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0 Introduction 

0.0 General remarks 

The material presented in this thesis has its origin in the research of the Eindhoven VLSI 
Club. 
VLSI is a technique of constructing semiconductor chips containing a large number of 
active. electronic elements. These elements operate concurrently. The ultimate goal of our 
research is the construction of a so-called silicon compiler: a mechanical translation of 
algorithms into chips. 

In this monograph we present a general formalism for concurrent processes. We show also 
how it can be applied to the design of circuits. Such a formalism should satisfy certain 
requirements: 

it should be a mathematical theory in the sense that concepts are defined rigorously 
and that assertions are proved: 

it should be close to the objects that are formalized. The distance between formalism 
and implementation should be relatively small: 

it should be manageable. 

The formalism used is known as Trace Theory. To a large extent it has been developed by 
Martin Rem (cf. [18]) and Jan L.A. van de Snepscheut (cf. [19]). Mazurkiewicz ([14]) 
was one of the first to describe communicating processes in terms of traces. His traces 
correspond to equivalence classes over our traces. 

This thesis comprises a full and coherent treatment of Trace Theory. The formalism is 
applied to phenomena like deadlock. livelock. and nondeterminism. and is related to the 
theory of Communicating Sequential Processes as described by C.A.R. Hoare in [8]. 
Finally. implementation aspects are discussed. 

At the end of most sections we present some exercises. Although this is not of common 
use in doctoral theses. we have at least two reasons for it: 

it permits the reader to get used to the formalism presented: 

it shows which kind of problems can be solved within the theory. 

The exercises do not play any role besides those sketched above. There are no references to 
them and no proofs of theorems are left as exercises. 
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2 Introduction 

0.1 Overview 

Chapter 1 contains the prerequisite material for all other chapters. Trace structures and 
processes are introduced as well as operators on these objects. Processes are related to 
state graphs. It is shown that processes with the same alphabet form a complete lattice. 
Monotonicity and continuity of operators are discussed. 

In Chapter 2 we present a program notation. The treatment is close to that of [19]. 
Recursive components are introduced and fixpoint theory is applied to them. Specifications 
of processes are discussed in Chapter 3. It is shown how program texts may be derived 
from specifications. These derivations are based on two theorems: the Conjunction-Weave 
Rule and the Composition Rule. As an example we show how to derive a program that 
corresponds with the language generated by a given context-free grammar. 

Chapter 4 addresses deadlock. Deadlock is defined in terms of trace structures. 

In Chapter 5 we discuss livelock and nondeterminism. Nondeterminism arises when a pro
cess is projected on a set of events. i.e .. when events not in that set are concealed. We 
define so-called transparent sets of events. If projections are confined to these sets non
determinism does not occur. In the absence of livelock transparency is closed under inter
section. We show the relation between processes in our formalism and those defined by 
C.A.R. Hoare (cf. [8]). 

In Chapter 6 implementation aspects are considered. Parts of it are based on work by 
Alain J. Martin ([12]). We present some circuits that correspond to given program texts. 
The circuits derived are delay-insensitive in the sense that their behaviour does not depend 
on delays in wires and switching elements. 

0.2 Some notational conventions 

In this monograph a slightly unconventional notation for variable-binding constructs is 
used. It will be explained here informally. Universal quantification is denoted by 

(A X: R :E) 

where A is the quantifier. x is a list of bound variables. R is a predicate. and E is the 
quantified expression. Both R and E will. in general. contain variables from x. R del
ineates the range of the bound variables. Expression E is defined for values that satisfy 
R. 

Existential quantification is denoted similarly using quantifier E . 

For expressions E and G . an expression of the form E =l> G will often be proved in a 
number of steps by the introduction of intermediate expressions. For instance. we can 
prove E => G by proving E = F and F => G for some expression F. In order 
not to be forced to write down expressions like F twice. we record proofs like these as fol
lows. 



0.2 Some notational conventions 

E 

{ hint why E - F ) 

F 

~ I hint why F ~ G ) 

G 

These notations have been' adopted from [4]. 
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1 Trace structures 

1.0 Introduction 

In this chapter we define the basic concepts and structures that form the foundation of our 
treatment of concurrent processes. As an example we consider a one-place buffer which is 
initially empty. When such a buffer interacts with its environment the following events 
may be observed. 

a a value enters the buffer 
b : a value is retrieved from the buffer 

A possible sequence of events is a b a b a . The set of all possible sequences of events 
consists of the finite-length alternations of a and b that do not start with b. 

In our formalism such a buffer is specified by a pair of sets: 

the set of possible events that may occur, and 
the set of sequences of events that may be observed. 

We define operators on those pairs and we derive algebraic properties thereof. 

1.1 Alphabets and trace sets 

We assume the existence of a set !l, the universe. Element.<> of fi are called symbols . 
Subsets of !l are called alphabets . 
The set of all finite-length sequences of elements of fi is, as usual, denoted by n•. The 
empty sequence is denoted by e. For an alphabet A, A • is defined similarly. Notice that 
0*= {e). 
Elements of fi* are called traces . Subsets of n• are called trace sets . 

We shall use the following conventions. 

Small and capital letters near the beginning of the Latin alphabet denote symbols and 
alphabets respectively. 
Small and capital letters near the end of the Latin alphabet denote traces and trace 
sets respectively. 

The concatenation of traces s and t is obtained by placing t to the right of s, and is 
denoted by st. The set n•, together with the operation concatenation is also known as the 
free monoid generated by fi, cf. [5]. 

4 



1.1 Alphabets and trace sets 

The projection of a trace t on an alphabet A , denoted by t t A , is defined as follows. 

EtA = E 

( sa H A = s t A if a ~A 
( sa H A = ( s t A ) a if a E A 

5 

We write t tb as a shorthand for ttl b }. In order to save parentheses. we give concatena
tion the highest priority of all operators. 

The projection of a trace set X on an alphabet A . denoted by X t A , is the trace set 
{tltEfi*A (Eu:uEX:t=utA)}. 

The length of a trace t . denoted by l (t ) , is defined by 

l(E) = 0 
l (sa ) = l (s ) + 1 

Trace s is called a prefix oft , denoted by s ~ t , if 

(E u : u E fi* : su = t ) 

The prefix closure of a trace set X, denoted by pref (X). is the trace set consisting of all 
prefixes of elements of X : 

pref(X) = {slsEfi*i\ (Et:tEX:s ~t)} 

Trace set X is called prefix- closed if X pre/ (X). 

Example 1.1.0 

Let fi={a,b,c,d}. A={a,bl. s:ba, t=bad. and X:{c,dba}. Then A is an 
. alphabet. s and t are traces. and X is a trace set. 
We have 

s ~ t 

stA=sAttA:s 

sEA*!\ t~A* 

xtA (e.ba} 

pref(X)::: (e.c,d,db.dba} 

X is not prefix-closed 

pre/ (X) is prefix-closed. 

(End of Example) 

We now list a number of properties. According to our notational convention. a and b are 
symbols, s. t. and u are traces. A and B are alphabets. X andY are trace sets. 
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Property 1.1.1 (concatenation) 

0 se = es = s 

1 (st)u=s(tu) 

2 as=bt- a=bl\s=t 

st=su = t=u 
ts =us = t u 

3 s ¢ e - (E c .v : c E 0 II v E .n*: s = cv) 
s ¢ e =: (E c .v : c E .n II v E .n*: s vc) 

(End of Property) 

Property 1.1.2 (projection) 

0 s~ A E A* 

st ~A = (s ~A )(t ~A ) 

2 s :::; t ::;:.. s~A :::; t~A 

3 sEA* =: s~A :::: s 

4 s~A~B st(A nB) = stBtA 

5 X~Y ::;:.. XtA ~ Y~A 

6 st121 = e 

(End of Property) 

Property 1.1.3 (prefix) 

( .n*. :::; ) is a partially ordered set with least element e : 

0 s :::; s 

1 s:=;tl\t:=;u::;:..s:=;u 

2 s:=;tllt:=;s::;:..s=t 

3 e:::; s 

(End of Property) 

Property 1.1.4 (prefix-closure) 

0 X~ pref(X) 

1 X~ Y ::;:.. pref(X) ~ pref(Y) 

2 pref(pref(X)) = pref(X) 

Trace structures 



1.1 Alphabets and trace sets 

3 pref(X~ A) = pref(X )t A 

(End of Property) 

Property 1.1.5 (length) 

0 l (st ) = l (s ) + l (t ) 

1 s :s;; t => l (s ) :s;; l (t ) 

2 l (s ~A ) :s;; l (s) 

(End of Property) 

As an example we prove Property 1.1.4.2 
equivalent to ·pre/( X) is prefix-closed ·. 

·Proof 

For all traces t . we have 

t E pref (pref (X)) 

= { definition of pref 

(E u : u E pref (X) : t :s;; u ) 

= I definition of pref I 
(E u : (E v : v E X : u ~ v ) : t :s;; u ) 

I predicate calculus } 

(E u : u E n*: (E v : vEX : u :s;; v 1\ t :s;; u )) 

=> {transitivity of :s;; , Property 1.1.3.1 ) 

(E u : u E !l*. (E v :vEX : t ~ v )) 

== { predicate calculus ) 

(E v : v E X : t ~ v ) 

{ definition of pref 

t E pref(X) 

7 

pref (pref (X )) = pref (X) . which is 

Hence. pref (pref (X)) ~ pref (X). Since pref (X) ~ pref (pre/ (X)) . cf. Property 
1.1.4.0,wehave pref(pref(X)) = pref(X). 

(End of Proof) 

Finally. we prove a general theorem on traces. 
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Theorem 1.1.6 (Lift Theorem) 

For all traces s and t . and alphabets A and B . we have 

sEA*II tEB*II s~B=t~A (E u : u E (A U B )* : u ~A = s II u ~ B = t ) 

Proof 

We derive for any trace u 

u~A=s II u~B=t 

{property of projection. 1.1.2.0} 

u~A = s II u~B = t II sEA* II t EB* 

=> { application of ~A and ~ B } 

u~A~B = s~B II u~B~A = t~A II sEA* II t EB* 

=> { property of projection. transitivity of = } 
s~B=t~A II sEA*II tEB* 

Hence. 

(E'u : u E (A U B )* : u ~A = s II u ~ B = t ) => s E A * II t E B * II s ~ B = t ~A 

We prove the converse of the above implication by induction on l (s) ·l (t). 

Base l (s ) ·l (t ) = 0 

Then s = E V t = E . For reasons of symmetry we assume s = E . and we derive 

s~B = t~A II t EB* 

{property of projection. 1.1.2.3 } 

s~B = dA II t~B = t 
{ s = E • definition of projection } 

s=t~A II t~B=t 

=> { B * !:::: (A U B )* } 

(E u : u E (A U B )* : u ~A = s II u ~ B = t ) 

Step l (s) ·l (t ) > 0 

Then s ;C E II t ;C E . By Property 1.1.1.3 we can choose a E A . b E B . v E A •. and 
w E B • such that s = av II t = bw . We consider two cases. 

(i) a E B V b E A . For reasons of symmetry we assume a E B . and we derive 

s~B=t~A II sEA* II tEB* 

{s=av,aEB} 



1.1 Alpha bets and trace sets 

vtB=ttA 1\ vEA*I\ tEB* 

::;> I induction hypothesis.l(v) ·l(t) < l(s) ·l(t) l 
(E u : u E (A U B )* : utA = v 1\ u t B = t ) 

laEAI\aEB) 

(E u : u E (A U B )* : au t A = av 1\ aut B = t ) 

::;> I renaming the dummy. s = av } 

(E u : u E (A U B)* : utA = s 1\ u t B = t ) 

(ii) a EB 1\ b EA . We derive 

stB=ttA 1\ sEA*/\ tEB* 

Is = av 1\ t = bw 1\ a E B 1\ b EA 

aCvtB)=b(wtA)I\ vEA*I\ wEB* 

= I property of concatenation. 1.1.1.2 I 
a= b 1\ vtB = wtA 1\ v EA * 1\ wEB* 

::;> { induction hypothesis. l ( v ) ·l ( w ) < l (s ) ·I (t ) l 
a = b 1\ (E u : u E (A U B )* : utA = v 1\ u t B = w ) 

= {aEA.bEB) 

a = b 1\ (E u : u E (A U B )*: aut A = av 1\ but B = bw) 

::;> { substitution } 

(E u : u E (A U B )* : au t A = s 1\ aut B = t ) 
::;> { renaming the dummy } 

(E u : u E (A U B )* : u t A = s 1\ u t B = t ) 

(End of Proof) 

Theorem 1.1.6 may be phrased as follows. 

The diagram of Figure 1.0 may be lifted up 
to the commutative diagram of Figure 1.1 . 

seA* t E B* 

Figure 1.0 
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uE(AUB)* 

stB=ttA 

Figure 1.1 
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Exercises 

0. Prove: 

(i) A*nB*=(AnB)* 

(ii) A * U B * ~ (A U B )* 

1. Prove: 

(i) pref(X U Y) = pref(X) U pref(Y) 

(ii) pref (X n Y) ~ pref (X) n pref (Y) 

2. Prove: e E pref(X) = X ¢: 0 

Trace structures 

3. Show that the intersection as well as the union of prefix-closed trace sets are prefix
closed. 

4. Prove or disprove: 

(i) stA~dAAstB~ttB =;. st(AUB)~tt(AUB) 

(ii) stA ~ttA V stB ~ttB =;. st(AnB)~tt(AnB) 

5. Prove or disprove: 

(i) (XUY)tA = (XtA)U(YtA) 

(ii) (X n Y)tA (XtA) n (YtA) 

6. Prove: 

s E (A n C )* A t E (B n C )* A s t B = t t A 

=;. (Eu:uE(AUB)*:utA =sA ut(BnC)=t) 

(End of Exercises) 
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1.2 Trace structures 

A trace structure is a pair <A . X> in which A is an alphabet and X is a subset of A •. 
We call A the alphabet of the trace structure and we call X the trace set of the trace 
structure. If T is a trace structure we denote its alphabet by aT and its trace set by tT. 
i.e. T = <aT.tT>. 

As a notational convention we shall use capital letters not too far from the end of the 
Latin alphabet to denote trace structures. 

The prefix closure of a trace structure T. denoted by pref(T). is the trace structure 
<aT. pref(tT)>. T is called prefix- closed whenever tT is prefix-closed. T is called 
non-empty if tT ~ 0. 

A non-empty prefix-closed trace structure is also called a pr~ss . Let T be a process. 
then T specifies a mechanism in the following way. 

The alphabet of T corresponds to the set of events the mechanism may be involved 
in. We assume events to be atomic: they have no duration and they do not overlap. 

With the mechanism in operation a so-called trace thus far generated is associated. 
Initially. this trace is the empty trace. On the occurrence of an event the trace thus 
far generated is extended with the symbol associated with that event. At any 
moment. the trace thus far generated belongs to the trace set ofT. 

We do not distinguish between events that are initiated by the mechanism and those 
that are initiated by the environment of the mechanism. If s is the trace thus far 
generated and sa E tT then the event associated with a may happen. 

Example 1.2.0 

Consider a one-place buffer which is initially empty. We specify the buffer by means of a 
process T. Possible events are 

a : a value enters the buffer 
b : a value is retrieved from the buffer 

Hence, aT= {a ,b }. 
Let t E tT. Since values can only be retrieved if they have been entered, we have 
Hda)- l (t ~b);;::: 0. From the fact that the buffer is a one-place buffer we infer 
l (t ~a)- l (t ~b) ~ 1. These restrictions should hold for all t. t E tT, and their prefixes. 
Our specification becomes 

T = <{a,b).{t ltE{a,b}* A (As :s ~t :O~l(s~a)-l(s~b)~ 1))> 

T may also be interpreted as the specification of a binary semaphore (cf. [2]). initialized at 
zero. 
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The interpretation of the symbols is 

a a V -operation on the semaphore 
b : a P-operation on the semaphore 

(End of Example) 

Example 1.2.1 

Trace structures 

In the previous example we did not consider the values that are transmitted. In this 
example we define process U that specifies a one place, one bit buffer. Possible events 
are 

aO a zero enters the buffer 
al a one enters the buffer 
bO a zero is retrieved from the buffer 
bl a one is retrieved from the buffer 

The same arguments as used in the previous example yield 

aU {aO ,a] .bO .bl} 

tU ={tIt E{aO,al.bO,bJ)* A (As: s ~t: 

(End of Example) 

A 

A 

0 ~ l (s ~aO)- l (s ~bO) ~ 1 
0 ~ l(s~al )-l(s~bl) ~ 1 
O~l(s~{aO,aJ}) l(sNbO.bJ))~ 1 )} 

There is a one-to-one correspondence between the set of trace structures with alphabet A 
and P(A *), the power set of A *, viz. 

<A, X> is a trace structure - X !: A* 

According to the structure of P(A *) we define inclusion, intersection, and union for trace 
structures with equal alphabets . and we denote these with the usual symbols: 

<A.X> U <A.Y> 
<A.X> n <A.Y> 

<A.XUY> 
<A.XnY> 

T!:U aT = aU A tT !: tU 

In section 1.3 we have a closer look at the set of processes with alphabet A. 

The projection on an alphabet is extended to trace structures by 

Tr A = < aT n A. tTr A > 

Finally. we define the following processes. For an alphabet A the trace structures 
STOP(A ) and RUN (A ) are defined by 



1.2 Trace structures 

STOP(A) = <A .le}> 
RUN(A) = <A .A*> 

Process STOP(0) is also denoted by STOP. 

For symbols a and b process SEM 1(a ,b) is defined by 

13 

SEM 1(a.b) = <la.b}.ltitEla.b}*f\ (As:s ~t:O~l(s~a)-l(s~b)~l)}> 

(cf. Example 1.2.0) 

Exercises 

0. Give a mechanistic appreciation of RUN(A ). STOP(A ). and STOP. 

1. Prove: 

(i) RUN(A HB = RUN(A n B) 

(ii) STOP(A ) t B = STOP(A n B) 

(iii) SEM 1(a.b)ta = RUN(a) 

(iv) STOP(A) = RUN(A) - A= 0 

2. Specify a two-place buffer. 

3. Specify an unbounded buffer. 

4. For trace structure T we define trace structure T • by 

T" = <aT.(ti(As:s ~t:sEtT)}> 

Prove: 

(i) T" r: T 

(ii) T • is prefix-closed 

(iii) T ~ u ::;,. T" r: u· 
(iv) T • is the largest prefix-closed trace structure contained in T 

(v) T = T• =: Tis prefix-closed 

5. Prove: T is non-empty = T~0 = STOP 

6. Specify a binary stack. the depth of which is bounded by two. 

(End of Exercises) 
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1.3 Weaving 

Consider two mechanisms P and Q specified by (non-empty prefix-closed) trace structures 
T and U respectively. The behaviour of the composite of P and Q should be in accordance 
with the behaviour of each of the components: 

if t is the trace thus far generated of the composite then t taT will be the trace thus 
far generated of P and daU will be the trace thus far generated of Q. Hence. exten
sion of the trace thus far generated with a common symbol of aT and aU is possible 
if and only if both P and Q agree upon that symbol. Extension with a non-common 
symbol depends on one of the components only. 

In terms of trace structures this is captured in the following definition. 

The weave of trace structures T and U. denoted by T w U , is defined by 

TwU <aT U aU. {tIt E(aT UaU)* A ttaT EtT A daU E tU I> 

Example 1.3.0 

<{a ,b). {ab I> w <{ c ,d l.lcd I> 
< { a , b , c , d }. { abed , acbd , acdb , cabd , cadb , cdab I> 

< { a , b }. { b , ba , abb I> w < { b . c }. { b . cb I> 
= <(a.b~c}, {b,ba,cb,cba}> 

(End of Example) 

Example 1.3.1 

SEM 1(a~b) = <(a .. b}~(e~a.ab*aba, · ··}> 
SEM 1(b,c) = <lb.c}.{E.b.bc,bcb, · · · }> . hence. 

t(SEM 1(a ,b )w SEM 1(b,c)) 

= I definition of weaving } 

{t ltE{a.b,c}" A ctla.b}EtSEM 1(a.b) A tt{b,c)EtSEM 1(b,c)} 

= { definition of SEM 1 } 

{ E. a , ab, aha , abc, abac, abca, abacb, abcab , · · · I 

Since dla.b}EtSEM 1(a,b) implies O:E;Z(tta)-l(ftb):E; 1 
and tt{b,c}EtSEM 1(b,c) implies o:E;Z(db)-l(dc):E; 1. 
we have 

0 :E; l ctt a ) - l(d c ) :E; 2 

(End of Example) 



1.3 Weaving 

Property 1.3.2 

Weaving is symmetric. idempotent. and associative: 

0 TwU=UwT 

1 TwT T 

2 (T w U) w V = T w (U w V) 

(End of Property) 

Property 1.3.3 

aU!: aT ::> T wU = <aT,{t It EtT 1\ daUEtU)> 

(End of Property) 

Property 1.3.4 

0 TwSI'OP = T 

1 T w (TtA) = T 

2 A !: aT ::> T w RUN(A) = T 

3 aT!: A ::> T w <A .0> = <A .0> 

4 aT !: A A E E tT ::> T w SIOP(A) = STOP(A) 

Proof 

0. We derive 

TwSTOP 

= { Property 1.3.3. aSTOP = 0 } 

<aT,{t ltEtT A d0EtSTOP)> 

{Property 1.1.2.6. tSTOP = {e)) 

T 

1. We derive 

T w (TtA) 

{ Property 1.3.3. a(Tt A)!: aT ) 

<aT.{tltEtT A ttAEt(TtA)}> 

== { definition of projection } 

T 

15 
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2. Assume A !:;;; aT . We derive 

Tw RUN(A) 

= { Property 1.3.3, A !:;;; aT } 

<aT.{t it EtT 1\ t~A EA *}> 

I Property 1.1.2.0 } 

T 

3. Assume aT !:;;; A . We derive 

Tw<A.0> 

I Property 1.3.3. aT!:;;; A 

<A.It itE0 1\ t~aTEtT)> 

I calculus} 

<A.0> 

4. Assume aT !: A 1\ E E tT . We derive 

TwSTOP(A) 

{ Property 1.3.3, aT !:;;; A 

<A. It it EtSTOP(A) 1\ daT EtT}> 

{ tSTOP(A) = {e} and E E tT } 

STOP(A) 

(End of Proof) 

Trace structures 

The definition of weaving can be extended to sets of trace structures. Let S be a set of 
trace structures. The weave of the elements of S . denoted by (W T : T E S : T ) is the 
trace structure <A • X > where 

A '"' ( U T : T E S : aT) 

X {titEA*I\ (AT:TES:t~aTEtT)) 

By definition we have (W T : T E 0 : T) = STOP , the unit element of weaving, cf. Pro
perty 1.3.4.0 . 

The weave of trace structures expresses a synchronized interleaving. Apparently, the 
intersection of the alphabets of the trace structures involved plays an important role. This 
role is made more precise in the following theorems. 



1.3 Weaving 

Theorem 1.3.5 

Let T and U be trace structures and let A be an alphabet. then 

Tw (UtA) :::2 (Tw U)t(aTU (aUnA)) 

Proof 

The alphabets of both sides are equal. viz. aT U (aU n A). 
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Let tEt(TwU)t(aTU(aUnA)) and let w be such that wEt(TwU) and 
t = wt(aT U (aU n A)). We derive 

t = wt(aTU(aUnA)) 

::;. { application of projection } 

ttaT = wt(aTU (aU n A ))taT 1\ tt(aU n A)= wt(aT U (aU n A ))t(aU nA) 

{ Property 1.1.2.4 } 

ttaT = wtaT 1\ tt(aUnA)= wtautA 

::;. { w E t(T w U) } 

ttaTEtT 1\ d(aUnA)EtUtA 

{ definition of weaving } 

t Et(T w Cut A)) 

Hence. t(T w U )t(aT U (aU n A)) ~ t(T w (UtA)) 

(End of Proof) 

Theorem 1.3.6 

Let T and U be trace structures. and let A be an alphabet such that aT n aU ~ A . 
then 

Tw(UtA) = (TwU)t(aTU(aUnA)) 

Proof 

As a consequence of Theorem 1.3.5 it suffices to prove 

t(T w (UtA)) ~ t(T w U)t(aT U (aU n A)) 

Let tEt(Tw(UtA)).then ttaTEtT 1\ tt(aUnA)EtUtA 
Let v E tU be such that t t (aU n A ) = v t A . 

We have to show the existence of w . wE t(T w U). such that t = wtCaT U (aU n A)). 
and we will do so by using the Lift Theorem (1.1.6). 

We first derive 
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((aU n A )U aT)n aU 

= { set calculus I 
(aU nA )U (aU naT) 

{aUnaT ~A I 

aUnA 

Hence, cf. Figure 1.2. 

vt(aT U (aU n A)) 

= I v EtU I 
vtaUt(aT U (aU nA )) 

= { see above I 
vtAtaU 

I defini\ion of v I 
tt(aU nA Hau 

I aU nA I: aU I 
d(aUnA) 

(see above I 
d((au n A )U aT) tau 

It E t(T w (UtA)) l 
dau 

Hence. we may apply the Lift Theorem. yielding w E (aT U aU )• such that 

wt(aTU (aU n A)) = t and wtau = v 

From 

wtaT 

I aT I: aT U (aU n A) I 
w~(aT U (aU n A ))taT 

= I definition of w I 
ttaT 

E {tEt(Tw(UtA))I 

tT 

Trace structures 

Figure 1.2 
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and 

w~au = v EtU 

we infer wE t(T w U), and since t = wt(aT U (aU n A)) , we conclude 

t E t(T w U)t(aT U (aU n A)). 

(End of Proof) 

Theorem 1.3. 7 
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Let T and U be trace structures and let A be an alphabet such that aT n aU ~ A , then 

(TwU)~A = (T~A)w(U~A) 

Proof 

(TtA)w(UtA) 

= { Theorem 1.3.6, aT n A n aU ~ A 

((TtA)wU)t((A naT)U(A naU)) 

{ set calculus } 

((TtA)wU)t(A n(aTUaU)) 

= {Theorem 1.3.6, using the symmetry of weaving} 

(T w U)t(aU U (aT nA ))t(A n (aTUaU)) 

= { set calculus. property of projection } 

(T w U)t((aT U aU)n A) 

{a(TwU)=aTUaU} 

(T w U)tA 

(End of Proof) 

Theorem 1.3.8 

LetT and U be trace structures. Then 

0 pref(TwU) S:: pref(T)wpref(U) 

1 H T and U are processes then T w U is a process 

Proof 

0. The alphabets of pref(T w U) and pref(T) w pref (U) are equal. viz. aT U aU. 

Let s E tpref(T w U) and let t E t(T w U) be such that s -' t . We derive 



20 

t €t(T w U) II s ~ t 

{ definition of weaving ) 

daTEtT II ttaUEtU II s ~t 

::;. {property of projection, 1.1.2.2 I 
daTEtT A rtaUEtU II staT ~ttaT A stau ~ttau 

::;. · ( definition of pref I 
staTEtpref(T) II staUEtpref(U) 

{ definition of weaving I 
s Et(pref(T)w pref(U)) 

Hence, pref(T w U) !: pref(T)w pref(U) 

1. Assume that T and U are processes. We derive 

pref(T w U) _ 

!: { 0 l 
pref(T)w pref(U) 

{ T and U are prefix-closed I 
TwU 

!: { property of pref , 1.1.4.0 ) 

pref(T w U) 

from which we infer that T w U is prefix-closed. Moreover, we have 

E Et(T w U) 

( definition of weaving } 

E E(aTUaU)*II etaTEtT II daUEtU 

( definition of projection and of star ) 

E EtT II E EtU 

= ( T and U are processes } 

true 

Hence, T w U is non-empty and prefix-closed. 

(End of Proof) 

Trace structures 
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Theorem 1.3.9 

For trace structures T and U such that a.T fl aU = 0 . we have 

pref(T w U) = pref(T)w pref(U) 

Proof 

The alphabets are equal. For any t . t E (aT U aU)*. we derive 

t Et(pref(T)w pref(U)) 

= I definition of weaving l 
daT Etpref(T) A ttau Etpref(U) 

== { definition of pref } 

(Eu.v :uEaT* A vEaU*:CttaT)uEtT A CttaU)vEtU) 

= I aT n aU == 0 } 

(Eu,v :uEaT* A vEaU*:tuvtaTEtT A tuvtaUEtU) 

{ definition of weaving } 

(Eu.v :uEaT* A vEaU*:tuvEt(TwU)) 

::;> { definition of pref 

t E tpref(T w U) 
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Hence. pref (T) w pref (U) !: pref(T w U) which yields on account of Theorem 1.3.8.0 

pref(TwU) = pref(T)wpref(U) 

(End of Proof) 

Exercises 

0. T = <(a.b,d,e}.{ab.abe.de)>. U = <{b.c.e.f}.{bc.bec.fe}>.and 
V <{a.b,c}.{E.a,ab,abc}> 

Compute T w U. T w V. U w V. and T w U w V. 

1. Prove (T w U) t A !: (Tt A) w (UtA) and provide a counterexample for equality. 

2. Prove: 

(i) (T w U)taT !: T 

(ii) TwU = ((TwU)taT)w((TwU)taU) 
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3. For trace structure T we define trace structure T • by 

r·= <a.T.Iti(As:s~t:s€tT)}> 
Prove (T w u)• = r•w u• 

4. Let U and V be trace structures such that aU 

T w (U U V) = (T w U) U (T w V) 

T w (U n V) = (T w U) n (T w V) 

(End of Exercises) 

1.4 Blending 

a V . Show that 

The weave of (non-empty prefix-closed) trace structures may be viewed as the 
specification of the composite of the components they specify. Symbols that belong to 
more than one of the alphabets of the trace structures are called internal symbols. 

The other symbols. i.e. those that belong to one of the alphabets only. are called external 
symbols. In the ultimate specification of a composite we want to specify a mechanism 
without any information about its internal structure: 

in the specification of a four-place buffer we do not want to reflect the fact that it is 
composed of two two-place buffers. or that it is composed of a one-place buffer and a 
three-place buffer. 

Given a specification of a mechanism. one often tries to decompose that specification in 
such a way that the mechanism can be obtained by composing simpler mechanisms. In 
general. there will be interaction between the composing parts. That interaction is. of 
course. not reflected in the original specification. Hence. we will not specify the composite 
of a mechanism by the weave of the trace structures involved. but. by the weave followed 
by projection on the external symbols. This leads to the following definition. 

The blend of trace structures T and U. denoted by T b U • is defined by 

TbU = (TwU)t(aT+aU) 

where + denotes symmetric set difference, i.e. A + B (A U B) \(A n B ). 

Property 1.4.0 

aTnaU = 0 ::;.. T bU TwU 

(End of Property) 
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Property 1.4.1 

Blending is symmetric, i.e. T b U UbT. 

(End of Property) 

Property 1.4.2 

0 T is non-empty ::;. T b T STOP 

1 Tb STOP = T 

2 Tb(T~A) = T~(aT\A) 

3 A CaT ::;. T b RUN(A) = T~(aT\A) 

4 e E tT ::;. T b STOP(aT) = STOP 

Proof 

0. Assume T is non-empty. We derive 

TbT 

{ definition of blending } 

(T w T)~0 

{ weaving is idempotent I 
T~0 

l T is non-empty, Property 1.1.2.6 I 
STOP 

1. We derive 

TbSTOP 

= l Property 1.4.0, aT n a STOP = 0 I 
TwSTOP 

= l Property 1.3.4.1 I 
T 

2. We derive 

T b (TtA) 

I definition of blending I 
(T w (Tt A)) tCaT\A) 

I Property 1.3.4.1 } 

Tt(aT\A) 

23 
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3. Assume A !: aT. We derive 

T b RUN(A) 

{ definition of blending. A !: aT } 

(T w RUN(A )}t(aT\A) 

l Property 1.3.4.2. A !: aT } 

Tt(aT\A) 

4. Assume e E tT. We derive 

T b STOP(aT) 

= I definition of blending } 

(T w STOP(aT))t0 

= I Property 1.3.4.4, aT !: aT and e E tT } 

STOP(aT)t0 

= l STOP(aT) is non-empty } 

STOP 

(End of Proof) 

Trace structures 

From 1.4.2.0 we conclude that blending is not idempotent. The next example shows that 
blending is not associative. 

Example 1.4.3 (blending is not associative) 

(<la,b}.le.a.ab}> b <{b,c},IE,b,bc}>) b <{b,c},{e,b,bc}> 

= l calculus } 

<{a.c).{e.a,ac}> b <{b,c}.{e.b.bc}> 

= l calculus } 

< {a. b }.{e. a, b, ab, ba} > 
;r!: I trace sets differ } 

<I a . b}. {E. a . ab} > 
{Property 1.4.2.1 } 

< l a ,b }.(e. a .ab }> b STOP 

= { Property 1.4.2.0 } 

<{a.b}.{e.a.ab)> b ({b,c}.{e,b,bc}> b <{b,c}.{e,b.bc}>) 

(End of Example) 
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We do. however. have the following theorem. 

Theorem 1.4.4 

Under the restriction that each symbol occurs in at most two of the alphabets of the 
trace structures involved. blending is associative. 

Proof 

LetT, U, and V be trace structures. such that aT n aU n a V = 0. 
From set theory we then have 

(aTUaU)nav ~ aT+aU (*) 

We derive 

(T b U)b V 

( definition of blending I 
((T w uHCaT+aU)w VH((aT+aU)+aV) 

= I Theorem 1.3.6, using(*) } 

((T w U)w V) ~(((aT U aU)n (aT+aU))U a V)WaT+aU)+a V) 

I set calculus ) 

((T w U)w VHCCaT+aU)U a V)t((aT+aU)+a V) 

( Property 1.1.2.4. set calculus l 
((T w U)w V)WaT+aU)+aV) 

( associativity of weaving and of symmetric set difference I 
(T w U w VH(aT+aU+aV) 

Since w as well as + are symmetric. we conclude 

(T b U) b V = T b (U b V) 

(End of Proof) 

Let X be a finite set of trace structures such that each symbol of ( U T · T EX : aT) 
occurs in alphabets of at most two of the elements of X. Then the blend of the elements 
of X is well-defined. It is denoted by (B T : T E X : T ). From the proof of Theorem 
1.4.4 we infer 

(B T: T EX: T) = (W T: T EX: T)~ A 

where A is the symmetric difference of the alphabets involved. 

By definition we have (B T : T E 0 : T) = STOP. the unit element of blending. 
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Whenever we use the blending operation. we shall see to it that each symbol occurs in at 
most two of the alphabets of the trace structures involved. 

From the properties of projection, i.e. 1.1.2.5 and 1.1.4.3, we have the following variant of 
Theorem 1.3.8 . 

Theorem 1.4.5 

Let T and U be trace structures. Then 

0 pref(TbU)!;;; pref(T)bpref(U) 

if T and U are processes then T b U is a process 

(End of Theorem) 

Finally, we define a class of trace structures that may be viewed as the specification of a 
synchronization mechanism. It is a generalization of SYNC and QSYNC in [19]. 

Let A and B be alphabets and let p and q be natural numbers. The trace structure 
SYNC,.q(A .B) is defined as 

<A U B. { t It E (A U B)* A (As : s ~ t : -q ~ l (s ~A) -l(s ~B) ~ p )) > 

In any prefix of a trace of SYNCp,q(A .B) the lead of elements of A over elements of B 
is at most p. and the lead of elements of B over elements of A is at most q. 

Property 1.4.6 

0 SYNC, ./A, B) is a process 

SYNCo.0(A,B) = <AUB.(AnB)*> 

2 SYNC,.q(A,B):::: SYNCq.p(B.A) 

3 SYNCp.q(0,0) STOP 

(End of Property) 

Note 

When using these processes, we usually require that p + q ;!!: 1. and that A and B 
are non-empty and disjoint. However. putting these restrictions in the definitions 
leads to complicated formulations of properties and theorems. 

(End of Note) 
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The following theorem is useful when calculating the blend of two SYNC's. 

Theorem 1.4. 7 

Let p. q. m. and n be natural numbers such that p + q ~ 1 and m + n ~ 1. and let 
A.B. C. and D be non-empty alphabets such that A n B = 0. C n D = 0. 
Anc = 0.BnD = 0.AnD¢0.and BnC¢0. 

Then 

SYNCp.q(A .B) b SYNCm,n (C .D) 

SYNCp+m,q+n((A UC)\(B UD).(B UD)\(A UC)) 

Proof 

For the sake of convenience we abbreviate 

SYNCp.q(A .B) to S(A .B) 
SYNCm,n(C.D) to S(C.D) 
SYNCp+m.q+n((A UC)\(B UD).(B UD)\(A UC)) to S(AC\BD .BD\AC) 

and 

A UB to AB 
A UC to AC 
CUD to CD 
BUD to BD 

Due to the restrictions on the alphabets we have 

AB +CD 

= I definition of + l 
AB\CD U CD\AB 

= {AnC=0.BnD=0} 

A \D U B\C U D\A U C\B 

= {AnB=0.CnD=0} 

AC\BD U BD\AC 

= I definition of + l 
AC +BD 

Hence. 

AB+CD A \D U B\C U D\A U C\B = AC+BD (*) 



28 

We derive 

a(S (A , B) b S (C, D)) 

= { definitions of SYNC and blending } 

AB +CD 

= I (*) I 
AC +BD 

I definition of SYNC } 

aS(AC\BD,BD\AC) 

The equality of the trace sets is proved in two steps 

(i) t(S(A.B)bS(C.D)) ~ tS(AC\BD.BD\AC) 

Lett Et(S(A .B)b S(C .D)) and lets ~ t. 

Trace structures 

According to Theorem 1.4.5 .1 we have s E t (S (A • B) b S (C . D)) as well. Let w be such 
that wEt(S(A .B)wS(C.D)) and s = wt(AB +CD). 
We derive 

w Et(S(A ,B)w S(C .D)) 

=> {definition of SYNC and weaving l 
-q ~l(wtA)-l(wtB)~p A -n ~l(wtC)-l(wtD)~m 

=> I calculus l 
-(q +n) ~ lCwtA)-l(wtB)+l(wtC)-l(wtD) ~ p+m 

{A (l C = 0. B (l D = 0 } 

- (q +n) ~ l(wtAC )-l(wtBD) ~ p +m 

{calculus l 
- (q +n) ~ l(wtAC\BD )-l(wtBD\AC) ~ p +m 

{ s = wt(AC + BD), cf. (*)} 

(q +n) ~ l(stAC\BD )-l(stBD\AC) ~ p +m 

Hence. 

(A s · s ~ t : - (q + n ) ~ l (s t AC \ BD ) - l (s t BD \ AC ) ~ p + m ) 

from which we conclude t EtS(AC\BD .BD\AC) 

(ii) tS(AC\BD.BD\AC) ~ t(S(A.B)bS(C.D)) 

In order to prove (ii) we have to show for each t in the set on the left-hand side . the 
existence of a trace w. wE t(S (A .B) w S(C ,D)). such that t = wt(AB +CD). We do 
so by defining a function h. 
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h: tS(AC\BD.BD\AC)-+ t(S(A.B)wS(C.D)) 
\ 

with h (t )t(AB + CD) = t . 
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We define h by induction on the length of t. which is possible since the domain of h is 
prefix-closed. 

We have EEt(S(A.B)wS(C.D)) and E~(AB +CD)= E. Hence. we define 
h (E)= E. 

Step t = sa with a E AC + BD. Let w = h (s ). 

Due to the symmetry of SYNC. cf. Property 1.4.6.2. the symmetry of the theorem to be 

proved. and (*), it suffices to treat the case a E A\ D. We then have 

saEtS(AC\BD.BD\AC) A aEA\D 

and the induction hypothesis ( w = h (s ) ) : 

wEt(S(A.B)wS(C.D)) A w~(AB+CD)=s 

Notice that the first conjunct of the induction hypothesis implies 

(Av :v ~w: -q ~l(v~A)-l(v~B)~p A -n ~l(vtC)-l(v~D)~m) 

We derive 

sa EtS(AC\BD.BD\AC) 

::;.. I definition of SYNC } 

l(satAC\BD)-l(satBD\AC) ~ p +m 

{aEA\D.AilC=0.AilB=0} 

l(st AC\BD )-l(s~BD\AC) ~ p +m- 1 

= { induction hypothesis: s = w ~(AC + BD ). cf. (*) } 

l(wtAC\BD)-l(wtBD\AC) ~ p +m -1 

= { calculus } 

l(wtAC)-l(wtBD) ~ p +m- 1 

= {Ail C = 0. B il D = 0} 

l(wtA )+l(w~C )-l(wtB )-l(wtD) ~ p +m- 1 

::;.. { calculus } 

l(wtA)-l(wtB)~p-1 V lCwtC)-l{wtD)~m-1 

= (wtAB EtS(A.B). wtCDEtS(C.D)} 
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-q ~ l(wtA) HwtB) ~ p- 1 

V (l(wtA)-l(w~B)=p II -n~l(wtC)-l(wtD)~m-1) 

I p +q ;;:: 1. hence - q + 1 ~ p } 

-q ~l(w~A)-l(wtB)~p-1 

Trace structures 

V (-q+l~l(wtA)-l(wtB)=p II -n ~Z(wtC)-l{w~D)~m-1) 

Hence. we have two cases : 

(0) -q ~l(w~A)-l(w~B)~p-1 

(1) -q+1~l(w~A)-l(w~B)=p II -n~l(w~C)-l(w~D)~m-1 

In case (0) we define h (sa)= wa. since 

-q ~l(wtA) l(wtB)~p-1 

{ w~CD EtS(C .D) l 
-q ~ l(wtA )-l(wtB) ~ p -1 II -n ~ l(wtC)-l(w~D) ~ m 

(aEA\D.AnB =0.AnC =0} 

-q+1~l(wa~A)-l(watB)~p II -n ~l(watC)-l(watD)~m 

:::;.. { induction hypothesis } 

wa Et(S(A .B)w S(C .D)) 

and 

wa~(AB +CD) 

= {aEA\D,AnC=0} 

(w~(AB +CD))a 

{ induction hypothesis } 

sa 

In case ( 1) we define h (sa ) = wba . where b E B n C (B n C ;e 0). since 

-q + 1 ~ l(wtA )-l(wtB) = p II -n ~ l(wtC)-l(wtD) ~ m-1 

{bEB.BnA=0.BnD=-0.bEC} 

-q ~l(wb~A)-l(wbtB)=p-1 ;\ -n+l~l(wbtC)-l(wbtD)~m 

{aEA\D.A nB = 0.A nc = 0} 

-q ~ l(wbtA)-l(wbtB)= p -1 II -n +1 ~ l(wbtC)-l(wbtD) ~ m 

II -q+l~l(wbatA)-l(wbatB)=p II -n+1~l(wbatC)-l(wbatD)~m 

:::;.. { induction hypothesis } 

wba Et(S(A .B)w S(C .D)) 
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and 

wbat(AB +CD) 

= {bEBnC} 

wat(AB +CD) 

= {aEA\D,AnC=0} 

(wt(AB + CD))a 

= { induction hypothesis } 

sa 

(End of Proof) 

In the proof of Theorem 1.4. 7, viz. in the Step. the fact B n C ¢ 0 is needed if 
a EA \D U D\A whereas AnD.= 0 is needed in the case a EB\C U C\B. When 
B = C the latter does not occur and we have 

Theorem 1.4.8 

For natural p, q , m , and n such that p + q ~ 1 and m + n ~ 1. and non-empty alpha
bets A . B • and C such that A n B = 0 and B n C = 0. we have 

SYNCp.q(A .B) b SYNCm,n (B .C) = SYNCp+m.q+n (A \C .C\A) 

(End of Theorem) 

Corollary 1.4. 9 

For natural numbers p.q.m. and n such that p +q ~ 1 and m+n ~ 1. and mutually 
disjoint. non-empty alphabets A . B. and C we have 

SYNCp.,/A .B) b SYNCm.n (B .C) = SYNCp+m.q+n (A .C) 

(End of Corollary) 

As a generalization of SEM 1( a. b) we define SEMt (A • B) for k ~ 0. and alphabets A 
and B. by 

We write SEM~c (a ,b) and SYNCp.q( a ,b) as shorthands for SEMt ({a}.{ b}) and 
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SYNCp.q({ aU b}) respectively. 

Property 1.4.10 

0 SEMk(A .B) 

= <A U B • { t I t E (A U B )* 1\ (A s : s ~ t : 0 '(; l (s t A ) - l (s t B ) ~ k ) ) > 

1 SEMk is a process 

2 SEM 0(A .B)= <A UB .(A nB)*> 

(End of Property) 

Theorems 1.4.7 and 1.4.8. as well as Corollary 1.4.9. are easily reformulated for SEM's. 

Example 1.4.11 

SYNCp.q(a .b) b SYNCm,rt ({ x .b I. { y .a)) = SYNCp+m.q+rt (x .y) 

SEMl({aO.ai),c)b SEM 2(c.{aO.a2}) = SEM 3(al.a2) 

SEMk (a .b) b SEMm(b ,c) = SEMk+m(a ,c) 

SYNC 1,1(a.b) b SEMl({b,x).{a.y}) = SYNC2.1Cx.y) 

SEM 1(a .b) b SEM 1(a ,c) 

= { definition of SEMk I 
SYNC t.oCa .b) b SYNC t,o(a. c) 

{ Property 1.4.6.2 I 
SYNCo.t(b.a) b SYNC 1•0(a.c) 

= {Corollary 1.4.9 J 
SYNCu(b,c) 

(End of Example) 



Exercises 

Exercises 

0. Compute: 

RUN(A) b RUN(B) 

RUN (A ) b STOP(B) 

STOP(A ) b STOP(B) 

L Compute: 

RUN(A) b ( RUN(A) b RUN(A U B)) 

(RUN(A) b RUN(A)) b RUN(A UB) 

2. Prove: aT n aU !:",;; A => (T b u H A = (T~ A ) b (U r A ) 

3. Prove: t Et(T b U) => t~(aT\aU) Etn(aT\aU) 

4. Show that <{a.b}.{t ltE{a,b}*ll 0 ~ l(tra)-l(ti'b) ~ 2}> is rwt 

closed. 

5. Prove: SYNCp.q(A .B) = RUN(A n B) b SYNCp.q(A \B .B\A) 

6. Compute: 

0. SYNC 1,1({a.b},{c.d}) b SYNCu({d .e).{b.f}) 

1. SYNCu(a,b) b SYNCu(c,b) 

2. SEMt(laO.al}.a2) b SEM1({a2,a3}.aO) 

3. SEM 1({a.x).{b,x}) b SEM 1({b.yL{c,y}) 

4. SEMl(x.y) b SEMl({x,aUy.b}) 

7. For distinct symbols a and b we define SEM(a ,b) by 

SEM (a • b ) = < { a • b ).{ t It E { a • b)* II (A s : s ~ t : 0 ~ l (t ~a ) - l Cd b) ) ) > 

Prove: 

0. SEM(a ,b) is a process 

1. SEM(a,b) b SEM 1(b.c) = SEM(a,c) 

2. SEM (a • b ) b SEM (b • c ) = SEM (a • c) 

(End of Exercises) 
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1..5 States and state graphs 

In this section we relate trace structures to labeled directed graphs. 

Let T be a trace structure. The binary relation T on tpref(T) is defined by 

(Au:uEaT*:suEtT := tuEtT) 

Property 1..5.0 

0 T is an equivalence relation: 

s -;s 
s -;t - t -;s 
s -;t 1\ t -;u::;.. s -;u 

1 T is right congruent with respect to concatenation: 

(As.t.u:suEtpref(T)I\ tuEtpref(T):s -;t::;.. su -;tu) 

(End of Property) 

The equivalence classes corresponding to T are called the states ofT. [ t lr denotes. as 
usual. the class to which t belongs. 
Whenever T is obvious. we omit T in T and [ t lr. 

Example 1..5.1 

SEM 1(a. b) has two states. viz. [e] and [a]. 

(End of Example) 

If [ s] = [t] and sa E tpref(T), we have, due to the fact that - is a right congruence, 
that [sa]= [ ta] as well. Hence. we have a relation R on the set of states. viz. 

[ s ] R [ t ] = (E a : a E aT : [ sa] = [ t ]) 

This relation can be represented by a directed labeled graph. The states of T are the nodes 
of the graph. If [ s] R [ t] then there is an arc . labeled a. from [ s] to [ t ] for each sym
bol a EaT such that [sa]= [ t]. 
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Example 1.5.2 

LetT= <{a,b}.{a,ab,bb}> 

then tpref(T)= {E.a.b.ab.bb}. 

The states are [e). [a]. [ b ]. and [ ab ]. 
Notice that traces a and b are not equivalent. since 

aE EtT and bE f tT. 

The state graph is shown in Figure 1.3 . 

(End of Example) 
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Figure 1.3 

If tT is empty then the graph is the empty graph. If tT is non-empty then [e) is called 
the initial state. In figures of state graphs the initial state is drawn fat. Each path start
ing in [E) yields an element of tpref(T) by recording the labels on that path. If such an 
element belongs to tT. the endpoint of the path is called a final state (all states of a 
prefix-closed trace structure are final states). 
The graph thus obtained is often called the minimal deterministic state graph of T. We 
call it the state graph of T. 

Any directed graph with one node as initial node. zero or more nodes as final nodes. and 
with zero or more arcs labeled with symbols. defines a trace set: each path from the initial 
state to a final state yields a trace. Such a graph is called nondeterministic if there exists a 
node that bas an unlabeled outgoing arc or two or more outgoing arcs with the same label. 
Otherwise it is called deterministic . If it is deterministic and if the number of nodes 
equals the number of states of the trace set it describes. it is called minimal. In a minimal 
state graph all arcs are labeled. 

For a more formal treatment of the above we recommend [9]. A nice algorithm for the 
transformation of a nondeterministic state graph into a minimal deterministic one can be 
found in [19]. 

If T bas a finite number of states. T is called a regular trace structure. The correspon
dence between regular trace structures and deterministic finite state machines is described 
in [19]. 

b a 

Example 1.5.3 [b]~•Q-[a) 
Figure 1.4 shows the state graph of SYNC u(a , b). 

There are three states. viz. [E). [a]. and [b ]. 

Since SYNC 1,1 (a . b ) is a process. every state is a final state. 
SYNC u(a, b) is a regular process. 

(End of Example) 

a b 

Figure 1.4 
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Let B be a subset of aT. A state graph of T~ B is obtained from a state graph of T by 
removing all labels not in B . In general this leads to a nondeterministic state graph. Pro
jection may. surprisingly. lead to a trace structure with more states than the original one. 
This is demonstrated in the next example. 

Example 1.5.4 

Procesr.; T is defined by 

aT = {a.b.c} 

a a 
,--...... c ~ ----· ·-· . '---"' '---"' 

a 

b b 

Figure 1.5 

tT is the prefix-closed trace set described by the state graph shown in Figure 1.5 . 

The trace set of T~ {a . b} is given by Figure 1.6 . 

The minimal deterministic state graph of Ttl a .b} is shown in Figure 1.7. 

Apparently. T has 5 states and Ttl a .b} has 6 states. 

(End of Example) a a 

a •,--......• ~ -- '----"' ---\..___) 

a 

b b 

Figure 1.6 

a 

b ~ 
____;;;_--·~· 

b 

Figure 1.7 

From automata theory it is known how a finite nondeterministic state graph can be 
transformed into a finite deterministic minimal state graph. As a consequence. we have 

Property 1.5.5 

If T is regular then T~ B is regular. 

(End of Property) 

We now consider the relation between the state graph of trace structures T. U, and 
TwU. 



1.5 St~tes and state graphs 

Property 1.5.6 

Let s and t be traces of t pref (T w U ). Then 

s~aT Tt~aT A s~aU ut~aU => sT;;U t 

Proof 

Assume s~aT Tt~aT A s~au ut~au. Foranytrace u wederive 

suE t(T wU) 

= { definition of weaving } 

= 

= 

suE(aTUaU)* A su~aTEtT A su~aUEtU 

I property of projection } 

su E(aT UaU)" A (s~aT)(u~aT)EtT A (s~aU)(u~aU)EtU 

ls~aT Tt~aT ands~au ut~au l 
tu E(aT UaU)* A (daT)(u~aT)EtT A (t~aU)(u~aU)EtU 

I property of projection } 

tuE(aTUaU)* A tu~aTEtT A tu~aUEtU 

{ definition of weaving } 

tu Et(T w U) 

Hence. sT ';;u t 

(End of Proof) 

Theorem 1.5. 7 

37 

The number of states of T w U is at most the product of the number of states of T 
and the number of states of U. 

Proof 

Forall sand t.sEtpref(TwU) and tEtpref(TwU).wederive 

[slrwu ¢ [tlrwu 

=> I Property 1.5.6 } 

[s~aT]r ¢ [ttaTlr Y [s~aUlu ¢ [ttaUlu 

= I definition of equality of pairs } 

([staTlr .[staU)u) ¢ ([ttaT)r .[ttaU)u) 
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and the number of pairs (x .y) where x is a state of T and y is a state of U equals the 
product of the number of states of T and the number of states of U. 

(End of Proof) 

Corollary 1.5.8 

lf T and U are regular trace structures then T w U is a regular trace structure. 

(End of Corollary) 

Using Property 1.5.6 we can indeed construct a state graph of T w U from those of T 
and U: 

Consider all pairs ([ p ].[ q]) where [ p] is a state of T and [ q] is a state of U. Take these 
pairs as nodes. We have an arc with label a from ([ pO ].[ qO]) to ([ pl ].[ ql]) in the fol
lowing cases: 

aEaTnau 1\ [p(Ja]= [pl] 1\ [qOa]= [ql] 

aEaT\aU 1\ [p(Ja]= [pi] I\ [qO]= [qJ] 

a EaU\aT 1\ [pO]= [pl] 1\ [qOa]= [ql] 

The initial state is the pair of the initial states of T and U • and the final states are all 
pairs of final states of T and U. 
In the resulting graph one may remove all nodes that are not reachable from the initial 
node. and all nodes from which no final node is reachable. 

Example 1.5.9 

The state graphs of SEJI.! 1(a ,b) and SEM 1(b .c) are shown in Figure 1.8 and Figure 1.9 
respectively. Applying the method described above yields Figure 1.10. a state graph of 
SEMt(a .b )w SEM1(b ,c). 

Projection on {a ,c l yields Figure 1.11. the state graph of SEMia .c). 

(End of Example) 

a 

o~•1 
~ 

b 

Figure 1.8 

b 

~ 
oe •1 

~ 
c 

Figure 1.9 

/t)/'''' 
• • (o,o) a (1,o) Figure 1.10 

c c 

.~~. 
'---" '---" a a 

Figure 1.11 
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From Property 1.5.5 and Corollary 1.5.8 we infer 

Theorem 1.5.10 

If T and U are regular trace structures then T b U is a regular trace structure. 

(End of Theorem) 

Exercises 

0. Show that - is not left congruent with respect to concatenation. 

1. Draw state graphs of the following processes: 

SEM 4(a,b). SYNC 1•3(a,b). RUN({a.b)). STOP({a,b}). 

2. Let T and U be trace structures. Describe the state graph of 
<aT U aU, tT U tU > in terms of the state graphs of T and U. 

3. Describe the state graph of 

<aT U aU. { t I(E u ,v: u EtT 1\ v EtU; t = uv ))> 

in terms of the state graphs of T and U. 

4. Compute the number of states of SYNCP .q (A . B). 
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5. Let T = <{b).{b}> and let U = <{b),{bb)>. Construct the state graph of 
T w U from those of T and U. 

6. Process SEM (a • b) is defined as 

<la,b),{t ltE{a,b}* 1\ (As :s ~t :l(sta) ~ l(stb))}> 

Prove that SEM (a , b) is rwt regular. 

7. Prove that for trace structures T and U such that aT n aU = 121: 

the number of states of T w U equals the product of the number of states of T and 
the number of states of U. 
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8. Process T has alphabet {a , b , c , d I 
and state graph as shown in Figure 1.12 . 

Determine the state graph of T~{ a ,b ,c }. 

(End of Exercises) 

1.6 The lattice T (A ) 

a 

Figure 1.12 

ln this section we study the structure of processes in more detail. First we review some 
concepts of lattice theory. For an introduction to lattice theory we recommend [0]. 

Let (S , ~ ) be a partially ordered set and let X be a subset of S. Element a is called 
the greatest lower bound of X if 

(A x : x EX : a ~ x ) A (A b : b E S A (A x : x E X : b ~ x ) : b ~ a ) 

lt is called the least upper bound of X if 

(A x : x E X : a ~ x ) A (A b : b E S A (A x : x E X : b ~ x ) : b ~ a ) 

We call (S, ~ ) a complete lattice if each subset of S has a greatest lower bound and a 
least upper bound. The greatest lower bound and the least upper bound of elements x 
and y are denoted by x glb y and x lub y respectively. The greatest lower bound and 
the least upper bound of X are denoted by (GLB x : x EX : x) and (LUB x : x EX : x) 
respectively. 

A complete lattice has a least element and a greatest element. viz. (LUB x : x E £21 : x) and 
(GLB x : x E£21: x) respectively. 

A sequence x(i : i ~ 0) of elements of S is called an ascending chain if 

(A i : i ~ 0: x (i) ~ x (i + 1)). 

It is called a descending chain if (A i : i ~ 0: x (i ) ~ x (i + 1)). 

Let (S. ~) and (T, ~ ) be complete lattices and let f be a function from S to T. 

f is called 

monotonic if (A x . y : x E S A y E S : x ~ y => f (x ) ~ f (y )) 

disjunctive if (Ax.y:xESA yES·f(xluby)=f(x)lubf(y)) 

conjunctive if (Ax.y:xES A yES:f(x glby)=f(x)glbf(y)) 
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universally disjunctive if 

(A X: X !',;;; S: f((LUB x : x EX: x )) = (LUB x: x EX: f(x))) 

universally conjunctive if 

(A X :X !: S : f((GLB x : x EX: x)) = (GLB x : x EX: f (x ))) 

universally disjunctive aver non-empty sets if 

(A X: X !: S A X¢ 0: f((LUB x : x EX: x )) = (LUB x: x EX: f(x))) 

universally conjunctive aver non-empty sets if 

(A X : X !',;;; S 1\ X ¢ 0: f((GLB x : x EX : x )) = (GLB x : x EX : f (x))) 

upward continuous if for each ascending chain x (i : i ~ 0) 

f((LUB i: i ~ 0: x (i))) = (LUB i: i ~ 0: f(x(i))) 

downward continuous if for each descending chain x (i : i ~ 0) 

f((GLBi:i ~O:x(i))) = (GLBi:i ~O:f(x(i))) 

Some of these notions have been adopted from [4]. 

Example 1.6.0 
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Let A be a set, then ( P(A ), !: ) is a complete lattice. For a subset Q of P(A) we have 

(LUBX:XEQ:X) (UX:XEQ:X) 

(GLBX:XEQ:X) = (n X:XEQ:X) 

(Taking into account that ( U X : X E 0 : X) = 0 and ( n X : X E 0 : X) = A ) 

Let B be a proper subset of A. Consider the function f : P(A)-+ P(A) defined by 
f(X) = B nx. 
From B n (XU Y) = (B n X )U (B n Y) we conclude that f is disjunctive. 
From B n (X n Y) = (B n X)n (B n Y) we conclude that f is conjunctive. 

Since intersection distributes through any union of sets. f is universally disjunctive as 
well. Notice. however. that f is not universally conjunctive: 

f((nX:XE0:X)) 

= {definition of f } 
Bn(nX:XE0:X) 

= { by definition } 

BnA 
= { B is a subset of A 

B 

¢ { B is a proper subset of A } 
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A 

( by definition } 

(nX:XE0:BnX) 

( definition of f } 
( n X : X E 0 : f (X )) 

Trace structures 

Let X(i : i ~ 0) be an descending chain in P(A ). For any a, a EA, we have 

a E B n ( n i : i ~ 0 : X (i )) 

( set calculus } 

aEB II (Ai :i ~O:aEX(i)) 

( predicate calculus } 

(A i : i ~ 0: a E B II a E X(i )) 

( set calculus } 

aE(ni:i~O:BnX(i)) 

from which we infer that f is downward continuous. 

In this derivation the hint 'predicate calculus' can be refined to 'conjunction distributes 
through universal quantification over a non-empty range'. A similar derivation yields that 

f is universally conjunctive over non-empty sets. 

(End of Example) 

Without proof we mention the following properties. 

Property 1.6.1 

Both conjunctivity and disjunctivity imply monotonicity. 
Universal conjunctivity over non-empty sets implies downward continuity. 
Universal disjunctivity over non-empty sets implies upward continuity. 
Both upward and downward continuity imply monotonicity. 

(End of Property) 

Property 1.6.2 

Let S and T be complete lattices. Let f be a function from S to T. Let LS and LT 
denote the least elements of S and T respectively. and let GS and GT denote the 
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greatest elements of S and T respectively. Then 

I is universally disjunctive 

- I is universally disjunctive over non-empty sets A I(LS) = LT 

and 

I is universally conjunctive 

- I is universally conjunctive over non-empty sets A I (GS) = GT 

(End of Property) 

Let A be an alphabet. 

The set of all processes with alphabet A is denoted by T (A ). 

In Section 1.2 we defined inclusion. intersection, and union for trace structures with equal 
alphabets, according to their trace sets. 

Theorem 1.6.3 

( T (A ), !: ) is a complete lattice with least element STOP(A ) and greatest element 
RUN(A ). 

Proof 

For any non-empty prefix-closed subset X of A • we have E EX, hence. STOP(A ) !: T 

for all T, T E T (A ). Moreover, STOP(A) is a process, hence STOP(A) is the least ele

ment of T (A ). 

For any T, T E T (A ), we have tT !;;:; A *. Since RUN (A ) is a process, RUN (A ) is the 

greatest element of T (A ). 

Let Q be a non-empty set of non-empty prefix-closed subsets of A*. We have to prove 
that ( U X : X E Q : X) and ( n X : X E Q : X) are non-empty and prefix-closed. 

From Q>C0 and (AX:XEQ:EEX) we infer EE(nX:XEQ:X) and 
E E ( U X : X E Q : X), so both are non-empty. 

Let s and t be traces such that s ~ t . We derive 

tE(UX:XEQ:X) 

= { definition of union } 

(EX:XEQ:tEX) 
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::;. ( all elements of Q are prefix-closed, s ~ t l 
(E X : X E Q : s EX) 

{ definition of union ) 

sE(UX:XEQ:X) 

Hence. (U X: X EQ :X) is prefix-closed. 

A similar derivation yields that ( n X : X E Q : X) is prefix-closed. 

(End of Proof) 

Note 

Since STOP(A) is the least element of T(A ), we have 

(LUB X: X E0: X) = STOP(A) (in the realm of T(A) ). 

However, (U X: X E0: X) = 0. so we should be careful with the use of U instead of 
LUB . A similar remark holds for n and GLB . We do have: 

(LUB X: XE0: X)= STOP(A) 

(LUBX:XEQ:X) = (UX:XEQ:X) if Q¢0 

(GLBX:XE0:X) RUN(A) 

(GLBX:XEQ :X) (n X:XEQ :X) if Q ¢0 

(End of Note) 

Let B be an alphabet. As we have seen in Section 1.2. the projection of trace structure T 
on B yields a trace structure with alphabet aT n B: 

T~B = <aTIIB,tT~B> 

From pre/ (X~ B) = pref(X H B (Property 1.1.4.3) and E ~ B = E we conclude that t B 
maps processes onto processes: 

T ..... T~ B maps T (A ) onto T (A II B ) 

Theorem 1.6.4 (projection is universally disjunctive) 

Let B be an alphabet. 

The mapping ~ B : T (A ) ..... T (A (l B ) is universally disjunctive. 

Proof 

STOP(A) ~ B = STOP(A n B), and for any non-empty set Q of trace sets we have 
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tE(U X:XEQ:XHB 

= I definition of projection } 

(Eu: u E(U X: XEQ :X):t = u~B) 

= I definition of union } 

(E u : (E X : X E Q : u EX) : t = u ~ B ) 

= I predicate calculus } 

(E X : X E Q : (E u : u EX : t = u t B)) 

= I definition of projection } 

(EX : X E Q : t EX~ B) 

= I definition of union } 

t E(U X: XEQ: X~ B) 

Hence. for any subset Q of T(A) we have 

(LUB T: TEQ: T)tB = (LUB T: TEQ: TtB) 

(End of Proof) 

Corollary 1.6.5 

Projection is upward continuous and monotonic. 

(End of Corollary) 

Example 1.6.6 (projection is not downward continuous) 

Let A = I a. b} and let the descending chain T (i : i ;;?; 0) be given by 

T(i) = <A .It I (E k : k ;;?; i : t ~ ak b))> 

where a 0 = e and ak+l =aka fork ;;?; 0. 

Notice that for all i, i ;;?; 0, T(i) is a process. We derive 

tE(n i:i ;;?;O:tT(i)) 

= I calculus } 

(A i : i ;;?; 0: (E k : k ;;?; i : t ~ ak b)) 

I predicate calculus } 

(A i : i ;;?; l (t ) : (E k : k ;;?; i : t ~ a k b ) ) 

= I calculus } 

t E {a l* 

45 
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Hence, (GLBi :i ;i!;O:T(i)) = <{a,b).{a)*>.Projectionon{b)yields 

(GLBi :i ;i!:O:T(i))t{b} = <{bl.{e)>. 

Trace structures 

On the other hand we have (A i: i ;i!: 0: T(i )t(b I 
(GLBi :i ;i!;O;T(i)t{b)) = <{bL(e.b}>. 

< ( b}. (e. b} > ). hence 

(End of Example) 

Let T be a process. Due to Theorem 1.3.8.1. T w V is a process for any process V. 

Hence. we have a function f: T(A) __, T(aT U A) defined by f(V) = T w V. 

( f is the restriction to T(A) of the weave viewed as a function of its second argument). 
Since weaving is symmetric, all properties of f are also properties of the weave viewed as 
a function of its first argument. We simply call these properties 'properties of weaving'. 

Theorem 1.6. 7 

0 Weaving is universally disjunctive over non-empty sets. 

1 Weaving is universally conjunctive over non-empty sets. 

Proof 

0. Let Q be a non-empty subset of 7 (A). We derive 

t E t(T w ( U V: V E Q : V )) 

= { definition of weaving ) 

tE(aTUA)*I\ daTEtT II ctAEt(U V:VEQ:V) 

= { definition of union ) 

tE(aTUA)*II daTEtT II (EV:VEQ ·ttAEtV) 

= ( predicate calculus I 
(E V: VEQ: t E(aT UA )*II ttaTEtT II ttA EtV) 

= { definition of weaving I 
(E V : V E Q : t E t(T w V )) 

{ definition of union ) 

tEt(U V:VEQ:TwV) 

Hence. T w (LUB V : V E Q : V ) = (LUB V : V E Q : T w V ) 

1. Similar 

(End of Proof) 
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Note 

Due to the non-emptiness of Q we are. in the derivation above. allowed to replace 
LUB by U. 

(End of Note) 

The next example shows that weaving is rwt universally disjunctive and rwt universally 
conjunctive. 

Example 1.6.8 

Let A= {a} and T = <{a,b).{e,a.b)> then 

TwSTOP(a) = <{a,b),{e.b)> >£ STOP({a,b)) 

TwRUN(a) = <(a.b).(e.a,b)> >£ RUN((a,b}) 

hence. 

T w (LUB V : V E 0 : V ) ;£ (LUB V : V E 0 : T w V ) 
T w (GLB V: V €0: V) >£ (GLB V: V €0: T w V) 

(End of Example) 

The following corollary is a consequence of Theorem 1.6. 7 and Property 1.6.1 . 

Corollary 1.6.9 

Weaving is conjunctive. disjunctive, and monotonic. 
Weaving is upward continuous. 
Weaving is downward continuous. 

(End of Corollary) 

Finally. we consider blending. Let T be a process. From Theorem 1.4.5.1 we conclude 
that T b V is a process for any process V. 

Hence. V ~ T b V is a mapping from T(A) to T(aT+A ). 
This mapping is the composite of V ~ T w V and U ~ ut(aT+A ). Since the compo
site of two mappings inherits their common junctivity properties, we have on account of 
1.6.4, 1.6.5, 1.6.7, and 1.6.9 the following theorem. 
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Theorem 1.6.10 

Blending is universally disjunctive over non-empty sets. 
Blending is upward continuous and monotonic. 

(End of Theorem) 

Example 1.6.11 (blending is not downward continuous) 

Let A = {a,bl and letT = RUN( a). 
The descending chain V (i : i ~ 0) is defined by (cf. Example 1.6.6) 

V(i) = <A.{ti(Ek:k ~i:t ~akb)}> 

Then 

Tb(GLBi:i ~O:V(i)) 

= { Property 1.4.2.3. T = RUN (a) } 

(GLBi: i ~ 0: V(i ))tb 

= { Example 1.6.6 } 

<{b}.{e}> 

...= ( trace sets differ } 

<{b}.{e.b}> 

= ( Example 1.6.6 } 

(GLBi:i ~O:V(iHb) 

= ( Property 1.4.2.3 l 
(GLBi :i ~O:TbV(i)) 

(End of Example) 

Trace structures 

Let A and B be alphabets. The sequence SEM~c (A • B). k ~ 0, is an ascending chain in 

T (A U B). Process SEM (A . B ) is defined by 

SEM(A.B) = (LUBk :k ~O:SEM~c(A.B)) 

Property 1.6.12 

SEM (A . B ) = <A U B . { t I t E (A U B )* !\ (A s : s ~ t : 0 ~ l (s ~A ) - l (s ~ B ) ) } > 

(End of Property) 
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Property 1.6.13 

Let A , B. and C be mutually disjoint, non-empty alphabets. Then 

0 SEM 1(A ,B)b SEM(B ,C) = SEM(A ,C) 

1 SEM(A .B) b SEM(B ,C) = SEM(A ,C) 

Proof 

0. We derive 

SEM1(A ,B)b SEM(B .C) 

I definition of SEM I 
SEM 1(A.B)b(LUBk :k ~O:SEM~:(B.C)) 

I blending is upward continuous ) 

(LUBk :k ~O:SEM1(A.B)bSEM~:(B,C)) 

= I Theorem 1.4.9} 

(LUB k: k ~ 0: SEMu1(A .C)) 

= { SEM 0(A , C ) S: SEM 1 (A , C) } 

(LUB k: k ;;i!: 0: SEM~:(A .C)) 

= I definition of SEM ) 

SEM(A .C) 

1. We derive 

SEM(A .B)bSEM(B ,C) 

I definition of SEM } 

SEM (A , B ) b (LUB k : k ;;i!: 0: SEM1 (B , C )) 

= I blending is upward continuous ) 

(LUB k: k ~ 0: SEM(A .B)b SEM~:(B .C)) 

= I similar to the proof of part 0 ) 

(LUBk :k ;i!:O:SEM(A.C)) 

= I definition of least upper bound ) 

SEM(A .C) 

(End of Proof) 

Notice tbat SEM (a. b) is not regular. 
Tbe states of SEM( a. b) are [ ak ]. k ~ 0. 
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We conclude this section with two theorems concerning lattice theory. 

Theorem 1.6.14 (Knaster-Tarski) 

Let ( S , ~ ) be a complete lattice and let I : S ...... S be a monotonic function. Then the 

equation 

xES: l(x) x (0) 

has a least solution, which is also the least solution of 

xES: l(x) ~ x (1) 

Proof 

Notice that the greatest element of S is a solution of ( 1). Let m. m E S. be defined by 
m = (GLB x: l(x) ~ x : x ). We derive 

m = (GLBx :l(x)~x :x) 

::;. I definition of greatest lower bound } 

(A X : l(x) ~X : m ~X) 

::;. I I is monotonic l 
(Ax : l(x) ~ x : l(m) ~ l(x )) 

::;. { transitivity of ~ } 

(A X : l(x) ~ X : l(m) ~X) 

::;. { definition of greatest lower bound l 
l(m) ~ (GLB x: l(x) ~X: x) 

{ definition of m l 
l(m) ~ m 

Hence, m is a solution of (1) and since m = (GLB x: l(x) ~ x: x ). we have 

m is the least solution of (1) 

From 

l(m) ~ m 

::;. { I is monotonic l 
I (I (m )) ~ I (m) 

= { by definition } 

l(m) is a solution of (1) 

we infer. since m is the least solution of (1). m ~ l(m ). Together with l(m) ~ m this 
yields I (m ) ; m . 

Hence, m is a solution of (0). Since each solution of (0) is a solution of (1). each solution 
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of (0) is at least m. We conclude 

m is the least solution of (0) 

(End of Proof) 

Changing :::;; in ~ and GLB in LUB yields a similar result for the greatest solutions of 

x E S : x = f (x ) and x E S : x :::;; f (x ) 

A solution of the equation xES: x = f(x) is called a fixpoint off. From 1.6.14 we 
conclude that each monotonic function from S to S has a least fixpoint and a greatest 
fix point. 

Theorem 1.6.15 

Let ( S . :::;; ) be a complete lattice. Let LS and GS denote the least and the greatest ele
ments of S respectively. For a function f : S -+ S we have 

0 if f is upward continuous then its least fixpoint equals 

(LUBk: k ~ 0: fk(LS)) 

1 if f is downward continuous then its greatest fixpoint equals 

(GLBk :k ~ 0: /t(GS)) 

Proof 

0. Assume f is upward continuous. Then f is monotonic and since LS :::;; f(LS), 
f k (LS ), k ~ 0, is an ascending chain. We derive 

f (LUB k : k ~ 0: f t (LS)) 

l f is upward continuous } 

(LUBk :k ~ 0: Jk+ 1(LS)) 

I LS :::;; f(LS)} 

(LUBk · k ~ 0: fk(LS)) 

Hence, (LUB k : k ~ 0: f k (LS)) is a fixpoint of f . 

For each fixpoint x of f we have LS :::;; x and. hence, f k (LS) :::;; f k (x) = x for all 
k. k ~ 0. We conclude (LUB k : k ~ 0: f k (LS )) :::;; x for each fixpoint x of f. 
Hence (LUB k : k ~ 0 : f k (LS ) ) is the least fixpoint of f . 

1. Similar 

(End of Proof) 
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Exercises 

0. Let ( S, ~ ) be a complete lattice and let x and y be elements of S. Prove 

(i) x glb y and x lub y are unique. 

(ii) glb and lub are symmetric and associative. 

(iii) glb and lub have identity elements. 

1. Let ( S. ~ ) be a partially ordered set such that each subset of S has a least upper 
bound. Prove that each subset of S has a greatest lower bound as well. 

2. Disprove 

(i) projection is conjunctive. 

(ii) blending is conjunctive. 

3. Let A be an alphabet and let T be an element of T(A ). The mappings I and g 

from T (A ) to T (A ) are defined by 

1 (V ) = T u V and g (V ) = T n V. 

Find out whether I and g are monotonic. disjunctive. conjunctive. upward continu
ous, downward continuous. universally disjunctive or universally conjunctive. 
Determine the fi.xpoints of I and g . 

4. Compute (LUB i : i ~ 0: SYNCi,k (A .B)) for fixed natural number k. 

5. For natural k trace structure Tk is defined by 

Tk = <{a,b}.{t I(Em.n :0 ~ m ~ n ~ k :t = anbm)l> 

Show that T, is a process. Draw a state graph of T 3• 

Show that the sequence Tk • k ~ 0, is ascending. Show that (LUB k : k ~ 0: Tk ) is 
not regular. 

6. T is a process and V(i: i ~ 0) is a descending chain in T(A ). Prove: 

T b (GLB i : i ~ 0: V(i )) ~ (GLB i : i ~ 0: T b V(i )) 

7. A is an alphabet. The set of all trace structures with alphabet A is denoted by 
R (A). Prove that R (A ) is a complete lattice with least element <A . 0 > and 
greatest element RUN (A ). Prove the analogs of the theorems of this section if 

T (A ) is replaced by R (A ). 

(End of Exercises) 



2 A program notation 

2.0 Introduction 

In this chapter we present a program notation that defines a process. Such a program is 
also called a component. The first class of components we describe yields the set of all reg
ular processes. It is closely related to the field of regular languages and regular expres
sions. cf. [9]. These components may be implemented as (sequential) finite state machines. 

The second class of components still gives rise to regular trace structures. but may be 
implemented with more concurrency. This class allows components to be composed of -
besides a regular expression - a number of subcomponents. 

The third class includes recursive components. These can define non-regular processes. 

2.1 Commands 

From language theory it is known that a regular trace set can be represented by a regular 
expression. We extend the definition of regular expressions and define so-called coTT!TfiJlrtlls. 

Commands are defined inductively by the following six rules. With command S trace 
structure TR (S) is associated. 

(i) E is a command. TR(e) STOP 

(ii) A symbol is a command. TR(a) = <{a}.{a}> 

(iii) If S is a command then S • is a command. 

TR(S*) = <aTR(S).(tTR(S))*> 

where (tTR(S))* denotes the set of finite length sequences of elements of tTR(S). 

If S and T are commands then 

(iv) SIT is a command. 

TR(SIT) = <aTR(S)UaTR(T).tTR(S)UtTR(T)> 

( v) S; T is a command. 

TR(S;T) = <aTR(S) UaTR(T) .{t I(E u.v: u EtTR(S) 1\ v EtTR(T): t = uv )}> 
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(vi) S. T is a command. 

TR(S,T) = TR(S)w TR(T) 

From language theory it is known that the star. the bar. and the semi-colon preserve regu
larity. Corollary 1.5.8 yields that the comma preserves regularity as well. Since STOP 
and < {a l.l a}> are regular, we have 

Property 2.1.0 

A command defines a regular trace structure. 

(End of Property) 

To save parentheses we introduce the following priorities. The star has the highest prior
ity. From the binary operators the comma has the highest priority, followed by the semi
colon and then the bar, i.e. the smaller the symbol the higher its priority. 

Example 2.1.1 

TR((a I b)*)= RUN(a,b) 

TR(a.(a;a)) = <{al.121> 

T R ((a; b)*) = < {a, b}. { E, ab. abab, ababab. · · · ) > 

(End of Example) 

We now present some algebraic properties of commands. These are expressed as equalities. 
where S = T means TR (S) = TR (T ). 

Property 2.1.2 

The bar is symmetric, idempotent, and associative: 

0 SO I SJ = SJ I SO 

1 SIS S 

2 SO I (SJ I S2 ) = (SO I SJ ) I S2 

The comma is symmetric, idempotent, and associative: 

3 SO.SJ = Sl.SO 

4 s.s = s 
5 SO.(SJ.S2) = (SO.SJ).S2 



2.1 Commands 

The semicolon is associative: 

6 SO : (SJ : S2 ) = (SO : SJ) : S2 

(End of Property) 

Property 2.1.3 

The semicolon distributes through the bar: 

0 

1 

SO; (Sl I S2) 

(Sl I S2) ;SO 

(End of Property) 

Note 

(SO ; Sl I SO ; S2 ) 

(SJ ;SO I S2 ;SO) 
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In some theories. cf. [16]. there is a distinction between a;(b I c) and (a;b la:c). This 
distinction arises from an operational point of view: 

a ; (b I c ) is interpreted as 

'first event a occurs. after which both b and c are possible' 

(a; b I a; c) is interpreted as 

'first event a occurs. after which either b or c is not possible any more' 

We do not have this distinction. Both TR (a; (b I c)) and TR ((a; b I a; c)) are equal to 
<{a.b,c}.{ab.ac}>. 

In Chapter 5 we discuss this topic in more detail. 

(End of Note) 

Property 2.1.4 

0 E ,S = S 

1 e;S S:e = S 

(End of Property) 
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Exercises 

0. Draw state graphs of the trace structures defined by the following commands. (Indi
cate initial states and final states) 

(i) (a: b)" 

(ii) (a ,b)" 

(iii) (a\.: b )", ( b ; c)" 

(iv) ( aO; bO "I al : bl ")* 

1. Prove: TR (SO. (SJ I S2 )) C TR ((SO. Sl I SO. S2)) 

Disprove: TR((SO .Sli SO .S2 )) C TR(SO .(SJ I S2 )) 

TR ((SO: SJ). (SO; S2)) C TR (SO; (Sl. S2 )) 

TR(SO;(SJ,S2)) C TR((SO;SJ),(SO;S2)) 

(End of Exercises) 

2.2 Components without subcomponents 

The simplest form a component may have, is the following. 

com c(A ): S moe 

where c is the rta111e of the component. A is a finite alphabet (usually represented by an 
enumeration of its elements). and S is a command. 

With component c process TR (c) is associated. defined by 

TR(c) = pref(TR(S)) 

We impose the following restrictions on such a program text: 

0 aTR(S) = A 

tTR(S) ;e 0 

Due to the last restriction TR (c ) is non-empty. hence; TR (c ) is a process. From Pro
perty 2.1.0 we conclude 

Property 2.2.0 

A component without subcomponents defines a regular process. 

(End of Property) 



2.2 Components without subcomponents 

Example 2.2.1 

0 

1 

2 

3 

com stop 0 : e moe 

com run (a . b ) : (a I b)* moe 

com sem 1(a.b): (a;b)* moe 

com syncu(a .b): (a .b)* moe 

(End of Example) 

Example 2.2. 2 

TR(stop) = STOP 

TR(run) = RUN({a.b}) 

TR(seml) = SEMt(a,b) 

TR(syncu) = SYNCu(a.b) 
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The process of Example 1.2.1. specifying a one-bit one-place buffer. equals TR (bu ft) 

where buft is defined by 

com buf1(a0 ,al ,bO ,bl): (aO ;bO I al ;bl)* moe 

(End of Example) 

Exercises 

0. A binary variable is specified by 

com var(aO,al.bO,bJ): (aO;bO*Ial;bJ*)* moe 

where the following meaning is attached to the symbols. 

aO : the value zero is assigned 

al : the value one is assigned 

bO : the value zero is inspected 

bl : the value one is inspected 

Draw a state graph of T R ( var ) and interpret it states. 

1. Define components for the processes SEM 2( a . b ), STOP ( { a . b }), and 
SYNC uC a . b ). 

2. Give a component that has trace structure SEM 2({ aO. al}.l bO. bl }). 

3. A parity-counter is a mechanism that may be involved in the following events. 

a : a message is accepted 

e : the number of messages thus far accepted is even 
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o : the number of messages thus far accepted is odd 

Give a formal specification of a parity-counter in terms of trace structures. Write a 
program according to that specification and draw a state graph of the process thus 
obtained. 

4. A full adder is a component that repeatedly accepts three one-bit numbers and gen
erates one two-bit number that equals the sum of the other three. Let the numbers 
to be added be a. b. and c. satisfying 

O~a<2 A O~b<2 A O~c<2 

and let the sum be represented by d and e such that 

O~d<2 A O~e<2 A a+b+c=2·d+e 

The values of a . b. c. d, and e are encoded by aO. al . bO. bl, etc. , where 

aO a "' 0, al = a = 1. etc .. 

Derive a component that specifies the requirements stated above. 

5. Figure 2.0 shows the state graph of a one-bit two-place buffer. Write a component 
buf2 that specifies this buffer. 

(End of Exercises) 

at 
~ 

[at a1] 

'-----' b1 

[aoa1]~ a1 

ao ao 
~~ ~ [at] • [ao] [aoao] 

. '-----' '-..____/ '-..____/ 
"'-"1;1 bO / bO 

~ ~ [at ao] 

Figure 2.0 
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2.3 Subcomponents 

Before introducing a more general form a component can have, we discuss some new nota~ 
tions. 

Up to now we did not discuss the nature of n, the universe. As far as our examples are 
concerned, the set of all small letters and all strings of length two starting with a letter 
and ending with a digit would have been an appropriate universe. Taking, for example, 
the natural numbers as a universe, and representing its elements in the usual way, would 
cause ambiguity when using concatenation. 
We tacitly assumed (and we will continue doing so) that the representation of the ele
ments of n does not cause such ambiguities. Furthermore, we identify the elements of n 
with their representations. 

Let A be an alphabet and let p be a symbol, then p- A denotes the set that is obtained by 
replacing each symbol a in A by p-a . If X is a trace set then p- X denotes the set of 
sequences obtained by replacing in each trace of X each symbol a by p-a. For trace 
structure T we define p-T by 

p-T = <raT.p-tT> 

Example 2.3.0 

LetT= <{a.b},{E,a,ab,aba)> then 

p-T = <{p-a,p-b).{E.p-a.p-ap-b,p·ap-bp-a}> 

(End of Example) 

To avoid name clashes we require that no symbol in n contains a dot. The set !l·!l is 
defined by !l·!l = ( U p : p E !l: p- !l). Elements of !l·!l are called compound symbols. 
Elements of n are called simple symbols. Due to our requirement !l n !l·!l = 0. 

Our new universe is flU !l·!l. We shall see to it that the transformation of T into p-T 
is only applied if aT consists of simple symbols. The alphabets of components consist of 
simple symbols only. Compound symbols are used in program texts. 

A more general form of a component is the following. 

com c(A ): 

s 
moe 

where c 0 , ... , c,_1 are previously defined components. called the subcomponents of c, 
with names Po •... , Pn-1 respectively. S is a command. 
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With subcomponent p; process p;·TR(c;) is associated. We impose the following restric
tions on such a program text: 

0 The names p1 , 0 ~ i < n , are distinct: 

1 Alphabet A consists of simple symbols and 

aTR(S) = AU (U i: 0 ~ i < n: p1·aTR(c1 )): 

2 TR (S) is non-empty. 

From restrictions 0 and 1 we infer that each compound symbol occurs in exactly two 
alphabets of p 0·aTR(c 0 ), .•• , Pn.-l'aTR(c,__ 1) and aTR(S). 

Hence. blending of p 0·TR(c 0 ), .•. , p,__ 1·TR(c,._ 1) and pref(TR(S)) is associative and 
yields a process with alphabet A. 

The trace structure of component c is given by 

TR(c) = (Bi :O~i<n :p;·TR(c1 )) b pref(TR(S)) 

Due to our syntactic restrictions TR (c) is well-defined and (cf. Theorem 1.4.4) we have 

TR(c) = ((Wi :O~i<n :p1·TR(c;)) w pref(TR(S)))tA 

Because subcomponents have to be defined in advance. we call such a component a non
recursive component. Application of Property 2.1.0, Property 2.2.0, and Theorem 1.5.10. 

using induction over the syntax of components, yields 

Property 2.3.1 

A non-recursive component defines a regular process. 

(End of Property) 

Example 2.3.2 

Component sem 1 is defined by com sem 1(a, b): (a: b)* moe 

Component sem 3 is defined by 

com sem 3(a . b ): 

sub p: sem 1 bus 

(a; p-a )*. (p-b: b)* 

moe 

We derive 

p-SEM 1(a .b) b pref(TR ((a ;p-a )*. (p-b ;b)*)) 
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I definition of comma ) 

p-SEM 1(a ,b )b pref(TR((a ;p·a)*)w TR((p-b ;b)*)) 

= I Theorem 1.3.9, alphabets are disjoint l 
p-SEM 1(a ,b) b (pref(TR(a ;p-a )*) w pref(TR(p-b; b)*)) 

= { definition of SEM 1 I 
p-SEM 1(a ,b )b (SEM 1(a ,p·a )w SEM 1(p-b ,b)) 

= { Property 1.4.0. alphabets are disjoint I 
p-SEM 1(a .b )b (SEM 1(a .p-a)b SEM 1(p-b ,b)) 

= { definition of p- l 
SEM t(p-a .p-b) b (SEM 1(a .p-a )b SEM t(p-b ,b)) 

= { no symbol occurs in more than two alphabets l 
SEM 1(p-a .p·b )b SEM 1(a ,p-a )b SEM 1(p-b ,b) 

= I Corollary 1.4.9 ) 

SEM 3(a ,b) 

Hence. TR (sem 3 ) = SEM 3(a . b) 

(End of Example) 

Example 2.3.3 

Component sem,, k ~ 1, with TR(sem,) = SEMt (a .b) is defined inductively by 

since 

com sem 1(a .b): (a ;b)* moe. and for k ~ 2: 

com sem, (a ,b): 

sub p : sem, -t bus 

((a I p-b); (b lp-a ))* 

moe 

SEMk_ 1(p-a.p-b)bpref(TR((a lp-b);(b lp-a))*) 

= { definition of SEM 1 } 

SEM,_ 1(p-a .p·b )b SEM 1({a .p-b }. {b.p-a}) 

= { Theorem 1.4. 7 I 
SEMt (a ,b) 

(End of Example) 
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The last extension of our program notation is the following. 

com c(A ): 

sub po:co,··. ·Pn-t:Cn-1 bus 

[xo= Yo.···, Xm-1 = Ym-ll 

s 
moe 

The equalities represent relations (connections); 
x 0 through Xm- 1 are compound symbols and Yo through Ym-l are simple or compound 
symbols. We are interested in the same blend as before. viz. 

(B i: 0 ~ i < n : p;·TR (c; )) b pref(TR (S)) 

but before computing this blend we carry out a substitution according to the equalities. 

Each symbol at the left hand side of an equality is replaced by the symbol to which it is 
equated. both in the alphabet and in the trace set of the trace structure to which it 
belongs. After having carried out this substitution the blend is computed. i.e. 

(B i : 0 ~ i < n: ( p;·TR(c; ));:: .. : :;::-::) b pref(TR(S )) 

We impose the following restrictions. 

0 The names P; , 0 ~ i < n , are distinct; 

1 for all j , 0 ~ j < m . 

xi is an element of (U i: 0 ~ i < n: p;·aTR(c;)), 

Yi is an element of (U i: 0 ~ i < n: p;-aTR(c; )) UA, 

xi and Yi belong to two different (of the n +1) alphabets. 

each !lymbol of ( U i : 0 ~ i < n : p;· aTR (c; )) U A occurs in at most one equal
ity: 

2 alphabet A consists of simple symbols and 

aTR(S) = ((Ui:O~i<n:p;·aTR(c;))UA)\(U j:O~j<m:{xi,yi)); 

3 TR(S) is non-empty. 

Due to these restrictions we have (after having carried out the substitution): 

a compound symbol occurs in zero alphabets since it has been replaced or 

a compound symbol occurs in two subcomponent-alphabets and not in aTR(S ), since 
it occurred at the right hand side of an equality ar 

a compound symbol does not occur in any equality and then occurs in the alphabet of 
its subcomponent and in aTR (S ). 



2.3 Subcomponents 63 

Hence (Theorem 1.4.4). associativity of the blending operator is guaranteed. and 

Example 2.3.4 

com sem 2(a .b): 

sub p: sem 1 bus 

[p-b = b] 

(a ;p-a )* 

moe 

We derive 

(SEM 1(p-a. p-b ))~·b b pre{ (TR ((a; p-a )*)) 

I substitution } 

SEM 1(p·a .b) b pref(TR((a ;p-a )*)) 

= { definition of SEM 1 } 

SEMl(p-a .b )b SEM 1(a .p·a) 

{Corollary 1.4.9 } 

SEM2(a .b) 

Hence. TR(sem 2) SEM 2(a ,b) 

(End of Example) 

Example 2.3.5 

See Figure 2.1 . 

t 
1-

1
-r 

d 

Figure 2.1 

A pebble is placed in the middle of a 3 x 3 checker board. It may move up. down, left, 
and right but it is not allowed tQ leave the board. We derive a component that describes 
the behaviour of the pebble. 
Possible events are u. d, l. and r meaning up. down. left. and right respectively. From 
the initial state a lead of two or more r 's over l's violates the restriction on the pebble. 
A lead of one does not harm. For reasons of symmetry the same holds for leads of l over 
r • u over d • and d over u . This yields 

-1 ~ l(ttr )-l(dl) ~ 1 and 

-1 ~ l (t tu)- l(t t d) ~ 1 

for each t. t E { u. d .l. r }*. that describes a pattern of the pebble. 

Since this should hold for all prefixes of these traces as well, we have 
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T = <I u. d .l. r}. { t It E { u. d .l. r }* II (As : s ~ t : -1 ~ l (s tr) l (s t l) ~ 1) 

II (As :s ~t :-1~l(stu)-l(std)~ 1)}> 

is a specification of the pebble. 

Evidently. T = SYNCu(r.l) wSYNCu(u,d). 
Since the alphabets are disjoint. this weave equals the blend. A component with process T 
is given by 

com pebble(u .d .l.r): 

sub p . q : sync 1.1 bus 

[p-a = u, p-b = d, q·a = l. q·b = r 1 

moe 

(For sync 1•1 we refer to Example 2.2.1 .) 

The text p . q : sync 1.1 is short for p : sync 1.1• q : sync u . 

(End of Example) 

Example 2.3.6 

Component sem,. k ~ L with TR(semk) = SEMt (a .b) can be defined inductively by 

com sem 1(a.b): (a:b)* moe.andfork ~2: 

since 

com semk (a .b): 

sub p: sem 1, q : semk-l bus 

[p-a = a. p-b = q·a. q·b = b 1 

moe 

SEM 1(p-a .p-b )It,~,;"a" b SEMt_ 1(q ·a .q·b )qi} b STOP 

"" { substitution, STOP is the unit element of blending } 

SEMt(a .q·a) b SEM,_ 1(q·a .b) 

= { Corollary 1.4.9 l 
SEMt (a .b) 

(End of Example) 
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Example 2.3. 7 

In the previous example we presented component sem1 • Component csem" is defined by 

com csemt (aD ,al .bO .bl): 

sub p : semt bus 

(p-a: (aD I ai) I p-b; (bO I bl ))* 

moe 

Let S denote the command of cse"'*. We derive 

TR(csemt) 

I definition of a component l 
(SEM" (p-a .p-b) w pref(TR(S))HiaO ,al .bO .bl} 

= I structure of S, compound symbols are removed by ~I a{). al . bO . bl J J 
(SEM" (p-a. p-b) w TR (S))tl aD. al .bO, bl} 

and for any trace t 

t Et(SEMt(ra.p-b)w TR(S)) 

=> I definition of weaving and of SEMt 

O~l(ttra)-l(ttp-b)~k A tEtTR(S) 

=> I structure of S J 
O~l(ttra)-l(ttp-b)~k A l{ttra)=l(ttlaD,aJJ)A l{ttrb)=l(ttlbO.bl}) 

=> { calculus J 

0 ~ l (ttl a{). al))- l (ttl bO, bl}) ~ k 

Hence, TR(csernk) ~ SEMk({aD,al},{bO,bJJ). 

We prove SEMt (I aO. al J, { bO. bl }) ~ TR (csem" ) by constructing a function 

h : tSEMt ({aD .al}. I bO .bl}) -+ t(SEMt (p-a .p-b) w TR(S)) 

such that h(t HlaO.al ,bO.bJ}:::!: t. 

h is defined inductively by: 

h(e)= E h(taD)= h(t)p·a aO 

h (thO) h (t) p-b bO 

h (tal ) = h (t ) p·a al 

h (tbl) = h (t) p-b bl 

Then. evidently. h (t) E t(SEMt (p-a .p-b) w TR(S )) and h (t HI aO ,al.bO .bl} = t. 

Weconclude TR(csem") = SEMd{aD.al}.{bO.bJ}). 

(End of Example) 
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A component can always be transformed into a component with equalities only (i.e. with 
command € ) by adding a subcomponent of the type described in Section 2.2 . Hence, the 
components described in this section could also have been introduced without the com
mand S. The transformation is as follows. 

Let c be the component defined by 

com c(r;l. ). 

sub p~:co, ... , Pn-1:cn-1 bus 

[xo= Yo.···, Xm-l = Ym-tl 

s 
moe 

Define a one-to-one function cf> : aTR (S) -+ 0 . a renaming function used to get rid of 
compound symbols. Define component c, by 

com Cn (cp(aTR (S))): cp(S) moe 

where cp(S) is obtained from S by changing each symbol a in S into cf>(a ). 

Then TR(c,.)= pref(TR(cp(S))). 

Component d is defined by 

com d(A ): 

sub p 0 :c 0 , ...• p,_ 1:cn-t.Pn :en bus 

[ Xo = Yo• · · · , Xm-l = Ym-1• Pn · cf>(zo) = Zo, · · · , Pn • cf>(zk-l) = Zt-tl 

€ 

moe 

where {z 0 , ... , Zt- 11= aTR(S). 

Notice that d satisfies the res~rictions imposed on program texts. 

We then have 

TR(d) 

I definition of a component I 
(B · 0 ;c:: • ( TR( ))xu•· ,xm-l) b ( ·TR(c ))p"·<l>(zg), ... ,p.·<l>(•k-1) 

t : ""t < n : p;• C; )' ..... ·Ym-1 Pn n •• ' ... ' zk-1 

= { substitution } 

(B i : 0' i < n : (p;·TR(c; ));::. :;:~:) b pref(TR (S)) 

I definition of c 

TR(c) 
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Example 2.3.8 

We transform component sem 2 of Example 2.3.4 : 

com sem2(a .b): 

sub p: semi bus 

[p-b = b] 

(a;p-a)* 

moe 

Function t/J is defined by tf>(a) = x and t/J(ra) = y. and component c 1 is defined by 

com c 1(x .y): (x ;y )* moe 

The transformation yields 

com d (a .b): 

sub p: semi• q: ci bus 

[ rb = b. q·x = a. q·y = p-a] 

E 

moe 

And. indeed (cf. Example 2.3.6). we have TR (d ) = SEM 2(a . b). 

(End of Example) 
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We may. on the other hand, transform a component with equalities only (i.e. with com
mand e) into a component without equalities. 

Let component c be defined by 

com c(A ): 

sub Po: c 0 , ... , Pn-I: Cn-l bus 

[ Xo =Yo.· · · , Xm-I = Ym-I] 

E 

moe 

Due to our restrictions. each symbol of AU (U i: 0 ~ i < n: p;·aTR(c; )) occurs exactly 
once in the equalities. Moreover, x 0 through Xm-I are compound symbols. 
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Component d is defined by 

com d(A): 

sub Po: co, ... , Pn-1: Cn-1 bus 

Cxo:yol · · · I Xm-l:Ym-1)* 

moe 

Let S denote the command of d . Define T and U by 
-~ 

T (Wi :O~i<n :(p;·TR(c;));~:.:::;;_=-:) 

U (Wi :O~i<n :p;·TR(c;))wTR(S) 

A program notation 

Then TR (c) = T~ A. Since each trace of tprei(TR (S ))\ tTR (S) is the concatenation of 
a trace of tTR (S) and a compound symbol ( x 0 through xm _ 1 are compound symbols), we 
have TR(d) = mA. 

Let I : tT ..... tU be defined by 

I (e)= e 

I (tyk) = I (t )xk Yt (0 ~ k < m) 
J 

Then I (t ) ~A = t ~A . Furthermore, I has inverse g defined by 

g (e)= e 

g (txt Yt) = g (t) Yt (0 ~ k < m) 

Weconclude tT~A = l(tT)tA = tU~A.and,hence. TR(c)=TR(d). 

Example 2.3. 9 

Component sem 2 (cf. Example 2.3.6) is defined by 

com sem 2(a ,b): 

sub p . q : sem 1 bus 

[p-a =a. p-b = q·a. q·b = b] 

e 

moe 

The transformation as described above yields 

com d(a ,b): 

sub p.q: sem 1 bus 

(p-a ;a I p·b ;q·a I q·b ;b)* 

moe 

(End of Example) 
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Exercises 

0. Prove that the pebble of Example 2.3.5 is also specified by 

com peb(u .d .l.r). (u .d)*. (l.r )* moe 

Draw a state graph of TR(peb ). 

1. Define inductively fork ~ 1 and l ~ 1. component synck. 1 such that 

TR(synct.t) = SYNCk,t(a .b) 

2. Let sem 1 be defined by com sem 1 (a . b ) : (a :b)* moe. 

For i. i ~ 1. sem 2;+1 and sem 2; are defined by 

com semzi+1(a,b): 

sub p: sem; bus 

((a lp·b:b);(p-a;a I b))* 

moe 

com sem 2;(a .b): 

sub p: semz;-1 bus 

[rb = b] 

(a :ra )* 

moe 

Prove TR (sem;) = SEM; (a. b) for all i. i ~ 1. 
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3. Component sem 2 has TR(sem 2 ) = SEM2(a .b). Compute the processes of the fol
lowing components. 

(i) com c(a .b): 

sub p.q: sem 2 bus 

[ p-a = a. rb = q·a. q·b = b] 

E 

moe 

(ii) com d(a .b): 

sub p .q : sem 2 bus 

(a : ra )*. (p·b; q·a )*. (q ·b; b)* 

moe 

(End of Exercises) 
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2.4 Recursive components 

In this section we drop the rule that components should have been defined before they are 
used as subcomponents. 

We say that component d occurs in component c if d is a subcomponent of c or if d 
occurs in a subcomponent of c. 
Component c is called recursive if c occurs in c. In the sequel we consider component c 
defined by 

com c (A): 

sub p. c bus 

s 
moe 

where A 
aTR(S) 

is an alphabet 
A Up-A. 

of simple symbols. TR(S) is non-empty, and 

A component of this form is called directly recursive. If we stick to the definition of the 
process associated with c, we have TR (c) = p-TR (c) b pref (TR (S )) . 

This means that TR (c) is a solution of the equation 

T E T(A): T = p-T b pref(TR(S)) 

or. phrased differently. T R (c) is a fixpoint of the function 

f : T(A)-+ T(A) defined by f(T) = p-T b pref(TR(S)) 

We investigate some properties of this function f. 

Property 2.4.0 

f is upward continuous and (hence) monotonic. 

Proof 

f is the composite of the functions g : T (A ) ...... T (p- A ) defined by g (T) = p-T and 

h: T(p·A)-+ T(A) defined by h(U)=Ubpref(TR(S)). Function g is just a 
renaming. It is a lattice isomorphism and has all junctivity properties. 
From Theorem 1.6.10 we have that h is upward continuous. Hence. f is upward con
tinuous. 

(End of Proof) 
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From Property 2.4.0. Theorem 1.6.14 (Knaster-Tarski) and Theorem 1.6.15 we infer 

Property 2.4.1 

I has a least fixpoint and a greatest fixpoint. 

The least fixpoint of I equals (LUB i : i ~ 0: I i (STOP(A ))). 

(End of Property) 

The process of component c is defined as the least fixpoint of I . i.e. 

TR(c) = (LUBi: i ~ 0: I i(STOP(A))) 

The following property is useful in calculating the least fixpoint of I. 

Property 2.4.2 

I(T) = <A.{tltEtprei(TR(S)) A t~p-AEp-tTltA> 

Proof 

We derive 

I(T) 

I definition of I } 
p·T b prei(TR(S)) 

= I definition of blending I 
(p-T w prei(TR (S )))t A 

= I Property 1.3.3. ap-T~ aprei(TR(S)) I 
<AU p-A .It It E tprei(TR(S)) A t~p-A Ep-tTI> ~A 

{ definition of projection I 
<A.{t ltE tprei(TR(S)) A ttrA Ep-tTJtA > 

(End of Proof) 

71 



72 

Example 2.4.3 

Component sem is defined by 

com sem (a • b ) : 

sub p : sem bus 

((a I p-b); (p·a I b))* 

moe 

We derive 

f(STOP({ a .b})) 

{ definition of f 
STOP({ p-a. p-b)) b pref(TR ((a I p-b ); (p·a I b))*) 

{ definition of SEM 1 ) 

STOP({ ra ,p·b)) b SEM 1({a ,p-b ). Ira ,b)) 

= { calculus } 

SEM 1Ca ,b) 

and for k. k ~ 1. 

f(SEMk (a ,b)) 

= { definition of f 
SEM* (p-a ,p-b )b SEMt<la .p-b }.{p-a .b}) 

= { Theorem 1.4. 7 } 

SEMt +1(a ,b) 

Hence. TR (sem) = (LUB k : k ~ 0: SEMk (a ,b)) = SEM(a .b). 

A program notation 

Using the distribution of the semicolon through the bar (Property 2.1.3) one may rewrite 
the command of sem, yielding 

(a;b la:p-a lp-b;b lp-b:p-a)* 

Denoting this command by S, we have 

u p-b p-a v E tTR(S) :::;. uv E tTR(S) for any traces u and v. 

and also 

From these relations and the fact that p-b and p-a are compound symbols (removed 
under blending). we infer that the alternative p·b; p-a of command S can be omitted. 
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This yields 

com sem(a .b): 

sub p : sem bus 

(a;b la;p-a lp-b;b)* 

moe 
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Command SO of this program has the property that for any t . t E t pref (TR (SO)), the 
number of consecutive compound symbols in t is bounded (by two), whereas in the pre
vious command there is no upper bound. In Chapter 5 we discuss such distinctions in 
more detail. 

(End of Example) 

Example 2.4.4 

We change component sem (cf. Example 2.4.3) into component zsem that bas alphabet 
{a. b. z l where z indicates that the lead of a's over b 's equals zero. Hence. TR (zsem) 
should satisfy TR (zsem) = T, where T is defined by 

aT = {a.b,z} 

tT = {t lt€{a.b.z}0 1\ tt\a.b)E tSEM(a,b) 1\ (As :sz ~t :l(sta)-l(stb)= 0)} 

We propose a component of the form 

com zsem (a • b. z ) : 

sub p : zsem bus 

s 
moe 

We first consider command SO of sem: SO = (a; b I a; p·a I p·b; b)* 

For SO the following relations hold. 

l(tta) l(t~b) = l(t~p-a)-l(ttp-b) 

l{tta)-l(db) = l(ttra)-l(ttrb)+l 

if t E tTR(SO) 

if t E tpref(TR(SO))\tTR(SO) 

Inspired by these relations (and noticing that l (eta) -l (e tb) = 0) we propose 

S = z*;(a;b la.p-a lp-b;b lp-z;z)* 

Computation of f(STOP({ a .b. z })). where f is the function associated with zsem. 
yields pref (TR (z *:(a ; b)*)). 

Some more calculations give rise to the conjecture 
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tft(STOP({a.b,z))) = 

{tIt E{a,b.z}* II t~{a.b}E tSEMt(a.b) 

II (A s : sz ~ t : s ~ { a . b } E tSEMt _ 1 (a . b) II l (s ~a ) - l (s ~ b ) = 0)} 

In view of our computation of TR(sem). the conjunct t~{a,b}EtSEMt(a,b) is not 
surprising. The last conjunct, however. is complicated and we use a different way to com
pute (LUB k : k ~ 0: f t (STOP({ a ,b .z }))). 

For k . k ~ 0. process Tt is defined by 

aTt {a,b,z} 

tTt { t It E {a. b. z }* II t ~ {a. b} E tSEMt (a ,b) II (As : sz ~ t : l (s ~a) -l (s ~b)= 0)} 

Then T 0 = <{a.b,z}.{z}*> and T 1 :2 pref(TR(z*;(a;b)*;z*)). 

hence. 

T 0 ~ f(STOP({a,b.z})) ~ T 1 

Moreover. 

T = (LUB k : k ~ 0: Tt ) 

We prove f(Tt) = Tt +1· 

Let k ~ 0. 

Due to the similarity of sem and zsem. we prove only that for all s . s E t f (Tt ). we 

have l(s~a)-l(s~b)= 0 - szE tf(Tt) 

Let sEt.f(Tt). 

Since f(Tt) = p-Tt bpref(TR(S)) we may take w,w E t(p-Tt w pref(TR(S))), such 
that s = w~{a,b,z}. 
Since p-Tt and pref(TR(S)) are prefix-closed we assume that w does not end on a com
pound symbol. Notice that (Property 1.3.3) 

wE t(p·Tt w pref(TR(S))) - wE tpref(TR(S)) II w~{p-a.p-b,p-z}E tp-Tt 

We derive 

l (s ~a ) - l (s ~ b ) = 0 

{s = w~{a,b,z}} 
l(w~a)-l(w~b)= 0 

{ w E tpref(TR (S )), hence l (w ~ p-a)- l (w ~ p-b) ~ l (w ~a)- l (w ~b) } 

l (w ~ p-a)- l (w ~ p·b) ~ 0 II l (w ~a) -l (w ~b)= 0 

{ w~{p-a,p-b}E tSEMt(ra.p-b)} 

l(w~p-a)-l(w~p-b)= 0 II l(w;a)-l(w~b)= 0 
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= I structure of S . w does not end in r z ) 

l(wtp-a)-l(wtrb)=OI\ wEtTR(S) 

I w tIp-a .p-b, p·z }E tp-Tt. definition of Tk 

(wtlp·a.p·b.p·z})p·zEtp-Tk II wEtTR(S) 

= I definition of projection. structure of S I 
w rz ztlra.p-b.p·ziE tp-Tk A w rz zE tpref(TR(S)) 

= I definition of weaving I 
w p-z z E t(p-Tt w pref(TR(S))) 

= I w t I a. b. z I= s • structure of S. w does not end in a compound symbol I 
szE t(p-Tk bpref(TR(S))) 

= I definition of f I 
sz E tf(Tk) 

Finally. we derive 

To 5.; f(STOP({a,b,zl)) 5.; Tt 

=> I f is monotonic I 
(LUB k : k ;;>- 0: f k (T 0 )) 5.; (LUB k : k ;;>- 1 : f k (STOP({ a. b, z )))) 

5.; (LUB k : k ;;>- 0: f" (T 1)) 

= { f(Tk) = Tk+l• definition of zsem ) 

(LUBk :k ;;>-o:Tt) 5.; TR(zsem) C: (LUBk :k;;>-t:T1) 

= I definition of T l 
T t: TR(zsem) !;; T 

= { antisymmetry of !;; I 
TR(zsem)= T 

(End of Example) 
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The theory of this section is easily extended to components with more than one subcom
ponent of the same type and to components with previously defined subcomponents as 
well. 

E.g., component c defined by 
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com c(A ): 

sub p , q : c , r : d bus 

s 
moe 

A program notation 

has trace structure (LUB k : k ~ 0: f k (STOP(A ))) where f: T(A) --+ T(A) is defined 
by 

f(T) =~ rT b q·T b r·TR(d) b pref(TR(S)) 

Exercises 

0. Determine the process of component cat defined by 

com cat (a , b ) : 

sub p : cat bus 

(a :ra )*;a ,b ;(p-b ;b)* 

moe 

L Derive a component that represents an integer value. The initial value is zero. The 
alphabet is I a, b, z} where a denotes an increment by one. b denotes a decrement 
by one, and z denotes 'the value equals zero'. 

2. A binary bag is a component that accepts zeroes and ones. A previously stored zero 
or one may be retrieved. Give a formal specification of a process that specifies such a 
bag. and derive a component according to that specification. 

3. Prove that component sem defined by 

com sem (a , b ) : 

sub p : sem bus 

a;((p-a;a lb);(a lpob;b))* 

moe 

has trace structure SEM (a . b ). 

4. Determine the least and the greatest fixpoints of the functions associated with 
com c (a , b) : sub p : c bus S moe 

where S is given by 

(i) (a;p-a;pob;b)* 



Exercises 

(ii) (a ;p-a ;b;p-b )* 

(iii) (p-a ;a ;b;p-b )* 

(iv) (a;b;p•a;p-b)* 

(v) (a;b;p-b;p-a)* 

(End of Exercises) 

2.5 Unique fixpoints of recursive components 

77. 

In this section we take a closer look at the fixpoints of the function associated with a 
directly recursive component. A generalization of the theory of this section can be found 
in [11). There is. however. a difference in the lattices that are considered. Let component 
c be defined by 

com c(A ): 

sub p: c bus 

s 
moe 

and let f T (A ) _. T (A ) be the associated function, i.e. 

f(T} = p-Tbpref(TR(S)). 

We study conditions under which f has exactly one fixpoint. 

First we switch from processes to trace sets. For the sake of brevity we define trace set U 
by U = tpref(TR (S )). 

For a fixpoint <A. V > off we derive 

<A. V > is a fixpoint off 

= { definition of f I 
<A. V > = <p-A .p-V > b pref(TR(S)) 

= { Property 2.4.2, definition of U I 
<A.V> = <A.{tltEU A dp·AErVHA> 

= {set calculus I 
<A.V> = <A.{tltEUA (Ev:vEV:t~p·A=p-v)JtA> 

{A= A I 
V = {tltEUA (Ev:vEV:t~rA=p-v)JtA 

For a non-empty prefix-closed trace set Y we define Q (Y) by 
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Q (Y) = {X I X !;;;; Y 1\ X is non-empty and prefix-closed } 

( Q (Y) , !;;;; ) is a complete lattice with least element {e} and greatest element Y. 

In view of the derivation above we define g : Q (A*) -+ Q (A*) by 

g(V) = {titEU 1\ (Ev:vEV:ttrA=rvJltA 

Then the following property holds. 
}' 

Property 2.5.0 

<A, V > is a fixpoint of f 

(End of Property) 

V is a fixpoint of g 

Inspired by the computations of least fixpoints (cf. Section 2.4) we define another function 
h: Q(U)-+ Q(U), which is closely related to f, by 

h(W) = {titEU 1\ (Ew:wEW:drA=rCwtA))} 

Finally, we define two functions G and H that relate g, h, Q (A*), and Q (U) : 

G :Q(A*)-+ Q(U) with G(V) = {tltEU 1\ (Ev:vEV:drA=p-v)} 

H: Q(U)-+ Q(A *) with H(W)= WtA 

We then have (cf. Figure 2.2) 

Property 2.5.1 

g = H ·G and h = G .n 

(End of Property) 

Property 2.5.2 

G and H are upward continuous. 

Proof 

Let V(i : i ~ 0) be an ascending chain in Q (A*). We derive 

t EG((U i: i ~ 0: V(i))) 

{ definition of G } 

t E U 1\ (E v : v E ( U i : i ~ 0 : V (i ) ) : t t r A = r v ) 

Figure2.2 
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{ definition of union } "'" 

tEU 1\ (Ev:(Ei:i;li:O:vEV(i)):t~p·A=p·v) 

{ predicate calculus } 

(E i : i ;li: 0 : t E U 1\ (E v : v E V (i ) : t ~ p- A = p- v )) 

{ definition of G } 

(E i : i ;li: 0: t E G (V (i))) 

{ set calculus } 

t E (U i: i ;li:O: G(V(t))) 

Hence. G (( U i : i ;li: 0: V (l))) = ( U i : l ;li: 0: G (V (i ))). 
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The upward continuity of H is a consequence of Corollary 1.6.5 (projection is upward 
continuous). 

(End of Proof) 

From Property 2.5.1 and Property 2.5.2 we deduce 

Property 2.5.3 

g and h are upward continuous 

(End of Property) 

The following theorem shows how the fixpoints of g and h are related. 

Theorem 2.5.4 

0 V is a fixpoint of g ::;. G (V) is a fixpoint of h 

1 W is a fixpoint of h ::;. H (W) is a fixpoint of g 

2 The poset of fixpoints of g is isomorphic to the poset of fixpoints of h 

Proof 

0. Assume V is a fixpoint of g. We derive 

h(G(V)) 

= { Property 2.5.1 } 

G·H(G(V)) 
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{Property 2.5.1 } 

G(g (V )) 

{ V is a fixpoint of g 

G(V) 

1. Similar 

2. For a fixpoint V of g we have H • G (V) g (V) = V . 

Forafixpoint W of h wehave G.H(W) = h(W) = W. 

A program notation 

Hence, G and H are bijections between the fixpoints of g and those of h, the one 
being the inverse of the other. 

Furthermore (Property 2.5.2). both G and H are monotonic. 

(End of Proof) 

Since g and h are upward continuous. both have a least fixpoint and a greatest fixpoint 
(Knaster-Tarski). 

The least fixpoint of h equals (U i: i ~ 0: h 1({e})) and is denoted by JLh. The greatest 
fixpoint of h is denoted by vh. Since JLh is the greatest lower bound of all fixpoints of 
h. we have JLh !: vh. 

Application of Property 2.5.0 and Theorem 2.5.4 yields 

Property 2.5.5 

f has one fixpoint - vh !: JLh 

(End of Property) 

We have now obtained a very nice result. From the text of component c it is clear that 
only the structure of command S can play a role. And indeed. we have shown that all 
information is in the function h which was defined by (replacing U by tpref(TR(S))) 

h: Q(tpref(TR(S))) -+ Q(tprej(TR(S))) 

h(W) = {tIt E tpref(TR(S)) /\ (E w: wE W: t~rA r (w~A ))} 

The following theorem has also been proved in [11]. 
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Theorem 2..5.6 

If (Au:uEvh II u~A¢E:(Ew:wEvh:u~A=w~A lll(w~p-A)<l(wtA))) 

then f has exactly one fixpoint. 

Proof 

Assume that the given condition holds (referred to as 'assumption'). 
We prove by induction on l(u ~ P' A ) that u E vh ::;> u E p.h . 
The theorem then follows from Property 2.5.5. 

Base utrA = E 

From h({e})= {tIt E tpref(TR(S)) II ttrA = E} we conclude u Eh({e}). and hence. 

uE(Ui:i ~O:hi({e}))=p.h 

Step l(utrA) > o 

We derive 

u E vh 

{ vh is a fixpoint of h 

u E h (vh) 

= {definition of h,u Evh {;: tpref(TR(S)) l 
(Ev :vEvh :utrA = p-(vtA)) 

= { assumption.l(ut p-A) > 0, hence vt A ¢ E ) 
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(Ev:vEvh:utrA=r(vtA)II (Ew:wEvh:vtA=wtA lll(wtrA)<l(wtA))) 

::;> { predicate calculus ) 

(E w: wE vh: utrA = r (wtA) II l(wfrA) < l(utrA)) 

::;> { induction hypothesis ) 

(Ew:wEvh:utrA =r<wtA)II wEp.h) 

= { p.h {;: vh l 
(E w: w Ep.h: utrA = P' (wtA )) 

= I definition of h l 
u E p.h 

(End of Proof) 

It is, in general. not easy to compute vh. We weaken Theorem 2.5.6 to a theorem that is 
more easily applied. The next theorem can also be found in [20]. 
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Theorem 2.5. 7 

If (Au: u Etpref(TR(S)): l(utrA) ~ l(utA )) then f has exactly one fixpoint. 

Proof 

Assume that the given condition holds. We show that the condition of Theorem 2.5.6 
holds as well. We derive 

u Evh fl utA~ E 

{calculus I 
uEvh fl (Es,t.a:aEA:u=sat fl ttA=E) 

::;.> { vh is prefix-closed I 
(E s . a . a E A : utA = sat A A sa E v h A s E v h ) 

::;.> { assumption applied to s ) 

(Es.a:aEA:utA=satA fl saEvh A l(strA)~l(stA)) 

I property of projection and length l 
(Es.a:aEA:utA=satA fl saEvh A l(satrA)<l(satA)) 

::;.> I predicate calculus l 
(Ew:wEvh:utA=wtA A l(wtrA)<l(wtA)) 

(End of Proof) 

Example 2.5.8 

Component ex is defined by 

com ex(a): 

sub p: ex bus 

(a :ra )* 

moe 

Component ex satisfies the condition of Theorem 2.5.7 . 

Hence, any solution of T = r T b pref (TR ((a : ra )*)) is the least solution of it. We 
show that RUN( a) is a solution. 

RUN(p-a) b pref(TR((a :ra )*)) 

= { Property 1.4.2.3 l 
pref(TR ((a :ra )*))t{ a l 

= { calculus ) 

RUN(a) 
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Hence, TR (ex) = RUN( a) 

(End of Example) 

Example 2.5.9 

This example demonstrates that the condition of Theorem 2.5. 7 is not necessary. 

com ex(a .b): 

sub p: ex bus 

(a;p-b lp-a;b) 

moe 

Trace p-a b does not satisfy the requirement of Theorem 2.5.7. 

However. h({EI) = {E,a). h({E.a}) = {E.a.p-a.p-ab) and 

h({E,a,p·a,p-abl) = {E.a.p-a.p-ab,ap-b} = tpref(TR(S)) 

Hence. JA.h = vh = t pref (TR (S )) : we have exactly one fixpoint. 

(End of Example) 

Example 2.5.10 

This example demonstrates that Theorem 2.5.7 is indeed weaker than Theorem 2.5.6. 

com ex(a): 

sub :ex bus 

(a I p-a )* 

moe 
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The condition of Theorem 2.5.7 is not satisfied: the lead of compound symbols over simple 
symbols is unbounded. The greatest fi.xpoint of h equals RUN( a .p·a) and for all 
t, t Etpref(TR(S)), we have ttla}Etpref(TR(S)). Hence, the condition of Theorem 
2.5.6 is satisfied and TR(ex) =RUN( a). 

(End of Example) 

For a discussion of other forms of recursion we recommend [11]. 
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Exercises 

0. Prove that for g. h, G. and H as defined in this section 

(i) h(WHA = g(W~A) 

(ii) G • g = h • G 

1. Prove that component cat defined by 

com cat (a . b) : 

sub p : cat bus 

(a :ra )";a ;b :(rb ;b)* 

moe 

A program notation 

has a unique fixpoint. viz.<{ a .b }. {t I(E m .n: 0 ~ m ~ n: t = anbm)}>. 

2. Determine the process of 

com rem(a .b): 

sub p : rem bus 

a;((ra:a lb);(a lp-b;b))* 

moe 

3. Let f : T (A ) --+ T (A ) be upward continuous and let T. T E T (A ). be a fixpoint 
of I such that 

(A t : t E tT A t ¢ e: (E s : s E tT : l (s )< l (t) A t E t f (<A • pre/ ({ s}) > )) 

Prove that T is the least fixpoint of f . Apply the above to the recursive component 
with alphabet I a ,b} and command (a :ra I a ;b I rb ;b)*. 

(End of Exercises) 



3 From specification to program text 

3.0 Introduction 

As we have seen in the previous chapters there are many ways in which a process may be 
specified. One may use enumeration, a state graph, a program text or a predicate. A predi
cate specifies what traces do belong to the trace set of a process, whereas a program text 
suggests how the traces of the process may be generated. 
In this chapter we formalize the notion of a specification. Furthermore we present some 
theorems that are useful in the derivation of a program text from such a specification. 

3.1 Specifications 

A specifi.aJtion of a process is a pair <A .P > . where A is an alphabet and P is a predi
cate on A* such that P(E) holds. 

Specification <A , P > specifies the process 

<A.{t ltEA* 1\ (As :s ~t :P(s)))> 

Note 

Let <A. P > specify T. From P(E) we infer E E tT. For any t. tEA*. we have 

(As : s ~ t : P(s )) 

{tEA*) 

(As : s ~ t :sEA* A P(s )) 

= { calculus. transitivity of ~ } 

(As :s ~t :sEA* 1\ (Av :v ~s :P(v))) 

Hence, <A . P > specifies a process, i.e. a non-empty prefix-closed trace structure. 

(End of Note) 

Instead of using a lambda-notation like <A . (>o.t : t € A*: P(t ))> we use the notation 
<A. t: P(t )>. 
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Example 3.1.0 

SEM 1 (a . b) is specified by < {a . b l. t : 0 ~ l (t t a) - l (t t b ) ~ 1 > 
SEM (a . b) is specified by <I a • b }. t : 0 ~ l (t t a ) -l(ft b ) > 

<I a I. t : l (t ) is even > specifies STOP( a) 

(End of Example) 

The following property is useful when one wants to enumerate the traces of a process 
given by a specification. up to some fixed length. 

Property 3.1.1 

Let <A . P > be a specification of T. Then T is the least solution of 

VET(A): (At.a :tEtV A aEA :P(ta)::;.. taEtV) 

Proof 

For any t . t E tT, and symbol a . a EA. we have 

tEtT A aEA A P(ta) 

I <A .P> specifies T I 
(As :s ~t :P(s)) A tEA" A aEA A P(ta) 

= I calculus I 
(As: s ~ ta: P(s )) A ta EA • 

I <A . P > specifies T I 
ta EtT 

Hence. T is a solution of the equation. Let V. VET (A ). be a solution. By induction on 
the length of t we prove that for all t . t E tT. we have t E tV. 

Base t =E. Since V E T(A ). we have E EtV. 

Step t = sa with a EA. We derive 

sa EtT 

= { T is prefix-closed } 

s E tT A a E A A sa E tT 

::;.. { induction hypothesis } 

s E tV A a E A II sa E t T 
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::;. I <A . P > specifies T I 
s E tU A a E A A P(sa) 

::;. { U is a solution of the equation } 

sa EtU 

(End of Proof) 
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Let T be specified by <A ,P >. From the property above we infer that tT is determined 
by the following rules. 

(i) E EtT 

(ii) t EtT A a EA 1\ P(ta) ::;. ta EtT 

(iii) tT contains no other traces then those that belong to it on account of (i) and 
(ii). 

Example 3.1.2 

The traces of length at most three of the process specified by 

< {a , b }. t : H (t t a ) -l(d b) < 2 > 

are e.b .ba .bb, bab, bba and bbb. 

(End of Example) 

Property 3.1.3 

Let <A . P > be a specification of T. Then T is the greatest solutio!} of 

U E T (A ) : (At : t E tU : P(t )) 

Proof 

We derive 

<A • P > specifies T 

::;. I definition of ·specifies' I 
(At : t E tT : P(t )) 

Hence. T is a solution. For any U. U E T (A ). we have 

(At : t E tU: P(t )) 

= I U is prefix-closed. aU = A 
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(A t : t E tU : t E A* A (A s : s ~ t : P(s))) 

= I <A .P > specifies T 

(A t : t E tU : t E tT) 

I aT= aU} 

U!.:T 

(End of Proof) 

From specification to program text 

We now list some examples that are used in the next sections. All these examples involve 
storage and retrieval of zeroes and ones. We use the following symbols. 

aO a zero is stored 

al a one is stored 

bO a zero is retrieved 

bl a one is retrieved 

Example 3.1.4 (bounded bag) 

For natural number k a k -bounded bag is specified by 

<laO.al,bO.bll.t: l(t~bO) ~ l(t~aO) 

A l (t t bJ ) ~ l (t tal ) 

A 0 ~ l (t t I aO . a] }) - l (t t I bO . bl}) ~ k 

> 

(End of Example) 

Example 3.1.5 (unbounded bag) 

An unbounded bag is specified by 

<{aO.al.bO.bl}.t: l(ttbO) ~ l(ttaO) A I(ttbl) ~ l(ttal)> 

(End of Example) 

Example 3.1.6 (unbounded sorter) 

An unbounded sorter is specified by 



3.1 Speciftcations 

<{aO.al,bO,bJ).t: Ht~bO)~l(ttaO)A l(ttbl)~l(ttal) 

A (As : t = sbl : l (s taO)= l(s tbO )) 
> 
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(End of Example) 

Exercises 

0. Let <A . P > be a specification. Show that RUN (A ) is the greatest solution of 

UET(A): (At.a :tEtU A aEA :P(ta):;. taEtU) 

Show that STOP(A ) is the least solution of 

UET(A): (At:tEtU:P(t)) 

1. Specify a k -bounded sorter (cf. Example 3.1.6). 

2. Extend the specification of a bag (Example 3.1.5) such that symbol e corresponds to 
'the bag is empty'. 

3. Give a specification of the following mechanisms. 

(i) A binary first-in first-out queue. 

(ii) The mechanism accepts a series of zeroes followed by a one. after which it 
delivers the same number of zeroes followed by a one. 

(iii) The mechanism generates any sequence of a's, b 's, and c 's in which no two 
adjacent symbols are equal. 

(iv) The mechanism generates the sequence of positive numbers as follows. First one 
a is generated. then two a ·s are generated. and so on. Between each sequence of 
a ·s a b is generated. Typical traces are a, aba. and abaabaaaba. 

( v) The mechanism represents a natural number, initially zero. Possible events are 

u : increment value by one (up) 

d : decrement value by one (down) 

z : the value equals zero (zero) 

(vi) The same as ( v) but now negative values are allowed: the mechanism represents 
an integer. 

(End of Exercises) 
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3.2 The Conjunction-Weave Rule 

In this section we investigate the relation between processes and their weave. in terms of 
specifications. Our first theorem is called the Conjunction-Weave Rule. abbreviated as 
CW-rule. 

Theorem 3.2.0 
i' 

(CW-rule) 

Let <A . P > and < B . Q > be specifications of processes T and U respectively. Then 
T w U is specified by 

<AUB.t:P(dA)II Q(dB)> 

Proof 

<A U B. t: P(t ~A ) II Q (t ~B) > is a specification. since 

P(dA)II Q(dB) 

= I definition of projection l 
P(e) 11 Q (e) 

{ <A.P> and <B.Q> arespecifications l 
true 

Furthermore. a(T w U) =AU Band for any t. t E(A U B)*. we have 

t Et(Tw U) 

= I definition of weaving 

d A E tT II dB EtU 

{ <A . P > specifies T and < B . Q > specifies U l 
(A s : s ~ t t A : P (s ) ) II (A s : s ~ dB : Q (s ) ) 

= I Property 1.1.4.3 J 

(As : s ~ t : P(s t A )) II (As : s ~ t : Q (s ~B)) 

I predicate calculus J 
(As: s ~ t: P(stA) II Q(stB)) 

(End of Proof) 

Example 3.2.1 

An unbounded bag is specified by 

<laO ,a). bO. bl}, t: l(ttbO) ~ l(daO) II l(dbl) ~ l(dal )> 
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We derive component bag such that TR(bag) is the process specified above. From the 
specification of SEM(a,b). viz. <{a.bl.t:l(ttb)~l(tta)>. and the CW-rule we 
infer 

TR(bag) = SEM(aO .bO) w SEM(al ,bl) 

Since I aO. bO In { al . bl) = 0 . we may replace this weave by a blend: 

TR(bag) = SEM(afJ .bO) b SEM(al.bl) 

These observations lead to the following solution in which sem is the component of 
Example 2.4.3 . 

com bag (afJ. al .bO .bl): 

sub p.q: sem bus 

[ p·a = af). rb = bO. q·a = al. q·b = bl] 

E 

moe 

(End of Example) 

In the example above we replaced a weave by a blend which is allowed on account of Pro
perty 1.4.0 . The following theorem. also called the Composition Rule. shows a more gen
eral method. 

Theorem 3.2.2 (Composition Rule) 

Let c and d be components with alphabets A and B respectively. 
Let A U B = { x 0 , ... , xn_ 1) and let component cd be defined by 

com cd (A U B ) : 

sub p : c • q : d bus 

(Sol · · · I Sn-1)* 

moe 

where for i. 0 ~ i < n. s, 
S; 

S; 

= rx;;x; 

q·x1 ;x; 

= rx; .q·x;;x, 

Then TR(cd) = TR(c)wTR(d) 

Proof 

if X; EA \B 

if X; EB\A 

if x, EA n B 

The alphabets of TR (cd) and TR (c) w TR (d) are equal. viz. A U B. Let S denote the 
command of cd. We compute 
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TR(cd) 

= { definition of the process of a component l 
(p-TR (c) w q·TR (d) w pref(TR (S))) ~(A U B) 

{structure of S. compound symbols are removed by tCA U B)) 

(p-TR(c )w q·TR(d) w TR (S ))t(A U B) 

From the structure of S we infer 

" tEtTR(S') => drA =r(ttA)A ttq·B=q·(ttB) 

Hence. 

t E t(p-TR (c) w q·TR (d )w TR(S )) 

=> I definition of weaving l 
ttrA Etp-TR(c) A ttq·BEtq·TR(d) A tEtTR(S) 

=> { structure of S, see above } 

ttrA Etp-TR(c) A ttq·B Etq·TR(d) A ttp-A = P' (dA) A ttq·B = q· (£tB) 

=> { substitution l 
p-(£tA)Ep-tTR(c) A q·(ttB)Eq·tTR(d) 

= I definition of r l 
dA EtTR(c) A dB EtTR(d) 

Together with our computation of TR (cd ) this yields 

TR (cd) !: TR (c) w TR (d ) 

We are left with the proof obligation t(TR (c) w TR (d)) ~ tTR (cd ). 

This is done by constructing a function h from t(TR (c) w TR (d)) into 
t(p-TR(c)wq·TR(d)wpref(TR(S)))suchtbath(t)t(AUB) = t 

h is defined inductively by 

h (e) = e 

h (ta ) = h (t ) ra a 

h (ta ) = h (t) q·a a 

if a EA \B 

if a EB\A 

h(ta) = h(t)p-aq·aa ifaEArlB 

Then. evidently. h (t )Et(p-TR(c )w q·TR(d)w pref(TR(S))) and h(t )t(A U B)= t. 

(End of Proof) 
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Example 3.2.3 

A k -bounded bag is specified by 

<laO.al .bO.bl}.t: O~l(daO)-l(dbO)~k 

A O~l(dal)-l(dbl)~k 

A O~l(d{aO,aJ})-l(d{bO,bJ})~k 

> 

For component bagk that satisfies this specification. we have, according to the CW-rule 

TR(bag") = SEMt(aO.bO)w SEM"(al .bl)w SEM"({aO,al }.{bO.bJ}) 

A component for SEMt (a .b) is given by sem" (Example 2.3.6). 

A component for SEMt ({ aO .al}. { bO .bl}) is given by csemk (Example 2.3.7). 

Application of the Composition Rule yields a program with 3 subcomponents: 

com bagk (aO .al .bO .bl): 

sub p . q : semk . r : csem" bus 

(p-a .r·aO :aO I p-b .r·bO ;bO I q·a.r·al ;a} I q·b.r·bl ;bl)* 

moe 
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From the text of cs6mfl in Example 2.3.7 we infer that the following component satisfies 
the specification as well. 

com bagdaO.al .bO.bl): 

sub p , q • r : sem~:: bus 

(p-a .r·a ;aO I p-b ,r•b;bO I q·a .r·a;al I q·b.r·b ;bl)* 

moe 

(End of Example) 

Example 3.2.4 

A sorter is specified by 

<laO ,a} ,bO ,bl}, t: 0 ~ HdaO )-l(ttbO) 

A o ~ z (t tan -l (t tbl) 

A (As: t = sbl: l(staO) = l(stbO)) 

> 

The last conjunct expresses that a one may be retrieved only if there is no zero to be 

retrieved. 



94 From specification to program text 

ln Example 2.4.4 we derived component zsem, that has specification: 

<{a.b.zl.t:O~l(tta)-l(ttb)l\ (As:t=sz:l(sta)-l(stb)=O)> 

which is apart from renaming - expressed by the first and the third conjunct of the 
specification of sorter. 
The second conjunct specifies SEM (al , bl ). This yields component sorter given by 

com sorter(aO.al.bO.bl): 

sub p;~ zsem , q : sem bus 

(poa;aO lp-b;b() lp-z.q·b;bllq·a;al)* 

moe 

(End of Example) 

Exercises 

0. } Derive component rwdup specified by 

<(a,b.c}.t:(Au,v:t=uava V t=ubvb V t=ucvc:v~e)> 

1. Component ebag is an unbounded bag that has additional symbol e to denote the 
emptiness of the bag. Give a specification for ebag and derive a program text from 
that specification. 

2. Construct components that have {a. b} as their alphabet and that have as 
specification predicate: 

(i) l (t ta) = 0 

(ii) ZCtta)= l(ttb) 

(iii) l(tta>= o v zccrb)= o 
(iv) l (t ta) ~ l (t tb) ~ 5 

( v) l (tf a ) . zctt b ) ~ 9 

(vi) l (d a ) + l(d b ) ~ 5 

3. Derive a program for a bounded sorter. 

4. Component c has alphabet A. A = I a 0 , ... , am_ 1). and component d has alphabet 
B. B = {bo, ... ,bn-1}. 



Exercises 

Component cd is defined by 

com cd (A U B ) : 

sub p : c . q : d bus 

(rao:aol · · · I ram-1;am-1)* 

.(q·bo:bol · · · iq·bn-1;bn-1)* 

moe 

( A n B is not necessarily empty ) 
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Prove that TR (cd) = TR (c) w TR (d). Compute TR (cd) if the comma in the 

command is replaced by a bar. Compute TR (cd) if the comma in the command is 

replaced by a semicolon. 

(End of Exercises) 

3.3 The Conjunction-Blend Rule 

In this section we consider an analogue of the CW-rule for the blending operator. It will 

turn out that the analogue is too complicated to be useful. The main purpose of this sec

tion is to show the source of the complications. Since blending equals weaving followed 

by projection, we first consider the projection operator. 

Property 3.3.0 

Let <A . P > be a specification of process T. and let B be an alphabet. Then 

<AnB.t:(Eu:uEA*/\ (Av:v ~u:P(v)):t=u~B)> 

specifies Tt B. 

Proof 

a(Tt B)= A n B. and for any t. t E (A n B)*. we have 

t E tTt B 

{ Tt B is prefix-closed I 
(As : s ~ t : s E tTt B) 

{ definition of projection I 
(As : s ~ t : (E u : u E tT : s = ut B)) 

{ <A, P > specifies T } 
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(As : s ~ t : (E u : u E A* 1\ (A v : v ~ u : P(v )) : s = u ~B)) 

(End of Proof) 

The predicate t: (As :s ~t :(Eu :uEA* A (Av :v ~u :P(v)):s = u~B))doesnot 
look very attractive. One might hope that the simpler one given by 

t: (As:s~t:(Eu:uEA*A P(u):s=u~B)) 

would describe tTt B as well. Unfortunately. this is in general not true as the following 
example demonstrates. 

Example 3.3.1 

Process T is specified by < {a. b }. P > where 

P(t) - t = € V (E w :wE {a .b I*: t = wa ). 

Then T = <{a.b}.{a}*> and T~b = <{bl.lel> 

~ 

For any n. n ~ 0. we have bn = (bn a) ~b. Hence. 

< { b I. t: (E u : u E {a. b }* 1\ P(u) : t = u t b)> specifies < { b}. { b I*>. 

We conclude that the specifications 

<I b}. t: (E u : u E I a. b I* 1\ (A v : v ~ u : P(v )) : t = u ~B)> and 

< { b }. t: (E u : u E {a. b I' A P(u): t = u ~B)> 

specify different processes. 

(End of Example) 

Combining Property 3.3.0 and the CW-rule yields 

Theorem 3.3.2 (CB-rule) 

Let <A .P> and <B .Q > be specifications ofT and U respectively. Then 

<A + B . t : (E u : u E (A U B )* A (A v : v ~ u : P ( v t A ) A Q ( v t B ) ) : t = u t (A + B )) > 

specifies T b U . 

(End of Theorem) 

The CB-rule is not useful when deriving programs from a specification. It shows how 
difficult the relation between components and their blend can be. Moreover. it is the 
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projection that should be blamed for it. 

Exercises 

0. Determine a specification of SEM 2(a . b) using the CB-rule and 

SEM2(a,b) = SEM 1(a.c)bSEM 1(c.b). 
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1. For symbols aO. al. bO. bl and for integer k. k ;il; 1. proce_ss BAGk (aO . al . bO. bl) 
has alphabet { aO. al. bO. bl) and trace set 

{ t It E { aO , al . bO. bl )* A (A s : s ~ t : 0 ~ l (s ~ aO) - l (s ~ bO ) ~ k 

A 0 ~ l (s ~al)- l (s tbl) ~ k 

A O~l(stlaO.ai})-l(st{bO.bl))~k )) 

Prove that for all k and n. k ;il; 1 A n ;il; 1 : 

BAGk (aO ,al .bO .bl) b BAGn (bO .bl .cO ,cl) ¢; BAGk+n (aO .al .cO ,cl) 

(End of Exercises) 

3.4 Context-free grammars 

A trace structure T may be viewed as a language tT over alphabet aT. cf. [6]. One may 
wonder what kind of languages are generated by components. Some research on this topic 
can be found in [11]. In this section we show how a component can be constructed whose 
trace set corresponds to a language given by a context-free grammar. We first give ·an 
informal introduction to context-free grammars. For a detailed treatment we recommend 
[6]. 

A context-free grammar G is a quadruple. G = <A .N .S .P>, where 

A is an alphabet. the set of tefminals • 

N is an alphabet. the set of non-terminals . A n N = 0. 

S is an element of N . the start symbol. 

P is a finite subset of N X(A UN)*. the set of production rules 

The relation -+ on (AU N )*is defined by (a, (3. v E (A UN)* and X EN) 

a X fj .... a v fj if (X • v ) E P 
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The k -fold composition of ...... is denoted by ..!. . 

The reflexive and transitive closure of ...... is denoted by .!. 

The language of grammar G . denoted by L (G). is defined by 

L(G) = {v lvEA*/\ S.!. vI 

Informally. a trace t E A • is an element of L (G) if it can be obtained by means of a sys
tematic rewriting process on elements of (A UN)* that begins with start symbol S and in 
which repeatedly a left-hand part of a production rule is replaced by a right-hand part 
until no non-terminal remains. 

Let G. G = <A. N .S. P > . be a context-free grammar. 

In general. L (G) is not prefix-closed. 
We construct component g with alphabet A U {J}. where J (pronounced as 'tick') is a 
fresh symbol. and 

t EL(G) - t JEtTR(g) 

Since L (G ) = ! t It E (A UN)* 1\ S .!. t l n A • we first construct component h. which 
has trace structure 

<A U N U { J }. pre f ( { t I (E u : u E (A U N )* A S .!. u : t = u J )}) > 

Then g with aTR(g)=AU{J} and tTR(g) = tTR(h)n(AU{JJ)* satisfies our 
requirements. 

Since the intersection of processes with equal alphabets is equal to the weave of these 
processes. we have 

TR(g) = (TR(h )w <AU N U {J}.(A U {J})*> )t(A U IJ}) 

The projection on A U { J l is needed to get rid of the non-terminals in the alphabet of the 
weave. This projection can be obtained (Property 1.4.2.3) by a blend : 

TR(g) = (TR(h )w <AU N U {J}.(A U {J})*>) b RUN(N) 

Component h is given by 

com h (A U N U { J}) : 
sub p: h bus 

S;J I (Col ... ICk-tiDol ··· 1Dm-t1Eoi · · ·IEn-t)*:rJ:J 

moe 



3.4 Context-free grammars 

where S is the start symbol of G . 

C1 • 0 ~ i < k. corresponds to P; : if P1 = (X. ao · · · ar_ 1) then 
C; = rX:ao:···;ar-1• 

D1 = p-a; ;a1 for 0 ~ i < m. 

E1 = r X 1 ; X 1 for 0 ~ i < n. 

Command C; corresponds to the application of production P1 • 

Command D1 corresponds to copying terminal a 1 • 

Command E; corresponds to copying non terminal X; . · 

Let I denote the function associated with component h. Then 

tf(Sl'OP(A UN U (J})) = (E.S ,S Jl. and for k. k ;;at. 0, 
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pref({ t I(E u : u E (AU N)* I\ S.!. u : t = u J)}) !:;;; tf k+ 1(SI'OP(A UN U {JJ)) and 

tfk+1(SI'OP(AUNU{J)))!: pref({ti(Eu:uE(AUN)*/\ S.!. u:t=uJ)I) 

Hence. 

TR (h) = <A UN U { J}.pref ( { t I (E u : u E (A UN)* I\ S .!. u : t = u J )})> 

We now have to realize components c and d such that 

TR(c) = <AUNU{J}.(AU(J})*> and TR(d)=RUN(N). 

Component d is defined by 

com d(N): (X 0 1 · · · IX,_ 1)* moe 

Component c is defined by 

com c(A UN U {J}): 

(aol · · · lam-11 J)* 

I (Xo:Xo).Xo. · · · .(X,-1;X,-t).X,_t 

moe 

The part (X 0 ; X 0 ), X 0 • · · • .(X, _1 ; X, _1). X, -t has been added to include N in the 
alphabet of c. Ot may be omitted if the requirement 'the alphabet of the command equals 
the alphabet of the component' is weakened to 'the alphabet of the command is a subset of 
the alphabet of the component') 

We now have components h, c. and d, such that 

TR(g) = (TR (h) w TR(c )) b TR(d) 
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L'sing the Composition Rule one can easily construct g. 

Example 3.4.0 

Let G = < { a . b }. { S I. S • { S ..... a . S -> bSS ) > . Then h is given by 

com h (a . b. S . .J): 

sub p~: h bus 

S;.J 1 (p-S;a lp-S;b;S;Sip-a;a lp-b;b lp-S;S)";p-.J;.J 

moe 

Components c and d are given by 

com c (a . b . .J. S) : (a I b I .J )* I (S ; S) . S moe 

com d (S ) : S * moe 

Component he is defined as 

com he (a • b . .J. S) : 

sub p : h • q : c bus 

(p-a .q·a ;a I p-b .q·b: b I r .J .q· .J; .J Ip-S .q·S :S )* 

moe 

According to the Composition Rule we have TR (he) = TR (h) w TR (c). 

The ultimate component g is given by 

com g (a . b . .J) : 

sub p : he • q : d bus 

[p-a =a. p-b =b. r".J = .J. p-S = q·S] 

moe 

(End of Example) 
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Exercises 

0. Let G = <Ia .b }.{S}.S. {S-a, S- bSS }>. cf. Example 3.4.0. Consider com
ponent g defined by 

com g (a , b . J): 

sub p: g bus 

a,J 
I (poa ;a I p-a ;b ;a ;a I p·b ;b )*:r J; J 

moe 

Show that g corresponds to L(G ). 

1. An unbounded stack of binary values can be specified by grammar G with 

alphabet : I aO • al , bO. bl } ; 

N: {S}; 

P: {S-e. S-+aOSbOS. s-alSblS}; 

start symbol : S 

Derive a component that corresponds to L(G ). 

(End of Exercises) 



4 Deadlock 

4.0 Introduction 

Deadlock is a well-known phenomenon in the domain of concurrent processes. cf. [2]. It 
is usually explained in terms of shared resources. We illustrate deadlock by the following 
example. 

Component cO has alphabet laO.bO.~.qO.e0./0}. The meaning of the symbols is as 
follows. 

aO : acquire resource A 

bO : release resource A 

~ : acquire resource P 

qO : release resource P 

eO : initiation of a computation using resources A and P 

fO : termination of the computation initiated by eO 

Component c1 has alphabet lal.bl.pl.ql ,el, fl}. The symbols have the same meaning 
as the corresponding symbols of component cO. 
Furthermore. we have components exA and exP that guarantee mutual exclusion in the 
use of A and P respectively. The components are given by 

com cO(aO .bO .~ .qO ,eO. fQ): (aO ;~:eO: /0 :bO ;qO )* moe 

com cl(al,bl,pl.ql,el,fl): (pl;al:el;fl;ql;bl)" moe 

com exA (aO .al .bO .bl): (aO :bO I al ;bl )* moe 

com exP(~. pl. qO. ql): (~; qO I pl : ql)* moe 

We consider the composite U of these components: 

U = TR(cO)w TR(cl)w TR(exA )w TR(exP) 

Typical traces of tU are 

aO ~eO fO bO qO pl al el /1 ql bl 

aO ~ eO fO bO qO aO ~ eO 

aO pl 
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The last one. aOpl , has no extension in tU: from the command of cO we infer that pO is 
the only candidate of the set ( aO . bO • pO . qO, eO . fO} and extension with pO is not in 
accordance with exP. A similar argument shows that none of the elements of 
( al , bl , pl . ql, el • fl } are possible as an extension of aOpl . 
For each component. however. the projection of aOpl on the alphabet of that component 
may be extended (with respect to that component). Phrased differently : the composite 
has terminated whereas none of the subcomponents have terminated. We say that the 
system is in a deadlock. 

In the next sections we give a formalization of deadlock and we derive properties thereof. 

4.1 Lock 

In Section 1.2 we discussed a mechanistic appreciation of processes. For a set X of 
processes we have 

t is the trace thus far generated with respect to (W T: T EX: T) 

= 
(AT: T EX : ttaT is the trace thus far generated with respect to T ) 

For process T and trace t. t E tT. we define the successor set of t with respect to T. 
denoted by S(t .T). by 

S(t.T) = {a Ia EaT A taEtT} 

Let T be a process and let t be the trace thus far generated with respect to the mechanism 
described by T. If S (t , T) = C2', we say that the mechanism has terminated. If 
S (t , T) ¢ C2'. the mechanism eventually gets involved in a next event thereby extending 
t with the symbol associated with that event. 

We call T a non-terminating process if 

(A t : t E t T : S (t . T ) ¢ C2') 

Notice that the negation of non-terminating is 'may terminate'. 

Property 4.1.0 

Let T be a process and let s and be elements of tT. Then 

s -t ::;. S(s ,T) = S(t ,T) 

(End of Property) 

Due to the last property we may extend the notion of successor set from traces to states. 
Then S([t],T)=S(t,T)forall t,tEtT. 
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Property 4.1.1 

Let T be a process. T is a non-terminating process if and only if each node of the 
state graph of T has an outgoing arc. 

(End of Property) 

In the sequel >X is a set of processes and U = (W T: T EX: T). 

Property 4.1.2 

(AT:TEX:S(ftaT.T)=0)::;. S(t.U)=0 

Proof 

We derive 

S(t .U);e 0 

I definition of successor set ) 

(E a :a E aU : ta E tU) 

I predicate calculus. aU = ( U T : T EX :aT) ) 

(E T : T E X : (E a : a E aT : ta E tU)) 

::;. I U = (W T : T E X : T ) ) 

(E T : T EX : (E a · a EaT : tar aTE tT )) 

= I definition of projection ) 

(ET:TEX :(Ea :aEaT:(daT)aEtT)) 

= I definition of successor set l 
(E T: TEX: S(daT.T)¢ 0) 

(End of Proof) 

For t • t E tU • we define lock (t • X) by 

lock (t . X) E S (t • U) = 0 A (E T : T E X : S (d aT. T) ¢ 0) 

lock free (X) is defined by 

lockfree(X) = (At:tEtU: -.lock(t.X)) 

If -.lock/ ree (X) holds. we say that X has danger of lock. 



4.1 Lock 

Property 4.1.3 

0 lock free (0) 

1 lock free (IT}) for any process T 

(End of Property) 

Property 4.1.4 

lockfree(X)- (At:tEtU: S(t,U)=0- (AT:TEX:S(ttaT.T)=0)) 

Proof 

We derive 

lock free (X) 

{ definition of lockfree 

(At :tEtU: -.lock(t,X)) 

I definition of lock. predicate calculus } 

(At :tEtU:S(t.U)¢0 V (AT:TEX:S(ttaT,T)=0)) 

= { predicate calculus } 

(At :tEtU:S(t,U)=0 => (AT:TEX:S(daT.T)=0)) 

I Property 4.1.2 } 

(A t : t E tU : S (t , U) = 0 - (A T : T E X : S (t taT, T) = 0)) 

(End of Proof) 

Property 4.1.4 may be phrased as 

'The composite of a set"of mechanisms has no danger of lock' and 
'The composite has terminated if and only if all composing parts have terminated' 

are equivalent. 

Theorem 4.1.5 

Let X be a set of processes and let U = (W T : T E X : T ). 

Let for V, V E X, V denotes the process (W T : T E X 1\ T ¢ V : T ). 

Then 

lockfree(X) = (AT: T EX: lockfree({ T .T})) 

Proof 

For any T, T EX, and t , t E tU, we have 
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(A V : V E X : S (£t a V, V) = 0) 

::;.. I predicate calculus I 
(AV:VEX A V¢T:S(t~aV,V)=0) 

::;.. I Property 4.1.2 with U replaced by f and X replaced by X\ ( T} } 

S(t~af .h= 0 

Hence, 

Deadlock 

(AT:TEX:S(daT,T)=0)::;.. (AT:TEX:S(daf.h=0) (*) 

We derive 

(AT: TE X: lockfree(( T .f))) 

I Property 4.1.4 applied to ( T. f} } 
(A T : T E X : (A t . t E tU : S (t • U) = 0 - S (t ~aT. T) = 0 A S (t ~af, f) = 0 )) 

I Property 4.1.2 } 

(AT:TEX:(At:tEtU:S(t,U)=0::;.. S(ttaT.T)=0A S(ttaT.T)=0)) 

I predicate calculus } 

(A t : t E tU : S (t • U ) = 0 ::;.. 

I(*) l 

(AT: TEX: S(ftaT,T)= 0) 

A (AT: TEX: S(daf.f>= 0)) 

(At :tEtU:S(t,U)=0::;.. (AT:TEX:S(t~aT,T)=0)) 

I Property 4.1.2 } 

(At :tEtU:S(t,U)=0- (AT:TEX:S(daT.T)=0)) 

I Property 4.1.4 ) 

lock free (X) 

(End of Proof) 

A consequence of Theorem 4.1.5 is: 

a system that has danger of lock with respect to its components can always be cut 
into two parts such that the system has danger of lock with respect to these two 
parts. 

Example 4.1.6 

Consider components cO. cl , exA , and exP that were introduced in Section 4.0 : 

com cO(aO ,bO .pO ,qO .eO ./0): (aO ;pO ;eO: /0 ;b() ;qO)* moe 



4.1 Lock 

com cl (al .bl .pi .ql .el./1): . (pl ;al ;el; fl ;ql ;bl)" moe 

com exA (a{) ,al. bO .bl): (aO ;bO I al ;bl )" moe 

com exP(pO.pl ,qO,ql): (pO :qO I pl ;ql)" moe 

Let X = {TR(cO).TR(cl).TR(exA ).TR (exP)} and let U = (W T: TEX: T). 

Then aOpl EtU, S(aOpl .U)= 121 and S(aOpltaTR(cO),TR(cO)) ¢121. 

Hence. lock (aOpl .X) and also 

lock (aOpl, { TR(cO).TR(cl)w TR(exA )w TR(exP)}). 

Notice, that lockfree({ TR(cl ). TR(exA ), TR(exP)}). 

(End of Example) 

The next theorem shows how larger lockfree systems can be built from smaller ones. 

Theorem 4.1. 7 
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Let X and Y be sets of processes. Let U = (W T : T E X : T) and let 
V = (W T : T E Y : T ). Then 

lockfree(X) A lockfree(Y) A lockfree({U, V}) => lockfree(X U Y) 

Proof 

Assume lock free (X) A lockfree(Y) A lockfree ({ U, V }). For any t, t E t(U w V), we 
derive 

s (t • u w v) = 121 

= { Property 4.1.4, lockfree ({ U. V}) l 
S(ttau .U) = 121 A S(tta V, V) = 121 

= {Property 4.1.4, lockfree (X) and lockfree(Y) l 
(AT:TEX:S(ttaUtaT.T)=121)/\ (AT:TEY:S(ttavtaT.T)=121) 

= { T EX implies aT !,:;; aU, T E Y implies aT !,:;; a V l 
(AT: T EX: S(daT ,T) = 121) A (AT: T EY: S(daT ,T) = 121) 

= ( predicate calculus l 
(AT: TEXUY: SCttaT,T)= 121) 

Application of Property 4.1.4 yields lockfree (X U Y) 

(End of Proof) 
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In general, the converse of Theorem 4.1. 7 does not hold. as the following example shows. 

Example 4.1.8 

Components cO. c1 and c2 are defined by 

com cO(a.b): (a*lb*) moe 

com cl'<.a . b) : (a * I b ) moe 

com c2 (a . b) : a • I b . (b ; b ) moe (TR(c2)= <{a,b}.(a}*>) 

Then TR(cO )w TR(cl )w TR(c2) = <(a.b },(a}*>. For all t. t E (a}*. we have 

S (t. <I a. b }.(a }* >) = I a}¢ 0. 

Hence. lock free ( { TR (cO). TR (cl ). TR (c2 )} ). 

Wehave bEt(TR(cO)wTR(cl)). S(b.TR(cO)wTR(c1))=0. 

and S (b . TR (cO)) = { b } ¢ 0. Hence . ... locJcfree (I TR (cO). TR (cl )} ). 

We conclude 

lock free ({ TR (cO). TR (cl), TR (c2 )}) 1\ ..,zockfree ({ TR (cO). TR (cl)}) 

(End of Example) 

Most mechanisms. such as bags. queues. and stacks, correspond to non-terminating 
processes. In general, we are not interested in mechanisms that may terminate. Notice that 
for U = (W T: T EX: T), we have 

U is non-terminating ::> lock free (X) 

In the next section we define deadlock. In general. the implication above does not hold for 
deadlock. 

Exercises 

0. T and U are non-terminating processes such that ai n aU contains at most one ele
ment. Prove that T w U is also non-terminating. 

1. Tis a process. Prove lockfree({T,STOP}). 
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2. Prove that for any set X of processes: 

lock free (X) 

- (A Y : Y !: X : lock free ( ( (W T : T E Y : T) . (W T : T E X\ Y : T) })) 

3. T is a process and a is a symboL Prove 

lockfree({T.STOP(a)}) 5 (At: t EtT: S(t .T) ¢{a}) 

4. Components cO. cJ. exA • and exP are defined as in Example 4.1.6 . 
Let T = TR (cO) b TR (exA ) b TR (exP ). Determine the state graph of T. Deter
mine also the state graph of T b TR(cl ). What are your conclusions? 

5. Component ex is defined by 

com ex (a • b • c) : 

sub p.q · sem 1 bus 

(p-a;a lp-b.q•a;b lq·b;c)* 

moe 

Show that TR (ex) = SEM 1(a . b) w SEM 1(b . c). Let S denote the command of 
ex. 

Determine lockfree ({ p-SEM 1(a .b ).q·SEM 1(b .c ).pref(TR (S )))) 

(End of Exercises) 

4.2 Deadlock 

In Section 4.0 we considered components cO, cJ. exA , and exP. defined by 

comcO(~.M.~.~.~./0): (~;~;~;~;M;~)· moe 

com cl(al.bl.pl.ql.el./1): (pl;aJ:el;fJ;qJ;bl)* moe 

com exA (~ .al .M .bl): (~ :M I al ;bJ )* moe 

com exP(~ .pl.~ .ql): (~;~I pl ;ql )* moe 

Let X= {TR(cO).TR(cl ).TR(exA ).TR(exP)} and let U = (W T: TEX: T). 

Then -.lock free (X). 
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Let y be a symbol. We add RUN ( y) to these processes. For any t, t E t(U w RUN ( y )), 
we have ty E t(U w RUN( y )). Hence. U w RUN ( y) is a non-terminating process. from 
which we infer 

lock free (X U (RUN ( y)}) 

Nevertheless. the mechanism described by the weave of these five processes has danger of 
deadlock in the usual sense of the word. These observations lead to the following 
definition. 

For a set X of processes deadlock free (X) is defined by 

deadlock free (X) = (A Y : Y !: X : lock free (Y)) 

If -.deadlock free (X ) holds, we say that X has danger of deadlock. 

Property 4.2.0 

deadlock free (X) - (A Y : Y !: X : deadlockfree (Y )) 

(End of Property) 

Property 4.2.1 

For processes T and U we have 

0 deadlock free (I T. u}) = lockfree (I T. u n 
1 T w U is non-terminating ::;. deadlockfree({ T .U}) 

(End of Property) 

Property 4.2.2 

Let T and U be non-terminating processes such that aT n aU contains at most one 
element. Then deadlock free ({ T. U }). 

Proof 

Let t E t(T w U). then t~aT E tT and t~aU E tU Since T and U are non-terminating. 
we can choose a,aEaT, and b.bEaU, such that (t~aT)aEtT and (daU)bEtU 
Since aT n aU contains at most one element. we have three cases. 

(i) a = b 

(ii) a f. aU 

(iii) b f. aT 
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In case (i) we have ta E t(T w U ). in case (ii) we have ta E t(T w U ). and in case (iii) we 
have tb E t(T w U). 

Hence. T w U is non-terminating. 

Application of Property 4.2.1.1 yields deadlockfree ({ T .U}). 

(End of Proof) 

We do not have an analogue of Theorem 4.1.5 that holds for deadlockfree. If X has n 
elements. then P(X) has 2" elements. and to assure deadlockfree(X) requires in the 
worst case 2" investigations. Notice that lockfree (X) requires only n investigations. 
A similar conclusion holds for Theorem 4.1.7. 

The best we can prove is the following. 

Theorem 4.2.3 

Let X be a set of processes such that deadlockfree (X) holds. and let V be a process. 
Then 

(A Y : Y S: X: lockfree ({ V, (W T: T EY : T)})) => deadlockfree(X U { V}) 

Proof 

We derive 

(A Y: Y S: X: lockfree({ V ,(W T: TEY: T)})) 

= { Property 4. 1.3.1 } 

(A Y : Y S: X: lock free ({ V}) A lock free ({ V. (W T: T E Y: T)})) 

{ deadlock free (X) } 

(A Y : Y S: X: lockfree(Y) A lockfree ({ V}) A lockfree ({ V. (W T T EY: T)})) 

=> {Theorem 4.1.7 } 

(A Y: Y S: X: lock free (Y U { V})) 

= { deadlock free (X) } 

(A Y: Y S: XU { V}: lockfree(Y)) 

{ definition of deadlockfree } 

deadlock free (X U I V}) 

(End of Proof) 
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An even more serious problem is the following. We consider again components 
cO , cl , exA , and exP. 

Figure 4.0 shows the state graph of TR (cO) w TR (exA) w TR (exP ). Projection on 
(eO, /0, al. bl. pl. ql} yields the blend, the state graph of which is shown in Figure 4.1 . 

Apparently. we have deadlockfree (( TR(cO) b TR(exA) b TR (exP) .TR (cl))). The state 
graph of the blend of the four processes is shown in Figure 4.2. Evidently, all information 
about deadlock has disappeared. 

From Figure 4.2 one concludes that initially eO is possible. However, internal events aO 
and pl bring the system to a grinding halt (as explained in Section 4.0). 

It looks as if we have lost our hierarchical way of composing. It seems that. in order to 
avoid deadlock. one has to keep track of the internal structure of the components. 

In Chapter 5. we cope with problems like these. We give conditions under which the 
situation described above does not occur. 

7-~' 0 

cz~r·~.'\ 

~~·-.o'·) 
Figure 4.0 

~.a~· 
Figure 4.1 

Figure 4.2 



4.2 Deadlock 

Finally we define deadlockfree for components. Let component c be defined by 

com c(A ): 

sub Po: co, ... • Pn-1: Cn-1 bus 

[xo= Yo,··· ,Xm-1 = Ym-11 

s 
moe 

Then TR (c) = T~ A where 

T = (W i: 0' i < n: (p;·TR(c;n;:::. :;:~:) w pref(TR(S)) 
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Let X be the set consisting of all (pi·TR(c; )) ;:: :;;:~;. 0' i < n. and pref(TR (S )). 

We call c deadUx:kfree if deadlockfree(X) holds. 

Exercises 

0. Determine which of the following sets of processes are deadlockfree. 

(i) { SEM 1(a .b). SEM 1(b .c) .SEM1(c ,d)} 

(ii) I SEM 1(a .b). SEM 1(b ,c). SEM 1(c .a)} 

(iii) I SYNC l,t(a . b) , SEM 2Ca. b) . STOP } 

(iv) { SI'OP( a). SI'OP( b). RUN( a ,c)} 

1. Provide counterexamples for the following conjectures. 

(i) deadUx:kfree(X) /\ deadlockfree(l V. (W T: T EX: T)}) 

::;. deadlockfree(X U { V}) 

(ii) deadUx:kfree (X) /\ (A T : T EX : deadlock free (IT. V})) 

::;. deadlock free (X U I V}) 

2. X is a set of processes. For T E X we define disabled (T. X) by 

disabled(T .X) s (Et :t EtU: S(daT.T)¢ 121 /\ (As: ts EtU: S(ts ,U)naT = 121)) 

where U = (W T: T EX: T). 

disable free (X) is defined by disable free (X) s (A T : T EX : ..,disabled (T. X)) 

Derive properties of disablefree that are similar to the properties of Ux:kfree and 
deadlock free. 

(End of Exercises) 



5 Livelock and nondeterminism 

S.O Introduction 

Let T and U be processes. As explained in Section 1.4 we view T b U as the specification 
of the composite of the mechanisms specified by T and U respectively. This composite 
behaves according to T w U. 
Symbols of aT n aU are called internal symbols. They correspond to internal events. 
Symbols of aT + aU are called external symbols. They correspond to external events. 
The blend of T and U does not contain any information about the internal events. 

ln this chapter we have the following assumption about the behaviour of a composite. 

The internal events occur automatically and instantaneously as 
soon as they can, without being observed or controlled by the 
environment of the process: 

C.A.R. Hoare [8. section 3.5] 

Consider processes T and U defined by 

T = pref(TR((a ;xI b ;y )')) and U = pref(TR((a ;x )")) 

Then T b U = pref(TR((b ;y )*)) 

From T b U one concludes that the composite eventually gets involved in event b . How
ever. whenever event b can occur. internal events are possible and. according to our 
assumption. an internal event will happen. It is not guaranteed that b will ever happen. 

This phenomenon is called livelock. Ot is also known as infinite clu:rtter or as diver
gence). The behaviour of the composite is not in accordance with T b U. 

The phenomenon of nondeterminism is illustrated by the following example. 

LetT= <{a.b.x.y}.{e.x.xa.y.yb)>. Then TbRUN(x.y)= <{a,b}.{E.a.b}>. 
From T b RUN ( x .y) one may infer that either a or b may happen initially. From our 
assumption. however. we conclude that either x or y will occur instantaneously after 
which a is not possible any more or b is not possible any more. This is not reflected in 
<{a.b},{e.a.b)>. We say that the composite ofT and RUN(x.y) has (internal) 
nondeterminism. 
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In the sequel we study conditions under which we can guarantee the blend of processes to 
be a proper specification of the composite of the corresponding mechanisms. 

Since livelock and nondeterminism arise when certain events are concealed. we first study 
the relation between the mechanism described by a process T and the mechanism 
described by Tt B. where B is a subset of aT. Notice that Tt B = T b RUN(aT\B ). 

In examples a process T is sometimes specified by a command S. 
Then T = pref (TR (S )). 

Processes are also specified by state graphs. Unless stated otherwise. the alphabet of the 
corresponding process consists of all labels that occur in the state graph. 

s.t Livelock 

For process T and subset B of aT we define livelock(B .T) and livelockfree(B ,'T) by 

livelock (B. T) =: (E t : t E tT : (An : n ~ 0: (E u : u E B * A tu E tT : l (u) > n ))) 

livelockfree (B , T) - -.[ivelock (B, T) 

If T is obvious from the context we omit T and write livelock (B) and livelockfree (B). 

Applying Konig's Lemma (cf. [10]) yields 

Property S.t.O 

Let T be a process with a finite alphabet. and let B be a subset of aT such that 
livelock (B ) holds. 

Then there exists a trace t. t E tT, and an infinite sequence b (i : i ~ 0) such that 
(A i : i ~ 0: b (i )E B) and such that all finite prefixes of tb (i : i ~ 0) belong to tT. 

(End of Property) 

Property s.t.t 

For process T and subsets A and B of aT such that A !::;;; B. we have 

livelock (A ) =:> livelock (B) 

livelockfree (B) =:> livelockfree (A ) 

(End of Property) 
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Exercises 

0. Disprove: livelockfree (A , T) fl livelockfree (B , T) ::;. livelockfree (A U B. T) 

1. Prove 

(i) livelockfree (0. T) 

(ii) T is non-terminating ::;. livelock (aT. T) 

2. Disprove: livelock (aT. T) ::;. T is non-terminating 

3. Prove that for processes T and U: 

livelockfree (aT n aU. T) V livelockfree (aT n aU. U) 

::;. livelockfree (aT n aU. T w U) 

4. Prove 

(i) (A n : n ~ 0 : (E t : t E tSEM (a • b ) : (E u : u E { b }* fl tu E tSEM (a • b ) : l (u ) > n))) 

(ii) livelockfree({b l.SEM(a ,b)) 

(iii) -.livelockfree({a }.SEM(a .b)) 

(End of Exercises) 
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S.2 Independence and Transparency 

Let T be a process and let B be a subset of aT. The complement of B with respect to 
aT. i.e. aT\ B . is denoted by B. According to Property 1.4.2.3 we have 

Tt B = T b RUN(B) 

In the sequel we investigate conditions under which Tt B is a proper description of the 
composite of the mechanisms associated with T and RUN(B). 

To that end we define four types of independence. each type being more restrictive than 

the previous ones. We give a mechanistic appreciation of each type. 

For j.O'- j<4. I 1(B.T). pronounced as 'B is j-independent with respect toT', is 
defined by 

l 0(B ,T) -
lt(B .T) -
MB.T) = 
/3(B .T) = 

(At : t E tT : S (t . T) !;; B :> S (t . T) = S (t t B. Tt B)) 

(As.t:sEtT A t€tT: stB '-ttB :> (Eu:su€tT:sutB=utB)) 

(At: t EtT: (E u: u E(B)* A tu EtT: S(tu .T) = S(t~B .TtB))) 

~(B ,T) A livelockfree(B. T) 

An appreciation in terms of the mechanism specified by T is the following. 

lo(B .T): 

liB .T): 

If the mechanism enters a state in which only events of B are possible. 
then the mechanism behaves according to Tt B. 

From each state of the mechanism it is possible to continue such that the 
behaviour of the mechanism is as expected from Tt B. 

From each state of the mechanism it is possible to enter a state (via events 
of B) such that only events of B are possible. The mechanis~ behaves in 
that state according to Tt B. 

For each state of the mechanism it is guaranteed that performing internal 
events (events of B) will terminate in a state in which only events of B 
are possible. The mechanism behaves in that state according to Tt B. 

If / 3(B • T) holds we say that B is transparent with respect to T. 

In the sequel T is a fixed process and B is a subset of aT. 
We write 11 (B) instead of li (B . T ). 
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Property 5.2.0 

For any t . t E tT. we have S (t . T) n B !: S (dB • Tt B ) 

(End of Property) 

Lemma 5.2.1 

Livelock and nondeterminism 

I1(B)- (As,v:sEtT II (stB)vEtTtB:(Eu:suEtT:sutB=(stB)v)) 

Proof 

We derive 

(As.v :sEtT II (stB)vetTtB :(Eu :suEtT:sutB = (stB)v)) 

= { definition of projection } 

(A s. v. t : s E tT II t E tT II (s t B) v = t t B : (E u : su E tT : su t B = (s t B) v )) 

= {substitution } 

(As .v.t: s EtT II t EtT II (stB)v = ttB: (E u: su EtT: sutB = ttB)) 

= { definition of prefix } 

(As. t : s E tT II t E tT II st B ~ t t B : (E u :suE tT: sut B = tt B)) 

= { definition of /1 } 

lt(B) 

(End of Proof) 

Theorem 5.2.2 

0 lt(B) ::;> l;,(B) 

1 I2(B) ::;> lt(B) 

2 /3(B) ::;> I2(B) 

Proof 

0. Assume / 1(B ). Let t. t E tT. be such that S(t. T)!: B. We have to prove 
S(t.T)= S(ttB.TtB). We derive 

a ES(ttB .TtB) 

= I definition of successor set } 

Ctt B)a E tTt B 

= {Lemma 5.2.1} 
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(E u : tu € tT : tu t B = (t t B ) a ) 

{ S (t , T) !:: B ) 

a E S(t .T) 

Hence, S (t , T) = S (t t B . Tt B ) 

1. Assume 12(B). Lets and t besuchthat sEtT II tEtT II stB ~ttB. 
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We prove the existence of v such that sv E tT II svt B = tt B by the following pro
gram. (The notation is from [3]) 

v:=E {invariant svEtT II svtB ~ttB.variantfunction Z(ttB)-l(vtB)} 

:do svtB :¢: ttB 

.... {svtB<ttB) 

od 

let b besuchthat (svtB)b ~ttB.then bES(svtB,TtB) 

:let u. u E (B)*, be such that S(svu. T) = S(svt B .Tt B). u exists du~ to MB) 

{ svub E tT II svub t B = svb t B ~ t t B II b E B ) 

;v:=vub 

{svEtT II svtB=ttB) 

2. Assume Ia(B ). Let t e tT. We have to prove the existence of v, v E (B)", such that 
tv EtT II S(tv,T)= S(ttB .TtB). 

Consider the following program. 

v:=E 

{ invariant tv E tT II v E (if)* 

variant function l(v). bounded since livelockfree(B)) 

:do S (tv . T) n ii :¢: 121 

.... let b be such that b E S (tv , T) n ii 
{ tvb E tT II vb E (if')* ) 

;v:=vb 

od 

{S(tv,T)nB=121 II vE(B)*, hence, S(tv,T)~ B II tvtB =ttB. 

From fo(B)weinfer S(tv,T)= S(tvtB.TtB)= S(ttB.TtB)} 

We conclude (E v: v E(B)* II tv EtT: S(tv .T)= S(ttB .TtB)) 

(End of Proof) 
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Corollary 5.2.3 

If livelockfree (if) then lo(B ). / 1(B ). I2CB ). and /3(B) are equivalent. 

(End of Corollary) 

The following example shows that the implications in Theorem 5.2.2 are proper implica
tions : the converses of these implications do not hold in generaL 

Example 5.2.4 

0. Process T is defined by command a ; a *I b . 
For t E tT, not ending in symbol b we have -.( S (t , T) !: { b} ). 
For t E tT. ending in symbol b we have S(t .T) = I2J = S(t tl> .Ttl>). 

Hence. /0({b 1). 

Since atb ~btl> A (Au :au E tT : autb ¢ btb ). we have -./1({ b }). 

We conclude lo({ b}) 1\ -./1({ b }). 

1. Process T is defined by (a I b )* . 
From t E tT :::> tb E tT we infer /1({ b }). 
On the other hand we have (At : t EtT: S(t .T) = (a .b} ¢ { b }), which implies 
-./2({ b }). 

Weconclude / 1({1>}) 1\ ... J2({b)). 

2. Process Tis defined by a*;b;c . 
Fort EtT. ending in b or c we have S(t, T) = S(ttc .Ttc ). 
Fort EtT. not ending in b or c we have S(tb .T) = S(t tc .Ttc ). 
Hence. Ml c }). 
Since for all n.. n. ~ 0. an E tT we have ... J3({ c }). 

Weconclude /2({cl) A ... Ji{cl). 

(End of Example) 

The next theorem relates independence to state graphs. 

Theorem 5.2.5 

lt(B) :::> (A s , t : s E tT A t E tT : s - t :::> s t B- t t B) 

Proof 
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Assume 11 (B). Let s and t be elements of tT such that s - t. 
Let v E B* be such that (st B) v E tTtB. We derive 

true 

= I definition of prefix } 

s t B :s; (s t B ) v 

= I Lemma 5.2.1. (stB)v EtTtB } 

(E u: su EtT: sutB = (stB)v) 

I property of projection } 

(Eu: suEtT: (stB)(utB)= (stB)v) 

= I property of concatenation } 

(E u :suE tT : u t B = v) 

= ls-t} 

(E u : tu E tT: ut B = v) 

= I properties of concatenation and projection } 

(Eu :tuEtT:tutB = (ttB)v) 

::;:. I definition of projection ) 

Cd B )v E tTtB 

For reasons of symmetry we conclude 

(A v : v E B * : (s t B) v E tTt B := (t t B) v E tTt B) 

Hence. st B -ttB 

(End of Proof) 

Corollary S.2.6 
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If B is transparent with respect to T then the number of states of Tt B is at most 
the number of states of T. 

(End of Corollary) 

The following theorem is another consequence of Theorem 5.2.5. 

Theorem S.2. 7 

Let B be transparent with respect to T. A state graph of Tt B is obtained from the 
state graph of T by removing all arcs labeled with symbols of ii thereby identifying 
the states connected by these. 
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Proof 

We have to show that for B transparent, s E tT, c E jj, and seE tT : 

(A t . u : t E [ s lr 1\ u E [ sclr : t t B - u t B ) 

Let B be transparent with respect to T. Then h(B. T) (cf. Theorem 5.2.2). 
Let s E tT. c E jj and scEtT. We derive 

t E [ s lr 1\ u E [ sc lr 
( definition of equivalence class l 

t -s 1\ u-sc 

=> (Theorem 5.2.5 } 

dB - s t B A u t B - set B 

= (cEB) 

dB-stB A utB-stB 

=> ( transitivity of - } 

ttB-utB 

(End of Proof) 

Notice that lo(B . T) can be expressed in terms of states: 

10(B.T) E (At:tEtT:S([t],T)!:B => S([t],T)=S([ttBJ.TtB)). 

since the extension of successor set from traces to states yields 

S(t,T)= S([t].T)forall t.tEtT. 

Theorem 5.2.8 

None of the independencies are closed under union. 

Proof 

Process Tis defined by command a ;b I x ;b ;a . Then / 3({ a}) and J3({b }). 

From S(x.T)= (b)¢ (a.b}= SCxt(a.b).Tt(a.b))weconclude ... Jo((a.b)). 

Theorem 5.2.2 yields that for any j. 0 ~ j < 4. 

I1 ((a}) 1\ I1 ((b}) 1\ -.J1 ((a.b}) 

(End of Proof) 

Let B be a !-independent subset of aT and let t E tT. b E B. c E jj such that 
tc E tT 1\ tb E tT. 
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Then tdB =dB ~tbtB. Since B is !-independent. there exists au. uE(B)'. such 
that tcub E tT. Hence, the choice of c instead of b does not disable b. 

Phrased differently: symbols of B cannot be disabled by symbols of if. 
Suppose that B and C are !-independent subsets of aT. A symbol of B n C cannot be 
disabled by a symbol not in B nor by a symbol not in C, hence, only by symbols in 
Bnc. 
This observation might lead to the conjecture that !-independence is closed under intersec
tion. The next theorem, however, shows that none of the independencies are closed under 
intersection. 

Theorem 5.2.9 

None of the independencies are closed under intersection. 

Proof 

By the following counterexamples. 

0. Process T is defined by the state graph of Figure 5.0 . 
Figure 5.0 

We have 4({ a ,b}) fl. 4({ a ,c}) 

From S (be. T) = 0 !: {a} and S(bda, Tta) = {a} we infer ~10(( a}). 

1. Process T is defined by 

the state graph of Figure 5.1 . 

b c Figure 5.1 

Trace t, t E tT, consisting of b 's and c 's may be extended with aa if and only if 
the number of b 's is even and the number of c 's is even. It may be extended with a 
single a only, if the num6er of b 'sand the number of c 's are both odd. 

We have J1({a,b}) and Mia ,c }). 
Examination of traces bca and aa yields ~11({ a}). 

a 

2. Process T is given by the state graph of Figure 5.2 . 
~ • • 
. ~ 

b 

Figure 5.2 
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We have /2({ a)), Ml b)), /3({ a D. and /3({ b)). 

Since for all t . t E tT. the successor set S (t , T) is non-empty, we have ... / 2(0) and. 
hence. -./3(0 ). 

(End of Proof) 

After having studied the counterexamples of the previous theorem one could hope for 

ME) A I3(C) ::;.. fo(B n c) 
We supply a counterexample for this implication as well. Notice that such a counterexam
ple provides a proof of Theorem 5.2.9 as well. The example provides insight into condi
tions under which one may hope for more positive results. Since the example is a nice 
illustration of the theory, we devote a theorem to it. 

Theorem 5.2.10 

There exists a process T and there exists subsets B and C of aT such that 

/3(B) 1\ /3(C) 1\ -.f0(B n C). 

Proof 

We construct process T that has alphabet {a, b . x l. such that 13( {a. x }), / 3( { b, x }), and 
-.10({ x }) hold. 

Evidently, livelockfree ( {a )) and livelockfree (I b)) have to hold. 

Process T will be symmetric with respect to a and b. 

Figure 5.3 shows the state graph of T. 

T~l a, b)= SYNC 2.2Ca .b). hence livelockfree ({a}) and livelockfree ({ b }). 

Tt I a , x) corresponds to the command (a ; a)*; (a ; x I x ; x). 

Tt { b, x) corresponds to the command (b ; b )*; (b; x I x ; x). 

xx is possible if and only if the parity of the a's is even and the parity of the b 'sis even; 
a single x is possible if the parity of a's is odd and the parity of the b "sis odd. 

Figure 5.3 
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We have .JO({ a. x}) A livelockfree ((b)). hence ! 3({ a. x )). For reasons of symmetry 
Ml b. x}) holds as well. 

From S(abx.T)=0 A S(abxtx.Ttx)= {x}weinfer -..JO({x}). 

(End of Proof) 

In the trace structure that was exhibited in the proof of Theorem 5.2.10 we have 
livelock ((a. b }). From the definition of 3-independence it is evident that !3(B) cannot be 

proved in the presence of livelock Cii). 
The next theorem is the main theorem of this section. 

Theorem 5.2.11 

Let T be a process and let B and C be subsets of aT such that T does not have livelock 
with respect to aT\(B nc). Then 

B and C are transparent with respect to T 

::;::. B n C is transparent with respect to T 

(End of Theorem) 

This theorem may also be phrased as 

'in the absence of livelock, transparency is closed under intersection' 

For a proof of Theorem 5.2.11 we :first derive some lemmata. T is a process and B and C 
are subsets of aT. 

Lemma 5.2.12 

/3(B ) A !3(C ) A b E B n C 

::;::. (As .t: sb EtT A st EtT: (E u: sbu EtT: sbut(B nc)= stt(B nc))) 

Proof 

Assume /3(B) A !3(C) A b E B n C. 
For reasons of symmetry we assume b E C. 

Let s and t be such that sb E tT A st E tT. We derive 

sl>tc = stc ~ sttc 
::;> { !l(C). sb EtT A st EtT } 

(E u : sbu e tT : sbu tc = st tc ) 
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=> I application of projection on B ) 

(E u: sbu EtT: sbu~(B nc) = st~(B nC)) 

(End of Proof) 

Lemma 5.2.13 

If livelocklree (B n C ) then 

13(B ) 1\ 13(C ) 1\ b E B n C 

=> (As,t :sbEtT 1\ stEtT 1\ sb~(BnC)~st~(BnC): 

(E u: sbu EtT: sbu~(B nc) = st~(B n C))) 

Proof 

Assume livelocklree(B n C) 1\ J3(B) 1\ J3(C) 1\ bE B n C. 

From livelocklree (B n c) we infer that the function I given by 

I (t ) = (MAX u : tu E tT 1\ u E (B n c )* : l (u ) ) 

is well-defined. 

By induction on I (s) we prove that for all s. s E tT 1\ sb E tT : 

(At:stEtT 1\ sb~(BnC)~st~(BnC): (Eu:sbuEtT: sbu~(BnC)=st~(BnC))) 

Base 

Let s be such that s E tT 1\ sb E tT 1\ I (s) = 0. 

Let t be such that st E tT 1\ sb ~(B n C) ~ st ~(B n C). We derive 

sb~(B nc) ~ sd(B nc) 

lbEBnc l 
(E u • y : v E (B n C )* 1\ u E aT • : st = svbu ) 

I l(s) = 0) 

(E u : u EaT*: st = sbu) 

=> I st E tT. application of projection ) 

(E u: sbu EtT: st~(B nC)= sbu~(B nC)) 

Step 

Let s be such that s E tT 1\ sb E tT 1\ I (s) > 0. 

Lett besuchthat stEtT 1\ sb~(BnC)~sd(BnC) 

Then t = vbuo for some v E (B n C)* and 11oE aT* (cf. Base) 
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We distinguish two cases: 

(i) v = E. 

Then t = bUo. hence, (E u : sbu E tT : sbu t(B n C)= sft(B n C)) 

(ii) v = cv0 with c E 

For reasons of symmetry we assume c fl B . 
We then have 

st = scvobUo 1\ c fl B 1\ VoE (B n c)* (cf. Figure 5.4). 

We derive 

sb E tT 1\ scvobUoE tT 1\ c f. B 

::;. l sd B = st B. tT is prefix-closed l 
S (set B . Tt B ) = S (s t B . Tt B) 1\ sb E tT 1\ sc E tT 

::;. { b E B n C. hence (s t B) b E tTt B ) 

bES(sdB.TtB) 1\ scEtT 

::;. II2(B ) J 

(E u : u E (jj)* 1\ scu E tT : scub E tT) 

Choose v1 E (B)* such that scv1b E tT (cf. Figure 5.5) 
We derive 

scv1 tB = stB ~ sttB 1\ scv1 EtT 1\ st EtT 

=> { l1(B) ) 

(E u : scv1u E tT : scv1u t B = st t B) 

::;. { application of projection on C 

(E u : scv1u E tT: scv1ut(B n C)= st tCB n C)) 

Choose ul such that SCVtUl E tT 1\ SCVtUl t<B n c)= st t<B n c) 
(cf. Figure 5.6) 

From c fl B n C and v1 E (ii)* we infer 

f(scvl) ~ f(s)-1< f(s) 

Furthermore we have 

SCVtbt(B nc) = sbt(B n C)~ stt(B n C)= scvlult(B n c) 
1\ scv1u1EtT 1\ scv1b EtT 1\ scv1EtT 

Hence. we may apply the induction hypothesis with 
s replaced by scv1 and t replaced by u1• 
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Figure 5.4 

Figure 5.5 

Figure 5.6 
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This yields u 2 such that 

5cv1bUzEtT II 5cv1bUz~(BnC)= 5cv1u1 ~(BnC) 
(cf. Figure 5. 7) 

Our last step is the derivation 

5b~B ~ 5cv1bUz~B 
:::;. { J1(B ). 5b E tT II 5cv1bUz E tT } 

(E u : 5bu E tT : 5bu ~ B = 5cv1bUz ~B) 

:::;. { application of projection on C } 

(E u : 5bu E tT: 5bu~(B n c)= 5CVJbUz~(B n c)) 

{ 5cv1bUz ~(B n C)= 5t~(B n C) } 

(E u : 5bu E tT: 5bu~(B n C)= 5t~(B n C)) 

(End of Proof) 

Combining Lemma 5.2.12 and Lemma 5.2.13 yields 

Lemma 5.2.14 

If livelockfree (B n C) then 

13(B) II 13(C) II bEaT 

:::;. (A5.t: 5bEtT II 5tEtT II 5b~(BnC)~5t~(BnC): 

Livelock and nondeterminism 

Figure 5.7 

(E u : 5bu E tT : 5bu ~(B n C)= 5t ~(B n C))) 

(End of Lemma) 

We now prove Theorem 5.2.11 . 

Proof 

Let T be a process and let B and C be subsets of aT such that JiB). J3(C ). and 
livelockfree (B n C) hold. 

We have to prove h(B n C). 

Since livelockfree (B n C) holds it suffices (Corollary 5.2.3) to prove 11(B n C). 

Let 50 E tT and 51 E tT such that 50 ~(B n C) ~ 51 ~(B n C). 

The following program shows the existence of t. tEaT*. such that 

5o(EtT II 5o(~(BnC)=51 ~(BnC). 
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s := E ;t := s1 

l invariant st EtT 1\ s ~So 1\ st~(B nc) slt(B n c) 

variant function l (s0 )- l (s) } 

;do s¢so 

-+ {s<sol 

let b be such that sb ~ s0 
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{ sbt(B n C)~ s0 tCB n C)~ sJ(B n C)= stt(B n C), apply Lemma 5.2.14 } 

:choose u such that sbu EtT 1\ sbut(B n C)= sttCB n C) 

od 

{ sbu EtT 1\ sb ~So 1\ sbut(B nc)= stt(B nc)= slt(B nc) I 
; s := sb ; t := u 

( s = so. hence sot € tT 1\ Sot tCB n C)= s1 t(B n C) } 

(End of Proof) 

As a consequence of Theorem 5.2.11 we have 

Theorem 5.2.15 

Let T be a process with a finite alphabet. and let A be a subset of aT such that T 
does not have livelock with respect to aT\A . Then there exists a smallest set B. 
A c;;; B c;;; aT. that is transparent with respect to T. 

Proof 

From Property 5.1.1 we infer livelockfree(B). for any B. A c;;; B c;;; aT. According to 
Theorem 5.2.11 we then have J3(B n C) for any transparent B and C with 
A c;;; B c;;; aT and A ~ C c;;; aT. Moreover, aT is transparent with respect to T, hence. 
the intersection of all transparent subsets of aT containing A equals the smallest tran
sparent subset of aT containing A . 

(End of Proof) 

In the next section we relate transparency to (internal) nondeterminism. 
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Exercises 

0. Prove lo(fi!J. T) and 11(0. T) 

Disprove 12(0, T) and 13(0 , T ) 

1. Prove 

Livelock and nondeterminism 

11(B. T) := (As. b : s E tT A b E B A (s t B )b E tTt B : (E u : u E (B)': sub E tT )) 

2. Determine livelockfree ({a}) and J0({ b)) for the processes defined by the following 
commands. 

(i) (a ;b)* 

(ii) (a I b)* 

(iii) (a I a : b )* 

(iv) a *I b • 

(v) alb* 

(vi) (a ; b I a ; a ; b)* 

(vii)(a lb;a':b*) 

3. Let p and q be positive integers. Prove that {a . c} is transparent with respect to 
SEMP (a .b )w SEM

9 
(b .c) 

4. T and U are processes. aT n aU contains at most one element. aT\aU is tran
sparent with respect to T and aU\aT is transparent with respect to U. 

Show that aT+aU is transparent with respect to T w U. 

5. Let S denote the command (p-a :a I p-b. q·a ;b I q·b ;c)*. and let 

T = SEM1(p·a .p·b )w SEM1(q·a .q·b )w pref(TR(S)) 

(i) Show that Tt{a .b .c} = SEM1(a .b )w SEM1(b .c) 

(ii) Determine livelockfree ({a ,b ,c}. T) and fo({ a .b ,c},T) 

6. T is a process with a finite alphabet. Subset B of aT is called strongly independent 
if (At :tEtT:S(dB.TtB)!: S(t.T)). 

Prove 

(i) fi!J and aT are strongly independent. 

(ii) The strongly independent subsets of aT form a complete lattice. 

(iii) B and if are strongly independent = T = (Tt B) w (Tt B) 
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For A , A ~ aT, m (A ) denotes the-' smallest strongly independent subset of aT 
containing A . 

(iv) Show that m (A) is well-defined and prove T = (W a :a EaT : m(( a})) 

(End of Exercises) 

S.3 Transparency and nondeterminism 

In this section we relate the theory developed in the previous sections to the theory of CSP 
in [8]. We present a short introduction to the model defined in [8]. For a more detailed 
treatment we also recommend [1]. 

A CSP- process is defined as a triple <A • F. D > where 

A is an alphabet 

F is a set of pairs (t . X) where t E A • and X ~ A 

D is a subset of A • 

Let P. P = <A . F. D > . be a CSP-process. The set F is called the failure set of P. It 
consists of pairs (t , X) where t is a trace. t E A •. and X is a so-called refusal set of t. 
F is used to model nondeterminism. 

Set D is called the set of divergences of P and consists of 'all traces of P after which P 
behaves chaotically'. 

The triple <A. F. D > should satisfy the following conditions (cf. [8, 3.9]) 

CO (E.121)EF 

Cl (tu,X)EF::;. (t.121)EF 

C2 (t ,X)E F A Y!::: X ::;. (t ,Y)EF 

C3 (t.X)EF A aEA ::;. (t.XU{iz})EF V (ta,121)EF 

C4 D !::: (t l(t ,121)€ F} 

C5 tED A uEA*::;. tuED 

C6 t E D A X !::: A ::;. (t , X) E F 

The alphabet of P is denoted by a P . The set ( t I (t .121) E F } is called the trace set of P 
and is denoted by tP. 

From conditions CO and Cl we infer that tP is non-empty and prefix-closed. 
From C2 we conclude that the refusal sets of a trace t, t EtP, are determined by the 
maximal refusal sets of t • 
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A mechanistic appreciation of P is the following. 

With P a mechanism is associated. With that mechanism in operation a so-called trace 

thus far generated, say t. is associated. Initially t = E. At any moment t E tP. 

If t is an element of D anything may happen: the mechanism may refuse any event or 
may get involved in any event. This is expressed by conditions C5 and C6. The mechan
ism behaves chaotically. 

If t is not an element of D, we consider the set {a I (ta, 0) E F). For an element b of 
that set there exist two possibilities. 

(i) (EX: (t .X)EF: b EX). Then b may happen but b may also be refused ('depend
ing on some internal event. b may get disabled'). 

(ii) (A X : (t , X) E F : b EX). Then b may happen. either since the environment ini
tiates b or since the mechanism does so. 

With CSP-process P we associate the process (i.e. the non-empty prefix-closed trace struc
ture) <aP. tP > . 

For t. t E tP. the successor set S(t. <aP. tP >) is also denoted by S(t .P). Notice that 
S(t,P)= {a l(ta,0)EF}. Fromcondition C3 we infer 

Property 5.3.0 

Let P. P = <A . F. D > be a CSP-process and let t E tP. Then 

(A X : X ~ A\ S (t . P) : (t . X) E F) 

(End of Property) 

The set of all CSP-processes is denoted by H, and the set of all non-empty prefix-closed 
trace structures is denoted by K (both sets with respect to the same universe 0). We 
then have the following mappings. 

tr: H -+ K defined by tr(P) = <aP. tP > 

pr:K-+ H definedby pr(T)= <aT.{(t,X)ItEtT 1\ X~aT\S(t,T)}.0> 

Property 5.3.1 

tr (pr (T)) = T for all T. T E K 

Proof 

For any T, T E K, we have 
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tr (pr (T )) 

= { definition of pr l 
tr(<aT.{(t.X) ltEtT A X£: aT\S(t.T)l.0>) 

= { definition of tr and tP l 
<aT.{t ltEtT A 0£: aT\S(t.T))> 

= { calculus I 
T 

(End of Proof) 

Property 5.3.2 

For all P. P = <A • F. D >. 

pr(tr(P))= <A.{(t,X) l(t.X)EF A X £:A\S(t.P)}.0> 

Proof 

For any P. P = . <A . F. D > . we derive 

pr(tr(P)) 

= { definition of tr l 
pr( <A. It l(t .0)E Fl>) 

= { definition of pr and successor set l 
<A.{(t.X) l(t.0)EF A X£: A\S(t.P)).0> 

= {Property 5.3.0 and condition C2 l 
<A.{(t,X) l(t.X)EF A X£: A\S(t,P)).0> 

(End of Proof) 

Let P. P = <A . F. D >. be a CSP-process and let B be a subset of aP. 

The projection of P on B. denoted by Pt B. is the CSP-process <AB. FB. DB> where 

AB = B 

FB = {(t.X) IX£: B A (tEDB V (Eu :(u,XUB)EF:t = utB))} 

DB = { t I (E u. v : v E B * A u ED : t = (u t B) v )} 
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U{t I(Eu.v :vEB* A (An :n ~O:(Es :sE(B)* A l(s)> n :usEtP));t = (utB)v)} 

(B denotes the complement of B with respect to aP) 
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Example 5.3.3 

T is defined by T pre/ (TR (b; x I c; y )). 

Let P pr(T). then P = <A .F .D > where 

A= {b,c,x,y); 

the set of (t • X ) in F such that X is maximal equals 

{(E. { x ,y 1). (b. { b, c .y }), (c. { b .c ,x 1). (bx .I b. c. x .y }).(cy .I b. c. x .y ))}; 

D=0 

Let B = lx.y).then P~B = <Aa.Fa.DB> where 

Aa=lx.y}; 

Fa= I(E,{x}).(E.Iy}).(E,0) 

. (x , I x . y )) . (x • { x )) , (x .I y l) . (x . 0) 

. (y .I X. y}) • (y .I X}) • (y • { y)). (y . 0) 

I: 

Notice that Pt B may refuse x as well as y initially. but not both. 

tr(P~B)= <{x.y}.IE.x.y}> and pr(tr(P~B))= <A'.F'.D'> where 

A'= lx ,y }; 

F' = I C€.0) 

. (x • { x • y )) • (x • I x J) . (x .I y }) , (x . 0) 

, (y ,I X, y}), (y ,I X}), (y , { y}) , (y, 0) 

I: 
D'=0 

Notice that pr (tr (Pt B)) :;>:!: Pt B 

(End of Example) 

For an informal definition of determinism we quote C.A.R. Hoare [8]. 

'whenever there is more than one event possible. the choice between 
them is determined externally by the environment of the process. It 
is determined either in the sense that the environment can actually 
make the choice. or in the weaker sense that the environment can 
observe which choice has been made at the very moment of that 
choice.' 



5.3 Transparency and nondeterminism 

A formal definition is given by 

P is deterministic = pr (tr (P)) = P 

Application of Property 5.3.2 yields 

Theorem 5.3.4 

P. P = <A • F, D >, is deterministic 

- D=0 A (At.X:(t.X)EF:Xt::A\S(t,P)) 

(End of Theorem) 

In the sequel P. P = <A , F. D > . is a CSP-process and B is a subset of A . 

Furthermore. <An . F B • Dn > denotes the CSP-process Pt B . 

livelockfree (ij. <aP. tP >) and I 0(B, < aP. tP >)are abbreviated to 

livelockfree (iJ) and I 0(B) respectively. 
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B is called transparent with respect to P if B is transparent with respect to <aP. tP >. 
i.e. if I 0(B ) A livelockfree (B) holds. 

Property 5.3.5 

(tP)tB!;;;; t(PtB) 

Proof 

For any t. t E B•. we derive 

tE(tP)tB 

= { definition of projection l 
(E u : u E tP : t = ut B) 

= { definition of tP l 
(Eu :(u.0)EF:t = utB) 

{ predicate calculus ) 

(Eu :(u,0)EF:t =utB A 

=> { definition of Dn ) 

(As: s E (Ji)• A us EtP: S(us .P)n Ji ;e 0) 

V (E s: s e(Ji)• A us EtP: S(us ,P)!;;;; B))) 

(Eu:(u.0)EF:t=utB A (utBEDn V (Es:sE(B)0 A usEtP:S(us.P)!;B))) 
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::;. I Property 5.3.0 } 

(E u: (u .0)E F: t = u~B 1\ (u~B EDB V (E s: s E(B)*: (us .B)EF))) 

::;. { predicate calculus. definition of projection I 
(E u: (u.0)EF: (t = u~B 1\ utB EDB) V (Es: s E(B)*: (us .B)EF 1\ t = ustB)) 

::;. { calculus I 
(Eu:(u.0)EF:tEDB V (Ev:(v.B)EF:t=vtB)) 

{ F is non-empty. (e,0)E F } 

tEDB V (Ev:(v.B)EF:t=vtB) 

{ definition of F B I 
(t .0)EFB 

= I definition of t(Pt B) } 

tEt(P~B) 

(End of Proof) 

Property 5.:3.6 

livelockfree (B) ::;. (tP)t B = t(Pt B) 

Proof 

Assume livelockfree (B). For any t. t E B *. we have 

tEt(PtB) 

= I definition of Pt B } 

(t .0)EFB 

{ definition of FB I 
t E DB V (E u : (u. B)E F : t = u t B) 

{ definition of DB. livelixkfree (B) } 

(E u . v : u E D 1\ v E B * : t = (u t B )v ) V (E u : (u • B) E F : t = u .t B ) 

::;. { condition C5. B • C A * I 
(E u : u ED : t = u ~B) V (E u : (u. B)E F : t = u t B) 

::;. I conditions C4 an Cl } 

(E u : (u . 0) E F : t = u t B ) V (E u : (u • 0) E F : t = u t B ) 

= { definition of tP } 

t E(tP)tB 

Hence. t(Pt B) C (tP)t B. Combining this with Property 5.3.4 yields 
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t(P~B) (tP)tB. 

(End of Proof) 

Property 5.3. 7 

If P is deterministic then livelrx:kfree (ij) - DB = 0 

Proof 

If P is deterministic then D = 0 (Theorem 5.3.4). We derive 

livelockfree (B) 

{ definition of livelockfree } 

(At : t E tP : (En : n ~ 0: (Au : u E (B)* A l (u )> n : t¥ f tP))) 

= { definition of DB. D = 0 } 

DB= 0 

(End of Proof) 

We are now ready for the main theorem of this section. 

Theorem 5.3.8 

Let P be a deterministic CSP-process and let B be a subset of the alphabet of P. Then 

P~ B is deterministic = B is transparent with respect to P 

Proof 

(i) Assume P~ B is deterministic. We derive 

P~ B is deterministic 

=> { Theorem 5.3.2 } 

DB= 0 

{ P is deterministic. Property 5.3.7 } 

livelockfree (ij) 

For any t. t E tP. such that S(t, P) S: B. we have 

tEtPA S(t.P)S:B 

= I Property 5.3.0 } 
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(t.aP\S(t.P))EF A S(t.P)r;;. B 

~ {S(t.P)r;;.B =: ifS:aP\S(t.P)) 

(t.B U B\S(t.P))EF 

~ I definition of FB } 

(dB .B\S(t .P))E FB 

~ I Pt B is deterministic. Theorem 5.3.4 } 

B\S(t.P)r;;. B\S(ttB.PtB) 

{set calculus. S(t .P) S: B } 

S (dB . Pt B) S: S (t . P) 

= I Property 5.2.0 } 

S(ttB.PtB)= S(t.P) 

= {livelockfree (B). Property 5.3.6 } 

S(dB. <aP.tP> tB)= S(t. <aP.tP >) 

Hence. livelockfree (if) A I 0(B) which is equivalent to B is transparent with 
respect to P. 

(ii) Assume B is transparent with respect to P. Then livelockfree (B) A I 0(B ). 
From livelockfree(if) and P is deterministic we infer DB= 0 (Property 5.3.7). 
We derive 

livelockfree (B) 

~ I definition of FB. DB = 0 } 

F B = I (t . X) I X r;;. B A (E u : (u , X U if) E F : t = u t B)) 

= { P is deterministic, Theorem 5.3.4 } 

FB = l(t .X) IX S: B A (Eu: (u.XUB)EF A XU if S: aP\S(u.P):t = utB)) 

Forany X. X S: B. and u. uEaP*.wehave 

XS:B A (u.XUB)EF A XUBS:aP\S(u.P) 

= I set calculus } 

X S: B A (u.X Uif)EF A S(u .P) S: B A X U.ii S: aP\S(u.P) 

~ Uo(B) and t(PtB)= (tP)tB } 

X r;;.B A (u.XUB)EF A xu.iir;;.aP\S(utB.PtB) 

~ { definition of F B. set calculus } 

(utB.X)EFB A X S: B\S(utB.PtB) 

Hence. 
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(t .X)EF8 

* l previous derivation } 

(Eu:(u.XUB)EF II X~B II XUBf;aP\S(t.P):t=u~B) 

* l derivation above } 

X{; B\S(t .P~B) 
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Furthermore. we have D8 = 0. Application of Theorem 5.3.4 yields P~B is deter
ministic. 

(End of Proof) 

For a deterministic CSP-process P we have. by definition. pr (tr (P )) = P. We have also. 
cf. Property 5.3 .1. tr (pr (T ) ) = T for T E K . Hence, K rna y be identified with the set of 
deterministic CSP-processes. Theorem 5.3.8 expresses that this set is closed under projec
tion on transparent alphabets. 

We conclude that mechanisms that have (internal) nondeterminism cannot be described in 
terms of trace structures. That does not bother us, since we are not interested in mechan
isms that have (internal) nondeterminism. 

We shall avoid internal nondeterminism. either by guaranteeing that projection is done on 
a transparent alphabet or by implementing processes in such a way that internal events do 
rwt occur automatically and instantaneously. 
We discuss such implementations in Chapter 6. 

This concludes our discussion of CSP-processes. 
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5.4 Transparent components 

In this section we apply the theory of Section 5.2 to components. Let component c be 
defined by 

com c(A): 

sub Po:c 0 , ..• ,p,._ 1 :c,._1 bus 

[xo= YO• · · ·, Xm-1 = Ym-1] 

"s 
'' moe 

Then TR (c)= Tt A where 

T = (Wi:O~i<n:(p··TR(c-))x• ..... xm-I)w ef(TR(S)) 
1 t Yo···· 'Ym-1 pr 

In view of the theory developed in the previous sections we call c livelockfree if 
livelockfree (aT\A. T) holds. 

We call c transparent if A is transparent with respect to T. 

Since for any process T, aT is transparent with respect to T, we have 

Property 5.4.0 

A component without subcomponents is transparent. 

(End of Property) 

Implementing a transparent component (i.e. constructing a mechanism that behaves 
according to its trace structure) is relatively easy since it does not matter how fast and in 
which order internal events will happen. 

If component c is not transparent we implement the command of c in such a way that 
the nondeterminism of c is resolved without affecting TR (c). 

Example 5.4.1 (cf. Example 2.3.6) 

Component sem 1 with TR (sem 1) = SEM 1(a. b) is defined by 

com sem 1(a,b): (a;b)* moe 

Component sem 2 with TR(sem 2 ) = SEM 2(a ,b) is defined by 
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com sem 2(a .b): 

sub p . q ; sem 1 bus 

[p·a = a.rb = q·a.q·b = b] 

E 

moe 

LetT= SEMt(a,q·a)wSEM 1(q•a,b). 

Then TR(sem 2)= Tt{a,bl. 

141 

Figure 5.8 

The state graph of T is shown in Figure 5.8 . It does not contain any cycle of compound 
symbols. Hence. livelockfree({ q·a }.T) holds. In states 0. 2, and 3 the successor sets are 
subsets of {a. b 1. They equal the successor sets obtained by projection on {a. b 1. Hence. 
l 0({a,b}.T). 

We conclude that sem 2 is transparent.· 

(End of Example) 

Example .5.4.2 

We transform component sem 2 of the previous 
example into component asem 2 by removing the 
equalities: 

com asem 2(a. b): 

sub p.q: sem 1 bus 

(p-a :a I p-b;q·a I q·b ;b)* 

moe 

.. :r~· · l·· 
·I -~1· 
o• p.a • a • 

Figure 5.9 

Let T = SEM 1(p-a.rb)w SEM 1(q·a,q·b)w pref(TR(S)) where S denotes the com
mand of asem2• The state graph of T is shown in Figure 5.9 . Since there is no cycle of 
compound symbols, asem 2 is livelockfree. 

From S(p·a a p-b q·a p-a.T)= \a I and S(a.Ttla .b}) ={a ,b I we infer 

~10({ a .b }.T). 

Hence, asem 2 is not transparent. 

If a and b are events that are initiated by the environment we implement S in such a 
way that the choice between ra and q·b (state 1) is postponed until the environment 
has initiated event a or b. 

(End of Example) 
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Example 5.4.3 

We construct component wsem 2 that has 

trace structure SEM 1 (a , b ) w SEM 1(b , c ) : 

com wsem 2(a .b ,c): 

sub p ,q: sem 1 bus 

(p-a;a lp-b,q·a;b lq·b;c)* 

moe 

L,~t T = SEM 1(p-a ,p-b) w SEM 1(q·a .q·b )w prej(TR(S)). 

Figure 5.10 

Tlte state graph ofT is shown in Figure 5.10. Since S(q·a.T)=f21 and 
S(q·a,SEM 1(q·a,q·b))~ 0, wsem 2 is not deadlockfree. The number of consecutive 
compound symbols is bounded by 2. Hence, wsem 2 is livelockfree. 

Command S should be implemented in such a way that p-b or q·a will happen only if 
the environment initiates b. As in Example 5.4.2, the choice (state 2) should be post
poned. 

If events a and c are initiated by the implementation we regard the implementation of 
pre/ (T R (a ; (b ; a : c )*) as a valid one. 

(End of Example) 

Example 5.4.4 

In Example 2.3.3 we derived (recursive) component sem with TR(sem) = SEM(a .b): 

com sem(a .b): 

sub p : sem bus 

((a I p-b): (p-a I b))* 

moe 

Let T = SEM (p-a , p-b) w pref (TR (S)) where S denotes the command of sem. 

For any n . n ~ 0. we have 

(p-ap-b)" EtSEM(ra ,p-b) and a(p-a p-b)" Etpref(TR(S)). 

Hence. a (p-a p-b )n E tT. We conclude that sem is not livelockfree. 

In Example 2.3.3 we showed that S may be replaced by S' where 
S' =(a :p-a I a ;b I p-b ;b)*. without affecting TR(sem ). 
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Choosing S' instead of S yields a component that is livelockfree. However. since 
S(a p-a p-b.T)= lb) and S(a,T~la.b))= la.bl. it is not transparent. 

The choice of p-b should be postponed until the environment initiates b. 

(End of Example) 

One may wonder why we did not choose the name deterministic instead of transparent. 
The reason is that there exists another form of nondeterminism that has not been dis
cussed yet. It is the choice between (external) events that are initiated by a component. 

Consider component guess defined by 

com guess (a . b . x . y ) : (a ; x I b ; y )* moe 

Suppose events a and b are to be initiated by the component. and events x and y are to 
be initiated by the environment. In [8] component guess is considered deterministic since 
the choice between a and b can be observed by the environment. We do. however. con
sider guess as a nondeterministic process. since some internal choice has to be made 
between a and b , and the environment does not have any knowledge about the way in 
which this choice is made. 

Exercises 

0. Determine which of the following components are transparent. 

(1) com semia.b): a:(a.b)* moe 

(2) com semia ,b): 

sub p: sem 1 bus 

(a ;p-a)*,(p-b ;b)* 

moe 

(3) com ex(a.b): 

sub p .q ; sem 1 bus 

(a ;(p-a I q·a )I b;(p-b I q·b))* 

moe 
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(4) rom sem 2(a .b): 

sub p: sem 1 bus 

[p-b = b] (a ;p-a )* 

moe 

(5) rom sem(a,b): 

sub p : sem bus 

a :(a ;p-a I b;a I b ;p-b )* 

moe 

(6) rom sem(a .b): 

sub p : sem bus 

a ;((b I p-a ;a);(p-b ;b I a))* 

moe 

(7) rom ex(a,b): 

sub p: ex bus 

a;p-b lp-a;b 

moe 

(8) rom run (a ,b): 

sub p : run bus 

(a ;p-a )* 

moe 

(End of Exercises) 

Livelock and nondeterminism 



6 Implementation Aspects 

6.0 Introduction 

In this chapter we discuss implementations of processes. Although we implement 
processes as (electrical) circuits. most concepts introduced do not depend on this choice. 
To a great extent we have been inspired by the work of Alain J. Martin ([12]). 

This chapter differs from the previous ones: it is less formal and we do not provide 
proofs. We just present some ideas about implementations. Many of these still require 
further research. 

The synchronization of events is solved by a so-called four-phase lw.n.dslw.king protocol. 
We do not distinguish between 'input symbols' and 'output symbols'. We do. however. 
make a distinction between events that are initiated by a component and those that are ini
tiated by the environment of that component. It will turn out that the difference between 
these types of events is very small. 

The circuits we derive are delay-insensitive in the sense that their behaviour does not 
depend on delays in wires and switching elements. We do not prove their delay
insensitivity formally. 

6.1 Notations 

For sequential programs we use the guarded command language with CSP-syntax (cf. [7]): 

[ · · · ] instead of if ft 

* [ · · · ] instead of do od 

Execution of an if-statement amounts to suspension of the program until one or more of 
the guards evaluate to true. after which a statement of which the guard is true is selected. 

*[true _, S] is abbreviated to * [S J 
[B _, skip ] is abbreviated to [B J 

('do S forever') 

('waituntil B') 

With symbol a we associate a pair ( a0 • a;) of boolean variables. One may associate an 
'output wire' with Go and an 'input wire' with a;. The value true will correspond to a 
high level voltage on the associated wire and the value false will correspond to a low level 
voltage on the associated wire. If x is such a boolean variable then 
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xi means x true 

x! means x :=false 

C'set x to a high level voltage') 

('set x to a low level voltage') 

[ x 1 may be interpreted as 'wait until x has a high level voltage'. 

[ -.x 1 may be interpreted as 'wait until x has a low level voltage·. 

Implementation Aspects 

Events are either passive or active. Active events are initiated by the mechanism. whereas 
passive events are initiated by the environment of the mechanism. Notice that the 
environment of a .!_llechanism may be a mechanism as well. 

Let a be a symbol. The occurrence of a in a process in which a is passive corresponds to 
the following sequence of actions in the implementation 

(a passive) 

After execution of [ad ; a0 i event a 'has happened·. 

The sequence [-.a; 1 ; a.! is used to return to the state -.a. A -.a;. 

The environment of the implementation performs a by the sequence 

(environment of passive a) 

The occurrence of a in a process in which a is active corresponds to 

(a active) 

After execution of aJ; [a;] event a 'has happened'. 

The environment performs a by the sequence 

(environment of active a) 

Apparently. 

the pair ( a0 • a; ) of a mechanism corresponds to the pair (a; . a0 ) of the environ
ment. If ( a • • a1 ) is active then (a; . a0 ) is passive and vice versa. 

The synchronization thus obtained is called four-phase ho:ndshaking. For a synchroniza
tion protocol in which both mechanism and environment may initiate a we refer to [131. 

The transformation of symbol a into such a sequence is called ho:ndshaking expansion. 

Example 6.1.0 

Consider component sem 1 defined by com sem 1(a. b): (a :b)* moe. If a is passive 
and b is active. handshaking expansion yields 
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If both a and b are active. we have 

These programs express the behaviour of mechanisms with respect to a;. a0 • b;. and bo. 
In the next section we realize such a mechanism. 

6.2 Circuits 

For the construction .of our circuits we assume the existence of the following basic ele
ments. 

An And-element has two inputs and one output. If both inputs are true the output will 
be true. otherwise the output will be false. If x and y are inputs and z is output this is 
expressed by 

x II y -+ zf 

~x V ~y ..... zl 

A C-element, cf. [15]. has two inputs and one output. If the inputs have the same value 
then the output will also receive that value. otherwise the output does not change its 
value. This is expressed by 

X II y -+ zf 

-.x 1\ -.y ..... zl 

An Inverter has one input and one output. The output receives as its value the negation of 
the value of the input. It is expressed by 

x ..... zl 

-.x ..... zt 

Figure 6.0 shows how these basic elements are represented in pictures of circuits. 

And-element Inverter 

C-element 

Figure 6.0 
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An Inverter in front of an And-element or C-element may be incorporated in that element. 
thus yielding a new basic element. The Inverter is drawn as a circle attached to the ele
ment. As an example, consider the specification 

X A ~y -+ zf 

~x A y .... zl 

This denotes a C-element with 
inputs x and ~y. and output z. 

The corresponding circuit is shown in Figure 6.1 

Example 6.2.0 

Figure 6.1 

We show an implementation of SEM 1(a. b) where a is passive and b is active (cf. Exam
ple 6.1.0). Handshaking expansion yields 

Initially we have ~a. A ~a1 A -.b. A -.b1 • This state equals the state after a.l. Hence. we 
need an additional variable. say x. to be able to trigger b0 T. Initially ""X holds. We pro
pose 

* [ [a;) ; a0 T ; xT ; [-.a, A x) ; a.l ; b0 T : [ b1] ; xl ; [ -.x] ; b0 l ; [ -.b1 ]] 

We then have 

(0) a 1 A -.x A -.b1 
.... a.T 

-.a, A X .... a.l 

(1) ao ..... xi 

b; ..... xl 

(2) -.a. A x ..... b.f 

-.x .... b) 

Since in the period from a.T until a) we have -.b1 • we may transform (0) into 

(0') ( a; 1\ ""X) A -.b, -t a 0 T 
( ... a, A x ) V b1 -+ a0 l 

This is a combination of a C-element and an And-element : 

a1 1\ -.x -+ yT 

-.a, A X -+ y! 



6.2 Circuits 

y A ..,b; -+ a0 t 

... y V b; -+ a0 ! 

Initially '""Y holds. 

A similar reasoning yields for (1) and (2) 

(1') '""b; A ao -+ xt a C-element 

b; A '""ao -+ xl 

(2') ..,a
0 

A X -+ bot an And-element 

ao v .... x .... bo! 

149 

The ultimate circuit is shown in Figure 6.2 . The fat dots denote so-called internal forks. 

As in [12]. we assume that the propagation delay in a forked wire is short compared to the 
delays in the basic elements. 

Exercises 

0. Consider the circuit shown in Figure 6.2 . What happens if the environment executes 
b;t; a;t ? 

1. Derive a circuit that is an implementation of SEM 1(a, b) with a and b active. Use 

* [ aof ; [a;] ; xt ; [X 1 ; ao! ; [ .... a;] ; bot : [ b,] ; x! ; [...,X 1 ; bo!; [ .... b;]] 

Derive from the resulting circuit an implementation with a passive and b active. 

(End of Exercises) 

X 

Figure 6.2 
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6.3 Active and Passive 

Suppose we have a circuit corresponding to a process with passive a. We wish to connect 
an ·activator· (cf. Figure 6.3) to a; and a 0 such that its other two wires. p; and Po, yield 
an active version of a . 

Action Pol is to be executed 
as soon as the original circuit 
is willing to acknowledge a;. 

This yields 

A 
PASSIVE 

ao 

ACTIVATOR 

a; 

Notice that the 'return to zero phase' has been moved to the right. We have 

""'P; a;l (an Inverter) 
\ 

P; .... a;! 

and 

ao .... Poi 

-.ao -+ p) 

(a wire) 

I I 

ao : o<] 
a; 

We conclude (cf. Figure 6.4) 

Theorem 6.3.0 (From passive to active) 

Po 

P; 

Figure 6.3 

: Po 

P; 

Figure 6.4 

If event a has been implemented as passive. by the pair (a0 , a;) . then an implemen
tation with a active is obtained by placing an Inverter in front of a;. 

(End of Theorem) 

Warning 6.3.1 

Transforming a passive event into an active event in the way described above may intro
duce nondeterminism. This is shown by the following example. 

Component select is defined by com select ( a . b . x . y ) : (a ; x I b ; y )* moe. It is imple
mented such that a and b are passive, and x and y are active. The state graph of the 
implementation is shown in Figure 6.5 . We did not label all arcs : opposite sides of 
squares have the same label. 

Notice that in state 4 a choice is made between a0 l and b0 t. To implement this choice a 
new basic element. an Arbiter-element . is needed. We do not discuss nor introduce such 
an element. We assume that this implementation of select exists. 
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The environment behaves according to com env (a . b . x . y ) : (a ; x ; b ; y )* moe with a 
and b active and x and y passive. The implementation never enters state 4 and the com
munication between environment and component behaves as expected. 

If b is transformed into an active event. however. the following may happen. The 
inverter will cause b,T and the implementation will react with b0 • The environment will 
cause a;T and the mechanism enters state 5. The mechanism is suspended until b;l hap
pens and the environment is suspended until a.,T happens. Both events will not occur: the 
system is in a deadlock. 

If both a and b are activated the situation is even worse. Depending on the speed of the 
inverters used. the mechanism will enter state 5 or state 6. 

Activating a or b transforms the implementation into a nondeterministic mechanism in 
the sense that events may be initiated by the mechanism based on some decision unknown 
to the environment. 

We conclude that activating a passive event is not allowed if the implementation makes a 
choice between the acceptance of that event and the acceptance of other events. 

In this monograph we restrict ourselves to components that do not require the use of 
Arbiter-elements. 

(End of Warning) 
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Suppose event a has been implemented as an active event. We wish to connect a 'passiva
tor· (cf. Figure 6.6) to a; and a. such that its other two wires, p; and p •• yield a passive 
version of a . 

The original circuit may 
initiate a (by auf) as soon 
as that is possible. It is not 
acknowledged until the 
environment initiates a 

(by p;l) as well. This 
yields 

A 
ACTIVE 

[[a0 1\ p;]; a;l.p0 l; [-.a. 1\ -.p;]; a;l.p.J.] 

which gives rise to a C-element. 

We conclude (cf.,Figure 6.7) 

Theorem 6.3.2 (from active to passive) 

ao 

PASSIVATOR 
Po 

a; 

Figure 6.6 

r-----P; 

r-._--~ __ _. _____ ~ 
...._ ___ __. a; 

Figure 6.7 

If event a has been implemented active by the pair (a0 • a,) then an implementation 
with a passive is obtained by using a C-element as shown in Figure 6.7. 

(End of Theorem) 

(Transforming an active event into a passive event does not introduce nondeterminism.) 

Consider the circuit shown in Figure 
6.8 . It consists of a C-element and 
a part called M. The occurrence of 
event a corresponds to the sequence 

Projection on ( a0 • a; } and (Po , p; } yields respectively 

a;l ; a01 ; a;l ; a) 

p) ; p;l : p.! ; p;! 

(passive) 

(active) 

Figure 6.8 

We conclude that removing the C-element transforms event a from passive into active. 
This transformation does not introduce nondeterminism. 

In general we cannot transform an active event into a passive event by removing an 
Inverter. This is demonstrated by the following example. 
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a~--~~------------~ 

Figure 6.9 

Example 6.3.3 

In Section 6.2 we derived a circuit for SEM 1(a. b) in which a is passive and b is active 
(cf. Figure 6.2). Removing the inverters to which b; is connected yields the circuit shown 
in Figure 6.9 . 

After a;f nothing will happen until b1t has occurred. This is not a valid implementation 
of SEM 1(a .b). 

(End of Example) 

There is another remark on the difference between activators and passivators. In the next 
section we show how the composite of processes may be obtained by connecting wires that 
correspond to the same symbol. In view of the handshaking protocol we will connect 
events of different types only. If both implementations are active then a C-element is 
used (cf. Figure 6.10). Notice the symmetry of the connection (it is not known which of 
the implementations is turned into a passive one). 

If both implementations are passive then a choice can be made (cf. Figure 6.11). This 
choice should be such that no nondeterminism is introduced. 

ao ao 

f a a : a 
a passive passive active active 

a, al 

J Figure 6.10 a : a 
passive passive 

Figure 6.11 
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Exercises 
a,------.'!_r----b; 

ao.-----.----~-4~---4------bo 
Figure 6.12 

0. An implementation of SEM 1(a . b) with a passive and b active may be obtained by 
implementing 

which is obtained from the handshaking expansion and postponing of the second half 
of the expansion of a . 

Show that this program yields the circuit shown in Figure 6.12 . 

Should it be regarded as a valid implementation ? 

Transform the circuit such that both a and b are active. 

Transform the circuit such that both a and b are passive. 

Figure 6.13 

1. In Figure 6.13 the event corresponding to ( aa. a; J is active. 

Figure 6.14 

The circuit of Figure 6.14 is obtained by subsequently passivating. activating. pas
sivating. and activating ( a0 • a;). 

Show that the two circuits are equivalent. 

2. Two active events may be connected using a passivator. Is the (symmetric) circuit 
shown in Figure 6.15 an appropriate connection between passive events ? 

(End of Exercises) .. .. 

.. 
Figure 6.15 
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6.4 Components with subcomponents 

In this section we discuss implementations of components that have subcomponents. We 
first consider components with command € : 

com c(A ): 

sub p 0 :c 0 , .•• ,pn_1 :cn- 1 bus 

[xo= Yo.··· ,Xm-1 = Ym-1] 

€ 

moe 

Due to the restrictions imposed on program texts. each compound symbol occurs exactly 
once in the equalities. We assume that the subcomponents have already been imple
mented. Furthermore we assume that· c is transparent. 

With an element a of A two wires a0 and a; are associated. Each element of A occurs 
in an equality. We connect the output wire of the symbol to which a is equated with a0 • 

and we connect its input wire to a; . 

Each equality between compound symbols yields a connection in the way described in Sec
tion 6.3: 

If the events have different types the connection is straightforward. If the events are both 
active a passivator is used. H the events are both passive one of these is activated. 

In the last case one of the events should allow activation. i.e. activation should not cause 
nondeterminism. If such a choice is not possible we do not implement c (we consider the 
program as being wrong). Notice that activating may also be done by removing a passiva
tor. 

Finally. we may activate or passivate the implementation of the elements of A . 

Example 6.4.0 

Component run 1 is defined by com run 1( a): a* moe. Then TR (run 1) = RUN (a). 

With a passive. handshaking expansion yields 

which is just a wire. 

Component run 2 • with TR(run 2 )= RUN(a.b). is defined by 

com run 2(a.b): 

sub p • q : run 1 bus 

[p-a = a.q·a = b] 

e 

moe 
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.. a; 

t : a; 

.. ao ao 

: b; : b; 

t bo bo 

Figure 6.16 Figure 6.17 

The method described above yields the circuit of Figure 6.16. 

An implementation with both a and b active is obtained by adding inverters, and is 
shown in Figure6.17. 

(End of Example) 

Example 6.4.1 

An implementation of SEM 2( a . b) with a passive and b active can be obtained from 
implementations of SEM 1(a.b) with a passive and b active (cf. Example 5.4.1 and 
Example 6.2.0). It is based on the program 

com sem 2(a .b): 

sub p.q: sem 1 bus 

[ra = a.p-b = q·a,q·b = b] 

e 

moe 

The circuit is shown in Figure 6.18 . 

(End of Example) 

Figure 6.18 
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Finally. we consider components without equalities. Let c be defined by 

com c(A ): 

sub Po:c 0, ... •Pn-l:cn-l bus 

s 
moe 

We assume that c is livelockfree. Notice that the subcomponents have only elements in 
common with S. 

The implementation of pref (TR (S)) should be such that no (internal) nondeterminism 
arises (cf. Section 5.4). It turns out that the handshaking protocol often guarantees the 
absence of nondeterminism, as shown in the following example. 

Example 6.4.2 

We implement (cf. Example 5.4.3) component wsem 2 defined by 

com wsem 2(a,b,c): 

sub p,q: sem 1 bus 

(p·a;a lp·b,q·a;b lq·b;c)* 

moe 

We assume that subcomponents p·sem 1 and q·sem 1 have been implemented with all 
events active. 

We implement wsem 2 with a. b, and c passive. In accordance with the strategy 
explained in Example 5.4.3 an alternative of the command is executed if both subcom
ponent and environment initiate that alternative. 

This yields the following expansions (output of a subcomponent is treated as input of the 
circuit corresponding to the command. and vice versa) : 

*[[p-a, A a; - p-a;T.a); [-.p-a0 A -.a;]; p-a;l.a0 l]] 

* [ [ p•b0 A q•a0 A b; -+ p-b;T. q•a;f. b) ; [ -.p-b
0 

A -.q·a, A -.b;] ; p·b;l. q·a1l, b0 l]J 

*[[q·bo A C; -+ q·b;l.c0 T; [-.q•b0 A -.c;]; q•b;l,c0 l]] 

The first and the last one give rise to a C-element (with forked output). The middle one 
yields two C-elements. 



158 Implementation Aspects 

The circuit is shown in Figure 6.19. 

We can activate a. b. and c by removing three C-elements (passivators). This yields 
Figure 6.20 . 

Composing wsem 2 with RUN( b). i.e. connecting b; and b0 yields SEMz( a .c). This cir
cuit, shown in Figure 6.21. is also obtained when connecting implementations of 
SEM 1( a. b) in which both a and b are active. 

(End of Example) 

C; 

Figure 6.19 

p.ao 

~ 
q,ao q.bo 

p.sem
1 q.a; q.sem 1 

p.a; p,b; q.b; 

Figure 6.2 0 

Figure 6.21 
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6.5 Final Remarks 

We have shown how a certain class of processes can be implemented as delay-insensitive 
circuits. Nondeterminism did not play a role in the examples. due to the fact that we did 
not use Arbiter-elements. A treatment of these elements falls beyond the scope of this 
monograph. A typical process for which an Arbiter-element is needed is SEM 1( a .I b. c}) 
in which a • b. and c are passive. 

A general method for the translation of commands into circuits has to be investigated. 
Since processes correspond to minimal deterministic state graphs. it is worthwhile to con
sider the translation from state graphs into circuits as welL For suggestions we refer to 
[17] and [19]. 

The concepts active and passive and the relations between these are very usefuL The con
cepts 'input' and 'output' should be reserved for the description of processes on a higher 
level. 

We have claimed that the circuits we derive are delay-insensitive in the sense that their 
behaviour does not depend on delays in wires and switching elements. A proof of such a 
claim must be based on a formalization of delay-insensitivity. In [21] delay-insensitivity 
is formalized and a classification of delay-insensitive processe is given. 



7 Conclusions 

In the preceding chapters we discussed several aspects of concurrent processes. The alge
braic structure underlying these processes is relatively simple. Properties of operators like 
projection, weaving. and blending are easily formulated in terms of lattice theory. 

Program texts provide a neat and concise way for the representation of processes. More
over. the use of subcomponents admits a hierarchical way of constructing processes. 

Phenomena like deadlock, livelock and nondeterminism have been succinctly expressed in 
terms of trace structures. This enabled us to formulate and prove many properties and 
theorems related to these concepts. 

We conclude that Trace Theory is an adequate formalism for the description of concurrent 
processes. 

Compared to other formalisms trace structures form a subclass of all possible processes. 
That subclass. however. is the class of mechanisms in which we are interested. We do not 
implement nondeterministic processes. On the other hand we do allow environments of 
processes to behave nondeterministically. In our formalism nondeterminism is captured 
by transparency. We showed that in the absence of livelock transparency is closed under 
intersection. 

Due to the Conjunction-Weave Rule and the Composition Rule the derivation of programs 
from specifications is often straightforward. Our program notation is close to implementa
tions. We showed examples of circuits that correspond to program texts. Again. the 
hierarchical structure of components plays an important role. 

The derivation of circuits is based on four-phase handshaking and the notions of passive 
and active events. It turns out that nontransparency (i.e. internal nondeterminism) does 
not play an important role in these derivations. 

External nondeterminism, however. cannot be resolved that easily. This form of non
determinism is caused by transforming passive events into active events. 

The derivation of circuits from programs requires further research. 

Another topic that deserves further research is the communication of values. 

Consider a mechanism that repeatedly inputs a value. say x. via channel a after which it 
outputs the value 2 · x via channel b. The events the mechanism may be involved in are 
pairs (c. v) where c is the name of a channel and v is an integer value. If we do not 
take the values into account, the mechanism is specified by SEM 1( a. b). 

The trace structure SEM 1 (a . b ) is called the communication structure of this mechanism. 
Besides the communication structure we have a predicate that relates the sequences of 
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values transmitted via b to the sequence of values transmitted via a . 

When the mechanism described above is composed with a mechanism that repeatedly 
inputs a value. say y. via channel b after which it outputs the value 3 · y via channel c. 
we expect a mechanism that inputs via a a value x: after which it outputs via c the value 
6 · x:. The communication structure of this composite will be SEM 2( a. c). the composite 
of SEM 1(a.b) and SEM 1(b,c). 

A theory needs to be developed that supports the reasoning above. Since output values 
have to be computed whereas input values have to be accepted only. we expect that in this 
theory a distinction between input and output will have to be made. 

In this thesis we did not distinguish between input and output. Such a distinction would 
have complicated the theory needlessly. Notice that we postponed the introduction of 
'active' and 'passive' until implementation aspects were considered. 

Finally, it has been a pleasure to write this monograph: 

a pleasure to build up the theory of the first chapters and a pleasure to apply it in the sub
sequent chapters. 

We enjoyed the development of programs as well as the development of circuits. Actu
ally, these activities turned out to be -in essence- very similar. 



8 References 

[0] Birk.hoff. G. 
Lattice Theory. 
American Mathematical Society. Providence. 1967. 
(AMS Colloquium Publications: vol. 25). 

[1] Brookes. S.D. and A.W. Roscoe 
An Improved Failures Model for Communicating Processes. 
Seminar on Concurrency; ed. S.D. Brookes. A.W. Roscoe. G. Winskel. 
Springer. Berlin. 1985. 
(Lecture Notes in Computer Science: 197); pp. 281-305. 

[2] Dijkstra. Edsger W. 
Cooperating Sequential Processes. 
Programming Languages; ed. F. Genuys. 
Academic Press. New York, 1968; pp. 43-112. 

[3] Dijkstra. Edsger W. 
A Discipline of Programming. 
Prentice-Hall. New York. 1976. 

[4] Dijkstra. Edsger W. 
Lecture Notes "Predicate transformers". (Draft). 
Eindhoven University of Technology. 1982. 
(EWD 835). 

[5] Gilbert. William J. 
Modern Algebra with Applications. 
John Wiley & Sons. New York. 1976. 

[6] Ginsburg. Seymour 
The Mathematical Theory of Context-free Languages. 
Me Graw-Hill. New York. 1966. 

[7] Hoare. C.A.R. 
Communicating Sequential Processes. 
Communications of the ACM 21 (1978); pp. 666-677. 

162 



[8] Hoare. C.A.R. 
Communicating Sequential Processes. 
Prentice Hall. 1\"ew York, 1985. 

[9] Hopcroft. J.E. and J.D. Ullman 
Formal Languages and their Relation to Automata. 
Addison-Wesley, New York. 1969. 

[10] Konig. D. 
Theorie der endlichen und unendlichen Graphen. 
Chelsea. New York, 1950. 

[11] Kuijpers, Evert P.J. 
Recursive Components. 
Eindhoven University of Technology, 1985. 
(Master's Thesis). 

[12] Martin, Alain J. 
The Design of a Self-Timed Circuit for Distributed Mutual Exclusion. 
Proceedings 1985 Chapel Hill Conference on VLSI: ed H. Fuchs. 
Computer Science Press, Rockville. 1985; pp. 247-260. 

[13] Martin. Alain J. 
The Probe: an Addition to Communication Primitives. 
Information Processing Letters 20 (1985); pp. 125-130. 

[14] Mazurkiewicz, A. 
Concurrent Program Schemes and Their Interpretation. 
Report DAIMI. PB-78. 
Aarhus University, 1977. 

[15] Miller, R.E. 
Switching Theory. Vol2: Sequential Circuits and Machines: chapter 10. 
John Wiley & Sons. New York, 1965. 

[16] Milner, Robin 
A Calculus of Communicating Systems. 
Springer. Berlin, 1980. 
(Lecture Notes in Computer Science: 92). 

163 



164 References 

[17] Molnar. C.E. , T.P. Fang and F.U. Rosenberger 
Synthesis of Delay-Insensitive Modules. 
Proceedings 1985 Chapel Hill Conference on VLSI; ed. H.Fuchs. 
Computer Science Press. Rockville. 1985; pp. 67-86. 

[18] Rem. Martin 
Concurrent Computations and VLSI Circuits. 
Control Flow and Data Flow: Concepts of Distributed Programming; 
ed. M. Broy. 
Springer. Berlin. 1985; pp. 399-437. 

[19] Snepscheut. Jan LA. van de 
Trace Theory and VLSI Design. 
Springer. Berlin. 1985. 
(Lecture Notes in Computer Science: 200). 

[20] Udding. Jan Tijmen 
On recursively defined sets of traces. 
Eindhoven University of Technology. 1983. 
(THE Memorandum JTUOa). 

[21] Udding. Jan Tijmen 
Classification and composition of delay-insensitive circuits. 
Ph.D.-thesis. 
Eindhoven University of Technology. 1984. 



Index 

activator 150 
active 146 
alphabet 4 
And-element 147 
Arbiter-element 150 

bag 88 
blend 22 
bounded bag 88 

C-element 147 
CB-rule 96 
chain 40 

- ascending 40 
descending 40 

command 53 
component 53 
Composition Rule 91 
compound symbol 59 
concatenation 4 
conjunctive 40 
context-free grammar 97 
continuous 41 
-upward 41 
-downward 41 

CSP-process 131 
CW-rule 90 

deadlock 110 
deadlockfree 110 
delay-insensitive 145 

determinism 134 
deterministic 135 
disjunctive 40 
divergence 114 
divergences 131 

165 

equality 62 

external event 114 
external symbol 22 

failure set 131 
:fixpoint 51. 77 
four-phase handshaking 146 

greatest lower bound 40 
greatest upper bound 40 

H 132 
handshaking expansion 146 

inclusion 12 
independence 11 7 
infinite chatter 114 
internal event 114 
internal fork 149 
internal symbol 22 
intersection 12 
Inverter 147 

K 132 
Knaster-Tarski 50 

lattice 40 
complete 40 

length 5 
Lift Theorem 8 
livelock 115 
livelockfree 115 
lock 104 
lockfree 104 



166 

monotonic 40 

non-terminating process 103 
nondeterminism 114 
nonrecursive component 60 

passivator 152 
passive 146 
prefix 5 
prefix closure 5. 11 
prefix-closed 5, 11 
process 11 
projection 5, 12 

recursive component 70 
refusal set 131 
regular 35 
RUN(A) 13 

SEM1 13 
SEM1 (A .B) 31 
SEM(A .B) 48 

semaphore 11 
simple symbol 59 
sorter 93 
specification 85 
state 34 
-final 35 
- initial 35 

state graph 35 
- deterministic 35 
-minimal 35 
- nondeterministic 35 

STOP 13 
STOP(A) 13 
subcomponent 59 
successor set 103 
symbol 4 
SYNC 26 
SYNCp,q(A .B) 26 

T(A) 43 
trace 4 

trace set 4 
trace structure 11 
trace thus far generated 11, 132 
transparent 117 
- component 140 

unbounded bag 88 
unbounded sorter 88 
union 12 
universally conjunctive 41 
-over non-empty sets 41 

universally disjunctive 41 
over non-empty sets 41 

weave 14 



Samenvatting 

Dit proefscbrift bestaat uit twee delen. In het eerste deel (de hoofdstukken 1. 2 en 3) 
wordt een formalisme behandeld. In bet tweede deel (de hoofdstukken 4. 5 en 6) wordt 
de ontwikkelde theorie toegepast. 

De tbeorie. bekend onder de naam tracetheorie, Ievert een model voor bet gedrag van een 
aantal samenwerkende mechanismen die gelijktijdig actief zijn. Een mechanisme wordt 
gekarakteriseerd door een paar: 

de verzameling van mogelijke gebeurtenissen waarbij bet mechanisme betrokken is en 

de verzameling van mogelijke opeenvolgingen van dergelijke gebeurtenissen. 

Gebeurtenissen worden voorgesteld door symbolen en de mogelijke opeenvolgingen worden 
voorgesteld door symboolrijen (traces). Een aldus verkregen paar beet een proces. Op de 
collectie van processen worden relaties en operaties gedetlnieerd. Deze komen overeen met 
relaties tussen de corresponderende mechanismen en met. bijvoorbeeld, bet samenstellen 
van mechanismen. 

De verzameling van processen vormt een volledig tralie. Eigenschappen van de operaties 
worden bescbreven in termen van tralietheorie. 

Een proces kan worden weergegeven met een programmatekst. Een programma is niet 
aileen een compacte beschrijving van een proces maar geeft ook een idee over mogelijke 
implementaties. De afgeleide tralie-eigenscbappen vormen een basis voor de bebandeling 
van recursieve programma· s. 
Er worden regels gegeven waarmee bet afleiden van een programma uit een gegeven 
specificatie wordt vergemakkelijkt. Als voorbeeld laten wij zien hoe een programma kan 
worden afgeleid dat past bij een gegeven contextvrije grammatica. 

In boofdstuk 4 komt bet begrip deadlock aan de orde. Deadlock wordt gedefinieerd inter
men van processen. 

Het samenstellen van een aantal processen Ievert een nieuw proces. Bij dit proces onder
scheiden we twee soorten symbolen: 

interne symbolen die de onderlinge samenwerking van de delen betreffen 

externe symbolen die de communicatie met de buitenwereld betreffen. 

De uiteindelijke bescbrijving van een mecbanisme bevat geen informatie over de 
wisselwerking tussen de delen waaruit bet mecbanisme is opgebouwd. Deze beschrijving 
wordt verkregen door bet proces te projecteren op de collectie externe symbolen. Bij pro
jectie kan (intern) nondeterminisme ontstaan. In boofdstuk 5 wordt bet begrip trans
parantie gedefinieerd. Intern nondeterminisme treedt niet op indien men zicb beperkt tot 
projectie op transparante verzamelingen. Het begrip livelock speelt bierbij een verrassende 
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rol. In de afwezigheid van livelock is transparantie gesloten onder doorsnede. 

In hoofdstuk 5 wordt tevens aandacht geschonken aan de relatie tussen processen in ons 
formalisme en processen zoals deze zijn gedefinieerd door C.A.R. Hoare. 

In hoofdstuk 6 beschouwen we implementaties. Deze zijn gebaseerd op een zogeheten 'four 
phase handshaking protocol". Symbolen zijn actief dan wel passief. Actieve symbolen 
worden geinitieerd door bet mechanisme en passieve symbolen worden geYnitieerd door de 
omgeving. Het omzetten van actief naar passief en vice versa is relatief eenvoudig. 
Activeren van een passief symbool kan leiden tot nondeterminisme. 
De schakelingen die worden afgeleid zijn vertragingsongevoelig in de zin dat hun gedrag 
niet afhangt van vertragingen in draden en schakelelementen. 
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STELLING EN 
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A Formalism 
for 
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1. Trace theorie is een adequaat formalisme voor bet beschrijven van parallelle pro
cessen. 

?,. Met de in dit proefschrift gebruikte programmanotatie kan elke contextvrije taal 
vvorden beschreven. 

3. De trace structuur SEM 3( a. b) bevat Fn traces ter lengte n. vvaarbij Fn bet n de 

getalvanFibonacciis: Fo= 1. F1= 1 en Fn+2=Fn+FnH· 

4. Zij X een Hausdorff-ruimte en zij Y. Y ~ X. voorzien van de door X geinduceerde 
topologie locaal compact. Dan geldt 

Y=X ::> YisopeninX 

Met behulp hiervan kan bet bevvijs van de Pontryagin dualiteitsstelling in [0] gecorri
geerd vvorden. 

[0] Walter Rudin, Fourier Analysis on Groups. 

Interscience Publishers. John Wiley & Sons, 1967. 

5. Zij X een rij gehele getallen. Het minimum aantal stijgende deelrijen dat een partitie 
van X vormt is gelijk aan de maximale lengte van enige niet-stijgende deelrij van X. 

Lit. Anne Kaldevvaij. On the decomposition of sequences into ascending subse
quences. 

in Information Processing Letters, 21 (1985), p 69. 



6. Intern nondeterminisme zoals beschreven in [1]. speelt bij bet implementeren van 
processen een geringe rol. 

[1] Hoare C.A.R .. Communicating Sequential Processes. 

7. Naast de zeven beperkt transponeerbare reeksen (les sept modes transpositiOns 
limitees) van de componist Olivier Messiaen bestaan er. afgezien van de chromatische 
reeks. nog precies drie, te weten 

C-Es-E-G-As-8-C 

C-Es F-Fis A-BC 

C-0-F-Fis-Gis-B-C 

Lit. Olivier Messiaen. Techniques de mon langage musical. 

Alphonse Leduc. Paris 

Sietze Kaldewaij. Analyse van Dieu parmi rwus. 

Utrechts Conservatorium. Mariaplaats 28 Utrecht. 1982. 

8. Bij bet informaticaonderwijs op middelbare scholen en in bet hoger beroepsonderwijs 
dient men zich meer toe te leggen op bet overdragen van inzichten. Apparatuur speelt 
daarbij een verwaarloosbare rol. 

9. Het beoefenen van informatica vereist een groot abstractievermogen. Dit dient tot 
uiting te komen in de eerstejaars curricula van de universitaire informatica
opleidingen. 

10. Bij bet huidige wetenschapsbeleid trooste men zich met bet gezegde 

'sterke snoei geeft grote bloei'. 




