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PUBLIC KEY CRYPTOGRAPHY

J.H. van LINT

In this talk a new and important area of mathematical research will be
described. The challenging problems of this area have attracted many re=
searchers in recent years. Only a few years ago it started to play (a still
modest) rdle in our research and educational program. The subject of this

_talk is cryptography, more specifically the so-called public key eryptography.

When one hears the word cryptography one usually thinks of the classi-

cal model of communication with secret codes, which is described in Figure 1.
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Figure 1.

The conventional example is communication between military units or diplomat-
ic services. Here K1 is the communication channel which is insecure, i.e., un-
authorized parties (eavesdroppers) can extract information from the chanmel.
The information is transmitted over the channel in encrypted form. The pro-—
cedures used to encrypt resp. decrypt the message depend on a key which the
transmitter A sends to the receiver B over a secure channel K, (e.g., by
courier). The problem, which the eavesdropper (usually called a cryptanalyst)
must solve, is breaking the code, i.e., he tries to discover the key. Much

mathematical work has been done in this area and several impressive results

* This is a slightly modified and translated version of an invited address
held for a general audience on the occasion of the 270 'dies natalis' of
the Eindhoven University of Technology.
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achieved during world war II are well known (cf. [61).
A rather simple example of a classical cryptographic system is the
mono-alphabetic substitution in which a permutation of the alphabet is used.

For example

ABCDEFGHIJKLMNOPQRSTUVWXYZ
THEKRZWDLPOBJQVAMIYCSXGUNF

is a key which takes the plaintext word DIES into the ciphertext word KLRY.
It is easy to break this system by a statistical analysis of the language

which is used. We do not discuss further details of classical cryptography
(cf. [5] Chapt. 1V, [6]). At the end of the talk the American cryptosystem
DES will be mentioned. It is an example of a mono-alphabetic substitution,

‘not on an alphabet of 26 symbols but one with 264 symbols.

New applications

The work which I would like to discuss became necessary for several
reasons:
(i) a large number of telephone conservations is sent via satellites nowa-
days by microwave radio. It has become easy for eavesdroppers to hear these
conversations too. It is well known that at least one Fforeign embassy in
Washington listens in on American telephone conversations and that all
telephone conversations, telex and telegram messages going to or from the
USA are monitored by the National Security Agency (NSA);
(ii) Electronic fund-transfer between banks and business communications by
teleprocessing systems are becoming more and more common. In these situations
authentication of the source of a message is essential. At present the vali-
dity of messages is guaranteed by signatures. What is needed is a digital
equivalent of a signature. We shall define such a signature as a message
which can be produced by one source only but such that anyone can check the
authenticity of this message.
(iii) For many multiuser computer systems it has become necessary to check
the identity of a user via a so-called 'login' procedure. This prevents
unauthorized use of the computer and information stored in the memory. The
problem is to prevent the theft of the passwords used for this login proce-
dure from the memory of the computer.

Since it is becoming increasingly common for information to be
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transmitted or stored in digital form it is also becoming easier for eaves—
droppers to have this information analyzed by (ever faster) computers.

Another problem which arises in modern forms of communication is the
introduction by adversaries of false information into the chanmel, e.g., a
repetition of a message which was intercepted earlier.

It is not difficult to understand that cryptography will play an im-
portant rdle in the future. We can expect the advent of commercial 'erypto-
networks', which could have thousands of subscribers. It is impossible to
let every pair of potential users of the system agree on a separate private
key and it will often happen that one wishes to communicate with a subscriber
with whom one has had no prior acquaintance. It is unrealistic to assume
that such a pair of users could wait until a key is exchanged over some
secure chamnnel (such as registered mail).

This introduction should be sufficient for the audience to appreciate
the topic of this talk, i.e., the idea of public key cryptosystems, intro-
duced in 1976 by W. DIFFIE and M. HELLMAN [2].

Trap-door one-way functions

The main element in the systems under consideration are the so-called
trap-door one~way functioms. First, we shall introduce the concept of a one-
way function. We consider a function f: X > Y and for the sake of simplicity
we assume that f is one-to-one. We require that f is a 'simple' function.

By this we mean that for each x ¢ X it is easy to compute the value f(x).
E.g., a computer program of a few hundred instructions which calculates
f(x), given %, is a simple function. Next, we require that, for almost all

v € Y, it is computationally unfeasible to solve the equation y = f(x).
E.g., a program which calculates f+(y) might require 1010 instructions, thus
taking a computer hundreds of years to execute. We stress that it is not
impossible to find the inverse £° but that it is computationally unfeasible
because too much time (or memory) is necessary. Such a function is called a
one-way function.

Let us first look at an application of these functions. We consider a
multiuser computer with a login procedure where each user must enter his own
secret password x before he gets access to the computer. If the list of
users with their passwords is stored in the computer it could come into the
wrong hands (e.g., via malevolent system operators). In modern computer sys-

tems the computer has the program for a one-way function £ and a list of
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users with the value of f(x) if x is the users password. When the user en-—
ters his password x, the computer calculates f(x) and compares it with the
stored value. If someone steals the list, then this is of no use to him,
even if he also knows the function f, since it would take much too long to
first calculate f in order to obtain the passwords.

Now, we come to the idea of the trap-door. If, for a one-way function
f, it becomes easy to compute £ once certain extra (trap-door) information
is known, then we call f a trap-door one-way function.

Below, we shall consider some examples.

Public Key Cryptosystems

A public key cryptosystem works as follows. Let X be the set of possible
messages and Y the set of encrypted messapges. Each user, say A, determines

a pair of one-—to-onme functions EA’DA° Here EA (encryption) is a trap-door
one-way function from X to Y and DA(decryption) is the inverse function, which

A can easily compute since he has the required extra information about EA'

We repeat that knowledge of E, alone is in principle enough to calculate D

A A°

but in practice it is not feasible.
The surprising new feature of this kind of system is that each user

places his encryption procedure E, in a public directory (with his name and

A
address). Of course each user keeps his decryption procedure D, secret.

Suppose that user A wishes to send a message x to user B.AHe'then looks
up the procedure Eg (the encryption procedure of the receiver!) in the direc-
tory and then transmits the message y = EB(x). The receiver B computes
DB(y) = DB(EB(X)) = x. An eavesdropper who intercepts the message y can
easily look up EB in the directory but again, this is of no use to him since
the calculation of DB takes him too long.

E

The fact that the functions E are one-to-one allows us to in-

s s e
troduce the digital signature featﬁre.BThis works as follows. First A sends
his name and address to B, without encryption. Now B knows that he can ex—
pect a message from A. Then A changes the message x into DA(x), using the
function DA which is known only to A. He then transmits y = EB(DA(X)).
(Here x must be restricted s.t. DA(X) belongs to the domain of EB). As
before, the receiver can calculate DA(x), using his own decryption function
DB' He stores the message DA(X). Next, B looks up the function EA in the
public directory and then calculates EA(DA(X)) =-x. The receiver B is now

sure that the message was sent by A. Furthermore A cannot deny having sent
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the message because B has saved DA(X) and anybody can check that
EA(DA(X)) = x but nobody but A could have produced the message DA(X). Notice
that this satisfies our definition of a signature.

For many cryptosystems which have been suggested it is difficult to
derive a procedure for a signature. This is one of the areas in which much
research is taking place.

The idea of public key cryptography is obviously very nice but it can
only be of practical use if we can construct the necessary one-way functions.
In 1978 R. RIVEST, A. SHAMIR and L. ADLEMAN [14] designed a system which is
now known as the RSA~system (or MIT-system, referring to the inventors' af-

filiation).
The RSA-system

We consider the messages represented as positive integers x (with many
digits), say 0 £ x < n. Here n depends on the user A, who proceeds as fol-
lows:

(1) Determine two large primes p and q (each with about 100 digits).

(2) Take n := pq and m := ¢(n) = (p-1)(q-1).

(3) Choose d > max {p,q} at random from the integers in [1,m] relatively
prime to m.

(4) Use Euclid's algorithm to determine e such that ed = 1 (mod m).

The public key for A is the pair (n,e) with encryption procedure

EA(x) 1= x° (mod n). The procedure which A keeps secret is DA(y) ;= yd

(mod n). Since ed = 1 (mod ¢(n)) it is a direct consequence of Fermat's

theorem that DA(EA(X)) = EA(DA(X)) = x.

An eavesdropper is faced with the following problem. He knows n and e
and he must calculate d. In order to do this he must first calculate m (by
(4) above) ard by (1) this involves factoring n into the product pq. The
problem of factoring integers has interested many number-theorists for cen-
turies. Several algorithms are known. The fastest of these, due to
R. Schroeppel, needs more than 1023 operations to factor a 200-digit number
n. Some day there may be computers that can do this computation in a hundred
years, hardly a consolation for the eavesdropper.

However, we should realize that there may be an organisation, for which
sec¢ret communication is important, which has found a much faster algorithm
for factoring integers. In that case such an organisation will make sure

that this fact does not become known. At the moment the results of research
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activities at universities find their way into the literature butreven that
may change as we shall see below.

The publication of the RSA-system caused several sensational headlines
such as : '"The new unbreakable codes - will they put NSA out of business?".
Of course, several researchers tried to break the RSA-system without resof—
ting to factorization. Some of these attempts were partially successful
(cf. [17]) but with a few extra conditions on the choice of p and q it seems
that the RSA-system is still completely safe. In fact, it is being used com-
mercially already.

We have not discussed the amount of work which the user A must do. This
should take very little time, certainly in those situations where ome changes
the keys EA’DA regularly (for extra security). The calculations (2), (3), (&)
are all easy but how does one find a 100~digit prime number? (Shortly after

" the RSA-system became publicly known an American company offered such primes
for sale for a few hundred dollars. Of course, buying primes from others
makes security dubious.) If we use a random generator to make a 100-digit
odd number, then we have about 17 chance that it is prime; (the reader can
check this using the prime number theorem). If it is possible to check in a
short time whether a given integer is prime, then the random generator will
not take long to produce the pair {p,q}. The subject of primality testing
has made great progress in recent years, stimulated by the applications in
cryptography. For interesting surveys we refer to [13], [15]. The fastest
general primality test which is known at present is due to H. Cohen and
H.W. Lenstra, Jr. Their method is a significant improvement of a method
developed in 1982 by Adleman, Pomerance and Rumely, which is one of the few
results in mathematics that received attention in the press. The Cohen-
Lenstra algorithm takes about 45 seconds on the CDC-computer at the SARA-
computing center in Amsterdam to check whether a 100-digit number is prime.

[181.

The trap-door knapsack-system

Our second example of a pubic key cryptosystem illustrates several
aspects of recent research in this area. The system was introduced by
R. MERKLE and M.E. HELLMAN [11]. It is based on a well known combinatorial
problem, called the knapsack problem. If A is a set of integers and if we
wish to calculate the sum 'S of the elements in a specified subset of A,

then this is a simple addition. However, if S is given and we must find the
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corresponding subset of A, this is in general quite difficult. How this

idea is used is illustrated by the following extremely oversimplified example.
We represent A in some order as (al,az,...,an) and consider a binary message
of length n as a characteristic function of a subset of A, The encrypted mes-

sage is S.

(i) public key A: 3 5 10 22 43 90 201
message 1 0 1 0 0 1 0
encrypted message S = 3 + 10 + 90 = 103

(ii) public key A': 130 49 98 115 19 379 159
message 1 0 1 0 0 1 ]

encrypted message S' = 607 = ? + ... + ?

Example (i) is trivial because the sequence A is superincreasing, i.e. each
'a:.L is more than the sum of the previous elements. Therefore, given the sum
103, it is obvious that the element 90 was used, etc..
Although the second example is still fairly easy, it looks considerably more
difficult than the first. The same message yields the encrypted version 607
and it takes a little reflection to recover the message. We are looking at
the problem from the point of view of the eavesdropper. The user who publish-
ed his public key A' has trap-door information, namely that he constructed
A' by multiplying the elements of A by 211 and reducing mod 503. He also
knows that 211.267 = 1 (mod 503). Hence he can transform the second problem
back into the trivial first example.

Now, let us consider the same idea as it is used in practice. Let
n = 100 and for j = 1,2,...,n choose a., at random from the integers between
(2j—]) 2100-+I and 2100'?5_1. This givis us the 'easy' set A. Next, choose
m at random between 2201 +1 and 2202-1, then % at random between 2 and
m~2, and finally define w := %/(m,%). Then (w,m) = ! and we can calculate

w“1 (mod m), which is kept secret. The public key consists of the integers

ai 1= wa, (mod m). A binary message (bl’b

s =17
: i=1
that the sequence ai(ISiSn) has the appearance of a randomly selected set

2""’bn) is encrypted as

aibi. The way in which the public key is constructed has the effect

of large integers.

The security of this system is based on the fact that the knapsack-
problem is a hard problem to solve. What does this mean? In order to define
what we mean by a hard problem we would have to discuss another fairly young

branch of mathematics, namely the analysis of algorithms and computational
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complexity theory. In this theory a number of computational problems in-
cluding the knapsack problem have been shown to be of comparable difficulty
(cf. [3]1). This class is known as NP (nondeterministic, polynomial). These
problems cannot be solved in a time which is polynomial in the parameters
of the problem by presently known algorithms unless the computer has an un-
limited degree of parallelism. So, the knapsack system looks safe. However,
we should be careful. The sequence ai(]siSn) may look like a randomly chosen
sequence but we know that it was obtained from a super—increasing sequence,
i.e., we know that trap-door information exists. Maybe this type of knapsack
problem does not belong to NP. Indeed, on May 12, 1982 there was an article
on page 1 of the Los Angeles Times with the headline "Unbreakable Computer
Code proves otherwise". A. Shamir had found a fast way to break the knapsack
code (cf. [16]). Instead of tackling the knapsack problem itself he had
' solved the problem: Find a pair w"l,m such that the sequence w‘lai(lsiSn)
reduced mod m is super-increasing (given that at least one such pair exists).
Shortly after that, the Director of NSA, admiral B. Inman, stated that NSA
had found the idea of public key cryptography several years earlier than
Diffie and Hellman and furthermore also the knapsack system. He also claimed
that they had discovered that it was easy to break but that NSA saw no reason

to make these facts publicly known.

Cryptography and NSA

The remarks above introduce the last topic of this lecture, the many
problems which arose in the past few years in connection with research in
cryptography, many of which made headlines. As a first example I mention
the official American cryptosystem "Data Encryption Standard" (DES) which
was adopted by the National Bureau of Standards in 1977, (cf. [5],

Chapt. VIII). The system is a transformation of 64-bit data blocks into
others, depending on a 56-bit key. In fact, it is a simple mono-alphabetic
substitution on an alphabet of 264 symbols. The whole system fits on one
LSI-chip and several manufactures of electronic equipment incorporate it.
This sounds very nice but something peculiar is going on. The DES was
developed by NBS and IBM and the system was proposed in 1975. It immediately
stirred up a heated éontroversy. There were two important criticisms (cf.
[121). First of these is the fact that the key size (56 bits) makes the
system vulnerable. Although the first estimates were too optimistic it is

now believed that a fifty million dollar special purpose computer would need
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about two days to find a key by simply trying all possibilities (cf. [11).
There exist eavesdroppers who consider this a reasonable investment! Most
experts now agree that DES will be completely insecure within 10 years.
Several of the critics of the system suggested using a 128-bit key which
would still be secure in a hundred years. It becomes even more remarkable
when one learns that NSA restricts the export of DES chips and does not
approve export licenses for cryptographic systems in which a key with more
than 64 bits is used ([121).

The second major criticism concerned the hardware. The substitution is
carried out by so-called 'S-boxes'. The design of these S-boxes is kept
secret, for no obvious reason, but the claim is made that the design was
randomly chosen. In an analysis of DES [9] it was discovered that there is
some structure in the S-boxes. Some peoplg fear that DES also has its trap-
.door which enables NSA to decrypt all this allegedly safely stored informa-—
tion. It could be true. It became clear fairly quickly that NSA does not
appreciate the revived interest in cryptography at many universities. The
following incident attracted a lot of attention from the press and is still
being discussed at present (cf. [7]). Shortly before Rivest was scheduled
to present his results at a meeting of IEEE this organisation received a
letter from an employer of NSA warning the IEEE that publication of results
on cryptography might be in conflict with the International Traffic and Arms
Regulation which regulates the export of weapons and sensitive equipment!
The letter suggested that the authors could be prosecuted. The NSA denied
involvement with the letter but a year later admiral Inman stated that open
publication of research in cryptography was harmful to the security of the
US. Subsequently the American Council on Education formed a study group to
discuss this problem. Several of Inman's proposals were rejected but the
group approved the reviewing by NSA of papers on cryptography prior to
publication on the condition that compliance would be voluntary. I have been
told that many authors do send their papers in for review and that two papers
have actually been withdrawn by the authors at the request of NSA.

In a recent conversation with Martin Hellman he told me that he had
originally strongly opposed these restrictions on academic freedom. However,
during the crisis with the American hostages in Iran he had realized that it
might not be such a good idea to tell everybody on earth how they can estab-
lish secure communication systems. Of course, mathematicians are aware of the
fact that several other branches of science such as nuclear physics, genetics,

etc. are restricted by many regulations for security and safety reasons.
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Mathematicians will find it difficult to accept such restrictions. In any

case it is a problem which deserves serious consideration.
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