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0 Introduction

0.0 General remarks

The material presented in this thesis has its origin in the research of the Eindhoven VLSI
Club.

VLSI is a technique of constructing semiconductor chips containing a large number of
active, electronic elements. These elements operate concurrently. The ultimate goal of our
research is the construction of a so-called silicon compiler: a mechanical translation of
algorithms into chips.

In this monograph we present a general formalism for concurrent processes. We show also
how it can be applied to the design of circuits. Such a formalism should satisfy certain
requirements:

- it should be a mathematical theory in the sense that concepts are defined rigorously
and that assertions are proved.

- it should be close to the objects that are formalized. The distance between formalism
and implementation should be relatively small;

- it should be manageable.

The formalism used is known as Trace Theory. To a large extent it has been developed by
Martin Rem (cf. [18]) and Jan L.A. van de Snepscheut (cf. [19]). Mazurkiewicz ({14])
was one of the first 1o describe communicating processes in terms of traces. His traces
correspond to equivalence classes over our traces.

This thesis comprises a full and coherent treatment of Trace Theory. The formalism is
applied to phenomena like deadlock. livelock, and nondeterminism, and is related to the
theory of Communicating Sequential Processes as described by CAR Hoare in [81
Finally, implementation aspects are discussed.

A1 the end of most sections we present some exercises. Although this is not of common
use in doctoral theses, we have at least two reasons for it:

- it permits the reader to get used to the formalism presented;
- it shows which kind of problems can be solved within the theory.

The exercises do not play any role besides those sketched above. There are no references to
them and no proofs of theorems are left as exercises.



2 Introduction

0.1 Overview

Chapter 1 contains the prerequisite material for all other chapters. Trace structures and
processes are introduced as well as operators on these objects. Processes are related to
state graphs. It is shown that processes with the same alphabet form a complete lattice.
Monotonicity and continuity of operators are discussed.

In Chapter 2 we present a program notation. The treatment is close to that of [19].
Recursive components are introduced and fixpoint theory is applied to them. Specifications
of processes are discussed in Chapter 3. It is shown how program texts may be derived
from specifications. These derivations are based on two theorems: the Conjunction-Weave
Rule and the Composition Rule. As an example we show how to derive a program that
corresponds with the language generated by a given context-free grammar.

Chapter 4 addresses deadlock. Deadlock is defined in terms of trace structures.

In Chapter 5 we discuss livelock and nondeterminism. Nondeterminism arises when a pro-
cess is projected on a set of events, i.e., when events not in that set are concealed. We
define so-called transparent sets of events. If projections are confined to these sets non-
determinism does not occur. In the absence of livelock transparency is closed under inter-
section. We show the relation between processes in our formalism and those defined by
C.AR. Hoare (cf. [8]).

In Chapter 6 implementation aspects are considered. Parts of it are based on work by
Alain J. Martin ({12]). We present some circuits that correspond to given program texis.
The circuits derived are delay-insensitive in the sense that their behaviour does not depend
on delays in wires and switching elements.

0.2 Some notational conventions

In this monograph a slightly unconventional notation for variable-binding constructs is
used. It will be explained here informally. Universal quantification is denoted by

(Ax:R:E)

where A is the quantifier, x is a list of bound variables, R is a predicate, and E is the
quantified expression. Both R and E will, in general, contain variables from x. R del-

ineates the range of the bound variables. Expression £ is defined for values that satisfy
R.

Existential quantification is denoted similarly using quantifier E .

For expressions £ and G, an expression of the form £ = G will often be proved in a
number of steps by the introduction of intermediate expressions. For instance, we can
prove E = G by proving £ = F and F =2 G for some expression F. In order
not to be forced to write down expressions like F' twice, we record proofs like these as fol-
lows.
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E

= {hint why E = F }
F

= {hint why F = G}
G

These notations have been adopted from [4].



1 Trace structures

1.0 Introduction

In this chapter we define the basic concepts and structures that form the foundation of our
treatment of concurrent processes. As an example we consider a one-place buffer which is
initially empty. When such a buffer interacts with its environment the following events
may be observed.

a : a value enters the buffer
& :  avalueis retrieved from the buffer

A possible sequence of events is « & a b a . The set of all possible sequences of events
consists of the finite-length alternations of @ and & that do not start with b.

In our formalism such a buffer is specified by a pair of sets:

the set of possible events that may occur, and
the set of sequences of events that may be observed.

We define operators on those pairs and we derive algebraic properties thereof.

1.1 Alphabets and trace sets

We assume the existence of a set £}, the universe. Elements of {} are called symbols .
Subsets of ( are called alphabets .

The set of all finite-length sequences of elements of { is, as usual, dencted by Q. The
empty sequence is denoted by €. For an alphabet A, 4" is defined similarly. Notice that
@* = {e}.

Elements of * are called traces . Subsets of ° are called trace sets .

‘We shall use the following conventions.

Small and capital letters near the beginning of the Latin alphabet denote symbols and
alphabets respectively.

Small and capital letters near the end of the Latin alphabet denote traces and trace
sets respectively.

The concatenation of traces s and t is obtained by placing ¢ to the right of s, and is
denoted by st. The set ¥, together with the operation concatenation is also known as the
free monoid generated by , cf. [5].
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The projection of a trace ¢ on an alphabet A, denoted by £} A, is defined as follows.
efd =¢
(sa)tA = stA ifag€A
(sadta =(sta)a ifaca

i

We write ¢ [‘b as a shorthand for tN 5}. In order to save parentheses, we give concatena-
tion the highest priority of all operators.

The projection of a trace set X on an alphabet A, denoted by X[A, is the trace set
{t1teQ*A Bu:ueX:t=ulA)l

The length of a trace ¢, denoted by 1{z ), is defined by
i(e) =0
I{sa)=1{s)+1

Trace s is called a prefix of r, denoted by 5 K1, if
(Ev:ue®:su=1)

The prefix closure of a trace set X, denoted by pref(X ). is the trace set consisting of all
prefixes of elements of X :

pref(X) = {si1s€ Q" A (Er:1€X:5 €1))}

Trace set X is called prefix -closed if X = pref(X ).

Example 1.1.0

Let O={a.b,c.d}. A={a,b), s=ba, t =bad. and X = {c.dba}. Then A is an
_alphabet, 5 and ¢ are traces, and X is a trace set.
We have

s €1t

stA =5 A tI‘A =5

SEATA rgA*

XA = leba}

pref(X) = {e,c.d.db.dba}

X is not prefix-closed

pref (X ) is prefix-closed.

(End of Example)

We now list a number of properties. According to our notational convention, a¢ and b are
symbols, 5,7, and u are traces, A and B are alphabets. X and Y are trace sets.
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Property 1.1.1  (concatenation)

0O S€E= €5 = 5

1 (stdu = s(eu)

2 as=bt == a=b A s=1¢t
St =su =E Ot —mu
s =us = [ =u

3 s#€e = (Ecvic€QAVvEQR s =0¢v)
s#2e = (Ecy:c€EQAVEQ* : s =ve)

(End of Property)

Property 1.1.2  (projection)

0 sfA€EA”

1 sttA = (1AXetA)

2 s€: » stA €A

3 SEAT = slA =5

4 stAtB = sMHANB) = sI'BlA
5 X<y > xtacrta

6 sl = €

(End of Properiy)

Property 1.1.3  (prefix)

(0%, € ) is a partially ordered set with least element € :

0 5 Ss
1 s€tAtSu = s8€u
2 sStAt€s > s=¢
3 eXs

(End of Property)

Property 1.1.4  (prefix-closure)
0 X & pref(X)

1 XCY = pref(X)C pref(Y)
2 pref(pref(X)) = pref(X)
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3 pref(X1A) = pref(X A

(End of Property)

Property 1.1.5  (length)

0 I(st) = l(s)+1(2)
1 s€t > IGYSI@)
2 IGtA)YSI(s)

(End of Property)

As an example we prove Property 1.1.42 , pref(pref(X)) = pref(X), which is

equivalent to * pref (X ) is prefix-closed ".

- Proof

For all traces ¢, we have

t € pref (pref (X))
= { definition of pref }
(Eu:u€pref(X):t Su)
= { definition of pref }
(Eu:(Ev:veX:uSv)it Su)
{ predicate calculus }
(Ev :u€Q":(Ev:veX:uSv At Su)
= { transitivity of € , Property 1.1.3.1 }
(Bu:ueQ":(Ev:veX it Sv))
= { predicate calculus }
(Ev:veX:r<v)
= { definition of pref }
t €pref(X)

il

Hence, pref (pref(X)) € pref(X ). Since pref(X)C pref(pref(X))

1.1.4.0, we have pref (pref (X)) = pref(X).

(End of Proof)

Finally, we prove a general theorem on traces.

. <f. Property
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Theorem 1.1.6 (Lift Theorem)

For all traces s and ¢ , and alphabets A and B , we have
sEA*Ate€B*A slB=tlA = (EBu:u€(AUBY:ulA =5 A ulB=1t)

Proof

We derive for any trace u

ulA=s AN ulB=1¢t
= { property of projection, 1.1.2.0 }
ulA=s ANulB=t A seA*A teB*
> { application of A and |'B }
ulAPB = s!B A ulBlA=tlA A s€A* A t€B"®
> { property of projection, transitivity of = }
stB=t!A A s€eA* A teB"*

Hence,
Eu:ue(AUBY ' ulA=s5s A ulB=t) > seA*AteB*A s!B=1tlA

We prove the converse of the above implication by induction on 1(s)-1(z).
Base [(s)-l1(t) = 0
Then s = € V t = €. For reasons of symmetry we assume s = €, and we derive

stB=tlA A teB*
{ property of projection, 1.1.2.3 }
stB=t'!A A t!B=1t
{s = € . definition of projection }
s=tlA AtlB=1t
> {B*C(AUB))
Eu:u€(AUB):ulA=5s A ulB=1t)

Step I(s)-1(z)>0

Then s #€ At =€ . By Property 1.1.1.3 we can choose a €A, b€B, v€A®, and
w€B* such that s =av A t = bw . We consider two cases.

(i) a€¢B V b¢A.For reasons of symmetry we assume a € B, and we derive

s/B=t'A A s€eA*A teB*
{s=av, a¢B}
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viB=t}A A veA* A teB*

> { induction hypothesis, {1(v)-1(t) <I{s)-1(t)}
(EBu:ue(AUBY ulA=v A ulB=1¢)

= {a€A A a€¢B )}
Eu:ue(AUBY aulA =av A aulB =1¢)

> { renaming the dummy, s = av }
(Eu:ue(AUBY :uldA=s A ulB=1¢)

(ii) a€B AN bEA . We derive

stB=¢lA A s5€A*A teB®
{s=av At =bw A a€B A bEA }
aGlB)=bwlAIA vEA* A weB*
{ property of concatenation, 1.1.1.2 }
a=bAviB=wld Aveda* A weB?
> { induction hypothesis, {{v)-I(w) <i(s)-1(t)}
a=bA Euv:ue{(AUBY ulA=v A ulB=w)

]

= {acA,b€EB ]}

a=bA (BEu:ue(AUB)Y :auld =av A bulB = bw)
> { substitution }

(Eu:u€(AUBY auld =5 A aulB=1¢)
= { renaming the dummy }

(Eu:ue(AUB:ulA=5s A ulB=1¢)
(End of Proof)

Theorem 1.1.6 may be phrased as follows.
The diagram of Figure 1.0 may be lifted up ve(augy

to the commutative diagram of Figure 1.1 .
7
SEA” t€8°
B

S

\

t

?\ /A ) /A
stB=1tlA ‘ stB =tlA

Figure 1.0 Figure 1.1
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Exercises

0. Prove:
i) A'nB*= A4nB)
(i) A'UB*C (AUB)

1. Prove:
(i) pref(XUY) = pref(X) U pref(Y)
Gi) pref(XNY) C pref (X)) Npref(¥Y)

2. Prove €€pref(X) = X » @

3. Show that the intersection as well as the union of prefix-closed trace sets are prefix-
closed.

4.  Prove or disprove:
() sta €04
G) stA €14

>

tHAUB)

stB<t!B » sMAUB)K
€08 » sMANBYS(MANB)

stB

<

5. Prove or disprove:
) xXurta
Gi) (xny)la

xta)ruuta)
(xXta)nlta)

6. Prove:
SEANCY A teBNCY A stB=1lA
B EBu:ve(AUBY: uld=s AN ul(BNCY=1)

(End of Exercises)
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1.2 Trace structures

A trace structure is a pair <A .X > in which A is an alphabet and X is a subset of A .
We call A the alphabet of the trace structure and we call X the trace set of the trace
structure. If T is a trace structure we denote its alphabet by a7l and its trace set by t7,
ie. 7= <aTl.tT >.

As a notational convention we shall use capital letters not too far from the end of the
Latin alphabet to denote trace struciures.

The prefix closure of a trace structure T, denoted by pref(T ), is the trace structure
<aTl,pref(1T)>. T is called prefix-closed whenever tT is prefix-closed. T is called
non-empty if 7 # &.

A non-empty prefix-closed trace structure is also called a process . Let T be a process,
then T specifies a mechanism in the following way.

The alphabet of T corresponds to the set of events the mechanism may be involved
in. We assume events 1o be atomic: they have no duration and they do not overlap.
With the mechanism in operation a so-called trace thus far generated is associated.
Initially, this trace is the empty trace. On the occurrence of an event the trace thus
far genérated is extended with the symbol associated with that event. At any
moment, the trace thus far generated belongs to the traceset of T.

We do not distinguish between events that are initiated by the mechanism and those
that are initiated by the environment of the mechanism. If s is the trace thus far
generated and sa €7 then the event associated with ¢ may happen.

Example 1.2.0

Consider a one-place buffer which is initially empty. We specify the buffer by means of a
process 7'. Possible events are

a : avalue enters the buffer

b :  a value is retrieved from the buffer
Hence, a7 = {a,b}.
Let ¢t €tT. Since values can only be retrieved if they have been entered, we have
eta)—1(!b) 2 0. From the fact that the buffer is a one-place buffer we infer
1{z}a)—1(z}b) € 1. These restrictions should hold for all ¢, ¢t €t7T, and their prefixes.
Qur specification becomes

T = <la.blititela. 5P A (As: s €t:0SIGla)~IGHEYS D)>

7 may also be interpreted as the specification of a binary semaphore (cf. [2]), initialized at
zero.
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The interpretation of the symbols is

a : a V-operation on the semaphore
b : a P-operation on the semaphore

{End of Example)

Example 1.2.1

In the previous example we did not consider the values that are transmitted. In this
example we define process U that specifies a one - place , one - bit buffer. Possible events
are

a0 ; a zero enters the buffer
al : aone enters the buffer
b0 :  a zero is retrieved from the buffer
bl : aone is retrieved from the buffer

The same arguments as used in the previous example yield

al = {a0.,al .50 .b1}

tU =l l1t€la0.al BOBIY'A (As:s €r: 0€1GIa0)~1GM00)< 1
AOKIGlal)~1(sThIYS 1
AOSIGMHa, a2 D—1GHBO . BID < 1)}

{End of Example)
There is a one-to-one correspondence between the set of trace structures with alphabet A
and P(A ™), the power set of A7, viz.

<A.X> isatracestructure = X C A"

According to the structure of P(A *) we define inclusion, intersection, and union for trace
structures with equal alphabets , and we denote these with the usual symbols:

<A X> U <AY> = <A XUY>
<CA.X>N <AY> = <A XNY>
TCU = alT=alU AtTCtU

In section 1.3 we have a closer look at the set of processes with alphabet A .

The projection on an alphabet is extended to trace structures by
T'A = <aT'NA.tTl4a>

Finally, we define the following processes. For an alphabet A the trace structures
STOP(A) and RUN(A) are defined by
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STOP(A) <A .le}>
RUN(4) <A.A*>

Process STOP(@) is also denoted by STOP.

L]

For symbols a and & process SEM i(a.b) is defined by

SEM(a.b) = <{a.blltitela b A (As:s €t :0€1Gsla)—1(s[B) € D)>
(cf. Example 1.2.0)

Exercises

0.  Give a mechanistic appreciation of RUN (A ), STOP(A ), and STOP.

1. Prove:
(i) RUN(AY'B = RUN(ANB)
(ii) STOP(A)!B = STOP(ANB)
(iii) SEM,(a.b)te = RUN(a)
(iv) STOP(AY=RUN(A) = A=0

2. Specify a two-place buffer.
3.  Specify an unbounded buffer.

4.  For trace structure ' we define trace structure 7' ° by
T° = <aT. ltl{As:s L¢t:5€tT)>
Prove:
(i) recr
(ii) T° is prefix-closed
Gi) TQU = T°QU”°
(iv) T° is the largest prefix-closed trace structure contained in T
(v) T=T° = T is prefix-closed

5. Prove: T isnon-empty = T[@= STOP
6.  Specify a binary stack, the depth of which is bounded by two.

(End of Exercises)
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1.3 Weaving

Consider two mechanisms P and Q specified by (non-empty prefix-closed) trace structures
T and U respectively. The behaviour of the composite of P and  should be in accordance
with the behaviour of each of the components:

if ¢ is the trace thus far generated of the composite then t}al" will be the trace thus
far generated of P and ¢lall will be the trace thus far generated of . Hence, exten-
sion of the trace thus far generated with a common symbel of aT and al is possible
if and only if both P and ( agree upon that symbol. Extension with a non-common
symbol depends on one of the components only.

- In terms of trace structures this is captured in the following definition.
The weave of trace structures 7 and U, denoted by T w U , is defined by

TwiU = <aZUaU. {rite@lualU)y A tlaT el A ttaUcetlU}>

Example 1.3.0

<{a.bl{ab}>w <{c.d).{ecd}>
= <{a.,b.c.d}, |abed .achd ,acdb ,cabd ,cadb ,cdab }>

<la.bl.{b.ba,abb)>w <|b.c}.{b.cb}>
= <{a.b,c), {b.ba.cb.cha}>

{End of Example)

Example 1.3.1

SEM (a.b) = <{a.bl.{€.a.ab,aba, - -}>
SEMb,c) = <l{b,c}l.le.b.bc,bch, --- }> |, hence,

t(SEM (a.b)w SEM(b.c))
{ definition of weaving }
{titela.b.e}* A tMa.bletSEM (a,b) A t}{b,c)etSEM (b, c)}
{ definition of SEM, }
{€,a,ab,aba ,abc , abac ,abca , abach ,abcab , - - - }

|l

Since tMa.b}etSEM (a.b) implies 0L IGlta)—11b) €11
and t]Mb,c)€tSEM(b.c) implies 0 SI(t}b)—1(tfc) €1,
we have

01Gta)—1(tle) €2

(End of Example)
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Property 1.3.2

Weaving is symmetric. idempotent, and associative:
0 I'wU=UwT

1 Twl =1T

2 TwU)wV = TwlUwV)

(End of Property)

Property 1.3.3
al G al % TwU = <aT.,{tit€tT A tlaUetU}>

(End of Property)

Property 1.3.4
0 TwSIoP =717
1 Tw@la)=T
2 AGal > TwRUNA)=T
3 al’ S A = Tw<A.0> = <A.8>
4 aT S A ANe€tl = TwsSIor(A) = STOP(A)
Proof
0. We derive
T w STOP

{ Property 1.3.3, aSTOP = & }
<aT. {t 1t €tT A t}@ELSTOP}>
{ Property 1.1.2.6, tSTOP = {e} }

T
1. We derive

Tw(TlA)
{ Property 1.3.3, a(T1A) G aT }
<al. {titetl A tlAer(rta)}>
{ definition of projection }

i

T

15
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2. Assume A C a7 . We derive

TwRUN(A)
{ Property 1.3.3, 4 & aT }
<aT.{t1t€tT A tlA€A}>
{ Property 1.1.2.0 }

[

T
3. Assume a7 © A . We derive

Tw<A,B>
{ Property 1.3.3.a7 € 4 }
<A {tlted A ¢ttaTetT}>
{ calculus }
<A.,B>

4. Assume a7 & A A € €t . We derive

T w STOP(A)
{ Property 1.3.3, a7’ € A }
<A.lt it €tSTOP(A) A tlaT €tT}>
{tSTOP(A) = {e} and € €T }
STOP(A)

(End of Proof)

The definition of weaving can be extended to sets of trace structures. Let S be a set of
trace structures. The weave of the elements of S, denoted by (WT :T €5 :7) is the
trace structure <A .,X > where
A
X

(UT:T€S:al)
{titeA*A(AT:TeS  ttaT etT)}

By definition we have (W7 :7€@:T) = STOP , the unit element of weaving, cf. Pro-
perty 1.3.4.0 .

The weave of trace structures expresses a synchronized interleaving. Apparently, the
intersection of the alphabets of the trace structures involved plays an important role. This
role is made more precise in the following theorems.
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Theorem 1.3.5

Let T and U be trace structures and let A be an alphabet, then
Tw@la) 2 TwUIMaTLGRUNA))

Proof

The alphabets of both sides are equal, viz.aT U{aU N A).

Let t€t(TwU)@Z7U@UMNA)) and let w be such that wét(T wlU) and
t=wla7U@UNA)). We derive

t=wlaTU(alUNA))
> { application of projection }
thaT = whaZTU@UNANIAT A tf@UNA)=wl@TUGUNANNaUNA)
{ Property 1.1.2.4 }
ttaZ = wlal A tfaUNA)=wlalUlA
> fwet(TwU)}
ttaTetl A MaUNA)etltA
= { definition of weaving }
tet(T wUMAY)

Hence, t{T wU)aTU(@UNA) € t(T wWtA)

(End of Proof)

Theorem 1.3.6
Let T and U be trace structures, and let A be an alphabet such that a7’ Nall € A ,
then

TwWUlA) = TwU@aTUUNA)

Proof

As a consequence of Theorem 1.3.5 it suffices to prove
tTwWA) C (T wU)M@TU@RUNA))

Let t €t(T w(UMA)) ,then tlaT€tl A tMaUnNA)etUtA .
Let v€tU besuch thattf(alUNA)=v}A .

We have to show the existence of w , w €t(7 w U ), such that ¢t = wl(aZT U(@lUna)l),
and we will do so by using the Lift Theorem (1.1.6).

We first derive
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((aUNA)UaT)NalU

{ set calculus }

(aUnAYJ @UnNaT)

{aUnaT € A}

alUNA

Hence, cf. Figure 1.2,

viaT U@UNA)Y

{vetl }

viaUMaT U@UNAY

{ see above }

viAtalU

{ definition of v }

tMaUn A)laU

{aUNA & alU |}

tfaluna)

{ see above }

tH(aUNA)UaT)taUu

{tet(TwWA))

thal

Trace structures

w

MaT UlalUNAY \f‘aU
v
(

t

Pa\ /T UaUNA)

ttall = vM@TU@UNA)Y

Figure 1.2

Hence, we may apply the Lift Theorem, yielding w € (a7 U al/ )* such that

wMa7U@UNA)) = ¢t and wlal

From

L]

€

wlaT

{aT € a7UUNA)}

wlMaT U @UnANlaT

{ definition of w }

tha7

t7

{ret(TwWlAa)) )

v
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and
wlall = v €tU

weinfer w€t(T wU),andsincet = wl(aT U(alU N A)) ., we conclude
tet(TwlU)MaTU(RUNA)Y).

(End of Proof)

Theorem 1.3.7

Let T and U be trace structures and let A be an alphabet such that a7 Nall & A , then
Twulta = (TPA)w (WHA)

Proof

(rta)w Wwta)
= { Theorem 1.3.6, aTNANalU C A}
(TTA)wUHYN(A NaT)U (A Nal))
{ set calculus }
(rtaywuiMAN@TUaU))
= { Theorem 1.3.6, using the symmetry of weaving }
TwUINaUUGGTNANNAN(GTUAU))
{ set calculus, property of projection }
(TwU)((aTValUINA)
= {a(TwU)=aTUal }
Trwu)la

(End of Proof)

Theorem 1.3.8

Let 7 and U be trace structures. Then
0 pref(TwU) C pref(T)w pref (U)
1 If T and U are processes then T w U is a process

Proof

0.  The alphabets of pref (T w U ) and pref (T ) w pref (U ) are equal, viz. aT Ual.
Let s€tpref(T wU) andlet t €t(T w U) besuch that s £7 . We derive



20

tet(TwUIA 5 €t

= { definition of weaving }
tlaT€tT A tlaUetU A s S¢

2> { property of projection, 1.1.2.2 }

tlaTet? A rtaU ety A stal €«¢tal A stalU <ihay

=% - | definition of pref }

staT €tpref(T) A stal €tpref ()
= { definition of weaving }

s €tlpref (T)w pref (U))

Hence, pref(TwU) © pref(T)w pref(U)

1.  Assume that 7 and U are processes. We derive

pref (T wU)

c {o}
pref(T)w pref (U)

= {T and U are prefix-closed }
TwU

< { property of pref ,1.1.4.0 }
pref(T wU)

from which we infer that 7 w U is prefix-closed. Moreover, we have

e€t(TwU)
{ definition of weaving }
e€{a7UaU) A efaT €tT A elalU €tU
{ definition of projection and of star }
€E€EtT N eetU

{7 and U are processes }

i}

i}

true
Hence, T w U is non-empty and prefix-closed.

(End of Proof)

T'race structures
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Theorem 1.3.9

For trace structures 7 and U such that a7 Nal = @, we have
pref(TwU) = pref(T)w pref(U)

Proof

The alphabets are equal. For any ¢,¢ €(aT U alU )", we derive

tet(pref (T)w pref{U))
{ definition of weaving }
tlaT etpref(T) A tlalU €vpref(U)
{ definition of pref }
(BEuyv:u€al* A veaU*: (tlaT)uetT A (lal)v €xU)
{aTnatU = 2}
(BEuyv:u€alT*A veaU*avlaT €t A rwlal etld)
= { definition of weaving }
(BEuyv:u€al*A veaU v et(TwlU))
3> { definition of pref }
t€tpref (T wlU)

n

il

]
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Hence, pref (T)w pref (U) & pref(T w /) which yields on account of Theorem 1.3.8.0

pref (T wU) = pref (T)w pref(U)

(End of Proof)

Exercises

0. 7T
\ 4

<{a.b,cl.{€.a.ab, abc}>
Compute TwU, TwV, UwV,and TwUwV,

<{a,b,d.e}.{ab.abe.de}>, U = <{b,c,e,f} {bc, bec, fe}>,and

1. Prove (TwU)A © (T1A)w (U A) and provide a counterexample for equality.

2. Prove:
G CTwlaTr C T
Gi) TwU = (TwU)raT)w (T wU)lal)
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3. For trace structure I we define trace structure T° by
T° = <al {tl(As:5s Lt:s€tTH}>

Prove (TwU) = I°wlU°

4. LetU and V be trace structures such that all/ = aV ., Show that

TwWuv)
Twnv)

(rwU)U(TwV)
TwUIN(T wV)

i

(End of Exercises)

1.4 Blending

The weave of (non-empty prefix-closed) trace structures may be viewed as the
specification of the composite of the components they specify. Symbols that belong to
more than one of the alphabets of the trace structures are called infernal symbols.

The other symbols. i.e. those that belong to one of the alphabets only, are called external
symbols. In the ultimate specification of a composite we want to specify a mechanism
without any information about its internal structure:

in the specification of a four-place buffer we do not want to reflect the fact that it is
composed of two two-place buffers, or that it is composed of a one-place buffer and a
three-place buffer.

Given a specification of a mechanism, one often tries to decompose that specification in
such a way that the mechanism can be obtained by composing simpler mechanisms. In
general, there will be interaction between the composing parts. That interaction is, of
course, not reflected in the original specification. Hence, we will not specify the composite
of a mechanism by the weave of the trace structures involved, but, by the weave followed
by projection on the external symbols. This leads to the following definition.

The blend of trace structures 7’ and U, denoted by T b U , is defined by
ToU = (I wU)l(aT +al)

where + denotes symmetric set difference, ie. A+B = (AUBI\N(ANZA).

Property 1.4.0
aTNall = @ = TbU = TwU

(End of Property)
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Property 1.4.1
Blending is symmetric, ie. TbU = UbT .

(End of Property)

Property 14.2

0 T isnon-empty > 7 bT = STOP

1 TobSIOFP =T

2 To(rtA) = IMaT\A)

3 ACaT = TbRUN(A) = THaT\A)
4 ¢€€tl = TI'bSIOP(aT) = SIOP
Proof

0. Assume 7 is non-empty. We derive

TbT
= { definition of blending }
(T wT)l@
= { weaving is idempotent }
Tt
= {T is non-empty, Property 1.1.2.6 }
sTorP
1. We derive
T b STOP
= { Property 1.4.0,aT NaSTOP = @}
7 w STOP
= { Property 1.3.4.1 }
T
2. We derive
To(rta)

= { definition of blending }
(T w(TtANNaT\A)

= { Property 1.3.4.1}
THaT\A)
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. Assume A € aT. We derive

TbRUNA)

= { definition of blending. A € aT }

(T wRUNANMaT\A)

= { Property 1.3.42, A C aT }

TMaTVA)

. Assume € €tT. We derive

T b STOP{(aT)
= { definition of blending }
(T w STOP(aT )@
{ Property 1.3.4.4, a7 C a7 and e €¢t7T }
STOP(aT )@
{ STOP(aT) is non-empty }
STOP

it

4

(End of Proof)

From 1.4.2.0 we conclude that blending is not idempotent. The next example shows that
blending is not associative.

Example 1.4.3  (blending is not associative}

(<{a.,bl{e.a.ab}>b <{b,clie.b.bc}>)b <{b.clie b.bc}>
= { calculus }
<{a.c)le,a.ac}>b <{b,cl.{e.b.bec)>

{ calculus }

<f{a.bl.{e.a.b,ab ba}>
»e { trace sets differ }

<{a.bl.le.a.ab}>
= { Property 1.4.2.1 }

<{a.,bl.{e,a.ab}> b STOP
= { Property 1.4.2.0}

<{a.blle.a.ab}> b ({b.cl.le.b,bc}>b <(b.cl{e.b.bc}>)

(End of Example)
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We do. however, have the following theorem.

Theorem 1.4.4

Under the restriction that each symbol occurs in at most two of the alphabets of the
trace structures involved, blending is associative.

Proof
Let 7, U, and V be trace structures, such thata7 NalU NaV = &.
From set theory we then bhave

(aTUall)NaV € aTl+al *)

We derive

TovUiibV
= { definition of blending }
(T wU)NaT+alU)w V)M(aT +alU)+aV)
= { Theorem 1.3.6, using (*) }
(rwU)wV)N{aTUaldNn@T+aUNUaV)IM(al +al/)+aV)
= { set calculus |
(rTwU)wViN@T+aU)UaV)((aT +all )+aV)
{ Property 1.1.2.4, set calculus }
(T wU)wV)IN(aT +alU)+aV)
= { associativity of weaving and of symmetric set difference }
(TwUwV)Nal+al+aV)

Since w as well as + are symmetric. we conclude
ToU)bV = TbUDbV)

(End of Proof)

Let X be a finite set of trace structures such that each symbol of (U T :T€X :a7)
occurs in alphabets of at most two of the elements of X. Then the blend of the elements
of X is well-defined. It is denoted by (BT :T €X : 7). From the proof of Theorem
1.4.4 we infer

(BT:TeX:T)= (WT:TeX:TH)}A

where A is the symmetric difference of the alphabets involved.
By definition we have (BT : T€@:7T) = STOP, the unit element of blending.
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‘Whenever we use the blending operation, we shall see to it that each symbol occurs in at
most two of the alphabets of the trace structures involved.

From the properties of projection, i.e. 1.1.2.5 and 1.1.4.3, we have the following variant of
Theorem 1.3.8 .

Theorem 1.4.5

Let 7 and U be trace structures. Then
0  pref(TbU) S pref(T)b pref(U)

1 if 77 and U are processes then 7 b U is a process

(End of Theorem)

Finally, we define a class of trace structures that may be viewed as the specification of a
synchronization mechanism. It is a generalization of SYNC and QSYNC in [19].

Let A and B be alphabets and let p and ¢ be natural numbers. The trace structure
SYNC, ,(A.B) is defined as

<AUB{t1te€(AUBY A (As:s €t:—g SIGIA)-IGIBY S p))>

In any prefix of a trace of SYNC, (4 ,B) the lead of elements of A over elements of B
is at most p. and the lead of elements of B over elements of A is at most g.

Property 1.4.6

0 SYNC, ,(A,B) is a process

1 SYNCoo(A.B) = <AUB,(ANB)>
2 SYNC, ,(A.B) = SYNC, ,(B,A)

3 SYNG, ,(®.8) = STOP

(End of Property)

Note

When using these processes, we usually require that p +g 2 1, and that A and B
are non-empty and disjoint. However, putting these restrictions in the definitions
leads to complicated formulations of properties and theorems.

(End of Note)
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The following theorem is useful when calculating the blend of two SYNC's.

Theorem 1.4.7

Let p.g.m. and n be natural numbers such that p+¢ 21 and m +n 2 1, and let
A.B,C, and D be non-empty alphabets such that ANB = @, CND = @&,
ANC = @.BND = @G AND=@.and BNC» @ .

Then

SYNC, ,(A.B) b SYNC,, ,(C.D)
= SYNCpim, g4a (A UCIN(BUD).(BUDI\(AUC))

Proof
For the sake of convenience we abbreviate

SYNC, ,(A.B) o S(A.B)
SYNC .(C.D) to S(C.D)
SYNC, s g4n ((AUCIN(BUD).(BUDI\(AUC)) o S(AC\BD ,BD\AC)

and

AUB 1o AB
AUC w AC
CUD to CD
BUD to BD

Due to the restrictions on the alphabets we have

AB +CD

= { definition of + }

AB\CD U CD\AR
{ANC=&.BND=0 )

A\D U BA\C U D\A UC\B
{AnB=@3.CND=g}

AC\BD U BD\AC

= { definition of + }

AC + BD

]

Hence,

AB+CD = A\D U B\C U D\A UC\B = AC+BD ™)
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We derive

a(s(A.B)bS(C.D))
= { definitions of SYNC and blending }

AB +«CD
= {™)
AC + BD

= { definition of SYNC }
aS(AC\BD,BD\AC)

The equality of the trace sets is proved in two steps
G} t(5(4.B)bS(C.D)) C tS(AC\BD ,BD\AC)

Let t€t{S(A.B)bS(C.DNandlets ¢,

According 10 Theorem 1.4.5.1 we have s €t(§{A.B)b S(C.D)) as well. Let w be such
that w €t(S(A.B)Yw §(C.D)) and s = wl{AB + CD).

We derive

wet(S(4A.BYwS(C.D))
> { definition of SYNC and weaving )
—g SIWMA)—IWwIB)YSp A —n SIWIC)—1w!D)Em
2 { calculus }
—(g+n) SIWIA)Y—LWIB)+IwlC)~1wID) S p4+m
{ANC=0.BND=0)
—(g+n)SIWAC)—L(W!BD)S p4m
{ calculus }
~(g+n) S IwlAC\BD )~ I(w]BD\AC) S p+m
{s=wlAC + BD), cf. (*) }
~ (g +n) S1GLACABD) - L(IBDVAC) S p+m

il

[

Hence,
(As:s€t: —(g+n)SIGIAC\BD)—I(s!BDNAC) < p+m)
from which we conclude 2 €tS(AC\BD ,BD\AC)

(i) tS(AC\BD .BD\AC) & t(S(4.B)bS(C.D))

In order 1o prove (ii) we have 10 show for each ¢ in the set on the left-band side . the
existence of a trace w, w €t(S(A.B)w S(C,D)), such that ¢t = wl(AB + CD). We do
s0 by defining a function h,
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h: tS(AC\BD,BD\AC) — t(S(A.B)\wS(C,D))
with h(t)[(AB +CD) = t. ’

We define & by induction on the length of ¢, which is possible since the domain of A is
prefix-closed.

Base [ = ¢

We have € €t(S(A,.B)wS(C.D)) and €l(AB +CD) = €. Hence, we define
hie)=e.

Step ¢ = sa with a€AC + BD. Let w= h(s).

Due to the symmetry of SYNC. cf. Property 1.4.6.2, the symmetry of the theorem to be
proved. and (*), it suffices to treat the case a € A\D. We then have

5a €tS(AC\NBD ,BD\AC) N a€A\D
and the induction hypothesis (w =h(s)):
wet(S(A.B)wS(C.D) A wlAB =CD)=s

Notice that the first conjunct of the induction hypothesis implies
Av:ivEw: —¢g SIGIA)=IGIBYSp A —n SIGICY~IGID)YEm)

We derive

sa €tS(AC\BD ,BD\AC)
= { definition of SYNC }
1(satAC\BD )~ 1(sa}! BD\AC)< p +m
{a€A\D.ANC=0.ANB=02}
t(sPAC\BD )Y~ 1(s!BDNAC) S p+m —1
= { induction hypothesis: s = wl(AC + BD), cf. (¥) }
1(wlAC\BD)Y~ l(w}!BD\AC) <€ p+m — 1
= { calculus }
I(wlAC)—I(wIBD)YS p+m —1
= {ANC=@3,BND=g)
LwtA)+IwlC)—LwW!B)—Iw!D)Sp+m — 1
3 { calculus }
IwlA)=1wtBYSp—1 Vv IwlC)~Iw!D)Em —1
{wlAB €t5(A.B). wiCDetsS(C.D)}

]
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—~g SUwlA)—~1wl!B)<p—1
V (Iwla)—1w!B)=p A —n SIwlIC)=-1WID)IEm —1)
{p+g 2 1. hence —g+1<p}
—g Slwla)-twtB)<p -1
V (=g +1€IwlAaA)~1(wlB)=p A —n SIwIC)—1wID)YEm—1)

Hence, we have two cases :
(0) —g SIwlA)-1wlB)Sp—1
(1) —g+1<IwlA)—IwlB)=p A —n Ql(wrC)~l(ng9)€m-1

In case (0) we define h(sa )= wa. since

—g Slwlta)—1wiBYSp—1
{wlcDets(C,D)}
—g SUwlA)=IwIB)Sp—-1 A —n SIWwIC)-Iw!DYEm
{e€A\D. ANB=0, ANC=2}
—g+1 € walA)~t(walB)Sp A =n LUwalC)~l(walD)<m
= { induction hypothesis }
wa €t(S(A,B)w S(C.D))

I

and

wal(AB + CD)

= {a€A\D , ANC =@}
(wlAB +CD)a

= { induction hypothesis }

sa

In case (1) we define 2 (sa)= wha, where bEBNC (BNC # @), since

— g +1€IwlA)~1wlBY=p A ~n €LWICI=1(wID) < m—1
{b€eB.BNA=@ ,BND=@,beC }

—g KUwblA)—1wb!B)=p—1 A —n+1 €U wblC)=1(wbID)<m
{a€A\D. ANB=3,ANC=0}

—g SIwblA)Y—1(wb!B)=p —~1 A =—n +1 S I(whlC)—1(wblD)Y < m

A —g+1 Sl{wbalA)—(wba!B)=p A —n+1 K1 (wbalC)—l{wbalD) < m

> { induction hypothesis }

wha €t(S(A4.B)w S(C.D))

1}
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and

whbal(AB + CD)
{sbeBncC}

wal(AB + CD)
{acA\D . ANC =@}

(WMAB +CD))a

= { induction hypothesis }

sa
(End of Proof)

In the proof of Theorem 1.4.7, viz. in the Step, the fact BNC = @& is needed if
a€A\D U D\A whereass AN D # @ is needed in the case a € BA\C U C\B. When
B = C the latter does not occur and we have

Theorem 1.4.8

For natural p,g,m, and n such that p+g 21 and m+n 2 1, and non-empty alpha-
bets A,B,and C suchthat ANB =@ and BNC = @&, we have

SYNC, ,(A.B) b SYNC,, ,(B.C) = SYNC,isp. ,+.(A\C.C\A)

(End of Theorem)

Corollary 1.4.9

For natural numbers p.g.m, and n such that p +¢ 2 1and m+n 2 1, and mutually
disjoint, non-empty alphabets A,B, and C we have

SYNC, ,(A.B) b SYNC, ,(B.C) = SYNCpip ,n(A.C)
(End of Corollary)
As a generalization of SEM(a.b) we define SEM; (4 ,B) for k 2 0. and alphabets A
and B, by

SEM,(A.B) = SYNC;, (A .B)

We write SEM; (@ .b) and SYNC, ,(a.b) as shorthands for SEM, ({e}.{b}) and
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SYNC, ,({a}{b)) respectively.

Property 1.4.10

0 SEM,(A.B) )
= CAUB {tlr€e(AUBYA(As:s €t:0<€I1GHAY-1GIB) € ©))>

1 SEM, is a process
2 SEMJ{A.B) = <AUB.(ANBY>

(End of Property)

Theorems 1.4.7 and 1.4.8, as well as Corollary 1.4.9, are easily reformulated for SEM's.

Example 1.4.11

SYNC, ,(a.b) b SYNC, ,(x.6}.{y.a}) = SYNC,sn 44n(x.y)
SEM ,({a0.al).c) b SEM,(c . {a0.a2)) = SEM,(al,a2)
SEM;{(a.b) b SEM, (b.c) = SEM,.n(a.c)

SYNC,,(a.b) b SEM({b,x}.{a.y}) = SYNC,,(x.y)

SEM(a.b) b SEM{a.c)
= { definition of SEM, }
SYNC1o(a.b) b SYNC,oa.c)
{ Property 1.4.6.2 }
SYNCg (b.a) b SYNC,la.c)
{ Corollary 1.4.9 }
SYNC ;6 .¢)

(End of Example)
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Exercises

0. Compute:
RUN(A)b RUN(B)
RUN(A) b STOP(B)
STOP(A) b STOP(B)

1. Compute:
RUN(A)b (RUN(A)Db RUN{AUB))
(RUN(A)b RUN(A))b RUN(AUB)

2. Prove: a7Nal S A = (TbwUA = (T14)b WHA)
3. Prove: t€t(T bU) = rtMaT\aU)etTMNal\alU)

4. Show that <{a,bl{rlz€la.b* A O € I(ta)—1G1b) € 2}> is not prefix-
closed.

5. Prove: SYNC, ,(A.B) = RUN(ANB)b SYNC, ,(A\B.B\A4)

6. Compute:
0. SYNC(a.bl.{c.d) b SYNC, {{d.e){b.fD
1. SYNC(a,b) b SYNCy{c.b)
2. SEM ({la0.al},a2) b SEM,({a2.a3},a0)
3. SEM({a.x}.{b.x) b SEM,({b.y){c.yD
4. SEM(x.y)b SEM({x.a}.{y.5))

7.  For distinct symbols ¢ and b we define SEM (a,b) by
SEM{a.b) = <{a,blirirela,b}* A (As:s €¢:0 € I1Gla)—10Gtb)))>

Prove:

0. SEM{a.b)is a process

1. SEM(a.b)b SEM,(b.c) = SEM(a.c)
2. SEM(a.b)b SEM(b.c) = SEM({a.c)

(End of Exercises)



34 Trace structures

1.5 States and state graphs
In this section we relate trace structures to labeled directed graphs.

Let T be a trace structure. The binary relation 3 on tpref (7') is defined by

syt = (Au:u€cal*:su€tl’ = metl)

Property 1.5.0

0 ¥ is an equivalence relation:
s s
s >t = 1 '7‘: s
s ~t At ~u > 5 >u
r
1 ra is right congruent with respect to concatenation:

(As.t,u-su€tpref(TIN tu€tpref(T):s FL > su ?tu)
(End of Property)

The equivalence classes corresponding to % are called the states of T. [t]; denotes, as
usual, the class to which ¢ belongs.
Whenever T is obvious, we omit 7 in 7 and [e)r.

Example 1.5.1
SEM (a.b) bas two states, viz. [¢]and [a].
(End of Example)
If [s]=1[¢] and sa €tpref(T), we have, due to the fact that ~ is a right congruence,
that [ sa]= [ta] as well. Hence, we have a relation R on the set of states, viz.
[s1R{t] = (Ea:c¢€aT:[sel=1[t]D

This relation can be represented by a directed labeled graph. The states of T are the nodes
of the graph. If [s1R [£] then there is an arc , labeled a, from [s]to [¢] for each sym-
bol a €a7 such that [sa]l=[¢]
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Example 1.5.2 [2]

Let7 = <{a.,b}.la.ab.bb}> / \
then tpref(7 )= le.a.b.ab bb}. €] ® «{ab)
The states are [e]. [a].[8]. and [ab].

Notice that traces a and b are nof equivalent, since b b

a€ €17 and be € t7. {v]

The state graph is shown in Figure 1.3 . Figure 1.3

(End of Example)

If t7T is empty then the graph is the empty graph. If t7 is non-empty then [€] is called
the initial state. In figures of state graphs the initial state is drawn fat. Each path start-
ing in [€] vields an element of tpref(T') by recording the labels on that path. If such an
element belongs to t7, the endpoint of the path is called a final stare {(all states of a
prefix—<losed trace structure are final states).

The graph thus obtained is often called the minimal deterministic state graph of 7. We
call it the state graphof T.

Any directed graph with one node as initial node, zero or more nodes as final nodes. and
with zero or more arcs labeled with symbols, defines a trace set: each path from the initial
state to a final state yields a trace. Such a graph is called nondeterministic if there exists a
node that has an unlabeled outgoing arc or two or more outgoing arcs with the same label.
Otherwise it is called deterministic. If it is deterministic and if the number of nodes
equals the number of states of the trace set it describes, it is called minimal. In a minimal
state graph all arcs are labeled.

For a more formal treatment of the above we recommend [9]. A nice algorithm for the
transformation of a nondeterministic state graph into a minimal deterministic one can be
found in [19].

If 7 has a finite number of states, T’ is called a regular trace structure. The correspon-

dence between regular trace structures and deterministic finite state machines is described
in (19].

b a
Example 1.5.3 6] O .(:/\‘. [a]
Figure 1.4 shows the state gréph of SYNC(a.b). a
There are three states, viz. l€], [a] and [5]. Figure 1.4
Since SYNC, ,(a.b) is a process, every state is a final state.

SYNC, ;(a,b) is a regular process.

(End of Example)
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Let B be a subset of a7. A state graph of 7B is obtained from a state graph of 7T by
removing all labels not in B. In general this leads to a nondeterministic state graph. Pro-
jection may, surprisingly, lead to a trace structure with more states than the original one.
This is demonstrated in the next example.

a a
. —— R *—» ./-—‘\\.
Example 15.4 \_/ v
b b
Process T is defined by
Figure 1.5

al = {a.b,c}

tT is the prefix-closed trace set described by the state graph shown in Figure 1.5 .
The trace set of 7'M a.b} is given by Figure 1.6 .

The minimal deterministic state graph of 7 Ma.b} is shown in Figure 1.7 .

Apparently, 7 has 5 states and T1{a.b} has 6 states.

(End of Example) a a
b b
Figure 1.6
a a
LR a . b ® 2 "o b ‘o/’-_\o
b
Figure 1.7

From automata theory it is known how a finite nondeterministic state graph can be
transformed into a finite deterministic minimal state graph. As a consequence, we have

Property 1.5.5
If T isregular then T'B is regular.
(End of Property)

We now consider the relation between the state graph of trace structures 7,U, and
TwU.



1.5 States and state graphs 37

Property 1.5.6
Let s and ¢ be traces of tpref (7 w /). Then

starl ;,-traT A stavu E-tl‘aU = ST\:Ut

Proof

Assume slaTl }vtraT A sltal ~thaU . For any trace u we derive

su€t(lT wlU)
{ definition of weaving }

su€(al ValU)' A sufal €t A sulalUetU
{ property of projection }

su€@l ValUu) A (staT X ultaT)etT A (slaU)utaU)etU
{staT ~tlaT and stal 7 tlaU |

wear ValU)y A GlalYulal)etl A (¢lal ) ulaldetl
{ property of projection }

rwe(aT UaU) A tulal €t A retalUerU
{ definition of weaving }

tu €t(T wU)

it

Il

it

It

Hence, Sy t

(End of Proof)

Theorem 1.5.7

The number of states of 77 w U is at most the product of the number of states of T
and the number of states of U.

Proof
For all s and ¢,s5 €tpref(T wU) and ¢ €Etpref (T w U), we derive

Ishev # [ty
=3 { Property 1.5.6 }

[staT]y == [¢}aT] Vv [staU) = [tlaUl,
= { definition of equality of pairs }

([sPaT]y ,[SfaU]U) = ([3P&T]r .[tPaU}y)
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and the number of pairs (x.y) where x is a state of T and y is a state of U equals the
product of the number of states of 7 and the number of states of U.

(End of Proof)

Corollary 1.5.8
If T and U are regular trace structures then T w U is a regular trace structure.

(End of Corollary)

Using Property 1.5.6 we can indeed construct a state graph of 7w U from those of 7
and U: ’

Consider all pairs ([ p1.lg]) where [ p] is a state of T and [g]is a state of U. Take these
pairs as nodes. We have an arc with label a from ([ p01[q0]) to ([ pf1lgZ]) in the fol-
lowing cases:

a€aTNal A [pOal=1[pl1]l A [qOal= [q1]

a€aZ\alU A [pOal=[p1] A [q0]=1[q1]

a€aU\aT A [p0l=1[pl] A [gOal=Igl]
The initial state is the pair of the initial states of 7" and U , and the final states are all
pairs of final states of 7 and U.

In the resulting graph one may remove all nodes that are not reachable from the initial
node, and all nodes from which no final node is reachable.

Example 1.5.9

The state graphs of SEM(a.b) and SEM (b.c) are shown in Figure 1.8 and Figure 1.9
respectively. Applying the method described above yields Figure 1.10, a state graph of
SEM (a b )w SEM(b.c).

Projection on {a.¢] yields Figure 1.11, the state graph of SEM(a.c).

(End of Example)
(o) . a .(1,1)

a Rt
0./—\’ 1 ¢ b c
b .———'»a .
Figure 1.8 {0,0) (19 Figure 1.10
b

/—\ c C
0e *1 TN N\,
\z/ N A

a a
Figure 1.9
Figure 1.11
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From Property 1.5.5 and Corollary 1.5.8 we infer

Theorem 1.5.10
If 7 and U are regular trace structures then 7 b U is a regular trace structure.

{End of Theorem)

Exercises
0. Show that ~ is not left congruent with respect to concatenation.

1. Draw state graphs of the following processes:
SEM ((a.b). SYNC,,(a.b), RUN({a.b}). STOP({a.b}).

2. Let T and U be trace structures. Describe the state graph of
<al Ual,tT Utl/ > in terms of the state graphs of T and U.

3. Describe the state graph of
<aTUalU {t1(Euy . u€tlT A vEtU it =uv)l>
in terms of the state graphs of 7 and U.

4. Compute the number of states of SYNC, ,(4.B).

5. Let T = <{b6}L{b}> and let U = <{b},{bb}>. Construct the state graph of
T w U from thoseof 7 and U.

6. Process SEM(a.b) is defined as
<{a.bhitltela.b} A (As:s €t:1(sle) 2 1P NI>
Prove that SEM (a.b) is not regular.

7. Prove that for trace structures 7 and U such that a7 Nall = @&

the number of states of 7 w U equals the product of the number of states of 7 and
the number of states of U.
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8. Process T bas alphabet {a,b.c.d} d
and state graph as shown in Figure 1.12 . /_\
Determine the state graph of T]{a.b.c}. 2
ermine the state graph of 7M{a,b,c} ./-—-...\. c (
'\___6/
(End of Exercises)
a
Figure 1.12

1.6 The lattice 7(4)

In this section we study the structure of processes in more detail. First we review some
concepts of lattice theory. For an introduction to lattice theory we recommend [0].

Let (S.<) be a partially ordered set and let X be a subset of §. Element a is called
the greatest lower bound of X if

(Ax:x€X:aSx) N (Ab:beS A (Ax:x€X:6<x):dSa)

1t is called the least upper bound of X if
Ax:x€X:az2x) N (Ab:beS A (Ax:x€X:b2x):b 2a)

We call (S,S) a complete lartice if each subset of S has a greatest lower bound and a
least upper bound. The greatest lower bound and the least upper bound of elements x
and y are denoted by x glby and x luby respectively. The greatest lower bound and
the least upper bound of X are denoted by (GLBx :x€X :x) and (LUBx:x€X :x)
respectively.

A complete lattice has a least element and a greatest element, viz. (LUBx :x €& :x) and
(GLB x : x €2 : x ) respectively.

A sequence x{i :i 2 0) of elements of S is called an ascending chain if

(Ai:i 20:x@)Sx(+1).

It is called a descending chain if (Ai:i 20:x()2 x(G+1)).

Let (§.%) and (7, € ) be complete lattices and let f be a function from § to 7.

f is called

monotonic if (Ax.y:x€S A yeS:x Sy = fx)SfGN
disjunctive if (Ax,y:x€S A y€S:f(x uby)= f(x)lub f(y))
conjunctive if (Ax,y:x€S A yeS:flxglhy)= flx)glbf(y))
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universally disjunctive if

AX: XCS: f(LUBx :x€X:x) =(LUBx:x€X: f(x)}))
universally conjunctive if

AX: XCS: fGLBx:x€X:x)) =(GLBx :x€X: f(x))

universally disjunctive over non-empty sets if

AX: XCSAX=0: fULUBx :x€X:x))={(LUBx:x€X: f(x)))
universally conjunctive over non-empty sets if

AX: XCSAX#D: f(GLBx:x€X:x)) = (GLBx :x€X : f(x)))

upward continuous if for each ascending chain x(i :i 2 0)
fULUB: i 20:xG))) = (LUBi:i 20: f(xGE))

downward continuous if for each descending chain x(i :i 2 0)
fUGLBi:i 20:x({))) = (GLBi:i 20: f(x(@))

Some of these notions have been adopted from [4].

Example 1.6.0

Let A beaset, then (P(A), & ) is a complete lattice. For a subset 0 of P(4) we have
(LUBX:X€Q:X)= (UX:X€Q:X)
GLBX :Xe@Q:X)= (NX:X€Q:X)

(Taking into account that (U X : X €@ :X) = Gand (N X : X€B:X) = A)

Let B be a proper subset of A. Consider the function f : P(A)— P(A) defined by
f(x)=BnX.

From BN{XUY) = (BNX)U(BNY) weconclude that [ is disjunctive.
From BN{XNY) = (BNX)N(BNY) weconclude that f is conjunctive.

Since intersection distributes through any union of sets, f is universally disjunctive as
well. Notice, however, that f is not universally conjunctive:
fUN X Xe@d: X))
{ definition of f }
BN(NX:Xed:X)
{ by definition }
BNA
{B isasubsetof A }

it

H

B
e { B is a proper subset of A }
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A
= { by definition }
(NX:Xe@:BNX)
= { definition of f }
(NX:Xed: f(X)N

Let X(i :i 2 0) be an descending chain in P(A4). Foranya,a €A, we have

a€BN(Ni:i 20:X@))
= { set calculus }
a€BA(Ai:i20:a€X(i))
{ predicate calculus }
(Ai:i20:a€B A a€X(i))
{ set calculus }
a€(Ni:i 20:BNX3))

from which we infer that f is downward continuous.

In this derivation the hint ‘predicate calculus’ can be refined to ‘conjunction distributes
through universal quantification over a non-empty range’. A similar derivation yields that
f is universally conjunctive over non-empty sets.

(End of Example)

Without proof we mention the following properties.

Property 1.6.1

Both conjunctivity and disjunctivity imply monotonicity.

Universal conjunctivity over non-empty sets implies downward continuity.
Universal disjunctivity over non-empty sets implies upward continuity.
Both upward and downward continuity imply monotonicity.

(End of Property)

Property 1.6.2

Let S and T be complete lattices. Let f be a function from S to T'. Let LS and LT
denote the least elements of S and T respectively, and let GS and GT denote the
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greatest elements of § and T respectively. Then
f is universally disjunctive
&= f is universally disjunctive over non-empty sets A f(LS)= LT
and
f is universally conjunctive

= [ is universally conjunctive over non-empty sets A f(GS)= GT

(End of Property)

Let A be an alphabet.
The set of all processes with alphabet A is denoted by 7 (A4).

In Section 1.2 we defined inclusion. intersection, and union for trace structures with equal
alphabets, according to their trace sets.

Theorem 1.6.3

(7(4), &) is a complete lattice with least element STOP(A) and greatest element
RUN(A).

Proof

For any non-empty prefix-closed subset X of A* we have € € X, hence, STOP(A)C T
for all T,T€T(A). Moreover, STOP(A) is a process, hence STOP(A) is the least ele-
ment of 7(A).

Forany T.T€T(A), we have tT & A*. Since RUN(A) is a process. RUN(A) is the
greatest element of 7 (A ).

Let Q be a non-empty set of non-empty prefix-closed subsets of A*. We have to prove
that (U X : X€Q :X)and (N X : X €Q : X ) are non-empty and prefix-closed.

From Q#® and (AX:X€Q:€6€X) we infer €¢€(N X:X€Q:X) and
€€(U X : X €0 :X), so both are non-empty.

let s and ¢ be traces such that s £¢. We derive

te(U X:X€Q:X)
= { definition of union }
(EX:X€Q:t€X)
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= { all elements of Q are prefix-closed, s €¢ }
(EX:XeQ:5¢X)

= { definition of union }
se(UX:X€eQ:X)

Hence, (U X : X €Q : X)) is prefix-closed.
A similar derivation yields that (N X : X €Q : X)) is prefix-closed.

(End of Proof)

Note

Since STOP(A ) is the least element of 7 (A4 ), we have
(LUBX :X€®:X) = STOP(A) (intherealmof T7(A)).

However, (U X : X €@ :X) = &, so we should be careful with the use of U instead of
LUB. A similar remark holds for N and GLB . We do have:

(LUBX:Xe@:X) = STOP(A)
AQUBX:Xe@Q:X)= (UX:XeQ:X) f =@

(GLBX : X€0:X)
(GLBX:X€Q:X)

RUN(A)
(NX:XeQ:X) if =@

(End of Note)

Let B be an alphabet. As we have seen in Section 1.2, the projection of trace structure 7
on B yields a trace structure with alphabet a7 N B:

T'B = <aT' NB,tT'B>

From pref(XB) = pref(X)!B (Property 1.1.4.3) and €} B = € we conclude that | B
maps processes ONto processes:

T —= TtB maps T(A)onto T{(ANB)

Theorem 1.6.4  {projection is universally disjunctive)

Let B be an alphabet.
The mapping 'B: T(A) = T(A N B) is universally disjunctive.

Proof

STOP(A)IB = STOP{A N B), and for any non-empty set O of trace sets we have
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te(UX:Xe€Q:X)B
= { definition of projection }
(Eu:ue(UX:X€Q:X):t=ulB)
{ definition of union }
(Eu:(EX:X€Q:u€X):t=ulB)
= { predicate calculus }
(EX:X€Q:(Eu:u€X:t=ulB))
{ definition of projection }
(EX:X€Q:teX!B)
= { definition of union }
te(UX:XeQ:XI'B)

Hence, for any subset  of 7(A) we have
(LUBT:T€Q:7T)!B = WUBT :T€Q :I''B)

(End of Proof)

Corollary 1.6.5
Projection is upward continuous and monotonic.

(End of Corollary)

Example 1.6.6  (projection is not downward continuous)
Let A = {a.,b} and let the descending chain T(i :{ > 0) be given by
TE) = <A {t 1 Ek:k2i:t €a*B))>

where a®= € and a**1= qfqa for k 2 0.

Notice that forall i,i 2 0, T(i) is a process. We derive

t€(Nii20:¢TGE))

{ calculus }

(Ai:i20: (Ek:k2i:t €a*b))

{ predicate calculus }
(AiiZ2l1@):Ek:k2i:t €£a*d))
= { calculus }

tefal
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Hence, (GLBi

28 20:TG)N = <la,b) la)>. Projection on {4} yields
(GLBi:i 20:

TENMHEY = <{blle}>.

On the other hand we have (Ai:i 2 0:TG)Me} = <{b).{e.b}>). hence
(GLBi =i 20:T7WIHD = <{blle.bl>.

(End of Example)

fet T be a process. Due to Theorem 1.38.1, 7 w V is a process for any process V.
Hence, we have a function f:7(A) = T(@TUA) definedby f(V) = TwV.

( f is the restriction to 7 (A ) of the weave viewed as a function of its second argument).
Since weaving is symmetric, all properties of f are also properties of the weave viewed as
a function of its first argument. We simply call these properties 'properties of weaving'.

Theorem 1.6.7

0 Weaving is universally disjunctive over non-empty sets.

1 Weaving is universally conjunctive over non-empty sets.

Proof

0. Let Q be a non-empty subset of 7(A). We derive

t€t(Tw(UV:VeEQ:V)
{ definition of weaving }

t€(aTUA)Y A tlaT €tT A tlA€t(UV:VEQ:V)
{ definition of union }

t€@TUAY A tlaT€tT A (EV:VeQ:tlAetV)
{ predicate calculus }

(EV:VeEQ:t€@TUAY A tlaTetl A tlAaetV)
{ definition of weaving }

(EV:VEQ:tet(TwV))

= { definition of union }

tet(UV:VEQ:TwV)

Ik

]

]

Hence, Tw(LUBV :VE€Q:V) = (LUBV:VeQ:TwV)

1. Similar

(End of Proof)
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Note

Due to the non-emptiness of  we are, in the derivation above, allowed to replace
LUB by U.

(End of Note)

The next example shows that weaving is not universally disjunctive and not universally
conjunctive.

Example 1.6.8

Let A={a)and 7 = <{a.bl.i€,a.b}> then
T w STOP(a) = <{a.bl.{e.b}> = STOP({a,b})
TwRUN(a) = <{a.blle.a.b}> = RUN({a,b})
hence,

Tw(LUBV:Ve@: V)= (IUBV :VER: TwV)
Tw(GLBV: V€@ : V)= (GIBV:VEQ: TwV)

(End of Example)

The following corollary is a consequence of Theorem 1.6.7 and Property 1.6.1.

Corollary 1.6.9

Weaving is conjunctive, disjunctive, and monotonic.
Weaving is upward continuous.
Weaving is downward continuous.

(End of Corollary)

Finally, we consider blending. Let T be a process. From Theorem 1.4.5.1 we conclude
that 7 b V is a process for any process V.

Hence, V — T'b V isa mapping from T(A)}to T(@T+A4).

This mapping is the composite of V — T'wV and U — UMaT+A). Since the compo-
site of two mappings inherits their common junctivity properties, we have on account of
1.6.4,1.6.5, 1.6.7, and 1.6.9 the following theorem.
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Theorem 1.6.10

Blending is universally disjunctive over non-empty sets.
Blending is upward continuous and monotonic.

(End of Theorem)

Example 1.6.11 (blending is nor downward continuous)

Let A = {a.blandlet T = RUN(a).

The descending chain V(i : i 2 0) is defined by (cf. Example 1.6.6)
V@)= <At 1Bk k 2i:t €a*b)}>

Then

Thb(GLBi:i 20:V(E)
= { Property 1.42.3, T = RUN{a)}
(GLBi:i 20: VGl

{ Example 1.6.6 }
<{b).{e}>
= { trace sets differ }
<{bl{e.b}>

{ Example 1.6.6 }
(GLBi:i 20:V(3E)S)
= { Property 1.4.2.3 }

(GLBi:i 20:TbV({))

(End of Example)

Let A and B be alphabets. The sequence SEM,{A.B), k 2 0, is an ascending chain in
7(A UB). Process SEM(A, B) is defined by

SEM(A.B) = (LUBk :k 20:SEM,(A.B))

Property 1.6.12
SEM(A.B) = <AUB {t1t€(AUBYA (As:5s €t:0<I1a)—IGIED)>

(End of Property)
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Property 1.6.13

let A, B.and C be mutually disjoint, non-empty alphabets. Then
0 SEM,A.B)bSEM(B.C) = SEM(A.C)
1  SEM(A.B)bSEM(B.C) = SEM{(A.C)

Proof
0. We derive

SEM (A .B)bSEM(B.C)
= { definition of SEM }
SEM,(A.B)b(LUBk : k 2 0:SEM, (B.C))
= { blending is upward continuous }
(LUB% : & 2 0: SEM,(A.B)b SEM,.(B.C))
= { Theorem 1.4.9 }
(LUBKk : k 2 0:SEM, ,,(A.C))
= { SEMy(A,C) < SEM(A.C) )
(LUBk :k 2 0:SEM,(A.C))
= { definition of SEM }
SEM(A.C)

1. We derive

SEM(A ,B)YbSEM(B.C)
{ definition of SEM }
SEM(A.B)b(LUBEk : k 2 0:SEM, (B.C))
{ blending is upward continuous }
(LUBk : k 20:SEM(A.B)b SEM,(B.C))
= { similar to the proof of part O }
(LUBK : k 2 0:SEM(A.C))
= { definition of least upper bound }
SEM(A.C)

it

(End of Proof)

Notice that SEM (a,b) is not regular.
The states of SEM(a.b)are[a*] £ 2 0.

49
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We conclude this section with two theorems concerning lattice theory.

Theorem 1.6.14  (Knaster-Tarski)

Let (5. <) bea complete latticeand let f:S — S be a monotonic function. Then the
equation

x€5: flx)=x ()]

has a least solution, which is also the least solution of
x€S: fx)€x (1)

Proof

Notice that the greatest element of S is a solution of (1). Let m.m €S, be defined by
m={(GLBx: f(x)% x:x). Wederive

m=(GLBx: f(x)€x:x)

3> { definition of greatest lower bound }
Ax:f(x)S€x:m €x)

> { f is monotonic }
Ax: fG)€x: fm)SFRY

> { transitivity of < }
Ax:fx)Sx:fm)<x)

> { definition of greatest lower bound }

Fm)SGLBx: f(x)€x:x)
= { definition of m }
fln)€m

Hence, m is a solution of (1) and since m = (GLBx : f(x) € x : x), we have
m is the least solution of (1)
From
fm)€m
> { f is monotonic }
ffmN K flm)

= { by definition }
f{m) is a solution of (1)
we infer, since m is the least solution of (1), m € f(m). Together with f(m) € m this

yields f(m)}=m.
Hence, m is a solution of (0). Since each solution of (0) is a solution of (1), each solution
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of (0) is at least m. We conclude

m is the least solution of (0)
(End of Proof)

Changing € in 2 and GLB in LUB yields a similar result for the greatest solutions of
x€S: x=f(x) and x€S: x € f(x)

A solution of the equation x €S : x = f(x) iscalled a fixpoint of f. From 1.6.14 we
conclude that each monotonic function from § to § has a least fixpoint and a greatest
fixpoint.

Theorem 1.6.15

Let {(§.<) be a complete lattice. Let LS and GS denote the least and the greatest ele-
ments of S respectively. For a function f : § = § we have

0 if f is upward continuous then its least fixpoint equals
(LUBKL : & 20: fX(LSY

1 if f is downward continuous then its greatest fixpoint equals
(GLBEk 1k 20: f*(GS)

Proof

0. Assume f is upward continuous. Then f is monotonic and since LS € f(LS),
fE(LS). k& 2 0, is an ascending chain. We derive

FOLUBL &k 20: f*(LSY)
{ f is upward continuous }
(LUBX 1k 20: f**1(LS))
= {Ls € f(LS)}
(LUB%k : &k 2 0: f*(LS))

Hence, (LUBk :k 2 0: f*(LS)) is a fixpoint of f .

For each fixpoint x of f we have LS € x and, hence, f¥*(LS)< f*(x)=x for all
k.k 2 0. Weconclude (LUBk : k 2 0: f*(LS)) € x for each fixpoint x of f.

Hence (LUB Kk : & 2 0: f*(LS)) is the least fixpoint of f.

1. Similar

(End of Proof)
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Exercises

0. Let (S.< ) beacomplete lattice and let x and y be elements of S. Prove
(i) x glby and x lub y are unique.
(ii) glb and lub are symmetric and associative.

(iii) glb and lub have identity elements.

1. Let (§.%) be a partially ordered set such that each subset of S has a least upper
bound. Prove that each subset of S has a greatest lower bound as well.

2. Disprove
(i} projection is conjunctive.

(ii) blending is conjunctive.

3. let A be an alphabet and let T be an element of 7(A ). The mappings f and g
from T(A)to 7(A) are defined by
f(WI=TUV and g(V)=TNOV.
Find out whether f and g are monotonic, disjunctive, conjunctive, upward continu-

ous, downward continuous, universally disjunctive or universally conjunctive.
Determine the fixpoints of f and g.

4. Compute (LUBi:i 2 0: SYNC,; ,(A4.B)) for fixed natural number &.

5. For natural k trace structure 7, is defined by
T, =<{a, bt/ (Em.n:08Sm<nsSk:t=a"b™)>
Show that T, is a process. Draw a state graph of 73.

Show that the sequence I3,k 2 0, is ascending. Show that (LUBk :k 20:7,) is
not regular.

6. T isa process and V(i :i 2 0) is a descending chain in 7 (4 ). Prove:
Thb(GLBi:i 20:V()) € (GLBi:i 20:TbV())

7. A is an alphabet. The set of all trace structures with alphabet 4 is denoted by
R(A). Prove that R(A) is a complete lattice with least element <A .@> and
greatest element RUN(A). Prove the analogs of the theorems of this section if

7 (A) is replaced by R(A).

(End of Exercises)
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2.0 Introduction

In this chapter we present a program notation that defines a process. Such a program is
also called a componenz. The first class of components we describe yields the set of all reg-
ular processes. It is closely related to the field of regular languages and regular expres-
sions, cf. [9]. These components may be implemented as (sequential) finite state machines.

The second class of components still gives rise to regular trace structures, but may be
implemented with more concurrency. This class allows components to be composed of -
besides a regular expression - a number of subcomponents.

The third class includes recursive components. These can define non-regular processes.

2.1 Commands

From language theory it is known that a regular trace set can be represented by a regular
expression. We extend the definition of regular expressions and define so-called commands .

Commands are defined inductively by the following six rules. With command 5 trace
structure T7R(S) is associated.

(i) € isacommand. TR{e) = STOP
(i) A symbol is a command. TR{a) = <{al.{al>

(iii) If S is a command then S*is a command.
TR(S*) = <aTR(8).(tTR{S)*>

where (tTR(5))* denotes the set of finite length sequences of elements of t7R(S).

If S and T are commands then
(iv) ST is a command.

TR(SIT) = <aTR(S)VaTR(T) tTR(S)VUITR(T)>

(v) 8.7 is a command.
TR(S:T) = <aTR(S)VaTR(T) {t H {EBuv :u €tTR(S) A v€tTR(T): ¢t = w)}>
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(vi) §.7 is a command.
TR(S.T) = TR(S)w TR(T)

From language theory it is known that the star, the bar, and the semi-colon preserve regu-
larity. Corollary 1.5.8 yields that the comma preserves regularity as well. Since STOP
and <{a},{a}> are regular, we have

Property 2.1.0
A command defines a regular trace structure.
(End of Property)

To save parentheses we introduce the following priorities. The star has the highest prior-
ity. From the binary operators the comma has the highest priority, followed by the semi-
colon and then the bar, i.e. the smaller the symbol the higher its priority. ’

Example 2.1.1

TR((a1b)*) = RUN(a.b)
TR(a (a:a)) = <la)l. &>
TR a:b)) = <{a,bl.{€.ab,abab ababab. - -}>

(End of Example)

We now present some algebraic properties of commands. These are expressed as equalities.
where S = T means TR(S)= TR(T).

Property 2.1.2

The bar is symmetric, idempotent, and associative:

O SOI81 = S1180
1 Si§ = 8§
2 SOi(S1182) = (S01S1)182

The comma is symmetric, idempotent, and associative:
3 80,51 = 51.80

4 S§$.35 =8

5  S50.(81,82) = (50.81).82
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The semicolon is associative:

6 S0:(S1:S82) = (S0:S1):52

(End of Property)

Property 2.1.3

The semicolon distributes through the bar:
0 S0:(S11S82) = (S0;S1150;S2)
1 (S1182):80 = (S1:50152:50)

(End of Property)

Note

In some theories. cf. [16], there is a distinction between a:(b 1¢) and (a:bla:c). This
distinction arises from an operational point of view :

a;:(b Ic) is interpreted as

‘first event a occurs, after which both b and ¢ are possible’

(a:bla;c) is interpreted as

‘first event a occurs, after which either b or ¢ is not possible any more’

We do not have this distinction. Both TR(a:(bic)) and TR((a;b la;c)) are equal to
<{a.,b,c}.{ab,ac}>.

In Chapter 5 we discuss this topic in more detail.

(End of Note)

Property 2.1.4

0 €.S =S
1 €;S = S.e=§

(End of Property)
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Exercises

0. Draw state graphs of the trace structures defined by the following commands. (Indi-
cate initial states and final states)

G) (a:p)

G1) (a.b)

Gii) (ayd).(b:c)
(iv) (a0;60%1al ;b2%)

1. Prove: TR{(S0.(51!82)) € TR((80.S1150,52))

Disprove: TR((S0.87180,82)) & TR(S0.(S1182))
TR((80:81).(S0:52)) & TR(S0:(S7.,52))
TR(S0;(S1,82)) & TR((S0:81).(S0:52))

(End of Exercises)

2.2 Components without subcomponents

The simplest form a component may have, is the following.
com c{A): § moc

where ¢ is the name of the component, A is a finite alphabet (usually represented by an
enumeration of its elements), and § is a command.

With component ¢ process TR (¢ ) is associated, defined by
TR{c) = pref(TR(S))

We impose the following restrictions on such a program text:
0 aTR(S) = A
1 tTR(S) = @

Due to the last restriction 7R(c) is non-empty, hence, TR(c) is a process. From Pro-
perty 2.1.0 we conclude
Property 2.2.0

A component without subcomponents defines a regular process.

(End of Property)
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Example 2.2.1

WO e O

com stop(): € moc TR(stop) = STOP

com run(a.b): (a!b)" moc TR(run) = RUN({a.b)})
com sem(a.b): (a;b) moc TR(sem,) = SEM ((a.b)
com sync(a.b): (a.b)® moc TR(sync,;} = SYNC;,(a.b)

(End of Example)

Example 2.2.2

The process of Example 1.2.1, specifying a one-bit one-place buffer, equals TR (buf;)
where buf, is defined by

com bufi(aQ,al ,b0,b1): (a0;b01al ;b1)" moc

(End of Example)

Exercises

A binary variable is specified by
com var (a0 ,al .b0,b1): (a0:60%1al ;b1*)" moc

where the following meaning is attached to the symbols.
a0 : the value zero is assigned

al : the value one is assigned

b0 : the value zero is inspected

b1 : the value one is inspected

Draw a state graph of TR {var ) and interpret it states.

Define components for the processes SEM,(a.b), STOP({a.b}). and
SYNC;;(G ,b)

Give a component that has trace structure SEM({a0.al}.{50.,61].

A parity-counter is a mechanism that may be involved in the following events.

a ! a message is accepted

e : the number of messages thus far accepted is even



58 A program notation

o : the number of messages thus far accepted is odd

Give a formal specification of a parity-counter in terms of trace structures. Write a
program according to that specification and draw a state graph of the process thus
obtained.

4. A full adder is a component that repeatedly accepts three one-bit numbers and gen-
erates one two-bit number that equals the sum of the other three. Let the numbers
to be added be @, b, and ¢, satisfying

0€a<2 AN0OSb<2N0%cxK2

and let the sum be represented by d and e such that

0Sd<2 AN0Se<2 A a+bsc=2-d+e

The valuesof a.,b,.¢c,d.and e are encoded by a0, al , b0, b7, etc. , where
a0 = a=0, al = a=1, etc..

Derive a component that specifies the requirements stated above.

5. Figure 2.0 shows the state graph of a one-bit two-place buffer. Write a component
buf, that specifies this buffer.

(End of Exercises)

Figure 2.0
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2.3 Subcomponents

Before introducing a more general form a component can have, we discuss some new nota-
tions.

Up to now we did not discuss the nature of (), the universe. As far as our examples are
concerned, the set of all small letters and all strings of length two starting with a letter
and ending with a digit would have been an appropriate universe. Taking, for example,
the natural numbers as a universe, and representing its elements in the usual way, would
cause ambiguity when using concatenation. )

We tacitly assumed (and we will continue doing so) that the representation of the ele-
ments of £} does not cause such ambiguities. Furthermore, we identify the elements of O
with their representations.

Let A be an alphabet and let p be a symbol, then p+A denotes the set that is obtained by
replacing each symbol ¢ in A by p-a. f X is a trace set then p-X denotes the set of
sequences obtained by replacing in each trace of X each symbol e« by p:a. For trace
structure 7 we define p-7 by

pT = <p-al,.p-tT>

Example 2.3.0

Let 7 = <{a.bl.{€,a,ab.aba}> then
pT = <{pa.p-bliec.pa.papb,papbpal>

(End of Example)

To avoid name clashes we require that no symbol in Q contains a dot. The set -Q is
defined by Q-0=(U p:p€Q: p-0). Elements of Q-0 are called compound symbols.
Elements of Q are called simple symbols. Due to our requirement $ N Q-0 = @,

Our new universe is U Q-0). We shall see to it that the transformation of 7 into p-T
is only applied if a7 consists of simple symbols. The alphabets of components consist of
simple symbols only. Compound symbeols are used in program texts.

A more general form of a component is the following.

com c(4):
sub poico, ..., PooiiCp-q bus
S
moc
where cq, ..., ¢,y are previously defined components, called the subcomponents of ¢,

with names po, ..., P,y respectively. S isa command.
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With subcomponent p; process p;*TR(c;) is associated. We impose the following restric-
tions on such a program text:

0  The names p;, 0 i < n, are distinct;

1 Alphabet A consists of simple symbols and
aTR(8) = AU(Ui:0Si<n:p-aTR()):

2 TR(S) is non-empty.

From restrictions O and 1 we infer that each compound symbol occurs in exactly two
alphabets of pyaTR(cy), ..., p,—raTR(c,_,) and aTR(S).

Hence, blending of pyTR{cy), ..., pu—vrTR(c,_,) and pref(TR(S)) is associative and
yields a process with alphabet A.

The trace structure of component ¢ is given by
TR(c) = Bi:0€i<n:p TR(c;)) b pref (TR(S))

Due to our syntactic restrictions TR (¢} is well-defined and (cf. Theorem 1.4.4) we have
TR(e) = (Wi:0Ki<n:p-TR(c;)) w pref (TR(SNA

Because subcomponents have to be defined in advance, we call such a component a non-
recursive component. Application of Property 2.1.0, Property 2.2.0, and Theorem 1.5.10,
using induction over the syntax of components, yields

Property 2.3.1
A non-recursive component defines a regular process.

(End of Property)

Example 2.3.2
Component sem | is defined by com sem,{(a.b): {a:5)* moc

Component sem, is defined by

com sem(a.b):
sub p: sem; bus
(@:pa).{p-b:b)

moc

We derive

p-SEM (a2 .b)b pref (TR ((a;p-a ). (p-b:5)*))
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{ definition of comma }
7-SEM (a.b)b pref (TR((a:p-a)*) w TR((p-5:5)"))
{ Theorem 1.3.9, alphabets are disjoint }
p-SEM (a ,b)Yb (pref(TR(a’ p-a)*)w pref (TR(p-b:5)"))
{ definition of SEM, } k
p-SEM ((a .5)b (SEM (a.p-a)w SEM{(p-b.b))
{ Property 1.4.0, alphabets are disjoint }
?-SEM (a.b)b (SEM {a.p'a)b SEM,(p-b.b))
{ definition of p- }
SEM (p+a.pb)b (SEM {(a.p-a)b SEM(p-b.b))
= { no symbol occurs in more than two alphabets }
SEM \(p-a.p-b)b SEM(a.p-a)b SEM (p-b.b)
{ Corollary 1.4.9 }
SEM 5(a .b)

]

]

]

it

Hence. TR (sem ;)= SEMi{a.b)

(End of Example)

Example 2.3.3
Component semy , & 2 1, with TR (sem; ) = SEM, (a .b) is defined inductively by
com sem{a.b): (a;b) moc.and for k Z 2:

com sem; (a,b):
sub p :sem; ., bus
((a 't p-b):(bp-ad)
moc

since

SEM, _(p-a.p-b}b pref (TR((a 1 p-5): (3 1 p-a))®)
{ definition of SEM, }

SEM, _(pra.p-b)bSEM,(la.p-b}.{b.p-a})
{ Theorem 1.4.7 }

SEM,(a,b)

]

]

(End of Example)
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The last extension of our program notation is the following.

com c(A):
sab po:co, ..., Ppe1iCr-y bus
[xo= Yor---r Xp-1 ™ Ym—1]
S
moc

The equalities represent relations {connections);
xg through x, ., are compound symbols and y, through y,.; are simple or compound
symbols. We are interested in the same blend as before, viz.

Bi:0€i<n:p-TR(c;)) b pref(TR(S))

but before computing this blend we carry out a substitution according to the equalities.

Each symbol at the left hand side of an equality is replaced by the symbol to which it is
equated, both in the alphabet and in the trace set of the trace structure to which it
belongs. After having carried out this substitution the blend is computed, i.e.

Bi:0€i<n:(pTREN,E 1 7""1) b pref (TR(S)

..... P -1
‘We impose the following restrictions.

0  The names p;, 0 € i < n, are distinct;

1 forall j,0€ j<m,
x; isanelementof (Ui:0€i<n:p aTR(e).
y; isanelementof (Ui:0Si<n:p-aTR{¢;NUA,
x; and y; belong to two different {(of the n +1) alphabets.
each symbol of (Ui :0€i<n:p-aTR(c;)) UA occurs in at most one equal-
ity )

2 alphabet A consists of simple symbols and

aTR(S) = (U i:0Ki<n:praTR(EVUANW ji0S j<m {x;.y; 1)

3 TR(S) is non-empty.

Due to these restrictions we have (after having carried out the substitution):
a compound symbol occurs in zero alphabets since it has been replaced or

a compound symbol occurs in two subcomponent-alphabets and not in aTR (S ), since
it occurred at the right hand side of an equality or

a compound symbol does not occur in any equality and then occurs in the alphabet of
its subcomponent and in aTR(S ).
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Hence (Theorem 1.4.4), associativity of the blending operator is guaranteed, and

TR(c) = (Wi:0Si<n:(p-TR(c),S

,,,,,

1) wopref (TRSMIA

-1

Example 2.3.4

com sem,(a,b):

sub p :sem, bus

[pb=0b]
(a:p-a)

moc

We derive

(SEM ((p-a.p-b))4* b pref (TR((a; p-a)*))
{ substitution }
SEM (p-a.b) b pref (TR{((a:p-a)*))
{ definition of SEM,}
SEM ((p-a.b)b SEM (a,p-a)
= { Corollary 1.4.9 }
SEM (a.b)

]

Hence, TR(sem,) = SEMy(a.b)

Xi J e

[P —

JR———
(End of Ezample)
d
Example 2.3.5 Figure 2.1

See Figure 2.1 .

A pebble is placed in the middle of a 3 x 3 checker board. It may move up, down, left,
and right but it is not allowed to leave the board. We derive a component that describes
the behaviour of the pebble.
Possible events are «, 4, [, and r meaning up, down, left, and right respectively. From
the initial state a lead of two or more r's over {’s violates the restriction on the pebble.
A lead of one does not harm. For reasons of symmetry the same holds for leads of [ over
r., u over d,and d over u. This yields

1€M< 1 and

1< et)~1GMI €1
for each £, t €{u,d .l .r}" that describes a pattern of the pebble.
Since this should hold for all prefixes of these traces as well, we have
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T=<{ud l.r}{etleelu.d.l.+}* A (As:s G-It <D

Gt =1GMd) € D>

|
——
NIA
)

is a specification of the pebble.
Evidently, I = SYNC 1,1(7' A) w SYNC 1}1(“ ,d ).
Since the alphabets are disjoint, this weave equals the blend. A component with process 7
is given by
com pebble(u.d.l.r):
sub p.g :sync,, bus
[pa=u.pb=d.ga=1l.gb=r]
€

moc

{(For sync,, we refer to Example 2.2.1 )
Thetext p.q :sync;; isshortfor pisync,,. q syncy;.

{End of Example)

Example 2.3.6
Component sem, . k 2 1, with TR{sem, ) = SEM, (a .5 ) can be defined inductively by
com sem{a.b): (a:5)* moc,andfork 2 2:
com sem,{(a.b):
sub p :sem, g : sem,_, bus
[pra=a.pb=ga,qgb=5b]
€

moc
since

SEM (p-a.p-b)5%5% b SEM, _\(g-a.q-5)%* b STOP

{ substitution, STOP is the unit element of blending }
SEM(a.g-a) b SEM,_{(g-a.b)

{ Corollary 1.4.9 )
SEM, (a.b)

1

{End of Example)
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Example 2.3.7

In the previous example we presented component sem, . Component csermy is defined by
com csemy (a0 ,al .50.51):
sub p :sem; bus
(pra:(a0 tal) {1 p-b;(B016IN*

moc
Let S dencte the command of csem;, . We derive

TR (csem; )

= { definition of a component }
(SEM,(p-a.p-b) w pref (TR(SI) Ma0,al .b0 b1}

= { structure of §, compound symbols are removed by 'a0.al ,b0,51})
(SEM, (p-a.p'b) wTR(S)Ma0.al b0 b1)

and for any trace ¢

t €t(SEM,(pa.p-b)wTR(S))
> { definition of weaving and of SEM, ]

0 1(lpa)~1(tlpb)Sk At €tTR(S)
> { structure of § }

05 1Glp-a)—1(lpb)Sk A LGlpa)=10Ma0,alD) A L(elp-b)=1(cMb0.b1))
> { calculus }

0 I(tMa0,al))~1GMb0.51)) €k

Hence, TR(csem; ) & SEM,({a0.al},{b0,b1}).

We prove SEM, ({a0.al}.{b0.51)) C TR{csemy ) by constructing a function
h: tSEM,({a0.al},{b0,b1}) = t(SEM,(p-a,p-b)wTR(S))
such that A{t )Ma0.al.b0.b1}=¢.

h is defined inductively by:
hed)=¢ h(ta0)= h()p-aal h(tal Y= h(t) p-a al
h(tb0)= h(t) p-b b0 h{tbl)= h(t)p-b bl

Then, evidently, h{(t) € t(SEM, (p+a,p-b) wTR(S)) and h(z)Ma0,al . b0.b1}=1.
We conclude TR{csem;) = SEM,({a0.al}.{50.51)).

(End of Example)
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A component can always be transformed into a component with equalities only (i.e. with
command € ) by adding a subcomponent of the type described in Section 2.2 . Hence, the
componenis described in this section could also have been introduced without the com-
mand §. The transformation is as follows.

Let ¢ be the component defined by

com c(4):
sub p;: €y -y Pn—1.Co~1 bus
[x0=yo0.. - ) Xn1 = }’m—x]
S
moc

Define a one-to-one function ¢ : aTR(S) — {}, a renaming function used to get rid of
compound symbols. Define component ¢, by ‘

com ¢, {¢{aTR(S))): ¢(S) moc
where (S ) is obtained from § by changing each symbel a in S into ¢(e).
Then TR{c, )= pref (TR(${(SN).

Component d is defined by

com d(A):
sub poicg, ..., Pre1i€yy Pr i€, bus
[xe=y0, s X1 = Vet P D2 =20, . ., pp P21 = 2, 4]
€
moc
where {zg, ..., 2e-1}= aTR(S).

Notice that d satisfies the restrictions imposed on program texts.
We then have

TR(d)
= { definition of a component }

Bi:0%i<n:(pqTR(c; ));: ,,,,, *m-1) | (p-TR (e, ))P,,.:,:zn) ..... p,,'j(zk—l)

..... Ym -1 veeer Zpoy

1}

{ substitution }

(Bi:0€i<n:(prTR(c),E ") b pref (TR(S))

ERPS Sy
o= { definition of ¢ }
TR (c)
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Example 2.3.8
We transform component sem; of Example 2.3.4 :

com semya.b):

sub p :sem; bus

[p-d=20]
(a:pa)
moc

Function ¢ is defined by ¢ta)= x and ¢(p-a) =y, and component ¢, is defined by
com cilx.y): (x;y)* moc
The transformation yields

com d(a.b):
sub p :semy, ¢ :cy bus
[P.b =b,qox =a,q.y=P.a]
€

moc -
And, indeed (cf. Example 2.3.6). we have TR(d ) = SEM (a .b).

(End of Example)

We may, on the other hand, transform a component with equalities only (i.e. with com-
mand €) into a component without equalities.

Let component ¢ be defined by

com c(A):
sub pyicy, ..., Pra1i €, bus
[xo=y0,- ) Zmo1 = Yt
c .
moc

Due to our restrictions, each symbol of AU (U i:0€ i< n : p;-aTR{c;)) occurs exactly
once in the equalities. Moreover, x, through x,,.; are compound symbols.
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Component d is defined by

com d(A):
sub poicy, ..., pp-1:¢,~1 bus
(xo:yo!l " 1 XmepiYm_1)*
moc

Let S denote the command of d. Define T and U by
T

(Wi:0€i<n 2(pi'TR(c,.)):: ~~~~ *m-1)

~~~~~ Ym—1

U= Wi:0€i<n:p-TR(c;))w TR(S)

Then TR(c) = TMA. Since each trace of tpref (TR(S)N\tTR(S) is the concatenation of
a trace of tTR(S) and a compound symbol ( x, through x,_, are compound symbols), we
have TR(d) = UlA.

Let f:tT — tU be defined by
fle)=¢
j(tyk)=f(t)xkyk O<k<m)
Then f(¢)'A =¢[A. Furthermore, f has inverse g defined by
gle)=¢
glny)=g)y, (O<k<m)

We conclude t7}]A = f(tT)!A = tUlA, and, hence, TR(c) = TR(d).

Example 2.3.9

Component sem, (cf. Example 2.3.6) is defined by
com semjy(a.b):
sub p.g : sem; bus
[P.a = a'P-b =q.a_q.b =b]
€

moc
The transformation as described above yields
com d(a,b):
sub p.g : sem; bus
(p-a;alpb;qgalgb;b)

moc

(End of Example)
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Exercises

0.  Prove that the pebble of Example 2.3.5 is also specified by
com peb(u.d.l,r): (u.d . (.r) moc

Draw a state graph of 7R (peb).

1. Define inductively for k¥ 2 1 and{ 2 1. component sync, ; such that
TR(SyﬂCk,[) = SYNC-‘&’;(G .b)

2.  Let sem, be defined by com sem{a.b): (a:b)* moc.

For i, i 21, sem,;and semy; are defined by

com semy;,,{a.b): com semy;{a.b):
sub p :sem; bus sub p :sem,;..; bus
{atpb:b):(pra:al b)) [pb=05]
moc (a;p-a)
moc

Prove TR(sem;) = SEM;(a.b)forall i.i 2 1.

3. Component sem, has TR(sem,)= SEMa.b). Compute the processes of the fol-
lowing components.
(i) com c{a.b):
sub p.g : sem; bus
[pra=a.pb=ga,qgb=b]
€
moc
(ii) com d{a.b):
sub p.g : sem, bus
(a:p-a).{p-biga).(g-b:b)
moc

(End of Exercises)



70 A program notation

2.4 Recursive components

In this section we drop the rule that components should have been defined before they are
used as subcomponents.

We say that component d occurs in component ¢ if 4 is a subcomponent of ¢ or if d
occurs in a subcomponent of c.

Component ¢ is called recursive if ¢ occursin ¢. In the sequel we consider component ¢
defined by

com c(A):
sub p:c bus
S

moc

where A is an alphabet of simple symbols, 7R(S) is non-empty, and
aTR{(§) = AUp-A.

A component of this form is called directly recursive. If we stick to the definition of the
process associated with ¢, we have TR(c) = p-TR{c) b pref (TR(S)).

This means that TR (¢ ) is a solution of the equation
TET(A): T = p-Thb pref (TR(S)
or, phrased differently, TR (¢ ) is a fixpoint of the function

f:T(A)Y— T(A) definedby f(T) = p-T bpref(TR(S))

‘We investigate some properties of this function f .

Property 2.4.0

f is upward continuous and (hence) monotonic.
Proof

f is the composite of the functions g: T(A) — T(p-A) defined by g(Z}= p-T and

h:T(pA)— T(A) defined by h(U)= U b pref (TR(S)). Function g is just a
renaming. It is a lattice isomorphism and bhas all junctivity properties.

From Theorem 1.6.10 we have that k is upward continuous. Hence. f is upward con-
tinuous.

(End of Proof)
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From Property 2.4.0, Theorem 1.6.14 (Knaster-Tarski) and Theorem 1.6.15 we infer

Property 24.1

f bas a least fixpoint and a greatest fixpoint.
The least fixpoint of f/ equals (LUBi :i 2 0: f '(STOP(A4))).

(End of Property)

The process of component ¢ is defined as the least fixpoint of f . i.e.

TR(c) = (LUBi:i 2 0: f'(STOP(A)))
The following property is useful in calculating the least fixpoint of f.

Property 2.4.2
F) = <A.{tit€tpref(TR(S)) A t}p-A€p-tTIA>

Proof

We derive

(T
{ definition of f }
p-Thpref(TR(S))
{ definition of blending }
(p-T w pref (TR(SIN}A
{ Property 1.3.3.ap-T € apref (TR(SD }
<AUp-AltitetprefTRSH A tlpAcpTI> A
{ definition of projection }
<A.{titetpref(TR(S)) A tlp-Acp T4 >

1

1]

(End of Proof)

71
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Example 2.4.3
Component sem is defined by

com sem{a.b):
sub p :sem bus
(alp-b):(p-aib))
moc

‘We derive

FsroP({a.b}))
{ definition of f }

STOP({p-a.p-b) b pref TR((a | p-b ) (p-a 15))*)
{ definition of SEM, }

STOP({ p-a.p-b}) b SEM,({a.p-b}.{p-a.b})
{ calculus }

SEM (a.b)

Il

and for k. k 2 1,

F(SEM;(a.b))
= { definition of f }

SEM, (p-a,p-b)bSEM (la.p-b).lp-a.b])
= { Theorem 1.4.7 }

SEM; 4\(a .b)

Hence, TR(sem) = (LUBk : k 2 0: SEM,(a ,b)) = SEM(a.b).

Using the distribution of the semicolon through the bar (Property 2.1.3) one may rewrite
the command of sem, yielding

(a:bla.p-alpb;blpbip-a)
Denoting this command by §, we have

upbpav €tTR(S) = wuv € tTR(S) foranytraces ¥ and v,
and also

upbpav € tpSEM (a.b) = uv € tp-SEM;(a.b)

From these relations and the fact that p+b and p-a are compound symbols (removed
under blending), we infer that the alternative p-b;p-a of command S can be omitted.
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This yields
com sem{a.b):
sub p : sem bus
(a:bla;palpb:b)
moc
Command S0 of this program has the property that for any ¢, 7 € tpref (TR(S0)). the
number of consecutive compound symbols in ¢ is bounded (by two), whereas in the pre-

vious command there is no upper bound. In Chapter 5 we discuss such distinctions in
more detail.

(End of Example)

Example 2.4.4

We change component sem (cf. Example 2.4.3) into component zsem that has alphabet
{a.b.z) where z indicates that the lead of a’s over b’s equals zero. Hence, TR (zsem)
should satisfy TR(zsem) =T, where T is defined by

al = {a.b,z}
t7 = {tir€la.b,zV* A tMa. b€ tSEM(a,b)A (As: sz $t:1Gra)—1(sb)= 0)}
We propose a component of the form

com zsem(a.b,z):
sub p : zsem bus
S

moc

We first consider command SO of sem: S0 = (a:bia:p-alpb;b)
For S0 the following relations hold.

1eta)—10tb) = (Gl p-a)~1Ctlpb) if t € tTR(S0)

1Gla)=10t8) = [(tlp-a)—1Glp-b)+1 if t € tpref (TR(SON\NLTR(SO)
Inspired by these relations (and noticing that I(e}a ) — I (€[5 )= 0) we propose

S = z%(a;bla:palpb;blpziz)

Computation of f(STOP({a.b.z})). where f is the function associated with zsem,
yields pref (TR (2 *:(a:6)")).

Some more calculations give rise to the conjecture
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tf“(SToP({a.b,z}))) =
{t1zela.b,z* A tM{a.b)€ tSEM, (a.b)
ANAs:szSt:sMa.b}e tSEM,_1(a.b) A I(sla)—1(sb) = 0)}

In view of our computation of TR(sem), the conjunct t/a,b}€EtSEM,(a.b) is not
surprising. The last conjunct, however, is complicated and we use a different way to com-
pute LUB Kk : k& 2 0: f*(STOP({a,b,z}))).

IS

For k., k 2 0, process T, is defined by

aTl,
t7,

{a.b.z}
{tizef{a.b.z}* A tMa.b}€tSEM, (a.b) A (As:sz St:1(sla)—1(slb)=0)}

Then Ty = <{a.b,z}.{z}'> and T, 2 pref (TR(z*:(a;b)*:2*)),
hence,

To & f(STOP({a.b.z]P) C T,
Moreover,

T = (LUBk :k 20:T,)

We prove f(T,)=Ti41-
Let £ 2 0.

Due to the similarity of sem and zsem, we prove only that for all 5,5 € tf(T, ), we
have I(sta)—1I(sb)=0 = sz€tf(T,)
Let s€tf(T,).

Since f(Tx) = p'T, bpref“(TR (58)) we may take w,w € t(p-T, w pref (TR(S))), such
that s = wl{a.b.z}.

Since p+T; and pref (TR(S)) are prefix-closed we assume that w does not end on a com-
pound symbol. Notice that (Property 1.3.3)

w€ t(p-T, wpref(TR(S))) = we€ tpref(TR(S)) A wMp-a.pb,p-z}€ tpT,
We derive

1Gla)~-1Gtp)=0
{s=wMa.b.z}}
Iwla)=Il(wlb)=0
{we€ tpref(TR(S)), hence I(wlp-a)=I(wlp-d) Sl(wla)—1(wlb)}
Lwlp-a)=Iwlp-B)SOA Iwla)—1(wlb)=0
{wMp-a,p-bl€ tSEM, (p-c.p-b)}
Iwlp-a)—l(wlp-b)=0A l(wla)—Il(wlb)=0
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{ structure of S, w does not end in p-z }
{(wlpa)—1{wlpb)=0A we tTR(S)

{wM p-a.p-b,p-z}€ tp-T,, definition of T }
(whMp-a,pb.pzVpz€tpTy A wetTR(S)

{ definition of projection, structure of S }
wp-zzMpa,p-b.pzy€tpTy N wpzz€ tpref(TR(S))

{ definition of weaving }
w p-z z€ t(pT, w pref (TR(S)))

{whMa.b.z}= s, structure of S, w does not end in a compound symbol }
sz € t{p-Ty b pref (TR(S)))

{ definition of f }
sz € tf(T,)

]

L]

[

Hence., f(T )= Ty

Finally. we derive

To & f(STOP({la.b.z2P)) & T,
> { f is monotonic }
(LUBK :k 20: f*(I'g)) € (LUBKk :k 2 1: f*(STOP({a.b.2))))
CLUBL :k 20: f*(T,)
= { 7(T) = T} ,,. definition of zsem }
(LUBZ : & 20:7,) € TR(zsem) € (LUBk :k21:7,)
{ definition of T }
T Q TR(zsem) & T
{ antisymmetry of € }
TR(zsem)=T

(End of Example)

The theory of this section is easily extended to components with more than one subcom-

ponent of the same type and to components with previously defined subcomponents as
well.

E.g.. component ¢ defined by
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com ¢(A4):
sub p.g:¢c.r:d bus
S

moc

has trace structure (LUB k& 1 & 2 0: f*(STOP(A))) where f:T(A) = T(A) is defined
by '
FI) =" pT b gT b rTRW) b pref(TR(S))

Exercises

0. Determine the process of component cat defined by
com cat(a,b):
sub p:cat bus
(a;p-a);a;b:(p-b:b)

moc

1. Derive a component that represents an integer value. The initial value is zero. The
alphabet is {a.b,z} where a denotes an increment by one, b denotes a decrement
by one, and z denotes “the value equals zero'.

2. A binary bag is a component that accepts zeroes and ones. A previously stored zero
or one may be retrieved. Give a formal specification of a process that specifies such a
bag, and derive a component according to that specification.

3. Prove that component sem defined by
com sem{a.b):
sub p : sem bus
a.{pa:alb):lalpb;b))*
moc

has trace structure SEM (2 .5).

4.  Determine the least and the greatest fixpoints of the functions associated with
com c{a.b): sub p:¢c bus § moc

where § is given by

(i) {(a:pa;pb;b)
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Gi) (a:p-a:b:pd)
Gii) (p-a;a:b;p-b)
Gv) (a:b:pa;pb)
(v) (a:b.pb;pa)

(End of Exercises)

2.5 Unique fixpoints of recursive components

In this section we take a closer look at the fixpoints of the function associated with a
directly recursive component. A generalization of the theory of this section can be found
in [11). There is. however, a difference in the lattices that are considered. Let component
¢ be defined by
com c(4):
sub p :¢ bus
M

moc

and let f @ T(A) = T(A) be the associated function, ie.
f(T) = p-Tbpref(TR(SN.

We study conditions under which f has exactly one fixpoint.
First we switch from processes to trace sets. For the sake of brevity we define trace set U/
by U = tpref (TR(S)).

For a fixpoint <A,V > of f we derive

<A,V > isafixpoint of f
{ definition of f }
<A, V> = <p-A.pV>Db pref(TR(S)H
{ Property 2.4.2, definition of U }
<A, V> = <A {tlte€U A tlp-A€p-VIIA>
{ set calculus }
<A V> = <A {tlteU A (Ev:veV elpA=pviila>
fa=4}
V= {tlteU A (Ev:veV:tlpA=pv)ita

]

]

For a non-empty prefix-closed trace set ¥ we define Q (Y ) by
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g(r) = {X1X €Y A X is non-empty and prefix-closed }
(QY). < )is a complete lattice with least element (€} and greatest element Y.

In view of the derivation above we define g : Q{4%) = Q(A*) by
gV) = {t1t€U A (Ev:veV :tlpa =pv)lA

Then the f ollc\\ving property holds.

Property 2.5.0
<A.V> isafixpointof f = V isa fixpointof g
(End of Property)

Inspired by the computations of least fixpoints (cf. Section 2.4) we define another function
h: QW) - QW) which is closely related to f . by

A(W) = {t it eU A(Ew:weW: tlpA=p-(wlA))}

Finally, we define two functions G and H that relate g. h. Q{4 %).and QW ):

G QA" = QW) with G(V) = {tlt€U A (Ev:veV:itlpA=pv))
H: QW) (A" with H(W)= wlA

‘We then have (cf. Figure 2.2)

. 9 .
QUA") et () A}
Property 2.5.1
perty " G y
g=H:G and h =G-H

e
(End of Property) au h awr
Figure 2.2

Property 2.5.2
G and H are upward continuous.
Proof
Let V(i :i 2 0) be an ascending chain in Q(A*). We derive

tEGUU i 20:VQEYD
= { definition of G }
teUA(Ev:ive(UiiZ20:VED:tlpA=pv)



2.5 Unique fixpoints of recursive components 79

{ definition of union } N
t€UAN(Ev:(Ei:i 20:veEVE):tlp-A=pv)
{ predicate calculus }

(Ei:i20:2€U A(Ev:veV():elp-a=pv))
= { definition of G }

(Ei:i 20:teG(VEI)
= { set calculus }
te{UiiZ20:GVED

il

Hence, GH(Ui:i 20:VEN) = (Ui:i 20:G(VEN.

The upward continuity of H is a consequence of Corollary 1.6.5 (projection is upward
continuous).

(End of Proof)
From Property 2.5.1 and Property 2.5.2 we deduce

Property 2.5.3
g and h are upward continuous

(End of Property)
The following theorem shows how the fixpoints of g and h are related.

Theorem 2.5.4

0 Visafixpointof g = G(V)isa fixpoint of h
1 W isafixpointof A = H(W)is a fixpoint of g
2 The poset of fixpoints of g is isomorphic to the poset of fixpoints of A

Proof
0. Assume V isa fixpoint of g. We derive

R(GV))
= { Property 2.5.1 }
G-H{G(V))
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{ Property 2.5.1 }
GV}

{V isa fixpoint of g }
G(v)

1.  Similar

2. Forafixpoint V of g wehave HoG(V) = g(V) = V.
For a fixpoint W of h wehave G- H(W) = h(W) = W.

Hence, G and H are bijections between the fixpoints of g ‘and those of h, the one
being the inverse of the other.

Furthermore (Property 2.5.2). both G and H are monotonic.

(End of Proof)

Since g and A are upward continuous, both have a least fixpoint and a greatest fixpoint
(Knaster-Tarski).

The least fixpoint of h equals (U i :i 2 0: k'({€})) and is denoted by pk. The greatest
fixpoint of h is denoted by vh. Since ph is the greatest lower bound of all fixpoints of
h.wehave uh & vh.

Application of Property 2.5.0 and Theorem 2.5.4 yields

Property 2.5.5
f hasone fixpoint = vh & pkh

(End of Property)

We have now obtained a very nice result. From the text of component ¢ it is clear that
only the structure of command S can play a role. And indeed, we have shown that all
information is in the function k which was defined by (replacing U by tpref (TR(S)))

h: Qtpref(TR(S))) = Q(tpref (TR(S)))
R(W) = {tltctpref(TRSENVA (Ew :weW tlpA = p- (wlA)))

The following theorem has also been proved in [11].
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Theorem 2.5.6

I (Au:u€vh AulA=e:(Ew:wevh :uld =wlA A lwlpA)<Iw}A)))
then f has exactly one fixpoint.

Proof

Assume that the given condition holds (referred to as "assumption’).
We prove by induction on I (ulp-A ) that u €vh 2> u€uh.
The theorem then follows from Property 2.5.5 .

Base ulp-A =¢

From h{{e})= {t it € tpref (TR(S)) A tlp-A = €} we conclude u €A ({€}), and hence,
v€Ui:i 20:R{e}))=uh

Step {{ulp-A)>0
‘We derive

u €vh

{ v is a fixpoint of 2 }
u€h(wh)

{ definitionof 2. u €vh & tpref (TR(S) }
(Ev:vévh ulp-Ad=p (»}A))

{ assumption, I(u}p:4) > O, hence v} A = €}
(Ev:vevh :ulpA=p (VAN (Ew:wevh viA=wla A lwlpA)<Iwla))
> { predicate calculus }

(Ew:wevh ulpA=p WA A Iw]p-A) <iulp-A))
= { induction hypothesis }
Ew:wevh:ulpA=p (wlA) A weun)
fuh © vh}
(Ew:weuh ulp-A =p (wha))
= { definition of h }
u€uh

]

i

(End of Proof)

It is, in general, not easy to compute ¥h. We weaken Theorem 2.5.6 1o a theorem that is
more easily applied. The next theorem can also be found in [20].



82 A program notation

Theorem 2.5.7

I (Au:uetpref (TR(SN:1(ulp-A) €1(u}A)) then f has exactly one fixpoint.
Proof

Assume that the given condition holds. We show that the condition of Theorem 2.5.6
holds as well. We derive
uEvh A uld = ¢
{ calculus }
veévh A (Es,t.a:a€A :u=sat A tl4A =€)

2 { vk is prefix-closed }
(Es.a:a€A :ulA = salA A sae€vh A s€vh)
3> { assumption applied to 5 }

(Es.a:a€A ulA =s5alA A saevh A LGHp-A)YSIGIAY
= {{ property of projection and length }

(Es.a:a€A uld =s5alA A sa€vh A I(salp-A) <l{sala))
= { predicate calculus }

(Ew:wevh uld =wlAd A Iiwlp-A)<I(wlA )

(End of Proof)

Example 2.5.8
Component ex is defined by

com ex(a):
sub p:ex bus
(a:pa)
moc
Component ex satisfies the condition of Theorem 2.5.7 .

Hence, any solution of 77 = p-T b pref (TR((a;p-a)*)) is the least solution of it. We
show that RUN(a) is a solution.

RUN (p-a) b pref (TR ((a:p-a)*))
{ Property 1.4.2.3 }

pref (TR ((a:p-a)XNHa)
{ calcutus }

RUN (a)

It
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Hence, TR(ex) = RUN(a)

(End of Example)

Example 2.5.9

This example demonstrates that the condition of Theorem 2.5.7 is not necessary.
com ex{a,b):
sub p :ex bus
{a:pblpab)

moc

Trace p-a b does not satisfy the requirement of Theorem 2.5.7 .
However, h({€}) = {e.a}. h(le.al) = le.a.p-a.pab} and
hlle,a.p-a.p-a b)) = le.a.pra.prab.apbl = tpref(TR(S))

Hence, uh = vh = tpref (TR(§)): we have exactly one fixpoint.

(End of Example)

Example 2.5.10

This example demonstrates that Theorem 2.5.7 is indeed weaker than Theorem 2.5.6.
com ex(a):
sub :ex bus
{aipa)

moc

The condition of Theorem 2.5.7 is not satisfied: the lead of compound symbols over simple
symbols is unbounded. The greatest fixpoint of A equals RUN(a.p-a) and for all
t.t€tpref (TR(S)), we have tM{al€tpref (TR(S)). Hence, the condition of Theorem
2.5.6 is satisfied and 7R(ex)= RUN(a).

{End of Example)

For a discussion of other forms of recursion we recommend [11].
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Exercises

0. Provethat for g, h, G, and H as defined in this section
D rWHA = gWlA)
(ii) Geg = hoG

1. Prove that component cat defined by
com cat(a.b):
sub p:cat bus
{a:pra);a:b;(p-b:b)*
moc

has a unigue fixpoint, viz. <{a, 3L {t I Em.n:0Sm Sn:t=a"d™)}>.

2. Determine the process of
com rem(a.b):
sub p:rem bus
a:((pra:ald)(alpb:b))*
moc

3. let f: T(A) = T(A) be upward continuous and let 7,7 €7 (A ), be a fixpoint
of f such that

(Ar:retT At e:(Es:setT 1()<IE) A retf(<A,pref{sDH>))
Prove that T is the least fixpoint of f . Apply the above to the recursive component
with alphabet {a,b} and command (a;:p-ala;b|p-b:b)*.

(End of Exercises)
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3 From specification to program text

3.0 Introduction

As we have seen in the previous chapters there are many ways in which a process may be
specified. One may use enumeration, a state graph, a program text or a predicate. A predi-
cate specifies what traces do belong to the trace set of a process, whereas a program text
suggests how the traces of the process may be generated.

In this chapter we formalize the notion of a specification. Furthermore we present some
theorems that are useful in the derivation of a program text from such a specification.

3.1 Specifications

A specification of a process is a pair <A .P> , where A is an alphabet and P is a predi-
cate on A * such that P(e) holds.

Specification <A, P > specifies the process

<A dt1teA*A (As: s St: PG>

Note
Let <A .,P> specify T'. From P(e) weinfere €tT. Forany ¢,t €A", we have

(As:s €St:P(s))
feeAa*}
(As:5St:5€6A* A P(s))
= { calculus, transitivity of € }
(As:s St:s5€A*N(Av:v £s5s:Pv))

Hence, <A, P> specifies a process, i.e. a non-empty prefix-closed trace structure.

(End of Note)

Instead of using a lambda-notation like <4 ,(A¢t :¢ €A™ P(¢))> we use the notation
<A,t:P(t)>.

85
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Example 3.1.0
SEM ((a .b) is specified by <{a.b},2:0€ 1 (t}a)~1(}B) < 1>
SEM{(a.b) is specified by <{a,b)},t:0<(ela)—1(e]b)>
<{a}.t: 1(t)iseven > specifies STOP{a)

(End of Example)

The following property is useful when one wants to enumerate the traces of a process
given by a specification, up to some fixed length.

Property 3.1.1

Let <A ,P > be a specification of . Then 7 is the least solution of
UET(A): (At.a:t€tU A a€A:P(ta) = ta€tlU)

Proof

Forany ¢,t €tT, and symbol a,a € A. we have

t€tT A a€A A Plta)
= { <A.P> specifies T }

(As:s €t : PG A teEA AN a€edA AN P(ta)
= { calculus }

(As:s Sta: PN A taeA®
= { <A.P> specifies T }

ta €tT

Hence, T is a solution of the equation. Let U, U €7 (A), be a solution. By induction on
the length of ¢ we prove that for all ¢,7 €tT, we have £ €t

Base ¢t = €. Since U€7T{(A), wehavee €tl/.

]

Step ¢t = sa witha €A. We derive

sa €tT
= { T is prefix-closed }
s€tT AN a€A A sa€rT
£ { induction hypothesis }
sE€EtU A a€A A sa€tT
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= { <A.P> specifies T }
sE€EtU A a€A A P(sa)

= { U is a solution of the equation }
sa €tU

(End of Proof)

Let 7 be specified by <A ,P>. From the property above we infer that t7 is determined
by the following rules.

(i) eé€tT
(ii) t€tT A a€A A P(ta) = ta€tT

(iii) tT contains no other traces then those that belong to it on account of {i} and

().

Example 3.1.2

The traces of length at most three of the process specified by
<{a.blt:240Gla)—1GIB) <2 >

are €.b.ba .bb,bab ,bba and bbb .

(End of Example)

Property 3.1.3

Let <A, P> beaspecification of . Then T is the greatest solution of
UeT(A): (Ar:retU:Pt))

Proof

We derive

<A ,P> specifies T
> { definition of ‘specifies’ }
(At :tetT:P@))

Hence, T is a solution. Forany U,U € T(A ), we have _

(At tetU:Pt)
= { U is prefix-closed, al/ = A }
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(Ar:tetU:teA* A (As:s €t :P(s))
= { <A .P > specifies T }

(Ar:t€tlU: tesT)
= {alT = alU }

ver

(End of Proof)

We now list some examples that are used in the next sections. All these examples involve
storage and retrieval of zeroes and ones. We use the following symbols.

all :  a zero is stored
al : aone isstored
b0 :  a zero is retrieved
b1 :  aone is retrieved

Example 3.1.4  (bounded bag)
For natural number k& a k-bounded bag is specified by

<l{a0.al . b0.51},¢t: L(t}b0) € 1(z)a0)

A LGter) € 1Glal)

A0S I1(Ma0.al D~ b0, b1 S &
>

(End of Example)

Example 3.1.5  (unbounded bag)
An unbounded bag is specified by
<{a0.al,b0.b61}.t:1(}b0) S 1(tta0) A 1(e1B1) S 1(tlal)>

(End of Example)

Example 3.1.6  (unbounded sorter)

An unbounded sorter is specified by
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<{aD.al.b0.br}t: 1GMO0) S 1(ttal) A 1G1B2) S 1(tal)
A(As:t=sbl 1(stad)=1G100))
>

{End of Example)

Exercises

0. Let <A.P> be a specification. Show that RUN (4 ) is the greatest solution of
UeT(A): (At.a:t€tU A a€A:P(ta) > ta€tl)
Show that STOP(A ) is the least solution of

UeT(A): (At:t€tU:PQi))
1. Specify a & -bounded sorter {cf. Example 3.1.6).

2. Extend the specification of a bag (Example 3.1.5) such that symbol e corresponds to
‘the bag is empty’.

3.  Give a specification of the following mechanisms.
(i) A binary first-in first-out queue.

(ii) The mechanism accepts a series of zeroes followed by a one, after which it
delivers the same number of zeroes followed by a one.

(iii} The mechanism generates any sequence of a’s, &'s, and ¢’s in which no two
adjacent symbols are equal.

(iv) The mechanism generates the sequence of positive numbers as follows. First one
a is generated, then two a’s are generated, and so on. Between each sequence of
a’s a b is generated. Typical traces are a, aba, and abaabaaaba .

(v) The mechanism represents a natural number, initially zero. Possible events are
% : increment value by one (up) k
d : decrement value by one (down)

z : the value equals zero (zero)

(vi) The same as (v) but now negative values are allowed: the mechanism represents
an integer.

(End of Exercises)
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3.2 The Conjunction-Weave Rule

In this section we investigate the relation between processes and their weave, in terms of
specifications. Our first theorem is called the Conjunction-Weave Rule, abbreviated as
CW-rule.

Theorem 3.2.0 (CW-rule)

lLet <A,P> and <B,(Q > be specifications of processes T and U/ respectively. Then
7 w U is specified by

<AUB,t:PlA)YA QUIB) >
Proof

<AUB,t:PGtA) A QUIB)> is a specification, since

P(elAa) A Q(elB)
{ definition of projection }
P(e) A Q(e)
{<A.P> and <B.Q > are specifications }

irue

l

Furthermore, a{7 wi/)= AU Z and forany ¢.t €(4 U B)*, we have

tet(FwU)

" { definition of weaving }
t}]A€tT A tIBELl

{ <A.P> specifies T and <B.( > specifies U }

(As s StfA:PGNA (As:s SelB:QGY
= { Property 1.1.4.3 }

(As:s €t PGMANA (As: s €:0GIBY
= { predicate calculus }

(As:s €t:PGLAYA QGIBY)

(End of Proof)

Example 3.2.1
An unbounded bag is specified by
<{a0.al b0 ,b1),t:1G150) < 1@la0) A 2t1) <1 (ttal )>
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We derive component bag such that TR{(bag) is the process specified above. From the
specification of SEM{a.b), viz <{a.blt:1(!b)<€(t;a)>, and the CW-rule we
infer

TR{bag} = SEM(a0 .b0) w SEM(al . b1)
Since {a0,b0)N{al.b1) = @&, we may replace this weave by a blend:
TR{bag) = SEM(a0,b0) b SEM(al ,bl)

These observations lead to the following solution in which sem is the component of
Example 2.4.3 .
com bag (a0 ,al .50 .51):
sub p.g :sem bus
[pra=a0,pb=0b0,g9a=al,gb=bl]
€

moc

(End of Example)

In the example above we replaced a weave by a blend which is allowed on account of Pro-
perty 1.4.0 . The following theorem. also called the Composition Rule, shows a more gen-
eral method.

Theorem 3.2.2  (Composition Rule)

Let ¢ and d be components with alphabets A and B respectively.
let AUB = {xq,...,x,-3} and let component ¢d be defined by

com cd(AUB):
sub p:c.g:d bus

(So) -~ 18,
moc
wherefor i, 0€i<n, § = px;ix; if x; €A\B
S; = g rx; i x; ifx,GB\A
S, = px;gxix; fx;€EANB

Then TR(cd) = TR{c)w TR(d)

Proof

The alphabets of TR(cd ) and TR(c)w TR{d ) are equal, viz. A U B. Let S denote the
command of ed. We compute
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TR(ed)
= { definition of the process of a component |
(p-TR(c)w q-TR(d ) w pref (TR(S))NA UB)
{ structure of §. compound symbols are removed by (A UB)}
(p-TR(c)w g-TR(d)wW TR(S3MA UB)

From the structure of S we infer

thTR(S'\) 2 tlpAsp(lAYA tlgB =g (}B)

Hence,

t€t(p-TR(c)wgqg-TR(d)w TR(S))

> { definition of weaving }
ttp-A€tp-TR(c) A tlg-B€tg-TR(d) A t €tTR(S)
= { structure of S, see above }

t}pA€tpTR(c) A tlg-Betg-TR{dI A t}p-A = p-lA) A t}qg-B =g (}B)
> { substitution }

p-(ttAdEp-tTR(c) A ¢- G BYEG tTR(d)
= { definition of p- }

t!A€tTR(c) A t!BE€tTR(d)

Together with our computation of TR (ed ) this yields
TR(ed) & TR(c)wTR(d)

We are left with the proof obligation t(TR{(c)w TR(d)) © tTR{cd ).
This is done by constructing a function k from t(TR(c)w TR{d)) into
t(pTR(c)w q-TR(d )W pref (TR(S))) such that h{(t )} (A UB) = ¢

h is defined inductively by
hie) = €
h{ta) = h(t)paa if a€A\B
h(ta) = h{t)g-aa if a€B\A
h(ta) = h{t)pagaa if a€ANB

Then, evidently, h (£ )€t (p-TR(c)w q-TR{d)w pref (TR(S))) and h(z)/[(AUB)=1.

(End of Proof)
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Example 3.2.3
A k -bounded bag is specified by
<l{a0,al .b0,b1},¢: 0K1(zta0)—1(t100)Y <k
ANOSIGlal)—1(ttb1) Sk
AOLIeMa0,alD—tMb0. 8ISk
>

For component bag, that satisfies this specification, we have, according to the CW-rule
TR (bag, ) = SEM, (a0 .b0)w SEM,(al .b1)w SEM, ({a0 ,al }.{30.b1})
A component for SEM,(a.b) is given by sem, (Example 2.3.6).
A component for SEM, ({a0.al},{50.51}) is given by csem; (Example 2.3.7).
Application of the Composition Rule yields a program with 3 subcomponents:
com bag, (a0 ,al b0 .b1):
sub p.g : sem,.r :csem, bus
(p-a,r-ald ;a0 ipb,rb0:b0 g-a.r-al;al lqb,r-bl;bl)

moc

From the text of csem; in Example 2.3.7 we infer that the following component satisfies
the specification as well.

com bag; (a0 ,al .b0,b1):
sub p.q.r : sem; bus
(p-a,r-a:a0 1 p-b,r-b:b0 q-a.r-a;al igb,rb:b1)

moc

(End of Example)

Example 3.2.4
A sorter is specified by

<{a0,al.b0,b1}t: 0SS 1(tta0)—1(t}b0)
AOSI(etal)—10tB1)

A(As:t=sbl 1(sla0)=1(s}B0Y
>

The last conjunct expresses that a one may be retrieved only if there is no zero to be
retrieved.
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In Example 2.4.4 we derived component zsem, that has specification:
<ta.b.z}bt:0€1Gla)~1G!BYA (As it =sz:1(sta)—1(s]b)=0)>
which is - apart from renaming - expressed by the first and the third conjunct of the
specification of sorter.
The second conjunct specifies SEM (al .b1). This yields component sorter given by
com sorter (a0 .al b0 .b1):
sub px zsem, g : sem bus
(pra:a0 lp-b:b0)p-z.qg-b:bllg-asal )

moc

(End of Example)

Exercises

0. » Derive component nodup specified by
<{a,b.cht :(Au,v:it=uava Vt=ubvb V t =ucve :v # €)>

1. Component ebag is an unbounded bag that has additional symbol e to denote the
emptiness of the bag. Give a specification for ebag and derive a program text from
that specification.

2.  Construct components that have {a.b} as their alphabet and that have as
specification predicate:

() teta)=0

Gi) 1Geta)=10:18)

Gii) {eta)=0V IGtb)=0
Gv) Gla) SIEMBYSS

(v) 1Gta)-1Gtb)<9

(vi) ela)+20elB) €5

3. Derive a program for a bounded sorter.

4, Component ¢ has alphabet A, A = {aq,...,a,-1}. and component d has alphabet
B,B= {bo, e :bn-*l}'
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Component ¢d is defined by

com cd{AUB):
sub p:c.g:d bus

(P"loi‘loi e ‘P'am—l;am-l)*
.(Q‘bolbol st lt}'én_llbn_l)*
moc

{ A N B is not necessarily empty )

Prove that TR(cd) = TR{c)w TR{d). Compute TR{cd) if the comma in the
command is replaced by a bar. Compute 7R (cd ) if the comma in the command is
replaced by a semicolon.

(End of Exercises)

3.3 The Conjunction-Blend Rule

In this section we consider an analogue of the CW-rule for the blending operator. It will
turn out that the analogue is too complicated to be useful. The main purpose of this sec-
tion is to show the source of the complications. Since blending equals weaving followed
by projection, we first consider the projection operator.

Property 3.3.0

let <A ,P> bea specification of process T, and let B be an alphabet. Then
<ANB. t:(Eu:u€A™ A (Av:v Su: Pt =ulB)>
specifies 7B .

Proof
a(TB)=AMNBEB.and forany t.t €(A NB)". we have

tetTlB
= { T} B is prefix-closed }
(As:s £t:5€tTIB)
= { definition of projection }
(As:s€t:(Bu:u€tl :s=ulB))
{<A.P> specifies T }
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(As 5SSt (Bu:u€A"A(Av:v Su:P)):s=ulB))
{End of Proof)

The predicate £ : (As:s €t :(Eu:u€A A (Av:v €u:PH)):s=ulB)) does not
look very attractive. One might hope that the simpler one given by

t-(As s €t (Bu:u€A* AN Plu):s =ulB))

would describe t7]B as well. Unfortunately, this is in general not true as the following
example demonstrates.

Example 3.3.1
Process T is specified by <{a.b},P> where

Pit) = t=€eV (Ew:wela.b)*: 1t = wa).
Then 7 = <la.b}l.la}*> and T1b = <{b}.le}>

Fo;:any n.n 20, wehave 8" = (b%a)lb. Hence,

<{blt:(Bu:uela,b}* A Pu):t = ulb)> specifies <{&},{b1*>.

We conclude that the specifications

<{bLt:(Bu:u€la.bA (Av:v €u:PW):t =ulB)> and
<{bhLt:(Bu:uela,b®A Plu):t =ulB)>

specify different processes.

(End of Example)
Combining Property 3.3.0 and the CW-rule yields

Theorem 3.3.2  (CB-rule)

et <A,.P> and <B.Q > be specifications of 7 and U respectively. Then
<A+B.t:(BEu:uc(AUBY A (Av:v Su:POIA)A QOB it =ul(A+B))>
specifies T b U .

(End of Theorem)

The CB-rule is not useful when deriving programs from a specification. It shows how
difficult the relation between components and their blend can be. Moreover, it is the
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projection that should be blamed for it.

Exercises

0. Determine a specification of SEMj(a.b) using the CB-rule and
SEM;(Q .b) = SEMl(a .C)b SEMl(C,b ).

1. For symbols a0l.al b0 .bI and for integer &,k Z 1, process BAG, (a0 .al b0 .b1)
has alphabet {a0 ,af .50 ,b1} and trace set

{tit€la0.al BOBIY AN (As: s €t: 0SI(sPad)—1(s100) € &

A 0SIGlal)~1GtarY SR

A 0SI(sMa0.al PD—1(sM{b0.51}) <& )}
Prove thatforall k and n.k 2 1A n 2 1:
BAG, (a0 ,al b0 b1 )b BAG, (60 .b1.c0.cl) % BAG, ., (a0 .al.c0,¢l)

(End of Exercises)

3.4 Context-free grammars

A trace structure T may be viewed as a language tT over alphabet a7, cf. [6]. One may
wonder what kind of languages are generated by components. Some research on this topic
can be found in [11]. In this section we show how a component can be constructed whose
trace set corresponds to a language given by a context-free grammar. We first give an
informal introduction to context-free grammars. For a detailed treatment we recommend

{6

A context-free grammar G is a quadruple, G = <A ,N.S,P>, where

A is an alphabet. the set of tefminals,

N is an alphabet. the set of non-ferminals ANN = O,

S is an element of N, the start symbol,

P is a finite subset of N X(A UN)", the set of production rules

The relation ~+ on (A UN) isdefinedby (a.B.v€(AUN) and XEN)
aXB = avB if (X.v)eP
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The & -fold composition of — is denoted by % |

The reflexive and transitive closure of — is denoted by 5 .

The language of grammar G . denoted by L (G ), is defined by

LG)= {viveA* A S v}
Informally, a trace £ € A" is an element of L (G ) if it can be obtained by means of a sys-
tematic rewri{\i'ng process on elements of (A U N )* that begins with start symbol § and in

which repeatedly a left-hand part of a production rule is replaced by a right-hand part
until no non-terminal remains.

let G, G = <A.N.S,.P>, beacontext-free grammar.

In general, L (G ) is not prefix-closed.

We construct component g with alphabet A U {J/}, where / (pronounced as ‘tick') is a
fresh symbol, and

teL(G) = tJ€tTR(g)

Since L(G) = {r 1t€(AUN) A §5 t}NA* we first construct component A, which
has trace structure

<AUNUIVLpreflUt 1Euw v €e(AUNY A S D vt =ud)D)>
Then g with aTR{g)=AU{J/} and tTR(g) = tTR(A)IN{A U{J}])® satisfies our
requirements.

Since the intersection of processes with equal alphabets is equal to the weave of these
processes, we have

TR(g) = (TR(A)w <AUNUJLAU{YD*>)MAUYD

The projection on A U {{/} is needed to get rid of the non-terminals in the alphabet of the
weave. This projection can be obtained (Property 1.4.2.3) by a blend :

TR(g) = (TRRIwW <AUNUJLUAUI/ID*>)bRUN(N)

let A=1lag,....aqu-1} N={X,, L X._1t,and P={Py, ... P4}
Component k is given by
com A(AUNU{/D:
sub p : & bus

SV (Col - 1C Dol - IDy g VEgl -~ VE,_JNp- i
moc
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where § is the start symbol of G,

C,.0€i<k.correspondsto P;:if P, = (X, " @,.;) then
C, = P'XCQ'QZ R <

D; = p-aja; for0€i<m,

E = pX;:X;, for0<i<n.

Command C; corresponds to the application of production P;.

Command D; corresponds to copying terminal aq;.
Command E; corresponds to copying nonterminal X;. -

Let f denote the function associated with component A. Then
tf(STOP(AUNU{J/D)=(e.S. SV} . and for k£, & 20,

prefllct 1 (Eu - u€(AUNYASS S uit=ud)) C L *(STOP(AUNU{J])) and
tfAPUSTOPLAUNUID) C pref({t HEu :u€(AUNY A SB yu:t=u i)

Hence,

TR(h) = <AUNU{JLprefUrt1(BEu:u€(AUNY A SS uit=udl)>

We now have to realize components ¢ and d such that
TR(c) = <AUNU{/L@AU{YD*> and TR(d)= RUN(N).
Component d is defined by

com d(N): (Xol -+ 1X,.,)" moc
Component ¢ is defined by
com c(AUNU{J/D:
{agl - tap 4l V)
| (XOI Xo). Xo. " ,(X,,_l:X,._l),X,t-,
moc

The part (XX Xg. (X, —1:X,-1). X,_y has been added to include N in the
alphabet of ¢. (It may be omitted if the requirement “the alphabet of the command equals
the alphabet of the component’ is weakened to “the alphabet of the command is a subset of
the alphabet of the component’)

We now have components A, ¢, and d, such that

TR(g) = (IR(A) w7TR{(c)) bTR{d)
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Using the Composition Rule one can easily construct g.

Example 3.4.0
let G = <{a.,b}L{5}.S.{S = a., S — bSS}>. Then h is given by
com h(a.b,.5.J):

sub p* h bus
S:J1{p-S:alp8:b:8:8ipaialpb:blpS:8)Vip-J:V
moc

Components ¢ and d are given by

com cla.b./.8): @alb1J)1(5:5).5 moc
com d(8): S§* moc

Component hc is defined as
com hela.b,J,5):
sub p:h.q :c bus
(p-a.ga;alpb,gbblp-J.gJ:J|pS.qg-8:8)
moc

According to the Composition Rule we have TR(hc) = TR(h)w TR(c).

The ultimate component g is given by
com gla.b,v):
sub p:hc.g:d bus

[pra=a.pb =b.p'/\z“= J.pS=g58]
moc

(End of Example)
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Exercises

0. Let G = <{a.bL{8}.5.{S—=a, 85— 555}>,cf. Example 3.4.0. Consider com-
ponent g defined by

com gla.b,J):
sub p : g bus
a;J
{ (praialp-a;bia.alpb:b).p-J:J
moc

Show that g corresponds to L{(G ).

1. An unbounded stack of binary values can be specified by grammar G with
alphabet : {a0.al.b0.b1}:
N: {8}
P: {S—>e€ S~+alSB0S. S—»alSbIS}:
start symbol: §

Derive a component that corresponds to L{G ).

(End of Exercises)
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4,0 Introduction

Deadlock is a well-known phenomenon in the domain of concurrent processes. cf. [2] It
is usually explained in terms of shared resources. We illustrate deadlock by the following
example.

Component c0 has alphabet {a0 .50, p0.90,e0, f0}. The meaning of the symbols is as
follows.

a0 : acquire resource A
b0 : release resource A
p0 : acquire resource P
g0 : release resource P
el : initiation of a computation using resources A and P
fO : termination of the computation initiated by e0
Component ¢l has alphabet {al b7, pl ,ql ,el, f1}. The symbols have the san:{e meaning
as the corresponding symbols of component ¢0.
Furthermore, we have components exA and exP that guarantee mutual exclusion in the
use of A and P respectively. The components are given by
com c0(a0.50.p0.90.e0.f0): (a0;p0:e0: f0:50:90)° moc
com cl{al ,bl,pl ql.el,f1): (pl.al;el;fl;q1;b1)" moc
com exA(a0.al.b0.b1): (a0:b0 lal:b1)* moc
com exP{(p0.pl.q0.91): (p0;:q01pl;q1)" moc
We consider the composite U of these components:
U = TR(cO)w TR(cl)w TR(exA)w TR(exP)
Typical traces of tU are
a0 p0 e0 fO b0 q0 pl al el f1 4l b1
a0 p0 e0 f0 b0 q0 a0 p0 0
a0 pl

102
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The last one, afpl, has no extension in t{/: from the command of ¢0 we infer that p0 is
the only candidate of the set {a0 .50, p0.90.¢0, f0} and extension with p0 is not in
accordance with exP. A similar argument shows that none of the elements of
lal.b1.pl.q1.el, f1} are possible as an extension of aOpl.

For each component, however, the projection of a0pl on the alphabet of that component
may be extended (with respect to that component). Phrased differently : the composite
has terminated whereas none of the subcomponents have terminatéed. We say that the
system is in a deadlock.

In the next sections we give a formalization of deadlock and we derive properties thereof.

4.1 Lock
In Section 1.2 we discussed a mechanistic appreciation of processes. For a set X of
processes we have

¢ is the trace thus far generated with respectto (W7 :T€X : T)

(AT :T€X: tlaT is the trace thus far generated with respect to T )
For process 7 and trace t,t €tT, we define the successor set of t with respect to T,
denoted by §{(t.T), by

S.T) = lala€al A ta€tT}

Let T bea process and let ¢ be the trace thus far generated with respect to the mechanism
described by T. If S(¢,7)=@, we say that the mechanism has terminated. If
S(¢.T)% @, the mechanism eventually gets involved in a next event thereby extending
t with the symbol associated with that event.

We call T a non-terminating process if
(Az:tetT:5:.T)= @)

Notice that the negation of non-terminating is ‘may terminate’.

Property 4.1.0

Let 7 be a process and let s and ¢ be elements of t7. Then
s~t > S§(s,T)=S8@.T)

(End of Property)

Due to the last property we may extend the notion of successor set from traces to states.
Then S([¢17)=S(.T)forall £, ¢€tT.



104 Deadlock

Property 4.1.1

Let 7 be a process. 7 is a non-terminating process if and only if each node of the
state graph of T has an outgoing arc.

(End of Property)

In the sequel 1X is a set of processesand U = (W T :T€X :T).

Property 4.1.2
(AT:TeX: :Sta7.T)=0) » SE.U)=@

Proof
We derive

SC.U)=@
= { definition of successor set }
(Ea:a€al/:tactl)
= { predicate calculus, all = (U T:T€X :aT) )
(ET:T€X : (Ea:a€al :ta€tlU}))
> (U =(WTI:Tex:T))}
(ETr:Te€eX:(Ea:a€al:talal €tT))
= { definition of projection }
(ET:TeX:(Ea:a€al:(t}aT)a€tl))
{ definition of successor set }
(ET:7€X:8GlaT.T)= o)

L]

(End of Proof)

For t,t €tU, we define lock{t .X ) by
lock(t . X) = SG.U)=@ AN ET :TeEX :Stlar.7)= @)

lockfree (X ) is defined by
lockfree(X) = (At t€tU : =lock(t. X))

If =lockfree (X) holds, we say that X has danger of lock.
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Property 4.1.3

0 lockfree (@)
1 lockfree ({T'}) for any process T

(End of Property)

Property 4.1.4
lockfree(X) = (At:c€tlU: SG.U)=@ = (AT :T€X:S¢lal.T)=2))

Proof

We derive

lockfree (X )
= { definition of lockfree }
(At:zetl: -lock (. X))
= { definition of lock , predicate calculus }
(Ar:tetl:SEU)= @V (AT :TeX :S¢al . T)=2))
= { predicate calculus }
(Ar:t€wW:SG¢.U)=0 = (AT:TeX:Stlal.T)=@))
{ Property 4.1.2 }
(At:tetU: S U)=@

Il

(AT :TeX:SGtaT.T)=2))

(End of Proof)

Property 4.1.4 may be phrased as

“The composite of a set of mechanisms has no danger of lock” and
“The composite has terminated if and only if all composing parts have terminated’

are equivalent.

Theorem 4.1.5

Let X beasetof processesand let U=(W T :T€X :T).
Let for V,V €X, V denotes the process (WT :T€X A T 5 V:T).
Then

lockfree(X) = (AT :T€X :lockfree({T.T}1)
Proof

Forany T, T€X,and ¢.¢ €tl, we have
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(AV:veX :5¢tav.V)=8)

> { predicate calculus }
(AV:VEX AV = T:5¢laV.V)=2)

> { Property 4.1.2 with U replaced by T and X replaced by X\{T}}
s¢lal.7)=@

Hence,

(AT :TeX:S¢lal.T)=9) = (AT:Te€X:Stlal.T)=2) ®

We derive

(AT :T€X :lockfree({T.T}))
{ Property 4.1.4 applied to {T.7}}

(AT:TeX: (Ar:retU :S¢.U)=0 = StlaT.T)=@ A S¢1af.F)=8))
{ Property 4.1.2 }

(AT:Te€X: (At :t €tV :SE.U)=0 > Stlal.T)=@ A Sttal.7)=@))
{ predicate calculus }

(At:tetU S, Ud=0 > (AT:Te€X:5¢laZ7.T)=@)

AAT:TeX:S¢tlaT.T)=2))

= {(*)}

(At:tetU:SE.U)=@ = (AT:TeX:5¢lal.T)=0)
{ Property 4.1.2 }
(At :tetU S U)=w
{ Property 4.1.4 }

lockfree (X )

(AT:TeX:S¢laT.T)=0))

]

(End of Proof)

A consequence of Theorem 4.1.5 is :

a system that has danger of lock with respect to its components can always be cut
into two parts such that the system has danger of lock with respect to these two
parts.

Example 4.1.6

Consider components ¢0,cl,exA , and exP that were introduced in Section 4.0 :
com c0(a0,50.p0.q0,e0,f0): (a0:p0:e0:f0:60:40)" moc
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com cl(al .bi.pl.ql.el.fl): (pl.al:el:fl:ql:61) moc

com exA{a0.al b0 .b1): (a0;b0 al:bl)" moc
com exP(p0.pl.q0.91): (p0:g0 tpligl) moc

Let X = {TR(c0),TR(c?),TR{exA ), TR(exP)} andlet U=(WT:T€X:T).
Then alpl €tU, S(a0pl . U)=@ and S{a0pi}aTR(c0).TR(cO) = 3. .
Hence, lock (a0pl ,X ) and also

lock (aOpl ,{ TR(c0 ), TR(cl1)w TR (exA ) w TR (exP)}),

Notice, that lockfree ({ TR(c1), TR (exA ). TR {(exP)}).

(End of Example)

The next theorem shows how larger lockfree systems can be built from smaller ones.

Theorem 4.1.7

Iet X and Y be sets of processes. Let U=(WT:T€X:T) and let
V=(WT:T€Y:T) Then

lockfree (X ) A lockfree(Y) N lockfree ({U.V)) = lockfree(X UY)

Proof

Assume lockfree(X ) A lockfree(Y) A lockfree({U/,V}). For any ¢, t€t(U w V), we
derive

SG.UwV)=@
{ Property 4.1.4, lockfree ({U ., V1) }
SGhaU, U)=2 A SGtaV.V)=0
{ Property 4.1.4, lockfree (X' ) and lockfree{Y) }
(AT:TeX :StlaUtaT.T)=@)A (AT:TeY ::StlaviaT,.T)=2)
{T€X impliesa7” & alU, T €Y impliecsaZ & aV }
(AT:T€X:5¢taT. T)=@)A (AT :T€Y :SGtlal . T)= @)
= { predicate calculus |
(AT:TeXUY:Sttal.T)=@)

il

Application of Property 4.1.4 yields lockfree(X UY)

(End of Proof)
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In general, the converse of Theorem 4.1.7 does not hold, as the following example shows.

Example 4.1.8
Components ¢0, cl and ¢2 are defined by
com ¢0{a.b): (a*15*) moc
com c/{a.b): (a*15) moc
com c2{(e.b): a*i5.(b:b) moc (TR(c2)= <la.b}{a)*>)
Then 7TR{cO)w TR(cl1)wTR(c2) = <{a,blL{al*>.Forall t.z€{a}", we have
S.<la.bhial>)={al= @
Hence, lockfree ({TR(c0).TR(c1).TR(c2)}).

We have b €t(TR(cO)w TR(cl)), S .TR(O)w TR(cI) =@,
and S(b,TR(c0)) = {b} = @. Hence, ~lockfree ({TR(c0).TR (cl)}).

We conclude

lockfree ({ TR{c0), TR (c1).TR(c2)}) A ~lockfree ({TR(c0),TR(cl)})

(End of Example)

Most mechanisms, such as bags, queues. and stacks, correspond to non-terminating
processes. In general, we are not interested in mechanisms that may terminate. Notice that
for U= (WT:T€X:T) we have

U is non-terminating = lockfree(X)

In the next section we define deadlock. In general, the implication above does not hold for
deadlock.

Exercises

0. T and U are non-terminating processes such that aZ Nal contains at most one ele-
ment. Prove that T w U is also non-terminating.

1. T isa process. Prove lockfree ({T.STOPD).
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2.  Prove that for any set X of processes:
lockfree (X}
= (AY:Y S X lockfree({(WT:TeY:T).(WT:TexX\Y:T)D)

3. T isa process and a is a symbol. Prove

lockfree ({T . STOP(a)}) = (At:r€tT:SE.T)=={a))

4. Components c¢0,c/ ,exA, and exP are defined as in Example 4.1.6 .
Let T = TR(cO)bTR(exA )b I'R{exP). Determine the state graph of T. Deter-
mine also the state graph of T b TR{cl). What are your conclusions ?

5. Component ex is defined by
com ex(a,b,c):
sub p.g :sem; bus
(p-a:alpb.ga:blgb;ec)
moc
Show that TR(ex) = SEM,(a.b)w SEM (& .c). Let § denote the command of
ex.
Determine lockfree (| p-SEM (a.b),g-SEM (b .c), pref (TR(S D

(End of Exercises)

4.2 Deadlock

In Section 4.0 we considered components cJ,c/,exA , and exP, defined by
com 0 (a0 ,b0,.p0.90.,e0,f0): (al;p0:e0; fO:50:90)* moc
com cllal bl.pl.ql.el. f1): (pl:al:el; fl:q1:b1) moc
com exA (a0 ,al ,b0.b1): (a0:b01al:bl) moc
com exP (p0,pl.q0.q91): (p0:q01p1:41) moc

Let X = (TR(c0),TR(c?).TR(exA ). TR(exP)} andlet U=(WT:T€X:T).
Then =lockfree (X).
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Let y be a symbol. We add RUN(y) to these processes. Forany ¢.¢ € t(U w RUN(y)),
we have ty €t{U w RUN(y)). Hence, U w RUN(y) is a non-terminating process, from
which we infer

lockfree (X U {RUN (y)})

Nevertheless, the mechanism described by the weave of these five processes has danger of
deadlock in the usual sense of the word. These observations lead to the following
definition.

For a set X of processes deadlockfree(X ) is defined by
deadiockfree (X} = (AY :Y € X :lockfree(Y ))

If ~deadlockfree (X ) holds, we say that X has danger of deadlock.

" Property 4.2.0
deadlockfree(X) = (AY :Y Q X : deadlockfree(Y))

{End of Property)

Property 4.2.1

For processes I' and U we have
0 deadlockfree({T .U = lockfree(IT.U})
1 T wU is non-terminating 2 deadlockfree({T .U}

(End of Property)

Property 4.2.2

Let T and U be non-terminating processes such that aT Nal contains at most one
element. Then deadlockfree ({T.U}).

Proof

Let t€t(Z wU), then tlaT €T and tlaU€tl. Since T and U are non-terminating,
we can choose a,a €aT, and b,b €al, such that (z[aT)a €tT and (tlaUdbetl.
Since a7 NalU contains at most one element, we have three cases.

(i) a=2bd

(ii) a€ al

(iii) b¢ aT
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In case (i) we have ta €t(T w U ), in case (ii) we have ta € t(T w U ), and in case (iii) we
have tb €t(T wU).

Hence, T w U is non-terminating.
Application of Property 4.2.1.1 yields deadlockfree ({T ,U}).

(End of Proof)

We do not have an analogue of Theorem 4.1.5 that holds for deadlockfree. If X has n
elements, then P(X) has 2" elements. and to assure deadlockfree(X ) requires in the
worst case 2" investigations. Notice that lockfree (X ) requires only n investigations.

A similar conclusion holds for Theorem 4.1.7 .

The best we can prove is the following.

Theorem 4.2.3‘

Let X be a set of processes such that deadlockfree(X) holds, and let V be a process.
Then

(AY:Y © X :lockfree({V ,(WT :TEY :T))) = deadlockfree(X U{V})

Proof R

We derive

(AY:Y € X :lockfre ({V,(WT:TeYy :TH1))
{ Property 4.1.3.1 }
(AY 1Y C X :lockfree({ V)] A lockfree {V,(WT :T€Y :TO}))
{ deadlockfree(X )}
(AY :Y S X :lockfree(Y ) A lockfree ({V}) A lockfree({(V.(W T :T€Y :T)D))
> { Theorem 4.1.7-} .
(AY :Y € X :lockfree(Y U{V}))
= { deadlockfree(X ) }
(AY : Y C XU{V}:lockfree(Y))
= { definition of deadlockfree )
deadlockfree (X U{V}])

(End of Proof)
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An even more serious problem is the following. We consider again components
c0,cl,exA , and exP.

Figure 4.0 shows the state graph of TR(cO)w TR(exA)w I'R(exP). Projection on
{e0. f0.al.b1,pl g1} yields the blend, the state graph of which is shown in Figure 4.1 .

Apparently, we have deadiockfree ({ TR(c0)b TR{(exA )b TR(exP).TR{cl)}). The state
graph of the blend of the four processes is shown in Figure 4.2 . Evidently, all information
about deadlock has disappeared.

From Figure 4.2 one concludes that initially e} is possible. However. internal evenis a0
and pl bring the system to a grinding halt (as explained in Section 4.0).

It looks as if we have lost our hierarchical way of composing. It seems that. in order to
avoid deadlock, one has to keep track of the internal structure of the components.

In Chapter 5, we cope with problems like these. We give conditions under which the
situation described above does not occur.
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Finally we define deadlockfree for components. Let component ¢ be defined by

com c(A):
sub pyiey, ..., proyicn—) bus
[x0= 30 X1 ™ Y]
S

moc

Then TR(c) = T'A where

T = (Wi:0€i<n:(p-TR(c;),% ;2 1) w pref (TR(S))

,,,,,

Let X be the set consisting of all (p;*TR(c; ));::ff::::_‘l‘ .0€i<n,and pref(TR(S)).

We call ¢ deadlockfree if deadlockfree(X) holds.

Exercises

0. Determine which of the following sets of processes are deadlockfree.
(1) {SEM (a.b).SEM (b .c),SEM(c.d)}
(i) {SEM(a.b).SEM(b.c),SEM (c.a}}
(iii) {SYNC,;(a.b), SEM(a.b), STOP }
(iv) {8TOP(a),STOP(b),RUN(a.c)}

1. Provide counterexamples for the following conjectures.

(i) deadlockfree(X) A deadlockfree({V,(WT :T€X :T)}
= deadlockfree(X U{V})

(i) deadlockfree(X) A (AT :T €X : deadlockfree({T.V])
= deadlockfree(X U{V})

2. X is a set of processes. For '€ X we define disabled (T .X ) by

disabled (T ,X) = (Et cetl :SGPal . T)= @ A (As:ts€tl :SUs, UlNal = @)
where U=(WT:T€X:T)

disablefree (X ) is defined by disablefree(X) = (AT :T€X : ~disabled (I' . X))

Derive properties of disablefree that are similar to the properties of lockfree and
deadlockfree .

(End of Exercises)



§ Livelock and nondeterminism

5.0 Introduction

Let 7 and U be processes. As explained in Section 1.4 we view I b U as the specification
of the composite of the mechanisms specified by 7 and U respectively. This composite
behaves accordingto T w U .

Symbols of a7 Nal are called internal symbols. They correspond to internal events.
Symbols of al’ + all are called external symbols. They correspond to external events,
The blend of 7 and U does not contain any information about the internal events.

In this chapter we have the following assumption about the behaviour of a composite.

“The internal events occur automatically and instantaneously as
soon as they can, without being observed or controlled by the
environment of the process.’

C.A.R. Hoare [8, section 3.5}

Consider processes I’ and U defined by
T = pref (TR((a:x 15:y)")) and U = pref (TR((a:x "))
Then TbU = pref (TR(U(B;y )Y

From T b U one concludes that the composite eventually gets involved in event 5. How-
ever, whenever event & can occur, internal events are possible and, according to our
assumption, an internal event will happen. It is not guaranteed that & will ever happen.

This phenomenon is called livelock. (It is also known as infinite chatter or as diver-
gence ). The behaviour of the composite is not in accordance with T bU.

The phenomenon of nondeterminism is illustrated by the following example.

Let T= <{a.b,x,y).{€.x,xa.y.yb}>. Then TbRUN(x.y)= <{a.bl.li€c.a,b}>.
From 7 b RUN (x.y) one may infer that either @ or b may happen initially. From our
assumption, however, we conclude that either x or y will occur instantaneously after
which a is not possible any more or b is not possible any more. This is not reflected in
<{a.b}.{e.a.b}>. We say that the composite of T and RUN(x,y) has (internal)
nondeterminism.

114
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In the sequel we study conditions under which we can guarantee the blend of processes to
be a proper specification of the composite of the corresponding mechanisms.

Since livelock and nondeterminism arise when certain events are concealed, we first study
the relation between the mechanism described by a process 7 and the mechanism
described by T1B.where B is a subset of al. Notice that 7B =T b RUN{(aT\B).

In examples a process T is sometimes specified by a command S.
Then T = pref (TR(S)).

Processes are also specified by state graphs. Unless stated otherwise, the alphabet of the
corresponding process consists of all labels that occur in the state graph.

5.1 Livelxk

For process T and subset B of al’ we define livelock (B.T ) and livelockfree (B .T ) by
livelock(B,T) = (Et:t€tT:(An:n 20:(Bu:u€B*A wetT :l(w)>n)))
livelockfree (B, T) = =livelock(B.T)

If T is obvious from the context we omit 7 and write livelock (B ) and livelockfree (B ).

Applying Kénig's Lemma (cf. [10]) vields

Property 5.1.0

Let T be a process with a finite alphabet, and let B be a subset of a7 such that
livelock (B ) holds. -

Then there exists a trace ¢,f€tT, and an infinite sequence 5(i :7 2 0) such that
(Ai:i 20:5()€B) and such that all finite prefixes of #b(i :i 2 0) belongtotl.

(End of Property)

Property 5.1.1

For process T and subsets A and B of a7 such that A € B, we have
livelock (A) = livelock (B)
livelockfree(B) = livelockfree(A)

(End of Property)
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Exercises
0. Disprove: livelockfree(A ,T) A livelockfree (B, T) =% livelockfree(A UB.,T)

1. Prove
(i) livelockfree (@.T) '
(i) 7 is non-terminating = livelock(aT.T)

2. Disprove: Lvelock(aT.T) # T is non-terminating

3. Prove that for processes T and U:
livelockfree(aT Nal,T) V livelockfree(aT Nal/ , U)
2 livelockfree(aT Nall, T wl)

4.  Prove
W) (An:n20:(Et:t€tSEM{a.b): (Bu:u€l{s* A tmw €tSEM(a,b): 1(w) > n)))
(ii) livelockfree(16}.SEM (a.b))
(iii) ~livelockfree({a}, SEM(a.b))

(End of Exercises)
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5.2 Independence and Transparency

Let 7 be a process and let B be a subset of a7’. The complement of B with respect to
aT,ie aT\ B, is denoted by B. According to Property 1.4.2.3 we have

T!B = TbhRUN(E)

In the sequel we investigate conditions under which 7B is a proper dmnp\:mn of the
composite of the mechanisms associated with T and RUN(B).

To that end we define four types of independence, each type being more restrictive than
the previous ones. We give a mechanistic appreciation of each type.

For j,0%X j<4, I;,(B.T), pronounced as ‘B is j-independent with respect to T, is
defined by

KB.T) = (At:tetT:SG.T)EC B = S¢.T)=SetB.TIBY)

B.T) = (As.t:s€tT A r€tT:stBKetB = (Eu:su€tl  sulB=¢B))
LB.T) = (At:t€tT: (Eu:u€B)Y A wetlT :Su.T)=SE!'B.TIB))
L(B.T) = L(B.T)A livelockfree(B.T)

An appreciation in terms of the mechanism specified by 7 is the following.

I(B.T): If the mechanism enters a state in which only events of B are possible,
then the mechanism behaves according to 7 PB.

I(B.T): From each state of the mechanism it is possible to continue such that the
behaviour of the mechanism is as expected from T1B.

L(B.T): From each state of the mechanism it is possible to enter a state (via events
of B) such that only events of B are possible. The mechanism behaves in
that state according to T1B.

L(B.T): For each state of the mechanism it is guaranteed that performing internal
events (events of B) will terminate in a state in which only events of B
are possible. The mechanism behaves in that state according to 7'} B.

If I(B,T) holds we say that B is transparent with respect to 7.

In the sequel T is a fixed process and B is a subset of aT.
We write 1;(B) instead of 1;(B.T).
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Property 5.2.0
Forany .t €tT,wehave S¢.T)NB € S}B.718)

{End of Property)

Lemma 5.2.1
LB) = (As,v:s€tl A G)BYvetTIB: (Bu:su€tl:sulB={(}B)v))

Proof

We derive

(As.v:s€tT A GIBIvetT!B: Bu:su€tT :sulB = (GIB)v))
= { definition of projection }
(As,v.t:s€tT A t€tT A GIB)v=t!B:(Bu:suetl :sulB=(lB)v))
= { substitution }
(As.v.t:s€tT A t€tT A G!'B)v=¢t!B:(Eu:su€tl:sulB=¢IB))
= { definition of prefix }
(As.t:setT A cetT A stB Se}B:(Bu:suetl: sulB=1¢}B))
= { definition of 1 }
L(B)

(End of Proof)

Theorem 5.2.2

0 L(B) % L(B)
1 L(B) » L(B)
2 K(B) % EB)

Proof

0. Assume [(B). Let t,t€tT, be such that S{(¢t.7) &< B. We have to prove
S, T)= SE!B.TIB). We derive
a€si}B.T'B)
= { definition of successor set }
(t!BlaetT}B
{Lemma 5.2.1 }
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(Eu:twetlT ;!B =lB)a)
= {SG.TYC B}
a€S(t.T)

Hence, Sz, 7)=S(!B.T'B)

1. Assume L{B). Let s and ¢ besuch that s €tT A t€tT A 5B <¢]}B.

We prove the existence of v such that sv €t7 A sv[B = t]'B by the following pro-
gram. (The notation is from [3])

vi=€ {invariant sv€tT A sv|B £ ¢} B, variant function [} B)—1(v}B) )
:do svlB = ¢}B
- {svlB<¢1B )

let b be such that (sv}B)b <¢}B, then beS(sv}B.TIB)
sletu, u €(B)*, be such that S(svu.T)= S{sv}B,TIB), u exists due to L(B)
{svub €tT A svublB = svb!B <¢}B A b€B )
;v = vub

od

{svetT A svlB =¢}B}

2. Assume 5(B). Let ¢t €tT. We have to prove the existence of v, v €(B)*, such that
tverT A S(av.T)=SG}B.TIB).

Consider the following program.

V=€
{invariant tv€tT A ve(B)*
variant function (v}, bounded since Lvelockfree(E) }
ido Sv.TINB=@
~ let b besuchthat 5€S(tv,.T)NE
{evb €tT A vbe(B )}
ivi=vh
od
{S@.TINE=@ A ve(B), hence. Stv.T)C B A tv|B =¢|'B.
From I(B) we infer SGv,T)=S(vlB,T}B)= SG}B.TIB)}

Weconclude (Ev:veE€BY A tvetT :Stv.T)=SEIB.T'B))

(End of Proof)



120 Livelock and nondeterminism

Corollary 5.2.3
If livelockfree (B) then I{B). L(B). L(B), and L(B) are equivalent.

(End of Corollary)

The following example shows that the implications in Theorem 5.2.2 are proper implica-
tions : the converses of these implications do not hold in general.

Example 5.2.4

0. Process T is defined by command e:a*15 .
For t €tT, not ending in symbol & we have -~(§(.T)C {5}).
For t €17, ending in symbol 5 we have §(¢t.7)= @ = S(t}5.TIb).

Hence, I,({2}).
Since alb €bMb A (Au:auétl :aulb = blb), we have ~L({B]).

We conclude L({6}) A -~nL{{b}).
1. Process T is defined by (a 15)*.
From t €tT => tb€tT we infer L({b}).

On the other hand we have (At :¢ €t : S(¢,.T)= {a.b}= {b]}), which implies
L&}

We conclude L{{5}) A -L({&]).

2. Process T is defined by a*:b:c .
For t €tT, ending in b or ¢ we have S(¢ . 7)= S(tle.Tle).
Fort €t7T, not ending in & or ¢ we have §(tb.T) = S(tte.The).
Hence, L{{e}).
Since forall n,n 2 0, a” €17 we have ~L({c}).

We conclude L({c]) A -L{{c).

(End of Example)
The next theorem relates independence to state graphs.

Theorem 5.2.5
I{(B) » (As,t:s€tT Ate€tT:s~t = stB~¢'B)

Proof
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Assume 5j(B). Let 5 and ¢ be elements of t7 such that s ~¢.
Let v € B* be such that (s} B)v etTIB. We derive

true

It

{ definition of prefix }
stB €£GIB)v
{ Lemma 5.2.1, (s!'B)v €tT!B }
(Bu:su€tl :sulB=(IB)v)
= { property of projection }
(Bu:suetl :(s!BYulB)= (s1B)v)
{ property of concatenation }
(BEu:su€t? :ulB=v)
= {s~z}
(BEu:twetl :ulB=v)
= { properties of concatenation and projection }
(Eu:tuetT :ewlB = (¢}B)v)
> { definition of projection }
«tB)verTtn

It

For reasons of symmetry we conclude
(Av:veB*: (s!B)vestT'B = B)vestT}B)
Hence, s/B~t|B

(End of Proof)

Corollary 5.2.6

If B is transparent with respect to 7' then the number of states of 718 is at most
the number of states of 7.

{End of Corollary)

The following theorem is another consequence of Theorem 5.2.5 .

Theorem 5.2.7

Let B be transparent with respect to 7. A state graph of T1B is obtained from the
state graph of 7 by removing all arcs labeled with symbols of B thereby identifying
the states connected by these.
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Proof
‘We have to show that for B transparent, s €tT, ¢ €B,and sc€tl :
(At,u:t€lsly A u€lscly: t}B~ulB)

Let B be transparent with respect to T. Then [;(B,T) (cf. Theorem 5.2.2).
Let s€tT, c €8 and sc€tT. We derive

t€lsly A u€lscly
= { definition of equivalence class }
t~s5s A u~sc
= { Theorem 5.2.5 }
t!B~s!B A ulB~sc!B
= {ceB)
t!B~stB A ulB~slB
> { transitivity of ~ }
ttB~ulB

(End of Proof)

Notice that L{B.T) can be expressed in terms of states:
LB.T) = (At:tetT:S(:LTYC B > S(:1.7)=5{BLTIB)).

since the extension of successor set from traces to states yields
S, TY=5¢17)forall ¢, €1T.

Theorem 5.2.8
None of the independencies are closed under union.

Proof

Process T is defined by command a:blx:5:;a . Then L({a}) and L{5}).
From S(x.T)=1{b}= {a.b)= S(xMa.b}.TMa.b}) we conclude ~L{{a.b]).

Theorem 5.2.2 yields that forany j, 0 € j< 4,
Lia) A LD A =L;({a.bD

(End of Proof)

Let B be a l-independent subset of al and let t€tT,5€8.c€F such that
tc€tT A thetT.
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Then felB =t}B € tb}B. Since B is l-independent, there exists a u. u € (B)*, such
that tcub €t7. Hence, the choice of ¢ instead of & does not disable 5.

Phrased differently: symbols of B cannot be disabled by symbols of B.

Suppose that B and C are l-independent subsets of a7. A symbol of BNC cannot be
disabled by a symbol not in B nor by a symbol not in C, hence, only by symbols in
BncC.

This observation might lead to the conjecture that 1-independence is closed under intersec-
tion. The next theorem, however, shows that none of the independencies are closed under
intersection.

Theorem 5.2.9

OD

None of the independencies are closed under intersection. o
Proof b c
By the following counterexamples. ._.._T._>.
Figure 5.0

0.  Process 7T is defined by the state graph of Figure 5.0 .
We have L{la, 5D A L(la.c]
From S(be.T)=@ C {a} and S(bcla.Tla)= {a} we infer =L{{a}).

1. Process T is defined by .
the state graph of Figure 5.1 . a a
b [
oo
b c

Figure 5.1

Trace ¢,t €tT, consisting of &'s and ¢’s may be extended with aa if and only if
the number of 5's is even and the number of ¢'s is even. It may be extended with a
single a only, if the number of &'s and the number of ¢’s are both odd.

We have Li({a.b})and K({a,c}).

Examination of traces dca and aa yields ~5({a}).

2. Process T is given by the state graph of Figure 5.2 . ] »

Figure 5.2
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We have L(la)), LU{BY. L({al). and L{({5}).
Since for all ¢, ¢ €7, the successor set S(¢,7) is non-empty, we have =5(@) and,
hence. ~L{@).

(End of Proof)

After having studied the counterexamples of the previous theorem one could hope for
LB)AN KC) 3 L(BNC)

‘We supply a counterexample for this implication as well. Notice that such a counterexam-
ple provides a proof of Theorem 5.2.9 as well. The example provides insight into condi-
tions under which one may hope for more positive results. Since the example is a nice
illustration of the theory, we devote a theorem to it.

Theorem 5.2.10

There exists a process 7 and there exists subsets B and C of a7 such that

Proof

We construct process 7 that has alphabet {a,bd,x ), such that L{la,x)), ({5 ,x1}), and
~I{{x 1) hold.

Evidently, livelockfree({a}) and livelockfree({ 5}) have to hold.

Process T will be symmetric with respect to @ and b.

Figure 5.3 shows the state graph of 7.

TMa.b}= S¥YNC,.(a.b). hence livelockfree({a}) and livelockfree ({b}).

Tt{a.x} corresponds to the command (a:a)*(a:x lx:x).

THb.x) corresponds to the command (b:6)(b:x 1x:x).

xx is possible if and only if the parity of the a’s is even and the parity of the &'s is even;
a single x is possible if the parity of @’s is odd and the parity of the &’s is odd.

xv\ \ "Y\ s
N, "'\ AN

x

b

N

xo——-——po2
|

-

x

. et o @

Figure 5.3
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We have L({a.x]) A livelockfree({5)). hence L({a.x)}). For reasons of symmetry
L5, x}) holds as well.

From S(abx.T)=@ A S{abxslx.Tx)= {x} weinfer ~L({x}).
(End of Proof)
In the trace structure that was exhibited in the proof of Theorem 5.2.10 we have

livelock ({a.b}). From the definition of 3-independence it is evident that L(B) cannot be
proved in the presence of livelock (B ).

The next theorem is the main theorem of this section.

Theorem 5.2.11

Let T be a process and let B and C be subsets of a7l such that 7 does not have livelock
with respect to a7\(BNC). Then

B and C are transparent with respect to T
% BNC is transparent with respect to T

(End of Theorem)

This theorem may also be phrased as

‘in the absence of livelock, transparency is closed under intersection’

For a proof of Theorem 5.2.11 we first derive some lemmata. 7 is a process and B and C
are subsets of al’.

Lemma 5.2.12
LBYA BIC)ANbEBNC
2> (As.t:shetlT A st€tT (Eu:sbuetT :shuMBNC)= stNBNCY))

Proof

Assume L(B)A LC)A BEBNC.
For reasons of symmetry we assume b ¢C.

Let 5 and ¢ be such that sb€tT A st €tT. We derive

sblc = stc € stlc
o {L(C). sbetT A st €T}
(Eu:sbu€tl : shulC = st}C)
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> { application of projection on B }
(BEu:sbuetl :sbul(BNC)=stf(BNC))

(End of Proof)

Lemma 5.2.13

If livelockfree (B N C) then

L(B)A LC)ANDbEBNC
> (As,t:shetl A st€tlT A sbf(BNC)SszM(BNC):
(Eu:sbuetl :shulf(BNC)=stf(BNC))

Proof
Assume livelockfree(BNC) A L(B)A L(C)A bEBNC.
From livelockfree (B N C) we infer that the function f given by
f@)=MAX v:tu€tT A ue(BNC): 1))
is well-defined.
By induction on f(s) we prove that forall s,s€tT A sb€tT :
(Ar:stetT A sBNBNC)SstNBNC): (Eu:sbuetT: sbul(BNC)= st} (BNC)))

Base
Let 5 besuch that s €tT A sb€tT A f(s)=0.
Let ¢ be such that st €tT A sbf(BNC) < st} (BNC). We derive

ssfBNnC)<stNBNC)

=  {beBNC}

(Eu,vy:veE(BNC) A u€al*: st = svbu)
= | fs)=0}

(Ev:ue€aT*:st = sbu)
> { st €tT, application of projection }

(Eu:sbuetT:stf(BNC)= sbul(BNC))

Step

Let s besuch that s €tT A sb€tT A f(s)> 0.

Let ¢ besuch that st €tT A sbf(BNC)S<stNBNC)
Then ¢ = vby, for some v €(BNC)* and y€aT* (cf. Base)
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We distinguish two cases;

(i) v=¢.
Then ¢ = buy, hence, (Eu : sbu€tT : sbul(BNC)= B NC))

(ii) v = cyy with c€BNC

For reasons of symmetry we assume c€B.
We then have :

st = sevghuy A c 8B A v€(BNC)" (cf. Figure 5.4).

We derive

sbetT A sevpbug€tT A c€ B
> { sc}!B = s/ B.tT is prefix-closed }
SGeltB.TM'B)Y= S(s!B,TIBI N sb€tT A sc €tT
> {b€BNC.hence (s}BIBELTIR )
b€S(sc!B,.TIBYA scetT
> {5(B))
(Eu:u€(BY A scu€tl :scub€tT)
Choose v, € (B )* such that sewb €17 (cf. Figure 5.5)
We derive
sevi B = s}B < st}B A sevi€tT A st €tT
> {4B))
(Eu:seviu€tl :sevul B = st B)
3> { application of projection on C }
(Eu:scviu€tl i sevu(BNC)= stNBNCY
Choose u; such that sevig €tT A s (B NC) = s2tMBNC)
(cf. Figure 5.6)
From ¢¢BNC and v €(B)* we infer
FGev) € fs)=1< f(s)

Furthermore we have
sevbMBNC)=sbHBNCY S tMBNC)= sevpa (B NC)
A seviiy €tT A sevib €tT A sevi€tT

Hence, we may apply the induction hypothesis with
s replaced by scv; and ¢ replaced by 1.
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This yields u, such that s
—— —>»
sevibip € tT A scvibi,[ (BN C) = sevpy [ (BN C) cl
(cf. Figure 5.7)
vo| N1
Qur last step is the derivation t b
b
sb!'B € sevibiy|' B l u "
>  {L(B).sh€tT A scvbip€tT ) uol B
(Eu:sbu€tTl : sbul B = sevbw, | B)
> { application of projection on C }
(Eu:sbuetl : sbul(BNC)= sevbw (BN C)) .
Figure 5.7

{sevbit(BNC)=stN(BNC))}
(Eu:sbuetT :sbul(BNC)= st (BNC))

(End of Proof)

Combining Lemma 5.2.12 and Lemma 5.2.13 yields

Lemma 5.2.14

If livelockfree(B NC) then

L(B)A L(C)A beaT
= (As.t:shb€tT A st€tT A sbl(BNC)S st/ (BNC):
(Eu:sbu€tT :sbul(BNC)=stN(BNC)))

(End of Lemma)

‘We now prove Theorem 5.2.11 .

Proof

Let T be a process and let B and C be subsets of a7 such that L(B). L(C). and
livelockfree (B N C ) hold.

We have to prove (B NC).

Since livelockfree (B N C) holds it suffices (Corollary 5.2.3) to prove I;(BNC).

Let 5,€tT and s5;€tT such that 5,MBNC)< 5, BNC).

The following program shows the existence of ¢,z €a7*, such that

st €17 A setf(BNC)= ;1B NC).
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SI1=€ (ti=135
invariant st €tT A s €55 A stMBNC)= s;MBNC)
variant function [(s)—1(s)}
do 5 = 5
= {s<s}
let & be such that sb € 55
{sb}BNC)S5MBNCYSNBNC)=stNBNC), apply Lemma 5.2.14 }
schoose « such that shu €tT A sbul(BNC)= st][(BNC)
{sbu€tlT A sh S s, A shuMBNC)= stMBNCI= 5N BNC)H}
is=sb it=u
od
{5 = 55 hence sz €tT A st (BNC)= 5,/ (BNC)}

(End of Proof)

As a consequence of Theorem 5.2.11 we have

Theorem 5.2.15

Let T be a process with a finite alphabet, and let A be a subset of a7 such that T
does not have livelock with respect to a7\ A. Then there exists a smallest set B,
A & B & aT, that is transparent with respect to T'.

Proof

From Property 5.1.1 we infer livelockfree(B), for any B, A € B € aT. According to
Theorem 5.2.11 we then have ZL{(BNC) for any transparent B and C with
ASCBCal and A € C & al'. Moreover, al is transparent with respect to 7', hence,
the intersection of all transparent subsets of al containing A equals the smallest tran-
sparent subset of al containing A .

(End of Proof)

In the next section we relate transparency to (internal) nondeterminism.
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Exercises

0. Prove L(B.T) and I(B.T)
Disprove 5L(&.T) and L(B,T)

1. Prove
LB.T) = (As,b:s€tT ABEB A (s[BWetT!B . (Bu:ue(B)Y : subetl))

2. Determine livelockfree({a}) and L{{5}) for the processes defined by the following
commands. ’

@ {a:d)

(i) (alb)

Gii) (ala:b)*
(iv) a®*1b*

(v) alb®

(vi) (a:;bla:a:b)*
(vid{a1b:a®:b®)

3. Let p and g be positive integers. Prove that {a.c} is transparent with respect to
SEM,(a ,b)w SEM,(b.c)

4. T and U are processes. al Nal contains at most one element. aZ\al/ is tran-
sparent with respect to 7' and aU\aT is transparent with respect to U.

Show that aT +all is transparent with respect to T w /.

5. Let S denote the command (p-a:alpb,g-a;blg-b;c)*, and let
T = SEM\(p-a,p-b)w SEM(q-a,q-b)w pref (TR(S))

(i) Show that TMa.b.c}= SEM{a.b)w SEM(.¢c)
{(ii) Determine livelockfree({a.b.c}.T)and L({a.b.c}.T)

6. T isa process with a finite alphabet. Subset B of aT is called strongly independent
if (At:t€tT:SEtB.TIBYC SG.TH.
Prove
(i) @ and aT are strongly independent.
(ii) The strongly independent subsets of a7 form a complete lattice.
(iii) B and B are strongly independent = T = (T{B)w (T'}B)
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For A,A C aT, m(A) denotes the smallest strongly independent subset of a7l
containing A .

(iv) Show that m{(A ) is well-defined and prove T = (Wa :a€al : m{{a}))

(End of Exercises)

5.3 Transparency and nondeterminism

In this section we relate the theory developed in the previous sections to the theory of CSP
in [8]. We present a short introduction to the model defined in [8]. For a more detailed
treatment we also recommend [1].

A CSP-process is defined as a triple <A ,F,D> where

A is an alphabet
F is a set of pairs (¢,X) where t€A%*and X C A
D is asubset of A"

Let P, P= <A .F,D >, be a CSP-process. The set F is called the failure set of P. Tt
consists of pairs (¢.X ) where ¢ is a trace, £ € A", and X is a so-called refusal set of ¢.
F is used to model nondeterminism.

Set D is called the set of divergences of P and consists of ‘all traces of P after which P
behaves chaotically’.

The triple <A.F,D > should satisfy the following conditions (cf. {8, 3.9D

Co (e.@)EF

Cl (u.X)EF = (t,@)EF

C2 (. X)EFAYSX = (t.Y)EF

C3 (.X)eF Aa€d = (. XU{aD€EF V (ta.B)EF
C4 DC{tl(t.2)eF)

C5 t€D A u€A® 3> tu€D

C6 teDAXGCA = (. X)EF

The alphabet of P is denoted by aP. Theset {¢ (¢t . @IEF} is called the trace set of P
and is denoted by tP.

From conditions CO and C1 we infer that tP is non-empty and prefix-closed.
From C2 we conclude that the refusal sets of a trace ¢.t €tP, are determined by the
maximal refusal sets of ¢.
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A mechanistic appreciation of P is the following.

With P a mechanism is associated. With that mechanism in operation a so-called trace
thus far generated, say t, is associated. Initially ¢ = €. At any moment ¢ €tP.

If ¢t is an element of D anything may happen: the mechanism may refuse any event or
may get involved in any event. This is expressed by conditions C5 and C6. The mechan-
ism behaves chaotically.

If ¢ is not an element of D, we consider the set {a |(ta,@)€ F}. For an element b of
that set there exist two possibilities.

(i) (EX:(t.X)EF:b€X). Then b may happen but b may also be refused (‘depend-
ing on some internal event, & may get disabled’).

(i) (AX:(t.X)EF:b¢X). Then b may happen, either since the environment ini-
tiates b or since the mechanism does so.

With CSP-process P we associate the process (i.e. the non-empty prefix-closed trace struc-
ture) <aP,tP>.

For ¢.t €tP, the successor set S(¢z, <aP,tP>) is also denoted by S(z.P). Notice that
S.P)={a|(ta,@)€ F}. From condition C3 we infer

Property 5.3.0

Let P,P= <A ,F,D > be a CSP-process and let t €tP. Then
(AX:X S A\S.P):(t,X)EF)

(End of Property)

The set of all CSP-processes is denoted by H , and the set of all non-empty prefix-closed
trace structures is denoted by X (both sets with respect to the same universe ). We
then have the following mappings.

tr :H = K defined by tr(P)= <aP.tP>
pr:K = H definedby pr(T)= <aT.{(t.X)ItetT A X CaT\S(t.T)}.@>

Property 5.3.1
tr(pr(T)=T forall T,TEK

Proof
For any 7,T € K, we have
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tr(pr(T))
_{ definition of pr}
tr{<al {(t.X)1tetT A X C aT\S(.T)}L.2>)
{ definition of ¢ and tP }
<al . {tlt€tT A @< aT\S.T)}>
= { calculus }
T

(End of Proof)

Property 5.3.2

Forall P.P= <A . F.D>,
prier(PN= <A {{. X)), X)EF A X S A\SG,.P).o>

Proof
Forany P,P = <A ,F,D>, wederive

pr(er{P))
= { definition of &r }
pr(<A.{tlt.@)eF}>)
= { definition of pr and successor set }
<A . X))t @8)eF A X C A\S.P).B>
{ Property 5.3.0 and condition C2 }
<A {@.X)I1(t . X)EF A X C A\S(¢t.P)}L.o>

(End of Proof)

Let P,P= <A ,F.D>, be a CS8P-process and let B be a subset of a P.
The projection of P on B, denoted by P!'B, is the CSP-process <Ay, Fg,.Dg> where
A8=B
Fp={(t.X)IXCBA(t€Dg V (Eu:(u.XUB)EF:t=ulB)))
Dy={t 1 (Eu,v:vE€B*A u€D:t=ulB)v)}

Ulel(BEu.v:veEB* A (An:n 20:(Es:s€(BYAIG)>n us€tP)):t = wlB)v))
(B denotes the complement of B with respect to aP)
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Example 5.3.3

T is defined by 7 = pref (TR(b:x lc:y)).
let 2= pr(T),then P= <A .F,D> where

A=1{b,c.x.y}h
the set of (¢,X ) in F such that X is maximal equals

fle.{x.yD. . {b,c.yD. e tb.c.xD.bx {b.c.x,yD. ey, {b.c.x.y Dk
D=g

Let B ={x,y) then PIB = <A, Fy, Dy, where

Ag=1{x.yh

Fy={(e{x].(e.{y}D (.2
HCRERHNCREDNCRETINEN-)
NCRERIINCRED RS RN )]
}:

Dy=@

Notice that P} B may refuse x as well as y initially, but not both.

tr(PIB)= <{x.ylle.x.y}> and pr(&r (PIB))= <A F'.D'> where

A'={x.yk

F'={(e.0)
Ay ) xdx) Ay D (x.2)
Ly dx.y D G D . GAyD . v.o)
}s

D'=g

Notice that pr(tr (P}B)) = PIB

(End of Example)

For an informal definition of determinism we quote C.A.R. Hoare [8].

‘whenever there is more than one event possible, the choice between
them is determined externally by the environment of the process. It
is determined either in the sense that the environment can actually
make the choice, or in the weaker sense that the environment can
observe which choice has been made at the very moment of that
choice.”
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A formal definition is given by

P is deterministic = pr(P)=P

Application of Property 5.3.2 yields

Theorem 5.3.4

P, P= <A .F,D?>, is deterministic
= D=@ A (At,X:@¢.X)eEF:X € A\S(t.P))

(End of Theorem)
In the sequel P, P = <A ,F,D>,is a CSP-process and B is a subset of A.
Furthermore, <Ap,Fy, Dy > denotes the CSP-process PB.

tivelockfree (B, <aP,tP>) and I(B, <aP,tP>) are abbreviated to
Livelockfree (B ) and 14(B) respectively.

135

B is called transparent with respect to P if B is transparent with respect to <af.tP>,

ie. if Io(B) A livelockfree (B) holds.

Property 5.3.5
ar)B C w(2PB)

Proof

For any t,t € B*, we derive

te(tP)}B

= { definition of projection }
(Bu:u€tlP:t=ulB)

= { definition of t2 }
(BEu:(.@)eF:t=ulB)

= { predicate calculus } ,

Bu:(uw.@)F:t=ulBA( (As:s€BY AN us€tP:Sus,.PINE = @)
V(Es:s€(B)YAus€tP:5us,PYC B))

3> { definition of Dy }

Bu:(u.@)F:t=ulB A ulBeDy V (Es :s€(B)A us€tP:S(us,P)C B))
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> { Property 5.3.0 }
(Bu:(w.@)F:t=ulB A ulBeDy V (Es s €(BY:(us,.B)EF)
> { predicate calculus, definition of projection }
(Bu:(u.@)eF :(t=ulB A ulBEDy)V (Es:s5€(B) :(us.BYEF At =uslB))
e { calculus } :
EBu:w.@)eF:teby vV (Ev:(.BYeF:t=v}B))
= { F is non-empty, (¢,@)€ F }
teDy V (Ev:(v.B)eF:t =vIB)
{ definition of Fjp }
(t.B)eFp
= { definition of t(P}B) )}
t€1(P'B)

(End of Proof)

Property 5.3.6
livelockfree (B) = (tP)IB = t(P}B)

Proof
Assume livelockfree (B). Forany ¢.t € B*, we have

ter(P'B)
= { definition of P}B }
(t.@)EF
{ definition of Fj }
t€Dy V (Eu:(u.B)eF:t =ulB)
{ definition of Dy livelockfree (B )}
(Eu,v:u€D A veB*:t=@lB)v) V Bu:(u.BYeF:t =ulB)
> { condition C5, B*C A"}
(BEu:ueD:t=ulB)V (Eu:(u.B)eF:t =ulB)
> { conditions C4 an C1}
(Bu:w.@)F t=ulB)V (Eu:,@)EF ¢t =ulB)
= { definition of tP }
te(tP)IB

Hence, t(P}B) € (tP)}B. Combining this with Property 5.3.4 yields
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t(P'B)= (tP)}B.

(End of Proof)

Property 5.3.7

If P is deterministic then livelockfree(B) = Dg=©
Proof
If P is deterministic then D = @ (Theorem 5.3.4). We derive

livelockfree (B)
= { definition of livelockfree }

(At:t€tP: En:n20: (A2 :u€BYAIW)>n twéthP)))
= { definition of Dy, D =@ }

Dpy=0

(End of Proof)
We are now ready for the main theorem of this section.

Theorem 5.3.8

Let P be a deterministic CSP-process and let B be a subset of the alphabet of P. Then

PB is deterministic = B is transparent with respect to P
Proof
(i) Assume PI'B is deterministic. We derive

PI'B is deterministic
> { Theorem 5.3.2 }
Dy=0
{ P is deterministic, Property 5.3.7}
Livelockfree (B )

For any ¢.f €tP,such that S{t.P)< B, we have

t€tP A S .PYS B
{ Property 5.3.0 }
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(t.aP\S(t.P))EF A S(: . P)C B
> {SC.PYSCB = BCaP\St.P)}
(¢.BUB\SG.PYEF
= { definition of Fy }
(t}B.B\S(z ,P)EFy
> { P} B is deterministic, Theorem 5.3.4 }
B\S(t.P)C B\S(:}'B.PIB)
= { set calculus. S(z.P)S B }
SeiB.PIBYCS(.P)
= { Property 5.2.0 }
S¢!B.PIBY=5G.P)
{ livelockfree (B ), Property 5.3.6 }
SG!B,.<aP,.tP>|B)= 5, <aP.tP>)

Hence, livelockfree(B) A I(B) which is equivalent to B is transparent with
respect to P.

(i) Assume B is transparent with respect to P. Then livelockfree (BY A 14B).
From lvelockfree(B) and P is deterministic we infer Dy = @ (Property 5.3.7).

We derive
Livelockfree (B)
= { definition of Fy Dy =@}
Fyp={@¢ . X)IXCBA (Bu:w,XUB)eF:t=ulB)

= { P is deterministic, Theorem 5.3.4 }
Fp={Gt . X)IXCBA(EBu:wu,XUBYFAXUBCaP\Sw,P):t =ulB)}

Forany X, X € B,and u. u€aP’, we have

XCBAW.XUBYF A XUBCaP\Sx.,P)
{ set calculus }
XCBA(u,XUB)F A S(u,PYCSBAXUBCaP\S,P)
=S {1o(B) and t(P}B)= (+P)!B}
XCBA (m,XUB)F A XUBCaP\Su!B.P'B)
> { definition of Fy, set calculus }
lB.X)eFy A X € B\Sw|B.PIB)

Hence,
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(t.X)eFy
> { previous derivation }

(Eu:@w.XUB)EF AN XCBAXUBCaP\St.P):t=ulB)
> { derivation above }

X € B\S(:.P'B)

Furthermore, we have Dy = @. Application of Theorem 5.3.4 yields P!B is deter-
ministic.

(End of Proof)

For a deterministic CSP-process P we have, by definition, pr (ir (P)) = P. We have also,
cf. Property 5.3.1, tr(pr (T)) = T for T € K. Hence. K may be identified with the set of
deterministic CSP-processes. Theorem 5.3.8 expresses that this set is closed under projec-
tion on transparent alphabets.

We conclude that mechanisms that have (internal) nondeterminism cannot be described in
terms of trace structures. That does not bother us, since we are not interested in mechan-
isms that have (internal) nondeterminism.

‘We shall avoid internal nondeterminism, either by guaranteeing that projection is done on
a transparent alphabet or by implementing processes in such a way that internal events do
not occur automatically and instantaneously.

‘We discuss such implementations in Chapter 6.

This concludes our discussion of CSP-processes.
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5.4 Transparent components

In this section we apply the theory of Section 5.2 1o components. Let component ¢ be
defined by

com c(A4):
sub poico, ..., PreqiCy—y bUs
[x0=y0 . . %py = Ymvl]

35

moc

Then TR(c)= T1A where
T = (Wi:0%i<n:(pTR(c ));;’ """ *m-1y < pref (TR(S))

----- Pm—-1

In view of the theory developed in the previous sections we call ¢ livelockfree if
livelockfree (aT\A ,T ) holds.

We call ¢ transparent if A is transparent with respect to 7.

Since for any process 7', aT is transparent with respect to 7, we have

Property 5.4.0
A component without subcomponents is transparent.

{End of Property)

Implementing a transparent component (ie. constructing a mechanism that behaves
according to its trace structure) is relatively easy since it does not matter how fast and in
which order internal events will happen.

If component ¢ is not transparent we implement the command of ¢ in such a way that
the nondeterminism of ¢ is resolved without affecting TR (¢).

Example 54.1  (cf. Example 2.3.6)

Component sem, with TR (sem,) = SEM (a.b) is defined by
com sem,{a,b): (a:b)" moc

Component sem, with TR{sem,)= SEMa,b) is defined by
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3. a o2
com sem{a.b):
sub p,q: sem; bus
[pra=a.pb=gqga,gb=b] b J-2 b
€
moc Y ]
0® a >

Let T = SEM {a,g-a)w SEM (g-a.b).
Then TR (sem,)= TMa,b}. Figure 5.8

The state graph of 7 is shown in Figure 5.8 . It does not contain any cycle of compound
symbols. Hence. livelockfree({g-a}.T) holds. In states 0, 2, and 3 the successor sets are
subsets of {a.,b}. They equal the successor sets obtained by projection on {a,b). Hence,
Ifla,b}).T).

We conclude that sem; is transparent.-

(End of Example)

3 p.a a
O Bl B e §
Example 5.4.2 q.b a.b
We transform component sem; of the previous y 94 4
example into component asem, by removing the
equalities: b b
p.b
1
com asemq(a.b): o e »
0 p.a a
sub p.q: sem, bus
Figure 5.9

(p-a:alpb:q-algb:d)

moc

let 7 = SEM(p-a.p-b)w SEM (q-a.q-b)w pref (TR(S)) where § denotes the com-
mand of asem,. The state graph of T is shown in Figure 5.9 . Since there is no cycle of
compound symbols, asem; is livelockfree.

From S(p-aapbgapal)={aland Sa.TMHa.b})={a.b} weinfer
~Iy{la.b}.7).

Hence, asem, is not transparent.

If a and b are events that are initiated by the environment we implement S in such a
way that the choice between p-a and g-b (state 1) is postponed until the environment
has initiated event 2 or 5.

(End of Example)
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Example 5.4.3 1p.b
2 pa _ a 1
We construct component wsem, that has h *
b
trace structure SEM{a.b)w SEM (b.c): a.b \ q.b

"
com wsemo{a.b.c): 1 q.a * M
sub p.g: sem, bus Cl . Nt
(pra:alpb,g-a.blgbic) ‘m

(]

moc **ga o pa a

Figure 5.10

Lot T = SEM ((p-a,p-b)w SEM {(g-a.q-b)w pref (TR(S)).

The state graph of 7T is shown in Figure 5.10 . Since S{(¢-¢.7)=2 and
S(g-a.SEM {g-a.q-b)) = B, wsem, is not deadlockfree. The number of consecutive
compound symbols is bounded by 2. Hence, wsem; is livelockfree.

Command S should be implemented in such a way that p+& or g-a will happen only if
the environment initiates &. As in Example 5.4.2, the choice (state 2) should be post-
poned.

If events a and ¢ are initiated by the implementation we regard the implementation of
pref (TR(a:(b;a:c)") as a valid one.

{End of Example)

Example 54.4

In Example 2.3.3 we derived (recursive) component sem with TR (sem )= SEM(a.b):

com semf{a.b):
sub p : sem bus
Latpd):(palb))
moc

let 7= SEM{p-a.p-b}w pref (TR{S)) where S denotes the command of sem.
For any n.n 2 0, we have

(pra p-b) €tSEM(p-a,p-b) and a(p-a p-b) €tpref (TR(S)).

Hence, a{p-a p-b)" €tT. We conclude that sem is not livelockfree.

In Example 2.3.3 we showed that S may be replaced by S’ where
S'=f{a:pala;blpb:;b), without affecting TR (sem ).
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Choosing S’ instead of S yields a component that is livelockfree. However, since
S(a pra p<b.T)={b}and S(a.TMa.b})= {a.b). it is not transparent.

The choice of p+b should be postponed until the environment initiates &.

(End of Example)

One may wonder why we did not choose the name deferministic instead of transparent.
The reason is that there exists another form of nondeterminism that has not been dis-
cussed yet. It is the choice between (external) events that are initiated by a component.

Consider component guess defined by
com guess{a.b.x.y): (a:xib:y) moc

Suppose events a and b are to be iniliated by the component, and events x and y areto
be initiated by the environment. In [8] component guess is considered deterministic since
the choice between a and b can be observed by the environment. We do, however, con-
sider guess as a nondeterministic process, since some internal choice has to be made
between @ and b, and the environment does not have any knowledge about the way in
which this choice is made.

Exercises
0.  Determine which of the following components are transparent.

(1) com semqy(a.b): a:{a.b) moc

(2) com semi(a.b):
sub p : sem; bus
(a;p-a),(p-b:b)*

moc

(3) com ex{a.b):
sub p.,q : sem; bus
{a:{pralga)lb:(p-bigb))

moc
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(4) com semy(a.b):
sub p: sem; bus
[p-b=b] (a:pa)

moc

(5) com sem{a.b):
sub p: sem bus
a:(a:palb;alb;pb)*

moc

6) com sem{a.b):
sub p: sern bus
a;((b1pasa):(pb:bla))

moc

(7) com ex(a.b):
sub p: ex bus
a;pblpad

moc

(8) com run(a.b):
sub p: run bus
(a:pa)

moc

(End of Fxercises)
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6.0 Introduction

In this chapter we discuss implementations of processes. Although we implement
Processes as (electrical) circuits, most concepts introduced do not depend on this choice.
To a great extent we have been inspired by the work of Alain J. Martin ([12]).

This chapter differs from the previous ones: it is less formal and we do not provide
proofs. We just present some ideas about implementations. Many of these still require
further research.

The synchronization of events is solved by a so-called fowr-phase handshaking protocol.
We do not distinguish between ’input symbols’ and ‘output symbols’. We do. however,
make a distinction between events that are initiated by a component and those that are ini-
tiated by the environment of that component. It will turn out that the difference between
these types of events is very small.

The circuits we derive are delay-insensitive in the sense that their behaviour does not
depend on delays in wires and switching elements. We do not prove their delay-
insensitivity formally.

6.1 Notations

For sequential programs we use the guarded command language with CSP-syntax (cf. [7]) :

[---] insteadof if - - &
*[.-.] insteadof do --- od

Execution of an if-statement amounts to suspension of the pfogram until one or more of
the guards evaluate to true, after which a statement of which the guard is true is selected.
*[true — S] is abbreviated o *[S] (‘do S forever’)
[B — skip] is abbreviated to [B] (‘wait until B7)

With symbol a we associate a pair (a,.a;) of boolean variables. One may associate an
‘output wire’ with @, and an ‘input wire’” with a;. The value true will correspond to a
high level voltage on the associated wire and the value false will correspond to a low level
voltage on the associated wire. If x is such a boolean variable then
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x! means x:=true (‘set x to a high level voltage’)

x! means x:=false ('set x to a low level voltage)
[x] may be interpreted as ‘wait until x has a high level voltage’.

[~x] may be interpreted as “wait until x has a low level voltage’.

Events are either passive or active. Aclive evenls are initiated by the mechanism, whereas
passive events are initiated by the environment of the mechanism. Notice that the
environment of a mechanism may be a mechanism as well.

let a be a symbol. The occurrence of a in a process in which a is passive corresponds to
the following sequence of actions in the implementation

[a;]:a,t:[=a;]:al { a passive)

After execution of [g;]: 4,7 event a "has happened’.
The sequence [ -a;] : @,! is used to return to the state —-a, A -g;.

The environment of the implementation performs a by the sequence

at:la,];ad;[~a,] (environment of passive a)

The occurrence of a in a process in which a is active corresponds to
at:1a;) :a,d:]-a;] (a active)

After execution of a,1:[aq;] event a "has happened’.

The environment performs a by the sequence

[a,]:a1:[=a,];a;l {environment of active a)

Apparently,
the pair (a,.a;) of a mechanism corresponds to the pair {g;,a,) of the environ-
ment. If (a,.a;) is active then (g;.q,) is passive and vice versa.

The synchronization thus obtained is called four-phase handshaking. For a synchroniza-
tion protocol in which both mechanism and environment may initiate @ we refer 1o [13].

The transformation of symbol @ into such a sequence is called handshaking expansion.

Example 6.1.0

Consider component sem; defined by com sem(a.8): (2 :5) moc. If a is passive
and & is active. handshaking expansion yields
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*[la;]:at:[=~a;):al:b1:186,):81;:0-81]
If both @ and & are active, we have
al:lalald:[-~q):861:181:81:[-5]]

These programs express the behaviour of mechanisms with respect to ;. a,. b;, and b,.
In the next section we realize such a mechanism.

6.2 Circuits

For the construction of our circuits we assume the existence of the following basic ele-
ments.

An And-element has two inputs and one output. If both inputs are true the output will
be true. otherwise the output will be false. If x and y are inputs and z is output this is
expressed by

x Ay =21

mx Voay -zl

A C-element, cf. [15], has two inputs and one output. If the inputs bave the same value
then the output will also receive that value, otherwise the output does not change its
value. This is expressed by

xA y =z
sx A=y = zl
An Inverter has one input and one output. The output receives as its value the negation of
the value of the input. It is expressed by
x =zl

-x - z1

Figure 6.0 shows how these basic elements are represented in pictures of circuits.

—————
—‘-—0<_.4—..
s ————

And-element Inverter

C-element

Figure 6.0
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An Inverter in front of an And-element or C-element may be incorporated in that element,
thus yielding a new basic element. The Inverter is drawn as a circle attached to the ele-
ment. Asan example, consider the specification

X
x A=y = 21
~x Ay =zl z
This denotes a C-element with v

inputs x and ~y, and output z.

Fi 6.1
The corresponding circuit is shown in Figure 6.1 ghre

Example 6.2.0

We show an implementation of SEM {(a.b) where a is passive and & is active (¢f. Exam-
ple 6.1.0). Handshaking expansion yields

*[[a;]1:a,1:[-a;]1;:ad:51:[5;]1:5,1;:[=5])

Initially we have =@, A =a; A =b, A =b;. This state equals the state after a,l. Hence. we
need an additional variable, say x . to be able to trigger b,1. Initially -x holds. We pro-
pose

“[[a;}:a ;xt;[=a; A x)ial ;b 001 xd -2 :8,1:1-5]]
We then have
(0)  a; A =xA=b — gl

“g; A x - a.l

(1) aq, = x1
b, — xl

2) =g, ANx — Bt

-x = bl
Since in the period from a1 until q,| we have =&;, we may transform (0) into
0) (@A =x) A =b — at
(=aq; A x)V b — al
This is a combination of a C-element and an And-element :

a A =x = yt

-a; A x = yl
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y A =b, — gt
~yV b — gl

Initially -y holds.
A similar reasoning yields for (1) and (2)

(1) =& A a, = x1 a C-element

b, A =g, = xi

(2 =a, A x = b1 an And-element

a, V~x = byl
The ultimate circuit is shown in Figure 6.2 . The fat dots denote so-called internal forks.

As in [12], we assume that the propagation delay in a forked wire is short compared to the
delays in the basic elements.

Exercises

0.  Consider the circuit shown in Figure 6.2 . What happens if the environment executes
b,‘T . a;T ?

1. Derive a circuit that is an implementation of SEM,{a,b) with a and & active. Use

ad:la):xt:lx)sal:[~a1:8,1:06]:xl:[=x1:8,4:15]]

Derive from the resulting circuit an implementation with a passive and b active.

(End of Exercises)

Figure 6.2
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6.3 Active and Passive

Suppose we have a circuit corresponding to a process with passive a. We wish to connect
an ‘activator’ (cf. Figure 6.3) 10 @; and @, such that its other two wires, p; and p,. yield
an active version of a.

aO
Action p,l is to be executed A > ——»—"Po
- - ACTIVATOR
as soon as the original circuit PASSIVE - B
is willing to acknowledge a;. a,
This yields
Figure 6.3
*lat:[a]:pt:lp]ad i [=a,]: pt i [-pi]]
Notice that the ‘return to zero phase’ has been moved to the right. We have
-p, = a;l (an Inverter)
A3
pi — ad
and
a, = pol (a wire) a, o
~a, — Pol - °
- 04 - p;
We conclude (cf. Figure 6.4)
Figure 6.4

Theorem 6.3.0  (From passive to active)

If event a has been implemented as passive, by the pair {g,.q;) ., then an implemen-
tation with e active is obtained by placing an Inverter in front of a;.

(End of Theorem)

‘Warning 6.3.1

Transforming a passive event into an active event in the way described above may intro-
duce nondeterminism. This is shown by the following example.

Component select is defined by com select(a.b.x,y): (a:x15;y) moc. It is imple-
mented such that ¢ and b are passive, and x and y are active. The state graph of the
implementation is shown in Figure 6.5 . We did not label all arcs : opposite sides of
squares have the same label.

Notice that in state 4 a choice is made between ,1 and b,T. To implement this choice a
new basic element. an Arbiter-element . is needed. We do not discuss nor introduce such
an element. We assume that this implementation of select exists.
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0 a,-f 3 aof ai* ao* x,,f x, ¢ xJ xt o0

i i

P i B e @ . B e 8 B b

I

19—y e

! l r ¢ !

b *l l Figure 6.5

The environment behaves according to com env(a,b,x.y): {a;x:b;y)* moc with a
and b active and x and y passive. The implementation never enters state 4 and the com-
munication between environment and component behaves as expected.

If 5 is transformed into an active event, however, the following may happen. The
inverter will cause b;T and the implementation will react with 5,. The environment will
cause ;T and the mechanism enters state 5. The mechanism is suspended until 5;1 bhap-
pens and the environment is suspended until ¢, happens. Both evenis will not occur: the
system is in a deadlock.

If both @ and b are activated the situation is even worse. Depending on the speed of the
inverters used. the mechanism will enter state 5 or state 6.

Activating ¢ or b transforms the implementation into a nondeterministic mechanism in
the sense that events may be initiated by the mechanism based on some decision unknown
1o the environment. '

We conclude that activating a passive event is not allowed if the implementation makes a
choice between the acceptance of that event and the acceptance of other events.

In this monograph we restrict ourselves to components that do not reguire the use of
Arbiter-elements.

(End of Warning)
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Suppose event a has been implemented as an active event. We wish to connect a “passiva-
tor’ (cf. Figure 6.6) to @; and q, such that its other two wires, p; and p,. yield a passive
version of a.

The original circuit may a,
initiate @ (by a,1) as soon A o PASSIVATOR ——e—F
as that is possible. It is not ACTIVE - » P,
acknowledged until the a;
environment initiates a Fi 6.6
(by pi1) as well. This igure o
yields
[[aoAPi];aiTrPOI;[qao’\—'Pi] ;ailfPol] a
L]

which gives rise to a2 C-element. B
We conclude (cf. Figure 6.7)

a Py

Figure 6.7

Theorem 6.3.2  (from active to passive)

If event a has been implemented active by the pair {a,.q;) then an implementation
with a passive is obtained by using a C-element as shown in Figure 6.7 .

(End of Theorem)

(Transforming an active event into a passive event does not introduce nondeterminism.)

Consider the circuit shown in Figure P,

6.8 . It consists of a C-element and a
a part called M. The occurrence of M
event a corresponds to the sequence

- - a,
Pi

al.pt i (a1:al).(p1:pd) 1al, pd
Figure 6.8
Projection on {a,.q;} and {p,,p;} yields respectively
atl:at:al al (passive)
2l ptiplpd (active)
‘We conclude that removing the C-element transforms event a from passive into active.
This transformation does not introduce nondeterminism.

In general we cannot transform an active event into a passive event by removing an
Inverter. This is demonstrated by the following example.



6.3 Active and Passive 153

(e

Figure 6.9

Example 6.3.3

In Section 6.2 we derived a circuit for SEM(¢.5) in which a is passive and b is active
(cf. Figure 6.2). Removing the inverters to which b; is connected yields the circuit shown
in Figure 6.9 .

After a;! nothing will happen until 51 has occurred. This is not a valid implementation
of SEM(a.b).

(End of Example)

There is another remark on the difference between activators and passivators. In the next
section we show how the composite of processes may be obtained by connecting wires that
correspond to the same symbol. In view of the handshaking protocol we will connect
events of different types only. If both implementations are active then a C-element is
used (cf. Figure 6.10). Notice the symmetry of the connection (it is not known which of
the implementations is turned into a passive one).

If both implementations are passive then a choice can be made (cf. Figure 6.11). This
choice should be such that no nondeterminism is introduced.

g g
a Ot a
o 2 passive | passive
active active P~
a; a;
Figure 6.10 a ~ a
passive L > Passive

Figure 6.11
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a b;
Exercises
a; » b,
Figure 6.12

0. An implementation of SEM,(a.b) with a passive and b active may be obtained by
implementing

*{{a;]:a,0.8,1:[wa; A b;)ial.bl:[-8]]
which is obtained from the handshaking expansion and postponing of the second half
of the expansion of a.

Show that this program yields the circuit shown in Figure 6.12 .
Should it be regarded as a valid implementation ?
Transform the circuit such that both a and b are active.

Transform the circuit such that both a and & are passive.

I c—: Y a
M M 2;{
[ — a
Figure 6.13 Figure 6.14

1. In Figure 6.13 the event corresponding to (g, ,a;y is active.

The circuit of Figure 6.14 is obtained by subsequently passivating, activating, pas-
sivating, and activating ( a,.q; ).

Show that the two circuits are equivalent.

2. Two active events may be connected using a passivator. Is the (symmetric) circuit
shown in Figure 6.15 an appropriate connection between passive events 7

(End of Exercises) - -

Figure 6.15
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6.4 Components with subcomponents

In this section we discuss implementations of components that have subcomponents. We
first consider components with command €:

com c{A):
sub poico, ... . Pr_1:C,—1 bus
[x0= Yo, - s Xy = Y1)
€

moc

Due to the restrictions imposed on program texts, each compound symbol occurs exactly
once in the equalities. We assume that the subcomponents have already been imple-
mented. Furthermore we assume that- ¢ is transparent.

With an element a of A two wires a, and q; are associated. Fach element of A occurs
in an equality. We connect the output wire of the symbol to which a is equated with a,,
and we connect its input wire to «;.

Each eguality between compound symbols yields a connection in the way described in Sec-
tion 6.3 :

If the events have different types the connection is straightforward. If the events are both
active a passivator is used. If the events are both passive one of these is activated.

In the last case one of the events should allow activation, i.e. activation should not cause
nondeterminism. If such a choice is not possible we do not implement ¢ (we consider the
program as being wrong). Notice that activating may also be done by removing a passiva-
tor.

Finally. we may activate or passivate the implementation of the elements of A.

Example 6.4.0

Component run, is defined by com run;(a): a* moc. Then TR(run )= RUN(a).
With « passive, handshaking expansion yields
*[{a;1:a,1;[~a;):a,l] which is just a wire.
Component run,, with TR (run,) = RUN(e,b). is defined by
com runy(a,b):
sub p.g¢: run,; bus
[pra=a.g-a=0b]
€

mocC
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e ——— by, ———— b;
v
e S—G I —"
Figure 6.16 Figure 6.17

The method described above yields the circuit of Figure 6.16 .

An implementation with both a and b active is obtained by adding inverters, and is
shown in Figure 6.17 .

(End of Example)

Example 6.4.1

An implementation of SEM,(a.b) with a passive and b active can be obtained from
implementations of SEM,(a.b) with ¢ passive and b active (cf. Example 5.4.1 and
Example 6.2.0). It is based on the program
com semy(a,b):
sub p,q: sem; bus
[pra=a.pb=gqga, gb=5b]
€

moc

The circuit is shown in Figure 6.18 .

(End of Example)

| — D>

Figure 6.18
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Finally, we consider components without equalities. Let ¢ be defined by

com c(A4):
sub psicy, ..., Pro1:€— bus
s .

moc

We assume that ¢ is livelockfree. Notice that the subcomponents have only elements in
common with §.

The implementation of pref (TR(S)) should be such that no (internal) nondeterminism
arises (cf. Section 5.4). It turns out that the handshaking protocol often guarantees the
absence of nondeterminism, as shown in the following example.

Example 6.4.2
We implement {cf. Example 5.4.3) component wsem, defined by
com wsem.(a.b,c):
sub p.g: sem; bus
(pra:alpb,qa:blgb.c)

moc
with TR (wsem,) = SEM,(a.b)w SEM,(b,c).

We assume that subcomponents p-sem; and g¢-sem; have been implemented with all
events active.

We implement wsem, with a., b, and ¢ passive. In accordance with the strategy
explained in Example 5.4.3 an alternative of the command is executed if both subcom-
ponent and environment initiate that alternative.

This yields the following expansions (output of a subcomponent is treated as input of the
circuit corresponding to the command, and vice versa) :
*[[pra, Aa; = pral.at:l-pea, A -a]:pal.al]]
*[Lpd, Agra, A by = p-bt.q-al.b):[=pb, A~gra, A =b]:pbl.g-al.bl]]
*[[g-8, A e = gbl,c.t i I=gb, A =c;]:gbl,c,l]]

The first and the last one give rise to a C-element (with forked output). The middle one
yields two C-elemenis.
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The circuit is shown in Figure 6.19 .

We can activate a. b, and ¢ by removing three C-elements (passivators). This yields
Figure 6.20 .

Composing wsem, with RUN (%), i.e. connecting b; and b, yields SEM{a.c). This cir-
cuit, shown in Figure 621, is also obtained when connecting implementations of
SEM (a.b) in which both a and ¥ are active.

{End of Example)

JF A — .b,
a, p.a,y q.0, ¢
z;i p.sem, q.sem, ?;?
8 p.a; a.bi S
Figure 6.19
.a b q.a .b,
a p.ay P.by o 19-bo c,
p.sem, g.sem,
B —e———————— PSR o3
! P.8; q.b; !
Figure 6.20
p.ag p.by q.8, q.b,

° | G,
p.sem, g.sem,
3 - et e &

p.a; p.bi 4.3 q.b; '

Figure 6.21
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6.5 Final Remarks

We have shown how a certain class of processes can be implemented as delay-insensitive
circuits. Nondeterminism did not play a role in the examples, due to the fact that we did
not use Arbiter-elements. A treatment of these elements falls beyond the scope of this
monograph. A typical process for which an Arbiter-element is needed is SEM(a.{b.c})
in which @, b, and ¢ are passive.

A general method for the translation of commands into circuits has to be investigated.
Since processes correspond to minimal deterministic state graphs, it is worthwhile to con-
sider the translation from state graphs into circuits as well. For suggestions we refer to
[17] and [19].

The concepts active and passive and the relations between these are very useful. The con-
cepts ‘input’ and ‘output’ should be reserved for the description of processes on a higher
level.

- We have claimed that the circuits we derive are delay-insensitive in the sense that their
behaviour does not depend on delays in wires and switching elements. A proof of such a
claim must be based on a formalization of delay-insensitivity. In [21] delay-insensitivity
is formalized and a classification of delay-insensitive processe is given.



7 Conclusions

In the preceding chapters we discussed several aspects of concurrent processes. The alge-
braic structure underlying these processes is relatively simple. Properties of operators like
projection, weaving, and blending are easily formulated in terms of lattice theory.

Program texts provide a neat and concise way for the representation of processes. More-
over, the use of subcomponents admits a hierarchical way of constructing processes.

Phenomena like deadlock, livelock and nondeterminism have been succinctly expressed in
terms of trace structures. This enabled us to formulate and prove many properties and
theorems related to these concepts.

We conclude that Trace Theory is an adequate formalism for the description of concurrent
processes. )

Compared to other formalisms trace structures form a subclass of all possible processes.
That subclass, however, is the class of mechanisms in which we are interested. We do not
implement nondeterministic processes. On the other hand we do allow environments of
processes to behave nondeterministically. In our formalism nondeterminism is captured
by transparency. We showed that in the absence of livelock transparency is closed under
intersection.

Due to the Conjunction-Weave Rule and the Composition Rule the derivation of programs
from specifications is often straightforward. Our program notation is close to implementa-
tions. We showed examples of circuits that correspond to program texts. Again, the
hierarchical structure of components plays an important role.

The derivation of circuits is based on four-phase handshaking and the notions of passive
and active events. It turns out that nontransparency (i.e. internal nondeterminism) does
not play an important role in these derivations.

External nondeterminism, however, cannot be resolved that easily. This form of non-
determinism is caused by transforming passive events into active events.

The derivation of circuits from programs requires further research.

Another topic that deserves further research is the communication of values.

Consider a mechanism that repeatedly inputs a value, say x, via channel a after which it
outputs the value 2 -x via channel &. The events the mechanism may be involved in are
pairs (c,v) where c is the name of a channel and v is an integer value. If we do not
take the values into account, the mechanism is specified by SEM,(a.b).

The trace structure SEM,(a,b) is called the communication structure of this mechanism.
Besides the communication structure we have a predicate that relates the sequences of
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values transmitted via b to the sequence of values transmitted via a.

When the mechanism described above is composed with a mechanism that repeatedly
inputs a value, say y. via channel b after which it outputs the value 3 -y via channel ¢,
we expect a mechanism that inputs via a a value x after which it outputs via ¢ the value
6-x. The communication structure of this composite will be SEM,(a,c), the composite
of SEM,(a.b) and SEM(b.c).

A theory needs to be developed that supports the reasoning above. Since output values
have to be computed whereas input values have to be accepted only, we expect that in this
theory a distinction between input and output will have to be made.

In this thesis we did not distinguish between input and output. Such a distinction would
have complicated the theory needlessly. Notice that we postponed the introduction of
“active’ and “passive’ until implementation aspects were considered.

Finally, it bas been a pleasure to write this monograph :

a pleasure to build up the theory of the first chapters and a pleasure to apply it in the sub-~
sequent chapters.

We enjoyed the development of programs as well as the development of circuits. Actu-
ally, these activities turned out to be -in essence- very similar.
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Samenvatting

Dit proefschrift bestaat uit twee delen. In het eerste deel (de hoofdstukken 1, 2 en 3)
wordt een formalisme behandeld. In het tweede deel (de hoofdstukken 4. 5 en &) wordt
de ontwikkelde theorie toegepast.

De theorie, bekend onder de naam tracetheorie, levert een model voor het gedrag van een
aantal samenwerkende mechanismen die gelijktijdig actief zijn. Een mechanisme wordt
gekarakteriseerd door een paar:

de verzameling van mogelijke gebeurtenissen waarbij het mechanisme betrokken is en
de verzameling van mogelijke opeenvolgingen van dergelijke gebeurtenissen.

Gebeurtenissen worden voorgesteld door symbolen en de mogelijke opeenvolgingen worden
voorgesteld door symboolrijen (traces). Een aldus verkregen paar heet een proces. Op de
collectie van processen worden relaties en operaties gedefinieerd. Deze komen overeen met
relaties tussen de corresponderende mechanismen en met, bijvoorbeeld, het samenstellen
van mechanismen.

De verzameling van processen vormt een volledig tralie. Eigenschappen van de operaties
worden beschreven in termen van tralietheorie.

Een proces kan worden weergegeven met een programmatekst. Een programma is niet
alleen een compacte beschrijving van een proces maar geeft ook een idee over mogelijke
implementaties. De afgeleide tralie-eigenschappen vormen een basis voor de behandeling
van recursieve programma’s.

Er worden regels gegeven waarmee het afleiden van een programma uit een gegeven
specificatie wordt vergemakkelijkt. Als voorbeeld laten wij zien hoe een programma kan
worden -afgeleid dat past bij een gegeven contextvrije grammatica.

In hoofdstuk 4 komt het begrip deadlock aan de orde. Deadlock wordt gedefinieerd in ter-
men van processen.

Het samenstellen van een aantal processen levert een nieuw proces. Bij dit proces onder-
scheiden we twee soorten symbolen:

interne symbolen die de onderlinge samenwerking van de delen betreffen

externe symbolen die de communicatie met de buitenwereld betreffen.
De wuiteindelijke beschrijving van een mechanisme bevat geen informatie over de
wisselwerking tussen de delen waaruit het mechanisme is opgebouwd. Deze beschrijving
wordt verkregen door het proces te projecteren op de collectie externe symbolen. Bij pro-
jectie kan (intern) nondeterminisme ontstaan. In hoofdstuk 5 wordt het begrip trans-
parantie gedefinicerd. Intern nondeterminisme treedt niet op indien men zich beperkt tot
projectie op transparante verzamelingen. Het begrip livelock speelt hierbij een verrassende
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rol. In de afwezigheid van livelock is transparantie gesloten onder doorsnede.

In boofdstuk 5 wordt tevens aandacht geschonken aan de relatie tussen processen in ons
formalisme en processen zoals deze zijn gedefinieerd door C.A.R. Hoare.

In hoofdstuk 6 beschouwen we implementaties. Deze zijn gebaseerd op een zogeheten four
phase handshaking protocol’. Symbolen zijn actief dan wel passief. Actieve symbolen
worden geinitieerd door het mechanisme en passieve symbolen worden gelnitieerd door de
omgeving. Het omzetten van actief naar passiel en vice versa is relatief eenvoudig.
Activeren van een passief symbool kan leiden tot nondeterminisme.

De schakelingen die worden afgeleid zijn vertragingsongevoelig in de zin dat hun gedrag
niet afhangt van vertragingen in draden en schakelelementen.



Curriculum vitae

Op 3 september 1947 werd ik geboren te Eindhoven. Na het behalen van de diploma's
MULO-B en HBS-B volgde de militaire dienst.

In 1969 begon de studie Wis - en Natuurkunde aan de universiteit van Utrecht. Het afstu-
deren vond plaats onder leiding van dr. J.D. Stegeman met als onderwerp Fouriertransfor-
maties op locaal compacte groepen. In 1973 studeerde ik met lof af.

Na deze studie ben ik tot 1976 als wetenschappelijk medewerker werkzaam geweest bij de
N.V. Philips, met als taak het ontwikkelen en onderhouden van IBM systeemsoftware. In
deze periode ontstond mijn belangstelling voor formele methoden als gereedschap bij het
programmeren.

Van 1976 tot 1982 was ik verbonden aan het Instituut voor Hoger Beroepsonderwijs te
Eindhoven, eerst als docent wiskunde, later ook als docent informatica. Vanaf 1979 was
ik belast met de leiding van de afdeling Informatica van de avond-HTS. In dezelfde
periode werd samen met dr. J. van Tiel een aanvang gemaakt met de serie Voortgezette
Wiskunde.

In de tussentijd volgde ik informaticacolleges aan de Technische Hogeschool Eindhoven.
Dit resulteerde niet alleen in het behalen van de lesbevoegdheid Informatica maar ook in
een hernieuwde wetenschappelijke belangstelling voor dit vakgebied. In 1982 werd ik
benoemd tot wetenschappelijk medewerker in de vakgroep Informatica van de THE.
Sindsdien heb ik me bezig gehouden met onderzoek en onderwijs op de gebieden program-
meren, didactiek van het programmeren en parallellisme. Het laatste onderzoeksgebied
heeft onder leiding van prof. dr. M. Rem geleid tot deze dissertatie.

169



STELLINGEN

behorend bij het proefschrift

A Formalism
for
Concurrent Processes

van

Anne Kaldewaij

Eindhoven,
6 mei 1986



ol

Trace theorie is een adequaat formalisme voor het beschrijven van parallelle pro-
cessen.

Met de in dit proefschrift gebruikte programmanotatie kan elke contextvrije taal
worden beschreven.

De trace structuur SEM,(a.b) bevat F, traces ter lengte n, waarbij F, het n®

getal van Fibonacciis: Fo= 1, Fy=1 en F, 2= F, + F,4y.

Zij X een Hausdorff-ruimte en zij ¥.Y € X, voorzien van de door X geinduceerde
topologie locaal compact. Dan geldt

Y=X > Y isopenin X
Met behulp hiervan kan het bewijs van de Pontryagin dualiteitsstelling in [0] gecorri-
geerd worden.
[0] Walter Rudin, Fourier Analysis on Groups,

Interscience Publishers, John Wiley & Sons, 1967.

Zij X een rij gehele getallen. Het minimum aantal stijgende deelrijen dat een partitie
van X vormt is gelijk aan de maximale lengte van enige niet-stijgende deelrij van X.

Lit. Anne Kaldewaij, On the decomposition of sequences into ascending subse-
quences,

in Information Processing Letters, 21 (1985), p 69.



10.

Intern nondeterminisme zoals beschreven in [1], speelt bij het implementeren van
processen een geringe rol.

[1] Hoare C.A.R.. Communicating Sequential Processes.

Naast de zeven beperkt transponeerbare reeksen (les sept modes transpositions
limitées) van de componist Olivier Messiaen bestaan er, afgezien van de chromatische
reeks, nog precies drie, te weten

C-Es-E-G-As-B-C
C-Es-F-Fis-A-B-C
C-D-F-Fis-Gis-B-C
Lit. Olivier Messiaen, Techniques de mon langage musical,
Alphonse Leduc, Paris

Sietze Kaldewaij, Analyse van Dieu parmi nous,
Utrechts Conservatorium, Mariaplaats 28 Utrecht, 1982.

Bij het informaticaonderwijs op middelbare scholen en in het hoger beroepsonderwijs
dient men zich meer toe te leggen op het overdragen van inzichten. Apparatuur speelt
daarbij een verwaarloosbare rol.

Het beoefenen van informatica vereist een groot absiractievermogen. Dit dient tot
uiting te komen in de eersiejaars curricula van de universitaire informatica-
opleidingen.

Bij het huidige wetenschapsbeleid trooste men zich met het gezegde
“sterke snoei geeft grote bloei’.





