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1. Introduction

The problem of periodic spline interpolation on the real line is extensive­

ly studied and an abundance of results is available nowadays. In case the

nodes are equally spaced, the theory of periodic spline interpolation may

be imbedded in a natural way in the beautiful theory of univariate cardinal

spline interpolation, initiated by I.J. Schoenberg in his monograph [6J. A

part of the univariate theory of cardinal spline functions has been extend-
2

ed to IR by using box-splines (cf. [lJ). For instance, a space of spline

functions spanned by translates of a fixed bivariate box spline on a three­

direction mesh has been studied with respect to the problem of cardinal spline

interpolation.

In this report we consider the problem of (double) periodic bivariate cubic

spline interpolation in IR 2
, identified here with the x

1
-x

2
plane, supplied

with the three-direction mesh consisting of the mesh-lines

2
Note that the three direction mesh defines a uniform triangulation of IR ,

which is also called a type-1 triangulation.

In order to formulate our oroblem of periodic spline interpolation the fol­

lowing definitions are needed.

Definition 1.1. Let m,n E IN. A complex-valued function f defined on IR 2
is

called m,n periodic if and only if

Definition 1.2. A function s, defined on IR 2
, is called a cubic spline func­

tion if and only if

i) 1 ( 2)
~ SEC IR ,i.e., the function s is differentiable and the first order

partial derivatives denoted by sand s are continuous on IR 2 ,
xl x 2

ii) on each triangle of the type-1 triangulation s coincides with a bivaria­

te polynomial of degree at most 3.

The space of cubic spline functions will be denoted by capital S. We go on

by defining the m,n periodic spline space S
m,n
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Definition 1.3. Let m,n E IN. A function s belongs to S iff
m,n

i) s E S,

ii) s is an m,n periodic function.

Finally, we define the space Y of m,n periodic sequences as follows.
m,n

Definition 1.4. A (complex-valued) sequence (y )
fl

iff

2
(fl E Z ) belongs to Y

m,n

y
fl 1+m,fl2

(fl

Now we are in a position to formulate our interpolation problem.

Let m,n E IN, (y ) E Y , and ~ E [0,1)2 c IR 2 . Find a function
fl m,n

such that

S E S
m,n

(1. 1) s(~ + fl) = Y
fl

2
(fl E Z )

Observe that the interpolation points are located at ~ + z2, i.e. at a shift
2

of the lattice points (i,j) E Z . Mostly, one has ~ = (0,0) or ~ = (~,~).

It is obvious that

(1. 2) dim Y
m,n

mn •

E S satisfying (1.1). In
m,n

unisolvent. Since we wish to

each (y ) E
fl

other words

In Section 2 we will show that dim S = 2mn + 2. So, we cannot expect that
m,n

Y corresponds with a unique s
m,n

the interpolation problem is not

have an interpolation scheme that guarentees existence and uniqueness of in­

terpolation, further conditions for the interpolating spline functions are

needed. These conditions may be imposed upon the interpolating spline func­

tion in several ways.

In this report we require the interpolating spline function stems from an

mn dimensional subspace of S spanned by translates of a finitely support-
m,n

ed spline function s E S; for instance a box s~line or a spline function in

S having minimal support. To be more precise, such a SUbspace is of the type

(1. 3) T (W) = {I a W(x - v)
m,n vcz 2 v

(a ) E Y },
v m,n

where W is a finitely supported function.

In Section 3 we will derive a necessary and sufficient condition for the

unisolvence of our interpolation problem in case an interpolatinq function

must be chosen in T (W). In Section 4 this condition will be applied to
m,n
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a specific situation, where ~ ( {(O,O), (~,~)} and where ~ is a specific

finitely supported spline function in S; namely a cubic spline function

having the smallest compact support. Section 5 deals with the computation

of an interpolating periodic spline function with the help of Fast Fourier

Transforms.

the points
2

E [0,1)

f has been inter~olated at

with h = ~ h = ~ and t;;
1 m' 2 n

s E S It seems that the approxima-m, n -

The final section is devoted to the order of approximation in case a suffi­

ciently smooth 1,1 periodic function

(h
l

(t;;1 + i) ,h
2

(t;;2 + j» ((i,j) E :r/:2)

by a scaled function s(mx
l

,nx2) with

tion is of order Ihl
2 = ht + h;.
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2. The dimension of the space S
m,n

Let D denote the rectangular [O,m] ~ [O,n] in IR 2 , and let S(D) be the space

of cubic spline functions consisting of the restrictions of the cubic spline

functions s E S to the rectangular D.

In [2],Chui and Wang constructed various bases of the space S(D), starting
1

with a finitely supported cubic spline function B introduced by
1

P.O. Fredricson [3]. The support of B together with the triangles that

divide B
1

into polynomial pieces is given in Fig. 2.1 below.

Fig. 2.1

For completeness, we list here the polynomial pieces of B
1

that correspond

to the triangles in the support of B
1

.

(2.2) Table of polynomial pieces

1: t(2 - X
1

)3 ,

2: t(1 - x
2

)2(4 + 2x
2

- 3x
1

) ,

3 : .!..(1 2 2x
2

) (1 - x2) (xl - x
2

) (1 - x )- x
2

) (1 + + ,
3 1

4: .!..(1 2 + 3x 1)
3

- x
2

) (1 - x 2
,

5 : .!..(1 3
3 + xl - x

2
) ,
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1..(1 2 - 2x ) (1 + xl) (xl - x
2

) (1 + x
2

)7 : + xl) (1 + ,
3 1

4 2
(1+ x

2
2 + x

2
- x

1
)(1 + x

2
)8: 3+ x - X - -x) -x(1 ,

2 1 1 1

2 2
(1 - xl) (1 + x2 »9: (2 - xl + x

2
) (2 - xl + x

2
- -(2 - x + x

2
) + ,

3 1

10: 1..( 2 2
2x2

- x )
3 - xl + x

2
) (2-

1

11 : 1..(2 2 + 2x
1

+ x
2

)
3 - xl + x

2
) (2 ,

12 : 1..(2 3
3

+ x
2

) ,

13: 1..(1 2 - 2x
1

+ 3x
2

)
3 + Xl) (4 .

Vl 1
The Fourier-transform B of the function B is given by

(2.3) 2

-jw
1

2 _l_-_e__
jW

1

-jw
2

1 - e

where Xo is the characteristic function of the triangle 0 (cf. Fig. 2.1),
.2

i.e., X(x) = 1 if x E 0, otherwise X(x) 0, and J = -1.

From B
1

the spline function B2 is defined by

(2.4) 2 1
B (x) = B (-x)

2
(x E IR ) .

In order to obtain various bases of 8(D) one considers the translates of B
1

and B2 .

Let p E {1,2} and let Q be defined by
p

Q := {v E ~2 I supp BP(x - v) n int(D) ~ 0} .
p

Here int(D) denotes the interior of D.

It is known (cf. [2J) that the collection of spline functions

1 2
B = {B (x - v), B (x - lJ) I v ( Q1' lJ E Q2}

spans 8(D) and that dim 8(D) 2mn + 4m + 4n + 3.
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The collection B has cardinality 2mn + 4m + 4n + 6 which equals dim 5(0) +3.

Now, Chui and Wang have given criteria to determine which three elements

may be deleted from B to give a basis of 5(0). We state one of these cri­

teria as a lemma.

1 2
Lemma 2.1. (Chui and Wang [2]). If v E ~1 and v E ~1 are distinct but lie

on the same mesh-line, than for any ~1 E ~2 the collection

is a basis of 5(0).

Our next goal is to identify by means of a linear system of point evaluations

those spline functions s E 5(0) which can be regarded as restrictions to 0

of m,n periodic spline functions in 5 . To do so, we need the second order
m,n

partial derivative s of a spline function s in 5(0). 5ince the mixed se-
x 1x 2

1 2
cond order derivatives of the basis functions Band B are discontinuous

only on the diagonals of the three-direction mesh, we have to distinguish

at a point v E z2 the two limit values

(2.5)

VI - v 2 for which

value of s (x) when
x 1x 2

the diagonal.

of s (x) when x = (x
1

,x
2

) approaches
x

1
x 2

diagonal Xl - x 2
is the limit

where sr (v) is the limit value
x 1x

2
v = (v 1 ,v2 ) from that side of the

t
Xl - x 2 > VI - v 2' and where s (v)

x
1

x
2

x approaches v from the other side of

The announced linear system of point evaluations will be given in the fol­

lowing lemma.

Lemma 2.2. A function s E S(O) belongs to 5 (0) iff
m,n

s(i,n) = s(i,O)

s (i, n)
Xl

s (i,O), (i
Xl

O,l, •.. ,m)

s (i,n) =
x

2

sr (i,n)
x

l
x

2

s (i,O),
x

2

sr (i,O),
x

1
x

2
(i O,l, .•• ,m-l),
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s (m, j) = s (0, j) ,

s (m, j )
xl

s (m, j) =
X z

s il- (m, j)
x1xZ

s (O,j),
xl

s (O,j),
Xz

sil- (O,j)
x

1
x Z

(j O,l, •.. ,n-l) .

Proof. First, we observe that if s € 8 (0) then s as well as s
m,n xl

must satisfy the periodicity conditions:

s(x
1
,0),

s (x
1
,0),

Xz

So, we have to prove the equivalence of the two systems (A
1

,AZ) and (B
1

,B
Z
).

It suffices to prove that A
1

and B
1

are equivalent, since the proof of the

equivalence of AZ and BZ runs along similar lines. Therefore, let us assume

that a function s € 8(0) satisfies B
1

• Then the first three equations of A 1
are trivially satisfied. In order to establish the fourth equation of A

1
we

consider the two line segments [(i,n),(i+l,n)] and [(i,O),{i+l,O)] and

the two adjoining polynomial pieces Pl'PZ of s € S(O) as shown by the fi­

gures below

(i, n) (i+l,n)

(i,O) (i+l,O)

From B1 it follows that the polynomial p, defined by

and its partial derivative Px vanishes on the line segment [(i,O), (i+l,O)].
2
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Hence

for some constants a, band c. Consequently, p (i,O) 0, which implies
r r - x l x 2

s (i ,n) = s (i , 0) •
x l x 2 x

l
x

2
Now, we assume that A

l
holds. Then the polynomial p introduced above has

the properties

p(i,O) p(i + 1,0) P (i,O)
xl

p (i+l,O)
xl

P (i,O)
x

2

p (i + 1, 0) 0,
x

2

2
It is easy to verify that these properties have the consequence that x

2
is

a divisor of P(x
l
,x

2
); this in turn implies B

l
• o

The next step is to select a basis of the space S(D) and to convert the sys­

tem of point evaluations A
l

,A
2

into a linear system of equations for the co­

efficients in the expansion of a function s E S(D) with respect to that ba­

sis. Due to Lemmma 2.2 the linear system then describes the sUbspace S (D)
1 2 1 m,n

of S(D). So, let v = (-1,0), v = (-1,1) and ~ (0,-1). Then, according

to Lemma 2.1, a function s E S(D) can uniquely be represented by

(2.6)

with c 1
v

s(x)

c 2
v

d 1
~

1c B (x
v

O.

v) +

1 2
By using this representation, the function values of B , B , and their deri-

vatives at the lattice points, we may deduce that the linear system (A l ,A
2

)

leads to a linear system of equations for the coefficients c and d which
v ~

can be described as follows.

Let A, A I, Band B I be the matrices

1 1 1 1

~l
1 1 a 1 1

I 1 a 1

l-~
a -1 a

A =

~j'
B

l-~
1 0 a 1 -1

a -1 a 1 -1

[: 1

1 t~
0

~J .A' a B' = 0 -1

1 0 1 -1
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Then from A
l

the following linear system may be computed

c. c. 1 Ie. a rc i - l ,ol~,n ~- ,n ~,

C i ,n+l C i - l ,n+l c. 1 Ic_, ']A + B A
~,

+ B l' ,d. 1 d,

~i+" 0
d. a

~+ ,n ~,n ~,

d i + l ,n-l d. 1 d i + l ,-l d. 1
~,n- ~,-

M (i 0, 1, ... , m-l) ,

C C C C
m-l,Om,n m-l,n m,O

A' C + B' c A'

bID,'
+ B' c

m-l,lm,n+l m-l,n+l

d d dm+ l ,O d
m,O_m+l,n- m,n

d d
m,n-l m,-l

Similarly, we may compute from A
2

the linear system

d
m, j

d
m, j-l dO . l d O,j_l,J

d 1 . dm+ l , j-l d
l

. d l ,j_l
A

m+ ,J
+ B A ,J + B

N c
m,j+l

c
m, j CO,j+l Co .,J

c
m-l, j+l

C
m-l,j

c
-1,j+1

c
-l,j

(j = 0, 1 , ... , n-1)

We observe that in case the coefficients c
v

' d
u

satisfy the relations

l J
I"i, 0]

c,
~,n

(i -1, ... ,m) ,
c i ,n+l Ic.

~,n

~ J ~i'O J~,n

(i O, ... ,m+1) ,
d i ,n-1 d. 1

~,-

I-c ] 1c0,j ]m, J

~m-1 ,j I:-1, j

(j O,l, ... ,n) ,

G ] ~:::]
m, J

(j -l, ... ,n-l)
dm+ l , j =

1

then the equations Mand N are trivially satisfied. In fact this means that

we have found the subspace 8(1) (D) of 8 (D) consisting of restrictions tom,n m,n
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(1)o of functions in the space S c S given by
m,n m,n

{I (c B
1

(x - v) + d B2
(x - v) )

v vv
(c ), (d )

v v c Y
m,n c 1 =c 2 =d 1 =o} .

v v II

First, we assume that n ~ 2; the case n = 1 will be treated separately.

As a consequence of Lemma 2.1 and the periodicity of the sequences (c ) andv
(d

V
) with the restrictions c 1

v
c 2

v
d 1 = ° one has

II

(2.7) dim 5(1)(0)
m,n

2mn - 3 •

c 1 =c 2 =d 1 =0.
v v II

(uniquely determined)

S(2) (0) given by
m,n

By substracting an appropriate function s1 E 5(1) (0)
m,n

from s, we may assume that s - s1 belongs to the space

Now, we will show that the space S (0) can be written as a direct sum of
m,n

two spaces, one of them equals 5(1) (0). To this end, let s E 5 (0). Since
m,n m,n

S (0) c 5(0), s can be represented by formula (2.6). The coefficients
m,n

c and d satisfy the equations M and N, where in additionv v

S (2) (O)
m,n

1
c B (x - v) +

v
2

d B (x - v)
v

c ..
l,J ° (i -1, ... , m-2; j 0,1, ... ,n-1) ,

d . . = ° (i = 0, 1 , ... , m-1; j
l,J

-1,0, ... ,n-2)

(c ), (d ) satisfy M and N} •
v v

It is clear that

S (0) = s(1) (0) ~ 5(2) (0) ,
m,n m,n m,n

For functions s E s(2) (0), the equations M and N can be replaced by the
m,n

equations

c, rc;. 1l,n l- ,n

c. 1 c i - 1 ,n+1
M

1
:

l,n+
C (i 0,1, ... ,m-2) .

d. 1 d,
1+ ,n l,n

d i + 1 ,n-1 d. 1
I

l,n- J



~:

c
m-l,n

c
m-l,n+l

d
m,n

dm,n-l

cm,n

c m,n+1

d
m+l,n

d .
m, J

C

C' (

- 11 -

cm-2,n

cm-2,n+1

d
m-1,n

d_m-1,n-1

c
m-1,n

c
m-1,n+1

d
m,n

dm ,n_1 J

d . 1m,J-

rm- 1 ,0

+ ~dm-1, 1

m,O

d
m,-l

c ) +
m-l,l

d
m,O

d
m,-l

c
m,O

c
m,l

d
_m+l,O

d 1 .m+ ,]

c . 1m, ]+

dm+1 ,j_1
C

c .m, ]

(j 0,1, ... ,n-2) .

N .
2 .

~m-l, j+1

d
m,n-1

d
m+1,n-1

c
m,n

c
m-l,n

c 1 ._m- ,]

~o.n-ll
1,n-1

+

cO,n I

~-1,n J
Here C

-2 a -1 -2 t' a -1 -']C -2 0 -2 -1 C' -2 a -2 -1 .
3 0 2 2 3 0 2 2

3 0 1 3

3The characteristic polynomial of C is simple; it is given by A(A - 1) .

The eigenspace E1 corresponding to the eigenvalue 1 is two dimensional:

El = «3,0,-1,-4), (1,1,-1,-1»

With help of Cayley's theorem, ck (k is a positive integer) may easily be

computed. One has



-
1-3k

1-3k

3k

3k

o
o
o
o

-k

-k-1

k+l

k
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-2k

1-2k

2k

2k+l

In the equations M1 , the number c 1 1 occurs. Note that c 1 1 rJ n1 . How-
- ,n+ - ,n+

ever, the value of c 1 1 is not of importance, since the second column of
- ,n+

C consists only of zeros. The same will be true for the number d 1 1 in
m+ ,-

the equations N1 • Therefore, we take c 1 1 = d 1 1 = O. The total number
- ,n+ m+ ,-

of unknowns in the equations is equal to 4n + 4m + 6, i.e., dim 8(D) +

- dim 8(1) (D) while the total number of equations is equal to 4n + 4m + 3.
m,n '

In order to solve these equations we first observe that a solution is com-

pletely determined by the values of the six unknowns c_ 1 ' dO ' dO -1',n ,n ,n
dm,_l' cm,O' and cm- 1 ,0' since then the other unknowns easily follow as given

below

c.
1,n

c. 11,n+

d. 11+ ,n

- (3 i + 2) c -1 - (i + 1) dO - 2 (i + 1) dO -1,n ,n ,n

-(3i +2)c_ 1 -idO - (2i +l)dO -1 ',n,n ,n

(3i +3)c_1 ,n + (i +2)dO,n + (2i +2)dO,n_1

d = (3i+3)c 1 + (i+l)d
O

+ (2i+3)dO,n_l 'i+l,n-l - ,n ,n

(i = 0,1, ... ,m-2) ,

cm- 1 ,n = -(3m -1)c_ 1 ,n - mdO,n - 2mdO,n_1 + cm- 1 ,0 '

c = - (3m - 1) c - (m - 1) d - (2m - 1) dO 1 + 3d 1 +m-l,n+l -l,n O,n ,n- m,-

+3cm,0 +3cm_ 1 ,O '

d
m,n 3mc_ 1 ,n + (m +lldO,n +2mdO,n_l -2dm,_1 -cm,O -2cm_ 1 ,0

dm,n-1 = 3mc_ 1 ,n +mdO,n + (2m + l)dO,n_l +dm,_l '

c
m,n

c
m,o+l

d
m+l,n

d .
m, J

d
m+1, j

c . 1m, J+

-(3m +2)c 1 - (m +l)d -2(m +l)d
O

1 +c 0 '- ,n 0,0 ,0- m,

- (3m + 2) c 1 - md - (2m + 1 ) dO 1 + 3d 1 + 4c 0 + 2c 1 0'
- , 0 0 , 0 , n- m, - m, m- ,

(3m +3)c_ 1 ,n + (m +2)dO,n + (2m +2)dO,n_l -2dm,_1 -cm- 1 ,0 '

-(3j+2)d _l-(j+l)c 0-2(j+l)c_10m, m, m ,

-(3j +2)d -1 -jc 0 - (2j +l)c -10 'rn, m, rn ,

(3j +3)d -1 + (j +2)c 0 + (2j +2)c -1 0m, rn, m ,

cm-l , j +1 == (3 j + 3) dm, -1 + (j + 1) cm, 0 + (2 j + 3) crn-1 , a '

(j == 0,1, ... ,0-2) ,
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d -(3n-1)d -nc -2ncm_ 1 O+dO n-1 'm,n-1 m,-l m,O , ,

d -(3n -l)d - (n -l)c - (2n -l)c +3c +
m+1,n-1 m,-l m,O m-1,O -l,n

+3dO,n +3dO,n_l '

C
m,n 3ndm,_1 + (n +l)cm,O +2ncm_1 ,O -2c_ 1 ,n -dO,n -2dO,n_l

cm- 1 ,n = 3ndm,_1 +ncm,O + (2n +1)cm_ 1 ,0 +c_ 1 ,n .

The following observation is important. We cannot choose the starting num-

bers c_ 1 ' dO ' dO -1' d -1' c 0',n ,n ,n m, m,
members of the foregoing equations the

occur twice.

c
m

-
1

,0 arbitrarely, since at the left

variables c 1 ' d 1 and cm-,n m,n- m,n
This leads to the following three equations for the starting

numbers

- (3m - 1) c - md - 2md + cm_ 1 , ° = 3ndm, -1 + nc °+-l,n O,n O,n-1 m,

+(2n+1)cm_ 1 ,0+c_1 ,n'

3mc_ 1 ,n +mdO,n + (2m +1)dO,n_1 +dm,_l = -(3n -l)dm,_l -ncm,O +

-2ncm_ 1 ,O+dO,n_1 '

-(3m +2)c_ 1 - (m +l)d
O

-2(m +l)d
O

-1 +c a = 3nd -1 +,n ,n ,n m, m,

+ (n +l)cm,O +2ncm_ 1 ,a -2c_1 ,n -da,n -2da ,n_l

Surprisingly, these three equations are identical to the equation

3mc_ 1 ,n +mdO,n +2mda ,n_1 +3ndm,_1 +ncm,a +2ncm_ 1 ,O = a .

We conclude that the six starting numbers are restricted to only one linear

equation. Hence dim s(2) (D) 5, and therefore
m,n

dim S =dim S (D) =dim 8(1) (D) +dim s(2)(D)
m,n m,n m,n m,n

=2mn - 3 + 5 = 2mn + 2

one

4. Moreover,

2
of v = (-1 , 1) ,choice

s(2)
m,l

We now turn to the case where n = 1. Due to our

has c_ 1 ,n = c 2 = 0. Our conclusion is that dim

(1) v
dim S = 2m - 2. Hence, again one has that dim 8 = 2mn + 2. 80, we may

m,l m,n
finish this section with the following theorem.

Theorem 2.3. Let m,n € IN. Then

dim S
m,n 2mn + 2 •
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3. Translates of a fixed finitely supoorted function

In this section we collect some results with respect to the space

(3. 1) T(<P) := {I a,}f(x - v)
v

where <p is a function defined on IR 2 having a finite support. Of special

interest for us is the space T (<p) as defined in (1.3), which of course
m,n

is a linear subspace of T(<p). We will derive now a fundamental relation for

functions f E T(<p), which can be utilized to investigate problems of inter­

polation in T(<p).

Lemma 3.1. Let SET (<p). Then for all x 1
/ x 2

E IR 2 the following relation

holds

(3.2) I <P(x
2

- V)s(x
1

+ v)

v

'i' 1 2L <p(x - v)s(x + v) •
v

Proof. Since s E T(<P), the function s may be written in the form

1
s(x ) =I

].1

1
a <p(x -].1) •

].1

Hence, by changing the order of summation and replacing v by ].1 - v, one gets

I I 2
v)<P(x 1

- ].1) I I 2 v - )1)<p(x 1 -v)a <p(x - +v a <p(x +
].1 II

)1 v )1 v

I <p(x 1 -v)L
2 + v - ].1) L 1 2 + v) 0a <p(x <p(x -v) s (x .

v ].1
II v

then we call
2

IR • In this case, one evidently has that

implies a = 0 (v E :i:
2

) ,
2 v

I v E :i: } independent on

Note that the unicity of the coefficients all in the proof of the previous

lemma is not required. If the function <p is such that L a <p(x - v) = 0
V

\J

the set of translates

{<p(x - v)

for each s E T(<p), the coefficients a are uniquely determined.
v

The independence of the set of translates is needed in the following lemma.

Lemma 3.2. Let <p be a finitely supported function such that the translates

{<p(x - v) I v E :i:
2

} are independent on IR
2

, then

dim T (cp)
m,n

mn .
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Proof. If s "T (~) c T(~), then it follows from the unicity of the coef­
m,n

ficients a in the reoresentation s(x) = \ a <p(x - v) and the m,n periodici-\) _ L \)
\) ( . )

ty of s that (a ) EY • Take mn independent sequences (a\) ~ (i = 1,2, ..•
\) m,n

... ,mn) in Y • It is obvious that the corresponding functions
m,n

s. (x)
~

L (a ) (i)~(x - v)
\)

form a basis of T (~).
m,n

In T (~)we consider the interpolation problem stated as follows. Letm,n
(y ) E Y and s E [0,1)2 c IR 2 . Find a function s ET (~) such that

~ m,n m,n

o

(3.3) s(s + ~) = y
].I

2
for all ~ E Zl

Since dim Y = dim T (~) the natural question arises to determine them,n m,n
points s E [0,1)2 for which the corresponding interpolation problem is uni-

solvent. The following theorem gives a useful criterium for this question.

In order to formulate this criterium, we need the so-called characteristic

function ¢ defined by

(3.4) ¢(z) ~ (fJ (s - \)zV .
V

(z (zl,z2) (['2, (\)1'\)2)
z2 \) vi v

2
E \) = E , Z := zl z2 ).

Theorem 3.3. Let ~ be a finitely supported function such that the translates

{~(x - v) I v E ~2} are independent on IR
2

• Then the interpolation oroblem

(3.3) is unisolvent if and only if the associated characteristic function ¢

2
has no zeros at the points z = (zl,z2) E IR for which

(3.5) 1 .

m
Proof. If ¢ has a zero (w

1
,w

2
) for which wi

given by

s(x) I w\)~(x - v) ,

'J

1 then the function s

evidently belongs to T (~), it does not vanish identically, and
m,n
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s(l; + j.J)

o 2
(J1 E: ~ ) •

Hence the interpolation problem is not unisolvent.
va

the three ~olynomials Z ~(z),

O. h ' hv ~s c osen ~n suc a way

If ~ has no zeros for which (3.5) holds, then
m n

zl - 1, and z2 - 1 have no common zeros. Here

va
that z ~(z) is a polynomial; since ~ is finitely supported such a choice

can always be made. It follows from the well-known Hilbert's Nullstellen

Sa1:z (cf. Van der Waerden [7J) that polynomials Pl (z), P2 (z). and P3 (z)

exist such that

(3.6) 1

Now let E
1

,E
2

be the shift operators (defined on all functions f) given by

tEl fl (xl = f(x + e 1) ,
(3.7)

e
2

)(E
2
f) (x) = f(x +

212
for all x E IR , where e = (1,0), and e = (0,1).

Furthermore, we define for any j.J ( ~2 the o~erator E J1 as follows

(3.8)

With the help of the shift operators, the interpolation conditions (3.3),

dth bt ' , r 2 1, (32) bt'an e su s ~tut~ons s = x , x = x ~n • , we 0 a~n

v

which may also be written as

(3.9) ~(E)s(x) = ~ ~(x - v)y .
v

v

Since s is an m,n periodic function, one has

s (x) ,

Using these relations and (3.8), we conclude from (3.6) that
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s(x) lO(X - V)y •. v

This function uniquely solves the interpolation problem. []
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4. Translates of the spline function B
1

As announced in the introductionary section, we will now apply Theorem 3.3

to a special case, where ~ is the Fredricson spline B
1

, as introduced in

Section 2 (see Fig. 2.1). With respect to the point ~ E [0,1)2, we restrict

ourselves to the two cases:

~o := (0,0), ~~ := (~,~)

This means, that our interpolation problem is considered at the lattice

, ",,2 c~ 2 3 3
po~nts ~ or at the mid-points s + Z . In order to apply Theorem . we

have to verify the condition that the collection {B 1 (x v) 1 v E :,E2} is

independent on IR
2

• To do so, let L a B
1

(X - v) = 0 (x E IR 2 ). Then, by
v v

taking the function value, and the first order partial derivatives at an

arbitrary point x = (i,j), we get the three equations

ai,j + a i _ 1 ,j + a i ,j+l = 0

a, a, 1 . 0
l,j ~- ,J

a, - a i ,j+l 0
~,j

Hence a, , = 0 for all (i, j) E z2. This proves the independence on IR
2

of
~,J

the collection {B
1

(x - v) v E z2}.

The next step is to compute the associated characteristic functions given

by

\' 1 0 v
tPO(z) "= l. B (~ - v)z , \(z)

v

It turns out that

1 1 V
:= L B (~~ - v)z •

v

(4.1)

Due to the dominant term 14z
1

z
2

the function tP~ has no zeros on the polydisk

1 z 1 1 1 z ) 1 1. The zeros of tP 0 on the given polydisk must satisfy

zl + z2 + 1 O. Hence (zl,z2) = (-~±~if3, -~±~i!3). Note that z~=z~ 1.

Having examined the zeros of tP
O

and tP~ on the polydisk, Theorem 3.3 now

leads to the following
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Theorem 4.1. Let (y ) E Y . Then there exists a unique spline function
].1 m,n

sET (B
1

) such that s(~ + ].1) = v in the following two cases:
n,m -].1

i) t;.

.ii) t;.

t;.o, n,m arbitrary,

t;.~, 3 is not a divisor of nand m.
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5. The computation of the interpolating periodic spline function

It is known that the numerical computation of a univariate interpolating

spline function on a uniform mesh does not involve matrix inversions (cf.

Meinardus,Merz [4J). We will show that with respect to our interpolation

problem matrix inversions are not needed either. So let the conditions in

Theorem 3.3 be satisfied, and let sET (W) be the unique function inter-
n,m

polating the m,n periodic sequence (y ) of data at the points ~ + ~. Since
II

SET (W) c T(W), the interpolation conditions imply thatn,m

I a W(~ + 1l - v)
2

= Yll
(1l E 7l )

V
v

(cf. (3.1)) with (a ) E Y This may also be written as
1l m,n

(5.1) I a W(~- v) (1l
2

Yll
c :ow; )

v+ll
v

Our next purpose is to write (5.1) as a matrix equation by mapping an m,n

periodic sequence (a ) to the matrix
1l

a
O,n-l

(5.2) A

a
m-l,O a

m-l,n-l

Let () denote the k x k permutation matrix
""k

0 1 o 0 . 0

0 0 1 0 0

(5.3) Qk
0 0

0 1

1 0 . 0

to the matrices Q A and
m

2E 7l , then the sequence

1)' (a 2) correspond
-1 ll+e ll+e

AQ
n

' respectively. In general, if v = (v 1 ,v2)
v 1 -v2

(a ) is connected with the matrix Q
m

AQ
n

. Consequently, Relation 5.1
ll+v

can be represented by the matrix equation

Then the sequences (a

(5.4) Y .
v
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The matrix Q
k

is orthogonal and its eigenvalues A
O

,A
1

, ... ,A
k

_
1

with corres-
" 0 1 k-l

pondlng elgenvectors v ,v , ... ,v are given by

A,
l

(5.5)
i

v
2 n-1

(1,A"A., ••• ,A, )
l l l

where 1;k
2~j/k 2

e , i.e., the k-th root of unity (j -1) •

The matrix T
k

1 0 1 k-1
--(v ,v , ... ,v ) consisting of eigenvectors of Ok has the
vk

*property that Q
k

= Tk~Tk' where A
k

is the diagonal matrix

~ = diag(1,1;k,1;~, ... ,1;~-1), and T~ the adjoint of Tk . Note that T=

*Substituting the relation Q
k

= TkAkT
k

in (5.4), we get

(5.6) *TYT
m n

* *Setting A T AT , Y T YT , and using the definition of the characteristic
m n m n

function ¢ {cf. (3.4), we obtain

(5.7) Ap,q

Yp,q
(p 0, 1 , .•. ,m-l; q O,l, ... ,n-l) .

Here A and Y denote the p-q-th entry of the matrices A and Y respecti-p,q p,q
vely.

For numerical computations the matrix Y may be calculated by means of Fast

Fourier Transforms (cf. Merz [5J). Subsequently, the matrix A follows from

(5.7), and, finally A may be computed again by means of Fast Fourier Trans­

forms.

Note that ¢(1;P,1;-q) I 0, since we have assumed that ¢(z) has no zeros
m n

(z1,z2) for which z7 = z~ = 1.
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6. The order of convergence

In Lemma 3.1 a fundamental relation has been given, which shall now be used

to obtain a qualitative result for the order of convergence in case an 1-1

periodic sufficiently snooth function has been interpolated by a cubic 1-1
1

periodic spline function from the scaled space Th(B ) defined below. Here

h = (h
l
,h

2
) with h

l
= l/n, h

2
= l/m and n,m E IN. For ease of notation we

1
write xy = (x

l Yl,x
2Y2)' x/y = (x

1
/Y1,x

2
/Y2). Now the space Th(B ) is defined

as

(6. 1) T
h

(B') = {x 1-+ s (x/h) sET (B I) }
n,m

Our interpolation problem may be formulated as follows. Let

and let f be an 1-1 periodic function. Find a function sh E

2 2
~ E [0,1) em,

T
h

(B
l

) such that

(6.2) 2
()l E :JI: )

By setting sh(x) = sex/h) with s E

s(~ +)1) f(~h + )1h). In order to

T (B
1

) ,
n,m

guarantee

condition (6.2) may be read as

existence and uniqueness for

each n,m IN we assume that the associated characteristic function ¢(z) has

no zeros on the polydisk Iz
l

/ = Iz21 = 1 (cf. Theorem 3.3).

Our purpose is to examine the order of convergence of the quantity

If(x
D

) sh(xO) I at an arbitrary point xO E [0,1)2 for h
l

and h
2

tending to

zero.
1

So, let sh E Th(B ) be the unique interpolant of f, and let sh(x)
1

with SET (B). Then, due to Lemma 3.1 one has
n,m

s(x/h)

Hence,

L B
l

(x - v)f(~h + vh) •
v

(6.3)

with

L B1(~ - v) (s(x + v) - f(xh + vh))
v

g(x)

g (x) = L
v

1
B (x - v)f(~h + vh) - L B1(~ - v)f(xh + vh) .

v

Since ¢(z) = L B
1 (s

v
v)zv has no zeros on the polydisk [z1 1 1 ,

coefficients A exist such that
v

(6.4)
1

¢(z)
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which converges absolutely on the polydisk I z
1 1 = Iz21 = 1.

Then by setting x
O = xh, we conclude from (6.3) and (6.4) that

~

(6.5)

Since

sex) - f(hx) I A g (x + ~) .
~

one has

I B 1 (x + ~ - v) f (~h + vh)
v

I B1 (x - v)f(~h + vh + ~h) ,
v

(6.6) g (x + jl)
v v

Using Taylors formula, we get

(6.7)
a

f(x + vh + ~h) f(x
O

+ jlh) + (Dvhf) (x
O

+ jlh) +

+ ~(D~hf) (x
O

+ ~h) + O( Ih1
3

) .

Here D h denotes the directional derivative in the direction vh = (V
1
h 1 ,V

2
h

2
),

v a
and Ihl = Ihf + h~. Note that the term f(x + vh + ~h) occurs in the right-

hand member of (6.6), and that only those values of v are of importance for

which ~ - V belongs to the support of B
1

We conclude that the term O(lhI
3

)
a

can be considered as uniform with respect to v, x , and ~.

Again using Taylors formula for the term f(~h + vh + jlh), we get

(6.8) f(t;h + vh + ~h)

Since in this case only those values of v will be needed for which x - V be­

longs to the support of B
1

; we may conclude again that the term O(lhj3) is
a

uniform with respect to v, x , and ~. We go on by substituting (6.7) and
1

(6.8) in (6.6), making use of the nice property that the translates of B

constitute a partition of unity, i. e. ,

(6.9) I B 1 (x - v) = 1
v

1 m 2
)B (x) ~ a (x EO

vl 1
This property may be shown by using the Fourier transform B (of B) (cf.

(2.3». The substitution leads to
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o \' 1 0
(D~h_Xhf) (x + Ilh) + L B (x - v) (Dvhf) (x + Ilh) +

v

v

In order to simplify the right-hand member of (6.10) we need Poisson's for­

mula, which in our context may be stated as follows. Let tp be a smooth finitely
v 2

supported function having Fourier transform tp. Then for all x E IR , one

has

(6.11) L tp(x - v)

v

\' v(2 ) 2ni(x,v)L tp nv e •
v

= -j/3, ~1 (0)
w

2

Here (x,v) denotes the inner product of x and v.

Now, we apply (6.11) to the function (x,Z)B
1

(X) for an arbitrary Z E IR
2

V1 V1 v1 v
Since by (2.3) B (2nv) = B (2nv) = B (2nv) = 0 for all v f 0, B (0) = 1,

w
1

w
2

= j/3, one has

(6.12) L (x - V,Z)B 1 (X - v)
v

It follows from (6.9) and (6.12) that

\' 1 °L B (x - v) (DVhf) (x + Ilh)
v

with S

(6.13)

(xl })h
1

f
x1

(xo + Ilh) + (x
2

+ })h
2

f
x2

(xo + Ilh)

o
Dxh+13hf(x + Ilh)

1 1(- 3'3). Hence, (cL (6.11»

Il) ~ I 1 2 0
+ Ilh)g(x + B (x v) (Dt;h-Xh+Vhf) (x +

v

- ~ I 1 (t" 2 0
Ilh) + O(lhI

3
)B " v) )DVhf) (x +

v

\' 1 2 0
~ L B (x - v) (D~h_xh+vhf) (x )

v
-!1 L BI(.c: - V)(D~hf)(XO) +O(lllllh\3).

v
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expansion of ~(~) converging on the poly­

exponentially when
-1

- fl)} = 1. By

the sequence (A ) decays
fl 1

Note that I Afl = (I B (~
fl ]J

conclude that

L IflA fl I < 00.

fl
(6.5) and (6.13) we finallyvirtue of

The series L A zfl is the Laurent
fl

fl
disk Iz11 = Iz2 \ = 1. Therefore

Ifll ~ 00. Therefore

(6.14) o °sh (x ) - f (x )
2 0

v) (D~h_Xh+Vhf) (x ) +

- ~ I B1(~ - V)(D~hf)(XO) + O(lhI
3

) .
v

The foregoing formula may be represented in a nicer form by introducing the
1

scaled Fredricson spline B
h

:

1 1
Bh(X) "= B (x/h)

Moreover we set ~v := (~ + v)h. So, formula (6.19) may be read as follows

(6.15) ~ I Bh(XO - Vh)D
2

of) (xO) +
v ~ -x

v

- ~ I Bh(~)D~hf(XO} + O(lhI
3

} .
v
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