thickness of
the lowest tropospheric layer is a critical source of error for the retrieval of the lowest O3 profile
element. It is shown that temperature errors are significant everywhere in the atmosphere; stringent
requirements on temperature uncertainty are needed to minimize this source or error in the overall
profile accuracy.

Appendix A contains brief details on the four instruments GOME, GOME-2 SCIAMACHY and
OMI that are featured in this thesis. We note the spectral ranges and resolutions, the footprint and
swath dimensions, and the nominal read-out times. The main target constituents are listed for each
instrument. Brief remarks are made about calibration issues and (with the exception of OMI) the
polarization devices. Appendix B contains some notes on the construction and layout of the LIDORT
numerical software package. The scope of LIDORT Version 2.3 is summarized, and the directory
structure of the package is outlined along with short descriptions of the functions of the main modules.
Further details may be found in the User’s Guide to LIDORT Version 2.3.





Chapter 2

A linearized discrete ordinate
radiative transfer model for
atmospheric remote sensing retrieval

This chapter has been published in the Journal of Quantitative Spectroscopy and
Radiative Transfer, 68, 689-735, 2001, and was co-authored by T.P. Kurosu and K.V.
Chance.
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Abstract

The radiative transfer forward model simulation of intensities and associated pa-
rameter derivatives (weighting functions) is a vital part of the retrieval of earth
atmospheric constituent information from measurements of backscattered light. The
discrete ordinate method is the most commonly used approach for the determination
of solutions to the radiative transfer equation. In this paper, we carry out an internal
perturbation analysis of the complete discrete ordinate solution in a plane-parallel
multi-layered multiply-scattering atmosphere. Perturbations in layer atmospheric
quantities will translate into small changes in the single-scatter albedos and optical
depth values. In addition, we consider perturbations in layer thermal emission source
terms and in the surface albedo. It is shown that the solution of the boundary value
problem for the perturbed intensity field leads in a natural way to the weighting
function associated with the parameter causing the perturbation. We have developed
a numerical model LIDORT (LInearized Discrete Ordinate Radiative Transfer) for
the simultaneous generation of backscatter intensities and weighting function output
at arbitrary elevation angles, for a user-defined set of atmospheric variations. Re-
sults for a 5-layer test atmosphere with two scatterers and thermal emission terms
are shown. Intensities are validated against benchmark discrete ordinate results,
while weighting functions are checked for consistency against finite difference re-
sults based on external perturbations. A second example is presented for a 60-layer
terrestrial atmosphere with molecular and aerosol scattering and ozone trace gas
absorption in the UV spectral range; weighting functions are shown to correspond
closely with results derived from another radiative transfer model.
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2.1. Introduction

2.1.1. Background and rationale

The derivation of atmospheric constituent distributions and surface properties from surface-based,
airborne and satellite remote sensing instruments plays a vital role in monitoring the earth’s atmo-
sphere and understanding the chemical and physical processes therein. A common feature of all
retrievals is the need for an accurate forward model for the generation of synthetic quantities such as
radiances, fluxes and weighting functions. The model should include a full treatment of all orders
of scattering. Accurate multiple-scatter forward models are also critical for addressing problems in
stellar and planetary atmospheres.

The retrieval process will generate estimates of a number of atmospheric parameter distributions
which together constitute the state vector X of parameters to be retrieved. The retrieval is the formal
inverse of the forward problem Y = F(X), where Y is the vector of synthetic measurements and F
is a function describing the attenuation of solar and/or thermal emission radiation in the atmosphere
by means of absorption, scattering and reflection of light. This function is specified by a radiative
transfer model. In most cases, F has a complex dependence on the atmospheric parameters X, and
the inverse problem is often solved with a non-linear iterative scheme based on likelihood estimation.
Uncertainties in the retrieval will depend not only on the accuracy of the instrumental measurements
but also on uncertainties inherent in the modeling of the atmosphere and on assumptions made about
the accuracy of any a priori information.

Non-linear least squares fitting [2] has been and continues to be a standard technique for many
remote sensing problems, for example the global fitting of limb emission spectra [59]. The opti-
mal estimation retrieval algorithm [60, 4] has found much use in constituent profile retrieval from
backscatter and emission measurements. In particular, we note the application of this method to ozone
profile retrieval from nadir backscatter measurements made by instruments such as SBUV [11] and
GOME [13, 14, 15]. A number of related retrieval techniques are used in the remote sensing context,
including Phillips-Tikhonov regularization [3], and Chahine inversion [61]. In order to illustrate the
retrieval requirement for forward model synthetic measurements and associated weighting functions,
we give an example for the optimal estimation approach [60, 4].

The solution of the inverse problem X=F�1(Y) is constrained by the existence of an independent a
priori state vector Xa with error covariance Sa. Assuming Gaussian statistics with error covariance Sm

associated with measurement vector Ym, the optimization minimizes with respect to X the functional

Φ= (X �Xa)
T S�1

a (X �Xa)+(Y �F(X))T S�1
m (Y �F(X)) : (2.1)

The T-superscript denotes matrix transpose. If the forward model is linearized about the state Xn:

F(X) = F(Xn)+Kn(X �Xn)+O(X�Xn)
2; (2.2)

then the estimate for the next guess of the state vector is given by

Xn+1 = Xa+G�1KT
n S�1

m [(Ymeas�Yn)�Kn (Xa�Xn)] ; (2.3)

where

G = KT
n S�1

m Kn +S�1
a : (2.4)

Here, Yn = F(Xn) is the synthetic measurement computed from a forward model calculation based on
atmospheric state vector Xn, and Kn is the Jacobean matrix of forward model parameter derivatives
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(also known as weighting functions) evaluated at Xn. Kn represents the responses of the simulated
intensity to small changes in atmospheric parameters that make up state vector Xn. (Henceforth we
use the term “weighting functions” for Kn). The starting point for the state vector iteration is often
taken to be the a priori value. For optimal estimation and other iterative retrieval algorithms, it is
clear that the radiative transfer model must generate the set fYn;Kng for each state vector estimate
Xn.

In many circumstances, a simplified model of atmospheric light attenuation can be used, for which
weighting functions can be determined in a straightforward manner from explicit expressions. Thus
for example in solar occultation viewing, extinction of the line-of-sight solar beam predominates over
atmospheric backscatter, which is ignored in the forward model (see for example [61] for SAGE II
retrieval). However for instruments measuring backscattered light in the UV, visible and near infrared
regions, multiple scattering of light in the earth’s atmosphere is an important physical process that
cannot be neglected. Although accurate values for Yn for multiple scattering scenarios have been
determined from a variety of radiative transfer (RT) solution methods (see [42] for a summary of
techniques), less attention has been paid to the calculation of weighting functions Kn.

Finite difference approximations to Kn have often been derived by using external perturbations.
Here, two independent simulations of the atmospheric attenuation are made, one for an unperturbed
atmosphere, the other for an atmosphere in which a single parameter has been changed by a small
amount; the intensities are subtracted and divided by the parameter change. This process must be
repeated for each parameter to be retrieved, and at every iteration step of the retrieval. In addition to
the time-consuming nature of this approach, the accuracy depends in a rather ad hoc manner on the
magnitude of the external perturbation. This is particularly evident when the optical properties depend
in a complex non-linear fashion on the atmospheric parameter in question (for example, temperature).

The main purpose of this paper is the development of a forward model LIDORT (LInearized
Discrete Ordinate Radiative Transfer) that will generate quickly and accurately any desired set of
backscatter weighting functions in a multi-layered atmosphere with anisotropic scatterers, as well as
the backscatter intensity field. The model is based on the discrete ordinate method for the solution
of the radiative transfer equation (RTE). This method has a long history, from the pioneering work of
Chandrasekhar in the 1940s [46, 49] to the DISORT package developed by Stamnes and co-workers
in the 1980s [58]. DISORT in particular has been widely used in atmospheric radiative transfer
applications, and has recently been installed in MODTRAN [62] to provide a reliable scattering
formalism.

The discrete ordinate approach uses optical depth as the vertical coordinate; scattering properties
are specified by means of layer single-scatter albedos and phase functions. The method reduces the
full RTE to a set of coupled linear first-order differential equations. We show that first-order per-
turbation analysis may be carried out explicitly on the discrete ordinate solutions to these equations.
Furthermore, we show that the boundary condition problem applied to the perturbed intensity field
generates in a natural way the complete field of first-order parameter derivatives. Analytic expressions
may be developed for all weighting functions, which can then be calculated rapidly and to the same
level of accuracy as the (unperturbed) backscattered intensity.

We look at the following general scenario pertinent to satellite retrieval applications in the earth’s at-
mosphere. We confine our attention to intensity and weighting function output for upwelling radiation
at the top of the atmosphere (TOA). The atmosphere will be assumed plane-parallel, with each layer
treated as homogeneous and possessing several non-conservative scattering particulates. Two sources
of light will be considered – the beam source (prototype for solar illumination) and an isotropic
thermal emission source. No diffuse light is incident on the top of the atmosphere. The atmosphere is
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bounded below by a reflecting surface with a known bi-directional or Lambertian reflection function.
The lower boundary may also have a thermal emission property (assumed isotropic). The scope of the
plane-parallel DISORT package [58] covers this scenario, and this version of DISORT will be used
as the standard for validating the backscatter intensity results. Polarization effects are not included.

For weighting function derivation, we need to know how variations in layer atmospheric quantities
will be manifested as changes to the layer single-scatter albedos and optical thickness values. We will
not consider changes to phase function angular distributions (although this is in principle possible in
the perturbation analysis). The effect of atmospheric parameter variations will also be included in the
thermal emission source term. For the surface property, we will consider perturbations of the total sur-
face albedo (but not the angular distribution of the bi-directional reflectance) and the surface emission
term. These assumptions will allow a wide variety of weighting functions to be derived, including
those with respect to layer trace gas concentrations, layer temperatures and pressures, cloud and
aerosol scattering and extinction coefficients, molecular scattering coefficients, and thermal emission
coefficients.

As part of the algorithm development for the GOME satellite instrument [5], a weighting function
analysis has been carried out on the GOMETRAN RT model developed for this instrument [43]. This
model uses altitude rather than optical depth as the vertical coordinate, and the RTE for a multi-layered
atmosphere is solved using finite differences for the altitude derivatives. This transforms the complete
problem to a linear matrix algebra system [39, 40], which is then subject to first-order perturbation
theory for the generation of weighting function output. As is often the case with altitude finite-
differencing, great care must be taken with the choice of vertical grid. This version of GOMETRAN
has been used in some studies of ozone profile retrieval from GOME nadir backscatter measurements
using optimal estimation methods [14, 15].

2.1.2. Overview of the paper

In Section 2.2 we recapitulate the discrete ordinate solution for the backscattered intensity. Follow-
ing the basic RTE definitions (Section 2.2.1), the description falls into two parts: (1) solution of the
discrete ordinate differential equations for the homogeneous and particular integrals for each layer,
the component solutions being evaluated at the computational quadrature angles (Section 2.2.2); (2)
the intensity field derivation using appropriate boundary conditions at the top and bottom of the atmo-
sphere, plus continuity of the field at intermediate layer boundaries, to fix the constants of integration;
the solution is completed using the post-processing function, that is, the derivation of intensities for ar-
bitrary (user-defined) zenith angles using the source function integration method (Section 2.2.3). This
exposition follows closely the DISORT description [58]. Although much of this material is familiar
(see for example [58] or [34]), the exposition given here is designed to illuminate the perturbation
analysis that follows.

In Section 2.3.1 we introduce some definitions and rules for the first-order perturbation analysis of
the discrete ordinate solution. In Section 2.3.2 we apply these rules to the layer homogeneous and
particular solutions of the perturbed RTE. This is followed by a description of the boundary conditions
required for the perturbed intensity field (Section 2.3.3). Section 2.3.4 outlines the derivation of ana-
lytic expressions for TOA weighting functions with respect to layer parameters for both the discrete
ordinate stream angles and the post-processed off-quadrature directions; the TOA albedo weighting
functions are treated in Section 2.3.5. The whole of Section 2.3 is designed to give an overall summary
and description of the weighting function analysis without going into excessive mathematical detail.
Most of the algebraic manipulations have been placed in Appendices 2.6.1, 2.6.2 and 2.6.3.
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An analytic formulation of the discrete ordinate solution for a single layer was first developed by
Chandrasekhar [46, 49] using the full-space quadrature scheme over the interval (�1;1). It turns out
that a complete analytic perturbation analysis can also be developed with this quadrature scheme.
This approach is not as flexible or as powerful as the “double” quadrature eigenproblem method
used in DISORT and the present work. The original Chandrasekhar solution and the corresponding
perturbation analysis are presented for completeness in Appendix 2.6.4.

In Section 2.4 we consider the numerical model LIDORT developed from the theory in Sections 2.2
and 2.3, and provide two examples of weighting function simulations. Following some discussion of
the model and its implementation (Section 2.4.1 to Section 2.4.3), the first example treats a 5-layer
atmosphere with two scatterers and beam and thermal source terms; this scenario will illustrate the
principles behind the weighting function derivations. In Section 2.4.5, we examine a realistic scenario
involving a 60-layer terrestrial atmosphere with both molecular (Rayleigh) and aerosol scattering,
and including ozone absorption, for a number of wavelengths in the UV region. In both examples,
we check the LIDORT weighting function output by comparing with external finite-difference values
obtained from independently-calculated intensities based on perturbed atmospheric parameters. In
addition, values of intensity in all cases are checked against DISORT results for the same scenar-
ios. Finally, we show that the weighting function results in Section 2.4.5 are consistent with values
computed from the GOMETRAN model [43] for the same scenario.

In Section 2.5 following the summary, we remark on future developments for LIDORT. These
include (i) additional options to output weighting function fields at arbitrary optical depths and
stream angles, for both upwelling and downwelling directions; (ii) the generation of mean-value
output (fluxes, mean intensities); (iii) the treatment of the direct beam attenuation in a curved at-
mosphere; and (iv) a vectorization of the model for the treatment of fully-polarized light. The first
three developments have been carried out, and will be the subject of a second paper (R. Spurr, in
preparation).

2.2. The discrete ordinate solution

2.2.1. Radiative transfer equation (RTE)

The equation of radiative transfer for the diffuse intensity field I in a plane-parallel scattering
medium may be written

µ
dI(τ;µ;φ)

dτ
= I(τ;µ;φ)� J(τ;µ;φ): (2.5)

The scattering is assumed to be completely coherent (no redistribution among wavelengths), so that
Equation (2.5) is valid for a monochromatic intensity field. The optical depth coordinate τ is measured
perpendicular to the medium boundaries with τ = 0 at TOA, and the direction is specified through µ
(absolute value of the cosine of the zenith angle) and φ (azimuth angle). In this paper, the source term
J is defined to be:

J(τ;µ;φ) = Jext(τ;µ;φ)+
ω(τ)
4π

Z 2π

0
dφ0
Z 1

0
dµ0P(τ;µ;φ;µ0;φ0)I(τ;µ0;φ0): (2.6)

Here Jext = Jbeam + Jthermal is the sum of the beam and atmospheric thermal emission source terms,
ω(τ) is the single-scatter albedo, and P(τ;µ;φ;µ0;φ0) the phase function; the last term in Equation (2.6)
represents the multiple scatter contribution.
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The source term Jbeam corresponds to scattering of a parallel beam of incident flux µ0F� in direc-
tion f�µ0;φ0g; Jthermal represents thermal emission (assumed isotropic) as determined by a Planck
function B(T ) at temperature T (which is regarded as a function of τ). Specifically:

Jbeam(τ;µ;φ) =
F�
4π
ω(τ)P(τ;µ;φ;�µ0;φ0)e

�τ=µ0 ; (2.7)

Jthermal(τ;µ;φ) = (1�ω(τ))B(T ): (2.8)

Next, we expand the intensity as a Fourier cosine series in the relative azimuth φ0�φ, and the phase
function as a series of Legendre polynomials in the cosine of the scatter angle Θ between directions
fµ;φg and fµ0;φ0g:

I(τ;µ;φ) =
2N�1X
m=0

Im(τ;µ)cosm(φ0�φ); (2.9)

P(cosΘ) =
2N�1X
l=0

βlPl(cosΘ); (2.10)

where βl are the phase function moments of the Legendre expansion, and

cosΘ=�µµ0+
q

(1�µ2)
�
1�µ 02

�
cos
�
φ�φ0� : (2.11)

This development yields a separate equation for each of the 2N Fourier components:

µ
dIm(τ;µ)

dτ
= Im(τ;µ)�

Z 1

�1
Dm(τ;µ;µ0)Im(τ;µ0)dµ0� Jm

ext(τ;µ); (2.12)

where m = 0;1; : : :2N�1. The external source term may be written

Jm
ext(τ;µ) = δ0m (1�ω(τ))

SX
s=0

bsτs +
F�
2π

e�τ=µ0 (2�δm0)Dm(τ;µ;µ0): (2.13)

The auxiliary quantities Dm(τ;µ;ν) are defined by

Dm(τ;µ;ν) =
ω(τ)

2

2N�1X
l=m

βl(τ)Pm
l (µ)Pm

l (ν): (2.14)

The Pm
l (µ) are associated Legendre polynomials. The addition theorem for Legendre polynomials has

been used in the Fourier decomposition. For the thermal source term, the Planck function B(T ) has
been expressed as a power series in optical depth [52], where the bs are the expansion coefficients.

In the Nth discrete ordinate approximation, the multiple scatter source term integral is replaced by a
quadrature sum defined by the set fµi;aig; i = (�1; � � ��N) of Gauss-Legendre quadrature abscissae
and weights. In order to obtain RTE solutions, the atmosphere is assumed to consist of a number
of homogeneous layers, with ω and βl constant for a given layer. In the rest of this section we
confine our attention to one such layer (the superposition of layers will be addressed in Section 2.2.3).
The solution for Fourier component m is then determined by solving the set of 2N linear first-order
differential equations for Im(µi), the intensities at the computational (quadrature) stream angles:

µi
dIm(τ;µi)

dτ
= Im(τ;µi)�

X
j

a jD
m(τ;µi;µ j)I

m(τ;µ j)� Jm
ext(τ;µi): (2.15)



Chapter 2 26

Here, j = (�1; � � ��N) is the quadrature sum. In this equation, Jm
ext(τ;µi) and Dm(τ;µi;µ j) are given

by Equations (2.13) and (2.14) evaluated at the quadrature cosines.

Two kinds of quadrature regimes are usual – a full-range (“single”) scheme over the interval
(�1;1), and a “double” scheme with quadratures defined separately for µ 2 (0;1) and µ 2 (�1;0). In
both cases µ� j = µ j and a� j = a j, for j = 1; : : :N. For the single scheme, the abscissae are just the 2N
zeros of P2N�1(µ) in the interval (�1;1). The single scheme was used by Chandrasekhar in his origi-
nal development of an analytic discrete ordinate solution to Equation (2.15) (see Appendix 2.6.4); this
solution depends on the orthonormality of the Legendre polynomial set fPl(µ); l = 0;1; : : :2N�1g.

The double quadrature scheme reflects in a natural way the upward and downward stream sepa-
ration of the intensity field, and the symmetrical distribution of abscissae about µ = �0:5 ensures
a more representative spread of points around µ = 0 and jµj = 1 than that achieved with the single
scheme. With the advent of an eigenvalue approach to the solution of Equation (2.15), the double
scheme has now become standard in DISORT (see [34] and references therein for a discussion of
quadratures). The double scheme is adopted as the default in the present work, though the option to
use the single scheme and the analytic solution developed in Appendix 2.6.4 has been retained in the
numerical model.

Surface boundary condition

The lower surface of the atmosphere is assumed to have a general bi-directional reflecting property.
The bi-directional surface reflection function ρ(µ;φ;µ0;φ0) is expanded as a Fourier series in cosine
azimuth:

ρ(µ;φ;µ0;φ0) = ρ0(µ;µ
0)+2

2N�1X
m=1

ρm(µ;µ
0)cosm

�
φ�φ0� : (2.16)

In the discrete ordinate approximation, the reflection condition for the mth Fourier component of the
diffuse intensity at the lower boundary is then

Im(+µi) = (1+δm0)
NX

j=1

µ ja jI
m(�µ j)ρm(µi;�µ j); where i = 1; : : :N: (2.17)

In the present work, a normalized form of the bi-directional reflection is used:

ρm(µi;�µ j) = Rρ�m(µi;�µ j); where R =
1
4

Z 1

0

Z 1

0
µµ0ρ0(µ;µ

0)dµdµ0: (2.18)

R is the surface albedo. For the Lambertian case, ρ�0(µi;µ j) = 1 for all streams and ρ�m = 0 for m > 0.
Expressions for ρm may be derived from invariance principles [46], and these functions have been
investigated in a number of applications ranging from planetary atmospheres [63] to the treatment of
terrestrial clouds as bi-directional reflecting surfaces [64].

The upwelling radiation at the lower boundary τ= τg also has a contribution from the reflection of
the direct beam; this has the form:

Im
direct(µi;τg) =

F�µ0

π
e�τg=µ0Rρ�m(µi;�µ0): (2.19)
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Furthermore, for the azimuth-independent component, a surface emission term may be included:

Iemission(µi) = δm0κ(µi)B(Tg); (2.20)

where the black-body function B(Tg) depends on surface temperature Tg. The directional surface
emissivity κ(µ) is determined from Kirchhoff’s law:

κ(µ) = 1�2R
Z 1

0
µ0ρ�0(µ;µ

0)dµ0: (2.21)

2.2.2. Solutions of the basic equations

Homogeneous solution

We summarize the main results from the eigenvalue approach to the homogeneous RTE developed
by Stamnes and co-workers [58, 52, 56]. The treatment is the same for each Fourier component,
,and we henceforth drop the index m except where necessary (for example in the Legendre sum
in Equation (2.23) below). Homogeneous solutions of (2.15) may be found with the ansatz Ij _

Xj exp(�kτ) for j =�1; � � ��N. Because of the quadrature symmetry, it can be shown that the values
of k2 are real numbers satisfying the following reduced eigenvalue equation of order N:�

Γ� k2E
�
ς= 0; where Γ= (ζ�η)(ζ+η) : (2.22)

With indices i; j = 1; : : :N, the matrices ζ and η are given by

ζi j =
�

D+
i ja j�δi j

�
=µi and ηi j = D�

i ja j=µi; with D�
i j =

ω
2

2N�1X
l=m

βlP
m
l (µi)P

m
l (�µ j):

(2.23)

In the above, E is the unit matrix. Values of k occur in pairs �kα;α= 1; : : :N. The corresponding
solution vectors are X�

jα, and these are related to the eigenvectors ς of Equation (2.22) by means of
the relation ς jα = X+

jα+X�
jα. The difference vector defined by ϑjα = X+

jα�X�
jα satisfies the following

auxiliary equation linking it to the eigenvector ς:

kαϑiα =
NX

j=1

�
ζi j +ηi j

�
ς jα: (2.24)

Details of these derivations may be found in [52] and [58]. For components of X�jα at negative
stream angles, we use the symmetry relations

X+
� jα = X�

jα and X�
� jα = X+

jα: (2.25)

The eigenproblem in Equation (2.22) can be solved reliably using standard numerical packages
such as those in LAPACK [65]. A suitable LAPACK driver would be module DGEEV (double preci-
sion) for a general non-symmetric eigenmatrix such as Γ in (2.22). However, DGEEV looks for real
and imaginary components, and it is quicker to use a dedicated routine solving for real eigenvalues
only. The module ASMYTX as used in DISORT is convenient for this purpose. Both modules are
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implemented in the code; DGEEV and ASYMTX give identical results in all cases, but the latter is
faster. A normalization condition will be imposed on the eigenvectors (this will be important in the
perturbation analysis):

ς2
α
� NX

j=1

ς2
jα = 1; for α= 1; : : :N: (2.26)

Eigenvectors from module ASYMTX are unnormalized; those from DGEEV already satisfy (2.26).

Particular solutions

For the particular solution of (2.15) appropriate to the plane-parallel beam source term, an ansatz
of the form Ij �Wj exp(�τ=µ0) yields the following (see [52] for details):

NX
j=�N

A(beam)
i j Wj = B(beam)

i ; (2.27)

where

A(beam)
i j =

�
1+

µi

µ0

�
δi j�a jDi j and B(beam)

i =
F�
2π

(2�δm0)D(µi;�µ0): (2.28)

Di j is defined as in (2.23), but with indices i; j = �1 � � � �N for all stream angles. D(µi;�µ0) is
defined similarly for the cosine of the beam solution zenith angle. Equation (2.27) may be solved
as a standard linear matrix algebra problem for the component values Wj. In the model, this is done
using the LAPACK combination DGETRF for an LU-factorization of the matrix A(beam), followed by
DGETRS for the solution by back-substitution. Note that it is possible to use the intrinsic symmetry of
the discrete ordinate equations to halve the order of the system (2.27); one then requires an auxiliary
equation and sum and difference vectors defined in a similar way to those used for the homogeneous
solution (see for example [66]).

The particular solution of Equation (2.15) corresponding to the thermal emission source term may
be found with the power-series substitution Ij = δm0

PS
s=0 Tj;sτs. Successive powers of optical depth

τ in the resulting polynomial are equated to zero, generating the following recurrence relation for the
coefficients Tj;s:

X
j

A(thermal)
i j Tj;s =

�
(1�ω)bsei for s = S;

(1�ω)bsei +(s+1)µiTi;s+1 for s < S;
(2.29)

where A(thermal)
i j = δi j�a jDi j and ei is a 2N-vector with unit entries. The linear algebra system (2.29)

can again be solved using LAPACK modules DGETRF for the LU decomposition of A(thermal),
followed by repeated application of DGETRS for the recurrence coefficients Tj;s.

2.2.3. Boundary conditions and the complete solution

We assume there are K homogeneous layers in the atmosphere, with K + 1 layer boundaries. We
use indices p, q and r for labeling layers. Combining the discrete ordinate homogeneous solutions
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layer 1 (first) BC1

BC2

layer 2

layer K (final)
BC3

(a)

BC1

BC3

BC2

BC2

BC2

(b)

Figure 2.1: (a) Boundary conditions for the discrete ordinate solution in a multi-layer atmosphere;
(b) schematic matrix structure for the boundary value problem. There are N discrete ordinates in the
half-space and K layers in total. In (b), each small block has N rows and 2N columns; the complete
matrix has 2NK columns and 2NK rows, with 3N�1 sub-diagonals and 3N�1 super-diagonals. All
other entries are zero.
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and the particular integrals, the quadrature components of the diffuse intensity in layer p are given
by:

I jp =
NX
α=1

LpαX+
jpαe�kpα(τ�τp�1) +MpαX�

jpαe�kpα(τp�τ) + Jjp; (2.30)

where

Jjp =Wjp exp(�τ=µ0)+δm0

SX
s=0

Tjp;sτs: (2.31)

Suitable boundary conditions will enable the integration constants Lpα and Mpα to be determined.
Here we have used the scaling transformation suggested by Stamnes and Conklin [56] and used in
DISORT [58] to ensure that the exponential factors remain bounded and the discrete ordinate solution
numerically stable. The boundary conditions are (see Figure 2.1a):

(BC1) no downward diffuse radiation at the top of atmosphere;
(BC2) continuity of the intensity field at all intermediate levels;
(BC3) a surface reflection condition at the lowest level.

In terms of the discrete ordinate solutions (2.30), these conditions may be written respectively as

I� jp(τ0) = 0; for j = 1; : : :N and p = 1; (2.32a)

I jr(τr) = I jp(τr); for j =�1; : : :�N and 1 < p6 K;r = p�1; (2.32b)

I jK(τK) = (1+δm0)R
NX

i=1

aiµiρ�m(µ j;�µi)I�iK(τK)+ I�(µ j); for j = 1; : : :N: (2.32c)

Here, I�(µ j) in (2.32c) comprises a surface emission term and a reflection of the direct beam:

I�(µ j) = δm0κ(µ j)B(Tg)+
F�µ0

π
e�τK=µ0Rρ�m(µ j;�µ0): (2.33)

Setting transmittances Θpα = exp(�kpα∆p), for p = 1; : : :K;α= 1; : : :N, where ∆p = (τp� τp�1) is
the optical thickness of layer p, we substitute the discrete ordinate solutions (2.30) into the boundary
conditions (2.32a)-(2.32c) to arrive at the following set of equations which define the linear algebra
system for the solution of the boundary value problem:

NX
α=1

n
LpαX+

� jpα+MpαΘpαX�
� jpα

o
= �J� jp

��
τ0

; (2.34a)

NX
α=1

hn
LrαΘrαX+

jrα+MrαX�
jrα

o
�
n

LpαX+
jpα+MpαΘpαX�

jpα

oi
=
�
Jjp� Jjr

���
τr

; (2.34b)

NX
α=1

n
LpαΘpαΦ+

jα+MpαΦ�jα
o
= I�(µ j)�Ψ j

��
τK
: (2.34c)

Equation (2.34a) is BC1 for p = 1 and j = 1; : : :N; (2.34b) is BC2 for p = 2; : : :N, r = p� 1 and
j =�1; : : :�N; and (2.34c) is BC3 for p=K and j = 1; : : :N. Jjp are the particular integrals evaluated
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at the optical depths indicated. We have the following two auxiliary equations for the BC3 condition:

Φ�jα = X�
jKα� (1+δm0)R

NX
i=1

aiµiρ�m(µ j;�µi)X
�
�iKα; (2.35a)

Ψ j = JjK
��
τK
� (1+δm0)R

NX
i=1

aiµiρ�m(µ j;�µi) J�iKjτK
: (2.35b)

Equations (2.34a)–(2.34c) may be written in the matrix form AX = B , and solved simultaneously
for the vector X of unknowns. The structure of the matrix A is shown in Figure 2.1b; the order of
this linear system is 2NK. The matrix A has 3N�1 sub- and super-diagonals; once it is compressed
into band-storage form, a standard LU-decomposition linear matrix algebra package can be used to
find the solution efficiently. To this end, the double precision driver modules DGBTRF and DGBTRS
from LAPACK [65] were used. DBGTRF executes the LU-factorization of A and is called once.
DGBTRS finds the solution X by back-substitution and can be called repeatedly for different vectors
B . In particular, it will be seen in Section 2.3 that the weighting funtion problem reduces in essence
to the creation of a series of vectors Bc which depend on the parameter c being varied; the matrix A
is unchanged.

The above procedure gives the intensity field at the quadrature streams for any optical depth in
the atmosphere, and for a single Fourier component. For the satellite application, the upwelling TOA
intensity field may be found by substituting τ= 0 for p = 1 and j = 1; : : :N in (2.30).

For the intensity at arbitrary µ, we use the source function integration technique (also known as
“post-processing”) which was first developed by Chandrasekhar [46], and is now standard practice
in discrete ordinate theory. It has been shown (see for example [34]) that in addition to preserving
continuity at off-quadrature stream cosines, this method is superior to numerical interpolation over
the quadrature solutions. Here we confine our attention to upwelling TOA intensity.

The procedure relies on the formal integration of Equation (2.5). In an inhomogeneous atmosphere,
source terms must be integrated on a layer by layer basis. We adopt the recurrence relation

Ip�1(µ) = Ip(µ)γp(µ)+Λp(µ) (2.36)

for the upwelling intensity Ip�1(µ) at the top of layer p. The layer transmittance factor is defined to
be γp(µ) = exp(�∆p=µ) where ∆p = τp�τp�1, and the integrated layer source term Λp is defined by

Λp(µ) =

τpZ
τp�1

dτ
µ

Jp(τ;µ)e�(τ�τp�1)=µ: (2.37)

The recurrence is valid for p = K to p = 1. The starting value is the bottom-of-the-atmosphere source
term IK(τK;µ), and the desired TOA result is I0(µ). In (2.37), the term Jp(τ;µ) in the integrand is
approximated by its discrete ordinate form:

Jp(τ;µ)' F�
2π

(2�δm0)D(µ;�µ0) e�τ=µ +
X

j

a jD(µ;µ j)Ip(τ;µ j); (2.38)

where the D(µ;µj) and D(µ;�µ0) terms are defined as before, but with the arbitrary stream cosine µ
replacing the quadrature values µi. One can then perform the optical depth integrations explicitly and
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write down closed-form expressions for the layer source terms and the recursion starter IK(τK;µ). For
the details of these calculations, refer to Appendix 2.6.3.

This completes the solution for a single Fourier component; to generate the intensity field at arbi-
trary azimuth angles, we sum these components according to Equation (2.9). Although it is possible to
compute all Fourier terms (2N�1 harmonics require at least N half-space quadratures), it is usual to
terminate the azimuth series when the addition of an extra harmonic does not alter the overall intensity
by more than a pre-specified relative amount υ (a typical value is υ= 0:005). This convergence test
must be satisfied for each output stream. Furthermore, it makes sense to apply this convergence test
to at least two successive azimuth contributions to avoid accidental omissions (the Rayleigh scatter
intensity contribution for m = 2 is greater than that for m = 1 for example). This procedure is adopted
in the present work, in line with the policy of DISORT [58] and GOMETRAN [40] regarding series
convergence.

2.3. Perturbation analysis of the discrete ordinate solution

2.3.1. Rules for the layer perturbation analysis

For a multi-layer atmosphere, we wish to determine the sensitivity of the discrete ordinate solution
to a variation in a single atmospheric variable xq defined in layer q. A perturbation in xq will induce
changes in the main optical inputs for the layer, namely the single-scatter albedo ωq and the layer
optical thickness ∆q. We suppose that xq changes by a relative amount ε, and that to first order in ε,
this induces a relative change of uqε in ωq, and an absolute change of vqε in ∆q. The variation xq in
layer q does not affect single-scatter albedos in other layers. However, the optical depth value at the
bottom of the layer q has increased by vq; for all layers below q, the optical depth values are increased
by the same amount. The quantities uq and vq depend on the constitution and physical properties
of the atmosphere. Since the discrete ordinate method is a generic scattering formalism, it is not
necessary to know this dependence in the perturbation analysis that follows. Using primes to denote
first-order perturbed values, we write:

x0q = xq(1+ ε); (2.39a)

ω0p =

(
ωq
�
1+uqε

�
; for p = q;

ωp; otherwise;
(2.39b)

τ0p =

(
τp+ vqε; for p> q;

τp; for p < q:
(2.39c)

To include sensitivity to the thermal emission source term, we suppose that the variable xq induces an
absolute change hqs in each of the Planck function coefficients bqs in Equation (2.13); coefficients for
layers other than q are not affected. Thus

b0ps =

(
bps+ εhps; for p = q, s = 0; : : :S;

bps; otherwise:
(2.39d)

These are the perturbation analysis rules. The variational quantities uq, vq and hqs are inputs to the
model; the examples in Section 2.4 will illustrate the construction of these inputs for two test-case
atmospheres. It should be noted that the above rules apply only to plane-parallel atmospheres; for a
curved-atmosphere treatment of the direct beam attenuation (the “pseudo-spherical” model), the rules
governing the optical depth variation vq are quite different (R. Spurr, paper in preparation).
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2.3.2. Perturbation analysis of the discrete ordinate component solutions

Now we examine the discrete ordinate solution given by (2.30) and (2.31). For layer q, the beam
source particular solution vector Wjq and the eigenvalues kqα and solution vectors Xjqα of the homo-
geneous equation depend only on the single-scatter albedo ωq for that layer. In fact, all three of these
quantities are directly proportional to ωq, and it follows from (2.39b) that changes in these quantities
are directly proportional to uqε. The first-order perturbed values of k, X and W are thus defined as:

k0qα = kqα+uqε fqα; (2.40a)

X 0
jqα = Xjqα+uqεYjqα; (2.40b)

W 0
qα =Wqα+uqεZqα: (2.40c)

The thermal emission particular solution vector Tjqs depends both on ωq and on the expansion coeffi-
cients bqs. For this term the first order perturbed value is defined to be:

T 0jqs = Tjqs + εVjqs: (2.40d)

In these definitions, j = �1; : : :�N labels the quadrature streams, α = 1; : : :N labels the eigenso-
lutions, and s = 0; : : :S labels the thermal expansion coefficients. These definitions apply only to
the RTE solutions in layer q; for other layers, unperturbed values of the homogeneous solution and
particular integrals may be used.

The first task of the perturbation analysis is to establish the quantities f , Y , Z and V defined
in Equations (2.40a)–(2.40d). To derive f and Y , it is necessary to construct a perturbed form of
the eigenproblem (2.22) based on the single-scatter albedo variation uq; the normalization condi-
tion (2.26) provides an additional constraint. First-order theory reduces the calculation to a linear
algebra system of order N +1. The details of this calculation can be found in Appendix 2.6.1. Pertur-
bation analysis for the particular integral factors Z and V is more straightforward, since the original
(unperturbed) solution vectors W and T were determined through linear matrix algebra; the details
are also given in Appendix 2.6.1.

Assuming these component factors have been determined, we move on to the second stage of the
analysis.

2.3.3. Perturbation analysis of the boundary value problem

This is the most important step of the analysis. We require perturbed values of the constants of
integration, which we define as follows:

L0pα = Lpα+ εNpα; (2.41a)

M0
pα = Mpα+ εPpα: (2.41b)

These definitions are valid for all layers p = 1; : : :K and for α= 1; : : :N. The task of this section is to
determine the factors Npα and Ppα.

We can write down expressions for the perturbed intensity field I0jp, making a distinction between
layer q in which varying atmospheric property xq induces changes in both single-scatter albedo and
optical depth, layers p < q for which there is no change in optical depth, and layers p > q, for which
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only the optical depths are altered. Specifically:

I0jp =W 0
jpe�τ=µ0 +

NX
α=1

L0pαX
0+
jpαe�k0pα(τ�τr)+M0

pαX
0�
jpαe�k0pα(τ0p�τ);for p = q; (2.42a)

I0jp =Wjpe�τ=µ0 +
NX
α=1

L0pαX+
jpαe�kpα(τ�τr)+M0

pαX�
jpαe�kpα(τp�τ);for p < q; (2.42b)

I0jp =Wjpe�τ=µ0 +
NX
α=1

L0pαX+
jpαe�kpα(τ�τ0r)+M0

pαX�
jpαe�k0pα(τ0p�τ);for p > q: (2.42c)

Only the beam source term has been included in the above (this is purely for convenience of expo-
sition). In these definitions, τ0p = τp + εvq for p > q, r = p� 1, and the argument τ is regarded as a
dummy variable.

The key point is that the same boundary conditions hold for the perturbed field as those applied to
the original field. There are three cases to be distinguished and eight separate conditions; these are
illustrated in Figure 2.2, and summarized below with reference to the set of equations (2.42a)–(2.42c).
The general situation involves variation in a layer q that is somewhere in the middle of the atmosphere
(Case 1, BCL1 to BCL6). For q = 1, we have Case 2 with modified TOA condition BCL3M followed
by BCL4 to BCL6. For Case 3, q = K (bottom layer), and we require BCL1 to BCL3 followed by a
modified lower boundary condition BCL4M. The eight conditions are:

(BCL1) No downward diffuse radiation for p = 1 at τ= τ0;
=) Set Equation (2.42b) to zero for downwelling streams;

(BCL2) Continuity at level τ= τp�1, for 1 < p < q.
=) Equate two expressions of type (2.42b) at this level, for all streams;

(BCL3) Continuity at upper boundary τ= τq�1 of layer q.
=) Equate (2.42a) and (2.42b) at this level, for all streams;

(BCL4) Continuity at lower boundary τ= τq of layer q.
=) Equate (2.42a) and (2.42c) at this level, for all streams;

(BCL5) Continuity at level τ= τp, for q < p < K.
=) Equate two expressions of type (2.42c) at this level, for all streams;

(BCL6) Surface boundary condition for p = K at τ= τK .
=) Construct condition from expressions of type (2.42c) at this level;

(BCL3M) No downward diffuse radiation for q = 1 at τ= τ0.
=) Set Equation (2.42a) to zero for downwelling streams;

(BCL4M) Surface boundary condition for q = K at τ= τK.
=) Construct condition from expressions of type (2.42a) at this level.

Explicit analytic expressions for these eight boundary conditions can be found in Appendix 2.6.2. It
is seen that the boundary value solution for Npα and Ppα has the same form as that used in Section 2.2.3
for constants Lpα and Mpα. Recalling the linear system AX = B defined by conditions BC1, BC2 and
BC3 for the original field, we now have a similar system AX�= B� for the perturbed boundary condi-
tions. Here, the column vector B� depends uniquely through uq and vq on the atmospheric parameter
xq that is being varied, and of course on the layer q in which the variation occurs. Since the matrix A
has been established and its LU-decomposition already performed for the unperturbed boundary value
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layer 1 BCL1

BCL3

layer 2

layer K (varying)
BCL4M

BCL2

layer K-1

layer 1 (first) BCL1

BCL3
BCL4

layer 2

layer q-1
layer q (varying)
layer q+1

layer K (final)
BCL6

BCL5

BCL2

layer 1 (varying) BCL3M
BCL4

layer 2

layer K (final)
BCL6

BCL5

layer K-1

Case 1: 1 < q < K (v arying layer in middle of atmosphere)

Case 2: q = 1 (v arying layer at top of atmosphere)

Case 3: q = K (v arying layer at bottom of atmosphere)

Figure 2.2: Boundary conditions for the perturbed discrete ordinate solution in a multilayer
atmosphere.
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problem, it follows that solutions X � may be found by straightforward back-substitution using the LU-
factorized form of A . Thus the determination of the perturbed integration constants is equivalent to
the construction of a series of column vectors B� for each parameter to be varied. These column
vectors may be constructed from the detailed expressions listed in Appendix 2.6.2.

2.3.4. Layer weighting function computation

We now have all the ingredients in place for an explicit derivation of the complete discrete ordinate
solution for the perturbed field corresponding to a variation xq in layer q. The normalized weighting
function components for the quadrature streams µj are found by relaxing the first-order perturbation:

K jp(xq) = xq
∂I jp

∂xq
= lim

ε!0

I0jp� I jp

ε
: (2.43)

This definition is quite general and weighting functions for the quadrature streams can be computed
at any optical depth. For the TOA upwelling values, set p = 1 and τ= 0. To determine the perturbed
field (and hence the weighting functions) at TOA for arbitrary zenith angles µ, we must carry out
a post-processing evaluation of the perturbed field. We may write down a perturbed version of the
recursion relation (2.36)

I0p�1(µ) = I0p(µ)γ
0

p(µ)+Λ0p(µ): (2.44)

Note that γ0q(µ) = γq(µ)
�
1� vqε=µ

�
, and γ0p(µ) = γp since only layer q contributes to the variation

of optical thickness ∆q. To determine Λ0p(µ), we go back to the original expressions derived in Ap-
pendix 2.6.3 using the source function integration method, and apply the perturbations explicitly
using the quantities derived in sections 2.3.2 and 2.3.3 for the perturbed discrete ordinate solution.
This is a relatively involved exercise, and care must be taken to distinguish between the layer q
containing the varying parameter xq and all other layers. We also require the perturbed bottom-of-
the-atmosphere source term I0K(µ) that starts the recursion (2.44). Details of these calculations may be
found in Appendix 2.6.3. As in (2.43) above, the TOA weighting function is determined by relaxing
the perturbation ε.

The perturbation analysis described above applies to a single Fourier component (harmonic) of the
intensity. The azimuth cosine expansion Equation (2.9) applies equally to the weighting functions
defined in (2.43) and (2.44), namely:

K jp (x;φ0�φ) =
2N�1X
m=0

K m
jp(x)cosm(φ0�φ) ; (2.45)

where x is the parameter undergoing variation. In this work, a separate convergence test is not applied
to the series in Equation (2.45); we continue to rely on the convergence criterion applied to the
unperturbed intensity field.

2.3.5. Albedo weighting functions

To derive an albedo weighting function, a relative perturbation is applied to the albedo: R0 =
R(1+ ε). This perturbation does not affect layer optical depths and single-scatter albedos so we can
use the original homogeneous solutions and particular integrals in all layers. We then have only to
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solve for the perturbed integration constants Npα(R) and Ppα(R) relevant to this problem. The sur-
face boundary condition will require special consideration for an albedo variation (call this condition
BCL6R), but for the other levels BCL1 and BCL2 as described in section 2.3.3 will apply. Once
again, the determination of the perturbed-field integration constants will emerge from the solution of
the linear system AX � = B�, where the column vector B� (R) now depends uniquely on the albedo
perturbation. The derivation of BCL6R and the associated vector B� (R) are given in Appendix 2.6.2.

The TOA albedo weighting function is given at the quadrature streams by

K jp(R) = R
∂I jp

∂R
= lim

ε!0

I0jp� I jp

ε
; for p = 1 and τ= 0: (2.46)

The post-processed albedo weighting function is easy to establish. Since there is no layer variation,
we can use the recursion relation (2.36) and the source function terms (2.37) for the original solution,
together with a new bottom of the atmosphere source function which reflects the albedo variation.
Details can be found in Appendix 2.6.3.

Surface emission plays no part in the perturbation analysis for weighting functions with respect to
layer parameters that may vary. However, since the surface emissivity depends on the albedo R, its
variation must be included when dealing with albedo weighting functions. This consideration applies
only to the fundamental Fourier harmonic m = 0. If R0 = R(1+ ε) is the albedo perturbation, then
from the definition in Equation (2.21), the perturbed emissivity is found to be

κ0(µ) = κ(µ)+(κ(µ)�1)ε: (2.47)

This is true for all values of µ, not just the quadrature streams. Equation (2.47) is required in the
determination of the perturbed boundary condition BCL6R in the presence of surface emission.

2.4. The LIDORT model; two weighting function examples

Before discussing the two examples of LIDORT results in sections 2.4.4 and 2.4.5, we summarize
the LIDORT package and remark on two practical aspects, the first regarding atmospheric inputs for
more than one scatterer, and the second the issue of weighting function verification.

2.4.1. Implementation of the LIDORT package

The numerical model LIDORT aversion 1.1 is based on the theory of the previous two sections.
Intensity and weighting function output is determined for the positive (upwelling) direction at TOA
(τ= 0), for arbitrary angular direction (µ;φ). and for a plane-parallel medium. The number of terms
in the Fourier series required for convergence depends on the azimuth angle and the degree of the
discrete ordinate approximation. Double precision arithmetic is used throughout LIDORT; the code is
written in FORTRAN 77. For the numerical tools, we used module ASYMTX for the homogeneous
solution eigenproblem (extracted from DISORT), and LAPACK modules [65] for all linear matrix
algebra systems. The model contains a standardized error handling procedure in addition to a number
of auxiliary routines for both the reading of input data from files, and the generation of result data to
file.

LIDORT has been designed as a generic tool to be used in a wide variety of retrieval applications.
It is a pure scattering formalism; the detailed physics required to set up the optical inputs for any
given application must be supplied by the user. The “atmospheric preparation” interface for LIDORT
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is one of the most important aspects, and we discuss this in detail for the two examples below. There
are no databases or climatologies of atmospheric and optical properties in the model. The LIDORT
package is called as a subroutine within a user-defined environment; the usage is similar to that for
DISORT citestammes:88.

In order to make the model portable and robust, it is necessary to develop a clearly-interfaced and
well-documented software package that will help the user to find the right application. The LIDORT
User’s Guide has a description of the complete package, with detailed notes on the input variables
required to run the model, a discussion with examples on the construction of a typical environment
for the model and an interface to set up the appropriate geophysical inputs. The User’s Guide also
contains instructions on installation and execution. A test data set has been prepared for release; this
is based closely on the example described in detail in Section 2.4.5. The LIDORT source code and
User’s Guide may be downloaded from the SAO web site (http://cfa-www.harvard.edu/lidort/).

2.4.2. Treatment with several types of scatterers

In most practical applications, there are often two or more scatterers present (for example in terres-
trial atmospheres). Although the theory of Sections 2.2 and 2.3 was presented for a single scatterer, it
is straightforward to extend the equations to deal with two or more particulates. For an intensity-only
calculation, we can define a combined single-scatter albedo ωq and phase function moments βlq for
layer q:

ωq =
X

d

ωqd and βlq =
X

d

βlqdωqd

ωq
: (2.48)

where d is an index for the scatterers and l for the phase function moment. One can then apply the
discrete ordinate formalism using the quantities defined in (2.48); the combination ωqβlq appears in
the Legendre polynomial sums (2.14). (DISORT [58] also uses this kind of input). For the weight-
ing functions, we suppose that atmospheric parameter xq is varying in layer q, inducing variational
changes uqxd in the individual single-scatter albedosωqd . Using the above combination, we can define
a perturbed form (ωqβlq)

0 = ωqβlq
�
1+uqlxε

�
. The combined variational input uqlx is then given by

uqlx =
1

ωqβlq

X
d

βlqdωqduqxd: (2.49)

One can then proceed with the perturbation theory as described in Section 2.3. These considerations
do not apply to the optical depth variation. In the examples below, we will illustrate the generation of
input quantities ωqd and uqxd .

2.4.3. Weighting function verification

All weighting function output may be checked against finite-difference equivalents calculated us-
ing independent intensity-only calls to the model for externally perturbed atmospheric conditions.
To obtain a “finite-difference” weighting function KFD(xq) with respect to atmospheric parameter
xq in layer q, we apply small relative external perturbations �εFD to xq. The layer input to the
model is reconfigured by using x+q = xq(1+ εFD) instead of xq in layer q, and leaving all other inputs
unchanged. The perturbation will change the single-scatter albedo in layer q and the optical depth grid
for all levels below and including q. The resulting TOA intensity is denoted I(x+q ). The simulation is
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repeated with x�q = xq(1�εFD) for the perturbed variable, with the result I(x�q ). The finite difference
approximation to the weighting function is

KFD(xq)'
I(x+q )� I(x�q )

2εFD
: (2.50)

Although the double quadrature scheme is usual, some extra runs were also carried out using
the single scheme over the interval (1;�1). For this latter scheme, we have the additional closed-
form expressions for the homogeneous and particular solutions developed in the original work by
Chandrasekhar; as noted in Appendix 2.6.4, these require an initial determination of the roots of the
characteristic equation. It is also shown in this appendix that closed-form expressions for the per-
turbed values of these component solutions can be derived. These alternative expressions allow us to
make an independent check on weighting function solutions derived using the usual “eigenproblem-
and-linear-algebra” approach to the RTE solution. (The characteristic equation was solved using
standard eigenvalue modules from Numerical Recipes [67]; this involves considerably less work than
solving the complete eigenproblem).

2.4.4. LIDORT test for a 5-layer medium with two types of scatterers

The first example described here is for a 5-layer atmosphere (5 layers is sufficient to test all eight
of the perturbed boundary conditions in Section 2.3.3). This example will illustrate the generation
of variational inputs uq and vq controlling weighting function output. This scenario also provides a
shakedown test for the model.

First consider a single homogeneous layer with absorption and scattering coefficients α and σ (per
unit depth), and altitude thickness z. The single-scatter albedo is ω= σ=(α+σ), and the optical depth
is τ= z(α+σ). If we perturb the absorption coefficient α by a relative amount ε, then α0 = α(1+ε),

ω0 = ω(1+uaε) ; where ua =�α=(α+σ); and (2.51a)

τ0 = τ+ vaε; where va = αz: (2.51b)

Similarly if the scattering coefficient σ is perturbed by a relative amount ε, so that σ0 = σ(1+ε), then

ω0 = ω(1+usε) ; where us = α=(α+σ); and (2.52a)

τ0 = τ+ vsε; where vs = σz: (2.52b)

Thus for a single layer specified solely by absorption and scattering coefficients, the parameter vari-
ations fua;vag and fus;vsg must be input to LIDORT in order to obtain weighting functions with
respect to these coefficients.

We now extend these arguments to a 5-layer atmosphere with two particulates. Let the absorption
and scattering coefficients be αqd and σqd , with q = 1; : : :5, indexing the layers, and d = 1;2 indexing
particulates, along with altitude thickness values zq. The layer optical thickness values are δq =
eqzq, where the layer extinction is eq = αq1 + σq1 + αq2 + σq2. Single scatter albedos are ωqd =
σqd=eq. The two particulates have layer phase function moments βlq1 and βlq2, where l = 0; : : :2N�1.
Phase function moments for this test case can be generated by assuming the Henyey-Greenstein phase
envelope (see for example [68]), for which the moments are powers of the asymmetry parameters gqd ,
that is, βlqd = (gqd)

l . Table 2.1 summarizes all the optical properties used in this example.

In a given layer q, there are four possibilities for the parameter xq, namely the absorption coefficient
of particulate 1, the scattering coefficient of particulate 1, the absorption coefficient of particulate
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2, or the scattering coefficient of particulate 2. (In Equation (2.53) below, we keep this ordering).
Now let uqdx be the perturbations induced in ωqd by xq, that is, ω0qd = ωqd(1+ εuqdx). Let vqx be
the corresponding changes induced in optical thickness values τq. By the reasoning used to derive
Equations (2.51a,b) and (2.52a,b), we have for this scenario:

uq1x =

2
6664

�αq1=eq

1�σq1=eq

�αq2=eq

�σq2=eq

3
7775 ;uq2x =

2
6664

�αq1=eq

�σq1=eq

�αq2=eq

1�σq2=eq

3
7775 ; and vqx =

2
6664
αq1zq

σq1zq

αq2zq

σq2zq

3
7775 : (2.53)

For each layer, the quantities in (2.53) constitute the required input to the LIDORT model to obtain
the desired weighting function output.

Property/Layer 1 2 3 4 5

Absorption coefficient, scatterer 1 0.05 0.17 0.32 0.50 0.35
Absorption coefficient, scatterer 2 0.04 0.18 0.36 0.56 0.37
Scattering coefficient, scatterer 1 0.25 0.25 0.25 0.25 0.25
Scattering coefficient, scatterer 2 0.25 0.26 0.27 0.28 0.29
Layer thickness 0.05 0.05 0.05 0.05 0.05
Cumulative optical depth 0.0295 0.0725 0.1325 0.2120 0.2750
Single scatter albedo, 1 0.42373 0.29070 0.28033 0.15733 0.19841
Single scatter albedo, 2 0.42373 0.30233 0.22500 0.17610 0.23016
Asymmetry parameter, scatterer 1 0.63 0.71 0.69 0.69 0.69
Asymmetry parameter, scatterer 2 0.65 0.70 0.60 0.65 0.65
Thermal emission coefficient b0 0.2813 0.5684 0.5820 0.5692 -0.7276
Thermal emission coefficient b1 19.128 9.3951 9.2080 9.3048 15.422

Table 2.1: Setup for 5-layer test of LIDORT

The solar zenith angle cosine µ0 is taken to be 0:75 and the relative azimuth angle 0�. The surface
is assumed Lambertian with albedo R = 0:3. Thermal emission is omitted from the first set of results.
The RTE is solved using eight discrete ordinate streams in the hemisphere. With four possible param-
eter variations for each of the five layers, there are 20 layer weighting functions in all. LIDORT will
generate the TOA intensity and all 20 weighting functions with a single call from a master module.
Generation of this set of weighting functions using the external finite-difference approximation (2.50)
would require 40 separate calls to an intensity-only model. In addition to the eight quadrature values,
intensity and weighting function output is given at seven user-defined zenith angles, several of which
are deliberately chosen close to quadrature values in order to test the accuracy of the post-processing
function. With a Fourier azimuth series accuracy criterion of 0:001, seven Fourier terms are required
for convergence. All the results in Table 2.2 are direct-beam normalized (that is, the flux factor F� in
Equation (2.7) is set to 1).

In this table, DISORT intensity output for the same scenario is presented for comparison; the
agreement with the LIDORT values is excellent, with small differences in the last decimal places
probably due to the single-precision arithmetic used in DISORT. The last two columns are normalized
weighting functions for a variation in layer 3 of the scattering coefficient for particulate 1, calculated
first with LIDORT in weighting function mode, and secondly with LIDORT in intensity-only mode
calculating finite difference approximations to the weighting functions based on a 2% external per-
turbation of the scattering coefficient. The results are close, because of the near-linear dependence
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Stream
angle in �

LIDORT
Intensity

DISORT
Intensity

σ31 Weighting
Function

σ31 WF by 2%
Finite Diff.

88.86231� 0.105562 0.105592 -1.623333E-03 -1.623342E-03
84.16484� 0.0661006 0.0661281 -4.062011E-03 -4.062021E-03
76.27667� 0.0516912 0.0516913 -3.317248E-03 -3.317252E-03
65.90300� 0.0491804 0.0491682 -2.687362E-03 -2.687364E-03
53.72103� 0.0490656 0.0490606 -2.313743E-03 -2.313744E-03
40.29133� 0.0498576 0.0498572 -2.107697E-03 -2.107698E-03
26.06016� 0.0501983 0.0501983 -1.989064E-03 -1.989065E-03
11.43654� 0.0504737 0.0504737 -1.932222E-03 -1.932223E-03
88.85 0.105363 0.105393 -1.637481E-03 -1.637491E-03
80.0 0.0557402 0.0557520 -3.682994E-03 -3.683000E-03
76.27 0.0516864 0.0516865 -3.316667E-03 -3.316671E-03
45.0 0.0495563 0.0495551 -2.164834E-03 -2.164835E-03
30.00 0.0500726 0.0500726 -2.013753E-03 -2.013753E-03
11.44 0.0504737 0.0504737 -1.932232E-03 -1.932232E-03
0.0 0.0504358 0.0504359 -1.917111E-03 -1.917111E-03

Table 2.2: LIDORT output for relative azimuth 0�. Quadrature angles are marked with an asterisk.

of the solution on the input optical parameters. Figure 2.3 (top) shows the intensity output (stream
angles are marked with an asterisk) from Table 2.2. Note the smooth interpolation to user-defined
zenith angles. Figure 2.3 (bottom) are the TOA weighting functions with respect to the absorption
and scattering coefficients in layer 3.

Some further runs with this scenario were carried out to test the inclusion of thermal emission
source terms. Two thermal expansion coefficients b0q and b1q were computed off-line using the Planck
function module in DISORT, for a temperature of 550K (TOA), and 600K, 620K, 640K, 660K, and
680K at the lower boundaries of the succeeding five layers, and for spectral range of 5000 to 5100
wavenumbers. The coefficients b0q and b1q are shown in Table 2.1 in the last two rows (up to a factor
of 4π, DISORT takes the same numbers in its computation of the intensity). Using these coefficients
enables us to check intensity values against DISORT output. To test the effect of changes in intensity
due to thermal emission variations, we assume that any of the optical properties of the atmosphere
will induce an identical change in the thermal expansion coefficients. That is, if ζ0q = ζq(1+ ε) for
property ζq, then b0sq = bsq(1+ ε) for each of the thermal expansion coefficients. This means that
the perturbation input values defined in Equation (2.39d) are hsq = bsq for s = 0 and s = 1. This
is obviously not a physical situation, but it serves to check that weighting functions with respect to
the Plank function coefficients are being correctly calculated. A similar selection of results for this
scenario is shown in Figure 2.4.

2.4.5. Ozone VMR and temperature profile weighting functions in a terrestrial
atmosphere

For this example, the atmosphere has height 60 km, with a vertical resolution throughout of 1
km. Molecular (Rayleigh) scattering and aerosol scattering are present in all layers. We take O3

volume mixing ratio (VMR) temperatures and pressures for a “tropical” standard atmosphere [69],
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Figure 2.3: Intensity and weighting function output for a 5-layer atmosphere, relative azimuth 0�:
(top) intensity (quadrature values marked by asterisk); (bottom) weighting functions for layer 3.

Figure 2.4: Intensity and weighting function output for 5-layer atmosphere, relative azimuth 0�, in-
cluding thermal and surface emission: (top) intensity (quadrature values marked by asterisk); (bottom)
weighting functions for layer 3.
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interpolated to the mid-points of each layer. The temperature and ozone VMR profiles are shown in
Figure 2.5.

Figure 2.5: Temperature and O3 volume mixing ratio profiles for 0–60 km; “tropical” atmosphere.

For the first runs, we take a single wavelength of λ = 324:8863 nm at one of the peaks of the O3

Huggins absorption bands; cross section values are obtained from a standard data set [70]. These
cross sections ξ are temperature-dependent so they must be evaluated for each layer temperature Tq

using the quadratic parameterization [70]:

ξλ(Tq) = ξλ0

n
1+
�
Tq�T0

�
ξλ1 +

�
Tq�T0

�2ξλ2

o
: (2.54)

Here, the first coefficient ξλ0 is the value at reference temperature T0. If the O3 VMR in layer q
is Cq, and the cross-section is ξλ(Tq), then the molecular absorption coefficient αq1 (in [km�1]) is
αq1 =Cqξλ(Tq)ρq, with the air density ρq in [mol cm�2 km�1] given by ρq =

�
T0Pq=P0Tq

�
ρ0, where

the zero suffix denotes values at standard temperature and pressure (STP).

The Rayleigh scattering cross section at STP is given by:

QRay(T0) =
32π3(n�1)2

3L2λ4 � 6+3∆
6�7∆

; (2.55)

where ∆ is the depolarization ratio, L is Loschmidt’s number, and n is the refractive index of air. Values
of QRay may be calculated from an empirical formula [18]. QRay needs to be multiplied by the layer air
density ρq to obtain the required scattering coefficient σq1 [km�1]. For the aerosol loading and optical
properties, a LOWTRAN model [71] is selected, with maritime-type boundary layer aerosol and
background stratospheric and tropospheric optical properties; values from the database are linearly
interpolated to wavelength λ. The resulting optical coefficients (in [km�1]) are αq2 and σq2.

The Rayleigh scattering envelope has an a+ bcos2θ dependence with respect to scatter angle θ;
there are only three terms in the phase function Legendre expansion. The Rayleigh phase function
Legendre moments are β0 = 1, β1 = 0 and β2 = (1� ∆)=(2+ ∆). The depolarization ratio ∆ is
wavelength-dependent and may be computed from another empirical formula [18]. For the aerosols
we assume Henyey-Greenstein phase functions with asymmetry parameters taken from the appropri-
ate choice of LOWTRAN aerosol loading and interpolated to the wavelength of interest. The solar
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zenith cosine µ0 is taken to be 0:75, the relative azimuth 60� and the Lambertian surface albedo 0:75.
A 10-stream approximation is used in the RTE solution, with accuracy criterion 0:001. All output is
normalized to the incident intensity of the direct beam. There is no thermal or surface emission.

We are interested in weighting functions with respect to the O3 VMR profile distribution Cq.
Writing C0q =Cq(1+ ε) for the perturbation, we find that

uq1(Cq) = uq2(Cq) =�αq1=eq; (2.56a)

vq1(Cq) = αq1 zq: (2.56b)

Here, αq1 is the O3 absorption coefficient as defined in (2.54) et:seq:, and eq and zq the total extinction
and height thickness for layer q.

Figure 2.6: LIDORT results for a 60-layer atmosphere for wavelength 324:8863 nm, albedo 0:75,
relative azimuth 60�, µ0 = 0:75; (top) sun-normalized TOA intensity at various zenith angles (quadra-
ture streams marked by an asterisk); (bottom) Peak-normalized weighting functions for O3 VMR and
temperature profiles, at zenith angle 30�.

For temperature weighting functions, the functional dependence of the optical properties on temper-
ature is more complex. If the relative variation in temperature Tq in layer q is ε, so that T 0q = Tq(1+ε),
then it follows that ρ0q = ρq(1� ε) for the air density, and from Equation (2.54) the variation in O3

cross-section is

ξ0λ(Tq)� ξq + εηq = ξλ(Tq)+ εTqξλ0
�
ξλ1 +2

�
Tq�T0

�
ξλ2
	
: (2.57)

Since QRay(Tq) = ρqQRay(T0), and the STP value QRay(T0) has no dependence on Tq, then the varia-
tions for the absorption and scattering coefficients are

α0q1 = αq1
�
1� ε�1�ηq=ξq

��
; (2.58a)

σ0q1 = σq1(1� ε): (2.58b)
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These in turn lead to the following variational inputs for the layer single-scatter albedos and optical
depth required by LIDORT.

uq1(Tq) =��1+ψq=eq
�
; uq2(Tq) =�ψq=eq; and vq(Tq) = zqψq; (2.59)

where

ψq = αq1
�
ηq=ξq�1

��σq1: (2.60)

Note in particular that the aerosol single-scatter albedo has the non-zero variation uq2(Tq), even
though the aerosol coefficients themselves are unaffected by the perturbations.

Figure 2.6 (top) shows the intensity output for this scenario at λ= 324:8863 nm. Quadrature values
are marked by an asterisk to illustrate the smoothness of the post-processing function for user-defined
zenith angles. Figure 2.6 (bottom) shows results for a line-of-sight zenith angle of 30� for the O3 VMR
and temperature weighting functions plotted against altitude; values are normalized to the peak values
in each case. The sensitivity of both functions around the peak O3 concentration level is evident.

Figure 2.7: LIDORT weighting functions for O3 VMR for a 60-layer atmosphere for a number of
wavelengths in the UV, for zenith angle 9:265�.

In Figure 2.7, O3 VMR weighting functions are presented for a number of wavelengths in the UV
from 290 nm to 335 nm as indicated (these wavelengths are used as found in the data set [70]; their
use obviates the need for interpolation of cross section values). Below 300 nm, peak values occur
at heights that increase with lower wavelengths. It is this well-known differential scattering height
behavior that underpins the BUV technique for O3 profile retrieval [11, 13]. Note also the increasing
tropospheric sensitivity for the longer wavelengths.

Finally a comparison is made with results from the GOMETRAN [43] model computed at λ =
324:8863 nm for the same atmosphere. GOMETRAN input profiles are given at 61 levels from 0
to 60 km. O3 cross-sections are given by Equation (2.54) for temperatures at the layer boundaries.
Figure 2.8 gives the comparison for O3 VMR weighting functions at stream angle 9:265� (one of the
quadrature values). The agreement between these two independently-calculated results is excellent,
with differences of 1% or less at virtually all levels away from the shoulder near 17 km. Here the
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Figure 2.8: LIDORT and GOMETRAN weighting functions for O3 VMR for a 60-layer (61-level)
atmosphere for wavelength 324.8863 nm and for zenith angle 9:265�.

O3 concentration gradient changes sharply, and the 1 km height resolution of the models is not fine
enough to ensure “layer-versus-level” interpolation errors are kept to a minimum.

2.5. Summary and future developments

In this paper we have developed an extension of the discrete ordinate solution of the radiative trans-
fer equation in a plane-parallel, multiply scattering, anisotropic, multilayer atmosphere with beam and
thermal emission sources. The extension is essentially an internal perturbation analysis of the discrete
ordinate solution, and along with standard intensity output, it allows for the simultaneous calculation
of analytically accurate weighting function fields with respect to a wide variety of atmospheric param-
eters. This extension avoids the time-consuming procedure of using external perturbation calculations
to approximate the weighting functions. A numerical model (LIDORT) has been constructed and
tested for two scenarios, one of which is a representative terrestrial atmosphere with ozone absorption
and molecular and aerosol scattering. The model is generic in character, requiring as the main input
the single-scatter albedos and grid optical depths, plus variations induced on these inputs by the set of
parameters for which the weighting functions are to be computed. These application-specific inputs
are defined by the user, and they depend on the physics of the atmosphere under consideration.

The model described here has recently been extended to cover a much wider range of scenarios;
intensity and weighting function output is now available for upwelling and downwelling directions,
at arbitrary optical depth and stream angle. A “pseudo-spherical” treatment of the direct beam atten-
uation has also been implemented in the new version of LIDORT. This gives the model the power to
accommodate solar zenith angles up to 90� (c.f. [35]). There is also the option to treat sharply-peaked
phase functions using the delta-M scaling approximation [36]. LIDORT Version 2.1 is now available
from the SAO website; the new version will be described in a companion paper to the present work
(Chapter 3 of this thesis).

The implementation of a vectorized radiative transfer code to give a full Stokes-vector treatment of
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the perturbed discrete ordinate solution is also under consideration. The intensity-only problem has
been analyzed, and there now exists a robust vectorized DISORT [72, 73].
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2.6. Appendices

2.6.1. Perturbation analysis for the discrete ordinate component solutions

In this appendix the perturbation factors defined in Equations (2.40a)–d are established. We con-
sider a single layer and Fourier component, omitting the respective indices for the sake of clarity.

Homogeneous solution

Consider first the eigenvalue problem Equation (2.22) and associated definitions in Equation (2.23).
The perturbation rule ω0 = ω(1+uε) applies to the single-scatter albedo, and since the eigenmatrix
and its eigensolutions are proportional to ω, then they will also perturb in a similar fashion. Define
the first-order perturbation for the eigenmatrix Γ in Equation (2.22) as follows:

Γ0i j = Γi j +uεξi j =
NX

l=1

�
ζ0il �η0il

��
ζ0l j +η0l j

�
: (2.61)

Since the D�
i j in Equation (2.23) depend linearly on ω, their first-order perturbed values are given by

D�0

i j = D�
i j(1+uε). From the definitions of matrices ζi j and ηi j, we obtain

ζ0i j = ζi j +uεa jD
+
i jµ

�1
i and η0i j = ηi j +uεa jD

�
i jµ

�1
i : (2.62)

Substituting Equations (2.62) in Equation (2.61), we get the following determination of ξi j:

ξi j =
NX

l=1

(
alC

�
il

µi

�
ζl j +ηl j

�
+(ζil �ηil)

a jC
+
l j

µl

)
; (2.63)

where C�i j = D+
i j �D�

i j .

Next, we have the perturbed version of the eigenproblem of Equation (2.22):

NX
j=1

Γ0i jς
0

jα = k
02
α ς

0
iα; for i = 1; : : :N; α= 1; : : :N: (2.64)

The eigenvalues perturb as k
0

α = kα+uε fα. For the eigenvector perturbation, we define ς0jα = ς jα+
uεϒ jα. In order to find scalar fα and vector ϒ jα for each α, we use the result of Equation (2.63)
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in (2.64) and remove the zero-order term using the original eigenvalue (2.22). This gives the following
N equations satisfied by the first-order term:

NX
j=1

�
Γi jϒ jα+ξi jς jα

�
= k2

αϒiα+2kα fαςiα; for i = 1; : : :N: (2.65)

Since there are N +1 unknowns f fα;ϒiαg for each α, an additional condition is required in order to
find the solution. This comes from the normalization condition (2.26). If the perturbed vector also

has unit normalization, then
ς02α= 1; from the definition of this vector, we get the following for the

first-order term:

NX
j=1

ϒ jας jα = 0: (2.66)

Equations (2.65) and (2.66) are now combined in a linear system of order N +1. Define vectors Qα
and Bα and matrix Aα as follows:

Qα =

2
6666664

fα
ϒ1α

ϒ2α
...

ϒNα

3
7777775
;Bα =

2
66666664

P
jξ1 jς jαP
jξ2 jς jα

...P
jξN jς jα

0

3
77777775
;Aα =

2
666664

2kας1α k2
α�Γ11 �Γ12 � � � �Γ1N

2kας2α �Γ21 k2
α�Γ22 � � � �Γ2N

...
...

...
. . .

...
2kαςNα �ΓN1 �ΓN2 � � � k2

α�ΓNN

0 ς1α ς2α � � � ςNα

3
777775 :

(2.67)

Then for each α, the linear algebra system AαQα = Bα is solved to obtain the vector Qα of de-
sired perturbation values. (In the model, LAPACK linear algebra routines DGETRF and DGETRS
were used for the numerical solution of this system). This completes the perturbation analysis of the
eigenproblem.

The perturbed version of the auxiliary relation (2.24) is

k
0

αϑ
0

iα =
NX

j=1

�
ζ
0

i j +η
0

i j

�
ς
0

jα: (2.68)

We now make the definition ϑ0

iα = ϑiα+uεχiα for the perturbation of the difference vector ϑ. Using
the results obtained so far for fα and ϒ jα, together with (2.62), and concentrating on the first-order
term in (2.68), we find after some manipulation that vectors χα have components

χiα =
1
kα

8<
:

NX
j=1

"
a jC

+
i j

µi
ς jα+

�
ζi j +ηi j

�
ϒ jα

#
� fαϑiα

9=
; ; for i = 1; : : :N: (2.69)

Having completed the perturbation analysis for the sum and difference vectors ςα and ϑα, perturbation
factors Y�iα for the actual homogeneous solution vectors follow from the relations

χiα = Y+
iα �Y�iα and ϒiα = Y+

iα +Y�iα : (2.70)

Application of the symmetry relations Y+
�iα = Y�iα and Y��iα = Y+

iα (cf. (2.25)) completes the perturba-
tion analysis of the homogeneous solution.
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Particular solutions

The particular solution for the beam source is determined from Equation (2.27). The perturbed
version of this equation is

NX
j=�N

A(beam)0

i j W 0
j = B(beam)0

i : (2.71)

The definitions of A(beam) and B(beam) in (2.28) indicate that they are linearly dependent on the single-
scatter albedo ω. Hence the first-order perturbed values are

A
0(beam)
i j = A(beam)

i j �uεa jDi j and B
0(beam)
i = B(beam)

i (1+uε) : (2.72)

Since W 0
i =Wi +uεZi for the perturbed solution, then application of (2.72) in (2.71) yieldsX
j

A(beam)
i j Z j = B(beam)

i �
X

j

a jDi jWj: (2.73)

Since the LU-decomposition of the matrix A(beam) has been found already in the course of determining
the original beam solution, the solution for Z follows immediately by back-substitution using the right
hand side of (2.73).

The situation for the thermal emission source term is similar. The recurrence relations in (2.29) for
the expansion coefficients Tj;s may be written in the perturbed form

X
j

A
0(thermal)
i j T 0j;s =

�
(1�ω0)b0sei for s = S;

(1�ω0)b0sei +(s+1)µiT 0i;s+1 for s < S: (2.74)

The definition of the matrix A(thermal) implies that A
0(thermal)
i j = A(thermal)

i j � uεa jDi j. From the def-
initions b0s = bs + εhs, T 0j;s = Tj;s + εVj;s and using (2.74), the following recurrence relations for the
first-order perturbation factors Vj;s are found:

X
j

A(thermal)
i j Vj;s =

�
[(1�ω)hs�ubsω]ei +u

P
j a jDi jTj;s for s = S;

[(1�ω)hs�ubsω]ei +u
P

j a jDi jTj;s +(s+1)µiVi;s+1 for s < S:

(2.75)

The LU-decomposition of the matrix A(thermal) is known already from the original determination of
vector T , and thus the solution for the coefficients V follows by back-substitution in (2.75). This
completes the perturbation analysis of the RTE particular solutions.

2.6.2. Boundary conditions for the perturbed field

We will establish here the eight boundary conditions summarized in Section 2.3.3 and indicated in
Figure 2.2 for the atmospheric layer weighting functions. Only the beam particular integral terms will
be included in the full boundary condition equations that follow; however, we indicate the additional
contributions needed for atmospheric thermal emission. The calculation of TOA weighting functions
is also described. Finally, we determine the special boundary condition BCL6R required for the
albedo perturbation problem.
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BCL1 (Cases 1 and 3)

At the top of the atmosphere, the perturbed downwelling intensity is zero, that is, I0� jp = 0 for
τ = 0, p = 1 and j = 1; : : :N. There is no variation in this layer, so k0pα = kpα, X 0

jpα = Xjpα, and
W 0

jp = Wjp for the homogeneous and particular solutions; we have only to consider perturbations of
the integration constants as defined in (2.41a,b). The first-order perturbed intensity for this layer is
then

I0� jp = I� jp + ε
NX
α=1

n
Npαe�kpα(τ�τp�1)X+

� jpα+Ppαe�kpα(τp�τ)X�
� jpα

o
: (2.76)

Since I� jp(τ0) = 0 for the original (unperturbed) boundary condition BC1, BCL1 for p = 1 may be
written

NX
α=1

h
NpαX+

� jpα+PpαΘpαX�
� jpα

i
=U (1)

j ; [BCL1] (2.77)

where U(1)
j = 0. As before, the transmittance factor is given by Θpα = exp(�kpα∆p), with ∆p =

τp� τp�1 the layer optical thickness. where U(1)
j = 0. Note the similarity to BC1 in (2.34a).

BCL2 (Cases 1 and 3)

This applies to all layers p such that 1 < p < q (q is the varying layer). As with BCL1, the
RTE solutions remain unperturbed in these layers, and Equation (2.76) applies for both positive and
negative stream angles. At the boundary between layer r = p� 1 and layer p, the optical depth is τr
and continuity across this boundary yields BCL2 for j =�1; : : :�N:

NX
α=1

n
NrαΘrαX+

jrα+PrαX�
jrα

o
�

NX
α=1

n
NpαX+

jpα+PpαΘpαX�
jpα

o
=U (2)

jp ; [BCL2] (2.78)

where U(2)
jp = 0. Again the similarity to BC2 in Equation (2.34b) is clear.

BCL3 (Cases 1 and 3)

This is the upper boundary of the layer q that is varying (q > 1 for this condition). If p = q� 1,
the boundary condition is I0jp = I0jq at τ = τp. In layer p, there is no variation of the RTE solutions,
so we can use an expression like Equation (2.76) for the perturbed field. For layer q, we must use
the expression in Equation (2.42a) together with the perturbed RTE solution variables k0qα, X 0

jqα and
W 0

jq, with perturbation factors fqα, Yjqα and Zjq as derived from Section 2.3.2 and Appendix A. Since
τ0q = τq + vqε and τ0p = τp, we can expand the exponential factors in (2.42a) to first order in ε:

e�k0qατ0p = e�kqατp
�
1� εuq fqατp

�
; (2.79a)

and

e�k0qατ0q = e�kqατq
�
1� εuq fqατq� εvqkqα

�
: (2.79b)
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In the perturbed boundary condition, the zero-order term is eliminated by using the original unper-
turbed boundary condition BC2. Collecting all terms of order ε, and using (2.79a,b), the condition
BCL3 for j =�1; : : :�N is written

NX
α=1

n
NpαΘpαX+

jpα+PpαX�
jpα

o
�

NX
α=1

n
NqαX+

jqα+PqαΘqαX�
jqα

o
=U (3)

jq : [BCL3] (2.80)

Here, we have the auxiliary vector

U (3)
jq = uqZjqe�τp=µ0 +

NX
α=1

n
LqαuqY+

jqα+MqαΘqα

�
uqY�jqα�ϖqαX�

jqα

�o
; (2.81)

where

ϖqα = uq fqα∆q + vqkqα: (2.82)

BCL4 (Cases 1 and 2)

This is the lower boundary of the layer q that is varying (q < K for this condition). If now p = q+1
the boundary condition is I0jq = I0jp at τ= τ0q. In layer p, there is no variation of the RTE solutions so an
expression of type (2.42c) applies for the perturbed field, whereas for layer q, (2.42a) is appropriate.
In addition to the expressions (2.79a,b), there is the following first-order expansion for the beam
solution exponential term:

e�τ
0

q=µ0 = e�τq=µ0

�
1� εvq

µ0

�
: (2.83)

The zero-order term is again removed by using the original BC2 boundary condition, and with the
help of (2.79a,b) and (2.83), BCL4 for j =�1; : : :�N may be written:

NX
α=1

n
NqαΘqαX+

jqα+PqαX�
jqα

o
�

NX
α=1

n
NpαX+

jpα+PpαΘpαX�
jpα

o
=U (4)

jq ; [BCL4] (2.84)

where

U (4)
jq =

�
�Ejq� vqWjp

µ0

�
e�τq=µ0 �

NX
α=1

n
LqαΘqα

�
uqY+

jqα�ϖqαX+
jqα

�
+MqαuqY�jqα

o
: (2.85)

ϖqα is defined in (2.82) and

Ejq = uqZjq� vqWjq

µ0
: (2.86)

BCL5 (Cases 1 and 2)

In this case, the boundary lies between layers p and r = p� 1, where r > q and q < K. The
only perturbation is with the optical depth boundary value τ0r = τr + vqε, and perturbed fields of
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type (2.42c) apply to both layers. Again using the original BC2 condition to remove the zero-order
term, the first-order term is written as BCL5 for j =�1; : : :�N:

NX
α=1

n
NrαΘrαX+

jrα+PrαX�
jrα

o
�

NX
α=1

n
NpαX+

jpα+PpαΘpαX�
jpα

o
=U (5)

jp ; [BCL5] (2.87)

where

U (5)
jp =

vq

µ0
e�τr=µ0

�
Wjr�Wjp

�
: (2.88)

BCL6 (Cases 1 and 2)

Here p = K, the final layer, and the boundary is the bottom surface, with the diffuse radiation
satisfying the reflection condition. The optical depth variation is τ0p = τp + vqε; the single-scatter
albedo has no variation. We require the diffusely reflected intensities (these appeared in BC3 in
Section 2.2). We will require also the quantities Φ�jα in (2.35a) and Ψ j in (2.35b). The reflection
condition includes the surface source term I�j defined in (2.33). Leaving aside the surface emission
contribution, perturbations of I�j are generated by the change in optical depth at the lower boundary.
Thus

I�
0

j = I�j

�
1� vqε

µ0

�
: (2.89)

to first order. Bringing together the relevant terms, and using BC3 to eliminate the zero-order terms,
the boundary condition BCL6 for j = 1; : : :N is:

NX
α=1

h
NpαΘpαΦ+

jα+PpαΦ�jα
i
=U (6)

j ; [BCL6] (2.90)

where

U (6)
j =

vq

µ0

h
Ψ je

�τp=µ0 � I�j
i
: (2.91)

Once again, we note the similarity in the left hand side of BCL6 to that in BC3 (2.34c).

BCL3M (Case 2 only)

This is really a combination of BCL1 and BCL3, wherein the upper boundary of the layer that is
varying happens to be the top of the atmosphere. Since q = 1 for this case, the boundary condition is
I0� jq = 0 at τq�1 = 0. We take the BCL3 result above, ignore the term in the left hand side involving
layer p = q� 1 (which does not exist at TOA), and set τp = 0 in (2.81). The result is BCL3M for
j = 1; : : :N:

NX
α=1

n
NqαX+

� jqα+PqαΘqαX�
� jqα

o
=U (3M)

j ; [BCL3M] (2.92)

where

U (3M)
j =�uqZ� jq�

NX
α=1

n
LqαuqY+

� jqα+MqαΘqα

�
uqY�� jqα�ϖqαX�

� jqα

�o
: (2.93)
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BCL4M (Case 3 only)

This is a combination of the conditions BCL4 and BCL6 with q = K. At the bottom boundary, the
optical depth variation is τ0q = τq + vqε. All of the exponential variations in (2.79a,b) and (2.83) are
now required, since both the homogeneous solutions and the particular integral are perturbed in this
layer. Both the original and the perturbed diffuse intensities must now satisfy the reflection condition.
Thus in addition to the quantities Φ and Ψ in (2.35a,b) defined for unperturbed solutions Xjqα and
Wjq, we must define similar quantities for the perturbation terms Yjqα and Ejq (the latter is defined
in (2.86)). Let

Ξ�jα = Y�jqα� (1+δm0)R
NX

i=1

aiµiρ�m(µ j;�µi)Y
�
�iqα; (2.94)

and

Fj = Ejq� (1+δm0)R
NX

i=1

aiµiρ�m(µ j;�µi)E�iq: (2.95)

Combining all the variations for this case, and including the variation of the direct beam from (2.89),
BCL4M for j = 1; : : :N is

NX
α=1

n
NqαΘqαΦ+

jα+PqαΦ�jα
o
=U (4M)

j ; [BCL4M] (2.96)

where

U (4M)
j =�Fje

�τq=µ0 � vq

µ0
I�j �

NX
α=1

n
LqαΘqα

�
uqΞ+jα�ϖqαΦ+

jα

�
+MqαuqΞ�jα

o
: (2.97)

An examination of the left hand sides of all these eight conditions shows that the boundary value
problem for Npα and Ppα has the same form as that for the original integration constants Lpα and
Mpα. Thus, as indicated in Section 2.3.3, the solution has the form X � = A�1B�, where the matrix
A is the same as that used in the unperturbed boundary value problem, and the column vector B� is
constructed from the appropriate combination of vectors U(1), U (2)

q , U (3)
q , U (4)

q , U (5)
q , U (6), U (3M) and

U (4M), the exact choice depending on the layer q containing the variation in parameter xq.

TOA weighting function output

Assuming now that the perturbed boundary problem has been solved for Npα and Ppα, we use
definition (2.43) to calculate the weighting functions at positive computational angles at the top of
the atmosphere. We distinguish between Cases 1 and 3 (q > 1), where the variation is with respect to
parameter xq in a layer below the first one, and Case 2 (q = 1), where the variation is actually in the
top layer. For Cases 1 and 3:

K jp(xq) = lim
ε!0

I0jp� I jp

ε
=

NX
α=1

n
NpαX+

jpα+PpαΘpαX�
jpα

o
; (2.98)
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where j = 1; : : :N and p = 1. For Case 2 (q = 1):

K jq(xq) =
NX
α=1

n
NqαX+

jqα+PqαΘqαX�
jqα

o
+Q(3M)

j ; (2.99)

where

Q(3M)
j = uqZjq +

NX
α=1

n
LqαuqY+

jqα+MqαΘqα

�
uqY�jqα�ϖqαX�

jqα

�o
: (2.100)

Inclusion of atmospheric thermal emission terms in the perturbed boundary conditions

The coefficients Tjq;s in the thermal emission particular integral (derived by solving (2.29)) have
first-order perturbations Vjqs defined in (2.40d) only for the layer q that is varying. The solution for
Vjq;s is given in (2.75). Since the thermal emission term includes powers of optical depth, we must
also account for changes εvq in optical depths in and below the layer q. Defining

I
0(te)
jp = I(te)jp + εJ(te)jp ; (2.101)

for the perturbed thermal emission particular integral, the following additional contributions are
required in the 8 boundary conditions of Section 2.3.3:

J(te)jq =
SX

s=0

Vjp;sτs
q�1; for layer q; upper boundary; (2.102a)

J(te)jq =
SX

s=0

Vjp;sτs
q + vq

SX
s=0

sTjq;sτs�1
q ; for layer q; lower boundary; (2.102b)

J(te)jp = vq

SX
s=0

sTjp;sτs�1
p ; for layers p > q; lower boundaries: (2.102c)

Equation (2.102a) is required for BCL3, (2.102b) and (2.102c) for BCL4, and (2.102c) for BCL5
and BCL6. For BCL4M, (2.102b) is relevant for the thermal emission contribution to the positive
(upwelling) quadrature-angle intensity components, but the downwelling stream components of the
thermal emission contributions in (2.102b) must be integrated over the half space and included in the
surface reflection boundary condition.

Boundary condition BCL6R for albedo weighting functions

Layer homogeneous and particular solutions are unaffected by variations of the surface albedo, so
we may use their unperturbed forms. Only the boundary value constants of integration will change,

and we denote their first-order perturbations by N(R)
qα and P(R)qα to indicate the dependence on albedo.

The perturbed intensity in all layers will have the form expressed in (2.42b), with boundary condition
BCL1 applying to the TOA level and BCL2 to all intermediate levels. To express the surface boundary
condition for the perturbed field, we first rewrite the unperturbed reflecting boundary condition in

order to define Q(R)
j as follows (omitting the surface emission term):

I jK � RQ(R)
j = R

(
F�µ0

π
ρ�(µ j;�µ0)e

�τK=µ0 +(1+δm0)
NX

i=1

aiµiρ�(µ j;�µi)I�iK

)
: (2.103)
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For a variation R0 = R(1+ ε), the perturbed version of (2.103) is

I0jK = R(1+ ε)

(
F�µ0

π
ρ�(µ j;�µ0)e

�τK=µ0 +(1+δm0)
NX

i=1

aiµiρ�(µ j;�µi)I
0
�iK

)
; (2.104)

where the perturbed downwelling quadrature-stream intensity at the surface is given by

I0�iK = I�iK + ε
NX
α=1

n
N(R)

KαΘKαX+
�iKα+P(R)

KαX�
�iKα

o
: (2.105)

Using BC3 to remove the zero-order terms, the special albedo boundary condition (BCL6R) for j =
1; : : :N then becomes

NX
α=1

h
N(R)

KαΘKαΦ+
jα+P(R)

KαΦ
�
jα

i
=U (6R)

j ; [BCL6R] (2.106)

where U(6R)
j = RQ(R)

j , and Φ�jα have been defined in (2.35a). The solution for N(R)
qα and P(R)qα again fol-

lows from the back-substitution X (R) = A�1B(R), where B(R) is now constructed from a combination
of vectors U (1), U (2)

q and U (6R).

2.6.3. Post-processing (source function integration)

Source function integration for the original (unperturbed) field

Referring to the recurrence relation for the upwelling post-processed solution in Section 2.2.3, we
substitute the values of Jp(τ;µ) as given in (2.38) in the source function integration (2.37). Omitting
the thermal emission term for now, the optical depth integrations may be carried out explicitly. The
result for Λp is:

Λp(µ) = Hp(µ)Fp(µ)+
NX
α=1

�
LpαG+

pαE+
pα(µ)+MpαG�

pαE�pα(µ)
�
; (2.107)

where

E+
pα(µ) = [1�Θpαγp(µ)]=(1+µkpα) ; (2.108a)

E�pα(µ) = [Θpα� γp(µ)]=(1�µkpα) ; (2.108b)

Fp(µ) = e�τp�1=µ0

h
1� e�∆p=µ0γp(µ)

i
=(1+µ=µ0) ; (2.108c)

and transmittance factors Θpα and γp(µ) have been defined previously. In addition, Eq. (2.107)
requires the following double quadrature sums over discrete ordinate variables:

G�
pα(µ) =

X
j

a jDp(µ;µ j)X
�
jpα; (2.109a)

Hp(µ) =
F�
2π

(2�δm0)Dp(µ;�µ0)+
X

j

a jDp(µ;µ j)Wjp: (2.109b)
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Here Dp are the usual Legendre polynomial sums for the streams indicated, with single-scatter
albedo and phase function moments defined for layer p. The quantities in (2.108a–c) and (2.109a–b)
will be needed again when we carry out a perturbation analysis of (2.107).

For the inclusion of atmospheric thermal emission terms, there is an additional contributionΛ(te)p (µ)
to the integrated layer source function in a given layer p. This is only present for Fourier component
m = 0. In the source function integration, we must include the thermal emission particular integral
given by the last term in (2.31). By analogy to (2.107) we define

Λ(te)p (µ) =
SX

s=0

Ups(µ)Aps(µ); (2.110)

where the Aps(µ) term arises from the optical depth integration, and the Ups(µ) is a quadrature sum
over discrete ordinate variables. It may be shown readily that:

Aps(µ;τ) =

(
1� γp(µ); if s = 0;

τs
p� τs

p�1γp(µ)+ sµAp;s�1(µ); if s > 0;
(2.111a)

and

Ups(µ) = (1�ωp)bs +
X

j

a jDp(µ;µ j)Tjp;s: (2.111b)

The Legendre sum for layer Dp is defined in the usual way, using Fourier component m = 0.

It remains to find the boundary source term IK(τK;µ) which is the upwelling radiation at the lower
boundary for direction µ. The discrete ordinate approximation is used again to write the reflection
condition for direction µ in a similar manner to that given in (2.32c) and (2.33):

IK(τK;µ) = (1+δm0)R
NX

i=1

aiµiρ�m(µ;�µi)I�iK(τK)+
µ0F�
π

e�τK=µ0Rρ�m(µ;�µ0): (2.112)

This is easy to evaluate since the components I�iK(τK) are known from the discrete ordinate solu-
tion for the lowest layer K. It is necessary however to specify the bi-directional reflection functions
ρ�m(µ;�µi) and ρ�m(µ;�µ0) for the (user-defined) directions µ. (With surface thermal emission present,
we add the factor δm0κ(µ)B(Tg) to the right hand side of (2.112), where the emissivity κ(µ) follows
from (2.21)).

Source function integration for the perturbed field

In this section the same technique is applied to the perturbed intensity field. First we look at the
source function integrations required for weighting functions with respect to layer variations, before
dealing with the albedo weighting function source terms at the end.

For the layer variations, we require the perturbed form of (2.44) for the source function recurrence
relation, and we now consider the analysis for the perturbed source term Λ0p(µ). Leaving aside the
layer thermal emission terms for now (we return to them later in this section), we define perturbations
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of the quantities defined in (2.108a–c) and (2.109a,b):

E
0�
pα(µ) = E�pα(µ)+ εE�

pα(µ); (2.113a)

F 0p(µ) = Fp(µ)+ εFp(µ); (2.113b)

G
0�
qα(µ) = G�

qα(µ)+ εG�
qα(µ); (2.113c)

H 0
q(µ) = Hq(µ)+ εHq(µ): (2.113d)

For layer q, perturbations in (2.113a,b) will depend both on terms εvq induced in the optical depth
boundary value τq, and on terms εuq which will be manifested in the perturbed eigenvalues k0qα. For
layers p > q, only variations vq induced in the optical depth boundary values τp will be required. The
results for E are

E+
qα =

Θqαγq(µ)
�
µ�1vq +ϖqα

��µuq fqαE+
qα(µ)

1+µkqα
; (2.114a)

E�
qα =

�Θqαϖqα+µ�1vqγq(µ)+µuq fqαE�qα(µ)

1�µkqα
; (2.114b)

E�
pα = 0; for p 6= q: (2.114c)

In these equations, we use the following perturbation results on transmittance factors Θqα and γq(µ):

Θ0qα = Θqα
�
1�ϖqαε

�
; (2.115a)

γ0q(µ) = γq(µ)
�
1� εvq=µ

�
; (2.115b)

where ϖqα is given by (2.82). Similarly for Fp we have

Fp =

8><
>:

vqµ�1e�τq=µ0γq(µ); for p = q;

�vqµ�1
0 Fp; for p > q;

0; for p < q:

(2.116)

Now consider the perturbation analysis for quantities G and H in (2.109a,b), using the definitions
in (2.113c,d). As before, the quantities Dq perturb to first order with factor (1+ εuq), since they are
both directly proportional to ωq. Using perturbations of the homogeneous solution vectors Xqα and
the particular integral vectors Wq, we obtain:

G�
qα(µ) = uq

2
4X

j

a jDq(µ;µ j)
�

X�
jqα+Y�jqα

�35 ; (2.117a)

Hq(µ) = uq

2
4F�

2π
(2�δm0)Dq(µ;�µ0)+

X
j

a jDq(µ;µ j)
�
Wjq +Zjq

�35 : (2.117b)

It is clear that G�
pα(µ) and Hp(µ) are both zero for p 6= q.

We return now to the complete source function term in (2.107). This contains the integration
constants Lpα and Mpα. We must include their perturbations Npα and Ppα in the analysis. We combine
the results in (2.116) and (2.117a,b) and proceed by using the chain rule. The final result for the
first-order layer source term perturbation is

Λ0p(µ) = Λp(µ)+ εΩp(µ); (2.118)
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where (simplifying the notation by dropping the dependence on µ):

Ωp =

8>>>>>>><
>>>>>>>:

NP
α=1

Ω(1)
pα; for p < q;

NP
α=1

h
Ω(1)

pα+Ω(2)
pα

i
+HpFp +HpFp; for p = q;

NP
α=1

Ω(1)
pα+HpFp; for p > q:

(2.119)

The following definitions are required:

Ω(1)
pα = NpαG+

pαE+
pα+PpαG�

pαE�pα;

Ω(2)
pα = Lpα

�
G+

pαE+
pα+G+

pαE+
pα
�
+Mpα

�
G�

pαE�
pα+G�

pαE�pα
�
:

(2.120)

We now consider perturbations of the thermal emission layer source terms defined in (2.110). These
contributions will be added to the above expressions for Ωp when there is a thermal emission source
present in the atmosphere. First, we note that the solution coefficients Ups contain no dependence
on optical depth, so they experience perturbation only for the layer q that contains the atmospheric
parameter xq causing the variation. Defining

U 0
qs(µ) =Uqs(µ)+ εUqs(µ); (2.121)

we find from the definitions in (2.111b) that

Uqs(µ) =
�
(1�ωq)hqs�uqωqbqs

�
+
X

j

a jDq(µ;µ j)
�
uqTjq;s +Vjq;s

�
; (2.122)

where hqs are the perturbations of bqs. The recurrence factors Aps in (2.111a) are perturbed as follows:

A0ps(µ) = Aps(µ)+ εBps(µ): (2.123)

We must again distinguish between the layer q containing the parameter xq, and layers below q. Values
of Bps are found to obey similar recurrence relationships to those for Aps. The result is

Bps(µ) =

8>>>>>>>>><
>>>>>>>>>:

0; for p < q; s = 0; : : :S;
vq

µ
γq(µ); for p = q; s = 0;

vqτs
qγq(µ)

�
1
µ
+

s
τq

�
+ sµBq;s�1(µ); for p = q; s = 1; : : :S;

0; for p > q; s = 0;

svq

�
τs�1

p � τs�1
p�1γp(µ)

�
+ sµBp;s�1(µ); for p > q; s = 1; : : :S:

(2.124)

For the perturbation of the thermal emission contribution to the source integral term, we write

Λ
0(te)
p (µ) = Λ(te)p (µ)+ εΩ(te)

p (µ); (2.125)

and use the above results in (2.122) and (2.124) to produce:

Ω(te)
p (µ) =

8>><
>>:

SP
s=0

[Ups(µ)Bps(µ)+Ups(µ)Aps(µ)] ; for p = q;

SP
s=0

Ups(µ)Bps(µ); for p > q;
(2.126)
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with Ω(te)
p (µ) = 0 for p < q. These contributions should be added to those in (2.118) so that thermal

emission terms can be included in the TOA weighting functions at arbitrary µ.

Now we examine the perturbation of the upwelling lower boundary source term IK(τK;µ) in (2.112).
We use the definition

I0K(τK;µ) = IK(τK;µ)+ εJK(τK;µ); (2.127)

and our task is to determine JK(τK;µ). Since the perturbed field obeys the surface boundary condition,
we can remove the zero-order terms (boundary condition BC3) and write the following for the first-
order contribution:

JK(τK;µ) = (1+δm0)R
NX

i=1

aiµiρ�m(µ;�µi)JK(τK;�µi)� vq

µ0
I�(µ); (2.128)

where the last term is the variation of the direct-beam term I�(µ) as given by Equation (2.33) minus
the surface emission, and JK(τK;�µ j) is the first-order perturbation for the downwelling radiation
at the quadrature values. In other words, I0K(τK;�µ j) = IK(τK;�µ j)+ εJK(τK;�µ j). Expressions
for JK(τK;�µ j) can be written down immediately, since the results are available from the boundary
problem perturbation analysis. There are two cases: BCL6, for which q < K, and BCL4M, for which
q = K:

J(τK;�µ j) =

8>>>>>>>>><
>>>>>>>>>:

�vqW� jK

µ0
e�τK=µ +

NP
α=1

h
NKαΘKαX+

� jKα+PKαX�
� jKα

i
; BCL6 ;�

uqZ� jq� vqW� jq

µ0

�
e�τq=µ +

NX
α=1

n
PqαX�

� jqα+MqαuqY�� jqα

o

+
NX
α=1

Θqα

n
NjαX+

� jqα+Lqα

h
uqY+

� jqα�X+
� jqαϖqα

io ; BCL4M :

(2.129)

Albedo weighting functions at arbitrary µ

We complete this appendix by examining the perturbed field at arbitrary µ for an albedo variation.
Homogeneous and particular solutions remain unchanged, and only the constants of integration in the

boundary value problem will be perturbed. We proceed using the definition (2.107), writing Ω(R)
p (µ)

for the source function perturbation, where the superscript (R) is used to indicate quantities derived
with respect to an albedo variation R0 = R(1+ ε). We find

Ω(R)
p (µ) =

NX
α=1

h
N(R)

pα G+
pαE+

pα+P(R)
pα G�

pαE�pα
i

for allp; (2.130)

where all other quantities occur in the original unperturbed solution.

To start the source function recurrence, we need the perturbed upwelling intensity at the lower

boundary. To first order, we define I0K(τK;µ) = IK(τK;µ)+εJ
(R)
K (τK;µ). Ignoring the surface emission

term, we apply the surface boundary condition to I0K(τK;µ) and obtain:

J(R)K (τK;µ) = (1+δm0)R
NX

i=1

aiµiρ�m(µ;�µi)
h
IK(τK;�µi)+ J(R)K (τK;�µi)

i
+ I�(µ); (2.131)
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where I�(µ) has already been defined in (2.33). From the solution of the perturbed albedo boundary
value problem, we have already the quadrature terms:

J(R)K (τK;�µ j) =
NX
α=1

h
N(R)

KαΘKαX+
� jKα+P(R)

KαX�
� jKα

i
: (2.132)

2.6.4. Chandrasekhar’s solution and associated perturbation analysis

We first derive Chandrasekhar’s solution to the unperturbed RTE. The notation follows that in [46];
in particular the Legendre polynomials in this Appendix are un-normalized. The Fourier index m is
retained throughout. Quadrature over the interval µ 2 (�1;1) is assumed. The treatment of thermal
emission is omitted.

For the homogeneous part, Chandrasekhar developed solutions of the form:

Im(µi)�
2N�1X
l=m

ξm
l (k

m
α )ϕm

l Pm
l (µi)

1+µikm
α

e�km
ατ; (2.133)

where µi are the quadrature cosines, km
α are the roots of the characteristic equation (see below), and

factors ξm
l are to be determined (their dependence on km

α is indicated). Here, ϕm
l = βl(l�m)!=(l +m)!

denotes the phase moment factorial term. Substitution of Equation (2.133) in the RTE (2.15) without
the external source terms gives the following set of conditions for ξm

l (k):

ξm
l (k) =

2N�1X
λ=m

ξm
λ (k)ϕ

m
λDm

lλ(k); (2.134)

where

Dm
lλ(k) =

1
2

X
j

a jPm
λ (µ j)Pm

l (µ j)

1+µ jk
: (2.135)

Using the orthonormality of the Legendre polynomials over the interval (�1;1), one can develop
a recurrence relation for the D-polynomials in (2.135), and use that to generate further recurrence
relations for ξm

l ([46], p. 153):

ξm
l+1(k) =

�(2l +1)+ωβl

k(l�m+1)
ξm

l (k)�
l +m

l�m+1
ξm

l�1(k); for m+1 < l < 2N�2; (2.136a)

ξm
m+1(k) =

�(2m+1)+ωβm

k
: (2.136b)

The indeterminacy in (2.134) allows the recursion initialization condition to be set at will. Letting
ξm

m = 1 gives the characteristic equation

1 =
ω
2

X
j

a j

1+µ jk

2N�1X
λ=m

ξm
λ (k)ϕ

m
λPm

λ (µ j)P
m
m (µ j): (2.137)

The roots of (2.137) occur in pairs�kα;α= 1; : : :N. It is no surprise that these roots are precisely the
eigenvalues from the equivalent formulation in Equation (2.22). We again use the index α to label the
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roots (eigenvalues). It is also clear that (up to constants of proportionality) the solutions developed in
Section 2.2 are given by the following:

Xm+
jα =

2N�1X
l=m

ξm
l (k

m
α )ϕm

l Pm
l (µ j)

1+µ jkm
α

; (2.138a)

Xm�
jα =

2N�1X
l=m

ξm
l (�km

α )ϕm
l Pm

l (µ j)

1�µ jkm
α

: (2.138b)

For the particular integral (beam source), a solution of the form

Jm(µi) = (2�δm0)W m
i e�τ=µ0 (2.139)

is used, where

W m
i = ω

2N�1X
l=m

γm
l ϕ

m
l Pm

l (µi)

1+µi=µ0
: (2.140)

Substitution in the RTE yields the following equation for the constants γm
l in terms of the recurrence

factors defined above:

γm
l = γm

m(µ0)ξm
l

�
µ�1

0

�
; for l > m; (2.141a)

γm
m(µ0) =

Pm
m (µ0)

1�
2N�1P
λ=m

ξm
λ

�
µ�1

0

�
ϕm
λDm

mλ

�
µ�1

0

� ; (2.141b)

where ξm
l are again given by the recurrence relation Equations (2.136a,b) but with argument µ�1

0
instead of k. Symmetry relationships are the same as for the solutions in Section 2.2.2.

This formulation is equivalent to the solution of the RTE given in Section 2.2.2, assuming the
“single” quadrature scheme (numerical results agree to high accuracy). This analytic formalism is
not valid for the “double” quadrature scheme. Clearly, all quantities can be computed explicitly once
the roots of the characteristic equation are found. Attempts to evaluate these roots by polynomial
root-finding algorithms [74] have now been supplanted by the eigenvalue approach.

Perturbation of the solution

We are interested only in the perturbation of the RTE homogeneous solutions and particular inte-
grals. (The boundary condition analysis of Section 2.3.3 is independent of the method of obtaining
RTE solutions). The definitions of Equations (2.40a–c) hold, but we suppress the layer index p and
add the Fourier harmonic index m as a subscript:

k
0m
α = km

α +uε f m
α ; X

0m
jα = Xm

jα+uεY m
jα; and W

0m
j =W m

j +uεZm
j : (2.142)

As in Section 2.3, the single-scatter albedo will be perturbed according to ω0 =ω(1+uε). We perturb
the recurrence relation (2.136a,b) first. We write ξm

l;α = ξm
l (k

m
α ) for the quantity ξ corresponding to

root km
α , and for the first-order perturbation, we define

ξ
0m
l;α = ξm

l;α+uε
�
ζm

l;α+ηm
l;α f m

α

�
: (2.143)
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Using the perturbation rules for ω and km
α , and equating terms in u and u f m

α , we find that ζm
l;α and ηm

l;α
satisfy recurrence relationships similar to Equations (2.136a,b), but with additional terms:

ζm
l+1;α =

ωβl

km
α (l�m+1)

ξm
l;α+

�(2l +1)+ωβl

km
α (l�m+1)

ζm
l;α�

l+m
l�m+1

ζm
l�1;α; (2.144a)

ηm
l+1;α =

(2l+1)�ωβl

(km
α)2(l�m+1)

ξm
l;α+

�(2l +1)+ωβl

km
α (l�m+1)

ηm
l;α�

l +m
l�m+1

ηm
l�1;α; (2.144b)

ζm
m+1;α =

ωβm

km
α

; (2.144c)

ηm
m+1;α =

(2l+1)�ωβm

(km
α)2 : (2.144d)

Equations (2.144a,b) are valid for m+1 < l < 2N� 2. The starting points for these recurrences are
ξm

m;α = 0 and ηm
m;α = 0. We now substitute (2.143), (2.144a–d) and the definitions (2.142) into the

perturbed version of the characteristic equation (2.137) to obtain variations for km
α :

f m
α =

Ψm
α +2=ω
Λm
α �Φm

α
; (2.145)

where

Ψm
α =

X
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α
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m
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m
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)
; (2.146a)
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α =

X
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µ ja j�
1+µ jkm

α
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(
2N�1X
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λ;αϕ

m
λPm

λ (µ j)P
m
m (µ j)

)
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and

Φm
α =

X
j

a j�
1+µ jkm

α
�2

(
2N�1X
λ=m

ηm
λ;αϕ

m
λPm

λ (µ j)P
m
m (µ j)

)
: (2.146c)

Equation (2.145) may be compared directly to the results obtained for quantity fα in Appendix 2.6.1.
To find the perturbed solution vector X

0m+
α , we define a perturbed form of (2.138a):

X
0m+
jα = Xm+

jα + εuY m+
jα =

2N�1X
l=m

ξ0ml (k
0m
α )ϕm

l Pm
l (µ j)

1+µ jk
0m
α

: (2.147)

Using the definitions in Eq. (2.142) and the results in Eqs. (2.144a–d), (2.145) and (2.146a–c), we
find after some manipulation that the perturbation factor Ym+

jα is given by:

Y m+
jα =

2N�1X
l=m

ωϕm
l Pm

l (µ j)

1+µ jkm
α

(�
ξm

l;α+ζm
l;α

�
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α
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l;αµ j

1+µ jkm
α

!)
: (2.148)

Perturbations for the negative solution (2.138b) can be determined in a similar fashion.

For the particular integral (beam source), look first at the perturbation:

ξ
0m
l;α

�
µ�1

0

�
= ξm

l;α

�
µ�1

0

�
+uεζm

l;α

�
µ�1

0

�
: (2.149)



63 A linearized discrete ordinate radiative transfer model..

This time only the variation in ω is required, and since ξ satisfies the recurrence relations (2.136a,b)
with µ�1

0 instead of k, then ζ in (2.149) will satisfy a similar recurrence with additional terms:

ζm
l+1 =

ωβl

l�m+1
µ0ξm

l +
�(2l +1)+ωβl

l�m+1
µ0ζm

l �
l +m

l�m+1
ζm

l�1; for m+1 < l < 2N�2;

(2.150a)

ζm
m+1 = µ0ωβm: (2.150b)

The recurrence (2.150a,b) starts with ζm
m = 0. This result is now used in the perturbation of the γm

l
constants in (2.141a,b). Defining

W
0m
i =W m

i + εuZm
i = ω0

2N�1X
l=m

γ0ml ϕ
m
l Pm

l (µi)

1+µi=µ0
; (2.151)

where

γ
0m
l = γm

l (1+ εuΓm
l ) ; (2.152)

then we find after manipulation that

Zm
i = ω

2N�1X
l=m

γm
l ϕ

m
l

�
1+Γm

l

�
Pm

l (µi)

1+µi=µ0
; (2.153)

where

Γm
l =

ζm
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ω
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λ +ζm

λ
�
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λDm
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1�
2N�1P
λ=m
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λ ϕ

m
λDm

mλ

: (2.154)

This completes the analytic perturbation for the beam solution.
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Abstract

The retrieval of atmospheric constituents from measurements of backscattered light
requires a radiative transfer forward model that can simulate both intensities and
weighting functions (partial derivatives of intensity with respect to atmospheric pa-
rameters being retrieved). The radiative transfer equation is solved in a multi-layer
multiply-scattering atmosphere using the discrete ordinate method. In an earlier pa-
per dealing with the upwelling top-of-the-atmosphere radiation field, it was shown
that a full internal perturbation analysis of the plane-parallel discrete ordinate so-
lution leads in a natural way to the simultaneous generation of analytically-derived
weighting functions with respect to a wide range of atmospheric variables. In the
present paper, a more direct approach is used to evaluate explicitly all partial deriva-
tives of the intensity field. A generalization of the post-processing function is devel-
oped for the derivation of weighting functions at arbitrary optical depth and stream
angles for both upwelling and downwelling directions. Further, a complete treatment
is given for the pseudo-spherical approximation of the direct beam attenuation; this
is an important extension to the range of viewing geometries encountered in prac-
tical radiative transfer applications. The numerical model LIDORT developed for
this work is able to generate intensities and weighting functions for a wide range
of retrieval scenarios, in addition to the passive remote sensing application from
space. We present a number of examples in an atmosphere with O3 absorption in
the UV, for satellite (upwelling radiation) and ground-based (downwelling radiation)
applications. In particular, we examine the effect of various pseudo-spherical pa-
rameterizations on backscatter intensities and weighting functions with respect to O3
volume mixing ratio. In addition, the use of layer-integrated multiple scatter output
from the model is shown to be important for satellite instruments with wide-angle
off-nadir viewing geometries.
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3.1. Introduction

3.1.1. Background and rationale

Measuring the Earth’s atmosphere is an essential requirement for the understanding of physical
and chemical processes that determine radiative balance. This is particularly important in the light
of possible climate change induced by man’s activities on this planet. A key ingredient in atmo-
spheric monitoring is the retrieval of surface properties and atmospheric constituent distributions from
measurements of earthshine radiation. This applies not only to in-situ measurements from ground-
based instruments and local measurements from aircraft and balloons, but also to the global coverage
provided by passive remote sensing satellite instruments.

Given a state vector X of atmospheric constituents, we may generate a vector Y of synthetic radi-
ance measurements at different wavelengths or geometries through the symbolic relation Y = F(X),
where F is the forward model describing the attenuation and scattering of light in the atmosphere.
Retrieval involves the solution of the inverse problem X = F�1(Y). This is commonly done by
iteration based on a series of linear inversion steps. The linearization of the forward model is given
by Y�Yn = K(X�Xn), where the matrix K is the set of weighting functions (intensity partial
derivatives with respect to atmospheric parameters to be retrieved), and Yn = F(Xn) is the synthetic
measurement vector corresponding to state vector estimate Xn at iteration step n. The inversion is car-
ried out using cost-function minimization techniques such as non-linear least squares fitting [2], the
widely-used optimal estimation method [4], or other methods such as Phillips-Tikhonov regulariza-
tion [3]. All such iterative fitting methods require a radiative transfer model that will simultaneously
generate both intensities and weighting functions.

The main purpose behind this paper and the previous work (Spurr, Kurosu and Chance [75], here-
after denoted by SKC) is to develop a general radiative transfer tool LIDORT with the capability
to generate simultaneous and accurate intensity and weighting function fields. The discrete ordi-
nate method is used to solve the radiative transfer equation (RTE). In SKC, the intensity model
and its weighting function linearization were developed for the upwelling radiation fields at top-
of-atmosphere (TOA) radiation fields in plane-parallel geometry. The aim of the present paper is to
extend and generalize the LIDORT model, and to develop new tools for dealing with a wider range of
atmospheric scenarios.

In the discrete ordinate formalism [46, 58], the intensity calculation depends only on knowledge of
optical depths, single scattering albedos and phase function moments. Preparation of these quantities
depends on the application and is carried out beforehand. The discrete ordinate method is a generic
scattering formalism; it is not necessary to know the composition and detailed physics of the medium
in question in order to solve the radiative transfer problem. The DISORT package [58] was developed
with this philosophy in mind, and it is the most flexible and widely-used plane-parallel radiative
transfer tool available to the atmospheric community. We adopt the same strategy for LIDORT, that
is, to maintain the generic nature of the scattering formalism, but to develop extensions to generate
weighting functions as well as intensities, for both plane-parallel and pseudo-spherical geometries.

In this work, the evaluation of weighting functions is based on an explicit analytic determination
of partial derivatives of all components of the discrete ordinate solution for intensity. In line with the
above remark on linearizing the forward model, we use the term linearization analysis to indicate the
process of obtaining the set of partial derivatives that constitute the matrix of weighting functions.
[A different emphasis was used in SKC, where weighting functions were determined through a com-
plete first-order perturbation analysis of the discrete ordinate solution]. All weighting functions are
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determined analytically to the same accuracy as the intensity field. LIDORT can compute weighting
functions with respect to a wide range of atmospheric variables; as with DISORT, the tool is not
application-specific. In addition to the above-mentioned optical properties required as input to the in-
tensity calculation, LIDORT requires as input for the weighting function calculations the derivatives
of layer single scattering albedos and extinction coefficients with respect to the set of atmospheric
parameters for which weighting functions are required.

For an intensity-only RT model without the linearization capability, weighting functions must be
estimated using finite-difference methods; in a multi-parameter retrieval, this involves many separate
calls to the model. With LIDORT, a single call will generate the set of intensities and weighting
functions at one wavelength required for an iteration step in a typical multi-parameter atmospheric
retrieval; this represents a very substantial saving of computer effort. Furthermore, the analytically
accurate derivation of LIDORT weighting functions avoids concerns over the accuracy of finite-
difference estimates based on ad hoc choices of the external perturbations. We note that at the present
time, to our knowledge, only the GOMETRAN RT model [40] [43] has the capability to generate
simultaneous fields of intensity and analytically accurate weighting functions.

Weighting functions with respect to ozone volume mixing ratio are important for the retrieval of
ozone profiles from nadir-viewing remote sensing instruments measuring in the UV and visible.
A full multiple-scatter RT treatment is a necessary requirement in this part of the spectrum. This
retrieval problem has been discussed in the context of the GOME [5] instrument in a number of stud-
ies [13, 15, 14, 16]. In the present work, we will give examples of LIDORT output for a terrestrial
atmosphere scenario relevant to the ozone profile retrieval context, not only for GOME but also for
future instruments such as SCIAMACHY [76], GOME-2 [6] and OMI [8]. A fast 4-stream version of
LIDORT has recently been developed for use in near-real-time ozone profile retrieval algorithms for
these instruments [77].

Many atmospheric RT problems can be treated using the assumption of a plane-parallel medium.
However, this assumption breaks down for solar zenith angles and/or line-of-sight viewing angles
approaching 90�, and it then becomes necessary to make some allowance for the sphericity of the
atmosphere. This is particularly important for polar-orbiting satellite instruments such as GOME, for
which large solar zenith angles are frequently encountered. In a stratified spherical-shell medium,
the intensity field changes with angular variables (solar and line of sight zenith angles, relative az-
imuth angle between planes containing the line of sight and solar directions) in addition to the zenith
variation with optical depth.

The pseudo-spherical assumption ignores these angular derivatives; only the variation of intensity
with the vertical coordinate is present in the RTE. The attenuation of the direct beam to the point of
scatter is treated for a curved spherical-shell atmosphere (see Figure 3.1); apart from the transmittance
calculation for single scatter, all higher-order scattering events are treated as locally plane-parallel.
In a pseudo-spherical RT model, scattering takes place along the local vertical AC in Figure 3.1. It
has been shown [35] [78] that the pseudo-spherical approximation provides a useful and sufficiently
accurate RT intensity simulation for solar zenith angles up to 90�, provided that the line-of-sight
is reasonably close to the nadir. A pseudo-spherical model is adequate for simulating backscatter
intensities and weighting functions for the GOME and SCIAMACHY instruments in their normal
nadir scanning modes (where the off-nadir scan angle does not exceed 31� at the satellite). The great
advantage of this approach is that it utilizes the power, speed and flexibility of the plane-parallel
discrete scattering formalism, and avoids the greatly more complex and computationally intensive
full-spherical RT treatment.

It is possible to extend such a model to deal with wide off-nadir satellite viewing conditions (angle



69 Simultaneous derivation of intensities and weighting functions..

θB in Figure 3.1 up to 70�); such geometry will be encountered routinely with the GOME-2 and OMI
instruments. We consider scattering events along line AB instead of the vertical AC assumed for
the regular pseudo-spherical computation. The basic idea behind the extension for wide-angle nadir
satellite geometry is to make precise calculations of the single scatter contributions along AB (with
both solar and line-of-sight transmittances for a curved atmosphere), but to approximate the multiple-
scatter contributions using regular pseudo-spherical output for points along AB. In a detailed study
for the TOMS project [78], it was shown that the major source of error in the regular pseudo-spherical
model arises from an incorrect computation of the single scatter terms. We shall call this extension
the enhanced pseudo-spherical model. Given the LIDORT capability to generate both intensities and
weighting functions, it is then possible to use the enhanced model in profile retrieval algorithms in
wide-angle viewing scenarios.

Figure 3.1: Satellite viewing geometry in a curved spherical-shell atmosphere.

The accuracy of the pseudo-spherical approximation depends on the parameterization used to de-
scribe the direct beam attenuation. For most cases, the average secant parameterization is sufficient:
in a multi-layer atmosphere, slant path transmittances are taken to be exact at layer boundaries, with
a simple exponential in optical thickness to approximate the attenuation across layers. The main
LIDORT development is based on this assumption. However, we will examine more accurate pa-
rameterizations of direct beam transmittance in situations with optically thick layers. In any case,
the particular solution to the discrete ordinate RTE must be modified to deal with the solar beam
attenuation in a curved atmosphere (the homogeneous solutions are unchanged). In this work, we
will examine two different approaches to the particular integral solution for the direct solar beam: the
classical substitution method first used by Chandrasekhar [46] and standard in DISORT, and secondly,
the more recent Green’s function technique developed by Siewert and co-workers ([66] and references
therein). Particular solutions for atmospheric thermal emission source terms will not be considered
here; a derivation of TOA intensity and weighting functions for thermal emission sources in a plane-
parallel atmosphere was given in SKC [75]. As in SKC, we shall consider only the solution to the
scalar RTE; polarization will not be considered.

The generalization to arbitrary optical depth and stream angle involves the further development and
extension of the post-processing function, in which the discrete ordinate solution is used to interpo-
late both the intensity and the weighting functions to arbitrary polar viewing angles. The approach
adopted here is the standard source function integration technique [46, 34]. Output options for stan-
dard angle-integrated quantities (azimuthally-independent fluxes and mean intensities and associated
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weighting functions) have been incorporated in the model. The delta-M scaling transformation [36]
is also a standard feature in the new version. LIDORT will also generate layer-integrated multiple
scatter source terms and their weighting functions; as noted above, this output is an essential part
of the enhanced pseudo-spherical model for RT simulation in wide-angle off-nadir satellite viewing
geometries.

3.1.2. Organization of the paper

Section 3.2 is a brief recapitulation of the discrete ordinate solution to the RTE in a multi-layer
atmosphere with a pseudo-spherical parameterization of the beam source attenuation. We summarize
solutions for the homogeneous RTE equation, the boundary-value determination of integration con-
stants from the boundary conditions, and the post-processing function. Determination of the particular
solutions is deferred to the following section. In Section 3.3.1, we introduce three parameterizations
for the attenuation of the direct beam in a curved atmosphere; these are the average secant, the
exponential-sine and the exponential-polynomial parameterizations. In Sections 3.3.2 and 3.3.3 we
determine respectively the classical and Green’s function solutions for the particular integral using the
average secant parameterization. In addition, in Section 3.3.3, the Green’s function technique is used
to derive more accurate solutions based on the other parameterizations of the direct beam attenuation.

In Section 3.4, we look at the linearization analysis. For a set of atmospheric parameters in a given
layer for which we desire weighting functions, we require the derivatives of the extinction coefficient
and single scattering albedo in that layer with respect to these parameters; these derivatives then
determine the rules for the linearization analysis (Section 3.4.1). Once the latter are specified, the
evaluation of intensity partial derivatives follows the same sequence of steps required for the complete
intensity solution. In Sections 3.4.2 and 3.4.3 we apply the linearization analysis to the homogeneous
and particular solutions, followed by the linearized boundary value problem (Section 3.4.4) and the
post-processing function for generalized weighting function output in Section 3.4.5. The particular
solution linearization in this section is restricted to the average secant parameterization.

Section 3.5 gives a brief description of the LIDORT software package based on the theory of the
preceding sections. We give some comparisons with DISORT and SDISORT [79] output, and discuss
the issue of weighting function validation. Section 3.6 contains some examples. The main empha-
sis here is on the satellite application for the retrieval of ozone profiles from nadir UV backscatter
measurements. We concentrate on ozone absorption in the Hartley-Huggins bands (290-335 nm), and
consider weighting functions with respect to ozone volume mixing ratio. Intensities and weighting
functions are compared in the pseudo-spherical and plane-parallel approximations. Examples of out-
put appropriate for ground-based instruments are also presented. In Section 3.6.3, we illustrate the
use of the enhanced pseudo-spherical LIDORT model to improve intensity and weighting function
simulations for the GOME, GOME-2, SCIAMACHY and OMI instruments at wide-angle viewing
geometries.

3.2. Discrete ordinate theory: pseudo-spherical source function

3.2.1. The radiative transfer equation (RTE)

We consider the solution of the RTE in the pseudo-spherical approximation. Scattering will be
non-conservative. We summarize the homogeneous solutions to the discrete ordinate equations, the
boundary value problem and the post-processing function. Derivations of the particular solutions are
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deferred until Section 3.3; however, the role played by the particular solution will be outlined here.
Although the theory summarized here may be found in various places (see for example [34] and
references therein), it is important to have each stage of the discrete ordinate intensity solution clearly
laid out in order to facilitate the linearization analysis in Section 3.4.

The RTE for the diffuse intensity I(τ;µ;φ) is:

µ
dI(τ;µ;φ)

dτ
= I(τ;µ;φ)� ω(τ)

4π

Z 2π

0
dφ0
Z 1

�1
dµ0P(τ;µ;φ;µ0;φ0)I(τ;µ0;φ0)�S�(τ;µ;φ): (3.1)

Here, τ is the optical depth of the medium, µ is the absolute value of the cosine of the polar angle
cosine (measured with respect to the zenith), and φ is the azimuth angle measured with respect to a
suitable axis perpendicular to the zenith. ω(τ) is the single scattering albedo, and P(τ;µ;φ;µ0;φ0) the
phase function. For a parallel beam of net incident flux µ0πF� and direction f�µ0;φ0g at the top of
the atmosphere (τ= 0), the single scattering source term is:

S�(τ;µ;φ) =
F�
4
ω(τ)P(τ;µ;φ;�µ0;φ0)e

�τspher(τ): (3.2)

The solar beam transmittance is expressed in terms of a slant path optical depth τspher(τ) which is
a function of τ. For now, we will not deal with this term explicitly, referring to the next section for
particular integral derivations using explicit parameterizations of this transmittance. We note that the
total intensity is actually the sum of the diffuse field I(τ;µ;φ) in (3.1) and an unscattered sunlight term
Isun(τ;µ;φ) given by:

Isun(τ;µ;φ) = πF�e�τspher(τ)δ(µ�µ0)δ(φ�φ0): (3.3)

We assume the atmosphere is divided into a number of homogeneous layers, each layer having
uniform optical properties. We first consider the solutions for a single layer, with single scattering
albedo and phase functions regarded as independent of τ. The intensity is expanded as a Fourier
cosine series in the relative azimuth φ�φ0:

I(τ;µ;φ) =
2N�1X
m=0

Im(τ;µ)cosm(φ�φ0): (3.4)

Using the expansion of the phase function in terms of Legendre polynomials in the cosine of the
scatter angle, plus the addition theorem for Legendre functions, the azimuthal dependence of P can
also be expressed as a cosine series in relative azimuth. The azimuth separation follows immediately,
and we obtain the following for each Fourier component m:

µ
dIm(τ;µ)

dτ
=Im(τ;µ)�Sm(τ;µ); (3.5)

Sm(τ;µ) =
Z 1

�1
Πm(µ;µ0)Im(τ;µ0)dµ0� F�

2
(2�δm0)Πm(µ;�µ0)e

�τspher(τ); (3.6)

where m = 0;1; : : : ;2N�1, and δm0 is 1 for m = 0 and vanishes for m 6= 0. The auxiliary quantities
Πm are defined in terms of normalized Legendre polynomials Pm

l (µ) and phase function moment
coefficients βl (the actual Legendre expansion moments are βl=(2l+1)) through

Πm(µ;µ0) =
ω
2

2N�1X
l=m

βlP
m
l (µ)Pm

l (µ0): (3.7)
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To obtain discrete ordinate solutions, we replace the multiple-scatter integral in (3.6) with a sum-
mation using two Gauss-Legendre quadratures defined separately in each polar angle half-space. Each
quadrature has N points, with abscissae and weights fµi;wig; i = 1; : : : ;N in the positive half-space,
and f�µi;wig; i = 1; : : : ;N for the negative half-space. The advantages of the double quadrature
scheme have been discussed in the literature (see for example [34]). Equations (3.5) and (3.6) are
then replaced by the discrete ordinate form:

µi
dIm(τ;µi)

dτ
=Im(τ;µi)�

j=�NX
j=�1

wjΠm(µi;µ j)I
m(τ;µ j)�Qm(µi)e

�τspher(τ); (3.8)

Qm(µi) =
F�
2

(2�δm0)Πm(µi;�µ0): (3.9)

3.2.2. Homogeneous solutions

To get solutions of the homogeneous version of (3.8), we substitute Ij _Xje�kτ for j =�1; : : : ;�N.
By using the sum and difference vectors ς j = Xj +X� j and ϑ j = Xj�X� j for j = 1; : : : ;N, (3.8) can
be reduced to an N-rank eigenproblem with eigenvalues k2

α and eigenvectors ςςςα:�
ΓΓΓ� k2Ê

�
ςςς= 0; where ΓΓΓ= (ζζζ�ηηη)(ζζζ+ηηη) ; (3.10)

ζi j =
�
Π+

i jw j�δi j

�
=µi and ηi j =Π�i jw j=µi: (3.11)

Separation constants �kα occur in pairs. In the above equations, α = 1; : : : ;N, Ê is the unit matrix
and the elements Π�i j = Π�(µi;�µ j) are given by (3.7) evaluated at quadrature polar angle cosines.
The difference vector ϑϑϑα satisfies the following auxiliary equation linking it to the eigenvector ςςςα:

kαϑiα =
NX

j=1

�
ζi j +ηi j

�
ς jα: (3.12)

Equations (3.10) and (3.12) are sufficient to determine the solution of the homogeneous equations.
The eigenproblem in (3.10) can be solved reliably using standard numerical routines. We assume that
the eigenvectors ςςςα have unit length. If we define 2N-vectors X(P)

α and X(N)
α such that

X (P)
jα =

ς jα+ϑ jα
2

and X (P)
� jα =

ς jα�ϑ jα
2

; (3.13)

X (N)
jα =X (P)

� jα and X (N)
� jα = X (P)

jα ; (3.14)

where j = 1; : : : ;N, then the complete homogeneous solution is

I j(x) =
NX
α=1

n
L̃αX (P)

jα e�kατ+ M̃αX (N)
jα e+kατ

o
; (3.15)

where L̃α and M̃α are integration constants.

3.2.3. The boundary value problem

We assume that a particular solution G(τ;µj) corresponding to the source term Qm(µ j)e�τspher(τ)

in (3.8) has been found. Consider first a single layer p with upper and lower optical depths given
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by τp�1 and τp respectively, and optical thickness ∆p = τp� τp�1. Rather than use the cumulative
optical depth τ as the vertical coordinate, we express the homogeneous and particular solutions in
terms of the partial layer optical thickness x = τ� τp�1. The complete solution for the discrete
ordinate components of the intensity field in the layer is:

I jp(x) =
NX
α=1

n
LpαX (P)

jpαe�kpαx +MpαX (N)
jpαe�kpα(∆p�x)

o
+Gp(x;µj); (3.16)

This is valid for upwelling and downwelling streams, j = �1; : : :�N. The integration constants
Lpα and Mpα will be determined from the boundary value problem. The definition with x and ∆� x
is equivalent to the scaling transformation suggested by Stamnes and Conklin [56] to express ho-
mogeneous transmission factors as negative exponentials; this ensures the stability of the numerical
solution.

In a multi-layer atmosphere with K homogeneous layers and K +1 layer boundaries, the boundary
conditions are:

(BC1) no downward diffuse radiation at the top of atmosphere;
(BC2) continuity of the intensity field at all intermediate levels;
(BC3) a surface reflection condition at the lowest level.

For the reflectance of the lower boundary, we use an expansion of the bi-directional surface re-
flection function ρ(µ;φ;µ0;φ0) in terms of a Fourier series in the cosine of the relative azimuth. The
condition for the mth Fourier component of the reflected intensity (diffuse and direct) at the lower
boundary is then

Im(τK;+µi) = (1+δm0)
NX

j=1

µ jwjI
m(�µ j)ρm(µi;�µ j)+µ0F�e�τspher(τK)ρm(µi;�µ0); (3.17)

where i = 1; : : : ;N, τspher(τK) is the slant optical depth of the whole atmosphere (total vertical optical
depth τK), and ρm are the bi-directional Fourier coefficients with polar angles as indicated. As in
SKC, we use a normalized form ρ� of the bi-directional reflection function:

ρm(µi;�µ j) = Rρ�m(µi;�µ j); with R =
1
4

Z 1

0

Z 1

0
µµ0ρ0(µ;�µ0)dµdµ0; (3.18)

where R is the spherical albedo. For a Lambertian surface, ρ�0(µi;�µ j) = 1 and ρ�m(µi;�µ j) = 0 for
m > 0, where i; j = 1; : : : ;N.

We can now write down expressions for the boundary conditions. We introduce the indices p, q,
and r to label layers. BC1 is

NX
α=1

n
L1αX (P)

� j1α+M1αΘ1αX (N)
� j1α

o
= �G� j1

��
τ=0 ; (3.19)

where Gjp = G(τ;µ j) for τ in layer p. In (3.19), j = 1; : : :N, and � j denotes the downwelling stream
directions. On the right hand side, the particular integral is evaluated at the optical depth indicated.
The transmittance factors Θpα are defined by

Θpα = exp(�kpα∆p) ; (3.20)
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where α= 1; : : :N, and ∆p = (τp� τp�1) is the optical thickness of layer p. BC2 is

NX
α=1

hn
LrαΘrαX (P)

jrα+MrαX (N)
jrα

o
�
n

LpαX (P)
jpα+MpαΘpαX (N)

jpα

oi
=
�
Gjp�Gjr

���
τr
; (3.21)

where r = p�1. This is valid for both upwelling and downwelling directions j = �1; : : : ;�N, and
for p = 2; : : : ;K. BC3 at the lower boundary τ= τK (p = K) is

NX
α=1

n
LKαΘKαΦ

(P)
jα +MKαΦ

(N)
jα

o
= Rµ0F�ρ�m(µ j;�µ0)e

�τspher(τK)�Ψ j; (3.22)

where

Φ(P)
jα = X (P)

jKα� (1+δm0)R
NX

i=1

wiµ jρ�m(µ j;�µi)X
(P)
�iKα; and similarly for Φ(N)

jα ; (3.23a)

Ψ j = GjK
��
τK
� (1+δm0)R

NX
i=1

wiµiρ�m(µ j;�µi) G�iKjτK
: (3.23b)

The normalized bi-directional reflectance coefficients have been used in BC3, and e�τspher(τK) is the
whole atmosphere solar beam transmittance. (3.22) is valid for j = 1; : : : ;N. It is possible to write
down a surface boundary to include surface blackbody thermal emission in BC3 [34].

BC1, BC2 and BC3 together constitute a linear algebra system AXAXAX =BBB of order 2NK. The vector
XXX consists of the unknown integration constants Lpα and Mpα. Matrix AAA has 3N�1 sub- and super-
diagonals; it may be compressed into band-storage form and then inverted using standard methods (the
LAPACK [65] modules DGBTRF for the LU-decomposition and DGBTRS for the back-substitution
were used in the numerical model).

3.2.4. The post-processing function and the complete solution

Finding the intensity for arbitrary direction µ and optical depth τ is known as “post-processing”
of the RTE solution. We use the source function integration technique, which relies on the formal
integration of (3.5); it has a clear physical interpretation, and is convenient to use numerically. It
is essentially a form of interpolation for the intensity [34]. For a single layer with upper and lower
boundary optical depths τU and τB, the upwelling and downwelling intensities at any intermediate
layer optical thickness x = τ� τU are given by

I+(x;µ) = I+B (µ)e�(∆�x)=µ +Λ+(x;µ); (3.24a)

I�(x;µ) = I�U (µ)e�x=µ +Λ�(x;µ); (3.24b)

where ∆= τB� τU and the integrated source terms are

Λ+(x;µ) =ex=µ

∆Z
x

J+(y;µ)e�y=µ dy
µ
; (3.25a)

Λ�(x;µ) =e�x=µ

xZ
0

J�(y;µ)ey=µ dy
µ
: (3.25b)
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Here J�(y;µ) is a sum of the multiply-scattered source term intensity at optical thickness y in
direction µ and the term due to single scattering of the direct beam into this direction. The first of these
terms is evaluated by approximating the multiple-scatter integral by its discrete-ordinate quadrature,
using the discrete-ordinate solutions already obtained in (3.16). Without going into details of the
derivation, we can write:

Λ�(x;µ) = H�(x;µ)+D�(x;µ)+E�(x;µ); (3.26)

where the three terms represent contributions from the integrated homogeneous solutions, the in-
tegrated particular solution and the integrated single scatter term respectively. The single scatter
contribution E�(x;µ) and the particular solution contribution D�(x;µ) both depend on the beam at-
tenuation parameterization and the latter depends also on the method used to determine the particular
solution. The homogeneous solution term H�(x;µ) is independent of these aspects. Expressions for
H�(x;µ) may be found in [34] and are noted in Appendix 3.8.2. For now we defer discussion of the
single scatter term E�(x;µ) to the appropriate place in Section 3.3.1, while the particular solution
contributions D�(x;µ) will be treated later on when we consider the form taken by the particular
solution (Sections 3.3.2, 3.3.3).

In an inhomogeneous atmosphere, source terms must be integrated on a layer-by-layer basis.
Denoting I�p�1(µ) and I�p (µ) for the upwelling and downwelling intensities at the upper and lower
boundaries of layer p respectively, we have from (3.24a) and (3.24b):

I+p�1(µ) = I+p (µ)e
�∆=µ +Λ+(0;µ); I�p (µ) = I�p�1(µ)e

�∆=µ+Λ�(∆;µ); (3.27)

where Λ+(0;µ) is expression (3.25a) evaluated at x = 0 and Λ�(∆;µ) is (3.25b) evaluated at x = ∆.
These two relations are applied on a recursive basis to get the upwelling and downwelling intensities at
layer boundaries. The downwelling recursion starts at TOA, where the downwelling diffuse intensity
is zero (I�0 (µ) = 0).

The starting value for the upwelling recursion is the bottom-of-the-atmosphere (BOA) source term
I+K (µ), which may be determined from the surface reflection condition. For a general bi-directionally
reflecting surface with albedo R and normalized reflection coefficients ρ�m(µ;�µ j) defined for up-
welling directions µ, this is:

I+K (µ) = (1+δm0)R
NX

j=1

wjµ jρ�m(µ;�µ j)I� jK(τK)+Rµ0F�ρ�m(µ;�µ0)e
�τspher(τK): (3.28)

This is easy to evaluate since the components I� jK(τK) are known from the discrete ordinate solution
for the lowest layer p = K. This BOA source term is only present for the m = 0 Fourier term in the
Lambertian case. This result can easily be extended to include surface thermal emission (see SKC
for details). Thus to find the upwelling intensity at arbitrary stream angle µ and to arbitrary optical
depth τ (assumed to lie within layer q), we start with (3.28), then use (3.27) recursively until the lower
boundary of layer q is reached. We then apply (3.24a) once to get the required intensity at τ.

To complete the discrete ordinate solution, we sum the Fourier series (3.4). It is usual to terminate
the azimuth series when the addition of an extra harmonic does not alter the overall intensity by more
than a pre-specified relative quantity (the accuracy criterion). This convergence test should be applied
to all intensities for which output is desired. Furthermore, it makes sense to apply this test to at least
two successive azimuth contributions to avoid accidental omission. This procedure is standard in
DISORT [58] and GOMETRAN [40] regarding series convergence.
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The layer-integrated multiple scatter source term output may be obtained by simply dropping the
single scatter contribution from (3.26):

Λ(MS)�
q (∆q;µ) = H�

q (∆q;µ)+D�
q (∆q;µ) (3.29)

in terms of layer optical thickness ∆q.

For mean-value (angle-integrated) output, it is only necessary to compute the azimuth-independent
term of the Fourier series (m = 0). Mean value output does not require the above post-processing
analysis. The half-space angular integrations are performed using the discrete ordinate quadrature
values. Upwelling and downwelling fluxes hFi and mean intensities hJi at optical depth τ inside the
layer p are given by



F+(τ)

�
=2π

NX
j=1

wjµ jI
+
jp(τ) and



F�(τ)

�
= 2π

NX
j=1

wjµ jI
�
jp(τ)+F�µ0e�τspher(τ); (3.30)



J+(τ)

�
=

1
2

NX
j=1

wjI
+
jp(τ) and



J�(τ)

�
=

1
2

NX
j=1

wjI
�
jp(τ)+

F�µ0

4π
e�τspher(τ); (3.31)

where I�jp(τ) are the discrete ordinate solutions in layer p. Additional direct beam contributions are
present in the downwelling case.

3.3. The pseudo-spherical particular integral

3.3.1. Direct-beam attenuation in a curved atmosphere

We first discuss the parameterization of the pseudo-spherical source term. In a multi-layer atmo-
sphere, we may write

κq =

qX
p=1

κqp =

qX
p=1

sqpep (3.32)

for the cumulative slant optical depth κq to the bottom boundary of layer q in terms of layer path
lengths sqp, layer extinctions ep and slant optical thickness values κqp for layers p above and equal
to q. In a plane-parallel atmosphere, κqp = ∆p=µ0. For straight line paths (shell geometry only) the
distances sqp may be expressed easily in terms of vertical altitudes. In a non-refracting atmosphere,
κq is expressed as the Chapman function [35]. In a refractive atmosphere, sqp can be calculated with
repeated application of Snell’s law. The zenith solar angle cosine is always �µ0 for a non-refractive
atmosphere. With refractive geometry, one must compute an average value �µ0p for each layer p.
In the rest of this paper, we will continue to work with a non-refractive atmosphere, but the analysis
is equally valid for the refractive case, provided the above points are noted. To characterize the
pseudo-spherical input, we need to specify an input grid of slant path optical depths κqp, and (for a
refractive atmosphere) a local grid of solar zenith cosines �µ0p.

�
κqp;�µ0p

	
are additional inputs to

the RT model; in keeping with the philosophy to maintain the generic nature of the discrete ordinate
formalism, we do not include ray tracing as part of the model (this should be application-specific).

In a plane-parallel atmosphere, the direct beam attenuation is given by exp[�τ=µ0]. In a curved
spherical-shell atmosphere this is replaced by exp[�κ(τ)]. We wish to find a parameterization of this
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transmittance. The simplest assumption uses an expression which is exact at layer boundaries:

e�κ(τ) ' Tq(x) = T̂qe�xλq ; where T̂q = e�κq�1 and λq =
κq�κq�1

∆q
: (3.33)

Here, x = τ� τq�1 is the partial layer optical thickness. Clearly λq is an average secant factor which
replaces µ�1

0 in layer q. Note that this definition is slightly different to that used in [35], where λq is
defined in terms of the slant path optical depth at the center of the layer. The definition here has the
advantage that the attenuation is a continuous function of τ.

This approximation is equivalent to assuming an average attenuation across the layer, and takes
no account of variations in optical depth through the layer. Some accuracy is lost for optically thick
layers, or for geometrically extensive layers where there is considerable curvature. An improved
parameterization may be obtained with the following exponential-sine and exponential-polynomial
expressions:

e�κ(τ) 'T̂qe�xλq

2
41+

N�

qX
n=1

cqnsin(
nxπ
∆q

)

3
5 ; (3.34a)

e�κ(τ) 'T̂qe�xλq

2
41+ x

�
∆q� x

� N�

qX
n=1

cqnxn�1

3
5 ; (3.34b)

where x, T̂q and λq are defined in (3.33). In both cases, correct slant path attenuations obtain at the
layer boundaries, and the coefficients cqn may be found by linear fitting, assuming that a suitable
number of fine-level attenuation values are available. The number of coefficients N�q depends both
on the layer optical and geometrical thickness values and on the degree of accuracy desired for the
parameaterization. In practice, we use a single accuracy measure to ensure that the parameterization
is consistently accurate for all layers.

In order to get an idea of the accuracy of these parameterizations, consider a single uniform at-
mospheric layer L above the ground (lower height level of 0 km), and with varying optical and
geometrical thicknesses. We assume that this layer is bounded above by another homogeneous layer
of fixed optical thickness 0.25, and extending up to a fixed upper level of 50 km. A non-refractive
atmosphere is assumed; the earth radius is 6371 km. We make exact calculations of the attenuation
for a large number of subdivisions of L and use these results to find the factors λq and Tq and the fitted
coefficients cqn in (3.33). A maximum of 4 coefficients was found to be sufficient in the fitting. Fig-
ure 3.2 shows the results of these computations for a number of different solar zenith angles (indicated
as contours) ranging from 77� to 89:5�. An accuracy criterion of 5% was set for the average secant
approximation, and 2% for the other parameterizations. Thus for example in Figure 3.2 (center),
for all combinations of the ground layer optical and geometric thickness values lying above and to
the right of the contour labeled 87�, the exponential-polynomial parameterization will reproduce the
solar beam attenuation to better than 2% for a solar zenith angle of 87�. From Figure 3.2 (top), a 5%
accuracy level for solar zenith angles up to 87� implies that for the average secant approximation, the
ground layer optical thickness values should be below'0.6, and corresponding geometrical thickness
values should be less than '0.6 km. In practical applications in a multi-layer atmosphere, a sufficient
number of layers is used to ensure that inaccuracies in the average secant parameterization due to
geometric effects are minimized. However, it is clear that there are limitations on the accuracy of the
average secant approximation in the presence of optically thick layers. In Section 3.5, we give an
example of the effect of a more accurate pseudo-spherical parameterization on backscatter intensities
at high solar zenith angle.
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Figure 3.2: Direct beam attenuation accuracy; contours label solar zenith angles in (�), so that all ge-
ometrical and optical conditions above and right of a given contour indicate that the parameterization
is accurate to the specified level for the corresponding solar zenith angle: (top) 5% accuracy levels
in the average secant parameterization; (center) 2% accuracy level for the exponential-polynomial
parameterization; (bottom) 2% accuracy levels for the exponential-sine parameterization.
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Finally, we determine the single scatter contributions E�(x;µ) which appeared in the integrated
layer source terms (3.26). The source term to be integrated in this case is Qm(µ)T̂ e�xλ for the average
secant pseudo-spherical approximation, where Qm(µ) is given by (3.9) evaluated at zenith cosine µ.
Source term integration over optical depth along the lines of (3.25a) is straightforward. Details are
given in Appendix 3.8.2 for all three parameterizations of the direct beam transmittance noted in this
section.

3.3.2. The classical (Chandrasekhar) particular solution

We find the particular solution for the average secant approximation. We use a notation similar to
that in Section 3.2.1. For a double-Gauss discrete ordinate scheme with N quadrature abscissae and
weights

�
µ j;wj

	
in the half space, we require the particular solution of the following 2N coupled

linear differential equations (we drop the layer index q temporarily):

dI+i
dx

=�
NX

j=1

n
ζi jI

+
j +ηi jI

�
j

o
�Q+

i µ�1
i T̂ e�xλ (3.35a)

dI�i
dx

=+
NX

j=1

n
ηi jI

+
j +ζi jI

�
j

o
+Q�

i µ�1
i T̂ e�xλ: (3.35b)

where

Q�
i = (2�δm0)

F�
2π
Πm(�µ0;�µi): (3.36)

These expressions are obtained by substituting the average secant form (3.33) in the general discrete
ordinate equation (3.9), and using the definitions of matrices ζζζ and ηηη in (3.11). For the plane-parallel
case, λ= µ�1

0 and T̂ = exp [�τU=µ0] (τU is the upper boundary vertical optical depth). The particular
solution G�

j is found by substituting I�j � F�j T̂ exp(�xλ) in (3.35a) and (3.35b). This eliminates the
optical depth dependence and we are left with a linear system of order 2N:

λF+
i =

NX
j=1

n
ζi jF

+
j +ηi jF

�
j

o
�Q+

i µ�1
i ; (3.37a)

λF�i =�
NX

j=1

n
ηi jF

+
j �ζi jF

�
j

o
�Q�

i µ�1
i : (3.37b)

If we define sum and difference vectors H=F++F�, J= F+�F�, S =Q++Q� and D=Q+�Q�,
we can eliminate J in favor of H, thereby reducing the order of the system from 2N to N. The result
is �

ΓΓΓ� Êλ2�H =�(ζζζ�ηηη)S�λD (3.38)

for the sum vector H. ΓΓΓ is the eigenmatrix in (3.10) and Ê is again the unit matrix. This system is
solved numerically by standard means. The difference vector J is found from the auxiliary equation

λJ = (ζζζ+ηηη)H+S (3.39)

Equations (3.38) and (3.39) are sufficient to complete the solution. The derivation here (in particular,
the reduction in order) follows closely that found in [66].
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A similar approach applies to the exponential-polynomial parameterization given in (3.34b) above.
Solutions of the form

I�j �T̂ e�xλP
nF�jnxn (3.40)

may be substituted in the discrete ordinate equation (3.8). Successive powers of x are then equated,
and this yields a series of linked linear equations for the components F�jn which are solved recur-
sively starting with the highest power of x. A solution for the particular integral in a plane-parallel
atmosphere has been developed for an exponential-linear form [79]. For the exponential-sine param-
eterization (3.34a), the ansatz I�j � T̂ exp(�xλ)

P
nF�

jnsin(nxπ=∆) can be used. We will not go into
details for the determination of classical solutions for these two parameterizations, as the procedures
are somewhat cumbersome. In the next section we will see that the Green’s function technique allows
particular solution to be evaluated in a convenient analytic fashion, without the need for solving linear
systems numerically.

For integrated particular solution source functions with the classical method, we refer again to the
definition in (3.26), where we now require the particular solution contribution D�class. This derivation
is given in Appendix 3.8.2. In line with our preference for using the Green’s function technique,
we do not consider similar expressions for the exponential-sine and exponential-polynomial param-
eterizations (these will however be derived below in section 3.3.3 for the Green’s function particular
integral contributions).

3.3.3. The Green’s function particular solution

The Green’s function method is based on expansions for the upwelling and downwelling particular

solution in terms of solution vectors X(P)
α and X(N)

α and separation constants�kα for the homogeneous
problem. A rigorous derivation of this result is outside the scope of the present paper, but the reader
is referred to the explicit formulation of the infinite-medium Green’s function found in [50]. The
particular form used in the present work assumes that the eigenproblem separation constants occur in
pairs, but this is not a necessary requirement. In this section, we summarize the results given in [66].
We write

G+
j (τ) =

NX
α=1

n
Aα(τ)X

(P)
jα +Bα(τ)X

(N)
jα

o
; G�

j (τ) =
NX
α=1

n
Aα(τ)X

(N)
jα +Bα(τ)X

(P)
jα

o
; (3.41)

for the upwelling (+) and downwelling (�) particular integral solutions G�
j (x) of (3.8), where the

multipliers A and B are given by

Aα(τ) = aαC�α (τ) and Bα(τ) = bαC+
α (τ): (3.42)

In (3.42), the terms independent of optical depth are given by

aα =
1

Nα

NX
j=1

wj

h
P�j X (N)

jα +P+
j X (P)

jα

i
; bα =

1
Nα

NX
j=1

wj

h
P+

j X (N)
jα +P�j X (P)

jα

i
; (3.43)

where the normalization factor Nα is given by

Nα =
NX

j=1

µ jwj

h
X (N)

jα X (N)
jα �X (P)

jα X (P)
jα

i
; (3.44)
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and P�j = (2�δm0)Πm(�µ j;�µ0) (the Π function was defined in (3.7)). If the layer upper and lower
optical depths are τU and τL respectively, then the optical depth multipliers in (3.42) are given by

C�α (τ) =
τZ

τU

e�kα(τ�y)e�τspher(y)dy; and C+
α (τ) =

τLZ
τ

e�kα(y�τ)e�τspher(y)dy: (3.45)

These results may be verified by substituting (3.41) in the discrete ordinate RTE (3.8) and us-
ing (3.42) and (3.43) together with the properties of the eigensolutions to separate the optical depth
dependence and construct the multipliers in (3.45). The most important property of these eigensolu-
tions is their full-range orthogonality. We note that the particular integral is written in analytic form,
requiring only the evaluation of the optical depth integrals (3.45). Results for C�α (τ) in a plane-parallel
medium have been noted several times in the literature (see for example [50] or [66]). Since the aver-
age secant parameterization is in fact a local plane-parallel formulation with e�τspher(y) ' T̂ e�(y�τU )λ,
the integrals in (3.45) are straightforward:

C�α (x) =T̂
e�xkα � e�xλ

λ� kα
; and C+

α (x) = T̂
e�xλ� e�∆λe�(∆�x)kα

λ+ kα
; (3.46)

where again, x = τ� τU and ∆ = τL� τU . In Appendix 3.8.1 we calculate optical depth multipliers
for the exponential-polynomial and exponential-sine parameterizations.

For the post-processing function, we again refer to (3.26) and write D�Green(x;µ) for the integrated
particular solution contribution to the partial-layer source terms. In Appendix 3.8.2, we present
derivations of D�

Green for all three parameterizations of the direct beam transmittance considered in
this paper.

The Green’s function method offers a more systematic way of dealing with parameterizations of the
direct beam. In general, the classical method (which relies on substitution) is limited to source terms
with straightforward and separable dependence on optical depth; the Green’s function formalism is
more powerful and offers greater scope for dealing with a wider variety of source terms.

3.4. Linearization of the pseudo-spherical discrete ordinate solu-
tion

3.4.1. Preamble: linearization rules

In the previous work (SKC), a perturbation analysis of the intensity field in a plane-parallel multi-
layer multiply scattering atmosphere was carried out in order to establish analytical weighting func-
tions. In this paper, we adopt a slightly different emphasis, instead working directly with the partial
derivatives of the discrete ordinate solution components. Since the discrete ordinate RTE comprises
a set of coupled linear first-order differential equations, this is equivalent to the perturbation analy-
sis. We also extend the analysis in two directions: (1) the derivation of weighting functions for the
pseudo-spherical model, and (2) the generalization to upwelling and downwelling output at arbitrary
stream angles and optical depth. Together this enables weighting functions to be calculated for any
atmospheric application, in addition to extending the range of viewing geometries to include large
solar zenith angle scenarios.

In order to generate weighting functions with respect to any given atmospheric parameter, we
require the corresponding variational derivatives of the basic optical property inputs to the RTE. We
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consider variations only of layer single-scatter albedo and extinction coefficient, though it is possible
to consider variations of the phase function moments. Consider an atmospheric parameter ξq in layer
q; the relative (parameter-normalized) weighting function definition is:

Kξq
(τ;µ;φ0�φ) =

2N�1X
m=0

K m
ξq
(τ;µ)cosm(φ0�φ) ; (3.47)

K m
ξq
(τ;µ) = Lξq

[Im(τ;µ)] = ξq
∂Im(τ;µ)
∂ξq

: (3.48)

Equation (3.48) defines the linearization operator Lξ = ξ∂=∂ξ, and we will continue to use this
notation in the weighting function analysis.

The input variational quantities that determine the weighting functions may be expressed as

�
uq;vq

	
=

(
Lq
�
ωq
�

ωq
;
Lq
�
eq
�

eq

)
=

�
ξq

ωq

∂ωq

∂ξq
;
ξq

eq

∂eq

∂ξq

�
: (3.49)

Here, uq can be thought of as the relative change in single scattering albedo ωq induced by a relative
change in property ξq, and vq as the relative change in extinction coefficient eq induced by a relative
change in ξq. The pairs

�
uq;vq

	
are fundamental to the weighting function derivation, and they will

be established beforehand and entered as additional inputs to LIDORT.

A simple example will illustrate the construction of the optical properties and their derivatives.
Consider a single homogeneous layer of depth h with Rayleigh (molecular) scattering and absorption
by one trace gas species g. The single scattering albedo is ω = σRay=σtotal, where σtotal = σRay +
Xgσg, σRay is the Rayleigh cross section, σg the trace gas absorption cross section, and Xg the trace
gas volume mixing ratio. The layer extinction coefficient is e = σtotalρair, and the vertical optical
thickness is ∆= eh, where ρair is the air number density (assumed constant). If ξ= Xg is the property
undergoing variation, it can be shown readily that

uξ =� Xgσg

σRay +Xgσg
; and vξ =+

Xgσg

σRay +Xgσg
: (3.50)

In the Earth’s atmosphere, there are normally at least two scatterers (molecules and aerosols, where
the latter may include clouds). For each particulate s in layer q, we have single scattering albedos
ωqs and phase function moment coefficients βlqs. Each single scattering albedo is normalized to the
total extinction coefficient. Then we have ωq =

P
sωqs, and the combination ωqβlq which appears

in the equations in Sections 3.2 and 3.3 is defined by the sum
P

sωqsβlqs over particulates. βlq is a
weighted mean value of the separate moment coefficients βlqs. For the linearization, we also have
relative derivatives uqs defined for each scatterer s. Continuing to use these definitions of ωq and βlq,
it is necessary to define weighted mean values ulq such that ωqβlqulq =

P
sβlqsωqsuqs. This is the

combination that appears in the linearization analysis.

In a multi-layer atmosphere, it is important to note that variations in parameter ξq in layer q will
affect all cumulative vertical optical depths τ in and below that layer. For layers below q, the variation
in τ is ∆qvq, since the optical thickness of layer q will undergo variation by this amount, but optical
thicknesses for all layers below q are not affected. This observation applies equally to slant path opti-
cal depth values, since layer slant optical thicknesses are also proportional to extinction coefficients.
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Summarizing, we may write down the rules for the linearization analysis:

Lq [τ] =

8><
>:

xvq; for τq�1 < τ< τq;

0; for τ6 τq�1;

∆qvq; for τ> τq;

(3.51a)

Lq [ωp] =

(
uqωq; for q = p;

0; for q 6= p:
(3.51b)

for x = τ� τq�1 and ∆q = τq� tauq�1.

Now we examine the linearization of the direct beam attenuation. From (3.32), it follows that
Lq [κp] = vqκpq, and from the definition (3.33) of the average secant parameterization, we obtain:

Lq
�
T̂p
�
=�vqκp�1;qT̂p; for q < p; Lq

�
T̂p
�
= 0 for q> p; (3.52)

with

∆pLq [λp] =

8><
>:
�vq

�
κpq�κp�1;q

�
; for q < p and p > 1;

�vq
�
κpq�∆pλp

�
; for q = p;

0; for q > p:

(3.53)

Bringing these results together, we find

∆pLq [Tp(x)] =

8><
>:
�vq

�
κpq(∆p� x)�κp�1;qx

�
Tp(x); for q < p and p > 1;

�vqκpqxTp(x); for q = p;

0; for q > p:

(3.54)

These results are vital for the linearization analysis of the particular integral, and we will need them
later. For the plane-parallel (pp) case, we have λp = µ�1

0 and κpq = ∆pµ�1
0 , and hence

µ0Lq

h
T (pp)

p (x)
i
=

8><
>:
�vq∆qT (pp)

p (x); for q < p

�vqxT (pp)
p (x); for q = p

0; for q > p:

(3.55)

The plane-parallel result was derived in a different form in SKC; the average secant result is new.

In Section 3.4.2 we go through the linearization process for the discrete ordinate homogeneous
solutions; this mirrors the treatment in SKC. Sections 3.4.3 and 3.4.4 deal with the linearization of
the classical and Green’s function particular integrals, with particular emphasis paid to the effects of
the pseudo-spherical assumption. The analysis for the particular solutions is restricted to the average
secant parameterization. The linearization of the boundary value problem follows in Section 3.4.5;
the treatment is more general than the plane-parallel analysis presented in SKC. In Section 3.4.6
we examine the post-processing function in order to establish linearizations (and hence weighting
functions) at arbitrary optical depth and stream angle, again paying particular attention to the pseudo-
spherical treatment.

Note also that one can define an albedo weighting function: KR(τ;µ) = R∂I(τ;µ)=∂R. For a Lam-
bertian surface, this weighting function is only nonzero for the azimuth-independent Fourier term.
Layer homogeneous and particular solutions do not depend on the albedo, so their partial derivatives
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with respect to R vanish. The albedo only appears explicitly in the surface boundary condition BC3,
so the corresponding linearization operator LR need only be applied to this result. We note this
development in section 3.4.5, and mention the post-processing function for albedo weighting func-
tions in 3.4.6. The notion of an albedo weighting function can easily be extended to a more general
surface reflectance condition, if we assume no sensitivity to the shape of the bi-directional reflectance
function.

The analysis presented here is restricted to a solar beam source; we do not consider weighting
functions with respect to sources of atmospheric thermal emission. However, the latter was done in
SKC, where thermal emission was assumed isotropic, and the results established in that work can
easily be incorporated in the present analysis.

3.4.2. Linearization analysis for the homogeneous solutions

We assume that derivatives
�

uq;vq
	

have been defined with respect to property ξ varying in layer
q. We drop the index q for now, since derivatives with respect to ξ vanish for homogeneous solutions
in layers other than q. If x is the optical thickness measured from the top boundary of the layer, and ∆
the thickness for the whole layer, then as noted above, L [x] = xv and L [∆] = ∆v. The homogeneous

solutions are X(P)
α e�kαx and X(N)

α e�kα(∆�x). Applying the linearization operation and using the chain
rule gives us:

L
h
X(P)
α e�kαx

i
= e�kαx

n
L
h
X(P)
α

i
� (L [kα]+ vkα)xX(P)

α

o
; (3.56)

L
h
X(N)
α e�kα(∆�x)

i
= e�kα(∆�x)

n
L
h
X(N)
α

i
� (L [kα]+ vkα)(∆� x)X(N)

α

o
: (3.57)

To determine L [kα] and L [Xα], we apply the linearization operator to the eigenvalue problem (3.10).
We note first that the elements Πi j in the definitions of ζζζ and ηηη in (3.11) are proportional to ω, so that
L
�
Πi j
�
= uΠi j. It follows that:

L
�
Γi j
�
= u

NX
l=1

(
wlC

�
il

µi

�
ζl j +ηl j

�
+(ζil �ηil)

wjC
+
l j

µl

)
; where C�i j =Π+

i j �Π�i j: (3.58)

The linearization of (3.10) gives:

NX
j=1

�
Γi j�δi jk

2
α
�

L
�
ς jα
�
= 2kαL [kα]ςiα+

NX
l=1

L
�
Γi j
�
ς jα: (3.59)

Since for each α there are N +1 unknowns L [kα] and L [ςiα], i = 1; : : : ;N, an additional condition
is required in order to find the solution. This comes from the unit normalization condition imposed
on the eigenvectors. Since ςςςα �ςςςα = 1 (vector product), then it follows that L [ςςςα] �ςςςα = 0. Together
with (3.59), we get the combined linear system MMMαΞΞΞα =BBBα, where vectorsΞΞΞα and BBBα and matrix MMMα
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are given by:

ΞΞΞα =

2
6666664

L [kα]

L [ς1α]

L [ς2α]

...

L [ςNα]

3
7777775
;BBBα =

2
66666664

P
jξ1 jς jαP
jξ2 jς jα

...P
jξN jς jα

0

3
77777775
;

MMMα =

2
666664

2kας1α k2
α�Γ11 �Γ12 � � � �Γ1N

2kας2α �Γ21 k2
α�Γ22 � � � �Γ2N

...
...

...
. . .

...
2kαςNα �ΓN1 �ΓN2 � � � k2

α�ΓNN

0 ς1α ς2α � � � ςNα

3
777775 : (3.60)

Solving this system gives us L [kα] and L [ςςςα]. We now linearize the auxiliary equation (3.12) to

find L [ϑϑϑα]. From these results, the linearizations L
h
X(P)
α

i
and L

h
X(N)
α

i
may be obtained; these have

the same symmetry properties (3.14) as the original solution vectors. Re-introducing layer indices,

we note that for q 6= p, Lq [kpα] = 0, Lq

h
X(P)

pα

i
= 0 and Lq

h
X(P)

pα

i
= 0. These results were derived in

SKC using perturbation methods.

3.4.3. Linearization analysis for the classical particular solution

In this section, we retain the layer indices. We derive the linearization only for the average secant
parameterization of the direct beam transmittance. The original particular solution in a given layer
q was determined from the linear system (3.38), so that application of the linearization operator Lq

will result in the same linear system with a different source vector. From the previous section, we
know the linearizations Lq

�
ΓΓΓq
�
, Lq

�
ζζζq
�

and Lq
�
ηηηq
�
; all these matrices are linearly proportional to

ωq, so their linearizations depend only on uq. Further, Lq [ΓΓΓp] = 0 for q 6= p, and similarly for ζζζp and
ηηηp. Secondly, we have Lq

�
Sq
�
= uqSq and Lq

�
Dq
�
= uqDq, since Sq = Q+

q +Q�
q , Dq = Q+

q �Q�
q

and Q�
q as defined in (3.36) varies with ωq. Again there is no variation of these quantities for q 6= p.

With these considerations in mind, we can now apply the linearization operator directly to (3.38). The
result for the pseudo-spherical case is:�

ΓΓΓp� Êλ2
p

�
Lq [Hp] = δpqZq +(2λpHp�Dp)Lq [λp] (3.61)

where

Zq =�Lq
�
ζζζq�ηηηq

�
Sq�

�
ζζζq�ηηηq

�
Lq
�
Sq
��λqLq

�
Dq
��Lq

�
ΓΓΓq
�

Hq (3.62)

This result is valid for p> q. [The plane-parallel result is considerably simpler: only the term δpqZq

is present, since Lq [λp] = 0 for λp = µ�1
0 a constant; it follows that Lq [Hp] = 0 for p 6= q in this case].

It is clear from (3.61) that the solutions Lq [Hp] are determined using the same matricesΓΓΓp� Êλ2
p that

were used in the original system (3.38). Since we have already inverted these matrices while solving
for the original vectors Hp, the linearizations follow by straightforward back-substitution.

In a similar vein, we can linearize the auxiliary equation (3.39) to find Lq [Jp]:

λpLq [Jp] =�JpLq [λp]+ (ζζζp +ηηηp)Lq [Hp]+δpqZq; (3.63)
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where this time the auxiliary vector Zq is given by

Zq = Lq
�
ζζζq +ηηηq

�
Hq: (3.64)

This result is valid for p> q in the pseudo-spherical case. [In the plane-parallel case, Lq [Jp] = 0 for
p 6= q]. Equations (3.61)-(3.64) are sufficient to determine the linearizations Lq

�
F�p
�

in the definition
of the particular solution. Since the particular solutions themselves are given by G�

p (x) = F�p Tp(x),

where Tp(x) = T̂pe�xλp , we can now write down the complete result for the linearization of G�
p :

Lq
�
G�

p (x)
�
= Lq

�
F�p
�

Tq(x)+F�p Lq [Tp(x)] ; for p> q; (3.65)

where Lq [Tp(x)] is given by (3.54).

3.4.4. Linearization analysis for the Green’s function particular solution

In this section we carry out a linearization analysis on the Green’s function solution. We retain layer
indices throughout. In (3.43), apα is independent of optical depth, so that Lq [apα] = 0 for p 6= q, and
similarly for the other terms defined in (3.43) and (3.44). We proceed by applying the linearization
operator to (3.41) and using the chain rule:

Lq
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jp(x)
i
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NX
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n
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o
+δpqZ jq (3.66)

where now
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with a similar result for Lq

h
G�

jp(x)
i
. The linearizations of X(P)

pα and X(N)
pα are known from Sec-

tion 3.4.2. Further, we have from (3.42)
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and similarly for Lq [Bpα(τ)]. From the definition (3.43) for apα, we find
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and similarly for Lq
�
bqα
�
. In deriving this result we used the fact that Lq

h
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i
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jq. For the

linearization of the normalization factor Nqα in (3.44), we obtain
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In dealing with the linearizations of the optical depth multipliers in (3.46), we must distinguish
between those multipliers in the layer q in which the variation in parameter ξq is taking place, and
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multipliers in layers p > q which will be affected by the variation in layer q. Using the fact that
Lq [∆p] = ∆qvqδpq and Lq [x] = xvqδpq for x in q, and the result already established in Section 3.4.2
for Lq

�
kqα
�
, we find
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n
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where
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χpq =δpqvqλp +Lq [λp] ; (3.74)
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ψpqα =∆pϖ+
pqα+δpq(∆p� x)γqα: (3.76)

Again this is valid for p> q. This completes the linearization of the Green’s function solution.

3.4.5. Linearization analysis of the boundary value problem

This is one of the most important aspects of the weighting function analysis. Applying the lin-
earization operator to the boundary conditions will determine the linearizations Lq [Lpα] and Lq [Mpα]
for the integration constants Lpα and Mpα in (3.16) in terms of the linearizations worked out in the
previous three sub-sections for the component homogeneous and particular solutions. We first apply
the chain rule to (3.16) in layer p:
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(3.77)

where some of the dependence on x has been suppressed for convenience. The last term is only
present when p = q and is given by
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We can now apply the linearization operator to the three boundary conditions BC1, BC2 and BC3
as written down in Section 3.2.3. Clearly the linearization Lq

�
I jp
�

must also satisfy these conditions
(in terms of the perturbation analysis in SKC, the perturbed field also obeys the same conditions).
Using the notation developed earlier for the boundary conditions for the intensity problem, we can
write down explicit equations for these boundary conditions, noting that x takes values only at the
layer boundaries (that is, x = 0 or x = ∆p for layer p). We use indices p and r to label layers, while q
is reserved for the layer that contains a varying parameter. By analogy with (3.19), (3.21) and (3.22),
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we have
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The right hand side vectors are

B(1)
jp =��Lq

�
G� jp

�
+δpqLq

�
Z� jp

�	��
τ0
; (3.80a)

B(2)
jp =

��
Lq
�
Gjp
��Lq

�
Gjr
��

+
�
δpqLq

�
Zjp
��δrqLq

�
Zjr
��	��

τr
; (3.80b)

B(3)
jp =Rµ0F�Lq

h
T̂pe�∆pλp

i
�Lq

�
Ψ j
��δpqLq

�
Yjp
�
: (3.80c)

In (3.79a) and (3.79c), j = 1; : : :N, and � j denotes the downwelling stream directions. In (3.79b),
j = �1; : : : ;�N. On the right hand sides, the vectors B are evaluated at the optical depths indicated;
p = 1 in (3.79a), r = p� 1 in (3.79b) and p = K in (3.79c). The transmittance factors Θpα have
been defined in (3.20), vectors ΦΦΦ(P) and ΦΦΦ(N) in (3.23a), and ΨΨΨ in (3.23b). The BC3 condition was
written down for a Lambertian surface in (3.80c), but the generalization to a bi-directional surface is
straightforward. There is one additional definition in (3.80c), namely
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It is seen immediately that these conditions provide a linear system similar to that used to solve
the original boundary value problem. Indeed the solution matrix A in section is the same as before,
so we can write ALq [X ] = Lq [B], where the vector Lq [X ] consists of the set of unknown linearized
integration constants Lq [Lpα] and Lq [Mpα], and the solution vector Lq [B] is constructed from the
expressions (3.80a), (3.80b) and (3.80c). Since we have already found the inverse of A while solving
the original boundary value problem, it is straightforward to determine the vector Lq [X ] by back-
substitution. No additional matrix inversion is required, and the results are analytic, depending only
on the accuracy with which the original intensity was calculated. The formulation presented here is
slightly different from that in SKC, where a more explicit breakdown of the boundary conditions was
presented in a plane-parallel multilayer atmosphere.

For the albedo weighting function, the discrete ordinate homogeneous and particular solutions have
no partial derivatives, and we need only find LR [Lpα] and LR [Mpα]. For a Lambertian surface, the
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corresponding linearization of BC1, BC2 and BC3 for the Fourier m = 0 component gives:
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where B(R1)
jp = 0 for p = 1 and j = 1; : : : ;N; B(R2)
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We have used (3.23a) and (3.23b) to establish B(R3)
jp for p = K and j = 1; : : : ;N. Again, we have the

same linear system, this time with a new source vector constructed from the right-hand entries. The
solution for LR [Lpα] and LR [Mpα] follows once again by back-substitution.

Once the linearizations of the integration constants have been found, it is possible to write the
linearization of the discrete-ordinate solution anywhere in the atmosphere, and hence we have deter-
mined weighting functions at quadrature values and at arbitrary optical depth. In order to complete
the weighting function solution for arbitrary stream angles, we now look at the linearization analysis
of the post-processing function.

3.4.6. Linearization analysis of the post-processing function

We return to expressions (3.24a) and (3.24b) for the partial layer intensities derived using the source
function integration technique. Since Lq
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= ∆qvq and Lq [x] = xvq for x in layer q, we have
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where δpq = 1 for p = q and δpq = 0 otherwise, and εpq = 1 for p > q and εpq = 0 for p < q. The
latter condition arises from the fact that the source terms Λ�p (x;µ) have no linearization for p < q.
Expressions for whole layers can be obtained by setting x = 0 in (3.86a) and x = ∆p in (3.86b).

Recalling the expression (3.26) for the source function terms, we write
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This is valid for variations in layers p6 q. Note that the homogeneous solution contribution H�
p (x;µ)

has no variation outside layer q. Finding the linearizations of the three quantities on the right hand
side of this equation is a straightforward but lengthy exercise; one proceeds using already-established
results from the linearization of the discrete ordinate solution, along with repeated applications of the
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chain rule. The mathematical details are given in Appendices 3.8.3, 3.8.3 and 3.8.3 for the three right
hand side terms in (3.87) respectively.

As with the intensity calculation, the above results can be used recursively to generate weighting
functions at arbitrary optical depth and direction. For whole layer terms we simply set x = ∆p or
x = 0 for layer p. For the upwelling values at point x in layer p, we start with the bottom-of-the atmo-
sphere linearization Lq [I+(τK;µ)] and use the whole-layer expressions repeatedly for layers below p,
followed by a single partial-layer application of (3.86a) in layer p to finish. Care should be taken to
distinguish the cases p = q, p < q and p > q.

3.5. The LIDORT package

Based on the theory presented in this paper and the preceding one (SKC), the numerical model
LIDORT (LInearized Discrete Ordinate Radiative Transfer) has been developed as a general tool for
use in forward model studies connected with atmospheric retrieval. The model can be used in an
intensity-only mode (without the linearization options) or additionally to generate simultaneous fields
of weighting functions. The first version based on SKC dealt with the satellite application in a plane-
parallel atmosphere. The second version has two important extensions to cover the pseudo-spherical
treatment of the direct beam attenuation and to generate output for any atmospheric application. The
LIDORT V2 package has the following attributes:

1. Multiple scatter treatment of the radiative transfer equation in an inhomogeneous atmosphere,
with any number of scatterers. A general treatment for a bi-directionally reflecting surface is
available;

2. Generation of upwelling and/or downwelling intensity and weighting function fields for arbi-
trary viewing geometry and optical depth;

3. Option to perform a plane-parallel calculation or a pseudo-spherical calculation using the aver-
age secant approximation. Both methods of particular integral solution (classical and Green’s
function) are implemented;

4. Weighting functions may be generated with regard to any atmospheric parameter that causes
variation in layer extinction coefficient and single-scatter albedo. Options to output weighting
functions with respect to albedo and surface blackbody temperature are implemented;

5. Additional output includes mean-value quantities (flux, mean intensity) and their weighting
functions, and layer-integrated multiple scatter source terms and associated weighting func-
tions;

6. The delta-M scaling transformation has been incorporated both in the intensity calculation and
in the weighting function analysis.

Double precision arithmetic is used throughout LIDORT; the code is written in FORTRAN 77. For
the numerical tools, the module ASYMTX from DISORT was used for the homogeneous solution
eigenproblem, and LAPACK modules [65] were employed for all linear matrix algebra systems. LI-
DORT contains a standardized error handling procedure in addition to a number of auxiliary routines
for both the reading of input data from files, and the generation of result data to file. As noted already,
LIDORT is a pure scattering formalism; there are no databases or climatologies of atmospheric and
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optical properties in the model. The LIDORT package is called as a subroutine within a user-defined
environment; the usage is similar to that for DISORT [58]. The software has been quality controlled
and is portable and robust; it can be installed on PCs under the Linux operating system. Memory
requirements are modest.

For the average secant parameterization, both methods of particular integral solution (Green’s func-
tion and substitution) are implemented in the software. Intensity results for the two methods were
found to be identical to 9 places of decimals. Computation speeds are similar: the Green’s function
method is faster for the determination of the discrete ordinate solution, but a little slower for the
post-processing step. An off-line intensity-only version of LIDORT has been written to deal with the
exponential-sine and exponential-polynomial parameterizations of the direct beam transmittance.

All plane-parallel intensity output was verified using the DISORT model; pseudo-spherical results
were validated against the SDISORT code [79]. Table 3.1 gives a sample of these validations for the
test atmosphere described in Section 3.6.1. Results are for upwelling intensities at TOA for line-of-
sight viewing zenith angles as indicated. DISORT comparisons were done for a solar zenith angle
of 15�, SDISORT validations with solar angle 82�; in both cases the relative azimuth angle was 60�.
The figures apply to a 60-layer atmosphere with 10 discrete ordinate streams in the half-space for the
DISORT validation, and 8 streams for the SDISORT comparison.

Angle (�) DISORT LIDORT PP SDISORT LIDORT PS

0.0 8.83804E-02 8.838043E-02 1.74379E-02 1.743787E-02
1.0 8.82865E-02 8.828647E-02 1.74259E-02 1.742588E-02
2.0 8.81990E-02 8.819904E-02 1.74194E-02 1.741939E-02
5.0 8.79799E-02 8.797986E-02 1.74333E-02 1.743328E-02
10.0 8.77839E-02 8.778397E-02 1.75709E-02 1.757091E-02
15.0 8.78271E-02 8.782700E-02 1.78613E-02 1.786122E-02
20.0 8.81004E-02 8.810022E-02 1.83187E-02 1.831864E-02
25.0 8.86090E-02 8.860901E-02 1.89573E-02 1.895727E-02

Table 3.1: TOA upwelling intensity comparisons: LIDORT plane-parallel (PP) and DISORT,
LIDORT pseudo-spherical (PS) and SDISORT.

All weighting function output may be verified against finite-difference estimates

KFD(ξq)'
�
I(ξ+q )� I(ξ�q )

�
=(2εFD) ; (3.88)

where I(ξ�q ) are the intensities calculated using perturbed values ξ�q = ξq(1� εFD) of parameter ξq

in layer q for an external perturbation εFD. For parameters such as volume mixing ratio for which the
optical thickness dependence is linear, agreement between analytically-derived results KLIDORT (ξq)
and the finite-difference equivalents KFD(ξq) can be made very close for small enough εFD. For
other parameters such as temperature, where the optical property dependence is usually non-linear,
the finite-difference result is at best an approximation.

The delta-M scaling transformation [36] is a useful adjunct to any radiative transfer model dealing
with multiple scattering. It provides a convenient way of dealing with phase functions which are
sharply peaked in the forward scattering direction; the original phase function is replaced by a delta-
function forward peak plus a smoother residual which requires a limited number of Legendre phase
function moments for its description. The delta-M process essentially involves an initial scaling
of the optical depth inputs (single scattering albedo and vertical optical depth) before the RTE is
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solved. (Slant path optical thickness inputs must also be scaled when the pseudo-spherical treatment
is required in the RTE solution). In a model with a simultaneous weighting function capability, it
is also necessary to scale the variational inputs

�
uq;vq

	
before the RTE is linearized. Details of the

delta-M scaling transformations for LIDORT are presented in Appendix 3.8.4.

Creating the right inputs for the model is very important, and we will examine this in more detail
in the next section when we consider examples in a real atmospheric situation. We enumerate here
the main geophysical inputs:

1. Layer single scattering albedos ωqs for any number of scatterers, each such albedo normalized
to the total layer extinction coefficient. A vertical optical depth grid τq, plus layer slant path
optical thicknesses κqp for each layer p traversed by the direct beam in its path to a scatter point
at vertical optical depth τq.

2. Surface albedo R and an albedo-normalized bi-directional reflection function specified at all
stream angles (ordinates and off-quadrature) for sufficient Fourier terms.

3. Layer phase function moment coefficients βlqs for layer q, scatterer s in this layer, and for
sufficient Legendre moments l to ensure valid application of the delta-M scaling.

4. Variational input uqξs which is the relative differential variation of layer single scattering albedo
ωqs with respect to atmospheric parameter ξ. Variational input vqξ which is the relative differ-
ential variation of layer extinction coefficient eq with respect to atmospheric parameter ξ.

The LIDORT User’s Guide has a description of the complete package, and a discussion with ex-
amples on the construction of a typical environment for the model and an interface to set up the
appropriate optical property inputs. The User’s Guide also contains instructions on installation and
execution. A test data set has been prepared for release; this is based in part on the example described
in detail in below. The LIDORT source code and User’s Guide may be downloaded from the SAO
web site (http://cfa-www.harvard.edu/pub/lidort/v2).

3.6. Nadir and zenith examples with the LIDORT model

3.6.1. Construction of LIDORT inputs for a terrestrial scenario

For the applications considered below in Sections 3.6.2 and 3.6.3, we take a terrestrial atmosphere
with height 60 km, a vertical height resolution of 1 km, with O3 volume mixing ratios (VMRs) Xq,
temperatures Tq and pressures Pq for a “tropical” standard atmosphere [69], interpolated to the mid-
points of each layer. We choose a range of wavelengths in the UV covering the O3 Hartley-Huggins
absorption bands. We take O3 cross sections σO3

q [cm2] for layers q to possess quadratic temperature-
dependency. Thus σO3

q = σ0 +Tqσ1 +T 2
q σ2, where Tq is in �C. Coefficients σ0;σ1;σ2 are taken from

a standard data set [70].

Molecular (Rayleigh) scattering and aerosol scattering are present in all layers. For the wavelength
dependence of the Rayleigh scattering cross section σRay [cm2] and the depolarization ratio δRay, we
use empirical formulae [18] based on data from Bates [80]. The only non-zero phase function moment
coefficients are βRay

0 = 1 and βRay
2 = (1�δRay)=(2+δRay). For the aerosol properties, a LOWTRAN

model [71] is selected, with maritime-type boundary layer aerosol (visibility 23 km, relative hu-
midity 70%) and background stratospheric and tropospheric optical properties. Aerosol scattering
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coefficients σAer
q and extinction coefficients eAer

q (in [cm�1]) are linearly interpolated to wavelength.
For the aerosols we assume Henyey-Greenstein phase functions with asymmetry parameters g taken
from the appropriate selection of LOWTRAN aerosol types and interpolated linearly with wavelength
(phase function moment coefficients are βAer

0 = 1, and βAer
l = gl for l > 0). The clear sky total optical

thickness for this atmosphere is 1.256 at wavelength 335.4579 nm, with corresponding total Rayleigh
scattering optical thickness 0.759, and total ozone absorption optical thickness 0.00707.

We illustrate the construction of LIDORT inputs for this atmosphere. Writing ρq for the average
air number density [cm�3], eq for the layer total extinction coefficient, ∆q the layer optical thickness,
and ωRay

q and ωAer
q for the layer single scattering albedos, we get:

eq = ρq

h
XqσO3

q +σRay
i
+ eAer

q ; with ∆q = eqhq; (3.89a)

ωRay
q = ρqσRay=eq; and ωAer

q = σAer=eq; (3.89b)

where hq is the layer geometrical thickness [cm]. Together with βRay
l and βAer

l , these results de-
fine the LIDORT model input for the plane-parallel atmosphere in an intensity-only mode. For the
pseudo-spherical approximation, we need the slant optical depths κpq as defined in (3.32); since the
extinctions are known, these layer optical depths can be specified once the slant path distances spq

in (3.32) have been worked out from a suitable ray-tracing program.

The second step concerns inputs
�

uq;vq
	

for the weighting functions. The definitions are Lq
�
ωq
�
=

ξq∂ωq=∂ξq = uqωq and Lq
�
eq
�
= ξq∂eq=∂ξq = vqeq. We consider two atmospheric parameters ξ: the

volume mixing ratio Xq and the temperature Tq. For ξ= Xq, the dependence on Xq is straightforward
and we can write

uRay
ξq =�ρqXqσO3

q =eq; uAer
ξq =�ρqXqσO3

q =eq; and vξq =+ρqXqσO3
q =eq: (3.90)

For ξ= Tq the dependence is more complex. From the temperature dependence of the cross-sections,
we find ∂σO3

q =∂Tq = σ1 +2Tqσ2. Also we have ∂ρq=∂Tq =�ρq=Tq, since ρq = ρS(PqTS)=(PSTq) (the
S suffix indicates values for a standard atmosphere). Using this information in the definitions gives us

uRay
ξq =�T�1

q � e�1
q ∂eq=∂Tq; uAer

ξq =�e�1
q ∂eq=∂Tq; and vξq =+e�1

q ∂eq=∂Tq; (3.91)

where

∂eq=∂Tq =�ρqT�1
q

�
XqσO3

q +σRay
q

�
+ρqXq

�
σ1 +2Tqσ2

�
: (3.92)

3.6.2. Intensity and O3 VMR weighting functions from LIDORT

We look at two nadir viewing situations: (1) the upwelling radiation field at TOA as seen by a nadir-
viewing satellite such as GOME, GOME-2 or SCIAMACHY; and (2) the downwelling radiation at
the surface as seen by a ground-based instrument measuring sky radiances. In both cases, we assume
a Lambertian surface and no surface or atmospheric thermal emission. We show results for a wide
range of solar zenith angles, concentrating in particular on the higher values from 65� to 89:5� in
order to examine the effect of the pseudo-spherical approximation. Line-of-sight zenith angles will
range from 0� to 35�, with azimuth angles as noted. A 10-stream discrete ordinate solution was used
in LIDORT, with an accuracy criterion of 0.001 on the convergence of the Fourier azimuth series
(this model control is sufficient for a UV scenario with a large Rayleigh scattering component). The
examples that follow are indications of the output that the model can generate.
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First we compare pseudo-spherical intensities against comparable plane-parallel results. Figure 3.3
(left panel) shows the differences between the TOA upwelling intensities calculated using the plane-
parallel mode and average secant parameterization to the pseudo-spherical mode. The limitation on
the validity of the plane-parallel assumption is clear. A similar picture emerges for downwelling
intensities at the bottom of the atmosphere (BOA) (right panel). These intensities were calculated at
a single wavelength (335.4579 nm) for a number of solar zenith angles as indicated, for a range of
line-of-sight angles up to 25� and for a relative azimuth of 60�.

Figure 3.3: (top) TOA upwelling intensities: % difference between pseudo-spherical (average secant)
and plane-parallel results for the geometries indicated, albedo 0.3, wavelength 335.4579 nm; (bottom)
the same comparison for downwelling intensity at the lower boundary.

Next we look at the pseudo-spherical approximation in a little more detail. In Figure 3.4, we show
the effect of neglecting refraction using the average secant parameterization. As noted before, the
inclusion of refraction is really a question of providing properly ray-traced optical depth inputs; the
execution of LIDORT itself is not affected by this input choice. All computations were done for the
azimuth-independent term (nadir/zenith viewing) and for a number of heights (optical depths) through
the atmosphere. The top panel (for the upwelling field) indicates the spread of differences through
the atmosphere; the peak around 18 km is clear. The difference is less noticeable for downwelling
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intensities (lower panel), where the largest effect is close to the surface for the highest solar zenith
angles.

Figure 3.4: (top) Zenith upwelling intensities in the whole atmosphere: a comparison with and
without refraction using the pseudo-spherical average secant parameterization. Albedo and wave-
length as in Figure 3.3; (bottom) similar comparison for zenith downwelling intensities in the lower
atmosphere.

The average secant pseudo-spherical parameterization is adequate for clear sky scenarios with a
number of optically thin layers. We now examine a scenario where a more accurate parameterization
of the direct beam is useful. To the atmosphere described in Section 3.6.1, we add a highly scattering
optically thick particulate in one layer. We take a hypothetical polar stratospheric cloud (PSC) sce-
nario, with a cloud layer of optical thickness 1.0 and single scattering albedo 0.996 between 24 and 25
km. The solar zenith angle is 88�; at this sort of incidence, layers beneath the cloud will be opaque to
direct beam illumination and the light is multiply scattered in this part of the atmosphere. Figure 3.5
shows upwelling intensity LIDORT results for 3 line-of-sight viewing angles at a relative azimuth of
60�, calculated with the average secant and exponential-polynomial parameterizations of the direct
beam attenuation. The latter parameterization required 3 fitted coefficients to ensure an accuracy of
1% in the beam attenuation through the cloud layer. For the viewing geometries considered, errors in



Chapter 3 96

the intensity due to the average secant approximation are in the range 2.5 to 4%. It is clear that for
atmospheres with cloud layers, an improved direct beam parameterization will result in significantly
better intensity accuracy.

Figure 3.5: Upwelling intensities in the atmosphere using the average secant and exponential-
polynomial pseudo-spherical parameterizations: a comparison. Albedo and wavelength as in
Figure 3.3; geometries as indicated.

We now look at some weighting function output. Figure 3.6 shows the weighting functions with
respect to O3 volume mixing ratio for all levels in the atmosphere, and for a number (10) of wave-
lengths in the Hartley-Huggins range of ozone absorption. Results have been normalized to the peak
values; a pseudo-spherical calculation was performed for albedo 0.3, for two solar zenith angles 35�

and 82�, line of sight 15� and relative azimuth 0�. Below 300 nm, peak values occur at heights
that increase with lower wavelengths. It is this well-known differential scattering height behavior that
underpins the BUV technique for O3 profile retrieval in the stratosphere [11]. Note also the increasing
tropospheric sensitivity for the longer wavelengths; this sensitivity tends to disappear with increasing
solar zenith angle.

Figure 3.7 shows nadir-view O3 VMR weighting functions at one wavelength (335.4579 nm), cal-
culated in the average secant pseudo-spherical and plane-parallel approximations for a number of
solar zenith angles. The top panel shows results for the satellite application (TOA upwelling) at four
selected solar zenith angles. There is a significant loss of tropospheric sensitivity for higher solar
zenith angles. Note also the spurious upward drift of the peak sensitivity for the plane-parallel results.
The lower panel illustrates in more detail the differences in these results.
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Figure 3.6: TOA upwelling O3 VMR weighting functions for a number of wavelengths as indicated.
Output is normalized to the peak values.
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Figure 3.7: (top panel) TOA upwelling O3 weighting functions in the nadir direction for 4 solar zenith
angles, wavelength 335.4579 nm, albedo 0.3; (lower panel) corresponding percentage differences.
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3.6.3. LIDORT model simulations for wide off-nadir satellite viewing

Under normal viewing conditions, GOME-2 has a swath width of 1920 km; at the extremes, the
line-of-sight at the satellite is '48� from the nadir (this translates to a zenith angle of '55.3� at the
top of an atmosphere of height 100 km). The swath for the OMI instrument is even larger ('2600
km), the off-nadir line-of-sight angle at the satellite being 57� at the swath ends. Wide-angle views
are also a feature of the GOME and SCIAMACHY instruments operating in special polar-viewing
modes [5]. As noted in the Introduction, the regular pseudo-spherical model treats all scatter events
along the zenith AC in Figure 3.1 (the solar zenith angle is always θA); the solar path to the point of
scatter is attenuated in a curved atmosphere. In the enhanced pseudo-spherical approach, we consider
precise calculations of the single scatter at all points Pn along AB, treating both solar beam and line-
of-sight attenuation for the curved atmosphere. All multiple scatter contributions to the upwelling
intensity IB are computed from regular LIDORT computations done for points along AB. We adopt
the source function integration method to compute IB.

Referring to Figure 3.1, consider points Pn and Pn�1 at the lower boundaries of layers n and n� 1
respectively. Using an integration of the RTE along the segment PnPn�1, we can write:

In�1 = InΘn +Λ(SS)
n +Λ(MS)+

n ; (3.93)

where Θn is the line-of-sight transmittance along the segment, Λ(SS)
n is the layer-integrated single

scatter contribution to the upwelling radiance, and Λ(MS)
n is the layer-integrated upwelling multiple

scatter contribution. For a curved atmosphere with appropriate viewing geometry along the segment,

Θn and Λ(SS)
n are evaluated accurately in a separate calculation for the single scatter. Λ(MS)+

n is simply
replaced by the upwelling whole layer multiple scatter contribution derived in equation (3.29) from
the LIDORT model. Since viewing geometries vary along AB, separate LIDORT calculations should
be done for each geometry fθn;γn;φng at Pn (where φn is the relative azimuth angle).

The recursion (3.93) starts with the upwelling intensity IA at the lower boundary at position A,
and finishes with IB, the upwelling intensity at B. IA is returned from a LIDORT calculation with the
appropriate geometry at A. Between A and B, one can reduce the number of intermediate multiple
scatter calculations by calling LIDORT for a small subset of points along AB (to include the first and
last points P1 and A), and then interpolating the multiple scatter source term output against the cosine
of the solar zenith angle along AB. (Remember that a single LIDORT call can return layer-integrated
multiple scatter terms for all layers in the atmosphere). Any error induced by this interpolation
will be very much smaller that the basic enhancement itself. Note also that the corrected single
scatter computation uses the phase function directly without the truncation implicit in the discrete
ordinate treatment. A similar approach using multiple-scatter source terms has been developed for
the pseudo-spherical GOMETRAN finite-difference model [44].

In a non-refractive atmosphere, the scattering angle is a constant for all points on the path AB.
Figure 3.1 illustrates the forward scatter situation; for the backward (antisolar) scenario, the scatter
angle will be quite different. We can thus expect some additional asymmetry between the forward
and backward scatter cases. Also, in the forward scatter scenario the solar zenith angle at A is less
than the value at B; for the backward scatter case, the reverse is true (the difference is about �1.5�

for a TOA line-of-sight zenith of 60� for the solar/antisolar positions). This variation in solar zenith
angle is an additional source of asymmetry, both in the single scatter calculation and in the multiple
scatter source terms.

Figure 3.8 shows the differences between regular pseudo-spherical LIDORT output and improved
estimates of intensity using the multiple-scatter layer-integrated source term output from LIDORT
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and the corrected single scatter calculation. Intensity results were performed for 0� (solar) and 180�

(antisolar) azimuth angles, for a solar zenith angle of 85� and for line-of-sight angles from 0 to 70�.
The results were performed at five different wavelengths in the UV for the atmosphere outlined in
Section 3.6.1 but without aerosols (Rayleigh scattering alone) and with a surface albedo of 0.1. The
results mirror closely those found in [44]. In general the absolute magnitude of the correction is
greater for the antisolar scenarios. It is immediately clear that this correction is essential for the wide-
angle viewing geometries of GOME-2 and OMI; differences for viewing zenith angles in excess of
50� vary from 3 to 8%.

Figure 3.8: Comparison of TOA upwelling intensities from regular and enhanced pseudo-spherical
model output, for 0� (solar) and 180� (antisolar) azimuth angles, solar zenith angle 85�. Rayleigh
atmosphere, albedo 0.1. 5 wavelengths as indicated.

The situation for weighting functions is also straightforward. With respect to an atmospheric
parameter ξq in layer q, we may apply the linearization operator Lq to the recursion (3.93):

Lq [In�1] = Lq [In]Θn + InδqnLn [Θn]+Lq

h
Λ(SS)

n

i
+Lq

h
Λ(MS)+

n

i
: (3.94)

Again, Ln [Θn] and Lq

h
Λ(SS)

n

i
may be evaluated directly for a curved atmosphere in a dedicated single

scatter calculation. Assuming Λ(MS)+
n to be approximated by the pseudo-spherical LIDORT value,

then its linearization Lq

h
Λ(MS)+

n

i
can also be taken straight from LIDORT output. The linearized
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recursion starts with Lq [IA] which is returned from the LIDORT calculation at A, and finishes with
the weighting function at the top of the atmosphere B.

Figure 3.9 shows differences in ozone VMR weighting functions for a solar zenith angle of 85�, a
viewing zenith angle of 55� (this is a typical value for GOME-2 at the swath limits), and for the solar
and anti-solar positions. Calculations were done for the same atmosphere and wavelengths as used in
Figure 3.8. The asymmetry between forward and backward scatter weighting function differences is
more marked, with a broad bias apparent for the lowest wavelength (greatest sensitivity). It is again
clear that the correction will be essential for retrievals of ozone profiles from GOME-2 and OMI.

Figure 3.9: Comparison of TOA upwelling ozone VMR weighting functions from regular and en-
hanced pseudo-spherical model output for solar zenith angle 85�, viewing zenith angle 55� and for
the solar and anti-solar positions. Atmosphere and wavelengths as in Figure 3.8.

3.7. Concluding remarks

In this paper we have described an extension of the discrete ordinate solution of the radiative
transfer equation in a multiply scattering multi-layer atmosphere to the simultaneous calculation
of analytically accurate weighting function fields. A pseudo-spherical treatment of the direct beam
transmittance enables the backscatter fields to be obtained for a range of solar zenith angles up to
90�. Examples of intensity and weighting function output using the numerical model LIDORT were
presented for a number of nadir and zenith viewing earthshine backscatter applications in the UV part
of the spectrum.

The GOME, SCIAMACHY and GOME-2 instruments have the ability to measure earthshine spec-
tra in two directions of polarization; intensity measurements are polarization-corrected before use in
retrieval algorithms. Vector radiative transfer studies in and around the O2 A band have shown that the
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polarization correction is critically important for certain GOME retrievals [81]. Comparisons between
scalar (intensity) and polarized vector RT models indicate that the scalar assumption can lead to sig-
nificant sources of error in the simulation of backscatter intensity [48]. Feasibility studies have shown
the value of polarization measurements for the retrieval of aerosol properties (see for example [82]).
Polarized light measurements from the POLDER instrument have been used to separate aerosol and
surface contributions to earthshine reflectance [83]. This instrument was flown in space on ADEOS-1
(1996-1997) and a second POLDER device will be on board ADEOS-2 scheduled for launch in 2001.

Although there are a number of vector RT models in existence, they all calculate the Stokes vector
alone; weighting functions must be estimated by finite differencing. Most retrieval studies using
vector RT models have used phase-space diagrams and look-up tables. Vectorized discrete ordinate
models have been written for a plane-parallel medium [73, 84], but the pseudo-spherical treatment
has not been included. A third version of LIDORT will address these issues, namely the development
of a linearization analysis of a vectorized model for the generation of weighting functions, and the
use of a consistent pseudo-spherical vector RT treatment.
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3.8. Appendices

3.8.1. Green’s function optical depth multipliers

We derive Green’s function optical depth multipliers (3.45) for the exponential-sine and exponential-
polynomial pseudo-spherical parameterizations. We can define

C�α (x) = T̂
N�X

n=0

cnK�
nα(x) (3.95)

by analogy with the coefficient expansions (3.34a) and (3.34b), with c0 = 1 for both parameterizations,
and T̂ K�

0α(x) the average secant results already noted in (3.46).

For the exponential-sine parameterization, the functions K�nα(x) for n > 0 are:

K�
nα(x) =e�xkαSn( f�α ;x); (3.96a)

K+
nα(x) =e+xkα

�
Sn( f+α ;∆)�Sn( f+α ;x)

�
; (3.96b)

with the definition

Sn(β;x)�
xZ

0

e�yβsin(φny)dy =
φn

�
1� e�xβ cos(φnx)

�
�βe�xβ sin(φnx)

β2 +φ2
n

: (3.97)
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Here, f�α = λ� kα and φn = πn=∆.

For the exponential-polynomial parameterization, the functions K�nα(x) for n > 0 are:

K�
nα(x) =e�xkα

�
∆Qn( f�α ;x)�Qn+1( f�α ;x)

	
; (3.98a)

K+
nα(x) =e+xkα

��
∆Qn( f+α ;∆)�Qn+1( f+α ;∆)

�� �Qn( f+α ;x)�Qn+1( f+α ;x)
�	

; (3.98b)

with definitions

Qn(β;x)�
xZ

0

e�yβyndy; (3.99)

βQn(β;x) = nQn�1(β;x)� xne�xβ for n > 0; and Q0(β;x) =
1� e�xβ

β
: (3.100)

3.8.2. Integrated source term contributions in the post-processing function

In this appendix, we establish the integrated source term contributions that appear in (3.26). The
appendix is divided into four parts, dealing first with the homogeneous contribution, then the single
scatter contribution, followed by the two particular integral contributions evaluated for the classical
and Green’s function solution methods.

Homogeneous integrated solution source term contribution

We first look at the contribution H�(x;µ) to the source function terms in (3.26). This may be
written

H�(x;µ) =
NX
α=1

n
LαX (P)

α (µ)H �+
α (x;µ)+MαX (N)

α (µ)H ��
α (x;µ)

o
(3.101)

where the two functions

X (P)
α (µ) =

ω
2

2N�1X
l=m

βlP
l
m(µ)

NX
j=1

Pl
m(�µ j)wjX

(P)
jα ; (3.102)

X (N)
α (µ) =

ω
2

2N�1X
l=m

βlP
l
m(µ)

NX
j=1

Pl
m(+µ j)wjX

(N)
jα ; (3.103)

can be thought of as the solution vectors X(P)
α and X(N)

α defined at off-quadrature directions µ. The sum
over j indicates that the discrete-ordinate solutions have been used in the source function derivations.
The integrated homogeneous multipliers H ��

α (x;µ) arise from the optical depth integrations implicit
in the source function derivation. These are straightforward exponential integrals, and the results are

H ++
α (x;µ) =

e�xkα � e�∆kαe�(∆�x)=µ

1+µkα
; (3.104)

H +�
α (x;µ) =

e�(∆�x)kα� e�(∆�x)=µ

1�µkα
; (3.105)
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for the upwelling source function terms, and

H �+
α (x;µ) =

e�xkα � e�x=µ

1�µkα
; (3.106)

H ��
α (x;µ) =

e�(∆�x)kα� e�∆kαe�x=µ

1+µkα
; (3.107)

for the downwelling terms. These results have appeared a number of times in the literature (see
for example [66]). To evaluate whole layer source terms we set x = 0 in (3.104) and (3.105) for
upwelling contributions, and x = ∆ in (3.106) and (3.107) for the downwelling terms. The whole
layer multipliers are

H ++
α (0;µ) = H ��

α (∆;µ) =
1� e�∆kαe�∆=µ

1+µkα
; (3.108)

H +�
α (0;µ) = H �+

α (∆;µ) =
e�∆kα� e�∆=µ

1�µkα
: (3.109)

Primary scatter integrated source term contribution

Next we look at single scatter contributions to the integrated source terms. These are

E�(x;µ) = Q�(µ)E�(x;µ) (3.110)

where

Q�(µ) =
F�
2

(2�δm0)Πm(µ;�µ0) (3.111)

and the single scatter multipliers E�
α (x;µ) are

E+(x;µ) =
ex=µ

µ

∆Z
x

T (y)e�y=µdy; and E�(x;µ) =
e�x=µ

µ

xZ
0

T (y)ey=µdy; (3.112)

where T (y) is the direct beam transmittance. These results (3.112) are valid for all parameteri-
zations of the direct beam attenuation; furthermore, they are independent of the Fourier index m
in (3.111), so only need evaluation once. The integrations are straightforward for the average secant
parameterization T (y) = T̂ exp(�yλ):

E+(x;µ) =T̂
e�xλ� e�∆λe�(∆�x)=µ

1+µλ
; (3.113)

E�(x;µ) =� T̂
e�xλ� e�x=µ

1�µλ
: (3.114)

The plane-parallel result may be obtained by setting λ = µ�1
0 . Note also that l’Hopital’s rule should

be used in (3.114) when λ is close to µ�1; the limiting value is:

lim
µ!λ

E�(x;µ) =�T̂ xλe�xλ: (3.115)
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Whole layer source term contributions are obtained by setting x = 0 in (3.113) (upwelling), and x = ∆
in (3.114) (downwelling).

For the other pseudo-spherical parameterizations we have some additional terms corresponding to
the series expansions used in these approximations. We may write

E�(x;µ) = E�
AS(x;µ)+

T̂
µ

N�X
n=1

cnW�
n (x;µ) (3.116)

where E�
AS(x;µ) are the average secant multipliers from (3.113) and (3.114), and for n > 0,

W+
n (x;µ) = ex=µ

∆Z
x

e�y(λ+µ�1) sin(
πny
∆

)dy; W�
n (x;µ) = e�x=µ

xZ
0

e�y(λ�µ�1) sin(
πny
∆

)dy

(3.117)

for the exponential-sine parameterization, and

W+
n (x;µ) = ex=µ

∆Z
x

e�y(λ+µ�1)yn(∆� y)dy; W�
n (x;µ) = e�x=µ

xZ
0

e�y(λ�µ�1)yn(∆� y)dy

(3.118)

for the exponential-polynomial parameterization. In both cases, the integrals are straightforward and
mirror similar calculations in Appendix 3.8.1.

Classical particular solution integral source term contributions

We first look at the contributions D�(x;µ) to the source function terms in (3.26) from the classical
form of the particular integral. We do this for the average secant form Gj(x) = FjT (x), where T (x) =
T̂ exp(�xλ) and the vector F was determined in section 3.3.3. The results are

D�(x;µ) = F�(µ)D�(x;µ) (3.119)

where

F�(µ) =
ω
2

2N�1X
l=m

βlP
l
m(µ)

NX
j=1

Pl
m(�µ j)wjF

�
j (3.120)

can be thought of as the particular solution vector F defined at off-quadrature streams µ. Since the
particular solution has the same optical depth dependence as the single scatter term in the previous
section, the integrated classical solution multipliers D�(x;µ) are

D�(x;µ) = E�
AS(x;µ) (3.121)

as defined by results (3.113) and (3.114) for the average secant approximation. One can also use
the results in Eqs. (3.116)-(3.118) for the other parameterizations. This would require additional
functions such as (3.120) to be defined for each term in the coefficient expansion beyond the average
secant.
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Green’s function integral source term contributions

Since the Green’s function particular integral is also an expansion in terms of homogeneous solution
vectors, we would expect the analysis to be similar to that in Appendix 3.8.2. Recalling the particular
integral definitions from Section 3.3.3, we may write

D�(x;µ) =
NX
α=1

n
aαX (P)

α (µ)D�+
α (x;µ)+bαX (N)

α (µ)D��
α (x;µ)

o
(3.122)

where X(P)
α (µ) and X (N)

α (µ) have been defined in (3.102) and (3.103) respectively, with aα and bα
given by (3.43).

The integrated Green’s function multipliers D��(x;µ) again arise from the optical depth integra-
tions implicit in the source function derivation. They are

D+�
α (x;µ) =

ex=µ

µ

∆Z
x

C�α (y)e
�y=µdy; (3.123a)

D��
α (x;µ) =

e�x=µ

µ

xZ
0

C�α (y)e
+y=µdy; (3.123b)

for the upwelling and downwelling contributions respectively. For the average secant (and by default,
the plane-parallel) parameterizations, explicit expressions for C�α (y) were written down in (3.46).
Using these results, one can carry out the integrations to give

D+�
α (x;µ) =

T̂ e�∆λH +�
α (x;µ)�E+(x;µ)
λ� kα

; (3.124a)

D��
α (x;µ) =

T̂ e�∆λH ��
α (x;µ)�E�(x;µ)
λ� kα

; (3.124b)

for upwelling and downwelling multipliers respectively. Quantities H ��
α and E� have been deter-

mined from Appendices 3.8.2 and 3.8.2, the latter determination being made for the average secant
case. Expressions (3.124a) and (3.124b) are convenient for computation; it is obviously possible to
write out the full results in terms of many transmittance factors.

For the exponential-sine and exponential-polynomial parameterizations, we can substitute the re-
sults of Appendix 3.8.1 for C�α (y) in (3.123a) and (3.123b). All integrals are again straightforward
and we summarize the results for the exponential-polynomial parameterization. For the upwelling
multipliers, the results are:

D+�
α (x;µ) =

T̂
µ

e+x=µ
N�X

n=0

cnK+�
nα (x;µ); (3.125)

where c0 = 1, and the first term in the series duplicates the average secant result (3.124a). For n > 0
the K-functions are:

K+�
nα (x;µ) = C�

nα(x;µ)�∆Rn( f�α ;g
�
α ;x)�Rn+1( f�α ;g

�
α ;x) (3.126)
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with the function R defined by the recurrence relation

βRn+1(β;γ;x) = nRn�1(β;γ;x)�Qn(β+ γ;x) (3.127)

for general inputs β and γ. The function Qn(β;x) was defined in (3.99). The particular arguments are
f�α = λ� kα and g�α = µ�1� kα. We also have

C�
nα(x;µ) =∆Rn( f�α ;g

+
α ;∆)�Rn+1( f�α ;g

+
α ;∆); (3.128)

C+
nα(x;µ) =Jnα(µ)

�
Q0(g

�
α ;∆)�Q0(g

�
α ;x)

��∆Rn( f+α ;g
�
α ;∆)+Rn+1( f+α ;g

�
α ;∆); (3.129)

Jnα( f+α ) =∆Qn( f+α ;∆)�Qn+1( f+α ;∆); (3.130)

For the downwelling multipliers, one finds similar results:

D��
α (x;µ) =

T̂
µ

e�x=µ
N�X

n=0

cnK��
nα (x;µ); (3.131)

where c0 = 1, and the first term in the series duplicates the average secant result (3.124b). For n > 0
the K-functions are:

K��
nα (x;µ) = C�

nα(x;µ)�∆Rn( f�α ;�g�α ;x)�Rn+1( f�α ;�g�α ;x) (3.132)

with the function R defined in (3.127), and f�α and g�α as before. We also have

C�
nα(x;µ) =0; (3.133)

C+
nα(x;µ) =Jnα( f+α )Q0(�g+α ;x); (3.134)

where Jnα( f+α ) was given in (3.130).

3.8.3. Linearization analysis of the post-processing source terms

We wish to apply the linearization operator L to each of the source term contributions that appear
in the post-processing result (3.26). The procedure is based on linearization results already obtained
for the discrete ordinate solutions in all layers and the linearizations of the boundary value constants,
and application of the chain rule of differentiation. The algebraic manipulations are fairly extensive
but quite straightforward, illustrating once again that the determination of partial derivatives of the
complete discrete ordinate intensity field can be done in an entirely analytic fashion. We follow the
same sequence as in the previous appendix. Linearizations for the particular integrals and the single
scatter terms are confined to the average secant parameterization of the pseudo-spherical treatment.

Linearization of the homogeneous source term contributions

We first look at the source function contributions H�(x;µ) from the homogeneous solutions. We
apply the chain rule to (3.101), noting that Lq [Lpα] and Lq [Mpα] are known from the linearization
analysis of the boundary value problem. All other quantities in (3.101) have vanishing derivatives for
p 6= q, so we will drop the index q in the rest of this section. From (3.102) and (3.103), we find

L
h
X (P)
α (µ)

i
=
ω
2

2N�1X
l=m

βlP
l
m(µ)

NX
j=1

Pl
m(�µ j)wj

n
L
h
X (P)

jα

i
+uX (P)

jα

o
; (3.135)

L
h
X (N)
α (µ)

i
=
ω
2

2N�1X
l=m

βlP
l
m(µ)

NX
j=1

Pl
m(+µ j)wj

n
L
h
X (N)

jα

i
+uX (N)

jα

o
; (3.136)
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where the layer index q is assumed throughout. The terms with uXα arise from the linearization
L [ω] = uω.

Next we look at the linearizations of the homogeneous multipliers defined in (3.104) and (3.105).
We proceed by chain rule differentiation, using the known result for L [kα] from Section 3.4.2 and the
linearization rules L [∆] = v∆ and L [x] = vx from Section 3.4.1. The result for H++ is:

L
�
H ++
α (x;µ)

�
=
�H ++

α (x;µ)µ fα� e�xkαxγα+ e�∆kαe�(∆�x)=µ
�
∆γα+(∆� x)vµ�1

�
1+µkα

;

(3.137)

where fα = L [kα], and γα = vkα+ fα. In a similar vein, we find:

L
�
H +�
α (x;µ)

�
=

H +�
α (x;µ)µ fα� e�(∆�x)kα(∆� x)γα+ e�(∆�x)=µ (∆� x)vµ�1

1�µkα
; (3.138)

L
�
H �+
α (x;µ)

�
=

H �+
α (x;µ)µ fα� e�xkαxγα+ e�x=µ (∆� x)vµ�1

1�µkα
; (3.139)

L
�
H ��
α (x;µ)
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�H ��

α (x;µ)µ fα� e�xkα(∆� x)γα+ e�∆kαe�x=µ
�
∆γα+ xvµ�1

�
1+µkα

: (3.140)

As with the original multipliers, values of these linearizations at the layer boundaries can be obtained
by setting x = 0 in (3.137) and (3.138), and x = ∆ in (3.139) and (3.140). The above results appeared
in SKC in a slightly different form.

Linearization of the single scatter source term contributions

We start with the definition of E�p (x;µ) in (3.110), this time keeping an explicit layer indexing
throughout. Applying the linearization operator Lq for a parameter ξq varying in layer q, we find

Lq
�
E�p (x;µ)

�
= Q�

p (µ)
�
δpquqE�

p (x;µ)+Lq
�
E�

p (x;µ)
�	

: (3.141)

Q�
p (µ) as defined in (3.111) is directly proportional to ωp, so the corresponding linearization is then

δpquqQ�
p (µ). For the second term in (3.141), we apply linearization to the definitions of these multi-

pliers given in (3.112). Using the linearizations established in Section 3.4.1 for Lq
�
T̂p
�

and Lq [λp],
we get

Lq
�
E+

p

�
=
�e�xλpxχpq + e�∆qλpe�(∆q�x)=µ

�
∆qχpq +(∆� x)δpqvqµ�1
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1+µλp

+E+
p ϖ+

pq; (3.142a)
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�e�xλpxχpq + e�x=µ

�
∆qχpq + xδpqvqµ�1
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1�µλp

+E�
p ϖ

�
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where the dependence of E�
p on (x;µ) has been assumed, and

ϖ�pq =
Lq
�
T̂p
�

T̂p
� µLq [λp]

1�µλp
and χpq = Lq [λp]+δpqvq: (3.143)

A form of these results were derived for the plane-parallel case in SKC using a perturbation analysis.
The above results are a generalization to the average secant pseudo-spherical approximation, and it
is clear that there are important contributions to multipliers in layer p from variational derivatives in
layer q above p. This illustrates the care that need to be taken in setting up the linearization rules for
the pseudo-spherical case.
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Linearization of the classical particular solution source term contributions

From the definition (3.119), we find

Lq
�
D�

p (x;µ)
�
= Lq

�
F�p (µ)

�
D�
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�
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�
: (3.144)

For the first term, we note that
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o
; (3.145)

This is similar to the result in (3.135), and follows from the definition in (3.120). Note that the partic-
ular solution discrete ordinate vector F�p has cross-layer derivatives outside layer p; the linearization
of this vector was dealt with in section 3.4.3. Finally, since the multipliers D�

p are actually equal to
E�

p , then we may use the results already established for Lq
�
E�

p

�
in Appendix 3.8.3.

Linearization of the Green’s function particular integral source term contributions

Although the Green’s function particular integral source term contributions defined in (3.122)
have a number of contributions, we may use the results established in Appendices 3.8.2 and 3.8.2
to simplify the analysis considerably. We retain layer indices throughout. In applying chain-rule
differentiation to the terms in (3.122), we note that

Lq

h
apαX (P)

pα (µ)D�+
pα (x;µ)

i
= δpqLq

h
apαX (P)

pα (µ)
i

D�+
pα (x;µ)+apαX (P)

pα (µ)Lq
�
D�+

pα (x;µ)
�

(3.146)

since the terms apα and X (P)
pα (µ) have no optical depth dependence. Their linearizations are given

by (3.69) in section 3.4.4 and (3.135) in appendix 3.8.3 respectively. Similar remarks apply to the
combination bpαX (N)

pα (µ) which comprises the second half of (3.122). We are thus left with the task
of determining linearizations for the multipliers D��

pα .

We note that the Green’s function multipliers defined in (3.124a) and (3.124b) are expressed in
terms of multipliers H ��

p and E�
p . Since we already have linearizations for these quantities from

appendices 3.8.3 and 3.8.3, a straightforward application of the chain rule in terms of known lin-
earizations will yield the desired result. Compacting the notation somewhat by dropping the (x;µ)
dependence which is assumed throughout, we find
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; (3.147)
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where the following auxiliary quantities are evident:

ϕp =T̂pe�∆pλp ; (3.149)

ψpq =
Lq [ϕp]

ϕp
=

Lq
�
T̂p
�

T̂p
�∆p

�
δpqλp +Lq [λp]

�
; (3.150)

ϖ�pqα =Lq [λp]�δpqLq [kpα] : (3.151)

This completes the linearization of the Green’s function particular integral source term contributions.
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3.8.4. Delta-M scaling transformations

We restrict the discussion to an atmosphere with one scatterer. For single scattering albedo ωq,
optical thickness ∆q and phase function moment coefficients βlq in layer q, the delta-M scaling [36]
is

ωq = ωq
(1� fq)

(1�ωq fq)
; ∆q = ∆q(1�ωq fq); with βlq =

βlq� fq(2l+1)
1� fq

: (3.152)

Here, l = 0; : : : ;2N � 1 and fq = βMq=(2M + 1) is the truncation factor in layer q, with M = 2N
indicating that all scaled phase function moment coefficients βlq for l > M are zero. As far as the
pseudo-spherical approximation is concerned, we note that all spherical optical depths κqp as defined
in (3.32) scale in the same way as ∆p.

This result is standard in intensity-only radiative transfer models; see [34] for more details. For a
model such as LIDORT with additional inputs

�
uq;vq

	
expressing the relative partial derivatives of

ωq and eq due to some parameter ξq varying in layer q, we must also consider the scaling of these
inputs. Remembering that Lq

�
ωq
�
= uqωq and Lq

�
∆q
�
= vq∆q, one can simply apply the linearization

operator to the first two results in (3.152) to define scaled values
�

uq;vq
	

. The result is

uq =
uq

1�ωq fq
and vq = vq� ωq fquq

1�ωq fq
: (3.153)

It is straightforward to extend these scaling results to a layer with a number of particulates, bearing
in mind the combination forms

ωq =
X

s

ωqs; ωqβlq =
X

s

ωqsβlqs and ωqβlqulq =
X

s

βlqsωqsuqs (3.154)

which are used in the RTE (see Section 3.4.1).
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Abstract

The global and long-term measurement of ozone vertical and horizontal distributions
is one of the most important tasks in the monitoring of the earth’s atmosphere. A
number of satellite instruments are capable of delivering ozone profile distributions
from UV nadir backscatter measurements. Retrieval algorithms should be efficient
enough to deliver profiles in real-time without compromising accuracy. Such algo-
rithms require a radiative transfer model that can generate quickly and accurately
both simulated radiances and Jacobian matrices of weighting functions. We develop
fast and analytic 4 stream and 6 stream linearized discrete ordinate models designed
to satisfy performance and accuracy requirements for such an algorithm. The models
have the pseudo-spherical treatment of the direct beam attenuation. For anisotropic
scattering we use the delta-M scaling method to deal with strong forward scattering
peaks. We demonstrate that the accuracy of the models is improved greatly upon
application of a single scatter correction based on an exact specification of the phase
function. For wide-angle off-nadir viewing, a sphericity correction is developed to
deal more precisely with attenuation in a curved atmosphere. Radiances and weight-
ing functions for the 4 and 6 stream models are compared with 20 stream output
from the LIDORT model. We show that for the UV range pertinent to ozone pro-
file retrieval from space, the 4 stream model generates backscatter radiances to an
accuracy of better than 1.25% for all viewing situations in a clear sky Rayleigh and
background aerosol reference atmosphere, and up to 1.75% for a number of special
scenarios with optically thick particulate layers. 6 stream radiances are accurate to
the 0.25% level for clear sky situations, and 0.65% for the special cases; weighting
functions for the 6 stream output are accurate to �2% in all cases. We discuss the
implications of these comparisons regarding the performance and accuracy of the
radiative transfer forward model in the ozone profile retrieval context.
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4.1. Introduction

Monitoring of the earth’s atmosphere is an essential requirement to the understanding of chemical
and physical processes that maintain atmospheric balance. This is particularly important in view of
perceived changes in the atmosphere’s constituent distributions due to anthropogenic activity on the
planet. Space-based instruments have the potential to deliver global and long-term measurements
of the vertical and horizontal distributions of atmospheric constituents, from the determination of
column abundances and profile concentrations of ozone and other trace species, to the evaluation of
aerosol and cloud properties and distributions. Ozone is the most important trace species, and in this
work we will be concerned with the forward model component of ozone profile retrieval algorithms
based on satellite nadir earthshine measurements in the UV part of the spectrum.

The GOME (Global Ozone Monitoring Experiment) nadir viewing spectrometer on board the ESA
ERS-2 satellite (launched April 1995) takes earthshine measurements in the UV, visible and near
infrared; it has a spectral range of 250 to 800 nm, with a moderate spectral resolution of 0.2 to
0.4 nm [7]. An improved version of the GOME instrument, GOME-2, will fly on the first three
METOP satellites [6]. The operational period of these platforms is 15 years, and this offers a unique
opportunity to obtain a long-term, global ozone record. Other instruments with similar measurement
capabilities to GOME and GOME-2 include SCIAMACHY [76] on the ENVISAT platform (launch
summer 2001) and OMI [8] on EOS-AURA (launch 2003). GOME and SCIAMACHY have maxi-
mum swaths of 960 and 1000km respectively, with a maximum off-nadir scan angle at the satellite
of ' 32�. OMI (swath 2600 km) and GOME-2 (maximum swath 1920 km) have wide-angle nadir
viewing scenarios, and sphericity effects will be important for these instruments.

The first operational ozone profile retrieval algorithm from UV nadir measurements was developed
for the BUV, SBUV, SBUV/2 and SSBUV experiments [11]. Ozone profile retrieval algorithms for
GOME have been reported in the literature [14, 16, 15, 13]. The potential of GOME-type instruments
to deliver ozone profiles (Level 2 data) with the temporal and geographical sampling of the corre-
sponding earthshine measurements (Level 1 data ) can only be exploited if the retrieval process is fast
enough to keep up with the data rate using the best available computer resources. It is highly desirable
to develop algorithms which are as efficient as possible, and to find the right balance between accuracy
and speed.

The ozone profile algorithm requires repeated calculations of simulated radiances and Jacobian
matrices of radiance derivatives with respect to retrieval parameters (weighting functions). A tremen-
dous saving in time is achieved with a radiative transfer (RT) model that is capable of delivering both
these quantities simultaneously, without the need for cumbersome finite-difference approximations to
the weighting functions obtained by repeated calls to an radiance-only radiative transfer model. The
LIDORT (Linearized Discrete Ordinate Radiative Transfer) model [75, 85] has been designed with
this purpose in mind; it is able to generate all weighting functions simultaneously to the same degree
of accuracy as that pertaining for the radiance. Furthermore, the derivation of weighting functions is
analytic, depending on an explicit differentiation of the complete RT solution.

In the discrete ordinate method, multiple scatter integrals over the polar viewing angle are replaced
by quadrature sums defined by a set of Gauss-Legendre abscissae and weights (streams). The accu-
racy of the radiance at TOA computed with the discrete ordinate model is mainly determined by the
number of streams. A high level of accuracy can be achieved for a sufficient number of streams; this is
especially true for a strongly anisotropic medium. Taking only four or six streams therefore involves
some loss of accuracy. For atmospheres with aerosol scattering, we use the standard delta-M scal-
ing [36] to separate the forward scatter peak as a delta-function and truncate the phase function; this
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process requires an initial scaling of the single scattering albedos and optical thicknesses before the
model is executed. For a low number of streams, the single scatter contributions to the upwelling TOA
radiance are not well treated in the delta-M approximation. To remedy this, we use the Nakajima-
Tanaka (NT) correction procedure [37], which replaces the single scatter terms with analytical results
computed for exact phase functions.

Analytic 4 stream solutions were derived by Liou [51] for the azimuth-independent component of
the radiance field (this is sufficient to obtain heating rates and fluxes). In this work we extend the
analytic 4 stream solution to cover the azimuth dependence of the radiation field, and we develop
corresponding analytic expressions for the 6 stream model. A reduction in order by a factor of two
is possible when solving for the homogeneous and particular solutions of the discrete ordinate RTE.
These solutions can then be developed analytically for the low-stream cases, thereby avoiding numer-
ical procedures (eigenproblem analysis and linear algebra systems) otherwise required for a higher
number of streams. In a multi-layer atmosphere, a set of boundary conditions is required to complete
the determination of the radiance; the resulting boundary value problem is a sparse linear algebra
system. In solving this system, the time-consuming matrix inversion step is greatly speeded up with
4 and 6 stream approximations (speed varies with the square of the number of streams).

The determination of weighting functions for these models is carried out by explicit analytic
differentation of the complete radiance field; this is the method adopted in the general LIDORT
treatment [85]. Derivatives of the TOA radiance are taken with respect to the input optical properties
that control the radiance calculation (total optical thickness, total single scattering albedo and phase
function moments). Weighting functions with respect to atmospheric parameters then follow once
we establish the dependence of the total optical input variables on these atmospheric parameters.
We look at this dependence for parameters such as ozone profile volume mixing ratio, temperature,
aerosol optical thickness and single scattering albedo. In addition, we derive weighting functions with
respect to parameters such as the asymmetry factor which characterize the angular distribution of the
phase function; such quantities are important for retrievals of aerosol optical properties.

Figure 4.1: (a) Geometry for the regular pseudo-spherical computation of backscatter radiation; (b)
geometry for the sphericity correction.

In common with the general LIDORT treatment [85], the 4/6 stream models will use the pseudo-
spherical approximation, in which the attenuation of the direct solar beam is computed accurately
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in spherical shell geometry, but all scattered light (with the exception of the NT-corrected single
scatter terms) is treated for a plane-parallel atmosphere. The advantage of this approximation is that
the power and speed of the plane-parallel scattering formalism can be retained without the need to
call a greatly more complex and time-consuming full-spherical radiative transfer model. It has been
shown [35, 78] that the PS treatment is adequate for solar zenith angles up to 90� provided the line-
of-sight is reasonably close (' 20� 25� or less) to the nadir. Figure 4.1(a) illustrates the viewing
geometry for this case; all scattering takes place along the nadir AC.

For wide-angle off-nadir viewing it is necessary to allow for sphericity effects; the situation is
shown in Figure 4.1(b), where scattering takes place along path AB instead of the vertical AC. To
determine the upwelling radiation field at B, we obtain accurate single scatter contributions at points
Vn along AB, taking curved geometry into account for all solar paths as well as path AB itself. Mul-
tiple scatter contributions at points Vn are determined from the pseudo-spherical models with the
appropriate geometry for these points; the complete solution at B is found by using a layer-by-layer
integrated source function method. Single scatter contributions will be NT-corrected. The multiple
scatter contributions vary smoothly with the small changes in viewing geometry from A to B, and we
demonstrate that interpolation based on two or three computations is sufficiently accurate. We use
the term sphericity correction for the calculation of TOA radiance IB. The correction was developed
for LIDORT in [85], and a similar procedure has been applied to the finite difference GOMETRAN
model [44]. Studies have shown that this sort of sphericity correction applied to pseudo-spherical RT
models gives a very good approximation to the radiance computed using a full-spherical model [78].

The first three sections of the paper deal with theoretical aspects. In Section 4.2 on discrete ordinate
theory, we concentrate in particular on the reduction in order which allows the analytic solutions to be
written down in the 4 and 6 stream cases. In section 4.3, we carry out an explicit differentiation of all
aspects of the discrete ordinate solution in order to obtain analytically-derived weighting functions,
again focusing on the low-stream cases. This differentiation process is the linearization of the for-
ward model. In section 4.4 we discuss the various correction procedures used to enhance the model
accuracy for a low number of streams (delta-M, NT correction and sphericity correction).

In section 4.5 we examine the accuracy of the 4/6 stream models by carrying out extensive com-
parisons with 20 stream output from the LIDORT model. We look at a wavelength range of 299-335
nm covering that part of the UV spectrum wherein multiple scattering effects must be included in
the RT modeling. ozone is the only absorber. We look at three atmospheric situations: a reference
clear sky atmosphere with scattering by molecules and background aerosol distributions; the same
atmosphere but containing a tropospheric cloud layer of variable optical thickness; and thirdly, the
reference atmosphere with one layer containing an optically thick scattering medium such as desert
dust. We consider also the dependence on surface albedo (assumed Lambertian). A wide range of
viewing geometries will be considered, appropriate to the nadir viewing conditions encountered by
the two GOME instruments, SCIAMACHY and OMI. Section 4.5.2 examines the efficacy of the NT
single scatter correction, while section 4.5.3 looks at the effect of the sphericity correction. The main
conclusions from this study are summarized in Section 4.6, which also contains a discussion on the
consequences regarding performance and accuracy trade-off in an operational ozone profile retrieval
context.

4.2. Discrete ordinate theory with analytic 4/6-stream solutions

We derive homogeneous and particular solutions for the general discrete-ordinate model, noting
especially the factor of 2 reduction that allows analytic solutions to be written down for the 4/6
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stream cases. The equation of radiative transfer is solved for a vertically inhomogeneous atmosphere
by assuming a division into a number of optically uniform adjacent sub-layers. The RTE is first
solved for each of these layers, and this is followed by the application of boundary conditions to
match the radiation field at the layer interfaces. The atmosphere is illuminated by a downward-
directed parallel beam of sunlight entering at the top of the atmosphere. The diffuse radiation field
(excluding the attenuated direct beam) is determined for the whole atmosphere. Since we are dealing
with the UV/Visible part of the spectrum, thermal emission is not taken into account. The effect of
the sphericity of the atmosphere on the direct beam attenuation is accounted for using the pseudo-
spherical "average secant" approximation [85, 35]. Polarization is not considered.

The input optical parameters for the complete problem are for each layer p, where p = 1; : : : ;P:
∆τp = τp� τp�1, the layer optical thickness and the quantity β�l;p � ωpβl;p, where ωp is the single
scattering albedo (ratio of the total scattering and extinction coefficients), and βl;p are the phase
function Legendre expansion moments (indexed by l). We note thatωp and βl;p only enter the discrete
ordinate solution through the product β�l;p. The optical depth for extinction τ acts as the vertical co-
ordinate, with τ= τp at the bottom of layer p; τ is zero at the top of the atmosphere. These parameters
are computed from:

∆τp =
X
ς
∆τs;p;ς+

X
α
∆τa;p;α (4.1)

β�l;p =
1
∆τp

X
ς
∆τs;p;ςβl;p;ς: (4.2)

Here ∆τs;p;ς is the contribution of scatterer ς to the layer optical thickness for scattering, ∆τa;p;α is
the contribution of absorber α to the layer optical thickness for absorption, and ∆τp is the total layer
optical thickness for extinction. A realistic atmosphere contains air molecules and various kinds of
aerosols as the scattering agents. Each scatterer is further specified by its phase function moments
βl;p;ς in (4.2).

We start with the equation of radiative transfer for layer p:

µ
dI(τ;µ;φ)

dτ
=I(τ;µ;φ)� Jp(τ;µ;φ) (4.3)

Jp(τ;µ;φ) =
ω
4π

Z 1

�1
dµ0
Z 2π

0
dφ0Pp(µ;φ;µ0;φ0)I(τ;µ0;φ0)+

ωp

4π
Pp(µ;φ;�µ0;φ0)Fpe�λpτ: (4.4)

Here, I(τ;µ;φ) is the diffuse radiance (excluding the direct solar beam) in direction (µ;φ) and at
optical depth τ; µ is the cosine of the polar angle, φ the azimuthal angle. Pp(µ;φ;µ0;φ0) = Pp(µs)
is the phase function for scattering, which depends on scattering angle θs, with µs = cosθs. Primes
denote the direction of the outgoing beam. The source function Jp represents the sources of diffuse
radiation, namely scattered diffuse light and scattered light from the direct solar beam.

The solar beam enters the top of the atmosphere (TOA) in direction (�θ0;φ0), µ0 = cosθ0. For the
plane-parallel case Fp equals F0, the solar irradiance at TOA and λp = 1=µ0. In the pseudo-spherical
treatment, Fp and λp are adjusted to account for the reduced path of the direct beam. In the average
secant approximation, their values are determined by the requirement that the exponential dependence
of the direct beam attenuation is exact at layer boundaries:

λp =
τ̃p� τ̃p�1

∆τp
; (4.5)

Fp =F0 exp(�τ̃p +λpτp); (4.6)



117 Fast and accurate 4 and 6 stream linearized discrete ordinate..

with τ̃p the slant optical depth and τp the vertical optical depth from TOA to the bottom of layer p.
The slant optical depth has to be calculated by ray-tracing for a refractive atmosphere, which should
be used for solar zenith angles larger than 85� [85]. In general we can write the slant optical depth as:

τ̃p =

pX
q=1

spq∆τq: (4.7)

This definition introduces the coefficients spq which characterize the deviation from plane-parallel ge-
ometry. In the latter case, all these coefficients are equal to 1=µ0. Without refraction, straightforward
goniometry results in the so-called Chapman function [35]:

spq =

q
z2

q�1� z2
p sin2θ0�

q
z2

q� z2
p sin2θ0

zq�1� zq
; (4.8)

with zp the altitude of the bottom of layer p relative to the center of the Earth. More precise param-
eterizations of the direct beam attenuation have been considered in [85]. Note that 1=λp is merely a
parameter that describes the dependence of the attenuation on vertical optical depth; in general for the
pseudo-spherical treatment, it is not equal to the cosine of the solar zenith angle. Note also that µ0 is
retained in the phase function in (4.3); this is strictly speaking only correct for an atmosphere without
refraction.

To solve (4.3), the radiance field is expanded in a Fourier cosine series in the azimuth angle, and
the phase function is expanded in a series of 2N ordinary Legendre polynomials Pl:

I(τ;µ;φ) =
2N�1X
m=0

Im(τ;µ)cosm(φ0�φ); (4.9)

Pp(µs) =
2N�1X
l=0

βlPl(µs) with βl;p =
2l+1

2

Z 1

�1
Pl(µs)Pp(µs)dµs: (4.10)

Using the addition theorem for Legendre polynomials and performing the integration over the azimuth
angle, we get 2N decoupled equations for each successive Fourier component m = 0; : : : ;2N�1:

µ
dIm

dτ
= Im�

Z 1

�1
Dm

p (µ;µ
0)Im(τ;µ0)dµ0�Qm

p (µ)Fpe�λpτ; (4.11)

where

Dm
p (µ;µ

0) =
1
2

2N�1X
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1
2

2N�1X
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m
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l (µ0); (4.12)

Qm
p (µ) =

1
2π

(2�δm0)D
m
p (µ;�µ0): (4.13)

Y m
l are the normalized associated Legendre polynomials. In the interests of clarity, we omit the

Fourier superscripts m and the layer index p in the following, re-introducing these indices prior to
consideration of the boundary value problem.

In the Nth-order discrete-ordinates approximation, the integral in (4.11) is approximated by a sum-
mation using Gauss-Legendre quadrature over the two half spaces separately. Each quadrature has N
points, with abscissae µi and weights ai for i = 1; : : : ;N in the positive half-space, and corresponding
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values µ�i = �µi and a�i = ai in the other half-space. Defining M+
i = I+i + I�i and M�

i = I+i � I�i ,
with I�i = I(τ;�µi), we can write from (4.11):

dM+
i
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=�

NX
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(ζi j�ηi j)M
�
j �
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µi
(Q+

i �Q�
i )Fe�λτ; (4.14)

dM�
i

dτ
=�

NX
j=1

(ζi j +ηi j)M
+
j �

1
µi
(Q+

i +Q�
i )Fe�λτ; (4.15)

where Q�
i = Q(�µi). The two N�N matrices ζζζ and ηηη are given by:

ζi j =
1
µi
(aiD

+
i j �δi j); ηi j =

1
µi

aiD
�
i j ; (4.16)

with D�
i j = D(µi;�µ j). A single equation for M�

i can be obtained from (4.14) and (4.15):

d2M�
i

dτ2 =
NX

j=1

Γi jM
�
j +diFe�λτ; (4.17)

where

Γi j =
NX

k=1

(ζik +ηik)(ζk j�ηk j); (4.18)

di =
1
µi
λ(Q+

i +Q�
i )+

1
µi

NX
j=1

(ζi j +ηi j)(Q
+
i �Q�

i ): (4.19)

The general solution to (4.17) may be written:

M�
i = M̃�

i +W�
i Fe�λτ; (4.20)

with M̃�
i the general solution to the homogeneous part of (4.17). The latter admits solutions of the

form M̃�
i = Y�i e�kτ, and this leads to the eigenproblem:

NX
j=1

Γi jY
�
j = γY�i ; (4.21)

where γ = k2. Denote the N eigenvectors and eigenvalues of this system (4.21) as: fY�i j , γ jg, j =
1; : : : ;N. Note that since Γi j is a Hermitian matrix, all eigenvalues are real. In the general case, we
solve the system using a standard package such as module DGEEV from the LAPACK numerical
suite [65]. However, analytical solutions can be found for the 4 and 6 stream cases N = 2 and N = 3
respectively (see panels). The eigenvector normalization may be chosen freely; for the 4 and 6 stream
analytical eigensolutions, we have set the diagonal elements of the eigenvector matrix to unity.
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4 stream eigensolutions:

γ1;2 =
1
2
(Γ11 +Γ22)� 1

2

q
(Γ11�Γ22)2 +4Γ21Γ12; (4.22)

Y�11 = 1; Y�22 = 1; Y�21 =
Γ21

γ1�Γ22
; Y�12 =

Γ12

γ2�Γ11
: (4.23)

4 stream particular solutions:

W�
1 =

Γ12d2 +(λ2�Γ22)d1

Ψ
; W�

2 =
Γ21d1 +(λ2�Γ11)d2

Ψ
; (4.24)

Ψ = λ4� (Γ11 +Γ22)λ2+Γ11Γ22�Γ12Γ21: (4.25)

6 stream eigensolutions:

0 = γ3�Aγ2 +Bγ+C;

(eigenvalues γ j, j = 1;2;3 are real and positive roots of cubic equation)

A = Trace(ΓΓΓ);
B = Γ11Γ22 +Γ11Γ33 +Γ22Γ33�Γ23Γ32�Γ13Γ31�Γ12Γ21;

C = Det(ΓΓΓ):
Y�2 j

Y�1 j

=
Γ13Γ21�Γ23

�
Γ11� γ j

�
Γ23Γ12�Γ13

�
Γ22� γ j

� ; Y�3 j

Y�1 j

=
Γ12Γ31�Γ32

�
Γ11� γ j

�
Γ13Γ32�Γ12

�
Γ33� γ j

� ;
Y�j j = 1 for j = 1;2;3. (Normalization)

6 stream particular solutions:

W�
1 =

Det(MMM(1))

Det(MMM)
; W�

2 =
Det(MMM(2))

Det(MMM)
;

W�
3 =

�d1� (Γ11�λ2)W�
1 �Γ12W�

2

Γ13
;

Mi j =λ2δi j�Γi j;�
Mi j
	
(k) =δ jkdi +(1�δ jk)Mi j (matrix MMM with column k replaced by vector ddd )

The inhomogeneous or particular part of the solution can be found by substitution of (4.20) into (4.17):

λ2W�
i =

NX
j=1

Γi jW
�
j +di (4.26)

and solving for W�
i . For the general N-stream case, this linear system of order N can be solved by

standard numerical techniques. For the 4 and 6 stream cases (N = 2 and N = 3), analytical solutions
are written down in the respective panels.
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Bringing the two parts together, the general solution to (4.17) is then:

M�
i =

NX
j=1

n
L̃+j Y�i j e�k jτ+ L̃�j Y�i j e+k jτ

o
+W�

i Fe�λτ; (4.27)

where L̃+j and L̃�j are the 2N constants of integration, and kj =+
pγ j. From (4.14) we have for M+

i :

M+
i =

NX
j=1

n
L̃+j Y+

i j e�k jτ� L̃�j Y�i j e+k jτ
o
+W+

i Fe�λτ; (4.28)

with:

Y+
i j =

1
k j

NX
k=1

(ζik�ηik)Y
�
k j ; (4.29)

W+
i =

1
λ

NX
j=1

(ζi j�ηi j)W
�
j +

1
λµi

(Q+
i �Q�

i ): (4.30)

Retention of the inhomogeneous terms in (4.17) shows clearly that the reduction in dimension applies
to the particular solution as well as to the homogeneous solutions. Returning to I+ and I� and re-
introducing the Fourier and layer indices, we can write down the solution for a Fourier component of
the radiance at the Gaussian polar angles for any optical depth in a specific layer p:

Im
p (τ;µi) =

NX
j=1

n
L+j;pX+

i j;pe�k j;p(τ�τp�1)+L�j;pX�
i j;pe�k j;p(τp�τ)

o
+Zi;pFpe�λτ; (4.31)

8i 2 f�1; : : : ;�Ng; L+j;p and L�j;p are integration constants. We have defined:

X+
i j;p =

1
2

�
Y+

i j;p +Y�i j;p

�
; X+

�i j;p =
1
2

�
Y+

i j;p�Y�i j;p

�
; (4.32)

X�
i j;p =X+

�i j;p; (4.33)

Zi;p =
1
2

�
W+

i;p +W�
i;p

�
; Z�i;p =

1
2

�
W+

i;p�W�
i;p

�
; (4.34)

Exponential arguments in (4.31) have been written as optical depth differences; this safeguards the
numerical stability of the solution [56, 34].

The integration constants follow from a set of three boundary conditions. These are (1) radiance
values at the P�1 layer interfaces are continuous at the Gaussian angles; (2) at the top of the atmo-
sphere the downwelling diffuse radiance is zero; and (3) at the bottom of the atmosphere, upwelling
and downwelling radiances are linked by a suitable reflectance relation. These conditions provide a
total of 2N�P linear equations to determine the integration constants. The layer interface boundary
conditions read:

NX
j=1

n
L+j;p�1X+

i j;p�1Θ j;p�1+L�j;p�1X�
i j;p�1�L+j;pX+

i j;p�L�j;pX�
i j;pΘ j;p

o
= (Zi;p�Zi;p�1)F0T̃p;

(4.35)
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where i =�N; : : : ;N (i 6= 0) and p = 2; : : : ;P. The following definitions have been used:

Θ j;p = e�k j;p∆τp ; (4.36)

T̃p = e�τ̃p : (4.37)

The boundary condition at the top of the atmosphere reads:

NX
j=1

n
L+j;1X+

i j;1 +L�j;1X�
i j;1Θ j;1

o
=�Zi;1F0; (4.38)

where i = �N; : : : ;0. For the boundary condition at the bottom of the atmosphere (BOA) we limit
ourselves to the Lambertian condition, with albedo A. For m = 0, we have:

NX
j=1

n
L+j;PX̂+

i j;PΘ j;P +L�j;PX̂�
i j;P

o
=�Ẑi;PF0T̃P +

A
π

µ0F0T̃P; (4.39)

which holds 8i 2 f1; : : : ;Ng. For m 6= 0, (4.39) still applies, but now A = 0. We have introduced:

X̂�
i j;P =X�

i j;P�2A
�1X

k=�N

akµ�kX�
k j;P; (4.40)

Ẑi;P =Z�i;P�2A
�1X

k=�N

akµ�kZk;P: (4.41)

This linear system for L�i;p is sparse, in the sense that the matrix only contains non-zero terms in a band
along the diagonal. The LIDORT code uses a special LU-decomposition routine from LAPACK [65]
that makes use of this sparseness and thereby saves considerably on the number of floating point
operations. For the 4/6 stream cases this computation step is the only one where a standard numerical
package has to be used. Further discussion on these boundary conditions may be found in [75], where
in particular, the surface boundary condition has been generalized to cover a bidirectional reflectance
condition, and extended to include surface thermal emission. Although processing time for the over-
all radiance and weighting function computation is dominated by this numerical step, considerable
savings are apparent with a small number of streams. Assuming floating-point operations in this step
vary with N2 for the radiance, the 4 stream algorithm is 25 times faster than a 20 stream calculation.

The discrete-ordinate solution gives radiance at Gaussian angles and at every optical depth in the
atmosphere. However, the viewing direction does not usually coincide with one of the Gaussian
angles; in this case some kind of interpolation in polar angle is desired. This post processing step
can be done “smartly” by substituting the discrete ordinate solution at the Gaussian streams in the
multiple scatter integrals in the original RTE, and integrating the latter. This procedure is known as
source function integration [46, 34]. The formal solution to (4.11) can be written:

Im(0;µ) = Bm(µ)e�τP=µ +
1
µ

PX
p=1

Z τp�1

τp

Jm(τ0;µ)e�τ
0=µdτ0; (4.42)

where Bm(µ) � Im(τP;µ) is the BOA upwelling radiance at the surface, Jm is given by the last two
terms on the RHS of (4.11), and µ is the cosine of the desired viewing angle. Replacing the integration
over polar angle by a quadrature sum and using the discrete ordinate solutions from (4.31), we get:

Im(0;µ) = Bm(µ)TP(µ)+
PX

p=1

Tp�1(µ)Λm
p (µ): (4.43)
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Transmittance along direction µ is simply Tp(µ) = exp(�τp=µ) and the layer integrated source terms
Λm

p (µ) consist of contributions Λm
p;(ms)(µ) from multiple scattered light and terms Λm

p;(ss)(µ) from
atmospheric single scattering. We have :

Λm
p (µ) = Λm

p;(ms)(µ)+Λm
p;(ss)(µ); (4.44)

where

Λm
p;(ms)(µ) =

NX
j=1

n
L+j;pX+

j;p(µ)E
+
j;p(µ)+L�j;pX�

j;p(µ)E
�
j;p(µ)

o
+Zp(µ)F0E0

p(µ); (4.45)

Λm
p;(ss)(µ) = Qp(µ)F0E0

p(µ); (4.46)

with the following set of definitions:

X�
j;p(µ) =

1
2

NX
i=�N†

aiDp(µ;µi)X
�
i j;p; (4.47)

Zp(µ) =
1
2

NX
i=�N§

aiDp(µ;µi)Zi;p; (4.48)

E+
j;p(µ) =

1� tp(µ)Θ j;p

1+µk j;p
; (4.49)

E�j;p(µ) =
Θ j;p� tp(µ)

1�µk j;p
; (4.50)

E0
p(µ) =

1
1+µλp

�
T̃p�1� T̃ptp(µ)

�
; (4.51)

tp(µ) =exp(�∆τp=µ): (4.52)

The symbol § indicates exclusion of the i = 0 term from the summation. For a plane-parallel atmo-
sphere, we use the appropriate particular solutions Zi;p in (4.48) and replace the average secant λp

in (4.51) with the value µ�1
0 . Assuming a Lambertian surface with albedo A, the BOA upwelling

radiance Bm(µ) in (4.43) may be written (for Fourier component m = 0):

Bm(µ) =
Aµ0F0

π
T̃P +2A

�1X
k=�N

akµ�k

2
4 NX

j=1

n
L+j;PX+

k j;PΘ j;P+> L�j;PX�
k j;P

o
+Zk;PF0T̃P

3
5 : (4.53)

For m 6= 0, Bm(µ)� 0 in the Lambertian case.

4.3. Linearized discrete ordinates: analytic weighting functions

4.3.1. Definitions and input optical parameter derivatives

In general, we define the weighting function from TOA radiance as follows:

Kx =
∂I(0;µ)
∂xp

; (4.54)
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where xp is a parameter denoting some physical property in layer p. This parameter affects the
TOA radiance through the optical parameters in layer p that are input for the radiative transport
model: the product β�l;p of the phase function moments and the single scattering albedo, and the layer
optical thickness ∆τp. For a givenretrieval application, we need to know in detail how these optical
parameters depend on xp. Specifically, the derivatives

∂∆τp

∂xp
and

∂β�l;p
∂xp

(4.55)

have to be identified for all l = 0; : : : ;2N�1 (Note that l = 0 is included, since β�0;p = ωp by defini-
tion). Before we determine the derivatives in (4.54) of the discrete ordinate solution outlined in the
previous section, we must establish the optical parameter derivatives in (4.55). This is an important
first step in deriving weighting functions, and we illustrate this process for number of atmospheric
parameters.

Layer column density of gas absorber α

The parameter in this case is defined as

xp = ∆Cp;α (4.56)

where Cp;α is the column number density of gas α in layer p. The required partial derivatives are:

∂β�l;p
∂xp

=� β�l;p
∆τp

σp;α; (4.57)

∂∆τp

∂xp
=σp;α; (4.58)

where σp;α is the absorption cross section of gas α, and the layer index is retained since trace gas
cross-sections may possess temperature and pressure dependence. Note that both derivatives are
linear in the cross sections, implying that the corresponding weighting functions are also linear in the
cross sections. Hence, once the column density weighting functions have been calculated for gas α1,
corresponding weighting functions for any other gas α2 may be found by scaling the original results
by the cross section ratio σp;α2=σp;α1.

Temperature

The parameter in this case is temperature ϑp, which is assumed constant for the layer p. We take the
layer to be specified by pressure levels (and not altitudes) at the upper and lower boundaries. When
the layer is in local hydrostatic equilibrium with the acceleration due to gravity G assumed constant
over the layer, then the column of air in the layer is simply equal to the pressure drop divided by G,
and is independent of temperature. In this case temperature dependence is only manifest in the trace
gas cross sections. For trace species α with cross section σp;α, we find:

∂β�l;p
∂xp

=�
β�l;p
∆τp

∆Cp;α
∂σp;α
∂xp

; (4.59)

∂∆τp

∂xp
=∆Cp;α

∂σp;α

∂xp
: (4.60)

For O3 absorption in the Huggins bands, the well-known Bass-Paur quadratic temperature parameter-
ization [70] for the cross sections gives:

σp;α(ϑp) =ς0
�
1+ϑpς1 +ϑ2

pς2
�
; (4.61)

∂σp;α(ϑp)

∂xp
=ς0 (ς1 +2ϑpς2) ; (4.62)
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for ϑp in �C, and parameterization coefficients ς independent of atmospheric conditions. We remark
that the weighting functions are now linear in the derivatives of the cross sections. Thus, if we have
already calculated column density weighting functions for gas α, temperature weighting functions
may be obtained by simply scaling these results with the ratio (∂σp;α=∂ϑp)=σp;α.

Aerosol layer optical thickness

The parameter in this case is given by:

xp � ∆τs;p;ς+∆τa;p;ς = ωp;ς∆τs;p;ς; (4.63)

where index ς labels a specific aerosol among the list of scatterers and absorbers. ∆τp;ς is the optical
depth for extinction due to aerosol ς for layer p, and ωp;ς and ∆τs;p;ς are the single scattering albedo
of the aerosol (assumed constant) and the layer optical depth for scattering respectively. The relevant
partial derivatives are:

∂β�l;p
∂xp

=
1
∆τp

�
ω�1

p;ςβl;p;ς�β�l;p
�
; (4.64)

∂∆τp

∂xp
=1: (4.65)

Aerosol layer single scattering albedo

For layer p, the parameter is now:

x� ωp;ς =
∆τs;p;ς

∆τa;p;ς+∆τs;p;ς
; (4.66)

Taking the layer aerosol optical thickness constant, we have:

∂β�l;p
∂x

=
1
∆τp

(∆τa;p;ς+∆τs;p;ς)βl;p;ς; (4.67)

∂∆τp

∂x
=0: (4.68)

Aerosol asymmetry parameter

In this case parameter x is the layer asymmetry parameter gp;ς, where ς again labels a specific aerosol.
In this case we require the variation of the phase function moments βl;p;ς with respect to x. In general,
this would require an examination of the detailed microphysical scattering properties of the given
aerosol. However, for a Henyey-Greenstein phase function, this variation is straightforward. Here,
βp;l;ς = (2l+1)gl

p;ς for l = 0; : : : ;2N�1, and hence

∂β�l;p
∂x

=
1
∆τp

∆τs;p;ςl(2l+1)gl�1
p;ς ; (4.69)

∂∆τp

∂x
=0: (4.70)

The first four examples are limited to variations of the amount of molecular and/or particulate con-
stituents; in each case the angular distribution of the scattering is regarded as constant (the phase
function moments βl;p;ς have zero derivatives). The last example (asymmetry parameter) involved
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derivatives of the phase function moments, and this would be important for the retrieval of aerosol
microphysical properties. In the present work, we are interested chiefly in layer column density
weighting functions for the trace gas ozone, as these are essential for any ozone profile retrieval
algorithm. However, additional weighting functions with respect to quantities such as aerosol optical
thickness are also useful in such an algorithm, as they can be used to assess process errors in the
ozone retrieval due to uncertainties in the assumed aerosol or temperature distributions [4].

Since TOA radiance is also a function of the surface albedo A, we can define an albedo weighting
function KA = ∂I(0;µ)=∂A (in this work, we restrict ourselves to the Lambertian case; a more general
bidirectional treatment can be found in [75, 85]). Albedo derivatives are included in the next section.

4.3.2. Derivatives of the discrete ordinate solution with respect to xp

In this section we present a (somewhat lengthy) exposition of the analytical determination of deriva-
tives of the TOA-radiance with respect to layer parameters xp and also with respect to albedo A. The
procedure involves a term-by-term differentiation of the TOA radiance with repeated applications
of the chain-rule of differentiation. The chain-rule differentiation terminates when we encounter an
explicit dependency on one of the input parameters. At such a point we use the partial derivatives
in (4.55) to finalize the procedure. The corresponding “end-point” equations are marked by a † sym-
bol in the exposition; we will refer to these equations in the discussion on numerical implementation
that follows. We start with differentiation of the Fourier sum (4.9):

∂I(0;µ;φ)
∂xp

=
2N�1X
m=0

∂Im(0;µ)
∂xp

cosm(φ0�φ); (4.71)

∂I(0;µ;φ)
∂A

=
2N�1X
m=0

∂Im(0;µ)
∂A

cosm(φ0�φ): (4.72)

The derivatives of the Fourier components can be obtained by differentiation of the post-processed
discrete ordinate solution (4.43). We find:

∂I(0;µ)
∂xp

=
∂Im(τP;µ)

∂xp
TP(µ)+ Im(τP;µ)

∂TP(µ)
∂xp

+
PX

q=1

�
∂Tq�1(µ)

∂xp
Λq(µ)+Tq�1(µ)

∂Λq(µ)

∂xp

�
;

(4.73)

∂Im(0;µ)
∂A

=
∂Im(τP;µ)

∂A
TP(µ)+

PX
q=1

Tq�1(µ)
∂Λq(µ)

∂A
: (4.74)

Note that layer source term Λq(µ) for layer q will not only depend on optical parameters from that
layer, but also on optical parameters from layers p for p 6= q. The transmittance in direction µ from
TOA to the bottom of layer p depends only on the optical thickness of layers above and including p:

∂Tq(µ)
∂∆τp

=

� �Tq(µ)=µ for p� q;
0 for p > q:

(4.75)
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Derivatives of the BOA upwelling radiance Bm(µ) are determined from the surface boundary
condition. For a Lambertian surface, we have for Fourier component m = 0 (the index m is assumed):

∂B(µ)
∂xp

= 2A
�1X

k=�N

akµ�k

2
4 NX

j=1

(
∂L+j;P
∂xp

X+
k j;PΘ j;P +L+j;P

∂X+
k j;P

∂xp
Θ j;PδpP+L+j;PX+

k j;P
∂Θ j;P

∂xp
δpP

+
∂L�j;P
∂xp

X�
k j;P +L�j;P

∂X�
k j;P

∂xp
δpP

)
� ∂Zk;P

∂xp
F0T̃P�Zk;PF0

∂T̃P

∂xp

#
+

A
π

µ0F0
∂T̃P

∂xp
; (4.76)

∂B(µ)
∂A

=
B(µ)

A
+2A

�1X
k=�N

akµ�k

2
4 NX

j=1

(
∂L+j;P
∂A

X+
k j;PΘ j;P +

∂L�j;P
∂A

X�
k j;P

)3
5 : (4.77)

From the definition of the layer transmittance Θ j;p in Eq. (4.36) we have:

∂Θ j;p

∂xp
=�

�
k j;p +∆τp

∂k j;p

∂xp

�
Θ j;p

∂∆τp

∂xp
: (4.78)

For all layers p > q the derivative of the the pseudo-spherical transmittance T̃q is zero. For layers
p� q this derivative can can be found using results (4.7) and (4.37):

†
∂T̃q

∂xp
=

(
�sqpT̃q

∂∆τp
∂xp

for p� q;

0 for p > q:
(4.79)

The derivatives of the layer source terms follow from the definition (4.44) and differentiation of (4.45)
and (4.46). In the following expressions, we have differentiated total layer source terms, but the
separation into multiple scatter and single scattering contributions is straightforward. We find:

∂Λm
q (µ)

∂xp
=

NX
j=1

(
∂L+j;q
∂xp

X+
j;q(µ)E

+
j;q(µ)+L+j;q

∂X+
j;q(µ)

∂xq
δpqE+

j;q(µ)+L+j;qX+
j;q(µ)

∂E+
j;q(µ)

∂xq
δpq

+
∂L�j;q
∂xp

X�
j;q(µ)E

�
j;q(µ)+L�j;q

∂X�
j;q(µ)

∂xq
δpqE�j;q(µ)+L�j;qX�

j;q(µ)
∂E�j;q(µ)

∂xq
δpq

)

+

�
∂Zq(µ)

∂xp
+
∂Qq(τ;µ)
∂xq

δpq

�
F0E0

q(µ)+
�
Zq(µ)+Qq(µ)

�
F0
∂E0

q(µ)

∂xp
; (4.80)

∂Λm
q (µ)

∂A
=

NX
j=1

(
∂L+j;q
∂A

X+
j;q(µ)E

+
j;q(µ)+

∂L�j;q
∂A

X�
j;q(µ)E

�
j;q(µ)

)
: (4.81)

Some layer quantities depend only on the optical parameters of the layer in which they are defined;
others have cross-layer derivatives. The eigenvalues, eigenvectors and the E�(µ) terms in (4.49)
and (4.50) have vanishing cross-layer derivatives. Furthermore, the eigen-quantities have no de-
pendence on optical thickness. The E0(µ) term in (4.51) defined for layer p depends on optical
thicknesses of layers above p. The dependence of the particular solution in layer q on optical thick-
ness values for layers p6 q is more subtle. This dependence is expressed through the average secant
factor λq appropriate to the pseudo-spherical treatment of the direct beam source. The integration
constants depend on all optical parameters in all layers because of the coupling implicit in the linear
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system defined by the set of boundary conditions. These dependencies will be clarified below, when
we consider expressions for the various terms in (4.80) and (4.81).

Starting with Qp(µ) from (4.13), we find:

∂Qp(µ)

∂xp
=

1
2π

(2�δm0)
∂Dp(µ;�µ0)

∂xp
; (4.82)

We have also the cross-layer derivatives:

∂fE0
q(µ)g
∂xp

=� E0
q(µ)

1+µλq
µ
∂λq

∂xp
+

1
1+µλq

�
∂T̃q�1

∂xp
� ∂T̃q

∂xp
tq(µ)� T̃q

∂tq(µ)

∂xq
δpq;

�
(4.83)

with:

†
∂tp(µ)
∂xp

=�1
µ

tp(µ)
∂∆τp

∂xp
: (4.84)

Using (4.5) and (4.7) we can write:

†
∂λq

∂xp
=

8><
>:

sqp�sq�1;p
∆τq

∂∆τp
∂xp

for p < q
sqq�λq
∆τq

∂∆τp
∂xp

for p = q

0 for p > q

(4.85)

For a plane-parallel medium, spq = λq = 1=µ0 for all p;q = 1; : : : ;P, so that the cross-layer derivatives
in (4.85) vanish in this case. Derivatives of the other two exponential functions E�(µ) follow from
straightforward differentiation using the definitions. We get:

∂E+
j;p

∂xp
=� 1

1+µk j;p

�
tp(µ)

∂Θ j;p

∂xp
+
∂tp(µ)
∂xp

Θ j;p+E+
j;pµ

∂k j;p

∂xp

�
; (4.86)

∂E�j;p
∂xp

=
1

1�µk j;p

�
∂Θ j;p

∂xp
� ∂tp(µ)

∂xp
+E�j;pµ

∂k j;p

∂xp

�
: (4.87)

Next we consider the derivatives of the eigenvectors, plus derivatives of the eigensolutions defined for
user angles in (4.80):

∂X�
j;p(µ)

∂xp
=

1
2

NX
i=�N§

(
ai
∂Dp(µ;µi)

∂xp
X�

i j;p +aiDp(µ;µi)
∂X�

i j;p

∂xp

)
; (4.88)

∂X�
i j;p

∂xp
=

1
2

 
∂Y+

i j;p

∂xp
� ∂Y�i j;p

∂xp

!
; (4.89)

and from (4.29) we find:

∂Y+
i j;p

∂xp
=�Y+

i j;p
1

k j;p

∂k j;p

∂xp
+

1
k j;p

NX
k=1

(
(
∂ζik;p

∂xp
� ∂ηik;p

∂xp
)Y�k j;p +(ζik;p�ηik;p)

∂Y�k j;p

∂xp

)
: (4.90)

Using (4.16):

∂ζi j;p

∂xp
=

ai

µi

∂Dp(µi;µ j)

∂xp
; (4.91)

∂ηi j;p

∂xp
=

ai

µi

∂Dp(µi;�µ j)

∂xp
; (4.92)
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and from (4.12) we arrive at the following termination point:

†
∂Dp(µ;ν)
∂xp

=
1
2

2N�1X
l=m

∂β�l;p
∂xp

Y m
l (µ)Y m

l (ν): (4.93)

Note that the derivative in (4.93) also applies to the derivatives ∂Dp(µ;µi)=∂xp as found in expres-
sions (4.82) and (4.88). We must now specify derivatives of the eigenvectors Y�i j;p and eigenvalues γi;p

for layer p. We have:

∂k j;p

∂xp
=

1
2
pγ j;p

∂γ j;p

∂xp
: (4.94)

For the general N-stream case derivatives ∂γj;p=∂xp of the eigenvalues and ∂Yj;i;p=∂xp for the eigen-
vectors are determined by explicit differentiation of the eigen-equation together with a constraint
provided by the eigenvector normalization. This results in a linear system which can be solved numer-
ically for the required derivatives. The procedure for the general case has been described in [75, 85].
The key to this step is to determine first the derivatives of the coefficients of the eigenmatrix ΓΓΓ; these
follow from the definition (4.18). We find:

∂Γi j;p

∂β�l;p
=

NX
k=1

( 
∂ζik;p

∂β�l;p
+
∂ηik;p

∂β�l;p

!
(ζk j;p�ζk j;p)+(ζik;p +ζik;p)

 
∂ζk j;p

∂β�l;p
� ∂ηk j;p

∂β�l;p

!)
: (4.95)

We may use expressions (4.91), (4.92) and (4.93) in the evaluation of the ΓΓΓ derivative. For the four-
stream case the differentiation can be performed analytically (see panel).

For the particular solutions, derivatives with respect to β�l;p contain no cross-layer terms. We have:

∂Zq(µ)

∂xp
=

1
2

NX
i=�N§

�
ai
∂Dq(µ;µi)

∂xq
δpqZi;q +aiDq(µ;µi)

∂Zi;q

∂xp

�
; (4.96)
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2
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+
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;
∂Z�i;q
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� ∂W�
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∂xp

!
: (4.97)

From the auxilliary equation (4.30) we get:
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i;q
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= � W+

i;q
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∂xq
� ∂Q�

i;q

∂xq

!
δpq: (4.98)

The derivatives of Q�
i follow from (4.82); the ζζζ and ηηη derivatives are already noted above in (4.91)

and (4.92).

The derivatives with respect to λq are already given in (4.85). The other derivatives follow from
differentiation of Equation (4.19):

∂di;q

∂xp
=

1
µi
(Q+

i;q+Q�
i;q)λq

∂λq
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∂Q+

i;p
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� ∂Q�
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∂xp

!)
(4.99)
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Note that the dependency of λq on optical thicknesses is the reason for the existence of non-vanishing
cross-layer derivatives of the particular solution. Since λq is constant for a plane-parallel medium,
the particular solution cross-layer derivatives disappear. In the four-stream case we use the analytic
solutions (4.24) to derive the particular solution derivatives in an explicit analytic form (see panel).

4 stream eigensolution derivatives:

∂γi;p

∂xp
=

1
2
∂Γ11;p

∂xp
+

1
2
∂Γ22;p

∂xp
�

1
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�
1
2
(Γ11;p�Γ22;p)

�
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� ∂Γ22;p
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�
+Γ21;p

∂Γ21;p

∂xp
+Γ12;p

∂Γ21;p

∂xp

�
;(4.100)

Ξp =
q

(Γ11;p�Γ22;p)2 +4Γ21;pΓ12;p: (4.101)

In (4.100) the plus sign holds for i = 1 and the minus sign for i = 2.

∂Y�11;p

∂xp
=

∂Y�22;p

∂xp
= 0; (4.102)

∂Y�21;p
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; (4.103)

∂Y�12;p
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�
: (4.104)

4 stream particular solution derivatives:
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; (4.105)
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; (4.106)
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(4.107)

The final task is the evaluation of derivatives of the integration constants L�i;q in Eqs. (4.35), (4.38)
and (4.38). The way to proceed here is to differentiate the boundary conditions with respect to these
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optical parameters. Differentiating the layer interface boundary conditions gives:
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; (4.108)

with i = �N; : : : ;N (i 6= 0) and q = 2; : : : ;P and p = 1; : : : ;P. For the boundary condition at TOA,
we find similarly that:
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; (4.109)

with i = �N; : : : ;0 and p = 1; : : : ;P. Note that the RHS is zero for p 6= 1. Finally, for the boundary
condition at the bottom of the atmosphere:

NX
j=1

(
∂L+j;P
∂xp

X̂+
i j;PΘ j;P +

∂L�j;P
∂xp

X̂�
i j;P

)
=�∂Ẑi;P
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which is valid for i = 0; : : : ;N and p = 1; : : : ;P. In the last expression we have the auxiliary defini-
tions:
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: (4.112)

The derivatives of the integration constants with respect to the albedo A in (4.77) and (4.81) follow
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from differentiation of the boundary conditions:
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with
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6 stream eigensolution derivatives:

∂γ
∂x

=� γ2 ∂A
∂x + γ∂B

∂x +
∂C
∂x

3γ2 +2Aγ+B
;

1

Y�1 j

∂Y�2 j

∂x
� Y�1 j

Y�2
2 j

∂Y�1 j

∂x
=
∂
∂x

(
Γ13Γ21�Γ23

�
Γ11� γ j

�
Γ23Γ12�Γ13

�
Γ22� γ j

�
)
;

1

Y�1 j

∂Y�3 j

∂x
�

Y�1 j

Y�2
3 j

∂Y�1 j

∂x
=
∂
∂x

(
Γ12Γ31�Γ32

�
Γ11� γ j

�
Γ13Γ32�Γ12

�
Γ33� γ j

�
)
;

∂Y�j j

∂x
= 0 for j = 1;2;3.

6 stream particular solution derivatives:
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Quantities di;Mi j;A;B and C were defined in the earlier 6-stream panel for the solution
only.
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4.3.3. Computational strategy

Differentiation of the boundary conditions produces a linear system for each xp and for albedo A,
from which the derivatives ∂L�i;q=∂xp and ∂L�i;q=∂A can be determined. These linear systems contain
the same (sparse) matrix that was used for the original boundary value calculation; only the source
terms differ. The integration constant derivatives are then obtained by back-substitution using the
previously determined LU-decomposition of the sparse matrix.

The computational strategy to compute simultaneously the radiance and the weighting functions is
the exact reversal of the derivation outlined above. First the optical input parameters and their deriva-
tives with respect to xp are computed for the specific retrieval application. The first step is to evaluate
quantities (and their derivatives) that depend explicitly on the input parameters - these components
can be found in equations marked with the † symbol, namely: the three types of transmittances in
Eqs. (4.75), (4.84) and (4.79) and the function DP(µ;ν) in Eq. (4.93). For the pseudo-spherical model
the derivatives of the average secant factors λq in Eq. (4.85) are computed at this stage.

The next step is to calculate eigenvalues, eigenvectors and the particular solution values and their
derivatives. Then the sparse matrix and the source terms for the integration constants plus additional
source terms for the linear systems that give integration constant derivatives are computed. Back-
substitution using the LU-decomposed sparse matrix then provides the constants and their derivatives.
Next, the post-processing step is executed by calculating integrated source term components and their
derivatives. This requires the eigenvectors and particular solutions plus associated derivatives to be
computed at user-defined (off-quadrature) directions µ. The last components that need calculating
are those that make up the BOA upwelling radiance and its derivative. Using the layer-by-layer
source term integration, we then derive Fourier components of the TOA radiance and TOA radiance
derivative for user-defined directions. The Fourier summations then complete the calculations.

The important point to note here is that the LU-decomposition of the sparse boundary problem ma-
trix has to be performed just once for the complete calculation of radiances and weighting functions;
this represents an enormous saving in computational effort. Back-substitutions will be done once for
the radiance and once for each weighting function. For a multi-parameter retrieval algorithm such
as the ozone profile problem for GOME and GOME-2, the simultaneous calculation of weighting
functions using a linearized model gives a major advantage in terms of computing time. Furthermore,
the weighting functions have been derived analytically by explicit differentiation of the RTE solution;
there is no need for ad-hoc finite-differencing estimates. A full treatment of boundary condition
linearization and weighting function derivation for the general 2N-stream discrete ordinate model can
be found in [75] and [85].

4.4. Corrections to enhance accuracy

4.4.1. The delta-M scaling

The delta-M scaling transformation [36] replaces the original phase function by a delta-function
forward peak plus a smoother less anisotropic residual. Photons in the forward peak are treated as
unscattered; this results in a scaling (reduction) of the optical depth and other optical properties. Ra-
diative transfer with For single scattering albedo ωq, optical thickness ∆q and phase function moment
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coefficients βlq in layer q, the delta-M scaling is

ωq = ωq
(1� fq)

(1�gq)
; ∆q = ∆q(1�gq); βl;q =

βl;q� (2l+1) fq

1� fq
; (4.117)

where

gq � ωq fq and fq =
βM;q

2M+1
: (4.118)

Here, l = 0; : : :2N � 1 and fq is the truncation factor in layer q, with M = 2N. All scaled phase
function moment coefficients βl;q for l >M are zero. In the pseudo-spherical model, scaling for the
slant path optical depth inputs τ̃p follows from the definition (4.7). In terms of the product β�l;q which
governs the discrete ordinate equations, we have:

β
�

l;q = ωqβl;q =
β�l;q� (2l +1)gq

1�gq
: (4.119)

For the weighting function differentiation with respect to variable xq in layer q, we also require
a scaling of the derivatives ∂∆q=∂xq and ∂β�l;q=∂xq of the optical input parameters. These may be
obtained by straightforward differentiation of the above definitions, and the results are;
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; (4.120)
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In the ozone profile application, we do not consider variations of the phase function moments, so that
derivatives in (4.121) are given by ∂β�l;q=∂xq = βl;q∂ωq=∂xq. The delta-M scaling is not required for a

Rayleigh-only atmosphere, since for N > 2 and M = 2N, the Rayleigh phase function moments β(Ray)
M;q

are identically zero.

4.4.2. Single scatter correction: the Nakajima-Tanaka procedure

The upwelling radiance at TOA calculated by our model may be written in terms of a contribution
Idms due to multiple scattering and to the attenuated direct reflection of the solar beam from the
surface, and a contribution Iss due to upward single scattering of the solar beam at points along the
line of sight. Surface-reflected light (apart from the direct beam) is regarded as multiply scattered; in
particular this includes photons scattered singly in downward directions before undergoing reflection
at the surface. The model computation of Iss is likely to be inaccurate with a low number of streams,
since a lot of phase function information is lost in the truncation (with or without the delta-M scaling).
A single scatter correction replaces Iss with an exact computation Issexact which retains an accurate de-
scription of the phase function. Using definitions (4.43) for the TOA intensity mth Fourier component
and (4.44) for the single and multiple scatter layer source terms, we can then perform the Fourier sum
over cosine azimuth to get Idms and Iss for a given geometry (µ;φ):

Idms(0;µ;φ) =
MCX

m=0

8<
:Bm(µ)TP(µ)+

PX
p=1

Tp�1(µ)Λm
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Λm
p;(ss) cosm(φ0�φ): (4.123)
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In the last expression the Fourier-summed single scatter layer source term SMC
p (µ;φ) has been de-

fined. In calculating the total TOA radiance, it is normal practice to apply an accuracy convergence
criterion to the Fourier azimuth series for the total (multiple and single scatter) Fourier components.
Convergence testing dictates the number MC of terms included in the series; MC is not necessarily
equal to 2N � 1 (the maximum allowed number of Fourier terms). However, a single scatter cor-
rection means that we need only retain Idms(0;µ;φ) from our discrete ordinate model; we do not
need expression (4.123) since this will be replaced by an exact calculation. Thus our model needs to
examine convergence only for the multiple scatter radiance, for which the required number of Fourier
components may be different from MC which applies to the total radiance. In situations where single
scattering tends to predominate (this is true for our application, especially for lower wavelengths in the
UV), the multiple scatter Fourier series will in general converge faster than that for the total radiance.
This represents a further saving of computer resources. Henceforth in this section, we assume that
only multiple scatter output (radiances and weighting functions) has been generated by the discrete
ordinate model.

We wish to replace the single scatter contribution SMC
p (µ;φ) with quantities Sexact

p (µ;φ) calculated
using a more precise form of the phase function. These corrected single scatter layer source terms
may be determined by straightforward integration of the radiative transfer equation in the absence
of multiple scatter sources. One can either use the Legendre phase function expansion developed
for the discrete ordinate model, taking a sufficient number of phase function moments to ensure an
accurate representation of the phase function, or employ an exact expression for the phase function
if the latter is available. When the delta-M scaling has been applied, we must implement the sin-
gle scatter correction using scaled optical thickness values, but without scaling the single scatter
albedo and by using an exact (unscaled) phase function. In this case a division by 1�gp is necessary
because of the scaling on optical thickness (see equation (4.117) above), with gp = β�2N;p=(2M+1)
from (4.118). This calculation is the first-order Nakajima-Tanaka (NT) correction procedure [37]. For
the pseudo-spherical approximation in a non-refracting atmosphere, the total corrected TOA single
scatter radiance computed in this way is:

Issexact(0;µ;φ)�
PX

p=1

Tp�1(µ)S
exact
p =

PX
p=1

Tp�1(µ)
F0E0

p(µ)

4π(1�gp)

MXX
l=0

β�l;pPl(cosθs); (4.124)

where multiplier E0
p(µ) is defined in (4.51).

We have used expansions for the layer phase functions in terms of Legendre polynomials Pl(cosθs)
in the cosine of the scatter angle θs, and the number of moments MX is sufficient for an accurate
evaluation of the scattering in all layers. θs is constant for all layers in a non-refracting atmosphere,
and is given by the usual expression:

cosθs =�µµ0 +
q

(1�µ2)(1�µ2
0)cos(φ0�φ): (4.125)

In an unscaled atmosphere, β�2N;p and hence gp are zero in each layer, and unscaled optical depths
are used in the calculations of Tp�1(µ) and E0

p(µ). It is straightforward to write down the derivatives
of (4.124):

∂Issexact(0;µ;φ)
∂xp

=
PX

q=1

�
∂Tq�1(µ)

∂xp
Sexact

q +Tq�1(µ)
∂Sexact

q

∂xp

�
(4.126)



135 Fast and accurate 4 and 6 stream linearized discrete ordinate..

with:

∂Sexact
q

∂xp
=

F0δpqE0
q(µ)

4π(1�gq)
2

(
(1�gq)

MXX
l=0

∂β�l;q
∂xq

Pl(cosθs)+
1

2M+1

∂β�2N;q

∂xq

MXX
l=0

β�l;qPl(cosθs)

)

+
F0

4π(1�gq)

∂E0
q(µ)

∂xp

MXX
l=0

β�l;qPl(cosθs): (4.127)

View angle Stream DISORT LIDORT
(degrees) number output output

Original radiance before correction I(original)
0.0 6 7.83513E-02 7.835137E-02
10.0 6 7.64205E-02 7.642062E-02
20.0 6 7.66746E-02 7.667478E-02
30.0 6 7.92090E-02 7.920910E-02
40.0 6 8.41525E-02 8.415261E-02
Nakajima-Tanaka single scatter term I(ssexact)
0.0 6 2.36675E-02 2.366747E-02
10.0 6 2.15248E-02 2.152485E-02
20.0 6 2.04918E-02 2.049182E-02
30.0 6 2.08425E-02 2.084254E-02
40.0 6 2.29805E-02 2.298054E-02

Removed single scatter term I(ss)
0.0 6 2.34218E-02 2.342177E-02
10.0 6 2.12635E-02 2.126346E-02
20.0 6 2.05236E-02 2.052363E-02
30.0 6 2.12063E-02 2.120627E-02
40.0 6 2.33098E-02 2.330982E-02

NT-corrected Radiance I(corrected)
0.0 6 7.85970E-02 7.859707E-02
10.0 6 7.66818E-02 7.668200E-02
20.0 6 7.66428E-02 7.664297E-02
30.0 6 7.88453E-02 7.884536E-02
40.0 6 8.38232E-02 8.382333E-02

Table 4.1: LIDORT/DISORT comparisons with Nakajima-Tanaka single scatter correction.

The explicit dependence of (4.124) on the products β�l;q allows for a straightforward differentiation
with respect to these quantities. However, caution should be exercised with the derivatives of the NT-
corrected term with respect to quantities such as the asymmetry parameter which impinge upon the
phase function moments; the corresponding weighting functions are sensitive to the additional phase
function moments which have been included in the exact single scatter calculation but which are
absent from the Idms computation. This problem does not arise for derivatives which only affect only
the single scattering albedos ωq; this will be the case in our ozone profile retrieval application. This
completes the Nakajima-Tanaka (NT) single scatter correction for radiances and weighting functions.

The NT correction has been incorporated in the DISORT code (Version 2.0), where it is automati-
cally applied as a post-processing correction to the radiance output. It has been reported [37, 86] that
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the correction is very effective for all situations away from scattering in the solar aureole region. For
this case, Nakajima and Tanaka [37] developed a second-order correction which has also been im-
plemented in DISORT. However, the aureole scenario never pertains in the satellite viewing context,
so this refinement will not be necessary in the present application. By way of validation, Table 4.1
gives some comparisons with DISORT Version 2.0 output, for a 60-layer atmosphere with Rayleigh
and aerosol scattering and ozone as the trace gas absorber. Calculations were done at one wavelength
(335.4579 nm) for a solar zenith angle of 55�, a relative azimuth of 0� and for a number of line-of-
sight viewing angles. The albedo was 0.3. In order to achieve consistency with DISORT, our model
was run in plane-parallel mode; all 2N� 1 Fourier terms were included in the results (convergence
criterion for the azimuth series was switched off). We compare not only the original uncorrected
radiances, but also the single scatter computations Iss and Issexact .

4.4.3. Sphericity correction

The treatment in this section is an extension of that given in [85]. As noted in the Introduction,
we must consider sphericity effects when dealing with large off-nadir viewing. Referring again to
Figure 4.1(b), we consider the atmosphere to consist of a number of horizontally homogeneous layers,
and we desire the radiance at B. The line-of-sight is now treated in a curved atmosphere, so that the
actual solar and line-of-sight path directions will change from A to B. Thus for each layer n, we
must define local viewing geometries Gn = fαn;θn;φng for points Vn at the lower layer boundaries
(n = 1; : : : ;P, where P is the bottom layer of the atmosphere). Here, αn is the local line-of-sight zenith
angle, θn the local solar zenith angle (SZA), and φn the local value of the relative azimuth between
two planes containing these directions. The scenario is defined by TOA angles at B, in other words
by the geometry G0 which is the required input. Straightforward ray tracing in a curved atmosphere
(with or without refraction) may be used to determine all Gn given the input G0.

We can again use source-function integration techniques to derive the TOA radiance at B, but this
time noting the local dependence on geometry Gn;n = 1; : : : ;P. We write for the multiple scatter and
direct-beam radiance at B:

IB
dms(0;αB;φB) =

MCX
m=0

8<
:Bm(αA)T

sph
P (αp)+

PX
p=1

T sph
p�1(αp)Λ

(ms)
p;p (αp)

9=
;cosm(φ0�φp): (4.128)

The BOA source terms Bm(αA) are evaluated for the geometry GP at A. The line-of-sight transmit-
tance attenuations T sph

p (αp) from points Vp to B must now be evaluated for a curved atmosphere. Fi-

nally, the multiple scatter layer source terms Λ(ms)
p;p (αp) for layer p must be computed using geometry

Gp. In a similar vein, we have for the single scatter correction:

IB
ssexact(0;αB;φB) =

PX
p=1

T sph
p�1(αp)S

(exact)
p;p (αp;φp); (4.129)

where now the term S(exact)
p;p (αp;φp) for layer p must be evaluated with the appropriate geometry Gp.

The final result for radiance IB is obtained by adding the two contributions in (4.128) and (4.129); the
difference between IB and the regular pseudo-spherical result IC is the sphericity correction.

In particular, we note that solar beam attenuations to points along AB will differ significantly
from the attenuations computed for corresponding points along the path AC which is used for the
regular pseudo-spherical calculation. Thus it is not surprising that the sphericity correction tends to
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be dominated by the difference in single scatter computations between paths AB and AC. Computing
transmittances and attenuations for points along AB is straightforward in a curved atmosphere; path
distances may be evaluated using the Chapman function or by suitable application of Snell’s law in
a refractive atmosphere. In a non-refractive atmosphere, the scatter angle is a constant for all points
along AB. We now describe an interpolation procedure for speeding up the calculation of IB.

Strictly speaking, we require a series of P calls to the RT model, one for each geometry Gn;n =
1; : : : ;P, in order to establish the right multiple scatter layer source terms. However we note that
geometries Gn are slowly varying from A to B; an example will illustrate this. We take a non-refractive
atmosphere of height 60 km and earth radius 6371 km and TOA input geometry G0 = f65�;85�;0�g.
A simple calculation gives GP = f66:18�;83:82�;0�g; the change in solar zenith angle is only 1:18�.
We expect that the multiple scatter source terms also vary slowly and smoothly with the change in
geometry from A to B, and therefore an interpolation procedure using only a few RT model calls will
be sufficient. For each geometry Gn, there is a complete set Λ(ms)

n;p of multiple scatter layer source

terms, where p = 1; : : : ;P. We thus have a matrix of such results, and it is the diagonal entries Λ(ms)
n;n

in this matrix that are required for the sphericity-corrected radiance IB. Figure 4.2 plots matrices

Λ(ms)
n;p computed in this manner for a 60-layer mixed Rayleigh/aerosol atmosphere, a TOA geometry

G0 = f65�;85�;0�g, and with optical properties computed at wavelength 329.6 nm. 4 stream, 6 stream
and 20 stream LIDORT output is presented. There are 60 lines in total in each graph; the pth line
represents source terms Λ(ms)

n;p for layer p plotted against the geometries Gn as represented by the solar
zenith angle variation. Quantities for a given line have been normalized to the values for geometry
G1 (first layer). The dependence is clearly highly linear, suggesting a linear or parabolic interpolation

procedure. For the linear interpolation, we choose the end values Λ(ms)
1;p and Λ(ms)

P;p (P = 60), and for

the parabolic case, we select an intermediate point Λ(ms)
Q;p (Q = 20 was chosen). Table 4.2 shows the

the maximum interpolation errors obtained using these reference points and interpolating against the
solar zenith angle. Linear interpolation (which requires only 2 calls to the RT model) gives errors
no greater that 0:25%; the error is negligible for parabolic interpolation (which requires 3 calls to
the RT model). Thus the sphericity correction can be implemented satisfactorily with just 1 or 2
additional calls to the RT model; there is no significant loss of accuracy. This is a very important
performance consideration for the simulation of backscatter radiances and weighting functions in a
retrieval scenario with wide off-nadir viewing geometry.

4 stream 6 stream 20 stream

Linear 0.22410 0.23521 0.24039
Parabolic 2.1056E-03 2.8773E-03 3.3279E-03

Table 4.2: Maximum interpolation errors (%) for estimating multiple scatter layer source terms.

We note that since the sphericity correction for IB by necessity involves a complete recalculation
of the entire single scatter radiation field, it makes sense to use the Nakajima-Tanaka correction right
from the outset whenever delta-M scaling has been applied to the discrete ordinate model. In the
results that follow, we will adopt this strategy. We use expressions (4.124) for the radiance and
results (4.126) and (4.127) for the weighting functions, remembering that different sets of geometries
must be used as we sum layer contributions along the line of sight AB.
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Figure 4.2: Dependence of multiple scatter layer source terms with solar angle along line of sight
inclined at 65� to the nadir, with corresponding TOA solar zenith angle 85�. Wavelength as indicated,
albedo 0.1, reference atmosphere.
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4.5. 4/6-stream accuracy: comparisons with 20-stream output

In this section we compare 4 and 6 stream model output with results from LIDORT using 20
streams. Since the low-stream models are intended for use in a fast ozone profile retrieval scheme for
a number of nadir viewing space instruments measuring in the UV/visible, we need to look at a wide
range of viewing geometries and atmospheric optical properties in the appropriate wavelength range in
order to characterize the forward model error. Following a summary description of the scenarios used
in this investigation in Section 4.5.1 below, we then look at the close-to-nadir comparisons without
the sphericity correction (Section 4.5.2), before moving on to the wide-angle viewing scenarios in
Section 4.5.3.

4.5.1. Atmospheric setup and viewing scenarios

All calculations were performed on a 60-level grid from 0 to 60 km, with vertical resolution of 1
km throughout. Temperature, pressure and ozone volume mixing ratio profiles for the Tropical AFGL
standard atmosphere were used [69]. Temperature-dependent cross sections for the ozone Hartley and
Huggins absorption bands were taken from a standard data set [70]. Rayleigh scattering properties
were determined using empirical formulae for the scattering coefficient and depolarization ratio [18]
taken from the data of Bates [80]. A background aerosol distribution was taken from the MODTRAN
database [71], with a maritime regime in the planetary boundary layer (visibility 25 km), and back-
ground loading and optical properties in the troposphere, stratosphere and mesosphere. Aerosol phase
functions were approximated by the Henyey-Greenstein form, with asymmetry parameters also taken
from the MODTRAN data set. The lower boundary of the atmosphere was treated as a Lambertian
surface; four albedo values were chosen in this study (0.05, 0.1, 0.3 and 0.7).

This constitutes our clear-sky reference atmosphere. For cloud scenarios, we took a cloud layer
of geometrical thickness 1.0 km between 3.0 and 4.0 km and varied the optical thickness (7 values
of τcloud were chosen; 0.25, 0.50, 1.0, 2.0, 5.0, 10.0 and 20.0). The cloud particulate (water droplet)
single scattering albedo was taken to be 0.999, with corresponding asymmetry parameter 0.85.

For the special cases involving optically thick particulate layers, we selected the following: (1) a
Saharan dust scenario, consisting of a layer of dust 1 km thick between 6-7 km, with optical thickness
1.0, single scattering albedo 0.83 and asymmetry parameter 0.79, the latter two values taken from the
MODTRAN dust model; (2) a volcanic ash scenario, with a layer of ash at 16-17 km, with extinction
and scattering coefficients 0.05641 [km�1] and 0.4494 [km�1] respectively, and asymmetry parameter
0.7897; and (3) a polluted planetary boundary layer scenario, with a layer of particulates at 0-1 km
with extinction coefficient 2.9462 [km�1], scattering coefficient 1.893 [km�1] and asymmetry param-
eter 0.7067. Optical properties for cases (2) and (3) were taken from the LOWTRAN aerosol data
base, namely a “fresh volcanic” aerosol loading for case (2) and an “urban” planetary aoundary layer
aerosol with visibility 2 km for case (3). Optical properties were taken be constant with wavelength
(the values at 337.1 nm were used). All phase functions were treated using the Henyey-Greenstein
form.

Calculations were performed for a wavelength range of 299 to 335 nm. Below 300 nm, multiple
scattering effects are minor and the issue of RT model errors correspondingly less important ow-
ing to the strong ozone absorption and increasing predominance of the Rayleigh single scattering
contribution. [Single scatter computations are entirely sufficient for RT simulations below 295 nm].
For the full-wavelength runs, a spectral resolution of �0.5 nm was adopted. For detailed studies,
we selected six wavelengths spread over the Hartley-Huggins bands, from 309.5 nm to 335.5 nm at
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�5.5 nm spacing. The range of solar zenith angles θ0 used was 15-85�. For the relative azimuth
angle φ0�φ at TOA between the solar plane and the line-of-sight plane, we used the two values 0�

(solar) and 180� (antisolar). For detailed studies using the close-to-nadir pseudo-spherical models
without the sphericity correction, we chose values of the line-of-sight zenith angle from 0� to 40�.
For investigations with the sphericity correction, some 34 values of the line-of-sight zenith angles
were taken from -70� on the antisolar side to +70� on the solar side. This range is wide enough to
include the extreme OMI and GOME-2 swath positions.

4.5.2. Close-to-nadir viewing: the Nakajima-Tanaka correction

We first look at the effect of the NT single scatter correction at one wavelength (329.0015 nm).
Working with the clear sky reference atmosphere, we take an albedo of 0.1 and four solar zenith angles
(20�, 50�, 70� and 80�), with a range of line-of-sight zenith angles from -40� on the antisolar side to
+40� on the solar side. Figure 4.3 shows comparisons between 4 stream and 6 stream TOA radiance
output against 20 stream LIDORT results, with and without the NT correction. Wave structures in the
uncorrected output reflect preferential scattering which is not well accounted for by the uncorrected
RT model. For the 4 stream case, these structures are damped upon application of the NT correction,
and the overall error level is reduced by a factor of 2. However, there are still situations for which
the 4/20 radiance difference has increased even after the correction. The situation is much improved
with the 6 stream case; the wave structures have almost entirely disappeared and the error has been
reduced to a constant low value of around 0.2 to 0.25%. Thus it is clear that there is a substantial
improvement between 4 and 6 streams.

The situation for a sample of ozone volume mixing ratio weighting function profiles is shown in
Figure 4.4. The scenario is the same as that used for Figure 4.3, except that we consider only one
line-of-sight zenith angle (30� on the solar side). The first thing to notice is that the NT correction
has little effect on the weighting function accuracy; this should not surprise us, since the weighting
functions represent relative changes in the radiance with respect to changes in ozone distributions.
A factor of 3 improvement in the error is apparent with the 6 stream case over the 4 stream values;
6 stream weighting functions are nowhere more than 2% distant from their 20 stream equivalents.
Peak sensitivity for these weighting functions is around 25 km (this is a tropical atmosphere), and the
absolute values of these weighting functions below the tropopause (�17.5 km) are small. Thus the
major uncertainty in the weighting function profile occurring in the troposphere should not concern
us unduly, as there is little information to be gained in the retrieval from this part of the atmosphere.

It is well known that Rayleigh scattering is dominant in this part of the UV, especially for shorter
wavelengths. We would therefore expect in general that the effects of aerosol scattering will be small
on the radiance differences, with the largest discrepancies occurring at higher wavelengths where
aerosol scatter is more pronounced. Below 300 nm the magnitude of backscatter is controlled almost
entirely by Rayleigh single scattering, and there is little contribution from surface reflected light
and tropospheric scattered light because of strong ozone aborption in the Hartley bands (the total
ozone absorption optical depth at 290 nm is typically '12). For a Lambertian surface, the reflected
(unscattered) direct solar beam is increasingly important for higher surface albedos, and we would
expect 4/20 and 6/20 radiance differences to become smaller for high albedos.

We now consider more extensive comparisons for a wavelength range of 299 to 335 nm, and for
26 solar zenith angles from 15� to 85�. Figure 4.5 is a contour plot that shows both the 4 and 6
stream comparisons with and without the NT correction, for the reference atmosphere with an albedo
of 0.1 and a viewing zenith angle of 20� in the solar direction. The most prominent feature in the
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Figure 4.3: Comparison of 4/6 stream and 20 stream TOA upwelling radiances for a reference
atmosphere with background aerosol loading; wavelength 329.002 nm, solar zenith angles as
indicated.
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Figure 4.4: Comparison of 4/6 stream and 20 stream TOA upwelling ozone volume mixing ratio
weighting functions for a reference atmosphere with background aerosol loading; wavelength 329.002
nm, solar zenith angles as indicated. Line of sight angle 30� on the solar side.
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uncorrected 4/20 comparison (upper panel) is the broad maximum centered around solar zenith angle
35� and extending from 315 nm upwards. This is the preferential direction for combined molecular
and aerosol single scattering in the atmosphere. Wave structures are apparent in both the uncorrected
results, with the wave amplitude following the change in solar zenith angle. The preferential maxi-
mum and the wave structures are greatly reduced in the corrected 4 stream results, and almost totally
absent for the 6 stream comparisons. We also observe that differences show some variation with the
differential structure of the Huggins bands ozone absorption, particularly for high solar zenith angles.
It is clear that differences are small for the shorter Rayleigh-dominated wavelengths.

We present detailed contour plots for two more scenarios. Figure 4.6 shows some 6 stream com-
parisons for an atmosphere with a cloud layer at 3-4 km, which has optical properties as noted above
in Section 4.5.1. The scenario is for an off-nadir view of 20�, an albedo of 0.1 and a relative azimuth
of 0�. Results for three cloud optical thickness values are shown. It is clear that once the optical depth
reaches a certain value, the albedo effect kicks in and the cloud behaves increasingly like a reflecting
surface - the 6 stream accuracy becomes greater the thicker the cloud (the same behavior was also
found in the corresponding 4 stream comparisons). The optical depth value giving the highest level of
error in this case is 2.0, with the maximum uncorrected error in excess of 2.0% for wavelengths greater
than 325 nm and for solar zenith angles in the range 15-30� (center left panel). The wave structure
is clear in the left-hand (uncorrected) panels. We note that for cloud layers closer to the surface, the
effect will increasingly resemble that produced by a highly reflecting surface, so we would expect the
6/20 differences to be smaller in this case. By contrast, a particulate layer higher in the troposphere
would be expected to produce more significant errors, and we observe this to be the case in the next
scenario (Saharan dust).

In the ozone profile algorithms developed so far for GOME, SCIAMACHY and GOME-2, clouds
have been treated in the independent pixel approximation, wherein the simulated TOA radiance for a
partially cloudy scene is taken to be a weighted mean of two radiances for clear-sky and cloud-filled
scenarios:

Itotal = FcIcloud +(1�Fc)Iclear: (4.130)

Fc is the fractional cloud cover. For GOME scenes, Fc has been retrieved either by using reflectivity
measurements in and around the O2 A band [87, 88, 89], or by means of a thresholding algorithm
based on GOME’s broad-band polarization measurement devices [89]. O2 A reflectivities can also
yield information on cloud-top pressure values and cloud optical thickness, though it has not yet
proved possible to obtain consistently reliable estimates of the latter quantity. In the FRESCO algo-
rithm [88], clouds are treated as Lambertian reflectors with albedo 80%, and least-squares fitting of
reflectivities in part of the O2 A band yields a simultaneous retrieval of cloud fraction Fc and cloud-top
pressure pc. With the large GOME footprint, Fc and pc must be regarded as effective values which
in the context of ozone profile or column retrieval are used to correct for the trace gas distribution in
the lower part of the atmosphere. These results from FRESCO are used in the Fast Delivery ozone
processor at KNMI.

The previous example showed that the presence of an additional scatterer in one part of the atmo-
sphere can introduce larger differences between 4/6 stream and 20 stream radiances, particularly if the
layer has a critical optical depth. If the scatterer is optically thin in the chosen layer, then there will not
be much difference from background results. On the other hand a really opaque particulate layer will
act as a reflecting boundary with high albedo, in which case the change from 4/6 to 20 streams will
be reduced for reasons given above. For the three special cases described in Section 4.5.1, we look
at the same viewing conditions as in the cloud examples. In Figure 4.7 (top panels) results are shown
for the Saharan dust layer scenario; the major positive error peak in the uncorrected results around
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Figure 4.5: Comparison of 4/6 stream and 20 stream TOA upwelling radiances for a reference
atmosphere with background aerosol loading; wavelength range 299-335 nm, solar zenith range
15-85�.
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Figure 4.6: Differences (expressed as percentages) between 6 stream and 20 stream TOA upwelling
radiances for a reference atmosphere with cloud layer between 3-4 km with 3 cloud optical thickness
values as indicated. Viewing zenith 20�, azimuth 0�, albedo 0.1. Wavelength and solar zenith ranges
as in Figure 4.5.
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solar zenith angle 70� has increased to 2.2% by comparison with the cloud case (the corresponding
number for the 4 stream comparison was greater than 3.5%). By contrast, the NT-corrected results
(upper right) show little structure, with error levels below 0.5%. (Contour levels are at intervals of
0.5% for the uncorrected results, and generally at 0.1% for the NT-corrected comparisons). For the
volcanic ash layer scenario, we would not expect 4/20 and 6/20 differences to be greatly in excess
of those generated using the reference atmosphere. This remark follows from the consideration of
optical depth; although the extinction coefficient for the volcanic layer is two orders of magnitude
above background levels, the layer is still optically thin compared to the Saharan dust model. These
remarks are borne out by the 6/20 stream comparisons in Figure 4.7 (middle panels).

For the planetary boundary layer scenario with an optically thick aerosol layer near the surface, we
would expect this situation to resemble a reasonably highly reflecting surface. In Figure 4.7 (lower
panels) the comparisons are done for 4 streams. The general error level is not greatly different from
the clear sky case. The interesting thing to note here is that in contrast with the other two 6/20 stream
comparisons in Figure 4.7, the NT-corrected 4/20 stream results in the lower right panel are actually
worse than the uncorrected ones for sizeable ranges of wavelength and solar zenith angle. Geometry-
dependent structures are present in both the lower panels, though the preferred direction has changed
from uncorrected to NT-corrected. This example demonstrates clearly that 4 stream models should be
used with caution; it is safer and more accurate with 6 streams.

Although the dust scenario is admittedly an extreme situation, it does help to establish accuracy
limits for the low-stream models. This scenario has special significance in the ozone profile retrieval
context. An algorithm to indicate the presence of absorbing aerosols in the lower atmosphere was
first developed for the TOMS (Total Ozone Monitoring Spectrometer) instrument in order to look at
anomalous ozone column results obtained in biomass burning (smoke aerosols) and dust-outbreak
scenarios [90, 91, 92]. The algorithm examines the radiances at two different wavelengths and com-
putes the spectral residue upon subtraction of the Rayleigh contribution to the backscatter. It turns
out that this residue (the aerosol absorbing index) is a clear indicator for the presence of absorbing
aerosols. The algorithm has now been applied to GOME measurements [93], and will also be used
operationally for GOME-2 and SCIAMACHY. The point here is that if there is a clear indication of
the presence of an absorbing aerosol layer in a given GOME or GOME-2 footprint, then we can use
this information to switch from a 4 stream model to a 6 stream calculation of backscatter radiances
and weighting functions required for an ozone (profile or column) retrieval.

Results for the reference and cloud-layer scenarios are summed up in Table 4.3, along with the
abovementioned three special cases. The table gives an overview of the maximum and minimum
differences to the 20 stream output, both for uncorrected and NT-corrected TOA radiance values. The
first four reference scenarios (Ref 1 to Ref 4) are intended to examine the albedo dependence; as noted
above the errors increase with decreasing albedo. The Ref 2 and Ref 5-7 scenarios together give an
indication of the off-nadir viewing angle dependence; for the uncorrected results, both 4 stream and 6
stream errors increase as the viewing angle moves away from the nadir, but this dependence is absent
for the NT-corrected equivalents. Cloud-layer scenarios show the cloud optical thickness dependence;
all results show a clear peak in the maximum error values for optical thickness τcloud = 2.0. Finally,
we note that the Saharan dust scenario has the largest 6 stream error. In summary, we note that in
all cases, the NT-corrected 6 stream results are within 0.65% of their 20 stream equivalents, and that
in clear sky circumstances, these errors are mainly at the 0.25% level or below. For the corrected
4 stream results, the reference clear sky errors are in the 1.0-1.3% range and cloud-layer errors are
roughly the same; however two of the special cases are still showing absolute errors at the 1.75%
level.



147 Fast and accurate 4 and 6 stream linearized discrete ordinate..

Figure 4.7: Comparison of TOA upwelling radiances for three special cases: (top panels) 6/20 dif-
ferences with layer of desert dust at 6-7 km; (center panels) 6/20 differences with volcanic ash layer
at 24 km; (lower panels) 4/20 differences with polluted boundary layer. Viewing zenith 20�, azimuth
0�, albedo 0.1. Wavelength and solar zenith ranges as in Figure 4.5.
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Maximum and Minimum % errors for uncorrected and NT-corrected TOA radiance output

UNCORRECTED NT-CORRECTED
Scen Alb. View Azm 4 stream 6 stream 4 stream 6 stream

τcloud Max Min Max Min Max Min Max Min

Ref 1 0.05 20.0 0.0 1.721 -0.757 0.720 -0.362 1.139 -0.612 0.248 -0.217
Ref 2 0.10 20.0 0.0 1.596 -0.763 0.684 -0.337 1.069 -0.619 0.241 -0.216
Ref 3 0.30 20.0 0.0 1.208 -0.794 0.608 -0.303 0.834 -0.651 0.220 -0.214
Ref 4 0.70 20.0 0.0 0.732 -0.900 0.481 -0.287 0.565 -0.726 0.217 -0.207
Ref 5 0.10 2.0 0.0 1.416 -1.030 0.610 -0.224 0.860 -0.661 0.249 -0.234
Ref 6 0.10 10.0 0.0 1.504 -1.041 0.656 -0.267 0.891 -0.656 0.253 -0.230
Ref 7 0.10 30.0 0.0 1.622 -0.420 0.791 -0.735 1.300 -0.555 0.231 -0.200
Cld 1 00.25 20.0 0.0 2.120 -0.949 1.174 -0.867 1.074 -0.625 0.225 -0.212
Cld 2 00.50 20.0 0.0 2.554 -1.288 1.561 -1.226 1.050 -0.630 0.274 -0.208
Cld 3 01.00 20.0 0.0 3.077 -1.685 2.055 -1.564 1.010 -0.641 0.393 -0.203
Cld 4 02.00 20.0 0.0 3.415 -1.961 2.407 -1.659 1.041 -0.741 0.556 -0.196
Cld 5 05.00 20.0 0.0 3.054 -2.112 2.246 -1.404 1.176 -0.928 0.630 -0.189
Cld 6 10.00 20.0 0.0 2.476 -1.954 1.867 -1.151 1.011 -0.989 0.576 -0.189
Cld 7 20.00 20.0 0.0 2.051 -1.779 1.572 -0.986 0.757 -1.012 0.493 -0.190
Sahar 0.10 20.0 0.0 2.675 -4.172 2.439 -1.895 0.406 -1.778 0.452 -0.164
Volcn 0.10 20.0 0.0 2.049 -1.366 1.283 -0.641 1.721 -0.550 0.557 -0.086
Polld 0.10 20.0 0.0 2.025 -0.738 1.023 -0.476 1.091 -0.593 0.294 -0.216

Table 4.3: Maximum and Minimum % errors for uncorrected and NT-corrected TOA radiance output.
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4.5.3. Wide-angle viewing: the sphericity correction

We wish to compare sphericity-corrected output for the path AB with regular pseudo-spherical RT
calculations for a scattering path AC based on the geometry at point A. We will be comparing two sets
of NT-corrected data in order to isolate the sphericity effect. This time we take line of sight viewing
angles from -70� in the antisolar direction to +70� in the solar direction. Figure 4.8 shows results for
the TOA radiance for the reference atmosphere with albedo 0.1, for a selection of 6 wavelengths and
4 solar zenith angles. Three separate RT model runs were done for the multiple scatter terms along
AB, with parabolic interpolation used to determine intermediate values as described in Section 4.4.3
above. Note that the correction has the same sign for lower values of the solar zenith angle, but
reverses for high solar zenith angles. This is a function of the sun’s position in front or behind the line
of sight. The correction is also much larger for high solar zenith angles, where attenuation along the
direct solar beam is critical.

Figure 4.8: Sphericity correction 6 stream TOA upwelling radiances for a reference atmosphere with
albedo 0.1. Viewing zenith angle range -20� to +40�. Wavelength and solar zenith ranges as indicated.

The magnitude of the sphericity correction is very much the same for 4, 6 and 20 stream calcula-
tions. This should not surprise us, since as already noted, its magnitude is strongly dependent on the
single scatter calculations to point along the path AB. It is immediately obvious that this correction
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Figure 4.9: Sphericity correction thresholds for 6 stream TOA upwelling radiances for a reference
atmosphere with albedo 0.1, and for 2 solar zenith zenith angles. Wavelength against line-of-sight
viewing angle.
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Figure 4.10: Sphericity correction for 6 stream TOA upwelling ozone volume mixing ratio weighting
functions, for a reference atmosphere with albedo 0.1, for wavelength 324.57 nm. Solar zenith angles
as in Figure 4.8.



Chapter 4 152

is important for the wide angle view. Indeed for a solar zenith angle of 85�, the line-of-sight zenith
angles are restricted to the range [�15:9�] at 319.4 nm if the sphericity correction is to be ignored at
the 1% level. Even for a solar zenith angle of 50�, viewing paths outside the range [+62:7�;�55:7�]
will be outside the 1% threshold for the sphericity correction. Another way of looking at these results
is to plot thresholds for the absolute sphericity correction. In Figure 4.9, this is done for thresholds
from 0.5% to 8.0% (contours as marked) and for a wide wavelength range. The GOME (� 34:6�)
and GOME-2 (� 55:7�) swath limits are marked; the OMI swath limit is at � 67:4�. Clearly the
sphericity effect for GOME can be ignored to the 1% level for solar zenith angles up to 75�, but it
becomes significant at the 2% level at sun angle 85�. For GOME-2, the sphericity correction is needed
to the 2% level at SZA 75�, and at the 5% level at 85�. The situation with OMI is even more serious.
Notice also the asymmetry between solar and antisolar directions, and at SZA 75� the change in sign
of the correction for wavelengths near 300 nm. The increasingly high ozone absorption in this part
of the UV can have a critical effect on the attenuation along both the solar beam and the line-of-sight
path. Given this sort of variability, it is not an easy matter to decide when to implement the sphericity
correction, and this will have consequences for the retrieval algorithm.

A similar picture pertains for the weighting functions. Since the sphericity effect is much the same
no matter what the scattering accuracy, we focus on 6 stream output only, looking at weighting func-
tion profiles with respect to ozone volume mixing ratio in our reference atmosphere, again assuming
an albedo of 0.1. Figure 4.10 shows results for 4 solar zenith angles at a wavelength of 329.5 nm, and
for line-of-sight viewing angles corresponding to the GOME, GOME-2 and OMI swath limits. From
the graphs, we see that for solar zenith angles up to 75�, the sphericity correction can be ignored for
GOME at the 1% level, and for GOME-2 at the 2% level. At SZA 85�, weighting function errors due
to the neglect of the sphericity correction are up to 2% for GOME and as high as 5% for GOME-
2. The situation for OMI is more serious, with significant errors at all solar zenith angles, ranging
from a +5% maximum at SZA 20�, to -12% at SZA 85�. In common with the results in Figure 4.8,
the sphericity correction has the same sign for lower SZA values, but has the opposite sign for all
off-nadir angles at SZA 85�.

4.6. Discussion: relevance to ozone profile retrieval

In this paper, we have determined analytic 4 and 6 stream solutions for radiance and 4 stream
solutions for weighting functions using a linearized discrete ordinate model. In order to determine the
model’s suitability for use in a fast and accurate ozone profile retrieval algorithm using UV backscatter
measurements from nadir viewing instruments such as GOME, GOME-2, SCIAMACHY and OMI,
we have carried out a detailed investigation of the model accuracy for a range of atmospheric scenarios
appropriate to this retrieval application. Comparisons for radiance and a limited number of weighting
functions were carried out against the general model LIDORT operating in the 20 stream discrete
ordinate approximation. We have shown that significant improvments to the accuracy can be gained
by using a post-processing correction for the single scatter contribution to the upwelling radiance.
Further, it was shown that a sphericity correction is an essential requirement for wide-angle off-nadir
viewing, particularly for high solar zenith angles.

We show that with a few exceptions, the NT-corrected 4 stream model is accurate to 1.25% for the
vast majority of clear sky scenarios likely to be encountered in the retrieval of ozone profiles from
backscatter UV spectrometers in space. The major exceptions occur in the presence of additional
moderately thick particulate layers at high levels in the troposphere. The template for this is the Sa-
haran dust model. It is noted that this situation can be flagged in an operational environment provided
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that the presence of such a layer can be established by means of a suitable absorbing aerosol indexing
algorithm. The single scatter corrected 6 stream model is shown to reproduce 20 stream radiance val-
ues to better than 0.65% for all scenarios considered, with corresponding weighting function accuracy
to �2% levels.

It is clear that the single scatter correction should be applied for all situations in order to achieve
acceptable levels of accuracy. However the sphericity correction is only really needed for wide angle
views and in general for high solar zenith angles. However, determining the range of viewing geome-
tries for which this correction is required is not a straightforward manner, and further investigation
is needed to establish limits of applicability which are consistent with the overall level of accuracy
chosen for an operational ozone profile retrieval algorithm with global reach.

By allowing for an acceptable loss of accuracy, a large gain in speed may be obtained using 4/6
stream models. This has great consequence for the performance of operational near-real-time re-
trievals of ozone profiles, particularly for a high data-rate instrument such as OMI. The choice of
an accuracy criterion for the RT model depends on the strategy adopted for the retrieval algorithm,
and most importantly on the instrument measurement uncertainty. The aim is to achieve an accuracy
level that is better than (or at least equal to) that of the measurements. A measurement accuracy of
about 1.5% is in theory obtainable from the GOME, SCIAMACHY and GOME-2 instruments, the
main limiting factor being the accuracy of the pre-launch radiometric calculation. Taking this number
as a yardstick, the 4 stream model presented here can be expected to simulate radiances to about
the same level of accuracy, with the 6 stream model providing a factor of three improvement on the
overall accuracy of both radiances and weighting functions. It should be noted that the radiometric
calibration error for GOME is actually much greater than 1.5%; additional sources of measurement
error for GOME include the instrument degradation now apparent 5 years after launch, and the un-
certainty inherent in the polarization correction (up to 10%). In the latter respect, GOME-2 is much
better served than GOME; the latter has only 3 polarization measurement devices (PMDs), whereas
GOME-2 has some 15 PMDs measuring in two directions of polarization.

We have attempted to quantify only the forward model error likely to be encountered in the ozone
profile retrieval context; we have not considered other sources of error in the optical properties as-
sumed in the calculation (for example uncertainties in the trace gas cross sections). The 4 and 6 stream
models have been installed in an prototype operational algorithm at KNMI designed to retrieve ozone
profile information from nadir UV/VIS backscatter measurements from the GOME and GOME-2
instruments. In the follow-up paper [77] to the present work, we carry out a feasibility study for
the operational ozone profile retrieval for the GOME-2 instrument, based on the 4/6 stream models
described in the present work. This study will examine the effect of all error sources (including those
from the forward model) on the accuracy of the ozone profile retrieval.
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Abstract

We use the optimal estimation method to investigate some sensitivity and error as-
sessment issues for the operational retrieval of ozone profiles using backscatter mea-
surements from moderate-resolution nadir-viewing remote sensing instruments such
as GOME and GOME-2. Simulated radiances and analytically calculated weight-
ing functions are determined from a linearized discrete ordinate radiative transfer
forward model. We use the degrees-of-freedom-for-signal (DFS) diagnostic to inves-
tigate ozone profile accuracy as a function of the tropospheric temperature pattern.
DFS is used to optimize the choice of an upper wavelength limit for the retrieval
window; there is little new information to be gained from the inclusion of mea-
surements above 323 nm. We examine model parameter errors, concentrating on
uncertainties in profiles of temperature and aerosol optical thickness. Ozone profile
accuracy is shown to be highly sensitive to temperature uncertainty; it is important to
have accurate temperature input. It is shown that temperature-induced errors can be
included easily in the optimal estimate solution covariance. Aerosol-induced errors
in the optimal estimate are generally too large to be treated in this way; it is better
to retrieve aerosol optical depth as an additional element in the state vector. Forward
model errors are also investigated, first with respect to the number of discrete ordi-
nate streams used in the radiative transfer, and secondly with regard to the neglect
of polarization. We conclude that a 4-stream radiative transfer model is sufficiently
accurate for wavelengths below 320 nm. The absence of polarization in the radiative
transfer model is a more serious source of error. The accuracy of the polarization
correction applied to GOME radiance data is also shown to be critically important
for the retrieved profile uncertainty.
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5.1. Introduction

A global and long-term measurement record of the vertical and horizontal distribution of ozone is
an essential tool for monitoring the Earth’s atmosphere and understanding its chemical and physical
balance. This is especially important in the light of perceived changes to the global atmospheric
system due to man’s activities on the planet. Ozone is one of the most important atmospheric trace
species, and scientific studies have focussed on topics such as the ozone hole phenomenon observed
during the Austral spring over the south pole, the enhancement of ozone levels during severe tropo-
spheric pollution events, and the role of ozone in global climate change. Space-based instruments
on suitable orbits have the potential to deliver ozone measurements that are indispensable for this
research.

The first algorithms for ozone profile retrieval from satellites were pioneered by Singer & Went-
worth [94] and Twomey [9]. Twomey in particular demonstrated that the ozone profiles can be
retrieved from a single earthshine spectrum. With the advent of backscatter ultraviolet (BUV) in-
struments in the 1970s, an operational ozone profile retrieval algorithm for UV nadir earthshine
measurements was developed by NASA for the SBUV, SBUV/2 and SSBUV experiments. SBUV
profiles comprise 12 partial columns of ozone, retrieved from 12 nadir-view radiance measurements
between 255 and 340 nm (bandwidth 1.1 nm). The algorithm uses the optimal estimation retrieval
technique; for a description and summary of the NASA developments, see [11]. In general, SBUV
profile element precisions are 5-15% in the range 1-20 mbar; outside of this range, profile elements
are heavily influenced by prior assumptions.

In April 1995, the nadir viewing Global Ozone Monitoring Experiment (GOME) instrument was
launched on board the ESA satellite ERS-2; GOME delivers earthshine backscatter measurements
in the UV, visible and near infrared (240 - 790 nm spectral range) [5]. GOME is an atmospheric
chemistry instrument designed to measure column abundances of O3 and a number of other trace
species [7]. GOME has a spectral resolution of �0.2 nm in the UV channels where ozone absorption
is prominent. Ozone profile retrieval algorithms for GOME have been reported in the literature [13,
15, 14, 16]. GOME stratospheric ozone profiles are now operationally available within 4 hours after
observation via the KNMI GOME Fast Delivery service [95].

An improved version of the GOME instrument, GOME-2, will fly on three METOP satellites [6];
the first is scheduled for launch in 2005. The operational period for these platforms is 15 years, and
this offers a unique opportunity to obtain a long-term, global ozone record. GOME-2 improvements
include: (i) an extended set of polarization measurements, (ii) better spectral sampling ratio, and
(iii) smaller ground pixels (40x40 km). GOME-2 will operate with a wide swath (1920 km, twice
that of GOME). Retrieval algorithm development and validation for GOME-2 takes place within the
framework of the Ozone Monitoring Satellite Application Facility (Ozone SAF) initiated by EU-
METSAT in 1997. Among the nine participating institutes the Royal Netherlands Meteorological
Institute (KNMI) has responsibility for the generation of ozone profile and aerosol products from
GOME-2. Other instruments capable of delivering ozone profiles from nadir backscatter measure-
ments are SCIAMACHY, due for launch in summer 2001 on the ESA-ENVISAT platform [96], and
OMI (Ozone Monitoring Instrument) scheduled for launch on the EOS-AURA satellite in 2003 [8].

The potential of these four instruments to deliver ozone profiles (Level 2 data products) with the
temporal and geographical sampling of the earthshine measurements (Level 1 products) can only be
exploited if the ozone profile retrieval is fast enough to keep up with the data rate using up-to-date
computer resources. It is highly desirable to develop algorithms which are as efficient as possible,
and in particular to find the right balance between accuracy and speed in the operational environment.
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A key component in the ozone profile retrieval problem is the forward model. Given appropriate
observing conditions (solar and viewing angles), a choice of ozone profile and other atmospheric
constituent distributions, and a suitable instrument response function, the forward model simulates
the earthshine radiance measurements as measured by the instrument. This comprises a radiative
transfer (RT) calculation followed by a convolution with the instrument response function. Also
required in this problem is the computation of the Jacobian matrices of derivatives of these simulated
measurements with respect to the retrieval parameters (of which the ozone profile variables are of
primary importance). These Jacobians are usually referred to as the weighting function matrices, and
they are generated through the linearization of the forward model. Formally we can write:

~y = F (~x) and K =
∂
∂~x

F ; (5.1)

where~y is the vector of simulated earthshine radiances at different wavelengths,~x is the state vector
containing the parameters to be retrieved, F is the forward model and K is the matrix of weighting
functions. The actual retrieval consists of an iterative series of linear inversions. Starting with a
first-guess profile~x0, the forward model is linearized through:

~y�~y0 = K(~x�~x0); (5.2)

with ~y0 = F (~x0). Matrix K is the forward map from the space of state vectors to the measurement
vector space; this is equivalent to the measurement itself, subject to the measurement error. The
inverse map from measurement space to state space is determined using a linear inversion technique;
the solution is the “second-guess” profile. Simulated earthshine measurements and associated weight-
ing functions are then re-calculated using the updated profile and the linear inversion is repeated; the
iteration stops when appropriate convergence criteria are satisfied.

In common with most work done on ozone profile retrieval, we will use optimal estimation. Here,
the linear inversion step is based on Bayes’ theorem for the determination of the posterior probability
density function (pdf ) P(~xj~y) for state ~x given measurement ~y, in terms of the a priori knowledge
characterized by P(~x) and the conditional pdf P(~yj~x) for ~y given ~x. The last quantity requires the
forward model and measurement error statistics; we take the latter to be Gaussian. If the prior pdf
also has Gaussian statistics, then the posterior pdf will be Gaussian. The optimal or maximum a
posteriori (MAP) estimate is then the state vector that maximizes the posterior pdf.

The forward model should have the ability to deliver both simulated radiances and weighting
functions. Weighting functions for the RT model can either be calculated numerically using finite-
difference methods, or analytically by explicit differentiation of the radiance. The finite difference
technique requires repeated calls to the RT model, and there are some concerns over the accuracy of
the answers. From the point of view of both accuracy and algorithm efficiency, the analytic derivation
of weighting functions is much to be preferred [1]. For a scattering atmosphere, only two RT models
have been extended for the purpose of direct analytic derivation of weighting functions. These are
the GOMETRAN model developed by Rozanov [40, 43] and the discrete ordinate LIDORT code
developed by Spurr [75, 85]. In this work, we use the LIDORT model. This is a general purpose
multiple scattering discrete ordinate radiative transfer code with the ability to deliver simultaneous
fields of radiance and analytically accurate weighting functions. We use the model in its fast 4-stream
formulation [77].

We address two important sensitivity issues in this paper. One is connected to the temperature
dependence of the ozone absorption cross sections in the Huggins bands: how sensitive is the retrieval
to the temperature profile in the troposphere? The other concerns the optimization of the choice of
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an upper wavelength limit in the Huggins bands beyond which little or no further improvement in the
retrieved ozone profile is apparent. For these issues, we use a reformulation of the linear inversion
step using singular value decomposition (SVD) analysis. This offers a clear interpretation of the
inversion, and offers a convenient definition of two additional diagnostic tools: the DFS (degrees of
freedom of signal) and the Information Content. We show in particular how the DFS diagnostic can
give quantitative answers to these two issues.

In addition to measurement and a priori errors, the retrieval will also be affected by uncertainties
inherent to the forward model itself, and by uncertainties about model atmospheric parameters that are
inputs to the forward model. The ozone profile accuracy can be determined by linearizing the forward
model about some state and using contribution functions to calculate the magnitude and expected
values of the profile errors. We consider two kinds of forward model error: (1) due to the use of
a fast 4-stream discrete ordinate model, and (2) due to the neglect of polarization. Forward model
error will be treated as systematic. We also examine the effect of the polarization correction that is
currently applied to GOME signals; this particular measurement error is a major source of profile
uncertainty. For model parameter errors, we look at uncertainties in the aerosol optical thickness and
temperature profiles, assuming Gaussian statistics for their error distributions. The forward model is
able to deliver weighting functions with respect to these quantities, thus enabling model parameter
errors to be included in the optimal estimate error covariance.

The plan of the paper is straightforward. In Section 5.2, we recapitulate the main elements of the
optimal estimation inversion technique, including a description of the error sources, and an outline of
the SVD reformulation. This section is based in large part on the publications of Rodgers [60, 4, 1].
In Section 5.3 we discuss forward model aspects; this includes a resumé of the LIDORT radiative
transfer model and remarks on instrument response convolution and noise statistics. In Section 5.4
we describe the set-up for the retrieval and sensitivity studies; this includes the definition of our
reference atmosphere, and a description of the state, a priori and model parameter vectors used in this
study. Sections 5.5 and 5.6 contain the main results for the sensitivity study and the error assessment
respectively. The paper concludes with some remarks on the consequences of these findings for an
operational ozone profile retrieval algorithm.

5.2. Profile retrieval with optimal estimation

5.2.1. State vector updates

Optimal estimation provides a natural solution to the ill-conditioning problems typically found
in remote sensing atmospheric retrieval applications; it combines information on the state vector
contained in the measurement with a priori information on the state vector itself. Assuming Gaussian
probability density functions (pdf) for both the a priori uncertainty and for the error statistics of the
measurement vector, the optimal estimate is the state that maximizes the product of these two pdf’s.
This product is called the posterior pdf, and it is also Gaussian. An explicit solution for its maximum
value (the MAP or “optimal” estimate) is given by [1]:

∆~xOE = ∆~xa +Dy(∆~y�K∆~xa); (5.3)

Dy = SOEKTS�1
y ; (5.4)

SOE =
�
KTS�1

y K +S�1
a

��1
; (5.5)
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with ∆~xa = ~xa �~x0, and ∆~y =~y�F(~x0). Here ~xa is the a priori state vector, Sa the a priori error
covariance, SOE the posterior error covariance and Sy the measurement error covariance. The T-
superscript denotes matrix transpose. The optimal estimate ~xOE follows from ~xOE =~x0 +∆~xOE. Dy

is variously called the gain matrix or the matrix of contribution functions. These characterize the
sensitivity of the retrieval to the measurement, and are important in the consideration of error sources.
For linear inversion with Gaussian statistics, the optimal estimate is only equal to the maximum
likelihood state or the minimum variance state (obtained by minimizing the cost function) in the
absence of prior knowledge.

To deal with the non-linearity of the forward model, the optimal estimate of the linear system is
used to calculate a new set of weighting functions, thereby creating a new linear inversion problem
from which an updated optimal estimate is computed. This process is repeated until the relative
change in optimal estimates between iterations is less than a specific amount for all components of
the state vector. This is our primary convergence criterion. We also use a second criterion based on
the relative change in the total cost function (“chi-square”) between iterations:

χ2 � χ2
s +χ2

n = (~x�~xa)
T S�1

a (~x�~xa)+ [∆~y]T S�1
y ∆~y (5.6)

Note that the optimal estimation technique assumes a relatively small departure from linearity in the
forward model to ensure that the posterior pdf is well approximated as Gaussian where it is non
negligible [1]. Note also that the optimal estimation results can be obtained by Newton-Gauss meth-
ods (minimizing the cost function with respect to ∆~x). The cost function in (5.6) has contributions
χ2

s , which is the functional based on (~x�~xa), and χ2
n based on the measurement noise functional.

Ordinary least squares fitting involves minimization of χ2
n in the absence of prior knowledge.

5.2.2. Error sources in the retrieval

The error on ∆~xOE has four components: (1) measurement or retrieval error εM(~x); (2) the smooth-
ing error εA(~x); (3) forward model error εF(~x); and (4) model parameter error εB(~x). We deal with
each of these in turn, following the analysis of Rodgers [1].

Retrieval error

This is defined to be

εM(~x) = Dyεy; (5.7)

where εy is the measurement noise (~y = F(~x)+ εy) characterized by error covariance Sy, and Dy is
the gain matrix of contribution functions. The error covariance for the optimal estimate of the state
vector from this source of error is SM = DySyDT

y .

Smoothing error

This is given by

εA(~x) = (A�E)∆~xa; (5.8)

where E is the unit matrix in state vector space and A is the averaging kernel matrix, defined in terms
of the Frechét derivative:

A� ∂~x
∂~xtrue

�= DyK (5.9)
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A represents the sensitivity of the retrieved state to its true value. Although the product DyK is used
to calculate A, this is strictly speaking only correct if~xOE and~xtrue are in the linear regime, that is:

~xOE�~xa
�= DyK (~xtrue�~xa) (5.10)

in the absence of other error sources.

Since the true state is not known, we must estimate this error contribution using suitable statistics
for an ensemble of states. It is usual to take~xa and Sa for the mean and covariance of the ensemble, in
which case the error covariance for the optimal estimate from this source is SS = (A�E)Sa(A�E)T.
It is straightforward to show that in the absence of other sources of error, SOE = SM +SS.

From (5.9), we see that the gain matrix Dy is a “fuzzy” inverse of the linearization map K. In a
perfect retrieval, there is no ambiguity: A is then the unit matrix in state space. In a retrieval with state
vectors consisting of profile elements, the rows (averaging kernels) of A are profiles which generally
peak at the diagonal entry. The half-width of these peaked functions is a measure of the vertical
resolution of the profile. In the ideal case, the peaks are delta-functions; for this reason the columns
of A are sometimes referred to as the point spread functions (responses to delta-function perturbations
of the state vector).

Forward model error

An additional source of error on the profile retrieval arises from approximations made in the forward
model itself. We define the model error ∆F through:

Ftrue = Fapp +∆F; (5.11)

with Ftrue and Fapp the true and the approximated forward models respectively. Then the error on ~x
is:

εF(~x) =~xapp�~xtrue = Dy∆F (5.12)

where Dy is the contribution function matrix given in (5.4). ~xapp is the estimate derived using the
approximate forward model, and ~xtrue is the estimate based on the true forward model. We have
assumed here that the error in the measurement is within the linearity limits of the forward model;
that is, the same K (and hence the same Dy) holds for ~xapp and ~xtrue. Forward model error will be
treated as systematic; its effect will be manifest as an offset on the retrieved state.

In Section 5.6 we use (5.12) to examine the effect of this error on the ozone profile optimal estimate.
We look at forward model errors due to the use of a low number of streams in the discrete ordinate
radiative transfer model. In [77], 4 and 6 stream forward model errors were characterized extensively
by comparing radiance and weighting function output with accurate values obtained from a 20-stream
model. In Section 5.6.2 we look at another source of forward model error due to the neglect of a vector
radiative transfer treatment with polarization.

Model parameter error

In this case the error between the retrieved state and its true value is given by

εB(~x) = Dy Kb∆~b; (5.13)
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where Dy is the contribution function matrix, and Kb is the sensitivity of the forward model to a set
of model parameters~b (that is, Kb is the matrix of derivatives of the forward model radiances F(~x)
with respect the elements of~b). For a linearized RT model such as LIDORT that can deliver fast and
accurate analytic weighting functions, it is straightforward to generate Kb along with the state vector
Jacobians K. In this work we will assume that the uncertainties on~b are characterized by Gaussian
statistics with error covariance Sb. Then the error covariance for the optimal estimate will contain an
additional term

SB = DyKbSbKT
b DT

y (5.14)

which should be added to the posterior error covariance SOE defined in (5.5). Of particular interest for
us are the uncertainties in aerosol thickness and temperature profiles, and in Section 5.6 we will use
weighting functions Kb in conjunction with simple estimates of Sb to investigate these error sources
in more detail. We also consider cloud fractional cover, cloud-top pressure and cloud albedo as model
parameter errors.

5.2.3. Singular value decomposition; DFS and Information Content

Following [1], we reformulate (5.3) by introducing the transformations:

x̂ = S
� 1

2
a ∆~x and ŷ = S

� 1
2

y ∆~y: (5.15)

In the transformed spaces, the a priori and measurement error covariances are now both unit matrices.
The forward model linearization is ŷ = K̂x̂, where the transformed Jacobian is:

K̂ = S
� 1

2
y KS

1
2
a : (5.16)

A further reduction may be carried out with a singular value decomposition (SVD) of matrix K̂:

K̂ =UΛV T; (5.17)

U and V are unitary matrices andΛ is diagonal. The columns of V form an orthonormal basis set in the
space of state vectors, and the columns of U constitute a similar basis in measurement vector space.
In our problem, all the elements of the state vector have some influence on the measurements; V is
a square matrix, and there is no null space [1]. By introducing the unitary transformations y0 = UTŷ
and x0 =V Tx̂ we find:

y0 = Λx0: (5.18)

In terms of these variables, the optimal estimate is given by:

x0OE;i =
λiy0i + x0i;a
λ2

i +1
: (5.19)

Here, λi are the singular values, that is, the diagonal elements of Λ. ~x0a is determined from ∆~xa using
the same transformations as those applied above to ∆~x. The optimal estimate is then:

∆~xOE = S
1
2
a V~x0OE (5.20)
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This reformulation using singular value decomposition has a clear interpretation. Mapping the state
vector on to basis V and the measurement vector to basis U simplifies the forward model considerably:
y0i only depends on x0i. For the optimal estimate the same situation holds: x0i;OE depends only on y0i.
The singular values determine the relative weighting between a priori and measurement information
in the optimal estimate. For those elements of the state and measurement vectors generating small
singular values, the a priori contribution dominates the optimal estimate; for large singular values the
measurement contribution is paramount. The role of the a priori vector in this analysis is clear; it reg-
ularizes the estimate when the measurement does not contain enough information to fully determine
the state.

The SVD procedure has the further advantage that a number of important diagnostics may be
established directly from the singular values. The improvement in knowledge of the state vector
relative to the a priori due to the inclusion of the measurement can be quantified with the so-called
Information Content H. This is defined in terms of information theory [97], and we establish its value
by calculating the entropy of the posterior pdf. This can be done in measurement or state space; the
results are the same. For a Gaussian distribution, this is a standard result [1]. In terms of the singular
values, H can be written very conveniently:

H =�1
2

ln jE�Aj=
X

i

1
2

ln
�
1+λ2

i

�
: (5.21)

E is the unit matrix in state space. The degrees-of-freedom-for-signal (DFS) indicator ds is another
useful diagnostic for assessing the improvement in state vector precision; it is defined by:

ds = tr(A) =
X

i

λ2
i

λ2
i +1

: (5.22)

This quantity can be interpreted as the number of independent linear combinations of the state vector
that can be independently retrieved from the measurement. If N is the dimension of the state vector, we
have ds = N if the measurement completely determines the state, and ds = 0 if there is no information
at all in the measurement. ds is the expectation value of the cost function contribution χ2

s for the
optimal estimate. The degrees-of-freedom-for-noise (DFN) dn is the counterpart of DFS; it is the
expectation value of the noise contribution χ2

n to the minimum value of the cost function. Since the
expected value of χ2

min equals the number of measurements M, it follows that dn = M� ds. The
connections between H and ds and the matrix A indicate the importance of averaging kernels in the
discussion of information flow in the retrieval. Examples using these diagnostics will be given in
Section 5.5.

5.3. Forward model aspects

5.3.1. Simulated measurements

The actual forward model consists of two operations: (i) the LIDORT radiative transfer com-
putation for a set of wavelengths to simulate the spectrum before detection and (ii) an instrument
simulation to compute the radiances as seen by the instrument detector pixels. We may write:

Ii =

Z
pixeli

dλ
Z ∞

0
dλ0S(λ;λ0)I(λ0): (5.23)
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Here, Ii is the radiance detected at spectral pixel i, S(λ;λ0) is the instrument slit function and I(λ0)
is the LIDORT simulation of radiance at the entrance of the instrument. The outer wavelength inte-
gration is performed over the wavelength range of spectral pixel i. Invoking the linearization of the
forward model, we have a similar expression for the weighting functions:

Ki j =
∂Ii

∂x j
=

Z
pixeli

dλ
Z ∞

0
dλ0S(λ;λ0)

∂I(λ0)
∂x j

; (5.24)

where xj is the jth component of the state vector of parameters to be retrieved. A similar expression
can be written down for weighting functions Kb with respect to model parameters~b. With the ex-
ception of the Ring scaling correction (see below), all of the derivatives ∂I(λ0)=∂x j in the integrand
in (5.24) can be determined directly from the weighting function output of the linearized LIDORT
model. The same applies to the derivatives ∂I(λ0)=∂b j for model parameters bj which do not appear
in the retrieval but will be considered as sources of error.

In this paper, radiance and irradiance measurements are simulated for the GOME-2 instrument.
Solar irradiances are taken from the high resolution Kitt peak solar spectrum [18], which has resolu-
tion 0.01 nm. To make synthetic GOME-2 radiance measurements for a full retrieval, the RT model
is used to calculate sun-normalized backscatter radiance at the resolution equal to or finer than that
of the instrument. For full accuracy, RT calculations can be done at the resolution of the reference
solar spectrum. For the GOME-2 instrument simulation, the spectral pixel size is 0.12 nm, with slit
function resolution (FWHM) 0.24 nm [98]. A flat-topped slit function of the form f (x) � 2�x4

was
used for the convolution. Radiance measurement errors were constructed using a combination of
photon shot and electronic noise:

∆I(λ) = a

r
I(λ)

a
+b2; (5.25)

where I is the radiance in absolute units, and parameters a and b are taken from GOME-2 specifi-
cations [98]. For wavelengths λ < 307 nm, a = 10000, b = 2000; for wavelengths λ > 307 nm, a =
80000, b = 3000. For the error analysis and sensitivity studies, it is sufficient to do RT simulations at
the pixel resolution. For the solar spectrum, irradiance errors were modeled according to:

∆Isun(λ) = asunIsun(λ)+bsun; (5.26)

with asun = 0:0014 and bsun = 107. Since we are dealing with sun-normalized radiance values R =
I=Isun, we require the relative error:

∆R(λ)
R(λ)

=

s�
∆I(λ)
I(λ)

�2

+

�
∆Isun(λ)
Isun(λ)

�2

; (5.27)

Additive random-number noise can be added to (5.25), but this has not been considered in the present
work. We now summarize the LIDORT output.

5.3.2. The LIDORT radiative transfer model

Molecular scattering tends to dominate in the UV spectral windows typically used for ozone profile
retrieval; it is essential to use a radiative transfer model with a full multiple scattering capability.
LIDORT uses the discrete-ordinate method to solve the RTE; derivatives are found by explicit an-
alytical differentiation of the radiance with respect to atmospheric parameters of interest. LIDORT
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is a generic scattering formalism; it requires optical depth and single scatter albedos defined for a
multilayer atmosphere, and for the derivatives, the variation of these inputs with respect to atmo-
spheric parameters for which weighting functions are required. Once the radiance solution has been
established, no further numerical computations are required for the weighting functions; the results
are analytically exact, and hence all weighting functions will be computed to the same degree of
accuracy as that specified for the radiance. A single call to LIDORT will return the radiance and all
necessary weighting functions for an iteration step in the retrieval; the model is ideally suited to the
kind of non-linear atmospheric retrieval algorithm exemplified in the present work. Details for the
general N-stream formalism in the pseudo-spherical treatment may be found in Spurr [85].

Aside from the large advantages in efficiency to be gained by using analytical Jacobian determina-
tion, the speed of the RT code is also greatly increased by using a low number of discrete ordinate
streams, though there is naturally some loss of accuracy. 4 and 6 stream versions of LIDORT are
described in detail in [77]; the retrieval algorithm uses the 4-stream model. All RT simulations
are done using the Nakajima-Tanaka single scatter correction procedure [37] in conjunction with
the delta-M scaling [36, 34]; contributions to the TOA upwelling radiance from atmospheric single
scatter are computed with exact forms of the phase functions. The weighting functions are similarly
corrected [77].

In [77], the accuracy of the low-stream versions was investigated for a wide range of scenarios and
viewing geometries appropriate to nadir-viewing satellite instruments measuring in the UV. These
results can be used to establish one source of forward model error in the evaluation of ozone profile
precision. Another source of forward model error derives from the neglect of polarization in the
radiative transfer simulations. Polarized light scatter requires a Stokes-vector treatment of the RTE.
It is known that in the absence of a polarization the use of a scalar (radiance-only) RT model can lead
to significant sources of error [99, 48]. We used a doubling-adding vector RT model [41], running the
code in vector and scalar modes to establish the magnitude of this source of error.

The state vector of ozone profile elements consists of a number of partial column densities (see
below for details). Weighting functions with respect to these column densities may be established
directly from the LIDORT 4-stream output; this is explained in detail in [77]. We make one further
observation regarding the efficient computation of Jacobian matrices. In [77], it was noted that weight-
ing functions with respect to column densities for trace gas g are proportional to the corresponding
cross-sections σg. Thus, once partial column Jacobians have been established for O3, column density
weighting functions for any other species g can be determined quickly by simply scaling the O3

values with the cross-section ratio (σg=σozone). In our problem in the UV, NO2 and SO2 are the other
significant absorbers. We note also that for any trace species, the weighting function with respect to
the total atmospheric column is the sum of the partial column weighting functions. Further, when
working with fixed pressure levels in a hydrostatic atmosphere, the temperature dependence of the
radiation field is expressed only through the derivative of trace gas cross sections with respect to
temperature ϑ. One can again use the O3 partial column derivatives, but this time scaling them by
factor [∂σozone=∂ϑ]=σozone. Thus for our problem, four different sets of weighting functions (O3, NO2

and SO2 partial columns, plus temperature) can be obtained from one template. This is an important
saving of computational effort, and it allows model parameter errors for NO2, SO2 and temperature
profiles to be incorporated in the O3 state vector error covariance with little extra effort.
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5.3.3. Layer subdivisions in the RT model

In general the forward model layering is finer than that defined by the fixed pressure grid used
for the retrieval state vector. Subdivision of the atmosphere is driven by the requirement that optical
properties do not vary too much with optical depth within any layer. Neglecting the small variation
in the scattering phase function due to changing aerosol properties, it is mainly the variation of the
single scattering albedo with optical depth that determines the degree of homogeneity in a layer. For
the wavelength range employed in the ozone profile retrieval, absorption is dominated by ozone and
scattering by air molecules. In this case, the single scattering albedo is approximately proportional to
the inverse of the ozone VMR. The sub-layering is then determined by the VMR profile V (P); for an
atmosphere in hydrostatic equilibrium, we have:

V (P) =
106

gmair

dC(P)
dP

; (5.28)

with V in [ppm] units, mair the molecular mass of air and g the gravitational acceleration (assumed
constant over the layer). The sublayering works as follows: starting with a basic template of pressure
levels, we first use (5.28) to find the relative VMR variation across the basic layers. We assume that
C(P) can be approximated by a cubic spline in P, thus producing a smooth derivative with respect to
P and hence a smooth VMR. The VMR variation is compared to a threshold value of 20%; when this
is exceeded, a number of sublayers are introduced for which the VMR variations are below 20%. The
sublevels are placed at equal log-pressure intervals and the C values are computed using the cubic
spline. The 20% threshold was found to give an error of < 0:5% for the radiance at TOA compared to
calculations using even finer sublayering. For wavelengths in the UV below 300 nm, the atmosphere
is optically thick, and the sublayering procedure is only followed for levels above a threshold value
set by a cut-off value of 10 for the ozone absorption optical thickness.

5.4. Ozone profile retrieval: algorithm set-up

5.4.1. Reference atmosphere

We now define a reference atmospheric state used in the results of Sections 5.5 and 5.6. RT model
simulations are done with the LIDORT model for a complete wavelength range of 270-340 nm. Ozone
cross sections are from a standard data set [70]. Wavelength dependent Rayleigh cross-sections and
depolarization ratios are taken from an empirical source [18, 80]. Ozone reference states are taken
from climatology; we use the monthly zonal-mean global ozone data set of Fortuin and Kelder [17]
(January data, mid-latitude). NO2 profiles were interpolated from USA standard atmosphere val-
ues [69]; cross sections were extracted from the MODTRAN data set. Temperature profiles were
taken from an ECMWF climatology [100]. The aerosol model is taken from the LOWTRAN data
set [71], with rural boundary layer aerosol loading and extinction (visibility 25 km), and background
tropospheric, stratospheric and upper atmosphere loading and optical properties. The surface albedo
(Lambertian) was taken to be 0.5 for standard cases, with values 0.05 and 0.8 for low and high albedo
scenarios respectively.

For a complete retrieval, the “true” ozone profile used to derive the synthetic measurement data
is constructed in part from a Sonde profile (1000 to 10 mbar, 67 levels) and in part by interpolating
data from climatology (0.1 to 10 mbar, 20 levels). January climatological data at latitude 53�N was
selected to match the sonde profile. The true temperature profile was also taken from the same Sonde
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data (up to 10 mbar); values at higher levels were interpolated from ECMWF data appropriate to the
season and latitude.

The reference state is the starting point for the retrieval, and we take it also to be the a priori. For
the error assessment and sensitivity issues addressed in this study, we carry out a single inversion step
by linearizing the forward model about the reference state vector. All runs were done for a GOME
“East pixel”, with the line-of-sight zenith angle ranging from 10.6� to 30.9� at the satellite, and a
relative azimuth angle of 3� at the satellite. The solar zenith angle (SZA) was allowed to vary from
25� to 85�. Integration of RT model output over the line-of-sight zenith angle range was done by
two-point quadrature.

5.4.2. Construction of state, a priori and model parameter vectors

The ozone profile elements of the state vector will be the 34 layer column densities ∆Ci =Ci�Ci�1

between 35 fixed pressure levels Pi; i = 1; : : : ;35. We use as a template the 19 pressure levels from
Fortuin and Kelder: surface pressure, 700, 500, 300, 200, 150, 100, 70, 50, 30, 20, 10, 7, 5, 2, 1,
0.5, 0.3, 0.1 mbar. These levels appear to capture the global and inter-annual variations in the ozone
profile. The remaining levels are chosen by examining the relative variation in O3 VMR across the
18 basic layers, and introducing sublayers whenever this variation exceeds a 20% threshold; this is
discussed above in section 5.3.3. The function Ci is defined as the ozone column density from level
Pi to the top of the atmosphere (TOA), which is set at 0.1 mbar.

The spacing of pressure levels should be finer than the vertical resolution likely to be achieved in
the retrieval; this ensures that the averaging kernels can be sufficiently well characterized to allow the
vertical resolution to be established. This is analogous to the application of the Nyquist criterion to
sampling issues in spectral measurements. In the context of the vertical sampling and resolution in
the ozone profile retrieval, we can argue that the sampling (which we are free to choose) has to be a
factor of 2-3 higher than the resolution (which is fixed by the measurement and the forward model).
The ozone profile retrieval resolution from nadir UV/VIS TOA measurements appears to be such that
six to eight independent ozone profile parameters can be derived from the data (depending on the
signal-to-noise, atmospheric scenario and choice of window) [15]. The 34-layer sampling adopted
here therefore obeys the Nyquist criterion. The vertical sampling was also chosen to satisfy the layer
subdivision criterion discussed above in Section 5.3.3; for all wavelengths, RT simulations with the
34-layer sampling were found to be within 0:5% of values obtained using finer vertical layering.

There are a number of other parameters that could be included in the state vector in addition to the
vertical ozone column densities. These auxiliary parameters describe other aspects of the atmosphere
or the instrument that also influence the earthshine measurement but which are not known to a high
enough accuracy. An important example is the surface reflectance; it is sufficient for our application
to approximate this quantity with a Lambertian albedo. Weighting functions with respect to surface
albedo may be determined directly from the 4-stream LIDORT model. Other auxiliary parameters that
might be included in the state vector are the total NO2 and SO2 column densities, the total aerosol
optical depth, and a number characterizing the magnitude of the Ring effect. Aside from the Ring
parameter which is discussed separately below in Section 5.4.3, atmospheric variables other than O3

can of course be treated as model parameter errors. The temperature profile will always be treated as
a model parameter vector.

The presence of clouds is treated in the "independent-pixel approximation". Separate radiances
Icloud and Iclear are calculated for the fully cloudy and cloud-free scenarios, and a weighted average
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taken with respect to the cloud fractional cover fc:

Itotal = fcIcloud +(1� fc)Iclear: (5.29)

A similar relation holds for the weighting functions. For the cloud-filled simulation, the cloud is
treated as a Lambertian reflector (albedo 0.8) at cloud-top pressure. The two computations differ only
in the bottom layer and the surface albedo; it is not necessary to repeat some of the calculations for
layers above the cloud top. Forward model errors for cloud-filled scenarios have been investigated
in [77]. In the present paper, we look first at the effect of forward model errors on O3 profile precisions
for partially cloud covered scenes. We also determine the effect of fractional cover fc treated as a
model parameter error source; weighting functions for Itotal with respect to fc may be established
easily from (5.29). The effects of cloud-top pressure and cloud albedo parameter errors may also be
investigated since the corresponding weighting functions are available from the linearized forward
model. In the operational retrieval, effective values of cloud-top pressure and fractional cloud-cover
will be retrieved from the FRESCO cloud fitting algorithm [88].

The a priori state vector elements~xa for the O3 profile are taken from the Fortuin and Kelder cli-
matology. Diagonal elements (variances) of the a priori error covariance matrix Sa are also specified
in the climatology. Off-diagonal elements of this matrix are determined using a fixed correlation
function which is Gaussian in log-pressure and has width ∆ logP = 0:2. A priori state vector elements
for auxiliary retrieval parameters are taken from climatology (NO2 column and aerosol optical depth)
or from a suitable data set (albedo) or set to an initial value (Ring). Variances for these auxiliary
elements are set by hand; the parameters are loosely constrained. It is assumed that auxiliary a priori
elements are uncorrelated with each other and also not correlated with a priori O3 profile elements.

5.4.3. A note on the Ring effect

Although we will not deal with the Ring effect in the error assessments presented in this paper,
it is necessary to allow for it in an operational context. The Ring effect is attributed to (inelastic)
rotational Raman scattering (RRS) by air (N2 and O2) molecules [101, 19, 20]; energy exchange
results in a wavelength shift of � 0-2 nm in the UV for scattered photons. The Ring effect induces a
small-amplitude distortion that follows the Fraunhofer lines in the atmospheric reflectance spectrum.
This structure hampers the profile retrieval if it is not removed or treated in the forward model.

The structure is commonly dealt with by using a pre-calculated "Ring spectrum", defined as the
logarithm of the ratio of radiances with and without RRS [18]. An amplitude for a selected Ring
spectrum is included in the state vector. This is analogous to the treatment of absorbing constituents
in the Beer-Lambert approximation used in DOAS-type algorithms [23] - the Ring spectrum has the
signature of a “pseudo-absorber”. Since RRS also affects atmospheric absorption structures, notably
those of ozone, a second Ring correction amplitude has to be used. This second correction scales with
the ozone column for the longer wavelengths. Weighting functions for the Ring amplitudes follow in
a straightforward fashion from their definitions.

A more accurate characterization of the Ring spectrum can be obtained by suitable forward model
calculations [20, 19]. A look-up table of Ring spectra (classified by solar zenith angle and surface
albedo) can then be used in the ozone profile retrieval algorithm. However it is possible to dispense
with Ring parameter fitting altogether by performing the necessary RRS calculations “on-the-fly”,
that is, as an integral part of the retrieval algorithm RT model. We intend to investigate this issue in a
future paper.
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5.5. Sensitivity analysis with DFS and Information Content

5.5.1. Temperature sensitivity for GOME-2 using DFS

Ozone absorption cross sections in the Huggins bands are strongly dependent on temperature. Since
GOME and GOME-2 are able to resolve these absorption features, then knowledge of the temperature
profile should enable the retrieval to generate additional ozone information in the lower atmosphere.
To investigate the temperature sensitivity of the retrieval, we construct a series of tropospheric temper-
ature profiles. The tropopause temperature is fixed at 220.7 K; this is value assigned for the 7th partial
column (85 - 100 mbar). We allow the temperature in the lowest layer to vary from 220.7 K to 300 K;
each tropospheric profile is linearly interpolated between the surface value and 220.7 K. For a surface
temperature of 220.7 K, the profile is flat. This exercise is repeated for a number of solar zenith angles
(30�, 50�, 70� and 80�) and for two albedos (0.05 and 0.75). The upper wavelength limit was taken to
be 340 nm. In each case, the linearization is subject to an SVD analysis, and the corresponding DFS
and Information Content diagnostics are computed from the formulae in Section 5.2.3.

Figure 5.1: DFS (upper panels) and Information Content (lower panels) for two values of albedo
(0.05 and 0.75) and four solar zenith angles as indicated. Upper wavelength limit 340 nm, GOME
East pixel view.

The results for the two albedo cases are shown in Figure 5.1. DFS values range between 7.6
and 8.8. It is the slope of these graphs that indicates the temperature sensitivity. To see this, we
compute DFS for all temperature regimes, but keeping ozone cross sections in the first 7 layers at
values for temperature 220.7 K. This results in the two flat lines in the top panels of Figure 5.1 (only
the DFS values for SZA 50� are shown). It is remarkable that the increase in DFS is due solely
to the temperature sensitivity of tropospheric ozone absorption. In all cases, increasing DFS values
show that the retrieval precision (that is, the measurement contribution to the profile accuracy) is
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improved with warmer tropospheric temperatures. Information Content is only weakly sensitive to
the tropospheric temperature profile.

All values of DFS and Information Content are higher for the high albedo cases (right panels of
Figure 5.1). The general continuum level in the measurement spectrum will be larger for higher
albedos, thus increasing the overall signal to noise level and hence allowing more information to be
gleaned from the measurements. The Information Content also shows a steady decrease with rising
SZA. However the situation with DFS is different; measurements with the two higher SZA values
generate slightly higher DFS, especially at lower temperatures.

DFS gradients are noticeably steeper for the high albedo case, and the slopes are also steeper for
lower SZA values. These scenario-related effects are in general governed by the level of measurement
noise. To investigate this further, we plot some of these slopes for a range of albedos (0.05 to 0.8) and
SZAs (25� to 85�) in Figure 5.2. Here we look at increases (linear gradients) in DFS and Information
Content going from a cold surface (240 K) to a warm one at 300 K. From left to right in the lower
panel, contours of the Information Content are evenly spaced, with the 240/300 slopes increasing
slowly over the range 2-3% as the albedo increases. The DFS gradients show more structure, espe-
cially for higher solar zenith angles. There is a marked drop in sensitivity beyond SZA 80�, especially
for low albedos; at glancing solar incidence, surface reflected contributions fall off rapidly.

Figure 5.2: DFS (upper panel) and Information Content (lower panel) temperature sensitivity for
albedos from 0.05 to 0.8, and for a range of solar zenith angles from 25� to 85�. Contour plots for the
increase in diagnostics between a cold surface at 240 K and a warm surface at 300 K.
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5.5.2. Temperature sensitivity and averaging kernels

For a given scenario, the total Information Content in the retrieval does not change greatly, but the
information itself is redistributed: for higher tropospheric temperatures, more of it comes from the
measurements, less from the a priori. Further, this increase in measurement information is manifested
in increased precision in the tropospheric profile elements; stratospheric elements show little change
in precision. To see this, we look at some averaging kernels (rows of matrix A), plotted in Figure 5.3
for SZA 30� and albedo 0.8, and for two surface temperatures: 220.7 K (the cold flat profile) and 300
K (warm troposphere). Kernels are shown for the lowest four levels of the retrieval and for a number
of stratospheric levels. Kernels in the middle stratosphere have well-defined peaks; the full width half
maximum (FWHM) is about 6 mbar, indicating a profile resolution of about 6.5 km in the 10 mbar
region.

Figure 5.3: Selected averaging kernels for a cold troposphere with surface temperature 220.7 (left)
and for a warm troposphere with the surface at 300 K (right). Upper wavelength limit 340 nm, solar
zenith angle 30�, albedo 0.8.

With the flat temperature profile in the troposphere, the tropospheric averaging kernels have poorly
defined or non-existent peaks and it is difficult to assign any FWHM values to get an idea of the
vertical resolution (left panel in Figure 5.3). Another feature apparent in both graphs is that some
of the kernels peak at pressures not equal to the retrieval values. There is also some mixing of tro-
pospheric information in higher levels, mainly in the lower stratosphere (presence of several positive
and negative lobes). Averaging kernels are more sharply defined in the troposphere for the warm
temperature profile (right panel); the most pronounced improvement is actually for the lowest partial
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column of ozone. The spread of these kernels may be defined mathematically using the Backus and
Gilbert function [102]:

s(z) = 12

R
(z� z0)2A2(z;z0)dz0�R

A2(z;z0)dz0
	2 (5.30)

where the variable z is the logarithm of the pressure. Values of this spread function are shown in
Table 5.1 for 22 averaging kernels, including the ones plotted in Figure 5.3 (these are denoted by
asterisks). The layer average pressures are computed from the mid-point of the layer boundary log-
pressures.

Although the results in Table 5.1 are suggestive, they should be used with caution. The variability
in spread for the lowest 8 kernels is due in the main to the influence of a priori errors. The a priori
ozone profile is tightly constrained (low standard deviation) at 500-700 mbar and again at 100-200
mbar. These variations are a reflection of our prior knowledge of the ozone (which comes from
climatology). Despite the improvement in precision for a surface temperature of 300 K, it is not
really possible to assign a meaningful figure to the vertical resolution of all profile elements below
about 70 mbar. For profile element 4 at �245 mbar, the kernel is well defined and has an FWHM of
about 350 mbar (which translates to a vertical resolution of �8.5 km).

Element Average Pressure Spread Function Spread Function
(mbar) Tsur f = 240 K Tsur f = 300 K

1 � 836.660 57.483 2.700
2 � 591.608 34.223 15.323
3 � 387.298 3.936 7.975
4 � 244.949 4.903 1.807
5 173.205 13.092 8.622
6 136.931 24.289 14.704
7 111.803 28.755 13.087
8 92.195 21.939 7.984
9 77.136 15.355 8.754
10 59.161 8.638 9.386
11 46.368 5.599 5.709
12 39.887 4.818 4.220
13 � 33.317 3.585 3.105
14 24.495 1.856 1.732
15 � 17.321 1.162 1.182
16 12.247 1.006 1.045
17 � 8.367 1.266 1.297
18 5.916 1.449 1.513
19 � 4.472 3.915 4.275
20 3.464 2.841 2.783
21 � 2.449 2.268 2.432
22 1.871 4.761 4.894

Table 5.1: Spread values for the averaging kernel matrices displayed in part in Figure 5.3.

If one chooses a loosely constrained a priori distribution with consistently high standard deviation
in the troposphere, then one can make a better attempt at defining tropospheric vertical resolution.
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However, too little regularization generates an optimal estimate that is heavily influenced by measure-
ment errors, although the fit itself is good. In this case, the regularized state vector norm χ2

s in (5.6)
swamps the residual noise norm χ2

n. With over-strict regularization, the reverse happens: the fit is
poor, and χ2

n dominates over χ2
s . One can find an optimum level of regularization by examining the

so called L-curve, which is a logarithmic plot of γχ2
s against χ2

n for various values of γ. The optimum
choice of γ corresponds to the “corner” of the L-curve, and this can be determined as the point of
maximum curvature [103]. The L-curve analysis is a standard feature of classical Phillips-Tikhonov
regularization schemes, but it can easily be extended to the present situation.

Figure 5.4: DFS values for OMI-type instrument with pixel resolution 0.32 nm and response function
resolutions � 0:45 nm (nominal) and factors of 2, 3, 5 and 10 times broader than the nominal value.
Upper wavelength limit 340 nm, solar zenith angle 30�, albedo 0.5.

5.5.3. Temperature sensitivity for other instruments

The GOME, GOME-2, SCIAMACHY and OMI instruments are all capable of resolving the tem-
perature structure of the ozone Huggins bands absorptions. GOME and SCIAMACHY have similar
resolution to that of GOME-2. However the OMI instrument has pixel size 0.32 nm for its two UV
channels, and response function resolutions of 0.42 and 0.45 nm for the two channels. Of interest
here is the possible loss of temperature sensitivity with coarser spectral resolution. We repeat our
calculations of DFS for various tropospheric temperature regimes for a number of slit functions,
starting with the nominal OMI instrument parameters given above, and artificially increasing the slit
FWHM by factors of 2, 3, 5 and 10. [Noise statistics for GOME-2 were used]. The results are shown
in Figure 5.4. The general DFS level is much lower because of the relative paucity of observations
(�40% that of GOME-2). However the increase in DFS is (for the nominal slit width) easily compa-
rable to that for GOME 2 (about 8% from the value at 220.7 K to that at 300 K). It is only when the
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resolution becomes quite coarse that the DFS sensitivity is really poor; Huggins bands structures get
smeared out.

5.5.4. Sensitivity to upper wavelength limit

In this case, we examine the improvement in accuracy of the profile for a number of different
fitting windows. We vary the upper wavelength limit λupper from 300 to 340 nm, taking an albedo
of 0.5 and SZA (30�). In the top panel of Figure 5.5, DFS is plotted against λupper for three surface
temperatures (240 K, 275 K and 300 K). At 300 nm for the window limit, almost no light reaches
the surface, and the three DFS curves converge - there is negligible tropospheric effect. The DFS
rises steadily as more measurements are included, but there is little difference between the three
curves up to about 313 nm. The temperature sensitivity becomes apparent with the inclusion of
measurements in the approximate range 313-322 nm, but the use of measurements beyond 322 nm
does not increase the DFS significantly. Another way of looking at this is to plot the decrease in
DFS and Information Content for various limits λupper compared with the values of these diagnostics
computed for a window with upper limit 340 nm (lower panels in Figure 5.5). Again we notice the
lack of temperature sensitivity in the total information. The flatness in DFS for λupper beyond 322 nm
is apparent for all temperatures considered.

These results are important for optimizing the window setting. It is clear that there is only a small
improvement in DFS to be gained from the inclusion of measurements in the upper reaches of the
ozone Huggins bands. Below in Section 5.6.2 we will see that the largest contribution to forward
model error comes from precisely this region of the UV spectrum, and that 4-stream forward model
errors for a full window out to 340 nm are unacceptably high. In the light of this remark, there is
a strong case for leaving out measurements beyond a certain threshold λthresh. We could define this
limit by using the 2% DFS contour in Figure 5.5 (center), in which case λthresh is about 323.1 nm.
The choice of upper window limit has strong consequences for operational design and performance;
a great deal of time can be saved by reducing the window to exclude measurements beyond λthresh.

5.6. Error assessment

5.6.1. Example of contribution functions

The contribution functions are central to the error assessment, and we display these in Figure 5.6,
for a linearization about the reference state, with SZA 30� and an albedo of 0.5. These functions rep-
resent the sensitivity of the profile to the relative error on the measurement. There is little sensitivity
at higher levels to the tropospheric measurements. For levels above 50 mbar (right panels), the first
positive peak travels progressively towards higher wavelengths; this is the BUV effect (wavelength-
dependent peak sensitivity in the strongly-absorbing Hartley bands is a measure of the effective
scattering depth).

5.6.2. Forward model errors

Errors due to 4/6 stream discrete ordinate assumptions

For our reference atmosphere, we run the LIDORT RT model with 20 streams to get an accurate
simulation of radiance, then repeat the calculations with 4 and 6 streams used for the discrete ordinate



175 Sensitivity and error assessment of operational ozone profile..

Figure 5.5: DFS and Information Content according to upper wavelength limit. (top) DFS for 3
surface temperatures; (middle) % decrease in DFS from its value computed for λupper = 340 nm, for
various temperatures; (bottom) % decrease in Information Content from value for λupper = 340 nm.
Solar zenith angle 30�, albedo 0.5.
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Figure 5.6: Normalized contribution functions in the range 270 to 340 nm, for linearization about a
reference ozone profile with 34 elements. (Left panels) 5 tropospheric values at pressures indicated;
(right panels) 5 stratospheric values as indicated.
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approximation. The forward model errors are then ∆F4 = R20�R4 and ∆F6 = R20�R6, where RN

is the sun-normalized radiance for the N-stream approximation. We considered 2 solar zenith angles
(30� and 80�) and 2 albedos (0.05 and 0.80) for the East pixel view used in this work. Since the single
scatter correction in the model is independent of the stream number, the values of ∆F may be obtained
by computing only the multiple scatter LIDORT radiances (this is however only true if the Delta-M
scaling is switched off). Strictly speaking, one should use contribution functions calculated with the
6-stream model when assessing the 6/20 stream forward model error.

Figure 5.7: Effect of forward model errors on O3 profile accuracy. (Upper panels) Four scenarios
(SZA 30�, 80�, albedo 0.05, 0.8) with upper wavelength limit 320 nm; (Lower panels) the same four
scenarios, this time with with upper wavelength limit 340 nm.

Figure 5.7 shows the relative changes ∆xi=xi in ozone profile elements obtained by multiplying ∆F
by the 4-stream contribution functions according to (5.12). We show two sets of results, one for an
upper wavelength limit of 320 nm, the second set for λupper = 340 nm. Apart from the high SZA, low
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albedo case (where very little light penetrates to the troposphere), these ∆F4-induced changes are all
below 2.5% for the smaller window λupper = 320 nm. The situation is very different for the larger
window. With the rising importance of aerosol scattering at higher wavelengths, and the increasing
penetration of light to the denser tropospheric layers, the low-stream approximations become increas-
ingly inaccurate for wavelengths beyond 320 nm. Values of ∆xi=xi for the 4 stream forward model
errors are above 5% even in the stratosphere (10-100 mbar), and the tropospheric levels are clearly
unacceptable. In the longer-wavelength case, a large part of the profile error comes from poor forward
model estimation beyond 320 nm. In all cases for λupper = 340 nm, there is a marked improvement
when the 6-stream errors are used. These results indicate that the use of a 4-stream model will generate
unacceptable levels of forward model error for larger windows.

Errors due to neglect of polarization

First we need to estimate the magnitude of this error before calculating its effect on profile accuracy.
We look at output from an independent vector RT model with polarization [41]. We choose the same
four scenarios used in the previous example. The error may be found simply by running the vector
model in full Stokes vector mode (with polarization effects) and repeating the calculation in scalar-
only mode (no polarization), then subtracting the results. Relative errors for wavelengths out to 340
nm are plotted in Figure 5.8. For SZA 30�, the error is not worse than 2%; this is comparable to
the maximum value of the 4-stream error in the previous section. However, errors for the high solar
zenith angle are much greater.

Figure 5.8: Forward model errors due to the neglect of polarization. Four scenarios (SZA 30�, 80�,
albedo 0.05, 0.8) with wavelength limit 340 nm;

We now examine the effect of this error on profile accuracy. As before, the 4-stream forward model
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is linearized about the reference state~x0, and we pre-multiply the above forward model errors by the
contribution functions according to (5.12). The relative changes to ozone profile elements are shown
in Figure 5.9 for the above four scenarios, and for upper wavelength limits of 320 nm (top panels) and
340 nm (lower panels). Results for SZA 30� are similar in magnitude to those in Figure 5.7 (4-stream)
for both upper wavelength limits. Given the larger values of forward model errors in Figure 5.8 for
SZA 85�, it is not surprising that the corresponding ozone profile relative errors are also greater for
the low albedo case; the accuracy seems little affected when the albedo is high. It is clear that relative
changes to tropospheric profile elements are once again unacceptably large when wavelength out to
340 nm are included in the inversion. The strong dependence of profile accuracy on solar zenith angle
for this source of forward model error was also noted by [15]. They quoted a range of �1% to �5%
on profile error, but did not provide any details by which a comparison could be made with the results
in Figure 5.9.

Figure 5.9: Effect on O3 profile accuracy due to neglect of polarization in the forward model. East
pixel, 4 scenarios as indicated. (upper panels) Errors on profile elements for upper wavelength limit
320 nm; (lower panels) the same for upper wavelength limit 340 nm.

5.6.3. Polarization errors in the measurement

We first remark on the polarization correction applied to GOME and GOME-2 radiance data. The
regular radiance channels (pixel resolution �0.12 nm in the UV) observe polarized light with com-
ponents parallel and perpendicular to the plane of the instrument slit. GOME and GOME-2 have a
number of auxiliary broad-band detectors called Polarization Measurement Devices (PMDs). The 3
GOME PMDs are sensitive only to light polarized parallel to the instrument slit; the PMDs cover the
ranges 300-400, 400-600 and 600-800 nm. Regular GOME signals from the array read-out detectors
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must be integrated over these ranges and combined with the PMD measurements to derive three
independent values Pi (i = 1;2;3) of the degree of linear polarization P. For wavelengths less than
�300 nm, P is treated as a constant value P4 depending only on geometrical variables; it is evaluated
from radiative transfer considerations in a single scatter Rayleigh atmosphere. These 4 values are then
interpolated over wavelength to derive a polarization spectrum which is used to correct the radiance.
This procedure is termed the polarization correction algorithm (PCA) [104]. If the radiance channel
polarization sensitivity is η(λ) (ratio of the spectral pixel’s responses to light polarized perpendicular
and parallel to the principal plane), then the relative radiance error derived from regular detector
signals is [81]:

εP(λ) =
η(λ)�1
η(λ)+1

[Ptrue(λ)�PPCA(λ)] ; (5.31)

where Ptrue(λ) is the real degree of linear polarization, and PPCA(λ) is the value from the PCA. With
a limited set of available points for its determination, PPCA(λ) for GOME may be considerably in
error from the true value. Efforts have been made to improve the PCA for GOME by incorporating
information from a vector RT model and by using an improved interpolation scheme [21, 22].

Figure 5.10: Relative radiance error on GOME measurements due to incorrect polarization correction,
for East pixel with SZA 66.42�, Azimuth 70� and albedo 0.95.

To simulate the effect of this polarization correction, one can use high resolution calculations from
the DAK (KNMI doubling-adding) vector RT model [105, 106, 107] and convolve them using the
polarization responses and slit functions for the array detectors and PMD devices in GOME. The PCA
is then applied to the simulated GOME data, and the corrected intensity compared with the full RT
calculation [21, 22]. The dotted line in Figure 5.10 displays the error εP arising from an application
of the PCA algorithm as currently used in the GOME operational data processor. Ptrue(λ) has its
strongest dependence on wavelength over the region 300-310 nm and the PCA error grows rapidly for
measurements in this range. The jump at �313 nm corresponds to the change from GOME band 1b
to GOME band 2; the two 1024-pixel array detectors have different polarization sensitivity response
curves η(λ). Results using the improved PCA algorithm are shown also in Figure 5.10; the general
level of error is now below 2%. GOME-2 is much better equipped to deal with polarization correction;
it has some 15 PMDs, several of which will cover relatively narrow bands in the critical 300-325 nm
region. The GOME-2 PMDs are also serial read-out detectors, and will be capable of measuring light
in two polarization directions [6].
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pressure Improved PCA Original PCA
836.660 111.089 -94.502
591.608 19.221 -42.753
387.298 20.614 179.527
244.949 39.160 377.976
173.205 24.364 123.409
136.931 -0.713 -1.123
111.803 -14.604 -34.264
92.195 -20.025 -41.624
77.136 -21.512 -40.507
59.161 -16.895 -28.585
46.368 -11.327 -15.224

Table 5.2: Optimal estimate differences (%) induced by polarization correction algorithm errors on
GOME measurements for the scenario in Figure 5.10. Values are shown for the improved and original
PCAs.

For the profile algorithm which requires measurements straddling both the GOME 1b and 2 bands,
the original PCA-induced error is a major source of uncertainty. We treat the error spectra in Fig-
ure 5.10 as the relative differences between measured and calculated radiances. We again linearize
the forward model~y0 = F(~x0) about the reference state~x0, and for the difference radiance vector, we
write ∆~y = F(~x0)εP. We compute the optimal estimate difference ∆~xOE for this linear inversion step.
Table 5.2 compares values of these differences for the first 11 partial columns, for the original and
improved PCA applications (results for higher columns do not differ greatly and are generally below
7%). Errors induced by the original PCA are clearly out of bounds. Even though the improved PCA
reduces the measurement error by a factor of 5, there is still a substantial uncertainty in the profile
estimate (second column); the lowest column still has an unacceptable error. This is admittedly an ex-
treme case (snow surface), but it serves to illustrate the importance of accurate radiometric calibration
on GOME measurements if they are to be used in the ozone profile retrieval problem.

We look at some results for the improved PCA in more detail in Figure 5.11. On the left are relative
changes in the mid-stratospheric profile elements (down to 20 mbar), for a number of choices of upper
wavelength limit in the inversion. Corresponding results for the tropospheric and lower stratospheric
elements (20-1000 mbar) are shown at right. The upper wavelength limits were 330, 325, 323 and
320 nm. In general the stratospheric ozone profile accuracy is not greatly affected (4% level or less),
though the inclusion of longer wavelength measurements tends to move the error levels around (λupper

= 330 nm). However, lower stratospheric and tropospheric elements show wide variations in error, and
it is only with the inclusion of measurements with some surface penetration that the overall accuracy
in the lowest column reaches acceptable levels. Even though from Figure 5.10 the PCA error is at
the 1% level or less beyond 313 nm, the presence of larger PCA errors between 300 and 313 nm is
sufficient to maintain a profile uncertainty at the 20% level for the lower atmosphere. In general we
can say that mid-stratospheric profile elements are not badly affected, but there are grave concerns
that the accuracy of lower stratospheric and tropospheric profile elements is seriously compromised
by this source of measurement error. We remark further on this in Section 5.7.
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Figure 5.11: Effect on O3 profile accuracy due to polarization correction algorithm applied to the
measurements. Error spectrum from Figure 5.10. (Left) Errors on upper atmosphere profile elements
for 4 upper wavelength limits as indicated; (right) corresponding errors on tropospheric and lower
stratospheric elements (20-1000 mbar).
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5.6.4. Model parameter errors

Temperature profile errors

We carry out a single inversion step, linearizing about the reference state defined earlier. The solar
zenith angle is 30�, with albedo 0.5; this is a scenario with high temperature sensitivity. We assume
first that errors on the temperature profile~b are uncorrelated and the same at all levels. If the change
in temperature is ∆T at all levels, then the error covariance Sb (assuming Gaussian statistics) is simply
(∆T)2 times the identity matrix. We choose 4 values for ∆T: 1 K, 2 K, 5 K and 10 K. From (5.14),
we compute the corresponding solution error covariance matrix SB using contribution functions and
temperature profile weighting functions Kb. Expected values of the changes in ozone partial columns
are simply the square roots of the diagonal elements of SB.

Figure 5.12: Effect of temperature profile model parameter errors on O3 profile accuracy, for a sce-
nario with SZA 30� and albedo 0.5. (Upper panels) Systematic and expected relative changes in ozone
amounts for upper wavelength 320 nm; (lower panels) results for λupper = 340 nm.

These are plotted for the above four values of ∆T in the two right-hand panels of Figure 5.12
corresponding to the two choices of upper wavelength limit (λupper = 320 nm and 340 nm). The
systematic change from an assumed true O3 profile is plotted for ∆T = 2 K in the left panels; this
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is computed from (5.13). [Values for other temperatures scale linearly]. A further test was done by
assuming an error ∆T = 10 K for the lowest six partial columns in the troposphere and assuming no
errors for the remaining (stratospheric) columns; results for this case are also plotted in Figure 5.12.

There are several interesting associations. First, we note that results for the larger window are not a
great deal worse that those for λupper = 320 nm. Secondly, it is clear that the stratospheric part of the
retrieval is not so sensitive to temperature uncertainty; for ∆T = 2 K, both systematic and expected
errors are at the 1% level or below for columns above 100 mbar. Thirdly, that accurate knowledge of
stratospheric temperatures considerably reduces the expected ozone profile uncertainty in the lower
atmosphere; this we deduce from the ∆~x profile determined using temperature uncertainty in just the
lowest 6 tropospheric columns. Fourthly, the magnitudes of the ∆~x components mirror the swings in
the a priori covariance values in the troposphere.

We can probe deeper into this source of uncertainty by analyzing the posterior error covariance
matrix SP. In the presence of model parameter errors, this is the sum of three terms SM, SS and
SB corresponding to the retrieval noise (measurement error), the smoothing error and the model pa-
rameter error respectively. In operational retrieval algorithms for ozone profiles, it is customary to
output standard deviations for the optimal estimate error (square roots of the diagonal entries of SP).
Although this is useful for interpretation, a more sophisticated analysis of the error covariance may
be carried out by looking at error patterns that emerge from an eigenvalue analysis of SP [1]. Here
we restrict ourselves to an analysis of the variance contributions to this matrix.

Figure 5.13: Variance contributions to the posterior ozone profile covariance matrix for two temper-
ature scenarios. (Left) Total posterior variances and a priori variances; (center) variance breakdown
for the cold tropospheric regime; (right) variance breakdown for the warm troposphere. SZA 30� and
albedo 0.5. λupper = 340 nm.

In Figure 5.13 we examine the variance contributions for the contributing matrices SM, SS and
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SB. Two temperature regimes are used for the troposphere. In the left panel, we plot total posterior
variances for the optimal estimate for a warm (Tsur f ace = 300 K) and cold (Tsur f ace = 240 K) tropo-
spheric regimes; the a priori variance is shown for reference. In the center and right panels of this
figure, the variance percentages are shown for the two tropospheric regimes. An error level of 20 K
in the temperature was assumed to hold for the whole atmosphere. Results for the cold troposphere
show that total variance is dominated by the a priori term above 1 mbar and below about 50 mbar;
there is little information from the measurements in these regions. The warm troposphere variance
distributions clearly show the information gain in the troposphere from the measurement. The large
bulge in the low troposphere still follows the a priori. Of especial interest in this last panel are
the magnitudes of the model parameter variances vari(SB); they are nearly equal to the measurement
variances at 100 mbar and generally comparable at other points in the troposphere. It is not acceptable
when the gain in measurement precision of the ozone profile elements is counter-balanced by equally
large temperature-induced uncertainties.

The temperature should be known to a certain level of accuracy in order to obtain precision esti-
mates that exceed temperature-induced standard deviations by an acceptable degree. We may investi-
gate this by examining the ratios of two standard deviations:

Q(1)
i =

s
var(SB)i

var(SM)i
and Q(2)

i =

s
var(SB)i

var(SP)i
: (5.32)

Loosely speaking, Q(1) compares temperature-induced errors with measurement precision, and Q(2)

compares temperature-induced errors with the accuracy of the retrieval. We take a warm troposphere
with surface temperature 300 K, with a fitting window extending to 340 nm; calculations were done
for the East pixel geometry and albedo values used in Figure 5.13. We consider four regimes of
temperature uncertainty: (R1) T-errors for the whole atmosphere (34 elements); (R2) T-errors only in
the stratosphere (profile elements 10 to 25); (R3) T-errors only in the troposphere (profile values 1 to
9); (R4) T-errors only in the planetary boundary layer (profile element 1). For a given level of error ∆T
we compute the maximum values of Q(1) and Q(2) for the atmosphere. Since we are using diagonal
matrices for Sb, we can determine the magnitude of ∆T that will give rise to a certain threshold value
for max(Q(1)) and max(Q(2)).

Table 5.3 summarizes these temperature accuracy levels for various maximum values of the ratios
threshold values (5.32) from 1% to 50%. The results were obtained with a priori for the reference
state. The table indicates the importance of having accurate stratospheric temperatures (column 2).
Assuming no errors in the stratosphere, then the tropospheric temperature error thresholds are less
severe (column 3). The first column is indicative of the whole atmosphere. For example, taking a
10% level for temperature-induced errors compared with the total profile accuracy, then we require
temperature errors ∆T to be less than 3.6 K everywhere in the atmosphere. In Table 5.4 the values
correspond to a priori with covariance Sa scaled up by a factor of 5. (This loosens the regularization
but preserves the correlation statistics of the prior knowledge). In the second table, the accuracy levels
are slightly tighter; with an improved fit, there is less scope for temperature uncertainty if the overall
level of profile accuracy is to be maintained. Thus the whole-atmosphere results require temperature
to be known to better that 3.1 K if the temperature-induced error is to be less than 10% of the accuracy
as a whole.

These are stringent requirements on the temperature accuracy; they become more stringent as the
a priori constraint is relaxed. From this table we conclude that it is of the utmost importance that
the temperature profile be known accurately in this sort of retrieval. We have noted already that
temperature weighting functions in a hydrostatic atmosphere are obtained by simple scaling of the
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Temperature error thresholds (K), prior covariance Sa

Regime 1 Regime 2 Regime 3 Regime 4
max(Q(1))
1% 0.197 0.253 0.398 0.990
2% 0.394 0.505 0.795 1.981
5% 0.985 1.264 1.989 4.952
10% 1.971 2.527 3.977 9.903
20% 3.942 5.054 7.954 19.806
50% 9.855 12.635 19.886 49.516
max(Q(2))
1% 0.358 0.439 0.719 1.567
2% 0.716 0.878 1.439 3.134
5% 1.791 2.199 3.601 7.843
10% 3.595 4.414 7.229 15.745
20% 7.302 8.964 14.682 31.977
50% 20.652 25.355 41.528 90.446

Table 5.3: Temperature thresholds ∆T (in K) required to achieve levels of precision and accuracy
indicated in the left columns. Four regimes are: (1) T-errors in the whole atmosphere; (2) T-errors in
stratosphere; (3) T errors in troposphere; (4) T-errors only for the bottom layer.

Temperature error thresholds (K), prior covariance 5.Sa

Regime 1 Regime 2 Regime 3 Regime 4
1% 0.190 0.252 0.391 1.099
2% 0.381 0.504 0.782 2.197
5% 0.952 1.259 1.954 5.493
10% 1.903 2.518 3.909 10.987
20% 3.806 5.036 7.817 21.974
50% 9.516 12.590 19.544 54.934
max(Q(2))
1% 0.309 0.386 0.628 1.978
2% 0.618 0.773 1.257 3.956
5% 1.546 1.935 3.146 9.900
10% 3.105 3.884 6.316 19.874
20% 6.305 7.889 12.829 40.364
50% 17.834 22.313 36.285 114.168

Table 5.4: Same as Table 5.3, but with a priori covariance 5Sa.
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ozone profile Jacobians; thus the computation of SB requires little extra effort. This requires the input
temperature data supplied to the retrieval to be specified with error statistics Sb. If this is the case,
then it is possible to include the temperature-induced standard deviations

p
var(SB)i in the product

diagnostics, along with the usual accuracy estimate
p

var(SP)i; the additional computational effort is
minimal.

Aerosol optical thickness profile

The analysis is similar to that for the temperature. We confine our attention to the smaller window
ending at 320 nm, using a solar zenith angle of 30� and an albedo of 0.5. We assume that errors
on the aerosol optical thickness profile τaer are uncorrelated and the same at all levels where they
exist. We take values of ∆τaer=τaer at 2%, 5%, 10%, 25% and 50%. Again from (5.14), we compute
the corresponding solution error covariance matrix, this time using aerosol optical depth weighting
functions for Kb. From (5.13) we get the systematic error. Expected values of the changes in ozone
partial columns are plotted in Figure 5.14 (top right); the systematic relative profile differences for
a 10% aerosol optical depth change are plotted in Figure 5.14 (top left). More tests were done with
aerosol errors assumed only for the lowest 6 and lowest 2 levels of the troposphere (lower panels in
Figure 5.14). Stratospheric O3 profiles are not sensitive to aerosol uncertainties. All the results in
Figure 5.14 show that the lowest partial column element is highly sensitive to uncertainties in the
aerosol optical thickness of the planetary boundary layer. The expected change in this column grows
very rapidly for aerosol optical thickness uncertainties above 20%. Without prior knowledge of the
lower atmosphere aerosol, this is a major source of error for the lower tropospheric column.

The analysis of standard deviation used above for characterizing temperature-induced error con-
tributions may be extended to the case of aerosols. We again compare ratios of standard deviations
for various levels of aerosol optical thickness error. We use the four regimes as noted in the previous
section. The calculations are similar, only we now tabulate the level of aerosol optical thickness
uncertainty ∆τaer as a percentage (instead of the magnitude ∆T of the temperature error); thus in
Table 5.5 the aerosol optical thickness at all levels should be known to better than 1.5% if the model
parameter standard deviation is to be within 5% of the accuracy at all levels in the atmosphere. Look-
ing at stratospheric aerosol errors alone (column 2), there is much more latitude, with a profile error
of 18% producing less than 2% standard deviation when compared to the overall result.

As with the temperature, these requirements are very stringent, and apart from the stratospheric
part, it is impossible in practice to achieve these levels of aerosol accuracy. In any case there is a
major difficulty in establishing statistics for the assumed profile of aerosol optical thickness values.
With the smooth spectral signature of aerosols in the UV, the backscatter spectrum is not likely to
yield more than one piece of information on aerosols. We can either fit the total atmospheric aerosol
optical thickness (AOT) or the thickness of the planetary boundary layer (PBL) aerosol. The scattering
contribution of this layer of aerosol is hard to distinguish from the reflected surface term, and it may
be better to dispense with assumptions about PBL aerosol and subsume it in the albedo retrieval (the
albedo is then regarded as an effective quantity). Thus, though it is possible to include this source of
model parameter error in the solution covariance, we recommend including the tropospheric aerosol
column as an additional parameter in the retrieval.
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Figure 5.14: Effect of aerosol profile model parameter errors on O3 profile accuracy, for a scenario
with SZA 30� and albedo 0.5, upper wavelength 320 nm. (Upper panels) Systematic and expected
relative changes in ozone amounts due to relative layer aerosol optical thickness changes at all levels
as indicated; (lower panels) results for aerosol uncertainties in the lower atmosphere only.
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Aerosol optical thickness error thresholds (%)
Regime 1 Regime 2 Regime 3 Regime 4

max(Q(1))
1% 0.192 4.663 0.315 0.242
2% 0.384 9.326 0.630 0.484
5% 0.960 23.315 1.575 1.211
10% 1.920 46.629 3.151 2.422
20% 3.841 93.258 6.301 4.845
50% 9.601 233.146 15.753 12.112
max(Q(2))
1% 0.301 9.455 0.494 0.380
2% 0.602 18.913 0.987 0.759
5% 1.506 47.333 2.471 1.900
10% 3.023 95.024 4.961 3.814
20% 6.141 192.995 10.075 7.746
50% 17.368 545.873 28.496 21.910

Table 5.5: Aerosol optical thickness error thresholds (in %) required to achieve levels of precision
and accuracy indicated in the left columns. Regimes 1-4 as for Table 5.3. A priori covariance Sa from
climatology.

5.7. Concluding remarks

In this paper we have investigated a number of sensitivity and error issues for the GOME-2 ozone
profile retrieval algorithm. The DFS and Information Content diagnostics were used to investigate
temperature sensitivity and limits on the fitting window. The DFS shows a significant (�10%) in-
crease from cold to warm tropospheric temperature regimes, with a corresponding increase in the
precision of the ozone profile elements in the troposphere. The Information Content is less sensitive
to temperature. DFS increase is still significant even for an instrument such as OMI with coarser
resolution. Most of the temperature-sensitive DFS increase is related to measurements in the range
316-322 nm; DFS remains rather flat for upper wavelength limits beyond 322 nm.

Systematic errors on the profile elements due to the forward model assumption of 4 discrete ordi-
nate streams are restricted to the 2% level provided the upper window limit is restricted to 320 nm.
Inclusion of measurements out to 340 nm worsens these errors to an unacceptable degree. Forward
model errors due to the neglect of polarization in the RT model are larger, and the corresponding
profile error is at the 10% level for a window limit of 320 nm, though there appear to be scenarios
for which this limit is exceeded. Measurement calibration errors due to the correction of polarization
are shown to be a major source of uncertainty for profile elements in the lower stratosphere and
troposphere. We remark in passing that other sources of measurement calibration error have been
identified for ozone profile retrieval [95], but the polarization sensitivity is still paramount.

Model parameter errors from temperature profile uncertainty were also investigated. Fairly strin-
gent limits should be set on the temperature profile error in order to maintain an acceptable level
of ozone profile accuracy (∆T �3.5 K at the 10% level, for example). This source of error can be
included in the covariance matrix of the optimal estimate with little extra effort. Model parameter
errors due to aerosol optical thickness profile uncertainty generate large sources of error in the ozone
profile, most notably for tropospheric aerosol uncertainty. Limits on aerosol profile uncertainty are
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too stringent to be useful in an overall assessment of ozone profile accuracy; it is better to regard
the tropospheric aerosol optical depth as an additional parameter to be included in the retrieval state
vector.

There are a number of consequences for the operational implementation of this algorithm. Many
of the results in this work have shown that it is inadvisable to include measurements beyond a certain
limit of about 320-322 nm; beyond this limit, increased ozone profile precision is very limited (flat
DFS) and any advantage to be gained is easily offset by increasingly large forward model errors as
one goes out to 340 nm. We therefore recommend that the upper wavelength limit be set somewhere
in the 319-322 nm range. A more precise value will be found by further examination of the forward
model polarization error which is the critical factor. We further recommend that the input tempera-
ture profiles provided to the operational algorithm should be known to a high level of accuracy, and
that these profiles should be accompanied by some error statistics in order that this source of error
may be identified in the ozone profile solution covariance. Our recommendation is to use ECMWF
temperature profiles.

Much work still needs to be done to properly characterize error and sensitivity for this algorithm.
The most serious concern is the polarization-induced error in the profile, both from the forward model
point of view, and from the measurement error induced by the polarization correction algorithm. In
the next paper we will introduce a version of this retrieval that contains an explicit linearized vector
RT model. This is the only way to eliminate the forward model error implicit in a scalar radiative
transfer treatment. In addition, such a model would permit the retrieval to be done with a combined
set of regular GOME-2 serial readout spectral measurements and coincident PMD measurements,
thus avoiding calibration errors due to the correction of polarization.
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6.1. Summary of the thesis

The main focus of this study has been on the development of a discrete ordinate radiative transfer
model that will simultaneously generate radiances and weighting function fields as required in itera-
tive multi-parameter atmospheric retrieval problems. The main application in this study has been the
use of this forward model for the investigation and optimization of prototype algorithms for ozone
profile retrieval from nadir viewing remote sensing instruments.

Although there are many accurate radiative transfer models that compute radiances in a multilayer
multiply scattering atmosphere, less attention has been paid to the computation of weighting functions
(derivatives of the radiance field with respect to atmospheric parameters to be considered in a retrieval
algorithm). Most such retrieval algorithms are iterative, based on a sequence of linear inversion steps.
Weighting functions represent the linearization of the forward model used in the retrieval process. In
the Introduction (Chapter 1) and in the introductory sections to the main thesis chapters, weighting
functions are shown to be of crucial importance for such algorithms. Traditional methods to compute
radiance derivatives have relied on time-consuming finite difference estimates; this technique requires
repeated calls to radiative transfer models that are only able to return radiance output. The need for
a radiative transfer forward model that will make simultaneous and accurate computations of both
radiances and weighting functions provides the main motivation behind this study.

The discrete ordinate method for solving radiative transfer equations was first developed by Chan-
drasekhar in the 1940s. The method is based on a Fourier cosine series decomposition for the azimuth
dependence of the radiance field, together with the use of Gauss-Legendre quadratures (the epony-
mous “discrete ordinates”) to evaluate multiple scatter integrals over the polar direction. The discrete
ordinate method is a scattering formalism that requires only as input the specification of (i) a vertical
optical depth grid, (ii) layer single scattering albedos and (iii) phase function expansion moments; the
user will determine these quantities from detailed physical knowledge of the atmospheric constituent
distributions particular to the application for which the discrete ordinate RT model is being used. The
DISORT radiance model based on this method is the most widely used numerical package available
to the atmospheric physics community. Given the motivation behind this study, the aim was first to
extend discrete ordinate theory to develop an analytic formulation of weighting functions, and sec-
ondly to develop a general purpose discrete ordinate radiative transfer package with the simultaneous
capability for radiance and weighting function output.

The first development is reported in Chapter 2. The investigation here is restricted to the upwelling
radiation field at the top of an atmosphere treated as a plane-parallel medium. The discrete ordinate
radiance solution is broken down into its component parts: (1) homogeneous solutions to the RTE in
the absence of source terms, determined by means of eigensolution methods; (2) particular solutions
due to the presence of external light sources (solar beam, thermal emission); (3) boundary conditions
at the top and bottom of the atmosphere and continuity at intermediate layer boundaries; and (4) the
post-processing source function integration step for the derivation of TOA output in arbitrary polar
directions away from the quadrature streams. The analysis is carried out for both the thermal emission
source and for the solar beam source in a plane-parallel medium. A general bidirectional reflecting
surface boundary condition is used.

A perturbation analysis is used to carry out the linearization for weighting functions. The start-
ing points for this analysis are perturbations of the input optical properties that control the discrete
ordinate solution (here, the single scattering albedos and the layer optical thickness values); these
quantities establish the perturbation rules. First-order perturbation analysis is then carried out for each
of the above four stages in the RTE problem; it is shown how perturbations of the input properties
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translate explicitly into perturbations for the homogeneous and particular discrete ordinate solutions
and subsequently to perturbations of the integration constants that result from the boundary con-
ditions. Weighting functions at arbitrary polar direction are determined by perturbing the source
function integration used in the post-processing function. Albedo weighting functions are also derived
by perturbing albedo-dependent contributions to the discrete ordinate field. A hypothetical 5-layer at-
mosphere is constructed in order to carry out the first validation of weighting functions. This is done
using a finite difference estimate with a very small finite difference step. A further example is taken
from a more realistic terrestrial atmosphere in the UV and visible; weighting functions for ozone
volume mixing ratios and temperatures are calculated for a number of wavelengths in the Hartley-
Huggins absorption bands. Output is compared with results from another model. It is also shown that
a perturbation analysis can be carried out on the original full-space quadrature solution developed by
Chandrasekhar for the multiple scattering discrete ordinate solution in a given layer. LIDORT Version
1.1 was the outcome of this work.

The development of weighting functions is carried several steps further in Chapter 3. The emphasis
is changed from perturbation analysis to a direct differentiation of the various components of the
discrete ordinate solution; the approaches are equivalent owing to the linearity of the discrete ordinate
differential equations. We introduce the linearization operator for the discrete ordinate solution. Start-
ing points for the linearization are now the derivatives of the input optical properties (single scattering
albedo and optical depth) with respect to the atmospheric parameters for which weighting functions
are desired. The linearization proceeds by chain-rule differentiation of each part of the discrete or-
dinate solution, starting with homogeneous solutions, working through the particular solutions, the
direct linearization of the boundary value problem (which determines derivatives of the integration
constants), and finally the derivatives of the post-processing step. As with the perturbation analysis
adopted in the first paper, the process is entirely analytic, requiring no additional numerical steps. In
particular it is not necessary to re-solve the boundary conditions for each weighting function; since
the original boundary value problem is linear, the matrix inversion involved in its solution need not
be repeated. It is simply a matter of back-substitution for each derivative of the integration constants.

The main extension in Chapter 3 is to the pseudo-spherical approximation, wherein the direct solar
beam attenuation is calculated for a curved atmosphere, with all scattering processes treated for a
plane-parallel medium. This approximation is good for solar zenith angles up to 90� provided the
line-of-sight is not too far from the vertical. The pseudo-spherical treatment is vitally important for
the high solar zenith angles encountered in many remote sensing scenarios. A number of parameter-
izations for the solar beam attenuation are discussed, and their accuracies compared. The simplest
such parameterization is the average secant approximation whereby slant path attenuations are exact
at the layer boundaries. Since the solar beam attenuation no longer has the simple exp [�τ=µ0] form
used for the plane-parallel case, care must be taken to ensure that cross-layer derivatives are properly
accounted for when dealing with the particular solution linearization. It is shown that the particular
solution for a pseudo-spherical beam source can be solved by two independent methods; (1) with the
original formulation due to Chandrasekhar and (2) with the powerful Green’s function method which
expresses the particular solution as a linear combination of the homogeneous solutions.

The complete theory is generalized to develop output at arbitrary optical depth and viewing ge-
ometry, for both upwelling and downwelling radiation. This extends the range of the model to
ground-based atmospheric sounding applications as well as remote sensing from space. A further cor-
rection is developed to deal with sphericity effects present in wide-angle off-nadir viewing pertinent to
remote sensing instruments such as GOME-2 and OMI (swaths 1920 km and 2600 km respectively).
This involves a source function integration along the line of sight; transmittances in the viewing and
solar paths are treated in a curved atmosphere so that a precise calculation is made of the single scatter
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contributions to the upwelling radiance. Multiple scatter contributions are calculated using model
output appropriate to local viewing geometries along the line-of-sight view through the atmosphere.
A number of examples of radiance and weighting functions are presented for both satellite upwelling
and bottom of the atmosphere downwelling simulations. Comparisons are made with plane-parallel
output in order to highlight the importance of the pseudo-spherical treatment. An example is given
of the limitations of the average secant parameterization to the solar beam attenuation; errors of up
to 3.5% are possible for a high-atmosphere optically thick layer at glancing solar incidence. We
look also at the effect of neglecting refraction. We look at the effect of the line-of-sight sphericity
correction for wide angle viewing; it is shown that radiance errors can be up to 5% for GOME-2 at
the swath limits, and up to 8% for OMI. This work culminated in the release of LIDORT Version 2.1.

In Chapter 4 we look at the application of LIDORT to an important retrieval issue for nadir viewing
backscatter instruments such as GOME, GOME-2, SCIAMACHY and OMI, namely the retrieval of
ozone profiles. We focus in particular on the use of fast and accurate forward models for use in the
retrieval. With its ability to calculate simultaneous radiances and analytically-accurate Jacobians,
LIDORT is well suited to this problem, and there is a trade-off between forward model accuracy
and performance. We are interested in particular in fast 4-stream and 6-stream models; with a low
number of streams, analytic results for the homogeneous and particular solutions and their parameter
derivatives were obtained without recourse to numerical methods. Additional weighting functions
with respect to parameters (such as aerosol asymmetry parameter) that govern the angular distribution
of scattering are also noted; the controlling inputs for these quantities are the derivatives of the input
layer phase function moments. It is shown that the entire discrete ordinate solution is explicitly
differentiable.

Single scatter corrections may be made by considering an accurate form of the phase function, and
the single scatter correction in a delta-M scaled atmosphere is implemented, both for radiances (as
originally developed by Nakajima and Tanaka [NT]) and in the present work, for analytic weighting
functions. With this correction, it is only necessary for the LIDORT model to calculate the multiple
scatter contributions to the TOA radiance and weighting function fields. Since the Fourier cosine
azimuth series converges more rapidly for these contributions when compared with the total radiance
computation, a further time saving becomes apparent. The sphericity correction developed in the
previous chapter is investigated further, where it is shown that the LIDORT multiple scatter contri-
butions do not need to be calculated for every viewing condition along the line-of-sight. It is only
necessary to make a small number of calls to the model for two or three geometries along this path;
straightforward interpolation of these contributions to other viewing conditions does not introduce
any significant additional error. This makes for a fast and expeditious computation for the wide angle
case. These two corrections enable the complete range of geometries for GOME-2 and OMI to be
considered.

4/20 and 6/20 stream comparisons are presented for a wide range of solar and line-of-sight viewing
conditions, in the solar and antisolar positions. A wavelength range of 299-335 nm was used for the
comparisons. A reference clear sky atmosphere with Rayleigh scattering, background aerosol absorp-
tion and scattering and ozone trace gas absorption is used. Special scenarios were constructed by in-
serting additional layers with heavy particulate loading; this includes a cloud layer in the troposphere
for a number of cloud optical thickness values, and three aerosol scenarios (desert dust, volcanic and
polluted planetary boundary layer). We look first at the NT correction for a regular pseudo-spherical
calculation (no sphericity correction). For the reference atmosphere, the NT-uncorrected 4-stream
radiance results are 1.0-1.5% different to NT-uncorrected 20-stream values; the differences vary with
viewing and solar geometry. Application of the NT single scatter correction reduces these differences
by a factor of 2, but does not remove the geometrical variation. A similar variation is apparent in the
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uncorrected 6/20 stream differences, but this vanishes with the use of the NT correction; the error is
reduced to the 0.2-0.25% level. This error level is much lower than the radiometric calibration error
of GOME-2 and related instruments. Single scatter corrections are less noticeable for scenes with
high surface albedo and low solar zenith angle; the direct beam reflectance is prominent here. For
the special atmospheric scenarios, the same sort of geometry-dependent differences are seen in the
uncorrected results. For the cloud scenes, it is shown that the largest differences occur for a cloud
of moderate optical thickness; really opaque clouds tend to behave like highly reflecting surfaces.
Error limits are tabulated for all the scenarios considered in this Chapter; the largest 6/20 stream
NT-corrected differences was 0.65% for the desert dust scenario.

Model comparisons were then computed for off-nadir wide-angle viewing scenarios using the
sphericity correction. This correction has the same sign and very similar magnitude for all streams.
It was shown that for GOME and SCIAMACHY, the 6-stream uncorrected radiances were generally
less than 2% away from the sphericity-corrected values at the maximum swath positions. However for
GOME-2, sphericity-corrected radiances were up to 5% different from uncorrected values at extreme
swath and high solar zenith angles (85�), and for the OMI instrument, the figure was 8%. Weighting
functions computed without the sphericity correction show comparable differences to the corrected
values. From the results of Chapter 4, we can establish the magnitude of the forward model error that
contributes to the ozone profile accuracy.

In Chapter 5, we investigate the effect of a number of different error sources on the accuracy of the
ozone profiles to be retrieved from a prototype operational algorithm for the GOME-2 instrument. We
look also at two sensitivity issues, namely the dependence of the retrieval information on temperature
distributions in the troposphere, and the information content as a function of the upper wavelength
limit of the fitting window. Synthetic measurements are created for a wavelength range 270 to 340
nm. We use the optimal estimation formalism for the retrieval, with a priori information to regularize
the fitting. We emphasize in particular the use of singular value decomposition methods in order to
establish the information content and the number of degrees of freedom to be obtained from the re-
trieval. The retrieval state vector comprises a number of partial columns of ozone, with one additional
parameter (surface albedo). For a full retrieval, the iteration converges when all state vector elements
change between iterations by less than a prescribed small amount, and when the change in the total
cost function (chi-square) is less than a prescribed value.

Both GOME and GOME-2 are able to resolve temperature-dependent ozone absorption features in
the Huggins bands. Knowledge of the temperature profile is expected to yield additional information
on ozone profile elements in the troposphere. We investigate this temperature sensitivity quantitatively
for a number of tropospheric temperature regimes and for various scenarios; the increase in DFS is of
the order of 10% going from a cold troposphere extreme to a warm troposphere. Absolute values of
DFS are scenario dependent and also depend on the degree of regularization; we discuss these issues
in the context of averaging kernel matrices. It is seen that there is a reasonable increase in profile
precision in the troposphere for the warm temperature regimes. We repeat the retrieval for a selection
of windows, each time extending the upper wavelength limit further into the Huggins bands. the
information content and degrees of freedom for signal (DFS) are not improved significantly for upper
limits beyond about 322 nm, irrespective of the temperature regime in the lower atmosphere.

Using the kind of forward model errors characterized in the previous chapter, we use contribution
functions to calculate the systematic error induced on the ozone profile elements. For 4/20 stream
forward model error, relative profile errors are generally at the 2% level for an upper wavelength limit
of 320 nm, but are unacceptably large for an upper limit of 340 nm. We also look at the neglect
of polarization as a source of forward model error; for an upper wavelength limit of 320 nm, corre-
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sponding relative profile errors are typically 5-10%. This figure is much larger if more measurements
are included in the inversion. Another source of error (this time on the measurements) is due to the
polarization correction algorithm (PCA) applied to GOME data as part of the level 0 to 1 calibration.
This is seen to be a serious source of error on the profiles, even with an improved PCA that reduces
the measurement error by a factor of 5 compared with the current PCA implemented operationally for
GOME. Polarization errors are the largest source of uncertainty for the profile retrieval.

We consider model parameter uncertainties in quantities such as temperature and aerosol optical
thickness which are not retrieved. Using Gaussian statistics on these error sources, we examine the
magnitude of their contributions to the expected profile accuracy and measurement precision. The
retrieval is sensitive to temperature profile uncertainty, and stringent requirements on the level of
temperature uncertainty are required to ensure that ozone profile accuracies are not affected strongly
by this source of error. Aerosol uncertainties (particularly in the troposphere) are shown to generate
unacceptable levels of ozone profile error, and it is best include aerosol optical depth as an auxiliary
parameter in the retrieval rather than treat it as a model parameter error.

6.2. Main conclusions of this work

The main conclusions from this work are:

(1) that the general pseudo-spherical discrete ordinate solution for radiance at arbitrary direction
and optical depth in a multiply-scattering stratified atmosphere is completely differentiable in an
analytic fashion; analytically accurate weighting functions can thus be derived for any atmospheric
parameter that affects optical depths, single scattering albedos and phase function Legendre moments;

(2) that on the strength of this differentiability, a generic and flexible numerical software package
(LIDORT) suitable for a wide range of atmospheric retrieval applications can be developed for the
simultaneous and accurate output of both radiances and weighting functions;

(3) that LIDORT can be used effectively as the RT component of the forward model in operational
ozone profile retrieval algorithms for nadir-viewing remote sensing backscatter instruments. In con-
junction with optimal estimation methods, one can investigate error assessment issues such as forward
model error and parameter uncertainties and their effects on the accuracy of the retrieved profile, plus
sensitivity issues such as the effect of tropospheric temperature and upper wavelength limits on the
information content of the retrieval.

6.3. Outlook and future work

6.3.1. Remote sensing applications for LIDORT

Total columns. Although DOAS-type fitting algorithms for nadir viewing remote sensing appli-
cations have yielded good results for trace gas column abundances, there are some unanswered
questions, mainly concerning the Air Mass Factor (AMF) conversion from fitted slant columns to
vertical amounts. There are problems with the basic logic behind this conversion: how is it possible
to retrieve a vertical column when one has to make an assumption about the profile in order to simulate
the AMF in order to get a vertical column? In addition, the Lambert-Beer assumption for the whole
atmosphere is only really valid for optically thin absorbers; ozone in the Huggins bands does not
really fit this category. It is well known that for optically thin species such as NO2 and HCHO,
AMF values are extremely sensitive to abundances of these gases in the planetary boundary layer.
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Improved AMF values for HCHO have been calculated, based on profile shape factors provided
by a geochemical model in conjunction with LIDORT weighting function output to give so-called
scattering weights [108].

In the long run, total column retrieval should really be viewed as an adjunct to a nadir-view profile
retrieval algorithm. The retrieved state vector of trace species partial column amounts can be simply
summed to get the overall total vertical column; total column weighting functions are the sum of
partial column values. For optically thin species with small absorption features close to instrument
noise levels, it is usually only possible to extract a single piece of information (the total column)
from a suitable fitting window of backscatter measurements; in that case, geochemical models can
provide the profile shape factors which can be adjusted as the total column amount is fitted iteratively.
For these cases (and also to a certain extent for the total ozone column) what is really required is
a stripped-down profile algorithm with full forward model calculations of radiance and weighting
functions to be used iteratively in a non-linear fitting scheme. This will at least get the physics right
and avoid the assumptions inherent to DOAS-type algorithms. Although DOAS-type retrieval is quick
(particularly if one uses look-up tables for the AMFs), computers are now so powerful that the use of
“on-the-fly” full RT simulations of radiance and weighting functions is becoming a viable proposition
from an operational viewpoint. With a stripped-down profile algorithm based on the LIDORT as the
forward model, it is intended to make a theoretical reassessment of the accuracy of trace gas column
retrievals from nadir backscatter instruments measuring in the UV and visible.

Profiles. The application of LIDORT to the ozone profile retrieval algorithm has been discussed at
length in this thesis. A further application of LIDORT is to be found in the limb backscatter algorithms
to be implemented in 2001 for the operational SCIAMACHY data processor. Studies have shown that
multiple scattering cannot be ignored in the limb backscatter modeling [38]. This argues against
onion-peeling methods; one really needs a global fitting algorithm [59]. One approach adopted for
the SOLSE/LORE instruments is to use look-up tables for multiple scatter contributions, and ignore
weighting functions for these contributions; the single scatter calculations are done accurately with
full ray tracing. The reflected diffuse light contribution from the surface is taken out by using ratios
of scan measurements [109]. For SCIAMACHY the approach will be similar: single scattering will
be modeled exactly, with multiple scatter contributions computed "on-the-fly" using 4 or 6 stream
LIDORT; in this way, a complete set of radiances and weighting functions can be generated for a
whole scan sequence making up the global measurement vector. The lower atmosphere below the
lowest usable tangent height is treated with a number of homogeneous layers characterized by a small
number of “effective” parameters, the principal among which is the assumed surface albedo. For
more details see the SCIAMACHY ATBD [110]. A similar approach to limb radiance modeling has
been adopted for the ODIN/OSIRIS instrument [111].

Aerosols. LIDORT has the capability to deliver weighting functions not only with respect to the
amount or degree of aerosol scattering and attenuation (optical depth single scattering albedo), but
also with respect to quantities such as the asymmetry parameter which affect the angular distribution
of scattering. There is in theory no limit to the aerosol retrieval applications using LIDORT; this
includes the retrieval of microphysical quantities such as size parameters and refractive indices. As
was demonstrated in Chapter 4, it is just a matter of determining the derivatives of the LIDORT input
parameters (total single scatter albedo, total phase function moments, total extinction or optical thick-
ness) with respect to parameters for which one requires weighting functions. In general though, the
retrieval of aerosol properties from GOME and related nadir-viewing instrument is limited because
of the smoothness of the spectral signatures. Some success has been reported using a non-linear
least squares algorithm with selected GOME radiances from spectral regions free of trace gas signa-
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tures [112]. The algorithm only works with clear sky scenes and is sensitive to the assumed surface
albedo; the best results have been obtained for Saharan dust outbreaks advected over the subtropical
Atlantic ocean. Aerosol Absorbing Index (AAI) algorithms provide an indication of the presence of
soot-type aerosols; however it has proved difficult to obtain any reliable estimates of physical aerosol
properties from these algorithms [113]. The situation regarding aerosol retrieval with polarized data
is much more promising - see the discussion below on vectorized LIDORT.

Coupled ocean-atmosphere studies. The retrieval of chlorophyll concentrations and related ocean
properties from space has been the focus of intense interest. Retrieval algorithms to date have used a
separate atmospheric simulation to subtract the atmospheric contribution from the surface upwelling
radiance; ocean substance amounts are then determined from the water-leaving radiances ([114]
and references therein). This procedure is a major source of error for the SeaWiFS data process-
ing [115, 116]. One solution to this problem is to use a coupled ocean-atmosphere RT model to
ensure that the physics is correctly modeled. Such a model exists [117, 34] and is currently under-
going further development [118] as a prelude to the use of fitting methods to simultaneously retrieve
ocean properties and atmospheric corrections (principally aerosol optical properties in the planetary
boundary layer). Using this model, studies on the optical remote sensing of marine constituents have
demonstrated the feasibility of this approach [119, 120]. This approach to ocean color retrieval would
be greatly facilitated with the use of a linearized RT model capable of delivering weighting function
fields for the coupled media.

6.3.2. Vectorized LIDORT model (with polarization)

Until recently, interest in using radiative transfer models with polarization in remote sensing re-
trieval applications has been limited, partly owing to the complexity and slowness of the vector
models, and also in part to the lack of suitable instrumentation. This latter situation is changing; a new
generation of space-based instruments such as POLDER [121] have the capability to generate multi-
spectral polarization data. POLDER was flown in space on ADEOS-1 (1996-1997) and a second
POLDER device will be on board ADEOS-2 scheduled for launch in 2001.

The GOME polarization correction is critical for the ozone profile retrieval algorithm. Improved
polarization correction algorithms have been developed for GOME to remedy the large uncertainty in
radiance calibration due to this source [22]. Studies have also shown that the accuracy of the GOME
polarization correction is important for retrievals based on spectral fitting in and around the O2 A
band [81]. It is well known that under certain circumstances, the assumption of a scalar model for the
backscatter computation of intensities can lead to significant differences with values computed using
a vector model [48]. The GOME-2 instrument will deliver a lot of potentially useful polarization
data, and a reassessment of the ozone profile algorithm is needed in the light of this new information.
This is not just a question of improved polarization corrections; it should be possible to combine
measured radiance data in different polarization directions and (with the help of a vectorized version
of LIDORT) extract additional information from the optimal estimation retrieval. In this way it might
be possible to achieve a higher profile resolution in the troposphere than that currently obtained from
GOME measurements.

Polarization data is particularly useful for determining the scattering and microphysical properties
of aerosols and clouds. It is well known that the degree of linear polarization for aerosol single
scattering events is highly sensitive to microphysical properties such as refractive index and size
parameter [122]. A feasibility study for the EOSP instrument has shown the value of polarization
measurements in obtaining high degrees of precision for the simultaneous retrieval of aerosol optical
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thickness and microphysical parameters (effective radius and refractive index) [82]. In recent years, a
lot of effort has been devoted to the retrieval of aerosol characteristics from space and ground-based
instruments, and some sophisticated retrieval methods have been developed (see for example [123]
and [124]). Polarization measurements from POLDER have been used to distinguish aerosol and
surface contributions to backscatter [83]. In addition, recent research using POLDER/ADEOS-1 data
has demonstrated the potential of multi-angle polarization measurements for the retrieval of aerosol
and cloud microphysical properties from space [125, 126, 127]. We note also that the UV polarization
measurements of GOME have been used to determine cloud-top presssure [128].

As is the case for scalar models, there are many ways of solving the vector RTE. Following the
pioneering work of Dave [129] and Hovenier [130], the mathematical treatment of Mueller scattering
matrices has become more sophisticated [131, 132, 133, 47, 134]. Plane-parallel models have been
developed using the F-N method [135], a generalized spherical harmonics method [136], the doubling
and adding technique [41] and also with discrete ordinate theory [72, 73, 84]. High levels of accuracy
are now attainable with these codes [84, 137]. A recent treatment [84] has incorporated the powerful
Green’s function technique for particular integral determination in vector discrete ordinate theory. A
multi-dimensional discrete ordinate code has also been investigated for polarized light [138]. Other
solution methods include matrix-operator techniques [139], successive iteration of the auxiliary radia-
tive transfer equation [140, 12], a full spherical treatment based on Gauss-Seidel iteration [141, 142],
a backward Monte-Carlo approach [38, 143], and the use of Fourier transform techniques [144].

There are no vector models with a linearization capacity for weighting function calculations; any
such weighting functions must be estimated by finite differencing. Most retrieval studies using vector
RT models have used phase-space diagrams and look-up tables; iterative techniques often use simplex
methods [82]. There is a clear need to develop a vector radiative transfer linearization in order to
harness the power and flexibility of fitting techniques such as optimal estimation; this will greatly
increase the range and performance of polarization data retrievals. This work is already under way for
the LIDORT model. The vector LIDORT model will use the discrete ordinate methodology developed
in [84]; linearization will follow the same steps used for the scalar model and described at length in
this thesis. The vector model will be generic enough to include output at arbitrary optical depth
and viewing geometry, and will include a pseudo-spherical treatment. This last point is particularly
important, since many current models are limited to plane-parallel media (one exception is the Dave-
Mateer code [140, 12], but this is technically only valid for a Rayleigh atmosphere). The single scatter
corrections (sphericity and Nakajima-Tanaka) developed in Chapter 4 for the scalar LIDORT model
may be incorporated in the vector version without difficulty.





Chapter 7

Appendices
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7.1. Remote-sensing instruments considered in this study

GOME

GOME (Global Ozone Monitoring Experiment) is a nadir-viewing spectrometer on board the ERS-2
satellite launched in April 1995 [5]. The orbit is 100-minute sun-synchronous, with a local equator
crossing time of 10.30h. The instrument has some 3584 spectral channels from 240 to 790 nm, with
a moderate resolution of 0.2 to 0.4 nm, and a typical footprint size of 320x40 km for a 1.5 second
read-out; the maximum swath is 960 km. The detectors are silicon array linear read-out devices.
GOME also has a Pt-Ne-Cr lamp for on-board wavelength calibration, and also a diffuser plate for
the determination of solar irradiance from space. Besides the four serial read-out detectors, GOME
has 3 broad-band (resolution > 100 nm) Polarization Measurement Devices (PMDs) measuring light
in a direction parallel to the slit. The PMDs’ main purpose is to generate a polarization correction for
the level 1 (calibrated and geolocated) radiance spectra [5].

GOME is an atmospheric chemistry instrument, its mission to detect and measure trace gas distribu-
tions in the Earth’s atmosphere, with particular emphasis on ozone [5, 7]. GOME has been operating
successfully for six years. The main operational Level 2 product is the global distribution of total
vertical column amounts of ozone; the retrieval algorithm uses the DOAS technique. PMDs are read
out 16 times more frequently than the silicon detectors; the sub-pixel resolution allows them to be
used in thresholding and RGB filtering algorithms to assign fractional cloud cover for the GOME
footprints [89]. Cloud cover and effective cloud-top pressure have also been retrieved from fitting
algorithms based on measurements in and around the O2 A band [87, 88]. The detection of soot-type
absorbing aerosols has also been carried out with GOME UV data [93], using an “Absorbing Aerosol
Index” algorithm similar to that developed for the TOMS instrument [90].

As noted in the thesis, a number of studies have been carried out on the retrieval of ozone profiles
from GOME measurements in Channel 1b (282-305 nm) and Channel 2a (305-350 nm). It is now
possible to generate ozone profiles on a global scale, and a fast delivery near-real-time algorithm has
been developed [95]. Most of these retrievals are based on optimal estimation; many of them rely on
a two-stage algorithm. The first step retrieves a stratospheric profile from the large-footprint long-
readout Channel 1b data using the BUV method developed for the SBUV instruments [10, 11]; the
resulting profile is then used as a priori for retrievals at higher spatial resolution using normal-readout
channel 2 data. This process is critically dependent on the radiometric accuracy of GOME Level 1
data. This is currently much the largest source of error in the retrieval, with major uncertainties due
to the implementation of the polarization correction and also to increasingly large degradation effects
in solar irradiance measurements taken by means of the on-board diffuser plate.

GOME-2

GOME-2 is an improved version of the GOME instrument; the mission objectives are similar. The first
GOME-2 is scheduled for launch in 2005/2006 on board the first METOP satellite [6]; two further
missions with this instrument are planned. Like GOME, GOME-2 has four silicon array detectors
covering a similar spectral range with comparable resolution. The instrument has a diffuser plate and
in-flight wavelength calibration lamp; there is an additional internal white-light lamp to ensure that the
instrument’s radiometric calibration accuracy is stable. GOME-2 is much better equipped than GOME
to deal with polarization; there are 15 PMDs. These have much narrower band-widths than the GOME
devices; several of them are concentrated in the 300-340 nm range where the earthshine polarization
signature shows strong non-linear dependence on wavelength. The GOME-2 PMDs are also serial
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read-out detectors; they will take measurements in two (orthogonal) polarization directions. This
should greatly improve the polarization correction for Level 1 radiance data; the expected radiometric
calibration error is 1.5-2%. GOME-2 will operate with a wide swath of 1920 km (twice the GOME
value), corresponding to a maximum scan angle of � 55:7� at the satellite.

A large part of the geophysical level 1 to level 2 data processing will be done at KNMI under the
Ozone-SAF program. This includes the DOAS-style retrieval of total column amounts, the installation
of an aerosol absorbing index algorithm and the inclusion of a dedicated cloud retrieval algorithm.
Of central importance in the SAF program is the development of an ozone profile algorithm with
a fast delivery capability. This algorithm will use the LIDORT model developed in this thesis, and
the research carried out in Chapters 4 and 5 of this thesis was done for the GOME-2 ozone profile
algorithm studies as part of the Ozone-SAF program.

OMI

OMI (Ozone Monitoring Instrument) is a joint Dutch-Finnish contribution to NASA’s EOS-CHEM
satellite scheduled for launch in 2003 [8]. It has a spectral range limited to UV and visible (270-
500 nm), with resolution �0.45 nm in the two UV channels and �0.63 nm in the visible. Unlike
the other three instruments mentioned above, OMI has CCD-array readout technology, with a “push-
broom” mode of operation to provide a greatly enhanced spatial resolution (pixel size 13x24 km
for wavelengths greater than 310 nm) in addition to the moderate spectral resolution. The nominal
CCD read-out time is 0.4 seconds, with a co-adding factor of 5. OMI uses a scrambler to generate
unpolarized light. It has a wide swath of some 2600 km, corresponding to a maximum scan angle
of � 57:0� at the satellite (height �705 km). Top priority will be the retrieval of ozone columns
and profiles, and OMI will also be able to generate additional trace species distributions and aerosol
products. As with GOME-2, sphericity effects will be important in OMI forward model simulations
for the wide-angle off-nadir views, and the studies in chapters 4 and 5 apply to both instruments. 4-
stream LIDORT will be used in the forward model component of the ozone profile retrieval algorithm
for OMI currently under development at KNMI.

SCIAMACHY

The SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY)
is an atmospheric chemistry instrument to be launched on board the ENVISAT platform in October
2001 [76]. SCIAMACHY has 8 array detectors, with a spectral range from 240 to 2380 nm. The
first 4 detectors cover the range 240-790 nm with similar resolution to that for GOME; indeed, the
SCIAMACHY concept actually pre-dates GOME and the latter was envisioned as a smaller ver-
sion of SCIAMACHY. The two most important infra-red detectors cover ranges 1940-2040 nm and
2265-2380 nm with moderately high spectral resolution (1024 pixels). The nadir swath is 1000 km,
encompassing four forward scans of 1 second read-out time (GOME with a 960 km swath has three
forward scans each with 1.5 second read-out). SCIAMACHY also has an along-track limb-viewing
mode which (under normal operating conditions) will alternate with the nadir scan, the object being to
replicate air mass coverage for the two scan modes. There is a second (azimuthal) scan mirror which
will allow limb viewing to follow the earth’s curvature as the elevation angle changes. SCIAMACHY
will be able to take solar occultation measurements for short periods prior to the diffuser-plate solar
calibration measurements. SCIAMACHY has an on-board white light lamp for radiometric calibra-
tion. There are six broad-band PMDs covering the SCIAMACHY spectral range and designed to
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correct for the degree of linear polarization; a seventh PMD will provide an additional measurement
for the direction of polarization (azimuth scanning only).

In its nadir-view mode in the UV/visible out to 790 nm, SCIAMACHY has similar mission objectives
to GOME; in the infra-red, the target species are CO, N2O and CH4 (Channel 8), CO2 and H2O
(channels 6-8), and there will be additional opportunities for aerosol and cloud retrieval. As with
GOME, DOAS-type algorithms will be used for the total column retrievals of trace species absorbing
in the UV/visible; related fitting algorithms have been developed for the NIR and IR species [145,
146]. The top priority for limb retrieval will be O3 profiles in the UV; profiles for other trace species
will also be considered (NO2, possibly BrO, and CO, N2O and CH4 in the infrared, the latter three
being signal-to-noise limited). Limb backscatter measurements in channel 7 (CO2 absorption around
2000 nm) and in channel 4 (O2 A band) will also be used to retrieve temperature and pressure profiles
in the stratosphere. The LIDORT model will be used to simulate multiple-scatter contributions to
simulated limb backscatter measurements [110].

7.2. Notes on the numerical model LIDORT Version 2.3

In this appendix we present some notes on the LIDORT software package. This is intended to give a
flavor of the scope and structure of the model. More details can be found in the User’s Guide, which
can be downloaded from the SAO ftp site (ftp cfa-ftp.harvard.edu, cd pub/lidort/v2/). LIDORT is
written in FORTRAN 77; all the code uses double precision arithmetic. Version 2.3 of the LIDORT
package is separated into two parts: an “intensity-only” model (Version 2.3S) and an “extended”
model with the additional weighting function capability (Version 2.3E). Apart from the three highest-
level modules, all code in the “S” package is a subset of that used in the “E” package; the extended
versions have been constructed around the core of the “S” packages. Version 2.3E has the following
features:

1. Pseudo-spherical (average secant) and plane-parallel treatments for an external beam source;

2. Particular integral solution using the classical technique or the Green’s function method;

3. Bi-directional reflectance at the lower boundary, including surface thermal emission (isotropic);

4. Intensity output at arbitrary optical depth, for any set of azimuth and elevation angles, for
upwelling and/or downwelling directions;

5. Additional options for mean value output (flux, mean intensity) at arbitrary optical depth;

6. Additional options for layer-integrated multiple scatter source terms and their weighting func-
tions;

7. Weighting function output at arbitrary optical depth, for any set of azimuth and elevation angles,
for upwelling and/or downwelling directions;

8. Weighting functions with respect to layer atmospheric variables (including phase function quan-
tities) defined by the user, weighting functions for albedo and surface emission.

9. The Nakajima-Tanaka single scatter correction module for both intensities and weighting func-
tions, to be used in conjunction with the delta-M scaling method.
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LIDORT package organization

The LIDORT package is organized in six directories orgainzed as follows:

Version V2.3S Version V2.3E

src_v23s_master src_v23e_master
src_standard src_standard
include_s include_s

include_e
src_extension

The two “include” directories contain all the structure files: these contain variable or parameter
declarations and a storage facility (in FORTRAN 77, block COMMON statements are used for the
latter). The structures in include_s contain variables used to compute the radiance itself; only this di-
rectory is required for the intensity-only calculations in V2.3S. The second group of structures contain
variables for weighting function calculations; both groups (include_s and include_e) are required
for the weighting function applications in V2.3E. The most important structure file is LIDORT.PARS
in directory include_s. This contains constants, fixed indices and symbolic dimensioning numbers.
All source-code modules in LIDORT include this file; it must also be included in the environment
modules that call LIDORT. The dimensioning parameters control the size of the object modules and
executables. If there is a requirement for more streams or more atmospheric layers, then the respec-
tive dimensioning parameters inside LIDORT.PARS should be changed to ensure that there are no
declaration mismatches (dimensioning is checked internally by LIDORT itself). Once this is done the
entire code can be compiled and linked according to the installation instructions.

The directory src_v23e_master contains three high-level master modules which control the execu-
tion of the extended model (directory src_v23s_master is similar). The three high-level modules
are:

LIDORT_V23E_INPUT.
This module carries out an initialization file-read to assign input control variables; it is called
directly from a user-defined environment. This is an optional module; input variables can be
set directly in the user environment without the need for a file-read.

LIDORT_V23E_MASTER.
This is the main module, again called directly from a user-defined environment.

LIDORT_V23E_FOURIER.
This is the master module for calculation of a single Fourier component of the intensity and
weighting function output. It is called directly in LIDORT_V23E_MASTER as part of the
Fourier loop, but the call will not be present in the user-defined environment.

The directory src_standard contains all core code for the standard version; there are 11 modules in
all. We list them with a brief note on function. The first 8 are called in the order in which they appear
in the main and/or the Fourier master modules; the remaining 3 are auxiliary modules.

LIDORT_CHECKINPUT.f
Checks all control, model and geophysical inputs for consistency.
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LIDORT_DERIVEINPUT.f
This is an internal assignation of model variables that are not declared explicitly as part of the
file-read or in an external environment. Includes tasks like sorting the stream angles input,
sorting and assigning masks for the arbitrary optical depth output.

LIDORT_MISCSETUPS.f
Only called for Fourier component m= 0. A number of set-up operations including the Delta-M
scaling and the preparation of all optical depth exponentials that can be pre-calculated.

LIDORT_RTSOLUTION.f
Solution of the discrete ordinate radiative transfer equation. Returns the eigensolutions and sep-
aration constants from the homogeneous equation, plus the particular (beam) solution vectors
for both the classical solution technique and the Green function method.

LIDORT_BVPROBLEM.f
Set-up and solution of the boundary-value problem (constants of integration) in a multi-layer
atmosphere. This requires the L-U decomposition (matrix inversion).

LIDORT_INTENSITY.f
Computation of intensities at user-defined optical depths and stream angles; this is the post-
processing (source function integration).

LIDORT_MULTIPLIERS.f
Computation of multipliers required for the layer source terms that form the heart of the source
function integration technique.

LIDORT_CONVERGE.f
Examines convergence of Fourier series for all intensities; upgrades the intensity Fourier series.

LIDORT_WRITEMODULES.f
Four modules for writing outputs to file. Outputs are: full intensity results, Fourier components
of intensity, a scenario description and a summary of the input data.

LIDORT_AUX.f
Standard numerical routines for eigenproblem solution (ASYMTX as used in DISORT is pre-
ferred, though LAPACK software is available), and linear algebra modules (LAPACK band
storage and L-U decomposition modules). Legendre polynomial and Gauss quadrature evalua-
tion. Includes an input file-read tool.

LIDORT_INPUTREAD.f
Sequential read of all standard control and model variables in the initialization file (use op-
tional).

The directory src_extension contains all internal modules that are additionally required for the ex-
tended version; there are 9 modules in all, and they are all concerned with aspects of weighting
function generation. The first 7 are called in the order in which they appear in the main and/or
the Fourier master modules; the remaining 2 are auxiliary modules. The naming is chosen so that
the tasks executed by these additional modules are equivalent to those tasks defined for the original
(intensity-only) modules.

LIDORT_L_CHECKINPUT.f
Checks additional control and geophysical inputs for consistency.
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LIDORT_L_MISCSETUPS.f
Only called for Fourier component m = 0. A number of additional set-up operations including
the Delta-M scaling for variational inputs and the preparation of all optical depth exponentials
that can be pre-calculated.

LIDORT_L_RTSOLUTION.f
Linearization analysis of the discrete ordinate radiative transfer equation. Returns the deriva-
tives of the eigensolutions and separation constants, plus the particular (beam) solution vectors
with respect to atmospheric parameter variations.

LIDORT_L_BVSETUPS.f
Column vector set-up for the linearized boundary value problem. The actual matrix back substi-
tution which returns the linearized integration constants is done in LIDORT_V23E_FOURIER.

LIDORT_L_WFCALC.f
Computation of weighting functions at user-defined optical depths and stream angles. This is
the post-processing (source function integration) technique; the routine is modeled along the
same lines as LIDORT_INTENSITY.

LIDORT_L_MULTIPLIERS.f
Computation of derivatives of the multipliers required for the layer source terms that form the
heart of the source function integration technique.

LIDORT_L_FOURIERADD.f
Upgrades the weighting function Fourier series.

LIDORT_L_WRITEMODULES.f
Modules for writing additional (weighting function) outputs to file. Outputs are: full weight-
ing function results, Fourier components, additional scenario descriptions and a summary of
supplementary input data.

LIDORT_L_INPUTREAD.f
Read of all extended control variables in the initialization file (optional).

Schematic computational sequence

This “pseudo-code” example deals with a simple wavelength loop calculation. LIDORT names and
variables are given in upper case letters. LIDORT execution is controlled by a single module LI-
DORT_V23E_MASTER for (extended) Version 2.3E, and LIDORT_V23S_MASTER for Version
2.3S (intensity-only). Both these modules must be called from a user-defined environment, once for
each wavelength. Note that within the wavelength loop, the call to the master module is preceded by
the user-defined preparation module “user_prepare_geophys” which will assign values to geophysical
input variables in the appropriate structure files (these are called LIDORT_GEOPHYS.VARS and
LIDORT_L_GEOPHYS.VARS). In most cases the user must call “user_prepare_geophys” before the
LIDORT master module call.

The main call is preceded by a call to LIDORT_V23E_INPUT (extended version). which will read
the appropriate input from file (in this case the file is called “LIDORT.INP” and passed as a subrou-
tine argument). File-read errors will be written to an error file name “LIDORT.ERR” (also passed
as a subroutine argument). If the STATUS_INPUTREAD integer output is not equal to the index



Appendices 208

LIDORT_SUCCESS, the program should stop and the user should examine the error file. A similar
output (STATUS_INPUTCHECK) is available for the checking of the input data once the file-read
is complete (this checking is internal to LIDORT). Geophysical inputs are also checked internally.
After each call to the master module, the STATUS_CALCULATION integer output is examined, and
the program stopped if there is a failure. Any errors arising in the master modules will be traced and
written to the error file passed as an argument to the module. Note that LIDORT_V23E_INPUT is
optional - it is possible for the user to dispense with this kind of input set-up and assignment and
simply assign input variables explicitly.

main user_lidort

/* Fixed structures
include LIDORT.PARS, LIDORT_L.PARS
/* input structures
include LIDORT_CONTROL.VARS, LIDORT_GEOPHYS.VARS
include LIDORT_MODEL.VARS
include LIDORT_L_CONTROL.VARS, LIDORT_L_GEOPHYS.VARS
/* output structures
include LIDORT_RESULTS.VARS, LIDORT_L_RESULTS.VARS
/* status declarations
INTEGER STATUS_INPUTREAD, STATUS_INPUTCHECK, STATUS_CALCULATION

/* Define output in the way you want!
–> Declare output arrays

/* File-read variables in the input structures
call LIDORT_V23E_INPUT (“LIDORT.INP”,“LIDORT.ERR”,STATUS_INPUTREAD)
if (STATUS_INPUTREAD = LIDORT_SERIOUS) write message and abort

/* Start wavelength loop
for i = 1, n_user_wavelengths, begin
/* Assign variables in LIDORT_GEOPHYS.VARS and LIDORT_L_GEOPHYS.VARS
call user_prepare_geophys
/* LIDORT master call and error check
call LIDORT_V23E_MASTER
(STATUS_INPUTCHECK,STATUS_CALCULATION)
if (STATUS_INPUTCHECK=LIDORT_SERIOUS) error message and abort
if (STATUS_CALCULATION=LIDORT_SERIOUS) error message and abort
copy LIDORT output to user-defined output arrays
/* End wavelength loop
end for

/* finish
write user-defined output arrays
stop and end of program
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7.3. Abbreviations and Acronyms

The following is a list of acronyms and abbreviations used in this thesis.

AAI Absorbing Aerosol Index
ADEOS ADvanced Earth Observing System
AMF Air Mass Factor
BOA Bottom Of the Atmosphere
BUV Backscatter Ultra Violet
CCD Charge Couple Detectors
DFS Degrees of Freedom of Signal
DLR Deutsches Forschungszentrum fuer Luft und Raumfahrt
DOAS Differential Optical Absorption Spectroscopy
DISORT DIScrete Ordinate Radiative Transfer
ECMWF European Center for Medium-range Weather Forecasts
ENVISAT ENVIronmental SATellite
ERS Environmental Research Satellite
ESA European Space Agency
EOS Earth Observing System
EUMETSAT EUropean METeorological SATellite
FWHM Full Width Half Maximum
GOME Global Ozone Monitoring Experiment
KNMI Koninklijk Nederlands Meteorologisch Instituut

(Royal Netherlands Meteorological Institute)
LIDORT LInearized Discrete Ordinate Radiative Transfer
MAP Maximum A Posteriori
METOP METeorological OPeration
NASA North American Space Agency
NT Nakajima-Tanaka
OE Optimal Estimation
OMI Ozone Monitoring Instrument
OSIRIS Optical Spectrograph and InfraRed Imager System
PBL Planetary Boundary Layer
PCA Polarization Correction Algorithm
pdf probability density function
PMD Polarization Measuring Device
POLDER POLarization and Directionality of the Earth’s Reflectances
RGB Red-Green-Blue
RRS Rotational Raman Scattering
RT Radiative Transfer
RTE Radiative Transfer Equation
SAF Satellite Application Facility
SAO Smithsonian Astrophysical Observatory
SBUV Solar Backscatter Ultra Violet
SCIAMACHY SCanning Imaging Absorption spectroMeter for

Atmospheric CHartographY
SeaWiFS Sea-viewing Wide Field of view Sensor
SSBUV Shuttle Solar Backscatter Ultra Violet
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SZA Solar Zenith Angle
TOA Top Of the Atmosphere
TOMS Total Ozone Mapping Spectrometer
UV Ultra Violet
VMR Volume Mixing Ratio
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Samenvatting

Ozon is een van de belangrijkste sporengassen is de aardatmosfeer. Het absorbeert in sterke mate
straling in het ultraviolette gedeelte van het elektromagnetisch spectrum. De aanwezigheid van ozon
in de atmosfeer voorkomt dat deze schadelijke straling het aardoppervlak kan bereiken. Verder is
ozon een belangrijk bestanddeel van de luchtvervuiling in de lagere atmosfeer en speelt het gas een
belangrijke rol bij het zogeheten broeikaseffect. Het bekende ozongat fenomeen in de Zuidpool lente
vormt een significante verstoring van de ozonlaag; deze grootschalige ozonafbraak is gerelateerd aan
de aanwezigheid van chemicaliën die door de mens in de stratosfeer zijn gebracht. Het is essentieel
om de verdeling van ozon te bepalen en te monitoren op een globale schaal en gedurende een lange
periode. Dit kan het beste worden uitgevoerd met remote sensing satelliet instrumenten, die op ver-
schillende manieren stralingsmetingen aan de atmosfeer kunnen doen: metingen aan gereflecteerd
zonlicht in het ultraviolet, zichtbaar en nabij-infrarood, of van thermische emissiespectra in het infra-
rood en verder tot aan de radio-golflengtes. In dit werk is de belangrijkste toepassing de bepaling
van verticale profielen van ozon door middel van metingen aan het door de aarde gereflecteerde
zonlicht in het ultraviolet. Deze metingen worden gedaan met satelliet instrumenten zoals GOME
(gelanceerd in 1995), GOME-2 (vanaf 2005), SCIAMACHY (vanaf 2001) en OMI (vanaf 2003). Al
deze instrumenten kijken recht naar beneden de atmosfeer in (nadir), met een kleine variatie naar iets
schuinere blikken. Dit in tegenstelling tot satelliet instrument die in limb, onder een schuine hoek
door de atmosfeer heen kijken.

De bepaling van atmosferische profielen uit atmosferische spectra staat bekend als retrieval. Een
retrieval algoritme gebaseerd op stralingsmetingen bestaat uit een onderdeel waarmee de spectra
(stralingssterktes voor een bepaald bereik van golflengtes) kunnen worden gesimuleerd en een module
waarmee de gemeten en gesimuleerde spectra tot overeenstemming kunnen worden gebracht. Voor
de simulatie is een model (het voorwaartse model) nodig waarmee een theoretische berekening kan
worden gedaan van het stralingsveld dat door de satelliet is gemeten. Een belangrijk onderdeel van
dit model is de stralingstransport-berekening waarin de verstrooiing en absorptie van zonlicht in de
aardatmosfeer wordt beschreven. Er wordt een initiële aanname gemaakt voor het ozon profiel, maar
ook voor de verdelingen van andere atmosferische variabelen (zoals temperatuur, aërosolen, grondre-
flectie enzovoort). De afhankelijkheid van het voorwaartse model voor het ozon profiel is complex en
niet-lineair; de retrieval moet worden uitgevoerd met een geschikte optimalisatie, of fitting methode.
Gegeven dat de afhankelijkheid redelijk lineair is, kan de retrieval geschieden door middel van een
iteratief schema van lineaire inversie stappen. Elk van deze stappen vergt een lineairisatie van het
voorwaartse model rond een gegeven atmosferische situatie: we hebben niet alleen het gesimuleerde
spectrum nodig voor deze situatie, maar ook de gevoeligheid van het spectrum voor variaties in het
ozon profiel. Gegeven een initiële waarde voor het profiel, hangt de volgende schatting niet alleen
af van het gesimuleerde spectrum en de voornoemde gevoeligheid, maar ook van de meetfout en
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de aanname voor de vooraf beschikbare informatie over het profiel ( de a priori informatie). Het
iteratieve proces wordt voortgezet totdat aan een geschikt convergentie criterium is voldaan.

De gevoeligheden zijn een essentieel onderdeel van elke retrieval: ze worden gewichtsfuncties
genoemd. In feite zijn het de afgeleiden van het stralingsveld naar de atmosferische parameter die
worden ge-retrieved (in ons geval de ozon waarden). We hebben dus een voorwaarts model nodig die
ons twee zaken levert: een simulatie van het gemeten spectrum en de gewichtsfuncties voor een brede
variatie van atmosferische parameters. De meeste stralingstransport modellen zijn alleen geschikt om
er een spectrum mee te bepalen. De gewichtsfuncties moeten dan numeriek worden bepaald door het
effect van kleine verstoringen door te rekenen. Dit kost veel rekentijd, zeker wanneer we te maken
hebben met een groot aantal parameters. Verder zijn deze methoden vaak te onnauwkeurig.

In dit proefschrift is een stralingstransport model ontwikkeld dat specifiek het probleem van meer-
voudige verstrooiing in de atmosfeer in het ultraviolet oplost. Het is speciaal ontwikkeld om niet
alleen de stralingssterkte, maar ook alle mogelijke gewichtsfuncties op een nauwkeurige en snelle
manier te berekenen. In het model wordt het stralingsveld bepaald door een discretisatie toe te passen
van de hoekafhankelijkheid van de meervoudig verstrooide straling. Naast verstrooiing wordt ook de
absorptie van het licht meegenomen. Het stralingsveld wordt opgelost voor een aantal (N) discrete
polaire hoeken ten opzichte van de nadir richting. Met behulp van een slim interpolatie-schema wordt
hierna de stralingssterkte voor elke gewenste hoek berekend. Dit vormt de basis van de discrete ordi-
naten methode. In het proefschrift wordt aangetoond dat voor een realistische atmosfeer bestaande uit
meerdere homogene lagen het stralingsveld, zoals dat met de discrete ordinate methode is bepaald,
geheel differentieerbaar is naar elke atmosferische variabele die bijdraagt aan de verstrooiing of ab-
sorptie in de atmosfeer. Hierdoor is het mogelijk om gewichtsfuncties op een analytische manier te
bepalen met dezelfde nauwkeurigheid als het berekende stralingsveld. De gelijktijdige berekening
van gewichtsfuncties levert een enorme besparing op in de tijd die een computer nodig heeft om de
berekeningen te volbrengen. Gezien het feit dat de methode analytisch is, is er geen sprake van ad-hoc
benaderingen die typisch zijn voor numerieke pertubatie methoden.

De inhoud van het proefschrift is als volgt samen te vatten.

Na een introductie volgt in Hoofdstuk 2 een uitleg over de bepaling van radianties en gewichtsfunc-
ties voor de verstrooide zonnestraling die de top van een vlak-gelaagde atmosfeer verlaat. Gewichts-
functies kunnen worden berekend voor elke atmosferische parameter: hoeveelheden ozon, andere
gassen, temperatuur en druk, aërosol optische eigenschappen, maar ook de reflectie eigenschappen
van het oppervlak. In dit hoofdstuk wordt ook de thermische straling behandeld. In Hoofdstuk 3
wordt het model op een aantal belangrijke onderdelen veralgemeniseerd. Er wordt aangetoond dat de
gewichtsfuncties kunnen worden berekend voor elke hoogte, niet alleen voor de top van de atmosfeer.
Dit is van belang voor stralingsmetingen aan de grond of vanuit vliegtuigen. Verder is het model
toepasbaar voor elke kijkhoek en zonnestand. In de belangrijke pseudo-sferische benadering wordt de
uitdoving van de nog-niet-verstrooide zonnebundel exact voor een sferische atmosfeer (in plaats van
een vlak-gelaagde) berekend. Met deze benadering wordt het model toepasbaar voor situaties met een
lage zonnestand. Verder is het nu mogelijk met de methode om het stralingspad langs de gezichtslijn
voor de correcte sferische geometrie mee te nemen. Dit is van belang voor instrumenten zoals GOME-
2 en OMI waarmee onder een vrij schuine hoek (tot ongeveer 500)de atmosferische straling wordt
gemeten. Een verdere verbetering in de berekeningen is behaald door de enkelvoudige verstrooide
deel van de stralingssterkte en de gewichtsfuncties exact mee te nemen, buiten de discrete-ordinate
benadering en geheel voor een sferische atmosfeer. Het software pakket LIDORT (LInearized Dis-
crete Ordinate Radiative Transfer) is geconstrueerd op basis van de theorie in de Hoofdstukken 1 en 2.
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Het pakket omvat een algemeen toepasbare stralingstransport-computer-code voor de berekening van
stralingssterkte en gewichtsfuncties. Het software pakket is zonder kosten of restricties te downloaden
van http://cfa-www.harvard.edu/lidort. Het omvat tevens een test-dataset en een Users Guide.

In een gecompliceerd retrieval algoritme, zoals dat voor ozonprofielen, zijn vele stralingstrans-
port simulaties nodig. De snelheid en de nauwkeurigheid van deze simulaties worden voornamelijk
bepaald door het aantal discrete polaire hoeken, of stromen, die in het model worden gebruikt. Een
aanzienlijke besparing van rekentijd kan worden verwezenlijkt door slechts 4 of 6 stromen te ge-
bruiken, maar dit heeft een verlies aan nauwkeurigheid tot gevolg. In Hoofdstuk 4 wordt deze
afweging tussen snelheid en nauwkeurigheid voor de ozonprofiel-retrieval onderzocht door 4- en
6-stromen resultaten te vergelijken met berekeningen met 20 stromen. Deze berekeningen worden uit-
gevoerd voor een brede variatie aan specifieke waarneem-condities, zoals die gelden voor de GOME,
GOME-2 en OMI instrumenten, en voor een aantal atmosferische scenario’s. Hierbij worden ook
wolken en zwaar-vervuilde aërosol-lagen op verschillende hoogtes meegenomen. Op deze wijze
wordt de fout in de stralingstransport-berekening ten gevolge van de 4 of 6 stromen benadering in
kaart gebracht. In het algemeen blijken de fouten voor de 4-stromen benadering tot �2.0-2.5% op
te lopen binnen het golflengte interval van 270 tot 320 nm. De 6-stromen benadering geeft fouten
binnen de �0.5-0.7% voor hetzelfde interval. Deze waarden zijn vergelijkbaar tot beter dan de
nauwkeurigheid van de satellietmetingen zelf, die wordt bepaald door de instrument-calibratie.

In Hoofdstuk 5 worden een aantal foutenschattingen en gevoeligheidstudies gepresenteerd voor
een operationeel ozonprofiel retrieval-algoritme voor GOME-2. Ozon absorptie in het ultraviolet is
sterk temperatuur-afhankelijk. In de studies is gekeken naar het effect van deze afhankelijkheid voor
op de nauwkeurigheid van het ozonprofiel en op de hoeveelheid informatie die uit de satellietmeting
kan worden afgeleid. Er wordt aangetoond dat er een aanzienlijke toename in de nauwkeurigheid
van het troposferische profiel plaatsvindt voor hogere temperaturen in de troposfeer. Een typisch
spectraal interval waarbinnen de spectrale metingen worden gebruikt voor de retrieval is 270 tot 320
nanometer. In het hoofdstuk is aangetoond dat een uitbreiding van dit interval naar 340 nanometer
geen grote verbetering in de nauwkeurigheid en in de informatie geeft. Voor de foutenanalyse is
gekeken naar factoren als temperatuur en aërosol concentraties die beide niet zijn meegenomen in de
retrieval, maar die toch van invloed zijn op het atmosferisch stralingstransport. We laten zien dat de
nauwkeurigheid van het ozonprofiel gevoelig is voor de onzekerheid van de temperatuur in de gehele
atmosfeer en van de aërosol-verdeling in de lagere delen van de atmosfeer. Verder is aangetoond dat
polarisatie-effecten een belangrijke invloed hebben op de fout op het profiel. Dit betreft zowel de fout
in de instrument calibratie voor de correctie van de polarisatie-gevoeligheid van het instrument, als
de fout in het stralingstransport-model ten gevolge van het niet meenemen van de polarisatie van de
straling.
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