

A Programmable ANSI C Code Transformation Engine.

Citation for published version (APA):
Boekhold, M., Karkowski, I., Corporaal, H., & Cilio, A. G. M. (1999). A Programmable ANSI C Code
Transformation Engine. In Proc. of ETPs99, Amsterdam, March 1999

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/1ac72de8-dc6a-48d1-a7d2-b98a88ec8ec1

A Programmable ANSI C Transformation Engine

Maarten Boekhold, Ireneusz Karkowski, Henk Corporaal and Andrea Cilio

Delft University of Technology
Mekelweg 4, P.O. Box 5031, 2600 GA Delft, The Netherlands

{maartenb,irek,heco,smallpox}@cardit.et.tudelft.nl

Abstract. Source code transformations are a very effective method of paral-
lelizing and improving the efficiency of programs. Unfortunately most compiler
systems require implementing separate (sub-)programs for each transformation.
This paper describes a different approach. We designed and implemented a
fully programmable C code transformation engine. It can be programmed by
means of a transformation language. This language was especially designed to
be easy to use and flexible enough to express most of the common transforma-
tions that can be found in the mainstream compiler systems. In addition, it al-
lows specification of more exotic, but highly desirable, transformations (like for
example inter-procedural transformations). The program features a user-
friendly graphical user interface, allowing interactive application of transfor-
mations. Its possible applications range from coarse-grain parallelism exploita-
tion to optimizers for multimedia instruction sets.

1 Introduction

Due to advances in IC technology, multiprocessor systems are becoming ever more affordable
these days. While most of these systems are used in either the server market or in scientific
research, it can be expected that multiprocessor systems will also show up in embedded sys-
tems. Especially, because of the feasibility of single-chip multi-processor implementations.

To be able to use the full computing power that is available in such systems, it is necessary
to execute the embedded applications in a parallel mode. Unfortunately most of the existing
embedded codes are written in a sequential programming languages. Also the programmers
usually feel more at ease in writing sequential programs. (Semi-) automatically transforming
sequential programs to their parallel equivalents represents therefore an attractive alternative.
Direct parallelization however often does not lead to an efficient implementation. A series of
code transformations [6] are necessary to enable efficient parallelization. Since the number of
standard transformations (and combinations of them) is large, writing separate (sub-)programs
for each of them represents a long-term and tedious task. Even if finished, any extension to the
already implemented set of parallelizations requires each time a substantial effort, due to the
very low code reuse. Tools that make writing such programs easier ([3,5]), represent only a
partial solution. They make programming faster, but still the transformations have to be coded
separately. An alternative is to design a programmable transformation engine, which could be
easily configured for most useful code transformations.

This paper presents one such source-to-source code transformation tool itself (called ctt,
Code Transformation Tool), targeted at translation of ANSI C programs. It can be configured
with new transformations by means of a dedicated transformation language. The language has
been carefully designed to enable efficient specification of most common code transformations.
Its syntax has been derived from ANSI C. Thanks to that the language is easy to learn and
powerful to use. Note that the tool does not decide if a possible transformation should be ap-

plied. This decision is currently left to the user. The design of the program allows its use in any
ANSI C translation context. Potential applications include coarse-grain parallelism exploitation
[4], ILP enhancement (for example for data locality/low power), and optimizations for multi-
media instruction sets.

This work has been inspired by a system called MT1 [1], developed at the University of
Utrecht and the University of Leiden, both in the Netherlands. MT1 is a system that performs a
translation from Fortran77 to Fortran90. Unfortunately it has some drawbacks making it useless
in our context. First of all, the research within our laboratory is mainly concerned with embed-
ded applications (which are most often written in C). Secondly, with MT1 it is impossible to
apply a number of interesting types of transformations (for example inter-procedural). It has no
explicit control over variables and it is impossible to create new variables in a transformation.
Finally, it can only operate in an interactive way, and it is therefore not possible to use MT1
from within other applications. Our work aims not only at being an ANSI C version of MT1,
but also at adding the above capabilities.

The remainder of this paper is organized as follows. Section 2 introduces the basics of the
transformation language that is used to specify transformations (the interested reader is referred
to [2] for more details). Section 3 demonstrates the use of the language for specification of a
simple loop transformation, giving feeling about its power and flexibility. The implementation
details of the transformation program are briefly discussed in section 4. Finally, section 5 con-
cludes the paper.

2 Transformation language

Writing separate programs for different transformations can be avoided if we properly or-
ganize the process of applying a transformation. Our transformation engine uses such an or-
ganization. Its translation process is divided into 3 distinct stages:
• Code selection stage: In this stage the engine searches for code that has a strictly specified

structure (that matches a specified pattern). Each fragment that matches this pattern is a
candidate for the transformation.

• Conditions checking stage: Transformations can pose other (non-structural) restrictions on
a matched code fragment. These restrictions include, but are not limited to, conditions on
data dependencies and properties of loop index variables.

• Transformation stage: Code fragments that matched the specified structure and additional
conditions are replaced by new code, which has the same semantics as the original code.

The structure of the transformation language closely resembles these steps, and contains
three subsections called PATTERN, CONDITIONS and RESULT (see Figure 1). As can be
deduced, there is a one to one mapping between blocks in the transformation definition and the
translation stages.

While a large fraction of the embedded systems are still programmed in assembly language,
the ANSI C has become a widely accepted language of choice for this domain. Therefore, we
decided to derive our transformation language from the ANSI C. As result, all C language
constructs can be used to describe a transformation. Using only them would however be too
limiting. The patterns specified in the code selection stage would be too specific, and it would
be impossible to use one pattern block to match a wide variety of input codes. Therefore we
extended our transformation language with a number of meta-elements. Among others the
following meta-elements were added and can be used to specify generic patterns, i.e. patterns
that represent more than one element in the input C sources:

• Statements: keyword STMT represents any statement.
• Statement lists: keyword STMTLIST represents a list of statements. A statement list may

be empty.
• Expressions: keyword EXPR represents any expression.

• Variables: keyword VAR represents any variable (of any type).
• Procedure calls: keyword PROCCALL represents any procedure, which satisfies specific

requirements.
The decision of including meta-elements for the variables was motivated by the desire of

avoiding direct relationship between variable names in the transformation definition and the
variable names in the input C sources. Meta-element must be assigned a number (except for
variables), which should be included in braces behind their keyword (STMT(1) and STMT(2)
represent then different C statements). Some meta-elements take also additional arguments (for
example BOUND and STEP_EXPR take also as argument the name of the loop index vari-
able). In the following section we will present a simple example of using the language con-
structs in each sub-block of the transformation definition.

3 Example

Loop interchange transformation, when applied to 2 tightly nested loops, exchanges the in-
ner and outer loops. A pattern block that describes the code selection stage of the loop inter-
change transformation is shown on the top left of Figure 1. This pattern has the following
meaning: “Look for 2 tightly nested loops, of which the inner loop can contain any statement
list”. The expression 1 has been used twice (in both loops) and therefore the lower bounds in
both loops must be the same. Before the transformation however may be applied, the program
should check if there exist no (<,>) dependencies [6] within the loop body. In addition, the
loop-body should not contain break or continue statements. Only if these conditions are
met, the inner and outer loop may be exchanged. They may be specified as shown on the bot-
tom of Figure 1. The ‘*’ in the second statement denotes any dependence. The result block is
shown on the right. This description says: “Replace the matched code with 2 tightly nested
loops, where the body of the new inner loop is the same as the body of the inner loop of the
original code”.

RESULT {
 VAR x, y;

 for(y=EXPR(1);BOUND(2,y);STEP_EXPR(3,y)){
 for(x=EXPR(1);BOUND(1,x);STEP_EXPR(2,x)){
 STMTLIST(1);
 }
 }
}

CONDITIONS {
 stmtlist_has_no_unsafe_jumps(1);
 not(dep("* direction=(<,>)
 between stmtlist 1 and stmtlist 1"));
}

PATTERN {
 VAR x, y;

 for(x=EXPR(1);BOUND(1,x);STEP_EXPR(2,x)){
 for(y=EXPR(1);BOUND(2,y);STEP_EXPR(3,y)){
 STMTLIST(1);
 }
 }
}

Figure 1 Specification of the loop interchange transformation.

4 Implementation

The transformation program has been written in C++, using the SUIF compiler toolkit. The
decision of using SUIF was dictated mainly by the existence of a good ANSI C front end, a
convenient internal representation (IR) with C++ interface, and by the existence of an IR to
ANSI C conversion utility (s2c). Thanks to that we could concentrate more on the design of the
transformation engine itself, which works entirely on the IR level only. The whole transforma-
tion trajectory is presented in Figure 2. Both input source and transformation definitions are
compiled to the IR by the front-end. After linking them the translation process takes place. In
current implementation, statements of the program are visited in the depth first search order,
and at each of them all transformations are sequentially tried. The user decides which possible

transformations are applied. Once the transformations have been applied, the s2c program is
used to convert the IR back to ANSI C. All functionality needed to perform a transformation
(i.e. code selection, conditions checking and transforming) has been implemented as a collec-
tion of C++ classes, which can be accessed through a single C++ class interface. This makes it
easy to embed the full functionality within other C++ programs.

Transfor
mations

IR

IR

Input
sources

IR

Output
sources

SUIF
front-end

SUIF
front-end

SUIF
linker

Code
Transformation
Engine

s2c

IRCTT

Figure 2 The transformation trajectory.

We provide a GUI, which allows users to experiment with different sets of transformations
and provides an easy interface to each of the 3 transformation stages. While the translation
process may proceed completely automatically, an interactive mode allows the user to override
the decision made in the conditions checking stage (e.g. it is possible to apply a transformation
even though the conditions checking stage says that this would be illegal).

5 Conclusions

In this paper we presented a programmable engine for code transformations on ANSI C pro-
grams. The knowledge about the transformations is added by means of a convenient and effi-
cient transformation language. Using this language to specify new transformations is much
easier and faster than having to write separate (sub-) programs for each of them. A very large
subset of possible transformations is supported, including the inter-procedural ones. All of them
(and their combinations) have been successfully specified using the transformation language,
thereby proving the viability of its concept.

References

1. Aart J.C. Bik. A Prototype Restructuring Compiler. Technical Report INF/SCR-92-11,
Utrecht University, Utrecht, the Netherlands, November 1994.

2. Maarten Boekhold, Ireneusz Karkowski and Henk Corporaal. A Programmable ANSI C
Code Transformation Engine. Technical Report no. 1-68340-44(1998)-08, Delft Univer-
sity of Technology, Delft, The Netherlands, August 1998.

3. Dennis Gannon et al. Sage. http://www.extreme.indiana.edu/sage/, 1995.
4. Ireneusz Karkowski and Henk Corporaal. Design Space Exploration Algorithm for Het-

erogeneous Multi-processor Embedded System Design. In 35th Design Automation Con-
ference Proceedings, June 1998, San Francisco, USA.

5. Robert Wilson, Robert Franch, Christopher Wilson, Saman Amarasinghe, Jennifer Ander-
son, Steve Tjiang, Shin-Wei Liao, Chau-Wen Tseng, Mary Hall, Monica Lam, and John
Hennessy. An Overview of the SUIF Compiler System
http://suif.stanford.edu/suif/suif.html, 1995.

6. Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley
Publishing Company, 1996.

