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PERFORMANCE ANALYSIS OF ASSEMBLY SYSTEMS *

MARCEL VAN VUURENT AND IVO J. B. F. ADAN¥

Abstract. In this paper we present an approximation for the performana&ysis of assembly systems with finite buffers and
generally distributed service times. The approximation isebaon decomposition of the assembly system in subsystems. Each
subsystem can be described by a finite-state quasi-bidkdaath process, the parameters of which are determined ligrativie
algorithm. Numerical results show that the approximation eately predicts performance characteristics such as thgmutgand
mean sojourn time.
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AMS subject classifications.60K25, 68M20

1. Introduction. Queueing networks with finite buffers have been studiednsktely in the litera-
ture; see, e.g., [3] and [9]. These models have many apipiisain manufacturing, communication and
computer systems. Usually, it is assumed that these netweorisist of single-server or multi-server nodes.
But, in manufacturing systems, it often occurs that difféngarts arrive at a node (machine), where they
are assembled into one product. The performance analyassembly nodes is much more complicated,
and did not receive much attention in the literature. In gaper we study an assembly node in isolation,
with general service times, finite buffers and blockingradervice (BAS), and we propose a method for the
approximative performance analysis. We are interestdtkbisteady-state queue-length distribution of each
buffer; these distributions may be used to determine pexdioce characteristics, such as the throughput
and mean sojourn time.

We consider a queueing system (denoted.bgee Fig. 1.1) assemblingparts into one product. The
parts are labelet, . . . , n. The arrival processes of parts are modeled as follows. Tppets are generated
by a so-called arrival server, denoted by, i = 1, ..., n. For example, in manufacturing systems, arrival
serverM; may typically represent the upstream production line peatytype: parts. Arrival serveiM;
serves one part at a time and is never starved (i.e., thelgdgsa new part available). The generic random
variableS; denotes the service (or inter-arrival) time of ser¥éy; S; is generally distributed with rate;
and coefficient of variation;. After service completion at/;, types parts are put in buffeB;, where they
wait for assembly. The size of buffét; is b;. ServerM; operates according to the BAS blocking protocol:
if upon service completion, buffeB; is full, then serverM; becomes blocked and the finished part waits
until space becomes available in buffgy. The parts in the buffer®,, ..., B,, are assembled into one
product by (assembly) servéi,. The assembly can start as soon as a part of each type iskdwailé
some are not available yet, the other ones can wait in therddgeserver (i.e., they are removed from
the buffer). The generic random varialfe denotes the assembly time of seniy,; S, is generally
distributed with rate:, and coefficient of variation,,.

The method, proposed in this paper, to approximate the wt&ate queue-length distribution of the
buffers is based on decomposition of the assembly systersirtisystems. Each buffer is considered in
isolation, and the interaction with other buffers is inangted in the service time: it consists of a so-called
wait-to-assembly time and the actual assembly time. Théteassembly time reflects that a part may
have to wait for other parts to arrive, and the parameterseoivait-to-assembly time (such as the first two
moments) are determined by an iterative algorithm. In thgsrithm, the inter-arrival times and service
times are approximated by fitting simple phase type didtigbuon the first two moments; then each buffer
can be described by a finite-state quasi-birth-and-deaibegs (QBD), the steady-state distribution of
which can be efficiently determined by matrix-analytic teiciues.

Assembly queueing systems have been studied by severafraudtemachandra and Eedupuganti [6]
look at a fork-join queue in an open system. Rao and Suri [@]kishnamurti et al. [7] also treat a fork-

*This research is supported by the Technology Foundation, &pylied science division of NWO and the technology programme
of the Dutch Ministry of Economic Affairs.

tDepartment of Mathematics and Computer Science, Universifigafinology Eindhoven, P.O. Box 513, 5600 MB, Eindhoven,
The Netherlandsnf v. vuur en@ ue. nl ).

tDepartment of Mathematics and Computer Science, Universifgaiinology Eindhoven, P.O. Box 513, 5600 MB, Eindhoven,
The Netherlandsi(. j . b. f. adan@ ue. nl ).



)

()

FIG. 1.1. A schematic representation of an assembly system.

join queue, but then as a closed system. These referenceleg@pproximations. An exact analysis of an
assembly system is presented by Gold [5]. None of thesearafes, however, consider general inter-arrival
and assembly times, and some of them only look at assemtkymsgdgor two parts.

The paper is organized as follows. In Section 2 we explairdde®mposition of the assembly system
in subsystems. In the section thereafter we take a close dbdke subsystems. Section 4 describes
the iterative algorithm. Numerical results are presente8eéction 5. Finally, Section 6 contains some
concluding remarks.

2. Decomposition of the assembly systeme decompose the original assembly systenmto n
subsystemd., Lo, ..., L,. Subsystenl; describes the processing of typparts in isolation; it consists
of a finite buffer of sizeb;, arrival-serverM; in front of the buffer, and a so-called departure-serisgr
behind the buffer. In Figure 2.1 we show the decompositiomsseEmbly syster in Figure 1.1.

FiG. 2.1. Decomposition of the assembly system in Figure 1.1.

The service time of departure-servBy; consists of two components. The random varidiiel;
denotes the wait-to-assembly time in subsysfemi = 1,...,n. This random variabl&éV A; represents
the time that elapses from the departure of an assembledgiradtil the moment that all parjs+# i are
available for assembly; paitis excluded, because its presence is explicitly modelechbystibsystem.
Note the clock folV A; starts to tick immediately after a departure, irrespeativerhether there is a part
in buffer B; or not; alsoJ¥’ A; maybe equal to zero, namely when the buffBrs j # ¢, are nonempty just
after departure. An important (approximation) assumpisdhat the successive wait-to-assembly times in
subsystent,; areindependent and identically distribute@hus, if it takesA time units for the next pant
to become available, then the next assembly can startiaftef A, W A;} time units. The second part of
the service time of departure serey is the assembly tim§, itself.

In the next section we elaborate further on the subsystems.

3. The subsystems.n this section we describe how the wait-to-assembly tinfessibsysteny.; are
determined, and subsequently, how the steady-state geegit [distribution of subsystemy can be found
by employing matrix-analytic techniques. Crucial to thalgsis is that the distributions of the random
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variables involved are represented by simple phase-tysteitilitions matching the first two moments.
Below we first explain which phase-type distributions wii bsed.

3.1. Two moment fit. We will model the distribution of gositiverandom variable with raté and
coefficient of variatiort as a mixed Erlang distribution with equal rates of the exptiabphases it < 1,
and otherwise, as a Hyperexponential distribution (seg, [&.1]).

More specifically, ifl /k < ¢? < 1/(k—1) for somek = 2, 3, ..., then the rate and squared coefficient
of variation of the Erlang_, ;, distribution with density

tk72 tkfl

_ k—1 —ut o k —ut >
f(t) =pp = + (1 =pu T t>0,
matches with\ andc?, provided the parametegsandy. are chosen as
p ke — {k(1+ ) — k22, = (k- p)A.

T1+e2

If ¢ > 1, then the mean and squared coefficient of variation of theskyponential distribution with
density

f(t) =pure™™" + (1 —pluge ™™, >0

matches with\ andc?, provided the parameters 1, andy, are chosen as

Y P s = 2pA —2(1—p)A
p_2 CQ—Fl ) M1 = 2aPA, M2 = D)A.

Also other parameter choices or other distributions (lie€oxian distribution) may be used to match
the first two moments, but numerical experiments suggesthieaquality of the approximation is fairly
insensitive to the choice of (phase-type) distributions.

3.2. The wait-to-assembly time.As said before, the wait-to-assembly time at subsysferis the
time that elapses from the departure of an assembled pradsabsysteny; until the moment that all
partsj # i are available at the assembly server. Bo4; is the maximum of the residual inter-arrival
timesRA; of the partsj # ¢; note that the residual inter-arrival tindé4; is equal tod when bufferB; is
nonempty just after the departure of the assembled prodactthe next parj is immediately available).
So, we have that

WA; =max RA;.
J#i

Below we determine the first two momentsi®fA; and its probability mass &t

Denote byp. ; the probability that buffeB; is empty just after the departure of an assembled product;
so RA; is positive with probabilityp. ; (and zero otherwise). In Section 3.4 we will determine, facte
subsysteml;, the probabilityp. ; and the first twvo moments of theonditional RA;, i.e., RA; given
that it is positive. Then, by adopting the approximationuaggtion that the random variablésA; are
independentwe have the ingredients to recursively compute the firsthements oV A; and its mass at
0. The computation is based on the following relation for treximum of the first: residual inter-arrival
times:

max, RA; = max{RAy, | Jnax | RA;}. (3.1)

Hence, once the first two moments of the first1 residual inter-arrival times are known, we first condition
on whether the two random variablé&s4;, andmax; <;<,—1 RA; are positive or not; note that, by the
independence assumption,

P A, =0) = 1—pei).
(=0 = 1 0-n
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Then we fit phase-type distributions on the first two momefmtthe conditional random variables (ac-
cording to the recipe of Section 3.1) to compute the first twanmants of their maximum. The exact
computation of the maximum of two independent phase-typtibuted random variables is presented in
the next section.

Thus, by repeated application of (3.1), we can compute tsietflo moments oft’ A;, and its probabil-
ity mass at), denoted by, ;, which immediately follows from the assumption that thedam variables
RA; are independent, yielding

Pnei = H(l - pe,j)-
J#i
A representation of¥/ A; is shown in Figure 3.1, wher®” AC; is the conditional wait-to-assembly

time. The distribution of” AC; is approximated by a phase-type distribution, matchingjris two mo-
ments,

E(WA,)

E(WAC;) = m, (3.2)
2

E(WAC?) = HE(W;A"). (3.3)
— Pne,i

FiG. 3.1.The wait-to-assembly time of subsystem

3.3. The maximum of two phase-type random variableslin this section we calculate the first two
moments of the maximum of two independent Erlang distridbutendom variables. Lek; denote an
Erlang;, distributed random variable with scale parametgri = 1,2, and assume thdf; and E; are
independent. The maximum @, and F5 is phase-type distributed, the first (random) number of expo
nential phase have ratg + po. These phases are followed by a (random) number of exp@h@htises
with ratey; or rateus, depending on which of the random variablesand E; finishes first. Let; ; with
0 < j < ko — 1 be the probability thatls has completed phases wheiv; completes its final phase, and
similarly, letg, ; with 0 < i < k; —1 be the probability thak/; has completedphases whet; completes
its final phase. It is easily verified that ; andg, ; both follow a Negative Binomial distribution, i.e.,

. j k
ql,:(k1_1+]>( e >J< = )1 0<j<hs—1
7 ki —1 1+ o M1+ o ’ U 7

. 7 k
ky — 1 2
QZ,Z‘:(2 H)( A )( et ) L 0<i<h —1.
ko —1 p1 + e p1 + e

Conditioned on the event that, finishes first andt; has then completefiphases, the maximum of
E, and Es is Erlang distributed wittk; + ko phases, the first; + j of which have rate:; + uo and the
lastky — j have rateus. Let M ; denote this conditional maximum, then

ki+j +k2*j

B1 + 2 po

(k1 +) ki +5+1) | (b +j)(k2—j)+(k2—j)(k2—j+1)
(11 + p2)? (1 + p2) o I

EM; =

EM?; =
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Similarly, let M, ; denote the maximum oF; and E», conditioned on the event thak finishes first
andE; has then completedphases. For the first two momentsiaf, ; we have

ko +1 ki —1

EM;; = + ,
M1+ 2 11
ki+5)(kt+5+1 ki+j5)(ks— 3 ko —g) (ke —j+1
gz, = b4+ 1) (b)), e = )ba =i+ 1)
' (11 + p2) (11 + p2)p2 H3

The first two moments of the maximum &f and E,; can now easily be computed by conditioning on
the above events, yielding

ko—1 ki1—1

E(max{E1, E2}) = Y q1;EMy;+ Y q2.EMy;,
=0 i=0
ko—1 k1—1
E(max{Ey, E2}?) = > qEMP; + > o EM3,.
=0 i=0

Note that, if £, and E are both probabilistic mixtures of Erlang random variabthen the first two
moments of the maximum df; andE5 can be computed from the above equations by conditioning®n t
composition of the maximum.

3.4. Subsystem analysisIn this subsection we analyze substém(and in the remainder of this sec-
tion we drop the subscrig). The conditional wait-to-assembly tim& AC' in the subsystem is represented
by a phase-type random variable, the first two moments of wimiatch (3.2) and (3.3). Further, we also
fit simple phase-type distributions (according to the reéipSection 3.1) on the first two moments of the
service timeS of the arrival server, the assembly tirfig. In doing so, the subsystem can be described by
a finite state Markov process, with statesj, k). The state variablédenotes the total number of parts in
the subsystem (at the assembly server or waiting in the uffaus,: is at least and at mosb + 1. The
state variablg indicates the phase of the service tisi®f the arrival server, and indicates the phase of
the residence tim@/’ A + S, at the assembly server.

To define the generator of the Markov process we use the Kkenecoduct: IfA is ann; x ne matrix
andB is annz x n4 matrix, the Kronecker product ® B is defined by

A(l,1)B  --- A(1,n2)B
A® B = : :
A(ny,1)B --- A(ny,n2)B

By ordering the states lexicographically and partitionthg state space into levels1,...,b + 1,

where level; is the set of all states withcustomers in the system, it is immediately seen that the 8ark
process is a QBD, the generat@rof which has the following form:

Boo  Box
By A1 Ay
Q- =
. A
Ay Ay Cyo
Cor Coo

Below we specify the submatrices . To describe the service processes of the arrival server and
assembly server we use the concept of a Markovian Arrivatéa® (MAP); see [1]. In general, a MAP is
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defined in terms of a continuous-time Markov process witlidistate spacf), - - - ,m — 1} and generator
Go + G1. The elements, (; ;) denotes the intensity of transitions franto j accompanied by an arrival,
whereas fori # j elementG) (; ; denotes the intensity of the remaining transitions frota j and the
diagonal element& (; ;) are negative and chosen such that the row sunigof G are zero.

The service process of the arrival server can be straigiiaily represented by a MAP, the states of
which correspond the phases of the service tlinéts generator can be expressed4d, + AR;, where
the transition rates il R, are the ones that do correspond to a service completionanerrival in the
buffer. Hence, imQ, the transitions ind R, lead to a transition from levelto ¢ + 1, whereas the ones in
ARy correspond to transitions within level

The MAP for the service process of the assembly server wiltlégcribed in more detail. Let us
assume that the distribution of the conditional wait-tseasbly timell’ AC can be represented by a phase-
type distribution withn,,.. phases, numberdd. . ., n...; the rate of phaseis v; andp; is the probability
to proceed to phaset 1, and1 — p; is the probability that the wait-to-assembly time is finidh&imilarly,
the distribution of the assembly tint, can be represented by a phase-type distribution mjthphases,
with ratesy; and transition probabilities;, ¢ = 1,...,n,,. Now the states of the MAP are numbered
1,...,nwac+ns,, and its generator can be expressed@$ + D £, where the transition rates InE; are
the ones corresponding to a service completion, i.e., artlgpdrom the system. So, i@, the transitions
in DFE; lead to a transition from levélto i — 1, whereas the ones iR E, correspond to transitions within
leveli. The non-zero elements &fEy and D E; are specified below.

DEy(i,i) = —v;, 1=1,..., Nwaes
DEy(i,i+ 1) = piv;, i=1,..., %ac — 1,
DEy(i,npac + 1) = (1 pz)uq;, i=1,..., Nwac
DEy(i,i) = i = Nwac+ 1,y Nwae + Ns,, 5
DEFEy(i, Z+1)—qz,uz7 i = Nae + 1, ..., Nwae + 15, — 1,
DE(i,1) = (1 = pne)(1 = @i)tis @ = Nwac + 1, -+, Nwpac + N,y

DE, (Z Nwac + 1) pne( QL)UH 1= Nyac + 1.+, Nwac + Ns,, -

Now we can describe the submatrice€in The transition rates from levels< i < b are given by

Ao = AR, ® I"wac"!‘nsa’
Al = ARO & Inwac-‘rnsa + Ina & DE07
Ay =1, ® DEY,

wherel,, is the identity matrix of size.

If the subsystem is empty and the wait-to-assembly timeseldpthe assembly can not start yet (but
has to wait for a part to arrive). This implies that the tréiosi rates from leveD are slightly different
from the ones at higher levels. Therefore, we introduce thaue matrixD E of Size nyae + ns,. The
transitions from states, . . . , n,4. remain the same, but now,,..+1 is an absorbing state, indicating that
the wait-to-assembly time has been finished. The non-zemasits ofDE,, are

I/EO(ZJ) =~V t=1,..., Nwac,
DEy(i,i+1) = pv;, i=1,... Nwae — 1,
DE (i, nepae + 1) = (1 — p;)vi, i=1,..., Nwae

Hence, for the transition rates at levalve have



BOl = ARl ® Inwac+nsa»
By = ARy ® Inwetns, T1In, ® Z)\an
By =1,, ® DE,,

Finally, we have

COl = ARl oy Inwac-‘rnsa:
Coo = I, ® DEy,
Cio=1In, ® DEy,

This completes the description of the QBD. The steady-steteibution can be determined by the
matrix geometric method. More specifically, we use the effittechniques developed by Latouche and
Ramaswami [8], and Naoumov et al. [10]. If we denote the daiilm probability vector of level by p;,
thenp, has a matrix-geometric form

m=x1 R+ xbRb_i, i=1,...,b. (3.4)
Here, R is the minimal nonnegative solution of matrix-quadratic&iipn
Ay + RA; + R*A; =0,
and R is the minimal nonnegative solution of equation
Ay + RA, + R*Ap = 0.

The matricesk and R are determined by using an iterative algorithm developetiiagumov et al.
[10]. The algorithm forR is listed in Figure 3.2.

iy

Q_SZL—‘Z
|
e

-
Hh e se ee o

~ 5
j=p
=
=
[0
[oN
=
h
Vv
m

ZL—'NZS% N KX
e e o Hh o oee o

R := -AW’

FiG. 3.2. Algorithm of Naoumov et al. [10] for finding the rate matii¥ where||.|| denotes a matrix-norm andsome positive
number.



The final step is to determing andz;,. The balance equations at the boundary lepelsb andb + 1
are given by

0 = moBoo + 71 B1o,

0= moBo1 + m1 Ay + m2As,

0 =mp_140 + A1 + my41Con,
0 = m,C10 + mp4-1Coo-

Eliminatingmy, andr;; from the equations above, and then substituting the for#) (8r 7, and,
yields

0=21(A; + RAy — B1oBag' Bo1) + (R ™1 A; + R*“2 Ay — R* ' BBy, Boi,
0= LUl(Rb72A0 + Rb71A1 — RbileC&fC’m) + (Eb(]:?AQ + A — C’lgC&fC’m.

These equations have, together with the normalizationteya unique solution:; andxy.

From the queue-length distribution we can readily derivdgumance measures, such as throughput,
mean buffer content and mean sojourn time (where the sojouenis the time that elapses from arrival in
the buffer until service completion at the assembly sen&lgo, the probabilityp. that the buffer is empty
just after a departure and the distribution of the condélamsidual inter-arrival timé&? A|RA > 0 can be
obtained; namely

_ mBye
Pe = T
wheree is a vector of ones and is the throughput. The probability vect@% yields the distribution
of the phase of the inter-arrival tinfejust after a departure leaving behind an empty buffer, and ithcan
be used to determine the distribution, and the first two mdsnenparticular, of the conditional residual
inter-arrival time.

4. The iterative algorithm. We now describe the iterative algorithm for approximatihg tharac-
teristics of the assembly system The algorithm is based on the decomposition.ah n subsystems

Ly, Ls,...,L,. Before going into detail in Section 4.2, we present theioatbf the algorithm in Section
4.1.

4.1. Outline of the algorithm.
e Step 0: Choose initial characteristics of the wait-to-agdg time for each subsystem, ..., L,,.

e Step 1: For each subsystelm,: = 1,...,n: Determinep,.; and the first two moments of
WAC;.

e Step 2: For each subsystdm, i = 1, ..., n: Determine the queue-length distribution.
e Repeat Step 1 and 2 until the characteristics of the wagiseembly times have converged.

4.2. Details of the algorithm.

Step 0: Initialization

The first step of the algorithm is to initially assume that tha&it-to-assembly times are zero. This
means that the probabilitigs ; are set ta). More sophisticated initializations, allowing faster gen
gence, are probably possible, but the present initiabmegiready works well.

Step 1: The wait-to-assembly times

By using the probabilitieg. ; that buffer; is empty just after a departure and the first two moments
of the conditional residual inter-arrival times (obtairfez the initialization or the previous iteration), we
determine for subsystei; the (new) first two moments of the wait-to-assembly time asdniass ab (as



described in Section 3.2).

Step 1 is performed for each subsystémi = 1,...,n.

Step 2: Analysis of subsystend;

Based on the (new) estimates for the first two moments and éiss af) of the wait-to-assembly time,
we determine the steady-state queue length distributienldystend.;, as described in Section 3.4.

Then, by using the steady-state queue length distributvercalculate the probability, ; that buffer
B; is empty just after a departure and the conditional resioht@t-arrival time, as well as the performance
characteristics such as throughput and mean sojourn time.

Step 2 is performed for each subsystémi = 1,...,n.

After completion of Step 1 and 2 we check whether the iteeadigorithm has converged or not. This
can be done by comparing the new estimates for the prohbebilif ; with the ones from the previous
iteration. If the sum of the absolute values of the diffeenbetween these estimates is less thahe
algorithm stops; otherwise Step 1 and 2 are repeated.

Of course, other stop-criteria may be used as well; for exanme may consider the throughput in-
stead of the probabilities. ;. Bottom line is that we go on until 'nothing’ changes anymore

Remark: In all experiments we observed that the throughput of eatheofubsystem converged, and
that all throughputs converged to exactly the same valuaveder, we have not been able to rigorously
prove that all throughputs converge to the same value.

5. Numerical Results. To investigate the quality of the proposed approximationcemmpare, for a
large number of cases, the estimates for the mean sojouendiraach part and the throughput with the
ones produced by discrete-event simulation. We are edlyerriterested in investigating under which
circumstances the approximation method gives satisfygsglts. Each simulation run is sufficiently long
such that the widths of the 95% confidence intervals of themssgourn time and the throughput are
smaller than 1%.

We use a broad set of parameters for the tests. The averageedenes of the arrival servers are all
1. The number of parts in the assembly system is varied bet&eé and 8. All buffers have the same
size, which is varied between 0, 2, 4, and 8. The average &bgdime of the assembly server is varied
betweer).75 and1, and the squared coefficient of variation (SCV) of the asdgtithe is varied between
0.5 and1. We consider balanced and imbalanced systems. In the leal@ases we set the service rates of
the arrival servers all to 1. Also the SCV of the service timesach arrival server is the same and is varied
between 0.2, 0.5, 1 and 2. We further investigate two kindsiblance. We test imbalance in the average
service times of the arrival servers by making the first atrserverl /3 faster then the last one, and by
letting the service rates of the arrival servers in betwdwmge linearly (such that the overall service rate is
maintained at 1). For example, in case of 4 arrival servergetservice rate®.857,0.952,1.048, 1.143).
Imbalance in the SCV of the service times of the arrival senig tested in the same way, but now the
SCV of the service time of the last server is three times th¥ 8{the first server and where the SCVs
of the service times of the arrival servers in between chdingarly (such that the average SCV over the
arrival servers is equal to one of SCVs mentioned above ®ib#lanced cases). This leads to a total of
42243 = 768 test cases. The results for each category are summarizeabla I. Each (sub)table lists
the average error in the throughput and the mean sojourrs o pared with simulation results. Table 2
summarizes all cases with the average errors and for 3 emngies the percentage of the cases which fall
in that range.
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ErrorinT | ErrorinS

Imb. SCV
no 1.46 % 2.68 %
yes 1.49% 2.85%

Imb. mean
no 1.74% 3.01%
yes 1.21% 2.52%

No. parts
2 0.61% 1.53%
4 1.37% 2.72%
8 2.44 % 4.04 %

Buffers
0 2.35% 3.29%
2 1.68 % 2.58 %
4 1.05% 2.09 %
8 0.82% 3.10%

Occ. rate
0.75 1.34% 297 %
1 1.61% 2.56 %

SCV as. ser.
0.5 1.24% 2.47%
1 1.71% 3.06 %

SCV ar. ser.
0.2 1.99 % 4.33%
0.5 1.52 % 2.86 %
1 1.30 % 2.22%
2 1.09 % 1.65 %

TABLE 5.1

Results for the assembly system with one parameter fixed.

Perf. char. Avg. 0-5% | 5-10% | >10%
Throughput 15% | 97.4% 26% 0.0%
Mean sojourntime| 2.8% | 84.9% | 13.4% 1.7%
TABLE 5.2
Overall results for the assembly system.

Overall we can conclude from the above results that the appagion method works very well. The
average error in the throughput is around 1.5 % and the azemagr in the mean sojourn time is around
2.8 %.

Now let us take a look at the results in more detail. If we lobRable 1, we see that the quality of
the results for the throughput and mean sojourn times amyrinaensitive to both types of imbalance, the
occupation rate and the SCV of the assembly system. We seashexpected, the errors get higher when
the number of parts increases. Also, the approximationigisethe throughput best when the buffers are
large, the errors in the mean sojourn times are almost iitsenf®r changes in the buffersizes. Finally, the
approximation is slightly better when the SCV of servicedswf the arrival servers are higher. Note that
all these results are still highly acceptable.

In Table 2 we see that the error in the throughput is almosaydwvithin5%, which is very reliable
and robust. For the mean sojourn the times the approximgties slightly higher errors, but almost all
cases are within0%.

6. Concluding remarks. In this paper we developed an algorithm for approximatingassembly
gueueing system with general arrival and service times. $&ed a decomposition approach and developed
an iterative algorithm to approximate the performance attaristics of the assembly queue. Therefore,
we accurately determine the characteristics of the wastssembly time at a queue. The queue-length
distributions of the subsystems are determined by usingtexnggegometric method.

We tested the algorithm by comparing it with a discrete-e@@mulation and the results are very
promising. After testing many cases, we concluded that Yleeage errors in the throughput are around
1.5% and the errors in the mean sojourn time are ard@#dThe next step is to incorporate this algorithm
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in a network setting.
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