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PERFORMANCE ANALYSIS OF ASSEMBLY SYSTEMS ∗

MARCEL VAN VUUREN† AND IVO J. B. F. ADAN‡

Abstract. In this paper we present an approximation for the performance analysis of assembly systems with finite buffers and
generally distributed service times. The approximation is based on decomposition of the assembly system in subsystems. Each
subsystem can be described by a finite-state quasi-birth-and-death process, the parameters of which are determined by an iterative
algorithm. Numerical results show that the approximation accurately predicts performance characteristics such as throughput and
mean sojourn time.
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1. Introduction. Queueing networks with finite buffers have been studied extensively in the litera-
ture; see, e.g., [3] and [9]. These models have many applications in manufacturing, communication and
computer systems. Usually, it is assumed that these networks consist of single-server or multi-server nodes.
But, in manufacturing systems, it often occurs that different parts arrive at a node (machine), where they
are assembled into one product. The performance analysis ofassembly nodes is much more complicated,
and did not receive much attention in the literature. In thispaper we study an assembly node in isolation,
with general service times, finite buffers and blocking after service (BAS), and we propose a method for the
approximative performance analysis. We are interested in the steady-state queue-length distribution of each
buffer; these distributions may be used to determine performance characteristics, such as the throughput
and mean sojourn time.

We consider a queueing system (denoted byL; see Fig. 1.1) assemblingn parts into one product. The
parts are labeled1, . . . , n. The arrival processes of parts are modeled as follows. Typei parts are generated
by a so-called arrival server, denoted byMi, i = 1, . . . , n. For example, in manufacturing systems, arrival
serverMi may typically represent the upstream production line producing typei parts. Arrival serverMi

serves one part at a time and is never starved (i.e., there is always a new part available). The generic random
variableSi denotes the service (or inter-arrival) time of serverMi; Si is generally distributed with rateµi

and coefficient of variationci. After service completion atMi, typei parts are put in bufferBi, where they
wait for assembly. The size of bufferBi is bi. ServerMi operates according to the BAS blocking protocol:
if upon service completion, bufferBi is full, then serverMi becomes blocked and the finished part waits
until space becomes available in bufferBi. The parts in the buffersB1, . . . , Bn are assembled into one
product by (assembly) serverMa. The assembly can start as soon as a part of each type is available. If
some are not available yet, the other ones can wait in the assembly server (i.e., they are removed from
the buffer). The generic random variableSa denotes the assembly time of serverMa; Sa is generally
distributed with rateµa and coefficient of variationca.

The method, proposed in this paper, to approximate the steady-state queue-length distribution of the
buffers is based on decomposition of the assembly system into subsystems. Each buffer is considered in
isolation, and the interaction with other buffers is incorporated in the service time: it consists of a so-called
wait-to-assembly time and the actual assembly time. The wait-to-assembly time reflects that a part may
have to wait for other parts to arrive, and the parameters of the wait-to-assembly time (such as the first two
moments) are determined by an iterative algorithm. In this algorithm, the inter-arrival times and service
times are approximated by fitting simple phase type distribution on the first two moments; then each buffer
can be described by a finite-state quasi-birth-and-death process (QBD), the steady-state distribution of
which can be efficiently determined by matrix-analytic techniques.

Assembly queueing systems have been studied by several authors. Hemachandra and Eedupuganti [6]
look at a fork-join queue in an open system. Rao and Suri [2] and Krishnamurti et al. [7] also treat a fork-
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FIG. 1.1.A schematic representation of an assembly system.

join queue, but then as a closed system. These references develop approximations. An exact analysis of an
assembly system is presented by Gold [5]. None of these references, however, consider general inter-arrival
and assembly times, and some of them only look at assembly systems for two parts.

The paper is organized as follows. In Section 2 we explain thedecomposition of the assembly system
in subsystems. In the section thereafter we take a close lookat the subsystems. Section 4 describes
the iterative algorithm. Numerical results are presented in Section 5. Finally, Section 6 contains some
concluding remarks.

2. Decomposition of the assembly system.We decompose the original assembly systemL into n
subsystemsL1, L2, . . . , Ln. SubsystemLi describes the processing of typei parts in isolation; it consists
of a finite buffer of sizebi, arrival-serverMi in front of the buffer, and a so-called departure-serverDi

behind the buffer. In Figure 2.1 we show the decomposition ofassembly systemL in Figure 1.1.
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FIG. 2.1.Decomposition of the assembly system in Figure 1.1.

The service time of departure-serverDi consists of two components. The random variableWAi

denotes the wait-to-assembly time in subsystemLi, i = 1, . . . , n. This random variableWAi represents
the time that elapses from the departure of an assembled product until the moment that all partsj 6= i are
available for assembly; parti is excluded, because its presence is explicitly modeled by the subsystem.
Note the clock forWAi starts to tick immediately after a departure, irrespectiveof whether there is a part
in bufferBi or not; also,WAi maybe equal to zero, namely when the buffersBj , j 6= i, are nonempty just
after departure. An important (approximation) assumptionis that the successive wait-to-assembly times in
subsystemLi areindependent and identically distributed. Thus, if it takesA time units for the next parti
to become available, then the next assembly can start aftermax{A,WAi} time units. The second part of
the service time of departure serverDi is the assembly timeSa itself.

In the next section we elaborate further on the subsystems.

3. The subsystems.In this section we describe how the wait-to-assembly times of subsystemLi are
determined, and subsequently, how the steady-state queue length distribution of subsystemLi can be found
by employing matrix-analytic techniques. Crucial to the analysis is that the distributions of the random
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variables involved are represented by simple phase-type distributions matching the first two moments.
Below we first explain which phase-type distributions will be used.

3.1. Two moment fit. We will model the distribution of apositiverandom variable with rateλ and
coefficient of variationc as a mixed Erlang distribution with equal rates of the exponential phases ifc2 ≤ 1,
and otherwise, as a Hyperexponential distribution (see, e.g., [11]).

More specifically, if1/k ≤ c2 ≤ 1/(k−1) for somek = 2, 3, . . ., then the rate and squared coefficient
of variation of the Erlangk−1,k distribution with density

f(t) = pµk−1 tk−2

(k − 2)!
e−µt + (1 − p)µk tk−1

(k − 1)!
e−µt, t ≥ 0,

matches withλ andc2, provided the parametersp andµ are chosen as

p =
1

1 + c2
[kc2 − {k(1 + c2) − k2c2}1/2], µ = (k − p)λ.

If c2 > 1, then the mean and squared coefficient of variation of the Hyperexponential distribution with
density

f(t) = pµ1e
−µ1t + (1 − p)µ2e

−µ2t, t ≥ 0

matches withλ andc2, provided the parametersp, µ1 andµ2 are chosen as

p =
1

2

(
1 +

√
c2 − 1

c2 + 1

)
, µ1 = 2pλ, µ2 = 2(1 − p)λ.

Also other parameter choices or other distributions (like the Coxian distribution) may be used to match
the first two moments, but numerical experiments suggest that the quality of the approximation is fairly
insensitive to the choice of (phase-type) distributions.

3.2. The wait-to-assembly time.As said before, the wait-to-assembly time at subsystemLi is the
time that elapses from the departure of an assembled productin subsystemLi until the moment that all
partsj 6= i are available at the assembly server. So,WAi is the maximum of the residual inter-arrival
timesRAj of the partsj 6= i; note that the residual inter-arrival timeRAj is equal to0 when bufferBj is
nonempty just after the departure of the assembled product (i.e., the next partj is immediately available).
So, we have that

WAi = max
j 6=i

RAj .

Below we determine the first two moments ofWAi and its probability mass at0.
Denote bype,j the probability that bufferBj is empty just after the departure of an assembled product;

soRAj is positive with probabilitype,j (and zero otherwise). In Section 3.4 we will determine, for each
subsystemLj , the probabilitype,j and the first two moments of theconditionalRAj , i.e., RAj given
that it is positive. Then, by adopting the approximation assumption that the random variablesRAj are
independent, we have the ingredients to recursively compute the first twomoments ofWAi and its mass at
0. The computation is based on the following relation for the maximum of the firstk residual inter-arrival
times:

max
1≤j≤k

RAj = max{RAk, max
1≤j≤k−1

RAj}. (3.1)

Hence, once the first two moments of the firstk−1 residual inter-arrival times are known, we first condition
on whether the two random variablesRAk andmax1≤j≤k−1 RAj are positive or not; note that, by the
independence assumption,

P ( max
1≤j≤k−1

RAj = 0) =
∏

1≤j≤k−1

(1 − pe,j).
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Then we fit phase-type distributions on the first two moments of the conditional random variables (ac-
cording to the recipe of Section 3.1) to compute the first two moments of their maximum. The exact
computation of the maximum of two independent phase-type distributed random variables is presented in
the next section.

Thus, by repeated application of (3.1), we can compute the first two moments ofWAi, and its probabil-
ity mass at0, denoted bypne,i, which immediately follows from the assumption that the random variables
RAj are independent, yielding

pne,i =
∏

j 6=i

(1 − pe,j).

A representation ofWAi is shown in Figure 3.1, whereWACi is the conditional wait-to-assembly
time. The distribution ofWACi is approximated by a phase-type distribution, matching itsfirst two mo-
ments,

E(WACi) =
E(WAi)

1 − pne,i
, (3.2)

E(WAC2
i ) =

E(WA2
i )

1 − pne,i
. (3.3)

0

W A C i1 - p n e , i

p n e , i

W A i :

FIG. 3.1.The wait-to-assembly time of subsystemLi.

3.3. The maximum of two phase-type random variables.In this section we calculate the first two
moments of the maximum of two independent Erlang distributed random variables. LetEi denote an
Erlangki

distributed random variable with scale parameterµi, i = 1, 2, and assume thatE1 andE2 are
independent. The maximum ofE1 andE2 is phase-type distributed, the first (random) number of expo-
nential phase have rateµ1 + µ2. These phases are followed by a (random) number of exponential phases
with rateµ1 or rateµ2, depending on which of the random variablesE1 andE2 finishes first. Letq1,j with
0 ≤ j ≤ k2 − 1 be the probability thatE2 has completedj phases whenE1 completes its final phase, and
similarly, letq2,i with 0 ≤ i ≤ k1−1 be the probability thatE1 has completedi phases whenE2 completes
its final phase. It is easily verified thatq1,j andq2,i both follow a Negative Binomial distribution, i.e.,

q1,j =

(
k1 − 1 + j

k1 − 1

)(
µ2

µ1 + µ2

)j (
µ1

µ1 + µ2

)k1

, 0 ≤ j ≤ k2 − 1,

q2,i =

(
k2 − 1 + i

k2 − 1

)(
µ1

µ1 + µ2

)i(
µ2

µ1 + µ2

)k2

, 0 ≤ i ≤ k1 − 1.

Conditioned on the event thatE1 finishes first andE2 has then completedj phases, the maximum of
E1 andE2 is Erlang distributed withk1 + k2 phases, the firstk1 + j of which have rateµ1 + µ2 and the
lastk2 − j have rateµ2. Let M1,j denote this conditional maximum, then

EM1,j =
k1 + j

µ1 + µ2
+

k2 − j

µ2
,

EM2
1,j =

(k1 + j)(k1 + j + 1)

(µ1 + µ2)2
+

(k1 + j)(k2 − j)

(µ1 + µ2)µ2
+

(k2 − j)(k2 − j + 1)

µ2
2

.
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Similarly, letM2,i denote the maximum ofE1 andE2, conditioned on the event thatE2 finishes first
andE1 has then completedi phases. For the first two moments ofM2,i we have

EM2,i =
k2 + i

µ1 + µ2
+

k1 − i

µ1
,

EM2
2,i =

(k1 + j)(k1 + j + 1)

(µ1 + µ2)2
+

(k1 + j)(k2 − j)

(µ1 + µ2)µ2
+

(k2 − j)(k2 − j + 1)

µ2
2

.

The first two moments of the maximum ofE1 andE2 can now easily be computed by conditioning on
the above events, yielding

E(max{E1, E2}) =

k2−1∑

j=0

q1,jEM1,j +

k1−1∑

i=0

q2,iEM2,i,

E(max{E1, E2}
2) =

k2−1∑

j=0

q1,jEM2
1,j +

k1−1∑

i=0

q2,iEM2
2,i.

Note that, ifE1 andE2 are both probabilistic mixtures of Erlang random variables, then the first two
moments of the maximum ofE1 andE2 can be computed from the above equations by conditioning on the
composition of the maximum.

3.4. Subsystem analysis.In this subsection we analyze substemLj (and in the remainder of this sec-
tion we drop the subscriptj). The conditional wait-to-assembly timeWAC in the subsystem is represented
by a phase-type random variable, the first two moments of which match (3.2) and (3.3). Further, we also
fit simple phase-type distributions (according to the recipe in Section 3.1) on the first two moments of the
service timeS of the arrival server, the assembly timeSa. In doing so, the subsystem can be described by
a finite state Markov process, with states(i, j, k). The state variablei denotes the total number of parts in
the subsystem (at the assembly server or waiting in the buffer). Thus,i is at least0 and at mostb + 1. The
state variablej indicates the phase of the service timeS of the arrival server, andk indicates the phase of
the residence timeWA + Sa at the assembly server.

To define the generator of the Markov process we use the Kronecker product: IfA is ann1×n2 matrix
andB is ann3 × n4 matrix, the Kronecker productA ⊗ B is defined by

A ⊗ B =




A(1, 1)B · · · A(1, n2)B
...

...
A(n1, 1)B · · · A(n1, n2)B


 .

By ordering the states lexicographically and partitioningthe state space into levels0, 1, . . . , b + 1,
where leveli is the set of all states withi customers in the system, it is immediately seen that the Markov
process is a QBD, the generatorQ of which has the following form:

Q =




B00 B01

B10 A1 A0

A2
.. .

. . .
.. .

. . . A0

A2 A1 C10

C01 C00




Below we specify the submatrices inQ. To describe the service processes of the arrival server and
assembly server we use the concept of a Markovian Arrival Process (MAP); see [1]. In general, a MAP is
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defined in terms of a continuous-time Markov process with finite state space{0, · · · ,m−1} and generator
G0 + G1. The elementG1,(i,j) denotes the intensity of transitions fromi to j accompanied by an arrival,
whereas fori 6= j elementG0,(i,j) denotes the intensity of the remaining transitions fromi to j and the
diagonal elementsG0,(i,i) are negative and chosen such that the row sums ofG0 + G1 are zero.

The service process of the arrival server can be straightforwardly represented by a MAP, the states of
which correspond the phases of the service timeS. Its generator can be expressed asAR0 + AR1, where
the transition rates inAR1 are the ones that do correspond to a service completion, i.e., an arrival in the
buffer. Hence, inQ, the transitions inAR1 lead to a transition from leveli to i + 1, whereas the ones in
AR0 correspond to transitions within leveli.

The MAP for the service process of the assembly server will bedescribed in more detail. Let us
assume that the distribution of the conditional wait-to-assembly timeWAC can be represented by a phase-
type distribution withnwac phases, numbered1, . . . , nwac; the rate of phasei is νi andpi is the probability
to proceed to phasei+1, and1− pi is the probability that the wait-to-assembly time is finished. Similarly,
the distribution of the assembly timeSa can be represented by a phase-type distribution withnsa

phases,
with ratesµi and transition probabilitiesqi, i = 1, . . . , nsa

. Now the states of the MAP are numbered
1, . . . , nwac+nsa

, and its generator can be expressed asDE0+DE1, where the transition rates inDE1 are
the ones corresponding to a service completion, i.e., a departure from the system. So, inQ, the transitions
in DE1 lead to a transition from leveli to i− 1, whereas the ones inDE0 correspond to transitions within
level i. The non-zero elements ofDE0 andDE1 are specified below.

DE0(i, i) = −νi, i = 1, . . . , nwac,

DE0(i, i + 1) = piνi, i = 1, . . . , nwac − 1,

DE0(i, nwac + 1) = (1 − pi)νi, i = 1, . . . , nwac,

DE0(i, i) = −µi, i = nwac + 1, . . . , nwac + nsa
,

DE0(i, i + 1) = qiµi, i = nwac + 1, . . . , nwac + nsa
− 1,

DE1(i, 1) = (1 − pne)(1 − qi)µi, i = nwac + 1, . . . , nwac + nsa
,

DE1(i, nwac + 1) = pne(1 − qi)µi, i = nwac + 1, . . . , nwac + nsa
.

Now we can describe the submatrices inQ. The transition rates from levels1 ≤ i ≤ b are given by

A0 = AR1 ⊗ Inwac+nsa
,

A1 = AR0 ⊗ Inwac+nsa
+ Ina

⊗ DE0,

A2 = Ina
⊗ DE1,

whereIn is the identity matrix of sizen.
If the subsystem is empty and the wait-to-assembly time elapsed, the assembly can not start yet (but

has to wait for a part to arrive). This implies that the transition rates from level0 are slightly different
from the ones at higher levels. Therefore, we introduce the square matrixD̃E0 of sizenwac + nsa

. The
transitions from states1, . . . , nwac remain the same, but nownwac+1 is an absorbing state, indicating that
the wait-to-assembly time has been finished. The non-zero elements ofD̃E0 are

D̃E0(i, i) = −νi, i = 1, . . . , nwac,

D̃E0(i, i + 1) = piνi, i = 1, . . . , nwac − 1,

D̃E0(i, nwac + 1) = (1 − pi)νi, i = 1, . . . , nwac.

Hence, for the transition rates at level0 we have
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B01 = AR1 ⊗ Inwac+nsa
,

B00 = AR0 ⊗ Inwac+nsa
+ Ina

⊗ D̃E0,

B10 = Ina
⊗ DE1,

Finally, we have

C01 = AR1 ⊗ Inwac+nsa
,

C00 = Ina
⊗ DE0,

C10 = Ina
⊗ DE1,

This completes the description of the QBD. The steady-statedistribution can be determined by the
matrix geometric method. More specifically, we use the efficient techniques developed by Latouche and
Ramaswami [8], and Naoumov et al. [10]. If we denote the equilibrium probability vector of leveli by pi,
thenpi has a matrix-geometric form

πi = x1R
i−1 + xbR̂

b−i, i = 1, . . . , b. (3.4)

Here,R is the minimal nonnegative solution of matrix-quadratic equation

A0 + RA1 + R2A2 = 0,

andR̂ is the minimal nonnegative solution of equation

A2 + R̂A1 + R̂2A0 = 0.

The matricesR andR̂ are determined by using an iterative algorithm developed byNaoumov et al.
[10]. The algorithm forR is listed in Figure 3.2.

N  : =  A 1
L  : =  A 0
M  : =  A 2
W  : =  A 1
d i f  : =  1

w h i l e  d i f  >  e
{
   X  : =  - N - 1 L
   Y  : =  - N - 1 M
   Z  : =  L Y
   d i f  : =  | | Z | |
   W  : =  W  +  Z
   N  : =  N  +  Z  +  M X
   Z  : =  L X
   L  : =  M Y
   M  : =  Z
}
R  : =  - A 0 W - 1

FIG. 3.2.Algorithm of Naoumov et al. [10] for finding the rate matrixR, where‖.‖ denotes a matrix-norm andǫ some positive
number.
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The final step is to determinex1 andxb. The balance equations at the boundary levels0, 1, b andb + 1
are given by

0 = π0B00 + π1B10,

0 = π0B01 + π1A1 + π2A2,

0 = πb−1A0 + πbA1 + πb+1C01,

0 = πbC10 + πb+1C00.

Eliminatingπ0 andπb+1 from the equations above, and then substituting the form (3.4) for π1 andπb

yields

0 = x1(A1 + RA2 − B10B
−1
00 B01) + xb(R̂

b−1A1 + R̂b−2A2 − R̂b−1B10B
−1
00 B01,

0 = x1(R
b−2A0 + Rb−1A1 − Rb−1C10C

−1
00 C01) + xb(R̂A0 + A1 − C10C

−1
00 C01.

These equations have, together with the normalization equation, a unique solutionx1 andxb.
From the queue-length distribution we can readily derive performance measures, such as throughput,

mean buffer content and mean sojourn time (where the sojourntime is the time that elapses from arrival in
the buffer until service completion at the assembly server). Also, the probabilitype that the buffer is empty
just after a departure and the distribution of the conditional residual inter-arrival timeRA|RA > 0 can be
obtained; namely

pe =
π1B10e

T
,

wheree is a vector of ones andT is the throughput. The probability vectorπ1B10

π1B10e yields the distribution
of the phase of the inter-arrival timeS just after a departure leaving behind an empty buffer, and thus it can
be used to determine the distribution, and the first two moments in particular, of the conditional residual
inter-arrival time.

4. The iterative algorithm. We now describe the iterative algorithm for approximating the charac-
teristics of the assembly systemL. The algorithm is based on the decomposition ofL in n subsystems
L1, L2, . . . , Ln. Before going into detail in Section 4.2, we present the outline of the algorithm in Section
4.1.

4.1. Outline of the algorithm.
• Step 0: Choose initial characteristics of the wait-to-assembly time for each subsystemL1, . . . , Ln.
• Step 1: For each subsystemLi, i = 1, . . . , n: Determinepne,i and the first two moments of

WACi.
• Step 2: For each subsystemLi, i = 1, . . . , n: Determine the queue-length distribution.
• Repeat Step 1 and 2 until the characteristics of the wait-to-assembly times have converged.

4.2. Details of the algorithm.

Step 0: Initialization
The first step of the algorithm is to initially assume that thewait-to-assembly times are zero. This

means that the probabilitiespe,j are set to0. More sophisticated initializations, allowing faster conver-
gence, are probably possible, but the present initialization already works well.

Step 1: The wait-to-assembly times
By using the probabilitiespe,j that bufferj is empty just after a departure and the first two moments

of the conditional residual inter-arrival times (obtainedfrom the initialization or the previous iteration), we
determine for subsystemLi the (new) first two moments of the wait-to-assembly time and its mass at0 (as
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described in Section 3.2).

Step 1 is performed for each subsystemLi, i = 1, . . . , n.

Step 2: Analysis of subsystemLi

Based on the (new) estimates for the first two moments and the mass at0 of the wait-to-assembly time,
we determine the steady-state queue length distribution ofsubsystemLi, as described in Section 3.4.

Then, by using the steady-state queue length distribution,we calculate the probabilitype,i that buffer
Bi is empty just after a departure and the conditional residualinter-arrival time, as well as the performance
characteristics such as throughput and mean sojourn time.

Step 2 is performed for each subsystemLi, i = 1, . . . , n.

After completion of Step 1 and 2 we check whether the iterative algorithm has converged or not. This
can be done by comparing the new estimates for the probabilities pe,i with the ones from the previous
iteration. If the sum of the absolute values of the differences between these estimates is less thanε, the
algorithm stops; otherwise Step 1 and 2 are repeated.

Of course, other stop-criteria may be used as well; for example, we may consider the throughput in-
stead of the probabilitiespe,i. Bottom line is that we go on until ’nothing’ changes anymore.

Remark: In all experiments we observed that the throughput of each ofthe subsystem converged, and
that all throughputs converged to exactly the same value. However, we have not been able to rigorously
prove that all throughputs converge to the same value.

5. Numerical Results. To investigate the quality of the proposed approximation wecompare, for a
large number of cases, the estimates for the mean sojourn time of each part and the throughput with the
ones produced by discrete-event simulation. We are especially interested in investigating under which
circumstances the approximation method gives satisfying results. Each simulation run is sufficiently long
such that the widths of the 95% confidence intervals of the mean sojourn time and the throughput are
smaller than 1%.

We use a broad set of parameters for the tests. The average service times of the arrival servers are all
1. The number of parts in the assembly system is varied between 2, 4 and 8. All buffers have the same
size, which is varied between 0, 2, 4, and 8. The average assembly time of the assembly server is varied
between0.75 and1, and the squared coefficient of variation (SCV) of the assembly time is varied between
0.5 and1. We consider balanced and imbalanced systems. In the balanced cases we set the service rates of
the arrival servers all to 1. Also the SCV of the service timesof each arrival server is the same and is varied
between 0.2, 0.5, 1 and 2. We further investigate two kinds ofimbalance. We test imbalance in the average
service times of the arrival servers by making the first arrival server1/3 faster then the last one, and by
letting the service rates of the arrival servers in between change linearly (such that the overall service rate is
maintained at 1). For example, in case of 4 arrival servers weget service rates(0.857, 0.952, 1.048, 1.143).
Imbalance in the SCV of the service times of the arrival servers is tested in the same way, but now the
SCV of the service time of the last server is three times the SCV of the first server and where the SCVs
of the service times of the arrival servers in between changelinearly (such that the average SCV over the
arrival servers is equal to one of SCVs mentioned above for the balanced cases). This leads to a total of
42243 = 768 test cases. The results for each category are summarized in Table 1. Each (sub)table lists
the average error in the throughput and the mean sojourn times compared with simulation results. Table 2
summarizes all cases with the average errors and for 3 error-ranges the percentage of the cases which fall
in that range.
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Error inT Error inS

Imb. SCV
no 1.46 % 2.68 %

yes 1.49 % 2.85 %
Imb. mean

no 1.74 % 3.01 %
yes 1.21 % 2.52 %

No. parts
2 0.61 % 1.53 %
4 1.37 % 2.72 %
8 2.44 % 4.04 %

Buffers
0 2.35 % 3.29 %
2 1.68 % 2.58 %
4 1.05 % 2.09 %
8 0.82 % 3.10 %

Occ. rate
0.75 1.34 % 2.97 %

1 1.61 % 2.56 %
SCV as. ser.

0.5 1.24 % 2.47 %
1 1.71 % 3.06 %

SCV ar. ser.
0.2 1.99 % 4.33 %
0.5 1.52 % 2.86 %

1 1.30 % 2.22 %
2 1.09 % 1.65 %

TABLE 5.1
Results for the assembly system with one parameter fixed.

Perf. char. Avg. 0-5 % 5-10 % > 10 %
Throughput 1.5 % 97.4 % 2.6 % 0.0 %

Mean sojourntime 2.8 % 84.9 % 13.4 % 1.7 %
TABLE 5.2

Overall results for the assembly system.

Overall we can conclude from the above results that the approximation method works very well. The
average error in the throughput is around 1.5 % and the average error in the mean sojourn time is around
2.8 %.

Now let us take a look at the results in more detail. If we look at Table 1, we see that the quality of
the results for the throughput and mean sojourn times are nearly insensitive to both types of imbalance, the
occupation rate and the SCV of the assembly system. We see that, as expected, the errors get higher when
the number of parts increases. Also, the approximation predicts the throughput best when the buffers are
large, the errors in the mean sojourn times are almost insensitive for changes in the buffersizes. Finally, the
approximation is slightly better when the SCV of service times of the arrival servers are higher. Note that
all these results are still highly acceptable.

In Table 2 we see that the error in the throughput is almost always within5%, which is very reliable
and robust. For the mean sojourn the times the approximationgives slightly higher errors, but almost all
cases are within10%.

6. Concluding remarks. In this paper we developed an algorithm for approximating anassembly
queueing system with general arrival and service times. We used a decomposition approach and developed
an iterative algorithm to approximate the performance characteristics of the assembly queue. Therefore,
we accurately determine the characteristics of the wait-to-assembly time at a queue. The queue-length
distributions of the subsystems are determined by using a matrix geometric method.

We tested the algorithm by comparing it with a discrete-event simulation and the results are very
promising. After testing many cases, we concluded that the average errors in the throughput are around
1.5% and the errors in the mean sojourn time are around3%. The next step is to incorporate this algorithm
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in a network setting.
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