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Abstract

We examine a single stage periodic-review inventory system with backorders, in

which replenishment can be obtained either through a regular channel or, for a pre-

mium, via an expedited channel with a smaller lead time. The objective is to minimize

the undiscounted infinite horizon average cost subject to either a minimum service

level constraint or a linear penalty cost for unfilled orders. As optimal policies for

these problems are complex, we propose an order-up-to policy with regular and expe-

dited base stock levels as a heuristic, mirroring common industry behavior. For our

single index policy, we derive simple expressions for the optimal regular level given the

difference between the two levels. We present a procedure utilizing mixtures of Erlang

distributions, fit to the first two moments of demand, to calculate this quantity, along

with each parameter pair's cost. This enables us to efficiently find the optimal single

index policy for any given grid search tolerance. We include a computational section

*This research was initiated in spring 2001 when the second author visited Carnegie Mellon. He thanks
the Netherlands Organization for Scientific Research (NWO) for their financial support for this stay.
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investigating the behavior of our policy as problem parameters change, and comparing

our solutions with optimal single sourcing costs.

1 Introduction

Many firms are trying to construct supply chains that reduce costs while maintaining cus­

tomer service, often by incorporating alternatives with respect to sourcing. This creates a

need for management strategies for such chains; whereas optimal inventory policies are known

for quite general single source models (see Tayur, Ganeshan and Magazine 1999), results are

much more limited when there are sourcing options. Nevertheless, this is a problem which

confronts industry daily. Intel faces this problem when deciding how to route chips through

their supply chain, as does Caterpillar shipping construction worktools (Rao, Scheller-Wolf

and Tayur 2000), and Hewlett Packard manufacturing servers (Beyer and Ward 2000). In

all of these cases managers need a simple yet effective way of deciding how much to source,

when, and from whom. To give the reader a fuller understanding of the issues involved in

dual sourcing decisions, we briefly discuss the situation faced by Oce, a leading manufacturer

of document printing systems with whom the authors have worked.

Oce produces different types of machines (office, production, and wide format printing

systems) at two locations in Europe (in The Netherlands and Germany). Oce sells on

the European, American and Asian market. Spare parts are kept in stock in (virtually)

one central warehouse in Europe, and, in addition in a warehouse near Chicago for the

American market and in a warehouse in Singapore for the Asian market. The stocks in the

latter two warehouses are replenished weekly, both by ocean transport and air transport.
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Replenishments for items with a high value density and/or a low demand rate travel by

plane. For items with a relatively low value density and sufficiently high demand rates, in

principle only ocean transport is used. For these items, the pipeline holding cost for the

longer travel time by sea (three weeks vs. one week for air freight) and the costs for larger

safety stocks are more than compensated for by the lower transportation costs. Occasionally

air transport is used for this latter class of items, for example when peaks in the demand

processes occur. Oce thus uses different transportation modes to both control their costs

and meet their customer service targets.

Possibly motivated by such industrial applications, variants of the dual supplier problem

have seen renewed interest in the literature lately. Zhang (1996) found complex optimal

policies for systems with three delivery modes having consecutive lead times. Lawson and

Porteus (2000) take a different tack, showing "top-down base stock policies" to be optimal for

a special multi-echelon system. As they note, their assumption that units that have already

been shipped can be expedited or delayed at will is not appropriate for many systems.

Tagaras and Vlachos (2001), Teunter and Vlachos (2001), and Vlachos and Tagaras (2001)

focus on the model where the review period is much greater than the expedited lead time.

We consider the infinite horizon, stochastic demand, periodic-review replenishment prob­

lem with two supply modes, with either a service level constraint or a linear penalty cost,

under full back-ordering. We propose a variant of the stationary base stock policy for in­

ventory control. Base stock policies, while sub-optimal for the general dual lead time case

(Whittmore and Saunders 1977), are common in practice as they are simple to implement

and have a reputation of performing well. Such a policy prescribes that if stocks fall below

the expedited level an expedited order is placed to return them there. Then a regular order is
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placed to bring the total inventory up to the prescribed regular level. As the names indicate,

the expedited order has a shorter lead time, and presumably a greater cost. The variant we

present - the single index policy - bases both the regular and expedited ordering decisions

on all goods on hand, owed to customers, and on order. This is the optimal policy for the

dual-source penalty cost model with leadtimes that differ by one time unit (Fukuda 1964).

Under the single index policies we propose the problem costs, even for generalleadtimes,

decompose. Exploiting this decomposition, we derive simple expressions for the optimal

regular level, Zr, given a fixed difference between the regular and expedited levels, .6.. This

reduces the problem to computing the optimal zr(.6.) for each .6., and then finding the

expected cost of each pair, g(.6., zr(.6.)). We compute these quickly by utilizing mixtures

of Erlang random variables, fit to the mean and variance of the observed demand. As any

continuous distribution on (0,00) can be approximated arbitrarily closely by a mixture of

Erlang distributions via fitting an increasing number of moments, we can thus find optimal

single index policy parameters swiftly (in a few seconds), for any given grid search tolerance.

We do so, illustrating the performance of our policy for the service level model under various

problem parameters, and comparing our solutions with optimal single sourcing costs. Our

use of the mixed Erlang to modelleadtime demand follows in the tradition of Burgin and

Wild (1967) who advocate of the use of the Gamma, a close relative of the mixed Erlang..

More recently, Silver, Pyke and Peterson (1998) mention the appeal of both the Gamma and

the mixed Erlang to modelleadtime demand, (Section 7.7.14). For a more detailed technical

discussion of mixed Erlang distributions we refer the reader to Van Houtum and Zijm (1997).

This paper makes the following contributions: We define the single index policy in Sec­

tion 2, establishing properties of the optimal single index policy for the penalty cost and
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service level models, respectively, in Sections 3 and 4. These permit efficient calculation

of optimal single index parameters - we describe this for demand modeled by a mixture of

Erlang distributions analytically in Section 5 and computationally in Section 6. We discuss

extensions in Section 7 and we conclude in Section 8.

2 Model Definitions and Recursions

We consider a discrete time inventory system with expedited and regular sourcing. We

use a single index inventory policy; only one measure of inventory is tracked, the inventory

position over the entire leadtime horizon. Thus when ordering, target levels are compared

with inventory on hand, plus all outstanding regular or expedited orders, minus any items

owed to customers. If the inventory position is below the expedited target level an expedited

order is placed to bring it to this level. Then a regular order is placed to bring the final

inventory position up to the regular target level. We assume excess demand is backordered.

Unsatisfied demand may incur a penalty cost (Section 3) or there may be a service level

constraint on the system (Section 4). We define:

n: Period index, n ~ O.

dn , F: The new customer demand in period n, {dn : n ~ O}, form a stationary and

iid sequence. This family of random variables is generically referred to as d, having

continuous distribution function F with 0 < F(x) < 1 for all x E (0,00) and F(O) = O.

We further assume E[d] ~ fL < 00 and that the standard deviation of d~ a > O.

ir, ie, i: ir and ie are the nonnegative deterministic lead times for regular and expedited

orders, respectively. We define i ~ ir - ie ~ 0, with the convention that vacuous
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summations that follow from I = 0 return zero (as in Lemma 3.2 and (11) for example).

Cr , Ce, C: Cr and Ce are the nonnegative unit ordering costs for regular and expedited orders,

respectively. We define C~ Ce - Cr > O. (If Cr 2: Ce expediting all orders is optimal.)

h, p: Strictly positive per period unit holding and backorder cost, respectively.

B E (0, p,): Maximum permitted average backlog at the end of a period, for the service

level problem. This is equivalent to a minimum I'-service level 1'0 = 1- (B/p,) E (0,1).

Zr, Ze, D.: Zr and Ze are the regular and expedited order-up-to levels, respectively. We let

,0. ~ Zr - Ze 2: O. (A policy with Zr < Ze is equivalent to policy (zr, ze) with zr = ze.)

In: Inventory level at the start of period n; the amount on hand or on back-order.

I Pn : Inventory position at the start of period n; inventory level plus all goods on order.

x~, X~: Regular and expedited orders placed in period n, respectively.

Rn : Amount of inventory received in period n; Rn = X~-le + X~-lr'

In period n orders X~, X~ are placed, a shipment of Rn is received, demand dn is revealed,

and customers are satisfied. Costs are then assessed and any unsatisfied customers or excess

inventory is carried to the next period.

Our demand assumptions, which streamline our analysis, deserve some comment:

• While we believe our analytical results remain true for discrete demands, their inclusion

would entail either additional assumptions or more cumbersome proofs. If we assume

continuous inventory (and continuous parameters zr· and ze) our results extend, but
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this seems not reasonable. Otherwise we need to specify choosing the least integer value

greater than a solution, or using a randomized base stock policy (see Van Houtum and

Zijm 2000). While the former tactic yields a simpler solution, the latter will in general

perform better. Yet rigorously proving our results for the class of randomized policies,

while possible we believe, would not add appreciably to the insights of the paper.

• The assumption of unbounded support is not restrictive as we can limit Zr and L1 to the

appropriate support as necessary. Mass at zero might modify some results, but would

not change the paper significantly, as this will not necessitate randomized policies.

2.1 System Recursions

Given our definitions, the inventory level and position follow the recursions:

(1)

(2)

(3)

The expedited and regular orders in period n are, respectively:

(4) x e
n

(5) x~ = Zr - (IPn + X~),

where x+ ~ max(O, x). Similarly, x- def max(O, -x).

Without loss of generality, we assume 10 = Zr (obtained at purchase price cr ) and X~ =

x~ = 0 for all n ::; O. Under this assumption, substituting (3) into (4) yields:
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Substituting (3) and (4) into (5) yields:

Formulae (6) and (7) specify that in any period the portion of demand that exceeds ~

will be reordered by expedited delivery, and the rest - no more than ~ - will be reordered

by regular delivery; large single period demands trigger expediting. For ~ E [0,(0) the

proportion of demand filled via the expedited channel can be obtained analytically:

(8)

In the extreme cases, ~ = 0 or ~ = 00, the single index policy reduces to one with a single

expedited or regular supplier, respectively.

3 Penalty Cost Problem

In this section we consider the problem having a per-period fixed cost for each unit of

customer demand unsatisfied. For periods 0 ::; i ::; N an arbitrary (~, zr) pair has cost:

(9)
N

L gi(~' zr) def YN + ZN,
i=O

h v def ",N d ( ) ",N X e d Z ~f h ",N+1 1+ ",N+1I-w ere IN - Cr L.i=O i + Ce - Cr L.i=O i an N - L.i=l i +P L.i=l i'

Thus the infinite horizon problem is:

with the system evolving as in (1), (6) and (7). For simplicity, we define the time average

ordering and inventory costs, limN-+oo :~1 and limN-+oo ;+1' as E[Y] and E[Z] respectively.

A coupling argument can be used to show that costs converge over the infinite horizon:
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Lemma 3.1 The infinite horizon average cost under policy (.6., zr) converges to:

where random variables without subscripts refer to stationary versions.

We next present results that pertain to the optimal parameter choices. The first of these

follows trivially from 10 = Zn (1) (2), (6) and (7) and holds for every n > lr:

Lemma 3.2

n-l n-le-2 n-l

~=~- E ~+ E ~=~- E
i:=n-lr-1 j:=n-lr -1 i=n-le-1

This leads to:

Lemma 3.3 Along any sample path, for all n:

(i) Yn is determined solely by .6., independent of Zr'

(ii) For any fixed .6., Zn is determined solely by Zr'

n-1e-2

E

(iii) For a fixed .6., the minimum value satisfying zr(.6.) clef FiJ(b.) (p{:x) , yields an optimal

Zr, where Fv(b.) is the cumulative distribution function of the random variable D(.6.):

(11)

Proof:

le+1 lr+1

D(.6.) rv E di + E min(di , .6.).
i=l i=le+2

(i) From the definition of Yn , along any sample path the first term Cr I:i di , is fixed. This

leaves (ce - cr ) I:i X;, where X~ = (dn - 1 - .6.)+, due to (6).

(ii) Due to its definition, Zn is solely a function of {Ii: 1 :::; i :::; n + I}. Given a fixed .6.

and a fixed sample path of demands, Lemma 3.2 shows that In is a function of Zr'
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(iii) Defining D(/:::") as in (11), Lemma 3.2 shows that In rv Zr - D(/:::") for all n. Our problem

thus reduces to an infinite horizon News-vendor problem, the solution to which is the

critical fractile. (See Nahmias 1997).

•
Part (i) of Lemma 3.3 implies that for any fixed /:::,., the problem of minimizing the

expected cost for a single index policy reduces to minimizing E[Z]. Parts (ii) and (iii) show

that this minimization is achieved by finding the optimal zr(/:::") via the critical fractile of

the random variable D(/:::"). The average cost of using such a policy is given in (10) which

we rewrite using (6), the fact that I rv Zr - D(/:::") and E[D(/:::")] = (lr + l)fL -lE[(d - /:::,.)+]:

Lemma 3.4 The expected average cost of using policy (/:::,., zr(/:::")) is

(12) gp(/:::", zr(/:::")) ~ CrfL + (c + hl)E[(d - /:::,.)+] + hzr (/:::") - h(lr + l)fL

+ (p + h)E[(D(/:::") - zr(/:::,.))+].

It follows that an optimal single index policy will be one that minimizes (12). In order to find

such a policy, for each /:::,. we need expressions for D(/:::") , E[(d-/:::")+], and E[(D(/:::")-zr(.6.))+].

To obtain these efficiently, we propose (in Section 5) using a mixture of Erlang random

variables with the same shape parameter to model the demand.

3.1 Properties of the Optimal Solution to the Penalty Cost Model

Recalling (11) and Lemma 3.3 it follows that:

Proposition 3.1 For the penalty cost problem:
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(ii) Letting ~-+OO, D(~)-+Dr from below, where

(13)
IT +1

Dr rv L dj .

j=1

This implies that zr(6.) converges from below to zr(oo) = z;:nax def FDT
l (~) .

(iii) Setting ~ = 0, D(6.) rv De, wher-e

(14)
le+ 1

De rv L dj .

j=1

This implies that ze(6.) conver-ges from above to zr(O) = z;:nin = FDe1 (~) .

(iv) For- any 6. E [0, (0), 0::; z;:nin ::; zr(~) ::; z;:nax < 00.

Proposition 3.1 implies that as ~ approaches its limiting values (zero or infinity), the solution

of the dual supplier problem approaches that of a system with only one supplier (regular or

expedited), as implied previously by (8). The costs from these single source models 'thus serve

as upper bounds for the optimal single index policy cost. In a similar vein, (11) demonstrates

that the effect of the expediting option comes through the truncation of the demand at ~.

Thus the value of this option increases as expediting becomes more powerful, i.e. as l becomes

proportionally larger with respect to lr or as demand becomes more variable.

4 Service Level Problen1.

In this section we consider the problem having a maximum permissible level for average

customer backlog, B. By repeating the arguments of Lemma 3.1 and Lemma 3.4, the service-

level problem can be formulated as the following non-linear minimization problem:

mm

(15)
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We sharpen this formulation and investigate its properties below:

Lemma 4.1 For the service level problem, given a fixed !:l:

(i) The objective function gs is constant for Zr ::; 0 and strictly increasing for Zr > O.

(ii) The average backlog E[(D(b..) - zr)+] is strictly decreasing in Zr'

(iii) E[(D(!:l) - zr)+] too as Zr -+ -00; E[(D(b..) - zr)+] .} 0 as Zr -+ 00.

(iv) There is a unique finite positive value, Zr (!:l), for which (15) is satisfied at equality.

(v) At optimality Zr = zr(!:l).

Proof: Parts (i) - (iii) follow from our demand assumptions. Part (iv) follows from parts

(ii) and (iii), continuous demand, B E (0, f-L), and the continuity of E[(D(!:l) - zr)+] with

respect to Zr' Parts (i) and (iv) imply part (v). •

4.1 Properties of the Solution to the Service Level Problem

Given part (v) of Lemma 4.1, the problem that remains is to minimize

(16)

g8 (!:l, Zr (!:l)) = Crf-L + eE[(d - !:l)+] + hEr(Zr (!:l) - D(b..) )+] ,

E[(D(b..) - Zr(!:l))+] = B .

Substituting (16) into gs(!:l, zr(b..) and rewriting in a manner similar to Lemma 3.4:

Proposition 4.1 Given the service level problem defined above:
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(i) zr(L}.) is continuous and nondecreasing as a function of L}..

(ii) As L}. ---+ 00, zr(oo) def Z;nax = {x E R I E[(Dr - X)+] = B}, with Dr defined in (13).

(iii) When L}. = 0, zr(O) ~ z;nin = {x E R I E[(De - x)+] = B}, with De defined in (14)·

(iv) For any L}. E [0, (0), 0:::; z;nin :::; zr(L}.) :::; z;nax < 00.

Proof: Part (i) follows from the continuity of d, the definition of D(L}.) , and (16). Parts (ii)

and (iii) follow from the definition of D(L}.) and (16). (iv) follows from (i) - (iii), B E (0, /1),

and (16). •

We now derive a bound on the optimal value of L}.. To avoid the issue of whether

derivatives exist almost everywhere we consider finite differences: For an arbitrary function

f(x) and positive f, we define r(x) ~ f(X+E~-f(X).

Lemma 4.2 For all L}. ~ 0 and v > 0 there exists an f > 0 such that

(18)

Proof: Starting from (17):

g:(L}., zr(L}.)) {(e + hl)(E[(d - L}. - f)+ - (d - L}.)+]) + h(zr(L}. + f) - Zr(L}.))} If,

He + hl)(-cP(d ~ L}. + f) - E[(d - L}.)I{d E (L}., L}. + fn]) + hfZ:(L}.n If.

Therefore

-(c + hl)P(d ~ L}. + f) + h(z:(L}.)) - (e + hl)P(d E (L}., L}. + f)) :::;

g~(L}., Zr(L}.):::; -(e + hl)P(d ~ L}. + f) + hz~(L}.).

As we have a continuous demand distribution, we can choose f small enough such that for

any L}. ~ 0 and a given v > 0, P(d E (L}., L}. + f)) :::; vl(c + hi), completing the proof. •
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Lemma 4.3 For any positive E, DE(ll) E [0, l].

Proof: Recalling (11), D(ll) is nondecreasing in ll, but on any sample path no more than

l = (lr + 1) - (le + 2) + 1 elements of D(ll) can increase (at rate 1) as II increases. •

Lemma 4.4 For any positive E, z:(ll) E [0, l].

Proof: As zr(ll) is nondecreasing in II (Proposition 4.1), we know that z:(ll) ~ O.

Assume that for some II and E, z: (ll) > l. Part (v) of Lemma 4.1 establishes that for any

given Band ll, constraint (16) will hold as an equality at an optimal solution. In particular:

(19)

We divide the sample paths for the demand realizations into three disjoint sets:

WI: Sample paths where D(ll) > zr(ll) and D(ll + E) > zr(ll + E). These will be included

in both expectations in (19). From Lemma 4.3 and our assumption that z:(ll) > l, we

see that D(ll + E) - D(ll) ::; iE < zr(ll + E) - zr(ll), or

(20)

Relation (20) implies that the contribution of the sample paths in WI to the left-hand

expectation in (19) is strictly greater than their contribution on the right-hand side.

W2: Sample paths where D(ll) > zr(ll) and D(ll + E) ::; zr(ll + E). These make a strictly

positive contribution to the left-hand side of (19) but zero on the right.

W3: Sample paths where D(ll) ::; zr(~). Formula (20) implies the value of both expectations

in (19) is zero.

14



Unless D(I:1) :S zr(l:1) almost surely, which violates B < 1, taking exp~ctationover WIUWZUW3

yields E[(D(I:1) - zr(I:1))+J > E[(D(1:1 + E) - zr(1:1 + f))+], contradicting (19).

This leads to

•

Lemma 4.5 If (1:1*, Zr (1:1*)) is an optimal solution, then for all v > 0 there exists a ( > 0

such that ( .J- 0 if v.} 0 and P(d ~ 1:1* + () :S ~~+~.

Proof: For there to be a minimum in at (1:1*, zr(1:1*)), continuity dictates that for all f > 0

small enough, 9s(x, zr(x)) = 9s(X + E, zr(x + f)) for some x < 1:1* < x + E (equivalently

9E(X, zr(x)) = 0). From (18) this implies that for all v > 0 we can find an E > 0 and an

x < 1:1* < x + Esuch that: 1- (c + hl)P(d ~ x + E) + hz:(x) I :S v.

Letting x def 1:1* - "7, and using z: <:S l from Lemma 4.4:

(c + hi)P (d ~ 1:1* - "7 + E) :S v + hl

Defining ( ~ f - "7 completes the proof.

hl + v
=} P (d ~ 1:1* - "7 + E) :S c + hi"

•
Lemma 4.5 states that any 1:1 < I:1 min def p-l C:hl) cannot be an optimal solution; an

optimal 1:1 must fall within the range [1:1 min , (0). Note that l = 0 thus implies I:1 min = 00,

or only the regular supplier is used, which is correct. The tightness of this bound appears

difficult to ascertain in general; we explore this in Section 6. Lemma 4.5 also leads to:

Corollary 4.1 Given c > 0:

(i) 1:1* > 0; using the expedited supplier alone will never be optimal.

(ii) c --t 00 =} I:1 min --t 00 =} 1:1* --t 00; as the relative cost of using the expedited

supplier grows the proportion of expedited goods approaches zero.
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Because the penalty cost problem is a Lagrangian relaxation of the service level model,

we can apply Theorem 1 of Van Houtum and Zijm (2000), to extend the results listed in

Lemma 4.5 and Corollary 4.1 to the penalty cost model of Section 3:

Lemma 4.6 For the backorder cost problem, for p sufficiently large to ensure an optimal

average backlog less than J.1 (the mean demand):

(i): If L1* is an optimal solution, then for all v > 0 small enough there exists a ( > 0 such

that ( -l- 0 if v -l- 0 and P (d ~ L1* + () :S ~~+,:;.

(ii): L1* > 0; using the expedited supplier alone will never be optimal.

(iii) c -+ 00 =} L1m in -+ 00 =} L1* -+ 00; as the relative cost of using the expedited

supplier grows the proportion of expedited goods approaches zero.

5 Erlang Mixtures

We now explore some properties of mixtures of Erlang distributions, which we use to model

demand. Throughout we denote by E k,>.. the distribution function of an Erlang random

variable with kEN := {I, 2, ...} phases and scale parameter A > 0: Ek,>..(x) = 1 ­

I:j:t (>..;)i e->"x , x ~ 0, and Ek,>..(x) = 0 for all x < O. The corresponding probability density

function is ek,>..(x) = ~~~k;); e->"x , x ~ 0, and ek,>..(x) = 0 for all x < O. We denote by {qkhEN

a discrete distribution on N, for use as mixture parameters.

We make the following definitions assuming d is a mixture of Erlangs with the same

shape parameter A and mixture parameters {qd: for all k, d rv E k,>.. with probability qk'
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Dm , Fm : Dm is the m-fold convolution of d; Dm = 2:~1 di and Do = O. Similarly, Fm is

the m-fold convolution of F (m E No def N U {O}); Fm is the distribution function of

Dm . Each Fm , m:2: 1 is a mixture of Erlang distributions with scale parameter A and

mixture parameters denoted by {qkm
)}kEN.

zero for the sum when k = 1. The distribution function Fo has all its probability mass

at 0: Fo(x) = 0 for all x < 0 and Fo(x) = 1 for all x :2: O.

We add hats (d, {t, i', Dm ,) to denote these quantities, including the mean, under

truncation at ~, e.g. d~ min{d, ~}, and tildes (d, ji, P, Dm ) to denote residual quantities

post truncation; d ~f (d - ~Id :2: ~). The distribution of d is also a mixture of Erlang

distributions with parameters A and {qdkEN. We can derive expressions for these {qkhEN

as follows. Define for all kEN, j = 0,1, ... , k

rk,j := P{j phases left after ~ time units I dis Erlang(k, A) distributed} ,

Then for all kEN:

(A~)k-j

(k _ j)! e-.\6 j = 1, ... , k,

L:
oo

(A~)i -.\6 _ kL:-
1
(A~)i -.\6 _ E (")--e - 1 - --e - k \ W •., ."A

i=k 't. i=O 't.

(21)

P{j phases left after ~ time units I at least 1 phase left}

P{j phases left after ~ time units}

P{d > ~}

1 00

- L:qkrk,j, j E N.
p k=j

computed, via conditioning we find {t = fJ, - pji. Returning to our definitions:
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Ym,n,Gm,n: The sum of m E No truncated demands and n E No non-truncated demands

f~,n = Dm+Dn = L:~l di+ L:r~:t:+l di· Gm,n is the m-fold convolution of F convoluted

with the n-fold convolution of F; Gm,n is })'"m,n's distribution function.

We define Ym,n and Gm,n analogously. Once again, each Gm,n, with m 2:: 1 or n 2:: 1, is a

mixture of Erlang distributions with scale parameter). and mixture parameters denoted by

{ -(m,n)} Th -(1,0) - - f 11 k N d r h > 2' -(m,O) - ",k-l - -(m-l,O) kqk kEN· en qk - qk or a E ,an lor eac m _ . qk - LJi=1 qiqk-i , E

N, reading zero for the sum when k = 1. Further, for each n 2:: 1, iJio,n) = qt) for all kEN,

and for each m 2:: 1 and n 2:: 1: iJim,n) = L~==-l iJim,O) qt!i , kEN. The distribution function

Go,o has all its probability mass at 0: Go,o(x) = 0 for all x < 0 and Go,o(x) = 1 for all x 2:: o.

5.1 Erlang Approximations

The class of mixtures of Erlang distributions with the same scale parameter is dense in

the class of all distributions on [0,00), i.e. any distribution on [0,00) can be approximated

arbitrarily closely by such an Erlang mixture. This has been proved by Schassberger (1973)

and is also described in Tijms (1986), p. 358. In general a mixture of an infinite number

of Erlangs is needed for an exact approximation, but for practical purposes it is common to

approximate a distribution by fitting the first two moments, as we do here. Based on the

value for Cvar clef a / J1 we distinguish two cases, following Tijms (1986).

When Cvar :=:; 1, we fit a mixture of an Erlang(ko-1,).) and an Erlang(ko,).) distribution.

In that case, we choose ko such that ~o < c;ar :=:; ko~I' (notice that ko 2:: 2). Next we choose

k. Finally, ). = kO-~Q-l. This distribution is unimodal.

When Cvar > 1, we fit a mixture of an Erlang(I,).) and an Erlang(ko,).) distribution.

18



k
2
+4 2' h' hIn that case, we choose ko such that ko 2: 3 and ~ 2: cvar ' takmg the smallest ko w lC

t · fi th" l't N h - 2koc~ar+ko-2-(k5+4-4kc~ar)O.5 - 1 - dsa IS es IS mequa 1 y. ext we c oose ql - 2(ko-l)(l+c~ar) , qko - ql, an

qk = 0 for all other k. Finally, A = Ql+ko2-Q1 ). This distribution is not in general unimodal.

Given this fitting procedure, we henceforth assume d is distributed as a mixture of Erlang

distributions with shape parameter A and mixture parameters {qd·

5.2 Analytical Results

Below we present exact formulae for Gm,n, which determine the distribution of D(6.), since

D (6.) = 1l,le+1. After that, we exploit this relation to derive exact expressions for the

expectations E[(D(6.) - x)+], needed for the computation of zr(6.) and 9p(6., zr(6.)). Our

results are presented as a series of lemmas, with proofs in Appendix A.

Before we state our results, for expository convenience we define:

m+n
Hm,n(x) := P{ L di :S x I di < 6. for i = 1, ... , m} ,

i=1

x E R, m E No, n E No.

The Hm,n are distribution functions with Hm,n(x) = 0 for all x < 0, m E No, n E No. If

o :S x < 6., then Hm,n(x) = p(2:~tn di :S x) = Fm+n(x) , m E No, n E No. In addition,

for each m E No and n E No with m 2: lorn 2: 1, Hm,n is continuous on R. Ho,o is

discontinuous at 0: Ho,o(x) = 0 for all x < 0 and Ho,o(x) = 1 for all x 2: O.

Lemma 5.1 For all mEND and n E No:

m ( )
A m k m-k

Gm,n(X) = L k p (1 - p) Hm-k,n(x - k6.) ,
k=O

x 2: O.

To further simplify the expression in Lemma 5.1, we find the following:
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Lemma 5.2 For all m E No and n E No:

( ) _ 1 ;; k (m) k-Hm,n x - (1 _ p)m t'o(-1) k P Gk,m+n-k(X - k6), x E R.

By substituting the relation in Lemma 5.2 into that of Lemma 5.1 we derive:

Lemma 5.3 For all m E No and n EN:

x E R.

Lemma 5.3 demonstrates that each distribution function Gm n can be written as a linear,

combination of shifted distribution functions Gm,n. Using this result we are able to compute

the functions Gm,n, and thus the distribution of D(6).

For our final result we define for each m, n E No, km,n(x) = E[(Ym,n-x)+] and Km,n(x) =

E[(}7m ,n - x)+], x E R. Then we can calculate

{

-x
ko,o(x) = Ko,o(x) = 0

Lemma 5.4 For each m, n E No with m ~ 1 or n ~ 1:

if x < 0;

if x ~ o.

Lemma 5.4 enables us to carry out exact evaluations of E[(D(6) - x)+] = k1,le+ 1 (x) , x E

R. Thus we can find zr(6) using (16), and then use Lemma 5.4, the value of zr(6), and the

distribution of d to exactly evaluate 9r(6, zr(6)), as given in (17).

We have derived formulae showing that the class of mixtures of Erlang distributions with

common scale parameter A is closed under convolution and conditional truncation. These

formulae also hold for other classes with this property, such as phase-type distributions.
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6 Computational Work

In the interest of brevity, we limit our computational investigation to the service level model.

Further, in our results below we report average costs excluding the purchasing costs Cr J1,

incurred if all goods are bought via the regular channel. (Marginal costs of expediting are

of course included.) Finally, in all of our experiments we model demand per period as a

mixed Erlang distribution as described in Section 6. (At the end of this section we present

a typical comparison of the distribution of a Mixed Erlang random variable and the random

variable it approximates.) W.l.o.g., throughout our experiments we assume that J1 = 1. We

consider three values for the standard deviation of demand, a: i, 1, and 3. When a :- i, the

underlying distribution is the Erlang-9 distribution with scale parameter). = ~. When a = 1,

the underlying distribution is the exponential distribution with scale parameter ). = 1. In

both these cases, the probability density function is unimodal. When a = 3, the underlying

distribution is the mixture of the exponential distribution and the Erlang-36 distribution

with scale parameter). = 2 for both, with mixing probabilities ql = 0.9714 and q36 = 0.0286.

Under this distribution, in each period one always has an exponential demand (with mean

~), and with probability 0.0286 one has an additional Erlang-35 demand (with mean 17.5).

The probability density function of this mixture is bimodal.

For the determination of the optimal single index policy, based on the results in Sections 4

and 5, we developed the following procedure. Let c5 be a small positive number. For each .6. =

.6.min +kc5, with k = 0,1, ... , we compute zr(.6.) and the average costs 98(.6., zr(.6.)) (excluding

CrJ1). We track 9 which denotes the lowest average cost among the points .6.' = .6.min + mc5

with 0 ::; m ::; k. This procedure can be stopped when hzr(.6.) - h(lr + 1)J1 + hB > 9 (since
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Figure 1: Average costs 9s(L::!., zr(L::!.)) (excluding CrJ1) as a function of L::!. for 2 instances:
J1 = 1, Cr = 1000, Ce = 1020, lr = 4, le = 1, ')'0 = 0.95, h = 5, and (J = 1 (lefthand side) and
(J = 3 (righthand side). The horizontal lines denote the average costs when using the regular
channel only (with circles) and when using the expedited channel only (with squares).

then from (17), 9s(.6.,zr(Li)) :2 hzr(Li) - h(lr + 1)J1 + hE > 9 for all Li > L::!.). Next we

search the neighborhood of this best point to find a local optimum among all points L::!. :2 o.

We generated the function 9s (L::!., Zr (L::!.)) analytically for many instances, and for all of these

the function had a unique local minimum; thus we conclude that our procedure works well,

returning the optimal single index parameters. Our optimal single index policy is. globally

optimal for the case where l = 1; this is a classical result for the penalty cost model (Fukuda

1964), and is an immediate consequence of Theorem 1 of Van Houtum and Zijm (2000)

for the service level model. To the best of our knowledge this service level result has not

appeared in the literature. In general, the function 9s (L::!., Zr (L::!.)) typically behaves in one of

two ways, as depicted in Figure 1, depending upon which supplier would be least expensive

to use as a sale source.
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We have determined the optimal single index policy for 81 instances, which are obtained

by choosing the the following input parameters:

1
/I = 1, (J - 1 3
t-" - 3' , ,

Cr = 1000, Ce = 1020, 1050, 1100,

lr = 2, 4, 6, le = 1,

h = 5, 1'0 = 0.9, 0.95, 0.99.

The choice for these values is motivated by examples faced by Hewlett Packard and Oce.

The value le = 1 represents 1 week, the time needed to transport goods by air, including

preparation and receiving times. The values for lr represent leadtimes when other transport

modes are chosen (overland by truck when lr = 2 or by seagoing vessel when lr = 4 or lr = 6).

The values for JL and Cr can be set w.l.o.g., here we have chosen 1 and 1000. The values for

(J have been chosen such that we have a range of coefficients of variation. The values of Ce

are such that the unit price when ordering by the expedited channel is 2 %, 5 %, and 10 %

more expensive than when ordering by the regular channel. As is typical, for both HP and

Oce ordering by the expedited channel saves interest on the pipeline stock but incurs extra

transportation costs. If the net result of this is negative (ordering by the expedited channel

is cheaper) everything will be expedited. If the net result is very large everything will be

ordered via the regular channel. Only when the expedited costs Ce are somewhat larger than

the regular costs Cn as is common, is it attractive to combine both modes. The inventory

holding costs are fixed at h = 5. This corresponds to a yearly rate of 25 % for interest and

storage costs (h = 1000·0.25/50). Finally, the target service level 1'0 values have been chosen

to mimic those typically used in industry.
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lr \ (T II
1020

1/3

1050 1100 1020

1

1050 1100 1020

3

1050 1100

00, 3.4 00, 3.4 00, 3.4 3.5,5.5 5.0,5.6 00,5.7 17.2, 19.3 18.1, 19.4 18.9, 19.5
0.9 2.3 2.3 2.3 14 14 14 83 84 85

1.3,0% 1.5,0% 1.6,0% 1.6,3% 2.4, 1% 3.0,0% 0.9,5% 1.4,3% 2.0,2%
1.9, 3.6 00,3.6 00,3.6 3.4, 6.3 4.6,6.5 5.9,6.6 17.3, 21.9 20.0, 22.1 20.7,22.2

2 0.95 3.3 3.4 3.4 18 18 18 96 97 97
1.3,0% 1.5,0% 1.6,0% 1.6,3% 2.4, 1% 3.0,0% 0.9,4% 1.4,1% 2.0,1%
1. 7, 4.1 2.0,4.1 2.4, 4.1 3.2,8.1 4.4, 8.3 5.3, 8.4 4.7, 26.3 7.5, 26.9 13.4, 29.7

0.99 5.6 5.7 5.7 27 27 28 126 136 148
1.3, 1% 1.5,0% 1.6,0% 1.6,4% 2.4, 1% 3.0,0% 0.9,38% 1.4, 30% 2.0,13%

1.6, 5.5 2.4, 5.6 00,5.6 2.2, 7.4 3.6,8.2 5.0,8.5 8.8,20.7 10.5, 21.1 15.9, 23.6
0.9 3.3 3.4 3.4 16 18 19 88 95 102

1.0, 1% 1.2,0% 1.4,0% 0.8,11% 1.5,3% 2.0,1% 0.4,26% 0.8,22% 1.1,7%
1.5, 5.7 1.9, 5.9 2.8,5.9 2.2,8.2 3.3,9.0 4.5, 9.4 4.0, 22.0 8.7,23.4 11.6,24.7

4 0.95 4.5 4.7 4.7 20 22 23 99 109 120
1.0,2% 1.2,0% 1.4,0% 0.8,12% 1.5,4% 2.0,1% 0.4,40% 0.8,26% 1.1,18%
1.3, 6.1 1.7,6.4 2.0,6.5 2.1, 10.0 3.1, 10.8 4.0, 11.2 2.8, 27.4 4.6,27.9 8.2,29.9

0.99 6.9 7.4 7.6 30 32 33 127 140 156
1.0,4% 1.2, 1% 1.4,0% 0.8, 13% 1.5,5% 2.0,2% 0.4,44% 0.8,38% 1.1, 28%

1.4, 7.5 1.9,7.7 2.9,7.8 1.7,9.0 2.9, 10.3 4.3, 11.1 4.8, 21.4 9.2,22.8 10.6,23.6
0.9 4.1 4.4 4.4 18 21 22 89 99 110

0.9,3% 1.1, 0% 1.3, 0% 0.6,17% 1.1,5% 1.6, 1% 0.3,38% 0.6,25% 0.9,21%
1.3, 7.6 1.7, 8.0 2.2,8.1 1.7,9.7 2.7, 11.1 3.9, 11.9 2.7, 23.0 5.8, 24.1 9.2,26.0

6 0.95 5.3 5.8 5.9 22 25 27 100 112 127
0.9,4% 1.1,1% 1.3,0% 0.6,18% 1.1, 6% 1.6,2% 0.3,44% 0.6,35% 0.9,25%
1.2, 8.0 1.5, 8.5 1.8, 8.7 1.6, 11.5 2.5, 12.8 3.5, 13.7 2.1, 28.4 3.6, 29.0 5.9, 30.4

0.99 7.8 8.7 9.1 31 35 38 128 141 160
0.9,6% 1.1, 1% 1.3,0% 0.6,20% 1.1, 8% 1.6,3% 0.3,46% 0.6,41% 0.9,34%

Table 1: Values for .6.*, Zr (.6.*), the average costs (excluding Cr J.l), .6.m in, and the percentage ordered

by the expedited channel for 81 instances. The values for (J, ce, lr, and ')'0 vary as indicated; the

other input parameters are fixed at J.l = 1, Cr = 1000, le = 1, h = 5.

The results for the 81 instances are listed in Table 1. In each block we have listed the optimal

single index parameters ~* and Zr (~*) on the upper line, the optimal average cost in the

middle line, and the value for ~min and the percentage ordered by the expedited policy

under the optimal policy in the bottom line. The results show that:

• In keeping with our analytical results, using the regular supplier as a single source is

sometimes optimal (~ = 00), but using the expedited supplier alone never is.

• Optimal average costs are increasing as a function of (J, Ce , lr, and 'Yo·

• The value for ~* and the percentage ordered by the expedited channel are increasing

as a function of (J and In and decreasing as a function of Ceo Also, this percentage is
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1020

1/3

1050 1100 1020 1050 I 1100 1020

3

1050 1100

0.9 2.3,22 2.3,52 2.3, 102 14, 31 14, 61 14, 111 86, 100 86, 130 86, 180
2.3,0% 2.3,0% 2.3,0% 14,4% 14,0% 14,0% 83,4% 84,3% 85,1%

2 0.95 3.4, 23 3.4, 53 3.4, 103 18, 35 18, 65 18, 115 99, 110 99, 140 99, 190
3.3,0% 3.4,0% 3.4,0% 18,5% 18,2% 18,0% 96,3% 97,2% 97,2%

0.99 5.7,25 5.7,55 5.7, 105 28,44 28,74 28, 124 150, 137 150, 167 150, 217
5.6,2% 5.7,0% 5.7,0% 27,6% 27,3% 28,2% 126,8% 136,9% 148, 1%

0.9 3.4, 22 3.4, 52 3.4, 102 19, 31 19, 61 19, 111 105, 100 105, 130 105, 180
3.3,2% 3.4,0% 3.4,0% 16,14% 18,5% 19,1% 88,12% 95,10% 102,4%

4 0.95 4.7,23 4.7,53 4.7, 103 24,35 24, 65 24, 115 134, 110 134, 140 134, 190
4.5,5% 4.7,0% 4.7,0% 20,15% 22,7% 23,3% 99,9% 109,18% 120,10%

0.99 7.6,25 7.6,55 7.6, 105 35,44 35,74 35, 124 174, 137 174, 167 174,217
6.9,9% 7.4,3% 7.6,1% 30, 16% 32, 10% 33,6% 127,7% 140,17% 156,10%

0.9 4.4, 22 4.4, 52 4.4, 102 23, 31 23, 61 23, III 131, 100 131, 130 131, 180
4.1,7% 4.4,0% 4.4,0% 18,22% 21,9% 22,3% 89,10% 99,24% 110,16%

6 0.95 5.9,23 5.9,53 5.9, 103 29,35 29,65 29, 115 152, 110 152, 140 152, 190
5.3,10% 5.8,2% 5.9,0% 22,23% 25,11% 27,5% 100,9% 112,20% 127,16%

0.99 9.2,25 9.2,55 9.2, 105 41, 44 41,74 41, 124 193, 137 193, 167 193, 217
7.8,16% 8.7,5% 9.1,1% 31,24% 35,15% 38,9% 128,7% 141,16% 160,17%

Table 2: Optimal costs (excluding Cr/-L) for single sourcing by the regular channel, single sourcing

by the expedited channel, and dual sourcing, respectively, and the relative savings obtained by dual

sourcing in comparison with the best of the two single sourcing options. The values for a, ce, lr,

and 'Yo vary as indicated; the other input parameters are fixed at /-L = 1, Cr = 1000, le = 1, h = 5.

usually increasing as a function of 'Yo. Exceptions do occur for some instances with

a = 3, and lr = 2. In these cases the increased service level is primarily achieved by

increasing the regular inventory level, as the regular leadtime is relatively short .

• The lower bound flmin is best for small values of (J, and grows worse as the coefficient

of variation grows.

The total computation time for all 81 was nine minutes on a regular Pentium II PC, pro-

grammed in Delphi.

In Table 2, a comparison is made between single sourcing and dual sourcing for the same

81 instances. In each block, on the upper line we have listed the average single sourcing costs

when using either the regular channel or the expedited channel only, and on the lower line

the average costs of our optimal single index policy and the relative savings of this policy in

comparison to the best ofthe two single sourcing options. Under single sourcing, the optimal
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Figure 2: Average costs when using the regular channel only (with circles), when using the
expedited channel only (with squares), and under dual sourcing along with the percentage
ordered by the expedited channel under dual sourcing (dashed line) for varying values of Ceo

Other input parameters are fixed at J1 = 1, a = 1, Cr = 1000, lr = 4, le = 1, 'Yo = 0.95, h = 5.

policy is a simple base stock policy and the optimal policy and costs are easily determined.

The results in Table 2 show that dual sourcing may lead to savings of 20 % or more

in comparison to the best single sourcing option. We also observe that the largest savings

occur when the average costs of the two single sourcing options are close to each other. This

insight also follows from Figure 2, where the single sourcing costs and dual sourcing costs

are depicted for one specific instance as a function of Ce , together with the percentage of

demand that is ordered by the expedited channel under the optimal single index policy. For

small (large) price differences Ce - Cr , almost everything (nothing) is ordered by the expedited

channel under the optimal single index policy, and thus then the dual sourcing costs are close

to the single sourcing costs when only the expedited (regular) channel is used. In between

there is a region where dual sourcing leads to significant lower costs than both single sourcing

options. The magnitude of the intermediate region where dual sourcing is most worthwhile to

apply depends much on the coefficient of variation of the demand (= a / J1) and the leadtime

difference lr -le. The higher a / J1 and lr -le' the larger this region. So, whether it is attractive

for a company to consider dual sourcing depends fundamentally on whether they have many
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Figure 3: Comparison of the density and cumulative distribution functions of a truncated
normal random variable with mean 1 and cv 1/3 (solid line) and the Erlang-9 random variable
used to approximate it (dashed line), with A = 1/9.

items in this intermediate region or not.

As we have advocated the use of the mixed Erlang as an approximation for other demand

models, we illustrate the density and cumulative distribution functions of a mixed Erlang

random variable and the truncated normal random variable it approximates. We have chosen

the truncated normal as this is commonly used to model demand in inventory systems when

the cv of demand is low (see Rao, Scheller-Wolf and Tayur, 2000 for example), but yet is very

difficult to treat analytically. As can be seen in Figure 3, the approximation is quite good for

the random variable, and should only improve as we convolve to arrive at the distribution

of D(!:::..*). This leads us to believe that, when the true demand distribution is truncated

normal, the approximate solution obtained by assuming a mixed Erlang distribution instead

will be of very high quality.

7 Extensions

7.1 Capacitated Suppliers

If the expedited supplier has a capacity constraint:
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Corollary 7.1 If there is a capacity Ce on the expedited orders, Lemma 3.3 or Lemma 4.1

The single index policy with a capacitated regular supplier is even simpler - placing a

per-period limit of Cr on the regular order is equivalent to specifying 6 :::; Cr :

Corollary 7.2 If there is a capacity Cr on the regular orders and the additional constraint

6 :::; Cr is added, then all the results above hold.

7.2 Multiple Suppliers

If there are more delivery options (as in Zhang 1996) a single index policy once again yields

a dimensional reduction. The case of three options is illustrated below.

Corollary 7.3 If there are three delivery modes, for each fixed 61 and 62, given h < h < l3

and Z3 = Z2 + .6.2 , Z2 = Zl + .6.1 , Lemma 3.3 or Lemma 4.1 holds with the modification that:

h+1 b+1 13+1
D(61 , .6.2) rv L di + L min(dj ,.6.1 + .6.2) + L min(dk ,62 )'

i=l j=h+2 k=12+2

8 Conclusion

Vie have defined the single index inventory replenishment policy for use when there is a

choice of two supply options differing in unit cost and fixed lead time. If the lead times differ

by exactly one unit our policy is known to be optimal, otherwise it serves as a heuristic. We
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show how to calculate optimal single index parameters for both the penalty cost and service

level versions of the problem for continuous demand distributions, via a mixture of Erlang

distributions, demonstrating the effectiveness of this policy via computational experiments.

This line of research offers a number of avenues for future work: Further exploration of the

extensions in Section 7, lost sales models, models with discrete demand, and the analysis

and performance of other simple ordering policies.

A Proofs of Analytical Erlang Results

A.1 Proof of Lemma 5.1

Proof: From the definition of Gm n and of Hm n:, ,
m m+n

Gm,n(x) = P{17m,n:::; x} = p{L:di + L: di :::; x}
i=l i=m+l

m (m) m A m+nL: k P{2: di + L di :::; x, di < ~ for i = 1, ... , m - k,
k=O i=l i=m+l

di 2: ~ for i = m - k + 1, ... , m}

di 2: ~ for i = m - k + 1, ... , m}

E(;)pk([ - p)m-kp{1;;di + i~~l di S X - kt> I

di < ~ for i = 1, ... ,m - k}

x 2: o.

•
A.2 Proof of Lemma 5.2

Proof:
1 m+n

(1 _ )m P{ L di :::; x, di < ~ for i = 1, ... ,m}
p ~=l
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A.3 Proof of Lemma 5.3

Proof: Starting from the formula in Lemma 5.1:

Gm,n(X) = f (m)pk(l _ p)m-k
k=O k

(
1 ~ .(m - k) .- )(1 _ p)m-k f;:o (-l)J j pJGj,m+n-k-j(X - jb.. - kb..)

- f (7)pk I:(-l)j (m ~ k)piGj,m+n_k_j(X - jb.. - kb..)
k=O J=O J

= f I:(-l)j (m
k

) (m ~ k)pk+jGj,m+n_Ck+j)(x - (k + j)b..) , x E R.
k=OJ=O J

By substitution of i = k and s = j + k (or, equivalently, k = i and j = s - i), we obtain

•

xER.
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AA Proof of Lemma 504
Proof: For (i):

Km,n(x) i oo

(u - x)dGm,n(u)

I>lkm,n) 100

(u - x)dEk,>.(u)
k==l x

f;; <lim,n) (~(1- Ek+l,A(X)) - x(l - Ek,A(X))) xER,

and for (ii):

Km,n(x)

References

i oo

(u - x)dGm,n(u)

t,(-ly (7)ps t,(_l)i G) i oo

(u - x)dGs-i,m+n-s(U - stl)

t,( -1)s (7)ps ~(_l)i (:) i~sD.(v - (x - stl))dGs-i,m+n-s(V)

~(-lY (7)ps t,(_l)i (:) Ks-i,m+n-s(X - s~) , x E R.
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