

Towards a software factory

Citation for published version (APA):
Genuchten, van, M. J. I. M. (1991). Towards a software factory. [Phd Thesis 2 (Research NOT TU/e /
Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR356762

DOI:
10.6100/IR356762

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR356762
https://doi.org/10.6100/IR356762
https://research.tue.nl/en/publications/eaf0add3-fe84-456a-9aa4-6db1723743b7

OWA DS

A SOFTWA E FACTORY

Miehiel va Genuchter

TOWARDS
A SOFTWARE FACTORY

Cover: Erik Knippers

ISBN: 90 900 4119 2

Copyright 1991 by MJ.I.M. van Genuchten, all rights reserved. No part of this pubHeation may be

reproduced, slored in a retrieval system, or transrnitted in any form or by any means, electronic,

mechanical, photocopying, rerording or otherwise, withoutthe prior written perrnission of the publisher.

TOWARDS
A SOFTWARE FACTORY

PROEFSCHRIFf

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, -op gezag van
de Rector Magnificus, prof. dr. J .H. van Lint, voor
een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

vrijdag 21 juni 1991 om 16.00 uur

door

Michael Jozef Ignatius Maria van Genuchten

Geboren te Eindhoven

druk : wibro disserta tiedrukkerij , helrnond.

Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr. T.M.A Bemelmans

Prof.dr. J.C. van Vliet

en de copromotor:

Dr.Ir. F.J. Heemstra

CONTENTS

1 INTRODUCTION AND DEFINITION OF THE PROBLEM 1

1.1 Introduetion . 1

1.2 Importance of software engineering . 3

1.3 Probieros of software engineering . 6

1.4 Definition of the problem . 9

1.5 The Process - Control - Infonnation model 10

1.6 Contents . 12

2 WHY IS SOFIW ARE LA TE ? Empirica! studies of reasans for delay in
software development . 14

2.1 Introduetion . 14

2.2 Surveys on the overrun of development projects 14

2.3 Definition and planning of the study . 19

2.4 A systems software department . 25

2.5 A diversified software development department 30

2.6 A CAD development project . 31

2.7 Conclusions . 35

3 CHANGES IN SOFIW ARE ENGINEERING CONTROL 37

3.1 Introduetion . 37

3.2 Basic principles of traditional software development 37

3.3 Traditional control . 39

3.4 Changes in software engineering and its control , . 42

3.5 Summary and conclusions . 48

4 QUAUTY AND MAINTENANCE; towards product control 50

4.1 Introduetion . 50
4.2 Quality attributes . 50

4.3 Quality definitions . 53

4.4 Causes of increasing maintenance . 59

4.5 A response to the maintenance problem . 61

4.6 Consequences for control . 67

4.7 Summary and conclusions . 73

5 REUSE OF SOFTWARE; towards multiproduct control 74

5.1 Introduetion . 74

5.2 The necessity of reuse . 74

5.3 Reuse in industry . 76

5.4 A parallel in software development . 80

5.5 Reuse of software . 84
5.6 Multiproduct control . 86

5.7 A specific software factory . 93

6 TOWARDS A SOFTWARE FACTORY , 95

6.1 Introduetion . 95

6.2 Levels of process control ·. . . . 95
6.3 Steps towards the software factory . 99

6.4 Summary and conclusions . 102

7 INFORMATION SYSTEMS IN SOFTWARE ENGINEERING CONTROL

AND PRODUCilON CONTROL . 104
7.1 Introduetion . 104

7.2 Infonnation systems for software engineering control 104

7.3 Comparison of the systems and assessment with respect to the software

factory ; 113

7.4 Infonnation systems in production control 117

7.5 Assessment with respect to the software factory 124
7.6 Summary and conclusions . 128

8 A DATA MODEL FOR AN INFORMATION SYSTEM FOR

MULTIPRODUCT CONTROL. 130
8.1 Introduetion . 130

8.2 Additional requirements . 130

8.3 A data model . 133

8.4 A description of some entities. 137

8.5 Use of the proposed data model . 145

9 FIRST STEPS TOWARDS A SOFTWARE FACTORY 147

9.1 Introduetion : . 147

9.2 Basic principles . 147

9.3 Two examples of data collection with regard to time and money . . . 151
9.4 Two examples of data collection with regard to quality 154

10 CONCLUSIONS AND RECOMMENDATIONS 161

10.1 Introduetion . 161

10.2 Summary and conclusions . 161

10.3 Recommendations for future research .. 164

REFERENCES . 167

SAMENVATTING (in Dutch) 173

DANKWOORD (in Dutch)

CURRICILUM VITAE (in Dutch)

1 INTRODUCTION AND DEFINITION OF THE PROBLEM

1.1 Introduetion

Software has become an important product during the first decades of its existence.

It is now present in many farms. For example: embedded in electronic equipment or

cars, in information systems that allow orders to be accepted automatically and in

factory automation systems that enable a few men to run a chemica! plant. The

amount of software that needs to be developed has increased from virtually nothing

around 1950 to an estimated value of 140 billion dollars worldwide in 1985 (Boehm

1988).

In spite of the huge investments in software, software development is aften

insufficiently controlled. Software development projects are usually late and software

products repeatedly fail to meet · the requirements. The control of software

engineering is the subject of this book. We use the term <;ontrol of software

engineering instead of control of software development. The term engineering

camprises bath development and maintenance (Basili 1988). We wil! examine the

current control of software engineering and explore the possibility of improving this

con trol.

In the early days of software engineering, software products used to be isolated

applications that were found in the secondary processes of an organization. They

were usually not found in the organization's primary processor in its products. The

software products had fairly stabie specifications, because the stability of

specifications was a major selection criterion for the applications to be automated.

A typical system to be autornaled was a payroll system or an order handling system.

The development process usually foliowed the lines of the waterfall model.

The control of software engineering was limited to the development phases.

Development was usually done in projects. The definition of a project given by the

Project Management Institute is "Any undertaking with a defined starting point and

defined objectives by which completion is identified" (Wideman 1986). A project is

a temporary organization form. This concept fitted in very wel! with software

development in the early days: software development involved incidental, isolated

development efforts, executed by specialists. The start and end of a project could be

clearly identified. Things have changed over the years however. Three reasans will

be discussed which explain the fact that traditional software control is no langer

sufficient to control software engineering efforts.

1

The first reason is that development is only part of the job. Traditional software

control usually considers only the development of software. Maintenance is regarded

as an 'off-project activity' which is samebody else's problem. However, maintenance

is a continuous activity that requires more effort nowadays than the initia!

development activities. Next to maintenance, other off-project activities are becoming

more important. Examples are configuration management, process impravement and

the development of methods and tools. A lot of continuously proceeding activities

are required in software engineering nowadays. They cannot be controlled by a

temporary,structure such as project controL

The second reason is that the software product to be developed can no Jonger be

considered an independent and isolated entity. Airoost all the software produelS

developed wil! have to fittotheir environment. A new infonnation system wil! have

to fit to the existing information systems. For example, an order acceptance system

was named as a typical system that was autornaled in the early days, whereas

nowadays series of infonnation systems that support the whole process of production

control, from purchasing components to the delivery of an end product to a dient,

may be the goal of infonnation systems development. The infonnation systems have

to be able to exchange or share data. As another example, a new release of embedded

software will have to adjust to the hardware environment, and a new software

package will have to be upwardly compatible with earlier releases. A software

engineering department can no Jongerafford a 'greenfield approach' .

The third reason why traditional software control needs to be enhanced is that an

exclusive emphasis on ongoing projects prevents from extensive reuse of software.

The time and budgetary constraints that surround a project do not allow for the

additional work required to make a software product available for future reuse.

We wil! argue in this hook that software engineering control will have to adapt. The

lines along which the changes are taking place wiJl be described. Firstly, a change

from development control to product control is envisaged. Development control

limitsitself to the initia! development of a product. Product control involves control

of a software product over its entire life cycle; it includes maintenance. Secondly, a

change from product control to mulliproduct control is pictured. Multiproduct control

implies control of a range of software produelS over their life cycle. The expansion

of the control focus allows to emphasize reuse of software, which is believed to be

a major contributor to software productivity impravement MuJtiproduct control is

typified by the tenn software factory, which explains the title of this hook. The

discussion of control will research the analogy between production control and

software engineering controL The experiences in production control will be reused

2

as much as possible. Furthermore, we will pay special attention to data colleetien and

information systems for software engineering controL

1.2 Importance of software engineering

Software has become an important product over the years and its importance is still

growing. The annual cost of software in the United States was 70 billion dollars in

1985 (Boehm 1988). The average growth is estimated at 12 percent per year (Boehm

1988, Humphrey 1989), consisting of a fivepercent increase in persennel costs and

a seven percent increase in the number of personnel. Some software cost trends are

shown in Figure l.I.

software costs
(billions of $ per year}

1~,-----------------------------------.

800~--------------------------------~WORLD

1980 1985 1990

year
1995

Figure 1.1 Software cost trends (Boehm 1987).

Figure 1.1 shows that a 12 percent growth rate would result in an 800 billion dollar

software market in the year 2000. The importance of software wiJl be illustrated with

examples of three important application areas: information systems, factory

automation and software products.

Jnformation systems

The importance of in formation systems is illustrated by a survey mentioned by Davis

(1987). This investigated the extent to which companies depend on the infonnation

processing capabilities of computers. The companies concerned were asked how long

different business functions would be able to operate without infonnation processing

capabilities. The results are given in Figure 1.2.

3

percentage of operational
business activities able to continue

Figure 1.2

QS 1.s ~s as ~s ~s ~s ~s as as 1QS
days without computer

Decline in operational business activities following a

complete data processing failure (Davis 1987)

Figure 1.2 shows that after 5.5 days only 28 percent of the activities would be

functioning. In case of finance companies only 13 percent of the activities would still

be functioning after the same period.

F actory automation
Another area in which software plays an important part is the automation of

production processes or factory automation. Software costs account for already 40

percent or more of the factory automation facility costs in Japanese companies

(Sakurai 1988). The same publication mentions an example of a Mitsubishi plant in

which the software represents over 70 percent of the factory automation costs. The

importance of cantrolling lead time in software development increases if factory

automation is involved. If the software is late this will hold up production. The cost

of the lost production may dwarf the software development casts.

Software produels and services

The third category to be distinguished is software products and services. This can

either be software embedded in products, softwaresoldas an independent product,

or all kinds of information services. The fact that software comprises a considerable

part of the development cost of, for instance, electronic products is well-known. For

example: 70 percent of the designers at Hewlett-Packard are involved in software and

more than 50 percent of the new projects are software-based (Ward 1989). The

4

amount of software is less known. Four examples of embedded software are given

in Table 1.1.

Table 1.1 Examples of embedded software (Schendler 1989).

' PRODUCf UNESOF lABDUR DEVELOPMENT
CODE REQUIRED (in COSTS (in rnillions of

man years) dollars)

SpaceShuttle 5,600,000 22,096 1,200

uncoln Contioental 83,517 35 1.8

Citibank teller machine 780,000 150 13.2

IBM checkout scanner 90,000 58 3

The table demonstrales the importance of software in several areas. lt was predictabie

that information processing and, as a consequence, software would be important for

controlling and simuiaring the flight of a space shuttle. Software in electrooie

equipment, such as a teller machine and a checkout scanner, might also have been

expected. The development costs of the software for the Lincoln Contioental show

that software bas also found its way into produelS like cars and is rapidly becoming

more important in areas where it was not even considered a short time ago.

Software can also be sold as an independent product. The packaged software sold in

the Uniled Stales in 1989 was $ 23.7 hiliion (Shaw 1990). It is projeeled to grow to

$37.5 hiliion in 1992. Examples of package software are found in the personal

computer environment. Examples are text processing packages, spreadsheets and

database packages. The package software applications are now moving to all kind of

computers. The degree of standardization wil! delermine to a large extent the speed

of proliferation of standard software packages in the mini and mainframe market

Standards should make application software less dependent on hardware.lnformation

services areanother new business that is driven by software. Examples are services

such as public or proprietary databases, electronic data interchange and value added

networks.

Summarizing this section, it might be said that software has evolved from playing

a minor role in the secondary processes of organizations to a significant role in the

primary processes and produelS of many organizations. This evolution and its

consequences will be discussed later on.

5

1.3 Problems of software engineering

The control of software engineering has been unable to keep pace with the changes.

Consequently, software engineering is now confronted with some serious control

problems. Three of these wil! be addressed in this section:

- Delays in development,

- Maintenance, and

- Insufficient productivity improvements.

Deláys in development

Delays in software development projects occur regularly, as do overruns of the

planned cost. Some examples of delays in a number of well-known personal

computer packages are shown in Table 1.2. The late deliveries were caused by

overruns in development (Manual 1989).

Table 1.2 Examples of delays (Manual 1989)

Company Product Planned release Actual release date
date

Ashton Tate dBase IV 7/88 6/89

Lotus 1-2-3, rel. 3.0 6/88 6/89

1-2-3, rel. 2.2 6/88 Third quarter 89

Microooft Word 4.0 MAC 10/88 4/89

Word 5.0 PC 1/89 5!89

, SOL server 12/88 4/89

Delays in software development can have serious consequences because so many of

the operations are dependent on software. Delay in information systems development

can cause an operation to close down, as already discussed in section 1.2. A

consequence of factory automation software being late is postponement of the

production. Embedded software that is late wil! postpone the shipment of the

produels in which it is embedded. This will be critical if the delay involves software

embedded in thousands of produels such as televisions or cars.

The same applies to companies which depend on the sales of their software products.

Their revenues and profits are determined by these. Losses of major software

development companies have been blamed on the late delivery of new releases of

software packages. The stock prices of these companies are influenced by

announcements of delays inshipping several products. An example is the Microsoft

stock price which feil ovemight after the company had announced delays (Nelson

6

1989). The delay in the release of the Lotus 1-2-3 software package is shown in

Table 1.2. The effect on the company can be deduced from the contributions of the

product to the 700 million dollar total revenues of the Lotus company shown in

Figure 1.3.

LOTUS 1-2-3
63%

LOTUS 1-2-3 upgrades
7 % graphics

software
9%

other 7 %

symphony sales 5 %

intermation services 7 %
publishing 2 %

Figure 1.3 Estimated contributions to Lotus revenues (Wilke 1990)

The delays and cost overruns in software development were the reasons for the

research described in this book. Chapter 2 discusses three empirica! studies on delays

in software development. The studies investigated the reasons for the delay in

development projects and explored actions for improvement.

Maintenance

The second problem to be addressed is maintenance. Conte (1986) claims that 60

percent of the software engineering effort goes on maintenance. Lebman (1984) stales

that 70 percent of the expenditure on software is incurred after initia! installation.

The maintenance problem is best visualized by the software iceberg: the development

costs are all we see and all we seem to care about. The main software engineering

costs however, are bidden under the surface: the maintenance costs. The control of

software development is only concerned with the minority of tl_le software

engineering effort if we assume that Conte's and Lebrnan's statements are true. This

book will argue that control should be extended from development alone to the entire

life cycle of the product. How this can be done will be explained in chapter 4.

lnsufficient productivity improvements

The supply of software has not been able to keep up with the demand. This results

in a software backlog that may rise to several years. The U.S. Air Force Data

Systems Design Office has identified a four-year backlog of important data

processing software functions (Boehm 1988). Boehm describes two problems related

to the backlog. First, without software, it is impossible to achieve the potential

7

productivity gains. It has been estimated that 20 percent of the productivity gains in

the U.S.A. have been achieved through automation and data processing (Boehm

1988). The second problem is that the backlog ereales a situation which yields a

great deal of bad software. The backlog "creates a personnel market in which just

about anybody can get a job to work off this software backlog, whether they are

capable or not" (Boehm 1988, page 1463).

The productivity improvements in software development have been estimated by

Boehm and are shown in Figure 1.4. The vertical axis shows the software

productivity, given in equivalent machine instructions per man month. The horizontal

axis gives the domain of applicability. This independent variabie is introduced since

the main productivity improvements have been achieved by exploiting the knowledge

of particular application domains.

30000

10000

3000

1000

300

100

software productivity
(equivalent machine Instructiens
per man month)

single speclalized
purpose domeins

domain of applicability

Ada, integrated
environment

Assembly
/anguage

braad
domains

Figure 1.4 Software technology and productivity trends (Boehm 1987)

Figure 1.4 indicates that further productivity improvements are expected over the

next decade. The productivity gainis estimated at an order of magnitude of two over

a period of thirty years. However, the productivity impravement will be unable to

keep up with the needs, assuming the growth estimates of over 10 percent per year

are right. Boehm concludes therefore that the demand for new software is increasing

raster than our ability to develop it.

Reuse of software is widely believed to be a key issue for improving software

8

productivity. The fact that software is an intangible product has the advantage that

it can be reproduced with negligible reproduetion costs. Reuse has not really taken

off, despite the fact that its advantages are clear and acknowledged (Biggerstaff

1987). The opportunities are there: Capers Jones (1984) claims that only 15 percent

of the software written is unique. Lanergan and Grasso (1984) studied 5000 Cobol

programs, 50 of them in detail. They concluded that 40 to 60 percent of the code was

redundant and could be standardized. They claim that 60 percent reuse can be

achieved. This not only results in a decrease in development costs, but also in a

decrease in rnaintenance costs, because the reused cornponents have already been

tested in practice. The actual reported reuse rates are much lower. For instance, a

study by Cusumano (1989) reported reuse rates of 15 and 35 percent in American

and Japanese cornpanies, respectively. Reuse of software will be one of the subjects

in this book. Chapter 5 describes sorne of the probieros that will have to be

overcorne to allow for extensive reuse. It will explore how the control of software

enginèering should be adapted to allow for extensive reuse of software.

1.4 Definition of the problem

The importance of controlled software engineering activities, as well as the current

probieros in control, lead to the following definition of the problern.

Definition of the problern

Software engineering has changedover the years due to changes in the products, the

process followed and the resources used.. The control of software engineering has nol

kept up with the changes and is therefore aften insufficient tomeet the demands. ft

is unclear how software engineering can be controlled in the new circumstances and

what information is required to control it.

This definition mentions three sourees of changes in software engineering activities:

changes in the products engineered, the process foliowed and the resources used.

These will discussed in more detail later on. The definition mentions two subjects

that require research, namely the control concept and the information concept. The

aim of this study can therefore be derived from the problem statement.

Aim

1 Delermine the characteristics of the control concept of software engineering that

fit in with the changed practices and demaruls

2 Derive the characteristics of an infonnation system that supports the control

concept.

9

The first goal is to delermine the characteristics of a control system that is capable

of controlling both current and future software engineering practices. The process of

software engineering will have to be studied for this purpose. The second goal is to

identify the characteristics of an information system that supports the controL These

characteristics will be derived from the characteristics of the development process

itself and its controL

1.5 The Process - Control - Infonnation model

This book follows the lines ofthe Process- Control- Information model (abbreviated

as the PCI model) as proposed by Bemelmans (1986). The PCI model distinguishes

a process to be controlled, a control system and an information system within an

organization. The distinction between the process, the control system and the

information system are found in systems theory. The relations between the three

elements mentioned are given in Figure 1.5.

I environment L

extémal data

,r
management

I
control I ... lnformation I information I
system 1....,. 1 system

.4~

direetive~ r intemal data

.. 1 transformation process I ...

Figure 1.5 Process control

Figure 1.5 shows that a system receives input from the environment and produces

output to the environment. The system to be controlled receives directives from the

control system and supplies intemal data to the information system. The information

system translates the intemal data and the external data into management information

for the control system. Figure 1.5 is a descriptive model of the relation between a

system to be controlled, a control system and an information system.

The PCI model goes one step further and could be considered as a constructive tooi

whîch supports the specification and development of control systems and information

10

systems. It uses insights from systems theory and applies the contingency approach

to select appropriate control systems and infonnation systems for particular systerns

to be controlled. The PCI model states that the characteristics of a particular system

detennine which of the possible control systems is suitable for controlling that

system. The selection of a control system is a matter of matching process

characteristics with characteristics of the possible control systems. Examples of

possible control systems in production control are job shop control versus flow shop

controL In a similar way, the characteristics of the process and the control system

delermine the outlines of an appropriate infonnation system. Tbe PCI model is given

in Figure 1.6.

P ____.~ C ____.~ I
I t

Figure 1.6 PCI model (Bemelmans 1986)

The PCI approach was originally developed as a support tooi for the design of an

information systems concept for production control in industrial companies. We will

apply it to software engineering, following Heemstra (1989). The PCI model

describes which characteristics of the primary process detennine the choice of an

appropriate control system. The characteristics are:

Product characteristics, such as: the product range, the composition of the

produels and the demand volumes for the product.

- Process characteristics, such as: phased development, the limited measurability of

the process and the involvement of the user in the development process.

Resource characteristics, such as: specialization, engineering in teams and the

availability of resources.

The PCI model also describes which control characteristics are a decisive factor in

the specification of an information system. They include:

- The set of goals of an organization,

- The production control situation, and,

- The organization of production resources (Bemelmans 1986, Heemstra 1989).

The characteristics of the system to be controlled and the control concept delermine

the outlines of the infonnation system concept, characterized by its functional and

performance requirements.

11

1.6 Contents

This book consistsof 10 chapters. It can be divided into three parts. The problem is

explored in chapters 1, 2 and 3. Chapters 4, 5 and 6 describe how the control of

software engineering should be improved to keep up with the changing demands.

Chapters 7, 8 and 9 deal with the information required in order to be able to control

software engineering, as described in the preceding chapters.

Chapter 2 describes empirica! studies on reasoos for delay in software development.

The goal of these empirica! studies is twofold: firstly, to gain an insight into reasoos

for delay. The insight guides the definition of the problem. The insight is also used

to achieve a second goal, namely to support the software engineering departments

concemed. The insights gained should lead to actions for improvement, enabling

future projects in the department to follow the plan more closely. The evolving

circumstances in which software development takes place are described in chapter

3. The consequences for control, both in the early days and in the current situation,

are discussed.

Chapter 4 deals with the issues quality and maintenance. The issues are addressed

to be able to describe the basics of what we defme as product control, a stage in

which the scope of control has been expanded from development only to the entire

life cycle of a software product. Chapter 5 discusses the reuse of software and

describes the basicsof multiproduct con trol, a stage in which the scope of control has

been further expanded to include the control of a range of software products. Chapter

6 describes how an organization can move from the current state of software

engineering control to the software factory, as characterized in chapter 5. We argue

that a eertaio level of process control bas to be achieved before an organization can

apply product or multiproduct controL

The chapters 7, 8 and 9 deal with information and information systems that support

the control of software engineering. Chapter 7 describes a nulliber of reference

information systems, such as information systems that have been proposed in the

literature to support the control of software engineering arid information systems for

production control in factories. The reference systems are compared toeach other and

assessed with respect to the software factory. Chapter 8 provides a data model for

an information system fora software factory.

Chapter 9 brings information and data collection in software engineering down to

earth and back to current software engineering practice. It shows examples of how

several software engineering departments have colleeled information on their

12

software engineering processes. The application of the data collection techniques

described in chapter 9 are a first step on the way toa software factory, as described

in this study.

Chapter 10 presents a summary of the major issues and provides some

recommendations for future research.

13

2 WHY IS SOITWARE LATE ?
Empirica) studies of reasons for delay in software development

2.1 Introduetion

In practice there is frequently a difference between the planned and the actual

progress of a software project A recent survey in the Netherlands (Siskens 1989)

shows that in 30 percent of large projects the planned costs and lead time are overrun

by more than 50 percent. The reasons why projects do not run according to plan are

less clear, however. It is important to reveal the reasons for delay because an insight

into these reasons can lead to actions for improvement enabling future projects to

follow the plan more closely. This chapter describes a number of empirica! studies

regarding the reasons for differences between plan and reality which were carried out

in 1988 and 1989 in various software development departments in a multinational

organization.

This chapter consists of seven sections. Three surveys of overruns in development

that have been described in the literature will be discussed in section 2.2. Section 2.3

explains the definition and planning of the studies. Sections 2.4 through 2.6 discuss

the studies in three different departments. Each of these sections consist of three

parts. The first part discusses the performance of the study in the particular

department The second subsection discusses the results and the third subsection deals

with their interpretation. This incJudes the interpretation by the project leaders

involved. The overall conclusions of the three empirica) studies will be described in

section 2.7.

2.2 Surveys on the overrun of development projects

Three empirica! studies concerning the overrun of development projects will be

discussed in this section. These studies will be referred to as surveys. The surveys

will be compared with the studies described in sections 2.3 through 2.6 of this paper.

Survey by Jenkins, Naumann and Wetherbe (1984)

Jenk.ins e.a. interviewed the developers of 72 infonriation system development

projects in 23 major U.S. corporations. The aim of the survey was to collect

empirica) data on the systems development process in organizations. The average

duration of the projects was 10.5 months. Over 70 percent of the projects took less

than 1000 person days to finish. The users of the systems developed staled that they

were 'satisfied' to 'very satisfied' with the result in 72 percent of the projects. The

14

relative effort overruns are given in Figure 2.1.

percentage of projects

-25 25 75 125 225 325 425 525

percentage of effort overrun

Figure 2.1 Distribution of relative effort overruns (Jenkins 1984)

The mean of the classes of overrun are given on the horizontal axes. For example:

38 percent of the projects had an overrun of between zero and 50 percent. Nine

percent of the projects had an underrun of between zero and 50 percent. The average

effort overrun was 36 percent. The relative schedule overruns are given in Figure 2.2.

percentage of projects

-25 25 75 125 225 325 425 525

percentage of schedule overrun

Figure 2.2 Distribution of relative schedule overruns (Jenkins 1984)

The average schedule overrun was 22 percent. Figure 2.2 shows that 40 percent of

the projects had an overrun of between zero and 50 percent. One condusion of

Jenkins e.a. was that the cost and schedule overruns seem to be uniforrnly distributed

15

among large, medium and small projects. They did not look into the reasons for

delays and overruns.

Survey by Phan, Vogel and Nunamaker (Phan 1988, Phan 1989)

Researchers at the University of Arizona attempted to detennine why the planned

lead times and casts of infonnation system development projects were overrun (Phan
1988, Phan 1989). Questionnaires were sent to 827 merobers of the American

Institution of Certification of Computer Professionals. The survey yielded 191

responses.,The respondents were involved in projects with an average duration of 102

person months. On average, the lead time was 14 months and 17 people worked on

a project. The average cast overrun was 33 percent, similar to the 36 percent overrun

reported by Jenkins e.a.

The survey comprised 100 questions. In relation to 72ofthese the respondents were

asked to reeall the frequency with wbich theevents occurred as a) always, b) usually,

c) sometimes, d) seldom/rarely or e) never. Over 70 percent of the respondents

claimed that user requirements and expectations were usually met. Figure 2.3 shows

the prevalenee of cost overruns.

sametimes 42 %

usually
37%

always 4%

12 %

Figure 2.3 Prevalenee of cast overruns (Phan 1989)

Only 16 percent of the respondents answered that they never or rarely had cast

overruns. Cost overruns were usual for 37 percent of them. Figure 2.4 shows the

prevalenee of schedule overruns.

16

sametimes 50 %

usually
31 %

,~~~always 1 % I never 2 %

rarely 15 %

Figure 2.4 Prevalenee of late deliveries (Phan 1989)

Figure 2.4 shows that more than 80 percent of the respondents stated that their

projects were somelimes or usually late. The survey also addressed the reasons for

cost overruns and late deliveries. According to 51 percent of the respondents over

oprimistic estimation was usually a reason for a cost overrun. Almost 50 percent

stated that frequent changes in design and implementation were usually a reason for

a cost overrun. Nine percent staled they were always a reason. The survey alSü

invesrigated why the product lead times were overrun. Over-optimistic planning was

a reason to which 44 percent usually attribute the delay. Minor and major changes

were usually a reason for 33 and 36 percent of the respondents, respectively. The

Jack of software development tools was only mentioned by 17 percent as a usual

reason.

The four actions most frequently taken to regain control over delayed projects were:

1) upgrading the priority of the project,

2) shifting part of the responsibility and obligarions to other groups,

3) renegotiaring the plan and schedule, and,

4) postponing features and upgrades to the next release.

Survey by Thambain and Wilemon (1986)

Aim of a field study by Thambain and Wilemon was to investigate the practices of

project managers regarding their project control experiences. The scope of the survey

was not confined to software engineering projects; the leaders of electronics,

petrochemical, construction and phannaceutical projects were interviewed. Data was

colleeled from 304 participantsin project management workshops or seminars. Those

questioned had an average of five years' experience in technica! project management.

The average lead time for the projects was one year and on average eight people

worked on a project.

17

Among other things, the survey investigated what the project leaders and their

superiors (such as senior functional managers or general managers) believed to be

the reasans for cost and lead time overruns. The reasans for overruns were arranged

in order of importance by project leaders and general managers. The results are given

in Table 2.1.

Table 2.1 Directly observed reasans for schedule slips and oost overruns

RANK BY PROSLEM Agreement
between general

General Project and project

managers managers management

1 10 lnsufficient front-end planning Disagree
2 3 Unrealistic project plan Sttongly agree
3 8 Project scope underestimated Disagree
4 1 Customer/management changes Disagree
5 14 Insufficient contingency planning Disagree
6 13 lnability to track progress Disagree
7 5 lnability to track probieros early Agree
8 9 lnsufficient number of checkpoints Agree
9 4 Staffing probieros Disagree

10 2 Technica! complexity Disagree
11 6 Priority shifts Disagree
12 10 No comrnitment by persoMel to plan Agree
13 12 Uncooperative support groups Agree
14 7 Sinicing team spirit Disagree
15 15 Unqualified project personnel Ag ree

It is striking to note that the project leaders and the general managers do not agree

on the importance of nine of the fifteen reasons. According to the researchers, "the

practical implication of this finding is that senior management expects proper project

planning, organization, and tracking from project leaders. They further believe that

the external criteria, such as customer changes and project complexities, impact

project performance only if the project had nol been defined properly and sound

management practices were ignored. On the other hand, management thinks that

some of the subtie problems, such as sinking team spirit, priority shifts and staffing

are of lesser importance" (Thambain 1986).

The researchers also investigated the reasans that caused the probieros referenced in

Table 2.1. These less obvious reasans were called 'subtle reasons', which can be

classified in five categories.

- Probieros with organizing the project team

- Weak project leadership

- Communication probieros

- Conflict and confusion

- Insufficient upper management involvement.

18

Obviously, the subtie reasons cited by the project leaders and general managers were

not technica! reasons, but related to organizational, managerial and human aspects.

2.3 Definition and planning of the study

Definition of the study

The framework of experimentation, as proposed by Basili, Selby and Hutchens

(1986) will be used to define the study that is described in this chapter. According

to this framework, a definition of an experiment consists of six parts: motivation,

object, purpose, perspective, domain and scope. The malivation of this study was to

gain an insight into the reasans for delay in order to be able to imprave the control

of future development projects. This new insight should lead to actions for

impravement designed to enable future projects to follow their plan more closely.

The object of the study was defined as the primary entity examined (Basili 1986).

The object in this case was software development activities. Projectscan be analyzed

on various levels of detail, namely as a whole (as done by Jenkins e.a., see section

2.2), at phase level or at activity level. Data was colleeled and analyzed at the

activity level in this study because experience has shown that a project generally

does notoverrun because of one or two main problems, but rather because of a large

number of minor problems. According to Brooks: "How does a project get one year

late? One day at a time" (Brooks 1975). These small probieros could airoost

certainly be overlooked if data were colleeled at project level. In this study, an

activity was defined as a unit of work that is identified in a plan and can be tracked

during its execution. A typical activity may be the specification of a subsystem, the

design of a module or the inlegration of some modules.

The purpose of the study was to evaluate the reasons for delay. This was done from

the perspeelive of the project leader. The domain studied was software projects. The

scope of the study covered six development projects in one software development

department The definition of the study is summarized in Table 2.2.

Table 2.2 The definition of the study

Motivation To increase insight into the reasoos for delay

Object Software engineering activities

Purpa;e To evaluate reasons for delay

Perspeelive Project leader

Domain Project

Scope Six projects in one developrnent department

19

Planning the study

Motivation of the study was to gain an insight into the reasans for delay in software

development. The kind of questions the study aimed to answer were:

- What are the predominant reasans for delay?

- What is the distribution of the reasans for delay?

- How is the delay distributed over the phases of a project?

- Which actions for impravement can prevent delay in future projects?

The following basic principles were used for data collection.

1) The control of a project refers to the control of quality, effort and lead time. The

study was based on the assumption that an activity is only compieled when the

(sub)product developed fuiflis the specifications. In other words, if the quality of the

product developed is adequate. In the department concemed this was monitored by

reviews and testing. This assumption allowed attention to be focused on the

collection of data relating to time and effort.

2) Data colleerion focused on the differences between a plan and reality. All planning

data were obtained from the most recently approved plan. If a project was officially

replanned, the new plan was taken as the starting point for the comparison between

the plan and reality. The consequences of a repJan will therefore notshow up in the

measurements. For example, the study described in secrion 2.4 involved six projects;

one of them was not replanned, four were replanned once and one was replanned

twice during the study. It might be argued that the differences between plan and

reality were greater than the measurements will show.

3) The third principle was that data colleerion should not take the project leaders

much time. This was a condition stated by the development department

The definition of the study and the above principles resulted in a one-page data

collection form. This consisted of a table with the data to be colleeled for each

activity and a classification of reasans for delays. It is shown in Table 2.3.

Table 2.3 Data determined for each activity

PLANNED AcruAL DIFFERENCE REASON

EFFORT - - - -
STARTING DATE - - - -
ENDING DATE - - -
DURATION - - - -

20

The planned and actual effort were expressed in hours. The starting and ending dates

were given in weeks. The duration of an activity was defined as the calendar period

between the starting and ending dates. All planning data were obtained from the most

recent approved plan. The difference column indicated if there was any difference

between the plan and reality. The reasans for three types of differences were

distinguished in the final column:

- The reason fora difference between the planned and actual effort

- The reason fora difference between the planned and actual starting date

- The reason for a difference between the planned and actual duration.

A reason for the difference between the planned and actual ending date was not

mentioned because this difference can be explained by the difference in the starting

date and the difference in duration.

Obviously, many of the data in Table 2.3 were nol only kept for the purpose of this

study: the planned and actual hours and duration were also required for normal

project control purposes. The survey mentioned earlier showed that in practice data

of this kind are not kept as a matter of course; as many as 50% of the respondents

claimed that they did not record progress data during the course of their projects

(Siskens 1989). In this study, the project plans provided the planned effort, starting

date and ending date. The clerical office provided the actual data, which was

colleeled on the basis of time sheets. The actual data was validated in interviews with

the participating project leaders every other week.

The final column was filled in specially for this study. This was performed by the

project leader who, in consultalion with the researcher, determined the reasans for

differences between planning and reality. A classification was used to delermine a

reason. This was done for two purposes. First, the classification gave structure to the

reasons identified and allowed results to be compared. Second, the classification

saved time for thinking up reasons. Six groups of possible reasans for differences

were identified in the classification. The division into six groups was based on a

discussion with the projectleaders concemed and a previous study (Heemstra 1989).

The groups are lisled in Table 2.4.

21

Table 2.4 Groups of reasons

Group of reasoos Desaiption

Reason relating to

capacity-related the availability of the developers
personnel-related the experience of the developers
ihput-related conditions which must be fulfilled
product-related the software product to be developed
organization-related the organization in which the development takes place
tools-related the tools used to develop the software
other none of the previous categories

The division into six groups has proved tobevalid for several (software) develop

ment departments. In fact, similar studies using the same groups of reasons were

applied in a number of departments. About thirty reasons for delay were found

within the groups. A first classification of reasons was identified after a discussion

with the participating project leaders. Similar studies in other departments showed

that the reasons were specific to the engineering environment in question because of

differences among the software engineers, the type of software developed and the

organization of the department This confirms the measurement principle which states

that metrics must be tailored totheir environment, as formulated in (Basili 1988). A

definite classification of reasons was identified aftera pilotstudy. The classification

of reasons, as used in the study described in section 2.4, is displayed in Table 2.5.

22

Table 2.5 The classification of reasans as used in this study.

CAPACITY-RELATED REASONS
11 capacity not available because of overrun in previmlS activity
12 capacity not available because of overrun in other activity
13 capscity oot available because of unplanned maintenance
14 capacity not available because of unplanned deiiiOilStration
15 capacity not available because of other unplanned activities
16 capacity oot available because of other causes
19 other

PERSONNEL-RELA lED REASONS
21 too little experience with development environment
22 more inexperienced people in team than expected
29 other

INPliT-REQUIREMENTS NOT FUl.Flll.ED
31 requirements late
32 requirements of insufficient quality
33 (specs of) delivered.software late
34 (specs of) delivered software of insufficient quality
35 (specs of) hardware late
36 (specs of) delivered hardware of insufficient quality
39 other

PRODUCT-RELATED REASONS
41 changing requirements during activity
42 changing of the interfaces during the activity
43 complexity of application underestimated
44 more probieros than expected with performance requirements or memory oonstraints
45 product of insufficient quality developed (redesign necessary)
49 other

ORGANlZATION-RELATED REASONS
51 less continuity in project staffing than expected
52 more interruptions than expected
53 influence of software Quality Assurance
54 bureaucracy
59 other

lDOLS-RELATED REASONS
61 development tools too late or inadequately available
62 test tools too late or inadequately available
69 other

OTIIER
71-79

A reason labelled "other" was included in each category because it was not exactly

clear at the start of the study what reasans could be expected. During the study,

however, it was found that the reason "other" only needed to be used rarely.

If the actual hours, starting dates and ending dates were recorded, little time was

needed to delermine the reason for any difference. In practice, deterrnining the actual

hours, starting and ending dates was found to take a great deal more time than

deterrnining the reasons. This was done in an interview once every other week with

23

the project leader in question. It was important to analyze the data during the project

because it would have been difficult to collect accurate data after the project had

finished and validating the data would have been almast impossible. Several reasans

could,be given for each difference, with a maximum of four. In practice it was found

that the difference could usually be ascribed to one reason.

Comparison of the study and the surveys

The study definition that was just described will be compared with the surveys, as

insection 2.2. They will be compared with respecttotheir motivation, object, scope

and the data collection technique used. The malivation of the survey by Jenkins e.a.

was to conduct empirica! research on the information systems development process

in organizations. The survey by Phan e.a. aimed to collect factual data with regard

to the management and control of software projects. Thambain e.a. investigated the

practices of project managers in relation to their project control experience. The

motivation of the study described in this paper was to gain an insight into reasons

for delay.

The object of the three surveys was projects, Jenkins e.a. and Phan e.a. took

information systems development projectsastheir object, while Thambain's survey

was concemed with engineering projects. The object of the study described in this

paper is the activities performed within a project. The scope of the surveys covered

multiple projects in multiple organizations. This study is limited to development

projects within three departments. The last and most obvious difference between the

surveys and the study described in this paper is the data collection technique. Jenkins

e.a. conducted interviews on 72 compieled projects. Phan e.a. sent out a questionnaire

and received 143 qualified responses. Thambain e.a. collected questionnaires from

304 participants in workshops and seminars. In the study described here, data were

collected and validaled during the execution of the projects on the basis of a number

of interviews with the project leaders and the available project data. Because of the

differences mentioned, the study and the surveys were complementary, rather than

similar.

24

2.4 A systems software department

Carrying out the study

The study described in this section took place in a software development department

in the second half of 1988 through the first half of 1989. The department was

concemed with the development and inlegration of system software in the operating

systems and data communications fields. The department employed 175 software

engineers and covered a range of 300 products. Six representative projects in the

department were selected for the study. A total of 160 activities in the projects were

studiect. The data in Table 2.3 were determined for each activity; these were the

planned and actual hours and the starting and ending dates. The average duration of

an activity was 4 weeks and the average effort was close to 100 person hours.

When determining the actual effort and the actual starring and ending dates, the

existing registration was found to be of limited value because some of the data on

the actual implementation of the project were not available in a usabie form.
Recording starting and ending dates was no problem because management

emphasized the control of duration. Starting and ending dates were reported at the

progress meetings. The number of hours spent on each activity was difficult to

delermine in the first part of the study for two reasons. First, the lack of reliability

of the recorded hours. The validation of the data by project leaders showed that the

difference between the recorded hours and the impression of the project leader was

sametimes too large to be credible. Second, the numbering of the activities by the

project leaders was found not to be unique in every case. This meant that the hours

recorded could not be related to activities. The actual hours were nol recorded if the

effort could not be related to activities or the validation indicated that sarnething was

wrong. As a result, the planned and actual effort could only be compared for 97 of

the 160 activities.

Results

The most important results of the study are presenled in the form of four figures.

Figure 2.5 shows the frequency distribution of the difference between the planned

and the actual duration of the activities.

25

percentage of activities
~r-----~--------------------------------------,

30 1------------

20 1----------

·5J -2 ·1 0 1 2 3 4 5 8 7 8 9 10 11 12 13

Figure 2.5

REAL - PLANNED LEAD TIME in weeks

Frequency distribution ofthe difference between the planned

and actual duration (N=160)

Figure 2.5 shows that over 30 percent of the activities were finished according to

plan. Nine percent show a one week underrun, 17 percent show a one-week overrun.

Figure 2.6 shows the relative difference between the planned and actual effort for 97

activities. This figure relales 10 only 97 activities due to the problems that occurred

in the recording of hours for each activity.

Figure 2.6

percentage of activities

·1 {).8 {).8 {).4 {).2 0 0.2 0.4 0.6 0.8 1

(REAL - PLANNED) I REAL EFFORT

Frequency dis tribution of the relative difference between the

planned and actual effort (N =97)

Figure 2.6 shows that about 50 percent of the activities overran their plan by more

than ten percent. About 30 percent underran their plan by more than 10 percent. The

comparison of the planned and actual figures yielded some useful insights. It showed,

for instance, that the relative differences between planned and actual effort increased

26

for the subsequent phases of the project; the delays and overruns increased towards

the end of the project. The same result has been found in other engineering

environments. This fact makes it possible to discourage the idea that delays can be

overcome as the project progresses.

Figures 2.7 and 2.8 present the reasons for the delays and overruns. During the study

it was found that many activities started too late. Figure 2.7 shows the distribution

of the reasons for activities starting too late. These were divided into groups as

identified in Section 2.3. Note that when an activity started too late because of a

delay in a previöus activity, it was recorded as reason 11, a capacity-related reason

(see Table 2.5). This explains the large capacity section in Figure 2.7.

capacity _related
43

tools related 2

Figure 2.7 Distribution of reasons for differences between the actual

and planned starring date (N=53)

The input-related reasons had to do with the late delivery of hardware components

developed in parallel with the software. The start of the software development
activities was also delayed because of this. The reasons for the differences between

the planned and actual duration are listed in Figure 2.8.

27

personnel
7

input related
23

capacity related
45

other reasans 1

Figure 2.8 Dis tribution of the reasans for differences between the act u al

and planned duration (N=113)

Within the groups identified it was found that the most frequent reasans for

differences between the planned and actual duration were:

reasans 12 to 16: "more timespent on other work than planned". These reasans

were named in 27 percent of the cases.

reason 43: "complexity of application underestimated". Same outsiders blame all

the software delays on underestimation. In this case, underestimation was given

as an explanation in about 20 percent of the cases.

/nterpretation of the results

The results were interpreled during a meeting attended by the project leaders taking

part, the department managerand the researcher. In the researcher's apinion data of

this kind should, in the first plaçe, be analyzed tagether with the people involved in

data collection. Si x reasans for this are given. First, it is the engineers', project

leaders' and manager's job to control software development. They should be

supported withall the available data. Second, those involved represent the knowledge

of software development in the department concemed; this knowledge is needed to

interpret the results. Third, those involved can assess the feasibility of any actions

for improvement. Fourth, actions which are decided on by memhers of the

organization concemed will be accepted more easily and thus be implemenled more

quickly than actions recommended by an outsider. Fifth, interpretation of the results

shows the people involved that the data is being used fortheir benefit This should

motivate them to participate in future analysis. Finally, a meeting like this can

contribute to creating a common understanding among project leaders and general

managers regarding problems within the department Colleelive interpretation of the

results can help to prevent different perceptions of the problems, as were reported by

28

Thambain and Wilemon (see section 2.2).

During the meeting it was found that the results of the study confirmed and

quantified a number of existing impressions of project leaders and the manager. For

some of those present the results provided new information. For instance, it was not

clear to everyone that the amount of other work had such a significant effect on

duration.

The following are examples of the possible actions for impravement discussed at the

meeting.

It was found that the amount of "other work" in the projects studied was

underestimated. During the meeting it became clear that the other work consisled

mainly of maintenance. Those present decided that in future projects more time

and capacity should be set aside for "other work".

During the meeting it became clear that the maintenance activities, in particular,

constantly interrupted development. A number of possible ways of separating

development and maintenance were discussed. The possibility of setting up a

separate maintenance group was discussed and rejected. It was decided to

schedule the maintenance work as far as possible in maintenance weeks and to

include two maintenance weeks in each quarter. It was obvious that nol all

maintenance can be delayed fora number of weeks. Any defect that affected the

customer's operation was resolved immediately, irrespective of the maintenance

weeks. Defects of this kind were only a small fraction of the defects and

correcting them involved only a small fraction of the maintenance effort. The vast

majority of defects were found in produels befare they were released to

customers. By carrying out most of the maintenance during maintenance weeks,

it was hoped that development could proceed more quickly and with fewer

interruptions during the other weeks. This suggestion was implemenled by the

department within one month after the meeting.

- The department wanled to gain more insight into the origin of maintenance.

Another analysis study started. lts aim was to gain an insight into the origin of

maintenance in order to be able to take impravement measures that could reduce

future maintenance effort.

At the end of the meeting it was concluded that the study had yielded sufficient

results for those involved. A considerable contribution was the fact that ongoing

discussions could now be supported by facts.

29

2.5 A diversified software development department

Carrying out the study

The technique as described in section 2.3 was applied to Cour projects of another

department in 1988 and 1989 (Lierop 1991). In three of the four projects, systems

software was being developed. The fourth project considered the development of a

time registration system. The software developers in this department are involved in

one development project at a time. The maintenance effort on software developed

earl i er was' negligible in the case of the software developers involved in the projects

observed. A tata! of 80 activities were monitored; the majority of the activities are

from the implementation and test phase of the development projects. The projectsin

this department are planned in greater detail than those discussed in section 2.4. The

average planned effort per activity was 40 hours and the average planned lead time

was 6 days.

The classification of reasans discussed insection 2.3 was slightly modified. Thema in

differences are the actdition of some causes and the fact that some are split up into

more specific causes. An example of the latter is cause underestimarion. In this study

two kinds of underestimations are distinguished: underesrimation of the complexity

of the product and underestimation of the amount of work. One additional cause

requires an explanation. During the study it became clear that activities scheduled

sequentially were aften carried out in parallel. Since the impact of this on the lead

time is clear, it was distinguished as a separate cause.

Results

The results of this study will also be presenled in tables and figures. Table 2.6 gives

the average planned and actual effort for the 80 activities.

Table 2.6 The planned and actual effort in person hours

total average per
activity

planned effort 3203 hours 40 hours

actual effort 3838 hours 48 hours

The study showed an average 20 percent overrun. The corresponding reasans for the

differences shown in Table 2.6 are given in Figure 2.9. The majority of the causes

are product-related.

30

input re
4%

organization
related
45 %

capacity related
11 %

Figure 2.9 Reasans for differences between planned and real effort

lnterpretation of the results

The evaluation by the participants did nol result in actions for improvement. This is

due to the differences in the projects observed and the fact that the majority of the

causes are product-related. These causes are conneeled with the uncertainty in

software development and are therefore hard to remedy with one or two clear actions

for improvement. The evaluation did, however, yield some useful insights for the

project leaders involved. The data showed that once an activity was late the number

of hours worked on it per week decreased. Apparently, project memhers are unable

to work full-time on an activity once it overruns its schedule because other work

requires their attention. An insight like this is very useful when planning the

remaioder of a project that is late.

2.6 A CAD development project

Carrying out the study

The third empirica! study concerned a project in which a components database has

been developed. The system is intended to give designers an overview over the

available electrooie components and to support them in selecting components. The

system had to substitute an existing database system. The project was carried out by

four developers over a period of one and a half years and took 3500 hours to

complete. This additional study is discussed because it is an example of the fact that

software development projects do not have to be late. This project was finished in

time and below budget.

31

The classification of reasans used in this study is a further modification of the

original classification. There is one remarkable difference between it and the other

two classifications: the reasans are not formulated as reasans for overruns but as

reasans for differences between plan and reality. For example: reason 43 is not

fonnulated as: 'complexity of application underestimated' but is staled as 'complexity

of application inaccurately estimated'. This was done because after a few sessions

with the project leader it became clear that the formulation in termsof overruns did

not fit in with this project.

Results

A total of 115 activities have been carried out. The presentation of the results will

be limited to the effort and will not include the lead time. The project memhers were

only involved in this one project sa the lead time in weeks can be calculated by

dividing the effort in person-hours by the number of hours worked per week. The

planned and actual number of person-hours are shown in Table 2.7.

Table 2.7 The planned and actual effort in man hours

total average per
activity

planned effort 3952 hours 34 hours

act ual eff ort 3528 hours 31 hours

The relative difference between planned and real effort is minus 9 percent. The

reasons for the differences between plan and reality are given in Figure 2.10.

product related
71 %

input related
6%

related 10 %

capacity related 1 0 %

tools related 4 %

Figure 2.10 Distribution of reasons for relative differences between the

planned and real effort

The reasans for the differences are presenled in another way in Figure 2.11. The

reasons are divided into reasans for underestimation and reasans for overestimation

32

in Figure 2.11. The parts of the pie show the percentage of the overrun and underrun

for which a group of reasens is responsible.

input related
18%

product related
37%

overruns

related
18 %

underruns

12%

Figure 2.11 Reasens for differences between the planned and actual effort

Figure 2.12 presents the differences in the subsequent phases of the project. It shows,

for example, that the overestimation of the global design phase was 360 hours. The

underestimation was 32 hours. This resulted in an overestimation of 328 hours for

the global design phase. Figure 2.12 also shows that the overestimations reduce

towards the end of the project.

detailed
design

phase

implementation

-underestimated

overestimated

Figure 2.12 Difference between the plan and reality in each phase

33

lnterpretation of the results

The interpretation of the results was not primarily aimed at actions for improvement.

There is always room for improvement, but in this case that was not the first thing

to look at. The interpretation was aimed at revealing the critica! success factors for

this project. Not only was it completed on time, but the product also fulfilled the

specifications and was considered a success by the users. The major success factors

identified were:

The smal! and experienced project crew. The four persons concerned had

considerable experience in the development of comparable systems.

· - The thorough project preparation. The project had been preceded by a month

preparation in which the product to be developed was agreed upon. The

preparation included the detailed planning of the project. One critica! remark is

justified at this point. Parkinson's law may explain the success of this project to

some extent. This law stales that "Work expands to fill the available volume"

(Boehm 1981). lt is possible that too much time was planned, especially for the

global design phase.

- Availability of the software engineers. The engineers were available full-time for

this project. They were not bothered by other development or maintenance

obligations.

- The clear responsibility of the project leader and the product manager. Three

parties could be distinguished in. the project: the clients who financed the

development of the product, the project leader and the product manager. The

product manager was a member of the development organization and functioned

as an interface between the clients and the project leader. The product manager

and the clients agreed upon a specification. The product manager and the project

leader negotiated about a project plan and the required costs and lead time. The

former informed the clients about the product under development and prepared

them for the product. He also remained responsible for the software product after

the initia! installation. The product manager was responsible for the software

product throughout the entire life cycle of the product, while the project leader

was only involved during its development. The role of the project leader could

be typified as 'making the product' . The role of the product manager could be

typified as 'selling the product to the clients'. The clear responsibilities of the

project leader and prOduct manager contributed to the success of this project. The

role of product management in the control of software development will be

discussed in chapter 4 of this thesis.

34

2. 7 Conclusions

The conclusions consist of three parts. Firstly, results of lhe studies wil! be compared

to the three surveys that are described in section 2.2. Secondly, the results of the

three studies wil! be compared. Thirdly, valuable insights obtained during the study

with respect to software engineering control and information wil! be mentioned.

Th ree surveys on project control of projects were presenled in section 2.2. As stated

in section 2.3, the present study examined overruns in software development in a

number of software departments in detail. As such, the study and its results are

different from the surveys discussed. A comparison provides the following insights:

- The average overruns we found in two of the three cases approximate the

overruns found by Jenkins, Naumann and Wetherbe (1984). The last casestudy

showed that it is possible to develop software development according to plan,

provided eertaio conditions are fulfilled.

Over-optimistic planning was cited as a probable cause in all the studies that

examined reasans for delay. Phan e.a. found that 44 percent of the respondents

named over-optimistic planning as a reason. An unrealistic project plan and

underestimation of the scope were named as major reasans in Thambain and

Wilernan's survey. The studies described in this chapter also recorded

underestimation of the complexity as a reason. The first study recorded it in 20

percent of the cases.

- Thambain and Wilernan's investigation of the subtie reasans for delay indicate

that the reasans were not technica! in nature, but were related to organizational,

, managerial and human aspects. The product- and tools-related reasans represent

most of the technica! reasons. The first study confirms Thambain and Wilemon 's

findings. The technica! reasans camprise only one-third of the reasoos mentioned

in the first study. The latter two studies show a larger share for the 'technica!

reasons'.

lt must still be noted that remarkably few comparable surveys or studies have been

described in the literature. Moreover, this is true in general for empirica! studies on

the control of software development.

Secondly, the results of the three studies described in sections 2.4, 2.5 and 2.6 will

be compared. The delays and the distribution of reasans for delay vary strongly per

department The effort overruns differ from minus 9 to plus 30 percent. The most

important reason also varles from capacity-related reasans to underestimation and

overestimation of the complexity of the application. The value of the data that is

35

colleeled in one environment is limited in other environments due to the differences

in software development and its control in distinct environments.

Thirdly, valuable insights obtained during the empirica! studies with respect to

control and infonnation will be mentioned. The insights will be used in the

remainder of this thesis. Three are as follows:

1) ft has become clear that the control of software development cannot always be

restricted toa development project. Some of the important reasans for delay originate

outside the project but nevertheless affect the project. The first case study showed

that the development was hindered by the maintenance activities that had to take

place. Software maintenance should be taken into account in this department The

last study indicated that the function of the product manager may be valuable in

supporting the control of software engineering activities tbraughout the entire life

cycle of a product. The remainder of this thesis will show that the control of software

development cannot be limited to projects.

2) The value of data on delays and the reasans forthem is limited to the environment

in which they are collected. 'Local for local' data collection seems to be appropriate

in the current status of software engineering and its controL Since software

development is not camparabie at different sites, the data on development and its

control are most useful at the site wJtere they are collected. We recommend that

every department should gain an insight into its reasans for delay in software

development to enable adequate actions tobetaken for improvement.

3) The empirica! study can also be perceived as a means of collecting data on the

development process. Hence, it may be concluded that the importance of closed loop

information systems has again been confirmed. The closed loop principle

(Bemelmans 1989) argues that information systems should be designed in such a way

that those who provide input to an infonnation system are main users of its output.

Application of . this principle results in feed-back to the data suppliers. The

importance of closed loop informatiön systems bas been shown in two ways. Firstly,

the case study discussed in section 2.5 revealed that the infonnation provided by the

existing hours registration system was inaccurate. One of the reasans was that the

developers who provided the input never saw any output. The accuracy of the

infonnation improved during the study because it became clear that sarnething useful

was done with the data. Secondly, on the basis of the studies themselves we have

shownon a small scale that software developers can be motivated to provide accurate

data on condition that they benefit from the data collection.

36

3 CHANGES IN SOFTWARE ENGINEERING CONTROL

3.1 Introduetion

The term software engineering has been in use since the late sixties. Software

engineering is an example of a young engineering discipline. The circumstances in

which software engineering has taken place have changed considerably over the first

decades of its history and its evaJution is the subject of this chapter. The software

engineering process and its control wiJl be characterized in terros of the Process

Control-Information model, as mentioned earlier. Software engineering used to be

controlled in what will be called 'traditional' con trol. We will show why traditional

control fitted in with the traditional software engineering process and examine to

what extent it is still appropriate for the current, changed software engineering

process.

The chapter consists of the five sections. Section 3.2 discusses the basic principles

of traditional software development. Section 3.3 describes the traditional control of

software development. Section 3.4 sketches the changes that occurred in the software

engineering processes and discusses some of the probieros that arise ifcontrol is nol

adjusted. Section 3.5 compieles the chapter with a summary and conclusions.

3.2 Basic principles of traditional software development

Three basic principles will be named. They are the fact that isolated applications with

stabie specifications were developed, and the fact that development was based on

isolated efforts by specialists. We do not argue that every single software

development effort foliowed the basic principles outlined in this section. However,

later on we will argue that traditional control assumes that software development

enacts according to the given basic principles.

/so/ated applications
In the early days, software produelS usually involved isolated applications. Typical

information systems that were built were payroll systems and order acceptance

systems. The systems that were developed did not have to take account of

predecessors because there were none. They were specified and developed as systems

that were to be used on their own (Looijen 1988). This kind of automation has an

advantage from the development point of view: the systems do nothave to allow for

the interfaces to other systems, which might change. This kind of automation is

usually referred to as island automation.

37

Stabie specifications

The specifications of the systems developed were relatively stable. The main cause

was not a more stabie environment, but the fact that the applications which were

selected, were the ones with unambiguous specifications, expected to bestabie in the

future. An information systems example illustrates tllis characteristic. The early

information systems were transaction processing systems that were characterized by

a great amount of data input, batch processing and a high volume of data output

(Looijen 1988). They were usually structured decision systems that process data

according -to fully structured and formalized procedures (Ahituv 1982). An example

is the payroll system. The applications selected had a low volatility. The chancesof

changing requirements were rare. This was, among other things, caused by the fact

that the number of users was relatively low and the users could be considered expert

users. The stability of the specifications was further enforced by the fact that

applications were isolated and, as such, were unaffected by changes in other, related

systems.

lsolated development efforts

Software development was new and was done by software specialists who defined

their own working methods. Requirements were also mainly defined by the software

specialists, who were even responsible for rnanaging the development process.

Generally speaking, the software developed did notaffect the products of a company

or its primary processes such as development, production, or sales. As a

consequence, line management was not really involved in rnanaging software

development. The software specialists were organized as an independent unit in the

organization. Separating them was in line with the efficiency goals: it was considered

efficient to separate the expensive software specialists and let them get on with their

work undisturbed.

Software developers could in most cases work on one project at a time. Software

development departments did nothave to deal with multiple projects simultaneously

as they have to do now. Maintenance was not such a big problem since there was not

much software around to be maintained and, as already mentioned, the kind of

applications that were automated had stabie specifications.

38

3.3 Traditional control

According to the PCI model, the characteristics of the primary process delermine

which control concept is suitable in a particwar situation. This section will discuss

some characteristics of the control of conventional software development. These are:

- The use of the waterfall model

- Project control

- The emphasis on control of time and cost.

The use ofthe waterfall model

The waterfall model was the model most frequently used in traditional software

development. lts key features are a predefined list of deliverables in each phase and

the introduetion of milestones, usually at the end of each phase. Phases typically

distinguished in the waterfall model are: specification, design, coding and testing.

Testing was considered as one of the final activities in the life cycle. lts purpose was

to ensure that the specified quality level had been achieved. At that time, the

waterfall model replaced the so-called 'code and fix' modeland could be considered

an impravement from the viewpoint of controL The main contri bution lies in the fact

that progress becomes more measurable as a result of predefined phases and

deliverables.

The waterfall model is not applicable to all software development efforts, however.

For instance, if requirements are subject to change, developers using the waterfall

model will in many cases find out after they have finished the final phase and

delivered the' product. Very important conditions for the appropriate use of the

waterfall model are relative stability and cleamess of specifications. These conditions

were fulfilled in traditional software development. The waterfall model is limited to

the development phases. Initially, this was not an obstacle since there was not much

software to be maintained.

Project control

Software was usually controlled in projects. There are many ways of defining

projects. Three important and frequently used definitions wil! be discussed shortly.

The first is by Harrison who defines a project as "a non-routine, non-repetitive, one

off undertaking, normally with discrete time, financial and technica! performance

goals" (Harrison 1981). Harrison further stales that projects are essentially temporary

activities for those concemed, with typical durations of six months to five years.

Management, organization and information systems have to be established anew for

each project, and as a consequence there is a very limited leaming curve for those

involved.

39

Other definitions of projects have been given by the Project Management Institute

(PMI) intheir 'PMl Body of Knowledge Standards' (Wideman 1986). One of these

definitions is: "Any undertaking with a defined starting point and defined objectives

by which completion is identified. In practice most rnadeis depend on finite or

limited resources by which the objectives are to be accomplished" (Wideman 1986).

Another PMl definition of a project is: "A combination of human and nonhuman

resources pulled tagether in a temporary organization to achieve a specified purpose

with limited resources" (Beek 1986).

The definitions of a project concept have two things in common (see also Botter

1983 and Wijnen 1986): the fact that a project is a temporary and incidental

organization forrn and the fact that the projeet's objective bas to be achieved within

certain constraints. Constraints usually concern the time and money that are available

to execute the project. The discussion will focus on the incidental and temporary

organization forrn and will show that this fitted in well with the control of traditional

software development. Wijnen (1986) distinguishes three major approachestoa job:

routine work, project work and improvisation. The routine work approach is chosen

when the work to be done is repetitive in nature, does not change significantly over

time, and the work process is clear. The main advantage of this approach is that it

is embedded in daily routines. The opposite approach is improvisation. It is chosen

when the work process or the objectives are unknown. This may be the case in, for

instance, explorative research. The main advantage of this approach is its flexibility.

The project approach is an intermediale approach. It is chosen, according to Wijnen

(1986), if:

- The result is nol completely new, but has some new aspects

- . People from different disciplines have to cooperate

- The result can be specified befarehand and has to be achieved with limited

resources.

The project work approach fitted in well with the control of traditional software

development. The work was of a non-routine nature since software development

involved a number of isolated, incidental efforts. On the other hand, the work was

not done in an improvised way because most steps and activities in the process were

known. The work was done according to the waterfall model, as discussed in section

3.2.

Emphasis on control of time and cost

Projects always have multiple objectives. The definition of the Project Management

Institute (Wideman 1986) leads to a number of project control objectives being

distinguished. PMI considers scope, quality, time and cost as project objectives

40

(Stretton 1989). Scope is defined as the work content of a project. The quality

referred to is the quality of the product which is the result of the project (Wijnen

1986). Quality, costand time may be considered as the key control aspects because

these are what the world outside the project is interested in.

Project control usually follows the basic control loop that is introduced to put a

number of activities into place that will be mentioned throughout this hook. The

basic activities are to state objectives, make a plan, execute a plan, measure progress

and controL A simplified model of a control loop is given in Figure 3.1. Arrows

indicate the sequence of activities.

CONTROL

execute

Figure 3.1 Control activities (Schaik 1985)

The control of a development cycle usually starts with a statement of objectives. The

aspectsof quality, costand time have to be distinguished. Objectives will have to be

specified forthese three aspects. The statement of objectives is foliowed by planning.

The execution of the project will be measured during development. Measurement

should enable the actual progress to be compared with the plan. The coroparison of

plan and reality indicates whether soroe control action bas to be taken. Three kinds

of control actions are possible. The first one is to change the execution of the project.

This can be done, for exarople, by exchanging people in the project team, using other

tools or working overtiroe. The second kind of actions involves adjustroents of the

plan, such as rescheduling or reallocating resources. The third kind of action is aimed

at roodifying the objectives. Quality requirements can be altered, the delivery date

can be postponed or the project may even be cancelled.

The problem with the control of a developroent project is nol controlling the separate

aspects but controlling thero in an integral way. To develop a software product is one

41

thing, to do this within a given time with limited resources is something different.

Software engineering should be a matter of balancing quality requirements, on the

one hand, and time as well as cost on the other (Bemelmans 1987). For example:

performance requirements can considerably affect the development cost and lead

time. ldeally, software engineering should ensure that the three are considered in an

inlegral way. It should also ensure that engineers offer customers a number of

alternatives. The customer should be given some design options to choose from. The

engineers must be capable of balancing quality, time and cost in order to be able to

provide reasonable alternatives. The elient must be capable of making up his mind

with regard to the alternative he prefers.

We mentioned earlier that in the early days software products were developed in

isolation by software specialists. The definition of requirements was done by these

specialists, as was the testing of a software product with respect to the requirements.

The users did not have much influence on the aspect of quality. They did not have

much knowledge about it either. Generally, only one alternative was specified,

designed and implemented. The customer was often not even consulled during

development. The aspects the customer could specify and control were time and cost.

This led to an emphasis on the control of these two aspects and, consequently, an

emphasis on the efficiency of the development process.

3.4 Changes in software engineering and its control

This section wil! discuss how the characteristics of the software engineering process

have evolved over the years. Changes in the software engineering process that will

be discussed are:

- New application areas

- Less isolated software produels

- More maintenance

- An altered view of quality

- Less isolated development efforts

- More uncertain control situations.

The PO model stales that changes in the P characteristics do affect the choice of an

appropriate control system. The discussion will show that traditional control, as

described in section 3.3, does not always fit in with the changed circumstances in

which current software engineering practices take place. We will discuss some of the

problems that can arise if traditional control is practised, without taking account of

the changed circumstances.

42

New application areas

The use of software has spread from the margin of the organization into its produelS

and primary processes. Software has thus acquired strategie importance. Examples

of this have already been given. The fact that software has become part of the

primary process and produelS increases the importance of the control of software

development with respect to quality, time and cost. The changed application areas

for software result in an emphasis on a number of the quality attributes that were

previously not so important. Because of the increased strategie importance, software

specialists can no langer be given the responsibility for the software development

process and its products. Software bas become a core business for many companies

and, as a result, it wil! have to become a responsibility of line management.

The new application areas introduced also involved more uncertainty in the

application and development process. This trend can be illustrated by the following

example. One of the new application areas includes decision support systems which

support less structured decision processes. The fact that the decision process is less

structured makes the specifications of the system less clear and more vulnerable to

changes. This wil! lead to greater uncertainty regarding the product itself and the

development process of such a product.

The waterfall model was the main process model in traditional software engineering

controL A condition for using it appropriately is stability and cleamess of

specifications. This condition is no langer always fulfilled. The waterfall model is

less appropriate if, for instance, the requirements are subject to change. Therefore

alternative process models wil! have to be sought. Examples are prototyping and the

evolutionary model.

Less isolated software produels

In the early days, software produelS could be considered as isolated. Over the years

however, they have become more integrated because of the new application areas and

because of the fact that most software produels have acquired a history. Today, a

software product is very aften not sarnething new, but an enhanced product. lt must

therefore be compatible with its previous releases and must be able to function in

different processing environments. The new application areas aften require a software

product to be able to interface properly with surrounding software products and

exchange data according to specified interfaces. Nowadays, almast all software

products are embedded in an environment to which they must adapt. The fact that

software products are found everywhere, prevents the use of a greenfield approach

to software development.

43

More maintenance
The increase in software maintenance can be attributed to a number of causes, the

two most important of which will be mentioned here. The first is the growth in the

amount of software and the increased size of software products. Software was

incorporated in many products and at many places in the organization. The service

life of the products increased. There is simply more software around to be

maintained. A second cause of the increased need for maintenance is the fact that

software products in new application areas are more vulnerable to change than the

earlier applications were. As Brooks (1987) points out: all successful software

products get changed. A first reason is that if a software product is found useful,

people wil! try it at the edge or beyond its original domain. The software will either

be adapted or its effectiveness will decline (Lehman 1983). One could question

whether such adaptations should be called maintenance. We will address this question

later on. A second reason for change is that software may survive the life of the

environment for which it is written. The software will have to be adapted to be able

to operate in a changed environment.

Nowadays over half of the effort comes after the initia! installation of the software

product (Martin 1983, Conte 1986, Lehman 1984). Control of software engineering

cannot ignore maintenance that absorbs over half of its resources. Again, alternative

life cycle roodels will have to be explored.

The use of a traditional control system can lead to an even greater increase in

software maintenance. Traditional control was mainly organized in projects and it

emphasized the control aspects of time and cost. A project team with clear goals in

terros of time and money may be willing to sacrifice some quality goals, which are

stated less specifically anyway. Quality may be considered less important since a lack

of quality does not appear until the product is in use. By that time the project team

has broken up and the merobers are working on their next development project. The

additional workis referred to as maintenance and is considered as somebody else's

problem.

Altered view of quality

The view of quality has allered for several reasons. A first reason is that the

specification of the quality requirements can no longer be left to the software

specialists si nee the use of the software is no longer limited to the specialists. Ouality

will have to be expressed in terros that can be communicated from users to engineers.

A second reason is that customers are much more critica!. They have become more

familiar with information technology and its opportunities, as well as its constraints.

The third reason is that quality has become an industry-wide subject. Efficiency was

44

a major performance criterion in the industry in the sixties. Quality became an

additional criterion in theseventies (Bolwijn 1990). It was acknowledged that quality

cannot be built into a product by testing at the end of a process. Quality can only be

assured by a quality-driven process. Testing as an isolated, final phase of the

traditional waterfall model is far from enough to assure quality.

Less isolated development efforts

Software development has become a less isolated activity within organizations. Most

of the time several projects are going on simultaneously. Those projects havetoshare

the same scarce resources and can therefore no longer be considered as isolated

development efforts. On top of that, projects can be related to each other as far as

goals are concemed. Large projects are often divided into several, smaller projects.

As a result goal coordination is required, in addition to resource coordination. This

kind of coordination is usually referred to as program management.

For some organizations software development has become the main line of business.

There are many organizations of hundreds or even thousands of people whose sole

reason of existence is software engineering. They can certainly not afford to consider

software engineering as a sequence of isolated development efforts. In addition to

projects, some off-project activities will have to be performed and controlled.

Examples of necessary, off-project activities are resource planning for projects,

contiguration management, the development of methods and maintenance. The

maintenance problem discussed in one of the empirica! studies was an example of

the kinds of probieros that arise if a project organization fails to realize that it wil!

be faced with more and more off-project activities.

A related problem is the lack of software reuse. Software developers are aften

accused of the fact that they reinvent the wheel over and over again. One of the

reasans for the lack of reuse is the organization of software development in projects.

Time and cost constraints do not allow for additional work involved in making a

software component available for future reuse, or indeveloping components that may

be usabie in future projects. One simply cannot afford to look beyond the project.

Besides that, it is nol in the interest of the participants: if they stumble over the same

requirement in the near future, they wil! recognize it and reuse the accompanying

software. They are not rewarded for the fact that others may be able tobenefit from

their experience as well. The result is that software produels are nol easily accessible

for reuse and will therefore not be reused. The next project will start frorn scratch

again.

45

More uncertain control situations.

Traditional control could be characterized as a situation of certainty. We will argue

that the changes in the software engineering process have affected the level of

uncertainty and, as a result, not all control situations can be characterized as certain

any more.

The level of uncertainty of the process was taken as a starting point in a study by

Heemstra (1989). He showed that the level of uncertainty should be a distinguishing

factor in the choice of a control system. The study foliowed the lines of the PCI

model. The level of uncertainty is determined by the degree of product uncertainty,

uncertainty of development resources and process uncertainty. Heemstra distinguished

between four control situations. They are given in Table 3.1.

Table 3.1 Four possible control situations (Heemstra 1989)

level of uncertainty

Variables
(

I 2 3 4

product uncertainty low low low high

process uncertai nt y low low high high

development resources uncertainty low high high high

The four different control situations have different characteristics with regard to the

required control system. These characteristics will be described for the two extreme

situations.

1 The certain situation (product, process and development resources

uncertainty low)

In this situation, product requirements are known and stable, the development team

knows the development process and there are enough control actions to react to

unexpected events. Since it is clear what product is to be developed in which

process, the required team capabilities and development tools can also be specified.

Since both means and ends are specified, the control problem is mainly a problem

of realization and the emphasis will be on efficiency: how to develop the specified

product at the least possible costs within the shortest possible time. The project

leader will be a controller among developers. The number of iterations in the

planning and control cycle will be limited and development according to the waterfall

model will usually do the job.

Traditional software development can be characterized as a certain situation: the

product specifications were stabie because the products were isolated applications and

the process usually foliowed the lines of the waterfall model. The development

46

resources uncertainty was low because the available software engineers usually

worked full-time on a project and were not bothered by activities such as

maintenance.

4 The uncertain situation (product, process and development resources

uncertainty high)

The uncertain situation is the other extreme. In this situation, it is not yet clear what

product has to be developed. The requirements are not only unknown, they are also

evolving. The process of development is Iess clear so the waterfall model will not

be appropriate. Other process models will have to be used in order to be able to

handle changing requirements. Control actions are scarce and their effect is hard to

measure. The wishes with respect to the team's development capabilities are

unknown and the required development tools have not yet been chosen. The main

problem in this situation is an exploration problem: how to identify alternatives with

respect to the product and development process. The team leader will have to be an

engineer among engineers and will have to be a technologicalleader. Engineers will

have to be able to deal with a lot of uncertainty. The objectives of a development

effort in an uncertain situation will differ from the objectives in the eertaio situation.

The goal in an uncertain situation may be: 'to explore which design alternatives are

available within a fixed period of si x months with a fixed resource of five engineers.

A new budget will be decided upon after six months'.

The study by Heernstra shows that the control of software engineering should depend

on the level of uncertainty. The level of uncertainty has risen over the years in terms

of the product developed, the process applied and the resources used. We have

argued that the requirements became less stabie as a consequence of entering new

application areas. As a result, the product uncertainty increased. The process

uncertainty also increased over the years: insteadof the waterfall model, which was

used as if it suited all purposes, alternative process models had to be employed to

cope with the increased product uncertainty. The resource uncertainty has increased

because different tasks make claims on the same, scarce resources. Examples of such

tasks are: development activities for projects executed in parallel, maintenance,

contiguration management, the development of methods and process improvement.

The description showed that traditional control could generally be characterized as

a situation of certainty. The changes in the software engineering process have

affected the level of uncertainty as regards the product, process and resources.

Consequently, notall current control situations can now be characterized as certain.

A whole variety of control situations can be encountered in software engineering

processes nowadays. It is necessary to identify the level of uncertainty, after which

47

an appropriate control system must be selected. Project management, the waterfall

model and an emphasis on the control of time and cost were identified as

characteristics of traditional controL They can still be appropriate in a control

situation where certainty exists. They will however be counterproductive in an

uncertain control situation.

3.5 Summary and conclusions

l..ooking back at all the remarks on the previous pages, we can summarize the main

changes in software engineering and its control as follows.

Table 3.2 Characteristics of the software engineering process

Olaracteristic Traditional _pr<>a:SS Current process

application - isolated - integrated witb otber applications
- in products and primary

- secondary processes of the processes
organization

specifications - stabie - vulnerable to change

development - isolated - integrated witb otber projects and
effon rnaintenance

quality - testing at the end of the - towards quality assurance and
development process attention for process quality

level of - in genera!: a cenain - the whole range from certain to
uncenainty control situation uncenain control situations

The changes in the software engineering process require changes in controL Probieros

will arise if these changes are negleeled and traditional control is employed over the

whole range of software engineering processes that have emerged. Some of the main

probieros have been discussed. They were:

the fact that maintenance is not taken into consideration

the fact that off-project activities such as configuration management, process

improvemenr and maintenance will suffer from a lack of attention

Jack of reuse

inappropriate application of traditional software engineering controL

Our condusion is that the use of the waterfall model and an emphasis on time as

well as cost alone are iocapabie of coping with the variety of control situations that

have developed over the years. This does not imply that all that has been learned

about the control of software engineering must be forgotten and that we havetostart

all over again. In some situations traditional control will be sufficient. In others the

48

control of software engineering needs to be altered, extended or improved. Other

control systems will have to be explored. This wiJl be the subject of the following

chapters.

49

4 QUALITY AND MAINTENANCE; towards product control

4.1 Introduetion

Software quality bas become a key issue over the last years. lt is the subject of the

sections 4.2 and 4.3. A related subject is software maintenance. Some people still

think software engineering ends with the initial instaBation of a software product. lt
is, however, a well-known fact that the software will call for a great deal of effort

after its initial installation. This effort is usually referred to as maintenance. Section

4.4 explores the relation between quality and maintenance. Software quality and

maintenance need to be addressed to be able to discuss the main subject of this

chapter: the change from traditional development control, which disregards

maintenance, to product control, that does take maintenance into account. Product

control will bedescribed in sections 4.5 and 4.6. Section 4.7 ends the chapter with

a summary and conclusions.

4.2 Quality attributes

Software quality has been mentioned several times in the previous chapters. This

section discusses quality attributes which can make software quality more

operational. These attributes will be discussed bere to provide a common frame of

reference. Two main studies of software quality are those by Boehm (1977) and

Cavano and McCall (1978). The quality frameworkof Cavano and McCall will be

introduced as an example because it classifies the quality attributes and gives a

comprehensible impression of the meaning of the quality attributes distinguished. The

framework will be presenled first, foJlowed by a definition of quality attributes

identified. The çnd of the section will discuss the consequences of the changes in

software development, as presenled in chapter 3, in relation to the importance of the

quality attributes which have been distinguished.

According to McCall (1978), the concept of quality is básed on the three viewpoints

on the basis of which a manager interacts with an end product: its opera ti on, revision

and transition. The framework is given in Figure 4.1.

50

maintainability
flexibility

testabi I ity

correctness
reliability
usability

efficiency
integrity

portability
reusability
interoperability

Figure 4.1 The software quality triangle (McCall, 1978, page 191)

The viewpoints of operation, revision and transition correspond to the life cycle of

a product. The software quality attributes are associated with the viewpoints. A

product is judged on its operational quality attributes after development. The

operation of a product delermines whether it meets the dient's needs. Maintenance

of software produels starts after delivery. The revision quality attributes become

important at this point, especially flexibility and maintainability. The transition of

components from an existing product to a new product becomes important when the

aim is to reuse software.

A typification and a definition of the attributes are given in Table 4.1.

51

Table 4.1 The definitions of the quality attributes

Attribute Typification Definition

Correctness Does it do what I extent to which a program satisfies its specifications
want? and fuifiJs the user's mission objectives

Reliability Does it do it extent to which a program can be expected to
accurately all the perfoon its intended function with required
time? precision

Efficiency Will it run on my !he amount of computing resources and code
hard-ware as well as it required by a program to perform a function
cao?

Integrity Is i t secure? extent to which access to software or data by
unauthorized persons cao be controlled

Usability Can I run it? effort required to learn, operate, prepare input, and
interpret output of a program

Maintaina- Can I fix it? effort required to locale and fix an error in an
bility operational program

Testability Can I test it? effort required to test a program to ensure it
perforrns its jntended function

Aexibil ity Can I change it ? effort required to modify an operational program

Portability Will I be able to use effort required to transfer a program from one
i t on another hardware environment to another
machine?

Reusability Will I be able to reuse extent to which a program cao be used in other
some of the software? applications- related to the packaging and scope of

the functions that programs perform

lnteroper- Willl be able to effort required to couple one system with another
ability interface i t wi th

another system?

The factors and their definitions largely correspond to the factors of software quality

distinguished by Boehm (1977). The changes in software development, as described

in chapter 3, affect the importance of the various quality attributes. In general it can

be argued that the importance of quality attributes has increased because of the

growing importance of software applications and the increasing interest in quality.

The anributes particularly affected will be discussed.

Correctness, reliability and integrity have become more important for those

applications which affect the primary process of a company or are part of its

products. The quality attribute which McCall narnes integrity is aften referred to as

security (Myers 1976). The importance of the efficiency of software has become less

important, due to price-performance ratios of the computing resources that have

52

become available as a result of a rapid evalulion in technology. The usability of

software bas become more important since the use of software is no langer limited

to specialists: many people use software produels nowadays.

The second group of quality attributes are the product revision attributes. The

importance of testability bas increased because of the fact that the size of software

produels have grown in volume and the fact that software produels have become

more integrated, as already discussed. The correctnessof a program bas to be tested,

as well as the inlegration of the program with other programs being developed

concurrently. Maintainability bas become of interest because of the fact that over half

of the engineering effort is required after the initial installation of a program and

there are a lot of software produels to be maintained. Flexibility bas become

important because applications which are autornaled nowadays are more vulnerable

to changing specifications, as was argued in section 3.4.

The third group of attributes is the transition quality attributes, namely portability,

reusability and interoperability. Portability bas become an important item over the

years because of the rapid hardware developments and the lack of standard hardware

platforms. Portability should ensure the value of software, despite the migration to

other platforms. Reuse bas become a major issue, proruising an impravement of the

productivity of software development and a reduction of the lead time involved in

development efforts. Interoperability is important because of the increasing

inlegration of software produels (section 3.4).

The condusion of this short overview is that software quality has become a multi

faceted concept over the years. Correctness, especially functional correctness, may

have been the most important quality attribute in conventional software development.

Nowadays software development will have to take account of many quality attributes

simultaneously.

4.3 Quality definitions

This section will first make a distinction between different viewpoints on product

quality. Next, the concept of process quality wil! be introduced. Finally, a basic

approach will be suggested for handling the different viewpoints on quality in

practice.

53

Product quality

The need for different quality definitions will first be illustrated with an example: 'A

product has been developed according to the specifications, but the users are not

satisfied because the product does not fit their needs. Developers conclude that the

users are not able to explain what they want and users conclude that the developers

are not able to understand what they want. Both parties end up being unsatisfied with

the result of the development effort and it is not easy to say who is right and who

is wrong.'

The following discussion of quality definitions will show that both parties are right,

according to their own definitions. Garvin (1984) distinguishes between five quality

definitions in an important paper entitled "What does 'Product Ouality' really

mean?". The five definitions are a:

- Transcendent definition,

- User-based definition,

- Product-based definition,

- Manufacturing-based definition, and,

- Value-based definition.

The five quality definitions will be discussed.

The transcendent definition says that quality is synonymous with innate excellence.

According to this definition, quality is absolute and universally recognizable, despite

the fact that it cannot be defined precisely. Only eXJ>erience can teach to recognize

quality.

The second quality definition is user-based. An example of a user-based definition

is Juran's definition: "Ouality is fitness for use" (Juran 1988a). A user-based

definition starts from the assumption that individual customers have different needs

and those goods that best satisfy their neects are considered to have the highest

quality. According to the user-based quality definition, quality is a subjeelive

concept. The user-based definition of software is often the only definition that is

acknowledged by the users of software products.

The product-based defiilition views quality as a precise and measurable variable.

Differences in quality reflect a difference of some ingredient or attribute possessed

by a product. The product-based definition views quality as an inherent characteristic

of goods, rather than as sarnething ascribed to them. This group of definitions

consistsof objective quality definitions. Most of the workon software quality to date

uses the product-based quality definition. The quality framework that was presenled

in section 4.2 was mainly founded on the product-based quality definition.

54

The fourth group of definitions to be discussed is the manufacturing-based

definitions. These definitions identify quality as confonnity with specifications.

Whereas user-based definitions focus on the user's side, manufacturing-based

definitions focus on the supply side. The primary focus is internal. Software

engineers aften use manufacturing-based quality definitions.

The four groups of quality definitions so far discussed dealt with product quality in

isolation. The fifth group of definitions are the value-based definitions. They define

quality in relation to casts. A value-based definition regards a quality product as one

that provides perfonnance at an acceptable price or confonnance at an acceptable

cost. Section 3.3 argued that software engineering should be a matter of balancing

quality requirements on the one hand, and time as well as cost on the other hand.

The value-based quality definition appeals to the balancing capabilities of both

engineers and users.

So much for the description of five groups of product quality definitions, as

described by Garvin. The groups of definitions will be classified to enable some of

the problems which arise in conneetion with product quality in software engineering

to be illustrated. Table 4.2 classifies the definitions as users' or engineers' definitions

because these are the two main parties in the engineering process. Table 4.2 also

distinguishes between objective and subjeelive definitions.

Table 4.2 Oassification of the quality definitions

DEF1NITIONS OF PRODUCT OBJECTIVE SUBJECTIVE
QUALITY

USER'S VIEWPOINT transcendent,
user-baSed,
val ue-based

ENGINEER'S VIEWPOINT manufacturing-based, lrnnsoendent,
product-based val ue-based

We have classified the transcendent, user-based and value-based quality definitions

as subjective. They are subjective, both from the user's and the engineer's viewpoint

The manufacturing-based and product-based quality definitions are classified as

objective because they cao be quantified in accepted tenns. The definition of quality

attributes in section 4.2 cao be used as a product-based quality definition. An

objective product-based quality definition is the basis for an objective manufacturing

based quality definition. The manufacturing-based and product-based definitions are

classified as engineers' quality definitions because they are stated in the terms used

by engineers.

55

Engineers and users will have to agree on the quality requirements to be met by a

product. In traditional development, the system specifications were drawn up by

specialists for whom the manufacturing-based definition of quality was enough:

quality meant conformanee to the specifications. We described how the software

applications gained importance. This has led to an increased interest in the

specification of the software product on the part of users and line management. The

emphasis on user-based quality definitions has increased, resulting in the need for a

common language.

Table 4.2 shows that no common, objective definition exists. The value-based and

transcendent definition is used by both users and engineers. The fact that these are

subjeelive definitions detracts from the value of those definitions as a language for

expressing user requirements. The subjeelive character of the definitions and the

different background make it very unlikely that users and engineers will be able to

communieale ptecisely on the basis of those definitions. Here we are clearly

discussing a key problem in product development which we do not intend to solve

at this point. We only identify the problem and discuss an attempt to solve part of

it.

Some attempts have been made to narrow the gap between users and engineers. One

way to solve the problem is to provide users and engineers with a common, objective

language in which they can express the quality requirements. We will discuss one

example of such a language. Gilb (1988) advocates quantifying all the product's

attributes in terros the users can relale to. An example of the application of this idea

to the specification of a banking system will be given. The specification of the

quality attributes of reliability and portability are given in Table 4.3.

Table 4.3

Reliability

Portability

Examples of the specification of quality attributes in users' terrns

(Gilb 1988, page 140-141)

SC ALE lEST PLAN

errors reponed in lines of reported errors in less than 0.1 errors per
souree code per year official log versus 100 lines of code per

official size data year (in 19xx)

sa! vage use versus new calculation and 0.95 (within 3 years)
build cost estirnate when sample of
ported to IBM mooL conversion

Similar definitions are provided for all the quality attributes. A scale, a test and a

planned level are given for each attribute. The test describes the way in which the

value of the attribute will be measured. The language proposed by Gilb may provide

users and engineers with a common language to express user requirements. This

56

represents an attempt to narrow the gap between two of the five quality definitions;

i.e. the user- and the product-based definition.

Process quality

The discussion so far has been limited to product quality. It would however be

incomplete, without consictering process quality for it is clear that these two aspects

are related. The relation is shown, for instance, in Juran's definition of a product as

the output of any process (Juran 1988a). Juran (1988b) defines a process as a

systematic series of actions directedat the achlevement of a goal. Obviously, quality

processes are essential for making quality products.

So far, quality has been approached from the product side in this section. Quality and

quality improvement can also be approached from the process side. This is done, for

example, by employing standards such as ISO 9000 (1987) which tries to ensure that

development processes comply with certain standards and tries to ascertain that the

conditions for a quality process are provided. ISO 9001 for software states that "It

is intended to provide guidance where a contract between two parties requires the

demonstration of a supplier's capability to develop, supply and rnaintaio software

products. The guidelines ... are intended to describe the suggested controls and

methods for producing software which roeets purebaser's requirements. This is done

primarily by preventing nonconformity at all stages from development through

maintenance" (ISO 9000, 1987). Humphrey (1989) focuses on the quality of the

development process as well; his software process maturity framework will be

discussed in chapter 6.

Knowledge of software and its development is at present inadequate to translate

product characteristics into characteristics of an appropriate engineering process. We

do not know enough about the product-related and process-related varia bles. It is, for

example, not clear what the relations are between:

- The experience of the developer and the quality of the product

- The complexity of the product and development lead time

- The introduetion of new development methods and the quality of the product.

Some attempts have been made to improve the knowledge and understanding of

software and its development. Two of these will be mentioned. Firstly empirica!

studies, examples of which are:

- An investigation that studied the relation between module size and error proneness

(Basili 1983)

- A study that evaluated the effectiveness of software engineering technologies such

as tooi use, chief programroer teams and code reading (Card 1987).

57

An overview of empirica! studies is provided in Basili (1986).

Another attempt involves software cost models. They do notresearch one relation at

a time, but try to provide a descriptive model of software development. The best

known example is COCOMO (Boehm 1981). The value of software cost models lies

mainly in the fact that they show relations between product-related and process

related variables and that they force development departments to collect information

on the relations in their own development environment (Genuchten 1991).

An approach to handle quality

So far, we discussed five groups of product quality definitions and introduced the

notion of process quality. How should we deal with these definitions in practice? lt

should be clear that multiple definitions are required to understand and improve

quality. Different definitions should however be emphasized in different phases of

the development life cycle. Garvin (1984) states that one needs to shift one's

approach to quality as produelS move from design to market. Firstly, quality must be

defined according to user-based quality definitions. Characteristics that relate to

users' wants and needs must be identified. The characteristics must be translated into

. product attributes, which are derived from a product-based quality definition. For

example, the definition of software quality attributes that was presented in section

4.2. The manufacturing or engineering process must be organized in such a way that

products are made according to their specifications. The foregoing is presented in

Table 4.4.

Table 4.4 A shifting emphasis on quality definitions

Quality emphasis quality definition used

quality characteristics as perceived by user user-based

~
~

balancing quality and ro>t val ue-based

~
~

identifiable product characteristics product-based

~
~

organization of engineering process that ensures manufacturing-based &
produelS are engineered to specifications process-based

A distinction should be made between one-of-a-kind production for a known elient

and mass production for anonymous users. In the latter case, large investments in a

repelilive manufacturing process are required. This necessitates an explicit shift to

a manufacturing based quality definition somewhere on the line from product to

market. The reproduetion of software does not involve an expensive repetitive

58

manufacturing process. This is an explanation of the fact that the shift to a

manufacturing based quality definition is, rightly or wrongly, aften made less explicit

in software engineering.

In case of one-of-a-kind production a product is made for one known client. The

different quality viewpoints will have to be balanced tbraughout the engineering

phases. One cannot afford to come up with a product that does meet the

requirements, but does not satisfy the needs of the only dient. We already indicated

that a software engineer should be able to balance quality on the one hand and cost

as well as time on the other. We now state that in case of one client, the software

engineer must be able to balance the different quality viewpoints tbraughout

development as well.

Shifting the emphasis on different quality definitions represents one attempt to

understand and imprave product quality. Improved understanding of software and its

development will teach us how to translate the speèifications based on one quality

definition to specifications based on another definition. At the same time we can,

however, attack the problem from the opposite angle: from process impravement to

product improvement. It is not a matter of choosing one of the possibilities, but of

doing both and striving for the maximum result.

4.4 Causes of increasing maintenance

Chapter 4 has so fardealt with software quality in genera!. This section will discuss

software maintenance, a related subject. Maintenance is often perceived as a

consequence of lack of quality. It should be obvious that this is an unacceptable

simplification. The discussion of software quality insection 4.3 showed that reality

is more complicated. This section will distinguish between three kinds of software

maintenance and examine the causes of the increase of software maintenance.

Different kinds of mainteiUmce

Three kinds of rnainterrance will be distinguished using the classification first made

by Swanson (1976). The first kind of rnainterrance is corrective maintenance, i.e.

maintenance performed in response to processing and performance failures. An

obvious type of failure is the processing failure. The IEEE glossary distinguishes

between errors, faults and failures (IEEE 1983). An error is defined as a defect in the

human thought process. Faults are the concrete manifestations of errors within the

software. One error may cause several faults. Failures are the departures of the

software system from software requirements. A performance failure is the failure to

59

meet a specified perfonnance criterion, for example the specified response time.

Perfeelive maintenance is the second kind of maintenance. This is maintenance

performed to eliminale processing inefficiencies, enhance perfonnance or improve

maintainability. The changes that are made in perfeelive maintenance take place

within the limits of established specifications.

The third kind of maintenance is adaptive maintenance. This is maintenance in

response to changes in data and processing environments. Adaptive maintenance

involves an adaptalion of the original specificalion. It is difficult to distinguish

between adaplive maintenance and prolonged development. An objeetive specification

of the quality of a software product is required in order to be able to teil the

difference. However, it is important to be able to judge the difference beeause the

software supplier may be held responsible for the adaptive maintenance. The supplier

and the elient niay have agreed that the supplier will pay the bill if it is a case of

adaptive maintenance and the elient will pay if prolonged development is involved.

In everyday practice, prolonged development is often confused with adaplive

maintenance.

Causes of the increase in maintenance

Conte, Dunsmore and Shen (1986) claim that maintenance takes over 60 percent of

the total software engineering effort. Lehman (1984) states that 70 percent of the

expenditure on a program is incurred after initial installation. Martin (1983) eslimates

that development costs are only a quarter to one third of the total costs. Six reasons

for increase in maintenance and their effect on the amount of corrective, adaptive and

perfeelive maintenance will be described.

Increase of the volume of software

The number of operational software products, as well as their size, has increased over

the years. The amount of correetive, adaptive and perfeelive maintenance has also

increased. Some departments are completely absorbed by their maintenance work and

might even change their name from development to maintenance department

Teehnological developments

Teehnological developments that have taken pi ace over the years have made a lot of

adaptive maintenance essenrial to keep the applications up to date with the processing

environment.

New application areas

Applications which are automated evolved from applications with stabie

60

specifications to applications that are more vulnerable to changes. This has led to an

increase in adaptive and perfeelive maintenance: the data and processing

environments are more vulnerable to change (adaptive) and it pays to increase the

maintainability of the applications because of their importance (perfective).

More integrated software products

Software products have become more integrated over the years. This increased

complexity and made the applications more prone to faults, resulting in more

corrective maintenance.

Increased emphasis on user-based guality definitions

The previous section bas discussed different quality definitions and argued that the

emphasis on user-based quality definitions bas increased. This makes it more

important to ensure a proper translation from user-based, via product-based to

manufacturing-based quality definitions. We have argtied that the current knowledge

of software and its development is too limited to permit a smooth translation from

one group of quality definitions to another. This means there is a greater possibility

of translation problerns and misunderstandings about quality definitions. The

difficulties that arise are responsible for an increase in corrective maintenance. The

fact that users are gaining more influence allows them to enforce changes in the

software product if their needs change. This increases the adaptive maintenance.

Inadequate maintenance

The emphasis, both in software engineering practice and in theory, has hitherto been

on software development. Maintenance used to be the kind of activity that had to be

done in addition to, or in between, development activities. There is a need for proper

maintenance organization, as well as tools and methods. The lack of interest in

maintenance bas led to poor maintenance practices which, in turn, inevitably lead to

more maintenance.

4.5 A response to the maintenance problem

A potential response to the maintenance problem and its consequences for software

development and maintenance will be discussed. The following subjects will be

addressed:

- The incorporation of maintenance into software engineering control

An extension of the life cycle

- Alternative life cycle roodels

61

The incorporation of maintenance into software engineering control

Maintenance will have to be incorporated into software engineering control for two

reasons. The effort involved in maintenance is a first reason to integrale the control

of post-delivery activities with the control of software development. One cannot

restriet one's attention to approximately half of the expenditure and consider that the

other half is somebody else's problem. A development organization should accept the

responsibility for maintaining the produels it has developed in the past.

A second reason to incorporate development and maintenance control is provided by

Lehman (1984). He stales that the term 'maintenance' is inappropriate in the context

of software. His line of reasoning will be summarized. He starts with the distinction

of S-type and E-type software. S-type software is defined as software for which the

only criterion of success in its creation is equivalence to a specification. E-type

software is' one embedded in its operational environment and implementing an

application in that environment. The success of an E-type system can only be

determined by its use; i.e. after instaBation of the software product in its

environment.

The criterion for the success of an E-type program is determined by user satisfaction

(a user-based quality definition). Continued satisfaction demands continued change

since the system will have to be adapted to the changing environment, changing

needs, developing concepts and advancing technologies. A system will either evolve,

or its effectiveness - and that of the application it supports - will decline. Software

is by nature evolutionary and it is pointless to distinguish between initia!

development and maintenance. Software does not deteriorate by itself and does not

need to be maintained in the traditional engineering sense (Fox 1982). Lehman

therefore condurles that the terms 'development' and 'maintenance' should be

replaced by evolution. We agree that there should be no distinction between

development and maintenance and that the control of software development should

therefore be replaced by control of the evolution of a software product. This is

abbreviated as product control; control of the software engineering activities over the

entire life cycle of the product.

Extension of the Life cycle

A clear consequence of the changeover to product control is the extension of the life

cycle. The entire life cycle of the product is now taken into account inslead of its

development alone. This is shown in Figure 4.2. The terms development,

maintenance and prolonged development are used to distinguish between evolution

before and after the initia! installation.

62

DEVELOPMENT CONTROL

11111 specJ design I code I test ..

PRODUCT
development

test

initia/
instal/ation

CONTROL
maintenance and

prolonged development

rep/acement

Figure 4.2 Development cycle versus product life cycle

Responsibility for the maintenance of produels and processes requires additional

insight into the quality of the developed product and the accompanying development

process. Insight is needed to be able to estimate the maintenance effort. The

department requires insight both into the quality of the produelS it is developing and

the produelS it has developed in the past.

Different life cycles for software evolution

The extension of the life cycle has implications for the life cycle models used.

Chapter 3 has described how the waterfall model was usually employed in traditional

software development. This does not include maintenance. Alternative life cycle

models will have to be explored. Three software development life cycle models will

be described and their applicability to software maintenance will be examined. The

development life cycle models are the linear model, prototyping and evolutionary

delivery.

Linear development

Linear development is often associated with the waterfall model discussed insection

3.3. The scope of the waterfall model is limited to development phases only. The

maintenance process model usually employed in combination with the waterfall

model is what Basili (1990) calls the quick-fix model. The existing system, usually

just the code, is taken as the starting point in the quick-fix model. The necessary

changes are made in the code and should also be made in the other doeurnenis that

are affected. The quick-fix model is shown in Figure 4.3.

63

OLD SYSTEM NEW SYSTEM

REQUIREMENTS REQUIREMENTS

I I
DESIGN DESIGN

I I
CODE-----· CODE

I I
TEST TEST

Figure 4.3 Quick-fix process model (Basili 1990)

Upstream documents must be updated to prevent future problems. It is a well-known

fact that this is not always done in practice. The short-term advantage of the quick

fix model is the limited time required to address a customer's problem. This is

important in the event of a failure that binders the customer's operation.

Disadvantages are the fact that the design and structure of the product are harmed.

The maintenance and enhancement are usually performed on implementations rather

than on problem-oriented specifications. This leads to inefficient and often ineffective

maintenance.

Prototyping

The second life cycle model which can be used in the product control situation is

prototyping. Prototyping is often employed in information system development,

particularly to determine user's wishes. In the long term, this should reduce the

amount of maintenance. Prototyping may be appropriate in the context of

maintenance if considerable changes in the system are involved. Two kinds of proto

typing are distinguished: throwaway prototyping and evolutionary prototyping. In

throwaway prototyping a part of the system is developed to be able to cover some

requirements. Once they are determined, the prototype is thrown away and

development starts. Evolutionary prototyping (Davis 1988) begins with the develop

ment of a first version of the system. Users are confronted with this system, after

which additional requirements are determined and subsequently implemented. There

is a risk that evolutionary prototyping will deteriorate into the code and fix strategy.

Evolutionary delivery

The third life cycle model to be discussed is evolutionary delivery. Evolutionary

delivery (Gilb 1988) abandons the idea that a software product should bedelivered

in one piece after the complete project has been finished . Other narnes for this and

64

related strategies are incremental development, iterative enhancement (Basili 1975),

evolutionary development or the spiral model (Boehm 1987). We choose the name

evolutionary delivery because delivery is what distinguishes this strategy from others

such as prototyping. The principle of this strategy is:

- deliver sarnething to the real end user,

- measure the added value,

- adjust both design and objectives based on observed realities (Gilb 1988, page

84).

The accuracy of and changes in specifications are monitored through the intermediale

deliveries. Evolutionary delivery may be fruitful if a lot of uncertainty is involved.

Uncertainty is reduced because large jumps are replaced by smaller steps. Insection

3.5, a distinction was made between uncertainty related to the product, the process

and the development resources. Product uncertainty is reduced, because after each

delivery the engineers can check whether they have understood the requirements

properly and whether the users requirements have changed. Measurements can ensure

whether the chosen process model is effective and how many resources have been

used for developing the first increment. The main problem in using this method is

to come up with an overall design which the evolutionary deliveries fit into. Basili

(1975) provides an early example of the fact that evolutionary delivery can be

effectively used in practice. Other examples are provided by Gilb (1988).

Evolutionary delivery fits in very well if the time horizon has been prolonged from

the development phases alone, to the entire life cycle of the software product. When

one considers the entire life cycle of a product it seems reasanabie to aim at

evolution and the delivery of intermediale increments inslead of revolution and the

instantaneous delivery of a complete and perfect product. Development can be

perceived as the first increment while the maintenance updates can be seen as

successive evolutionary deliveries. Evolutionary delivery shows a lot of similarities

with what Basili (1975, 1990) calls iterative enhancement. He argues that the

iterative enhancement model for software development can be readily applied to

software maintenance. lterative enhancement starts with the existing system and

evaluates it for redesign and modification. This model assumes a complete and

consistent set of doeurnenis descrihing the system. Iterative enhancement modifles

the set of documents, starring with the highest level document affected by the

changes. The iterative enhancement process model is given in Figure 4.4.

65

RELEASEn RELEASE n+1

REQUIREMENTS REQUIREMENTS

I I
DESIGN DESIGN

I I
CODE CODE

I I
TEST TEST

Figure 4.4 The iterative enhancement model

An advantage of the iterative enhancement model is that the design evolves with the

product. A'nother advantage is that the process model is compatible with the

development prócess model. It might be argued that the evolutionary delivery model

never results in a complete product and that the distinction between development and

maintenance has therefore disappeared. A disadvantage of the use of an iterative

enhancement model is that it takes time to go through the phases at a time when a

customer is possibly in desperate needof a working software product.

A contingency approach

The process roodels have been presented as if they were inutually exclusive. In

practice, however, they are aften complementary. Same examples: the activities

specification, design, code and test can be identified in all three process models.

Using evolutionary delivery, the Iife cycle will he gone through a number of times.

Each time the life cycle is gone through, a delivery to the real end user will end the

development life cycle. The basic activities can also be identified in prototyping. The
life cycle is, however, nested within the development activities of specification and

design. The examples show that the different process roodels have several aspects in

common and that, depending on the situation, a development organization and its

clients should choose the process model that fits in best with their needs. It should

be clear that the waterfall model does not suit all purposes and that other process

roodels are available.

66

4.6 Consequences for control

The change from development control to product control has several consequences

for controL The changed goal and two organizational issues will be discussed.

Goal

The goal of an organization whose sole responsibility is development control is to

deliver a product according to its specifications within the given time at the planned

costs. This has been referred to as traditional development control in this thesis. The

goal of an organization which is responsible for the control of a software product

over its entire life cycle could be formulated as: maximize quality at minimal cost

over the entire life cycle of the product within the given time constraints. This type

of control is called product controL The goals of product control differ in two ways

from traditional development controL Firstly, the horizon of control has been

extended from development alone to the entire Iife cycle of the product. Secondly,

the quality definition of the product has changed. The organization that employs

development control can afford to sticktoa manufacturing-based quality definition

such as: 'quality is conformanee to specification'. An organization that employs

product control needs to establish a relationship with its clients over the life cycle

of a product. A user-based quality definition such as 'quality is fitness for use' will

be required to establish and maintain such a relationship.

The new goals have a number of consequences. A characteristic of any organization

which is accountable for both the development and maintenance of its product is that

the quality of the product will be a very important control aspect. A department

which is not responsible for maintenance may benefit when it delivers a product

early under given time constraints. The short term benefits of delivering a product

early wil! be dwarfed by the loss on maintenance for an organization which is

responsible for maintenance. Section 4.2 discussed how McCall (1978) divided

quality attributes into classes relating to the operation, revision and transition of a

software product. Operational quality attributes such as correctness, usability and

integrity are the most important aspects when one is only responsible for developing

a software product. Product control includes the maintenance of the software.

Consequently, revision quality attributes such as maintainability, flexibility and

testability become important features.

Organization

Two organizational issues which arise as a result of the change from development

control to product control will be discussed. The first issue is the introduetion of a

separate function which is responsible for the evolution of a software product over

67

the entire life cycle of a product. The second issue is the fact that a department

should be organized in such a way that it controts both development and

maintenance. Three possîble organizations wil! be described.

Software product management

An organization which employs traditional development control usually

acknowledges two parties in the development of a software product: the elient and

the project manager. The elient expresses his requîrements and the project manager

develops the software product that meets them. In the case of product contra!, the

responsibility involved goes beyond that of traditional project management. A new

funcrion which controls a product over its life cycle has to be acknowledged. We will

call this function product management, as opposed to project management. We refer

to management instead of a manager to make elear that the functions does not

necessarily need to be performed by two different persons. The name product

management has been chosen because it is a wel! known term for such a function.

Again, the disrinction between one-of-a-kînd production for a known user and mass

production for anonymous users should be made. Product management is normal for

produels that are produced or developed for anonymotis users. Think, for example,

of canned food, cars or televisions. Product management is known in software in

situations where produels are developed for anonymous users. An example is

standard personal computer packages. We will argue that product management can

also play an important part in the control of a software product developed for one

or a few known elients. The role of product management became clear to us during

the empirica! study that was described in section 2.6. One of the critica! success

factors in the project was the cooperation of the elients, the product manager and the

project manager. This section will describe the cooperation in detail and oompare the

responsibilities of the parties involved.

In product control, project management remains responsible for the development of

a specified product within the given constraints. ltsroleis temporary: after the initia!

installation, project management will go on to its next development project. As

discussed in this section, over half of the effort is incurred after the initia!

installation. The incurrence of this effort will have to be controlled. This comes

under the responsibility of product management, which is part of the software

supplying organization. Product management is involved at the start of the product's

life cyele and agrees with the elient on the requirements of the software product to

be developed. The user stales his requirements in a user-based quality definition.

Product management uses a user-based quality definition and a value-based quality

definition to assess the quality because it intends to establish a relationship with the

elient throughout the life cycle of a product. Product management translates the user-

68

based quality requirements into a product-based quality definition. lt must have the

ability to evaluate the software product in both user terms and in product terrns. The

product-based quality definition is the starting point for the negotiations between

product management and project management on the constraints under which the

product will have to be engineered. Project management can use a manufacturing

based quality definition to assess the quality.

Product management is the interface between the dient's organization and the

development team during the development of the software product. lt is the only

function allowed to adapt the specifications after consultalion with the elient and the

development team. Product management is responsible for preparing the elient to use

the software product which will result from the development project. After initia!

installation it is responsible for user support. Product management has to arrange a

facility for user questions, change requests and problem reports. The task of project

management can be characterized as 'making the product'. The task of product

management can be characterized as 'selling the product to the elient and supporting

the elient in the use of the product'.

The tasks of the client, product management and project management in the various

phases of the product life cycle are summarized in Table 4.5.

Table 4.5 The tasks in the phases of the product life cycle

PHASE IN LIFE CLIENT PRODUCT MANAGEMENT PROJECT
CYCLE MANAGEMENT

specifica ti on • delermine user • translate into • make plan
requirernents specifications

developrnent • track specifications • execute project
• interface between elient & within given

developrnent team constraints
• prepare users

introduetion • attend training • arrange training
• prepare organization • help desk

use • report problems • arrange maintenance
• delermine additional • translate requirements into

requirernents specifications

The differences between product management and project management are listed in

Table 4.6.

69

Table 4.6 Differences between project management and product management

PRODUCT MANAGEMENT PRQJECf MANAGEMENT

rontinuous function during product life cycle temporary function during development

user-based quality definition & value-based manufacturing-based quality definition

quality definition

interface to users isolated from users

sell produc! to elient make product

To be clear: we do not argue that the probieros involved in cantrolling software

engineering can be solved by creating a new function or appointing yet another

official. This is not enough, just as it is not enough to appoint a quality manager to

solve quality problems or an automation manager to solve automation problems. The

way the project manager, product manager and clients play their parts will be the

decisive factor for the success or failure of the project.

We have said that product management is often required in an organization that is

in product controL It is required if either an unambiguous interface between the

dient's and the user's organization is required, or if the control of the software

product goes beyond the control of the development phase alone. This is shown in

Table 4.7.

Table 4.7 The necessity of product management

One user More users

Development control NO YES

Product control YES YES

The first condition was fulfilled in the empirica! study, as described insection 2.6.

The software product was developed for a number of clients and in a number of

development projects. The second condition wil! be increasingly satisfied in the years

to come. As bas been argued in this chapter, software suppliers will be held

responsible for the maintenance of the software products they have developed in the

past. Clients wil! establish long term relationships with software suppliers to proteet

their investments in software products. Product management will be the counterpart

in these l~ng-term relationships. One of the two conditions will be satisfied most of

the time. We expect that software product management will become common

practice in software engineering efforts in the near future.

Whether or not software product management needs to be perfonned by a product

70

manager is sarnething that has still to be determined. It is possible that an existing

executive will take the role of product manager.

Organization of development and maintenance

An organization employing product control should be structured in such a way that

it controls both development and maintenance. This can be done in several ways,

three of which will be considered.

The first way is to separate the development and maintenance people into different

units. This could be called a specialization approach. This allows development people

to dotheir work undisturbed. A disadvantage is that developers may want to shift the

responsibility for the quality of the developed product to the maintenance group. A

developer is not involved and is not made responsible for the produelS he has

developed. Another disadvantage is that the organization cannot cope with the

varying offer of maintenance work. Another potential disadvantage is that

maintenance is perceived as a second rate activity. People involved in maintenance

should not be perceived as being engineers who are not qualified to do development

work (Swanson 1989). Maintenance is much too important for such a qualification.

Rotating staff between development and maintenance can prevent these problems to

some extent.

A second way to organize development and maintenance is to involve all the

engineers in maintenance and development. The people who do the development

work also maintain the produelS in an organization like this. The development work

will have to wait as soon as a maintenance job becomes more important. In theory,

there is a maximum of involvement and accountability: the developer who caused the

need for maintenance will have to carry it out. This has the advantage that developers

are confronted with the consequences of Jack of quality. They should fee! responsible

for the product either they or their department have developed. In practice, however,

it is aften unclear where the fault was caused and who, if any one, is responsible.

The need for corrective maintenance is caused by defects which can sametimes be

assigned to a developer. Adaptive and perfeelive maintenance cannot usually be

assigned toa developer. Capacity planning requires special altention in this situation.

Care should be taken to prevent the total amount of work from exceeding the

available capacity. This can happen if all the maintenance work is released to the

department without taking the available capacity into account.

Some kind of regulation is required to prevent an engineering department from

becoming overloaded with work. Experience with production control has shown that

a production unit which is overloaded with work becomes less productive. The

71

variation in lead time increases when the worldoad is too high. The empirica! study

described in section 2.4 shows what effects uncontrolled maintenance interference

can have. Production has identified the function called work laad control to regulate

the work released to a production unit (Bertrand 1990). A similar function will be

required to control the amount of work in a department which is involved in bath

development and maintenance. Work laad control will have to judge which

engineering job needs to be released to the shop floor. Product management, as

discussed èarlier in this section, may have a say in the prioritization of engineering

jobs. The control complexity will increase if both development and maintenance are

performed within one organization.

The third way is to disperse maintenance and development work over a period of

time. Section 2.4 describes how maintenance weeks were introduced to regulate the

maintenance activities. This prevents continuous interruptions, while on the other

hand involvement and accountability remain. Fixed maintenance days or even hours

have a similar effect to some extent. Dispersion in time has the disadvantage that

control becomes more complicated. In this case, maintenance jobs are introducedon

the shop floor, in addition to the development jobs that are already there. If

development is not under control, development and maintenance in one organization

never will be under controL The advantages and problems of the three options

distinguished are summarized in Table 4.8.

Table 4.8 Advantages and problems of organizational options

Development and ADVANTAGE DISADVANTAGE
maintenance

Separated - clear responsibilities - lack of involvement
- efficiency of specialized - no response to varying

maintainers workload
- less interruptions in development - lack of product know-how

United - involvement - fight for scarce resources
- accoun tab i li ty - responsibilities

- increased control complexity

Dispersed in time - involvement - increased control complexity
- accoun tab i I i ty

The table shows that, as usual, there is no ideal salution for all circumstances. It

might, however, be said that if an organization can afford it, it should integrate

maintenance and development because the distinction between these two aspects is,

in fact, artificial and the involvement of developers is crucial. An organization that

does not control its development well will deliver produels that require a lot of

maintenance. At the same time, their development wiJl usually be late. These

organizations cannot afford to control development and maintenance in one

72

organization because the fight for the scarce resources will make things worse and

the whole organization may end up doing maintenance. On the other hand,

organizations of this kind have the greatest need for the involvement of the engineers

with the produels they have developed in order to be able to improve the quality of

the produels in the long run.

4.7 Summary and conclusions

This chapter has discussed the control of software engineering activities over the

entire product life cycle. This has been called product controL A detailed discussion

of software quality and maintenance was required. We distinguished between

operation, revision and transition quality attributes. Next is that several quality

definitions are required to understand the quality conflicls that arise. User-based,

product-based, manufacturing-based and value-based quality definitions were

distinguished. To achieve quality improvement, user needs must be properly

translated into identifiable product attributes. Product attributes need to be translated

into process attributes that can ensure the development of the required product. The

Jack of understanding of software and ils development is an obstacle to a proper

translation at present. Most progress can be expected if the problem is tackled from

both sides at the same time: via better product definitions and via process

improvement. Quality and maintenance were discussed to be able to justify the

change from development control to product controL Maintenance takes up most of

software engineering capacity nowadays and, as a consequence, control of software

engineering cannot afford to confine itself to development only. Another reason for

inlegrating the control of development and maintenance is the fact that the division

between the two is artificial. A consequence is the need for alternative process

roodels such as prototyping and evolutionary delivery. Section 4.6 discusses the

consequences for controL The subjects that have been discussed are: the difference

between the goal of development control and product control and the organization

of a department that employs product control. Two organizational aspects have been

discussed in detail, first of which was the role of product management. Product

management is required because the control of a software product needs to be

extended beyond the control of software development, the province of project

management. Secondly, the pros and cons of the organization of development and

maintenance activities in one or in separate departments have been discussed.

73

5 REUSE OF SOFfW ARE; towards multiproduct control

5.1 Introduetion

The previous chapter discussed product control which differs from development

control in that it acknowledges responsibility for the maintenance of products

developed in the past. Control of the product is extended from development only to

its entire life cycle. This chapter discusses yet another change; that from product

control to inultiproduct controL Multiproduct control expands its control focus from

one product to a family of products. Characteristics of multiproduct control will be

cliscussed in section 5.6 and 5.7. One important characteristic is the emphasis on

software reuse. The sections 5.2 to 5.5 discuss various aspects of reuse.

5.2 The necessity of reuse

This section argues that reuse of software is required to ,meet the increasing software

demand. Section 1.3 mentioned the software backlog and the fact that the demand
for software is increasing faster than the ability to supply it. The gap between

demand and supply will grow in the future if productivity does not increase.

An important characteristic of software is that it is intangible. This causes some

problems in development. The fact that software is invisible and not visualizable

impedes the design process within one mimi, it also severely hampers communication

among minds (Brooks 1987). On the other hand, the intangibility of software makes

it possible to copy software with negligible reproduetion casts. Reusability of

software is widely believed to be a key to improving software development

productivity and quality (Biggerstaff 1987). Opportunities for the reuse of software

are there: Capers Jones (1984) claimed that 15 percent of the code written is unique,

while the remaining 85 percent appears to be common, generic and concemed with

putting applications into computers. Advantages of reuse are obvious and the reuse

of software has been aimed at for many years. Despite this, reuse of software has not

really taken off as yet (Biggerstaff 1987). Cusumano (1989) reported reuse rates in

North American and Japanese companies. The rates were based on a survey

invalving 51 companies. The data should be interpreled carefully because of the

differences in determining the amount of reuse in different firms. The reuse rate in

American companies was 15 percent, while it was 35 percent in Japanese firms.

There are some empirica! indications that reusability does increase productivity.

Three examples wil! be discussed. Lanergan and Grasso (1984) classified over 5000

74

Cobol programs, 50 of which were studied in detail. The study team concluded that

40 to 60 percent of the code in the programs examined was redundant and could be

standardized. The organization decided to make logic structures a standard for new

program development. At the time of publication, "5500 logic structures were reused,

averaging 60 percent reusable code" (Lanergan 1984). They believe that this

translates into a 50 percent increase in productivity in the development of new

programs.

Prieto Diaz (1990) reports on the implementation of a library of reusable software

components. During the first year, a reuse factor of 14 percent was achieved,

realizing an estimated 1.5 million dollar overall saving. The reuse rate was calculated

by dividing the lines of code reused by the total lines of code produced. The reuse

factor is assumed to reach a level of 20 percent after the second year and 50 percent

after five years.

Further empirica! evidence is provided by Selby (1989), who examined almast 3000

modules from a NASA software production environment. He classified the modules

into four categones based on the degree of reuse from previous systems. The

categones were:

- Complete reuse without revision,

- Reuse with slight revision (< 25 percent changes),

- Reuse with major revision (<!: 25 percent changes),

- Complete new development.

The average development effort (in hours) divided by the final implementation size

(in souree lines of code) can be perceived as an indicator of productivity and is given

in Table 5.1. The effort required for the development of the original development is

not included.

Table 5.1

new
major revision
slight revision
reu se
all

Amount of reuseversus development effort (in tentbs of hours) per

souree line of code (Selby 1989)

effon (in tenths of hours) nUJllber of modules
per souroe line of code examined

1.1 1629
0.76 205
0.60 300
0.05 820
0.73 2954

The difference in productivity for the classes of reuse are clear and statistically

significant. The shortcomings of effort per lines of code as a productivity indicator

are known. Despite this, the results are perceived as an indication of the fact that

reuse increases productivity.

75

5.3 Reuse in industry

The benefits of reuse have been acknowledged in industry. This section describes

how changing customer demands forced industry to emphasize reuse by

standardization and modularization of its products. As a consequence, the production

organization was adapted. We will argue that the software industry will evolve along

the same lines.

Modularization and starukudization

Two extreme methods of organizing production resources are usually distinguished:

the flow shop and job shop (Bemelmans 1986). The flow shop involves the

production of large numbers of standard products. lts production resources are

usually organized in production lines for specific products. A flow shop is not

flexible to changes in demand. A job shop on the other hand specializes in the

production of small lots of client-specific products. The job shop emphasizes

flexibility. A job shop is flexible towards changing demands, both in the number of
produelS and the kind of products. A job shop is called a project shop if production

times are relatively long.

Market demands have evolved over the years. The market required higher quality

products, more complex produelS and more elient specific-products. This called for

flexibility in production processes. At the same time the market required shorter lead

times and cheap products. This called for efficiency in production processes. But

increasing either efficiency or flexibility was no langer good enough; bath had to be

provided at the same time. Market demands and the response from industry are

presented in Figure 5.1.

76

PRODUCT RANGE

small large

low

high

STANDAROlZAT/ON

Figure 5.1 Changing process requirements (Bemelmans 1986)

The product range increased because products become more client-specific and the

product life cycle becomes shorter. The increase in product variety resulted in a

decrease in lot size. The complexity of products increased to meet the more

demanding customer requirements which resulted in more components of more

complex composition. Both drives forced the production organization to emphasize

flexibility and adopt a job-shop or project-shop like structure. This hampered

efficiency which was a concomitant requirement. Two responses to the demand for

efficiency are standardizarion and modularization. Standardization is a reaction to the

smaller lot size. It is, in genera!, not in line with the more elient specifïc demand.

Oients may, however, be willing to sacrifice some of their specific requirements for

a more standardized solution at a lower price. Standardization reduces the product

range and allows the design of produels and processes to be reused.

Modularization of products is a response to more complex products. The traditional

product structure could be represented by a pyramid. A great number of components

and matenals was assembied into a unique end product. Over the years most

production organizations identified key modules or subassemblies which appeared in

different products. Modularization can be in line with more elient specific demands.

The essential feature of modularization is that a great number of client-specific

produels are assembied from a limited number of key components which are used

in many products. The designs of the components are reused. The view of a product

and its development changes from a number of isolated pyramids to an hourglass,

as is presenled in Figure 5.2.

77

ABCD
.---------, end products

~------....l. materials &
basic
components

Figure 5.2 Different product views

The great number of client-specific products are reflected by the top of the hourglass
and the limited number of key components by its neck. The variety of materials and

parts is modelled by the bottorn of the hourglass. Key components can be

manufactured from a variety of matenals and parts.

Production control situations

The distinction between engineering, components manufacturing and assembly leads

to different production control situations. The notion of the decoupling point is

introduced to differentiate four different control situations. The customer order

decoupling point delermines which part of a process is driven by customer orders.

The process is driven by customer orders from the decoupling point downstream.

Upstream the process is driven by forecasts of customer orders. The location of the

decoupling point is determined by factors such as: the lead time that is acceptable

to the market, the production (or development) lead time and the product structure.

One reason to move the decoupling point downstream (i.e. to produce more

independently of customer orders) is that the lead time for the complete production

or the development is too long to be acceptable to the market

The location of the decoupling point delermines whether a production control

situation is characterized as engineer-to-order, make-to-order, assemble-to-order or

make-to-stock. The control situations are shown in Figure 5.3.

78

goedsflow

engineering
components

manufacturing assembly

engineer
to order

make
to order

assembie
to order

Figure 5.3 Four production control situations

make
to stock

Figure 5.3 distinguishes between engineering, component manufacturing and

assembly as production phases. The decoupling indicates to what point the

production process is customer-order driven. For example: in the case of engineer-to

order the engineering, component manufacturing and assembly are customer-order

driven. In the case of assemble-to-order production, only the assembly is customer

order driven. The relation between Figure 5.2 and Figure 5.3 should be clear. If we

assume that the product structure is represented by a pyramid, the decoupling point

of engineer-to-order is located at the bottorn of the pyramid. Component engineering

and manufacturing as well as assembly are done on a customer-order-driven basis.

The decoupling point in assemble-to-order production is located at the neck of the

hourglass. The four production control situations will be discussed.

Engineer-to-order

Engineer-to-order production is characterized by the fact that products are largely

developed according to the specifications agreed upon in a particular order. An
engineer-to-order situation has defined a product range in which it is willing to

operate. Production is customer-driven and the customer order decoupling point is

located upstream. Engineer-to-order production is flexible towards customer needs.

This does not mean that engineer-to-order production starts from scratch with every

new customer order. Engineer-to-order emphasizes the reuse of its experience by

means of reference products and reference processes which are used as much as

possible. It can do so because it has identified a product range in which it is willing

to operate.

Make-to-order

The second situation to be discussed is make-to-order. In this situation, the elient has

a specified product that has to be manufactured. A make-to-order company does not

provide standardized produels from which a customer may choose. Two types of

79

make-to-order companies are distinguished. The first type produces the same

customer-defined order repeatedly. The design of the product supplied by the

customer is reused in every order. The second type of make-to-order company sells

capacity and is sametimes referred to as a jobber. A capacity selling company is

willing to accept any customer order they can cope with.

Assemble-to-order

The third production control situation which is usually distinguished is assemble-to

order. The decoupling point is moved downstream: assembly is done for specific

elient orders and the manufacturing of componenls is elient-order independent. This

situation is often found when the variety of final produels is large in comparison with

the sales volume, or if produels cannot be developed from scratch because the time

to engineer the product to order is too long to be acceptable and, on the other hand,

produels are too client-specific to be sold off the shelf. It is better to put the semi

finished produels into stock and assembie them on a client-specific basis in many

different final products.

Make-to-stock

The fourth production control situation is make-to-stock. The decoupling point is

moved further downstream and, in fact, the complete production process is not based

on actual customer orders, but on demand forecasls. Final products are often made

to stock because the market requires zero delivery lead times. A customer cannot

affect the specification of the product. The emphasis in make-to-stock production is

on efficiency.

5.4 A parallel in software development

Modu/arization and statuklrdization

Traditional software development can be characterized as a project shop. Capacities

were organized in functional groups and usually not around product lines.

Development lead times were relatively long because all the software produelS were

developed from scratch. Software development also faced new customer

requirements, as already discussed. Examples of new customer requirements:

More integrated software products,

More client-specific software produels due to the emphasis on user based quality

definitions,

- Shorter lead times and higher quality producls,

- More productive software development.

80

This led to the same trends that are observable in industry: the complexity of

produels increased due to new application areas for software and to the fact that

software produels became more integrated (see Figure 5.1). At the same time, user

based quality definitions of software produels led to an increased number of client

specific producls. The larger product range has consequences for controL There is

one difference between the software industry and industry. As far as industry is

concemed, an important consequence of an increased product range is the deercase

in the lot size which makes production control more complicated. Lot size is not

relevant for software since, due to ils intangibility, the difference between a lot size

of ten versus a lot size of 100 is negligible from the viewpoint of controL

The software industry bas to come up with a response to the two trends perceived:

increased product complexity and a larger product range. The trends require

flexibility in the development process and do not allow other customer requiremenls,

such as a reduction in lead time and an increase in productivity to be met. The

responses can be similar to the response in industry: standardization and

modularization.

Standardization is a response to the increasing product range. A trade-off between

quality and cost has taught clienls that it may be wise to sacrifice some of their

specific requiremenls in exchange for a standard solution. The standard software

product has the advantage of a short lead time, a higher quality level and a lower

price. Standardization is accepted by dienis for an increasing number of products.

For example: not too many people nowadays will take the trouble to develop their

own operating system or programming language. The same holds for text processing

software or communication protocols. On the supply side, a lot of software suppliers

limit their attention to one or a few products. Others restriet their product range by

limiting the number of releases. Standardization of software produels might be

perceived as a fonn of reuse: every time a copy is sold the whole product is reused.

Modularization is another response to the increasing complexity of products. It

allows a lot of end produels to be produced from a limited number of key

componenls. ldentification of such key componenls and standardization based on

these componenls is one way to achieve modularization. Just as in industry, the

pyramid view of a product is replaced by an hourglass view of a family of producls.

Modularization of software leads to the reuse of components. Standish (1984) stales

that a field of engineering has to undergo considerable evatution and considerable

traffic in application befare a useful practice of camponentry emerges. First of all,

reusable components have to be discovered, standardized and widely taught.

81

Production control situations

Four production control situations have been distinguished. They were make-to-order,

engineer-ta-order, assemble-to-order and make-to-stock. The relevanee of the

production control situations for the control of software development will be

addressed.

Engineer-ta-order

Engineer-to-order production is characterized by the fact that produels are largely

developed, on the basis of specifications agreed upon in a parricular order. Most

software development nowadays is done in what could be called an engineer-to-order

control situation: an intemal or extemal elient comes along, a specification is made

and a project is started that should result in the specified product. A difference with

industry is that software development is often started from scratch. Engineer-to-order

production puts a lot of eropbasis on the exploitation of experience. It uses reference

products and processes as much as possible. It might be said that a lot of software

organizations act like engineer-to-order organizations, without emphasizing the reuse

of produels and processes.

Make-to-order

Two types of make-to-order companies were distinguished insection 5.3. The first

type produces the same customer order repeatedly. This production situation is not

relevant for software, because reproduetion of the same software product involves a

negligible effort. The other type of make-to-order company was the one which sells

capacity. Those kinds of companies are found in the software industry. A lot of

software houses do still operate as capacity-selling companies: a elient supplies a

specification and the software house provides the engineers who develop the product.

A software house typically employs development con trol, the control stage discussed
in chapter 3. They are responsible for delivering (part of) the product. Maintenance

is usually not their responsibility, nor is the reuse of software.

Assemble-to-order

The third production control situation distinguished is assemble-to-order. The

decoupling point is moved downstream: assembly is done for specific elient orders,

the manufacturing of components is elient-order independent. The assemble-to-order

situation is also relevant to software development. Many software products cannot

be developed from scratch because the time to engineer the product to order is too

long to be acceptable. On the other hand, such produels are also too elient-specific

to be sold off the shelf. One way to meet the conflicring needs is to develop key

components elient-independently and assembie an end product on a elient-specific

basis. The fact that software components can be copied for nothing is another good

82

reason to reuse software components and assembie them for a customer order. The

elient can still specify the product to some extent, as long as it is possible to

assembie the software products from the key components. Assemble-to-order

production is usually restricted to one or a few phases of a larger production system.

The same will be true for assemble-to-order software engineering. The components

assembied will have to be engineered by the department at an earlier stage or will

have to be bought The amount of additional development involved in assembly can

vary tosome extent. Customer-specific enhancements may be necessary.

Make-to-stock

The fourth production control situation distinguished is make-to-stock. The

decoupling point is moved further downstream. The make-to-stock situation is also

relevant to software development. The product is made to stock for an anonymous

elient that is not involved in its specification. The appropriate term for make-to-stock

software development would beengineer to stock, because we only have to put one

item into stock. Many software produels nowadays are made to stock. Among the so

called off the shelf products are operating systems, personal computer packages such

as text processors and data base management packages.

Engineer-ta-order production as a reference

The relevanee of the four production control situations to software engineering has

been discussed. Engineer-to-order production will be used as the main reference for

software engineering control in this thesis for three reasons. The first is that most

software organizations nowadays act as engineer-to-order organizations. Most of the

engineering process is driven by specific customer orders; the decoupling point is

located upstream. The second reason to use engineer-to-order as a reference is that

software engineering can learn a lot from engineer-to-order manufacturing.

Experience has taught production to reuse reference produels and processes.

Production control and information systems are designed to support that reuse, as we

shall see in chapter 7. They can act as a valuable reference for the software industry.

The third reason to use engineer-ta-order as the main reference is that the

reproduetion of software produels does not require as much emphasis of control as

the reproduetion of hardware. Due to ils intangibility, subjects such as material

coordination, lot sizes, scheduling and stock control are less relevant for software

engineering controL Assemble-to-order, and especially make-to-stock, production

focus on these 'reproduction' issues. The engineering activities are not considered by

assemble-to-order and make-to-stock production controL Engineering is usually

located and controlled by a separate department Software control will emphasize

engineering control and can therefore gain most insighls from the use of engineer-to-

83

order production control as a reference. Of course this was already suggested by the

use of the word engineer in 'engineer-to-order'. In other words: even software

ooropanies which act as assemble-to-order or make-to-sloek companies can benefit

from the use of engineer-to-order as a reference.

5.5 Reuse of software

This section discusses some software-specific aspects of reuse. The subjects are:

views of reusability and reuse dilemmas.

Views of reusability

There are many different views of reusability. A limited view is the definition of

reuse as the reapplication of code. An expansive view of software reuse is the one

defined by Biggerstaff (1989): reuse is the reapplication of a variety of kinds of

knowledge about one system to a similar system in order to reduce the effort of
developing and maintaining that other system.

The expansive view of software reuse includes both composition and generation

technologies. Composition techniques are characterized by the fact that the

components to be reused are atomie and, ideally, unchanged in their use. A

prerequisite for doing this is the availability of reusable building blocks. A

component library is a typical tooi for the composition technology. Object-oriented

programming and software engineering environments are often associated with the

composition approach.

Generation technologies are also perceived as a reuse technology by Biggerstaff

(1989). The components which are reused are difficult to characterize and are

described as patterns. Examples of techniques belonging to this technology are very

high levellanguages and application generators. Whereas the composition technology

focuses on components and their composition, the generation technology focuses on

languages and generation facilities. In other words, the composition technology

focuses on products while the generation technology focuses on production resources.

The framework for reusability that represents Biggerstaff's expansive view of

software reuse is presenled in Table 5.2.

84

Table 5.2 A framework for reusability technologies (Biggerstaff 1987)

FEATIJRES APPROACHES TO REUSABILITY

component reused building blocks pattems

nature of reuse atomie and immutable passive diffuse and malleably active

principle of reuse composition generation

emphasis application organization & language based application
component composition generator generator
libraries principles

typical systems libraries of object oriented very high level
subroutines language

The concept of reuse can be expanded even further. Basili (1989) and Rombach

(1990) argue that not only products can be reused, but that processes and other

knowledge can be reused as well. For example: reuse of design inspections or test

procedurescan be considered as reuse of process knowledge. Rombach (1990) also

mentions the reuse of oost roodels as an example of knowledge reuse.

Reuse of software components, generation tools, reuse of processes and reuse of

knowledge can be distinguished as identifiable subjects in software engineering.

Obviously the four are related. The different subjects can, however, be distinguished

and impravement in one of the areas can be achieved. 'Start small, expand later' is

a valid starting point for the reuse of software development, as well as for research

on the subject. The remaioder of the thesis will take a much more limited view of

reuse. We wiJl restriet ourselves to the reuse of components. The thesis will focus

on the lessans that software development has already learned and those that can be

leamed from other industries.

Reuse dilemmas

Biggerstaff (1989) identifies three reuse dilemmas that an organization has to face.

The first is the generality versus applicability payoff. In general one can say: the

more general the component, the less payoff fora specific application. On the other

hand: the more a software product is specified towards one particular application, the

less applicable it will be for reuse. A system aimed at a braad domaio of application

will be less powerful for a specific domaio than a system whose focus is narrowed

down to this one domaio of application.

The second dilemma is component size versus reuse potenriaL The bigger the

component, the higher the payoff if the component is reused. The probability that the

component can be reused will, however, be reduced because it wilt become more and

more specific as it becomes bigger. Another decision that has tobetaken is whether

85

the department is aiming at reusing code or reusing more integrated software

artifacts.

The third dilemma is the setup and costof a components library. Considerable efforts

and investments have to go into a software library before it starts to pay off. An
example where a reuse factor of 14 percent was achieved within a year has been

mentioned. This is an indication of the fact that reuse can pay off, but that the payoff

period can be considerable. Such a payoff period does not fit in very well with the

short term, interests of development departments in particular and some businesses

in genera!.

5.6 Multiproduct control

We described the change from an organization that is responsible for development

to a company that is responsible for a software product over its the entire life cycle.

This was called the change from development control to product controL This

chapter has so far discussed the reuse of software. The control focus of an

organization should be expanded further if an organization wants to emphasize reuse.

lt is not enough to control one software product over its life cycle. A number of

software products will have to be taken into consideration to allow for reuse. This

chapter does in fact describe the change from product control to multiproduct controL

An organization that is employing multiproduct control is typified as a software

factory. We will discuss the consequences of the change to multiproduct control in

termsof product life cycles, goal and organization.

Product life cycles

An emphasis on the reuse of software requires adaptations of the development life

cycle. The development of reusable components and the reuse of components in

development are distinguished.

Creating comoonents

There are two ways to create reusable modules. One can generalize components

resulting from a specific development effort and one can develop components

especially for reuse. The former is termed the reactive approach and the latter the

proactive approach. Generalizing a component after development implies an

additional phase after the traditional life cycle. The emphasis in this phase will be

on quality attributes that McCall typified as transition quality attributes (see section

4.2). The attributes were portability, reusability and interoperability. An advantage

of generalization after development is that the costs of creating reusable components

86

can be relatively low because the component bas been developed anyway and the

only additional costs are the generalization cosls. A disadvantage is that the creation

of reusable componenls depends on customer orders. Reuse is a reaction to the

produels under development. The software department does not take the initialive to

develop componenls which will become of interest in the future.

An organization can also proactively create reusable componenls. In production

control terms the department decides to engineer componenls to stock. An example

is the development of a file handler before any document retrieval system is ordered.

Another example is the development of tax routines independently of an order for

a bookkeeping system by a specific client. In principle, the proactive development

of components will follow the traditional life cycle. An advantage of this proactive

approach is that the componenls are specifically developed for reuse. The revision

attributes have been taken into account from the beginning. Effective anticipation

wiU shorten the lead time for the development of new produels because a lot of

effort bas already gone into developing key componenls. A prerequisite is a clear

product policy; the department has to decide on the specialization towards certain

(application) domains and on the kind of produels it intends to deliver, bothnowand

in the future. A difficulty is that the componenls have to be made to stock without

having tbe certainty that they wil! meet future demands. Taking account of all the

difficulties involved in requiremenls analysis for concrete customer orders, it will be

clear that anticipating the long-term demand wil! be even more difficult.

Reusing componenls

Not only developing the componenls, but also reusing available componenls requires

adaptations to the traditionallife cycle. The specification phase will remain the first

phase. Test and maintenance will remain phases as well. Design and code, in

particular, wil! be affected by reuse. In genera!, four reuse steps can be identified:

finding componenls, understanding componenls, modifying componenls and

composing componenls (Biggerstaff 1987).

A critica! issue in finding a component is matching the module required to the

modules available in a component library. Finding and matching software

componenls depends on the description and the accessibility of the component. This

appears to be a major obstacle to the extensive reuse of software, according to

Biggerstaff and Richter (1987) as well as Sikkel and Van Vliet (1988). Homwitzand

Munson (1984) address four subjects that have to be studied to make the concept of

reusable software a reality. The subjecls are: mechanisms for identifying components,

a metbod for specifying componenls, the actual form of the components

(implemented in programming Janguage ordescribed by a program design language?)

87

and a way to catalogue the components. We regard them as an information issues,

which will be discussed later on.

Goal

The second aspect of multiproduct control to be discussed is the goal of a

multiproduct company. The goal of an organization employing multiproduct control

differs from an organization using traditional development control or product controL

The aim of multiproduct control is to minimize cost and maximize the functionality

and quality of the product range that is being, and will be, developed. Such a goal

is more ambitious and requires control of the products in development and in use,

as well as a policy for the cuerent and future product range. A software company

cannot afford to meet any customer requirements, because reuse can only be

accomplished if the company sticks to a certain product range which allows the reuse

of components. The availability of resources and capacities is no langer the only

criterion for accepting orders. The way in which the new order fits into the defined

product range will be one of the primary acceptance criteria.

It is of the utmost importance fora software factory to state its reusegoals explicitly.

The intended reuse rates should be specified. This can be done in terros of the

proportion of reused software in new software products. It is also possible to specify

the reuse goals in terms of the number of times that reusable components are

incorporated in new products. Reusegoals must be made operational to be able to

gel an insight into the benefits of reuse, as opposed to the additional casts.

Organization

Regarding the organization of multiproduct control, two subjects wiJl be addressed:

work order release and organization of development, maintenance and development

for reuse in one or more departments.

Work release

A software engineering organization employing multiproduct control faces three lines

of work, namely development, maintenance and development for reuse. The work has

to be done by the same scarce capacities. The division of work over the scarce

resources must be coordinated. Production control has faced situations with similar

characteristics and has identified the task 'work order release' for this purpose. We

wiJl introducesome production control principlesin order to put workorder release

into perspective.

In production control, different aggregation levels are distinguished. These are the

goods flow control level and the production unit level. A production unit is a

88

department which on short term is self-contained with respect to the use of its

resources, and which is responsible for the production of a specific set of products

from a specific set of materials and components (Bertrand 1990, page 13). A

production unit does, however, face constraints such as limited capacity. A

production unit reaches agreement with the goods flow control level about the

produels to be produced and the production lead time. This brings us to the goods

flow control level, which includes:

- The coordination of production levels of a number of production units

- The coordination of production and sales.

Goods flow control is broken down into aggregate production planning and material

coordination. The three levels of production control are given in Figure 5.4, which

shows aggregate production planning, material coordination and production unit

con trol.

goods flow state

(capacities, lnv)

PU state
(aggregated)

aggregate
production
planning

sales and marketing

intermation (aggr.)

(detalled)

Figure 5.4 The Global goods flow control structure (Bertrand 1990,

page 57)

Material coordination indicates the work order priorities, based on an aggregate

delivery plan and sales information. Work order release delermines which orders are

released to a production unit. The release decision is based on the work order

priori ties, the aggregate release pattems and the status of the production unit.

89

It is interesting to note that production control distinguishes between different

aggregate levels and puts a lot of emphasis on capacity allocation. Let us apply the

production control concepts to software engineering. Capacity allocation attracts less

attention in software engineering. This can be explained by the fact that work order

release is not required if engineers work on one project at a time, as was usually the

case in traditional controL The next activity is defined in the project plan and the

engineer starts the next task as soon as the previous task is finished. Work order

release becomes important if severallines of activity use the same scarce resources,

as is the case in multiproduct controL

Experience shows that the lead time for a work order increases if too much work is
released toa production unit. The output of the unit will decrease and the lead time

of work orders wiJl increase if the input is bigger than the output. The empirica!

study discussed in section 2.4 can be perceived as an example of a lack of control

of work order release. The maintenance orders were released to the engineering

department irrespective of the available resources, the cuerent workload and the

output of the system. The input outnumbered the output. As a consequence, the lead

times for bath development and maintenance increased. The introduetion of

maintenance weeks can be perceived as an attempt to regulate the input to the

production unit.

Work order release is a function that should be fulfilled at an aggregate level of

control in the engineering department Available work orders, current work laad and

the priority of work orders have to be evaluated in order to be able to do the job

properly. Workorder release can be done by the departmental management, possibly

supported by a planning department Obviously, workorder release cannot be done

by a project leader because his focus is and should be limited to a project.

Organization of development, maintenance and development for reuse

Three Iines of activity are performed in multiproduct controL The issue at hand is

whether the three lines of activity are to be performed by one or more departments.

As in the organization of product con trol, three possible solutions are distinguished:

- One in which projects and development for reuse are united

- One in which they are divided over different organizations

- One in which they are together, but dispersed in time.

The advantages and disadvantages for all three situations will be discussed. The

discussion on work order release has led to the introduetion of the term production

unit. The decision upon the number of production units is not the issue here. The

issue at hand is whether or not departments should specialise in one of the three lines

of work.

90

The first situation is the one in which the traditional software development

organization is given the assignment to reuse software as an additional control goal.

An advantage in this situation is that the developers of software products for specifïc

customers arealso involved in the creation of reusable components. Here the reactive

method of creating reusable components is employed. A developer who has designed

a piece of software in a project that can potentially be reused later, is allowed to

imprave the software further with regard to aspects such as portability, reusability

and interoperability. In using the proactive approach to generale reusable

components, the development of the component wiJl be . a separate development

effort, with special emphasis on transition quality attributes. The fact that the people

who are in charge of producing customer-specific software also produce the

components will improve the acceptance of the component. The components are not

threatened by the 'not invented here' syndrome.

Of course there are also disadvantages in combining development and reuse. They

can be witnessed in most software organizations nowadays. The two have always

been together: the potential of reusing software has been acknowledged for decades

now, but reuse has not really taken off in most organizations. Basili (1989) reveals

some of the causes in a paper called 'Software development; a paradigm for the

future'. He stresses the necessity to do several off-line activities to allow for the

reuse of software, process models and development experiences. The traditional

organization is usually a project organization geared to the development of a specitïc

system. A project cannot afford to spend extra time on tailoring experience for

another project within the budgetary constraints. Consequently, reuse cannot take off.

Basili states that if there is no separate organization to look after the exploitation of

experience, short-term interestswiJl always predomina te at the costof the long-term

interests. Basili states that the off-line activities require a different focus, a different

set of processes and an independent oost base. He also stales that two functions that

differ so much are to be put into two different organizations.

This brings us to the second possible organization of development, maintenance and

development for reuse. Basili calls the first organization the project organization and

the second organization the experience factory. A project organization is an

organization that makes products according to customers' specifications. The

experience factory packages experience that is obtained during projects and makes

it available for future reuse. It builds and maintains the experience base. The

experience factory can also act as a component factory if the project organization

requires a certain component.

An advantage of this organizational structure is that there is an independent

91

organization which is committed to looking after reuse. At least there are some

people who are not bothered by the short term problems and can afford to look

beyond the horizon of the project at hand. Another advantage may he that engineers

in the experience factory can judge the reusability potenrial of components more

objectively because they are not biased by personal involvement in the development

of customer packages.

There are also some disadvantages, however. Firstly, the initialive for the

development of a reusable component is reactive: either the project organization

delivers a software product that is worthwhile generalizing, or the project

organization orders a component that is not yet available. An organization that wants

to control its product range in order to be able to exploit the potenrial for reuse

should, in our opinion, take the initialive to develop key components. Secondly, there

is also a danger that separating customer-specific software development and the

development of reusable components may he fighting the symptom, but not attacking

the disease. The symptom is that reuse is not taking off. The disease is that software

engineers are so preoccupied by current problems that it is not possible to strive for

long-term goals, such as achieving producrivity improvements by reusing software.

The experience factory may he viewed by the project people as another staff

department A department that has no clear responsibilities, such as meeting the

deadline the project people are facing. At the same time, the experience factory is

allowed to bother the project organization. As a separate entity, it faces the same

danger as some quality improvement departments: they are perceived as a burden by

the people who do the actual work for customer orders.

The third organization to be distinguished is a middle course between the two

previous organizations. Both projects and dtwelopment for reuse are in one
organizarion, but the two are dispersed in time. The involvement of the engineers can

he obtained, because they do both kinds of acriviries and are expected to reuse both

the software items and the experiences they have made available for reuse

themselves. A disadvantage of this situation is that the control of such an

organizarion will he complex. The same organization carries out development,

maintenance and development for reuse activities. There is a risk that short-term

interests will again prevail. Goals should therefore he stated clearly and those

responsible for maintenance and reuse should have the power to exact concessions

which will allow them to do their job. The control will probably have to he broken

down into different levels to he able to handle the complexity, just as in the case of

production con trol. It should be possible to decide u pon the dis tribution of capacities

over development, maintenance and development for reuse at a higher level of

controL The distribution should bestaled to the production unit with lower and upper

92

bounds to allow the engineering organization to react to unexpected events. The

production units themselves can decide u pon the dis tribution of the work over time.

The advantages and problems of the various organizational oprions are shown in

Table 5.3.

Table 5.3 Advantages and problems of organizational oprions

Development, maintenance ADVANTAGE DISADVANTAGE
and development for reuse

Separated - clear responsibilities - oot invented here syndrome
- objective judgement - another staff department

of reusability potential - fighting the symptom

Uniled - involvement - short term interest may
- use and reuse belong predomina te

together

Dispersed in time - involvement - increased control
- accountability complexity

5.7 A specific software factory

Multiproduct control can be achieved in many ways; a lot of decisions have to be

taken with regard to the controL We will specify one software factory which will be

taken as a starring point in the remainder of the thesis. We do not argue that this

software factory is the ultimate one. An organizarion wil! have to arrange its

multiproduct control in the way that fits their purposes best. The software factory

specified will betaken as a starting point for the design of an information system in

chapters 7 and 8. The control characteristics which will be made specific are: goal,

production control situation and organization.

The goal of the software factory we have in mind is to minimize cost and maximize

the functionality and quality of the product range that is being, and wil! be,

developed. To be able to achieve this goal, the company has limited its product

range. It has done this because it wants to distinguish itself from other software

suppliers. The department is held responsible for the produels it has developed in the

past; i.e. it has to control maintenance on products that have been developed in the

past.

The production control situation can be characterized as an engineer-to-order

situation with an emphasis on reuse of software components. This means that product

specificarions are agreed upon in particular customer orders. Customers orders must,

93

however, fit into the defined product ranges. Software engineering uses references

as much as possible. This holds for reference produelS and reference processes.

Software components are engineered for future reuse, bath proactively and reactively.

The department invests in the reuse of software components, bath by generalizing

software produelS for potential future reuse and by developing software components

in advance for future reuse. Descriptions of produelS that have been developed in the

past must be available to the engineers in order to be able to reuse them. The same

holds for process know-how. A customer order is called a project in this

environment. Projects need to be controlled with respect to the aspects of quality,

time and money. The organization is well aware of the fact that there is more to be

done than simply completing projects.

The organization consists of a number of production units that perfarm development,

maintenance and development of reusable components for the produelS that belang

to their product range. The department has evaluated the advantages and

disadvantages of specialization of departments in development, maintenance or

development for reuse. It has decided that in its particular situation, the involvement

of engineers in all three activities is very important and the activities are therefore

performed in one organization, dispersed in time. Consequently, workorder release

requires special emphasis.

94

6 TOWARDS A SOFTWARE FACI'ORY

6.1 Introduetion

Three stages in the control of software engineering have so far been discussed. The

main difference between the stages is the object of controL The stages were called

development control, product control and multiproduct controL In development

control, the object of control was limited to the development phases only. Product

control extended the object of control to the entire product life cycle. Multiproduct

control extended the control object from one product to multiple products. An

organization that is in the multiproduct control stage has been typified as a software

factory. Up to now the discussion has concentraled on the differences between the

stages. The requirements to be fulfilled in order to be a bie to advance from one stage

to the next have nol yet been discussed. It might be thought that progress from

development control via product control to multiproduct control would be just a

matter of time. The opposite is true. A certain level of process control is required to

be able to advance from one stage to the next, as will bedemonstraled below.

Humphrey (1988, 1989a, 1989b) developed a software process maturity framework,

which can be used to assess the capabilities of a software engineering organization

and to identify the major areas for improvement. His framework will be used to

outline the relation between the level of process control and the stage of controL

6.2 Levels of process control

The relation between product and process quality has already been addressed. This

section concentrales on process quality and discusses the five levels of process

quality distinguished by Humphrey (1988, 1989a). The levels of process control are

discussed in detail because they will be used to describe the steps towards a software

factory.

Humphrey (1989) defines a processas a set of tasks which when properly perforrned,

produces the desired result. He further states that an important first step in actdressing

software problems is to treat software engineering as a process that can be measured,

controlled and improved. Humphrey has applied Deming's workon statistica! control

to software engineering. Deming states that once a processis under statistica! con trol,

a consistently better result can only be achieved by improving the process (Deming

1986). Deming applied his ideas to manufacturing. Humphrey stales that despite the

diffe~ences between manufacturing and software engineering, there is no apparent

95

reason why Deming's approach should not work for software.

The maturity framework was developed to be able to enable the capabilities of

software engineering organizations to be characterized. The framework can also be

used by a software organization to assess its own capabilities and identify the most

important areas for improvement. Humphrey distinguishes between and describes five

levels of process maturity. These are given in Table 6.1. The main condition to be

satisfied in order to advance to the next level is also included.

Table 6.1 The levels of process control

Level of Main condition to be satisfied to be
proreiS control able to advance to the next level

Optimizing

Managed Process control

De6ned Process measurement

Repeatable Process definition

Initia! Basic management control

The five levels will be discussed in greater detail. The characteristic of the process

level and the key actions for actvancement to the next level will be addressed.

Initia/ process control

The initia) process can be characterized as ad hoc and chaotic. The organization

operates without explicit procedures, cost estimates and plans. An organization at this

level of process control is usually driven from crisis to crisis by unplanned priorities

and unmanaged change. Organizations like this typically do not meet their

commitments. Staffing the organization is not the main problem, rnanaging the

organization is. Probieros that occur are, for instance: missed deadlines, missing

specifications and failure to integrale components because of inadequate

configuration management. A test for an organization is its behaviour in a crisis. If

it abandons all procedures and rushes back into code and fix practices, it is likely to

be at the initia! level of process controL Humphrey characterizes this level as

follows: "When projects do succeed, it is generally because of the heroic efforts of

a dedicated team, rather than the capability of the organization." Humphrey based an

assessment methad on the distinction between the five levels of process controL

Surveys based on this assessment method, revealed that 76 percent of the contractors

working for the United Stales Department of Defense operate at a initia) level of

process control (Humphrey 1989b).

96

Improvement areas to focus on are: change control, project planning, project

managementand software quality assurance. Uncontrolled changes are a well known

cause of problems in software engineering. If changes are not controlled, a product

will beoome unchangeable and unreliable. Change control should ensure that changes

are tackled in the right way. Project planning and management should ensure that

realistic plans are made and that their progress is tracked. They should enforce

effective control of commitments.

Repeatable process level

The second control level distinguished is the repeatable process level. Humphrey

states that it may take betweenone and three years to advance from the initia! level

to a repeatable level, even with dedicated management commitment. The main

difference between it and the initia! level is that it bas established basic project

controls such as project management, management oversight, product assurance and

change con trol. Humphrey summarizes this by the statement that organizations at the

repeatable process level provide 'commitment control'. The process at this level is

under statistica! control, though the process still depends heavily on individuals. The

organization is frequently faced with quality problems. Humphrey's surveys reveal

that 22 percent of the organizations opera te at the repeatable level of process controL

The capabilities of the organization stem from their prior experience with similar

work. A similar development effort would have more or less the same result. The

process is vulnerable if changes occur. Examples of changes that entail risk are new

tools and methods, the development of a new kind of product and major

organizational changes.

Training is a key activity at the repeatable level for spreading experiences and

working practices among the individuals of the organization. The focus of control

should change from individual projects and products to the software process. An

organization which operates at the repeatable process level lacks a framework for

improvement. Other key actions are the instaBation of a process group which focuses

exclusively on improving the engineering process. While software quality assurance

is busy with enforcing the current process, the software process group aims at

improving it. Humphrey provides a rule of thumb: a process group should be about

1 to 3 percent of the size of the engineering organization. Another key action is the

establishment of a software process architecture which describes technica! and

management activities for the proper execution of the engineering process. A third

key action is the introduetion of a family of software engineering methods and

technologies such as software inspections, design methods, modem implementation

languages, library control systems and testing methods.

97

Defined process level

The defined process level is the stage in which the foundation is established for

examining the process and deciding how to imprave it. The advancement from the

repeatable to the defined process level may take another one to three years, according

to Humphrey. The process has been defined, installed and institutionalized and the

organization will stick to the process, even when it is facing a crisis. Insight into the

control of the process is still qualitative, however, and there is as yet little data to

indicate how effective the process is. Only one percent of the organizations that have

been assessed by Humphrey has achieved a defined process level. Quantification is

a major step to the next level of process controL Key actions are: the start of process

measurement and assessment of the relative quality of the products. Quantification

and data collection are important issues for impravement

Managed process level

The advancement to the managed level of process control wiJl bring considerable

improvements to the engineering organization. The process knowledge that was

available in qualified terms will be quantified at this level. Management's attention

should now be focused on quantitative planning and process controL The focus will

shift from problem solving to problem analysis and even to problem prevention.

Collection of process data is an important activity here. Humphrey stales that the

greatest potenrial problem at this level is the cast of gatbering data. So far,

Humphrey has found no entire organizations that operate on the managed or

optimizing level of process controL

Optimizing process level

The optimizing level provides process controL Data for tuning the process are

available in the optimizing process. The emphasis has shifted from problem-solving

to problem prevention. The emphasis is on the impravement of the process itself. The

optimizing process helps the manager to understand opportunities for improvement.

One of the opportunities is automation of the software engineering process.

Humphrey mentions automation as a key area at the optimizing level. Tools may be

helpful at lower levels of process control, but it is only after process control has been

put into practice that automation will result in significant productivity and quality

gains. In other words: "Automation of poorly defined processes will result in poorly

defined results" (Humphrey 1989a, page 23). Professionals can communieale in

quantitative terms on the process of software engineering. The optimizing process

provides a disciplined environment for professional work. Humphrey puts the

emphasis on the difference between discipline and regimentation: discipline does not

affect the actual conduct of the work, while regimentation does. Humphrey ends with

the remark that "Discipline thus enables creativity by freeing the most talenled

98

software professionals from the many crises that others have created" (Humphrey

1988, page 78).

U se of the framework

The five levels Humphrey describes give a comprehensible characterization of the

levels of process con trol. The characteristics of the levels and their key problem areas

are summarized in Table 6.2.

Table 6.2 Another characteristic of levels of process control (Humphrey 1989)

Level of O!aracteristic Key problem areas
process control

Optimi:zing Irnprovement fed automation
back into process

Managed (quantitative) problem analysis,
Measured process problem prevention

Defined (qualitative) process measurement,
l'!'oress defined and process anal ysis,
institutionalized quantitative quality plans

Repeatable (intuitive) training,
l'!'oress dependent technica! practices (reviews, testing),
on individuals process focus (standards, process groups)

Initia! (Ad hoc, chaotic) project management,
project planning,
contiguration management,
Software quality assurance

The distinction between the different levels should not be interpreled in an absolute

sense. For example, it may be that process measurement is applied at the initiallevel

of process control or that configuration management is still a problem at the
repeatable process level. Obviously, an organization does not advance two or three

levels by merely adopting the techniques that Humphrey prescribes. The framework

does, however, give an idea of the different levels of process control in software

engineering and provides clues about how an organization can advance from one

level to another.

6.3 Steps towards the software factory

The stages development control, product control and multiproduct control have been

described in the preceding chapters. This section will discuss how an organization

could proceed from one stage to the next. In other words; it will outline the way to

a software factory. It might be supposed that the advancement from one control stage

99

to the next is just a matter of time. The opposite is true. We wil! argue that two

requirements must be fulfilled to be able to advance from one control stage to the

next: an explicit decision by the organization concerned and a eertaio level of process

control in termsof Humphrey.

A first requirement is the decision to advance to the next stage of controL It is not

essential for all the existing software engineering organizations to advance from

development control to product or multiproduct controL For example, an organization

may choose to limit itself to development control and capture a niche in a market

An organization mayalso decide to limit itself to the development and maintenance

of one product, or one well-defined product family. The product control stage will

suffice in this case.

The second requirement for the actvancement to product or multiproduct control is

a eertaio level of process controL lt takes a minimum level of process control to be

able to achieve product or multiproduct controL An example: an organization that

cannot control the development of a single product, will certainly not be able to

control both the development and maintenance of that product. The remaioder of this

section will outline the relation between the level of process control and the stage of

control an organization can attain.

Development control is the most limited focus of control we have identified. This

stage requires an organization that operales at a repeatable level of process control,

for it is impossible to control development at an initiallevel of process controL The

initia! level bas been typified as chaotic. Organizations which operateat the initia!

level of process control often do so without project plans, ex post facto casting and

accepted working procedures. They hardly track the progress of their projects in

relation to the plans, let alone that being able to control their projects with respect

to the aspects of quality, time and cost. Humphrey argues that the introduetion of

basic management skills is a minimum requirement for achieving a repeatable level

of process controL Examples of basic management skilis are change control and

project planning. The same kinds of skilis are a requirement for cantrolling

development projects at the stage we have called development controL

The repeatable level of process control may be appropriate for cantrolling

development projects, but it is insufficient for cantrolling all the engineering

activities required during the life cycle of a product. Organizations which operateat

a repeatable level of process control "typically have their cost and schedules under

reasanabie controL They generally do not have orderly methods for tracking,

cantrolling and improving the quality of their software process" (Humphrey 1989b,

100

page 178). Quality requirements are insufficiently acknowledged and controlled at

the repeatable level. An organization that chooses to be responsible for both

development and maintenance cannot afford to relinquish its responsibility for

quality. For that reason, the level of process control will have to be raised to be able

to control both development and maintenance.

Multiproduct control extends the responsibility of an organization even further. The

goal of product control is to maximize quality at minimal cost over the lifetime of

a certain product within the given time constraints. The goal of multiproduct control

is to minimize cost and maximize the functionality and quality of a certain range of

software products. The goal of an organization which strives for multiproduct control

is quite ambitious. A high level of process control is therefore required. An

organization that is employing multiproduct control intends to exploit the potenrial

of reuse. It has identified a product range in which it operates. This organization will

invest in components it intends to reuse later. This means that it must look beyond

the products under development and have a clear view of its future product range.

An organization that needs t6 look beyond its current projects and produels has to

control its operations without being confronted by the day-to-day problems which

beset most of the current software engineering processes. It is questionable whether

the defined level of process control is sufficient for multiproduct controL At this

level, the knowledge of the process is mainly qualitative. A more quantitative

knowledge of the software engineering process is probably required to allow for

multiproduct controL Advancement to the managed or optimizing level of process

control would appear to be necessary. Statements about the defined, managed or

optimizing level of process control must be restrained, because so far only a few

organizations operaring at these levels of process control have been found.

The preceding argument is visualized in Figure 6.1.

101

multiproduct

product

development

Figure 6.1

CONTROL STAGE

inftlal repeatable deflned managed optlmlzing

LEVEL OF PROCESS CONTROL

The relation between the level of process control and the

control stage

lt should be obvious that Figure 6.1 is nol nonnative but indicative. The figure only

visualizes the steps to a software factory. All we aim to show is that process

impravement is necessary for the actvancement from development control through

product control to multiproduct controL The shape of the steps shows we believe in

incremental process impravement and in incremental expansion of the control focus.

An example of incremental impravement of the stage of control is as follows: an

organization in the development control stage can enterintoa maintenance agreement

with one of its clients. lt can then enter into similar contracts with all of its clients

after it has gained some experience and become an organization employing product

controL The level of process control should be raised simultaneously.

6.4 Summary and conclusions

This chapter has outlined the relation between the level of process control and the

stage of control an organization can attain. Section 6.2 discussed the software process

maturity framework, developed by Humphrey (1988, 1989a, 1989b). He applied

Deming's work to software engineering and distinguished between five levels of

process controL The five levels of process maturity are the initia!, repeatable,

defined, I1lanaged and optimizing level of process controL The key problem areas at

the differentlevels of process control are described by Humphrey. Quantification and

data collection are among the actions at different levels of process controL The

framework is used in section 6.3 to be able to outline the relation between the level

of process control and the stage of control an organization can attain.

102

The description of development, product and multiproduct control showed that there

is a relation between the actvancement in process control and the stage of control an

organization can accomplish. The relation between the actvancement in the process

control level and achievable control stage is visualized in the steps towards the

software factory (Figure 6.1). The main point is that the relation between process

control and the stage of control is acknowledged. Organizations aiming at product

or multiproduct control should be aware of the existence of the steps and deliberately

work their way upwards.

103

7 INFORMATION SYSTEMS IN SOFfW ARE ENGINEERING
CONTROL AND PRODUCTION CONTROL

7.1 Introduetion

The next three chapters will discuss information requirements and information

systems for software engineering controL This chapter describes the search for

reference information systems and the assessment of the reference systems with

respect to software engineering control in the software factory. The description of

control in the software factory given in section 5.7 will be used as a starting point.

The reference systems that will be explored first are in formation systems for software

engineering control as they are proposed in the literature. Three systems will be

described insection 7.2. They are the Project Management Data Base (Penedo 1985),

The TAME system (Basili 1988, Jeffrey 1987) and the experience base as described

by Noth (1987). They have been selected because we consicter them to be important

information systems for software engineering control which have been described in

the literature. The three systems will be compared with one another and wil! be

assessed with respect to control in the software factory insection 7.3. An information

system for engineer-ta-order production control, as described in (Bertrand 1990), will

also be considered as a reference system. This system wiJl be described in section

7.4. lt will be compared to the reference systems already discussed and will be

assessed with respect to control in the software factory in section 7.5. Section 7.6

contains the summary and conclusions of the seventh chapter.

7.2 Information systems for software engineering control

This section describes three information systems which support the control of

software engineering activities, as proposed in the literature. They wil! be used as a

reference system for designing an information system for a software factory. The

systems discussed are:

- The TRW Project Management Data Base, as described by Penedo and Stuckle

(1985),

- The TAME system as described by Basili and Rombach (1988), Jeffrey and Basili

(1988),

- An experience data base, as described by Noth (1987).

The description of the in formation systems will focus on their goals and data models.

The data models represent the skeleton of the information systems and allow a

comparison to be made. This section contains a description of the three in formation

104

systems. A comparison of the system and the assessment with respect to the software

factory wil! be made insection 7.3.

TRW Project Mano.gement Data Base

The TRW Project Management Data Base (abbreviated as PMDB) was one of the

results of TRW's studies of software engineering environments. The goal of PMDB

is to provide a project library that captures the information generaled during software

development. Four steps were defined to accomplish this task. They were:

1 Identification of a PMDB model

2 Synthesis of procedures and methods associated with PMDB

3 Identification of user views

4 Prototyping and implementation of the items above.

The results of the first steps are reported upon in the only paper about PMDB that

is publicly available.

PMDB is aimed at supporting large projects. It is intended to store and relate the

output of a project. The process by which the components in the database are

entered, modified and controlled should be automated. PMDB includes products,

resources and plans. It airns to support everyone involved in a project in their work,

including programmers, managers, engineers and secretaries.

The PMDB data model wil! be discussed. PMDB is represented in an entity

relationship model containing 31 objects, 220 attributes and 170 relationships. An

entity relationship model of eleven key objects and their relations is given in Figure

7.1.

105

Figure 7.1 An entity relationship model of PMDB

The data model will be described from left to right. A development effort usually

starts with requirements. Figure 7.1 shows that the requirement will define interfaces

to the world outside the project and be described in a document. Requirements are

allocated to software components which may vary from high level descriptions of a

product to a routine. Software components can be associated with accountable tasles.

According to Figure 7.1, the structure of a project is represented by a Work

Breakdown Structure (WBS) consisting of accountable tasles. As we shall see, the

entities WBS and accountable task are similar to the entities project and activity in

data roodels of other information systems for software engineering controL Tasles

consume resources and produce a product. A product is described in a product

description and versions of the product are supposed to be finished at product

milestones. Milestones are managed by persons, as are accountable tasles and the

WBS elements.

The data model given in Figure 7.1 distinguishes between 11 objects only. As

already mentioned, a complete data model would consist of all 31 objects. It would,

for example, show that resourcescan be applied to purchasing software, hardware or

consumables. It would also show that a product is related to objects such as hardware

architecture, tools, hardware components and software components. A list of all

objects and their description is given in Table 7.1.

106

Table 7.1 The objectsas distinguished in PMDB

NAME DESCRIPTION

Accountable task Characterizes the acrountable tasksljobs 10 be perfonned by the
project

Change item Characterizes the changes that occur in a project, caused by
cusiOmer request, a problem report or other reason

Consumable purebase Characterizes the purchasing of oonsumables used by a project
(or by a data processing facility within a project)

Contract Cbaracterizes the contract or sub-contracts which are part of the
project

Data component Characterizes the data items wbich are part -of the software
development

Dictionary Characterizes the project dictionary, e.g. terros and acronyms.
Document Characterizes any documentation, e.g. plans, specification

documents, manuals, tradtXlff analysis, hardware lay-outs etc.
Equipment purebase Characterizes purchasing of equipment, e.g. computers, parts etc.
Extemal component Characterizes systems which are extemal 10 the systems being

designed!built by the project and interface with it
Hardware architecture Characterizes hardware oonfigurations
Hardware oomponent Characterizes each hardware component (or firmware) which is

either part of a hardware design project or is part of the hardware
in a software design project

Hardware component Describes characteristics of different types of hardware, ei ther
description bought or designed and built by the project
Interface Characterizes interfaces between software/hardware and hardware

software components, or software and software oomponents
Milestone Characterizes each of the projeet's major milestones and internat

schedules
Operational scenario Characterizes scenarios which reflect acceptance that the system

performs under required performance criteria
Person Characterizes project personnet
Problem report Characterizes probieros which have been reported against

baselined information
Product Characterizes versions of deliverable produelS
Productdescription Describes characteristics of different types of products
Requirement Characterizes project requirements
Resource Characterizes project resources, e.g., travel, reproduction,

equipment, etc.
Risk Characterizes elements which have been identified as risks to the

project
Sirnularlon Characterizes simulation runs of software hardware architectures
Software component Characterizes each software component (e.g. module, task, unit,

routine etc.) of a project
Software configuration Characterizes software oonfigurations
Software executable task Characterizes the packaging of software components
Software purebase Characterizes the purchasing of software components, e.g. sub-

systems or tools
Test case Characterizes test cases
Test procedure Characterizes test procedures which may use one or more test

cases
Tooi Characterizes tools or programs utilized by a project during its

life cycle
WBSelement Characterizes elements of the work breakdown structure for a

project

107

The list of 31 objects includes the objects problem report and change request. These

objects are used to report probieros and changes during the life cycle of the product.

We conclude from this that PMDB looks beyond development control and captures

data during the whole product life cycle.

The authors mention some research issues related to PMDB. One is version controL

They state that it will be difficult to capture the data from all the different versions

because of the sheer volumes of data. The support of collection and relention of

history is another research issue. Support of histories was one of the most requested

user requirements. PMDB therefore aims to provide mechanisms for the collection

and relention of historica! data. Again, the large volumes of data may cause
problems. Interfaces to other databases are also a research issue. Other databases

which are considered relevant are personnel and company cast databases as well as

a database with reusable software components. The last one is not considered as part

ofPMDB.

We conclude that the PMDB paper provides a thorough description of the data model

of a project database and the issues that need additional research. PMDB shows the

comprehensiveness of data collection in software engineering controL Unfortunately,

PMDB is less specific about some subjects which are important for software

engineering control in a software factory, such as the collection and relention of

historica) data as well as reusable software components.

TAME system

TAME stands for TailoringA Measureme.nt Environment. TAMEis a project from

the Department of Computer Science of the University of Maryland. The main goal

of the T AME project is to create a corporale experience base which incorporates

historica! information, packaged in such a way that it is useful for future projects.

TAMEis basedon years of research by the University of Maryland into the analysis

of software engineering. The TAME project has a lead time of several years. So far

a first prototype has been reported upon. The researchers intend to build a number

of evolving prototypes in which the components distinguished will be built in

gradually. A description of the TAME project is given in Basili and Rombach

(1988). The TAME process model will be discussed to give an overview of this

system. Next, the discussion will focus on its resource data model, as described by

Jeffrey and Basili (1988).

The T AME system is supposed to provide the support for the T AME process model

given in Figure 7.2.

108

perspe ~ charac- plannmg executing
terizing what how •

con- f- plan for struc- charac- construc- construct
tive terlze set ti on

envlron- goals plan for analyze a na- ment analysis
lytic

I experience base J

Figure 7.2 The TAME process model

The T AME process model distinguishes between tbree major tasks, namely

characterizing, planning and execution. Characterizing is necessary to understand the

factors that influence the environment in which the engineering effort takes place.

Planning includes goal-setting in the TAME process model. Execution involves the

construction of the software product. The two rows in the model distinguish between

a constructive and an analytic aspect of software engineering. Software construction

neects to be improved to be able to generale higher quality software. lmproving the

construction process requires analysis of the cuerent software engineering process and

products. Experience on ongoing projects is fed into the experience base. Future

projects should benefit from the available experience, which contains information

about both products and processes. The TAME system aims to support all

components of the process model, except for the execution of the construction.

The TAME research so far has put a great deal of emphasis on modeHing resource

data. The TAME resource data model, as described by Jeffrey and Basili (1988), will

be discussed. lt is the only TAME data model that is available at this point of time.

The heart of the data model consists of four entities and three relations. lt is given

in Figure 7.3.

109

Figure 7.3 A model of a software project

Figure 7.3 shows that a project consists of a number of tasks. Tasks consume

resources and produce a product. The same four en ti ties and relations can be isolated

in the data model that was proposed by Penedo and Stuckle. The comparable entities

are: WBS element, accountable task, resource and product. The resource data model

is refined. Firstly, resource type and resource use are distinguished. Four resource

types are separated: hardware, software, human and support resources. Hardware

resources contain all the equipment that is used or will potentially be used in the

environment under consideration. Software resources encompass all the previously

existing programs and software systerns that are used or will potentially be used in

the environment under consideration. Human resources encompass all the people

used, or who can potentially be used, for engineering or operation. Support resources

comprise additional facilities such as materials, communications and supplies.

Resource use is described by resource incurrence, resource availability and resource

use descriptors. Incurrence allows a distinction to be made between estimated and

actual resource use. Resource availability allows a distinction to be made between

desirable, accessible and utilized resources. Desirabie resources are all the resources

within the organization that could be of value for the project. Accessible resources

are those that can be used on the project, utilized resources are a subset of the

accessible resources and are defined as the resources actually in a project. Resource

use descriptors mentioned are: the nature of the work (designing, coding, inspecting),

the point in calender time and resources utilized (for example, in hours or dollars).

Four dimensions of resources have been identified: resource type, resource use,

resource incurrence and resource availability. The structure proposedis presented in

Figure 7.4. This model is a refined version of the model presenled in Figure 7.3.

110

Figure 7.4 A model of resource data

The TAME process model in Figure 7.2, as wellas the data model in figures 7.3 and

7.4, will be used to rompare the TAME system with the other proposed information

systems. At this point we conclude that T AME has a sound basis and holds a lot of

promises. TAME claims it should be able to support maintenance work and contains

a database with reusable components. The currently available publications are less

specific about the development status of these features.

Noth's experience database
Noth (1987) describes an experience database for the support of software project

management. The goal of the database is to provide data on compieled projects to

support the planning of similar projects. The database design is derived from an

extensive analysis of the information requirements of the parties involved in the

control of software engineering. Noth analyzed the requirements of management,

administration, planning, control, engineering, quality control and configuration

management.

Noth distinguishes between a database and a methods base. The database is divided

111

into a text, a data and a knowledge base. The data are accumulated from the projects
through data collection after the project is finished. The database can be accessed

through an information retrieval system. The methods bank contains methods and

techniques for operating on the data in the database. The methods bank and

information retrieval system are activaled by information requests from the

organization. Examples of methods and techniques in the methods bank are:

statistica! analysis tools, risk analysis tools and estimation models.

Noth describes a project in what he calls a logica! data model. He distinguishes

between products, resources and environment as object classes. The data model

consists of a list of objects which are in Table 7.2.
'l

Table 7.2 Objects and attributes of Noth's database

PRODUCfS -
descriptioo and classification risk estirnarion and evaluarion
si ze change requests and failures
resource use problem reports
en> I reference lopersons and functions involved
lead time reference to related products.

RESOURCES

- PERSONAL: -TEAM: - HARDW ARE/SÖFIW ARE:
name name name
profile profile rnernbers classification
function in project fluetuation function
department absence due 10 illness applicability
problem involvement productivity supplier
produetivity product involvernenl reference 10 buy decision
absence due 10 illness problem involvement. problem involvernent.
produel involvement
reference 10 job description.

ORGANIZATION

place within organizarion problem involvement
function experience
produel involvement political interest

preferences.

Among the product attributes that are distinguished are the usual ones such as size,

resource use, castand lead time. Noth also considers risk, change requests, failures

and problem reports as objects in bis experience base. He does not only intend to

capture development experience, but also experiences with the use of the product that

has been developed.

Within the object class resources a distinction is made between the objects personnel,

software and hardware. The resource data attract the attention because they can easily

112

be abused for personal appraisal. Examples are data such as absence due to illness,

personal productivity and the involvement with probieros in the software are

examples.

The last class of objects is the environment. It can be divided into the environment

within the company and outside the company. Both can be subdivided into

organizations, departments and persons. Some of the environmental attributes, such

as the function and experience can be measured in objective terms. Some others are

highly subjective, such as politica! interest and preferences.

Noth's experience database limits itself to the collection of experience. It does nol

support tracking of ongoing development of maintenance activities and it does not

support the reuse of software. The experience data are mainly used for planning

purposes.

7.3 Comparison of the systems and assessment with respect to the
software factory

The information systems described in the previous section will be compared with one

another. Next, we will assess the value of an information system for software

engineering control as a reference for this activity in a software factory.

Comparison

The three systems will be compared with respect to three criteria. These criteria have

been chosen because they typify the information systems and the available

descriptions allow us to compare the systems with respect to them. The criteria are

the goal of the information systems, their data model and their maturity.

Goal

A feature common to the three systems is that they all aim to capture software

engineering data to support software engineering controL All the systems capture

both product and process data. However, the software engineering control tasks that

are supported and, as a consequence, the kind of data colleeled differs considerably.

PMDB is intended to provide a project library that captures the data that is generaled

during a software engineering project. It is aimed at supporting the control of

ongoing projects. Support of the collection and relention of history is mentioned as

an issue for future research. TAME is intended to support the control of current

construction projects by analyzing the current project. lt also aims to supply

experience from its experience base to support the control of future projects. Noth's

113

database does not support tracldng of current projects. It mainly supports the

planning of future projects, by supplying of experience data.

We conclude that the top level goal of the systems may be the same. As soon as the

goals beoome more specific, considerable differences become clear.

Data roodels

A comparison of the data roodels shows that PMDB and Noth's data model camprise

the entire system, while the T AME data model only encompasses the resource data -

a limited part of the TAME system. Other TAME data roodels are not yet available.

This makes comparison difficult. What is clear, however, is that all the systems take

a project as the starting point for their data model. PMDB is aimed at large software

projects. Noth's experience database is aimed at projectsas wel!. The TAME system

does not specifically aim at projects and can also be tailored to other engineering

activities. The TAME resource model, however, takes the project as its starring point.

Another similarity is that the 'heart' of a data model, as identified by the TAME

resource model, can be identified in all the systems. All three data roodels show a

project that is broken down into activities which consume resources and produce a

. product.

Maturitv

The maturity of the three systems is the last criterion that wil! be considered in the

comparison. Practical experiences with implementing the proposed information

systems have not yet been published. The progress of the T AME system is regularly

re~rted upon (Basili 1988, 1989, 1990 and Rombach 1990). A first prototype has

been developed and more wil! become available in the years to come. We are not

aware of any reports on the progress of PMDB or Noth's experience database.

The comparison of the three infonnation systems has yielded a number of similarities

and differences. The most important of these are summarized in Table 7.3.

114

Table 7.3 Similarities and differences between the systems discussed

SIMILARITIES

Capture software engineering experience by means of data collectioo

Collect data on software product ànd process

Software projects as a starting point

'Heart' of the data model

DIFFERENCES

Support of control versus planning support

The use of product data

Representation of the systerns

Maturity

Assessment

The inforrnation systems will be assessed with regard to some requirements which

are derived from the control characteristics of a software factory, as given insection

5.7. The most important characteristics will be repeated here. Control in the software

factory was characterized in terros of goal, production control situation and

organization. The goal of the software factory is to minimize cost and maximize the

functionality and quality of the product range that is being, and will be, developed.

The software factory has limited its product range. The department is held

responsible for the products it bas developed in the past, i.e. it has to control the

maintenance on products that have been developed in the past. The production

control situation can be characterized as engineer to order. This means that

specifications of products are agreed upon in particular customer orders. Customers

orders must, however, fit in with the product ranges defined. Software components

are engineered for future reuse, both proactively and reactively. The organization is

made up of several production units. Development, maintenance and development of

reusable components for a product range are done within the same production unit.

The description of the control system allows us to derive some minimal requirements

that a software factory inforrnation system will have to meet. The minimal

requirements allow an assessment to be made. They are:

- Support of the control of current projects,

- Support of the planning of future projects,

- Support of the control of maintenance activities, and

- Support of the reuse of software components.

The three information systems discussed will be assessed with respect to these

115

minimal requirements.

PMDB

PMDB aims to support data colleerion and retenrion in ongoing software projects. It

is not clear how reference information for future software development efforts is

provided. A database with software components which are available for potenrial

future reuse is not considered as part of PMDB. Maintenance activities are not

distinguished as separate activiries. We conclude that PMDB is not yet capable of

supporting- software engineering control in a software factory.

TAME

TAME supports both the control of current and the planning of future projects.

Different kinds of reference data are acknowledged and TAME is tailorable to

maintenance acrivities. Provision will be made for a library with reusable

components. TAMEis very promising, thanks to its sound basis and its tailorability.

It is difficult to assess T AME with respect to the software factory in its current state

of development, since so far only a first prototype has been reported upon. At this

time, we cannot be sure that T AME is able to support software engineering control

. in a software factory.

Noth's experience database

The experience base captures data on ongoing projects to support the planning of

future projects. It does notsupport the control of ongoing projects. A database with

reusable componentsis not considered part of the experience database. We conclude

that Noth's experience base is not suitable as an information system for a software

factory.

The three systems have been discussed as potential reference systems for an

information system for software engineering control in the software factory. They

provide useful insights to those involved in software engineering controL The ideas

bebind the systems are valuable and partsof the systems may be useable. The fact

that the systems do not (yet) meet all the requirements and that the systems are still

being researched, bas led us to incorporate another reference system in the

discussion. It is an in formation system that supports engineer-ta-order production. So

far we have used information systems for software engineering control as reference

systems for the software factory. In the next section we will try to use information

systems for production control as a reference.

116

7.4 Information systems in production control

Section 5.4 discussed the control of multiproduct software engineering. It

distinguished between the following production control situations: engineer-to-order,

make-to-order, assemble-to-order and make-to-stock. We argued that the software

factory shows most similarities with engineer-to-order production. This section will

describe the outlines of an inforroation system for engineer-to-order production

controL The outlines described will act as a reference for an information system for

a software factory.

The outlines will be described in terros of the architecture and a data model. The

architecture is described in (Bertrand 1990). The description consists of four

concentric circles which are given in Figure 7.5.

Figure 7.5 The four concentric circles of production control software

(Bertrand 1990, page 117)

The inner circle contains application-independent software which enables application

programs to run. It consists of an operating system, a data base management system,

an input/output monitor and a query language facility. The second layer consistsof

the state-independent transaction processing systems. lt is often referred to as order

independent data. The terros order-dependentand order-independent data will be used

in this book because state dependent and state-independent are reserved words in

software engineering. The second layer constitutes all kinds of recording data relating

to products, technology, equipment and personnel that are independent of the flow

117

of orders and the flow of materials. For example, the order-independent data contains

the description of reference products and resources.

The third layer represents order-dependent transaction processing. The application

software which monitors the state and the state transitionsof thematenals and orders

is located in this layer. For example, it contains planning data. lt also tracks the

status of orders which may start as prospects and be transformed later into confirmed

orders, shipped orders and finished orders. The fourth and outer layer is the layer of

the various decision support systems. They should support the human decision-maker

and may contain, for example, project and activity scheduling systems. The

discussion of the information systems will focus on the two middle circles: the order

dependent and or~er-independent data. They represent the skeleton of information

· systems for production control (Bertrand 1981) and are regardedas essential for the

fourth layer (Bertrand 1990).

The contents of the concentric layers differ considerably for the production control

situatións distinguished in section 5.4. The information system in a make to stock

environment is mainly a tooi for planning and controL Information systems for

. customer-order-driven production become a tooi for engineering, in addition to their

decreased role in planning and controL The architecture of customer-order-driven

production will be described in more detail. In terms of the Process-Control

Information model: the Control of a software factory shows similarities with

engineer-to-order production, as was argued insection 5.4. Therefore, the design of

an Information system for a software factory can benefit from a study of an

Information system for engineer-to-order production.

·The study of the analogy and differences will focus on a model of the architecture

of the information system, as wellas on data roodels of the information system. The

architecture of an information system for customer order driven production is given

in Figure 7.6. The circles of the architecture will be discussed from the inside

outwards. The inner circle is not specific to customer-order-driven production. It

contains software which enables the application software to run, as well as a calender

and certain parameters that must he initialized before the software is used.

118

Figure 7.6

Jogls~cs
control

production
sctivity
centrol

Architecture of an infonnation system for customer order

driven production (Bertrand 1990, page 162)

The order-independent data are used as an aid in engineering. They are mainly used

as a reference. The references include reference products, reference networles of tasles

and matenals as well as reference routings. A reference product is a product which

shows a certain degree of similarity with the product to be engineered and

manufactured. In software tenns: a reference product is a piece of software that can

possibly be reused. A reference network describes how similar produels have been

produced in the past; it describes the subsequent steps to be taken. A reference

routing describes the production operations in detail. The reference routing includes

the capacity unit, the set-up time, the run time and the waiting time. Infonnation on

the resources completes the order-independent data.

The order-dependent data are represented by the next concenttic circle in Figure 7.6.

The order-dependent data are conneeled to customer orders. The order-dependent data

will nol be known completely at the start of the production. The bill of material and

the routings will become known during execution. The customer will gradually fill

in the blank spots that have been left open at the start of the engineering of the

system. The order-dependent data consist of contracting data, actual networles of

tasles and data to control the progress. Progress control is done at an aggregate level

called the task level and at a more detailed level called the activity level. Data on the

availability of resources in time constitute the last group of data represented as order

dependent

119

The outer circle in the architecture of Figure 7.6 represents the decision support

systems. The systems distinguished support the lendering of new orders, multi and

single project planning, capacity loading, activity scheduling and capacity allocation.

Data structure diagrams constitute the skeleton of a production control infonnation

system (Bertrand 1990). Data structure diagrams will be given for the order

dependent and the order-independent data of the information system. The pictorial

notation for representing the data structilres is the one used by Martin (1987). It is

explained in Figure 7.7.

~
~
N-to-1 relatlonshlp trom

nonnative oparation to capaclty unit

~.~
~

nonnative oparailons may be
related to zero or one capaclty unit

~
~

each capscity unit should be related
to at least one nonnative oparation

Figure 7.7 The notation used.

The data structure diagram for the order-independent part is given in Figure 7.8.

120

Figure 7.8 Data structure diagram of the order-independent data

(Bertrand 1990, page 156)

The data structure diagram represents three levels of production control that have

already been distinguished in section 5.6. They are: aggregate production planning,

material coordination and production unit controL A rough cut capacity planning is

made at the aggregate production planning level. The rough cut capacity planning

uses estimates of the Iabour contents and lead times of networles of tasles. The

material coordination level activities opera te on detailed networles of activities, which

may be described as detailed project plans. Detailed scheduling of work operations

takes place at the shop floor control level. It is important to acknowledge the fact

that at the different levels of production control, planning is done with different

precision. Long term planning is done roughly, based on aggregate data while short

term planning of known activities is detailed and precise. It should be obvious that

different data are needed to plan at these levels.

The discussion of the entities distinguished in the data model in Figure 7.8 starts

with the order-independent data. The description of the diagram begins with the

reference networkof activities. Reference networles of activities are stored to support

the engineering and manufacturing if a product is needed that shows similarities with

a product previously developed. A network consists of a number of reference

121

activities. lt can be related to several critica! capacities by means of the entity type

reference load. Critica! capacities are related to a number of capacity units. An
activity may have a preeedenee relation withother activities. An activity is conneeled

to a reference item tjuough four relationships. Three relationships indicate which

items are supplied, prepared and consumed in the activity involved. The fourth

relationship indicates in which activity an item is designed.

The reference parent component relation represents the hili of materiaL A hili of

material for a parent is a list of components required for this parent item; it

represents a list of parent component relationships. The hili of material is an

important carrier of product information in production controL The remaining entity

types are related to the detailed operations. The reference routing describes the

operations of an item in detail. A reference routing consists of a list of norrnalive

reference operations. These may be used in more than one reference routing and

consume capacity from a eertaio capacity unit. A description of the available

resources completes the description of the order-independent data.

We now proceed to the order-dependent data. A data model in which the order

dependent data are added to the order-independent data is given in Figure 7.9. The

left half of the picture is a copy of Figure 7.8.

122

!l
()q
c::
@
-..J
\o

...... ~ lJl
3 c..

"' s
a
0
c..
~

0'
~
:::1

()q
:;·

...... g
~

....
I

ö
6
c..
~

't:l a
c..
c::
!?.
ö"
:::1

,--.

w
::1
t3
:::1
c..
......

_8
't:l

"' ~

The data structure diagram camprises both the order-independent data and the order

dependent data. The former areshownat the leftof the figure, while the latter appear

at the right. In general, it might be said, thät an order-dependent equivalent of the

order-independent entity types is added. A customer order that is entered into the

system is usually related to a reference network. A customer order plays a central

role in an information system for engineer-to-order production. An engineer-to-mder

company will only accept customer orders if the product fits into the defined product

range. The customer order is related to one or more customer specific items, which

can be derived from a reference item. The customer order consists of a number of

reference tasks, which can be broken down into detailed activities or work orders.

Both the task and the work orders are restricted by preeedenee relations. The work

orders consist of a list of work order operations. The work order operations may be

derived from a norrnalive reference operation and consume capacity from a capacity

unit. This concludes the discussion of the data model. The engineer-to-order

information system will be assessed with respect to the software factory in the next

section.

7.5 Assessment with respect to the software factory

This section consists of two parts. The first part compares the information systems

for software engineering control with the information system for engineer-to-mder

production controL The second part assesses the information system for production

control with respect to the software factory.

Comparison

The focus will be on the lessons software engineering control can leam from

production controL The fact that software engineering actually does have lessons to

Jeam is a question of maturity. Production control information systems arebasedon

decades of experience in production control, while software engineering control bas

been practised for only a limited number of years. Three lessons will be discussed:

- The levels of planning distinguished

- The acknowledgement of order-independent data

- Different kinds of reference data.

The levels of planning distinguished

Production control information systems support planning at different aggregate levels.

Three information systems have been proposed for the control of software

development and were discussed insection 7.2. Two of them, TAME and PMDB,

are aimed at supporting control of ongoing projects. They do not distinguish between

124

different levels of planning. The PMDB data model shows 170 relationships between

31 objects but only provides a relationship between resources and accountable tasks.

It does notprovide a relationship between resources and, for example, products, work

breakdown structure items or software components. This means that work has to be

planned in detail befare it can be matebed with the available resources. The TAME

resource model only relales tasks to resources. Consequently, it is impossible to plan

at more aggregate levels.

Planning at more aggregate levels is required for software engineering controL

Chapters 3, 4 and 5 have shown that control of software engineering involves more

than the execution of isolated projects. Three lines of work which use the same

scarce resources have been disringuished. They are development, maintenance and

development for reuse. One cannot plan these acriviries a detailed level only.

Production control has taught us that control must be braken down over several

levels in order to reduce control complexity. Software engineering will arrive at the

same conclusion. At present, many software engineering departments only plan at the

most detailed levels. They plan activities within the context of projects. A summary

of cuerent project plans will not allow to answer questions like such as:

- How many engineers will be available next month to start development of the next

release?

- Which engineers can be moved to this project without consequences for release

dates of other projects?

- Will weneed more people or equipment within the next three months?

The need to answer questions as these increases as the number of engineers within

a department grows and if development, maintenance and development for reuse are

executed within the same department

The acknowledgement of order-independent data

Another insight that can be gainedis the distinction between order-independentand

order-dependent data. The distinction shows the acknowledgement of the fact that

there is a body of knowledge that is independent of the cuerent activities, projects

and products. The order-independent data do in fact represent the experience base of

the organization and are used as an aid in engineering new products.

Software engineering organizations often Jack an experience base of this type. This

may be due to the fact that many software engineering organizations are capacity

selling companies. Such a company is often only responsible for the provision of

resources and nol for cantrolling the engineering effort. It does not need the

experience data as a reference. In fact order-independent data are absent in

information systems for capacity selling production control (Bertrand 1990).

125

The three information systems discussed in section 7.2 try to accommodate an

organization with an experience base. Noth's experience database has been especially

developed for that purpose and aims to collect what might be called order

independent data. The purpose of PMDB is to provide data on ongoing projects, i.e.

order-dependent data. It studies the possibilities for supporting the collection and

relention of historica! data. TAME acknowledges that order-dependent and order

independent data are related. lts process model explicitly distinguishes the data on

ongoing projects from the data in the experience base. In other words, TAME

captures bath order-independent and order-dependent data.

Different kinds of reference data

Production control puts a lot of emphasis on references. It seizes every opportunity

to derive a product, a networkor a routing from a reference. The repetitive character

of manufacturing has taught production control to exploit experience. Software

engineering gave the impression that every activity was new and unique and that it

was therefore not possible to exploit experience. The benefits of exploiting

experience in a software environment can be even greater than the benefits in

industry. Software has the potential for reuse that allows a software product to be

copied with negligible reproduetion costs.

The order-independent data are divided over reference products, reference networks,

reference routings and resources. Software products can be described as reference

products. Reference networks may be used to capture software engineering

experience. A new engineering effort may benefit from the knowledge captured in,

for example, the time required to learn how to operatea new tooi or the sequence

of activities that has to be applied when a new process model is used. The same

holds for reference routings. As already described, reference routings indicate the

average time spent to execute the subsequent operations involved in manufacturing

a product. The time stated in a reference routing for manufacturing a hardware item

may be regarded as a norm. The time in a reference routing for the development of

software should be considered as an indication of the expected time required for this

purpose. The non-repetitive character of software engineering causes the difference

intheuse of the reference routing. Software engineering could certainly use this kind

of reference for estimating the extent of future engineering efforts. The lack of

references is believed to be a main reasou for the estimation probieros in software

engineering (Heemstra 1989).

The information systems discussed insection 7.2 are all intended to supply reference

data. Noth distinguishes between products, resources and environment data.

Collection and relention of history is a research issue in PMDB. One of TAME's

126

principles is that data collection should be tailored for an environment, because

software engineering practices differ from place to place. The reference data to be

collected, have still to be determined. TAME makes it clear, however that it is

interested in more than just reference products. Basili (1989) points that it is nat only

produels which can be reused but, for instance, experience with the application of

processes, the use of development methods and the use of tools as well.

Assessment

The remainder of this section will assess the information system for production

control with respect to the software factory. A production control information system

supports the control of current projects through its order-dependent data. It also

supports the planning of future projects through its order-independent data. Reference

networks, activities and operations can be used as planning support. There are,

however, some differences between software engineering control and engineer-ta

order production controL One difference is that in the case of software, the product

itself can be perceived as information and as part of the information system. The

information system must provide for starage of software products. Another difference

is that at least two kinds of products need to be distinguished in the information

system because they have to be controlled differently. Produels being used by a

customer cannot be modified in the same way as produels under development.

Additional precautions will have to be taken, because the customer's interest in the

product in use must be protected.

This relales to the support of maintenance activities. Maintenance of hardware

produels is usually not done by and within the engineering department One reason

for this is that the product that has to be maintained is at the client's site. An

engineer-ta-order information system generally does nat make any provisions for

maintenance orders. In the case of software, things are different. The product to be

maintained is usually bath at the dient's site and at the supplier's site. The supplier

usually retains a copy of the software product. Furthermore, maintenance can take

up to 50 percent of the engineering resources. In the software factory we have

specified, maintenance and development take piace within the same production unit.

lt is obvious that the information system should make special provisions for

maintenance orders.

Another minimal requirement is support for the reuse of software components. The

production control information system provides for this by its reference products. It

still has to be determined whether software produels can be described in the same

way as hardware products. It must be noted that product representation is a research

topic in the field of production controL In the case of customer order driven

127

production the representation of a product is particularly difficult, because parts of

the product may only be specified during the project. There are similarities between

the representation issue in production control and software representations which are

a major research issue in the reuse of software, as already indicated.

From this assessment, we conclude that an information system for engineer-ta-order

production control fits in reasonably well with the software factory. This is not

surprising because chapter 5 already concluded that software engineering control in

the software factory showed similarities with engineer-ta-order production controL

According to the Process-Control- Information model, it could be expected that the

information requirements would also show similarities. The information system for

production control wiJl be used as a reference system inslead of the information

systems for software engineering controL The choice is based on the assessments and

the fact that the information systems for production control represent decades of

experience. There is a Jack of experience with the control of software engineering.

7.6 Summary and conclusions

This chapter has described and assessed a number of information systems which

could be used as a reference for an information system for software engineering

controL The description of multiproduct control in the software factory described in

section 5.7 was used as a basis for the assessment. Firstly, three information systems

proposed in the literature for the control of software engineering were described.

These systems were PMDB, TAME and Noth's experience database. The goal of the

Project Management Data Base (PMDB) from TRW is to provide an environment

base that includes products, resources and plans while TAME from the University

of Maryland aims to create a corpora te experience base. Noth describes an experience

base of compieled projects that is intended to support the control of software

engineering. The assessment of the systems with respect to the minimal information

requirements of multiproduct control in the software factory showed that PMDB and

Noth's experienèe database are too incomplete to act as useful reference systems.

TAME may, however, be able to support control in the software factory to a great

extent, thanks to its tailorability. The state of development of TAME and the limited

descriptions that are available detract from its potential as a reference system.

Another reference system was studied: an information system for engineer-ta-order

production, as described in Bertrand (1990). The architecture showed the distinction

between order-dependentand order-independent data. The order-independent data can

be perceived as the experience base of the organization. The order-independent data

consist of reference products, reference routings and reference networks. The

128

conceptual data model constitutes the skeleton of the information system.

The comparison of the 'software' and 'production' information system provided three

lessons for software engineering controL Firstly, it showed that the production

information systems suppon planning at different aggregate levels, unlike the

information systerns for software engineering controL The second lesson was the

distinction between order-dependentand order-independent data. TAMEis the only

information system for software engineering control which distinguishes between

both data on ongoing projects and an experience base. The third lesson to he leamed

is the distinction between different kinds of order-independent data or reference data.

The production control information systems contains data on products it has

developed in the pastand processes it bas employed, as wellas the use of methods

and tools.

We also assessed the usability of the production control information system to the

software factory. The assessment with respect to the software factory showed that

this system fitted in fairly wel!. A more detailed assessment also showed some

misfits. We chose to adapt the information system for engineer-to-order production

control in such a way that it becomes useful for the software factory. The main

reasons to opt for the production control information system were the results of the

assessment and its maturity as compared with the information systems for software

engineering controL

129

8 A DATA MODEL FOR AN INFORMATION SYSTEM FOR

MULTIPRODUCf CONTROL

8.1 Introduetion

lt is a well-known fact that software engineering and its control differ considerably

from place to place. An information system that supports this control should

therefore be adaptable to different circumstances. The goal of this chapter is not to

find the outlines of an information system which supports all kinds of software

engineering, but to provide a reference framework for an information system for a

software factory. The characteristics of a specific software factory have already been

descri bed.

A data model for an information system for the control of a software factory wiJl be

derived from a data model for an in formation system for engineer-ta-order production

controL The overall architecture of an information system for production control

consists of four concentric cycles. The circles represent systems software, order

independent data, order-dependent data and decision support systems. This chapter

focuses on the two middle circles of the architecture: order-independent data and

dependent data. As already mentioned, they repcesent the skeleton of the information

system. Consequently, this chapter will nol address decision support systems such as

planning tools, analysis tools or cost estimation models.

8.2 Additional requirements

This section will derive the requirements of an information system for a software

factory from two sources. The first souree is the description of the characteristics of

software engineering control in a software factory. The second souree is an

inforrnation system for engineer-ta-order production control, which wiJl act as a

reference systen;~. The data model which was presented as Figure 7.9 will be used.

The fact that, in this case, the product concemed is software results in a number of

additional information requirements. The most important will be mentioned in this

section. The data model itself will be presenled in the next section.

The system to be controlled is an engineering organization engaged in development,

maintenance and development for reuse. The produelS which are being currently

developed and the produels that have been developed in the past are considered part

of the system. Customer's orders are also regarded as part of the system. Reference

produelS and processes which constitute the experience base of the organization are

130

included in the system as well. Customers themselves, and the actual use of the

software produelS do nol come within the system's boundaries.

The fact that the product concerned is software affects the data model in the

following five ways:

1 Storage of software produelS

Information systems for engineer-ta-order production contain product information.

They will record, for example, the billof materialand design drawings of a product.

On top of that, in case of software the supplier will keep a copy of the actual

software product. In the case of hardware producls, maintenance is usually done at

the elient 's site, whereas in the case of software it is aften done at the supplier's site.

An information system fora software factory will therefore need a facility for storing

software produels that are in use at elienls' sites.

Software produels in a software factory can pass through different stages. These are:

under development, in use, and under maintenance. The information system should

allowan explicit distinction to bemadebetween the stages because produels should

be treated differently at each successive stage. For example: a product under

development is subject to changes until it is released. After release it becomes a

product in use. A product in use may not be changed. The status of a product in use

changes into a product under maintenance if the engineering department and the

elient agree upon a maintenance change. After the changes have been made, the

product is again released and may not be changed any more.

We propose to make the following distinction between the software products. The

data model of the production control information system distinguishes between order

dependent and order-independent data. A product in use is order-independent from

the control point of view. An item under development is subject to change and

belongs to the order-dependent information. An item under maintenance is order

dependent as well. In this way, there is a clear distinction between the different

software producls. The transitionsof a product from being order-dependent to order

independent and vice versa are also elear. This will be reflected in the data model

of the information system.

2 Distinction of main.tenance orders

Maintenance orders should be distinguished since they are different from

development orders. We distinguished between corrective, adaptive and perfeelive

maintenance orders. We will argue that corrective maintenance orders should be

treated as a separate entity, whereas adaptive and perfeelive maintenance orderscan

131

be treated as customer orders. A corrective maintenance order is an order to correct

a fault that has been found in a software product in use. These orders must be

distinguished from customer orders because they represent different information. A

maintenance order usually consisls ofa description of the failure that has occurred,

the product concerned, elient data and possible other produels and releases which

might be affected by the fault that is found. It may very well fit on one sheet of

paper. A customer order on the other hand includes a specification of the product

required and is a far more extensively described order.

Adaptive and perfeelive maintenance orders can be dealt with as customer orders

because the adaptation of the software needs to be fonnulated as a requirement.

Functional or quality enhancemenls to produels in use can also be treated as

customer orders.

3 Distinction of component orders

The software factory engineers components for future reuse client-independently. A

component order could be distinguished from a customer order because it is an order

from within the organization. The attributes are therefore different from the attributes

of a customer order. They do not, for example, contain extensive elient or order data.

We will not classify component orders as a separate entity because we consicter the

similarities between customer orders apd component orders more important than the

differences. We will refer to customer orders and presurne that the engineering

department ilself acts as one of the customers.

4 lnternal change requests

Software engineering often requires the adaptation of an order because things that

have been specified at a higher level turn out to be impossible or undesirable at

lower levels of development. The adaptations will be referred to as internal change

requesls to distinguish them from external change requesls which result from

changing customer requirements. Internal change requesls are generaled during

engineering activities and are therefore considered part of the control system

discussed. External change requesls originate from oulside the system boundaries and

can be dealt with as enhanced customer orders, just as they are dealt with in

production controL (An internal change request is not sirnilar to the 'engineering

change' that is known in production controL An engineering change is a transition

from a specific way of manufacturing toanother way (Bertrand 1990, page 130). It

is a change that concerns the manufacturing process. An internal change request

concerns the order, i.e. the product to be engineered.)

132

5 Superfluous relations

Some relations which were distinguished in the data model in section 7.4 are

superfluous. This concerns the four relations between a reference item and a

reference activity and, as a consequence, the relations between a specific work order

and a specific item. A reference activity is conneeled to a reference item through four

relationships in the production control information system. Three relationships

indicate which items are prepared, manufactured and used for assembly in the

reference activity concemed. The fourth relation indicates in which activity an item

bas been designed. The work preparation and manufacturing relation are superfluous

for software engineering controL Reproduetion of software involves copying. It is

superfluous to distinguish between a manufacturing and a work preparation relation

in the data model. It is sufficient to knowin which activity anitem was designed and

in which activity an item is reused. A software reference item and a software

engineering reference activity are conneeled via only two relationships: the

'engineered by' and 'reused in' relationship.

8.3 A data model

A data model for an information for software engineering control in a software

factory is presenled in this section. It is an enhanced version of the data model of an

information system for engineer-ta-order production, which was presenled in Figure

7.9. The outlines of the data model are presenled in two ways in Figures 8.1 and 8.2

to facilitate the understanding of Figure 8.3, that contains the complete data model.

Figure 8.1 shows that the data model consists of an order dependent and an order

independent part. It further shows that three levels of aggregation can be

distinguished: the aggregate, the intermediale and the detailed level. They resembie

the three levels of aggregation distinguished in production controL The marked

entities are new in comparison to the data model for engineer to order production.

The six new entities are: corrective maintenance order, maintenance order reference

network, product in use as well as parent-component, specific product in use and

internal change request. They will be discussed in more detail later on.

133

ORDER INDEPENDENT ORDER DEPENDENT

Figure 8.1 Three levels of aggregation

Intermediale
level

datalied
level

Figure 8.2 shows the data model from another point of view. It distinguishes between

order data, product data, planning data and reference data.

raferenee data

Figure 8.2 Order data, product data, planning data and reference data.

Figure 8.3 shows the data model for software engineering control in a software

factory.

134

Figure 8.3 A data model for an information system for a software factory

135

The main difference between the 'production' data model and the 'software' data

modellies in the description of orders and products. The description of the resources

is largely similar. The discussion of the data model starts at the top of the order

dependent part of the data model. Two kind of orders are distinguished: customer

orders and corrective maintenance orders. They are distinguished for the reasans

already discussed. The orders are related to aggregate activities because they can bath

take up a substantial share of the available resources. Maintenance orders are known

to make considerable demands on the available resources. If corrective maintenance

orders consume only a small amount of these resources they can be negleeled in

aggregate planning. The relation to aggregate activities is superfluous in that case.

Bath kinds of orders are related to their reference networks.

The data model shows that an aggregate activity is broken down into detailed work

orders. Bath aggregate activities and work orders can be represented in a network.

A work order is further braken down into work order operations which are related

toa capacity unit. A customet order is related toa specific item under development

or a specific product in use. The former applies if it concerns the first release of a

product and the latter is the case if it concerns a functional or quality enhancement

to a product th;~.t has been developed befare and is in actual use. A corrective

maintenance order is related to a specific product in use. The relation between the

product in use and the detailed work order is a 'maintained by' relation. One entity

remains to be ciarifled in the order-dependent part of the data model: the internal

change request. As explained, software engineering brings along change requests that

are generaled during engineering work, i.e. during aggregate activities, detailed work

orders or work order operations.

The discussion of the order-independent part of the data model starts with the

reference networks. These networks are braken down into in rough-cut activities that

are related via reference loads to critica! capacities. A reference rough-cut activity is

related toa refer.ence item via an 'engineered by' and 'reused in' relationship. The

engineering prescriptions are given in a reference routing, which is braken down into

a number of reference operations.

The order-independent part of the data model shows some new en ti ties. The first one

is the maintenance order reference network, tbat is distinguished from the customer

order reference network. Another one is the entity product in use. It represents the

produels that are in use at customers' sites. They are order-independentand may not

be changed. The bill of material presents the pareni/component relations. A product

in use can be composed of a number of reference items. The data model for

engineer-ta-order production shows only one relationship between a reference item

136

and a customer-specific item. The data model for the software factory shows three

relations between a product in use as well as reference items, on the one hand, and

specific produels in use as well as specific produels under development, on the other

hand. The three relations will bedealt with in succession.

1 The relation between a reference item and a customer-spedfic item. This relation

is identical to the one in the original data model. lt is a 'specified item' relation.

A reference item is usually specified in order to use it in the development of a

customer order. A reference item can also become an item under development

once it is decided that it needs additional development. A specific item can

become a reference item once it is releasedas a reusable component.

2 Once the development of a customer-specific item is completed, the item is

released and becomes a product in use; it becomes order-independent from the

control point of view, The release of the software involves the generation of the

software product. Generation of large software produels requires considerable

effort and computer resources. The production environment that generales a

software product should be captured, in order to be able to regenera te the product

at a later point in time. We do nol pay special attention to the generation issue,

due to our primary interest in the control of software engineering activities.

Therefore entities such as 'production environment' are not included in the data

model.

A product can also become an item under development if it is decided that a

product in use should be made available for future reuse. This is what has been

called reactive development for reuse in section 5.5.

3 A product in use can become a specific product in use when it needs to be

maintained or enhanced. Once the maintenance or enhancement is completed, the

product is released and becomes a product in use again.

8.4 A description of some entities.

In this section the differences between the data model for the information systems

for production control and software engineering control wil! be discussed in greater

detail. Entities that are new or whose meaning has been significantly allered

compared with production control wil! be described. These are the:

- Customer order

- Corrective maintenance order

- Specific product in use

137

- Reference product

- Pareni/component relation

- Reference routing and norrnalive reference operation.

Customer order

A customer order contains the customer requirements in terros of quality, time and

money. Quality is usually the most difficult item to specify. A starting point for a

product based quality definition is given by the 'IEEE guide to software requirements

specifications' (IEEE 1983). The outline of a software requirements specification is

given in Table 8.1.

Table 8.1 Outlines of a software requirements specification (IEEE 1984)

1 Introduetion
1.1 purpnse
1.2 scope
1.3 definitions, acronyms and abbreviations
1.4 references
1.5 overview

2 General descri ption
2.1 product perspective
2.2 product functions
2.3 user characteristics
2.4 general constraints
2.5 assurnptions and dependencies

3 Specific requirernents
3.1 functional requirernents
3.1.1 Functional requirernent 1
3.1.1.1 introduetion
3.1.1.2 inputs
3.1.1.3 processing
3.1.1.4 outputs
3.1.2 Functional requireroent 2

3.2 Extemal interfaces
3.2.1 User interfaces
3.2.2 Hardware interfaces
3.2.3 Software interfaces
3.2.4 Communications interfaces
3.3 Performance requirernents
3.4 Design constraints
3.4.1 standards coropliance
3.4.2 hardware lirnitations

3.5 Anributes
3.5 .1 securi ty
3.5.2 rnaintainability

3.6 Other requirernents
3.6.1 database
3.6.2 operations

The introduetion should specify the audience, delineate the purpose and define the

scope of the software requirement specification. The general description should

discuss the general factors that affect the product and its requirements. The specific

requirements should contain all the details needed to ereale a design. The specific

requirements specification is drawn up according to a product-based quality

definition. It pays attention to both functional and quality requirements. The quality

attributes are similar to those discussed in section 4.2. The IEEE standard shows

clearly that a specification should involve more than just a list of functional

138

requirements. The IEEE standard shows that the entity-type customer order represents

quite an extensive document. Nevertheless, it should be perceived as a minimum

reference network. The adjective 'minimum' is used to point out that better

references will usually be available. For example, a description of a similar product

that has been developed in the past and was specified according to the IEEE

standard. Such a reference not only shows how a product should be specified, but

may also contain pointers to reference items that can be reused.

An order for the enhancement of an existing product was also termed a customer

order in section 8.2. An enhancement to an existing product can be defined by

specifying the difference between the existing and the required system.

Corrective maintenance order

A corrective rnainterrance order indicates a failure that has occurred or a fault that

is found. lt contains different information from a customer order. A typical

rnainterrance report should at least have the attributes that are given in Table 8.2.

Table 8.2 Typical attributes for the entity corrective rnainterrance order

Order data (name, nurnber)
Client data (name)
Product data (name, release, software environment, hardware environment)
Fai I ure that occurred
Severity of failure
Perceived fault
Other software produels that might be affected

The corrective rnainterrance order contains attributes that identify the order, the elient

concemed and the product concemed. The product data should cernprise information

on the software and hardware environment in which the software product operates.

This information should enable the failure that has occurred at the dient's site to be

reproduced. This is often a prerequisite for finding the fault. The typical corrective

rnainterrance order further contains the dient's description of the failure and his

perception of the fault that caused it. Finally, the order describes other products that

might possibly be affected by the same fault. The description shows that a corrective

rnainterrance order differs significantly from a customer order, as described earlier

in this section.

139

Specific product in use

The description of a specific product in use will contain the complete description of

the order-independent product in use. This includes:

- The software itself,

- The software and hardware environment in which the product operates,

- The milestone documents such as the software requirement specification and

design documents,

- Updates made to the product in the current enhancement activity. Obviously, the

descriptions of the product should be updated for every enhancement made to a

software product after its initia! installation.

Details on the documentation of a software product can be found in the standard life

cycle models as they are currently applied.

Reference product

Reference products must be described in such a way that they can be identified and

retrieved for future reuse. The key problem in reuse according to Biggerstaff and

Richter (1987) as wel! as Sikkel and Van Vliet (1988) is the representation of the

software. Horowitz and Munson (1984) identify four problems that must be

addressed to make the concept óf reusable software reality. The problems are:

Mechanisrns for identifying cornponents; how can one delermine and specify

components which are generally useful?

- A methad for specifying components; how can one describe a component so that

others can understand it?

- The · fonn of the components; should components be described in natura!

language, design language or programming language?

Cataloguing the component; how should a component be catalogued so that it can

be retrieved easily?

All four problems relate to the representation of software. The second and fourth

subjects address the search problern: how can a component that is useful for future

reuse be identified and retrieved? lt should be clear to an engineer that identification

and retrieval, 'foliowed by reworking, involves less effort than development from

scratch. Many engineers will follow the usual habit and develop a new component

from scratch if this is not perfectly clear. The identification and retrieval problem is

one of the main obstacles to be overcome. Locating and retrieving an item from a

large collection is certainly not unique to software engineering. Locating and

retrieving an item from a large collection is a problem in, for example hardware

engineering, all kinds of libraries and patent registration. One way to enable location

and retrieval is classification. The most actvaneed work on the classification of

software products has been done by Prieto Diaz (1987, 1990). His work will be

140

discussed as an example of how the identification and retrieval problem can be

overcome.

The goal of Prieto Diaz's research is to provide an environment that helps to locale

components and estimate the adaptability and conversion effort. Prieto Diaz used a

faceled classification scheme. The faceled method is often used in library science. It

relies on building up or synthesizing from the subject statements of particular

documents. The other, frequently used classification scheme is enumerative. It divides

a universe of knowledge into successively narrower classes. The faceled scheme is

chosen by Prieto Diaz to classify software components because collections of

software components are large and constantly growing. An enumerative classification

is less suitable for such an environment because the growing universe of knowledge

will make it necessary to redefine the classes time after time.

The scheme classifies software components by its functionality and its environment.

Functionality is described by its function, objects and medium. Function is a

synonym for the action performed. The objects of the function can, for example, be

arrays, expressions and files. The medium is the locales where the action is executed,

such as tables, filesortrees (Prieto Diaz 1987). The environment is characterized by

the system type, the functional area and the setting. System types refer to

functionally identifiable, application independent modules, such as database

management. Functional areas describe application-independent activities, such as

cost controL The setting characterizes the environment in which the application is

exercised. A setting can be 'advertising' or a 'car dealer'. The six facets that

characterize software modules and some examples are given in Table 8.3.

Table 8.3 The faceled classification schedule (Prieto Diaz 1987)

FACET EXAMPLE

Function add, create, exchange, join

Objects arrays, characters, files

Medium files, screen, table

System type database management, file handler, line editor

Functional area batch job control, CAD, hookieeeping

Setting advertising, computer store, car dealer

Prieto Diaz has integrated this classification scheme into a prototype library system.

A thesaurus is provided by the prototype to avoid duplicate and ambiguous

descriptions of similar components. The concept of conceptual closeness was

introduced to be able to find similar components in case an identical component is

141

notavailable. Another feature of the prototype library system is a mechanism that

evaluates the components with respect to the estimated reuse effort. lt could be

characterized as a reuse cost estimation model. Five attributes were selected as

indicators of the reuse effort. The attributes and their metrics are given in Table 8.4.

Table 8.4 Reuse attributes and their mettics (Prieto Diaz 1987, page 15)

ATIRIBUTE ME1RIC

Program size ünes of code

Program structure Number of modules, number of links and cyclomatic complexity

Program documentation Subjeelive overall rating

Programming language Relative language closeness

Reusec experience Proficiency levels in two areas: programming language and
domain of application

The attributes program size and structure are measured in objective terms. The other

attributes are measured in more subjeelive terms. The quality of the documentation

is rated subjectively on a scale from one to ten. The language is considered as a

variabie because it affects the size of a component. The experience of the reuser is

rated since it affects the effort that will be required to reuse a component. The

evaluation mechanism ranks the components with respect to the estimated effort.

The faceled classification scheme, the conceptual closeness model and the evaluation

mechanism have been integrated in a prototype. A system analyst was assigned to

classify the components. This is an example of the organizational support that is

required. A total of six program support functions had to be created to develop a

'reuse culture' in the organization. They are:

- Management support to provide initialive and funding.

- An accessible, densely populated, fully supported, easy to use library system.

- An identification and qualification group responsible for the contents of the

library and praeurement of new modules.

A maintenance group that maintains reusable components

A development group that ereales reusable components

- A reuse support group (Prieto Diaz 1990, page 302).

A prototype was developed and used in the organization. During its first year 38

percent of the items in the library were reused. A reuse factor of 14 percent was

achieved. The reuse factor is defined as the number of lines reused, divided by the

total number of Iines of code produced by the organization. The estimated savings

were 1.5 million dollars. The goal of the organization was a 50 percent reuse factor

142

by the end of the fifth year.

Parent/component relation
The composition of a product is represented in what is called a 'bil! of material' in

production controL A product is represented as a parent with a number of

components. A bill of material for a parent item is a list of its components. Software

produelscan be represented in the same way. A software bill of material should at

least contain the following attributes:

- Parent identification,

- COmponent identification,

- Starting effectivity date,
- Ending effectivity date.

The parent and component identification enable the two related software items to be

identified. The starting and ending effectivity dates limit the time for which the

relation is considered to be effective. An item that occurs as a parent in one bill of

material can act as a component in another bill of materiaL In this way, multilevel

bills of material can be defined.

An engineer-ta-order environment is characterized by the fact that orders are largely

custorner specific. Three types of product data can be distinguished (Veen 1990):

standard data, custorner-specific data and historica! reference data. The order

independent bill of material can contain the standard data and the bistorical reference

data. The custorner-specific data become available during engineering and are stared

as attributes of the order-dependent entity 'custorner specific order under

developrnent'. An extensive study of bills of material in different production control

environments can be found in (Veen 1990).

The nurnber of parent/cornponent relations is further increased because software

produelsexist in many versions and releases, as do software components. The fact

that software appears to be more easily adaptable is one of the reasans for the large

number of versions of software products (Brooks 1987). Every adaptation to an

order-independent software item results in a new version of a software item, as does

an adaptation to the hardware or software environment of a software product. In

terros of the data model: every release of an order-dependent product under

development, product in use or component results in a new version of a software

product.

As stated in section 5.4, the nurnber of specific end produels is increasing. Software

configuration management has becorne an important issue, bath in theory and

practice. We will not discuss the issue in detail but we wil! introduce one atleropt to

143

address the configuration problem. All end products might be described as parents

with their components. This description would be highly redundant because the only

difference between two versions may be one or a few components. One way to

address this problem is to use a generic bill of material that allows a lot of variants

to be described with a limited number of data. The generic bill of material is

described in (Bertrand 1990, Veen 1991, Hegge 1990). The biJl of material is split

into a generic and a specific bill of materiaL The generic bill of material describes

the components each product of a family contains. The specific bill of material

describes the choices that should be made to configure a specific product out of its

components. Configuration using the generic bill of material is currently supported

by a prototype. The approach looks valuable for software with its high number of

similar products. Future research will be required in order to reveal its applicability

to software.

Reference routings
A routing in production control is a list of the normative operations required for

manufacturing a product out of its components. A routing contains data such as the

capacity units whose resources are used, the sequence of operations, the set-up time

and the run time. The set-up and run time are considered norrnalive times. The

throughput time of an item can be computed on the basis of the set-up and run time.

In_ software terms, a routing can be considered as a list of reference engineering

activities that have to be executed to develop a software product. A routing will be

an aid in engineering and planning instead of a basis for computing the throughput

time. A general description of a routing is given in an engineering method. It can

consist of the activities specify, design, code and test. This kind of routing gives no

additional information on top of the information that is already available in an

engineering method. Additional information that can make the reference routing
worthwhile is, for example, reference times. These can be used to make an analogy

estimation (Boehm 1981) of the required development time. A routing of a software

product could look like the example given in Table 8.5. This is the routing for a very

simple reference product called SW1 consisting of reference module 1 and reference

module 2.

144

Table 8.5 Example of a software reference routing

Item Reference item Sequence capaci ty unit reference effort

SWl x1 10 inlegration 2 hours

20 inlegration test 10 hours

Module 1 xll 10 specification 20 hours

20 design 40 hours

30 ooding 15 hours

40 test 8 hours

Module 2 123 10 specification 5 hours

20 design 20 hours

30 oode 10 hours

40 test 12 hours

The routing gives the capacity units from which the items require resources. This

routing gives one reference module per item, but it is also possible to use several

reeerences to arrive at an estimate.

Nonnative reference operation

A norrnalive operation can be perceived as one line out of a routing. The norrnalive

reference operation gives more detailed information for the operation concemed. The

reference operation 'integration test' of the product SWl, as given in Table 8.5 will

be discussed by way of example. The reference operation inlegration test can contain

information about the document descriptions that have to be available before the test

can start. It can also give directions for the kind of tests that have to be performed

for the inlegration of these types of modules. In some cases, the reference operation

may even specify which tests have to be executed. In addition to these directions,

reference efforts and lead times may be given in the reference operation. A reference

operarion's value lies in the directions for carrying out the operation and the fact that

it provides reference times.

8.5 Use of the proposed data model

This section discusses the possible use of the proposed data model. We envisage two

ways to use it: as a reference model for development or as a test for proposed

information systems.

145

A reference for an information system in a software Jactory
This chapter has provided a data model for an information system for a software

factory. A data model is an important result in the development of an infonnation

system according to a data-driven method. Such a model can be taken as a starting

point in the development of an infonnation system for the control of a softWare

factory. This approach has several advantages. Firstly, a considerable amount of

effort is saved because one does not have to start from scratch. Secondly, the

experience that has been accumulated in production control over a number of decades

will be reused.

This could be taken one step further. One could introduce an information system for

engineer-to-order production control in a software engineering department and adapt

it to some of the typical software engineering characteristics. The adaptation to the

software factory involves serious reworking. Changes to the. data model are required,

as was shown in section 8.3. Consequently, the following actions are necessary

(Bertrand 1990):

Change of the physical data model

Recreation of the physical database

Redesign of the transaction processing software

- lnvestigation of the application software and, if necessary, reworking of

application software.

The question of whether eXJstmg information systems for engineer-ta-order

production could be used in the software factory neects additional research. The

similarities are obvious and some of the consequences of the differences have been

pointed out in this chapter. The additional research required should include an

examination of the available production control infonnation systems.

Using the data model to assess available information systems

The data model as described, can be used to assess the possibilities and shortcomings

of infonnation systerns which are proposed for software engineering controL The data

model presenled in this chapter is based on the lessons leamed in industry.

Information systems for the control of software engineering, which will be suggested

in the future can be compared with the data model presenled in this chapter. In this

way, possible shortcomings can be found in the proposed systems or the data model

presenled here.

146

9 FIRST STEPS TOWARDS A SOFTWARE FACfORY

9.1 Introduetion

So far, we have focused attention on information systems for supporting mul ti product

control in a software factory. lt should be obvious that the vast majority of software

engineering organizations do not operate as software factorles as yet. Most of the

current organizations are still struggling at the initia) or repeatable level of process

control, as was indicated by Humphrey. Most of them still have to achieve

development control or product control before they can aim at multiproduct controL

We are convineed that analysis of the current software engineering process can lead

to the improvement that is required to get going on the way to the software factory.

Data colleerion is required to be able to analyse the software engineering process.

The necessity of data collection for software engineering control is widely

acknowledged, both in theory and practice. This, however, has still not led to

extensive data collection in software engineering organizations. A recent survey in

the Netherlands showed that 50 percent of the software engineering organizations do

not collect any data on their engineering process (Siskens 1989). This chapter

describes four examples of data collection techniques. The aim is to show that data

colleerion in software engineering is feasible and can produce useful results. The

examples given are intended to stimulate software engineering organizations to

improve their data collection and thus advance to an improved level of process

controL To be able to achieve this, we consider it more appropriate to provide

practical examples than to give an overview of all the metrics that could be applied

in theory. A thorough, theoretica! description of metrics can, for example, be found

in Conte (1986).

9.2 Basic principles

This section describes some of the principles we have applied in data collection.

These are based on publications by Basili (1988) and Sernelmans (1989), as well as

on a number of our own practical experiences. The principles are:

- The distinction between construction and analysis in software engineering

- The 'closed loop' principle in information systems

- 'Local for local' data collection

-A focus on continuous improvement

147

The distinction between construction and analysis in software engineering

Basili (1988) distinguishes between an analytic and a constructive aspect in software

engineering. The distinction leads to analytic and constructive activities with the

associated analytic and constructive methods and tools. Whereas constructive

methods and tools are concerned with building products, analytic methods and tools

are concerned with analyzing the constructive process and the resulting products.

Basili states: "We need to clearly distinguish between the role of constructive and

analytic activities. Only improved construction processes wiJl result in higher quality

software. Quality cannot be tested or inspeeled into software. Analytic processes (e.g.

quality assurance) cannot serve as a substitute for constructive processes but wiJl

provide control of the constructive processes" (Basili 1988, page 759). Humphrey

(1988) is talkingabout the samesubject when he stales that a project has two results:

the software product and the knowledge of how the software product could have

been developed better.

Let us look at data collection from the perspeelive of construction and analysis. The

goal of software engineering impravement is to upgrade software construction since

only improved software construction can result in better quality software. Analysis

is required to control and imprave software construction processes. Data on the

engineering process are again necessary to analyse software engineering. The data

collection techniques discussed in this chapter are intended to provide data which

allow the analysis of the software engineering process. The analysis should result in

actions for impravement which lead to better software construction processes. The

relation between construction and analysis is illustrated in another way in Figure 9.1,

which represents construction and analysis as the two wheels of a bicycle. The left

picture shows the way most organizations approach software engineering nowadays.

This could be called construction driven engineering.

construction
of software

analysis of
engineering

process

Figure 9.1 Construction versus analysis

148

construction
of software

analysis of
engineering

process

The right-hand picture shows another, more modern approach to software engineering

that might be called balanced engineering. A similarity is that the construction wheel

is the driving wheel in both pictures. That is justified since only improved

construction can result in improved software quality. The left-hand picture shows that

the construction wheel is also the steering wheel. This should be considered a design

defect because it results in an unstable engineering process. The future direction of

the engineering process should be detennined by the analysis of the current

engineering process and new technological possibilities.

The 'closed loop' principle in information systems

The second principle is what Bemelmans (1989) has called the closed loop

infonnation supply. The principle states that information systems should be designed

in such a way that those whoprovide input to the infonnation system are main users

of its output. Application of this principle has to result in feedback to the data

supplier. This has a number of advantages of which we wil! mention the two most

important. Firstly, it farces the data supplier to provide accurate and complete input.

The supplier will hann bimself as a user of the system if he does not do this.

Secondly, the principle prevents users of information systems from asking for more

infonnation than they actually need. They will again hann themselves, because they

will have to provide a lot of input. The closed loop principle farces the merobers of

an organization to restriet themselves to the data they really need for controL

The closed loop principle has been applied in software engineering. One consequence

is that the data collected by engineers should primarily support these engineers in the

control of their work. Time sheets which are filled in every week without any

feedback are a example of an infonnation system that has not taken the closed loop

principle into account. These kinds of systems aften provide an organization with a

lot of inaccurate and useless data. Another consequence of the closed loop principle

is that data suppliers should know for what purpose the data will and will not be

used. It should be obvious that the data should not be used against the supplier. For

this reason, we discourage the use of productivity data for personnet appraisal. If data

suppliers find out that data are being abused, they will do everything to corrupt the

data, which will soon resembie the expected instead of the real situation and will

have become useless. As Grady (1990) points out: you run the risk of distarting the

idea of data as a helper and pervertingit into data as a weapon unless the data are

interpreled under the same ground rules by engineers and project managers.

The empirica! studies described in chapter 2 can be perceived as examples of the

application of the closed loop principle. The data were colleeled by project leaders.

The same data were analyzed by project leaders and their managers in a joint

149

meeting. The analysis increased the insight into reasans for delay among project

leaders and their managers. It also resulted in actions for impravement which enabled
future projects to follow the plans more closely, an outcome in the interest of the

project leaders.

'Loca/ for /ocal' data collection

The approach to software engineering varles from department to department The

differences relate to products, development processes, resources, tools, goals and

organization structures. Examples are the number of hours worked per month,

productivity differences among applications and the development environment. As

a result, it makes little sense to collect data in one environment and use it in another.

A software engineering department can gain most insight from the data colleeled in
its own environment. The fact that organizations are different becomes clear, for

example, if one compares the distribution of the reasans for delays in three different

departments, as presenled in chapter 2.

A focus on continuous improvement

The data collection efforts were aimed at events that were perceived as deficiencies

in the software process. The techniques focused on events such as delays and defects.

Data collection and analysis should provide more insight into the causes of the

perceived deficiencies, resulting in actions for improvement. A remark should be

made at this point. We deliberately use the phrase 'perceived deficiency' . Most

people would agree that delays and defects are examples of deficiencies. However,

it is sametimes unclear whether a one week delay should be regarded as a deficiency

or as an achievement by a project team that has taken just a little more time than was

allowed for in the unrealistic schedule. We consider every deficiency as an

opportunity for improvement. As a result it is not a matter of 'who was right or
wrong'. It becomes a matter of 'how can we prevent this from happening again'.

The techniques employed did not require massive data collection. The data collection

forms usually consistedof only one page. We are convineed that a number of small

incremental steps towards impravement are better than one big leap. The

improvement measures resulting from the study were incremental rather than

revolutionary. The results of one analysis study will lead to some actions for

improvementand will probably pinpoint to the next analysis study.

150

9.3 Two examples of data coiiection with regard to time and money

Reasons for delay

The empirica! studies as described in chapter 2 can be considered as one example of

a data collection technique. The data collection focused on the reasons for delay in

software engineering. The analysis pays off because they result in actions for

improvement that should allow future engineering efforts to follow their plan more

closely.

Estimate delay in the remainder of a project
The insight in reasons for delay can be used to estimate the delays in the remainder

of an ongoing project. This is a second analysis technique to be discussed. The fact

that the colleeled data can be used to estimate the remainder of the project allows the

people involved to benefit from the data collection and the analysis. The closed loop

principle is applied and the participantsof the project benefit from the data collection

during the ongoing project.

Insight in the delay in the first phases of a project can be used to estimate the delay

in the remainder of the project. It is important to be able to make a convincing

estimation early in the project because control actions can still have effect at that

time. An example of a control action that mustbetaken early is the modification of

functional requirements. If this can be done in an early phase it wil! result in less

development effort. Changing the product in the implementation or testing phase is

less effective since most of the development work is already done and the changes

wiU effect parts of the system that have already been completed. Another example

of an action that only makes sense early in the project is to add people, although

even early in the project carè must be taken that the additional communication

burden imposed by enlarging the project team does not become counter-productive

(Brooks 1975).

One way to look at delays and overruns in projects is the S-curve. This technique has

been in use in non software development for decades and is, for instance, discussed

in Harrison (1977). The application of the S-curve is an example of the fact that

techniques and methods that have been developed in non software environments, can

be applied to software development. The S-curve compares the planned and actual

cost of an ongoing project. The curve usually takes the shape of a S because a

project often starts with a limited number of people, foliowed by a period of many

participants and concluded by a period in which less people are involved. An

example of the S-curve is given in Figure 9.2.

151

earned value

5 10 15 20 25 30 35 40 45 50

time in weeks

Figure 9.2 The S-curve

The S-curve consists of three lines:

- The Planned line represents the cumuialive planned effort against the planned end

date of the activities. The line can be computed with the data that is available in

the project plan. The data collection that bas been described in chapter 2 will

provide the data to compute this line.

- The Actualline represents the cumuialive actual effort against the actual end date

of the activities. The data colleerion that has been described in chapter 2 will

provide the data to compute this line.

- The Eamed value line is needed because the Planned and Actual lines cannot be

directly compared because they aften differ on bath axes; they show a delay in

lead-time and a cost overrun. The eamed value line shows the planned effort

against the actual end date of the activity.

The Planned, Actual and Eamed value line can now be compared in pairs. The

vertical difference between the Actualline (actual effort versus actual end date) and

the Earned value line (planned effort against actual end date) gives the difference in

effort. The horizontal difference between the Planned line (planed effort versus

planned end date) and the Earned value line (planned effort versus actual end date)

gives the difference in lead time.

The extrapolation of the S-curve can be basedon the insights the project leaders have

gained into the project so far. Suppose that the specificatien phase of a project shows

a 20 percent delay in lead time and a 10 percent cost overrun. Extrapolation of the

delay and overrun in the remainder of the project can be basedon the data colleeled

in two ways. The first way uses the insight in the distribution of the delay over the

subsequent phases of the project. The empirica! studies in chapter 2 show that the

152

relative differences between planned and actual effort increase toward the end of the

project. Being able to show this fact enables to discourage the idea that delays can

be made up as the project progresses. It is more reasonable to expect that the delay

wiJl increase from 20 to, say, 30 percent than to expect it to decrease to 10 percent.

This insight can be used to extrapolale the S-curve.

The second way to extrapolale the delay and overrun is to use the insight into the

reasons for delay. This way is preferred because it uses more of the information

available on the progress of the project. The data collection, as it was presenled

earlier, comprised differences between planned and actual lead time as well as the

reasons for the differences. The insight in the reasons can be exploited. For example,

suppose that a 20 percent lead time delay is found in the first phase of the project

and that ten of the 40 reasons that were mentioned are related to the lack of

experience with a new development method. Fivepercent (one fourth of 20 percent)

of the lead time delay can be ascribed to the Jack of experience with the new

development method. The project leaders can be interviewed on their view of the

impact of the various reasons for delay in the remaioder of the project. Suppose they

expect the problems of lack of experience with the development metbod to double

in the remaioder of the project. The delay because of the Jack of experience can be

expected to be 10 percent. Applying this metbod of reasoning to all the (groups of)

reasoos for delay and cost overrun results in an extrapolation of the expected delay

in the remaioder of the project.

lt is not important whether the expected delay is specified in one or two digits. Key

to the value of the extrapolation is the fact that the project leaders are involved in

the extrapolation and that the metbod of reasoning is clear and can be verified by

anyone involved. The insight into both the delays in different phases and into the

insight in the reasons for delays should be used in extrapolating the delay in the

remaioder of the project. lt is also recommended that several extrapolations are made,

based on different assumptions. We have experienced that different extrapolations

stimulate a discussion on the measures that can be taken to avoid the delay that is

estimated (Lierop 1991). Goal of the extrapolation is not to predict the delay in the

project, but to encourage an early discussion on measures that can avoid additional

delay.

153

9.4 Two ~xamples of data collection with regard to quality

The analysis technique that has been presenled in chapter 2 and elaborated in section

9.3 focuses on the control aspects time and cost. The analysis techniques in this

section focus on the control aspect quality. Pettijoho (1986) pointed out that there are

two primary sourees of quality data: inspeetion data and maintenance reports. The

first analysis technique aims at maintenance reportsi a sign of Jack of quality that has

not been detected during development. The second analysis technique focuses on

inspections and gains insight from the faults that are detected during development.

Analysis of problem reports

The analysis so far has been aimed at development. The importance of maintenance

has been stressed in chapter 4. Software maintenance has been analysed within a

large software engineering department (Boomen 1990). The analysis was one of the

resuJts of a study of the reasans for delay that was described in section 2.5. This

study of reasans for delay showed that maintenance was a main reason for delay in
development. Analysis of maintenance was a natural continuation. The questions we

were mainly interested in were:

- Where does the maintenance originate?

- How can we reduce the effort that is required to do the maintenance?

Maintenance reports represent the information that is gathered on faults that are

detected and solved. The department concemed calls them problem reports. If a

problem occurs, a problem report is written that describes the problem perceived and

its correction. The goal of the analysis was to gain insight in the origin of the

probieros and to investigate several relations that were expected. It was, for example,

expected that faults madeearlyin the development life cycle take more effort to fix.

A correlation was also expected between the phase in which a fault originates and

the phase in which it is detected. It was expected because the department had

adopted the V model of development and testing. The V model is shown in Figure

9.3. It shows the phases as they were distinguished by the department concemed:

exploration, requirements, design, implementation, inlegration test, verification test

and validation test.

154

exploration valtdation test

lm plementatlon

Figure 9.3 The V model of development and testing (Boomen 1990).

The V model shows that the validation tests are designed to deteet faults in the

ex ploration results, verification tests are designed to deleet faults in the requirements

results and that inlegration tests are designed to deteet faults in the design results.

Analysis of the problem reports required additional data colleetion. Some multiple

choice questions were added to the existing problem reports. Three of these questions

are shown in Table 9.1.

Table 9.1 Three questions related to problem reports

1) How many hours did it take to solve the problem?
o Less than one hour
o 1 to 2 hours
o 2 to 4 hours
o 4 to 8 hours
o over 8 hours

2) In what phase did the error occur ?
o exploration
o requirements
o design
o irnplementation
o other,

3) In wbat test was the fault detected ?
o inlegration test
o verification test
o validation test

Over 400 problem reports were analysed. Some relations that were expected were not

found. For example, we found no relation between the phase in which a fault

originated and the effort required to solve it. Table 9.2 shows the solution time of

the fault versus the kind of fault.

155

Table 9.2 Salution time versus the kind of fault

SOLunON TIME

KlND OF ERROR < 1 1-2 2-4 4-8 >8 Total %

Requirements 22 10 7 0 1 40 10

Design 12 8 6 1 4 31 7

lmplementation 93 37 15 6 12 163 40

Other 103 25 16 7 26 177 43

Total 230 80 44 14 43 411 100

Percentage 56 20 11 3 10 100

The results of the study were analysed by the software engineers, project leaders, the

manager and memhers of the quality assurance department The analysis yielded

some useful insights. Maintenance was perceived as an activity that took a lot of

effort in the department concemed. lt was not expected that over half of the problem

reports are solved within an hour. Analysis of the data revealed that the maintenance

problem was more of a lead time than an effort problem. lt took more time to get the

problem to the appropriate engineer than to solve the problem.

The analysis yielded more unexpected results. Some correlations that were expected

were not found. Figure 9.4 shows the number of requirements, design and

implementation failures found in the various tests.

number of problems detected

80

60

40
D design

- implementation
20

inlegration verification validatien

phase

Figure 9.4 The kind of faults that are found in the various tests

Figure 9.4 shows integration, verification and validation on the horizontal axis. The

156

number of faults detected are distributed over the phases in which the errors

occurred. For example, three requirements errors, one design error and 19

implementation errors were found in the integration test. At first glance, there is no

clear correlation between the kind of error and the phase in which the fault was

detected. Apparently, the V model of development and testing does not work.

What can be concluded from these results? Certainly, they were not what was

expeeted; there is no apparent correlation between souree of error and either time to

fix or point of detection. The answer is, in part, that measurements of the

effectiveness of a working process can hardly be usefûl if the process is not actually

in place and followed. However, it is also clear from the results of this study that any

measurements are useful, and, if properly interpreted, give a good insight into the

processes which are actually being followed. In this case, the results were unexpected

and surprising, but they focused attention on what is perhaps the real problem - that

the methods and procedures which were prescribed were not in fact being foliowed -

and thus opened the opportunity for improvement. The study ledtoa reconsideration

of the relation between the engineering department and the tools and methods

department lt is clear that something will have to change if the tools and methods

that are developed are not applied. It is also clear that both sides will have to adjust

to improve the situation.

Answers to the questions stated in this study enable to take improvement measures

to assure less errors in the future. The analogy with the analysis described in the

chapter 2 and section 9.3 is clear. Both analysis methods had a clear goal. The data

collection form fits on one. sheet of paper. The data should result in additional

insight that in its turn results in actions that improve the quality of the engineering

process. The improved engineering process should result in improved quality of

software.

The analysis of inspeetion or walk through data

The analysis of problem reports looks into the errors that remain undisclosed during

development. It is obvious that it is better to detect faults earlier. A lot of faults are

disclosed during development in what are called inspeetions or walk throughs.

Fagan's inspeetion metbod will be discussed as an example. Fagan's metbod has

been chosen for three reasons. Firstly, it is a technique that has been applied since

1972 and has proven its value. Secondly, it puts a lot of emphasis on data collection

during the inspection. Thirdly, it is well engineered and doeurnenled (Fagan 1976,

1986, Gilb 1988, Humphrey 1989). An inspeetion is a meeting at which a document

produced by a developer is inspeeled by colleagues to reveal possible defects. Errors,

fanlts and failures have been distinguished in section 4.4. The term defect is

157

introduced because it is often used in conneetion with inspections. Fagan defines a

defect as 'An instanee in which a requirement is not met' (Fagan 1986). The

inspeeled document can be souree code, a design document, a speeification or any

other documentation. Fagan's inspeetion method consistsof six phases or activities:

planning, overview, preparation, inspection, rework and follow-up. The planning

activity confirms that the doeurneniS to be inspeeled fulfil the entry criteria and sets

up the meeting with the required participants. People with different roles will

participate in the inspeetion: moderator (the coach of the inspeetion team that

manages the inspeetion process), administrator (who collects the inspeetion data),

author (of the subject of the inspection), reader (who reads the document as if he will

have to imptement it) and tester (who inspects the document from the test point of

view). The assignment of inspeetion roles is made at an overview meeting, where the

doeurneniS to be inspeeled are handed out.

The actual inspeetion takes place after individual preparatien by the participants. The

goal of the inspeetion is to find defects, not to discuss or fix defects. Defects are

classified as major or minor; a major defect is one that would cause a malfunction

or unexpected result if uncorrected, a minor defect will nol cause malfunction but is

more in the nature of poor workmanship, such as spelling errors that do not lead to

erroneous product performance (Fagan 1986). Sarnething is called a defect if one of

the participants perceives it as a defect, even if it is nota defect. The idea behind this

is that if one of the few people in the inspeetion team cao misinterpret a (part of the)

document, it is nol clear enough and may lead to similar misinterpretation later in the

development process. After the inspeetion, the author reworks the defects and the

document is inspeeled again in a follow-up session.

Inspeetion has some similarities and some clear differences with walk-throughs.

Some differences are in Table 9.3.

158

Table 9.3 Differences between inspections and walk-throughs (Fagan 1976)

PROPERTIES INSPECTION WALK-
lHROUGH

- formal modemtor training yes DO

- definite participant roles yes DO

- who drives the inspeetion or walk through modemtor owner of
document

- use 'How to find errors' cheddist yes no

- use distribution of error types to look for yes no

- fellow-up to reduoe bad fixes yes no

- detailed error feedback to individual progrommer yes incidental

- improve inspeetion efficiency from analysis of results yes no

- analysis of data -• prooess problems -• improvements yes no

One difference will be discussed in detail. Data colleerion is an important aspect of

inspection. The data is used in the first place to give the author feed-back on his

work. It is clear that inspeetion should never be used against developers because this

would conflict with one of the inspeetion 's prerequisites: colleagues that are

motivated to find defects. Inspeetion data can also be used to analyse software

development. The data that is colleeled during inspeetion can be used to answer

questions Iike:

- Are more defects made in larger modules?

- Has the number of defects reduced since we introduced structured programming?

Which percentage of the defects do we find in inspeetion and what does that

mean for the number of defects that remain in the software product? In other

words: how many defects do we include in our product when we deliver it to our

client?

How many pages of documentation should we inspeet per hour to maximize the

number of defects found?

Has the number of defects reduced since we introduced Fagan inspeetions?

The last question will be addressed. Fagan (1986) estimates that all design and code

inspeetion costs amount to 15 percent of project cost. Examples of the insights that

can be gained by analysis of inspeetion data can be found in the literature. Some

examples:
- A major aerospace contractor that has a rigorous and comprehensive inspeetion

program reported an after-release defect rate of less than 0.11 defects per

thousand lines of code.

159

- A major gaverrunent systems developer reported 12.25 defects found per thousand

lines and 1.5 defect found per men hour spent on inspection.

- Another development group reported 42 defects per thousands lines of code.

- A banicing computer services firm found that it took 4.5 hours to eliminale a

defect by unit testing compared to 2.2 hours by inspeetion (these four examples

can be found in (Ackerman 1989))

- An IBM development department installed a defect deleetion and prevention
process. Analysis of inspeetion data led to actions for impravement that resulted

in a 50% rednetion of defects at a cost of 0.4% of the resources of the department

concemed (Mays 1990). The analogy with the other analysis techniques is clear:

data colleerion foliowed by analysis led to actions for improvement. The actions

in this case had impressive results.

The examples show three things. First, inspections pay off if they are applied

properly. Second, it is clear that data collection is an important aspect of inspections.

Analysis of the data provides insight into the software process and pinpoints at flaws

in the process. Third, the data colleeled at various sites differs considerably.

Therefore, it is necessary for every software engineering department to gain insight

into its own software engineering process to enable it to take adequate impravement

measures.

160

10 CONCLUSIONS AND RECOMMENDA TI ONS

10.1 Introduetion

The last ebapier allows us to summarize the book and recommend some subjects

for future research. The summary presenled in section 10.2 includes the main

conclusions. Section 10.3 oomprises four subjects which are recommended for

future research.

10.2 Summary and conclusions

The subject of this book is the control of software engineering. The problem is

explored in chapters 1, 2 and 3. Next, chapters 4, 5 and 6 describe how the

control of software engineering can be improved. Finally, the chapters 7, 8 and 9

deal with the infonnation required to control software engineering.

Chapter 1 contains the problem statement and the aim of the book. The aim is

described as:

1 Determine the characteristics of the control concept of software engineering

that fit in with the changed practices and demands

2 Derive the characteristics of an information system that supports the control

concept.

Chapter 2 discusses empirica! studies of reasons for delay in software engineering.

Delay can be perceived as a consequence of Jack of controL Studies in three

different engineering departments show that the delays and the reasons for delay

varled from one department to another. The studies also show that the control of

software engineering cannot be restricted to a development project. Some of the

important reasons for delay originate from outside the project but nevertheless

affect it. The third empirica! study describes a project with a lead time of 1.5

years that was finished in time and under budget. This is an example of the fact

that software engineering can be controlled, provided certain conditions are

fulfilled.

Chapter 3 concludes the exploration of the problem. lt describes the ciccumstances

in which software engineering takes place. A distinction bas been made between

traditional and cuerent software engineering. Characteristics of traditional software

engineering were the fact that isolated applications with stabie applications have

been developed and that engineering efforts were isolated efforts by specialists.

161

The control of software development was characterized by the use of the waterfall

model, project control and an emphasis on efficiency. Over the years the

circumstances have changed. Examples of those changes are the fact that new

application areas have been entered, more maintenance has beoome necessary and

both software produelS and engineering efforts have become less isolated. Another

change is that the quality of produelS and processes has become an important

subject over the years. Control of software engineering has nol adapted itself well

enough to the changed circumstances. Traditional control will not be appropriate

in all the engineering situations that occur.

The enhancement of control will take place in two steps. The first step is the

progression from development control to product controL The explanation of this

step requires a closer look at software quality. It reveals that several quality

definitions are required to understand the quality conflicts that arise. User-based,

product-based, manufacturing-based and value-based quality definitions are

distinguished. The use of several valid quality definitions such as 'quality is

fitness for use' and 'quality is conformanee to specifications' can lead to contlicts.

Quality impravement means that user needs are properly translated into

identifiable product attributes. Product attributes have to be translated into process

attributes which can ensure the engineering of the required product. The Jack of

understanding of software and its engineering is an obstacle to a proper translation

at this time. Maintenance takes up most of the capacity of software engineers

nowadays. We conclude that control of software engineering cannot afford to limit

its concern to development alone. The integrated control of development and

maintenance is called product controL The consequences for control are the

difference between the goal of development control and product control and the

organization of a department employing it. Two organizational aspects are

discussed in detail. Firstly, the function of product management has been

examined. Secondly, the pros and cons of the organization of development and

maintenance activities in one or more departments are discussed.

The next step towards enhancing the control of software engineering is the

transition from product control to multiproduct controL Chapter 5 discusses

multiproduct control, i.e. the control of a number of software produels over their

life cycle. An organization employing multiproduct control is typified as a

software factory. The enhancement is required in order to be able to exploit the

reuse potenrial of software. Reuse is necessary because major productivity

improvements are required to allow the software supply to keep up with the

rapidly increasing demand for software. Chapter 5 reveals that the software

industry has evolved along the same lines as the industry in generaL The market

162

requires both flexibility and efficiency from the suppliers. Two ways to meet

these conflicting demands are standardization and modularization. The key to the

latter is that a limited number of components can be assembied into a variety of

client-specific products. The aspects of multiproduct control are discussed: life

cycles, goal and organization. Two organizational subjects are discussed, namely

a) the organization of work release, and b) the organization of development,

maintenance and development for reuse in one or more departments. Multiproduct

control can be organized in many ways. One specific software factory is described

in chapter 5. This software factory is taken as a starting point in the remaioder of

the book.

Chapter 6 discusses the road to the software factory. The discussion so far has

concentraled on the differences between the stages and on the need to advance

from one stage to the next. It might be concluded that the progression from

project control via product control to multiproduct control is just a matter of time.

The opposite is true. One cannot expect to control development and maintenance

if one is not able to control development alone. The progression from one control

situation to the next requires an explicit decision to do so and a eertaio level of

process controL We use the levels of process control, as distinguished by

Humphrey (1989a), to describe the steps to the software factory. The steps show

that an organization can only afford the expansion of the control focus, if it has

achieved a eertaio level of process controL

Chapter 7 is the first of three chapters that deals with the information

requirements and information systems in a software factory. Chapter 7 assesses a

number of information systems which can be used as a reference for an

information system for software engineering controL Firstly, three information

systems proposed in the literature for the control of software engineering are

described. These systems are the Project Management Data Base from TRW,

TAME from the University of Maryland and the experience base described by

Noth. Valuable insights have been gained from the assessment of the systems.

Another reference system has been studied: an information system for engineer-ta

order production, as described in (Bertrand 1990). The assessment with respect to

the software factory shows that the production control information system fits in

fairly well. A more detailed assessment also shows some misfits. We have chosen

to adapt the information system for engineer-ta-order production control in such a

way that it becomes useful for the software factory . The main reasans to opt for

the production control information system are the results of the assessment and its

maturity as compared with the information systems for software engineering

con trol.

163

In chapter 8 we propose a data model for an information system for software

engineering control in a software factory. Additional information requirements are

derived from the fact that in this case the product concerned is software. The data

model itself is presenled in Figure 8.1 in section 8.3. The main differences

between it and the data model for production control are the product description

and the many relations between the order-dependent and order-independent part of

the data model. ProduelS in use and reference items are considered as order

independent, while produelS and components under development are order

dependent., Product representation and the identification of software components

are identified as key issues. The data model can be used as a starring point in the

development of an information system for software engineering controL Another

possibility is to use the data model to assess the information systems proposed for

software engineering controL

Chapter 9 is the third and last chapter that addresses the information issue. Most

of the software engineering organizations nowadays are not software factories.

Data colleerion is important for improving the control of software engineering and

advancing to higher levels of process controL Chapter 9 shows practical examples

of data collection in software engineering. Examples have been given because

many organizations do not collect data on software engineering and it is important

to show that it is possible to collect data and analyze software engineering. Four

examples of analysis in software engineering are discussed, beginning with the

basic principles used in data collection. We consicter data collection techniques a

means for setting out on the raad to the software factory. But they are certainly

not a map of this raad. Such a map cannot be provided since software engineering

differs greatly fram one place to another and few organizations have reached the

software factory as yet. The ongoing analysis of software engineering should

delermine the path an organization will choose in pragressing towards the

software factory.

10.3 Recommendations for future research

A researcher is allowed to make recommendations for future research at the end

of a thesis. Four possible themes will be mentioned in this section.

Analysis of software engineering

This book has discussed a number of empirica) studies on the control of software

engineering. The studies addressed questions such as:

Why is software late? and

164

Where does the maintenance originate?

More similar studies are required because insight into the control of software

engineering is still limited. Examples of questions that need to be addressed are:

To what extent do object-oriented techniques increase productivity?

How many faults do we include in our software when we deliver it to our

customer?

The questions need to be addressed because we require more insight into software

engineering and its controL The level of control is still insufficient, while software

engineering is becoming increasingly important. There is another reason why the

questions should be addressed. Before long, clients of software engineering

departrnents will start to ask questions like this because they want to know where

their money is going. The software engineering community should be able to

answer the questions by that time. The question of the costs and benefits of

inforrilation technology will beoome crucial and should be a topic of interest for

those involved in software engineering.

The answers to the questions stated can be found by analysing software

engineering. An advantage of empirica! studies is that the k.nife cuts both ways:

both research and the participating department or company benefit The software

engineering departments which cooperate benefit from the data colleerion because

they gain additional insight into their engineering process. The researcher benefits

from the insight into software engineering processes gained in practice.

The human factor in control

The empirica! studies in chapter 2 show that human factors play an important part

in the control of engineering. The success of engineering is and always will be

detennined by the quality and commitment of the people who are doing the job.

The human factor is also important in the control of the engineering process.

Software engineering control depends on the commitment of engin.ee~ to the

stated goals. It is unclear how such a commitment can be obtained and how it can

be maintained throughout the project. We have seen that the way in which quality

goals are stated, and time as well as effort are estimated, affects the level of

commitment. It has beoome clear that the estimation of software projects is not

just a matter of techniques and roodels (Kusters 1990). The research group

Management Infonnation Systems and Automation of the Un.iversity of

Technology in Eindhoven has started a study that will examine estimation as a

group process. The estimation process will be investigated and the possibilities of

information technology support wil! be explored.

165

The way to a software Jactory

This book bas argued that software engineering organizations should broaden the

scope of their control from development, via product to multiproduct controL

Multiproduct control bas been typified by the name software factory. Software

factorles have been a topic of interest for many years now (Cusumano 1989,

Boehm 1989). Descriptive studies of the characteristics of the software factory

and the changes an organization is going through are required. An example of

such a study is (Cusumano 1989). The insights that are gained from the studies

will point -the way to further improvements and will guide other organizations on

their way to improved control of software engineering.

The logistics .of engineering

This book has attempted to apply concepts from logistics or production control to

software engineering. Examples are the concept of the decoupling point, the

hourglass product structure, planning at different aggregate levels and the use of

information systems from ihe field of production control as a reference system for

the software factory. The concepts originate in production, i.e. the factory. Their

application to engineering will be fruitfut for bath engineering and logistics.

Engineering can benefit from the fact that the field of logistics bas been studying

primary process control for years. Of course there are differences between

repelilive manufacturing and software engineering. The differences and similarities

will require additional research and will lead to many discussions.

Both parties can benefit. Logistics will benefit because engineering is becoming

increasingly important as compared with production because of the shortening of

product life cycles and the rise of intangible products like software. Logistics

should consider software engineering as a growing market for its ideas and
concepts. Logistics will also benefit because some probieros that software

engineering bas faced for years will become relevant for production. An example

is the 'one of a kind' production that is becoming progressively important in

production con trol. Software engineering bas always been 'one of a kind

production'. Logistics may be a bie to ga in fresh insight from the ways in which

the software community bas sought to solve the probieros that occur in 'one of a

kind' production.

One specific topic for research will be mentioned. lt is the issue of product

representation. This issue is a key problem in software reuse. Product

representations are also a key subject for information systems in production

controL The research currently going on in both logistics and computer science

should benefit from the exchange of ideas and concepts.

166

REFERENCES

Ackermann, A.F., Buchwald, L.S., Lewski, F.H., "Software inspections: an effective
verification process", IEEE Software, May 1989.

Ahituv, N., Neumann, S., "Principles of informalion systems for management", Wm.
Brown Co. Publ., Dubuque, lowa, 1982.

Basili, V.R., Turner, A.J., "lterative enhancement, a practical technique for software
development", IEEE Trans. Software Eng., Vol. SE-1, no. 4, pp 390-396, 1975.

Basili, V.R., Perricone, B.T., "Software errors and complexity: an empirica! investigation",
Communications of the ACM, January 1984.

Basili, V.R. Selby, R.W. Hutchens, D.H., "Experimentalion in software engineering",
IEEE Trans. Software Eng., Vol. SE-12, no. 7, pp 733-743, 1986.

Basili, V.R., Rombach, H.D., "Tailoring the software process to project goals and
environments", International Conference on Software Engineering, 1987.

Basili, V.R., Rombach, H.D., "The TAME project: towards impravement oriented software
environments", IEEE Trans. Software Eng., Vol. SE-14, no. 6, pp 758-773, 1988.

Basili, V.R., "Software development; a paradigm for the future", Key note address,
Proceedings of the thirteenth annual international computer software and applications
conference, Orlando, R.., 1989.

Basili, V.R., "Viewing maintenance as reuse-oriented software development", IEEE
Software, January 1990.

Beek, J.R., "Time management", Project management special summer issue, August 1986.

Bemelmans, T.M.A., "Bestuurlijke informatiesystemen en automatisering", Hoofdstuk 8,
derde druk, Stenfen Kroese 1987 (in Dutch).

Bemelmans, T.M.A., "Bedrijfskundig ontwerpen van bestuurlijke informatiesystemen",
publisbed in "Automatisering met een menselijk gezicht", in P.A. Cornelis, J.M. van
Oorschot, Kluwer, Deventer, 1986 (in Dutch).

Bemelmans, T.MA., "Informatiekunde; vragen, geen antwoorden";·Special issue
Informatie, June 1989 (in Dutch).

Bemelmans, T.M.A., "Informatiemaatschappij: heerlijke nieuwe wereld?", published in
"Arbeid en management in de informatiemaatschappij", Stenfert Kroese, Leiden, 1986 (in
~~ '

Bertrand, J.W.M., Wortmann, J.C., Wijngaard, J., "Production control; a structural and
design oriented approach", Elsevier, Amsterdam, 1990.

Biggerstaff, T.J., Richter, C., "Reusability framework, Assessment and directions", IEEE
Software, pp. 41-49, March 1987.

167

Biggerstaff, T.J., Perlis, A.J., "lntroduction", in Software reusability, Volume 1, concepts
and models, ACM Press, New-York, 1989.

Boehm, B.W., "Software engineering economics", Englewood Cliffs, NJ, 1981.

Boehm, B.W. "A spiral model of software developrnent and enhancement", IEEE
Co!nputer, May 1987.

Boehm, B.W. "lmproving software productivity", IEEE Computer, September 1987.

Boehm, B.W., en Papaccio, P.N. "Understanding and Controlling Software Costs." IEEE
transactionS on software engineering, volume SE-14, no. 10 OctOber 1988.

Boehm, B.W., "Software factones in the USA", in Proceedings of the 11th World
Computer Congress, San Francisco, August 28- September 1, 1989.

Bolwijn, P., Kumpe, T., "Production in the 1990's; efficiency, flexibility and innovation.",
Long range planning, August 1990.

Hoornen, T., Brethouwers, G., "On the analysis of software development", Masters Thesis,
University of Technology Eindhoven, April 1990.

Botter, C.H., "Organisatie rond de produktinnovatie", Kluwer, Deventer, 1982 (in Dutch).

Brooks, F.B., "The Mythical Man-Month, Essays on software engineering", Addison
Wesley Publishing Company, London, 1975.

Brooks, F.P., "No silver bullet, essence and accidents of software engineering", IEEE
Computer, April 1987.

Cavano, J.P., McCall, J.A., "A framework for measurement of software quality",
proceedings of the ACM software quality assurance workshop, November 1978.

Conte, S.D., Dunsmore, H.E., en Shen, V.Y., "Software engineering metrics and models",
Benjamin Cummins, 1986.

Crossman, T.D., "lnspection teams, are they worth it?", in proceedings of the 2nd national
symposium EDP quality assurance, Chicago, 11., March 24-26, 1982.

Cuelenaere, A.M.E., van Genuchten, M.J.I.M., and Heemstra, F.J.,"Calibrating a software
cost estimation model: why and how". Infonnation and software technology, volume 29,
no. 10, December 1987.

Cusumano, M.A., "The software factory: a bistorical interpretation", IEEE Software,
March 1989.

Davis, G.B., Olsen, M.H., "Management Infonnation Systems, Conceptual foundations,
Structure and Development", Me Graw-Hill, New-York, 1984.

Davis, A.M., Bersoff, E.H., Corner, E.R., "A strategy for romparing alternative software
development life cycle models", IEEE transactions on software engineering, October 1988.

168

Deming, W.E., "Quality, productivity and competitive perfonnance", Massachusetts
lnstitute of Technology, Centre for advanced engineering studies, 1982.

Fagan, M., "Design and code inspections to reduce errors in program development", IBM
systems journal, no.3 1976.

Fagan, M., "Advances in software inspections", IEEE transactions on software
engineering, July 1986.

Fox, J.M., "Software and its development", Prentice Hall, Engtewood Cliffs, 1982.

Garvin, O.A., "What does 'product quality' really mean", Sloan Management review, Fall
1984.

Genuchten, M.J.l.M. van, Fierst van Wijnandsbergen, M., "An empirica! study on the
control of software development", Proceedings of the conference on Organization and
Infonnation Systems, pp 705-718, Bied, Yugoslavia, September 13-15, 1989.

Genuchten, M.J.I.M. van, Kooien, J.A.H.M., "On the use of software cost models",
Infonnation and Management, July 1991.

Genuchten, M.J.l.M. van, "Why is software late? An empirica! study of reasons for delay
in software deve1opment", to be publisbed in IEEE Transactions on Software Engineering,
June 1991.

Gilb, T., "Principles of software engineering management", Addison Wesley, 1988.

Grady, R.B., "Dissecting software failures", Hewlett-Packard Journal, April 1989.

Grady, R.B., "Work product analysis: the philosopher's stone of software?", IEEE
Software, March 1990.

Harrison, F.L., "Advanced project management", Gower publishing company limited,
Aldershot, England.

Heemstra, F.J., "Hoe duur is programmatuur?", Kluwer, 1989 (in Dutch).

Heemstra, F.J. "Wat bepaalt de kosten van software", Infonnatie, volume 29, extra edition,
1987 (in Dutch).

Hegge, H.M.H, Wortmann, J.C., "Generic bill-of-material; a new product model", working
paper, Department of lndustrial Engineering, Eindhoven University of Technology, 1990.

Humphrey, W.S., "Characterizing the software process: a maturity framework", IEEE
Software, pp. 73-79, March 1988.

Humphrey, W.S., "Managing the software process", Addison Wesley, 1989a.

Humphrey, W.S., Kitson, D.H., Kasse, T.C., "The state of software engineering practice: a
prelirninary report", Proceedings of Conference on Software Engineering, Pittsburgh,
1989b.

169

IEEE, "IEEE standard glossary of software engineering tenninology", New York:, Rep.
IEEE-std-729-1983, 1983.

ISO, "ISO 9000", International Organization for Standardization, Reference number ISO
9000:1987 (E).

ISO, "Guidelines for the application of ISO 9001 to the development, supply and
maintenance of software", International Organization for Standardization, 1990.

Jeffrey, D.R., Basili, V.R., " Validating the TAME resource model", Proceedings of the
eleventh lnlemational Conference on Software Engineering, pp 187-201, Singapore, 1988.

Jenk:ins, A.M., Naumann, J.D., Wetherbe, J.C., "Empirica! investigation of systems
development practices and results", Information & management, 7, 1984.

Jones, T.C., "Reusability in programming: a survey of the state of the art", IEEE
transactions on software engineering, Vol. 10, no. 5, pp. 488-494, September 1984.

Juran, J.M., Gryna, F.M., "Juran's quality control handbook:", Fourth edition, McGraw-Hill
book: company, 1988a.

Juran, J.M., "Juran on quality planning", Juran institute 1988b.

Kusters, R., van Genuchten, M.l.J.M., and Heemstra, F.J., "Are software cost estimation
models accurate?", Information and software Technology, Volume 32, no. 2, March 1990.

I...anergan, R.G., Grasso, G.A., "Software engineering with reusable designs and code",
IEEE tranSaètiöns on software engineering, Vol. 10, no. 5, pp. 498-501, September 1984.

Lehman, M.M., "Programs, lifecycles, and laws of software evolution", Proceedings of the
IEEE, 9, 1980.

Lehman, "Program evolution", Infonnation processing and management", Vol. 20, no. l-2,
1984.

Lierop, F.L.G. van, Volkers, R.S.A., van Genuchten, M.I.J.M., and Heemstra, F.J., "Heeft
iemand de software al gezien? Inzicht in het uitlopen van softwareprojecten", Informatie,
March 1991 (in Dutch).

Looijen, M., "Management en organisatie van automatiseringsmiddelen", Ph.D. Thesis,
Eindhoven University of Technology, 1988 (in Dutch).

Manual, T., "What's bebind all the software delays", Electronics, June 1989.

Martin, J., "Recommended diagramming standards for analysis and programmes", Prentice
~~1~. -

Martin, J., McClure, C., "Software maintenance the problem and its solution", Prentice
Ha~ Englewood Cliffs, 1983.

Matsumoto, Y., "Management of industrial software production", IEEE Computer, pp. 59 -
71, February 1984.

170

Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P., "Experiences wilh defect
prevention", IBM systems journal, no 1, 1990.

McCall, J.A., "The utility of software metrics in large scale software systems
development", IEEE Second software life cycle management workshop, August 1978.

Mills, H.D., Dyson, P.B., "Using Metrics to quantify development", IEEE Software,
March 1990.

Mintzberg, H., "The structuring of organizations", Prentice-Hall, 1979.

Moad, J., "Cultural barriers slow reusability", Datamation, November, 15, 1989.

Myers, G.J., "Software reliability;principles and practices", Wiley interscience, John Wiley
and sons, 1976.

Nelson, R., "Software's midlifecrisis", Electronics, June 1989.

Nolh, T., "Unterstutzung des Management von Software-Projekten durch eine
Erfahrungsdatenbank"", Springer Verlag, 1987 (in German).

Penedo, M.H., Stuckle, E.D., "PMDB, A project master database for software engineering
environments", Proceedings of the eighth International Conference on Software
Engineering, pp 150-157, London, August 1985.

Pettijohn, C.L., "Achieving quality in lhe development process", AT&T Technica! journal,
Volume 65, MarchApril 1986.

Phan, D., Vogel, D., Nunamaker, J., "The search for perfect project management,
Computerworld, September 1988

Phan, D., "lnformation systems project management: an integrated resource planning
perspeelive model", Ph.D. Thesis, department of Management Information Systems,
University of Arizona, Tucson, AZ, 1990.

Prieto Diaz, R., Freeman, P. "Classifying software for reusability", IEEE Software, pp. 6-
16, January 1987.

Prieto Diaz, R., "lmplementing faceled classifying for software reuse", Proceedings of the
International Conference on Software Engineering, pp 300-304, Nice, 1990.

Rombach, H.O., "A comprehensive approach towards reuse", Keynote address, 2nd
international conference on Software Quality Assurance, Oslo, Norway, May 1990.

Sakurai, M., "Cost accounting for software", Cost management system seminar, June, 15-
16, Dallas.

Schaick, E.A., "A management system for the information business", Prentice Hall, 1985.

Schendler, B.R., "How to break lhe software logjam", Fortune, September, 25, 1989.

Selby, R.W., "Quantitative studies of software reuse", in Software reusability, Volume 2,

171

applicalion and experience, editors Biggerstaff, T J., Perlis, AJ., ACM Press, New-York,
1989.

Shandle, J., "It's time to grow up", Electronics, June 1989.

Shaw, M., "Pr~pects for an engineering discipline of software", IEEE Software,
November 1990.

Sikkel, K., Van Vliet, J.C., "Kan software langer mee? Een overzicht van hergebruik van
software", Informatie, Jaargang 30, no 7/8, pp. 464-483, August 1988 (in Dutch).

Siskens, W.J.A.M., Heemstra, F.J., van der Stelt, H. "~t control in automation projects,
an empirica! study", Informatie, volume 31, January 1989 (in Dutch).

Standish, "An essay on software reuse", IEEE TransacHons on Software Engineering, no.
5, 1984.

Stretton, A., "A consolidation of the PMBOK framework and functional components",
Project management journal, December 1989.

Swanson, E.B., "The dimensions of maintenance", proceedings of the second international
conference on software engineering, San-Francisco, pp. 492-497, 1976.

Swanson, E.B., Beath, C.M., "Organizational foundations for maintenance", Software
maintenance, research and practice, VoL 1, pp. 47-58, 1989.

Thambain, H.J., Wilemon, D.L., "Criteria for controlling projects according to plan".
Project Management Journal, June 1986.

Veen, E. van, "Modelling product structures by generic bills-<>f-material", Ph.D. thesis,
University of Technology Eindhoven, 1991.

Ward, T.M., "Software measures and goals at Hewlett-Packard", Conference proceedings
Juran seventh annual conference on quality management, Atlanta, 1989.

Weiss, O.M., Basili, V.R., "Evaluating software development by analysis of changes:
some data of the SEL", IEEE transactions on software engineering, February 1985.

Wideman, R.M., "The PMBOK report, PMl Body of Knowledge standards", Project
management special summer issue, August 1986.

Wilke, J.R., "Lotus expects more delays on software for Macintosh", Wall Streel Journal,
January, 17, 1990.

Wijnen, G., Storm, P., Renes, W., "Projectmatig werken", Marka paperback series, 1984
(in Dutch).

172

SAMENVATTING

Het onderwerp van het proefschrift is het beheersen van software-ontwikkeling. Het

onderzoek is gestart naar aanleiding van het grote economische en maatschappelijke

belang van software enerzijds, en de huidige problemen met de beheersing

anderzijds. Voorbeelden van problemen zijn:

herhaalde overschrijdingen van kosten en doorlooptijd van softwareprojecten,

het grote aandeel van de onderhoudskosten in de totale softwarekosten, en

- de beperkte produktiviteitsverbeteringen in de software-ontwikkeling.

Het proefschrift vonnt de volgende bijdrage aan het oplossen van de gesignaleerde

problemen:

I Door middel van empirisch onderzoek zijn oorzaken van vertraging van software

ontwikkeling in een aantal ontwikkelafdelingen vastgesteld. Het verworven inzicht

stelde de betreffende afdelingen in staat maatregelen te nemen die toekomstige

uitloop kon voorkomen. Het inzicht gaf tevens richting aan het onderzoek naar

verbeterde beheersconcepten voor software-ontwikkeling.

2 In het proefschrift wordt een beheersconcept voorgesteld op basis waarvan de

beheersing van software-ontwikkeling beter in staat zal zijn de huidige problemen

het hoofd te bieden. Door het beheersconcept wordt expliciet aandacht besteed

aan de beheersing van onderhoud en hergebruik van software.

3 Het proefschrift beschrijft de infonnatievoorziening in een softwarefabriek. Het

blijkt dat software-ontwikkeling gebruik kan maken van de ervaringen zoals die

zijn opgedaan in de produktiebeheersing.

Het proefschrift bestaat uit drie delen. Het eerste deel inventariseert het probleem.

Het beschrijft ondenneer de genóemde empirische onderzoeken. Het eerste deel

wordt afgesloten met een karakteristiek van de traditionele beheersing van software~

ontwikkeling. Die beheersing gaat uit van de veronderstelling dat men aan

geïsoleerde projecten werkt waarin systemen met relatief stabiele specificaties worden

ontwikkeld. De wijze waarop men dergelijke projecten beheerst verloopt

overeenkomstig het watervalmodel, met een nadruk op efficiency. De wijze van

beheersing is op de dag van vandaag niet meer adequaat, immers de omstandigheden

zijn gewijzigd. Zo zijn de huidige software-applicaties niet langer geïsoleerde

produkten, maar zijn ze veelal onderdeel van een groter, geïntegreerd geheel. Het

merendeel van de huidige softwarekosten zijn onderhoudskosten en geen

ontwikkelkosten.

Het tweede deel van het proefschrift beSchrijft hoe de beheersing zich zou moeten

173

uitbreiden, opdat deze beter toegerust is voor de huidige omstandigheden. De

beheersing zal zich uitbreiden van traditionele 'ontwikkelbeheersing', via

'produktbeheersing' naar 'multiproduktbeheersing'. Het verschil tussen de het

traditionele concept en produktbeheersing is dat beheersing zich uitbreidt over de

gehele levenscyclus van een softwareprodukt Onderhoud wordt derhalve in de

beschouwing betrokken. De gevolgen van deze uitbreiding voor ·de organisatie

worden aangegeven.

De stap van 'produktbeheersing' naar 'multiproduktbeheersing' leidt opnieuw tot een

uitbreiding van de beheersing. Men beperkt zich niet langer tot het ontwikkelen en

onderhouden van een aantal afzonderlijke produkten, maar men kijkt naar het

samenstellen van specifieke eindprodukten binnen een gedefinieerd produktenpakket

op basis van eerder ontwikkelde onderdelen. Multiproduktbeheersing legt de nadruk

op het hergebruik van software via modularisatie en standaardisatie. Een organisatie

die deze vorm van beheersing toepast wordt getypeerd als een softwarefabriek. De

gevolgen van multiproduktbeheersing worden aangegeven. Zo wordt geschetst dat in

een softwarefabriek drie soorten werk plaatsvinden, te weten ontwikkeling op

klantenorder, alsmede onderhoud en ontwikkeling van herbruikbare componenten.

Werklastbeheersing wordt besproken als een manier om te komen tot een goede

allocatie van de schaarse capaciteit over de drie soorten werk. Tevens w_orden

mogelijke organisatievormen van de softwarefabriek aangegeven.

Het derde deel van het proefschrift beschrijft de informatievoorziening in een

softwarefabriek. Er wordt gestart _met een vergelijking van reeds voorgestelde

informatiesystemen voor de beheersing van software-ontwikkeling met

informatiesystemen voor produktiebeheersing. Die vergelijking leidt tot de

aanbeveling om een informatiesysteem voor 'engineer-ta-order' produktie als

referentiemodel te gebruiken. Aangegeven wordt hoe zo'n informatiesysteem

aangepast dient te worden om het geschikt te maken voor de softwarefabriek. Een

datamodel voor een informatiesysteem voor de softwarefabriek wordt voorgesteld.

/ Het voorgestelde datamodel kan gebruikt worden als uitgangspunt bij de

ontwikkeling van een informatiesysteem voor het beheersen van software

ontwikkeling. Het kan ook gebruikt worden als toets voor systemen die in de

literatuur en in de praktijk worden voorgesteld.

De discussie over informatievoorziening spitst zich toe op de softwarefabriek Het

grootste deel van de huidige software-afdelingen opereren echter nog niet als

zodanig. Daarom wordt het proefschrift afgesloten met de beschrijving van een aantal

technieken die afdelingen op weg kunnen helpen naar een softwarefabriek. Het

betreft hier een aantal technieken die het inzicht in de huidige software-ontwikkeling

174

kunnen vergroten. Het vergrote inzicht dient te leiden tot een verbeterde beheersing

als eerste stap op weg naar een softwarefabriek.

175

DANKWOORD

Een promotie-onderzoek is geen eenmansactie. Ik wil op deze plaats een aantal

personen bedanken die in de afgelopen jaren een belangrijke bijdrage aan het

onderzoek hebben geleverd. Het zijn in de eerste plaats de promotoren Theo

Bemelmans, Hans van Vliet en Fred Heemstra. Ik heb veel van jullie geleerd.

Binnen Philips wil ik twee groepen met name bedanken. Ten eerste mijn collega's

binnen lnnovation Management Consulting. Ten tweede de software-ontwikkelaars

met wie ik in de afgelopen jaren heb samengewerkt.

Binnen de Technische Universiteit Eindhoven wil ik twee groepen noemen. Ik denk

met plezier terug aan de BAP, bestaande uit Rob Kusters, Fred Heemstra en mijzelf.

Verder wil ik de leden van de vakgroep BISA bedanken. BISA is voor mij een

voorbeeld van een groep waar met inzet en plezier wordt gewerkt.

CURRICILUM VITAE

Miehiel van Genuchten is geboren op 29 september 1963 te Eindhoven. De

middelbare school heeft hij doorlopen in Meppel en Epe. In 1981 haalde hij het

diploma Atheneum-B. Hetzelfde jaar begon hij de studie Technische Bedrijfskunde

aan de Technische Universiteit Eindhoven. Het afstudeerproject vond plaats bij de

vakgroep Bestuurlijke Informatiesystemen en Automatisering (BISA), het

afstudeerbedrijfwas N.V. Philips Electronics, afdeling EDP-Industriële Toepassingen.

Na zijn afstuderen op 1 april 1987 is hij in dienst getreden bij de vakgroep BISA en

bij de afdeling Corporate Organization & Efficiency van Philips. Het promotie

onderzoek is gedurende de afgelopen vier jaren in dienst van beide werkgevers

uitgevoerd. Binnen Philips zijn door hem adviesprojecten uitgevoerd binnen grote

software-ontwikkelafdelingen van diverse produktdivisies. Het onderzoek binnen de

vakgroep BISA is uitgevoerd als lid van de onderzoeksgroep BAP (Beheersen van

AutomatiseringsProjecten). Het onderzoek heeft ondermeer beslaan uit empirische
studies in diverse bedrijven en heeft geleid tot publikaties in nationale en

internationale tijdschriften.

STELLINGEN

behorende bij het proefschrift

Towards a software factory

van

Miehiel van Genuchten

Eindhoven, 21juni 1991

x

Mensen zijn niet zo zeer beperkt door wat zij niet kunnen. Hun
mogelijkheden worden vooral begrensd door wat zij niet kunnen
leren.

XI

Academische titels dienen te veijaren.

