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1. Assume that there is a large number of tests executed against an implementation. In this case,
the generation based on test purposes [1] compared to the UIO test generation methodology
will find in most of the cases a larger number of errors.

[1] Chapter 3, this thesis

2. The introduction of probabilities into test generation and execution [2] can increase the effec-
tiveness of a test suite.

[2] Chapter 6, this thesis

3. The measures for test coverage proposed in the literature are based on heuristics. The choice
for a specific coverage measure relies on the preferences of an individual, group or institution
for one heuristic or another.

4. If one says that “This implementation is 99% free of errors”, there is no generally agreed way
to measure that.

5. For black box testing, using a Cycling heuristic for generating tests requires making use of
non-available information in an implementation, namely the state in which the implementation
is at a given moment of time. The Cycling strategy [3] is based on assumptions related to the
automaton model of the implementation (for example, the assumption that the implementation
is a minimal automaton).
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[3] Chapter 8, this thesis

6. It is expected that sending information by means of a number of smaller messages instead of
packaging it in one big message reduces the waiting time overhead for processes that work in
parallel on different machines. Experience shows that this is not true in all cases [4].

[4] N. Goga, Z.Racovita, and A. Telea. Texture mapping in a distributed environment. In E. Banissi,
C. Chen, and G. Clapworthy, editors, 7th conference on Information Visualization (IV’03), vol-
ume 7, pages 36–41. IEEE CS Press, 2003.

7. The common belief is that international standards in the computer network area are free from
errors that could be found through simulation and verification. Unfortunately this not true [5].

[5] A. J. Mooij, N. Goga, W. Wesselink, and D. Bošnački. An analysis of medical device communication
standard IEEE 1073.2. In C. E. P. Salvador, editor, Communication Systems and Networks, pages
74–79. IASTED, ACTA Press, 2003.

8. The evolution theory does not explain 100% the origin and the diversity of life yet. Some
examples: no living cell could be obtained experimentally from non-organic substances; certain
intermediate fossil links are missing.

9. Choosing music is not a simple matter of taste. If one wants to be healthy, one needs to be
careful concerning which music one is listening to.

10. Eating vegan increases life expectancy (average duration).

11. The current tendency is that USA will become the dominant super power of the world.
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Chapter 1

Introduction

Testing is an important activity carried out in the development cycle of every product. Starting from its
design till its physical realization, in every stage, tests are performed and their results are used for the
further improvements of the product. Therefore, the testing activity is very important and it receives
a lot of attention from industry and academia. Especially, the care with which a test is designed and
performed is essential for the quality of the test results.

There are explosive growth domains which seem to have completely changed the human life in the
last years. For example, the computer which is part of each reactive system is penetrating everywhere.
A child who is only two or three years old is playing games on a computer or a computer network.
The postal mail is replaced by electronic mail. In medicine computers help in better diagnosis and
treatment of diseases. Internet is essential today for everybody. These are only some uses which reveal
that computers are vital for our daily life. Other examples, taken from the area of reactive systems
which are important for us today, are: consumer electronic products, such as VCRs or TVs, or bank
cash machines.

We will refer to some examples which show the importance of testing for reactive systems.

• The first example is taken from the computer field. Starting in 1996, an industrial experiment
was carried out by INRIA Rhône-Alpes and BULL engineers concerning the design and testing
of POLIKID [GVZ00], a CC-NUMA (Cache Coherent – Non Uniform Memory Access) multi-
processor architecture developed by BULL. Due to performance reasons, the BULL engineers
designed their own version of the CC-NUMA cache coherency protocol for the multiprocessor
POLIKID. The experiment was about the design of the cache coherency protocol and testing
it on a working prototype of a POLIKID machine. In the design phase, the formalization of
the specification and the verification activities revealed 20 serious issues, among which 8 be-
havioural errors in the coherency protocol. In the testing phase, the use of TGV [JM99], a tool
for automatic test generation, led to the discovery of 5 bugs on the working prototype of PO-
LIKID. These bugs could not have been caught by hardware testing experts using traditional
technology. The results obtained in this experiment were rewarded with a BULL Eureka Re-
search and Development Award.

• The second example shows that the testing activity is beneficial also in the field of consumer
electronics. This example reveals that errors can occur everywhere and that the testing activity
can help to detect them. The EasyLink protocol was first defined in 1996 by Philips Research to
facilitate communication between a TV and one or more VCRs. Recently, a testing activity was
carried out inside Philips to check out the consistency of this protocol [BFHdV01]. The tests led

1



2 CHAPTER 1. INTRODUCTION

to the discovery of an unwanted behaviour, which was caused by lack of clarity of the EasyLink
protocol specification. The conclusion was that, from a protocol conformance perspective, the
unwanted behaviour is an error because, as a result of it, the TV could end up in a state with a
blue screen and the only way to escape from this state is to turn the TV off and on again.

• The third example shows a disastrous event which could be prevented by a more careful test
activity. This example is from the aerospace domain which uses reactive systems, such as
computerized positioning systems. On June 4, 1996 an unmanned Ariane 5 rocket launched by
the European Space Agency exploded just forty seconds after its lift-off from Kourou French
Guiana. The costs of the experimental equipment was enormous. The rocket was on its first
voyage, after a decade of development costing $7 billion. Together with Ariane 5, Cluster – a
$500 million set of four scientific satellites – was also destroyed. The press was quickly involved
by reporting the disaster (for example, see The New York Time Magazine of 1 December 1996).
Over the following days an Enquiry Board led by Prof. Jacques-Louis Lions (Academie des
Sciences, France) was set up to determine the causes of the launch failure. Quoting from the
report, the causes of the explosion were:

The failure of Ariane 501 was caused by the complete loss of guidance and altitude
information 37 seconds after start of the main engine ignition sequence (30 seconds
after lift-off). This loss of information was due to specification and design errors in
the software of the inertial reference system.
The internal SRI software exception was caused during execution of a data conver-
sion floating point to 16-bit signed integer value. The floating point number which
was converted had a value greater than could be represented by a 16-bit signed inte-
ger.

In the above quote, SRI stands for Système de Référence Inertielle or Inertial Reference System.
The designers of the SRI of Ariane 5 were re-using code from the SRI of Ariane 4. When re-
using it, the designers did not consider adequately the change of some flight parameters which
had other ranges for Ariane 5 than for Ariane 4. This led to the error of the conversion which
started a chain of events which eventually caused the explosion. The report concluded also that
a more carefully carried out test activity could have discovered this error.

Each of these examples shows the importance of testing from different perspectives. The first
one reveals that even if a careful design activity is done using formal methods, testing can lead to
the discovery of bugs. This example concerns a multiprocessor architecture. The second one, taken
from the field of consumer electronics, shows that the testing activity is beneficial also in this domain.
The third one describes a disastrous event from the field of the aerospace domain which could be
averted if testing was done more carefully. Other similar examples can easily be found, for example
see http://www.bugnet.com/, but we will stop here.

Before going deeper in testing, we should mention that there are complementary approaches to
the problem of software correctness. Preventing errors is better, in terms of costs associated, than
introducing them first, trying to find and repair them later. For this reason, methodologies have been
developed which aim at preventing errors, such as correctness proofs ([Zwi88]). But even when
such methods are employed, the errors can still occur (see also the example regarding the CC-NUMA
cache coherency protocol). Therefore, these methods are useful, but the industry still considers testing
indispensable. The conclusion is that each of these approaches has his own importance and that testing
is a worthwhile activity.



1.1. CONFORMANCE TESTING OF REACTIVE SYSTEMS 3

In Section 1.1 we will enter in more details regarding the testing of reactive systems. Section 1.2
presents a number of terms and developments in this area. Section 1.3 identifies issues which are
subject of research and improvements in this domain. Section 1.4 describes the structure of the thesis.

1.1 Conformance testing of reactive systems

When we discussed the importance of computers, we mentioned the term reactive systems. What is
a reactive system? The common understanding [Hee98] is that a reactive system is a system which
exchanges information with its environment. It receives stimuli from the environment, which are
commonly denoted as inputs, and it sends responses to stimuli, which are referred to as outputs. The
system is expected to react in a timely manner. Many systems can be viewed as reactive systems.
Some examples are computers or phones in a network and hardware components which interact with
each other. Important examples of reactive systems are process control systems, communication pro-
tocols and embedded-software systems. But not all information processing systems are considered to
be reactive systems. One counter-example is a computation process which writes the results to a file
system (a batch-oriented computation). This process for which the main task is to compute, cannot be
regarded as a reactive system because there is no continuous interaction with its environment nor are
there any hard time constraints.

In the examples which we gave regarding the testing of reactive systems we showed that their test-
ing is important for the industrial community. But this testing is also important for academia because
there are problems in testing which are not well understood and which are researched by academia.
The joint effort of these communities built up more standards on this domain. In this chapter we will
refer to two standards which deal with testing and which come from the telecom area: OSI IS-9646
[ISO92] and ITU-T Z.500 Recommendation ‘Framework: Formal Methods in Conformance Testing’
[IT97]. These two standards will be discussed in more detail in Section 1.2. Another indication that
the topic is of interest is the list of industrial and prototype tools which are developed for testing reac-
tive systems. We will mention only some names which are: Autolink [SKGH97], Phact [FMMvW98],
TGV [JM99] and TorX [BFdV+99]. Moreover these tools are using specification languages that are
especially designed for the formalization of the behaviours of such systems and which are themselves
subject of standardization. Important specification languages are: SDL [CCI92], Estelle [ISO89a],
LOTOS [ISO89b], MSC [IT93] and TTCN [ISO92]. And not at the last place is the ongoing research
done in this area. A large number of articles and PhD theses from this domain can easily be found.
Some examples are the research presented in the PhD theses [Vra98] and [Kwa97].

The specification languages already mentioned give us the opportunity to concentrate a little bit
more on some elements which play a role in testing. First, we have a specification in a specification
language which describes the allowed behaviours of the system to be tested. Second, the implemen-
tation denotes the material realization of the system. Now, the objective of testing is to find out if the
implementation conforms to the abstract description, the specification. This approach to the testing of
a reactive system is called conformance testing, which means that an implementation should conform
to its specification. We will say more about conformance testing in the next section.

Now let us introduce another aspect of reactive system testing. The common practice today is
automation. This practice is justified by the fact that a manual process is time consuming and ex-
pensive. In particular this applies for testing. Automatic testing means that the tests are derived
from the specification by a test generation algorithm and executed against the implementation. In
the area of automatic testing, the project Côte-de-Resyste (COnformance TEsting of REactive SYS-
TEms, CdR by short), funded by the Dutch Technology Foundation STW, was born as a collaboration
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between two universities, the University of Twente and the Eindhoven University of Technology in
The Netherlands, and two industrial companies, Philips and KPN. Later KPN left the CdR project and
another industrial company, Lucent, joined the project. CdR, under which auspices this thesis was
written, aims at developing methods, techniques and tools for testing reactive software systems. The
CdR project is only one example which shows that automatic testing is of interest today.

Before ending this section we want to introduce another issue which is subject of ongoing research
and which takes a central position in this thesis. Once one has a specification and starts to automat-
ically derive tests, the set of tests which can be derived is usually large, even infinite. Therefore, the
selection of an appropriate set of tests with a large capability to detect errors is of great importance.
Some examples of research in this area are presented in [Groz] and [Vuong].

1.2 Conformance testing: terms and developments

In this section we describe some key elements presented in two standards OSI IS-9646 and ITU-T
Z.500 Recommendation ‘Framework: Formal Methods in Conformance Testing’. This will give the
reader the opportunity to get a better understanding of the conformance testing of reactive systems and
of the topics addressed in this thesis. The standard OSI IS-9646 ‘OSI Conformance Testing Method-
ology and Framework’ [ISO92] defines a methodology and framework for protocol conformance test-
ing. Originally it was made for OSI protocols. Later it was used also for other kinds of protocols
(for example, the CC-NUMA cache coherency protocol). The following parts of this standard are of
interest for us:

1. General Concepts;

2. Abstract Test Suite Specification;

3. Tree and Tabular Combined Notation (TTCN);

We will concentrate on part 1) and 2) which discuss general concepts of protocol conformance
testing. We will briefly present part 3) and we will acknowledge the recent developments of TTCN.

The introduction of OSI IS-9646 part 1) states that conformance testing can not guarantee confor-
mance to a given specification. Why does it say this? Suppose no errors were found during testing.
Then the strongest statement we can make is precisely that: ‘No errors were found’, but this does not
necessarily mean that the implementation does not contain any errors. The main reason is that con-
formance testing can never be comprehensive enough to guarantee error-free behaviour because the
number of tests required will be too large. However, this should not lead one to believe that confor-
mance testing is not a worthwhile activity. Errors can be revealed through testing and then repaired.
The conformance testing does not guarantee that no errors exist in the implementation, but it gives
confidence that an implementation has the required behaviours described by its specification.

One interesting observation which can be made concerns the relation between conformance testing
and interoperability testing. OSI IS-9646 chooses to test in isolation an entity which participates in
a protocol exchange. It does not require to test a whole assembly of entities which are engaged in a
communication. Testing more entities which communicate with each other is called interoperability
testing. Performing an interoperability test will check the conformance of the whole assembly viewed
as a black-box against a service specification. The reason for the choice made in OSI IS-9646 is that
it is cheaper to test each entity in isolation than to test all the possible combinations for the whole
network of entities. For example, let us consider the situation of a network of 2 similar entities and
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5 vendors which can provide entities. The entities are similar in the sense that they are supposed to
implement a common specification. Testing each entity in isolation will cost 5 units (a unit can be an
average set of tests) because there are 5 different vendors, each of them being able to provide entities.
Now let us consider the situation of an interoperability test performed for this network of entities.
For reducing the number of tests, it can be assumed that when connecting two entities provided by the
same vendor, the network as a whole works correctly and there is no need for testing. This assumption
usually does not hold if the similar entities are provided by two different vendors. Therefore an
interoperability test is needed for checking the conformance of the whole assembly in this case. For
a network of 2 entities and 5 possible vendors for them, the costs for the interoperability testing is 10
units, which come from the general formula of 1

2 ×n ×(n −1) for a network of 2 entities and n vendor
companies. The cost of the interoperability testing is twice higher than the one of testing an entity in
isolation. For such reasons, the standard chooses to test an entity in isolation. In theory, if each entity
conforms to its specification, a network of entities should function correctly. There are subtle reasons
why this is not always the case in practice. One reason is the fact that, as OSI IS-9646 states, the
conformance can not be guaranteed in all cases. Another reason is that there are many incompatible
options which might be implemented by the entities. Therefore, the interoperability testing is still
useful to be performed (we will come back to this discussion).

OSI IS-9646 part 1) introduces the concepts of the testing process and its constituent parts. The
process is outlined in Figure 1.1. Presenting this process gives the reader the possibility to get ac-
quainted with elements which play roles in testing activities. Moreover this testing process is often
referred to as being one of the starting points for the test generation tools with which we are work-
ing in this thesis. Therefore we considered it worthwhile to outline it. We will start to introduce its
component elements from the figure step by step.

The specification of the protocol is given in natural language by means of so called conformance
requirements. The conformance requirements of the protocol are classified in two categories: 1) static
conformance requirements and 2) dynamic conformance requirements.

The static conformance requirements are ‘limitations on the combination of implemented capa-
bilities which are permitted’ for conformance. An example of static conformance requirements are
clauses 14.3 and 14.4 of IS-8073, the OSI Transport Protocol.

14.3 If the system implements Class 3 or 4, it shall also implement Class 2.
14.4 If the system implements Class 1, it shall also implement Class 0.

The dynamic conformance requirements are the actual protocol requirements, that is, the require-
ments that concerns input/output behaviours of the protocol entity itself.

Based on the static and the dynamic conformance requirements a checklist with the capabilities
of the system to be tested is produced. This checklist is called Protocol Implementation Conformance
Statement Proforma (PICS Proforma) and it is signed and delivered with every implementation of
a standard protocol. The PIXIT (Protocol Implementation eXtra Information for Testing) contains
system-specific information outside of the scope of the base standard. An example of such information
might be the particular system’s addresses to be used during testing or the precise value of a parameter
within a permitted range of values. Unlike the PICS Proforma which is part of the base standard, the
PIXIT is supplied by the tester on the basis of details provided by the implementer (the tester makes a
PIXIT Proforma; the implementer willing to have his IUT tested completes it; then it is called PIXIT).

The first part of the testing process, Static Conformance Review, involves the examination of the
PICS. This is a process of comparing what the implementer says has been implemented against what
the base standard says should have been implemented in the particular Implementation Under Test
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Figure 1.1: Testing process overview.

(IUT). The next step, Selection and Parameterization, is to establish the set of tests that match the
characteristics of the IUT. These tests are drawn from the Conformance Test Suite, which contains
theoretically a complete set of tests covering every aspect of the base standard. The assumption that
the Conformance Test Suite is complete is a pragmatic point of view taken by OSI IS-9646, because,
as we already said, this is not usually possible in practice (commonly, the completeness implies a
large, even infinite number of tests). Based on the set of selected tests, three sorts of dynamic tests
can be performed:

1. Behaviour Tests;

2. Capability Tests;

3. Basic Interconnection Tests.

Behaviour Tests are the dynamic tests performed. Capability Tests are concerned with specific
test statements made in the PICS about specific parameters. If, for example, the PICS indicates that in
a transport protocol sizes of 256 and 512 octets are supported, then the tests would be appropriately
parameterized to check this claim. Basic Interconnection Tests are optional. They are a subset of the
complete set of behaviour tests contained in the Conformance Test Suite. The motivation for these
tests is that rudimentary testing up front might indicate whether or not it is worth embarking on the
full test campaign.

The Analysis of Results means the analysis of the tests results. A test suite for a given protocol
contains a number of different discrete tests. For each test there will be a result, or outcome. For
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every outcome, that is, for every individual test performed, a test verdict will be assigned, either
pass, fail or inconclusive. A pass verdict means that the observed test outcome provides evidence
of conformance to the conformance requirement under consideration. A fail verdict means that the
observed test outcome demonstrates nonconformance with respect to the conformance requirement
under consideration. An inconclusive verdict means that there is insufficient evidence for either
pass or fail verdict to be assigned, i.e. the test objective (purpose – see below the description of test
purposes in TTCN) is not fulfilled but no conformance requirement is invalidated by the test outcome.

The final stage of the process, Final Conformance Review, is the release of two test reports:

1. System Conformance Test Report (SCTR);

2. Protocol Conformance Test Report (PCTR).

In general, one or more protocols may be tested within a given system. Thus there is a PCTR for
each protocol and a SCTR for the overall system. The SCTR contains a summary of the test results
and the PCTR contains a detailed list of all the tests executed and the results (verdicts) for each of
them.

These are the ingredients of the testing process as it is presented in OSI IS-9646. Many of these
ingredients play a role in the research described in this thesis. We will give some examples. The
first example is the Selection and Parameterization phase which exists in the experiments presented
in this thesis, but in a more advanced form. The Parameterization usually appears in the same form as
described by OSI IS-9646 in which the tester chooses by himself specific values for parameters and
variables. But the Selection is updated from a manual form to an automatic form through the use of a
test generation algorithm. Another example is the use of the test verdicts, pass, fail and inconclusive,
throughout the whole content of the thesis.

It is interesting also to consider the manner in which testing can be performed, considering the
structure of a layered and distributed system. OSI IS-9646 presents four Abstract Test Methods:

1. Local Test Method;

2. Distributed Test Method;

3. Coordinated Test Method;

4. Remote Test Method.

For giving an idea what these Abstract Test Methods look like we will present the Remote Test Method.
The abstract model for the Remote Test Method is shown in Figure 1.2.

The Remote Test Method makes no assumptions about the internal design of the System Under
Test (SUT) or the IUT within. The tester is distributed in two parts: Upper Tester (UT) and Lower
Tester (LT). It is necessary to coordinate the actions of the Upper and the Lower Tester. This is neces-
sary to ensure that events are synchronized properly so that before and after effects, at the upper and
lower boundaries can be analyzed correctly. This coordination is performed by the Test Coordination
Process (TCP). In the figure we see that there is a notional Upper Tester, as well as a notional Test
Coordination Process. The notional UT represents the fact that there may be some methods of driv-
ing the IUT. If there is, however, the means are not standardized and are implementation-dependent.
Furthermore, the extent of control that can be exerted over the SUT/IUT is extremely limited. In the
figure we can also see that service primitives can be sent and received via the layer service provider
at designated Points of Control and Observation (PCOs). The tester and the IUT can also exchange
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Figure 1.2: Remote Test Method.

Protocol Data Units (PDUs). To distinguish this architecture from what one might meet in practice,
this architecture is called abstract and the service primitives are denoted also as Abstract Service
Primitives (ASPs).

The other three methods are built in a similar style as the Remote Test Method, using the same
building elements which were used for the Remote Test Method (PCO, LT, UT, etc.). These methods
are designed to accommodate the variation in the control and observation that can be achieved over
the SUT, but in practice variants of these methods are used. In this thesis, one variant of these methods
is used in the benchmarking experiment with the Conference Protocol case study.

The testing activity is carried out by executing tests. A Test Suite is built up in a nested hierarchical
fashion (see Figure 1.3) from a number of named test units. The smallest indivisible unit of a Test
Suite is the Test Event. The next incremental unit, up from the Test Event, is the Test Step. A Test Step
is comprised of a number of Test Events. A Test Case is the main fundamental building block of the
Test Suite. A Test Case is the unit that performs a particular test, corresponding to a particular feature
of the protocol under test. A Test Purpose is a textual description of the objective of a particular test.
The verdict obtained by executing the Test Case can be pass, fail or inconclusive. A Test Group is a
grouping of Test Cases. The Test Suite is the highest level. As Figure 1.3 shows, it can range from
many Test Groups of many Test Cases containing many Test Steps and Test Events, to a very simple
case of a single Test Case with a single Test Event.

The third part of OSI IS-9646 defines the test case description language Tree and Tabular Com-
bined Notation (TTCN), a language suitable for describing Test Suites. In a few words, as indicated
by the name Tree and Tabular Combined Notation, a TTCN test suite is a collection of different tables.
The information of the tables is organised into tree structures which have hierarchies similar to the
nested hierarchical structure from Figure 1.3. All objects of a test suite, e.g. PDU, ASPs, test cases
or test steps, are specified in tables. In this thesis we are using the OSI IS-9646 version of TTCN
together with the nested hierarchical structure of the test suite in the experiment with Autolink on the
Conference Protocol case study. Also, we are using in our testing theory tree structures for test cases
(trees represented in a labelled transition systems formalism [Arn93]).
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Recently a new version of TTCN is in the process of being defined [BRS01]. Although we are
not using it in this thesis, we found it useful to enlarge the horizon of this thesis by presenting recent
developments of TTCN. This will give the reader the possibility to have a quick view to other research
lines in the domain of the conformance testing of reactive systems. We will try to outline key elements
of the new TTCN. TTCN is now an abbreviation for Testing and Test Control Notation, an abbreviation
which reflects the characteristics of the new version. The new TTCN is in a programming-like style
with flexible data support and several presentation formats. This style replaces the tabular style. One
of the improvements is the module concept. Modules are the building blocks of all the test suites
written in the new version of TTCN. In a module, basic programming statements may be used to
select and control the execution of the test suite, a thing which was not possible in the old version
of TTCN. This improvement shows that the main topics of this thesis, respectively selection and
control of testing, were important issues also for the new version of TTCN. The new TTCN offers
programming constructs for selection and control while we work towards automation of selection
and control. The programming style allows also the introduction of new concepts such as external
functions or data. One type of presentation is the graphical format which is an extended MSC. We can
remark that the work done by the Formal Methods TU/e group in establishing MSC as a standardized
language is showing again its usefulness, in this context of a new version of TTCN.
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Another development line from OSI IS-9646 was the ITU-T Z.500 Recommendation ‘Framework:
Formal Methods in Conformance Testing’, which is a standard supplementary to OSI IS-9646. We
found it interesting to extract some elements from it which add more understanding to the things
presented up to this point in this chapter.

While in OSI IS-9646 the specification was supposed to be described in natural language, this
new standard makes a step ahead in formalization by assuming that the specification prescribes the
behaviours of a system using a formal description technique (such as SDL or LOTOS). The set of
specifications is denoted by SPECS. About the implementation the reasoning is as follows [IT97]:

A specification is a formal object while an implementation is a physical one. In order to
formalize the concept of conformance, these different kinds of objects have to be related.
Implementations can not be subject to formal reasoning as they are not formal objects.
Therefore it is not possible to define directly a formal relation between implementations
and specifications.

In the remaining of this document, it is assumed that any implementation IUT [...] can
be modeled by an element m IUT in a formalism MODS (e.g., labeled transition systems,
finite state machines). [...]. The activity of testing consists of extracting information from
IUT by testing it, such that from this information the model m IUT can be constructed in
sufficient detail to decide conformance about it.

The conformance is defined in the context of an implementation relation imp ⊆ MODS × SPECS.
An implementation IUT conforms to a specification s with respect to the relation imp if m IUTimp s.
ITU-T Z.500 does not require to test an entity which participates in a protocol exchange in isolation, as
OSI IS-9646 requires. For this supplementary standard, an IUT can be an entity or a whole assembly
of entities viewed as a black-box against a service specification. For this reason, interoperability
testing is seen as a special case of conformance testing. In this thesis we adopt the same view as
ITU-T Z.500 regarding interoperability testing (we see it as a special case of conformance testing).

As OSI IS-9646 already said in its introduction, when testing, one can not obtain certainty con-
cerning conformance between implementation and specification. In the context of an implementation
relation this can be expressed more precisely by defining properties assigned to a test suite. The first
one defined is the exhaustiveness: a test suite is exhaustive if the set of all models that pass the test
suite is a subset of the set of conforming models. The second one is the soundness: a test suite is
sound if the set of conforming models is a subset of the set of models that pass the test suite. The last
one is the completeness: a test suite is complete if it is both sound and exhaustive, that means, the
set of conforming models equals the set of models that pass the implementation. It is remarked also
that in general it is not possible to construct a finite exhaustive test suite (the testing activity can not
guarantee conformance) although it would be nice to have a complete test suite.

The standard addresses also the topic of automatic test generation. The test generation is seen
as a function which provides a test suite from a specification described using a formal description
technique. The generated tests are required to be sound. Also, for reducing the size of a test suite,
different test suite size reduction strategies are identified and described at a high level of abstraction.
And for expressing the quality of a test suite in terms of its error-detecting capabilities, a coverage
measure is indicated to be used. In this thesis all the elements which we presented from the ITU-
T Z.500 Recommendation, e.g. SPECS, imp, exhaustiveness and soundness, play important roles
throughout the whole content.

The things described up to this point give a general idea about conformance testing. We should
remark that there are also other kinds of testing. We can mention for example performance testing
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which is about measuring the quantitative aspects of an implementation or reliability testing which
means to test whether the implementation works correctly during a long period of time. This thesis
presents only research in the area of conformance testing and does not treat other kinds of testing.
There are the following levels of accessibility of an SUT in testing. The White-box testing means that
the tester has access to the internal structure of the system under test. The Grey-box testing means
that the tester has access to some part of the system under test. The Black-box testing means that the
tester has no access to the internal structure of the system under test. It can be said that the black and
white testing are the extremes and the grey-box testing is for everything in between. In this thesis, the
system under test is checked in a black-box style.

1.3 Open issues in conformance testing, limitations and goals

In a previous section we mentioned that the research presented in this thesis was done within the CdR
project. In the CdR project proposal (for example, see http://fmt.cs.utwente.nl/CdR/) several open
issues were identified as being worthwhile to be researched by the CdR team. Consequently, this
thesis will address some of these issues. Although we already presented some open problems which
exist in this area and which were also topics of research for CdR, we will try to describe them again
in more detail.

An open issue is the comparison between existing tools on the area of automatic test generation.
There are several tools for test generation using different techniques. We mentioned already some
names such as Autolink or TGV. From a user point of view, having to select one of them for use,
it is interesting to know what the possibilities and limits of these tools are. Therefore comparing
these tools from different perspectives, such as speed or error detection power, is very useful for the
testing community. At the same time, to the best of our knowledge, there are not many comparison
experiments in this area. Therefore this topic leaves room for more research and represents an open
issue. We will address it in this thesis.

Another important topic is the test selection. The interactions of many specifications are param-
eterized with variables which can take many values. Considering all the possible parameter values
will lead to an explosion of the specification interactions. This is only one aspect for which a test
generation algorithm can, in principle, generate a large, even infinite number of test cases. Because
test execution is limited to a finite number of tests, the test selection is very important. The limitation
occurs to be due to time constraints and limitation of resources. We will address the topic of test
selection in this thesis.

Now, while we presented the open issues which are addressed in this thesis, it is time to describe
the goals which we wanted to achieve and the limitations adopted when researching these open issues.
For example, for the tool comparison issue, a limitation is to restrict the set of compared tools. An
example of a goal is: we want to apply the selected tools to a case study and to classify them according
to the criterion of how many errors of the IUTs each tool discovered. As one can see from these
examples, there are limitations and goals because these open issues mean vast domains of research
for solving them. We can not claim that we have the final solution for each of them. We needed to
restrict ourselves to some specific sub-domains and to fix goals and to try to reach them through this
research. When presenting the research, we will describe the limitations and the goals in detail. Now
let us outline them.

One topic which proved interesting was the benchmarking of existing tools in this area. One goal
of the CdR team was to study the detection power of four known tools Autolink, TGV, TorX and Phact
on the Conference Protocol case study. We found it useful also to classify these tools theoretically,
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by looking at the detection power of the implementation relation on which they are based. This was
another goal for us which we tried to reach through this research. To our surprise we could not find an
implementation relation for the well-known Autolink tool provided by the Telelogic/TAU Company.
Autolink is a tool for test generation which has a user friendly interface. It supports graphical formats
which make it easy to represent specifications, test purposes and test cases. The use of test purposes,
which are constructed by testers, links the human intelligence to the testing automation. This link
contributes in many situations to a good control of the test generation process through the guidance
provided by humans. The ITU-T Z.500 supplementary standard requires that any test generated by a
test generation algorithm should be sound, which implies the existence of an implementation relation.
This requirement was not fulfilled by Autolink, because no implementation relation existed for it.
Taking into account all these observations, we wanted to consolidate the conformance foundation of
Autolink by building an implementation relation for it. This represented another goal for us in this
area.

In the test selection area, one can distinguish the static and dynamic test selection. For explaining
what these terms mean, we should present in more detail the test generation process. In the traditional
way, the generation was done in a batch-oriented style, which means that the tests were generated
or written by human developers and after that executed against the IUT. In other words, generation
and execution are two distinct and completely separated phases. Among the tools which work batch-
oriented we can mention the commercial tool Autolink and the industrial tool Phact. There is a newer
way called on-the-fly. This means that the tests are generated and executed against the IUT at the
same time. The feedback given by the test execution is used for building up the rest of the test.
The prototype tool TorX is working on-the-fly. The static and dynamic selections are related to the
on-the-fly style. In the static selection, one selects from the huge set of tests a subset before doing
any test generation and execution on-the-fly. This can be done by limiting the parameter ranges to
a small number of values. The dynamic selection controls the generation, making the selection at
the time of the test generation and execution. In this thesis we will refer to the static selection as
selection and to the dynamic selection as control. In the topic of selection we wanted to formalize
relevant heuristics for test selection. When applying test selection heuristics, a reduced set of tests
is chosen. For expressing the detection power of the reduced set of tests, we wanted to build up a
suitable coverage measure for it. These were the main goals for us in the selection area. In the topic of
control we wished to develop options for improving the performance of the TorX tool, the prototype
test generation tool of the CdR project and to build a suitable coverage measure for expressing the
detection power of a test suite generated on-the-fly. For reaching these goals we mainly concentrated
on the stochastic nature of the on-the-fly test generation process.

1.4 The structure of the thesis

While in the previous sections we tried to outline the context and the research goals which are ad-
dressed in this thesis, now it is time to introduce the content of the thesis.

• Chapter 2 presents briefly the ioco theory of test derivation, which is a prerequisite for all
chapters presented in this thesis. Also we provide a summary of the architecture and the main
components of TorX, the prototype tool of the CdR project.

• Chapter 3 presents a comparison of four algorithms for test derivation: TorX, TGV, Autolink
and UIO algorithms. The algorithms are classified according to the detection power of their
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conformance relations. Since Autolink does not have an explicit conformance relation, a con-
formance relation is reconstructed for it. In this way the research presented here strengthens the
conformance foundation of Autolink. This work was presented at [Gog01].

• Chapter 4 presents the benchmarking experiment with the four tools TorX, TGV, Autolink and
Phact on the Conference Protocol Case Study. We will concentrate especially on the experiment
with Autolink on the Conference Protocol because this was our main contribution in the joint
effort of benchmarking. The findings were described in [BFdV+99].

• Chapter 5 presents a control technique for on-the-fly test generation through the extension of
the TorX algorithm with explicit probabilities. Using these probabilities, the generated test suite
can be tuned and optimized with respect to the chances of finding errors in the implementation.
This extension was presented in [FGM00].

• Chapter 6 extends the theoretical work from Chapter 5, by presenting experimental results ob-
tained with the probabilistic TorX. The experiment with the Conference Protocol case study
confirms that the extension of the algorithm with explicit probabilities which control the test
generation leads to improvements in the tests generated with respect to the chances of find-
ing errors in the implementation. The experiment presented here is based on the theory from
[FGM00] and uses the context described in [BFdV+99]. This work was presented at [Gog03a].

• Chapter 7 extends the work presented in Chapter 5 into another direction by describing a way
to compute the coverage for an on-the-fly test generation algorithm based on a probabilistic
approach. The on-the-fly test generation and execution process and the development process of
an implementation from a specification are viewed as stochastic processes. The probabilities
of the stochastic processes are integrated in a generalized definition of coverage which can be
used for expressing the detection power of a generated test suite. The generalized formulas are
instantiated for the ioco theory and for the specification of the TorX test generation algorithm.
The example which is worked out is based on the theory from [FGM00]. The findings presented
in this chapter were presented in [Gog03b].

• Chapter 8 deals with test selection. Since exhaustive testing is in general impossible, an impor-
tant step in the testing process is the development of a carefully selected test suite. Selection
of test cases is not a trivial task. We propose to base the selection process on a well-defined
strategy. For this purpose, we formulate two heuristic principles: the reduction heuristic and
the cycling heuristic. The first assumes that few outgoing transitions of a state show essentially
different behaviour. The second assumes that the probability to detect erroneous behaviour in a
loop decreases after each correct execution of the loop behaviour. We formalize these heuristic
principles and we define a coverage function which serves as a measure for the error-detecting
capability of a test suite. For this purpose we introduce the notion of a marked trace and a
distance function on such marked traces. This work was presented at [FGMT02].

• Chapter 9 presents an implementation of the test selection theory described in the previous
chapter. Based on a phone specification, an example is worked out in this chapter.

• Chapter 10 gives the conclusions.
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Chapter 2

The ioco theory for test derivation

The ioco (Input Output COnformance) theory deals with conformance testing and test derivation. It
is a known theory in this area which serves as a formal basis for several test derivation tools. Among
these, we can mention the TorX prototype tool developed within the CdR project. Another important
test derivation tool which uses the ioco theory as its formal basis, is TGV, developed at IRISA/INRIA
Rennes and Verimag Grenoble. We will present more about TGV in Chapter 3.

The ioco theory is the theory on which we build the theory in the subsequent chapters. Moreover,
we are using the TorX tool in our experiments. The TorX tool is the material realization of the test
derivation algorithm developed within ioco. Therefore understanding TorX requires an understanding
of the ioco theory.

Taking into account all these things, we decided to present in an initial chapter the ioco theory as a
prerequisite of the thesis. This we will do in Section 2.1. In Section 2.2 we will present some aspects
regarding how TorX implements the ioco theory. This includes the architecture of the tool and some
of its component modules.

2.1 The ioco theory

In this section we will not present all ingredients of the ioco theory. We will extract from this theory
those elements which are relevant for the work presented in this thesis. For a full description of the
ioco theory see [Tre96].

As explained in Chapter 1, the ITU-T Z.500 supplementary standard assumes that a specification is
written in a given formalism and that any IUT is modelled by an element m IUT in a given formalism.
In the ioco theory the formalism used for a specification and for modeling an IUT is the labelled
transition systems formalism. An IUT is seen as a black box which exhibits behaviour and interacts
with its environment. Being a black box, the IUT can be replaced by its formal model which is only
assumed to exist but is not known a priori. For this reason, whenever the ioco formalism is mentioning
an implementation it means the formal model of it.

Next, the technical details of the ioco theory are given. A labelled transition system is defined as
follows.

Definition 2.1.1 A labelled transition system is a quadruple 〈S, L ,→, s0〉, where:

1. S is a (countable) non empty set of states;

2. L is a (countable) non empty set of observable labelled actions;

15
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3. →⊆ S × (L ∪ {τ }) × S is a set of transitions;

4. s0 ∈ S is the initial state.

The universe of labelled transition systems over L is denoted by LT S(L). A labelled transition
system is represented in a standard way as a graph or as a process-algebraic behaviour expression. We
will use the word automaton for a labelled transition system.

The power set of a set L is the set of all subsets of L , denoted by P(L) = {L ′ | L ′ ⊆ L}. The
set of all finite sequences of actions over L is denoted by L ∗. The special action τ 6∈ L denotes an
unobservable action. A trace σ is a finite sequence of observable actions (σ ∈ L ∗) and ⇒ means
the observable transition between states (s σ⇒ s ′ indicates that s ′ can be reached from state s after
performing the actions from trace σ ). The empty trace is denoted by ε.

Definition 2.1.2 Consider a labelled transition system p = 〈S, L ,→, s0〉 with s, s ′ ∈ S and let
ai ∈ L , i ∈ IN.

s ε⇒ s ′ =def s = s ′ or s
τ...τ→ s ′;

s a⇒ s ′ =def ∃s1, s2 : s ε⇒ s1
a→ s2

ε⇒ s ′;
s a1...an⇒ s ′ =def ∃s0...sn : s = s0

a1⇒ s1
a2⇒ ...

an⇒ sn = s ′.

In some cases the transition system will not be distinguished from its initial state. Furthermore we
will use s

a→ (or s σ⇒) to denote ∃s ′ : s
a→ s ′ (or ∃s ′ : s σ⇒ s ′).

Definition 2.1.3 Consider a labelled transition system p = 〈S, L ,→, s0〉 and let s ∈ S, σ ∈ L∗.
Then:

1. traces(s) =def {σ ∈ L∗ | s σ⇒} (the set of traces from s);

2. s after σ =def {s ′ ∈ S | s σ⇒ s ′} (the set of reachable states after σ ∈ L ∗).

A failure trace is a trace in which both actions and refusals, represented by a set of refused actions,
occur. For this, the transition relation → is extended with refusal transitions which are self-loop
transitions labelled with a set of actions A ⊆ L , expressing that all actions in A and the unobservable

action τ can be refused (s
A→ s ′ =def s = s ′ and ∀a ∈ A ∪ {τ } : s

a
6→). Please note that one

requirement for a state for being able to perform a refusal transition is to be stable which means

s
τ

6→. Another observation is that refusal transitions are obtained from the transition relation → of a
transition system, but they are not part of this transition relation. Analogously, ⇒ is extended to

ϕ⇒,
with ϕ ∈ (L ∪ P(L))∗.

Definition 2.1.4 Consider a labelled transition system p = 〈S, L ,→, s0〉 and let s ∈ S. Let τ be
the unobservable action. For defining the extension of the transition relation ⇒ to

ϕ⇒, with ϕ ∈
(L ∪ P(L))∗, we use induction on the structure of ϕ. (a ∈ L , A ⊆ P(L) and ϕ ′ ∈ (L ∪ P(L))∗):

1. s ε⇒ s ′ =def s = s ′ or s
τ...τ→ s ′;

2. s
ϕ′a⇒ s ′ =def ∃s ′′ ∈ S : s

ϕ′
⇒ s ′′ a⇒ s ′;

3. s
ϕ′ A⇒ s ′ =def s

ϕ′
⇒ s ′ A→ s ′.
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We will also use s
ϕ⇒ to denote ∃s ′ : s

ϕ⇒ s ′. For example s
a{b,c}d⇒ denotes that s can do a

transition labelled with a and reach a state where both c and d are refused, but where d can be done,
viz. ∃s ′ : s a⇒ s ′ {b,c}→ s ′ d⇒.

Definition 2.1.5 Let p ∈ LT S(L); then we define the failure traces of p as follows: Ftraces(p) =def
{ϕ ∈ (L ∪ P(L))∗ | p

ϕ⇒}.

For modeling implementations, a special type of transition systems, the input-output transition
systems, is used. In these systems the set of actions can be partitioned in a set of input actions L I and
a set of output actions LU .

Definition 2.1.6 An input-output transition system p is a labelled transition system in which the set of
actions is partitioned into input actions L I and output actions LU such that L I ∪LU = L , L I ∩LU = ∅,
and for which all input actions are always enabled in any reachable state: whenever p σ⇒ p′ then
∀a ∈ L I : p′ a⇒ .

The universe of such systems is denoted by IOT S(L I , LU ) ⊆ LT S(L I ∪ LU). For modeling
the absence of outputs in a state (a quiescent state) a special action δ ( δ 6∈ L ) is introduced and the
transformation of the automaton in a suspension automaton is used. Formally a state s is quiescent,
denoted as δ(s), if ∀a ∈ LU ∪ {τ }, 6 ∃s ′ : s

a→ s ′.

Definition 2.1.7 Let p ∈ LT S(L), where L = L I ∪ LU . Then the suspension automaton of p is the
labelled transition system 〈Sδ, Lδ,→δ, q0〉 ∈ LT S(Lδ), where:

1. Sδ =def P(S) \ {∅};

2. Lδ =def L ∪ {δ};

3. →δ =def {q a→δ q ′ | q, q ′ ∈ Sδ, a ∈ L , q ′ = ∪s∈q{s ′ ∈ S | s a⇒ s ′}} ∪ {q δ→δ q ′ | q, q ′ ∈
Sδ, q ′ = {s ∈ q | δ(s)}};

4. q0 =def {s ′ | s0
ε⇒ s ′}.

At point 4) of the definition above, the initial state of the suspension automaton is the set of all
the states which can be reached from the initial state of p via an internal transition τ plus the initial
state of p. We remind that for an internal transition τ , the empty trace ε is seen from the environment.
In [Tre96] it is proved that out(p ′ after σ) = out(p after σ), where p is an automaton, p ′ is the
suspension automaton of p and σ is a trace of p.

The suspension traces of p ∈ LT S(L) (p is a simple automaton, not a suspension one) are:
Straces(p) =def Ftraces(p) ∩ (L ∪ {LU })∗. For LU occurring in a suspension trace, we write δ.

One of the main ingredients of the ioco theory is the conformance relation. Informally, an im-
plementation is a correct implementation with respect to the specification s and the implementation
relation iocoF if for every trace from F , the set of possible outputs the implementation can generate
after performing the trace is allowed by the specification.

Definition 2.1.8 Let i ∈ IOT S(L I , LU ), s ∈ LT S(L I ∪ LU ) (i and p are simple automata), and
F ⊆L∗

δ , then i iocoF s =def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ), where out(p after σ) =def
⋃

s ′∈ p after σ ({x ∈ LU | s ′ x→} ∪ {δ | δ(s ′)}) .
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If F= traces(s) then iocoF is called ioconf and if F= Straces(s) then iocoF is called ioco. The
correctness of an implementation with respect to a specification is checked by executing test cases. A
test case is seen as a finite labelled transition system which has terminal states called either pass or
fail. An intermediate state of the test case should offer either one input or accept the set of all outputs.
The set of outputs is extended with the output θ which means the observation of a refusal (detection of
the absence of actions). The class of test cases over L I and LU is denoted as T EST (L I , LU ). A test
suite is a set of test cases. When running a test case against an implementation the test case can give
a pass verdict or a fail verdict. Special care should be taken for the special output δ. A θ -transition
can give a pass verdict if quiescence is allowed (δ is contained in the output set produced by the
specification at that point) or a fail verdict if the specification does not allow quiescence at that point.
For defining formally a test case run, first, a parallel synchronization operator e| should be introduced.
This operator models the communication between a process with θ -transitions and a normal process,
i.e., a transition system without θ -transitions.

Definition 2.1.9 The operator e| : LT S( L θ) × LT S( L) → LT S( Lθ) is defined by the following
inference rules (L θ = L ∪ {θ}):

1. u
τ→ u ′ ` ue|p τ→ u ′e|p;

2. p
τ→ p′ ` ue|p τ→ ue|p′;

3. u
a→ u ′, p

a→ p′, a ∈ L ` ue|p a→ u ′e|p′;

4. u
θ→ u ′, p

τ

6→,∀a ∈ L , u
a

6→ or p
a

6→ ` ue|p θ→ u ′e|p.

Using this operator the test run can be defined formally in the following way.

Definition 2.1.10 Let t ∈ T EST (L I , LU ) be a test case and i ∈ IOT S(L I , LU ) be an implementa-
tion. A test run of t and i is a trace of the synchronous parallel composition te|i leading to a terminal
state of t : σ is a test run of t and i =def ∃i ′ : te|i σ⇒ passe|i ′ or te|i σ⇒ faile|i ′.

In the definition above, please note that T EST (L I , LU ) ⊆ LT S( Lθ) and that IOT S(L I , LU ) ⊆
LT S( L). An implementation i passes a test case t if all their test runs lead to the pass-state of t . The
implementation passes a test suite T if it passes all test cases in T . If i does not pass the test suite,
it is said to fail. The conformance relation used between an implementation i and a specification s is
iocoF . In the ideal case, the implementation should pass the test suite if and only if the implementa-
tion conforms. In this case the test suite is called complete. In practice because the test suite can be
very large we have to restrict to test suites that can only detect non-conformance, but cannot assure
conformance. Such test suites are called sound. Exhaustiveness of a test suite means that the test
suite can assure conformance (but it can also reject conforming implementation). For deriving tests
the following specification of an algorithm is presented in [Tre96]:

The specification of the ioco test derivation algorithm
Let S be the suspension automaton of a specification and let F ⊆ traces(S); then a test case t ∈
T EST (L I , LU ) is obtained by a finite number of recursive applications of one of the following three
nondeterministic choices:

1. (*terminate the test case*)

t = pass

2. (*supply an input for the implementation*)
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Take a ∈ L I such that F a 6= ∅
t = a ; ta

where F a = {σ | a ; σ ∈ F} , S
a→δ Sa and ta is obtained by recursively applying the algorithm

for Sa and Fa;

3. (*check the next output of the implementation*)

t =
∑

{x ;fail | x ∈ LU ∪ {θ}, x 6∈ out(S), ε ∈ F}
+

∑

{x ;pass | x ∈ LU ∪ {θ}, x 6∈ out(S), ε 6∈ F}
+

∑

{x ; tx | x ∈ LU ∪ {θ}, x ∈ out(S)}
where x is a notation for x in which the δ action is replaced by a θ action and vice versa,

F x = {σ | x ; σ ∈ F}, S
x→δ Sx and tx is obtained by recursively applying the algorithm for

Sx and F x . The summation symbol
∑

and the plus symbol + mean choice and the symbol ;
means concatenation.

The algorithm has three choices. In every moment it can choose to supply an input a from the set
of inputs L I or to observe all the outputs (LU ∪ {θ}) or to finish. When it finishes, because this does
not mean that the algorithm detected an error, it finishes with a pass verdict. After supplying an input,
the input becomes part of the test case and the algorithm is applied recursively for building the test
case. When it checks the outputs, if the current output is present in out(S), that output will become
also part of the test case and the algorithm will be applied recursively. If the output is not present in
out(S) the algorithm finishes with a fail verdict if the empty trace is considered an element of F . If
the empty trace is not in F then the verdict will be pass.

This algorithm satisfies the following properties (for a proof see [Tre96]):

Theorem 2.1.11 (Completeness of the ioco test derivation algorithm)

1. A test case obtained with this algorithm is sound with respect to iocoF .

2. The set of all possible test cases that can be obtained with the algorithm is exhaustive.

For a good understanding of the algorithm let us apply it to the suspension automaton for a candy
machine from the right-hand side of Figure 2.1. On the left-hand side of the figure the simple automa-
ton of the candy machine is represented. The suspension automaton is obtained from the automaton
from the left-hand side of the figure according to Definition 2.1.7. For simplifying the presentation,
the transformation from the simple automaton to a suspension one is not discussed here and some of
the interactions between a potential user of candy and the machine itself are removed, as for example
the interaction of inserting a coin. The label set of this suspension automaton which we will denote
as candy is the union of the set of inputs L I = {but} and of the set of outputs LU = {liq, choc, δ}.
We recall that for a suspension automaton the set of outputs is extended with the null output δ. After
pushing the button but , the machine will produce liquorice (liq) or nothing (δ). In state 2, when the
button but is pushed again the candy machine will produce liquorice or chocolate (choc). If nothing
was produced (the machine is now in state 4) and the button is pressed, the machine will provide only
chocolate. After the chocolate or the liquorice is given, pushing the button will give no response (δ
output).

The implementation of this algorithm in the TorX architecture usually generates the test cases
on-the-fly. To simplify the explanation we will use a batch-oriented approach. The set F equals the
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Figure 2.1: The specification for a candy machine.

set traces(candy). In the execution sequence, by S1, ..., S9 we mean the states of the candy machine
labelled with 1, ..., 9 in Figure 2.1.

A possible execution of the algorithm is:

• First Choice 2 (*select an input*) (S = S1, F = traces(S1)):
t = but; t1;

• To obtain t1 the algorithm chooses Choice 2 (S = S2, F = traces(S2)):
t1 = but; t2;

• Now Choice 3 is selected (*check the output*) for computing t2 (S = S5, F = traces(S5),
ε ∈ F ):
t2 = liq; t21 + choc; t22 + θ; fail;

• For liq the algorithm finishes (Choice 1) (S = S7, F = traces(S7)):
t21 = pass;

• For choc the algorithm again checks the output (Choice 3):
t22 = liq; fail + choc; fail + θ; t31 (S = S8, F = traces(S8), ε ∈ F );

• If θ is observed, it chooses Choice 1 (S = S8, F = traces(S8)):
t31 = pass.

The resulting test case is shown in Figure 2.2. We remind that the output θ means the observation
of a refusal. We see that but but liq is correct behaviour. We can also see that but but choc choc is
incorrect behaviour.

2.2 The TorX prototype tool

In this section we will present how TorX is implementing the ioco test derivation algorithm described
in Section 2.1. We will give the TorX design ([BFdV+99]) and we will explain the component parts
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Figure 2.2: The test case generated for a candy machine.

which form the tool. We will give a high-level description of TorX. The high-level description of TorX
gives the reader the possibility to understand the TorX architecture without entering too much in its
technical details.

The main architecture of TorX is given in Figure 2.3. As one can see the building modules of
TorX are named: explorer, primer, driver and adapter. In the figure, one can see also that TorX can be
used on-the-fly, by using all these components, or batch-oriented, by the use of the driver and adapter
modules. Designing the tool in a modular form makes TorX really flexible. The other characteristic
attribute of TorX, the openness, is given by the fact that TorX supports the integration with a third party
tool. This is because, whenever possible, it uses industrial standard interfaces to link its modules. One
example is the GCI interface (Generic Compiler Interpreter [BB96]) which connects the adapter and
SUT. When no standard interface is used, TorX connects components by pipes over which textual
commands and responses are exchanged. Now let us outline the functions of each module.

t

... and ...

SUT

 batch

adapter

batch 

           on−the−fly derivation... execution

                          batch derivation batch execution

explorer primer driver

c
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derivation

n

execution

p
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Figure 2.3: The TorX prototype tool.

The explorer module is in charge of the exploration of the specification states. It can give for a
state the set of actions which are allowed in that state. These functionalities of the explorer are used
by the primer for the test derivation. The explorer is specification-language dependent. TorX is using
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existing tools for implementing the explorer. Currently it uses CAESAR ([CAESAR]) as its LOTOS
explorer and SPIN ([SPIN]) as its PROMELA explorer. Possible future extensions of TorX include
the use of other specification languages, the semantics of which can be expressed in labelled trasition
systems such as SDL and, consequently, the use of other existing tools for the explorer.

The primer is in charge of the test derivation. It uses the functionalities provided by the explorer
for implementing the 3 choices of the ioco test derivation algorithm presented in Section 2.1: (*ter-
minate the test case*), (*supply an input for the implementation*) and (*check the next output of the
implementation*). The random selection of the choices is made by the driver.

Initially the driver was using random number generators for implementing the nondeterminism
of the ioco test derivation algorithm. Now it can also use, for implementing the nondeterminism,
probabilities assigned to the three choices or to partitions of inputs. The driver can store the tests in a
storage (indicated with TTCN in the figure) for using them later for batch-oriented execution. For the
on-the-fly execution the test events (such as sending an input to SUT) are obtained directly from the
primer. The driver uses the adapter for sending the inputs to the SUT or for checking the outputs of
the SUT.

The adapter makes the connection between the rest of modules and SUT by sending inputs to
it and receiving outputs from it. It is also responsible for the mapping between time-outs and the
quiescence action δ.

These are the main modules which form TorX. In the final version of TorX, at the end of the
CdR project, this architecture could be changed and expanded. This is because the theory and the
experiments done within the CdR project could improve its design further by adding or transforming
the modules. Because we use TorX in the experiments described in this thesis in the form which we
presented in this section, it is out of our scope to give all the changes and extensions which TorX will
have in time.

The presentation of the ioco theory and TorX gives the technical background for the things pre-
sented in this thesis. The next chapter describes the comparison between existing tools for test deriva-
tion, including TorX.



Chapter 3

A comparison of TorX, Autolink, TGV
and UIO Test Algorithms

3.1 Introduction

There are several tools for test generation using different algorithms. In the introductory chapter we
mentioned some names such as TorX or Autolink without going into details. Because each tool is
an implementation of an algorithm for test derivation in this chapter we will denote with the name of
a tool both the tool itself and the algorithm on which the tool is based. For example, when saying
TorX we will understand the tool, as it is described in Section 2.2, and the algorithm presented in
Section 2.1, which is the algorithm implemented by TorX. This convention is used only in this chapter
and does not apply to the other chapters of the thesis.

From a user point of view, for selecting one tool for use, it is interesting to know what the
possibilities and limits of these algorithms are. Work in this direction was done within the CdR
project. The first year of the CdR project was devoted to a comparison between the performance
of TorX, the test generation algorithm of the project, and the performance of two other algorithms:
Autolink, which is part of the commercial tool TAU/Telelogic [SEG+98] and Phact, which is an UIO
([ADLU91]) algorithm used within Philips [FMMvW98]. The results were presented in [BFdV+99],
[BRS+00]. Because the benchmarking was received with interest by the scientific world, it was ex-
tended [HFT00] the following year by including another algorithm in the experiments: TGV devel-
oped at IRISA/INRIA Rennes and Verimag Grenoble ([FJJT96]).

The comparison was done by means of practical experiments. In addition we felt it would be
useful to complement the experiment by classifying the four algorithms from a theoretical point of
view. The findings of our work were presented at [Gog01]. For researchers who are acquainted with
the different approaches to automated test derivation, the results of the research presented here, may
seem straightforward. However, due to the fact that the different schools use different notations, we
think that the mere act of expressing these methods in the same framework is already worthwhile.
Another interesting finding of our research is that Autolink does not have an explicit conformance
relation. So our work, in which a conformance relation is reconstructed for this algorithm, consoli-
dates its conformance foundation. The theory presented here is quite general because it treats a set
of test generation algorithms which are well known and which come from a wide range of domains:
academia, commercial and industry.

In our comparison, the error detection power of the algorithms is judged as depending on the
conformance relation which they implement. Because two algorithms from four, TGV and TorX, use

23
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the ioco theory as their formal foundation, we expressed the conformance relations of all algorithms
in terms of ioco theory (which can be done because it is the most general one).

The algorithms are judged in the limit case when they exhaustively generate a large, even infinite
number of tests. Even in the limit, they can detect only the erroneous implementations which their
conformance relation can detect.

As explained above, in this chapter we will relate different conformance relations. Care should
be paid to make it explicit on which domains these conformance relations are well-defined, and for
which domains of models the comparisons hold. Because, apart from the differences between the
relations themselves, the difference is also determined by the classes/domains of models for which
they are defined. We will extend this discussion throughout this chapter.

The theoretical comparison is presented in this chapter in the following way. The ioco theory and
TorX were depicted in Chapter 2. For this reason it is not necessary to have a separate section in this
chapter for describing them. The rest of the algorithms is presented in a number of sections in the
following order: TGV in Section 3.2, UIO in Section 3.3, and Autolink in Section 3.4. Section 3.5
describes the conclusions.

3.2 TGV

TGV ([JM99]) is a tool for automatic test derivation developed at IRISA/INRIA Rennes and Verimag
Grenoble ([FJJT96]). We will outline some elements of TGV below. For a precise description of TGV
see [JM99] and [FJJT96]. TGV is connected to several simulators: the SDL Simulator of ObjectGeode
from Verilog ([ALHH93]) and the Lotos Simulator from CADP ([FGK+96]). The inputs of TGV are
a state graph produced by a simulator and an automaton formalizing the behavioural part of a test
purpose. The test purposes can be generated automatically or by hand. The output is a test case
which is produced in the standard TTCN format ([ISO92]). The algorithm was used batch-oriented
for testing a variety of IUTs, in industrial and military application domains ([JM99]).

The tool TGV is based on the ioco conformance relation. The authors of TGV prove that TGV is
sound and exhaustive with respect to this conformance relation ([JM99, FJJT96]).

Because TorX and TGV are both exhaustive with respect to ioco this means that from a theoretical
point of view TGV, and TorX in the limit case when they exhaustively generate a large, even infinite
number of tests have the same error detection power (the ioco detection power).

3.3 UIO and UIOv algorithms (Phact)

One of the early methods used for automatic test derivation was the UIO ([ADLU91]) – Unique
Input/Output sequence – technique. Later this method was developed in a new methodology (called
UIOv – [VCI90]) more powerful in the detection of the IUTs which do not conform to a specification.
The UIO methodology is still used today. One example is Phact (PHilips Automated Conformance
Tester [FMMvW98], [MRS+97]) – a tool developed at the Philips Research Laboratories in Eindhoven
for deriving test cases in a TTCN format and executing them. The heart of the tool is the Conformance
Kit ([vdBKKW89]) developed by KPN.

Although [VCI90] shows that the UIO relation is not complete several tools from industry (such
as the Conformance Kit) implement the UIO method in place of UIOv, due to the complexity of the
UIOv method. In our comparison between the four algorithms, we will say some words about the
UIOv algorithm. As we did up to this point, we will judge the detection power of Phact by looking
at the detection power of its conformance relation: UIO. This will be realized by going through the
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following steps: Subsection 3.3.1 will give a survey of the UIO and UIOv theory; Subsection 3.3.2
will present the translation of the UIO and UIOv concepts to ioco concepts and the definition of the
iocofsmF conformance relation. Roughly speaking, iocofsmF is a restriction of the original iocoF

defined for LTSs which are the image of a deterministic, connected and minimal FSM (finite-state-
machine). Subsection 3.3.3 will give the classification of the UIO, UIOv and iocofsm conformance
relations.

3.3.1 A survey of the UIO and UIOv theory

The UIO and UIOv methods apply to deterministic FSM models (finite-state-machine) which are
commonly referred to as Mealy machines ([Koh78]).

Definition 3.3.1 An FSM is a quintuple M = 〈S, I, O, NS, Z〉 where:

1. S is a finite set of states, the typical elements of which are denoted s0, ..., sn ;

2. I is a finite set of inputs, the typical elements of which are denoted i1, ..., im ;

3. O is a finite set of outputs, the typical elements of which are denoted o1, ..., or (O ∩ I = ∅);

4. NS (next state) is the transfer function of type S × I → S;

5. Z is the output function of type S × I → O.

Here it is understood that NS and Z are total functions. Moreover the FSM has: 1) an initial state
s0 ∈ S; 2) a reset transition r ∈ I which assures that from every state it is possible to return to the
initial state – for every state s ∈ S we have that NS(s, r) = s0; 3) a null ∈ O output produced by
some inputs in some states. Every transition of an FSM is labeled with a pair input/output of signals
(a signal is either an input or an output).

One thing deserves attention, namely the presence of the null output in the set of outputs. The
most natural translation of the null output in ioco terms is to equal it to δ. But there is a difference
between the approaches of the FSM view compared to the ioco view. In the FSM view, null (or δ) is
part of the output set while in the ioco view δ is not part of the output set, it is a special output added
to it. From a user point of view, the difference between the two views means the following. In the
FSM view, the user will mark the points (states of the specification) where the checking of the absence
of the outputs is wanted (or needed). This means extra work. In the ioco view the states in which no
output is produced (or δ is present) is automatically determined. We will come back to this discussion
in Section 3.3.2.

The reflexive, transitive closure of the transfer function is defined as in the following.

Definition 3.3.2 Let M = 〈S, I, O, NS, Z〉 be an FSM. Let s ∈ S be a state, ε the null (empty)
sequence, σ ∈ I ∗ a sequence of inputs and i ∈ I an input. Then the closure NS ∗ : S × I ∗ → S of the
transfer function is:

1. NS ∗(s, ε) = s;

2. NS ∗(s, σ i) = NS (NS ∗(s, σ ), i).
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The language of the FSM is L(M) = {i1/o1...ik/ok ∈ (I × O)∗ | k ∈ IN,∀ j ∈ IN, 1 ≤ j ≤ k :
Z(NS ∗(s0, i1...i j−1), i j) = o j}. In the formula above, i1/o1...ik/ok means a sequence of input/output
transitions. An FSM is minimal if there does not exist another FSM which has the same language and
which has a smaller number of states. An FSM is connected if from every state s of the FSM it is
possible to reach every other state t via a sequence of inputs.

Definition 3.3.3 An FSM M = 〈S, I, O, NS, Z〉 is connected iff
∀s, t ∈ S, ∃σ ∈ I ∗ : NS ∗(s, σ ) = t .

A transition of an FSM is a quadruple 〈s, i, o, t〉 with s, t ∈ S and i ∈ I and o ∈ O such that

NS(s, i) = t and Z(s, i) = o. We write s
i/o−→ t for this transition. A UInOut sequence – Unique Input

Output – for a state s, roughly speaking, is an I/O behaviour not exhibited by any other state. In the
remainder of this chapter, we restrict the discussion to FSMs which are connected and minimal and
which have a UInOut-sequence for every state (not any connected and minimal FSM has a UInOut
for every state [LY96]). In general there are more UInOuts for a given state. In such a case we can
choose one of them. In the remainder of this chapter by UInOut(s) we mean the chosen UInOut for a
state s.

Example Let us consider the FSM of the specification spec from Figure 3.1. The initial state of
this FSM is the state 1. For this FSM, the set of inputs is I = {a, d, r} and the set of outputs is
O = {b, c, e, null}. The reset signal r which is followed by the null output is present in every state.
For simplification it was not represented in the figure. Examples of UInOut sequences of the states
of the specification are given in Figure 3.2 (a). The state 1 has a distinguishing input/output pair a/b
which is its UInOut(1); the UInOut for the states 2 and 3 are formed by concatenating two transitions:
UInOut(2) is a/c.a/b and UInOut(3) is d/e.a/b.

a/b

d/e

a/c
a/c

d/e
d/e

d/e a/b
a/c

a/c
d/e d/e

IUT

1 21

3

2

3

Spec

UIO

UIOv
iocofsm

Figure 3.1: The difference between UIO, UIOv and iocofsm conformance relations.

For applying the UIO and UIOv methods it is necessary that: 1) the FSM of the specification is
connected, 2) it is minimal and 3) the number of the states of the implementation (FSM i ) is less than
or equal to the number of the states of the specification (FSMs).

For the UIO and UIOv algorithms the approach taken for checking the correctness of an imple-
mentation FSMi to its specification FSMs is to test that every transition of the specification is correctly
implemented by FSMi . The procedure for testing a specified transition from state s to state t (of the
specification FSMs) with input/output pair i/o consists of three steps:

1. FSMi is brought to state s;

2. input i is applied to FSMi and the output produced is checked for whether it is o;
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3. the state FSMi reached after the application of input i is checked for whether it is t .

These three steps are only an abstract procedure. There are several ways, for example, to perform
the check of step 3) (although each way is checking input/output behaviours, not directly inspecting
the state). We turn this into a more concrete procedure (organized on three sequences to be executed
in succession), which we call TestCase. Regarding the parameters of this procedure, we will give
some explanations below.

The step 3) of the procedure TestCase is implemented in a different way by an UIO algorithm than
by an UIOv algorithm. So we will introduce the type of the algorithm as a parameter of the procedure
(TestCase(UIO,...) or TestCase(UIOv,...)). This parameter we will denote as u and it can take one
of the two values UIO or UIOv (for example, it can be a charstring, ‘UIO’ or ‘UIOv’). For building
a test, the knowledge of the UInOuts of the states is used. So the set of pairs 〈state, UInOut(state)〉,
which we will denote as SUIO, will be another parameter of the procedure. Although FSM i is used
within the procedure, the building of the test does not depend on it; so we will not put FSM i in the list
of parameters.

TestCase(u, SUIO, FSMs , s
i/o−→ t)

1. a sequence σ which brings FSMi from its current state s0 to state s (we call this a transferring
sequence);

2. input i to check the output o;

3. a sequence to verify that FSMi reached t (we explain this below).

The step 3) of the procedure makes the difference between the UIO and UIOv algorithms. The
UIO algorithm implements it by simply checking that the implementation exhibits the UInOut of
that state (t). Using the UIO algorithm, some faults may go undetected, however ([VCI90]). The
problem of the UIO algorithm is that although each UIO sequence is unique in the specification, this
uniqueness need not hold in a faulty implementation (see the example at the end of this subsection).
The solution proposed by the UIOv algorithm is: 1) to check that the implementation exhibits the
UInOut behaviour of that state (t); 2) it does not exhibit the UInOut behaviour of any other state k.
Because UIO is simpler than UIOv, usually the tools implement the UIO method (Phact uses the UIO
method).

The authors of UIOv ([VCI90]) show that their method can verify whether the FSM of the IUT
is the same as the FSM of the specification, with other words UIOv can detect any missing and
erroneous state and I/O of an IUT. This happen under the assumptions on which UIOv is applied: A)
the specification FSM is connected, B) the specification FSM is minimal and C) the number of the
states of the implementation is less than or equal to the number of the states of the specification.

It is also interesting to observe that, choosing to check each transition of an FSM can be seen as a
test selection method (the selection works in the following way: in a state which has many transitions,
only the transitions which are not checked yet are considered for the test generation). This shows
that one of the central topics of this thesis was treated by two of the first methods for automatic test
generation. Because the UIO and UIOv methods have limits (which will be discussed in more detail
later), this particular way of doing test selection does not offer the final solution to this topic, although
using it many errors in IUTs can be discovered.

Example The specification from Figure 3.1 has three states and the implementation has also three
states. The FSM of the specification is connected and minimal. So the requirements for applying the
UIO (UIOv) method are fulfilled.
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State 1: a/b
State 2: a/c.a/b
State 3: d/e.a/b

a) UInOuts

UInOuts Verification
r/null.a/b
r/null.a/b.a/c.a/b
r/null.a/b.d/e.d/e.a/b

Transitions State 1
r/null.a/b.a/c.a/b
r/null.d/e.d/e.a/b

Transitions State 2
r/null.a/b.a/c.a/b
r/null.a/b.d/e.d/e.a/b

Transitions State 3
r/null.a/b.d/e.a/c.a/c.a/b  
r/null.a/b.d/e.d/e.a/b

b) UIO test cases

State 1
~UIO(2): r/null.a/b.a/c  
~UIO(3): r/null.d/e.a/c  

State 2
~UIO(1): r/null.a/b.a/c
~UIO(3): r/null.a/b.d/e.a/c

State 3
~UIO(1): r/null.a/b.d/e.a/c
~UIO(2): r/null.a/b.d/e.a/c.a/c 

c) Specific UIOv test part

Figure 3.2: Test cases derived for UIO (b) and UIOv (b, c) conformance relations.

There is a subtle difference between the IUT and the specification: the transition d/e of the state
1 goes in the specification to the state 3 and in the IUT to the same state 1. The UInOut(3) (Figure 3.2
(a)) does not succeed only in the state 3 of the implementation but it succeeds also in the state 1.
So applying an UIO algorithm on the set of UInOut from Figure 3.2 (a) will let the faulty IUT go
undetected, but with an UIOv algorithm it will be detected.

The test derivations using the UIO and UIOv methods are given in Figure 3.2 (b) and (c). The
verdict is not shown. It is implicit: if the IUT does not produce the expected output the verdict will
be fail; if the IUT correctly executes all the test cases the verdict will be pass. The tests from the
first subpart of Figure 3.2 (b) (the UInOuts Verification part) check the UInOut of every state in the
implementation. Although this part is redundant, we add it to make the difference between an UIO
algorithm and an UIOv algorithm more explicit. The next part from Figure 3.2, (b) checks every
transition of the specification. We will illustrate the construction of the tests from part (b) by showing
it for the test: r/null.a/b.d/e.a/c.a/c.a/b. This test is built from four parts: 1) the sequence r/null
brings the FSM in the initial state; 2) the sequence a/b.d/e brings the FSM in state 3; 3) the sequence
a/c is the input/output pair of the transition which is checked; 4) now a correct implementation is
supposed to be in state 2; the sequence a/c.a/b is UInOut(2). Please note that the derived set of
test cases is not optimal: the sequence a/b.d/e which brings the FSM in state 3 is not the shortest
one. The shortest one is d/e. For showing the difference between an UIO algorithm and an UIOv
algorithm this aspect does not matter. For this reason, we did not pay attention to optimization criteria
when we constructed this example. The specific part of the UIOv algorithm (Figure 3.2 (c)) tests that
every UInOut is not exhibited by another state of the implementation. From the set of tests from part
(c), let us take the test r/null.a/b.d/e.a/c.a/c. This test is formed by: 1) the reset sequence r/null
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which brings the FSM in the initial state; 2) the sequence a/b.d/e which brings the FSM in the state
3; 3) the sequence a/c.a/c which is formed by the sequence of inputs a/.a/ (from UInOut(2)) and
by the sequence of outputs /c./c produced by the specification when a/.a/ is applied in the state 3.
The set of tests produced by the UIOv algorithm is composed by the union of the set of tests from
Figure 3.2 (b) and from Figure 3.2 (c).

3.3.2 The translation of the UIO and UIOv concepts to the ioco concepts

For making the translation of the UIO and UIOv concepts to the ioco concepts, first we should rep-
resent an FSM as a labelled transition system. The conversion can be made easily by adding an
intermediate state after each input.

Definition 3.3.4 The labelled transition system M ′ = 〈S ′, L ′,−→, s0〉 of an FSM M = 〈S, I, O, NS,

Z〉 is defined by:

1. S ′ = S ∪ (S × I );

2. L ′ = I ∪ O;

3. −→⊆ S ′ × L ′ × S ′,

−→= {s i−→ 〈s, i〉, 〈s, i〉 Z(s,i)−→ NS(s, i) | s ∈ S, i ∈ I };

4. s0 is the initial state of M .

By 〈s, i〉 ∈ (S × I ) we denote an intermediate state of a labelled transition system of an FSM,
which separates the input i from the output Z(s, i).

Example Let us consider the FSM specification from Figure 3.1. The labelled transition system
of this specification is given in Figure 3.3.

a

<1,d>

d de

d
e e

a

a

b

c

c

1 2

3

<3,d> <3,a>
<2,d>

<2,a>

<1,a>

Figure 3.3: The labelled transition system of the specification.

The correspondence between an FSM and its labelled transition system is very simple because the
labelled transition system of an FSM has only extra states which separate an input from an output.
We will exemplify this for some elements of the FSMs. A sequence σ = i1/o1...in/on (n > 0, i j ∈
I, o j ∈ O, j = 1, ..., n) produced by an FSM is translated into a correspondent trace σ ′ for the
labelled transition system of the FSM, with σ ′ = i1o1...inon . In the same way, we can obtain a
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correspondent set of traces for the set of tests produced by the procedure TestCase. The same thing
can be also done for the UInOut of the states of an FSM.

In this point one thing deserves attention. We recall from the previous section the discussion
regarding the presence or the absence of null in the output set. Now the question which arises is
whether an LTS derived from an FSM represents a common automaton or a special one, namely a
special type of a suspension automaton? The answer differs in function of the view adopted (the
FSM view or the ioco view). Because the final goal of this section is to relate UIO and UIOv to the
(restriction of) ioco conformance relation on which TorX and TGV are based (the ioco conformance
relation works on suspension traces), we will adopt an ioco view in this section. In this view we can
consider an LTS derived from an FSM as being a special type of a suspension automaton. Because
the null output is part of the set of outputs it results that L ′ = Lδ . These considerations are made only
for this section. In the section related to Autolink, Section 3.4, we need to adopt the FSM view for
comparing Autolink with UIO and UIOv.

Before going further in translating UIO and UIOv in ioco terms, we should also pay attention to
the application of the iocoF conformance relation on LTSs derived from FSMs. It can be observed
that an LTS constructed from an FSM is not input-enabled in the intermediate states, while this is
requested for any state of the implementation in the definition of iocoF (see Definition 2.1.8). For
proceeding further with the comparison, we need to consider only a part named iocofsmF of the full
iocoF defined for LTSs (see Definition 3.3.4) which are the image of a deterministic, connected, and

minimal FSM.

Definition 3.3.5 The conformance relation iocofsmF is a part of the full iocoF on which the follow-
ing restrictions apply

1. the implementation is an LTS derived from an FSM;

2. the specification is an LTS derived from an FSM;

3. F consists of traces formed by sequences of I/O pairs which ends in an input, i.e. F =
{i1o1...inonin+1 | i j ∈ I (1 ≤ j ≤ n + 1), o j ∈ O (1 ≤ j ≤ n), n ≥ 0};

In the remainder of this chapter, we will compare the UIO and UIOv using iocofsm, which is
iocofsm = iocofsmtraces’(s), where the specification s is the LTS derived from the FSM of a spec-
ification and traces’(s) ⊂ traces(s) is formed by all the traces of s which finish into inputs. In the
remainder of this section we will not distinguish between traces’(s) and traces(s) because for an FSM
any trace is formed by sequences of input/output signals and it makes sense to checks the outputs pro-
duced by an implementation only for the traces which finish into inputs. Now, if one takes the FSM
view, with null (or δ) in the set of outputs, then iocofsm is part of ioconf. For comparing UIO and
UIOv with Autolink this view should be adopted (we will come back to this discussion in Section 3.4).
If one considers the ioco approach, then iocofsm is part of ioco. Because, in this section, our goal is
to relate UIO and UIOv with ioco, we will adopt the ioco view in this section.

So, in the remainder of this chapter by an FSM we will understand the labelled transition system
of an FSM and by S (or sometimes St) the set of states which are not intermediate. Now, we will
give a formal definition of the UIO and UIOv conformance relations. But, before doing this, we will
introduce some terminology.

A test produced by the procedure TestCase is a trace. So a test suite is a set of traces. An FSM
passes a test suite if the test suite is contained in the set of traces of the FSM.
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Definition 3.3.6 Let w be an FSM and T a test suite. Then:
w passes T ⇔ T ⊆ traces(w).

The Unique Input Output Sequence of a state is defined below.

Definition 3.3.7 Let FSMs be an FSM of a specification and k a state of FSMs , k is not an intermediate
state.

A trace σ is a UInOut of k ⇔ k σ⇒ ∧∀s ′, s ′ 6= k, s ′ 6= 〈 , 〉 : s ′
σ

6⇒.

In the definition above, by s ′ 6= 〈 , 〉 we mean that s ′ is not an intermediate state, where stands
for any. The test suites produced by TestCase are defined as in the following.

Definition 3.3.8 Let FSMs be the FSM of a specification. Let I and St be the input set and state set
of FSMs . Let SUIO be the set formed by the pairs of the states from St and their UInOut, that is
SUIO = {〈s, UInOut(s)〉 | s ∈ St}. Then,

1. TUIO = ∪i∈I,s,t∈St{ TestCase(UIO, SUIO, FSMs , s
i/Z(s,i)−→ t)} is the test suite formed by the set

of test cases produced by the procedure TestCase using an UIO algorithm for the step 3) of the
procedure;

2. TUIOv = ∪i∈I,s,t∈St{ TestCase(UIOv, SUIO, FSMs , s
i/Z(s,i)−→ t)} is the test suite formed by the

set of test cases produced by the procedure TestCase using an UIOv algorithm for the step 3)
of the procedure.

Now we will formally define the UIO and UIOv conformance relations.

Definition 3.3.9 Let FSMs be an FSM of a specification and FSMi be an FSM of an implementation
(both FSMs are connected and minimal; here we mean that they are LTSs derived from FSMs). Let
TUIO and TUIOv be the tests suites produced by the procedure TestCase using an UIO and an UIOv
method, respectively for the step 3) of the procedure. Then

1. FSMi UIO FSMs ⇔ FSMi passes TUIO;

2. FSMi UIOv FSMs ⇔ FSMi passes TUIOv.

The main ideas for expressing the UIO relation in ioco terms are the following: 1) the imple-
mentation conforms to the specification if it passes TUIO; 2) the implementation passes TUIO if ev-
ery trace from TUIO is contained in the set of traces of the implementation and this is true if 3)
for every trace in TUIO the implementation produces after every input prefix of that trace (a prefix
which ends into an input) the same output as the specification does (∀i1o1...inon ∈ TUIO, j ≤ n :
out(FSMi after i1o1...i j) = out(FSMs after i1o1...i j )). Please note that the specification and the im-
plementation are FSMs, so they can produce only one output after an input; for this reason we put =
in place of ⊆. The same holds for the UIOv relation.

It is quite easy to prove that an UIO algorithm generates sound tests and that it is exhaustive with
respect to its correspondent UIO conformance relation. The exhaustiveness is a result of the definition
itself and the soundness is easily proved because any test case is part of the set of all test cases. The
same holds for the UIOv algorithm. Because of the completeness, an UIOv algorithm has the same
error detection power as its correspondent UIOv relation. This observation is needed in the discussion
below.
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The authors of UIOv ([VCI90]) show that their method can verify whether the FSM of an IUT
is the same as the FSM of a specification, i.e. UIOv can detect any missing and erroneous state and
I/O of an IUT. This happens under the assumptions on which the UIOv method is applied: A) the
specification FSM is connected, B) the specification FSM is minimal and C) the number of the states
of the implementation is less than or equal to the number of the states of the specification. Then it
can be said that an UIOv algorithm, and consequently its UIOv relation, can verify whether FSM i

is the same or not as FSMs . By the same we mean that there is a bijection between the two FSMs:

∃ f : Ss → Si such that 1) f is a bijection and 2) if s
l−→ t is a transition of FSMs , then f (s)

l−→ f (t)
is a transition of FSMi , where Ss and Si are the state sets of the specification and the implementation,
respectively. This bijection is used in the proof of Theorem 3.3.15.

In the steps enumerated above we used for a trace the notion of the set of its prefixes which end
into inputs. Now let us define the prefix binary relation on traces.

Definition 3.3.10 Let L be a label set. Then prefix is defined to be the smallest relation satisfying:

1. let t ∈ L∗, then ε and t are prefix of t ;

2. let t, t ′ ∈ L∗ and a ∈ L , then

t prefix t ′ ⇒ t prefix t ′a.

Because we usually use the prefix on sets of traces, we will define the prefix closure operator PC.

Definition 3.3.11 Let S ⊆ L∗ be a set of traces. Then, the prefix closure operator PC : P(L ∗) →
P(L∗) is: PC(S) = {t ∈ L∗ | ∃t ′ ∈ S : t prefix t ′}

The last element of a trace is defined below.

Definition 3.3.12 Let L be a label set. Then, the function last : L ∗ \ {ε} → L is:

1. let a ∈ L then last(a) = a;

2. let t ∈ L∗ and a ∈ L , then last(ta) = a.

The set of prefixes which end in inputs (input-ended prefixes by short) of a set of traces is defined
as in the following.

Definition 3.3.13 Let T be a set of traces. Then the set of its prefixes PT which end in inputs is:
PT = {t ∈ PC(T ) | last(t) ∈ I }.

Now we have all the ingredients defined for expressing the UIO and UIOv relations in ioco terms.
This will be done in the following subsection.

3.3.3 Classification of the UIO, UIOv and iocofsm conformance relations

Lemma 3.3.14 gives a translation of the UIO and UIOv conformance relations in ioco terms. The-
orem 3.3.15 and Theorem 3.3.16 use the results of the lemma to relate the iocofsm, UIO and UIOv
conformance relations.

In Lemma 3.3.14 we build two sets of traces FUIO and FUIOv such that: (FSMi UIO FSMs iff FSMi

iocofsmFUIO FSMs) and (FSMi UIOv FSMs iff FSMi iocofsmFUIOv FSMs). Unsurprisingly, the set of
traces FUIO is the set of the input-ended prefixes of the set TUIO (FUIO = PTUIO); the same holds for
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FUIOv.

Example For the specification from Figure 3.1 the test suite TUIO is represented in Figure 3.2 (b)
and is the set of traces {a/b, a/b.a/c.a/b, a/b.d/e.d/e.a/b, d/e.d/e.a/b, a/b.d/e.a/c.a/c.a/b}. In
this set we did not put the r/null sequence because it is implicitly understood that before running each
trace, FSMi and FSMs should be in the initial state so that a new test case can be run. Now the set of its
input-ended prefixes is FUIO = {a}∪{a/b.a/c.a, a/b.a, a}∪{a/b.d/e.d/e.a, a/b.d/e.d, a/b.d, a}∪
{d/e.d/e.a, d/e.d, d} ∪ {a/b.d/e.a/c.a/c.a, a/b.d/e.a/c.a, a/b.d/e.a, a/b.d, a} = {a, a/b.a/c.a,

a/b.a, a/b.d/e.d/e.a, a/b.d/e.d, a/b.d, d/e.d/e.a, d/e.d, d, a/b.d/e.a/c.a/c.a, a/b.d/e.a/c.a, a
/b.d/e.a}. For the UIOv relation FUIOv = FUIO ∪ {d/e.a}.

Lemma 3.3.14 Let FSMi be an implementation and let FSMs be a specification (so here we mean
that they are LTSs derived from FSMs). Then there exist two sets of traces FUIO and FUIOv ∈ L∗ such
that:

1. FSMi UIO FSMs ⇔ FSMi iocofsmFUIO FSMs;

2. FSMi UIOv FSMs ⇔ FSMi iocofsmFUIOv FSMs .

Proof : According to Definition 3.3.9 and Definition 3.3.6:

1. FSMi UIO FSMs ⇔ FSMi passes TUIO ⇔ TUIO ⊆ traces(FSMi);

2. FSMi UIOv FSMs ⇔ FSMi passes TUIOv ⇔ TUIOv ⊆ traces(FSMi).

Below we will continue the proof for point 1) of the lemma. Let σ ∈ TUIO be a trace. Let Pσ be the
set of its input-ended prefixes. The trace σ is contained in traces(FSMs) and FSMs is a deterministic
FSM. Then for every σ ′ ∈ Pσ , the set out(FSMs after σ ′) contains only the output which is in σ after
the subtrace σ ′. This output is denoted as out(σ ′). We have that out(FSMs after σ ′) = out(σ ′). Then:

σ ∈ traces(FSMi) iff ∀σ ′ ∈ Pσ : out(FSMi after σ ′) = out(σ ′) = out(FSMs after σ ′)

In other words, a trace of the specification is also a trace of the implementation if each output produced
by the implementation after performing an input prefix of that trace is specified.

Let us consider FUIO = ∪σ∈TUIO Pσ = PTUIO . Then:

TUIO ⊆ traces(FSMi) iff ∀σ ′ ∈ FUIO : out(FSMi after σ ′) = out(σ ′) = out(FSMs after σ ′)

And this means that:

FSMi UIO FSMs ⇔ FSMi iocofsmFUIO FSMs ;

In a similar way, the point 2) of the lemma is proved if we take FUIOv = PTUIOv . �

We will compare conformance relations such as UIO, UIOv and iocofsm. We want to write for
example UIOv ≥ UIO with the intuition that UIOv is more powerful than UIO.

We want to make such comparison statements under certain conditions, for example considering
only the situation where the specification is connected, minimal and where the size of the state space
of the implementation does not exceed that of the specification. We write

UIOv ≥ UIO

to mean that whenever FSMi UIOv FSMs we find that FSMi UIO FSMs . The same meaning has the
notation: iocofsm ≥ UIO. By UIOv ∼ iocofsm we mean: iocofsm ≥ UIOv ∧ UIOv ≥ iocofsm.
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Theorem 3.3.15 Let FSMi be an implementation and let FSMs be a specification. Let us assume that

a) FSMs is connected;

b) FSMs is minimal;

c) the number of the states of FSMi is less than or equal to the number of the states of FSMs .

Then:

1. UIOv ≥ UIO;

2. iocofsm ≥ UIO;

3. UIOv ∼ iocofsm.

Proof : UIO = iocofsmFUIO and UIOv = iocofsmFUIOv . For the UIO relation, iocofsmFUIO has
less discriminating power than the iocofsm = iocofsm traces(FSMs) relation (because FUIO ⊆ traces(FSMs

)) and the UIOv relation (because FUIO ⊆ FUIOv). Then UIOv ≥ UIO ∧ iocofsm ≥ UIO and so the
first two points of the theorem are proved.

For proving point 3), we should remember that UIOv ∼ iocofsm means iocofsm ≥ UIOv ∧ UIOv
≥ iocofsm. The first part iocofsm ≥ UIOv is true because UIOv has less discriminating power than
iocofsm (because FUIOv ⊆ traces(FSMs)).

For the second part of the conjunction, let us assume that it is not true. Then ∃FSM i , FSMs such
that

• FSMi UIOv FSMs

• ¬(FSMi iocofsm FSMs)

Then let σ be a trace such that out(FSMi after σ) 6= out(FSMs after σ). If FSMi UIOv FSMs ,
then there is a bijection between FSMi and FSMs (see Section 3.3.2): ∃ f : Ss → Si such that 1) f

is a bijection and 2) if s
l−→ t is a transition of FSMs , then f (s)

l−→ f (t) is also a transition of
FSMi , where Ss and Si are the state sets of the specification and the implementation, respectively. Let

σ = i1/o1...in with n ∈ IN. Then, this trace is executed in FSMi in the following way: f (s0)
i1−→

...
in−→ f (s2n−1), where s0, ..., s2n−1 are the states of FSMs through which σ is going. According

to the bijection, if s2n−1
on−→ s2n is a transition of FSMs , then f (s2n−1)

on−→ f (s2n). Now we have
contradiction with out(FSMi after σ) 6= out(FSMs after σ), because the output is the same. Because
of the contradiction, the second part of the conjunction is true and, then, it can be concluded that
UIOv ∼ iocofsm. �

An example in which ¬(FSMi iocofsm FSMs) and ¬(FSMi UIOv FSMs), but FSMi UIO FSMs

is given in Figure 3.1. This example shows that in general the UIOv and iocofsm relations are more
powerful than the UIO relation in detecting errors in IUTs.

In this point, we need to make an observation. The proof of the point 3 of the theorem from above
relies on the proofs from [VCI90] which are not that precise. Because our goal is not to improve
these proofs, but to compare algorithms and tools, we will rely on [VCI90] as we did for TGV when
we rely on the proofs from [JM99, FJJT96]. Moreover, to the best of our knowledge there are no
counter-examples to the claims from [VCI90]. (But, as a remark, mistakes can be made: the early
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versions of TGV work with ioco and not ioconf, although the authors call it ioconf [FJJT96]. Later
they admitted they were wrong. Then they called it ioco [JM99]. )

The following theorem relates the UIOv and iocofsm conformance relations in the general case in
which the assumption c) does not hold. At the end of this subsection a summary of the classification
is given. In the theorem by iocofsm > UIOv we mean that:

1. ∀FSMi ,∀FSMs : FSMi iocofsm FSMs ⇒ FSMi UIOv FSMs ,

2. ∃FSMi , ∃FSMs : ¬(FSMi iocofsm FSMs) ∧ FSMi UIOv FSMs .

Theorem 3.3.16 If ¬c) then iocofsm > UIOv.

Proof : For proving that iocofsm > UIOv when c) does not hold, we should show that both 1)
and 2) are true. The first part 1) is true because UIOv has less discriminating power than iocofsm
(because UIOv = iocofsmFUIOv and FUIOv ⊆ traces(FSMs)).

The second part 2) is proved by a counter example. Let us consider the implementation i from
Figure 3.4 and the specification Spec from Figure 3.1. Then: i UIOv Spec (i passes all the UIOv test
cases from Figure 3.2), but ¬(i iocofsm Spec) (i can be detected with the trace a/b.a/c.a/b.a/c ∈
traces(Spec)). �

d/e

d/e

a/b

a/b

a/c

a/c

d/e

a/c d/e
d/e

a/c6 4

32

5

d/e

1

Figure 3.4: A faulty IUT.

The summary of the classification is given in the following table

conditions 1. 2. 3.
a) ∧ b) ∧ c) UIOv > UIO iocofsm > UIO iocofsm ∼ UIOv
arbitrary (¬c)) iocofsm > UIOv

In concluding the section, it is important to note that, due the heavy constraints (determinism,
limit for the implementation’s number of states) the UIO and UIOv algorithms are well-known not
to find all errors. Taking into account that iocofsm is only a part of the original ioco, part which is
defined for LTSs constructed from deterministic, connected and minimal FSMs and that iocofsm is
more powerful than UIO and UIOv, we can conclude that the ioco algorithms are in general more
powerful than the UIO and UIOv algorithms.

When the constraints hold the UIOv algorithms have the same detection power as the iocofsm
conformance relation, but UIO is less powerful than the iocofsm conformance relation and UIOv
algorithms. One conclusion might be that, under the constraints, ioco algorithms have the same de-
tection power as the UIOv algorithms. For this to hold in a practical sense, the following assumption
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is needed. The assumption is that TorX and TGV can be modified such that they can work on LTSs
derived from FSMs and that these modifications are based on the iocofsm conformance relation. Such
a modification is not difficult to be imagined for TorX, but it does not exist in practice, as a tool. The
same holds for TGV. Under these considerations we can observe that this equality, in theory, might
happen but it is based on heavy constraints and on a theoretical assumption which is not implemented
in practice.

3.4 Autolink

Autolink is the name of the algorithm which is integrated in the TAU/Telelogic tool-set ([SEG+98])
for generating test cases. Autolink supports the automatic generation of TTCN test suites based on an
SDL specification and a test purpose described in MSC. It is widely used because it is integrated in a
commercial tool (TAU). It can be used in a batch-oriented way.

It is interesting to remark that a central topic which is treated by this thesis, namely test selection,
is also addressed by the creators of Autolink. Autolink uses test purposes for doing test selection. By
defining test purposes and then generating a test suite, a set of representative behaviours to be tested
is selected. Test purposes combine the guidance provided by the human intelligence with the power
of automation. This is an advantage of the Autolink approach. Our approach is different from the one
of Autolink in the following way. We tried to fully automate the test selection by the use of selection
heuristics and trace distances (see Chapter 8). Our approach is a step ahead in the integration of the
test generation and the execution into one on-the-fly process. A disadvantage can be the fact that the
combination of human intelligence and automation can be lost in a fully automated test selection, and
this combination is important sometimes in selection (for example when it is known apriori for an
IUT which specific set of behaviours should be tested).

Since Autolink does not have an explicit conformance relation on which it is based, we find
it necessary to try to reconstruct a conformance relation for it and in this way to consolidate the
conformance foundation of it. Based on this conformance relation we will compare Autolink to the
other algorithms: TorX, TGV and UIO (UIOv) algorithms. We will express the conformance relation
in terms of ioco theory.

This section is organized in the following way: Subsection 3.4.1 describes the Autolink algorithm;
Subsection 3.4.2 gives the translation of the Autolink algorithm in ioco terms; Subsection 3.4.3 gives
the classification of Autolink in comparison to other algorithms.

3.4.1 The Autolink algorithm

Autolink is an algorithm for test derivation which has as inputs: 1) the specification which is written
in SDL and 2) the test purpose which is expressed in MSC. It produces as an output a test case
represented in TTCN.

Before explaining the algorithm we should say some words about the MSC [IT93] which repre-
sents the test purpose. One thing to remember is that semantically an MSC describes a partial ordering
of the events. This means that the events of an instance are partially ordered; between two instances
there is not a temporal order, except for the ordering induced by the messages. Autolink looks at the
system under test as a black box to which signals are sent and received via different PCOs (Points of
Control and Observation). The system under test which is described by the SDL specification is one
instance of the test purpose MSC. The PCOs are the other instances of the MSC. For generating tests,
Autolink looks at the events which happen at the PCO instances. So it does not look at the partial
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order of the events of the instance of the specification; it looks only at the partial order of the events of
the PCO instances. So from an MSC, a set of traces can be formed (to be checked that these are traces
of the specification) by taking all the possible linearizations of the events which appear in the MSC
and which respect the partial order of the PCO instances and without considering the partial order of
the specification instance.

Example Let us consider the MSC from Figure 3.5. In this MSC the specification is called Ex-
ample and it forms one instance of the MSC. The other instances are the PCOs: A and B. An obvious
trace to be checked is acbd . This trace respects the partial order of the specification instance. But at
first, Autolink does not care about this partial order. It will also use traces like: abcd , abdc which do
not respect the partial order of the Example instance (in the generated test, Autolink will keep only
the traces which are a trace of the specification). So from this MSC a set of traces can be generated
and it is {acbd, abcd, abdc, bdac, badc, bacd}.

MSC Purpose

a

c

b

d

ExampleA B

Figure 3.5: A test purpose MSC.

For generating a TTCN test, Autolink considers only a subset of traces from the set of traces
generated as above. This is because Autolink applies some further restrictions. For example, Autolink
uses priorities between send events and receive events. The authors of Autolink ([SEG+98]) suppose
that the environment always sends signals to the system as soon as possible, whereas receive events
occur with an undefined delay. This is motivated by the assumption that the tester, which is represented
by the environment, is faster than the system under test. This assumption can be true for a batch-
oriented test generation, because the test execution is quite fast. For an on-the-fly test generation,
this assumption does not usually hold because test generation, which is combined with test execution,
is time consuming. For Autolink which works batch-oriented, this assumption is considered to hold
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and therefore the send event has a higher priority than the receive event in the default configuration
setting of Autolink. All the traces from the set of traces of the MSC which do not respect this rule are
removed from it. This will work as follows in our example: the set of inputs is {a, b} and the set of
outputs is {c, d}; the traces acbd and bdac are removed because one of the outputs c and d happens
before one of the inputs b and a and this contradicts the rule that the input event has a higher priority
than the output event; so the subset obtained is {abcd, abdc, badc, bacd}. Some other restrictions
exist. They are parameterized in the options configuration of Autolink.

In our explanation of Autolink we will not enter into technical details such as how to generate
an MSC test purpose or how to configure the options of the Autolink algorithm. Also we will only
consider MSC without references because this is general enough to cover a number of important
aspects of Autolink.

The steps performed by Autolink can be described shortly in the following way:

1. Validation: the MSC which represents the test purpose is validated against the SDL specification
(this means that at least one of the traces from the set of traces of the MSC must be a valid trace
of the SDL specification);

2. Generation: the traces formed from the validated MSC which respect the options configuration
of Autolink are checked against the SDL specification with a state space exploration algorithm
and the TTCN test case is formed by all the MSC traces which are also traces of the SDL
specification.

In the TTCN test case generated by Autolink a Timeout event gets an inconclusive verdict. When
an unexpected output is produced by the IUT (OtherwiseFail event) a fail verdict is given by the TTCN
test case. The traces of the specification which are not contained in the set of traces of the MSC (we
will call them uninteresting traces) are cut and thus inconclusive verdicts are assigned to them. For
explaining how the cutting process works in Autolink, we should first introduce the notion of global
states of an SDL system because Autolink works with transitions between global states. For a good
understanding of this notion, first we will introduce an example of an SDL specification. Using this
SDL specification, we will also exemplify the generation of a TTCN test case with Autolink.

Example From the SDL specification Example, only the process which describes the behaviour of
the Example specification is shown in Figure 3.6. The process can receive from the environment the
input a via channel A or input b via channel B. After receiving input a, it can send to the environment
output c (via channel A) and it returns in the initial state State 1. A similar thing happens if input b is
received: output d is sent to the environment (via channel B) and it returns to State1.

For understanding Autolink, one important aspect to be considered is the channel buffer mecha-
nism. An SDL specification has queues associated with channels. When more signals are present in a
queue, they will be consumed in the same order in which they arrived, i.e. in FIFO order. Executing
a transition between two states means performing an input which is allowed in a state and sending all
the produced outputs to queues of channels. These outputs can be stored and they are not necessarily
consumed immediately after their production. After reaching a new state, the SDL specification can
perform another input and after that send the correspondent outputs to queues of channels. In this
way a queue can have more than one signal stored at a given time. Some of the outputs produced are
outputs send to environment or internal signals. An internal signal is seen as an output for the process
which sends it and as an input for the process which receives it. Therefore there are three kinds of
channel queues: inputs queues, output queues and internal channel queues. From the point of view of
the process which sends an internal signal, an internal channel queue is seen as an output queue. From
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ba

d

State 1

Process Process1

c

Figure 3.6: The SDL specification Example.

the point of view of the process which receives an internal signal, an internal channel queue is seen as
an input queue. With these things being said, the mechanism works as follows: an SDL specification,
which can be seen as a collection of processes, has a set of states in which it can be at a given time,
each of these states corresponding to a process which is active at that time. Relevant information
which characterizes the global state in which the SDL system is at a given time is the set of states of
active processes (active states by short), the outputs which are contained in channel queues, the inputs
which are received and not consumed yet in the input queues and the internal signals from the internal
channel queues. Now, the SDL specification can perform any input received from the environment
which is allowed in an active state (all these inputs form the valid input set of the global state) or send
any output (the output is said to be consumed) which becomes present at the top of a channel queue
or perform any internal signal which is allowed in an active state and present at the top of a channel
queue. The execution of an output sent to environment does not change the set of active states in which
the SDL specification can be (it remains the same). It only removes one output from a channel queue.
But this removal changes the content of that queue and therefore the global state of the SDL system
is different from the previous one. If an internal signal is consumed by one of the active processes,
its consumption can be seen as an input execution because its reception will cause the SDL process to
perform a transition between two states. Now we will explain the input execution. When executing
an input (received from the environment or as an internal signal from another process), the state from
which it was performed is removed from the set of active states and the reached state is added. The
input will be deleted from its queue and the outputs which are produced are added to channel queues.
If an input is received and it is not contained in the valid input set, it will be stored in an input queue.
These changes characterize the new global state of the SDL system. When generating tests, Autolink
([KGHS98]) works with global states. An allowed behaviour of the SDL system is formed by allowed
transitions between global states.

Now let us see how this works for our example (see also Figure 3.9). In this example, the SDL
system is formed by one process. Only this process is active at any given time and for this reason the
set of active states is {State1}. This SDL specification has two buffered channels: A and B. Via A,
the SDL system can receive inputs or send outputs. For this reason there are two queues for A: one
for receiving inputs from the environment, denoted as A I , and one for sending outputs, denoted as
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AU . The same holds for B: the queue B I is for inputs and the queue BU is for outputs. As explained
above, the relevant information which characterizes a global state of an SDL system is the set of active
states and the outputs which are present in channel queues. There are no internal channels. Because
this SDL system is input complete in State1 it results that all the input queues are empty in all global
states. Therefore we do not refer below to input queues. For the system Example, we will show how
this relevant information is changed from one global state to another. In the initial global state of
Example the set of active states is {State1} and the output queues of A and B are empty (AU = 〈〉
and BU = 〈〉). In this state, the SDL system can perform one of the inputs a or b sent through one of
the channel queues AI or respectively BI . Performing input a will send the output c to the queue for
outputs of channel A, i.e. to AU . This output is stored and it is not necessarily visible immediately
after a. In the new global state of Example, the set of active states is unchanged (it is {State1}) and
the queues for outputs are AU = 〈c〉 and BU = 〈〉. In this new global state, it is possible to perform
an input, a or b, or the output c. Performing, for example, b will produce the following changes: BU

becomes 〈d〉 and {State1} and AU remain unchanged. Two next transitions can be cd or dc. In this
way abcd or abdc are valid traces of the specification. The execution of other transitions proceeds in
a similar way as described above.

After we described the channel buffer mechanism we will explain below how the cutting process
works in Autolink (see also Figure 3.7). There are two cases for generating an inconclusive. In the
first case, in the test generation process of Autolink a trace from the set of traces of the MSC, reaches
different global states of the specification. In a global state reached, there can be outputs which are
not contained in any subsequent traces of the MSC, or, in other words outputs which do not satisfy the
MSC test purpose. By subsequent traces we mean traces which appended to the subtrace which led to
these outputs form valid traces of the MSC. These outputs which do not satisfy the MSC test purpose
are specified and can be produced by an IUT. They get inconclusive verdicts ([SKGH97]). Another
source of inconclusive verdicts is an incomplete pass trace. Some traces of the MSC are only partial
valid traces of the specification. This means that only a prefix fits to the specification. The prefix is
called an incomplete pass trace. The rest of the trace is not considered. The prefix (incomplete pass
trace) gets an inconclusive verdict ([SKGH97]).

Case 2Case 1

InconclusiveInconclusive

oo 1 n

the SDL specification and 
in the MSC test purpose

global state of the SDL 
specification reached by 
the subtrace

SDL specification and 
in the MSC test purpose

Inconclusive

incomplete Pass trace 

purpose but not in the 
SDL specification

the MSC test purpose

present in the the MSC test  
rest of the trace which is 

common subtrace in the 

common subsequent trace in 

specification and  
common to the SDL

Figure 3.7: The two cases for generating an inconclusive.

We will illustrate how a TTCN test case can be generated with Autolink for the SDL specification
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Example. The test purpose is described in the MSC of Figure 3.5. This MSC is a valid test purpose
because there is at least one trace of the Example specification which is also part of the MSC set of
traces (for example the trace abcd).

Using the default options configuration, Autolink generated the TTCN test case of which the
dynamic behaviour is presented in Figure 3.8. In this TTCN test, there are two traces which are
present in the set of traces of MSC (reduced according to the restrictions imposed by the default
options configuration) and which are also part of the set of traces of the Example specification; these
are abcd and abdc. Autolink merges these traces into a TTCN tree. After performing one of these
traces, an IUT will get a pass verdict.

      

test3
ITEX 3.4.0

Oct 12.2000 ITEX 3.4.0
sdt@wsfm04

Test Case Dynamic Behaviour

Group                 :

Default                : OtherwiseFail

Nr.

1

2

3

4

5

6

Dynamic Part

Label Dynamic Description

A!a

  B!b

      A?c

          B?d

      B?d

          A?c

Constraints Ref.

c1

c2

c3

c4

c5

c6

Verdict

Pass

Pass

Comments

Test Case Name : Purpose

Purpose              :
Configuration     :

Comments          :  

Figure 3.8: The test generated with Autolink.

3.4.2 The translation of Autolink in ioco terms

The first concern regarding the translation of Autolink in terms of ioco theory is how to transform the
SDL system into a labelled transition system. This can be done by simply assuming that the labelled
transition system of an SDL system is the unfolding tree of the SDL system. We devote one paragraph
to explain this notion of unfolding tree.

The transitions in the tree are labelled with the name of the signals (inputs, outputs or internal
signals) and its states contain the triple 〈set of active states, set of channel queues, unique identifier〉.
The Root state of the tree which is also the initial state of the labelled transition system is 〈set of
initial active states, set of channel queues (all empty), unique identifier (0)〉. The unfolding tree is
constructed in the following way. Let S = 〈St, SC, Id〉 be a state in the tree (or a global state),
where St is the set of active states, SC is the set of channel queues and Id the unique identifier of S.
We assume that the state labels of the various processes to be disjoint. Let I be a valid input or an
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internal signal which can be executed in S. Let s ∈ St be an active state where I can be performed.

Let s
I O1...On−→ s ′ be the correspondent transition of the correspondent process of the SDL system,

where n ∈ IN, O1...On are either outputs (sent to environment) or internal signals. Then the new

global state S ′ is given by S
I−→ S ′ = 〈St \ {s} ∪ {s ′}, Add(SC’, O1, ..., On), Id’〉, where Id’ is a

new fresh identifier and Add(SC’, O1, ..., On) is the result of adding all the signals O1, ..., On to the
queues from SC’ in that order. If no output was produced, then, in place of Add(SC’, O1, ..., On)
we will have SC’. The set of channels queues SC’ equals SC if I was not taken from a queue from
SC (the sending of I from the environment and its consumption is seen as being one transition).
Otherwise SC’ is Rem(SC, I ) where Rem is a procedure which removes input I from its correspondent
queue in SC. Let I be a non-valid input sent by environment. Then the new global state is given by

S
I−→ S ′ = 〈St, Add(SC, I ), Id’〉, where Id’ is a new fresh identifier and Add(SC, I ) adds the input I

in a queue in SC. Let O be an output that is at the top of a queue from SC. Then the new global state
is given by S

O−→ S ′ = 〈St, Rem(SC, O), Id’〉, where Id’ is a new fresh identifier and Rem(SC, O)
removes the output O from its correspondent queue in SC.

A complete formal definition of the semantics of SDL is beyond the scope of this thesis. But it is
clear that other language constructs of SDL could be handled along the same lines (e.g. saving signals,
timers [CCI92]).

Definition 3.4.1 The labelled transition system M ′ = 〈S, L ,→, s0〉 of an SDL specification is the
unfolding tree of the SDL specification where:

1. S is formed by the set of states of the unfolding tree;

2. the set of labels L is formed by the union of the set of inputs with the set of outputs of the SDL
system and with {τ };

3. the transitions of → are the transitions of the unfolding tree; internal signals are transformed in
τ ;

4. the initial state s0 is the Root state of the unfolding tree.

Please note that an LTS derived from an SDL system is input complete, i.e. any input sent from
environment (valid or non-valid) can be received in any state. In practise, because there are no queues
with unbounded length, it is usual to add extra transitions (using the construct * – any) for consuming
the inputs which are not valid. In this way any input can be immediately consumed in any global state
of the specification. For the sake of simplicity, without loss of generality, we will restrict ourself to
this kind of SDL systems. For these systems the input queues are empty in all the global states.

Example For the SDL system of Figure 3.6, its labelled transition system is represented in Figure 3.9.
The initial state, denoted as 〈{State1}, {AU = 〈〉, BU = 〈〉}, 1〉 in the figure, has the set of active
states {State1} and the output queues, AU and BU , empty. Because the input queues A I and AU are
always empty in any global state, for the sake of simplicity, we did not include them in the infor-
mation related to the global states. From this state, it is able, after performing the input a, to arrive
in the state 〈{State1}, {AU = 〈c〉, BU = 〈〉}, 2〉 and, after performing the input b, to reach the state
〈{State1}, {AU = 〈〉, BU = 〈d〉}, 3〉. In the state 〈{State1}, {AU = 〈c〉, BU = 〈〉}, 2〉, the SDL system
can perform the inputs b or a or send the output c. In the state 〈{State1}, {AU = 〈〉, BU = 〈d〉}, 3〉
the SDL system can perform the inputs b or a or send the output d . The construction of the labelled
transition system of this SDL system proceeds in a similar style as explained above.
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The elements from the name of the states signify, taking for example the state 〈{State1}, {AU =
〈〉, BU = 〈d〉, 1〉}, 3〉: 1) the set of the active states, {State1}; 2) the set of channel queues which has
four elements: two empty input queue (not represented) and the output queue of channel A which is
empty (AU = 〈〉) and the output queue of channel B which contains the output d (BU = 〈d〉); 3) the
number 3 is the identifier which uniquely identifies this state.

< {State1}, {A  = <>,

b

c ba

< {State1}, {A  = <c>,

a

< {State1}, {A  = <>,

da b

U

U

U

U   B  = <d>}, 3 >

   B  = <>}, 1 >

U

   B  = <>}, 2 >U

Figure 3.9: The labelled transition system of the SDL specification.

Now we are going to express Autolink in ioco terms. As we explained in Section 3.4.1, an MSC
test purpose can be replaced by a set of traces. For an MSC M , we will denote its set of traces as S(M).
In M we assume that the first instance is the system under test and the rest of the instances are the
PCOs; with this assumption, without loss of generality, we do not put the list of PCOs as a parameter of
S(M). The options configuration of Autolink which selects only a subset from the set of traces of the
test purpose MSC, can be seen as a predicate P on traces. The TTCN test case will be represented as a
set of traces. We will not enter in technical details regarding how Autolink implements the cutting of
the uninteresting traces which get inconclusive verdicts (see Section 3.4.1). We will assume that this
finite set of traces is produced by a procedure which is part of Autolink and which we will call inconcs.
The actual parameters of inconcs are: inconcs(Q, S(M), P). The two parameters of the procedure
S(M) and P have the meanings as described above. The parameter Q is the labelled transition system
of the SDL specification. The set of traces produced by inconcs can be expressed as being the union
of {to′ ∈ L∗

δ | ∃t ′ ∈ traces(Q) ∩ S(M), o ∈ LU : P(t ′), to prefix t ′, o′ ∈ out(Q after t), o′ 6= o}
and {t ∈ traces(Q) | ∃t ′ ∈ S(M) : P(t ′), t ′ 6∈ traces(Q), t prefix t ′}. The first set of the union
is formed by common subtraces of the MSC test purpose and the SDL specification concatenated
with specified outputs which are not present in any subsequent trace of the MSC (the first case from
Figure 3.7). The second set is formed by incomplete pass traces (the second case from Figure 3.7, see
also Section 3.4.1). In the formalization above, one should remember that the out function is defined
on a simple automaton, which is not a suspension one (see Definition 2.1.8) and that the null output δ

can be contained in the outputs set produced by out (this observation is useful later).
Before expressing Autolink in ioco terms, because in ioco theory there are only pass and fail

verdicts, we will indicate how the inconclusive verdicts contained in a test produced by Autolink
can be transformed. The inconclusive verdict assigned to the uninteresting traces of the specification
which are cut by the Autolink algorithm, can be replaced by a pass verdict. For the Timeout event,
we can see it as a mapping of the null output (δ). Now, if the trace which led to this Timeout event
reaches in the labelled transition system of the specification a state which contains only inputs, then
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the null output (Timeout) is specified. Therefore, its inconclusive can be transformed into a pass. If
all states reached by the trace contains outputs, then the null output (Timeout) is unspecified and its
inconclusive can be replaced by a fail. These transformations are reflected in the formalization of the
Autolink algorithm from below in the following way. First, we remind that the function out works
with δ outputs. The δ outputs (Timeouts) which gets a pass are present in the traces of inconcs. The
ones which get a fail are not considered by the function out and, therefore, they are not present in the
traces of inconcs. The inconcs function models also the Timeout events. Now all the outputs which
can get a pass verdict are present in the set of traces produced by Autolink. The outputs which get a
fail are not present. In this way, the presence or the absence of an output decides the verdict which
is assigned to that output: pass or fail, respectively. This will be caught in the definition of passes
(Definition 3.4.2) for Autolink.

Now the Autolink algorithm can be expressed in ioco terms in the following way.

Autolink
Inputs:

• the labelled transition system Q of the SDL specification S;

• the set of traces S(M) of the MSC test purpose M;

• the predicate P on traces defined by the option configuration of Autolink.

Output:

• the set of traces T which represents the test case generated.

Body of Autolink

1. Validation: traces(Q) ∩ S(M) 6= ∅;

2. Generation: T ′ = {t ∈ traces(Q) ∩ S(M) | P(t)} ∪ inconcs(Q, S(M), P);

(the union of the set of traces which are common in the test purpose and the specification and
the set of traces from the specification which are cut because they are not present in the test
purpose and which get inconclusive verdicts);

T = PC(T ′) (the test is the set of the prefixes of T ′).

For the rest of this chapter we will refer to the algorithm which is described above as the Autolink
algorithm.

Now we will define what is passes for the Autolink algorithm. We will not keep Definition 3.3.6
for passes because it is only working for labelled transitions systems derived from finite state machines
(an FSM which can only produce an output in a state). For a labelled transition system, in general, we
will need more requirements. These requirements are added in Definition 3.4.2. We should remember
also that Autolink checks the outputs of the implementation only in positions of the traces where
outputs exists. With these considerations the new definition of passes is:

Definition 3.4.2 Let T be a test suite and w the labelled transition system of an implementation. Let
PT = {t ∈ L∗ | ∃o ∈ LU : to ∈ PC(T )} be the set of the prefixes from the traces of T which
are followed by an output. Let PT ,w = {to | t ∈ PT , o ∈ out(w after t)} be the set of traces built
from every trace from PT concatenated with every output produced by the implementation w after
performing the trace. Then: w passes T ⇔ PT ,w ⊆ T .
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Example Let us consider the SDL specification Example from Figure 3.6 and the TTCN test suite
from Figure 3.8. The set of traces T of this test suite is {a, ab, abc, abd, abcd, abdc} and the
set PT is {ab, abc, abd}. Now let us assume the implementation Imp from Figure 3.10. Imp pro-
duces after performing the trace ab the output set {c, d ′}, after abc the set {d ′} and abd is not even a
valid trace of this implementation. The set PT ,Imp is {abc, abd ′, abcd ′}. Now {abc, abd ′, abcd ′} 6⊆
{a, ab, abc, abd, abcd, abdc} which means that PT ,Imp 6⊆ T . As can be seen also in Figure 3.10 this
implementation is not a correct implementation of Example. This fact can be discovered by the test
suite T derived with Autolink because, after performing the trace ab, Imp will send the output d ′ in
place of d and, after performing the trace abc, Imp will send the output d ′ in place of d . Both of these
situations will lead to a fail. The fact that Imp passes T does not hold is correctly discovered by the
non-inclusion of the sets PT ,Imp and T .

Labelled Transition System of Imp

d’

d’

d’

ba

c

b

b

State 1
ac b

a

a

b

Process Imp

a

c

Figure 3.10: The Imp implementation.

Now we will define the test suite which is produced by Autolink.

Definition 3.4.3 Let Q be the labelled transition system of the SDL specification S. Let κ be the set
of all predicates P defined by the options configuration of Autolink. Let ω be the set of all MSC
which can be valid test purposes for S. Then: TAuto = ∪P∈κ,M∈ω Autolink(Q, S(M), P) is the test
suite formed by the set of test cases produced by the Autolink algorithm.

The key observation is that for every trace of the specification, one can build an MSC test purpose
such that its set of traces contains the specification trace. By allowing full freedom in exploiting the
variations of the options configuration, there will be at least one test case which contains this trace. So
we can conclude that traces(Q) ⊆ TAuto. Because of the presence of the δ produced by the Timeouts,
TAuto contains also traces which do not belong to traces(Q) (the prefix trace which leads to δ (Timeout)
is contained by traces(Q), but the trace itself, because it ends with δ does not belong to traces(Q)).

Now we are ready to define a conformance relation. In order to deal with predicates P , each of
which represents a specific setting of the options configuration, we take the following point of view:
the tester is allowed to take full freedom in exploiting the variations of the options configuration. If
there exists at least one setting by which a certain error can be detected, then this is added to the
algorithm error detection capability as represented by the conformance relation.
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Definition 3.4.4 Let Spec be the labelled transition system of the SDL specification S and Imp be
the labelled transition system of an implementation (Imp is an IOT S , input complete in every state
- we made before this observation). Let TAuto be the set of the test cases produced by the Autolink
algorithm on Spec. Then: Imp Auto Spec ⇔ Imp passes TAuto.

It is quite easy to prove that Autolink generates sound tests and that it is exhaustive with respect to
the Auto conformance relation. The exhaustiveness is a result of the definition itself and the soundness
is easily proved because any test case is part of the set of all the test cases TAuto.

3.4.3 Classification of Autolink

Theorem 3.4.5 gives the translation of the Auto conformance relation in ioco terms.

Theorem 3.4.5 Let Imp be an implementation and let Spec be a specification. Let FAuto = {t ∈
traces(Spec) | out( Spec after t) 6= {δ}} be the subset of traces from traces(Spec) with the property

that every trace from this subset makes the specification produce an output.

1. ∀ Spec, Imp: Imp Auto Spec ⇔ Imp iocoFAuto Spec;

2. ∀ Spec, Imp: Imp ioconf Spec ⇒ Imp Auto Spec;

3. ∃ Spec, Imp: ¬( Imp ioconf Spec ) ∧ Imp Auto Spec;

Proof :

1. According to Definition 3.4.4:

Imp Auto Spec ⇔ Imp passes TAuto

The set PT (Definition 3.4.2) is formed by all the traces of the specification which end with an
output. Then:

PT = FAuto = {t ∈ traces(Spec) | out(Spec after t) 6= {δ}}

The set PTAuto,Imp is:

PTAuto,Imp = {t ′o | t ′ ∈ FAuto, o ∈ out(Imp after t ′)}

For having Imp passes TAuto, the relation which should hold (see Definition 3.4.2) is:

PTAuto,Imp ⊆ TAuto

This means that:

∀t ∈ PTAuto,Imp : t ∈ TAuto

Because t = t ′o with t ′ ∈ FAuto and o ∈ out(Imp after t ′) the relation becomes:

∀t ′o ∈ PTAuto,Imp : t ′o ∈ TAuto
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Now t ′ ∈ traces(Spec) because t ′ ∈ FAuto and FAuto ⊆ traces(Spec). For having t ′o ∈ TAuto it
is necessary that o ∈ out(Spec after t ′). This means that:

∀t ′ ∈ FAuto, o ∈ out(Imp after t ′) : o ∈ out(Spec after t ′)

This means that:

∀t ′ ∈ FAuto : out(Imp after t ′) ⊆ out(Spec after t ′)

Which we recognize as the definition of Imp iocoFAuto Spec. So we proved the point 1) of the
theorem.

2. The point 2) of the theorem is now easily proved because ioconf has more discriminating power
than iocoFAuto (FAuto ⊆ traces(Spec)).

3. For the point 3), let us consider the specification Spec and the implementation Imp from the Fig-
ure 3.11. The conformance relation ioconf is able to detect that after the trace a, Imp produces
the output c which is not specified by Spec. Autolink can not check what output is produced
after the trace a, because it looks at the outputs only in the moment when the specification pro-
duces an output (different from the null output); this is not the case for the trace a. So Autolink
will let the error in Imp go undetected. �

L  ={a, b}

L  ={c}

I

U

Spec Imp

Auto

ioconf
b

b

c b

a c

b

c b

a

a a

a a

b

Figure 3.11: The relation between ioconf and Auto.

So we showed that Auto has less detection power then ioconf. And in practice, in order to ar-
rive at its theoretical error detection capacity, an infinite number of MSCs must be created, which is
impractical (typical methodologies are based on the interactive use of the simulator or validator to
create MSCs; a similar remark applies to TGV; for TorX one needs infinitely many test cases, but
these are generated automatically). Because [Tre96] shows that the ioco conformance relation has
more discriminating power than ioconf, the Autolink algorithm has also less detection power than
TorX and TGV. As a remark: there exists a version of TGV which works on SDL specifications (see
Section 3.2); theoretically TorX can also work on LTS derived from SDL systems, although such a
version does not exist in practice.

Below we will provide some discussion related to the comparison of Autolink with UIO and UIOv
algorithms. We do not claim that we are exhaustive related to all the modifications and assumptions
which should be made for Autolink to work on FSM. We just provide, at a high level, a guideline of
how this can be done.

For comparing Autolink with UIO and UIOv methods we should adopt an FSM view, in the sense
that a null output can be present in the output set. Below, we will sketch a way of modifying Autolink
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for working on FSM, under the assumption that a null output can be present in the output set. For
such an output to exist, then the interface between the TTCN test (produced by Autolink) and IUT
should be able to detect whether a waiting time is specified in the current moment of execution (by a
null output of the TTCN test) and then interpret this waiting time as null and continue the execution of
the test. Otherwise a Timeout will be generated. For making it possible to apply all the formalization
from above, there should be two kinds of δ. The null output which is contained by the set of outputs
is the first δ. The second δ, different only as notation from null, will be the one correspondent to a
Timeout, i.e. an unspecified null output. In this way Autolink can generate test cases containing null
outputs and also generate Timeouts. Under these considerations Autolink can work on LTSs derived
from FSMs and a similar FAuto can be constructed for LTSs derived from FSMs. Then based on the
observation that FUIO ⊆ FUIOv ⊆ FAuto, we can conclude that in principle Autolink is more powerful
than the UIO and UIOv algorithms.

3.5 Concluding remarks

In this chapter we classified four known algorithms: TorX, TGV, Autolink (Telelogic/TAU) and UIO
(UIOv) algorithms (Phact, Conformance Kit). The classification was made as a function of the confor-
mance relation on which they are based, each conformance relation being expressed in terms of ioco
theory. Also we consolidated the conformance foundation of Autolink by reconstructing an explicit
conformance relation for it. This research treats only this criterion of classification (it looks at the
error detection power of the algorithms); other criteria such as complexity or timing are out of the
scope of this research.

From the theoretical analysis it resulted that TorX and TGV have the same detection power. Au-
tolink has less detection power because it implements a less subtle relation than the first two (some
situations exist in which the former two can detect an erroneous implementation and Autolink can
not). We can also remark that for TGV and Autolink, in order to achieve their theoretical error de-
tection capacity an infinite number of test purposes should be created, which is not always practical.
For TorX one needs infinitely many test cases, but these are generated automatically which is also
impractical because of resources and time limitations.

For comparing UIO and UIOv methods with Autolink, TGV and TorX one needs to assume that
these tools are restricted to work on FSMs. Moreover, the restrictions implies different views regard-
ing the presence or the absence of a null output in the output set for Autolink and ioco algorithms
(TorX and TGV). Considering that such versions exist, it can be also concluded that UIO algorithms
(Phact) have less detection power than Autolink, TGV and TorX. When the assumptions on which
UIOv is based hold (connected and minimal FSMs, the number of the states of the IUT is less than or
equal to the number of the states of the specification), the UIOv algorithms have the same detection
power as the three algorithms restricted to work on FSMs; but, because these assumptions do not hold
always in practice, we can conclude that the three algorithms are in general more powerful than the
UIOv algorithms.

As we mentioned in the introductory section of this chapter, there was also a benchmarking ex-
periment with these algorithms for test derivation. This experiment, complementary to the theory
presented here, will be described in the next chapter of the thesis.



Chapter 4

Testing the Conference Protocol

4.1 Introduction

One of the subgoals of the CdR project is benchmarking existing tools, using a common case study:
the Conference Protocol. The aim is to get insight in the strengths and weaknesses of the differ-
ent approaches, to identify shortcomings in the used approaches and to identify comparison criteria,
required computational effort and means to accommodate automation. Performance indicators for
benchmarking include test preparation time, test execution time and coverage.

In this context we performed a case study on the conference protocol as described in [TPHT96].
The conference protocol is a simple but non-trivial example. Several implementations in C exist next
to specifications in e.g. SDL, LOTOS, PROMELA and FSM. The conference protocol’s main function
is to provide a kind of chat box service. Users can register and un-register to conference chat boxes.
Once registered, a user can have his messages broadcasted to his conference partners.

The conference protocol implementations were automatically tested in two ways: on-the-fly and
batch-wise. The former addresses simultaneously test derivation and test execution, while the latter
first derives a series of tests, which are executed after derivation. The batch testing experiment is
based on the TAU tool set [AB98] using SDL, Phact using FSM and TGV using LOTOS. The on-the-
fly testing experiment is based on TorX using LOTOS and PROMELA.

This experiment complements the theoretical comparison reported in Chapter 3. The comparison
gave rise to three papers [BFdV+99], [BRS+00], [HFT00]. Our contribution in the whole effort was
the testing experiment with Autolink on the SDL Conference Protocol specification. This includes the
development of the SDL specification, developing MSC test purposes for the Conference Protocol,
deriving test cases with Autolink and running test cases against mutants. We will present the exper-
iment with Autolink on the Conference Protocol in detail. We will describe briefly the experiments
with TorX, TGV and Phact and we will compare the results obtained.

This chapter is structured as follows: Section 4.2 will explain the Conference Protocol specifi-
cations. The SDL specification will be presented in detail and the LOTOS, PROMELA and FSM
specifications will be described briefly. We will give also an overview of the existing implementations
in this section. Section 4.3 reports the test architecture used for the Conference Protocol case study
and the validation of the specification. Section 4.4 describes the testing activity. Again, our work, viz.
the testing experiment with Autolink, will be presented in more details, while the experiments with
TorX, TGV and Phact will be given briefly. Section 4.5 presents the conclusions.

49
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4.2 The Conference Protocol

The conference protocol described in this section is a simple protocol especially designed for studying
and comparing test methodologies. A detailed description of this protocol can be found in [TPHT96].
Several implementations and specifications are available. The purpose of this section is to explain the
conference protocol and to show some highlights from our SDL specification. This will be done in
Section 4.2.1 and Section 4.2.2. Next to the SDL specification, the other specifications of the Confer-
ence Protocol, in LOTOS, PROMELA and FSM, are briefly presented in Section 4.2.3. Section 4.2.4
describes the implementations of the Conference Protocol.

4.2.1 Overall description

The purpose of the protocol is to connect a number of users to each other and to support them in ex-
changing messages within conferences. A conference is identified by a conference name and contains
a number of users. There can be several conferences at the same time, but each user is engaged in at
most one conference. A user can join a conference and leave a conference. This gives rise to the ser-
vice primitives S Join and Leave. Once engaged in a conference, a user can send a multicast message
to all other users engaged in this conference, or receive a message from one of the other users. Thus
we have two more service primitives, Dataind and Datareq. The primitives Address and WhoAmI
serve for initialisation purposes and needs no be discussed here. Figure 4.1 shows the architecture of
the Conference Protocol as an SDL diagram. The above mentioned service primitives occur as signals
exchanged with the environment (representing the user) via the Conference Protocol Service Access
Points (C SAP).

System ConferenceProtocol 1(1)

SIGNAL
Dataind(Charstring),Leave,S_Join(Charstring,Charstring),Datareq(Charstring),
Udp_dreq(Charstring,Charstring),Udp_dind(Charstring,Charstring),
WhoAmI(PId),Address(Charstring);

SIGNALLIST Cout=Dataind;
SIGNALLIST Cin=S_Join,Datareq,Leave,Address;

SYNONYM NrProc Integer = 3;
SYNONYM Join_Pdu Charstring=’1’;
SYNONYM Leave_Pdu Charstring =’2’;
SYNONYM Answer_Pdu Charstring =’3’;
SYNONYM Data_Pdu Charstring= ’4’;

CPEntities UDProtocol

cpe(NrProc):CPEntities udp:UDProtocolC_SAP

Cin Cout
a U_sap

Udp_dind Udp_dreq,WhoAmI
cb

Figure 4.1: The Conference Protocol System.

The service provided by the Conference Protocol is not reliable. That means that messages may
get lost, but never get corrupted. Also, messages may be delivered out of sequence. We will not
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discuss the treatment of error situations that can occur due to the loss of messages.
As shown in Figure 4.1, each user is supported by a dedicated Conference Protocol Entity (CPE).

These CPEs implement the Conference Protocol by exchanging information via an underlying com-
munication service. The Protocol Data Units exchanged between the CPEs are: Join Pdu, Leave Pdu,
Answer Pdu, and Data Pdu. These messages are packed into frames and sent to or received from the
underlying communication service. Inside a frame the types of the PDUs are identified by numbers
from one to four: 1 for Join Pdu, 2 for Leave Pdu, 3 for Answer Pdu and 4 for Data Pdu. These
numbers are represented as characters in the SDL specification (for example ‘1’ stands for 1).

This underlying service is provided by the User Datagram Protocol (UDP, see [Com91]). This is a
connectionless unreliable service, which means that messages may get lost and may be delivered out
of sequence, but they never get corrupted, nor are they misdelivered.

The service primitives offered by the User Datagram Protocol are Udp dind to receive a message
from the UDP and Udp dreq to send a message to the UDP. In the SDL specification from Figure 4.1
we use the type Charstring to pack Protocol Data Units of the Conference Protocol Entities into UDP
service primitives.

At the end of this section we will give some explanation regarding the different types of boxes
which occur on the SDL system diagram from Figure 4.1. For a detailed description of them we refer
to [CCI92]. The box which is located outside of the main diagram containing the description of the
SDL system, on top and to its left, represents the package reference symbol. The package reference
contains references to packages with definitions that are to be included in the SDL system (see ‘Refer-
ence in Package’ and ‘Reference in System’ [CCI92]). We are using none of its functionalities in this
diagram. Inside the main diagram and below the system name (Conference Protocol), the additional
heading symbol is situated. It looks like a dashed package reference symbol. Some uses of it are:
to define inheritance and formal parameters. We are not using its functionalities in this diagram. To
the right of the system name there are two boxes (two rectangles each) which represent block type
reference symbols. In this diagram they contain the types CPEntities and UDProtocol. These types
are the types of the blocks which describe the behaviours of CPE and UDP. The blocks for CPE and
UDP are defined by the boxes at the bottom of the diagram. In the central part there is the text symbol.
Inside the text symbol, there can be defined signals (for example Dataind), signal lists (for example
Cout), data type definitions (not shown in this diagram), etc. As we already mentioned, in the bottom
there are two block boxes for CPEs and UDP.

4.2.2 Process description

The purpose of the Conference Protocol Entity is to maintain protocol information, such as the set of
users engaged in the same conference, and to transmit data from and to the user via the underlying
communication service. In this section we will only give a global description of the behaviour of a
CPE. The main loop of a Protocol Entity is displayed in Figure 4.2. The purpose of the initialization
procedure is to build certain data structures and to collect information about the configuration of the
system. After initialization, the CPE switches between two main states, namely, idle (i.e. not engaged
in a conference) and engaged (in a conference).

When the CPE is in state idle, it simply awaits a join message from the user, attributed with the
user name and the name of the conference to join. This join message must be forwarded to all users.
This is taken care of by procedure TransAll. The message transmitted consists of the type of the
message (a Join Pdu), the user name of the joining user and the conference name. Procedure Append
is invoked in order to append an entry to the list of users engaged in this conference. Directly after
this join message, the joining user is added as the only entry of this list.
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Process CPE_Process 1(1)

DCL U,C,d,AO,a Charstring;
DCL l Integer;
DCL t,lc Charstring;
DCL CSP ConfSet;

CInitialise Append PduCases

CInitialise

Idle

S_Join(U,C)

t:=Join_Pdu

d:=t//U//C

Append (AO,U,C)

TransAll(d)

Engaged

TransAll ClearCSP Int2CharS TransMes

 U = User_Name
 C = Conf_Name
 CSP  = Conference Set Parteners 
 t  = Type of Pdu
 d  = Data  for Udp_dind or Udp_dreq 
AO =  CPE Own Adress
 l   = Length of message reveived 
 a  = Address received 
lc = Length transforned in CharString

Engaged

Datareq(d)

t:=Data_Pdu

l:=Length(d)

Int2CharS

d:=t//LC//d

TransMes(d)

Engaged

Leave

 t:=Leave_Pdu

d:=t//U//C

TransMes(d)

ClearCSP

Idle

Udp_dind(a,d)

t:=Substring(d,1,1)

PduCases

Engaged

Figure 4.2: Behaviour of a Conference Protocol Entity.

Once in state engaged, the CPE is ready to accept several messages. Reception of a Leave message
brings CPE back to the idle state. However, the CPE must first inform all other CPEs engaged in the
same conference about this leaving. This is done by procedure TransMes sending a Leave Pdu. The
difference between TransMes and the aforementioned procedure TransAll is that the former sends a
message to all users engaged in the same conference, while the latter sends a message to all users
of the system. The set of all users of the system (the set of potential users) is determined once in
the initialization phase, while the set of users engaged in the same conference (the set of conference
partners) is updated after every join or leave message. Before entering the idle state, the list of users
engaged in the same conference must be cleared (procedure ClearCSP).

In case the user wants to send a message to all participants of the conference, a Datareq is received
by the CPE. This message is packed with some other information into a frame, which is sent to all
participants of the conference. The extra information is the type of the PDU (Data Pdu) and the length
of the message, length which will be transformed into a charstring by the procedure Int2CharS.

Next, we consider the case that a message from the underlying service arrives (a Udp dind). The
data in this message contains the PDUs exchanged between the CPEs. There are four different PDUs:
Join Pdu, Answer Pdu, Data Pdu, and Leave Pdu, which are all treated by procedure PduCases. The
type of the PDUs is extracted from the first position of the message by the procedure Substring

Reception of a Join Pdu with respect to the same conference results in an Answer Pdu to the
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originator of the message. In this way, the CPE issuing the join message can collect information about
all users currently subscribed to the conference.

Reception of an Answer Pdu is considered a reply to the join of this CPE. The only consequence
of this Answer Pdu is an update of the list of participants.

Reception of a Leave Pdu also only affects the list of participants.
An incoming Data Pdu is simply passed on to the user.
The behavioural description of the underlying communication service, the User Datagram Proto-

col is not given here. Its behaviour is simply that of a lossy, unordered queue.
Finally, we remark that the above specification of the Conference Protocol is not the only one

that we have produced. As will be explained in Section 4.3, we have exercised with different (small)
variations of the above SDL specification.

4.2.3 LOTOS, PROMELA and FSM specifications

The LOTOS specification (see [BFdV+99]) was mainly taken from [TPHT96]. The core of the spec-
ification is the (state-oriented) description of the conference protocol entity behaviour, which closely
follows the rules sketched above. The CPE behaviour is parameterized with the set of potential con-
ference partners and its C SAP and U SAP addresses, and is constrained by the local behaviour at
C SAP and U SAP. The instantiation of the CPE with concrete values for these parameters is part of
the specification.

In the PROMELA specification (see [BFdV+99]), the communication between conference part-
ners has been modelled by a set of processes, one for each potential receiver, to ‘allow’ all possible
interleavings between the several sendings of multicasted PDUs. Instantiating the specification with
three potential conference users, a PROMELA model for testing is generated which consists of 122
states and 5 processes. For model checking and simulation purposes the user not only needs to provide
the behaviour of the system itself, but also the behaviour of the system environment. For testing, this
is not required. Only some additional channels have to be marked as observable, viz. the ones needed
to check for in the test derivation algorithm.

A detailed description of the FSM model of the Conference Protocol can be found in [HFT00]. We
will outline here some of its elements. An EFSM (Extended Finite State Machine) description of the
Conference Protocol was written first. The EFSM was then converted in an FSM. Because the FSM
is considered by Phact to be a Mealy machine (see Section 3.3), there were some restrictions on the
way in which the Conference Protocol was modeled. For example, the alternation between inputs and
outputs is always required for an FSM. This implies that a sequence of multiple inputs with delayed
outputs is not considered, and hence not tested. Another restriction is that an FSM is not allowed to
have parameterized inputs and outputs. Therefore the number of conferences and the number of active
partners had to be fixed in the ESFM Conference Protocol specification to 2 and 3, respectively. These
are some restrictions which affected the design of the EFSM Conference Protocol. The main effect
of the restrictions is that some behaviours of the Conference Protocol could not be fully modeled and
therefore they could not be completely tested.

4.2.4 Conference Protocol Implementations

A conference protocol implementation is implemented on SUN SPARC workstations using a UNIX-
like (SOLARIS) operating system, and it is programmed using the ANSI-C programming language.
Furthermore, only standard UNIX inter-process and inter-machine communication facilities, such as
uni-directional pipes and sockets have been used.
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For the benchmarking experiment 28 different conference protocol implementations were devel-
oped. One of these conference protocol implementations is correct (at least, to the best of our knowl-
edge), whereas in 27 of these implementations a single error was injected deliberately. The erroneous
implementations can be categorized in three different groups: No outputs, No internal checks and No
internal updates. The group No outputs contains implementations that fail to send output when they
are required to do so. The mutants from this group are denoted (using the mutant numbers of the in-
ternal identification scheme, used also in [HFT00]) as 100, 111, 384, 548, 674 and 687. The group No
internal checks contains implementations that do not check whether the implementations are allowed
to participate in the same conference according to the set of potential conference partners and the set
of conference partners. The mutants of this group are denoted as 293, 398, 444 and 666. The group
No internal updates contains implementations that do not correctly administrate the set of conference
partners. The mutants of this group are denoted as 214, 247, 276, 289, 294, 332, 345, 348, 358, 462,
467, 738, 749, 777, 836, 856 and 945.

4.3 Validation and testing

In this section we will explain the test architecture which was used for testing the Conference Protocol.
This will be done in Section 4.3.1. Section 4.3.2 deals with the validation of the SDL specification.

4.3.1 The test architecture

In Section 4.2 we described the general architecture of the Conference Protocol. The general archi-
tecture is also represented in Figure 4.3. For testing certain restrictions were adopted with respect to
the number of CPEs and the reliability of the UDP service. For this reason the SDL specification used
for testing was a simplified version of the general SDL specification which formalizes the Conference
Protocol. We present the simplified architecture in Figure 4.5. Figure 4.4 shows an intermediate ar-
chitecture between the general one, from Figure 4.3, and the simplified one, from Figure 4.5. This
architecture was not used in practice.

The general architecture of the Conference Protocol with a complete number of CPEs and an
underlying communication service is shown in Figure 4.3.

CPE CPE CPE

UDP 

Figure 4.3: The architecture used for the internal check of errors.

The architecture is formed from three CPEs and one (unreliable) UDP. These are specified as ex-
plained in Section 4.2. The number of the CPEs is three because this is the minimum number required
to check various aspects of the Conference Protocol. This number is also used for the Distributed
Single Layer test architecture as discussed below (see Figure 4.5).

The architecture from Figure 4.4 is used for conformance testing of a CPE. The CPE is tested in
isolation, in an OSI IS-9646 style (see Chapter 1). It simply consists of a single CPE embedded in a
test environment. It is called an Ideal test architecture, since it supports testing of the CPE in isolation,
without being disturbed by the UDP service.
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                      PCO 

PCO

Tester

CPE

Figure 4.4: The ideal architecture.

This ideal architecture is very suited for automatic test generation. But regrettably, it is an un-
realistic architecture. In all practical test situations, the UDP can not be excluded. Therefore this
architecture could not be used in practice.

The third architecture does assume the presence of an implementation of the UDP service (see
Figure 4.5). It consists of one single CPE and one UDP service. It is called a Distributed Single Layer
test architecture and it is a variant of the Distributed Test Method architecture of OSI IS-9646 (see
Chapter 1).

Tester

U_sap
PCO PCO

UDP 

PCO
CPE

Figure 4.5: The Distributed Single Layer test architecture.

For the purpose of conformance test generation the UDP is assumed to be reliable. This is not
really true, but it makes test generation and benchmarking easier. In this architecture, the tester must
not only provide input for the CPE under test; it should also emulate two peer CPEs. Benchmarking
of testing tools and methodologies in the Côte-de-Resyste project is performed on the basis of this
third architecture from Figure 4.5.

The main differences between the SDL specifications, respectively the general one from Figure 4.3
and the simplified version from Figure 4.5, are the following:

• In the general SDL specification we could use all SDL constructs available for the complete
architecture. However, for test derivation a connection to the TTCN language had to be estab-
lished, which restricted the use of certain SDL constructs. The SDL type PId, e.g., used for
constructing addresses, had to be converted into a different type.

• As discussed before, the complete architecture contains a specification of an unreliable UDP,
while the Distributed Single Layer test architecture contains a reliable UDP.

• In the general architecture the number of CPEs can be considered as a parameter of the system.
For conformance testing, the number had to be fixed: one CPE was specified and other two
CPEs were assumed to participate in the network.

4.3.2 Validation

While specifying the Conference Protocol system in SDL, an important issue was correctness of the
obtained specification. Since complete verification was not the central issue in this testing project, we
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did not pursue complete formal verification of the correctness of the protocol. In order to improve
confidence and to detect internal errors, we used the simulator and the validator of the TAU tool set.
Both tools were applied to the general system specified in Figure 4.3. The simplified SDL version
was also checked for finding internal errors. Because this check was not so laborious as the one of
the general architecture, we will refer only to the checking of the general one. Moreover once we
were confident that the general system is error free, we could also be more or less confident that the
simplified version is error free.

The system was first simulated. A simple MSC, called Simulation Trace, derived from such a
simulation is shown in Figure 4.6. This figure shows three CPEs communicating with their users (i.e.
the environment). All users are represented by the same instance. The communication between the
CPEs (by means of the underlying communication service) is not shown in this figure. The scenario
represented in the MSC describes users Mark, John and Alex joining conference Conf , after which
John leaves the conference again. Then Mark sends a message to the conference, which is received
by Alex only.

Env      CPE1 CPE2 CPE3

S_Join

Leave

Datareq

Dataind

MSC Simulation Trace

S_Join

S_Join
[’John’, ’Conf’]

[’Alex’, ’Conf’]

[’Hello’]

[’Mark’, ’Conf’]

[’Hello’]

Figure 4.6: One MSC produced by a simulation.

The validator was used to prove absence of deadlock and to check several invariants, such as the
following two.

• the list of users contains only the names of the users which participate in the same conference;

• the CPE produces only messages of type Join Pdu, Leave Pdu, Answer Pdu, or Data Pdu.

The other specifications in LOTOS, PROMELA and FSM were also checked for the detection
of internal errors. We refer to [BFdV+99], [BRS+00], [HFT00] for more information regarding the
checking activity for these specifications.
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4.4 Testing Activities

This section describes our testing activities. The 27 erroneous mutants were tested without knowledge
of which errors had been introduced in these mutants. The SDL testing with Autolink is presented
in Section 4.4.1. This activity is our main contribution in the benchmarking experiment. The test
experiments performed with TorX, TGV and Phact are briefly presented in Section 4.4.2.

4.4.1 Autolink testing

We used the TAUtool kit for batch derivation and execution of test suites in TTCN from SDL [AB98].
The TAU Autolink test derivation tool generated TTCN test suites from the SDL specification, guided
by MSCs that were derived manually from the SDL specification using TAU’s SDL simulator. A
fragment of such an MSC is given in Figure 4.7.

C_SAP U_SAP2 U_SAP3Conf Prot

Udp_dind

S_Join

MSC Test Purpose

Udp_dind
[’1’, ’1 John Conf’]

[’John’, ’Conf’]

[’1’, ’1 John Conf’]

Figure 4.7: Fragment of an MSC describing a test purpose.

The SDL and MSC specifications are used by the Autolink tool for producing the constraint and
dynamic parts of a TTCN suite. See Figure 4.8 for an example. In order to complete the test suite,
a link executable is needed, which is derived from the SDL specification by the Link tool. This
executable contains information which is necessary to generate type declarations (e.g. for the PCOs).

Before running the derived TTCN test suite against our implementations, we have run it against
the original SDL specification, to validate the TTCN test suite, by running the SDL simulator and
Tau’s TTCN simulator in connection. This uncovered some problems in Autolink. Another problem
encountered was that for some MSCs no TTCN suites could be derived, although the MSC could be
successfully verified (this depends on the memory of our computers). Some of the above mentioned
problems may have been solved already in recent releases of the software involved.

The number of test cases derived equals 15. The time to build an MSC by means of simulation
is 3 minutes for an MSC with 7 events which includes the time to split it into parts (two parts in this
case). The division of an MSC test purpose in parts corresponds to the division of a test case in test
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Group                 :

Test Step Dynamic Behaviour

Test Step Name  : join

Comments          :

      

Nr.

1

2

3

4

5

Label Dynamic Description Constraints Ref. Verdict Comments

ctest1s_016C_SAP ! S_Join 

  U_SAP2 ? Udp_dind

      U_SAP3 ? Udp_dind

  U_SAP3 ? Udp_dind

      U_SAP2 ? Udp_dind

ctest1s_015

ctest1s_015

ctest1s_015

ctest1s_015

Test Dec 7,. 1998 ITEX 3.2

Objective             :
Default               : OtherwiseFail

  

Figure 4.8: The corresponding TTCN code for the previous MSC.

steps (see Chapter 1). The 3 minutes represent the shortest time. The longest time was 45 minutes for
44 events (15 parts). The average time was 12 minutes for an average of 20 events and 5 parts. The
test derivation time consists of the abovementioned times plus the time of the Autolink step generation
which was less than 8 seconds. The preceding splitting turned out essential for most cases (e.g. 14
minutes without splitting becomes 7 seconds with splitting). Two test cases which involved MSC with
many events could not be derived – not even after splitting.

We will sketch our informal strategy for defining test purposes in the next few lines. Most of the
test purposes are concerned with a single conference. Various arbitrary interleavings of join actions,
data transfer and leave actions give rise to one test purpose each. The other test purposes check the
absence of interference between two simultaneous conferences (for 3 users it makes no sense to have
more than 2 conferences).

The test execution time, running the TTCN which was derived in a batch-wise way against the
implementation, took from 2 to 5 seconds per test.

The detection of errors was done by repeating all the remaining 13 test cases for the 27 mutants
and the correct implementation. The correct implementation gets a pass verdict (the same happened
for TorX, TGV and Phact). Six fail verdicts were obtained for the mutants 289, 294, 332, 467, 749
and 945. The 15 mutants 111, 214, 247, 276, 293, 345, 348, 384, 444, 462, 548, 674, 687, 738 and
836 were given inconclusive verdicts that were the effect of a Timeout. Six mutants (100, 358, 398,
666, 777, and 856) went undetected, although some of them could have been found by a larger test
suite, but this costed at least several minutes per case. After analyzing the execution traces which
led to Timeouts, the Timeouts for 11 mutants represented discoveries of real errors. For four mutants
(214, 293, 444 and 836) the Timeouts could be justified by the behaviours of the SDL Conference
Protocol specification and for this reason these Timeouts did not represent discoveries of errors. We
will explain the Timeout analysis below.

The Timeout analysis took about 8 hours. The execution traces which led to Timeouts were short,
in average with a length below 13. There were only three traces with a length above 13 and below
21. Because the traces were short, we could analyze these traces quite easily. After the analysis,
the Timeouts revealed 11 errors in mutants. The Timeouts for four mutants could be justified by
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behaviours of the SDL specification. We will exemplify how the analysis was done for one discovery
of an error, respectively for mutant 111, and for one Timeout which was justified by the specification,
respectively for mutant 836. In a similar style the analysis for the rest of Timeouts was done.

The execution trace which led to a Timeout which revealed the error of mutant 111 is represented
in Figure 4.9. The instances of the MSC represent: the Conference Protocol (mutant 111) and the

MSC Execution Trace1

Udp_dind

Udp_dind

Udp_dreq2

C_SAP U_SAP2 U_SAP3Conf Prot

S_Join

Udp_dind
[’1’, ’1 John Conf’]

[’1’, ’1 Alex Conf’]

[’John’, ’Conf’]

[’1’, ’3 Alex Conf’]

[’1’, ’1 John Conf’]

Figure 4.9: The execution trace for the Timeout of mutant 111.

PCOs (channels) C SAP, U SAP2, U SAP3 through which the mutant communicates with the envi-
ronment. Sometime we will mention also U SAP which connects the CPE under test with the UDP.
The temporal ordering of the signals of the execution trace, as shown in the MSC of the Figure 4.9, is
the following:

1. the user John engaged in the conference Conf by sending the signal S Join(‘John’, ‘Conf’) via
channel C SAP ; he is the first participant in this conference;

2. the assumed CPE2 is announced that a user is engaged in the conference Conf by a Join Pdu
which is mapped in the output Udp dind(‘1’, ‘1 John Conf’) sent via channel U SAP2; we
remind that the first parameter ’1’ of Udp dind represents the address of the sending CPE and
the substring ’1’ from the second parameter of Udp dind, respectively ‘1 John Conf’, represents
the type of PDU, Join Pdu;

3. the assumed CPE3 is announced that a user is engaged in the conference Conf by a Join Pdu
which is mapped to the output Udp dind(‘1’, ‘1 John Conf’) sent via channel U SAP3; this
completes the registration of John as a participant of Conf;
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4. the assumed CPE2 sends a Join Pdu to CPE1 announcing that user Alex is engaged in the same
conference Conf too (the other broadcast messages of Alex, e.q. U SAP3, are suppressed here);
this Join Pdu is mapped in the input Udp dreq2(‘1’, ‘1 Alex Conf’) sent via channel U SAP2;

5. an Answer Pdu mapped in Udp dind(‘1’, ‘1 John Conf’) is expected to be received via U SAP2,
but no output occurs and the Timeout is produced instead.

We checked the transition between global states (see Section 3.4) of the SDL Conference Protocol
specification to find the terminal global states to which this trace leads. If none of the terminal global
states contains only inputs, in other words if each of them has the output Answer Pdu as possible tran-
sition, then the null output is unspecified and the Timeout produced by this execution trace represents
an error. The transitions between the global states of the SDL Conference Protocol specification are
represented in Figure 4.10.

{ idle, ready}
all queues empty

 {engaged, ready}
 all queues empty

Global states reached  after a S_Join

{engaged, ready}

U
U_SAP  = < Udp_Dreq[‘2’, ‘1 John Conf’], 
                     Udp_Dreq[‘3’, ‘1 John Conf’]>

{engaged, ready}
 U_SAP2  = < Udp_Dind[‘1’, ‘3 John Conf’] >U

S_Join[‘John’, ‘Conf’] via C_SAP

 

Udp_dind[‘1’,‘3 John Conf’] via U_SAP2

Udp_dreq[‘3’, ‘1 John Conf’] via U_SAP

Udp_dind[’1’, ’1 John Conf’] via U_SAP2

Udp_dind[’1’, ’1 John Conf’] via U_SAP3

Udp_dreq2[‘1’, ‘1 Alex Conf’] via U_SAP2

Udp_dreq[‘2’, ‘1 John Conf’] via U_SAP

Udp_dind[’1’, ’1 John Conf’] via U_SAP2 

Udp_dreq[‘3’, ‘1 John Conf’] via U_SAP

Udp_dind[’1’, ’1 John Conf’] via U_SAP3

Udp_dreq2[‘1’, ‘1 Alex Conf’] via U_SAP2

 Udp_dind[‘2’, ‘1 Alex Conf’] via U_SAP

Udp_dreq[‘2’,‘3 John Conf’] via U_SAP

Figure 4.10: Transitions between global states for the Timeout trace of mutant 111.

In the initial global state of the SDL specification, the two active processes which model the CPE1
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and UDP are in the states idle and ready. Each channel has two queues associated: one for outputs and
one for inputs. The convention is that the subscript I is added to the name of the channel for denoting
the queue for inputs and the subscript U is added to the name of channel for denoting the queue for
outputs. For example, for channel C SAP the queue for inputs is denoted as C SAP I and the queue
for outputs is denoted as C SAPU . All the queues of the channels are empty in the initial global state.
Receiving S Join(‘John’, ‘Conf’) from queue C SAP I makes the SDL process of CPE1 to go from
state idle to state engaged while puting the outputs Udp dreq(‘2’, ‘1 John Conf’) and Udp dreq(‘3’,‘1
John Conf’) in the queue U SAPU of channel U SAP. Each of the Udp dreq outputs is a mapping
of a Join Pdu which announces an assumed CPE partner, CPE2 or CPE3, that user John engaged in
conference Conf . The consumption of these two Udp dreq outputs represent internal transitions of the
SDL system, transitions which are not visible for the environment. In the new global state reached,
the set of active states is {engaged, ready}; the output queue U SAPU contains the two Udp dreq and
the rest of the queues are empty. The outputs contained by U SAPU are consumed in the same order
in which they arrived in the queue: first Udp dreq(‘2’, ‘1 John Conf’) and after that Udp dreq(‘3’, ‘1
John Conf’). Now the following sequences of transitions can be performed such that first the output
Udp dind(‘1’,‘1 John Conf’) via channel U SAP2 and then Udp dind(‘1’,‘1 John Conf’) via channel
U SAP3 are visible to the environment:

1. Udp dreq(‘2’,‘1 John Conf’) from U SAPU , Udp dind(‘1’,‘1 John Conf’) from U SAP2U ,
Udp dreq(‘3’,‘1 John Conf’) from U SAPU , Udp dind(‘1’,‘1 John Conf’) from U SAP3U ;

2. Udp dreq(‘2’,‘1 John Conf’) via U SAPU , Udp dreq(‘3’,‘1 John Conf’) from U SAPU ,
Udp dind(‘1’,‘1 John Conf’) from U SAP2U , Udp dind(‘1’,‘1 John Conf’) from U SAP3U .

Each of these transitions leads to a global state (in total 2) in which the set of active states is
{engaged, ready} and all the queues are empty. Now the input Udp dreq2(‘1’,‘1 Alex Conf’) is sent
from the environment via channel U SAP2 (see the execution trace from Figure 4.9). This input
which is a mapping of a Join Pdu causes the following chain of transitions between the global states
of the SDL specification: 1) the starting point is a global state (one of the two which can be reached
after S Join) which has the set of active states {engaged, ready} and all the queues empty; 2) the
sequence of transitions is: Udp dreq2(‘1’,‘1 Alex Conf’) from U SAP2 I , Udp dind(‘2’,‘1 Alex Conf’)
from U SAPI , Udp dreq(‘2’,‘3 John Conf’) from U SAPU ; 3) an ending state which has the set of
active states {engaged, ready}, the output queue U SAP2U storing the output Udp dind(‘1’, ‘3 John
Conf’) which is a mapping of an Answer Pdu and the rest of the queues empty. Each of the 2 ending
states which can be reached has as possible transition the output Udp dind(‘1’,‘3 John Conf’) which is
present in the queue U SAP2U . Therefore a null output is not specified and for this reason the Timeout
in this case represents an error.

Now we will analyse the execution trace which led to the Timeout for mutant 836. The situation
is captured in the MSC from Figure 4.11.

The execution trace is longer than the trace represented in this figure. For simplifying the expla-
nation we cut the beginning part which ends into a Leave. The Leave can be thought as being a reset
signal which brings the system in the initial state. Therefore, without loss of generality, we could cut
the initial part and still preserve the situation which led to the Timeout. The execution trace has the
signals ordered in the following way:

1. the user John engaged in the conference Conf by sending the signal S Join(‘John’, ‘Conf’) via
channel C SAP;
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C_SAP

S_Join

Udp_dind

Udp_dreq2

Udp_dind

Udp_dind

U_SAP2 U_SAP3Conf Prot

MSC Execution Trace 2

Datareq
[’1’, ’3 Alex Conf’]

[’1’, ’4 Hello’]

[’John’, ’Conf’]

[’1’, ’1 John Conf’]

[’Hello’]

[’1’, ’1 John Conf’]

Figure 4.11: The execution trace for the Timeout of mutant 836.

2. the assumed CPE2 is announced that a user is engaged in the conference Conf by a Join Pdu
which is mapped to the output Udp dind(‘1’, ‘1 John Conf’) sent via channel U SAP2;

3. the assumed CPE3 is announced that a user is engaged in the conference Conf by a Join Pdu
which is mapped to the output Udp dind(‘1’, ‘1 John Conf’) sent via channel U SAP3;

4. the assumed CPE2 sends an Answer Pdu to CPE1 announcing that user Alex is engaged in
the same conference Conf ; this Answer Pdu is mapped into the input Udp dreq2(‘1’, ‘3 Alex
Conf’) sent via channel U SAP2;

5. input Datareq(‘Hello’) is sent via channel C SAP to CPE1;

6. output Data Pdu mapped to Udp dind(‘1’, ‘4 Hello’) is expected to be received via U SAP2,
but none output occurs and the Timeout is produced.

There is a tricky point in this MSC situation. First we remind that an Answer Pdu (from step 4))
causes no response from the CPE which received it. Now the tricky thing is that the two inputs (from
step 4) and 5)) are sent one after another, without outputs between them. Completely performing
Answer Pdu and the internal transition associated with it before Datareq justifies the expectation of
a Data Pdu (from step 5)). But, if the Answer Pdu is not performed completely before Datareq
(Datareq is consumed immediately after the Answer Pdu and before the internal transition associated
with Answer Pdu) then this will lead to a global state in which no output is expected (it contains
only inputs as transitions). This global state, using the ioco terminology, is a quiescent state. In this
quiescent state, a null output can be observed. Therefore the null output can be produced by the
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 {engaged, ready}
 all queues empty

 {engaged, ready}
 all queues empty

{engaged, ready}

only inputs

U

Global states reached  after S_Join

{engaged, ready}
all queues empty

Datareq[‘Hello’] via C_SAP

Datareq[‘Hello’] via C_SAP via U_SAP

Udp_dreq2[‘1’, ‘3 Alex Conf’] via U_SAP2 Udp_dreq2[‘1’, ‘3 Alex Conf’] via U_SAP2

 Udp_dind[‘2’, ‘ 3 Alex Conf’] via U_SAP

 Udp_dind[‘2’, ‘ 3 Alex Conf’] 

Udp_dind[‘1’,‘4 John Conf’] via U_SAP2

 U_SAP2   = < Udp_dreq[‘1’, ‘4 Hello’] >

Figure 4.12: Transitions between global states for the Timeout trace of mutant 836.

SDL specification after the execution trace from Figure 4.11 and, consequently, a Timeout event is
specified.

In Figure 4.12 we showed the transitions between the global states of the SDL Conference Protocol
specification for the MSC of Figure 4.11. We did not represent in this figure the transitions for S Join
(which includes the signals from step 1), 2) and 3)), because this is explained in Figure 4.10. In
Figure 4.12 we represented only the transitions between global states for the sequence Answer Pdu,
Datareq (from step 4) and 5)). The starting point is one of the global states which can be reached
after performing S Join. In such a state, the set of active states is {engaged, ready} and all the output
queues are empty. Performing the sequence Udp dreq2(‘1’, ‘3 Alex Conf’) via U SAP2, Udp dreq
(‘2’, ‘3 Alex Conf’) via U SAP, Datareq(‘Hello’) via C SAP leads to a global state in which an output
is expected, respectively Udp dreq(‘2’, ‘4 Hello’). This output is a mapping of a Data Pdu and it
is contained in the queue U SAP2U . If this would be the only global state which could be reached
the Timeout would not be justified. But there is another sequence which can be performed (see
Figure 4.12) which is: Udp dreq 2 (‘1’, ‘3 Alex Conf’) via U SAP2, Datareq ( ‘Hello’) via C SAP,
Udp dind ( ‘2’, ‘3 Alex Conf’) via U SAP. This sequence differs from the first one by the fact that
the internal transition Udp dind is executed after the inputs Answer Pdu and Datareq (not between
them as in the first sequence). This sequence leads to a global state in which no output is expected
(the output queues are empty). This state is quiescent (using ioco terminology). For this reason the
Timeout is specified for the MSC of Figure 4.11. Therefore the Timeout generated for mutant 836
did not represent a discovery of an error. In a similar style as presented above we did the analysis of
Timeouts for the rest of mutants.

In conclusion, Autolink was able to detect 17 mutants. By deriving more test cases it will be
possible to increase its error detecting capability. The analysis of the Timeouts was done manually
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and it was not that simple. This experiment suggests that an automatization of such analysis can be
beneficial for the tool because the human effort will be reduced and the tool will be able to detect
more errors for the same amount of test runs.

4.4.2 TorX, TGV and Phact testing

For a detailed description of the test activity with TorX see [BFdV+99]. With TorX two separate test
activities were performed by using the LOTOS and PROMELA specifications.

Using the LOTOS specification, TorX was repeatedly running against the 27 mutants, until either a
depth of 500 steps was reached or an inconsistency between TorX and an implementation was detected
(i.e., fail, usually after some 30 to 70 steps). On average, the time for a single step took 3 seconds
on a 296 MHz Sun UltraSPARC-II processor. TorX was able to detect 25 mutants. The two mutants
(444 and 666) that could not be detected accept PDUs from any source – they do not check whether
an incoming PDU comes from a potential conference parter. This is not explicitly modeled in the
LOTOS specification (and also in the SDL, PROMELA and FSM specifications), and therefore these
mutants are ioco-correct with the correct implementation, which is why they can not be detected.

With the PROMELA based TorX the experiments that were done with the LOTOS based TorX
were repeated. The same results were received, but in shorter time (on average about 1.1 step per
second). The PROMELA based TorX was able to detect the same 25 of the 27 mutants as the LOTOS
based TorX.

For a detailed description of the TGV test activity see [BRS+00]. We will outline the key elements
of this experiment below. TGV used the LOTOS specification of the Conference Protocol for deriving
tests. For defining test purposes two approaches were followed: 1) the test purpose was designed
manually and 2) the test purposes were generated automatically.

For the first approach, 11 basic test purposes were generated for basic protocol functionalities
(such as joining, leaving and data transfer) and 8 more complex test purposes. The time effort spent
on designing and writing these 19 test purposes, generating the correspondent test suite with TGV and
executing it against the mutants was 4 hours. Because one mutant went undetected, it was tried to be
created 7 new test purposes. After 10 hours of work the new test design process was stopped.

For generating the test purposes automatically the following steps were performed: the CADP
simulator was used to simulate the specification randomly. With this tool, 200 traces of 200 steps
were produced and were translated into test purposes with a script. The test suite generated for these
test purposes was able to detect all the ioco mutants. In [BRS+00] the timing for this approach is not
reported.

For a detailed description of the testing activity performed with Phact see [HFT00]. We will
sketch the key elements of this testing experiment. Using Phact, 82 tests were generated from the
EFSM specification. The length of the test cases varied from 6 to 16 events. The timing for Phact is
not reported in [HFT00]. The 82 test cases were successively applied to the set of mutants. When
executing, 21 ioco-mutants were detected, and the rest of the mutant went undetected. The mutants
289, 293, 398, 444, 666 and 749 were the ones which were not detected.

4.5 Conclusions

In this chapter we have studied the feasibility of automatic test derivation of four tools: Autolink,
TorX, TGV and Phact. To conduct this study, a protocol has been modelled in four formal specifi-
cation languages: SDL, LOTOS, PROMELA and FSM. Also, a set of concrete implementations has
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been constructed, some of which were injected with faults that were unknown to the person that as-
sisted in the test process. The results have been compared with respect to the number of erroneous
implementations that could be detected for each of the tools, and the time and effort that it took to test
the implementations.

We recall that in Chapter 3 we classified the four tools according to their conformance relations.
Roughly speaking, it was concluded that TorX and TGV has the same detection power, Autolink has
less detection power than the first two but it can be expected to have more detection power than Phact.
These were the theoretical results. The results of the experiment are summarized below. It can be
observed that a criterion of comparison is common for both the theory and the experiment, namely
the number of errors which can be detected by a tool. In addition the experiment takes into account
another criterion, namely the required computational effort for generating and executing the test cases.

First we will illustrate the main comparison results for Autolink and TorX. In the on-the-fly ap-
proach of TorX tests were fully automatically generated (in a random way) and executed. In the batch
approach of Autolink the construction of tests needed manual assistance. Execution in the batch ap-
proach was done automatically. Both the on-the-fly approach and the batch approach were able to
detect many erroneous implementations. Using the on-the-fly techniques all erroneous implementa-
tions could be detected, except for those that contained errors that simply could not be detected due to
modelling choices in the specification and the choice of implementation relation. Using batch testing
based on SDL fewer erroneous implementations were detected. On the one hand this is caused by
the occurrence of Timeouts and on the other hand because fewer tests were executed due to the fact
that manual assistance during test generation was needed. By deriving more test cases in the batch
approach it will be possible to increase the error detecting capability. However, the results in this
chapter support the assumption that if the test runs ‘sufficiently long’ then eventually all errors will be
found. In the batch approach more human assistance is needed. Consequently, an error can often be
found in less steps using the batch approach than in the on-the-fly approach.

When the test purposes were generated automatically, TGV was able to detect the same number
of mutants as TorX. Phact was able to detect fewer mutants. While Autolink, TGV and TorX are able
to generate larger test suites than the ones reported in this chapter, Phact reached the maximum size of
its generated test suite. Therefore, Phact can not detect more mutants than the ones which it detected.
There are also strong similarities between the manual approach for TGV and Autolink. In both cases,
the time needed for the manual creation of test purposes was significant. The numbers of the test
purposes which were created and transformed in test cases were small. For Autolink this depended
also on the memory of the computers used. Consequently not all mutants could be detected (in both
situations), some of them could have been found by larger test suites.

The experimental results that are presented in this chapter are based on a case study of a single
protocol and a limited number of implementations. To obtain more valuable results the number of
cases studies and the number of experiments per case study should be increased. To enable a rigid
comparison of test generation and test execution tools by different vendors one (or more) case studies
containing specifications and sets of implementations can be made publicly available, so that they
can be used by several tool vendors to compare their test generation/execution tools with each other.
The case study in this chapter can be seen as one of the first initiatives towards such a test tool
benchmarking activity.
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Chapter 5

Probabilities in the TorX test derivation
algorithm

5.1 Introduction

One goal of the CdR project was to increase the performance of the prototype tool TorX developed
within this project. One way for reaching this goal was by adding a suitable control mechanism to the
test generation process of TorX. This can be done by extending TorX with explicit probabilities. Using
these probabilities, the generated test suite can be tuned and optimized with respect to the probabilities
of finding errors in the implementation. This chapter presents a probabilistic extension of TorX.

The TorX test generation tool is based on the ioco theory (see Chapter 2). In the heart of the theory
is the ioco relation, which formally expresses the assumptions about stimulation and observation
during testing. An algorithm for deriving a sound and complete test suite with respect to this relation
forms the center of the TorX test generation tool. This algorithm is described in Section 2.2.

The algorithm is non-deterministic in the sense that in every state where the system can do both
an input and an output, a choice must be made between these two. In practice a random generator was
used to resolve this non-determinism, which resulted in an equal distribution of chances.

Practical experiments showed that in some cases this equal distribution served very well, but in
other cases we encountered an anomalous situation. A case study, concerning an elevator, indicated
that the derived test suite was not optimal. Analysis showed that the test suite mostly contained rather
uniform test cases with respect to the ratio of inputs and outputs, thereby neglecting a collection of
unbalanced behaviours which were very interesting for this particular case study. The natural solution
to this problem is to extend the test derivation algorithm with explicit probabilities.

This research on the role of probabilities in test derivation is also inspired by our experiments,
performed with the SDT tool set from Telelogic (see [SKGH97]), on testing the Conference Protocol.
This case study also showed that a poor test suite may result when simply selecting at random between
inputs and outputs.

These are the main motivations for the research presented in this chapter. We will study the impact
of parameterizing the TorX test derivation algorithm with the probabilities of selecting between inputs
and outputs. Furthermore, we will derive the optimal values for these probabilities given a desired
ratio between inputs and outputs in the test cases.

This chapter is structured as follows. We refer to Chapter 2 for a description of the ioco theory and
TorX. The proposed modification is presented in Section 5.2. Here we also calculate optimal values
for the probabilities. In Section 5.3 we present a simple example. Our findings are summarized in
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Section 5.4.

5.2 Adding probabilities

Our optimization of the TorX algorithm assigns probabilities p1, p2 and p3 to the three choices of the
algorithm. To get started, we assume that the probabilities p1, p2 and p3 are global by which we mean
that they do not depend on the specific moment of generation. Furthermore, we have:

p1 + p2 + p3 = 1, p1 6= 0, p2 6= 0, p3 6= 0

The modified TorX algorithm now reads as follows:

• Take Choice 1 (*terminate the test case*) with probability p1;

• Take Choice 2 (*supply an input for the implementation*) with probability p2; select every
input with the same probability; (we assume a finite input domain);

• Take Choice 3 (*check the next output of the implementation *) with probability p3.

An important observation is that the extended algorithm still produces the same test cases. We only
control the chance of a trace to occur. This means that it keeps the properties of the old algorithm
(Theorem 2.1.11): a generated test-case is finite, sound and the set of all tests is exhaustive.

After having extended the algorithm with probabilities, the question which arises is: what value
should we give to these probabilities? The answer to this question is related to the ratio of inputs and
outputs. Given a required ratio between the inputs and the outputs in a test trace what values should
the probabilities of sending an input and receiving an output have? The answer will be formulated by
the Lemma and the Theorem that follow.

Lemma 5.2.1 will provide a formula for the probability that the algorithm will arrive at the end of
one given trace. Theorem 5.2.2 will compute a configuration for p1, p2 and p3 which maximizes the
probability to arrive at the end of one given trace.

Now, for a good understanding, we will define a special tree which will be used in the subsequent
proofs. We call this tree the behaviour tree and it is formed by the union of all the traces derived from
a specification S (extended with ε). An example of this tree is given in Figure 5.1.
The behaviour tree is composed of the following kinds of nodes:

• Final: in this node the trace of the test stops with a verdict (pass, fail);

• Intermediate: this node contains the name of the input or of the output or of the null output δ.

In the behaviour tree of Figure 5.1 the pass final state appears twice in one level because one
pass verdict can be generated from Choice 1 and one from Choice 3. When we refer to a given trace
we refer to a trace of this tree which starts from the Root state and stops somewhere in the tree (the
traces can be infinite). The signals from the trace are mapped to the non-root nodes of the behaviour
tree. In the behaviour tree all the tests generated by the algorithm are included. Each intermediate
node of the tree is reached through a trace which is going from the root to that intermediary node.
After performing this trace, an implementation can produce an output (from a subsequent node of the
intermediary node considered) with a given probability.
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Figure 5.1: The behaviour tree for the extended TorX algorithm.

Lemma 5.2.1 Consider an arbitrary but fixed finite trace which does not end in a final verdict. Let n
be the number of inputs on the trace and p the length of the trace. Let r l , l = 1, 2, 3..n be the number
of inputs which can be selected when the l-th input on the trace is selected. Let Pk , k = n + 1, 2, 3..p
be the probability of the (k −n)-th output in the trace to be produced by the implementation. Then the
probability P to generate this trace with the TorX algorithm is computed in the following way:

P =
n

∏

l=1

(
1
rl

× p2) ×
p

∏

k=n+1

(Pk × p3)

A good illustration is given in the example from Figure 5.2. A formal elaboration of the proof can
be found in Appendix A.1.

*(1/3*p   )2

2*(1/3*p  )

  

Root

I

I

O

O

b

c

d

Oe

The probability of the Root is 11

 

 

 

There are 5 inputs

There are   3 inputs

b 

c 

e

The probability that output O   is sent 

The probability that output O   is sent

 

 

*(1/4*p   )

1*(1/5*p  )2

2

2

2
*(1/4*p   )

a

21*(1/5*p  )*(1/3*p  )

3

3

3

3

3

3

3

3

1*(1/5*p  )*(1/3*p  )

1*(1/5*p  )*(1/3*p  )

1*(1/5*p  )*(1/3*p  )

by the implementation is 1/3   

by  the implementation is 1/4 

The probability that output O   is sent
by  the implementation is 1/2 

*(1/4*p  )

*(1/2*p  )

Figure 5.2: An example of computing the probability to generate a given trace.
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Example In the considered trace there are two inputs Ia, Id and three outputs Ob, Oc and Oe. The
number of all inputs which can be selected when Ia is selected is five and for Id it is three. Then
the probability that the input Ia or the input Id is chosen from the set of inputs is 1

5 respectively 1
3

(independent events). The probability that the implementation sends the output Ob, Oc or Oe is 1
3 , 1

4
and 1

2 respectively. The probability of arriving in the Root state is always one. In the computation by
S1 we mean the root node, S2 stands for the node which contains Ia , S3 for Ob, S4 for Oc, S5 for Id

and S6 for Oe. With this the computation of arriving at the end of this trace is:
P(S1) = P(Root) = 1
P(S2) = P(S1) × P(Select input Ia) × P(Choice 2) = 1 × ( 1

5 × p2)

P(S3) = P(S2) × P(Ob) × P(Choice 3) = 1 × ( 1
5 × p2) × ( 1

3 × p3)

P(S4) = P(S3) × P(Oc) × P(Choice 3) = 1 × ( 1
5 × p2) × ( 1

3 × p3) × ( 1
4 × p3)

P(S5) = P(S4)× P(Select input Id)× P(Choice 2) = 1× ( 1
5 × p2)× ( 1

3 × p3)× ( 1
4 × p3)× ( 1

3 × p2)

P(S6) = P(S5)× P(Oe)× P(Choice 3) = 1×( 1
5 × p2)×( 1

3 × p3)×( 1
4 × p3)×( 1

3 × p2)×( 1
2 × p3) =

∏2
l=1(

1
nl

× p2) ×
∏5

k=3(Pk × p3)

with n1 = 5, n2 = 3, P3 = 1
3 , P4 = 1

4 , P5 = 1
2 .

Once we have the formula for the probability of generating a trace we can look for the optimal
configuration of the global probabilities in function of a given ratio between inputs and outputs. The
following theorem solves this optimality problem.

Theorem 5.2.2 Consider an arbitrary trace which does not end in a final verdict. Let n be the number
of inputs on the trace and m the number of outputs on the trace (n, m ≥ 1).

a) The probability to generate this trace reaches a maximum for p1 → 0, p2 = n
n+m × (1 − p1)

and p3 = m
n+m × (1 − p1) (we will explain about p1 → 0 at the end of this section);

b) For every trace with ratio between inputs and outputs r = n
m the probability to generate this

trace reaches a maximum for p1 → 0, p2 = r
r+1 × (1 − p1) and p3 = 1

r+1 × (1 − p1).

Proof :

a) The probability to generate a given trace is a function of two variables p2 and p3 (Lemma 5.2.1).
For obtaining the extremal values for this probability the differential of the probability must be
0. Before doing this we will change the probability P(p2, p3) to depend on p1, p2, writing
P(p1, p2). From

p1 + p2 + p3 = 1

we derive

p3 = 1 − p1 − p2

Conform Lemma 5.2.1:

P(p2, p3) =
n

∏

l=1

(
1
rl

× p2) ×
n+m
∏

k=n+1

(Pk × p3) = pn
2 × pm

3 ×
n

∏

l=1

1
rl

×
n+m
∏

k=n+1

Pk



5.2. ADDING PROBABILITIES 71

Therefore

P(p1, p2) = pn
2 × (1 − p1 − p2)

m ×
n

∏

l=1

1
rl

×
p

∏

k=n+1

Pk

We observe that
∏n

l=1
1
rl

and
∏n+m

k=n+1 Pk are constants which will be called C1 and C2. The
differential of P(p1, p2) is:

d P(p1, p2) =
∂ P
∂p1

(p1, p2)dp1 +
∂ P
∂p2

(p1, p2)dp2

We want both derivatives to be equal to 0.






∂ P
∂p1

(p1, p2) = 0

∂ P
∂p2

(p1, p2) = 0

Then

∂ P
∂p1

(p1, p2) = C1 × C2 × m × (−1) × pn
2 × (1 − p1 − p2)

m−1

and

∂ P
∂p2

(p1, p2) = C1 ×C2 × (n × pn−1
2 × (1− p1 − p2)

m +m × (−1)× pn
2 × (1− p1 − p2)

m−1)

Putting the first derivative equal to zero yields

C1 × C2 × m × (−1) × pn
2 × (1 − p1 − p2)

m−1 = 0

Then
{

p2 = 0 or
p2 = 1 − p1

The points are (p1, 0) and (p1, 1 − p1). Putting the second derivative equal to zero yields

C1 × C2 × pn−1
2 × (1 − p1 − p2)

m−1 × (n × (1 − p1 − p2) − m × p2) = 0

Then






p2 = 0 or
p2 = 1 − p1 or
n − n × p1 − n × p2 − m × p2 = 0 ⇒ p2 = n

n+m × (1 − p1)

The points are (p1, 0), (p1, 1 − p1) and (p1,
n

n+m × (1 − p1)).
Now the point of maximum is for

P(p1,
n

n + m
× (1 − p1)) = C1 × C2 × (

n
n + m

)n × (1 −
n

n + m
)m × (1 − p1)

n+m

( P(p1, 0) = 0 and P(p1, 1 − p1) = 0 give points of minimum)
We have the following:
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– for P maximal we need (1 − p1)
n+m maximal; therefore p1 → 0;

– p3 = 1 − p1 − p2 = m
n+m × (1 − p1).

b) Let us consider a finite trace with ratio n
m where n is the number of inputs and m the number of

outputs on the trace. Then to maximize the probability to generate this trace we have (point a))
p2 = n

n+m × (1 − p1) ⇒ p2 =
n
m

n
m +1 × (1 − p1) and

p3 = m
n+m × (1 − p1) ⇒ p3 = 1

n
m +1 × (1 − p1).

Now, because r = n
m , we obtain the formulas of point b) of the theorem: p2 = r

r+1 × (1 − p1)

and p3 = 1
r+1 × (1 − p1). �
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Figure 5.3: Tests derived from candy machine represented in an HMSC.

In the theorem we have that p1 → 0 for P maximal. We did not put p1 = 0 in order to give to the
TorX algorithm a possibility to finish. We remind that p1 is global, which means that its value does
not change in time. In practice, this can be turned into p1 = 0 in different ways. For example, as
TorX is doing in practice, two configurations for p1, p2 and p3 can be used. In the first configuration
the probabilities are p1 = 0 and p2, p3 6= 0 till a predefined length limit of the generated trace is
reached. The results of the theorem can be applied because p1, p2, p3 do not change values (in the
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generation period they are global). When the length limit is reached the generation and execution
stops (p1 = 1, p2 = p3 = 0; this is the second configuration).

5.3 Application

In this section we will work out an example for the probabilistic theory developed up to this point in
this chapter. Let us consider all traces of the tests generated from the candy machine from Figure 2.1
with a length less than or equal to three. In practice, these traces can be obtained by using TorX
in batch mode. They are the traces of the exhaustive test suite generated with TorX for the candy
machine with a length less than or equal to three. These traces are represented in the HMSC (see
[MR97]) from Figure 5.3.
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Figure 5.4: Fail traces represented in HMSC.

We use HMSC (High level Message Sequence Chart) to represent the test cases because this is a
convenient technique which supports reusing parts of the diagram.

In the HMSC the fail traces {δ liq, δ choc, δ δ liq, δ δ choc} are not represented because only
choosing to check the outputs will not lead to interesting test cases (so for the sake of simplicity we
skipped some of them). Our example works even if these traces are present in the set of fail traces
considered.

The set of all the fail traces are represented in Figure 5.4. In this figure, also the ratio between the
number of inputs in that trace and the number of outputs is represented. For example the trace but δ

liq has one input and two outputs. Therefore its ratio is 1
2 . The same procedure is applied to every

trace in the set.
In this set of fail traces there are two traces with a ratio between inputs and outputs of 0

1 , five with
a ratio 1

2 , one with ratio 1
1 and one with ratio 2

1 . It is clear that the number of traces with ratio 1
2 is

the largest and we will choose it to be the ratio between inputs and outputs ( n
m = 1

2 ). For computing
the new configuration of the probabilities (Theorem 5.2.2) we choose p1 = 0 if the length of the trace
is less than three and p1 = 1 if the length is equal to three. Because the theorem applies to traces
which do not end in final verdicts, in the computation of p2 and p3, p1 will be zero. By applying
Theorem 5.2.2 b) we obtain:

p2 =
1
2

1
2 +1

× (1 − 0) = 1
3 ≈ 0.33

and
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p3 = 1
1
2 +1

× (1 − 0) = 2
3 ≈ 0.67

The old configuration of the TorX algorithm of (p2, p3) was (0.5, 0.5); the new one is (0.33, 0.67).
For computing the probability of getting a fail when the algorithm runs one time against an erroneous
implementation (which has all the fail traces from the set) first the probability of every individual fail
trace should be computed. The probability that the TorX algorithm generates and executes a trace is
given by Lemma 5.2.1. A graphical representation for the computation of the probability of the trace
(but δ liq) is given in Figure 5.5 for the old and the new configuration of (p2, p3).

After performing the trace but, the IUT can send three outputs δ, liq, choc. Therefore the proba-
bility of sending one of them, such as δ, is 0.33. In the same way the probability of sending liq is also
0.33. By applying the lemma it results that the probability of generating and executing the trace but
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Figure 5.6: The probability of getting a fail in n test generation-executions.
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δ liq is 0.0138 for the old configuration of the probabilities and 0.0164 for the new one. In a similar
way the probabilities for every individual trace which ends in a fail are computed.

It is not entirely trivial to see that optimizing the chance of generating each individual fail trace
leads to a better error detection capability for the suite as a whole. In order to show that this is the
case, we made some further calculations in the context of this example.

The probability P(fail, TorX, 1) of getting a fail verdict when the TorX algorithm runs once
against the IUT is obtained by summing the probabilities of every individual fail trace; so for the old
configuration this probability is Pold(fail, TorX, 1) = 0.51 and for the new configuration it is Pnew(fail,
TorX, 1) = 0.62. This simple case clearly demonstrates that a modification of the probabilities can
lead to a higher chance of discovering an erroneous implementation in the same number of algorithm
runs. This is also clear from the graph in Figure 5.6 in which the probability of getting a fail, denoted
as P( fail, TorX, n), as a function of the number n of test generation-executions is expressed (for the
old and for the new probabilities configuration).

5.4 Conclusions

In this chapter we proposed to modify the TorX test derivation algorithm such that the probabilities of
the non-deterministic alternatives are made explicit.

We argued that in some cases the generated test suite can be optimized by adapting the values of
these probabilities. Case studies gave evidence that assuming an equal distribution of chances, the
TorX algorithm will sometimes yield relatively few really interesting test cases.

An important question is, of course, whether there are heuristics which help in selecting appropri-
ate values for the probabilities. In the case studies which we performed, the ratio between the number
of inputs and the number of outputs in a test trace influenced the quality of the test cases. Therefore,
we derived in this chapter the optimal values for the probabilities in the algorithm given some pre-
ferred ratio between the number of inputs and outputs. Our calculations on the toy example of the
candy machine confirm that an appropriate choice of the probabilities improves the ability to detect
errors in the implementation.

The proposed modification of the TorX algorithm has already been implemented. In the next
chapter we will study the experiment with the Probabilistic TorX on the Conference Protocol case
study.
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Chapter 6

Experimenting with the probabilistic
TorX algorithm

6.1 Introduction

In Chapter 5 (see also [FGM00]) we presented a generalization of the TorX test derivation algorithm
with probabilities. The natural continuation of this theoretical work is to investigate the results exper-
imentally. This chapter presents our findings when experimenting with the probabilistic TorX on the
Conference Protocol case study, findings which were also presented in [Gog03a].

In Chapter 5, we compared the performances of TorX and of the probabilistic TorX on the toy
example of the candy machine. In this example we looked at the fail-traces of the candy machine
which are generated by TorX and which do not have a length greater than 3. We found that they
have similar ratios and we choose the ratio which occurred the most. Using this ratio we computed
the probabilities p1, p2 and p3 for the three choices of TorX. Going forward with the probabilistic
computation, we found out that the probabilistic TorX has a greater probability to generate a fail than
the original TorX.

The comparison in Chapter 5 is based on a theoretical example. We wanted also to experiment
with the probabilistic TorX on a real case study. For experimenting we had to choose some parameters
with which TorX works. So we had to choose the specification and the set of implementations which
are used by TorX when it derives tests on-the-fly. The first year of CdR was dedicated to the experi-
ment with the Conference Protocol case study ([BFdV+99], also Chapter 4); therefore to extend that
experiment with the probabilistic TorX was quite natural.

In the experiment with the Conference Protocol, we wanted to investigate whether adding proba-
bilities to TorX makes it produce better results (the claim of the [FGM00] theory), for example in the
number of errors detected and doing that with shorter test cases. The experiments support the claimed
benefits of probabilistic TorX over TorX if in the probabilistic setting more errors are found then in
the normal setting.

The Conference Protocol specifications are described in Section 4.2. The original TorX and the
probabilistic TorX are presented in Chapters 2 and 5. In this experiment we used two sets of mutants.
The first one was used in the benchmarking experiment described in Chapter 4. The second one was
made after this experiment and it is presented in Section 6.2. Section 6.3 presents the experiment itself
and the comparison results. The conclusions are drawn in Section 6.4.
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6.2 Conference Protocol implementations

In the experiment with the probabilistic TorX on the Conference Protocol, we had two sets of mutants.
The division of the implementations in two sets corresponds to the temporal order in which the im-
plementations were created. The two sets induced two complete separate phases in this experiment.
First we experimented with the first set and after that with the second set. We will not merge these
sets into one big set and we will present the two phases of the experiment separately according to the
temporal order in which they were performed. The reason of separating them will become clear at the
end of the next section.

The first set, which was also used in the experiment described in [BFdV+99], consists of 28
different conference protocol implementations. One of these implementations is correct whereas 27
of them are erroneous. The first set of mutants is divided in three groups: No outputs, No internal
checks and No internal updates. In Section 4.2.4 the main characteristics of these three groups are
explained.

The second set of mutants is larger than the first set and consists of 43 mutants, all erroneous.
These mutants can be divided in 6 groups. The first three groups are: No outputs (6 mutants), No
internal checks (9 mutants) and No internal updates (4 mutants). In the second set, three more groups
No inputs (12 mutants), Wrong outputs (9 mutants) and Modifications on PDU information (3 mutants)
are present. The group No inputs is formed by mutants which do not perform the actions associated
with specific inputs correctly. The group Wrong outputs is composed by mutants which send non-
specified outputs after performing specific inputs. The group Modifications on PDU information is
formed by mutants for which the information of the PDU is changed.

6.3 The experiment

In our experiment we had a LOTOS specification of the Conference Protocol and two sets of mutants.
The first set was formed by 27 erroneous mutants and the second one by 43 erroneous mutants. Be-
cause the mutants and the specification were built by the UT partners in CdR, we did not know at that
point of time how they were made and what specific errors they contained. The experiment was done
in two phases: first we ran TorX and the probabilistic TorX against the first set of mutants and after
that we did the same for the second set of mutants. Therefore, we will present the comparison results
of TorX and the probabilistic TorX first for the first set of mutants and then for the second set.

When TorX is run against an erroneous implementation and an error is discovered, a fail verdict is
generated. For our experiment we kept the configuration parameters which were used in [BFdV+99].
Therefore the maximum number of steps, which means signals (inputs or outputs) of an execution
trace, is 500. If the execution trace reached this limit the verdict was automatically pass. As soon as
a fail was generated the test was aborted (in which case the length of the trace is less than 500).

Now, to investigate the claim of the theory, means to investigate whether the length of the fail-
traces generated with TorX is on average greater than the length of the fail-traces generated with the
probabilistic TorX. This can also have another consequence: when for some mutants the limit 500 is
passed, TorX assigns a pass. If for these mutants the probabilistic TorX finds an error with a fail-trace
which has a length below 500, the number of mutants detected with the probabilistic TorX will be
greater than with TorX.

The probabilities are determined as fellows. Because TorX and the probabilistic TorX have a limit
for the number of steps after which they automatically finish, the probability of Choice 1 is p1 = 0
and p2 + p3 = 1, till 500. TorX has the same probability to select an input (Choice 2) as to check the
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output (Choice 3). This means that the probabilistic configuration for TorX is p2 = p3 = 1
2 . For the

probabilistic TorX, when varying p2 we obtain p3 = 1 − p2. For investigating the claim of the theory,
we should vary p2 and observe whether there are values of p2 and p3 for which the lengths of the
fail-traces are generally lower than for the configuration (p2 = 1

2 , p3 = 1
2) of TorX. For estimating

the values of p2, which give the points of minimum, we need to remember that Theorem 5.2.2 gives
a relationship between the probabilities of TorX’s choices and the ratio between inputs and outputs
which occurs in an execution trace. Looking at the traces of the specification, we can try to guess
good values for the ratio of the execution traces. After that, using Theorem 5.2.2, we can estimate the
value of p2 for which the length of the fail-traces has a minimum.

The comparison results for the first set of mutants We varied the probability p2 using different
values in the range from 0 to 1. We ran both the probabilistic TorX and TorX against every mutant
once. For each mutant the same seed was used for both the probabilistic TorX and TorX. The seed was
chosen randomly. This policy related to the seeds was maintained in all the experiments described in
this chapter. The results with the probabilistic TorX and TorX are given in the Table 1. In this table,
TorX is represented by its probabilistic configuration (p2 = 1

2 , p3 = 1
2). In the table we did not put

p3 because it is easily computed as 1 − p2.

We also give a guess where the point of minimum average trace length should be. This is worked
out for 20 traces of the specification which go from the initial state and finish in the initial state (a
longer trace is composed of such traces). The traces were in part generated by the TAU/Telelogic tool
when verifying the SDL Conference Protocol specification and some were representative use cases of
the Conference Protocol chosen by the author. The analysis of the 20 traces showed that they have
almost all ratios in the range [1, 2] with an average ratio of 1.51. We assumed that the minimum
should have the ratio in this range [1, 2]. We chose to do the experiment with the probabilistic TorX
for the extremes of this range, respectively for the ratios 1 and 2. Looking at the ratios average and
to some trace generated with the old TorX, which contained too many null outputs, we guessed that
around 2, better results would be obtained. Our observation was that some traces generated with TorX
contained sequences of repetitive null outputs. We remind that a null output is mapped into a timeout.
To continue checking the output when only the null outputs is produced does not make too much sense
(this will only multiply the timeout time). If the timeout was set correctly, it is not very likely that
doubling or tripling it will make an implementation to produce an unexpected output. It is more likely
that at the first timeout, an erroneous implementation will send an unspecified output. Therefore, in
the case of a timeout, checking the outputs only once will be enough. Now, avoiding repetitive null
outputs can be achieved by increasing the ratio such that more inputs will be present within a trace.
Consequently, p2 is larger. In this way, after a first null output it will be more likely that an input will
be sent instead of checking another null output. Both analyses (of the 20 traces and of the sequences
of null outputs) indicated that the ratio should be increased. The increase provided by the average
of the 20 traces, viz. 1.51, is not very large. There is still a good chance that after a first null output
another one will be checked again (using Theorem 5.2.2, the probability of checking the outputs, p3,
for the ratio 1.51 is 0.40). The extreme of the range, 2, provides a larger increase and for this reason
we guessed that around this value better results will be obtained. The probabilities p2 and p3 for the
ratio 2 are computed using Theorem 5.2.2: p2 = 2

2+1(1 − 0) = 0.67 and p3 = 1
2+1(1 − 0) = 0.33.
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Table 1

Mutant p2 = 0.33 p2 = 0.5 p2 = 0.58 p2 = 0.67 p2 = 0.75
verdict length verdict length verdict length verdict length verdict length

100 fail 36 fail 23 fail 21 fail 17 fail 146
111 fail 56 fail 34 fail 32 fail 23 fail 25
214 fail 162 fail 110 fail 91 fail 83 fail 75
247 fail 56 fail 34 fail 32 fail 23 fail 25
276 fail 36 fail 23 fail 21 fail 17 fail 25
289 fail 162 fail 110 fail 91 fail 86 fail 75
293 fail 108 fail 74 fail 65 fail 65 fail 480
294 pass 500 pass 500 pass 500 pass 500 pass 500
332 pass 500 pass 500 fail 486 fail 415 pass 500
345 pass 500 pass 500 fail 486 fail 409 pass 500
348 fail 496 fail 342 fail 153 fail 150 fail 238
358 pass 500 pass 500 fail 482 fail 411 pass 500
384 fail 108 fail 74 fail 65 fail 65 fail 44
398 fail 180 fail 115 fail 95 fail 91 fail 91
444 pass 500 pass 500 pass 500 pass 500 pass 500
462 fail 189 fail 120 fail 91 fail 114 fail 130
467 fail 106 fail 74 fail 65 fail 65 fail 44
548 fail 160 fail 104 fail 88 fail 84 fail 167
666 pass 500 pass 500 pass 500 pass 500 pass 500
674 fail 32 fail 20 fail 15 fail 12 fail 16
687 pass 500 pass 500 pass 500 fail 402 pass 500
738 fail 161 fail 116 fail 91 fail 114 fail 130
749 fail 36 fail 23 fail 21 fail 17 fail 17
777 fail 162 fail 110 fail 91 fail 83 fail 75
836 fail 36 fail 23 fail 21 fail 17 fail 146
856 fail 108 fail 74 fail 65 fail 17 fail 44
945 pass 500 pass 500 fail 483 fail 411 pass 500
Detected 19 19 23 24 19

One can easily observe from Table 1 that there are similarities in the way the errors in the mutants
are discovered (for example, similar lengths for the first and the fifth mutant). We had a discussion
regarding this phenomenon with the owners of this set of mutants from Twente University. It turned
out that the same happened in the experiment reported in [BFdV+99] and this is explained by the
fact that some mutants have a very symmetric and similar structure. Also we found that two of these
mutants can not be detected by TorX and the probabilistic TorX because they are non-ioco mutants,
in other words they contain errors which can not be detected with the ioco relation on which TorX
and the probabilistic TorX are based. The correct implementation is not included in the table (it was
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tested, of course).

The results show that most of the implementations have the minimum for p2 = 0.67 which corre-
sponds to the ratio 2 (as we guessed). The same thing is represented in Figure 6.1 where the graph
Lenght(p2) is shown for the mutant 100. By Length we mean the length of the generated trace. Simi-
lar graphics can be drawn for the rest of the mutants.
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Figure 6.1: The graph of the length for one fail trace (mutant nr. 100).

Using the values of p2 from Table 1 we made some statistical computations. The statistical esti-
mator mean p2 [All78], which is the average of the values of p2 for which minima of the length are
obtained is 0.678. Let us assume that the distribution of the minima for p2 is a normal distribution
(see Figure 6.2). In the figure, the number 20 is the number of mutants which have the minimum of
the length for p2 = 0.67, 5 corresponds to p2 = 0.75 and 2 to p2 = 0.58. The normal distribution
is centered on the mean, 0.678. From the statistical computation it can be observed that the mean is
only slightly different from the guessed value of 0.67. The standard deviation σ which is computed as
1

26 ×
∑

k∈{100,...,945}(p2(k) − p2)
2 is 0.04. In the formula of σ , p2(k) is the value of p2 for the mutant

k (k ∈ {100, ..., 945}) for which the minimum of the length is obtained. The variance of p2 which is
computed as 2σ√

n with n = 27 is 0.015. The variance is a measure of the tightness of the clustering
about p2. It is expected that three-fourth of the values of p2 (for which the length is minimum) are
within the variance of p2 [All78], which is not further than 0.015 from the mean. In our case the 20
values of 0.67, which represent three-fourth of the total number of 27 mutants are within the expected
range of [0.678 − 0.015, 0.678 + 0.015].
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Figure 6.2: The distribution for p2.

The same minimum is obtained when running TorX more times against each mutant. For example,
in Figure 6.3 we represented the graph Lenght(p2) obtained when the probabilistic TorX and TorX
were run 20 times against the mutant 100. We represented in the figure the averages of the series of 20
lengths obtained for each p2. As one can see the minimum of the Length occurs also for p2 = 0.67.

The same conclusion can be obtained when looking at the number of mutants detected which is
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represented in Figure 6.4. For TorX we have 19 mutants detected (an error in every mutant) for one
run of TorX against every mutant and for the probabilistic TorX using p2 = 0.67 we have 24 mutants
detected. TorX and the probabilistic TorX with p2 ∈ {0.58, 0.66, 0.75} were able to discover all the
25 ioco detectable mutants, after two runs. The probabilistic TorX with p2 = 0.33 discovered after
two runs 24 mutants and after three runs all the ioco mutants. Looking at what happened, we can
conclude that the probabilistic TorX using p2 = 0.67 detected almost all the ioco mutants from the
first run. The claim of the theory is consistent with the experimental results because the probabilistic
TorX using p2 = 0.67 gives better results than TorX.
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Figure 6.3: The graph of the average length for 20 runs (mutant nr. 100).

Exploiting the hypothesis The experiment which we did gives rise to the following idea on how to
find the values of p2 for which we can obtain better results. One can pick up a few mutants randomly
from the set of mutants and make the curve Length = f (p2) for them. The values of p2 for which
there are points of minimum can be observed. Based on them, the mean can be computed. Thereafter,
the mean can be used for the rest of the mutants. Let us assume that the mean is convergent, which
means that for a sufficiently large number n of experiments the computed value of the mean is a
good approximation of the limit. Usually for a size of 30, the computed value of the mean is a good
estimation for the limit ([All78]). Therefore a recommended value for the number of mutants is 30.
For this experiment in which we had in total 70 mutants, the number of implementations of 27 is a
little bit lower than 30. We can use the computed value of the mean for the second set of mutants, but
the approximation will be larger than when using 30 mutants. Because the value of the mean is 0.678
only slightly different from the guessed one of 0.67, we kept the guessed one for the second set of
mutants.
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Figure 6.4: The graph of the number of mutants detected.

The comparison results for the second set of mutants We drew the same conclusion as from the
first set of mutants when running TorX and the probabilistic TorX against the 43 mutants, all ioco
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detectable: almost all the mutants have the minimum of the Length for p2 = 0.67. The mean in this
case was 0.66 and the variance 0.02. The probabilistic TorX with p2 = 0.67 discovered 42 mutants
when we ran it once against every mutant, and TorX discovered 40 mutants. The experiment with
the second set can be seen as a confirmation of our ideas expressed in the paragraph Exploiting the
hypothesis. So the first set can be seen as an experimental set for finding the values of p2 for which
one can expect better results with the probabilistic TorX. The second set, larger than the first one,
confirms that the probabilistic TorX gives better results using the mean of these values of p2.

There is another important aspect to be mentioned regarding the second set of mutants. These
mutants are discovered with fail-traces the lengths of which are usually shorter than the ones of the
first set. For example, the lengths of the fail-traces of 35 mutants are less than 75 for the probabilistic
TorX with p2 = 0.67; for TorX this holds for 30 mutants. Increasing the length limit, the lengths of
the fail-traces of 40 mutants are less than 170 for the probabilistic TorX with p2 = 0.67; for TorX
the number is 38. As can be seen, the gain for the second set was in getting shorter fail-traces. The
difference in the number of mutants detected was not as big as for the first set. Fixing, for example,
the length limit at 75 would increase the difference to 5 mutants. As can be easily observed, the reason
is that the length limit was fixed to a value too high to make the difference more visible. To put it
in practical terms: the potential advantage is in reducing the size of the generated tests rather than in
finding more errors.

6.4 Conclusions

In this chapter we presented the experiment with the probabilistic TorX and the original TorX on the
Conference Protocol. The experiment made with the Conference Protocol case study confirms that the
performance of the TorX algorithm increases when probabilities are used. When comparing the length
of the fail-traces which led to error detections, the probabilistic TorX when using p2 = 0.67 produced
shorter fail-traces than the original TorX. For the same value of p2, the number of errors in mutants
detected with the probabilistic TorX was greater than the number of errors in mutants detected with
TorX. The value p2 = 0.67 for which the probabilistic TorX produced better results corresponds to
our guess made about p2 when looking to the ratios between inputs and outputs of representative use
cases of the Conference Protocol.

The experiment gives rise to another idea on how to find the values of p2 for which better results
can be obtained. One can choose few mutants and make the curve Length(p2) for them. Then observ-
ing the values of p2 which give points of minimum, computing the statistical mean (the average of
these values) and apply the value of the mean for the rest of the mutants.

The experiment itself confirms that this idea is valid. We tested two sets of mutants. The first
set indicated the values of p2 which gave points of minimum. After that we computed the mean.
Applying the mean on the second set of mutants, larger than the first one, we obtained points of
minimum closed to the value of the mean. But we should say that more experiments are needed for a
more complete validation of this idea.
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Chapter 7

A probabilistic coverage for on-the-fly
test generation algorithms

Systematic testing is an important technique to check and control the quality of software systems.
Testing consists of systematically developing a set of experiments or test cases and then running these
experiments on the software system that has to be tested, i.e. the IUT. The subsequent observations
made during execution are used to determine whether the IUT behaved as expected leading to a verdict
about the IUT’s correctness.

As described in Chapter 1, in a traditional approach the test generation and test execution are
separated phases of the test experiment. We refer to such an approach as batch-oriented. A newer
technique for test derivation is to combine the test generation and the test execution in one phase.
We refer to such a technique as on-the-fly. An example of a tool which works on-the-fly is TorX
[BFdV+99].

An on-the-fly algorithm derives and runs a finite number of tests which can detect a certain amount
of errors, with others going undetected. In order to express this, as ITU-T Z.500 recommends, the
concept of coverage measure should be used (see Chapter 1). An example of such a coverage measure
which is useful for a set of test cases can be found in [HT96].

The coverage measure from [HT96] has a probabilistic nature and it can be a applied for a batch-
oriented test suite. We will explain below the stochastic nature of this coverage. Due to the non-
determinism of the IUT, each run of a test may lead to a different outcome and the outcomes of several,
independent test runs make up one observation. So, some outcomes are more likely to occur than
others. The probability of an outcome to occur can be thought of as depending on the frequency with
which the implementation resolves the nondeterministic choices leading to the different outcomes.
This leads to the consideration of the occurrence of an outcome of a test run as a stochastic experiment.
Also, the design and the implementation process of a complex system are viewed as a stochastic
experiment. For example when designing a juice machine which is supposed to deliver juice and
tea it is less likely to end up with a completely different kind of machine (as for example a washing
machine) than to end up with a slightly different, but possibly incorrect, juice machine. Moreover,
assuming that an implementer can make several independent mistakes with non-zero probability and
while trying to do his task as good as possible, it is less likely for the implementer to make all possible
mistakes than to make only a small number of mistakes. These are some examples which show
that not every implementation has the same chance to occur as the result of ‘implementing’ a given
specification. Also, to express the severity of the bugs in implementations, a weight assignment is
added to the implementations. These three ingredients: the probability distribution of the outcomes
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produced by the test runs, the probability distribution of the implementations and the severity of the
bugs in implementations form the base of the probabilistic coverage from [HT96].

The existing theory was useful for batch-oriented testing. Modern test process turns away from
batch-oriented to on-the-fly. Therefore we generalized the existing theory from [HT96] for on-the-
fly algorithms. The findings reported in this chapter were also presented at [Gog03b]. We adopted
the same views as [HT96] regarding the probabilistic distribution of IUTs and the weights assigned
to implementations. Regarding the probability distribution of the outcomes, first we remind that the
test generation and test running are integrated in one phase by an on-the-fly algorithm. Therefore,
the probabilistic distribution for outcomes has two independent sources, in this case. First, the non-
determinism of the IUT gives a probabilistic nature to outcomes. Secondly, the test generation algo-
rithm itself can have a probabilistic component (as it is the case for TorX). The probabilistic nature
of TorX comes from its three non-deterministic choices, each choice could be chosen with a given
probability at a given moment in the generation process. The probabilistic nature of the algorithm
itself is another reason to add probabilities to outcomes. In Chapter 5, we showed how to compute
the probabilities of the outcomes for TorX (the outcomes are traces in this case). In a similar way,
the probabilities of the outcomes can be computed for other test generation algorithms. With these
being said, our coverage for an on-the-fly algorithm is defined as follows. The severity of the bugs
in implementations, the probability distribution of the IUT and the probability distribution of the test
outcomes which is seen as a result of an integrated test generation and running process are combined
in a probabilistic coverage formula for an on-the-fly algorithm. The coverage is parameterized with
the number of tests derived. The abstract coverage formula is instantiated for the ioco theory of test
derivation using results from Chapter 5 ([FGM00]).

The chapter is organized as follows. Section 7.1 introduces a framework for the definition of a
coverage measure and the assumptions on which the theory presented is based. Section 7.2 formally
defines a weight assignment to each implementation and the probability of an implementation to occur.
In Section 7.3 the coverage formula is defined and Section 7.4 instantiates the probabilistic coverage
for the ioco theory. The conclusions are presented in Section 7.5.

7.1 Automated testing

In this section we will present in more detail some basic notions regarding conformance, testing and
test generation which were also described in Chapter 1. We will give also the assumptions on which
we base the coverage measure theory for on-the-fly test generation algorithms.

Conformance The conformance of an implementation under test (IUT) with respect to a specification
implies the assumption of a universe of implementations IMPS and a universe of formal specifications
SPECS. Implementations are concrete, informal objects, such as pieces of hardware, or pieces of soft-
ware. In order to be able to reason in a formal way about them, it is assumed that each implementation
IUT ∈ IMPS can be modelled by a formal object i IUT in a formalism MODS, which is referred to as
the universe of models. Conformance is expressed by means of an implementation relation imp ⊆
MODS × SPECS. We use Is =def {i ∈ MODS | i imp s} for the set of imp-correct implementations
of s, and Is = def MODS \Is for its complement.

Testing The test cases, sometimes denoted simply as tests, are formally specified as elements of a
universe of test cases TESTS. A set of test cases is called a test suite. The process of running a test
repeatedly against an implementation is called test execution. Each test run leads to an outcome. Test
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execution leads to an observation, which is the set of all possible outcomes produced by the test runs,
in a domain of observations OBS. Let O be the set of possible test-run outcomes, then an observation
is a set of outcomes: OBS = P(O). To each outcome a verdict is assigned by a verdict assign-
ment function vt : O → {pass, fail}, where t is a test. The verdict of an observation will be pass if all
outcome-verdicts are pass. Test execution is modelled by a function exec : TESTS × MODS → OBS.

On-the-fly test generation An on-the-fly algorithm combines two phases, the test generation and
the test running, into one common phase. We model this mathematically by considering the gen-
eration of a test and the run of it as being formalized by the function genexec. The test execution is
already modelled by the exec function, so that we should proceed with formalizing the test generation.
Let ALGS be the universe of all the algorithms that generate and run tests on-the-fly. The process of
generating and running tests by an on-the-fly algorithm will be called on-the-fly test generation and
execution. An on-the-fly algorithm A ∈ ALGS is applied to a specification s ∈ SPECS and to an
implementation i ∈ MODS. The set of all the tests, which we will denote as A(s, i), derived with A
when it uses the specification s and the implementation i is a subset of TESTS, i.e. A(s, i) ⊆ TESTS.
Now the observation made by an on-the-fly algorithm A is the set of all outcomes which can be pro-
duced by the runs of all the tests which can be generated with A, which is ∪ t∈A(s,i)exec(t, i). Then let
genexec: ALGS × SPECS × MODS → OBS be the function that correctly models the test generation
and execution of an algorithm on-the-fly, then genexec(A, s, i) = ∪t∈A(s,i)exec(t, i).

The assumptions for on-the-fly test-generation Now we will introduce the assumptions which are
at the base of all the coverage computations. We have the same probabilistic approach as in [BTV91]
and [HT96], but our contribution is in extending it by considering the test generation and execution
as a stochastic process, and in instantiating it for the ioco theory and for the specification of the TorX
test-generation-algorithm. We focus on on-the-fly testing.

• A: we assume that the occurrence of an implementation i is the outcome of a stochastic exper-
iment; we adopt the notation ps(i) from [HT96] to denote the probability that implementation
i occurs;

• B: we assume that the generation of a test and the running of the test against an implementation
i by an on-the-fly algorithm A, which uses a specification s, is a stochastic experiment; in
particular pA,s,i(σ ) is the probability that A generates a test which leads to outcome σ when it
runs the test against i and uses a specification s.

7.2 Valuation of the implementation

Weight of implementations To express the importance of each implementation, a weight assignment
([HT96]) is added to each implementation. Let s ∈ SPECS be a specification, and imp ⊆ MODS ×
SPECS an implementation relation, then a function w : MODS → IR \ {0} is a weight assignment
function on MODS with respect to s and imp, if for all i ∈ MODS:

w(i) > 0 ⇔ i imp s (7.1)

A weight assignment assigns a positive real number to each conforming implementation and a
negative number to each erroneous implementation. For conforming implementations the weight can
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express that one implementation is better than another; negative weights express the gravity of errors
in erroneous implementations: if w(i1) < w(i2) < 0 then both ii and i2 are not correct, but the errors
of i1 are more severe than those of i2.

Example Let us consider the automaton spec of the specification from Figure 7.1. The specifica-
tion has four states and the initial state is I. The set of inputs is L I = {a} and the set of outputs is
LU = {b, c}. In I the specification can receive the input a, produce the output b and after that c and
arrive back in I or it can perform the c output. After performing c, the specification can receive a,
produce c and arrive back in I.

i1

?@??@?A@AA@AB@BB@B
B@B
C@CC@C
C@C
D@DD@DE@EE@EF@FF@FG@GG@GH@HH@H

H@H
I@II@I
I@I
J@JJ@JK@KK@K L@LL@LM@MM@MN@NN@N

N@N
O@OO@O
O@O
P@PP@PQ@QQ@QR@RR@RS@SS@S T@T

T@T
U@UU@U V@VV@VW@WW@W X@X

X@X
Y@YY@Y Z@ZZ@Z[@[[@[ \@\

\@\
]@]]@]

i2

II

a

III

I

a b
 IV

c

II

a

III

I

a b
 IV

c

II

a

III

I

a b
 IV

c

c c cb,c b, c      c

spec

Figure 7.1: Example of a specification and two erroneous implementations.

In the same figure, two erroneous implementations i1 and i2 are shown. For the sake of simplicity
we choose these implementations to not be IOTS (they are not used in the instantiation of this theory
to ioco theory – see Section 7.4). Let us consider an arbitrary counting of bugs for the two implemen-
tations. The implementation i1 has one bug: after c in the initial state, it can produce the unspecified
outputs b and c. The implementation i2 has more problems: it has the same bug as i1 to which is
added the bug of the state III where it can produce not only the output b but also the other output c.
So intuitively the weight of i1 could be w(i1) = −1 and of i2 could be w(i2) = −2 because these
implementations have one and two bugs, respectively.

Probability of implementations In conformance with assumption A an implementation i occurs
with a probability ps(i). We consider MODS discrete (MODS must be finite or countably finite). Let
I ⊆ MODS, later to be used as follows: I is the set of all erroneous implementations. Then:

Ps(I ) =def

∑

i∈I

ps(i) (7.2)

means the probability that the activity of implementing specification s produces an implementation
that is modelled by a member of I .

Valuation Using the probability ps and the weight assignment w it is possible to define a valua-
tion on a discrete set of implementations (which gives the importance of a set of implementations I in
terms of their weight and their probability of occurrence):

µ(I ) =def
∑

i∈I

w(i)ps(i) (7.3)
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7.3 The coverage for on-the-fly test generation

Test generation and test run On-the-fly combines the test generation with the test run. For the
remainder of this chapter we will abuse the words test generation for on-the-fly test generation and
test run. Let A ∈ ALGS be an algorithm for on-the-fly test generation. Let O be the set of possible
test-run outcomes and let on-the-fly test generation and execution be correctly modelled by genexec:
ALGS × SPECS × MODS → P(O). Please note that P(O) = OBS.

In accordance with assumption B running the algorithm A against an implementation i and using
the specification s produces an outcome σ(A, s, i) from the set genexec(A, s, i) with a probability
pA,s,i(σ ), with σ = σ(A, s, i). Note that the distribution of the variable σ(A, s, i) depends on the
algorithm A, the specification s and the implementation i ; for each A, s, i it may have another distri-
bution. For a subset O ⊆ genexec(A, s, i), the probability distribution is

PA,s,i(O) =def P(σ(A, s, i) ∈ O) (7.4)

The verdict for the observation will be pass if all outcome-verdicts are pass. Then let v t : O−→
{pass,fail} be a verdict assignment to outcomes, where t is a test generated with A (t ∈ A(s, i)); the
probability measure pA,s,i can induce a probability measure on the set of verdicts {pass,fail}. The
probability that a single test generation of A with s and i results in a verdict pass is the cumulative
probability that an outcome in genexec(A, s, i) leads to a pass verdict.

pA,s,i(pass) =def P(vt(σ(A, s, i)) = pass)
= PA,s,i({σ ∈ genexec(A, s, i) | vt(σ ) = pass}) (7.5)

If the algorithm A will run more times against the implementation i , say m times, under the
assumption that the test generations are independent, then the implementation passes all the test gen-
erations only if it passes all the individual test generations.

pm
A,s,i(pass) = (pA,s,i(pass))m (7.6)

The probability to fail is: pm
A,s,i(fail) =def 1 − pm

A,s,i(pass). It can be shown that pm
A,s,i has the

property that for non-zero probability of fail in a test generation, the algorithm will finally result in
fail if enough test generations are performed (this property is expressed in the following proposition).

Proposition 7.3.1 If p1
A,s,i(fail) > 0 then limm→∞ pm

A,s,i(fail) = 1

For the proof see Appendix A.2.

The on-the-fly coverage The probability of occurrence of implementations was expressed by the
probability measure Ps on the set of implementations (7.2). The probability that an implementation
i yields the verdict pass with algorithm A was expressed by the probability measure p A,s,i (7.6).
Under the assumption that the probability of occurrence of implementations is independent of the
probability of yielding a fail we can integrate these measures to obtain the probability measure on
MODS ×{pass, fail}. Taking also the weight of implementation into account we obtain analogously
the valuation measure λ:
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λm
A,s(I, V ) =

∑

i∈I

∑

v∈V

w(i)pm
A,s,i(v)ps(i) (7.7)

Let Is be the set of nonconforming implementations of s. We define the coverage of A, applied m
times on a specification s, as

cov(A, s, m) =def
λm

A,s(Is, {fail})
λA,s(Is, {pass, fail})

(7.8)

where by λA,s(Is, {pass, fail}) we mean
∑

i∈Is
w(i)ps(i) (we assume that an erroneous implementa-

tion occurs with a non-zero probability, formally Ps(Is) > 0).
In other words cov(A, s, m) is the weighted probability of being able to conclude fail divided by

the probability of an erroneous implementation to occur. The coverage is a function of the number
of tests produced by the algorithm and it follows immediately from the definition that it has all the
values in the range [0, 1].

Example So for example, if on average one out of three implementations is erroneous and if we
assume w(i) = −1 for all erroneous implementations i , then λA,s(Is, {pass, fail}) = − 1

3 . Taking an
arbitrary implementation and performing one test run will yield fail with a probability 1

30 , for exam-
ple. So in 1

3 of all cases we encounter an erroneous implementation and then we observe the bug in
one out of ten cases on average. Then λ1

A,s(Is, {fail}) = − 1
30 . So cov(A, s, 1) = 0.1, as expected.

Moreover λ2
A,s(Is, {fail}) = − 1

3(1 − (1 − 1
10)

2) ≈ −0.063. So cov(A, s, 2) = −0.063
−0.333 = 0.19.

In this easy example we see that cov(A, s, m) is monotonic in m and limm→∞cov(A, s, m) = 1.
As we will see, this holds in general under very reasonable conditions, which we set out to explore
in this chapter. So for a non-zero distribution for pm

A,s,i and Ps the coverage has the monotonicity
property. This property of the coverage is expressed in the following proposition.

Proposition 7.3.2 Let s ∈ SPECS be a specification and let Is be the set of non-implementations of s.
Let A ∈ ALGS be an algorithm of on-the-fly test generation. Assume that an erroneous implementation
occurs with a non-zero probability, formally Ps(Is) > 0. Assume that all faulty implementations that
are possible can be detected, that is ∀i ∈ Is : (ps(i) > 0 ⇒ pA,s,i(fail) > 0). Assume that
pA,s,i(fail) < 1. For positive integers m and n

m < n ⇒ cov(A, s, m) < cov(A, s, n)

For the proof see Appendix A.3.

7.4 An application of the probabilistic coverage measure

In the previous sections we arrived at a coverage concept that applies to situations where we have
a stochastic distribution of implementation errors and a stochastic, on-the-fly, test generation and
execution algorithm. Assuming a relevance weighting for implementations we found that the coverage
concept has nice properties, such as being in the range [0, 1] and being monotonic in the number of
test runs. So far, the definitions are very abstract, making no assumptions about the nature of the
specifications and implementations, or even about inputs and outputs.
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Now we want to instantiate this with the ioco theory, which is described in Section 2.1. This
is useful for two reasons. First, by instantiating our definitions we validate them. Secondly, the in-
stantiated theory is relevant for the TorX algorithm and the TorX tooling. By working out a detailed
example and choosing values for the probabilities we will obtain useful insights with respect to the
working of TorX in practice. But in order to make the instantiation we have to introduce additional
technicalities. First we need labelled transition systems based on a distinction between input labels
and output labels, next to a null output. The implementation relation iocoF is parameterized over the
set of traces F , so we will choose a specific F in our running example. After that we can choose ps(i),
the probability of implementations, the relevance weighting w(i) and we instantiate A by a specific
algorithm Algo (essentially this is TorX with certain probabilities).

Specifications The specification formalism SPECS is instantiated with the set of all transition sys-
tems over a label set L so we take SPECS= LT S(L I ∪ LU). In Figure 7.1 we gave an example of a
specification for L = {a} ∪ {b, c}. Its suspension automaton is represented in Figure 7.2. It is easy
to verify that the automaton from Figure 7.1 and the suspension automaton from Figure 7.2 have a
similar structure. The only difference is that in {II}, the suspension automaton has a δ loop because
no output is present in this state.

^_^^_^`_``_`a_aa_ab_bb_bc_cc_cd_dd_de_ee_ef_ff_f g_g
g_g
h_hh_ha

a b

c
{I}

{II} {III}

 {IV}

s
c

δ

Figure 7.2: A suspension automaton.

Models of implementation We take MODS= IOT S(L I , LU ). For the specification from Figure 7.1
the set of the inputs and of the outputs are the following: L I = {a} and LU = {b, c}.

Tests We take TESTS=T EST S(L I , LU ). Figure 7.3 shows the behaviour tree which contains all
the execution traces of the tests derived with Algo, the algorithm which is to be described in the para-
graph Test generation below.

Implementation relation We consider the iocoF implementation relation between SPECS and MODS.
A good set of representative behaviours for F can be obtained by applying a test selection policy (see
[CG96]). For our example we choose F to be the set formed by all the suspension traces which start
from the initial state and which contain no cycle (they are cycling zero times via every state of the
suspension automaton of the specification). So we put F ={ε, a, c, ca, ab}. We call the elements of
F representative behaviours.

Definition 7.4.1 Let s be a specification, i an implementation and σ a suspension trace. If out (i after σ

) ⊆ out (s after σ) then we write i |Hs σ and i 6|Hs σ for its negation. If i 6|Hs σ we say that i has
fault σ with respect to s.

We take the same view as in [BTV91], that the existence of faults induces an equivalence relation



92CHAPTER 7. A PROBABILISTIC COVERAGE FOR ON-THE-FLY TEST GENERATION ALGORITHMS

Fail

Pass

Fail

Fail Fail Pass

Fail Fail Fail

Fail Fail

Pass Fail

c

ab cb

a

b b

c

b

c c

δ

δ

δ δ

δ

Figure 7.3: Tree containing the execution traces of all tests derived from the specification.

on the set of all implementations. Two implementations are equivalent if they contain the same faults.
The equivalence relation induces a partition of the set of implementations MODS.

Please note that our set F is finite and consequently the number of equivalence classes is finite.
Since |F |= 5 there are 32 equivalence classes. Because in testing the objective is not to generate a
model of the implementation under test but only to detect which faults are present in the implemen-
tation, it is valid to use the partition of MODS instead of MODS itself for the computation of the
coverage.

Probability of implementations For a given specification s, let pσ (i) be the probability that an ar-
bitrary implementation i has fault σ ∈ F , under the assumption that the faults from each σ ∈ F are
independent. Then we calculate

ps(i) =
∏

σ∈F ,i |Hsσ

(1 − pσ (i)) ×
∏

σ∈F ,i 6|Hsσ

pσ (i) (7.9)

which is a probability density function on IOT S(L I , LU ).

Example The set of representative faults for our specification is given by the traces from F =
{ε, a, c, ca, ab}. Then let the probability that an arbitrary implementation i violates the requirements
i |Hs σ, for σ ∈ F be 0.2. The probability density function for our class of implementations is given
by the following table (we will write σ for i |Hs σ and ¬σ for i 6|Hs σ , for σ ∈ F ):

Table 1
ps(i) εac εa¬c ε¬ac ε¬a ¬εa ¬εa ¬ε¬a ¬ε¬a

¬c c ¬c c ¬c
(ca)(ab) 0.327 0.081 0.081 0.020 0.081 0.020 0.020 0.005
(ca)¬(ab) 0.081 0.020 0.020 0.005 0.020 0.005 0.005 0.001
¬(ca)(ab) 0.081 0.020 0.020 0.005 0.020 0.005 0.005 0.001
¬(ca)¬(ab) 0.020 0.005 0.005 0.001 0.005 0.001 0.001 0.0003

In the table the values of ps are computed in a way similar as below:
ps((i |Hs ε)(i 6|Hs a)(i 6|Hs c)(i |Hs ca)(i |Hs ab)) = (0.2)2 × (0.8)3 = 0.020
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Weight of implementation A weight assignment for implementations can be obtained from weighing
the faults that an implementation possesses. The function w : IOT S(L I , LU ) → IR \ {0} defined by:

w(i) =
{

1 if i iocoF s
∑

σ∈F ,i 6|Hs σ
g(σ ) otherwise (7.10)

where g : F → IR<0 is a weight assignment function which expresses the gravity of violating i |Hs σ .

Example On the set of traces obtained by test selection F = {ε, a, c, ca, ab}, let g(ε) = g(a) =
g(c) = g(ca) = g(ab) = −1. Then it follows that w(εca(ca)(ab)) = 1, w(ε¬ca(ca)(ab)) =
−1, w(εc¬a(ca)(ab)) = −1, ..., w(¬ε¬c¬a¬(ca)¬(ab)) = −5.

Test generation The algorithms from the universe ALGS will be described in natural language. Let us
consider the ioco test generation algorithm from Section 2.1, which is the basis of the TorX algorithm.
The on-the-fly algorithm is instantiated with the following implementation of the TorX specification,
Algo, which works by applying these rules.

Algo

• if F equals ∅, Choice 1 of TorX (terminate the test case) has the probability 1 and Choice 2 and
Choice 3 are in fact void (their probabilities are 0); in all other cases, Choice 1 is not taken (its
probability p1 is set to 0);

• if p1 is 0: 1) if the specification is in a state which contains both inputs and outputs then
the algorithm chooses Choice 2 and Choice 3 with equal probability (p2 = p3 = 1

2 , where
p2 =def P(Choice 2}, p3 =def P(Choice 3}); 2) if the state of the specification contains only
outputs then the algorithm chooses Choice 3 with probability one.

All the possible test execution traces generated with Algo for the suspension automaton s from
Figure 7.1 and for initial F = {ε, a, c, ca, ab} are represented in the behaviour tree from Figure 7.3.
Now for a complete definition of genexec we need to define the test execution of a test t . This is

exec(t, i) =def {σ | σ is a test run of t and i } (7.11)

There are three possible tests which can be generated by Algo, which are t1 = δ fail + b fail +
c(b fail + c fail + δ pass), t2 = δ fail + b fail + ca(δ fail + b fail + c pass) and t3 = a(δ fail +
c fail + b(δ fail + b fail + c pass)) which form the set T . These tests are built in the following way.
For example t1 is built as follows: in the initial state Algo chooses to check the outputs; if the imple-
mentation sends a wrong output (δ or b) Algo finishes with a fail verdict; if the implementation sends
the specified output c, Algo chooses to check the outputs; for the wrong outputs b and c Algo finishes
with the fail verdict and for δ it finishes with the pass verdict. As we can see from t1, Algo builds
gradually these tests and by taking internal decisions. Sometimes it builds the test only partially. For
example when the implementation sends a wrong output, such as b, Algo finishes with fail and it is
not necessary to compute what follows after c; the partial test in this case is t p = δ fail + b fail + ct ′

p.
This partial test can be seen as the beginning of t1 or t2. Its observation is included in or equal to
the observation of, for example, t1 because every time when tp is able to produce an outcome, t1 is
also able to produce it. This holds for every partial test: its observation is included in or equal to the
observation of one of the three tests from T . So for the union of the observations of all possible tests
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produced by Algo when it runs against an implementation, which is the observation of Algo modelled
by genexec, it is sufficient to consider the set T and so genexec(Algo,s, i) = ∪ t∈T exec(t, i).

Verdict assignment The verdict assignment function for a set of observations O ⊆ genexec(Algo, s, i)
is:

verdT (O) =
{

fail if ∃σ ∈ O, ∃t ∈ T : vt(σ ) = fail
pass otherwise

(7.12)

where

vt(σ ) =
{

pass if t after σ = {pass}
fail if t after σ = {fail} (7.13)

with σ ∈ traces(t).

Probabilistic test generation and runs The probability that the specification of the TorX algorithm
when it runs against an implementation stops at the end of a given trace is given by Lemma 5.2.1.
For our instantiation Algo, we use the same formula as the one from Lemma 5.2.1, but with a small
modification. The specification of TorX runs completely randomly; this means that the probability
of Choice 2, p2, and Choice 3, p3, are global parameters. Our instantiation Algo which is especially
adopted for our particular set of traces F and specification s has two different configurations for
(p2, p3) when p1 = 0: 1) ( 1

2 ,
1
2) when Algo can send inputs and receive outputs (the current state of

s contains inputs and outputs) and 2) (0, 1) when Algo can only receive outputs (the current state of
s contains only outputs). So in the formula from Theorem 5.2.1 we should consider the appropiate
values of p2 and p3 in function of the possibility of Algo to send or not send inputs.

Example Figure 7.4 shows all the representative cases for the traces which end in a fail verdict that
can be generated from the Algo algorithm when it runs against an implementation. There are five
representative cases which correspond to the traces from F = {ε, a, c, ca, ab}, and these cases are A)
i 6|Hs ε; B) i 6|Hs c; C) i 6|Hs a; D) i 6|Hs ca; E) i 6|Hs ab . For computing the probability of fail for
every particular class of implementation (as the class (i 6|Hs ε)(i |Hs a)(i 6|Hs c)(i 6|Hs ca)(i |Hs ab)

for example) we should compute the probability of fail for every particular case.
Now, take for example the trace ca. The probability that Algo generates and runs this trace, so that

it can detect the fault i 6|Hs ca, depends on the probability of trace c and consequently on the existence
or non-existence of fault i 6|Hs ε. If the implementation satisfies the requirement i |Hs ε then the only
output which can be sent by i in the initial state is c (P(i, c) = 1); if the implementation violates
the requirement i |Hs ε, the implementation, in the initial state, can send c or another output, b or δ.
So, for computing the probability of the trace ca we have the following representative combinations:
D.1) (i |Hs ε)(i 6|Hs ca) (notation ε¬(ca)) and D.2)(i 6|Hs ε)(i 6|Hs ca) (notation ¬ε¬(ca)). In a
similar way for the rest of the traces we have the following representative combinations: A) (i 6|Hs ε)

(notation ¬ε); B.1)(i |Hs ε)(i 6|Hs c) (notation ε¬c); B.2) (i 6|Hs ε)(i 6|Hs c) (notation ¬ε¬c); C)
(i 6|Hs a) (notation ¬a); E.1) (i |Hs a)(i 6|Hs ab) (notation a¬(ab)) and E.2) (i 6|Hs a)(i 6|Hs ab)

(notation ¬a¬(ab)).
For computing the probability of fail it is necessary to compute the probability to arrive at the

end of a fail-trace. For this we assume that if the implementation has a fault, then it can send (after
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Figure 7.4: Representative cases for the traces which end with a fail verdict.

performing the trace correspondent to that fault) all the outputs with the same probability (uniform
distribution for the outputs). So, for example, an implementation i which violates the requirement
i |Hs ε, sends the output δ with the same probability 1

3 as for example the c signal (i in this case
can send three possible outputs after computing ε trace, all of them with the same probability; so
the probability to send one signal is 1

3 ). Now, using this assumption, we will illustrate the way of
computing the probability of fail for B.1)(i |Hs ε)(i 6|Hs c) (notation ε¬c). In this case Algo gives a
fail when it is performing the fail-traces cc or cb. Therefore the probability of fail is the sum of the
probabilities of the fail-traces cc and cb. Please note that we computed the probability of fail for this
particular representative combination (B.1) by summing the probabilities of all the fail-traces which
have as root the trace of fault, c, to which is added an unspecified output, b or c (this results in the fail
traces cb and cc). In a similar style we compute the probability of fail for the rest of representative
combinations.

In the computation which follows by pAlgo,s,ε¬c(fail) we mean the probability that Algo using the
specification s and running against an implementation i which has the fault (i 6|Hs c) and respects the
requirements (i |Hs ε) fails when generating the fail-traces cc or cb; by P(ε¬c after ε, c) we mean
the probability that output c is sent by an implementation i from B.1 after performing the trace ε;
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similar meanings have P(ε¬c after c, c) and P(ε¬c after c, b). In accordance to Lemma 5.2.1 the
computation is:

pAlgo,s,ε¬c(fail) = P(Choice 3) × P(ε¬c after ε, c)×

×(P(Choice 3) × P(ε¬c after c, c) + P(Choice 3) × P(ε¬c after c, b)) =

=
1
2

× 1 × (
1
2

×
1
3

+
1
2

×
1
3
) =

1
6

The probabilities of fail for the rest of the cases are :
A) pAlgo,s,¬ε(fail) = 1

3 ;
B.2) pAlgo,s,¬ε¬c(fail) = 1

18 ;
C) pAlgo,s,¬a(fail) = 1

3 ;
D.1) pAlgo,s,ε¬(ca)(fail) = 1

6 ; D.2) pAlgo,s,¬ε¬(ca)(fail) = 1
18 ;

E.1) pAlgo,s,a¬(ab)(fail) = 1
3 ; E.2) pAlgo,s,¬a¬(ab)(fail) = 1

9 .
Using these results, the probability of fail for every particular class of implementations is easily

computed by summing the probability of fail of its component representative combinations. So take
as an example the class (i 6|Hs ε)(i |Hs a)(i 6|Hs c)(i 6|Hs ca)(i |Hs ab) (notation ¬εa¬c¬(ca)(ab)):

pAlgo,s,¬εa¬c¬(ca)(ab)(fail) = pAlgo,s,¬ε(fail) + pAlgo,s,¬ε¬c(fail) + pAlgo,s,¬ε¬(ca)(fail)

=
1
3

+
1

18
+

1
18

=
4
9

= 0.44

Please note that we replace the implementation from p A,s,i by its correspondent class. The proba-
bilities of fail for every class of implementation i are given in the following table.

Table 2
pAlgo,s,i εac εa¬c ε¬ac ε¬a ¬εa ¬εa ¬ε¬a ¬ε¬a
(fail) ¬c c ¬c c ¬c
(ca)(ab) 0 0.16 0.33 0.49 0.33 0.38 0.66 0.71
(ca)¬(ab) 0.33 0.49 0.44 0.60 0.66 0.71 0.77 0.82
¬(ca)(ab) 0.16 0.32 0.49 0.64 0.38 0.44 0.71 0.76
¬(ca)¬(ab) 0.49 0.65 0.60 0.76 0.71 0.76 0.82 0.87

The probability density function ps(i) was given in Table 1 for every particular class of implementa-
tion. The probabilities of fail when Algo runs one time against an implementation were given in Table
2 for every particular class of implementation. Then the coverage of the Algo algorithm when it runs
m times against an implementation is:

cov(Algo, s, m) =def
λm

A,s(Is, {fail})
λA,s(Is, {pass, fail})

=
∑

i 6∈Is
w(i)pm

Algo,s,i(fail)ps(i)
∑

i 6∈Is
w(i)ps(i)

=

w(εa¬c(ca)(cb))pm
Algo,s,εa¬c(ca)(cb)

(fail)ps(εa¬c(ca)(cb) + ...

w(εa¬c(ca)(cb))ps(εa¬c(ca)(cb) + ...

... + w(¬ε¬a¬c¬(ca)¬(cb))pm
Algo,s,¬ε¬a¬c¬(ca)¬(cb)

(fail)ps(¬ε¬a¬c¬(ca)¬(cb)

... + w(¬ε¬a¬c¬(ca)¬(cb))ps(¬ε¬a¬c¬(ca)¬(cb)
=
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−1 × (1 − (1 − 0.16)m) × 0.081 − ... − 5 × (1 − (1 − 0.87)m) × 0.0003
−1 × 0.081 − ... − 5 × 0.0003

In the formula of the coverage from above there are 31 terms corresponding to the erroneous
classes of implementations. Because, there are too many terms to be represented, we consider in the
formula only the first and the last terms and we skip the 29 intermediary terms. For the computation of
the coverage we made a small program which computed it for different values of m. So the points are
cov(Algo, s, 1) = 0.42, cov(Algo, s, 2) = 0.63, cov(Algo, s, 3) = 0.75, cov(Algo, s, 4) = 0.82...
For the limit case we find limm→∞cov(Algo, s, m) = 1.

From the computation we see that after running Algo once we obtain a coverage of almost one
half, running twice, it covers two thirds and running it many times it has the maximum coverage 1.
Looking at the size of the specification which has 4 states and 6 transitions and of F which consists of
5 traces we can expect that the coverage should go rapidly to the limit one; for example a deterministic
algorithm after five runs, on average, is expected to check all the traces of F . This expectation is also
confirmed by the observation that an erroneous implementation can easily occur and Algo can easily
detect an error (the probability of obtaining a fail is in average 0.5 for a run of the algorithm). This
property is shown by the computation of the coverage which has after four runs a high coverage of
0.82 and after one run a coverage of almost 0.5.

It is interesting to see how changes of some parameters of the coverage formula influence the
coverage values. For example, what happens when Algo does not detect an error so easily? Let us
decrease the values of the probabilities of obtaining a fail with Algo from Table 2 with a factor of
1

10 . In this case the probability of obtaining a fail is on average 0.05 for a run of the algorithm. The
coverage computation gives the following values: cov(Algo, s, 1) = 0.042, cov(Algo, s, 2) = 0.082,
cov(Algo, s, 3) = 0.12, cov(Algo, s, 4) = 0.15... The values express the expected property that when
it is difficult to detect an error, the coverage does not increase quickly to one. To complete the picture
we should say that when modifying the weight of an arbitrarily chosen fault, ¬(ab), by increasing
it to say 10, the coverage values increase by about 5%. This can be expected because the coverage
follows the behaviours of the erroneous implementations which contain the fault ¬(ab) and which
have a higher average, of about 0.6, for the probability of obtaining a fault.

7.5 Conclusions

This chapter extends the work from [BTV91, HT96] and [FGM00] with a coverage measure for an
algorithm which generates and runs tests on-the-fly. The probability of sending outputs by the imple-
mentation and consequently of obtaining a verdict by the on-the-fly algorithm reflects the probabilistic
nature of this coverage. The severity of the bugs in the erroneous implementation, the probability dis-
tribution of the implementations and the probability distribution of producing a fail by the on-the-fly
algorithm are combined in the probabilistic coverage.

This theory is instantiated for the ioco theory and the TorX algorithm and an example for this
instantiation is worked out. When the number of test runs increases, the coverage increases arriving at
the limit one, provided that there is a non-zero probability of fail. This expresses the expected property
that after performing a sufficient quantity of test runs, the algorithm is able to detect at the end all bugs
of an erroneous implementation. When decreasing the probability of detecting an error, the coverage
also decreases, as expected. When increasing the weight of an arbitrary fault, the coverage follows
the behaviours of the erroneous implementations which do contain the fault. Computer programs can
be made for the computation of the coverage, as a part of test generation tools (such as TorX).

Chapter 5, 6 and 7 present ways of controlling the on-the-fly test generation and execution and
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ways of defining coverage measures for on-the-fly algorithms. Chapter 8 deals with another topic,
namely test selection. By applying test selection a reduced set of tests is selected. Chapter 8 presents
a coverage measure which expresses the error detection power of a reduced set of tests. We should
note that there is no conflict between the two coverages formalized, the one for the on-the-fly test
generation and execution, from Chapter 7, and the one for test selection, from Chapter 8. As explained
in Chapter 1, the test selection is done before any test generation and execution. An intuitive example
of a selection is to limit some parameter ranges of signals (from a specification which has signals with
parameters, such as the Conference Protocol specification) to a small number of values. The coverage
for test selection, from Chapter 8, expresses the detection power of the reduced set of tests which is
chosen by selection. This detection power is compared to the set of errors which can be discovered by
the whole set of tests. Now, from the set of tests selected only some tests are generated and executed
by an on-the-fly algorithm (not necessarily all of them). The coverage for the test generation and
execution expresses the detection power of the test suite which is generated and executed. In this
case, the detection power is compared to the set of errors which can be discovered by the reduced set
of tests. The two values obtained corresponding to the two coverages can be combined (for example
by multiplying them) to express the general detection power of the test suite which resulted after
selection, generation and execution. The general detection power of the test suite is compared to the
set of errors which can be discovered by whole set of tests. In this way the two coverages formalized
in Chapter 7 and in Chapter 8 complement each other.



Chapter 8

Test Selection, Trace Distance and
Heuristics

8.1 Introduction

Testing provides developers, users, and purchasers, with increased levels of confidence in the product
quality. Conformance tests capture the behavioural description of a specification and measure whether
a product, or IUT (the implementation under test), faithfully implements the specification. Because
of time and resource limitations, any form of testing can only exercise a small subset of all possible
system behaviours. Therefore, testing can never give certainty about the correctness of a system.

Since in practice exhaustive testing is impossible, an important step in the testing process is the de-
velopment of a carefully selected test suite, i.e., a set of test cases. Such a test suite should have a large
potential of revealing errors in the implementation. Moreover, we would like to be able to compare
different test suites in order to select the best one, and to quantify their error-detecting capability.

The selection of an appropriate set of tests from all possible ones (usually infinitely many test
cases), is not a trivial task. We refer to this task as test selection. Traditionally, test selection is based
on a number of heuristic criteria. Well-known heuristics include equivalence partitioning, bound-
ary value analysis, and use of code-coverage criteria like statement-, decision- and path-coverage
[Mye79]. Although these criteria provide some heuristics for selecting test cases, they are rather
informal and they do not allow to measure the error-detecting capability of a test suite.

If test cases are derived from a formal specification, in particular if it is done algorithmically using
tools for automatic test generation, e.g., Autolink [SKGH97], TGV [JM99] or TorX [BFdV+99], then
the test selection problem is even more apparent. These test tools can generate a large number of
test cases, when given a specification in the appropriate formalism, without much user intervention.
All these generated test cases can detect potential errors in implementations, and errors detected with
these test cases indeed indicate that an implementation is not correct with respect to its specification.
However, the number of potentially generated test cases may be very large, or even infinite. In order
to control and get insight in the selection of the tests, and by that get confidence in the correctness of
an IUT that passes the tests, it is important that the selection process is formally described and based
on a well-defined strategy.

It should be noted, however, that test selection is an activity that in principle cannot be based solely
on a formal specification of a system. In order to decide which test cases are more valuable than others,
either extra information outside the realm of the specification formalism is necessary, or assumptions
about the occurrence of errors in the implementation must be made. Such extra information may

99
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include knowledge about which errors are frequently made by implementers, which kind of errors
are important, e.g., in the sense of having catastrophic consequences, what functionality is difficult
to implement, which functionality is crucial for the well functioning of the system, etc. An approach
to formalizing this extra information was given in [BTV91]. On the other hand, assumptions can be
made about the occurrence of errors in implementations, e.g., that errors will not occur in isolation,
i.e., if some behaviour is erroneous then there is a large probability that some other behaviour close
to it is also erroneous. So we only have to test one of these behaviours (equivalence partitioning: the
behaviours are equivalent with respect to the occurrence of errors). Another often used assumption is
that errors are most likely to occur on the boundaries of valid data intervals (boundary value analysis).

We approach the problem of test selection by making assumptions in an automata-based, or la-
belled transition system-based formalism. The results of the research described in this chapter were
also presented in [FGMT02]. Up to this point, the theory presented in this thesis was based on the
ioco theory which is depicted in Chapter 2. For the theory of test selection not all the ingredients of
ioco are needed. Therefore we recall in Section 8.2 the basic definitions which are used for the test
selection formalization. Two different kinds of assumptions are introduced and expressed as heuristic
principles in Section 8.3 starting with the ideas of [CG96]. The first one, called reduction heuristic,
assumes that few outgoing transitions of a state show essentially different behaviour. The second
one, referred to as cycling heuristic, assumes that the probability to detect erroneous behaviour in a
loop decreases after each correct execution of the loop behaviour. After that we propose a mathe-
matical framework, defining a heuristic as a function on the set of behaviours (traces). This is done
in Section 8.4. When we want to make the two heuristics more precise, defining them as functions
according to the definition from Section 8.4, we observe that an appropriate behaviour representation
for them is needed. Therefore in Section 8.5 we define the marked trace representation. After these
preparations the definitions of the heuristics as functions on marked traces are straightforward (Sec-
tion 8.6). Subsequently, the notion of isolation and closeness of errors is formalized in Section 8.7
by defining a distance function between behaviours. This idea is taken from [ACV93, ACV97] and
extended to marked traces. The trace distance implements the considered heuristics in the sense that
the traces which are selected by the heuristics are remote from each other. Every trace which is ex-
cluded by the heuristics is close to one of the selected traces. A coverage function which may serve as
a measure for the error-detecting capability of a test suite is defined based on the maximum distance
between selected and non-selected behaviours and a formula for approximating the coverage is given
in Section 8.8.

8.2 Preliminaries

The basic formalism for our discussion about test selection is the labelled transition system, or the
automaton. A labelled transition system provides means to specify, model, analyze and reason about
(concurrent) system behaviour. A labelled transition system is defined in terms of states and labelled
transitions between states. We recall Definition 2.1.1 for the definition of a labelled transition system.

The labels in L represent the actions of a system. An action a ∈ L is executable in state q ∈ Q
if (q, a, q ′) ∈ T for some state q ′ ∈ Q, which is said to be the new state after execution of a; we
also write q

a→ q ′. A finite sequence of pairs state, action ending into a state is called a path, i.e. a
sequence of type q1a1q2....qnanqn+1 with n ∈ IN, i ≤ n + 1, qi ∈ Q, ai ∈ L and q1

a1→ . . .
an→ qn+1.

Similarly, a finite sequence of actions is called a trace. The set of all traces over L is denoted by
L∗, with ε denoting the empty sequence. Abusing notation, we will use p to denote both the labelled
transition system and the current (or initial) state of the system.
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The traces of a labelled transition system p are all sequences of actions that p can execute from
its initial state q0: traces(p) =def { σ ∈ L∗ | q0

σ→ }. Here we use the following additional
definitions (n ∈ IN, i ≤ n, q, q ′, qi ∈ Q, ai ∈ L , σ ∈ L∗):

q
a1·...·an→ q ′ =def ∃q0, . . . , qn : q = q0

a1→ q1
a2→ . . .

an→ qn = q ′

q
σ→ =def ∃q ′ : q

σ→ q ′

For our presentation and formalization we use minimal, deterministic, finite-state transition systems.
A finite-state labelled transition system has a finite number of states, i.e., Q is finite. A transition
system is deterministic if for any state q ∈ Q and action a ∈ L there is at most one successor
state, i.e., T : Q × L → Q is a (partial) function. A transition system is minimal if there are no
equivalent states, i.e., no two states with exactly the same traces, which means: 6∃q, q ′ ∈ Q, q 6= q ′ :
traces(q) = traces(q ′). We (ab)use the word automaton for these minimal, deterministic, finite-state
transition systems.

Although it may seem a severe limitation to restrict to automata, an important formal test theory,
viz. ioco-testing [Tre96], can be expressed, in terms of so-called suspension automata. So the test
selection approach which is presented in this chapter can be integrated with ioco-testing.

In testing, the traces of the minimal, deterministic, finite automata are used. A complete (maximal)
test suite for an automaton specification s is expressed as traces(s). However, even if s is finite-state,
its set of traces will usually be infinite and contain traces of unbounded length. Hence, a complete
test suite will have infinitely many tests of unbounded length. Such a test suite can never be executed
within any reasonable limits of time and resources. Consequently, the problem of test selection con-
sists of selecting a finite subset T ⊆ traces(s), such that we end up with a reasonably sized set of
bounded-length test cases.

The challenge of test selection now is to choose T such that the resulting test suite keeps a large
error-detecting capability. Moreover, we wish to quantify this capability in order to compare and select
test suites. The next sections will present and formalize an approach to selection and quantification.

8.3 Introduction to heuristics, distance and coverage

In this section we introduce the concepts of heuristics and coverage. Two specific heuristics will be
proposed in Section 8.3.1. They are illustrated by an example in Section 8.3.2.

8.3.1 The heuristics principles for the test selection

As motivated in Section 8.2, the specification is seen as a minimal finite-state automaton. The spec-
ification has a set of traces which usually is too large; for this reason, we want to obtain a smaller
set of traces. As explained in Section 8.1, this goal can be reached by making assumptions on the
occurrence of faults, assumptions which are expressed as heuristic principles. The heuristic principles
with which we are working in this chapter are:

• Reduction: if the specification automaton contains for a state a large number of outgoing tran-
sitions which go to the same next state, only a small number of these transitions need to be
selected;

• Cycling: each cycle in the automaton needs to be traversed only a limited number of times by
every single trace.
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8.3.2 A first illustration of the test selection

Now we will give an example on which we will apply our heuristics for test selection.
Let s be the specification automaton from the left-hand side of Figure 8.1. The specification has

four states. The labelset is L = {b, c, d, e, f } ∪ {ai | i ∈ IN} and the initial state is the state I. This
state has infinitely many outgoing transitions ({ai | i ∈ IN}). Via a transition ai from the initial state,
one arrives at II. This state contains a cycle which goes via III using the transitions b and d; the state
III contains another cycle, via the transition c. From II one arrives at IV using e or f . For simplicity,
we will consider only the traces of s that end in IV. Let T be this set of traces of s.

I

II
III bc

I

II
III b

a1 i 0
a

0

d
fe

IV

c

d
e f

a

IV

a

Reduction

Figure 8.1: A minimal automaton of a specification and its reduced version.

Now let us consider a0 as being the representative transition in the initial state; by choosing this
transition the Reduction heuristic is applied in this state. By this application we reduce the labelset
to a finite one L ′ = {a0, b, c, d, e, f }. This labelset L ′ corresponds to the reduced automaton from
the right-hand side of Figure 8.1. Now our initial set of traces becomes T Reduction and it contains all
the traces of the automaton which are starting from state I, arriving in state IV and going through
transition a0 in I (T Reduction equals also the set of traces of the reduced automaton). In this example
one representative is selected; in a more general example it could also be two or more of the a i .

The following heuristic to be applied is the Cycling heuristic. The traces are cycling via the states
II and III of the automaton. In this automaton the state II has a cycle via the sequence of transitions
bd and the state III has another cycle via the transition c. We can fix the cycle limit number to 1 for
the cycling states II and III. So the transitions c from III and bd from II can be traversed only once
by every single trace of T Reduction. The traces which respect this condition, and thus form the set of
traces T Reduction, Cycling, are:

T Reduction, Cycling = {a0e, a0bde, a0bcde, a0 f, a0bd f, a0bcd f }

a0a0
a0a0 a0a0 a0a0 a0a0 00aa a0a0a0a0a0a0 a0a0

e
e b

1 d

Cycling
e

d

e

e

d

f

d

bb f b b

c d c

f

d

b
e

1 c1
d

b

c21

e

1 c

Figure 8.2: An application of the Cycling heuristic.

The application of the Cycling heuristic is represented graphically in Figure 8.2. The full set is rep-
resented at the left-hand side and the reduced set at the right. As it can be seen the set T Reduction, Cycling
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is a finite set and all its traces have a length of at most 5 (finite length).
Our method deals with bigger cycles as well, such as going via the transitions bd several times;

the technique of [ACV93] deals only with simple cycles – such as going via transition c several times.
Another advantage is that with the proposed test selection technique one can deal with an infinite
branching of transitions (see the initial state of this automaton). As we saw in our example, limiting
the cycle number implicitly limits the length if the automaton is finite and therefore a length heuristic,
which is considered by [ACV93], is not necessary here.

Now we are going to express the heuristic principles in terms of distances among traces. A dis-
tance is a measure which expresses how far apart two traces are. A particular way to compute such
a trace distance is given in Section 8.7.2. To get a feeling of how the trace distance is related to the
heuristic principles, let us take as an example the distance between the traces a0bd f and a0bdbd f .
In Figure 8.3, it can be seen that the distance between the traces a0bd f and a0bdbd f is smaller than
the distance for example between a0 f and a0bdbd f . This happens because the trace a0bd f cycles
one time via the state II, a0bdbd f cycles twice and a0 f cycles zero times. Therefore intuitively, the
trace a0bd f should be closer to a0bdbd f than to the other traces (exactly as we assume in the Cycling
heuristic that the later cycles are less important, so the distance between two traces which are cycling
more often through a state will decrease).

0a bde

a bcde

a bcdf a e

a bdbdf
a bdbdbdf

a bdf0

0

0

0 0

0

T

 a f0

d(a f,0 0a bdbdf)

Figure 8.3: A covering of the initial set using trace distance.

In Figure 8.3, every trace from the reduced set T Reduction, Cycling is the center of a sphere. The initial
set T is covered by the reduced set T Reduction, Cycling , such that every trace from T has a corresponding
trace in T Reduction, Cycling to which the distance is smaller than a given limit ε (ε is the radius of the
spheres). This process of selecting one representative for each sphere leads to a notion of coverage.
When taking big spheres only few representatives are selected and the error detection capability is low.
Small spheres, on the other hand give a large coverage. If we scale things in such a way that 0 ≤ ε ≤ 1,
then the coverage can be expressed as 1− ε. The coverage of the reduction from T to T Reduction, Cycling

is denoted as cov(T Reduction, Cycling, T ). Therefore we express cov(T Reduction, Cycling, T ) = 1 − ε.
This gave some intuition about how the heuristics and the trace distance are used in the test selec-

tion and computation of the coverage. In the following section we are going to be more formal.

8.4 The trace distance and the test heuristics

In our test selection method we use heuristics which are applied to traces and distances between traces.
This section describes the formal definitions of these notions.

Formally, a trace heuristic is a function between two sets of traces such that the range is a proper
subset of the domain (so the heuristic reduces the size of the initial set).
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Definition 8.4.1 A trace heuristic h is a function h : T → T , where T is a set of traces and Ran(h) ⊂
T .

Definition 8.4.2 Let T be a set. Then a function d : T × T → IR≥0 is a distance iff: 1) d(x, x) = 0;
2) d(x, y) = d(y, x); 3) d(x, y) ≤ d(x, z) + d(z, y); for all x, y, z ∈ T .

In particular we use Definition 8.4.2 for sets of traces and such distances are called trace distances.
The pair (T, d) is a metric space. A space where d does not necessarily satisfy the triangle law
(expressed by the point 3) from the definition above) is called a semi-metric space, or sometimes
for simplification, still a metric space. We can weaken the conditions in which this theory applies
for semi-metric spaces because the triangle law property is not really needed (used) for the theory
presented here. In the remainder of this chapter we are using ‘classic’ metric spaces which have also
the triangle property. It is customary to express coverages by numbers in the range [0, 1] and therefore
we restrict ourselves to distance functions such that 0 ≤ d(x, y) ≤ 1 for all x, y. This can be done
without loss of generality (suppose we would have distances in [0,∞] and ε numbers (we will come
later to them) in the range [0,∞] then we could scale them back to [0, 1] using a suitable monotonic
and continuous bijection b : [0,∞] → [0, 1]). In order to use a trace distance for test selection the
concept of ε-cover is useful.

Definition 8.4.3 A set T ′ is an ε-cover of T (T ′ ⊆ T, ε ≥ 0) with respect to distance d if for every
t ∈ T there exists t ′ ∈ T ′ such that d(t, t ′) ≤ ε.

The concept of ε-cover gives rise to the property of total boundedness for a metric space.

Definition 8.4.4 A metric space (T, d) is totally bounded if for every ε > 0 it is possible to find a
finite set Tε ⊆ T such that Tε is an ε-cover of T with respect to distance d .

Now a link between a heuristic and a trace distance is established: if for a given heuristic the
subset obtained by the application of the heuristic is an ε-cover of the original set, then the trace
distance implements the heuristic.

Definition 8.4.5 Let T be a set of traces and h be a trace heuristic such that h : T → T . Let d be a
trace distance defined on T . Then d implements the heuristic h iff: ∃εh ≥ 0 : Ran(h) is an εh-cover
of T with respect to the distance d .

The following definition shows how to obtain the coverage.

Definition 8.4.6 Let T be a set of traces and T ′ ⊆ T be a cover of T with respect to a trace distance
d . Let εm = inf {ε ≥ 0 | T ′ is an ε-cover of T } be the inferior minimum of the ε values. Then the
coverage of T ′ with respect to T is cov(T ′, T ) = 1 − εm .

8.5 The marked trace representation

When we want to make the two heuristics more precise, defining them as functions according to
Definition 8.4.1, we observe that an appropriate trace representation for them is needed. When we
apply the Cycling heuristic to a trace, we observe that the trace does not have enough information
regarding how it was generated, what states it has been going through and how often it went through
each state. As a result, we will represent the trace in such a way that the information regarding its
generation from the automaton will be included. This leads us to a concept called marked traces,
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which will be developed in Section 8.5.1. In general a given trace can be interpreted in several ways
as being the result of running through cycles in the automaton. This introduces a problem of ambiguity
which is addressed in Section 8.5.2.

8.5.1 The marked traces

The first example in this section will explain why a new representation for the traces is needed.

Example Let us consider the automaton from Figure 8.4 and one of its traces, abcbcd . This trace
is traversing (cycling) twice via the state II. But the state information is not present in the trace.
Therefore this representation is not appropriate for working with cycles. Now let us transform it into
a path, which is IaIIbIIIcIIbIIIcIIdIV . We can observe that the path contains extra information which
is not needed for cycles: for example it contains the states I and IV which are not part of any cycle.
Summing up the observations, we arrive at the conclusion that a new representation is needed. An
intuitive one is a[〈bc〉〈bc〉]IId where [〈bc〉〈bc〉]II indicates that two cycles consisting of the transitions
bc are performed through the state II.

I

II
b

IV

III

a2

d
c

1

Figure 8.4: A trace which cycles through an automaton.

As we saw in the introductory example, we associate the cycles with how many times a trace is
traversing a state. The name of the state, which is seen as a mark, will serve as the identifier of the
cycle. We call such an extended trace a marked trace. Now we have all the ingredients to define a
marked representation of a trace. Let L be a labelset and Q a set of states (or marks). We will define
below the grammar G which generates marked traces.

Grammar (G)

non-terminals:
mt (marked trace)
nemt (non-empty marked trace)
neseq (non-empty sequence)
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terminals:
u (u ∈ L)
q (q ∈ Q)
[, ], 〈, 〉 (two types of brackets)

rules:
mt → ε

| nemt

nemt → u mt (u ∈ L)
| [ neseq ] q mt (q ∈ Q)

neseq → 〈 nemt 〉
| 〈 nemt 〉 neseq

start symbol:
mt

It is easy to check that the grammar G is not ambiguous. Below, the definition for the marked traces
is given.

Definition 8.5.1 A marked trace is an element of the language of the grammar G, i.e., a sequence
generated by the grammar G.

Example Some examples of marked traces are: a[〈bc〉]IId and a[〈bc〉〈bc〉]IId with II∈ Q.
We will denote the set of all the marked traces over a labelset L and a set of marks Q as L ∗

Q .
The transformation between the marked representation of a trace and a normal representation of

a trace can be made easily by eliminating all the parentheses and states which occur in the marked
representation. For example the marked trace a[〈bc〉〈bc〉]IId is transformed in the trace abcbcd . We
will call this transformation unfold.

Definition 8.5.2 Let L be a labelset, let Q be the set of marks and let L ∗
Q be the set of marked traces.

Then the function L∗
Q → L∗ which transforms a marked trace into a trace is:

1. if t is a marked trace because t is ε then unfold(t) = ε;

2. if t is a marked trace because t is t ′ with t ′ a non-empty marked trace then unfold(t) =
unfold(t ′);

3. if t is a non-empty marked trace because t is ut ′ with u ∈ L and t ′ a marked trace then
unfold(t) = u unfold(t ′);

4. if t is a non-empty marked trace because t is [s]q t ′ with s a non-empty sequence, q ∈ Q and t ′

a marked trace then unfold(t) = unfold(s)unfold(t ′);

5. if s is a non-empty sequence because s is 〈t〉 with t a non-empty marked trace then unfold(s) =
unfold(t);
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6. if s is a non-empty sequence because s is 〈t〉s ′ with t a non-empty marked trace and s ′ a non-
empty sequence then unfold(s) = unfold(t)unfold(s ′).

In the following example, we will illustrate a way in which a trace can be transformed into a
marked trace. In general, this transformation is not unique. To illustrate this, we need a more complex
example.

Example Consider the automaton from Figure 8.1. The states of the automaton are marked with
I, II, III, IV. The cycling states are the states II and III. Consider the trace a0bcdbcde. Adding boxes

to reflect the nesting structure, the corresponding path is Ia0 II b III c III d II b III c III d

II eIV . The state II (surrounded with a single box in the path) appears three times. Between two
occurrences of state II in the path, the state III (surrounded with two boxes) appears twice. If we
match every new occurrence of state II in the path with its first occurrence (we will call this way of
matching the states first state matching), the path will be divided in 4 component paths:

Ia0II
︸︷︷︸

[〈IIbIIIcIIId II
︸ ︷︷ ︸

〉〈IIbIIIcIIId II
︸ ︷︷ ︸

〉]II IIeIV
︸︷︷︸

1 2 3 4

If we do the same for III in the paths 2) IIbIII cIIIdII and 3) IIbIIIcIIIdII and eliminate all the states,
we obtain the marked trace a0[〈b[〈c〉]IIId〉〈b[〈c〉]IIId〉]IIe. This marked trace corresponds to the initial
trace a0bcdbcde. However, there are also other ways of transforming it into a marked trace. For
example, the states of the same trace can be grouped in another way as Ia0IIb III c III dIIb III c
III dIIeIV and the same trace has another correspondent marked trace which is a0b[〈c〉〈db〉〈c〉]IIIde.

From this example we see that there is not a unique way of transforming a trace in a marked trace.
We leave it as an option to the implementer (the user of our theory) to choose the way by which
he transforms a trace into a marked trace. In the next subsection, we will give a particular way to
implement the transformation of a trace in a marked trace and a way to obtain the set of marked traces
which will be called the set of representative marked traces. If the implementer chooses another
transformation, he can still use the theory presented in this paper if the correspondence between
marked traces and traces is unique, and if its set of marked traces respects the property that the widths
and the nesting depth are uniformly bounded. But we will come to this in the next subsection.

8.5.2 An algorithm for obtaining a set of representatives

In the beginning of this subsection we give a way to implement the transformation of a trace in a
representative marked trace and to obtain the set of representatives.

This set is obtained by applying the following function (Mark) on each trace (path) of a finite-
state minimal deterministic automaton s. The function builds a marked trace from a trace using a first
state match technique like the one we used for the trace a0bcdbcde at the beginning of the previous
example. In Mark we use the following function and procedure: 1) the function RepetitiveState(p, Q),
p a path, Q a set of states, returns true if there is a state of p which is contained in Q and which occurs
more than once in p and 2) the procedure Divide(p, Q, q, n, p1, ..., pn) finds q ∈ Q and splits p in n
parts p1, ..., pn (n ∈ IN, i = 2, ..., n−1, p1q, qpi q, qpn paths) such that: i) q ∈ Q is the first repetitive
state in p, ii) p = p1qp2q...qpn and iii) the set of states of p j does not contain q ( j = 1, ..., n). The
operator |trace returns the trace corresponding to a path by eliminating all the states from the path.

function Mark (p : Path, Q : SetStates) : MarkedTrace;
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var q : State;
p1, ..., pn : (ε+Label)(State Label)∗(ε+State);

begin
if (¬RepetitiveState(p, Q)) then

(1) return p |trace;
else

(2) Divide(p, Q, q, n, p1, ..., pn);
(3) Q = Q \ {q};
(4) return Mark(p1q, Q)[〈Mark(qp2q, Q)〉...〈Mark(qpn−1q, Q)〉]q Mark(qpn , Q);
end

Initially, the function Mark is applied to a path p and to the set of states Q of the automaton.
When a) p does not contain states from Q which are repetitive, Mark returns the trace corresponding
to p (p |trace). When a) does not hold, Mark finds the first repetitive state q ∈ Q in p and divides p in
n parts p1, ..., pn . The first repetitive state q is the first state met when parsing the path p from left to
right which has more than one occurrence in the path p. Every pi (i = 2, ..., n − 1) lies between two
occurrences of q in p; p1 and pn are the initial part (followed by q) and the last part (preceded with q)
of p, respectively. After this the state q is deleted from Q, which becomes Q \ {q}. In this way, terms
as [ [ ]q ]q in which q is interpreted twice as a cycle are avoided. Without deletion, the repetition of q
could be reinterpreted as a cycle by a later call of Mark, when it is applied on a component path qp i q.
After the transformation of Q, Mark returns the concatenation of the marked traces obtained by re-
cursively applying the algorithm to the components p1, ..., pn , which is Mark(p1q, Q)[〈Mark(qp2q,

Q)〉...〈Mark(qpn−1q, Q)〉]qMark(qpn , Q).

Example Let us consider the path p = Ia0IIbIIIdIIeIV of the automaton from Figure 8.1 and the
set of states of this automaton, Q = {I, II, III, IV}.
The call of Mark(Ia0IIbIIIdIIeIV, {I, II, III, IV}) implies:

Apply (2) Divide(Ia0IIbIIIdIIeIV, {I, II, III, IV}, II, 3, Ia0, bIIId, eIV)

outs: q = II and p1 = Ia0, p2 = bIIId , p3 = eIV

Apply (3) Q = {I, II, III, IV} \ {II} = {I, III, IV}

Apply (4) Mark(Ia0II, {I, III, IV})[〈Mark(IIbIIIdII, {I, III, IV})〉]IIMark(IIeIV, {I, III, IV})
Apply (1)= Ia0II |trace [〈IIbIIIdII |trace〉]II IIeIV |trace

= a0[〈bd〉]II e

An implementation of this algorithm is given in the next chapter of the thesis. The set of rep-
resentatives is tracesm(s) = {Mark(p, Q) | p ∈ path(s)}. In the remainder of this chapter, in the
examples which we use, we assume that the marked traces are generated with Mark from the traces of
an automaton.

As one can see, our way of building the set of representatives is rather complex. One can imagine
easier solutions as for example: every marked trace is the trace itself. But the marked traces built
with Mark have nice properties which are required for the application of our test selection theory.
For example the width of such marked traces is uniformly bounded (Lemma 8.5.4), a property which
is used in the theorem of total boundedness (Theorem 8.8.2). The marked traces generated with the
trivial solution do not have this property.

Once we have the set of representatives, we want to know whether it has some specific properties.
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For a marked trace of an automaton we want to know if the width of it is uniformly bounded, and
if the nesting depth of it is also bounded. Here uniformly bounded means that the same upperbound
applies at all nesting levels. But first let us define these terms.

In the remainder of this chapter, in the definitions which are given we use as the domain of different
functions the set tracesm(s) (for example in the definition below). For being strict formal, tracesm(s)
should be replaced with L∗

Q and it should be mentioned that the function defined is used only for the
traces from tracesm(s). This replacement is needed because it might be the case that if ut ∈ tracesm(s)
then t 6∈ tracesm(s) (for example the trace correspondent to the marked trace t is not starting from the
initial state; u is a label). For simplifying the presentation we will abuse notation by letting traces m(s)
as the domain of the functions defined.

Definition 8.5.3 Let s be an automaton. Let L be the labelset and Q the set of states of s. Then the
function width : tracesm(s) → IN is:

1. if t is a marked trace because t is ε then width(t) = 0;

2. if t is a marked trace because t is t ′ with t ′ a non-empty marked trace then width(t) = width(t ′);

3. if t is a non-empty marked trace because t is ut ′ with u ∈ L and t ′ a marked trace then
width(t) = 1 + width(t ′);

4. if t is a non-empty trace because t is [s]q t ′ with s a non-empty sequence, q ∈ Q and t ′ a marked
trace then width(t) = 1 + width(t ′).

In the definition above the terms [ ] are counted as single terms of the marked trace. Therefore it
did not make sense to define the function width for non-empty sequences.

Example Let us take the trace a0[〈bd〉〈bd〉]II f . Then

width(a0[〈bd〉〈bd〉]II f ) =

width(a0) + width([〈bd〉〈bd〉]II) + width( f ) =

1 + 1 + 1 =

3

The following lemma shows that the width of every marked trace generated with Mark is uniformly
bounded.

Lemma 8.5.4 The width of a marked trace generated with Mark from an automaton and the widths
of all its component marked traces are less than or equal to 2m − 1, where m is the number of states
of the automaton.

For the proof see Appendix A.4.

Definition 8.5.5 Let s be an automaton. Let L be the labelset and Q the set of states of s. Then the
function nesting : tracesm(s) → IN is:

1. if t is a marked trace because t is ε then nesting(t) = 0;
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2. if t is a marked trace because t is t ′ with t ′ a non-empty marked trace then nesting(t) =
nesting(t ′);

3. if t is a non-empty marked trace because t is ut ′ with u ∈ L and t ′ a marked trace then
nesting(t) = nesting(t ′);

4. if t is a non-empty marked trace because t is [s]q t ′ with s a non-empty sequence, q ∈ Q and t ′

a marked trace then nesting(t) = max(1 + nesting(s), nesting(t ′));

5. if s is a non-empty sequence because s is 〈t〉 with t a non-empty marked trace then nesting(s) =
nesting(t);

6. if s is a non-empty sequence because s is 〈t〉s ′ with t a non-empty marked trace and s ′ a non-
empty sequence then nesting(s) = max(nesting(t), nesting(s ′)).

Example Let us take the trace a0[〈bd〉〈b[〈c〉]IIId〉]II f . Then

nesting(a0[〈bd〉〈b[〈c〉]IIId〉]II f ) =

max(1 + nesting(〈bd〉〈b[〈c〉]IIId〉), nesting( f )) =

max(1 + max(nesting(bd), nesting(〈b[〈c〉]IIId〉)), 0) =

max(2, 0) =

2

The following lemma shows that the nesting depth of every marked trace generated with Mark is
bounded.

Lemma 8.5.6 The nesting depth of a marked trace generated with Mark from an automaton is less
than or equal to the number of states of the automaton.

For the proof see Appendix A.5.
As we motivated before, for applying our theory of test selection we need some specific properties

for the set of representatives. So we require for the set of (representative) marked traces of an automa-
ton that the width of every marked trace, the widths of all its component marked traces, and its nesting
depth to be uniformly bounded. In this subsection we showed that the marked traces generated with
Mark have these properties (Lemma 8.5.4, Lemma 8.5.6). Certain other algorithms work as well. For
example, similarly as we did in this subsection, one can prove that the marked traces obtained with
a last state matching technique (the last repetitive state of the path is matched) have also these prop-
erties. Independent of the way in which the set of marked traces is obtained, once it has the required
properties, our test selection theory can be applied to it.

Now we have an algorithm that makes sure that every trace of the automaton has a unique corre-
spondent representative marked trace, we will work with marked traces in place of traces throughout
the remainder of this chapter.
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8.6 The heuristics defined for marked traces

Below we will define the heuristics in a formal way. As we presented in Section 8.3.1, the intuition
behind the heuristics Reduction and Cycling is that they take two aspects into account: the finiteness
of 1) the number of outgoing transitions of certain states and of 2) the number of times each cycle can
be traversed by every single trace.

When Reduction is applied, the labelset L is split in two parts: the selected labels which form a
finite set L ′ ⊆ L and the set of unselected labels which is L \ L ′. This application can be seen as
the application of a mapping function trans: L → L ′ which maps every unselected label to a selected
label from L ′ and every selected label to itself. Without loss of generality let us assume that the labels
label uniquely the transitions (otherwise trans should be defined on the product Q × L , where Q is
the set of states of the considered automaton). Then, for all q ∈ Q, if u labels a transition of state q

then, trans(u) should also label a transition of state q, i.e. ∃q ′ : q
trans(u)→ q ′. This property is needed

for ensuring that Reduction produces valid traces of the automaton. One practical way to make the
selection and to obtain L ′ and trans is by defining a distance dL between labels, such that the metric
space (L , dL) is totally bounded. Let us fix a positive real number εL ≥ 0. Now L ′ will be a labelset
which is an εL -cover of L . A set of labels which are remote from each other (their distance is greater
than εL ) is selected and the labels from L \ L ′ remain unselected. The function trans: L → L ′ can be
defined in this case such that trans(a) = b with a ∈ L , b ∈ L ′ and dL(a, b) minimum.

For the Cycling heuristic we relate the cycles of the automaton to the marked representation of the
trace; limiting the numbers of times of traversing the cycles means limiting the size of the non-empty
sequences in a marked traces. Now, let us define these heuristics in a formal way.

Definition 8.6.1 Let s be an automaton. Let L be the labelset and Q the set of states of s. The
labels label uniquely the transitions of the automaton s. Let L ′ ⊆ L be a finite subset of L and let
trans: L → L ′ be the mapping function such that if u ∈ L labels a transition of state q then, trans(u)

will also label a transition of state q. Then the heuristic Reduction : tracesm(s) → tracesm(s) is:

1. if t is a marked trace because t is ε then Reduction(t) = ε;

2. if t is a marked trace because t is t ′ with t ′ a non-empty marked trace then Reduction(t) =
Reduction(t ′);

3. if t is a non-empty marked trace because t is ut ′ with u ∈ L and t ′ a marked trace then
Reduction(t) = trans(u)Reduction(t ′);

4. if t is a non-empty trace because t is [s]q t ′ with s a non-empty sequence, q ∈ Q and t ′ a marked
trace then Reduction(t) = [Reduction(s)]qReduction(t ′);

5. if s is a non-empty sequence because s is 〈t〉 with t a non-empty marked trace then Reduction(s) =
〈Reduction(t)〉;

6. if s is a non-empty sequence because s is 〈t〉s ′ with t a non-empty marked trace and s ′ a non-
empty sequence then Reduction(s) = 〈Reduction(t)〉Reduction(s ′).

Example Let us consider the automaton from Figure 8.1. For this automaton the set of labels is
L = {c, b, d, e, f } ∪ {ai | i = 0, 1, ...}.

Let L ′ = {a0, c, b, d, e, f }, which is a finite subset of L and trans: L → L ′
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trans(x) =
{

a0 x = ai , i ∈ IN
x otherwise

Then

Reduction(a3e) =

Reduction(a3)Reduction(e) =

trans(a3)trans(e) =

a0e

Let s be a non-empty sequence. By | s | we mean the size of the non-empty sequence, i.e. the
numbers of terms of type 〈 〉 in the sequence s.

Definition 8.6.2 The size of a non-empty sequence is

1. if s is a non-empty sequence because s is 〈t〉 with t a non-empty marked trace then | s |= 1;

2. if s is a non-empty sequence because s is 〈t〉s ′ with t a non-empty marked trace and s ′ a non-
empty sequence then | s |= 1+ | s ′ |

The definition for the Cycling heuristic is given below.

Definition 8.6.3 Let s be an automaton. Let L be the labelset and Q the set of states of s. Let l c be
the cycle limit with lc ∈ IN. Then the heuristic Cycling : tracesm(s) → tracesm(s) is:

1. if t is a marked trace because t is ε then Cycling(t) = ε;

2. if t is a marked trace because t is t ′ with t ′ a non-empty marked trace then Cycling(t) =
Cycling(t ′);

3. if t is a non-empty marked trace because t is ut ′ with u ∈ L and t ′ a marked trace then
Cycling(t) = uCycling(t ′);

4. if t is a non-empty trace because t is [s]q t ′ with s a non-empty sequence, q ∈ Q and t ′ a marked
trace then

(a) Cycling(t) = Cycling(t ′) if lc = 0;

(b) Cycling(t) = [Cycling(s)]qCycling(t ′) if lc > 0;

5. if s is a non-empty sequence because s is 〈t〉 with t a non-empty marked trace then Cycling(s) =
〈Cycling(t)〉;

6. if s is a non-empty sequence because s is 〈t〉s ′ with t a non-empty marked trace and s ′ a non-
empty sequence then

(a) Cycling(s) = 〈Cycling(t)〉 if lc = 1;

(b) Cycling(s) = 〈Cycling(t)〉Cycling(s ′) if lc ≥ | s |;
(c) Cycling(s) = 〈Cycling(t)〉Cycling(s ′′) if lc < | s |; s ′′ is obtained by eliminating the

last terms (of type 〈 〉) from s ′ after lc − 1 positions (if s ′ = 〈t1〉....〈tn−1〉〈tn〉 then s ′′ =
〈t1〉....〈tlc−1〉 with n = | s ′ |, i ≤ n and ti non-empty marked traces).
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In the definition above, for a non-empty sequence s of type 〈t〉s ′, by cutting the last terms of s ′

when the size of the sequence 〈t〉s ′ (or s) exceeds lc will preserve the first lc terms of s.
One observation related to the Cycling heuristic is that, in the current form, Cycling allows the

repetition of the same cycle a number of lc times. One option for improvement is to allow only cycles
which are different (for the theory presented here it was too complicated to consider this).

Example Let us consider the automaton from Figure 8.1. Let us fix lc to 2. Then

Cycling(a0[〈bd〉〈bd〉〈bd〉]IIe) =

Cycling(a0)Cycling([〈bd〉〈bd〉〈bd〉]II)Cycling(e) =

a0[〈bd〉〈bd〉]IIe

Lemma 8.6.4 Reduction(Cycling(x)) = Cycling(Reduction(x))

For the proof see Appendix A.6.

8.7 A trace distance for marked traces

In this section we make the trace distance more precise, defining it as a distance function according
to Definition 8.4.2. As explained in Section 8.4, this gives us an alternative formalization of the
ideas behind the heuristics (they will be compared in Section 8.8). We will combine these ideas with
another well-known idea, viz. the edit distance. Section 8.7.1 introduces the edit distance. After this
preparation, the definition of the trace distance function can be given (Section 8.7.2).

8.7.1 The edit distance between strings

Because in our trace distance we use the concept of edit distance we shall present this first. The con-
cept is applied in problems such as string search, words substitution using dictionaries, etc. Informally
the edit distance is defined as the minimum number of insertions, deletions and substitutions required
to transform one string into another.

Levenshtein ([Ste92]) defined the edit distance d(x, y) between two strings x and y as the min-
imum of the cost of editing x to transform it into y. The cost of editing is the sum of the costs of a
number of atomic edit actions. According to Levenshtein the costs are as follows: inserting a symbol
costs 1, deleting a symbol costs 1 and changing a symbol into another symbol costs 1 too.

Wagner and Fisher ([Ste92]) generalized the definition of Levenshtein by adopting different costs
(weights) for the various atomic edit actions. According to Wagner-Fisher transforming a into a b
costs w(a, b). Extending this notation, w(a, ε) is the cost of deleting a and w(ε, b) is the cost of
inserting b. Again, the cost of editing is the sum of the costs of the atomic edit actions, and d(x, y) is
the minimum cost over all possible edit sequences that transform x into y.

Definition 8.7.1 Let w(a, b) be the cost of transforming symbol a into symbol b, w(a, ε) be the cost
of deleting a and w(ε, b) be the cost of inserting b. Of course w(a, a) = 0. Then the edit distance
between the strings x and y is denoted as ED(x, y) and it is defined by:

1. ED(ε, ε) = 0;

2. ED(ε, bv) = w(ε, b)+ED(ε, v);
ED(au, ε) = w(a, ε)+ED(u, ε);
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3. ED(au, bv) = min(w(a, b) + ED(u, v), w(a, ε) + ED(u, bv),w(ε, b) + ED(au, v)).

where a, b are symbols and u, v are strings.

This definition will be used throughout the chapter.

Example Let us take the labelset L = {a, b, c} with the cost 1 for insertion, deletion, and for trans-
forming a symbol in another symbol. The edit distance between a and ba is computed as:

ED(a, ba) =

min(w(a, b) + ED(ε, a), w(a, ε) + ED(ε, ba), w(ε, b) + ED(a, a)) =

min(1 + w(ε, a) + ED(ε, ε), 1 + w(ε, b) + w(ε, a) + ED(ε, ε),

1 + min(w(a, a) + ED(ε, ε), w(a, ε) + ED(ε, a), w(ε, a) + ED(a, ε))) =

min(1 + 1, 1 + 2, 1 + 0) =

1

So the edit distance between a and ba is 1 which corresponds to the insertion of b.

8.7.2 Defining a trace distance

Our test selection technique uses two heuristics. For expressing these heuristics in the trace distance,
it is important to remember that in the formalization of the Reduction heuristic a label distance was
used. The incorporation of this heuristic in the trace distance is achieved in a simple way by using the
label distance in the formula of the trace distance. Now a solution should be found for the Cycling
heuristic.

For the Cycling heuristic we simply weight every level k (by level we mean the position of a term
〈 〉) of a cycling symbol (a marked trace of type [ ]q, q ∈ Q) with a weight from a descending series
of positive numbers pk (pk can take also the value 0). This series has the property that

∑∞
k=1 pk = 1.

The logic behind this weighting is that summing the weights after a given limit (which is the cycle
limit) will contribute with a small number. This reflects our assumption that the first cycles are more
important than the later cycles. Moreover the first cycles will have assigned larger weights than the
later cycles because the series is descending.

We will define the trace distance for all the possible combinations of the grammar of marked
traces, i.e. Definition 8.5.1, (which is generating marked traces). It is easy to observe that the distance
for the marked traces is a straightforward extension of the distance for the non-empty marked traces.
Therefore we will concentrate on the distance for the non-empty marked traces. We summarize the
combinations below

• between the non-empty marked traces generated by labels (such as a0 ∈ L) we will define a
distance function called AtomicDistance because these are the atomic elements which form the
marked trace; of course the AtomicDistance between two labels will be given by d L , the distance
between these labels;

• between the non-empty marked traces generated by cycles (such as building [〈bd〉〈bd〉] II once
we know that 〈bd〉〈bd〉 is a non-empty sequence) we employ the principle that cycles of dif-
ferent marks are very remote and hence have the maximum distance, i.e, 1; when dealing with
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cycles of the same mark we employ weighting factors pk with the effect that the later iterations
are considered less important than e.g. the first iteration; this can be done by using a function
EditDistanceWeighted which is an edit distance for which the formula of Definition 8.7.1 is
modified in such a way to take the weights into account;

• between the non-empty marked traces generated by concatenation (such as a0 f or [〈bd〉]IIe) we
will use a distance function called EditDistance; we took this option because these traces are
generated in a similar style as the strings are formed and it is quite natural to use it because it
compares the terms which form the marked traces in a good way (for example in the traces a0e
and a0[〈bd〉]IIe the edit distance will recognize that the labels a0 and e from the first trace are
present in the second trace).

The rest of the possible combinations are defined in a similar style by using one of the techniques
mentioned above (EditDistance or AtomicDistance).

We observe also that this trace distance is to be used in the computation of a coverage which should
be in the range [0, 1]. For simplifying the computation of coverage, we want the trace distance values
to be in the range [0, 1]. This can be done by dividing all the above mentioned values (generated with
an EditDistance or AtomicDistance) by the maximum width of the marked traces from tracesm(s) (the
maximum width is finite, see Section 8.5.2). For completing the picture it is necessary to add that the
trace distance between a null trace (ε) and any other marked trace is maximum (1).

Now we have all the ingredients to define a trace distance on marked traces. We will call it d . In
the definition, the distances already mentioned (EditDistance and AtomicDistance) will be used; also
it is implicitly assumed that the definition is symmetric in the sense that d(x, y) = d(y, x), x and y
being marked traces and that d(x, x) = 0.

As explained above (first bullet), the function AtomicDistance deals with the cases, a ∈ L and
[ ] . We generalize it to marked traces of the form [ ] as well.

Definition 8.7.2 Let s be an automaton. Let L be the labelset of s, dL the label distance defined on it
and Q the set of states of s. Assume that the metric space (L , dL) is totally bounded and dL has all its
values in the range [0, 1]. Let lm be the maximum of the width of the marked traces from tracesm(s).
Let pk (k = 1, 2, ...) be a descending series of positive numbers such that

∑∞
k=1 pk = 1. The trace

distance d is symmetric in the sense that d(x, y) = d(y, x), x and y being marked traces and that
d(x, x) = 0. The same properties hold for the auxiliary distances EditDistance, AtomicDistance and
EditDistanceWeighted. Then the distance d : tracesm(s) × tracesm(s) → [0, 1] is defined by:

1. (a) d(t, t ′) = EditDistance(t,t ′)
lm

;

(b) d(t, ε) = 1;

(c) d(ε, ε) = 0;

with t, t ′ non-empty marked traces;

2. (a) EditDistance(ε, u ′) = 1;

(b) EditDistance(ε, u ′v′) = EditDistance(ε, u ′)+EditDistance(ε, v ′);

(c) EditDistance(u, u ′) = AtomicDistance(u, u ′);

(d) EditDistance(u, u ′v′) = min(EditDistance(u, u ′) + EditDistance(ε, v ′),
EditDistance(u, ε) + EditDistance(ε, u ′v′),

EditDistance(ε, u ′) + EditDistance(u, v ′));
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(e) EditDistance(uv, u ′v′) = min(EditDistance(u, u ′) + EditDistance(v, v ′),

EditDistance(u, ε) + EditDistance(v, u ′v′),

EditDistance(ε, u ′) + EditDistance(uv, v ′));

with u (u ∈ L or u = [ ] ), u ′ (u ′ ∈ L or u ′ = [ ] ), v, v′ non-empty marked traces;

3. AtomicDistance(x, x ′) =







dL(x, x ′) x, x ′ ∈ L
EditDistanceWeighted1(s, s ′) x = [s]q , x ′ = [s ′]q , q ∈ Q
1 otherwise

with x ∈ L or x = [ ] and y ∈ L or y = [ ] ;

4. (a) EditDistanceWeighted k(ε, 〈t ′〉) = pk × d(ε, t ′);

(b) EditDistanceWeighted k(ε, 〈t ′〉s ′) = pk × d(ε, t ′) + EditDistanceWeighted k+1(ε, s ′);

(c) EditDistanceWeighted k(〈t〉, 〈t ′〉) = pk × d(t, t ′);
(d) EditDistanceWeighted k(〈t〉, 〈t ′〉s ′) = min(pk ×d(t, t ′)+EditDistanceWeightedk+1(ε, s ′),

pk×d(t, ε)+EditDistanceWeighted k+1(ε, 〈t ′〉s ′),

pk×d(ε, t ′)+EditDistanceWeighted k+1(〈t〉, s ′));

(e) EditDistanceWeighted k(〈t〉s, 〈t ′〉s ′) = min(pk×d(t, t ′)+EditDistanceWeighted k+1(s, s ′),

pk × d(t, ε)+ EditDistanceWeighted k+1(s, 〈t ′〉s ′),

pk ×d(ε, t ′)+EditDistanceWeighted k+1(〈t〉s, s ′));

with t, t ′ non-empty marked traces, s, s ′ non-empty sequences.

We add some explanation. For determining the maximum of the width of the marked traces
lm extra computational effort is needed (lm can be computed based on the particular form of the
automaton considered or it can be approximated). It is easy to check that the definition of EditDistance
and EditDistanceWeighted are based on Definition 8.7.1 except for the fact that suitable weighting
factors pk have been incorporated and their formulas have been extended for more basic cases. In
the formula of EditDistance, at the point 2c of the definition, it is also easy to check that the call of
AtomicDistance which corresponds to the transformation of u in u ′ gives the minimum of all possible
edit operations (a deletion and an insertion cost 1). Therefore at that point we gave directly the formula
which gives the minimum. In a similar style EditDistanceWeighted will be defined. The metric space
(tracesm(s), d) is indeed a metric space because it is built on the metric space (L , d L) with operations
of positive weighting, summations and edit distances, operations which preserve the properties of
metric spaces. The complete proof is given in Lemma 8.7.3.

The parameter k in EditDistanceWeighted k indicates the position at which the next edit action
takes place. Please note that the recursive definition of EditDistanceWeighted k is well defined be-
cause at least one of the right-hand sides of the equation is one symbol shorter than the corre-
sponding left-hand side (therefore, the fact that k is increasing causes no problem). The base cases
are EditDistanceWeighted k(ε, 〈t ′〉) and EditDistanceWeighted k(〈t〉, 〈t ′〉). We will illustrate how the
EditDistanceWeighted function works. Let us consider two strings ab and c, (although EditDis-
tanceWeighted is defined on marked traces, for making the example more understandable, let us
show how it works on common strings). For transforming one string into another, there are five
possible combinations: 1)(ab, cε), 2)(ab, εc), 3)(εab, cεε), 4)(aεb, εcε), 5)(abε, εεc). The Edit-
DistanceWeighted will be the minimum from the costs of the five combinations. The cost for every
combination is computed as the sum of the edit actions multiplied by the corresponding weights. For
example, in the combination (abε, εεc), which means two deletions followed by one insertion, we



8.7. A TRACE DISTANCE FOR MARKED TRACES 117

encounter weighting factors for d(a, ε), d(b, ε) and d(ε, c), which are p1, p2 and p3, respectively.
The cost of this combination will be p1 × d(a, ε) + p2 × d(b, ε) + p3 × d(ε, c). In a similar style the
cost of the other combinations is computed and the minimum is chosen for EditDistanceWeighted.

Example Let us consider the automaton from Figure 8.1. For this automaton the maximum width
of the marked trace is 3. Let pk = 1

2k , k = 1, 2, .... Let dL be the following label distance

dL(x, y) =







0 x = y
| 1

4i+1 − 1
4 j+1 | x = ai , y = a j , i, j ∈ IN

1 otherwise

1. Let us consider the traces a0e and a0[〈bd〉]IIe.

d(a0e, a0[〈bd〉]IIe) =

1
3

× (EditDistance(a0e, a0[〈bd〉]IIe)) =

1
3

× (EditDistance(ε, [〈bd〉]II)) =

1
3

The trace distance recognizes that the symbols a0 and e from the first trace are present in the
second trace.

2. The cycling effect:

Let us take the traces a0[〈bd〉]IIe, a0[〈bd〉〈bd〉]IIe and a0[〈bd〉〈bd〉〈bd〉]IIe;

d(a0[〈bd〉]IIe, a0[〈bd〉〈bd〉]IIe) =

1
3

× EditDistance(a0[〈bd〉]IIe, a0[〈bd〉〈bd〉]IIe) =

1
3

× AtomicDistance([〈bd〉]II, [〈bd〉〈bd〉]II) =

1
3

× EditDistanceWeighted1(〈bd〉, 〈bd〉〈bd〉) =

p2

3
=

1
12

d(a0[〈bd〉〈bd〉]IIe, a0[〈bd〉〈bd〉〈bd〉]IIe) =
1
3

× EditDistance(a0[〈bd〉〈bd〉]IIe, a0[〈bd〉〈bd〉〈bd〉]IIe) =

1
3

× AtomicDistance([〈bd〉〈bd〉]II, [〈bd〉〈bd〉〈bd〉]II) =

1
3

× EditDistanceWeighted1(〈bd〉〈bd〉, 〈bd〉〈bd〉〈bd〉) =



118 CHAPTER 8. TEST SELECTION, TRACE DISTANCE AND HEURISTICS

p3

3
=

1
24

When two marked traces are cycling more times through the same cycle, the values of the trace
distance start to decrease.

3. The reduction effect:

Let us take the traces a0e, a1e and a2e

d(a0e, a2e) =
1
3

× (EditDistance(a0e, a2e)) =

dL(a0, a2)

3
=

15
64

3
=

5
64

d(a1e, a2e) =
1
3

× (EditDistance(a1e, a2e)) =

dL(a1, a2)

3
=

3
64

3
=

1
64

When the label distance between the labels (which compose the marked traces) is decreasing,
the trace distance is also decreasing.

Lemma 8.7.3 Let s be an automaton.

1. All the values of d are in the range [0, 1], i.e. ∀x, y ∈ tracesm(s) : d(x, y) ≤ 1.

2. The space (tracesm(s), d) is a metric space.

For the proof see Appendix A.7.

8.8 Transforming the heuristics into a coverage

The trace distance formula depends on the label distance dL which implements the Reduction heuristic
and the weights pk which implement the Cycling heuristic. On the other hand, by choosing for each
automaton s a finite set L ε ⊆ L which is an εL -cover of L with respect to dL and a cycling limit lc,
a finite set of marked traces T ⊆ tracesm(s) can be obtained. This is done by the application of the
Cycling and the Reduction heuristics on tracesm(s) by taking T = Ran(Cycling ◦ Reduction). Now
for this T and using d we want to compute the ε value such that T is an ε-cover of tracesm(s) so that
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we can compute the coverage cov(T, tracesm(s)) – see Definition 8.4.6. Intuitively ε should depend
on εL and lc. Its formula is given by Theorem 8.8.1. In the remainder of this chapter we assume that
lc ≥ 1.

The next theorems are about other properties of the trace distance d: Theorem 8.8.2 shows that for
any desired ε it is possible to obtain an ε-cover by choosing a suitable cycle limit and a suitable label
approximation, with other words that the metric space (tracesm(s), d) is a metric space that is totally
bounded. Theorem 8.8.3 shows that the distance d implements the Reduction and Cycling heuristics.

For the following theorems, we assume that all the ingredients for defining the metric space
(tracesm(s), d) are given. We will enumerate them below. Let s be an automaton. Let L be the
labelset of s and dL the label distance defined on it. Assume that the metric space (L , dL) is totally
bounded and dL has all its values in the range [0, 1]. Let pk (k = 1, 2, ...) be a descending series of
positive numbers such that

∑∞
k=1 pk = 1. Let lm be the maximum of the width from tracesm(s). These

are the ingredients needed for a proper definition of the metric space (tracesm(s), d). Moreover, for
the following theorems we consider that z, the maximum of the nesting depth of the marked traces, is
also known.

Theorem 8.8.1 Let (tracesm(s), d) be a metric space. Let lc be the cycle limit. Let L ε ⊆ L be an
εL -cover of L. Let ε ∈ [0, 1] be a positive number computed in the following way:

1. ε = εz with

(a) ε0 = εL ;

(b) for i = 1, ..., z :

i. εi
c =

∑lc
k=1 pk × (max j=0,...,i−1(ε

j)) +
∑∞

k=lc+1 pk ;

ii. εi = maxcycles=0,...,lm (
cycles×εi

c+(lm−cycles)×εL
lm

).

Then the finite set T = Ran(Reduction ◦ Cycling) of traces obtained by the application of the two
heuristics on tracesm(s) is an ε-cover of tracesm(s).

For the proof see Appendix A.8.
The following theorem shows that the metric space (tracesm(s), d) is a totally bounded metric

space.

Theorem 8.8.2 Let (tracesm(s), d) be a metric space. Then for every ε ∈ [0, 1], there exists a cycling
limit lc and a label approximation εL with εL =

∑∞
k=lc+1 pk ≤ ε

2z such that the finite set T =
Ran(Reduction ◦ Cycling) of traces obtained by the application of the two heuristics on tracesm is an
ε-cover of tracesm(s) and the metric space (tracesm(s), d) is totally bounded.

For the proof see Appendix A.9.
The following theorem shows that the trace distance d implements the Cycling and the Reduction

heuristics, in the sense of Definition 8.4.5.

Theorem 8.8.3 Let (tracesm(s), d) be a metric space. Let lc be the cycle limit. Then the distance d
implements the Reduction and the Cycling heuristics.

For the proof see Appendix A.10.
For the computation of the coverage we approximate the minimum εm from Definition 8.4.6 with

the εz computed in Theorem 8.8.1. We will illustrate the computation of the coverage in the following
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example.

Example Consider the automaton from Figure 8.1. Let us fix the final state to be IV. Let us con-
sider the reduced set L ε = {a0, b, c, d, e, f } which is an εL -cover of the labelset L with εL = 0.25
(εL is computed with respect to the dL defined in the example from Section 8.7.2). For this automaton
the maximum width is lm = 3 and the maximum nesting depth is z = 2. Let us fix the series pk = 1

2k

(k ∈ IN) and in the beginning lc = 1.
Then the set of traces T which is obtained by the application of the heuristics Reduction and

Cycling is an ε-cover of the whole set of traces tracesm(s) with ε computed with the formula from
Theorem 8.8.1 as:

1. lc = 1, Lε = {a0, b, c, d, e, f }
ε0 = εL = 0.25;
ε1

c =
∑1

k=1 pk × ε0 +
∑∞

k=lc+1 pk = 0.25
2 +

∑∞
k=lc+1

1
2k = 0.63;

ε1 = maxcycles=0,...,3(
cycles×ε1

c +(lm−cycles)×εL
lm

) = 0.63;
ε = ε2 = 0.81;

The coverage is computed via Definition 8.4.6 and we use the epsilon approximation of Theo-
rem 8.8.1. The coverage is cov(T, tracesm (s)) ≈ 1 − ε ≈ 0.19;

2. lc = 2, Lε = {a0, b, c, d, e, f }
When we enlarge the set T to T ′ for lc = 2 we find that cov(T ′, tracesm(s)) ≈ 0.51;

3. lc = 1, Lε′ = {a0, a1, b, c, d, e, f }
When we enlarge the set T to T ′′ for Lε′′ = {a0, a1, b, c, d, e, f } we find that ε′′

L = 0.06 and
that cov(T ′′, tracesm (s)) ≈ 0.29.

In this example, one can see that the coverage increases more by adopting a higher value for the
cycling limit than by using a larger label subset. Consequently, one might conclude that it is better
to increase the cycling limit for obtaining a better coverage. But this is not always true because we
defined specific values for pk and dL (for other values, to increase the label subset will be better).

It can be seen from this example that the monotonicity property required in [BTV91] that T ⊆
T ′ ⇒ cov(T ) ≤ cov(T ′) is respected by our coverage (the coverage is approximated using the
epsilon formula from Theorem 8.8.1). From an intuitive point of view this property is reasonable: if
one generates more tests, then the coverage increases.

We want to prove it in the general case. For this we will make an assumption which is quite natural
that a monotonicity property holds also for the metric space (L , dL): for a label set L when we have
Lε and Lε′ such that these sets are an εL -cover and respectively an ε ′

L-cover of L , Lε ⊆ Lε′ then
εL ≥ ε′

L . The following theorem holds when the coverage is approximated using the epsilon formula
from Theorem 8.8.1.

Theorem 8.8.4 Let (tracesm(s), d) be a metric space. Let lc and l ′
c be two cycle limits (lc ≤ l ′

c). Let
Lε ⊆ L be an εL -cover of L and Lε′ ⊆ L be an ε′

L-cover of L such that Lε ⊆ Lε′ and εL ≥ ε′
L . Let

T = Ran(Reduction ◦ Cycling) and T ′ = Ran(Reduction ◦ Cycling) be the two finite sets of traces
obtained by the application of the two heuristics on tracesm(s) using Lε, lc and respectively Lε′ , l ′

c.
Then cov(T, tracesm (s)) ≤ cov(T ′, tracesm (s)).

For the proof see Appendix A.11.
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8.9 Conclusions

In this chapter we have studied two heuristics for reducing the number of traces in a test suite. The
underlying assumption is that when automatically generating a set of traces, many traces will show
similar behaviour. That means that deleting some traces will only reduce the error detection power
slightly.

The first heuristic studied deals with restricting the branching degree of the nodes, when repre-
senting a set of test cases as a finite automaton. The basic idea is that in practice a high branching
degree is generated because at the branching point an action is allowed which is parameterized by
an element from a (large) data domain. The observation is that only a few values from such a data
domain will show essentially different behaviour.

The second heuristic concerns the number of times a cycle in a finite automaton representation
may be traversed. This is connected to the assumption that only for a few numbers of traversals the
test cases will show essentially different behaviour.

The fact that we studied only these two heuristics in this chapter, does not mean that these are
the only interesting heuristics. More heuristics can be defined, e.g. with respect to the general length
of a trace and with respect to the uniformity of the number of outgoing transitions from a state. We
embedded the two heuristics chosen in a more general framework which allows the extension of our
work with other heuristics.

A heuristic is a general guideline for reducing test suites, which must be made more precise to
be practically applicable. Especially for the cycling heuristic we had to introduce additional notation.
The reason is that the cycling structure of a trace through a finite automaton must be made explicit.
We introduced marked traces for this purpose, which enabled us to extend the work on cycle reduction
by Vuong [ACV93, ACV97].

In order to introduce a notion of coverage for the test suites reduced by means of the above
mentioned heuristics, we defined a trace distance on marked traces. The results of our studies can be
used to effectively calculate the coverage of a test suite reduced with our techniques.

Although our formal definitions of Reduction and Cycling work on large, sometimes even infinite
sets this need not cause practical or algorithmic problems. For example, the practical generation of
traces could be done in a similar way to [ACV97], starting with a first trace and then suppress the
generation of a subsequent trace if it is close to an already generated trace. Other solutions could be
based on a suitable transformation of the automaton, as in fact we did in Figure 8.1. A similar remark
applies to the calculation of the ε value for a generated test suite. A solution is to choose l c and εL

and calculate ε arithmetically using the results of Section 8.8.
One issue deserves attention, viz. the choice of representatives embodied in the algorithms of

Sections 8.5.1 and 8.5.2. At first sight, the reader may think that the distance d defined in Section 8.7.2
is independent of the choice of the representatives. However, this does not hold in general because of
the essential ambiguity in the concept of cycle when using an automaton as a specification.

The proposed test selection technique can be compared to the existing theories in this area. In
particular, these are the hypothesis theory developed by [CG97] and the trace distance theory of
[ACV93, ACV97]. The hypothesis theory embodies the trace distance theory (see [CG97]), but the
nice thing about trace distance theory is that it gives a measure for the degree to which a reduced set
of traces approximates the original one. So we chose an approach which combines these two theories.
In our view, first the heuristics (test hypotheses in the theory of [CG97]) are to be defined. After that,
based on these heuristics a trace distance is built. This gives the possibility to make a test selection
with a given ε approximation. The change of the heuristics leads to the change of the trace distance
used in test selection.



122 CHAPTER 8. TEST SELECTION, TRACE DISTANCE AND HEURISTICS

Another restricting requirement is that we assume the specification to be given as a minimal finite
deterministic automaton. Some test generation tools already provide such a format, but others support
general finite automata. Determinizing a finite automaton may cost exponential time. In this case it
would be interesting to know whether the theoretical results achieved in this chapter could be extended
to non deterministic automata.

An implementation of the theory presented in this Chapter is given in the next chapter of the thesis.



Chapter 9

Implementing the test selection theory

9.1 Introduction

In chapter 8 we elaborated an abstract theory for test selection. The link between the theory and the
practice was not in the focus of the previous chapter. The current chapter fills this gap by presenting
ways of implementing the abstract formulas of test selection. Several examples of useful distances are
given. These examples add plausibility to the claim that the theory is useful in practice. Moreover they
are a source of inspiration for other testers which want to use the theory of test selection presented in
this thesis. Also the work described in this chapter is a step forward in using this selection theory in
the TorX testing environment.

The implementation of the abstract theory of test selection is in the form of a C program. The
C program is not connected to TorX. It is an independent module. The functions contained in this
program form the basis of a new module which can be linked to TorX later. While describing the
main features of this program, different ways of connecting it to TorX will be presented. Moreover
we will indicate other possible connections to other test generation tools like Autolink. This is one of
the reasons for which we kept the module tool-independent.

We tried to keep the program simple to make its understanding easy, but general enough to be used
in realistic application domains such as classical public telephony and to be connected later to TorX or
other test generation tools. Keeping the program simple was possible by making it tool independent.
In this way it does not inherit complicated data structures and algorithms that are specific for e.g.
TorX.

In this chapter we will not present all the functions of the C program in detail. The full program
can be found at http://www.win.tue.nl/vgoga/TestSelection.c. In this chapter, only its main algorithms
will be presented. The program contains two modules which we will call Unfold and Distance.

• The module Unfold implements mainly the Cycling heuristic.

• The module Distance contains functions for computing distances. Because the Reduction
heuristic is based on a label distance, we do not need a separate module for it. This heuris-
tic will be explained when presenting the Distance module.

In this chapter, we will describe also a specification of a telephone. This specification was built
together with researchers from KPN, one of the Dutch telephony operators, within CdR. Using the
phone specification, we will illustrate the execution of different functions of the C program.

In Section 9.2 we present possible ways of connecting the C program to TorX and other test
generation tools. We will concentrate on the module Unfold. In Section 9.3 we explain the data types
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of the program. The data types are used by both modules. The phone specification is described in
Section 9.4. In Section 9.5, the main algorithms of Unfold, which implement the Cycling heuristic are
given. Because the Reduction heuristic is implemented by using a label distance, we will describe it
while presenting the label distance in Section 9.6. In the same section other algorithms for distance
computation are given. Section 9.7 outlines the conclusions.

9.2 Connecting the C program to test generation tools

Before explaining the data structures of the program, we will discuss the main function of the Un-
fold module and how this module can be connected to TorX and other test derivation tools, such as
Autolink. This will give some intuition regarding the design of the program. The main function of
the Unfold module is called Unfold like the name of the module itself. This function is described in
Section 9.5. Let us consider an automaton of a specification. The objective of the Unfold function
is to generate all the traces which do not cycle more than a cycle limit, lc, through the states of the
automaton. The set of traces generated by Unfold can be seen as the test purpose (automatically gen-
erated) which is used by TorX to derive test cases. For TorX to work with test purposes, the ioco test
derivation algorithm from Chapter 2 which is implemented by TorX is modified slightly such that for
each trace from the set a test case is generated. A module which will be integrated in TorX and which
will work with test purposes is under development at UT (University of Twente).

As we explained, the set of traces derived with Unfold can represent a test purpose objective for
TorX. But not only for this tool such a set of traces can represent a test purpose. Let us take another
test derivation tool, namely Autolink. Each trace from this set can be transformed into a correspondent
MSC. A function which will implement such a transformation can easily be incorporated in the Unfold
module. This MSC can be the test purpose used by Autolink for deriving test cases. Such a way of
building test purposes can represent an alternative way to the ones provided by the Autolink tool. In
this way the work presented here can give useful insights to other test related communities.

In the next example we will show how the Unfold function works. This toy example will also
introduce the ingredients for the data structures of the program, such as traces and marked traces.

Example Consider the automaton from Figure 9.1. This automaton has two states labelled with 0
and 1. The initial state is 0. From 0, via a the state 1 can be reached. In this state, the transition b
leads to the same state and the transition y to 0. Now let us fix the cycle limit to 1.

a
b

y
  0  1

Figure 9.1: An automaton.

When applying the Unfold algorithm on this automaton for lc = 1 the set of traces obtained is F
= {ayab, abyab} (one should take F and its prefixes). The corresponding set of marked traces is:
{[〈ay〉]0a[〈b〉]1, [〈a[〈b〉]1 y〉]0a[〈b〉]1}. We remind that the power of a term [ ] is the state name. A
look at the corresponding set of marked traces shows that none of these traces passes the limit l c.

Now, once we presented possible ways of connecting the module Unfold of the C program to test
generation tools and we illustrated how the function Unfold works, we can describe the data structures
of the program. This will be done in the next section.
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9.3 Data structures

In this section we make a short description of the data structures of the program. For a detailed
description see Appendix B.1. In the C program a transition is represented as a structure containing
the triple 〈 StateSource, Label, StateDestination 〉. A path is an array of transitions with a maximum
number of locations given by the constant MaxDepth. A trace is represented as an array of labels. The
automaton is represented as a matrix of transitions.

A marked trace is an array of elements of type struct mt. Each element has the following two
fields: Label and Cycle. In function of the value contained by the current position of the marked trace,
one of these fields will be filled: if there is a label, the Label field will contain its value and if there is
a cycle, the Cycle field will be filled. The field Cycle is a structure itself. It is formed by the following
fields: Nr which stores the number of times the state of the cycle is traversed; State which contains
the state traversed by the cycle; Elem which stores the elements which form the iterations of the cycle.
The field Elem is a matrix. On each row of Elem a marked trace corresponding to an iteration is stored.
Each marked trace can contain other cycles. For representing cycles in cycles we used pointers for
Elem.

9.4 A phone specification

Within our experiments regarding benchmarking of test generation tools, we developed together with
researchers from KPN a specification for a network of phones. For working out an example for the
test selection program, we derived from this specification the FSM specification of a telephone (see
Figure 9.2). The specification presented is simpler than the original one, in the sense that the phone
does not have the Call Waiting functionality. Despite the simplification, it is general enough to be
used for highlighting the main features of the test selection program presented in this chapter.

The phone exchanges messages with the speaker and the network of phones. The convention
is that when the message is received from the network the letters np (Network to Phone) precede
the message. For example the message np ring tone is a signal sent by the network to the phone
announcing that somebody is calling. When a message is sent from the phone to the network, the
letters pn (Phone to Network) will precede the message. For example, the signal pn disc is sent from
the phone to the network announcing that the speaker disconnected by doing an on hook. When the
signals are sent from or to the user no special sequence of letters precedes the message.

The phone has seven states. We named them in the figure with suggestive names. In the program
for test selection each of these states is represented by a number between 0 and 6. The correspondence
is the following: 0 corresponds to Idle, 1 to Connect Ph, 2 to Dialing, 3 to Nr Control, 4 to Connected,
5 to Wait Hook and 6 to Ringing.

In the phone specification there are three pairs of signals which are parameterized with variables
which can take many values. The pair number(x)/pn number(x) has as parameter the called phone
number x . The pairs conv in(mes)/pn conv(mes) and np conv(mes)/conv out(mes) have as a parameter
the message exchanged which is recorded in the variable mes. Between pairs of signals which are
parameterized with variables which can take many values we will define the label distance to perform
the selection. This will be done in Section 9.6.
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Figure 9.2: A phone specification.

9.5 An algorithm for automaton unfolding

This section describes the main algorithms of the module Unfold. There are two algorithms which are
discussed: 1) the algorithm Mark which is also mentioned in Chapter 8 and which transforms a trace
into a marked trace and 2) the algorithm Unfold which generates all the traces (the unfold tree of the
automaton) which do not cycle more than a cycle limit, lc, through the states of the automaton.

One main algorithm of Unfold is the function Mark. This algorithm transforms the path corre-
sponding to a trace into a marked trace. This algorithm is used by the function Unfold. The Mark
function is the implementation in C of the function with the same name from Chapter 8 and follows
the same logic as its theoretical description. For a detailed description of it see Appendix B.2

Example The C function Mark can be used for computing the marked traces corresponding to the
traces of the phone specification which was described in Section 9.4. For the following trace

off_hook/pn_connect
np_dial_tone/dialtone
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number( 0043*)/pn_number( 0043*)
np_cong_tone/cong_tone
on_hook/pn_disc
off_hook/pn_connect
np_dial_tone/dial_tone
number(00351*)/pn_number(00351*)
np_connect/null
np_conv(Hello)/conv_out(Hello)
np_busy_tone/busy_tone

which has the following path

0 off_hook/pn_connect
1 np_dial_tone/dialtone
2 number( 0043*)/pn_number( 0043*)
3 np_cong_tone/cong_tone
5 on_hook/pn_disc
0 off_hook/pn_connect
1 np_dial_tone/dial_tone
2 number(00351*)/pn_number(00351*)
3 np_connect/null
4 np_conv(Hello)/conv_out(Hello)
4 np_busy_tone/busy_tone 5

the corresponding marked trace which is generated with Mark is:

[< off_hook/pn_connect
np_dial_tone/dialtone
number( 0043*)/pn_number( 0043*)
np_cong_tone/cong_tone
on_hook/pn_disc >]ˆ{0}
off_hook/pn_connect

np_dial_tone/dial_tone
number(00351*)/pn_number(00351*)
np_connect/null
[< np_conv(Hello)/conv_out(Hello) >]ˆ{4}
np_busy_tone/busy_tone

Now we are going to shortly describe the algorithm Unfold. For a detailed description of it see
Appendix B.2. As we mentioned, the objective of Unfold is to generate all the traces which do not
cycle more than a cycle limit through the states of the automaton. Each path is built by recursive
calls of Unfold. After a path is constructed, its corresponding trace and marked trace, both of them
are saved in an output file. Then, Unfold starts to construct a new path. When a path is constructed,
Unfold checks that the path do not cycle more than a cycle limit through the states of the automaton
by transforming the path in its correspondent marked trace (the function used is Mark) and checking
all the cycles symbols ([ ] ) of the marked trace. Constructing the path by recursive calls is easy and
convenient, because the recursive calls of the function keeps tracks of the labels and the states of the
automaton already visited.

There are more ways to improve Unfold based on current techniques used for state space explo-
ration. For example, the Spin tool [Hol91] uses the ‘bitstate hashing’ [Hol97] algorithm for state
space exploration. One bit is reserved for a state in a vector to store the information whether the state
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is visited or not. A hash function is used to map the states to the positions in the vector. For Unfold,
instead of transforming the trace into a marked trace and compute whether the cycle limit is exceeded
or not, a similar technique for keeping track of the states visited can be used: only the states of the
cycles together with their counters will be stored into a vector. The counters will be checked whether
they exceed the cycle limit or not. The repeated transformation into a marked trace will be avoided,
resulting into a decrease of the complexity of the algorithm. A second improvement will be to use a
hash function for mapping the states of the automaton to the positions in a vector. This will result in a
decrease of the size of the vector. Of course, as the hash function is not injective, the tester must accept
that two different states may have been mapped to the same position (so there is a low probability that
a cycle is cut off too early). Another interesting technique is used by Caesar/Aldebaran [FGK+96].
One option of this tool is to use a BCG (Binary-Coded Graphs) [Gar98] for representing a labelled
transition system. The BCG format uses a binary representation together with a minimization tech-
nique resulting in a much smaller memory size (up to 20 time) for storing a labelled transition system.
Adapting Unfold to work with a binary representation of an automaton is another way of improving
the algorithm. When Unfold deals with large automata (this might be the case if Unfold is used, for
example, for automata derived from LOTOS specifications which can have large sizes), using BCG
formats is a convenient way to store a large automaton in a small amount of memory. These are some
options for improving Unfold.

Example The outcome of executing the function Unfold on the automaton of the phone specifica-
tion described in Section 9.4 is shown below (the first two traces).

Trace Nr. 1
off_hook/pn_connect
np_dial_tone/dialtone
number( 0043*)/pn_number( 0043*)
np_cong_tone/cong_tone
on_hook/pn_disc
off_hook/pn_connect
np_dial_tone/dialtone
number( 0043 *)/pn_number( 0043*)
np_cong_tone/cong_tone

Marked Trace
[< off_hook/pn_connect

np_dial_tone/dialtone
number( 0043 *)/pn_number(0043*)
np_cong_tone/cong_tone
on_hook/pn_disc >]ˆ{0}

off_hook/pn_connect
np_dial_tone/dialtone
number( 0043 *)/pn_number( 0043*)
np_cong_tone/cong_tone

Trace Nr. 2
off_hook/pn_connect
np_dial_tone/dialtone
number( 0043 *)/pn_number( 0043*)
np_cong_tone/cong_tone
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on_hook/pn_disc
off_hook/pn_connect
np_dial_tone/dialtone
number( 0043 *)/pn_number( 0043*)
np_busy_tone/busy_tone

Marked Trace
[< off_hook/pn_connect

np_dial_tone/dialtone
number( 0043 *)/pn_number( 0043*)
np_cong_tone/cong_tone
on_hook/pn_disc >]ˆ{0}

off_hook/pn_connect
np_dial_tone/dialtone
number( 0043 *)/pn_number( 0043*)
np_busy_tone/busy_tone

The cycle limit LC was fixed in this case to 1. As it can be easily seen, none of the cycle exceeds
this limit. When we considered only one message and one phone number, for LC being 1 the number
of traces generated with Unfold was 200. Increasing LC to 2 modified the generation to 17168 traces;
for LC equaling 3, the number of traces was 3.7 millions. When the cardinality of the set of phones
numbers increased to 13 and the cardinality of the set of messages was 3 Unfold generated larger sets
of traces. For LC being 1 the cardinality of the set of traces was 34776 and for LC being 2 the number
was larger than 36 millions. It can be observed that selecting certain values of the parameters (by using
Reduction) is important. This will decrease the numbers of values considered, and consequently, the
number of traces generated will also decrease. About Reduction we will discuss in the next section.
The function Unfold can be used for generating sets of traces which can represent test purposes used
by TorX for generating tests. Using a similar style as for the function Unfold, the TorX algorithm itself
can be modified such that, when generating and executing a trace on-the-fly, the trace generated will
not exceed a cycle limit. This represents another alternative for incorporating the function Unfold into
TorX. Moreover, as we explained in Section 9.3, the same set of traces transformed in MSCs can be
used as a set of test purposes for Autolink. This can be an alternative way of obtaining test purposes,
next to the ones offered by Autolink.

9.6 Algorithms for distance computation

In this section we present the functions from the module Distance. As shown by its name, the functions
defined here deal with distances. Moreover, because the Reduction heuristic is done by using a label
distance, we will also discuss this heuristic in this section.

The general formula of the trace distance is given in Definition 8.7.2. Using the same names as
in the definition, the C functions AtomicDistance, EditDistance, EditDistanceWeighted are used to
compute the trace distance d between two marked traces. Because these functions strictly follow the
definition we need not to present them in this section. An interesting application of the trace distance
d is in regression testing. We will discuss this at the end of this section.

The label distance is not defined in the general theory from Chapter 8. In the general definition,
the label distance is considered to be a parameter of the distance d . In our C program we consider it
also to be one of the parameters of the distance d . Therefore if one wants to use this program it is
necessary to define one’s own distance.
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There are many ways to define a label distance by using different approaches. For example one
can think of defining a label distance suitable for a boundary value analysis. Another label distance
can be suitable for a random selection of a number of values. Considering the label distance as a
parameter of the program leaves freedom to use the Distance module in a convenient way.

We will give some examples of how a label distance can be constructed. We will define a label
distance for a network of telephones which have specifications as described in Section 9.4. Defining a
label distance for such a telephone network will give useful insights for defining other label distances
for other applications. Together with the label distance we will present also the Reduction heuristic
applied to the labels of the telephone’s transition system.

For a phone, there are two situations in which signals have parameters which can take different
values: 1) the pair of signals number(x)/pn number(x) has as a parameter the phone number x and 2)
the pairs of signals conv in(mes)/pn conv(mes) and np conv(mes)/conv out(mes) have as a parameter
the text of the message mes. We will show how to define a label distance first for the phone numbers
x and after that for the messages mes. For all other non-trivial cases the label distance is 1 because
all the other labels are necessary for testing different behaviours of the phone (for identical labels the
label distance is 0).

A phone number is formed by: 1) a country prefix; 2) a city prefix and 3) a local phone number.
We assume that the goal is to test phone connections between different countries from the European
Union and different cities from the Netherlands. We restrict the domain to a certain connected subset
of the countries from the European Union: Austria, Belgium, Denmark, France, Germany, Italy, Lux-
embourg, The Netherlands, Portugal and Spain (see Figure 9.3). The names are given in alphabetical
order. The prefixes of the countries are given in the following table.

Austria Belgium Denmark France Germany Italy Luxembourg Netherlands Portugal Spain

0043 0032 0045 0033 0049 0039 00352 0031 00351 0034

When replacing x with a phone number from one of these countries the digits of the country prefix
will be present on the first positions of the phone number (which is represented as a char-string). We
reserved the first 5 characters for a prefix, because the longest prefix has 5 numbers (for Luxembourg
or Portugal). For the rest of the countries the first digit is a space. For example, for France the prefix
is represented as ‘ 0033’. The country prefixes are kept in the C program by the global variable
Prefix Country.

As we mentioned a phone number is built by three parts: the country prefix, the city prefix and
the local number. This decomposition is reflected in the label distance in the following way: we built
the label distance as a sum of atomic weighted distances. Let us consider two phone numbers x and
x ′ which have the country prefixes PCtr and PCtr’; their city prefixes are given by PC and PC’ and
the local numbers are PL and PL’. Then

DlPhNr(x, x ′) = w1 × Dist1(PCtr, PCtr′) + w2 × Dist2(PC, PC′) + w3 × Dist3(PL, PL′)

where w1, w2 and w3 are the weights; Dist1, Dist2 and Dist3 are the distances between countries
prefixes, city prefixes and local numbers and DlPhNr represents the distance between two phone
numbers. We will show the computation for each of the three distances below.

For the country prefixes we considered that a natural way for the occurrence of errors is when
a call is routed through different telephone networks of the different countries. For example, taking
the shortest path, between the Netherlands and France a phone call should go through the Belgian
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telephony system. Following this reasoning, we consider the number of border crossings a good
candidate for computing the distance between two country prefixes. The numbers of border crossings
between all pairs of countries are given in the following table.

Figure 9.3: The map of Europe.

The maximal number of border crossings between two countries is 4 (between Portugal and Austria
or between Portugal and Netherlands). The distance Dist1 between two country prefixes is given by
the number of border crossings divided by 4 (we scaled the distance back to the range [0, 1]). The
values from the table above are kept in the C program by the global variable BorderCross.
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Austria Belgium Denmark France Germany Italy Luxembourg Netherlands Portugal Spain

Austria 0 2 2 2 1 1 2 2 4 3
Belgium 2 0 2 1 1 2 1 1 3 2
Denmark 2 2 0 2 1 3 2 2 4 3
France 2 1 2 0 1 1 1 2 2 1
Germany 1 1 1 1 0 2 1 1 3 2
Italy 1 2 3 1 2 0 2 3 3 2
Luxembourg 2 1 2 1 1 2 0 2 3 2
Netherlands 2 1 2 2 1 3 2 0 4 3
Portugal 4 3 4 2 3 3 3 4 0 1
Spain 3 2 3 1 2 2 2 3 1 0

Next we considered cities from the Netherlands. There are three cities considered: Amsterdam,
Eindhoven and Rotterdam. The prefixes of these cities are given in the following table:

Amsterdam Rotterdam Eindhoven

20 10 40

These prefixes are stored in the C program by the global variable PrefixCity.
The physical distances of the cities are given in kilometers in the following table.

Amsterdam Rotterdam Eindhoven

Amsterdam 0 72 119
Rotterdam 72 0 109
Eindhoven 119 109 0

The values from this table are stored in the global variable DistCity. The distance between the prefixes
of two considered cities from the Netherlands is computed as the physical distance divided by 119.
The distance is thus scaled back to [0, 1] dividing by 119. For example, the distance between Amster-
dam and Rotterdam is 72

119 which is 0.60. Considering more cities from the Netherlands, the distances
between their prefixes can be computed in a similar style. We assumed that within the telephony
system of one country errors are more likely when the distance becomes larger. Between two cities
from different countries the distance is considered to be maximal (1) because they are coming from
different telephony systems, say two different clusters. For example, we want to test all the inhabitants
of Germany. Testing all is impossible. Phoning from the Netherlands to two users in Germany does
not make too much difference. In this case the label distance is mostly based on the distance between
the country prefixes.

In the case of local numbers, we considered the numbers of the Technical University Eindhoven
(TU/e for short) and Philips Research (Philips for short), both institutions located in Eindhoven. Their
prefixes are given in the following table:

TU/e Philips

247 274
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These prefixes are stored in the C program by the global variable PrefixCompany. The physical
distance between the companies are given in the following table.

TU/e Philips

TU/e 0 1
Philips 1 0

These values are stored in the C program in the global variable DistCompany. The distance
between two local phone numbers is computed as the physical distance between them. Considering
more local phone numbers, the distance can be computed in a similar style using the physical distance
between the users. Of course, as in the case of the cities, the distance between two local numbers from
two different cities is one.

For completing the picture we should say that when defining a phone number in the C program,
we used the character ’*’ which means ’any’. For example the phone numbers ’ 0033*’ and ’ 0045*’
means a phone number from France and Denmark for which the city prefixes and the local numbers are
not specified. The label distance computations between phone numbers are made in the C program by
the Function DlPhoneNumber. For example, using ’ 0033*’ and ’ 0045*’ which represent two phone
numbers from France and Denmark the returned value is:

DlPhoneNumber(’ 0033*’, ’ 0045*’) = 0.6

This computation is made as follows. The weights considered in the C program are: w1 = 0.8,
w2 = 0.18 and w3 = 0.02. The values of the weights are stored in the C program by the variables
ScaleCountry, ScaleCity and ScaleCompany. These values reflect the assumption that the most im-
portant thing is to check the phone communication between the countries, after that between cities
and after that between local numbers. For our example, the distance between the city prefixes and
local numbers in this case is one. The computation is:

0.80 ×
2
4

+ 0.18 × 1 + 0.02 × 1 = 0.60

We recall that the number 2 from the formula above represents the number of border crossings between
France and Denmark. We illustrated the construction of the label distance for the phone numbers. This
label distance can be used for performing Reduction with a given ε approximation on the set of phone
number labels by computing an ε-cover of the whole set. Because the same thing can be done also for
the set of messages, first we will define a label distance for messages.

Let us assume that the phones have an SMS (Short Message Service) functionality. SMS is an
asynchronous mechanism for the delivery of short messages between mobile telephones. The size of a
short message is small. In this context, the signals conv in(mes)/pn conv(mes) and np conv(mes)/conv
out(mes) will represent the sending and the reception of a short message by the user. The syn-
chronous specification from Figure 9.2 is not really a mobile telephone with SMS. But, signals like
conv in(mes)/pn conv(mes) do appear in the label set of such a mobile telephone. Therefore, despite
the differences, we can go forward with our example. We will show how to construct a label distance
in a way different from the one used for the phone numbers. For messages, it can be assumed that the
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transmission between telephones of a short message can cause a mutilation of the message. Testing a
selected set of messages will indicate whether the transmission is erroneous or not. For making this
selection, a label distance is to be defined. Let us also assume that a user can choose from a limited
set of words: ‘Hello’ translated in 6 languages. We use ‘Hello’ in English; ‘Salut’ in French; ‘Hola’
in Spanish; ‘Ciao’ in Italian; ‘Hallo’ in Dutch; ‘Dav’ in Danish.

For defining a label distance between two messages, first we ordered the messages according to
how many users make use of each language: first we credited English to take first place (although
some of the readers of this thesis will disagree with our point of view); the second was French and the
third Spanish; the fourth was Italian; the fifth was Dutch and the sixth was Danish. This ordering is
purely personal, it is not based on any statistics (any ordering can be chosen). Each message from the
six gets a corresponding weight which reflects its importance.

The weights of the messages are given in the following table.

Hello Salut Hola Ciao Hallo Dav

1 0.9 0.8 0.7 0.6 0.5

These values are stored in the C program by the variable WeightMes. Now the label distance be-
tween two messages is computed as the difference between their weights. For example the label
distance between Hello and Hallo is computed as | 1 − 0.6 |= 0.4. The function which computes the
label distance between two messages is called DlMes in the C program.

The way in which we computed the distance between messages corresponds to an enumeration
approach for Reduction. In this approach the values are ordered after some rules and the first n values
are selected. We ordered the values of the messages and the label distance starts to decrease for
messages which are on remote positions. This label distance is suitable for an enumeration approach
because selecting the first n labels will give a good covering of the whole set. In a similar style, in
other applications label distances can be built.

For the phone number case, the label distance uses physical distances (expressed in kilometers or
in numbers of border crossings). In this case the Reduction can be made by giving an ε value and
computing the corresponding ε-cover of the whole set. The same thing can be done in the case of the
messages. In the C program, the function Selection gives for a given ε approximation the subset of
labels with a minimum cardinality which is an ε-cover of a whole set of labels.

Example Applying this function to the set of all phone numbers and taking ε = 0.325 (we will
explain below the choice of this value) leads to the following 0.325-cover.

number( 0043 *)/pn_number( 0043*) number( 0049*)/pn_number( 0049*)
number(00351*)/pn_number(00351*)

These three prefixes correspond to the following countries: ‘ 0043’ for Austria, ‘ 0049’ for Ger-
many and ‘00351’ for Portugal. The rest of the countries cluster around one of these three: Italy has
one border crossing with Austria; Belgium, Denmark, France, Luxembourg and Netherlands have one
border crossing with Germany and Spain has one border crossing with Portugal. The approximation
of 0.325 tolerates an error produced by a border crossing. The more borders are crossed by a call, the
more likely it is that an error occurs. Testing the communication between Germany and Portugal will
increase confidence in the communication between Germany and France, between France and Spain
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and between Spain and Portugal. Choosing for example to test the communication between Denmark
and Spain will lead to the testing of the communication between Denmark and Germany, between
Germany and France and between France and Spain. Because the communication between Germany
and France and between France and Spain was already tested when testing the communication be-
tween Germany and Portugal, the error which can occur is related to the border crossing between
Germany and Denmark. A reasoning similar to this one can also be made for other pairs of countries.
In this way the whole network of countries is almost tested. Because there is a tolerance for an error
produced by a border cross and because the communications between the cities and the local numbers
are not tested, this explains why there is still a possibility of errors which leads to a value of 0.325 of
the ε approximation.

As we explained in the beginning of this section the label distance is used for the computation
of the distance d between traces. A similar function as Selection can be made for regression testing
(traditional regression testing is about running all tests over and over again). In regression testing, a
set of tests is selected to be re-used later for testing IUTs. In the case of TorX the tests are execution
traces. Now, using the trace distance d and an ε value, an ε-cover of tests can be computed. The
ε-cover represents the most important behaviours from the whole set of execution traces which can
be re-used later for testing IUTs. As it can be seen, the function Selection can be used not only for
implementing the Reduction heuristic but also to give useful insights in the regression testing.

9.7 Conclusions

We made a C program which implements the theoretical work from Chapter 8 for test selection. This
represents a kernel which later might be connected to TorX. We kept the program simple and we
illustrated how it can be used on examples taken from the application domain of telephony.

We divided the program in two modules called Unfold and Distance. The module Unfold im-
plements the Cycling heuristic while the module Distance deals with distance computations. The
Reduction heuristic is implemented using the label distance defined in the module Distance.

From the module Unfold we presented two main functions Mark and Unfold. The function Mark is
the implementation in C of the theoretical function with the same name from Chapter 8. Using it, the
marked trace corresponding to a path is obtained. Obtaining marked traces makes the implementation
of the Cycling heuristic and distance computations possible. The function Unfold can be seen as an
experiment to implement the Cycling heuristic in a batch-oriented style. We made it plausible that
this function can be effectively used in realistic domains, like telephony, for generating traces which
do not exceed a cycle limit. The generated set of traces can be seen as an automatically generated test
purpose used by TorX for generating test cases. Based on a similar approach, TorX can be modified
to implement the cycle heuristic on-the-fly.

As we explained, the set of traces derived with Unfold can represent a test purpose objective for
TorX. But not only for this tool such a set of traces can represent a test purpose. Let us take another
test derivation tool, namely Autolink. Each trace from this set can be transformed into a corresponding
MSC. A function which will implement such transformation can easily be incorporated in the Unfold
module. This MSC can be the test purpose used by Autolink for deriving test cases. Such a way of
building test purposes can represent an alternative way to the ones provided by the Autolink tool.

In the Distance module we worked out in detail a label distance for a phone specification. This
gives useful insights of how similar label distances can be built for other applications. For the phone
specification, the label distance was built for two categories of labels: the phone numbers and the
messages exchanged.
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The way in which we computed the label distance between messages corresponds to an enumer-
ation approach for Reduction. In this approach the values are ordered after some rules and the first n
values are selected. We ordered the values of the messages and the label distance starts to decrease
for messages which are on remote positions. Selecting the first n labels will give a good coverage of
the whole set.

For phone numbers, the label distance was built by using physical distances. In this case the
Reduction can be made by given an ε value and compute the corresponding ε-cover of the whole set.
In the C program this is made by the function Selection which computes for a given ε approximation
the subset of labels with a minimum cardinality which is an ε-cover of a whole set of labels. Other
approaches (different from the one presented in this chapter) can also be considered for constructing
suitable label distances, such as the boundary value analysis.

The label distance is used for the computation of the distance d between traces. A similar function
as Selection can be made for regression testing. In regression testing, a set of tests is selected to be
re-used later for testing IUTs. In the case of TorX the tests are execution traces. Now, using the
trace distance d and an ε value, an ε-cover of tests can be computed. The ε-cover represents the most
important behaviours from the whole set of execution traces which can be re-used later for testing
IUTs. As it can be seen, the function Selection can be used not only for implementing the Reduction
heuristic but also to give useful insights in the regression testing.

We constructed a C program which forms the basis of a new module which can be later linked
to TorX. Of course, really connecting this program to TorX is a first possible continuation of this
work. Further research should also investigate the efficiency of the algorithms constructed and the
implementation of other elements of the theory of test selection. For example, one can think of using
the programming dynamic style of Wagner and Fisher ([Ste92]) for defining edit distances for creating
more efficient algorithms for implementing distance computations.



Chapter 10

Conclusions

In this chapter, we draw conclusions regarding the work presented in this thesis. First, we draw general
conclusions and after that we discuss opportunities for further research.

Chapter 1 integrated the research presented in the thesis in the general context of testing reactive
systems. Chapter 2 presented briefly the ioco theory of test selection, which is a prerequisite for
all chapters presented in this thesis. Also we provided a summary of the architecture and the main
components of TorX, the prototype tool of the CdR project.

Chapter 3 presented a comparison of four algorithms for test derivation: TorX, TGV, Autolink and
UIO algorithms. The algorithms are classified according to the detection power of their conformance
relations. Since Autolink does not have an explicit conformance relation, a conformance relation is
reconstructed for it. In this way the research presented here strengthens the conformance foundation
of Autolink. This chapter treated only this classification criterion (it looks at the error detection power
of the algorithms); other criteria such as complexity or timing are out of the scope of this research.

In this chapter we classified four known algorithms: TorX, TGV, Autolink (Telelogic/TAU) and
UIO (UIOv) algorithms (Phact, Conformance Kit). The classification was made as a function of the
conformance relation on which they are based, each conformance relation being expressed in terms
of ioco theory. Also we consolidated the conformance foundation of Autolink by reconstructing an
explicit conformance relation for it. This research treats only this criterion of classification (it looks
at the error detection power of the algorithms); other criteria such as complexity or timing are out of
the scope of this research.

From the theoretical analysis it resulted that TorX and TGV have the same detection power. Au-
tolink has less detection power because it implements a less subtle relation than the first two (some
situations exist in which the former two can detect an erroneous implementation and Autolink can
not). We can also remark that for TGV and Autolink, in order to achieve their theoretical error de-
tection capacity an infinite number of test purposes should be created, which is not always practical.
For TorX one needs infinitely many test cases, but these are generated automatically which is also
impractical because of resource and time limitations.

For comparing UIO and UIOv methods with Autolink, TGV and TorX one needs to assume that
these tools are restricted to work on FSMs. Moreover, the restrictions implies different views regard-
ing the presence or the absence of a null output in the output set for Autolink and ioco algorithms
(TorX and TGV). Considering that such versions exist, it can be also concluded that in general UIO
and UIOv algorithms (Phact) have less detection power than Autolink, TGV and TorX.

Chapter 4, which complements Chapter 3, presented the benchmarking experiment with the four
tools TorX, TGV, Autolink and Phact on the Conference Protocol Case Study. We concentrated espe-
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cially on the experiment with Autolink on the Conference Protocol because this was our main contri-
bution in the joint effort of benchmarking. To conduct this benchmarking, the Conference Protocol
has been modelled in four formal specification languages: SDL, LOTOS, PROMELA and FSM. Also,
a set of concrete implementations has been constructed, some of which were injected with faults that
were unknown to the person that assisted in the test process. The results have been compared with
respect to the number of erroneous implementations that could be detected for each of the tools, and
the time and effort that it took to test the implementations.

First we illustrated the main comparison results for Autolink and TorX. In the on-the-fly approach
of TorX tests were fully automatically generated (in a random way) and executed. In the batch ap-
proach of Autolink the construction of tests needed manual assistance. Execution in the batch ap-
proach was done automatically. Both the on-the-fly approach and the batch approach were able to
detect many erroneous implementations. Using the on-the-fly techniques all erroneous implementa-
tions could be detected, except for those that contained errors that simply could not be detected due to
modelling choices in the specification and the choice of implementation relation. Using batch testing
based on SDL fewer erroneous implementations were detected. On the one hand this is caused by
the occurrence of Timeouts and on the other hand because less tests were executed due to the fact
that manual assistance during test generation was needed. By deriving more test cases in the batch
approach it is possible to increase the error detecting capability.

When the test purposes were generated automatically, TGV was able to detect the same amount
of mutants as TorX. Phact was able to detect fewer mutants. While Autolink, TGV and TorX are able
to generate larger test suites than the ones reported in this thesis, Phact reached the maximum size of
its generated test suite. Therefore, Phact can not detect more mutants than the ones which it detected
in the experiment. There are also strong similarities between the manual approach for TGV and
Autolink. In both cases, the time needed for the manual creation of test purposes was significant. The
numbers of test purposes which were created and transformed in test cases were small. For Autolink
this depended also on the memory of the computers used. Consequently not all mutants could be
detected (in both situations), some of them could have been found by larger test suites.

Chapter 5 presented a control technique for on-the-fly test generation through the extension of the
TorX algorithm with explicit probabilities. Using these probabilities, the generated test suite can be
tuned and optimized with respect to the chances of finding errors in the implementation.

We argued that in some cases the generated test suite can be optimized by adapting the values of
these probabilities. Case studies gave evidence that assuming an equal distribution of chances, the
TorX algorithm will sometimes yield relatively few really interesting test cases. Our calculations on
the toy example of the candy machine also showed that an appropriate choice of the probabilities
improves the ability to detect errors in the implementation.

An important question is, of course, whether there are heuristics which help in selecting appropri-
ate values for the probabilities. In the case studies which we performed, the ratio between the number
of inputs and the number of outputs in a test trace influenced the quality of the test cases. Therefore,
we derived in this chapter the optimal values for the probabilities in the algorithm for a given ratio
between the number of inputs and outputs. The proposed modification of the TorX algorithm has
already been implemented.

Chapter 6 extended the theoretical work from Chapter 5, by presenting experimental results ob-
tained with the probabilistic TorX. The experiment with the Conference Protocol case study confirms
that the extension of the algorithm with explicit probabilities for its three choices (denoted as p1, p2

and p3), probabilities which control the test generation, leads to improvements in the tests generated
with respect to the chances of finding errors in the implementation.

The experiment gives rise to another idea on how to find the values of p2 for which better results
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can be obtained. One can choose few mutants and make the curve Length(p2) for them. Then observ-
ing the values of p2 which give points of minimum, compute the statistical mean (the average of these
values) and apply the value of the mean for the rest of the mutants.

The experiment itself confirms that this idea is valid. We tested two sets of mutants. The first set
indicated the values of p2 which gave points of minimum. After that we computed the mean. Applying
the mean on the second set of mutants, larger than the first one, we obtained points of minimum close
to the value of the mean.

Chapter 7 extended the work presented in Chapter 5 into another direction by describing a way
to compute the coverage for an on-the-fly test generation algorithm based on a probabilistic approach.
The on-the-fly test generation and execution process and the development process of an implemen-
tation from a specification are viewed as stochastic processes. The probabilities of the stochastic
processes are integrated in a generalized definition of coverage which can be used for expressing the
detection power of a generated test suite.

The generalized formulas are instantiated for the ioco theory and the TorX algorithm and an exam-
ple for this instantiation is worked out. When the number of test runs increases, the coverage increases
towards the limit one, provided that there is a non-zero probability of fail. This expresses the expected
property that after performing a sufficient number of test runs, the algorithm is able to detect at the
end all bugs of an erroneous implementation. When decreasing the probability of detecting an error,
the coverage also decreases, as expected. Computer programs can be made for the computation of
the coverage, as a part of test generation tools such as TorX. Such programs needs probabilities as
parameters some of which should be guessed which is not always trivial.

Chapters 5, 6 and 7 presented ways of controlling the on-the-fly test generation and execution and
ways of defining coverage measures for on-the-fly algorithms. In Chapter 8, we dealt with another
topic, namely test selection. By applying test selection a reduced set of tests is selected. Chapter 8
presents a coverage measure which expresses the error detection power of a reduced set of tests. We
should note that there is no conflict between the two coverages formalized, the one for the on-the-
fly test generation and execution, from Chapter 7, and the one for test selection, from Chapter 8. As
explained in Chapter 1, the test selection is done before any test generation and execution. An intuitive
example of a selection is to limit some parameter ranges of signals (from a specification which has
signals with parameters, such as the Conference Protocol specification) to a small number of values.
The coverage for test selection, from Chapter 8, expresses the detection power of the reduced set of
tests which is chosen by selection. This detection power is compared with the set of errors which
can be discovered by the whole set of tests. Now, from the set of tests selected only some tests
are generated and executed by an on-the-fly algorithm (not necessarily all of them). The coverage
for the test generation and execution from Chapter 7 expresses the detection power of the full test
suite, assuming it could be generated and executed. In Chapter 8, the detection power is compared
to the set of errors which can be discovered by the reduced set of tests. The two values obtained
corresponding to the two coverages can be combined (for example by multiplying them). In this way
the two coverages formalized in Chapter 7 and in Chapter 8 complement each other.

In Chapter 8 we dealt with test selection. Since exhaustive testing is in general impossible, an im-
portant step in the testing process is the development of a carefully selected test suite. Selection of test
cases is not a trivial task. We proposed to base the selection process on a well-defined strategy. For
this purpose, we formulated two heuristic principles: the reduction heuristic and the cycling heuris-
tic. The first assumes that few outgoing transitions of a state show essentially different behaviour.
The second assumes that the probability to detect erroneous behaviour in a loop decreases after each
correct execution of the loop behaviour.

A heuristic is a general guideline for reducing test suites, which must be made more precise to
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be practically applicable. Especially for the cycling heuristic we had to introduce additional notation.
The reason is that the cycling structure of a trace through a finite automaton must be made explicit.
We introduced marked traces for this purpose, which enabled us to extend the work on cycle reduction
by Vuong [ACV93, ACV97].

In order to introduce a notion of coverage for the test suites reduced by means of the above
mentioned heuristics, we defined a trace distance on marked traces. The results of our studies can be
used to effectively calculate the coverage of a test suite reduced with our techniques.

The proposed test selection technique can be compared with the existing theories in this area.
In particular, these are the hypothesis theory developed by [CG97] and the trace distance theory of
[ACV93, ACV97]. The hypothesis theory embodies the trace distance theory (see [CG97]), but the
nice thing about trace distance theory is that it gives a measure for the degree to which a reduced set
of traces approximates the original one. So we chose an approach which combines these two theories.
In our approach, first the heuristics (the test hypotheses in the theory of [CG97]) are to be defined.
After that, based on these heuristics a trace distance is built. This gives the possibility to make a test
selection with a given ε approximation. The change of the heuristics leads to the change of the trace
distance used in test selection.

Chapter 9 presented an implementation of the test selection theory described in the previous chap-
ter. We made a C program which implements the theoretical work from Chapter 8 for test selection.
This represents a kernel which later can be connected to TorX. We kept the program simple but gen-
eral enough to make its use in real applications possible and illustrated this by examples taken from
the application domain of telephony.

We divided the program in two modules called Unfold and Distance. The module Unfold im-
plements the Cycling heuristic while the module Distance deals with distance computations. The
Reduction heuristic is implemented using the label distance defined in the module Distance.

From the module Unfold we described the function Unfold. This function can be seen as an
experimental function which implements the Cycling heuristic in a batch-oriented style. We made it
plausible that this function can be effectively used in realistic domains, like telephony, for generating
traces which do not exceed a cycle limit. The generated set of traces can be seen as an automatically
generated test purpose used by TorX for generating test cases. But not only for this tool such a set of
traces can represent a test purpose. Let us take another test derivation tool, namely Autolink. Each
trace from this set can be transformed into a corresponding MSC. A function which will implement
such transformation can easily be incorporated in the Unfold module. This MSC can be the test
purpose used by Autolink for deriving test cases. Such a way of building test purposes can represent
an alternative way to the ones provided by the Autolink tool.

In the Distance module we worked out in detail a label distance for a phone specification. This
gives useful insights of how similar label distances can be built for other applications. For the phone
specification, the label distance was built for two categories of labels: the phone numbers and the
messages exchanged. The way in which we computed the label distance between messages corre-
sponds to an enumeration approach for Reduction. In this approach the values are ordered after some
rules and the first n values are selected. We ordered the values of the messages and the label distance
starts to decrease for messages which are on remote positions. Selecting the first n labels will give
a good covering of the whole set. For phone numbers, the label distance was built by using physical
distances. In this case the Reduction can be made by given an ε value and compute the corresponding
ε-cover of the whole set. Other approaches (different from the one presented in this chapter) can also
be considered for constructing suitable label distances, such as the boundary value analyze.

We conclude this chapter by indicating directions for further research. As mentioned above, in
this thesis we studied the benchmarking between several tools for test generation. The experimental
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results that are presented are based on a case study of a single protocol and a limited number of
implementations. To obtain more valuable results the number of case studies and the number of
experiments per case study should be increased. The case study in this thesis can be seen as one of
the first initiatives towards such a test tool benchmarking activity.

We presented also a control technique for on-the-fly test generation through the extension of the
TorX algorithm with explicit probabilities. We associated probabilities to the three choices of the
algorithm. One way of continuing this research is to associate probabilities to inputs or groups of
inputs and to explore this extension theoretically and practically. Some preliminary experiments in
which TorX was used for testing a highway tolling system [dVBF02] shows that the quality of the
tests increase when associating probabilities to groups of inputs.

We also described a test selection technique which uses heuristics and trace distances. A re-
stricting requirement is that we assume the specification to be given as a minimal finite deterministic
automaton. Some test generation tools already provide such a format, but others support general finite
automata (or even non finite automata). Determinizing a finite automata may cost exponential time.
In this case it would be interesting to know whether the theoretical results achieved in this thesis could
be extended to non deterministic automata or even to non finite ones.

The fact that we studied only two heuristics in this thesis, does not mean that these are the only
interesting heuristics. More heuristics can be defined, e.g. with respect to the general length of a
trace and with respect to the uniformity of the number of outgoing transitions from a state. We
embedded the two heuristics chosen in a more general framework which allows the incorporation of
other heuristics.

We also presented an implementation of the test selection theory. We constructed a C program
which forms the basis of a new module which can be later linked to TorX. Of course, really connect-
ing this program to TorX is a first possible continuation of this work. Further research should also
investigate the efficiency of the algorithms constructed and the implementation of other elements of
the theory of test selection.
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[FJJT96] G. Fernandez, J.C. Jard, C. Jéron, and T.Viho. Using on-the-fly verification techniques
for the generation of test suites. In T. Alur and A. Henzinger, editors, Computer-Aided
Verification (CAV’96), volume 1102 of LNCS, pages 348–359. Springer–Verlag, 1996.

[FMMvW98] L.M.G. Feijs, F.A.C Meijs, J.R. Moonen, and J.J. van Wamel. Conformance testing of
a multimedia system using Phact. In A. Petrenko and N. Yevtushenko, editors, Testing
of Communicating Systems, volume 11, pages 143–210. Kluwer Academic Publishers,
1998.



BIBLIOGRAPHY 145

[Gar98] H. Garavel. OPEN/CAESAR: An open software architecture for verification, simu-
lation, and testing. In B. Steffen, editor, Proceedings of the First International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, pages
68–84. Lecture Notes in Computer Science 1384, Springer-Verlag, 1998.

[Gog01] N. Goga. Comparing TorX, Autolink, TGV and UIO test algorithms. In R. Reed and
J. Reed, editors, SDL2001: Meeting UML, volume 2078 of LNCS, pages 379–402.
Springer, 2001.

[Gog03a] N. Goga. Experimenting with the probabilistic TorX. In P.D. Curtis, editors, Software
Engineering for High Assurance System, pages 13–21. Software Engineering Institute,
Portland, Oregon, 2003.

[Gog03b] N. Goga. A probabilistic coverage for on-the-fly test generation algorithms. In M.
Leuschel, S. Gruner and S. Presti, editors, Automated Verification of Critical Systems,
pages 15–30. University of Southampton, England, 2003.

[GVZ00] H. Garavel, C. Viho, and M. Zendri. System design of a CC-NUMA multiprocessor
architecture using formal specification, model-checking, co-simulation, and test gen-
eration. Technical Report No. 0123456789, Uniteé de recherche INRIA Rhône-Alpes,
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Appendix A

Proofs

A.1 Proof of Lemma 5.2.1

Lemma 5.2.1 Consider an arbitrary but fixed finite trace which does not end in a final verdict. Let n
be the number of inputs on the trace and p the length of the trace. Let r l , l = 1, 2, 3..n be the number
of inputs which can be selected when the l-th input on the trace is selected. Let Pk , k = n + 1, 2, 3..p
be the probability of the (k −n)-th output in the trace to be produced by the implementation. Then the
probability P to generate this trace with the TorX algorithm is computed in the following way:

P =
n

∏

l=1

(
1
rl

× p2) ×
p

∏

k=n+1

(Pk × p3)

Proof : The signals of the trace are mapped onto the internal nodes of the behaviour tree. There-
fore we will make the proof by induction on the length of the trace of the behaviour tree.

1. Basic step:
The trace is empty. We are on the root node of the behaviour tree which has the probability 1.
Because n = 0 and p = 0 in the formula of P , the probability computed with the formula of
the lemma is also 1.

2. Induction step:
By the induction hypothesis the probability for the current node is computed as

P =
n

∏

l=1

(
1
rl

× p2) ×
p

∏

k=n+1

(Pk × p3)

Then we have to show that the probability to arrive in one of the next nodes (not the final state)
is computed as

P ′ =
n′

∏

l=1

(
1
r ′

l
× p2) ×

p′
∏

k=n′+1

(P ′
k × p3)

for p′ = p +1, suitable n ′ (either n +1 if one input is added or n if an output is added), suitable
r ′

l and P ′
k (the values of r ′

l and P ′
k are given later). The situation is as in Figure A.1. As shown

in the figure, v is the number of inputs.
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Pass PassI O Otv

finish with pcheck output with select to send one

node

I2
I

1 1 Fail

1            input with p2 3
p

The probability to arrive in this node is P

Figure A.1: Intermediary situation.

The probability to select an input from the set of inputs in this case is 1
v

(independent events).
We distinguish two cases:

(a) The next node contains an input:

P ′ = P(Current node) × P(Choice 2) × P(Select an input from the set of inputs) =

= (
∏n

l=1(
1
rl

× p2) ×
∏P

k=n+1(Pk × p3)) × p2 × 1
v

=

=
∏n′

l=1(
1
r ′
l
× p2) ×

∏p′

k=n′+1(P ′
k × p3)

with n ′ = n + 1, p′ = p + 1,
r ′

l = rl for l = 1, ..., n and r ′
n+1 = v

P ′
k = Pk−1 for k = n + 2, ..., p + 1.

(b) The next node contains an output O:

P ′ = P(Current node) × P(Choice 3) × P(O) =

= (
∏n

l=1(
1
rl

× p2) ×
∏p

k=n+1(Pk × p3)) × p3 × P(O) =

=
∏n′

l=1(
1
r ′
l
× p2) ×

∏p′

k=n′+1(P ′
k × p3)

with n ′ = n, p′ = p + 1,
r ′

l = rl for l = 1, ..., n,
P ′

k = Pk for k = n + 1, ..., p and P ′
p+1 = P(O). �

A.2 Proof of Proposition 7.3.1

Proposition 7.3.1 If p1
A,s,i(fail) > 0 then limm→∞ pm

A,s,i(fail) = 1
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Proof : Let us put ε = Pm
A,s,i(pass). By assumption ε < 1. So:

limm→∞ Pm
A,s,i(fail) = limm→∞(1 − εm) = 1 − limm→∞(εm) = = 1 − 0 = 1

�

A.3 Proof of Proposition 7.3.2

Proposition 7.3.2 Let s ∈ SPECS be a specification and let Is be the set of non-implementations of s.
Let A ∈ ALGS be an algorithm of on-the-fly test generation. Assume that an erroneous implementation
occurs with a non-zero probability, formally Ps(Is) > 0. Assume that all faulty implementations that
are possible can be detected, that is ∀i ∈ Is : (ps(i) > 0 ⇒ pA,s,i(fail) > 0). Assume that
pA,s,i(fail) < 1. For positive integers m and n

m < n ⇒ cov(A, s, m) < cov(A, s, n)

Proof : First we will prove the monotonicity property for the summation. Let us take A ∈ ALGS
and s ∈ SPECS. Let N = Is denote the set of non-implementations of s. Let us consider i ∈ N . We
assume m < n. So:

(1 − p1
A,s,i(fail))m > (1 − p1

A,s,i(fail))n

And it follows that:

1 − (1 − p1
A,s,i(fail))m < 1 − (1 − p1

A,s,i(fail))n

Therefore:

pm
A,s,i(fail) < pn

A,s,i(fail)

Now because w(i) < 0 (the implementation is erroneous) and ps(i) > 0 it follows that:

w(i)pm
A,s,i(fail)ps(i) > w(i)pn

A,s,i(fail)ps(i)

This was for fixed but arbitrary i . Therefore it holds for all i , which means that:
∑

i∈N

w(i)pm
A,s,i(fail)ps(i) >

∑

i∈N

w(i)pn
A,s,i(fail)ps(i)

So:

λm
A,s(N, {fail}) > λn

A,s(N, {fail})

Now because λA,s(N, {pass, fail}) < 0 we have that:

λm
A,s(N, {fail})

λA,s(N, {pass, fail})
<

λn
A,s(N, {fail})

λA,s(N, {pass, fail})

Hence cov(A, s, m) < cov(A, s, n). �
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A.4 Proof of Lemma 8.5.4

Lemma 8.5.4 The width of a marked trace generated with Mark from an automaton and the widths of
all its component marked traces are less than or equal to 2m − 1, where m is the number of states of
the automaton.

Proof : Let us first prove this lemma for a marked trace generated with Mark and after that for
its component marked traces. The algorithm Mark uses a path p which is transformed into a marked
trace. The second parameter of Mark is the set of states Q of the automaton. If a) p does not contain
a repetitive state from Q, the marked trace is p |trace (the trace corresponding to p) and its width
is: width(p |trace) < m (p does not contain repetitive states). If a) does not hold, the worst case is
a marked trace which goes through all states of the automaton and has a cycle in every state. This
trace can be represented as t = [ ]q0 t0[ ]q1 t1...[ ]qm−2 tm−2[ ]qm−1 where qi (i = 0, 1, ..., m − 1) are
states of the automaton and t j ( j = 0, ..., m − 2) are the labels of the transitions between the states.
Then width(t) = 2m − 1. For proving the lemma for every component marked trace t ′, we observe
that every such t ′ can be obtained as an application of Mark on a path (the path corresponding to
unfold(t ′)). Therefore width(t ′) ≤ 2m − 1. �

A.5 Proof of Lemma 8.5.6

Lemma 8.5.6 The nesting depth of a marked trace generated with Mark from an automaton is less
than or equal to the number of states of the automaton.

Proof : The algorithm Mark starts from a path p, which is transformed into a marked trace, and
the set of states Q of the automaton. Let m be the number of states of the automaton. If a) p does
not contain a repetitive state from Q, the marked trace is p |trace (the trace corresponding to p) and
its nesting depth is: nesting(p |trace) = 0 < m. If a) does not hold, the worst case is a marked trace
which has one one-state cycle at the top level and inside it one one-state cycle, and so on. This marked
trace can be represented as t = [ [ ...[ ]qm−1 ...]q1]q0 where qi (i = 0, 1, ..., m − 1) are all the different
states of the automaton. Then nesting(t) = m. �

A.6 Proof of Lemma 8.6.4

Lemma 8.6.4 Reduction(Cycling(x)) = Cycling(Reduction(x))

Proof : The proof is based on the following: 1) the Reduction function only changes the labels of a
marked trace; 2) the Cycling function only truncates the marked traces of type [ ] after l c symbols; 3)
the same marked trace is obtained if first the cycles of a trace x will be truncated and after that the la-
bels changed (Reduction(Cycling(x))) or first the labels will be changed and after that the cycles trun-
cated (Cycling(Reduction(x))). This means that Reduction(Cycling(x)) = Cycling(Reduction(x)).

Now we will elaborate the proof below. First we note that Reduction and Cycling do not change
the structure of the marked traces, that is a label is mapped to a label, a pair uv to a pair u ′v′, and a
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marked trace of the form [ ] is mapped to something of the form [ ] (this is easily shown by induction
on the structure of marked traces).

The proof is by induction on the structure of marked traces. The definition of the marked traces
is given by Definition 8.5.1. The grammar of marked traces is a simultaneous inductive definition
of three sets: the set of marked traces, the set of non-empty marked traces and the set of non-empty
sequences.

The property is trivial for the set of marked trace so it suffices to prove the same property for the set
of non-empty marked traces. This is shown by proving this property for the set of non-empty marked
traces and the set of non-empty sequences by simultaneous induction on the structure of non-empty
marked traces and non-empty sequences.

1. if t is a non-empty marked trace because t is ut ′ with u ∈ L and t ′ a marked trace then use the
fact that the property that

Reduction(Cycling(u)) = trans(u) = Cycling(Reduction((u))

and it holds also for t ′;

2. if t is a non-empty trace because t is [s]q t ′ with s a non-empty sequence, q ∈ Q and t ′ a marked
trace then use the fact that the property holds for s and t ′ (for lc = 0 trivial);

3. if s is a non-empty sequence because s is 〈t〉 with t a non-empty marked trace then use the fact
that the property holds for t ;

4. if s is a non-empty sequence because s is 〈t〉s ′ with t a non-empty marked trace and s ′ a non-
empty sequence: the property holds for t and for any term of type 〈 〉 of s ′. If lc ≥| s | it is
straight-forward that the property holds also for s. If lc <| s |, based on the observation that
the property holds for any term of type 〈 〉 of s ′, it holds also for s ′ truncated after lc terms, and,
consequently, it will hold also for s. �

A.7 Proof of Lemma 8.7.3

Lemma 8.7.3 Let s be an automaton.

1. All the values of d are in the range [0, 1], i.e. ∀x, y ∈ tracesm(s) : d(x, y) ≤ 1.

2. The space (tracesm(s), d) is a metric space.

First we will prove Lemma 8.7.3 point 1).

Proof : The proof is by induction on the structure of marked traces. The grammar of marked
traces is a simultaneous inductive definition of three sets: the set of marked traces, the set of non-
empty marked traces and the set of non-empty sequences.

We will prove that all the values of the functions d , AtomicDistance, EditDistanceWeighted are
in the range [0, 1] and that all the values of the function EditDistance are in the range [0, lm ] by
simultaneous induction on the structure of non-empty marked traces and non-empty sequences.

1. if t , t ′ are two marked traces with u ∈ L then for proving that d has all the values in the range
[0, 1] use the facts that all the values of the function EditDistance are in the range [0, lm] and
that d(t, t ′) = EditDistance(t,t ′)

lm
(for ε trivial);
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2. if uv, u ′v′ are two non-empty marked traces with u ∈ L or u = [ ] , u ′ ∈ L or u ′ = [ ] , v and
v′ are two non-empty marked traces then for proving that EditDistance has all the values in the
range [0, lm ] use the facts that 1)

EditDistance(uv1...v|v|, u ′v′
1...v

′
|v′|) ≤

EditDistance(u, u ′) +
min(|v|,|v′|)

∑

k=1

EditDistance(vk, v
′
k) +

max(|v|,|v′|)
∑

k=min(|v|,|v′|)+1

1

and that 2) the maximum value of a transformation from one symbol into another (the distance
used is AtomicDistance) is 1 and that max(| v |, | v ′ |) < lm ;

3. if u, u ′ are two non-empty marked traces with u ∈ L or u = [ ] and u ′ ∈ L or u ′ = [ ] then
for proving that AtomicDistance has all the values in the range [0, 1] use the facts that d L has
this property and that the property holds for the set of non-empty sequences (the distance used
is EditDistanceWeighted);

4. if 〈t〉s and 〈t ′〉s ′ are two non-empty sequences with t and t ′ two non-empty marked traces and s
and s ′ two non-empty sequences then for proving that EditDistanceWeighted has all the values
in the range [0, 1] use the facts that the property holds for t and t ′ (the distance used is d) and
that

∑∞
k=1 pk = 1 (similar for (〈t〉 and 〈t ′〉), (〈t〉s and 〈t ′〉) and (〈t〉 and 〈t ′〉s ′)). �

The proof of Lemma 8.7.3 point 2), i.e. (tracesm(s), d) is a metric space, is based on the fact that
the auxiliary functions EditDistance, AtomicDistance and EditDistanceWeighted are distances. While
it is a known fact that edit distances (such as EditDistance) keeps the properties of metric spaces
[WF74] and for AtomicDistance the proof is quite simple, for EditDistanceWeighted the proof is not
that trivial. Therefore for the proof of Lemma 8.7.3 we will be helped by Proposition A.7.1 which
shows that EditDistanceWeighted is a distance.

In Proposition A.7.1, without loss of generality, for the sake of simplicity, we consider a set of
strings in place of a set of non-empty sequences. Proving that EditDistanceWeighted is a distance on
a set of non-empty sequences is a strait-forward extension of the proof that EditDistanceWeighted is
a distance on a set of strings.

Proposition A.7.1 Let L be an alphabet and dL a distance defined on this alphabet such that ∀x, y ∈
L : dL(x, y) ≤ 1. Let the cost of deleting one symbol x ∈ L, i.e. dL(x, ε), be 1 and the cost of
inserting one symbol x ∈ L, i.e. dL(ε, x), be 1. Let pk , with k ∈ IN>0, be a descending series of
positive numbers. Then (L∗, EditDistanceWeighted) is a metric space.

Proof :
The function EditDistanceWeighted is symmetric and EditDistanceWeighted(x, x) = 0 with x ∈

L∗ because of the way in which this function was defined. What remains is to prove the triangle
property. For proving the triangle property, we will use a similar style as in the literature [WF74] for
the classic edit distances – non-weighted ones.

Let a, b, c ∈ L∗ be 3 strings. For proving the triangle property for these strings we will prove first
the following property

∃ a series of edit operations which transforms a into c, denoted as T (a, c), such that:

Cost(T (a, c)) ≤ EditDistanceWeighted(a, b) + EditDistanceWeighted(b, c)
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By Cost(T (a, c)) we mean the sum of the edit actions which happens when transforming a into c
multiplied by the corresponding weights:

Cost(T (a, c)) =
max(|a′|,|c′|)

∑

i=1

pi × dL(a′
i , c′

i)

where a′ is a string obtained from a and c′ is a string obtained from c according to the series of edit
operations T (a, c). More precise, if the edit operation Ti(a, c) from position i has one of the following
values: 1) a j is transformed in ck ; 2) a j is deleted or 3) ck is inserted, with 1 ≤ j ≤| a |, 1 ≤ k ≤| c |,
a j a chracter from a and ck a character from c, then a ′

i will have one the following correspondent
values: 1) a j or 2) a j or 3) ε and c′

i will have one of the following values: 1) ck or 2) ε or 3) ck .
We remind that EditDistanceWeighted is the minimum cost from all the costs of such series of edit

operations, i.e. EditDistanceWeighted(a, c) ≤ Cost(T (a, c)). Then if the above property holds:

EditDistanceWeighted(a, c) ≤ EditDistanceWeighted(a, b) + EditDistanceWeighted(b, c)

In this way the triangle property is proved and, consequently, (L ∗, EditDistanceWeighted) is a metric
space. What remains to be proved is that there exists a series of edit operations T (a, c) such that:

Cost(T (a, c)) ≤ EditDistanceWeighted(a, b) + EditDistanceWeighted(b, c)

We will construct T (a, c) step by step. Let T (a, b) be the series of edit operations which trans-
forms a into b and gives the minimum cost, i.e. EditDistanceWeighted(a, b) = Cost(T (a, b)), and
T (b, c) be the series of edit operations which transforms b into c and gives the minimum cost, i.e.
EditDistanceWeighted(b, c) = Cost(T (b, c)).

Let a′ be the string obtained from a and b′ the string obtained from b according to the series of edit
operations T (a, b). Let b′′ be the string obtained from b and c′ the string obtained from c according
to the series of edit operations T (b, c). Let poz(bi , b′) be the position of the character bi from b in
the string b′ and poz(bi , b′′) be the position of the character bi in the string b′′. Now we have all the
ingredients for starting to build T (a, c).

First we will manipulate b′ and b′′ (and a′ and c′, respectively) such that at the end b′ and b′′ will
be equal. For this we will apply the following procedure:

for each bi in b (1 ≤ i ≤| b |) do
if(poz(bi , b′) ≤ (poz(bi , b′′) then

/* insert a number (poz(bi , b′′)−(poz(bi , b′)) of ε in a′ and b′ between the positions poz(bi−1, b′)

– or 1 if i = 1 – and poz(bi , b′) */
d = poz(bi , b′′) − (poz(bi , b′);
if(i=1) then

s = 0;
else

s = poz(bi−1, b′);
/* shifting to the right */
for s + 1 ≤ k ≤| b′ | do

b′
k+d = b′

k ;
for s + 1 ≤ k ≤| a′ | do

a′
k+d = a′

k ;
/* the insertion of ε */
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for s + 1 ≤ k ≤ s + d do
b′

k = a′
k = ε;

else
/* insert a number (poz(bi , b′)−(poz(bi , b′′) of ε in b′′ and c′ between the positions poz(bi−1, b′′)

– or 1 if i = 1 – and poz(bi , b′′) */
... /* similar as above for b′′ and c′ */

At the end of this algorithm b′ and b′′ will be equal, having each character bi from b on exact the
same position.

By inserting on the same position one ε in a ′ and one ε in b′ the structure of the transformation
from a into b, i.e. T (a, b), will remain unchanged, i.e. an edit operation Ti(a, b) is only shifted to the
right to a position Ti ′(a, b) with i ′ ≥ i , the order of the edit operations is preserved and some ‘null’
operations ‘ε is transformed in ε’ are inserted in the series of edit operations. The same holds for b ′′

and c′. Taken into account that pk is a descending series of positive numbers, we obtain that:

Cost(a′
f , b′

f ) + Cost(b′′
f , c′

f ) ≤ Cost(a′
i , b′

i) + Cost(b′′
i , c′

i) (A.1)

where a′
i , b′

i , b′′
i , c′

i are the strings a ′, b′, b′′, c′ before the application of the procedure and a ′
f , b′

f , b′′
f , c′

f

are the strings a ′, b′, b′′, c′ obtained after the application of the procedure (Cost(a ′, b′) =
∑max(|a′|,|b′|)

i=1 pi

×dL(a′
i , b′

i)). In the remainder of this proof by a ′, b′, b′′, c′ we mean the strings obtained after the ap-
plication of this procedure.

For getting a final transformation from a into c we need to get red of the situations in which a
character b j is transformed in ε in both a ′ and c′ (see below):

poz ... i ...
a′ ... ε ...
b′ ... b j ...
b′′ ... b j ...
a′ ... ε ...

For solving this situation, the solution is to move the character b j in b′ and ε in a′ to the ends of
b′ and a′, respectively, and to shift with one position to the left the contents of b ′ and a′: b′

r = b′
r+1,

a′
k = a′

k+1, b′
|b′| = b j and a′

|a′| = ε with i ≤ r ≤| b′ | −1, i ≤ k ≤| a′ | −1. The same will be done
for b′′ and c′. This should be done for each such a b j . These operations will be called the moves of the
‘nulls’.

Based on the property that dL(y, z) ≤ 1 for any y, z ∈ L ∪ {ε} and that the series of pk is
descending and positive, the following holds:

pk × dL(x, ε) + pk+1 × dL(y, z) ≤ pk × dL(y, z) + pk+1 × dL(x, ε)

Now, if all the moves of the nulls are executed, the following holds:

Cost(a′
f , b′

f ) + Cost(b′′
f , c′

f ) ≤ Cost(a′
i , b′

i) + Cost(b′′
i , c′

i) (A.2)

where a′
i , b′

i , b′′
i , c′

i are the strings a ′, b′, b′′, c′ before the moves of the nulls and a ′
f , b′

f , b′′
f , c′

f are
the strings a′, b′, b′′, c′ after the moves of the nulls. In the remainder of this proof by a ′, b′, b′′, c′ we
mean the strings obtained after the moves of the nulls.

Now, the following series of edit operations T (a, c) which transforms a into c can be obtained.
The edit operation Ti(a, b) from position i is

1. the character a j (from a) is transformed into the character ck (from c) iff a′
i = a j and c′

i = ck ;
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2. the character a j is deleted iff a ′
i = a j and c′

i = ε;

3. the character ck is inserted iff a ′
i = ε and c′

i = ck ;

Based on the property that the triangle property holds for dL , the following holds:

Cost(T (a, c)) = Cost(a ′, c′) ≤ Cost(a′, b′) + Cost(b′′, c′) (A.3)

Based on A.1, A.2, A.3 it results that:

Cost(T (a, c)) ≤ EditDistanceWeighted(a, b) + EditDistanceWeighted(b, c)

Because EditDistanceWeighted(a, b) ≤ Cost(T (a, c)) – EditDistanceWeighted is the minimum of
such costs – it follows that:

EditDistanceWeighted(a, b) ≤ EditDistanceWeighted(a, b) + EditDistanceWeighted(b, c)

And with this it is proved that (L∗, EditDistanceWeighted) is a metric space. �

Now we can give the proof of Lemma 8.7.3 point 2).

Proof : The proof is by induction on the structure of marked traces. The grammar of marked
traces is a simultaneous inductive definition of three sets: the set of marked traces, the set of non-
empty marked traces and the set of non-empty sequences.

We will prove that tracesm(s), d) is a metric space by proving the triangle property for the func-
tions d , EditDistance, AtomicDistance, EditDistanceWeighted by simultaneous induction on the struc-
ture of non-empty marked traces and non-empty sequences. It suffices to prove only the triangle prop-
erty because the properties of symmetry and that d(x, x) = 0 are given by definition. The case of
marked traces is excluded because is trivial.

On this proof, we will be helped by the observation that all the values computed by d , EditDis-
tance, AtomicDistance, EditDistanceWeighted are in the range [0, 1] (because of the division with l m

and of the fact that
∑∞

k=1 pk = 1).

1. if uv, u ′v′ are two non-empty marked traces with u ∈ L or u = [ ] , u ′ ∈ L or u ′ = [ ] ,
v and v′ are two non-empty marked traces then for proving that EditDistance has the triangle
property (and, consequently, d) use the facts that the property holds for u and u ′ (the distance
used is AtomicDistance) and that EditDistance preserves the properties of metric spaces [WF74]
(similar for (uv and u ′), (u and u ′v′));

2. if u, u ′ are two non-empty marked traces with u ∈ L or u = [ ] and u ′ ∈ L or u ′ = [ ] then for
proving that AtomicDistance has the triangle property (and, consequently, d) use the facts that
(L , dL) is a metric space, the property holds for the set of non-empty sequences (the distance
used is EditDistanceWeighted) and that all the values of dL and EditDistanceWeighted are in the
range [0, 1];

3. if 〈t〉s and 〈t ′〉s ′ are two non-empty sequences with t and t ′ two non-empty marked traces
and s and s ′ two non-empty sequences then for proving that EditDistanceWeighted has the
triangle property use the facts that the property holds for t and t ′ (the distance used is d) and
that EditDistanceWeighted preserves the properties of metric spaces – see Proposition A.7.1
(similar for (〈t〉 and 〈t ′〉), (〈t〉s and 〈t ′〉) and (〈t〉 and 〈t ′〉s ′)). �
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A.8 Proof of Theorem 8.8.1

Theorem 8.8.1 Let (tracesm(s), d) be a metric space. Let lc be the cycle limit. Let L ε ⊆ L be an
εL -cover of L. Let ε ∈ [0, 1] be a positive number computed in the following way:

1. ε = εz with

(a) ε0 = εL ;

(b) for i = 1, ..., z :

i. εi
c =

∑lc
k=1 pk × (max j=0,...,i−1(ε

j)) +
∑∞

k=lc+1 pk ;

ii. εi = maxcycles=0,...,lm (
cycles×εi

c+(lm−cycles)×εL
lm

).

Then the finite set T = Ran(Reduction ◦ Cycling) of traces obtained by the application of the two
heuristics on tracesm(s) is an ε-cover of tracesm(s).

Proof : Let t ∈ tracesm(s) be a marked trace and t ′ = Reduction(Cycling(t)) ∈ T . We like to
show that d(t, t ′) ≤ ε. For this we observe that:

• the worst case is that all the labels from t will be changed in t ′ and every change of a label will
give an εL difference;

• the worst case is that every cycle [ ] of t compared to its corresponding cycle Reduction(Cycling(

[ ] )) from t ′ will give a maximum difference εc (we will come later to εc).

Then comparing the terms of t with the terms of t ′ sequentially from the beginning till the end we
obtain that:

d(t, t ′) ≤
transitions × εL + cycles × εc

lm

where transitions is the number of transitions (or upper-level labels) in t and t ′ and cycles is the number
of cycles in t and t ′ (because t ′ = Reduction(Cycling(t)), t ′ has the same width and a structure similar
to t ; if u is an upper-level label of t then trans(u) is the correspondent upper-level label of t ′).

Now we observe that:

• the worst case is that the marked traces t and t ′ have a width which equals the maximum, lm ;

• in this case the number of cycles in a marked trace can vary from 0 to lm and the number of
transitions is: transitions = lm− cycles.

Then:

d(t, t ′) ≤ maxcycles=0,...,lm (
cycles × εc + (lm − cycles) × εL

lm
)

We observe also that the worst case is that the nesting depth of t and t ′ will be z. Then we parameterize
εc of the cycles with z, writing εz

c , and we obtain a first formula for the computation of ε z from a series
of positive numbers in the range [0, 1] (z is finite; see Section 8.5.2)

d(t, t ′) ≤ εz = maxcycles=0,...,lm (
cycles × εz

c + (lm − cycles) × εL

lm
)

In this formula we don’t know the value of εz
c . We observe that:
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• every cycle from t is cut in t ′ after lc iterations; this means that for every cycle u = [〈u1〉...〈uk〉]q

(k ∈ IN, q ∈ Q) the marked trace t ′ has a corresponding cycle u ′ = [〈u ′
1〉...〈u ′

min(k,lc)〉]
q ;

• the worst case is that k → ∞; in this case min(k, lc) = lc.

Then the difference between u and u ′ is given by:

EditDistanceWeighted1(〈u1〉...〈uk〉, 〈u ′
1〉...〈u ′

lc 〉 ≤ εz
c =

lc∑

k=1

pk × d(uk, u ′
k) +

∞
∑

k=lc+1

pk

But uk and u ′
k (k = 1, ..., lc ) are marked traces and we can compute their approximation in a similar

style as we did for t and t ′. The only difference is that their nesting depth can vary from 0 to z − 1;
we will choose the maximum for εz

c :

d(uk , u ′
k) ≤ max j=0,...,z−1(ε

j)

Now we obtain a recursive formula for the computation of the ε-cover as:
ε0 = εL and for i = 1, ..., z
εi

c =
∑lc

k=1 pk × ( max j=0,...,i−1(ε
j)) +

∑∞
k=lc+1 pk ;

εi = maxcycles=0,...,lm (
cycles×εi

c+(lm−cycles)×εL
lm

) �

A.9 Proof of Theorem 8.8.2

Theorem 8.8.2 Let (tracesm(s), d) be a metric space. Then for every ε ∈ [0, 1], there exists a cy-
cling limit lc and a label approximation εL with εL =

∑∞
k=lc+1 pk ≤ ε

2z such that the finite set T =
Ran(Reduction ◦ Cycling) of traces obtained by the application of the two heuristics on tracesm is an
ε-cover of tracesm(s) and the metric space (tracesm(s), d) is totally bounded.

Proof : We use the results of Theorem 8.8.1 for this proof in the following way: we will like to
show that ∀i ≤ z : εi ≤ ε

2z−i . This has as consequence that, when i = z : εz ≤ ε

20 ⇒ εz ≤ ε. Because
T is an εz-cover of tracesm(s) (cf. Theorem 8.8.1) and εz ≤ ε, T is also an ε-cover of tracesm(s)
(using Definition 8.4.3).

We will prove that: ∀i ≤ z : εi ≤ ε

2z−i by induction over i .

1. Verification

ε0 = εL ≤
ε

2z−0 =
ε

2z

2. Induction

Assume that the proposition P(i) : ∀ j ≤ i : ε j ≤ ε

2z− j is true and prove that the proposition
P(i + 1) : ∀ j ≤ i + 1 : ε j ≤ ε

2z− j is true. For showing that P(i + 1) is true we should prove
that:

εi+1 ≤
ε

2z−i−1
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According to Theorem 8.8.1 we have:

εi+1
c =

lc∑

k=1

pk(max j=0,...,i(ε
j)) +

∞
∑

k=lc+1

pk

According to the enunciation of Theorem 8.8.2 we have that
∑∞

k=lc+1 pk ≤ ε
2z . Because

∑∞
k=1 pk = 1 and pk are positive numbers, it results that

∑lc
k=1 pk ≤ 1. Then:

εi+1
c ≤ max j=0,...,i(ε

j) +
ε

2z

Because P(i) is true we have that ε j ≤ ε

2z− j for j ≤ i . Moreover ε

2z− j ≤ ε

2z−i because j ≤ i .
Then:

εi+1
c ≤

ε

2z−i
+

ε

2z

Now we have ε
2z ≤ ε

2z−i . Then:

εi+1
c ≤

2 × ε

2z−i
=

ε

2z−i−1

Now, according with Theorem 8.8.1:

εi+1 = maxcycles=0,...,lm
cycles × εi+1

c + (lm − cycles) × εL

lm

From the the enunciation of Theorem 8.8.2 we have
∑∞

k=lc+1 pk = εL . We have also that
εi+1

c =
∑lc

k=1 pk(max j=0,...,i(ε
j)) +

∑∞
k=lc+1 pk . The numbers pk and ε j are positive. Then:

εi+1
c > εL

Then:

εi+1 =
lm × εi+1

c + (lm − lm) × εL

lm
= εi+1

c

We showed that εi+1
c ≤ ε

2z−i−1 . Then εi+1 ≤ ε

2z−i−1 and in this way P(i + 1) is proved to be true.
�

A.10 Proof of Theorem 8.8.3

Theorem 8.8.3 Let (tracesm(s), d) be a metric space. Let lc be the cycle limit. Then the distance d
implements the Reduction and the Cycling heuristics.

Proof : We use the results of Theorem 8.8.1 for this proof in the following way

1. for showing that d is implementing the Reduction heuristic we compute εr for Ran(Reduction)
so: εr = εz for lc = ∞ and a given εL ;

2. for showing that d is implementing the Cycling heuristic we compute εc for Ran(Cycling) so:
εc = εz for a given lc and εL = 0. �
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A.11 Proof of Theorem 8.8.4

Theorem 8.8.4 Let (tracesm(s), d) be a metric space. Let lc and l ′
c be two cycle limits (lc ≤ l ′

c). Let
Lε ⊆ L be an εL -cover of L and Lε′ ⊆ L be an ε′

L-cover of L such that Lε ⊆ Lε′ and εL ≥ ε′
L . Let

T = Ran(Reduction ◦ Cycling) and T ′ = Ran(Reduction ◦ Cycling) be the two finite sets of traces
obtained by the application of the two heuristics on tracesm(s) using Lε, lc and respectively Lε′ , l ′

c.
Then cov(T, tracesm (s)) ≤ cov(T ′, tracesm (s)).

Proof : According to Theorem 8.8.1, T is an ε-cover of tracesm(s) and T ′ is an ε′-cover of
tracesm(s). Then cov(T, tracesm (s)) = 1 − ε and cov(T ′, tracesm(s)) = 1 − ε′.

For showing that cov(T, tracesm (s)) ≤ cov(T ′, tracesm (s)) we should show that ε ≥ ε ′. This
can be proved by induction using the formulas of Theorem 8.8.1 for ε ′ and ε.

1. Verification

ε0 = εL and ε′0 = ε′
L ; but εL ≥ ε′

L ⇒ ε0 ≥ ε′0

2. Induction

Assume that the proposition P(i) : ∀ j ≤ i : ε j ≥ ε′ j is true and prove that the proposition
P(i + 1) : ∀ j ≤ i + 1 : ε j ≥ ε′ j is true. For showing that P(i + 1) is true we should prove that

εi+1 ≥ ε′i+1

According to Theorem 8.8.1:

εi+1
c =

lc∑

k=1

pk(max j=0,...,i(ε
j)) +

∞
∑

k=lc+1

pk

Because P(i) is true we have that ε j ≥ ε′ j . Then:

εi+1
c ≥

lc∑

k=1

pk(max j=0,...,i(ε
′ j)) +

∞
∑

k=lc+1

pk

From the enunciation of Theorem 8.8.3 we have that lc ≤ l ′
c. Then:

εi+1
c ≥

l′c∑

k=1

pk(max j=0,...,i(ε
′ j)) +

∞
∑

k=l′c+1

pk

But ε′i+1
c =

∑l′c
k=1 pk(max j=0,...,i(ε

′ j)) +
∑∞

k=l′c+1 pk . Then:

εi+1
c ≥ ε′i+1

c

According to Theorem 8.8.1:

εi+1 = maxcycles=0,...,lm
cycles × εi+1

c + (lm − cycles) × εL

lm
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We showed that εi+1
c ≥ ε′i+1

c . From the enunciation of Theorem 8.8.3 we have that εL ≥ ε′
L .

Then:

εi+1 ≥ maxcycles=0,...,lm
cycles × ε′i+1

c + (lm − cycles) × ε′
L

lm

But ε′i+1 = maxcycles=0,...,lm
cycles×ε′ i+1

c +(lm−cycles)×ε′
L

lm
. Then εi+1 ≥ ε′i+1. In this way P(i + 1) is

proved to be true. Now for z = i + 1 we have that ε ≥ ε ′. �



Appendix B

Detailed descriptions for Chapter 9

B.1 A detailed description of the data structures

For a good understanding of the functions of the program, we should give a clear view of the data
structures of the program. The main structures of the program are defined for representing transitions
and marked traces. Based on the transition structure, paths and automata can also be stored in the
variables of the program. We kept the data structures simple so that the algorithms will be easily
understood. A transition is represented as:

typedef struct t {
int StateSource;
char Label[MaxLength];
int StateDestination;

} Transition;

In this C program a transition is represented as a structure containing the triple 〈 StateSource,
Label, StateDestination 〉. Obviously the field StateSource corresponds to the state source of the tran-
sition, Label stores the label of the action performed and StateDestination stands for the destination
state. The states are considered coded as natural numbers starting from 0. The labels are stored as
strings of characters which have a maximum length given by the constant MaxLength. Using the
transition data structure, a path and an automaton are declared as:

Transition Path[MaxDepth];
Transition Automaton[NrStates][NrMaxTran];

A path is an array of transitions with a maximum number of locations given by the constant
MaxDepth. When storing a path, there should be one rule respected: the state source of the current
transition should be equal to the state destination of the previous transition.

Example Let us consider the path 0
a→ 1

b→ 1
y→ 0 of the automaton from Figure 9.1. This path is

represented in Figure B.1. The list of transitions which corresponds to this path is: 〈0, a, 1〉〈1, b, 1〉
〈1, y, 0〉. The first transition is stored on the first position of the array, the second on the second posi-
tion and the third on the third. The value −1 of the constant NoState is stored by the field StateSource
of the transition from the fourth position of the array. This marks the end of the path. In the figure,
the values ∗ from the fourth position mean any value (they are not of interest for us).

163
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’b’

Pos 1 Pos 2

Label StateSource StateDestination

−1  * *

Pos 4

    NoState

’a’0

Pos 0

1 1 1 ’y’1 0

Figure B.1: A representation of 0
a→ 1

b→ 1
y→ 0.

From this example it can be seen that the representation of a path is a little bit redundant: the
information from a state destination is copied in the state source of the next transition. For showing
how to implement the test selection theory, the optimization does not play a role. For this reason we
did not pay attention to it. Also, in similar situations to this one we did not work out the optimization
in the program.

A trace is represented as an array of labels. Sometimes, for not duplicating the information, when
we are working with a path we do not build the corresponding trace because this is formed by the
labels contained by the path.

The automaton is represented as a matrix of transitions. Because we are working with automata
for which the set of states is finite, there is always a bijection between the set of states of an automaton
and [0..NrStates−1], where NrStates is the number of states of the automaton. Therefore we assume
that the states of an automaton are labelled with numbers in the range [0..NrStates−1] and that the
initial state is the state labelled with 0. In row i of the matrix, all the transitions with source state i of
the automaton are given. The constant NoState indicates the end of each list of transitions.

Example Let us consider the automaton from Figure 9.1. Its representation is given in Figure B.2.

Col 0 Col 1 Col 2

Lin 0

Lin 1

0

’b’

1 −1  * * *  * *

1 0 1 1 −1  * *

NoState

NoState

’a’

’y’

Figure B.2: The internal representation of the automaton.

There are two states of the automaton: the initial state 0 and 1. The initial state has only one tran-
sition: via a the state 1 is reached. This transition is stored in the location which has the coordinates:
row 0 and column 0 in the matrix. Because there is only one transition for the state 0, the constant
NoState is put in the StateSource field of the location from row 0 and column 1. This indicates the end
of the list of transitions for the initial state. The transitions of the state 1 are stored in the row 1 of the
matrix. The transitions are: 〈1, ’y’, 0〉 in column 0 and 〈1, ’b’, 1〉 in column 1. The constant NoState
in column 2 marks the end of the list of transitions for the state 1.

For completing the presentation of the data structures of the program we should describe the
structure corresponding to a marked trace. The data structure of a marked trace is:

typedef struct mt {
char Label[MaxLength];
struct {



B.2. A DETAILED DESCRIPTION OF MARK AND UNFOLD 165

int Nr;
int State;
struct mt ** Elem;

} Cycle;
} MarkedTrace[MaxDepth];

A marked trace is an array of elements of type struct mt. Each element has the following two
fields: Label and Cycle. In function of the value contained by the current position of the marked trace,
one of these fields will be filled: if there is a label, the Label field will contain its value and if there is
a cycle, the Cycle field will be filled. The convention is the following: if the Label contains a value
different from the constant NoLabel (which is the null string of characters, ‘’) this means that a label
is present on the current position of the marked trace. If the Label field contains the value NoLabel,
then that means that a cycle is stored in the field Cycle. Thus the content of the field Label indicates
the type of the current element of a marked trace.

The field Cycle is a structure itself. It is formed by the following fields: Nr which stores the
number of times the state of the cycle is traversed; State which contains the state traversed by the
cycle; Elem which stores the elements which form the iterations of the cycle.

The field Elem is a matrix. On each row of Elem a marked trace corresponding to an iteration is
stored. Each marked trace can contain other cycles. For representing cycles in cycles we need to use
pointers for Elem. Before using Elem, the space necessary for storing the marked traces should be
allocated. After the use, this space should be made free. In this way the heap of the C program will
not be filled (the heap is the space of the memory which is reserved by a C program for the dynamic
variables, i.e. variables with pointers).

Example Let us consider the marked trace a[〈b〉〈b〉]1 y of the automaton from Figure 9.1. Its rep-
resentation is given in Figure B.3. The elements of this marked trace are: 1) the label a which is
stored in the field Label at position 0; 2) the cycle [〈b〉〈b〉]1 which is stored in the field Cycle at
position 1; 3) the label y which is stored in the field Label at position 2. The values NoLabel and
NoCycle from the fourth position mark the end of the marked trace. On the position 1, the field Label
contains the value NoLabel. This value indicates that a cycle is present on that position.

The cycle [〈b〉〈b〉]1 is stored in the fields of Cycle as follows: Nr contains the value 2 which is
the number of the 〈 〉 terms; State contains the value 2; Elem contains the values 〈b〉〈b〉. For Elem
a space of 2 × MaxDepth locations of size sizeof(struct mt) should be allocated in the heap (the C
function sizeof gives the size in octets of a data structure). The number 2 corresponds to the number
of traversals of the cycle and the constant MaxDepth to the maximal size of a marked trace. In the
first row of Elem the label b corresponding to the marked trace of the first iteration is stored in column
0. The values NoLabel and NoCycle from column 1 of the same row indicate the end of this marked
trace. In a similar way, the second marked trace, b, is stored in the second row of Elem.

B.2 A detailed description of Mark and Unfold

This section describes the main algorithms of the module Unfold. There are two algorithms which are
discussed in detail: 1) the algorithm Mark which is also mentioned in Chapter 8 and which transforms
a trace into a marked trace and 2) the algorithm Unfold which generates all the traces (the unfold tree
of the automaton) which do not cycle more than a cycle limit, lc, through the states of the automaton.

There are also functions which are working as operators on paths, traces and marked traces con-
tained by this module. For example, the function
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’’ 0 *  *’b’ * * *

Pos 0 Pos 1 Pos 2 Pos 3

’a’ * * * ’’ 2 1 ’y’ * * * ’’ 0 *  *

Elem Cycle.Nr NoLabel NoCycle

’b’ * * * ’’ 0 *  *

Cycle.Elem

Cycle.State

PTR

Figure B.3: A representation of a marked trace.

void CopyMT(MarkedTrace MTSource, MarkedTrace MTDest)

copies a marked trace source MTSource into a marked trace destination MTDest. Most of these op-
erators are used by the two main algorithms mentioned above. We will explain these operators while
presenting the two main algorithms. Some of these operators are also used in the module Distance.
When describing the module Distance, we will also explain the operators.

One main algorithm of Unfold is the function Mark. This algorithm transforms the path corre-
sponding to a trace into a marked trace. This algorithm is used by the function Unfold. The Mark
function is the implementation in C of the function with the same name from Chapter 8. The function
was described in Chapter 8 as:

function Mark (p : Path, Q : SetStates) : MarkedTrace;
var q : State;

p1, ..., pn : (ε+Label)(State Label)∗(ε+State);
begin

if (¬RepetitiveState(p, Q)) then
(1) return p |trace;

else
(2) Divide(p, Q, q, n, p1, ..., pn);
(3) Q = Q \ {q};
(4) return Mark(p1q, Q)[〈Mark(qp2q, Q)〉...〈Mark(qpn−1q, Q)〉]q Mark(qpn , Q);
end

We refer to Chapter 8 for its description. When describing the C function Mark we will establish
the connection with the theoretical one from Chapter 8. The C function Mark has the following
parameters.

void Mark(Transition Path[MaxDepth], int StateSet[NrStates], MarkedTrace MT)

The path p is replaced by the parameter Path (all the parameters of a C function which are arrays
are called by reference by the function) in the C program and the set of states Q is called StateSet.
The marked trace obtained is stored in the parameter MT of the C function Mark. The logical scheme
of the C function Mark is depicted in Figure B.4.
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Divide(Path, StateSet, &State, &N, &PathComp)

Eliminate(State, StateSet)

i = i + 1 

AppendMT(MTMiddle, MTFinal, MTAux)

AppendMT(MTInit, MTAux, MT)

DestroyMT(MTMiddle)
DestroyMT(MTFinal)
DestroyMT(MTAux)
DestroyMT(MTInit)

InitMT(MTInit)
InitMT(MTMiddle)
InitMT(MTFinal)

CopySet(StateSet, StateSetAux)

CopySet(StateSet, StateSetAux)

i = 1;

CopySet(StateSet, StateSetAux)

i < N

True

False

True

False

(1)

(3)

(2)

(4)

CopyPathMT(Path, MT)

MTMiddle[0].Cycle.Nr = N − 1
MTMiddle[0].Cycle.State = State

AllocateSpaceMT(MTMiddle, N−1)

Not RepetitiveState(Path, SateSet)

 Mark ( Path, StateSet, MT )

Mark(PathComp[0],  StateSetAux, MTInit)

Mark(PathComp[i], StateSetAux, MTMiddle[0]. CycleElem[i − 1])

Mark(PathComp[N],  StateSetAux, MTFinal)

Return

Return

Figure B.4: The Mark function.

It is easy to see that the C function follows the same logic as its theoretical description. The
function RepetitiveState has the same name in both descriptions. The operator | tracefrom (1) which
eliminates the states of a path is implemented by the function CopyPathMT. This function copies only
the labels of the path Path in the marked trace MT. In this way the states are skipped by the copying
process. The function Divide from (2) has the same name in both cases. The difference occurs at the
levels of parameters. The state Q is called State. The contents of p1, ..., pn are stored in the array
PathComp. The parameter N from the C function equals n − 1 because any array in a C program is
counted from 0 (PathComp[i −1] corresponds to pi , i = 1, ..., n). The elimination of the state q from
Q in the theoretical Mark is realized by the Eliminate function in the C program. As we explained
earlier the parameter State stands for q and the parameter StateSet stands for Q. The operation (4)
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from the theoretical description of Mark is expanded in the C function. This is explained by the fact
that, by using a structure with pointers for a marked trace in C, allocations of memory and freeing of
memories are needed. In addition to these operations such as appending or copying are also needed
in the C program.

In the case of the C function, the operation (4) starts with the initialization of three marked traces
MTInit, MTMiddle and MTFinal by using the function InitMT. The marked trace MTInit stores the
marked trace corresponding to p1q (or PathComp[0] in the C program); MTMiddle contains the cycle
corresponding to the paths qp2q,..., qpn−1q (or PathComp[1],..., PathComp[N − 1] in the C program)
and MTFinal stands for the marked trace of qpn (or PathComp[N ] in the C program). The initialization
consists of putting the values NoLabel and NoCycle in the fields Label and Cycle.Nr of each location
of a marked trace.

After initialization, the set of states StateSet is copied in the variable StateSetAux. This is done
because the content of StateSet is used for constructing each of the three marked traces MTInit, MT-
Middle and MTFinal. Without using another variable, its content will be modified by a recursive call
of Mark and would not be possible to be used later for MTMiddle or MTFinal.

After copying, the function Mark is recursively called with the parameters PathComp[0], StateSe-
tAux and MTInit. This recursive call which stands for Mark(p1q, Q) (from the theoretical description)
transforms PathComp[0] into a marked trace which is stored in the variable MTInit. We recall that the
states considered for cycles are the ones contained by StateSetAux.

For storing the cycle in MTMiddle, first an allocation of memory is needed for the field Elem. This
is worked out by the function AllocateSpaceMT. After this, the state State through which the cycle
is performed and the number of iterations N − 1 are copied in the fields Cycle.State and Cycle.Nr.
Again the content of StateSet is copied in StateSetAux and a loop is started by initializing the variable
i with 1. The loop finishes when i reaches the value N − 1. Within the loop, a marked trace stored in
MTMiddle[0].Cycle.Elem[i − 1] is built for each path PathComp[i ] by a recursive call of Mark. The
recursive call is followed by a copying action from StateSet to StateSetAux. After leaving the loop, the
marked trace MTFinal which corresponds to PathComp[N ] is built by another recursive call of Mark.

At this point all three marked traces MTInit, MTMiddle and MTFinal are built. They are appended
by the function AppendMT and the marked trace MT is obtained. The C function Mark finishes by
freeing the allocated memory.

Now we are going to present the algorithm Unfold (see Figure B.5). As we mentioned, the ob-
jective of Unfold is to generate all the traces which do not cycle more than a cycle limit through the
states of the automaton. The algorithm Unfold is depicted in Figure B.5. Its parameters are:

void Unfold(Transition Path[MaxDepth], int Depth, int LC)

The transitions of the automaton are stored in the global variable Automaton. Because this variable
does not change its value when Unfold is executed, it does not occur in the parameter list of Unfold.
It occurs in the body of Unfold. The rest of the parameters of Unfold are: 1) Path which represents
the path which is currently built by Unfold; 2) Depth which represents the level of the recursion for
Unfold (it represents also the current length of Path); 3) LC which represents the cycling limit. Each
Path is built by recursive calls of Unfold. After a Path is constructed, its corresponding trace and
marked trace, both of them are saved in an output file. Then, the parameter Path can store a new
path generated by Unfold. Constructing these paths by recursive calls is easy and convenient, because
the recursive calls of the function keeps tracks of the labels and the states of the automaton already
visited.

The function Unfold checks first the value of the parameter Depth which indicates whether the
function is at its first call (value 0) or at a later call (a value different from 0). At the first call of
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StateAux = Path[Depth −1].StateDestination

StateAux =  0 

Stop

CopyTransition(Automaton[StateAux][i], &Path[Depth])

Not PassingLimit(Path, Depth +1, LC)

ShowTrace(Path, Depth)

Stop

           Depth == 0

Automaton[StateAux][i]. StateSource 
!= NoState

True

False

False

True

True

False

Unfold(Path, Depth + 1, LC)

i = 0
End = True 

End = False
End

Unfold ( Path, Depth, LC )

Figure B.5: The Unfold function.

Unfold, the local variable StateAux takes the value of the initial state of the automaton, 0. Otherwise
the value of StateAux is the destination state of the last transition of Path. The value of StateAux is
used in the loop which follows.

After initializing StateAux and before entering the loop, the variables i and End get the values 0
and True, respectively. The variable i is the counter of the loop and the variable End is a boolean
variable which is used for indicating whether Path cycles more than LC times through the states of
the automaton. The default value of End is True. If Path cycles more than LC times, the value of End
is transformed into False.

In the loop, all the transitions of the state StateAux of the automaton are checked. The condition
to leave the loop is that the location from (row StateAux, column i ) of Automaton contains the value
NoState. This value indicates the end of the list of transitions for the state StateAux.

A current transition of StateAux, contained by the location from row StateAux, column i of Au-
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tomaton, is copied to Path at the position Depth. The copying is done by the function CopyTransition.
After this operation, the function PassingLimit checks whether the path Path cycles more than LC
times through the states of the automaton. This is done in the following way: first Path is transformed
by Mark into a marked trace; after this, the counters Nr of all the cycles of the marked trace are
checked for being larger than LC. If the cycling limit is not exceeded, the construction of the path
Path is continued by a recursive call of Unfold and the variable End is set to False.

If for all transitions of StateAux the cycling limit is exceeded by Path, End keeps the value True.
This means that there is no possibility of continuation and that the current Path represents one of the
solutions generated by Unfold. The trace and the marked trace corresponding to Path are visualized at
the standard output and at an output file. This is taken care of by the functions ShowTrace which shows
the labels of a path and ShowMT which shows the content of a marked trace. The transformation of
Path into the corresponding marked trace MT is done by using Mark.

At this point, the width and the nesting depth of MT are also computed. The maximum width
and the maximum nesting depth of the set of all generated MT with Unfold are stored in the global
variables MaxWidth and MaxNestingDepth. The values of these global variables are used for distance
computations. The computations of the width and the nesting depth are not shown in Figure B.5.
They are made by using the function ComputeWidthMT and ComputeNestingDepthMT which strictly
follow Definition 8.5.3 and Definition 8.5.5 of the width and nesting depth of a marked trace.



Samenvatting

Het onderzoek dat in dit proefschrift gepresenteerd is, is uitgevoerd in het kader van het Côtes-de-
Resyste project (afkorting: CdR). Het CdR project, gesponsord door STW, is een project op het terrein
van de automatische testgeneratie. Aan dit project hebben de vogende universiteiten en bedrijven
deelgenomen: Universiteit Twente, Technische Universiteit Eindhoven, Philips, KPN en Lucent. Dit
proefschrift behandelt enkele onderwerpen die in het CdR project onderzocht zijn.

Een open vraag die bekeken is, is de vergelijking van bestaande tools voor automatische testgener-
atie. Er bestaan verschillende tools voor automatische testgeneratie die van verschillende technieken
gebruik maken. Voor een gebruiker, die een van die tools moet selecteren voor gebruik is het interes-
sant te weten wat de mogelijkheden en beperkingen van de tools zijn. De vergelijking van dergelijke
tools vanuit verschillende perspectieven, zoals snelheid en mate van foutendetectie, is van belang
voor de testgemeenschap. Een ander belangrijk onderwerp is test selectie. Vaak zijn de interacties van
specificaties geparameteriseerd met variabelen die vele waarden kunnen aannemen. Het meenemers
van alle mogelijke parameterwaarden meenemen zal leiden tot een explosie van specificatieinterac-
ties. Dit is slechts één reden waardoor een testgeneratie algoritme, tenminste in principe, een groot,
eventueel oneindig, aantal test cases kan genereren. Omdat testexecutie beperkt dient te zijn tot een
eindig aantal tests, is testselectie een belangrijk onderwerp.

In Hoofdstuk 1 wordt het onderzoek uit dit proefschrift geplaatst in de context van het testen van
reactieve systemen.

Hoofdstuk 2 geeft een korte behandeling van de ioco theorie voor test selectie welke benodigd is
voor alle hoofdstukken in dit proefschrift. Ook wordt een overzicht gegeven van de architectuur en de
belangrijkste componenten van TorX, het prototype tool van het CdR project.

In Hoofdstuk 3 worden vier algoritmen voor testafleiding vergeleken: TorX, TGV, Autolink en
UIO algoritmen. De algoritmen worden geklasssificeerd m.b.t. het detectievermogen van hun confor-
mance relaties. Aangezien Autolink geen expliciete conformance relatie heeft wordt een conformance
relatie geconstrueerd voor Autolink. Op deze wijze versterkt het gepresenteerde onderzoek de con-
formance fundering van Autolink.

Hoofdstuk 4 presenteert het benchmark-experiment met de vier tools TorX, TGV, Autolink en
Phact, toegepast op het Conference Protocol. De presentatie richt zich vooral op het experiment met
Autolink aangezien deze onze grootste bijdrage aan het gemeenschappelijke benchmark-experiment
is.

Hoofdstuk 5 presenteert een besturingstechniek voor on-the-fly testgeneratie door het TorX al-
goritme uit te breiden met expliciete kansen. Gebruik makend van deze kansen kan de gegenereerde
testsuite afgesteld en ge-optimaliseerd worden m.b.t. de kans om fouten in de implementatie te vinden.

Hoofdstuk 6 is een uitbreiding van het theoretische werk uit Hoofdstuk 5 met experimentele re-
sultaten verkregen met het probabilistische TorX tool. Het experiment met het Conference Proto-
col bevestigt dat de uitbreiding van het algoritme met expliciete probabiliteiten die de testgeneratie
besturen tot verbeteringen in de gegenereerde tests leidt m.b.t. de kans om fouten in de implementatie
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te vinden.
Hoofdstuk 7 gaat in een andere richting verder op het onderzoek uit hoofdstuk 5 door een manier te

beschrijven om de dekkingsgraad te berekenen voor een on-the-fly testgeneratie algoritme gebaseeerd
op een probabilistische aanpak. Het on-the-fly testgeneratie en executieproces en het ontwikkelings-
proces van een implementatie uit een specificatie worden gezien als stochastische processen. De
probabiliteiten van de stochastische processes worden geı̈ntegreerd in een gegeneraliseerde definitie
van dekkingsgraad welke gebruikt kan worden om de detectiekracht van een gegenereerde test suite
uit te drukken. De gegeneraliseerde formules worden geı̈nstantieerd voor de ioco theorie en voor de
specificatie van het testgeneratie algoritme van TorX.

Hoofdstuk 8 gaat over testselectie. Aangezien uitputtend testen in het algemeen onmogelijk is,
is de ontwikkeling van een zorgvuldig samengestelde test suite een belangrijke stap in het testproces.
Het selecteren van test cases is geen triviale taak. Het selectieproces zou op een goed gedefinieerde
strategie gebaseerd moeten zijn. Daartoe worden twee heuristische principes geformuleerd: de reduc-
tie heuristiek en de cyclische heuristiek. De eerste veronderstelt dat maar weinig uitgaande transities
van een toestand essentieel verschillend gedrag vertonen. De tweede veronderstelt dat de kans om
foutief gedrag te ontdekken in een zich herhalend gedrag afneemt met iedere correcte uitvoering van
dat gedrag. Deze heuristische principes worden geformuleerd en een coverage functie die dienst doet
als een maat voor het foutendetectievermogen van een test suite wordt gedefinieerd. Ten behoeve
hiervan worden de noties van gemarkeerde traces en een afstandsfunctie op zulke gemarkeerde traces
geı̈ntroduceerd.

Hoofdstuk 9 geeft een implementatie van de testselectie theorie uit hoofdstuk 8. Gebaseerd op
een telefoniespecificatie wordt in dit hoofdstuk een voorbeeld uitgewerkt.

Hoofdstuk 10 bevat de conclusies.
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