

A formalism for concurrent processes

Citation for published version (APA):
Kaldewaij, A. (1986). A formalism for concurrent processes. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR244640

DOI:
10.6100/IR244640

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR244640
https://doi.org/10.6100/IR244640
https://research.tue.nl/en/publications/19645e11-d510-4112-bb14-d1c08aab0e6a

A formalism for Concurrent Processes

A Formalism

for

Concurrent Processes

PROEFSCHRIFr

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE

HOGESCHOOL EINDHOVEN. OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF. DR. F.N. HOOGE. VOOR EEN

COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN
DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP

DINSDAG 6 MEl 1986 TE 16.00 UUR

DOOR

ANNE KALDEWAIJ

GEBOREN TE EINDHOVEN

dit proefschrift is goedgekeurd
door de promotoren

Prof. dr. M. Rem
en

Prof. dr. F.E.J. Kruseman Aretz

Aan Erna.
Kristien. Renske,
Ernst en Byate

Contents

0 Introduction 1

0.0 General remarks 1

0.1 Overview 2

0.2 Some notational conventions 2

1 Trace structures 4

1.0 Introduction 4

1.1 Alphabets and trace sets 4

1.2 Trace structures 11

1.3 Weaving 14

1.4 Blending 22

1.5 States and state graphs 34

1.6 The lattice 'T (A) 40

2 A program notation 53

2.0 Introduction 53

2.1 Commands 53

2.2 Components without subcomponents 56

2.3 Subcomponents 59

2.4 Recursive components 70

2.5 Unique fi:xpoints of recursive components 77

3 From specification to program text 85

3.0 Introduction 85

3.1 Specifications 85

3.2 The Conjunction-Weave Rule 90

3.3 The Conjunction-Blend Rule 95

3.4 Context-free grammars 97

4 Deadlock 102

4.0 Introduction 102

4.1 Lock 103

4.2 Deadlock 109

5 Livelock and nondeterminism 114

5.0 Introduction 114

5.1 Livelock 115

5.2 Independence and transparency 117

5.3 Transparency and nondeterminism 131

5.4 Transparent components 140

6 Implementation aspects 145

6.0 Introduction 145

6.1 Notations 145

6.2 Circuits 147

6.3 Active and Passive 150

6.4 Components with subcomponents 155

6.5 Final remarks 159

7 Conclusions 160

8 References 162

Index 165

Samenvatting 167

Curriculum vitae 169

0 Introduction

0.0 General remarks

The material presented in this thesis has its origin in the research of the Eindhoven VLSI
Club.
VLSI is a technique of constructing semiconductor chips containing a large number of
active. electronic elements. These elements operate concurrently. The ultimate goal of our
research is the construction of a so-called silicon compiler: a mechanical translation of
algorithms into chips.

In this monograph we present a general formalism for concurrent processes. We show also
how it can be applied to the design of circuits. Such a formalism should satisfy certain
requirements:

it should be a mathematical theory in the sense that concepts are defined rigorously
and that assertions are proved:

it should be close to the objects that are formalized. The distance between formalism
and implementation should be relatively small:

it should be manageable.

The formalism used is known as Trace Theory. To a large extent it has been developed by
Martin Rem (cf. [18]) and Jan L.A. van de Snepscheut (cf. [19]). Mazurkiewicz ([14])
was one of the first to describe communicating processes in terms of traces. His traces
correspond to equivalence classes over our traces.

This thesis comprises a full and coherent treatment of Trace Theory. The formalism is
applied to phenomena like deadlock. livelock. and nondeterminism. and is related to the
theory of Communicating Sequential Processes as described by C.A.R. Hoare in [8].
Finally. implementation aspects are discussed.

At the end of most sections we present some exercises. Although this is not of common
use in doctoral theses. we have at least two reasons for it:

it permits the reader to get used to the formalism presented:

it shows which kind of problems can be solved within the theory.

The exercises do not play any role besides those sketched above. There are no references to
them and no proofs of theorems are left as exercises.

1

2 Introduction

0.1 Overview

Chapter 1 contains the prerequisite material for all other chapters. Trace structures and
processes are introduced as well as operators on these objects. Processes are related to
state graphs. It is shown that processes with the same alphabet form a complete lattice.
Monotonicity and continuity of operators are discussed.

In Chapter 2 we present a program notation. The treatment is close to that of [19].
Recursive components are introduced and fixpoint theory is applied to them. Specifications
of processes are discussed in Chapter 3. It is shown how program texts may be derived
from specifications. These derivations are based on two theorems: the Conjunction-Weave
Rule and the Composition Rule. As an example we show how to derive a program that
corresponds with the language generated by a given context-free grammar.

Chapter 4 addresses deadlock. Deadlock is defined in terms of trace structures.

In Chapter 5 we discuss livelock and nondeterminism. Nondeterminism arises when a pro
cess is projected on a set of events. i.e .. when events not in that set are concealed. We
define so-called transparent sets of events. If projections are confined to these sets non
determinism does not occur. In the absence of livelock transparency is closed under inter
section. We show the relation between processes in our formalism and those defined by
C.A.R. Hoare (cf. [8]).

In Chapter 6 implementation aspects are considered. Parts of it are based on work by
Alain J. Martin ([12]). We present some circuits that correspond to given program texts.
The circuits derived are delay-insensitive in the sense that their behaviour does not depend
on delays in wires and switching elements.

0.2 Some notational conventions

In this monograph a slightly unconventional notation for variable-binding constructs is
used. It will be explained here informally. Universal quantification is denoted by

(A X: R :E)

where A is the quantifier. x is a list of bound variables. R is a predicate. and E is the
quantified expression. Both R and E will. in general. contain variables from x. R del
ineates the range of the bound variables. Expression E is defined for values that satisfy
R.

Existential quantification is denoted similarly using quantifier E .

For expressions E and G . an expression of the form E =l> G will often be proved in a
number of steps by the introduction of intermediate expressions. For instance. we can
prove E => G by proving E = F and F => G for some expression F. In order
not to be forced to write down expressions like F twice. we record proofs like these as fol
lows.

0.2 Some notational conventions

E

{ hint why E - F)

F

~ I hint why F ~ G)

G

These notations have been' adopted from [4].

3

1 Trace structures

1.0 Introduction

In this chapter we define the basic concepts and structures that form the foundation of our
treatment of concurrent processes. As an example we consider a one-place buffer which is
initially empty. When such a buffer interacts with its environment the following events
may be observed.

a a value enters the buffer
b : a value is retrieved from the buffer

A possible sequence of events is a b a b a . The set of all possible sequences of events
consists of the finite-length alternations of a and b that do not start with b.

In our formalism such a buffer is specified by a pair of sets:

the set of possible events that may occur, and
the set of sequences of events that may be observed.

We define operators on those pairs and we derive algebraic properties thereof.

1.1 Alphabets and trace sets

We assume the existence of a set !l, the universe. Element.<> of fi are called symbols .
Subsets of !l are called alphabets .
The set of all finite-length sequences of elements of fi is, as usual, denoted by n•. The
empty sequence is denoted by e. For an alphabet A, A • is defined similarly. Notice that
0*= {e).
Elements of fi* are called traces . Subsets of n• are called trace sets .

We shall use the following conventions.

Small and capital letters near the beginning of the Latin alphabet denote symbols and
alphabets respectively.
Small and capital letters near the end of the Latin alphabet denote traces and trace
sets respectively.

The concatenation of traces s and t is obtained by placing t to the right of s, and is
denoted by st. The set n•, together with the operation concatenation is also known as the
free monoid generated by fi, cf. [5].

4

1.1 Alphabets and trace sets

The projection of a trace t on an alphabet A , denoted by t t A , is defined as follows.

EtA = E

(sa H A = s t A if a ~A
(sa H A = (s t A) a if a E A

5

We write t tb as a shorthand for ttl b }. In order to save parentheses. we give concatena
tion the highest priority of all operators.

The projection of a trace set X on an alphabet A . denoted by X t A , is the trace set
{tltEfi*A (Eu:uEX:t=utA)}.

The length of a trace t . denoted by l (t) , is defined by

l(E) = 0
l (sa) = l (s) + 1

Trace s is called a prefix oft , denoted by s ~ t , if

(E u : u E fi* : su = t)

The prefix closure of a trace set X, denoted by pref (X). is the trace set consisting of all
prefixes of elements of X :

pref(X) = {slsEfi*i\ (Et:tEX:s ~t)}

Trace set X is called prefix- closed if X pre/ (X).

Example 1.1.0

Let fi={a,b,c,d}. A={a,bl. s:ba, t=bad. and X:{c,dba}. Then A is an
. alphabet. s and t are traces. and X is a trace set.
We have

s ~ t

stA=sAttA:s

sEA*!\ t~A*

xtA (e.ba}

pref(X)::: (e.c,d,db.dba}

X is not prefix-closed

pre/ (X) is prefix-closed.

(End of Example)

We now list a number of properties. According to our notational convention. a and b are
symbols, s. t. and u are traces. A and B are alphabets. X andY are trace sets.

6

Property 1.1.1 (concatenation)

0 se = es = s

1 (st)u=s(tu)

2 as=bt- a=bl\s=t

st=su = t=u
ts =us = t u

3 s ¢ e - (E c .v : c E 0 II v E .n*: s = cv)
s ¢ e =: (E c .v : c E .n II v E .n*: s vc)

(End of Property)

Property 1.1.2 (projection)

0 s~ A E A*

st ~A = (s ~A)(t ~A)

2 s :::; t ::;:.. s~A :::; t~A

3 sEA* =: s~A :::: s

4 s~A~B st(A nB) = stBtA

5 X~Y ::;:.. XtA ~ Y~A

6 st121 = e

(End of Property)

Property 1.1.3 (prefix)

(.n*. :::;) is a partially ordered set with least element e :

0 s :::; s

1 s:=;tl\t:=;u::;:..s:=;u

2 s:=;tllt:=;s::;:..s=t

3 e:::; s

(End of Property)

Property 1.1.4 (prefix-closure)

0 X~ pref(X)

1 X~ Y ::;:.. pref(X) ~ pref(Y)

2 pref(pref(X)) = pref(X)

Trace structures

1.1 Alphabets and trace sets

3 pref(X~ A) = pref(X)t A

(End of Property)

Property 1.1.5 (length)

0 l (st) = l (s) + l (t)

1 s :s;; t => l (s) :s;; l (t)

2 l (s ~A) :s;; l (s)

(End of Property)

As an example we prove Property 1.1.4.2
equivalent to ·pre/(X) is prefix-closed ·.

·Proof

For all traces t . we have

t E pref (pref (X))

= { definition of pref

(E u : u E pref (X) : t :s;; u)

= I definition of pref I
(E u : (E v : v E X : u ~ v) : t :s;; u)

I predicate calculus }

(E u : u E n*: (E v : vEX : u :s;; v 1\ t :s;; u))

=> {transitivity of :s;; , Property 1.1.3.1)

(E u : u E !l*. (E v :vEX : t ~ v))

== { predicate calculus)

(E v : v E X : t ~ v)

{ definition of pref

t E pref(X)

7

pref (pref (X)) = pref (X) . which is

Hence. pref (pref (X)) ~ pref (X). Since pref (X) ~ pref (pre/ (X)) . cf. Property
1.1.4.0,wehave pref(pref(X)) = pref(X).

(End of Proof)

Finally. we prove a general theorem on traces.

8 Trace structures

Theorem 1.1.6 (Lift Theorem)

For all traces s and t . and alphabets A and B . we have

sEA*II tEB*II s~B=t~A (E u : u E (A U B)* : u ~A = s II u ~ B = t)

Proof

We derive for any trace u

u~A=s II u~B=t

{property of projection. 1.1.2.0}

u~A = s II u~B = t II sEA* II t EB*

=> { application of ~A and ~ B }

u~A~B = s~B II u~B~A = t~A II sEA* II t EB*

=> { property of projection. transitivity of = }
s~B=t~A II sEA*II tEB*

Hence.

(E'u : u E (A U B)* : u ~A = s II u ~ B = t) => s E A * II t E B * II s ~ B = t ~A

We prove the converse of the above implication by induction on l (s) ·l (t).

Base l (s) ·l (t) = 0

Then s = E V t = E . For reasons of symmetry we assume s = E . and we derive

s~B = t~A II t EB*

{property of projection. 1.1.2.3 }

s~B = dA II t~B = t
{ s = E • definition of projection }

s=t~A II t~B=t

=> { B * !:::: (A U B)* }

(E u : u E (A U B)* : u ~A = s II u ~ B = t)

Step l (s) ·l (t) > 0

Then s ;C E II t ;C E . By Property 1.1.1.3 we can choose a E A . b E B . v E A •. and
w E B • such that s = av II t = bw . We consider two cases.

(i) a E B V b E A . For reasons of symmetry we assume a E B . and we derive

s~B=t~A II sEA* II tEB*

{s=av,aEB}

1.1 Alpha bets and trace sets

vtB=ttA 1\ vEA*I\ tEB*

::;> I induction hypothesis.l(v) ·l(t) < l(s) ·l(t) l
(E u : u E (A U B)* : utA = v 1\ u t B = t)

laEAI\aEB)

(E u : u E (A U B)* : au t A = av 1\ aut B = t)

::;> I renaming the dummy. s = av }

(E u : u E (A U B)* : utA = s 1\ u t B = t)

(ii) a EB 1\ b EA . We derive

stB=ttA 1\ sEA*/\ tEB*

Is = av 1\ t = bw 1\ a E B 1\ b EA

aCvtB)=b(wtA)I\ vEA*I\ wEB*

= I property of concatenation. 1.1.1.2 I
a= b 1\ vtB = wtA 1\ v EA * 1\ wEB*

::;> { induction hypothesis. l (v) ·l (w) < l (s) ·I (t) l
a = b 1\ (E u : u E (A U B)* : utA = v 1\ u t B = w)

= {aEA.bEB)

a = b 1\ (E u : u E (A U B)*: aut A = av 1\ but B = bw)

::;> { substitution }

(E u : u E (A U B)* : au t A = s 1\ aut B = t)
::;> { renaming the dummy }

(E u : u E (A U B)* : u t A = s 1\ u t B = t)

(End of Proof)

Theorem 1.1.6 may be phrased as follows.

The diagram of Figure 1.0 may be lifted up
to the commutative diagram of Figure 1.1 .

seA* t E B*

Figure 1.0

9

uE(AUB)*

stB=ttA

Figure 1.1

10

Exercises

0. Prove:

(i) A*nB*=(AnB)*

(ii) A * U B * ~ (A U B)*

1. Prove:

(i) pref(X U Y) = pref(X) U pref(Y)

(ii) pref (X n Y) ~ pref (X) n pref (Y)

2. Prove: e E pref(X) = X ¢: 0

Trace structures

3. Show that the intersection as well as the union of prefix-closed trace sets are prefix
closed.

4. Prove or disprove:

(i) stA~dAAstB~ttB =;. st(AUB)~tt(AUB)

(ii) stA ~ttA V stB ~ttB =;. st(AnB)~tt(AnB)

5. Prove or disprove:

(i) (XUY)tA = (XtA)U(YtA)

(ii) (X n Y)tA (XtA) n (YtA)

6. Prove:

s E (A n C)* A t E (B n C)* A s t B = t t A

=;. (Eu:uE(AUB)*:utA =sA ut(BnC)=t)

(End of Exercises)

1.2 Trace structures 11

1.2 Trace structures

A trace structure is a pair <A . X> in which A is an alphabet and X is a subset of A •.
We call A the alphabet of the trace structure and we call X the trace set of the trace
structure. If T is a trace structure we denote its alphabet by aT and its trace set by tT.
i.e. T = <aT.tT>.

As a notational convention we shall use capital letters not too far from the end of the
Latin alphabet to denote trace structures.

The prefix closure of a trace structure T. denoted by pref(T). is the trace structure
<aT. pref(tT)>. T is called prefix- closed whenever tT is prefix-closed. T is called
non-empty if tT ~ 0.

A non-empty prefix-closed trace structure is also called a pr~ss . Let T be a process.
then T specifies a mechanism in the following way.

The alphabet of T corresponds to the set of events the mechanism may be involved
in. We assume events to be atomic: they have no duration and they do not overlap.

With the mechanism in operation a so-called trace thus far generated is associated.
Initially. this trace is the empty trace. On the occurrence of an event the trace thus
far generated is extended with the symbol associated with that event. At any
moment. the trace thus far generated belongs to the trace set ofT.

We do not distinguish between events that are initiated by the mechanism and those
that are initiated by the environment of the mechanism. If s is the trace thus far
generated and sa E tT then the event associated with a may happen.

Example 1.2.0

Consider a one-place buffer which is initially empty. We specify the buffer by means of a
process T. Possible events are

a : a value enters the buffer
b : a value is retrieved from the buffer

Hence, aT= {a ,b }.
Let t E tT. Since values can only be retrieved if they have been entered, we have
Hda)- l (t ~b);;::: 0. From the fact that the buffer is a one-place buffer we infer
l (t ~a)- l (t ~b) ~ 1. These restrictions should hold for all t. t E tT, and their prefixes.
Our specification becomes

T = <{a,b).{t ltE{a,b}* A (As :s ~t :O~l(s~a)-l(s~b)~ 1))>

T may also be interpreted as the specification of a binary semaphore (cf. [2]). initialized at
zero.

12

The interpretation of the symbols is

a a V -operation on the semaphore
b : a P-operation on the semaphore

(End of Example)

Example 1.2.1

Trace structures

In the previous example we did not consider the values that are transmitted. In this
example we define process U that specifies a one place, one bit buffer. Possible events
are

aO a zero enters the buffer
al a one enters the buffer
bO a zero is retrieved from the buffer
bl a one is retrieved from the buffer

The same arguments as used in the previous example yield

aU {aO ,a] .bO .bl}

tU ={tIt E{aO,al.bO,bJ)* A (As: s ~t:

(End of Example)

A

A

0 ~ l (s ~aO)- l (s ~bO) ~ 1
0 ~ l(s~al)-l(s~bl) ~ 1
O~l(s~{aO,aJ}) l(sNbO.bJ))~ 1)}

There is a one-to-one correspondence between the set of trace structures with alphabet A
and P(A *), the power set of A *, viz.

<A, X> is a trace structure - X !: A*

According to the structure of P(A *) we define inclusion, intersection, and union for trace
structures with equal alphabets . and we denote these with the usual symbols:

<A.X> U <A.Y>
<A.X> n <A.Y>

<A.XUY>
<A.XnY>

T!:U aT = aU A tT !: tU

In section 1.3 we have a closer look at the set of processes with alphabet A.

The projection on an alphabet is extended to trace structures by

Tr A = < aT n A. tTr A >

Finally. we define the following processes. For an alphabet A the trace structures
STOP(A) and RUN (A) are defined by

1.2 Trace structures

STOP(A) = <A .le}>
RUN(A) = <A .A*>

Process STOP(0) is also denoted by STOP.

For symbols a and b process SEM 1(a ,b) is defined by

13

SEM 1(a.b) = <la.b}.ltitEla.b}*f\ (As:s ~t:O~l(s~a)-l(s~b)~l)}>

(cf. Example 1.2.0)

Exercises

0. Give a mechanistic appreciation of RUN(A). STOP(A). and STOP.

1. Prove:

(i) RUN(A HB = RUN(A n B)

(ii) STOP(A) t B = STOP(A n B)

(iii) SEM 1(a.b)ta = RUN(a)

(iv) STOP(A) = RUN(A) - A= 0

2. Specify a two-place buffer.

3. Specify an unbounded buffer.

4. For trace structure T we define trace structure T • by

T" = <aT.(ti(As:s ~t:sEtT)}>

Prove:

(i) T" r: T

(ii) T • is prefix-closed

(iii) T ~ u ::;,. T" r: u·
(iv) T • is the largest prefix-closed trace structure contained in T

(v) T = T• =: Tis prefix-closed

5. Prove: T is non-empty = T~0 = STOP

6. Specify a binary stack. the depth of which is bounded by two.

(End of Exercises)

14 Trace structures

1.3 Weaving

Consider two mechanisms P and Q specified by (non-empty prefix-closed) trace structures
T and U respectively. The behaviour of the composite of P and Q should be in accordance
with the behaviour of each of the components:

if t is the trace thus far generated of the composite then t taT will be the trace thus
far generated of P and daU will be the trace thus far generated of Q. Hence. exten
sion of the trace thus far generated with a common symbol of aT and aU is possible
if and only if both P and Q agree upon that symbol. Extension with a non-common
symbol depends on one of the components only.

In terms of trace structures this is captured in the following definition.

The weave of trace structures T and U. denoted by T w U , is defined by

TwU <aT U aU. {tIt E(aT UaU)* A ttaT EtT A daU E tU I>

Example 1.3.0

<{a ,b). {ab I> w <{ c ,d l.lcd I>
< { a , b , c , d }. { abed , acbd , acdb , cabd , cadb , cdab I>

< { a , b }. { b , ba , abb I> w < { b . c }. { b . cb I>
= <(a.b~c}, {b,ba,cb,cba}>

(End of Example)

Example 1.3.1

SEM 1(a~b) = <(a .. b}~(e~a.ab*aba, · ··}>
SEM 1(b,c) = <lb.c}.{E.b.bc,bcb, · · · }> . hence.

t(SEM 1(a ,b)w SEM 1(b,c))

= I definition of weaving }

{t ltE{a.b,c}" A ctla.b}EtSEM 1(a.b) A tt{b,c)EtSEM 1(b,c)}

= { definition of SEM 1 }

{ E. a , ab, aha , abc, abac, abca, abacb, abcab , · · · I

Since dla.b}EtSEM 1(a,b) implies O:E;Z(tta)-l(ftb):E; 1
and tt{b,c}EtSEM 1(b,c) implies o:E;Z(db)-l(dc):E; 1.
we have

0 :E; l ctt a) - l(d c) :E; 2

(End of Example)

1.3 Weaving

Property 1.3.2

Weaving is symmetric. idempotent. and associative:

0 TwU=UwT

1 TwT T

2 (T w U) w V = T w (U w V)

(End of Property)

Property 1.3.3

aU!: aT ::> T wU = <aT,{t It EtT 1\ daUEtU)>

(End of Property)

Property 1.3.4

0 TwSI'OP = T

1 T w (TtA) = T

2 A !: aT ::> T w RUN(A) = T

3 aT!: A ::> T w <A .0> = <A .0>

4 aT !: A A E E tT ::> T w SIOP(A) = STOP(A)

Proof

0. We derive

TwSTOP

= { Property 1.3.3. aSTOP = 0 }

<aT,{t ltEtT A d0EtSTOP)>

{Property 1.1.2.6. tSTOP = {e))

T

1. We derive

T w (TtA)

{ Property 1.3.3. a(Tt A)!: aT)

<aT.{tltEtT A ttAEt(TtA)}>

== { definition of projection }

T

15

16

2. Assume A !:;;; aT . We derive

Tw RUN(A)

= { Property 1.3.3, A !:;;; aT }

<aT.{t it EtT 1\ t~A EA *}>

I Property 1.1.2.0 }

T

3. Assume aT !:;;; A . We derive

Tw<A.0>

I Property 1.3.3. aT!:;;; A

<A.It itE0 1\ t~aTEtT)>

I calculus}

<A.0>

4. Assume aT !: A 1\ E E tT . We derive

TwSTOP(A)

{ Property 1.3.3, aT !:;;; A

<A. It it EtSTOP(A) 1\ daT EtT}>

{ tSTOP(A) = {e} and E E tT }

STOP(A)

(End of Proof)

Trace structures

The definition of weaving can be extended to sets of trace structures. Let S be a set of
trace structures. The weave of the elements of S . denoted by (W T : T E S : T) is the
trace structure <A • X > where

A '"' (U T : T E S : aT)

X {titEA*I\ (AT:TES:t~aTEtT))

By definition we have (W T : T E 0 : T) = STOP , the unit element of weaving, cf. Pro
perty 1.3.4.0 .

The weave of trace structures expresses a synchronized interleaving. Apparently, the
intersection of the alphabets of the trace structures involved plays an important role. This
role is made more precise in the following theorems.

1.3 Weaving

Theorem 1.3.5

Let T and U be trace structures and let A be an alphabet. then

Tw (UtA) :::2 (Tw U)t(aTU (aUnA))

Proof

The alphabets of both sides are equal. viz. aT U (aU n A).

17

Let tEt(TwU)t(aTU(aUnA)) and let w be such that wEt(TwU) and
t = wt(aT U (aU n A)). We derive

t = wt(aTU(aUnA))

::;. { application of projection }

ttaT = wt(aTU (aU n A))taT 1\ tt(aU n A)= wt(aT U (aU n A))t(aU nA)

{ Property 1.1.2.4 }

ttaT = wtaT 1\ tt(aUnA)= wtautA

::;. { w E t(T w U) }

ttaTEtT 1\ d(aUnA)EtUtA

{ definition of weaving }

t Et(T w Cut A))

Hence. t(T w U)t(aT U (aU n A)) ~ t(T w (UtA))

(End of Proof)

Theorem 1.3.6

Let T and U be trace structures. and let A be an alphabet such that aT n aU ~ A .
then

Tw(UtA) = (TwU)t(aTU(aUnA))

Proof

As a consequence of Theorem 1.3.5 it suffices to prove

t(T w (UtA)) ~ t(T w U)t(aT U (aU n A))

Let tEt(Tw(UtA)).then ttaTEtT 1\ tt(aUnA)EtUtA
Let v E tU be such that t t (aU n A) = v t A .

We have to show the existence of w . wE t(T w U). such that t = wtCaT U (aU n A)).
and we will do so by using the Lift Theorem (1.1.6).

We first derive

18

((aU n A)U aT)n aU

= { set calculus I
(aU nA)U (aU naT)

{aUnaT ~A I

aUnA

Hence, cf. Figure 1.2.

vt(aT U (aU n A))

= I v EtU I
vtaUt(aT U (aU nA))

= { see above I
vtAtaU

I defini\ion of v I
tt(aU nA Hau

I aU nA I: aU I
d(aUnA)

(see above I
d((au n A)U aT) tau

It E t(T w (UtA)) l
dau

Hence. we may apply the Lift Theorem. yielding w E (aT U aU)• such that

wt(aTU (aU n A)) = t and wtau = v

From

wtaT

I aT I: aT U (aU n A) I
w~(aT U (aU n A))taT

= I definition of w I
ttaT

E {tEt(Tw(UtA))I

tT

Trace structures

Figure 1.2

1.3 Weaving

and

w~au = v EtU

we infer wE t(T w U), and since t = wt(aT U (aU n A)) , we conclude

t E t(T w U)t(aT U (aU n A)).

(End of Proof)

Theorem 1.3. 7

19

Let T and U be trace structures and let A be an alphabet such that aT n aU ~ A , then

(TwU)~A = (T~A)w(U~A)

Proof

(TtA)w(UtA)

= { Theorem 1.3.6, aT n A n aU ~ A

((TtA)wU)t((A naT)U(A naU))

{ set calculus }

((TtA)wU)t(A n(aTUaU))

= {Theorem 1.3.6, using the symmetry of weaving}

(T w U)t(aU U (aT nA))t(A n (aTUaU))

= { set calculus. property of projection }

(T w U)t((aT U aU)n A)

{a(TwU)=aTUaU}

(T w U)tA

(End of Proof)

Theorem 1.3.8

LetT and U be trace structures. Then

0 pref(TwU) S:: pref(T)wpref(U)

1 H T and U are processes then T w U is a process

Proof

0. The alphabets of pref(T w U) and pref(T) w pref (U) are equal. viz. aT U aU.

Let s E tpref(T w U) and let t E t(T w U) be such that s -' t . We derive

20

t €t(T w U) II s ~ t

{ definition of weaving)

daTEtT II ttaUEtU II s ~t

::;. {property of projection, 1.1.2.2 I
daTEtT A rtaUEtU II staT ~ttaT A stau ~ttau

::;. · (definition of pref I
staTEtpref(T) II staUEtpref(U)

{ definition of weaving I
s Et(pref(T)w pref(U))

Hence, pref(T w U) !: pref(T)w pref(U)

1. Assume that T and U are processes. We derive

pref(T w U) _

!: { 0 l
pref(T)w pref(U)

{ T and U are prefix-closed I
TwU

!: { property of pref , 1.1.4.0)

pref(T w U)

from which we infer that T w U is prefix-closed. Moreover, we have

E Et(T w U)

(definition of weaving }

E E(aTUaU)*II etaTEtT II daUEtU

(definition of projection and of star)

E EtT II E EtU

= (T and U are processes }

true

Hence, T w U is non-empty and prefix-closed.

(End of Proof)

Trace structures

1.3 Weaving

Theorem 1.3.9

For trace structures T and U such that a.T fl aU = 0 . we have

pref(T w U) = pref(T)w pref(U)

Proof

The alphabets are equal. For any t . t E (aT U aU)*. we derive

t Et(pref(T)w pref(U))

= I definition of weaving l
daT Etpref(T) A ttau Etpref(U)

== { definition of pref }

(Eu.v :uEaT* A vEaU*:CttaT)uEtT A CttaU)vEtU)

= I aT n aU == 0 }

(Eu,v :uEaT* A vEaU*:tuvtaTEtT A tuvtaUEtU)

{ definition of weaving }

(Eu.v :uEaT* A vEaU*:tuvEt(TwU))

::;> { definition of pref

t E tpref(T w U)

21

Hence. pref (T) w pref (U) !: pref(T w U) which yields on account of Theorem 1.3.8.0

pref(TwU) = pref(T)wpref(U)

(End of Proof)

Exercises

0. T = <(a.b,d,e}.{ab.abe.de)>. U = <{b.c.e.f}.{bc.bec.fe}>.and
V <{a.b,c}.{E.a,ab,abc}>

Compute T w U. T w V. U w V. and T w U w V.

1. Prove (T w U) t A !: (Tt A) w (UtA) and provide a counterexample for equality.

2. Prove:

(i) (T w U)taT !: T

(ii) TwU = ((TwU)taT)w((TwU)taU)

22 Trace structures

3. For trace structure T we define trace structure T • by

r·= <a.T.Iti(As:s~t:s€tT)}>
Prove (T w u)• = r•w u•

4. Let U and V be trace structures such that aU

T w (U U V) = (T w U) U (T w V)

T w (U n V) = (T w U) n (T w V)

(End of Exercises)

1.4 Blending

a V . Show that

The weave of (non-empty prefix-closed) trace structures may be viewed as the
specification of the composite of the components they specify. Symbols that belong to
more than one of the alphabets of the trace structures are called internal symbols.

The other symbols. i.e. those that belong to one of the alphabets only. are called external
symbols. In the ultimate specification of a composite we want to specify a mechanism
without any information about its internal structure:

in the specification of a four-place buffer we do not want to reflect the fact that it is
composed of two two-place buffers. or that it is composed of a one-place buffer and a
three-place buffer.

Given a specification of a mechanism. one often tries to decompose that specification in
such a way that the mechanism can be obtained by composing simpler mechanisms. In
general. there will be interaction between the composing parts. That interaction is. of
course. not reflected in the original specification. Hence. we will not specify the composite
of a mechanism by the weave of the trace structures involved. but. by the weave followed
by projection on the external symbols. This leads to the following definition.

The blend of trace structures T and U. denoted by T b U • is defined by

TbU = (TwU)t(aT+aU)

where + denotes symmetric set difference, i.e. A + B (A U B) \(A n B).

Property 1.4.0

aTnaU = 0 ::;.. T bU TwU

(End of Property)

1.4 Blending

Property 1.4.1

Blending is symmetric, i.e. T b U UbT.

(End of Property)

Property 1.4.2

0 T is non-empty ::;. T b T STOP

1 Tb STOP = T

2 Tb(T~A) = T~(aT\A)

3 A CaT ::;. T b RUN(A) = T~(aT\A)

4 e E tT ::;. T b STOP(aT) = STOP

Proof

0. Assume T is non-empty. We derive

TbT

{ definition of blending }

(T w T)~0

{ weaving is idempotent I
T~0

l T is non-empty, Property 1.1.2.6 I
STOP

1. We derive

TbSTOP

= l Property 1.4.0, aT n a STOP = 0 I
TwSTOP

= l Property 1.3.4.1 I
T

2. We derive

T b (TtA)

I definition of blending I
(T w (Tt A)) tCaT\A)

I Property 1.3.4.1 }

Tt(aT\A)

23

24

3. Assume A !: aT. We derive

T b RUN(A)

{ definition of blending. A !: aT }

(T w RUN(A)}t(aT\A)

l Property 1.3.4.2. A !: aT }

Tt(aT\A)

4. Assume e E tT. We derive

T b STOP(aT)

= I definition of blending }

(T w STOP(aT))t0

= I Property 1.3.4.4, aT !: aT and e E tT }

STOP(aT)t0

= l STOP(aT) is non-empty }

STOP

(End of Proof)

Trace structures

From 1.4.2.0 we conclude that blending is not idempotent. The next example shows that
blending is not associative.

Example 1.4.3 (blending is not associative)

(<la,b}.le.a.ab}> b <{b,c},IE,b,bc}>) b <{b,c},{e,b,bc}>

= l calculus }

<{a.c).{e.a,ac}> b <{b,c}.{e.b.bc}>

= l calculus }

< {a. b }.{e. a, b, ab, ba} >
;r!: I trace sets differ }

<I a . b}. {E. a . ab} >
{Property 1.4.2.1 }

< l a ,b }.(e. a .ab }> b STOP

= { Property 1.4.2.0 }

<{a.b}.{e.a.ab)> b ({b,c}.{e,b,bc}> b <{b,c}.{e,b.bc}>)

(End of Example)

1.4 Blending 25

We do. however. have the following theorem.

Theorem 1.4.4

Under the restriction that each symbol occurs in at most two of the alphabets of the
trace structures involved. blending is associative.

Proof

LetT, U, and V be trace structures. such that aT n aU n a V = 0.
From set theory we then have

(aTUaU)nav ~ aT+aU (*)

We derive

(T b U)b V

(definition of blending I
((T w uHCaT+aU)w VH((aT+aU)+aV)

= I Theorem 1.3.6, using(*) }

((T w U)w V) ~(((aT U aU)n (aT+aU))U a V)WaT+aU)+a V)

I set calculus)

((T w U)w VHCCaT+aU)U a V)t((aT+aU)+a V)

(Property 1.1.2.4. set calculus l
((T w U)w V)WaT+aU)+aV)

(associativity of weaving and of symmetric set difference I
(T w U w VH(aT+aU+aV)

Since w as well as + are symmetric. we conclude

(T b U) b V = T b (U b V)

(End of Proof)

Let X be a finite set of trace structures such that each symbol of (U T · T EX : aT)
occurs in alphabets of at most two of the elements of X. Then the blend of the elements
of X is well-defined. It is denoted by (B T : T E X : T). From the proof of Theorem
1.4.4 we infer

(B T: T EX: T) = (W T: T EX: T)~ A

where A is the symmetric difference of the alphabets involved.

By definition we have (B T : T E 0 : T) = STOP. the unit element of blending.

26 Trace structures

Whenever we use the blending operation. we shall see to it that each symbol occurs in at
most two of the alphabets of the trace structures involved.

From the properties of projection, i.e. 1.1.2.5 and 1.1.4.3, we have the following variant of
Theorem 1.3.8 .

Theorem 1.4.5

Let T and U be trace structures. Then

0 pref(TbU)!;;; pref(T)bpref(U)

if T and U are processes then T b U is a process

(End of Theorem)

Finally, we define a class of trace structures that may be viewed as the specification of a
synchronization mechanism. It is a generalization of SYNC and QSYNC in [19].

Let A and B be alphabets and let p and q be natural numbers. The trace structure
SYNC,.q(A .B) is defined as

<A U B. { t It E (A U B)* A (As : s ~ t : -q ~ l (s ~A) -l(s ~B) ~ p)) >

In any prefix of a trace of SYNCp,q(A .B) the lead of elements of A over elements of B
is at most p. and the lead of elements of B over elements of A is at most q.

Property 1.4.6

0 SYNC, ./A, B) is a process

SYNCo.0(A,B) = <AUB.(AnB)*>

2 SYNC,.q(A,B):::: SYNCq.p(B.A)

3 SYNCp.q(0,0) STOP

(End of Property)

Note

When using these processes, we usually require that p + q ;!!: 1. and that A and B
are non-empty and disjoint. However. putting these restrictions in the definitions
leads to complicated formulations of properties and theorems.

(End of Note)

1.4 Blending 27

The following theorem is useful when calculating the blend of two SYNC's.

Theorem 1.4. 7

Let p. q. m. and n be natural numbers such that p + q ~ 1 and m + n ~ 1. and let
A.B. C. and D be non-empty alphabets such that A n B = 0. C n D = 0.
Anc = 0.BnD = 0.AnD¢0.and BnC¢0.

Then

SYNCp.q(A .B) b SYNCm,n (C .D)

SYNCp+m,q+n((A UC)\(B UD).(B UD)\(A UC))

Proof

For the sake of convenience we abbreviate

SYNCp.q(A .B) to S(A .B)
SYNCm,n(C.D) to S(C.D)
SYNCp+m.q+n((A UC)\(B UD).(B UD)\(A UC)) to S(AC\BD .BD\AC)

and

A UB to AB
A UC to AC
CUD to CD
BUD to BD

Due to the restrictions on the alphabets we have

AB +CD

= I definition of + l
AB\CD U CD\AB

= {AnC=0.BnD=0}

A \D U B\C U D\A U C\B

= {AnB=0.CnD=0}

AC\BD U BD\AC

= I definition of + l
AC +BD

Hence.

AB+CD A \D U B\C U D\A U C\B = AC+BD (*)

28

We derive

a(S (A , B) b S (C, D))

= { definitions of SYNC and blending }

AB +CD

= I (*) I
AC +BD

I definition of SYNC }

aS(AC\BD,BD\AC)

The equality of the trace sets is proved in two steps

(i) t(S(A.B)bS(C.D)) ~ tS(AC\BD.BD\AC)

Lett Et(S(A .B)b S(C .D)) and lets ~ t.

Trace structures

According to Theorem 1.4.5 .1 we have s E t (S (A • B) b S (C . D)) as well. Let w be such
that wEt(S(A .B)wS(C.D)) and s = wt(AB +CD).
We derive

w Et(S(A ,B)w S(C .D))

=> {definition of SYNC and weaving l
-q ~l(wtA)-l(wtB)~p A -n ~l(wtC)-l(wtD)~m

=> I calculus l
-(q +n) ~ lCwtA)-l(wtB)+l(wtC)-l(wtD) ~ p+m

{A (l C = 0. B (l D = 0 }

- (q +n) ~ l(wtAC)-l(wtBD) ~ p +m

{calculus l
- (q +n) ~ l(wtAC\BD)-l(wtBD\AC) ~ p +m

{ s = wt(AC + BD), cf. (*)}

(q +n) ~ l(stAC\BD)-l(stBD\AC) ~ p +m

Hence.

(A s · s ~ t : - (q + n) ~ l (s t AC \ BD) - l (s t BD \ AC) ~ p + m)

from which we conclude t EtS(AC\BD .BD\AC)

(ii) tS(AC\BD.BD\AC) ~ t(S(A.B)bS(C.D))

In order to prove (ii) we have to show for each t in the set on the left-hand side . the
existence of a trace w. wE t(S (A .B) w S(C ,D)). such that t = wt(AB +CD). We do
so by defining a function h.

1.4 Blending

h: tS(AC\BD.BD\AC)-+ t(S(A.B)wS(C.D))
\

with h (t)t(AB + CD) = t .

29

We define h by induction on the length of t. which is possible since the domain of h is
prefix-closed.

We have EEt(S(A.B)wS(C.D)) and E~(AB +CD)= E. Hence. we define
h (E)= E.

Step t = sa with a E AC + BD. Let w = h (s).

Due to the symmetry of SYNC. cf. Property 1.4.6.2. the symmetry of the theorem to be

proved. and (*), it suffices to treat the case a E A\ D. We then have

saEtS(AC\BD.BD\AC) A aEA\D

and the induction hypothesis (w = h (s)) :

wEt(S(A.B)wS(C.D)) A w~(AB+CD)=s

Notice that the first conjunct of the induction hypothesis implies

(Av :v ~w: -q ~l(v~A)-l(v~B)~p A -n ~l(vtC)-l(v~D)~m)

We derive

sa EtS(AC\BD.BD\AC)

::;.. I definition of SYNC }

l(satAC\BD)-l(satBD\AC) ~ p +m

{aEA\D.AilC=0.AilB=0}

l(st AC\BD)-l(s~BD\AC) ~ p +m- 1

= { induction hypothesis: s = w ~(AC + BD). cf. (*) }

l(wtAC\BD)-l(wtBD\AC) ~ p +m -1

= { calculus }

l(wtAC)-l(wtBD) ~ p +m- 1

= {Ail C = 0. B il D = 0}

l(wtA)+l(w~C)-l(wtB)-l(wtD) ~ p +m- 1

::;.. { calculus }

l(wtA)-l(wtB)~p-1 V lCwtC)-l{wtD)~m-1

= (wtAB EtS(A.B). wtCDEtS(C.D)}

30

-q ~ l(wtA) HwtB) ~ p- 1

V (l(wtA)-l(w~B)=p II -n~l(wtC)-l(wtD)~m-1)

I p +q ;;:: 1. hence - q + 1 ~ p }

-q ~l(w~A)-l(wtB)~p-1

Trace structures

V (-q+l~l(wtA)-l(wtB)=p II -n ~Z(wtC)-l{w~D)~m-1)

Hence. we have two cases :

(0) -q ~l(w~A)-l(w~B)~p-1

(1) -q+1~l(w~A)-l(w~B)=p II -n~l(w~C)-l(w~D)~m-1

In case (0) we define h (sa)= wa. since

-q ~l(wtA) l(wtB)~p-1

{ w~CD EtS(C .D) l
-q ~ l(wtA)-l(wtB) ~ p -1 II -n ~ l(wtC)-l(w~D) ~ m

(aEA\D.AnB =0.AnC =0}

-q+1~l(wa~A)-l(watB)~p II -n ~l(watC)-l(watD)~m

:::;.. { induction hypothesis }

wa Et(S(A .B)w S(C .D))

and

wa~(AB +CD)

= {aEA\D,AnC=0}

(w~(AB +CD))a

{ induction hypothesis }

sa

In case (1) we define h (sa) = wba . where b E B n C (B n C ;e 0). since

-q + 1 ~ l(wtA)-l(wtB) = p II -n ~ l(wtC)-l(wtD) ~ m-1

{bEB.BnA=0.BnD=-0.bEC}

-q ~l(wb~A)-l(wbtB)=p-1 ;\ -n+l~l(wbtC)-l(wbtD)~m

{aEA\D.A nB = 0.A nc = 0}

-q ~ l(wbtA)-l(wbtB)= p -1 II -n +1 ~ l(wbtC)-l(wbtD) ~ m

II -q+l~l(wbatA)-l(wbatB)=p II -n+1~l(wbatC)-l(wbatD)~m

:::;.. { induction hypothesis }

wba Et(S(A .B)w S(C .D))

1.4 Blending 31

and

wbat(AB +CD)

= {bEBnC}

wat(AB +CD)

= {aEA\D,AnC=0}

(wt(AB + CD))a

= { induction hypothesis }

sa

(End of Proof)

In the proof of Theorem 1.4. 7, viz. in the Step. the fact B n C ¢ 0 is needed if
a EA \D U D\A whereas AnD.= 0 is needed in the case a EB\C U C\B. When
B = C the latter does not occur and we have

Theorem 1.4.8

For natural p, q , m , and n such that p + q ~ 1 and m + n ~ 1. and non-empty alpha
bets A . B • and C such that A n B = 0 and B n C = 0. we have

SYNCp.q(A .B) b SYNCm,n (B .C) = SYNCp+m.q+n (A \C .C\A)

(End of Theorem)

Corollary 1.4. 9

For natural numbers p.q.m. and n such that p +q ~ 1 and m+n ~ 1. and mutually
disjoint. non-empty alphabets A . B. and C we have

SYNCp.,/A .B) b SYNCm.n (B .C) = SYNCp+m.q+n (A .C)

(End of Corollary)

As a generalization of SEM 1(a. b) we define SEMt (A • B) for k ~ 0. and alphabets A
and B. by

We write SEM~c (a ,b) and SYNCp.q(a ,b) as shorthands for SEMt ({a}.{ b}) and

32 Trace structures

SYNCp.q({ aU b}) respectively.

Property 1.4.10

0 SEMk(A .B)

= <A U B • { t I t E (A U B)* 1\ (A s : s ~ t : 0 '(; l (s t A) - l (s t B) ~ k)) >

1 SEMk is a process

2 SEM 0(A .B)= <A UB .(A nB)*>

(End of Property)

Theorems 1.4.7 and 1.4.8. as well as Corollary 1.4.9. are easily reformulated for SEM's.

Example 1.4.11

SYNCp.q(a .b) b SYNCm,rt ({ x .b I. { y .a)) = SYNCp+m.q+rt (x .y)

SEMl({aO.ai),c)b SEM 2(c.{aO.a2}) = SEM 3(al.a2)

SEMk (a .b) b SEMm(b ,c) = SEMk+m(a ,c)

SYNC 1,1(a.b) b SEMl({b,x).{a.y}) = SYNC2.1Cx.y)

SEM 1(a .b) b SEM 1(a ,c)

= { definition of SEMk I
SYNC t.oCa .b) b SYNC t,o(a. c)

{ Property 1.4.6.2 I
SYNCo.t(b.a) b SYNC 1•0(a.c)

= {Corollary 1.4.9 J
SYNCu(b,c)

(End of Example)

Exercises

Exercises

0. Compute:

RUN(A) b RUN(B)

RUN (A) b STOP(B)

STOP(A) b STOP(B)

L Compute:

RUN(A) b (RUN(A) b RUN(A U B))

(RUN(A) b RUN(A)) b RUN(A UB)

2. Prove: aT n aU !:",;; A => (T b u H A = (T~ A) b (U r A)

3. Prove: t Et(T b U) => t~(aT\aU) Etn(aT\aU)

4. Show that <{a.b}.{t ltE{a,b}*ll 0 ~ l(tra)-l(ti'b) ~ 2}> is rwt

closed.

5. Prove: SYNCp.q(A .B) = RUN(A n B) b SYNCp.q(A \B .B\A)

6. Compute:

0. SYNC 1,1({a.b},{c.d}) b SYNCu({d .e).{b.f})

1. SYNCu(a,b) b SYNCu(c,b)

2. SEMt(laO.al}.a2) b SEM1({a2,a3}.aO)

3. SEM 1({a.x).{b,x}) b SEM 1({b.yL{c,y})

4. SEMl(x.y) b SEMl({x,aUy.b})

7. For distinct symbols a and b we define SEM(a ,b) by

SEM (a • b) = < { a • b).{ t It E { a • b)* II (A s : s ~ t : 0 ~ l (t ~a) - l Cd b))) >

Prove:

0. SEM(a ,b) is a process

1. SEM(a,b) b SEM 1(b.c) = SEM(a,c)

2. SEM (a • b) b SEM (b • c) = SEM (a • c)

(End of Exercises)

33

34 Trace structures

1..5 States and state graphs

In this section we relate trace structures to labeled directed graphs.

Let T be a trace structure. The binary relation T on tpref(T) is defined by

(Au:uEaT*:suEtT := tuEtT)

Property 1..5.0

0 T is an equivalence relation:

s -;s
s -;t - t -;s
s -;t 1\ t -;u::;.. s -;u

1 T is right congruent with respect to concatenation:

(As.t.u:suEtpref(T)I\ tuEtpref(T):s -;t::;.. su -;tu)

(End of Property)

The equivalence classes corresponding to T are called the states ofT. [t lr denotes. as
usual. the class to which t belongs.
Whenever T is obvious. we omit T in T and [t lr.

Example 1..5.1

SEM 1(a. b) has two states. viz. [e] and [a].

(End of Example)

If [s] = [t] and sa E tpref(T), we have, due to the fact that - is a right congruence,
that [sa]= [ta] as well. Hence. we have a relation R on the set of states. viz.

[s] R [t] = (E a : a E aT : [sa] = [t])

This relation can be represented by a directed labeled graph. The states of T are the nodes
of the graph. If [s] R [t] then there is an arc . labeled a. from [s] to [t] for each sym
bol a EaT such that [sa]= [t].

1.5 States and state graphs

Example 1.5.2

LetT= <{a,b}.{a,ab,bb}>

then tpref(T)= {E.a.b.ab.bb}.

The states are [e). [a]. [b]. and [ab].
Notice that traces a and b are not equivalent. since

aE EtT and bE f tT.

The state graph is shown in Figure 1.3 .

(End of Example)

35

Figure 1.3

If tT is empty then the graph is the empty graph. If tT is non-empty then [e) is called
the initial state. In figures of state graphs the initial state is drawn fat. Each path start
ing in [E) yields an element of tpref(T) by recording the labels on that path. If such an
element belongs to tT. the endpoint of the path is called a final state (all states of a
prefix-closed trace structure are final states).
The graph thus obtained is often called the minimal deterministic state graph of T. We
call it the state graph of T.

Any directed graph with one node as initial node. zero or more nodes as final nodes. and
with zero or more arcs labeled with symbols. defines a trace set: each path from the initial
state to a final state yields a trace. Such a graph is called nondeterministic if there exists a
node that bas an unlabeled outgoing arc or two or more outgoing arcs with the same label.
Otherwise it is called deterministic . If it is deterministic and if the number of nodes
equals the number of states of the trace set it describes. it is called minimal. In a minimal
state graph all arcs are labeled.

For a more formal treatment of the above we recommend [9]. A nice algorithm for the
transformation of a nondeterministic state graph into a minimal deterministic one can be
found in [19].

If T bas a finite number of states. T is called a regular trace structure. The correspon
dence between regular trace structures and deterministic finite state machines is described
in [19].

b a

Example 1.5.3 [b]~•Q-[a)
Figure 1.4 shows the state graph of SYNC u(a , b).

There are three states. viz. [E). [a]. and [b].

Since SYNC 1,1 (a . b) is a process. every state is a final state.
SYNC u(a, b) is a regular process.

(End of Example)

a b

Figure 1.4

36 Trace structures

Let B be a subset of aT. A state graph of T~ B is obtained from a state graph of T by
removing all labels not in B . In general this leads to a nondeterministic state graph. Pro
jection may. surprisingly. lead to a trace structure with more states than the original one.
This is demonstrated in the next example.

Example 1.5.4

Procesr.; T is defined by

aT = {a.b.c}

a a
,--...... c ~ ----· ·-· . '---"' '---"'

a

b b

Figure 1.5

tT is the prefix-closed trace set described by the state graph shown in Figure 1.5 .

The trace set of T~ {a . b} is given by Figure 1.6 .

The minimal deterministic state graph of Ttl a .b} is shown in Figure 1.7.

Apparently. T has 5 states and Ttl a .b} has 6 states.

(End of Example) a a

a •,--......• ~ -- '----"' ---\..___)

a

b b

Figure 1.6

a

b ~
____;;;_--·~·

b

Figure 1.7

From automata theory it is known how a finite nondeterministic state graph can be
transformed into a finite deterministic minimal state graph. As a consequence. we have

Property 1.5.5

If T is regular then T~ B is regular.

(End of Property)

We now consider the relation between the state graph of trace structures T. U, and
TwU.

1.5 St~tes and state graphs

Property 1.5.6

Let s and t be traces of t pref (T w U). Then

s~aT Tt~aT A s~aU ut~aU => sT;;U t

Proof

Assume s~aT Tt~aT A s~au ut~au. Foranytrace u wederive

suE t(T wU)

= { definition of weaving }

=

=

suE(aTUaU)* A su~aTEtT A su~aUEtU

I property of projection }

su E(aT UaU)" A (s~aT)(u~aT)EtT A (s~aU)(u~aU)EtU

ls~aT Tt~aT ands~au ut~au l
tu E(aT UaU)* A (daT)(u~aT)EtT A (t~aU)(u~aU)EtU

I property of projection }

tuE(aTUaU)* A tu~aTEtT A tu~aUEtU

{ definition of weaving }

tu Et(T w U)

Hence. sT ';;u t

(End of Proof)

Theorem 1.5. 7

37

The number of states of T w U is at most the product of the number of states of T
and the number of states of U.

Proof

Forall sand t.sEtpref(TwU) and tEtpref(TwU).wederive

[slrwu ¢ [tlrwu

=> I Property 1.5.6 }

[s~aT]r ¢ [ttaTlr Y [s~aUlu ¢ [ttaUlu

= I definition of equality of pairs }

([staTlr .[staU)u) ¢ ([ttaT)r .[ttaU)u)

38 Trace structures

and the number of pairs (x .y) where x is a state of T and y is a state of U equals the
product of the number of states of T and the number of states of U.

(End of Proof)

Corollary 1.5.8

lf T and U are regular trace structures then T w U is a regular trace structure.

(End of Corollary)

Using Property 1.5.6 we can indeed construct a state graph of T w U from those of T
and U:

Consider all pairs ([p].[q]) where [p] is a state of T and [q] is a state of U. Take these
pairs as nodes. We have an arc with label a from ([pO].[qO]) to ([pl].[ql]) in the fol
lowing cases:

aEaTnau 1\ [p(Ja]= [pl] 1\ [qOa]= [ql]

aEaT\aU 1\ [p(Ja]= [pi] I\ [qO]= [qJ]

a EaU\aT 1\ [pO]= [pl] 1\ [qOa]= [ql]

The initial state is the pair of the initial states of T and U • and the final states are all
pairs of final states of T and U.
In the resulting graph one may remove all nodes that are not reachable from the initial
node. and all nodes from which no final node is reachable.

Example 1.5.9

The state graphs of SEJI.! 1(a ,b) and SEM 1(b .c) are shown in Figure 1.8 and Figure 1.9
respectively. Applying the method described above yields Figure 1.10. a state graph of
SEMt(a .b)w SEM1(b ,c).

Projection on {a ,c l yields Figure 1.11. the state graph of SEMia .c).

(End of Example)

a

o~•1
~

b

Figure 1.8

b

~
oe •1

~
c

Figure 1.9

/t)/''''
• • (o,o) a (1,o) Figure 1.10

c c

.~~.
'---" '---" a a

Figure 1.11

1.5 States and state graphs

From Property 1.5.5 and Corollary 1.5.8 we infer

Theorem 1.5.10

If T and U are regular trace structures then T b U is a regular trace structure.

(End of Theorem)

Exercises

0. Show that - is not left congruent with respect to concatenation.

1. Draw state graphs of the following processes:

SEM 4(a,b). SYNC 1•3(a,b). RUN({a.b)). STOP({a,b}).

2. Let T and U be trace structures. Describe the state graph of
<aT U aU, tT U tU > in terms of the state graphs of T and U.

3. Describe the state graph of

<aT U aU. { t I(E u ,v: u EtT 1\ v EtU; t = uv))>

in terms of the state graphs of T and U.

4. Compute the number of states of SYNCP .q (A . B).

39

5. Let T = <{b).{b}> and let U = <{b),{bb)>. Construct the state graph of
T w U from those of T and U.

6. Process SEM (a • b) is defined as

<la,b),{t ltE{a,b}* 1\ (As :s ~t :l(sta) ~ l(stb))}>

Prove that SEM (a , b) is rwt regular.

7. Prove that for trace structures T and U such that aT n aU = 121:

the number of states of T w U equals the product of the number of states of T and
the number of states of U.

40 Trace structures

8. Process T has alphabet {a , b , c , d I
and state graph as shown in Figure 1.12 .

Determine the state graph of T~{ a ,b ,c }.

(End of Exercises)

1.6 The lattice T (A)

a

Figure 1.12

ln this section we study the structure of processes in more detail. First we review some
concepts of lattice theory. For an introduction to lattice theory we recommend [0].

Let (S , ~) be a partially ordered set and let X be a subset of S. Element a is called
the greatest lower bound of X if

(A x : x EX : a ~ x) A (A b : b E S A (A x : x E X : b ~ x) : b ~ a)

lt is called the least upper bound of X if

(A x : x E X : a ~ x) A (A b : b E S A (A x : x E X : b ~ x) : b ~ a)

We call (S, ~) a complete lattice if each subset of S has a greatest lower bound and a
least upper bound. The greatest lower bound and the least upper bound of elements x
and y are denoted by x glb y and x lub y respectively. The greatest lower bound and
the least upper bound of X are denoted by (GLB x : x EX : x) and (LUB x : x EX : x)
respectively.

A complete lattice has a least element and a greatest element. viz. (LUB x : x E £21 : x) and
(GLB x : x E£21: x) respectively.

A sequence x(i : i ~ 0) of elements of S is called an ascending chain if

(A i : i ~ 0: x (i) ~ x (i + 1)).

It is called a descending chain if (A i : i ~ 0: x (i) ~ x (i + 1)).

Let (S. ~) and (T, ~) be complete lattices and let f be a function from S to T.

f is called

monotonic if (A x . y : x E S A y E S : x ~ y => f (x) ~ f (y))

disjunctive if (Ax.y:xESA yES·f(xluby)=f(x)lubf(y))

conjunctive if (Ax.y:xES A yES:f(x glby)=f(x)glbf(y))

1.6 The lattice T (A)

universally disjunctive if

(A X: X !',;;; S: f((LUB x : x EX: x)) = (LUB x: x EX: f(x)))

universally conjunctive if

(A X :X !: S : f((GLB x : x EX: x)) = (GLB x : x EX: f (x)))

universally disjunctive aver non-empty sets if

(A X: X !: S A X¢ 0: f((LUB x : x EX: x)) = (LUB x: x EX: f(x)))

universally conjunctive aver non-empty sets if

(A X : X !',;;; S 1\ X ¢ 0: f((GLB x : x EX : x)) = (GLB x : x EX : f (x)))

upward continuous if for each ascending chain x (i : i ~ 0)

f((LUB i: i ~ 0: x (i))) = (LUB i: i ~ 0: f(x(i)))

downward continuous if for each descending chain x (i : i ~ 0)

f((GLBi:i ~O:x(i))) = (GLBi:i ~O:f(x(i)))

Some of these notions have been adopted from [4].

Example 1.6.0

41

Let A be a set, then (P(A), !:) is a complete lattice. For a subset Q of P(A) we have

(LUBX:XEQ:X) (UX:XEQ:X)

(GLBX:XEQ:X) = (n X:XEQ:X)

(Taking into account that (U X : X E 0 : X) = 0 and (n X : X E 0 : X) = A)

Let B be a proper subset of A. Consider the function f : P(A)-+ P(A) defined by
f(X) = B nx.
From B n (XU Y) = (B n X)U (B n Y) we conclude that f is disjunctive.
From B n (X n Y) = (B n X)n (B n Y) we conclude that f is conjunctive.

Since intersection distributes through any union of sets. f is universally disjunctive as
well. Notice. however. that f is not universally conjunctive:

f((nX:XE0:X))

= {definition of f }
Bn(nX:XE0:X)

= { by definition }

BnA
= { B is a subset of A

B

¢ { B is a proper subset of A }

42

A

(by definition }

(nX:XE0:BnX)

(definition of f }
(n X : X E 0 : f (X))

Trace structures

Let X(i : i ~ 0) be an descending chain in P(A). For any a, a EA, we have

a E B n (n i : i ~ 0 : X (i))

(set calculus }

aEB II (Ai :i ~O:aEX(i))

(predicate calculus }

(A i : i ~ 0: a E B II a E X(i))

(set calculus }

aE(ni:i~O:BnX(i))

from which we infer that f is downward continuous.

In this derivation the hint 'predicate calculus' can be refined to 'conjunction distributes
through universal quantification over a non-empty range'. A similar derivation yields that

f is universally conjunctive over non-empty sets.

(End of Example)

Without proof we mention the following properties.

Property 1.6.1

Both conjunctivity and disjunctivity imply monotonicity.
Universal conjunctivity over non-empty sets implies downward continuity.
Universal disjunctivity over non-empty sets implies upward continuity.
Both upward and downward continuity imply monotonicity.

(End of Property)

Property 1.6.2

Let S and T be complete lattices. Let f be a function from S to T. Let LS and LT
denote the least elements of S and T respectively. and let GS and GT denote the

1.6 The lattice T (A) 43

greatest elements of S and T respectively. Then

I is universally disjunctive

- I is universally disjunctive over non-empty sets A I(LS) = LT

and

I is universally conjunctive

- I is universally conjunctive over non-empty sets A I (GS) = GT

(End of Property)

Let A be an alphabet.

The set of all processes with alphabet A is denoted by T (A).

In Section 1.2 we defined inclusion. intersection, and union for trace structures with equal
alphabets, according to their trace sets.

Theorem 1.6.3

(T (A), !:) is a complete lattice with least element STOP(A) and greatest element
RUN(A).

Proof

For any non-empty prefix-closed subset X of A • we have E EX, hence. STOP(A) !: T

for all T, T E T (A). Moreover, STOP(A) is a process, hence STOP(A) is the least ele

ment of T (A).

For any T, T E T (A), we have tT !;;:; A *. Since RUN (A) is a process, RUN (A) is the

greatest element of T (A).

Let Q be a non-empty set of non-empty prefix-closed subsets of A*. We have to prove
that (U X : X E Q : X) and (n X : X E Q : X) are non-empty and prefix-closed.

From Q>C0 and (AX:XEQ:EEX) we infer EE(nX:XEQ:X) and
E E (U X : X E Q : X), so both are non-empty.

Let s and t be traces such that s ~ t . We derive

tE(UX:XEQ:X)

= { definition of union }

(EX:XEQ:tEX)

44 Trace structures

::;. (all elements of Q are prefix-closed, s ~ t l
(E X : X E Q : s EX)

{ definition of union)

sE(UX:XEQ:X)

Hence. (U X: X EQ :X) is prefix-closed.

A similar derivation yields that (n X : X E Q : X) is prefix-closed.

(End of Proof)

Note

Since STOP(A) is the least element of T(A), we have

(LUB X: X E0: X) = STOP(A) (in the realm of T(A)).

However, (U X: X E0: X) = 0. so we should be careful with the use of U instead of
LUB . A similar remark holds for n and GLB . We do have:

(LUB X: XE0: X)= STOP(A)

(LUBX:XEQ:X) = (UX:XEQ:X) if Q¢0

(GLBX:XE0:X) RUN(A)

(GLBX:XEQ :X) (n X:XEQ :X) if Q ¢0

(End of Note)

Let B be an alphabet. As we have seen in Section 1.2. the projection of trace structure T
on B yields a trace structure with alphabet aT n B:

T~B = <aTIIB,tT~B>

From pre/ (X~ B) = pref(X H B (Property 1.1.4.3) and E ~ B = E we conclude that t B
maps processes onto processes:

T T~ B maps T (A) onto T (A II B)

Theorem 1.6.4 (projection is universally disjunctive)

Let B be an alphabet.

The mapping ~ B : T (A) T (A (l B) is universally disjunctive.

Proof

STOP(A) ~ B = STOP(A n B), and for any non-empty set Q of trace sets we have

1.6 The lattice T (A)

tE(U X:XEQ:XHB

= I definition of projection }

(Eu: u E(U X: XEQ :X):t = u~B)

= I definition of union }

(E u : (E X : X E Q : u EX) : t = u ~ B)

= I predicate calculus }

(E X : X E Q : (E u : u EX : t = u t B))

= I definition of projection }

(EX : X E Q : t EX~ B)

= I definition of union }

t E(U X: XEQ: X~ B)

Hence. for any subset Q of T(A) we have

(LUB T: TEQ: T)tB = (LUB T: TEQ: TtB)

(End of Proof)

Corollary 1.6.5

Projection is upward continuous and monotonic.

(End of Corollary)

Example 1.6.6 (projection is not downward continuous)

Let A = I a. b} and let the descending chain T (i : i ;;?; 0) be given by

T(i) = <A .It I (E k : k ;;?; i : t ~ ak b))>

where a 0 = e and ak+l =aka fork ;;?; 0.

Notice that for all i, i ;;?; 0, T(i) is a process. We derive

tE(n i:i ;;?;O:tT(i))

= I calculus }

(A i : i ;;?; 0: (E k : k ;;?; i : t ~ ak b))

I predicate calculus }

(A i : i ;;?; l (t) : (E k : k ;;?; i : t ~ a k b))

= I calculus }

t E {a l*

45

46

Hence, (GLBi :i ;i!;O:T(i)) = <{a,b).{a)*>.Projectionon{b)yields

(GLBi :i ;i!:O:T(i))t{b} = <{bl.{e)>.

Trace structures

On the other hand we have (A i: i ;i!: 0: T(i)t(b I
(GLBi :i ;i!;O;T(i)t{b)) = <{bL(e.b}>.

< (b}. (e. b} >). hence

(End of Example)

Let T be a process. Due to Theorem 1.3.8.1. T w V is a process for any process V.

Hence. we have a function f: T(A) __, T(aT U A) defined by f(V) = T w V.

(f is the restriction to T(A) of the weave viewed as a function of its second argument).
Since weaving is symmetric, all properties of f are also properties of the weave viewed as
a function of its first argument. We simply call these properties 'properties of weaving'.

Theorem 1.6. 7

0 Weaving is universally disjunctive over non-empty sets.

1 Weaving is universally conjunctive over non-empty sets.

Proof

0. Let Q be a non-empty subset of 7 (A). We derive

t E t(T w (U V: V E Q : V))

= { definition of weaving)

tE(aTUA)*I\ daTEtT II ctAEt(U V:VEQ:V)

= { definition of union)

tE(aTUA)*II daTEtT II (EV:VEQ ·ttAEtV)

= (predicate calculus I
(E V: VEQ: t E(aT UA)*II ttaTEtT II ttA EtV)

= { definition of weaving I
(E V : V E Q : t E t(T w V))

{ definition of union)

tEt(U V:VEQ:TwV)

Hence. T w (LUB V : V E Q : V) = (LUB V : V E Q : T w V)

1. Similar

(End of Proof)

1.6 The lattice T (A) 47

Note

Due to the non-emptiness of Q we are. in the derivation above. allowed to replace
LUB by U.

(End of Note)

The next example shows that weaving is rwt universally disjunctive and rwt universally
conjunctive.

Example 1.6.8

Let A= {a} and T = <{a,b).{e,a.b)> then

TwSTOP(a) = <{a,b),{e.b)> >£ STOP({a,b))

TwRUN(a) = <(a.b).(e.a,b)> >£ RUN((a,b})

hence.

T w (LUB V : V E 0 : V) ;£ (LUB V : V E 0 : T w V)
T w (GLB V: V €0: V) >£ (GLB V: V €0: T w V)

(End of Example)

The following corollary is a consequence of Theorem 1.6. 7 and Property 1.6.1 .

Corollary 1.6.9

Weaving is conjunctive. disjunctive, and monotonic.
Weaving is upward continuous.
Weaving is downward continuous.

(End of Corollary)

Finally. we consider blending. Let T be a process. From Theorem 1.4.5.1 we conclude
that T b V is a process for any process V.

Hence. V ~ T b V is a mapping from T(A) to T(aT+A).
This mapping is the composite of V ~ T w V and U ~ ut(aT+A). Since the compo
site of two mappings inherits their common junctivity properties, we have on account of
1.6.4, 1.6.5, 1.6.7, and 1.6.9 the following theorem.

48

Theorem 1.6.10

Blending is universally disjunctive over non-empty sets.
Blending is upward continuous and monotonic.

(End of Theorem)

Example 1.6.11 (blending is not downward continuous)

Let A = {a,bl and letT = RUN(a).
The descending chain V (i : i ~ 0) is defined by (cf. Example 1.6.6)

V(i) = <A.{ti(Ek:k ~i:t ~akb)}>

Then

Tb(GLBi:i ~O:V(i))

= { Property 1.4.2.3. T = RUN (a) }

(GLBi: i ~ 0: V(i))tb

= { Example 1.6.6 }

<{b}.{e}>

...= (trace sets differ }

<{b}.{e.b}>

= (Example 1.6.6 }

(GLBi:i ~O:V(iHb)

= (Property 1.4.2.3 l
(GLBi :i ~O:TbV(i))

(End of Example)

Trace structures

Let A and B be alphabets. The sequence SEM~c (A • B). k ~ 0, is an ascending chain in

T (A U B). Process SEM (A . B) is defined by

SEM(A.B) = (LUBk :k ~O:SEM~c(A.B))

Property 1.6.12

SEM (A . B) = <A U B . { t I t E (A U B)* !\ (A s : s ~ t : 0 ~ l (s ~A) - l (s ~ B)) } >

(End of Property)

1.6 The lattice T (A)

Property 1.6.13

Let A , B. and C be mutually disjoint, non-empty alphabets. Then

0 SEM 1(A ,B)b SEM(B ,C) = SEM(A ,C)

1 SEM(A .B) b SEM(B ,C) = SEM(A ,C)

Proof

0. We derive

SEM1(A ,B)b SEM(B .C)

I definition of SEM I
SEM 1(A.B)b(LUBk :k ~O:SEM~:(B.C))

I blending is upward continuous)

(LUBk :k ~O:SEM1(A.B)bSEM~:(B,C))

= I Theorem 1.4.9}

(LUB k: k ~ 0: SEMu1(A .C))

= { SEM 0(A , C) S: SEM 1 (A , C) }

(LUB k: k ;;i!: 0: SEM~:(A .C))

= I definition of SEM)

SEM(A .C)

1. We derive

SEM(A .B)bSEM(B ,C)

I definition of SEM }

SEM (A , B) b (LUB k : k ;;i!: 0: SEM1 (B , C))

= I blending is upward continuous)

(LUB k: k ~ 0: SEM(A .B)b SEM~:(B .C))

= I similar to the proof of part 0)

(LUBk :k ;i!:O:SEM(A.C))

= I definition of least upper bound)

SEM(A .C)

(End of Proof)

Notice tbat SEM (a. b) is not regular.
Tbe states of SEM(a. b) are [ak]. k ~ 0.

49

50 Trace structures

We conclude this section with two theorems concerning lattice theory.

Theorem 1.6.14 (Knaster-Tarski)

Let (S , ~) be a complete lattice and let I : S S be a monotonic function. Then the

equation

xES: l(x) x (0)

has a least solution, which is also the least solution of

xES: l(x) ~ x (1)

Proof

Notice that the greatest element of S is a solution of (1). Let m. m E S. be defined by
m = (GLB x: l(x) ~ x : x). We derive

m = (GLBx :l(x)~x :x)

::;. I definition of greatest lower bound }

(A X : l(x) ~X : m ~X)

::;. I I is monotonic l
(Ax : l(x) ~ x : l(m) ~ l(x))

::;. { transitivity of ~ }

(A X : l(x) ~ X : l(m) ~X)

::;. { definition of greatest lower bound l
l(m) ~ (GLB x: l(x) ~X: x)

{ definition of m l
l(m) ~ m

Hence, m is a solution of (1) and since m = (GLB x: l(x) ~ x: x). we have

m is the least solution of (1)

From

l(m) ~ m

::;. { I is monotonic l
I (I (m)) ~ I (m)

= { by definition }

l(m) is a solution of (1)

we infer. since m is the least solution of (1). m ~ l(m). Together with l(m) ~ m this
yields I (m) ; m .

Hence, m is a solution of (0). Since each solution of (0) is a solution of (1). each solution

1.6 The Ia tt ice T (A) 51

of (0) is at least m. We conclude

m is the least solution of (0)

(End of Proof)

Changing :::;; in ~ and GLB in LUB yields a similar result for the greatest solutions of

x E S : x = f (x) and x E S : x :::;; f (x)

A solution of the equation xES: x = f(x) is called a fixpoint off. From 1.6.14 we
conclude that each monotonic function from S to S has a least fixpoint and a greatest
fix point.

Theorem 1.6.15

Let (S . :::;;) be a complete lattice. Let LS and GS denote the least and the greatest ele
ments of S respectively. For a function f : S -+ S we have

0 if f is upward continuous then its least fixpoint equals

(LUBk: k ~ 0: fk(LS))

1 if f is downward continuous then its greatest fixpoint equals

(GLBk :k ~ 0: /t(GS))

Proof

0. Assume f is upward continuous. Then f is monotonic and since LS :::;; f(LS),
f k (LS), k ~ 0, is an ascending chain. We derive

f (LUB k : k ~ 0: f t (LS))

l f is upward continuous }

(LUBk :k ~ 0: Jk+ 1(LS))

I LS :::;; f(LS)}

(LUBk · k ~ 0: fk(LS))

Hence, (LUB k : k ~ 0: f k (LS)) is a fixpoint of f .

For each fixpoint x of f we have LS :::;; x and. hence, f k (LS) :::;; f k (x) = x for all
k. k ~ 0. We conclude (LUB k : k ~ 0: f k (LS)) :::;; x for each fixpoint x of f.
Hence (LUB k : k ~ 0 : f k (LS)) is the least fixpoint of f .

1. Similar

(End of Proof)

52 Trace structures

Exercises

0. Let (S, ~) be a complete lattice and let x and y be elements of S. Prove

(i) x glb y and x lub y are unique.

(ii) glb and lub are symmetric and associative.

(iii) glb and lub have identity elements.

1. Let (S. ~) be a partially ordered set such that each subset of S has a least upper
bound. Prove that each subset of S has a greatest lower bound as well.

2. Disprove

(i) projection is conjunctive.

(ii) blending is conjunctive.

3. Let A be an alphabet and let T be an element of T(A). The mappings I and g

from T (A) to T (A) are defined by

1 (V) = T u V and g (V) = T n V.

Find out whether I and g are monotonic. disjunctive. conjunctive. upward continu
ous, downward continuous. universally disjunctive or universally conjunctive.
Determine the fi.xpoints of I and g .

4. Compute (LUB i : i ~ 0: SYNCi,k (A .B)) for fixed natural number k.

5. For natural k trace structure Tk is defined by

Tk = <{a,b}.{t I(Em.n :0 ~ m ~ n ~ k :t = anbm)l>

Show that T, is a process. Draw a state graph of T 3•

Show that the sequence Tk • k ~ 0, is ascending. Show that (LUB k : k ~ 0: Tk) is
not regular.

6. T is a process and V(i: i ~ 0) is a descending chain in T(A). Prove:

T b (GLB i : i ~ 0: V(i)) ~ (GLB i : i ~ 0: T b V(i))

7. A is an alphabet. The set of all trace structures with alphabet A is denoted by
R (A). Prove that R (A) is a complete lattice with least element <A . 0 > and
greatest element RUN (A). Prove the analogs of the theorems of this section if

T (A) is replaced by R (A).

(End of Exercises)

2 A program notation

2.0 Introduction

In this chapter we present a program notation that defines a process. Such a program is
also called a component. The first class of components we describe yields the set of all reg
ular processes. It is closely related to the field of regular languages and regular expres
sions. cf. [9]. These components may be implemented as (sequential) finite state machines.

The second class of components still gives rise to regular trace structures. but may be
implemented with more concurrency. This class allows components to be composed of -
besides a regular expression - a number of subcomponents.

The third class includes recursive components. These can define non-regular processes.

2.1 Commands

From language theory it is known that a regular trace set can be represented by a regular
expression. We extend the definition of regular expressions and define so-called coTT!TfiJlrtlls.

Commands are defined inductively by the following six rules. With command S trace
structure TR (S) is associated.

(i) E is a command. TR(e) STOP

(ii) A symbol is a command. TR(a) = <{a}.{a}>

(iii) If S is a command then S • is a command.

TR(S*) = <aTR(S).(tTR(S))*>

where (tTR(S))* denotes the set of finite length sequences of elements of tTR(S).

If S and T are commands then

(iv) SIT is a command.

TR(SIT) = <aTR(S)UaTR(T).tTR(S)UtTR(T)>

(v) S; T is a command.

TR(S;T) = <aTR(S) UaTR(T) .{t I(E u.v: u EtTR(S) 1\ v EtTR(T): t = uv)}>

53

54 A program notation

(vi) S. T is a command.

TR(S,T) = TR(S)w TR(T)

From language theory it is known that the star. the bar. and the semi-colon preserve regu
larity. Corollary 1.5.8 yields that the comma preserves regularity as well. Since STOP
and < {a l.l a}> are regular, we have

Property 2.1.0

A command defines a regular trace structure.

(End of Property)

To save parentheses we introduce the following priorities. The star has the highest prior
ity. From the binary operators the comma has the highest priority, followed by the semi
colon and then the bar, i.e. the smaller the symbol the higher its priority.

Example 2.1.1

TR((a I b)*)= RUN(a,b)

TR(a.(a;a)) = <{al.121>

T R ((a; b)*) = < {a, b}. { E, ab. abab, ababab. · · ·) >

(End of Example)

We now present some algebraic properties of commands. These are expressed as equalities.
where S = T means TR (S) = TR (T).

Property 2.1.2

The bar is symmetric, idempotent, and associative:

0 SO I SJ = SJ I SO

1 SIS S

2 SO I (SJ I S2) = (SO I SJ) I S2

The comma is symmetric, idempotent, and associative:

3 SO.SJ = Sl.SO

4 s.s = s
5 SO.(SJ.S2) = (SO.SJ).S2

2.1 Commands

The semicolon is associative:

6 SO : (SJ : S2) = (SO : SJ) : S2

(End of Property)

Property 2.1.3

The semicolon distributes through the bar:

0

1

SO; (Sl I S2)

(Sl I S2) ;SO

(End of Property)

Note

(SO ; Sl I SO ; S2)

(SJ ;SO I S2 ;SO)

55

In some theories. cf. [16]. there is a distinction between a;(b I c) and (a;b la:c). This
distinction arises from an operational point of view:

a ; (b I c) is interpreted as

'first event a occurs. after which both b and c are possible'

(a; b I a; c) is interpreted as

'first event a occurs. after which either b or c is not possible any more'

We do not have this distinction. Both TR (a; (b I c)) and TR ((a; b I a; c)) are equal to
<{a.b,c}.{ab.ac}>.

In Chapter 5 we discuss this topic in more detail.

(End of Note)

Property 2.1.4

0 E ,S = S

1 e;S S:e = S

(End of Property)

56 A program notation

Exercises

0. Draw state graphs of the trace structures defined by the following commands. (Indi
cate initial states and final states)

(i) (a: b)"

(ii) (a ,b)"

(iii) (a\.: b)", (b ; c)"

(iv) (aO; bO "I al : bl ")*

1. Prove: TR (SO. (SJ I S2)) C TR ((SO. Sl I SO. S2))

Disprove: TR((SO .Sli SO .S2)) C TR(SO .(SJ I S2))

TR ((SO: SJ). (SO; S2)) C TR (SO; (Sl. S2))

TR(SO;(SJ,S2)) C TR((SO;SJ),(SO;S2))

(End of Exercises)

2.2 Components without subcomponents

The simplest form a component may have, is the following.

com c(A): S moe

where c is the rta111e of the component. A is a finite alphabet (usually represented by an
enumeration of its elements). and S is a command.

With component c process TR (c) is associated. defined by

TR(c) = pref(TR(S))

We impose the following restrictions on such a program text:

0 aTR(S) = A

tTR(S) ;e 0

Due to the last restriction TR (c) is non-empty. hence; TR (c) is a process. From Pro
perty 2.1.0 we conclude

Property 2.2.0

A component without subcomponents defines a regular process.

(End of Property)

2.2 Components without subcomponents

Example 2.2.1

0

1

2

3

com stop 0 : e moe

com run (a . b) : (a I b)* moe

com sem 1(a.b): (a;b)* moe

com syncu(a .b): (a .b)* moe

(End of Example)

Example 2.2. 2

TR(stop) = STOP

TR(run) = RUN({a.b})

TR(seml) = SEMt(a,b)

TR(syncu) = SYNCu(a.b)

57

The process of Example 1.2.1. specifying a one-bit one-place buffer. equals TR (bu ft)

where buft is defined by

com buf1(a0 ,al ,bO ,bl): (aO ;bO I al ;bl)* moe

(End of Example)

Exercises

0. A binary variable is specified by

com var(aO,al.bO,bJ): (aO;bO*Ial;bJ*)* moe

where the following meaning is attached to the symbols.

aO : the value zero is assigned

al : the value one is assigned

bO : the value zero is inspected

bl : the value one is inspected

Draw a state graph of T R (var) and interpret it states.

1. Define components for the processes SEM 2(a . b), STOP ({ a . b }), and
SYNC uC a . b).

2. Give a component that has trace structure SEM 2({ aO. al}.l bO. bl }).

3. A parity-counter is a mechanism that may be involved in the following events.

a : a message is accepted

e : the number of messages thus far accepted is even

58 A program notation

o : the number of messages thus far accepted is odd

Give a formal specification of a parity-counter in terms of trace structures. Write a
program according to that specification and draw a state graph of the process thus
obtained.

4. A full adder is a component that repeatedly accepts three one-bit numbers and gen
erates one two-bit number that equals the sum of the other three. Let the numbers
to be added be a. b. and c. satisfying

O~a<2 A O~b<2 A O~c<2

and let the sum be represented by d and e such that

O~d<2 A O~e<2 A a+b+c=2·d+e

The values of a . b. c. d, and e are encoded by aO. al . bO. bl, etc. , where

aO a "' 0, al = a = 1. etc ..

Derive a component that specifies the requirements stated above.

5. Figure 2.0 shows the state graph of a one-bit two-place buffer. Write a component
buf2 that specifies this buffer.

(End of Exercises)

at
~

[at a1]

'-----' b1

[aoa1]~ a1

ao ao
~~ ~ [at] • [ao] [aoao]

. '-----' '-..____/ '-..____/
"'-"1;1 bO / bO

~ ~ [at ao]

Figure 2.0

59

2.3 Subcomponents

Before introducing a more general form a component can have, we discuss some new nota~
tions.

Up to now we did not discuss the nature of n, the universe. As far as our examples are
concerned, the set of all small letters and all strings of length two starting with a letter
and ending with a digit would have been an appropriate universe. Taking, for example,
the natural numbers as a universe, and representing its elements in the usual way, would
cause ambiguity when using concatenation.
We tacitly assumed (and we will continue doing so) that the representation of the ele
ments of n does not cause such ambiguities. Furthermore, we identify the elements of n
with their representations.

Let A be an alphabet and let p be a symbol, then p- A denotes the set that is obtained by
replacing each symbol a in A by p-a . If X is a trace set then p- X denotes the set of
sequences obtained by replacing in each trace of X each symbol a by p-a. For trace
structure T we define p-T by

p-T = <raT.p-tT>

Example 2.3.0

LetT= <{a.b},{E,a,ab,aba)> then

p-T = <{p-a,p-b).{E.p-a.p-ap-b,p·ap-bp-a}>

(End of Example)

To avoid name clashes we require that no symbol in n contains a dot. The set !l·!l is
defined by !l·!l = (U p : p E !l: p- !l). Elements of !l·!l are called compound symbols.
Elements of n are called simple symbols. Due to our requirement !l n !l·!l = 0.

Our new universe is flU !l·!l. We shall see to it that the transformation of T into p-T
is only applied if aT consists of simple symbols. The alphabets of components consist of
simple symbols only. Compound symbols are used in program texts.

A more general form of a component is the following.

com c(A):

s
moe

where c 0 , ... , c,_1 are previously defined components. called the subcomponents of c,
with names Po •... , Pn-1 respectively. S is a command.

60 A program notation

With subcomponent p; process p;·TR(c;) is associated. We impose the following restric
tions on such a program text:

0 The names p1 , 0 ~ i < n , are distinct:

1 Alphabet A consists of simple symbols and

aTR(S) = AU (U i: 0 ~ i < n: p1·aTR(c1)):

2 TR (S) is non-empty.

From restrictions 0 and 1 we infer that each compound symbol occurs in exactly two
alphabets of p 0·aTR(c 0), .•• , Pn.-l'aTR(c,__ 1) and aTR(S).

Hence. blending of p 0·TR(c 0), .•. , p,__ 1·TR(c,._ 1) and pref(TR(S)) is associative and
yields a process with alphabet A.

The trace structure of component c is given by

TR(c) = (Bi :O~i<n :p;·TR(c1)) b pref(TR(S))

Due to our syntactic restrictions TR (c) is well-defined and (cf. Theorem 1.4.4) we have

TR(c) = ((Wi :O~i<n :p1·TR(c;)) w pref(TR(S)))tA

Because subcomponents have to be defined in advance. we call such a component a non
recursive component. Application of Property 2.1.0, Property 2.2.0, and Theorem 1.5.10.

using induction over the syntax of components, yields

Property 2.3.1

A non-recursive component defines a regular process.

(End of Property)

Example 2.3.2

Component sem 1 is defined by com sem 1(a, b): (a: b)* moe

Component sem 3 is defined by

com sem 3(a . b):

sub p: sem 1 bus

(a; p-a)*. (p-b: b)*

moe

We derive

p-SEM 1(a .b) b pref(TR ((a ;p-a)*. (p-b ;b)*))

2.3 Subcomponents

I definition of comma)

p-SEM 1(a ,b)b pref(TR((a ;p·a)*)w TR((p-b ;b)*))

= I Theorem 1.3.9, alphabets are disjoint l
p-SEM 1(a ,b) b (pref(TR(a ;p-a)*) w pref(TR(p-b; b)*))

= { definition of SEM 1 I
p-SEM 1(a ,b)b (SEM 1(a ,p·a)w SEM 1(p-b ,b))

= { Property 1.4.0. alphabets are disjoint I
p-SEM 1(a .b)b (SEM 1(a .p-a)b SEM 1(p-b ,b))

= { definition of p- l
SEM t(p-a .p-b) b (SEM 1(a .p-a)b SEM t(p-b ,b))

= { no symbol occurs in more than two alphabets l
SEM 1(p-a .p·b)b SEM 1(a ,p-a)b SEM 1(p-b ,b)

= I Corollary 1.4.9)

SEM 3(a ,b)

Hence. TR (sem 3) = SEM 3(a . b)

(End of Example)

Example 2.3.3

Component sem,, k ~ 1, with TR(sem,) = SEMt (a .b) is defined inductively by

since

com sem 1(a .b): (a ;b)* moe. and for k ~ 2:

com sem, (a ,b):

sub p : sem, -t bus

((a I p-b); (b lp-a))*

moe

SEMk_ 1(p-a.p-b)bpref(TR((a lp-b);(b lp-a))*)

= { definition of SEM 1 }

SEM,_ 1(p-a .p·b)b SEM 1({a .p-b }. {b.p-a})

= { Theorem 1.4. 7 I
SEMt (a ,b)

(End of Example)

61

62 A program notation

The last extension of our program notation is the following.

com c(A):

sub po:co,··. ·Pn-t:Cn-1 bus

[xo= Yo.···, Xm-1 = Ym-ll

s
moe

The equalities represent relations (connections);
x 0 through Xm- 1 are compound symbols and Yo through Ym-l are simple or compound
symbols. We are interested in the same blend as before. viz.

(B i: 0 ~ i < n : p;·TR (c;)) b pref(TR (S))

but before computing this blend we carry out a substitution according to the equalities.

Each symbol at the left hand side of an equality is replaced by the symbol to which it is
equated. both in the alphabet and in the trace set of the trace structure to which it
belongs. After having carried out this substitution the blend is computed. i.e.

(B i : 0 ~ i < n: (p;·TR(c;));:: .. : :;::-::) b pref(TR(S))

We impose the following restrictions.

0 The names P; , 0 ~ i < n , are distinct;

1 for all j , 0 ~ j < m .

xi is an element of (U i: 0 ~ i < n: p;·aTR(c;)),

Yi is an element of (U i: 0 ~ i < n: p;-aTR(c;)) UA,

xi and Yi belong to two different (of the n +1) alphabets.

each !lymbol of (U i : 0 ~ i < n : p;· aTR (c;)) U A occurs in at most one equal
ity:

2 alphabet A consists of simple symbols and

aTR(S) = ((Ui:O~i<n:p;·aTR(c;))UA)\(U j:O~j<m:{xi,yi));

3 TR(S) is non-empty.

Due to these restrictions we have (after having carried out the substitution):

a compound symbol occurs in zero alphabets since it has been replaced or

a compound symbol occurs in two subcomponent-alphabets and not in aTR(S), since
it occurred at the right hand side of an equality ar

a compound symbol does not occur in any equality and then occurs in the alphabet of
its subcomponent and in aTR (S).

2.3 Subcomponents 63

Hence (Theorem 1.4.4). associativity of the blending operator is guaranteed. and

Example 2.3.4

com sem 2(a .b):

sub p: sem 1 bus

[p-b = b]

(a ;p-a)*

moe

We derive

(SEM 1(p-a. p-b))~·b b pre{ (TR ((a; p-a)*))

I substitution }

SEM 1(p·a .b) b pref(TR((a ;p-a)*))

= { definition of SEM 1 }

SEMl(p-a .b)b SEM 1(a .p·a)

{Corollary 1.4.9 }

SEM2(a .b)

Hence. TR(sem 2) SEM 2(a ,b)

(End of Example)

Example 2.3.5

See Figure 2.1 .

t
1-

1
-r

d

Figure 2.1

A pebble is placed in the middle of a 3 x 3 checker board. It may move up. down, left,
and right but it is not allowed tQ leave the board. We derive a component that describes
the behaviour of the pebble.
Possible events are u. d, l. and r meaning up. down. left. and right respectively. From
the initial state a lead of two or more r 's over l's violates the restriction on the pebble.
A lead of one does not harm. For reasons of symmetry the same holds for leads of l over
r • u over d • and d over u . This yields

-1 ~ l(ttr)-l(dl) ~ 1 and

-1 ~ l (t tu)- l(t t d) ~ 1

for each t. t E { u. d .l. r }*. that describes a pattern of the pebble.

Since this should hold for all prefixes of these traces as well, we have

64 A program notation

T = <I u. d .l. r}. { t It E { u. d .l. r }* II (As : s ~ t : -1 ~ l (s tr) l (s t l) ~ 1)

II (As :s ~t :-1~l(stu)-l(std)~ 1)}>

is a specification of the pebble.

Evidently. T = SYNCu(r.l) wSYNCu(u,d).
Since the alphabets are disjoint. this weave equals the blend. A component with process T
is given by

com pebble(u .d .l.r):

sub p . q : sync 1.1 bus

[p-a = u, p-b = d, q·a = l. q·b = r 1

moe

(For sync 1•1 we refer to Example 2.2.1 .)

The text p . q : sync 1.1 is short for p : sync 1.1• q : sync u .

(End of Example)

Example 2.3.6

Component sem,. k ~ L with TR(semk) = SEMt (a .b) can be defined inductively by

com sem 1(a.b): (a:b)* moe.andfork ~2:

since

com semk (a .b):

sub p: sem 1, q : semk-l bus

[p-a = a. p-b = q·a. q·b = b 1

moe

SEM 1(p-a .p-b)It,~,;"a" b SEMt_ 1(q ·a .q·b)qi} b STOP

"" { substitution, STOP is the unit element of blending }

SEMt(a .q·a) b SEM,_ 1(q·a .b)

= { Corollary 1.4.9 l
SEMt (a .b)

(End of Example)

2.3 Subcomponents 65

Example 2.3. 7

In the previous example we presented component sem1 • Component csem" is defined by

com csemt (aD ,al .bO .bl):

sub p : semt bus

(p-a: (aD I ai) I p-b; (bO I bl))*

moe

Let S denote the command of cse"'*. We derive

TR(csemt)

I definition of a component l
(SEM" (p-a .p-b) w pref(TR(S))HiaO ,al .bO .bl}

= I structure of S, compound symbols are removed by ~I a{). al . bO . bl J J
(SEM" (p-a. p-b) w TR (S))tl aD. al .bO, bl}

and for any trace t

t Et(SEMt(ra.p-b)w TR(S))

=> I definition of weaving and of SEMt

O~l(ttra)-l(ttp-b)~k A tEtTR(S)

=> I structure of S J
O~l(ttra)-l(ttp-b)~k A l{ttra)=l(ttlaD,aJJ)A l{ttrb)=l(ttlbO.bl})

=> { calculus J

0 ~ l (ttl a{). al))- l (ttl bO, bl}) ~ k

Hence, TR(csernk) ~ SEMk({aD,al},{bO,bJJ).

We prove SEMt (I aO. al J, { bO. bl }) ~ TR (csem") by constructing a function

h : tSEMt ({aD .al}. I bO .bl}) -+ t(SEMt (p-a .p-b) w TR(S))

such that h(t HlaO.al ,bO.bJ}:::!: t.

h is defined inductively by:

h(e)= E h(taD)= h(t)p·a aO

h (thO) h (t) p-b bO

h (tal) = h (t) p·a al

h (tbl) = h (t) p-b bl

Then. evidently. h (t) E t(SEMt (p-a .p-b) w TR(S)) and h (t HI aO ,al.bO .bl} = t.

Weconclude TR(csem") = SEMd{aD.al}.{bO.bJ}).

(End of Example)

66 A program notation

A component can always be transformed into a component with equalities only (i.e. with
command €) by adding a subcomponent of the type described in Section 2.2 . Hence, the
components described in this section could also have been introduced without the com
mand S. The transformation is as follows.

Let c be the component defined by

com c(r;l.).

sub p~:co, ... , Pn-1:cn-1 bus

[xo= Yo.···, Xm-l = Ym-tl

s
moe

Define a one-to-one function cf> : aTR (S) -+ 0 . a renaming function used to get rid of
compound symbols. Define component c, by

com Cn (cp(aTR (S))): cp(S) moe

where cp(S) is obtained from S by changing each symbol a in S into cf>(a).

Then TR(c,.)= pref(TR(cp(S))).

Component d is defined by

com d(A):

sub p 0 :c 0 , ...• p,_ 1:cn-t.Pn :en bus

[Xo = Yo• · · · , Xm-l = Ym-1• Pn · cf>(zo) = Zo, · · · , Pn • cf>(zk-l) = Zt-tl

€

moe

where {z 0 , ... , Zt- 11= aTR(S).

Notice that d satisfies the res~rictions imposed on program texts.

We then have

TR(d)

I definition of a component I
(B · 0 ;c:: • (TR())xu•· ,xm-l) b (·TR(c))p"·<l>(zg), ... ,p.·<l>(•k-1)

t : ""t < n : p;• C;)' ·Ym-1 Pn n •• ' ... ' zk-1

= { substitution }

(B i : 0' i < n : (p;·TR(c;));::. :;:~:) b pref(TR (S))

I definition of c

TR(c)

2.3 Subcomponents

Example 2.3.8

We transform component sem 2 of Example 2.3.4 :

com sem2(a .b):

sub p: semi bus

[p-b = b]

(a;p-a)*

moe

Function t/J is defined by tf>(a) = x and t/J(ra) = y. and component c 1 is defined by

com c 1(x .y): (x ;y)* moe

The transformation yields

com d (a .b):

sub p: semi• q: ci bus

[rb = b. q·x = a. q·y = p-a]

E

moe

And. indeed (cf. Example 2.3.6). we have TR (d) = SEM 2(a . b).

(End of Example)

67

We may. on the other hand, transform a component with equalities only (i.e. with com
mand e) into a component without equalities.

Let component c be defined by

com c(A):

sub Po: c 0 , ... , Pn-I: Cn-l bus

[Xo =Yo.· · · , Xm-I = Ym-I]

E

moe

Due to our restrictions. each symbol of AU (U i: 0 ~ i < n: p;·aTR(c;)) occurs exactly
once in the equalities. Moreover, x 0 through Xm-I are compound symbols.

68

Component d is defined by

com d(A):

sub Po: co, ... , Pn-1: Cn-1 bus

Cxo:yol · · · I Xm-l:Ym-1)*

moe

Let S denote the command of d . Define T and U by
-~

T (Wi :O~i<n :(p;·TR(c;));~:.:::;;_=-:)

U (Wi :O~i<n :p;·TR(c;))wTR(S)

A program notation

Then TR (c) = T~ A. Since each trace of tprei(TR (S))\ tTR (S) is the concatenation of
a trace of tTR (S) and a compound symbol (x 0 through xm _ 1 are compound symbols), we
have TR(d) = mA.

Let I : tT tU be defined by

I (e)= e

I (tyk) = I (t)xk Yt (0 ~ k < m)
J

Then I (t) ~A = t ~A . Furthermore, I has inverse g defined by

g (e)= e

g (txt Yt) = g (t) Yt (0 ~ k < m)

Weconclude tT~A = l(tT)tA = tU~A.and,hence. TR(c)=TR(d).

Example 2.3. 9

Component sem 2 (cf. Example 2.3.6) is defined by

com sem 2(a ,b):

sub p . q : sem 1 bus

[p-a =a. p-b = q·a. q·b = b]

e

moe

The transformation as described above yields

com d(a ,b):

sub p.q: sem 1 bus

(p-a ;a I p·b ;q·a I q·b ;b)*

moe

(End of Example)

2.3 Subcomponents

Exercises

0. Prove that the pebble of Example 2.3.5 is also specified by

com peb(u .d .l.r). (u .d)*. (l.r)* moe

Draw a state graph of TR(peb).

1. Define inductively fork ~ 1 and l ~ 1. component synck. 1 such that

TR(synct.t) = SYNCk,t(a .b)

2. Let sem 1 be defined by com sem 1 (a . b) : (a :b)* moe.

For i. i ~ 1. sem 2;+1 and sem 2; are defined by

com semzi+1(a,b):

sub p: sem; bus

((a lp·b:b);(p-a;a I b))*

moe

com sem 2;(a .b):

sub p: semz;-1 bus

[rb = b]

(a :ra)*

moe

Prove TR (sem;) = SEM; (a. b) for all i. i ~ 1.

69

3. Component sem 2 has TR(sem 2) = SEM2(a .b). Compute the processes of the fol
lowing components.

(i) com c(a .b):

sub p.q: sem 2 bus

[p-a = a. rb = q·a. q·b = b]

E

moe

(ii) com d(a .b):

sub p .q : sem 2 bus

(a : ra)*. (p·b; q·a)*. (q ·b; b)*

moe

(End of Exercises)

10 A program notation

2.4 Recursive components

In this section we drop the rule that components should have been defined before they are
used as subcomponents.

We say that component d occurs in component c if d is a subcomponent of c or if d
occurs in a subcomponent of c.
Component c is called recursive if c occurs in c. In the sequel we consider component c
defined by

com c (A):

sub p. c bus

s
moe

where A
aTR(S)

is an alphabet
A Up-A.

of simple symbols. TR(S) is non-empty, and

A component of this form is called directly recursive. If we stick to the definition of the
process associated with c, we have TR (c) = p-TR (c) b pref (TR (S)) .

This means that TR (c) is a solution of the equation

T E T(A): T = p-T b pref(TR(S))

or. phrased differently. T R (c) is a fixpoint of the function

f : T(A)-+ T(A) defined by f(T) = p-T b pref(TR(S))

We investigate some properties of this function f.

Property 2.4.0

f is upward continuous and (hence) monotonic.

Proof

f is the composite of the functions g : T (A) T (p- A) defined by g (T) = p-T and

h: T(p·A)-+ T(A) defined by h(U)=Ubpref(TR(S)). Function g is just a
renaming. It is a lattice isomorphism and has all junctivity properties.
From Theorem 1.6.10 we have that h is upward continuous. Hence. f is upward con
tinuous.

(End of Proof)

2.4 Recursive components

From Property 2.4.0. Theorem 1.6.14 (Knaster-Tarski) and Theorem 1.6.15 we infer

Property 2.4.1

I has a least fixpoint and a greatest fixpoint.

The least fixpoint of I equals (LUB i : i ~ 0: I i (STOP(A))).

(End of Property)

The process of component c is defined as the least fixpoint of I . i.e.

TR(c) = (LUBi: i ~ 0: I i(STOP(A)))

The following property is useful in calculating the least fixpoint of I.

Property 2.4.2

I(T) = <A.{tltEtprei(TR(S)) A t~p-AEp-tTltA>

Proof

We derive

I(T)

I definition of I }
p·T b prei(TR(S))

= I definition of blending I
(p-T w prei(TR (S)))t A

= I Property 1.3.3. ap-T~ aprei(TR(S)) I
<AU p-A .It It E tprei(TR(S)) A t~p-A Ep-tTI> ~A

{ definition of projection I
<A.{t ltE tprei(TR(S)) A ttrA Ep-tTJtA >

(End of Proof)

71

72

Example 2.4.3

Component sem is defined by

com sem (a • b) :

sub p : sem bus

((a I p-b); (p·a I b))*

moe

We derive

f(STOP({ a .b}))

{ definition of f
STOP({ p-a. p-b)) b pref(TR ((a I p-b); (p·a I b))*)

{ definition of SEM 1)

STOP({ ra ,p·b)) b SEM 1({a ,p-b). Ira ,b))

= { calculus }

SEM 1Ca ,b)

and for k. k ~ 1.

f(SEMk (a ,b))

= { definition of f
SEM* (p-a ,p-b)b SEMt<la .p-b }.{p-a .b})

= { Theorem 1.4. 7 }

SEMt +1(a ,b)

Hence. TR (sem) = (LUB k : k ~ 0: SEMk (a ,b)) = SEM(a .b).

A program notation

Using the distribution of the semicolon through the bar (Property 2.1.3) one may rewrite
the command of sem, yielding

(a;b la:p-a lp-b;b lp-b:p-a)*

Denoting this command by S, we have

u p-b p-a v E tTR(S) :::;. uv E tTR(S) for any traces u and v.

and also

From these relations and the fact that p-b and p-a are compound symbols (removed
under blending). we infer that the alternative p·b; p-a of command S can be omitted.

2.4 Recursive components

This yields

com sem(a .b):

sub p : sem bus

(a;b la;p-a lp-b;b)*

moe

73

Command SO of this program has the property that for any t . t E t pref (TR (SO)), the
number of consecutive compound symbols in t is bounded (by two), whereas in the pre
vious command there is no upper bound. In Chapter 5 we discuss such distinctions in
more detail.

(End of Example)

Example 2.4.4

We change component sem (cf. Example 2.4.3) into component zsem that bas alphabet
{a. b. z l where z indicates that the lead of a's over b 's equals zero. Hence. TR (zsem)
should satisfy TR (zsem) = T, where T is defined by

aT = {a.b,z}

tT = {t lt€{a.b.z}0 1\ tt\a.b)E tSEM(a,b) 1\ (As :sz ~t :l(sta)-l(stb)= 0)}

We propose a component of the form

com zsem (a • b. z) :

sub p : zsem bus

s
moe

We first consider command SO of sem: SO = (a; b I a; p·a I p·b; b)*

For SO the following relations hold.

l(tta) l(t~b) = l(t~p-a)-l(ttp-b)

l{tta)-l(db) = l(ttra)-l(ttrb)+l

if t E tTR(SO)

if t E tpref(TR(SO))\tTR(SO)

Inspired by these relations (and noticing that l (eta) -l (e tb) = 0) we propose

S = z*;(a;b la.p-a lp-b;b lp-z;z)*

Computation of f(STOP({ a .b. z })). where f is the function associated with zsem.
yields pref (TR (z *:(a ; b)*)).

Some more calculations give rise to the conjecture

74 A program notation

tft(STOP({a.b,z))) =

{tIt E{a,b.z}* II t~{a.b}E tSEMt(a.b)

II (A s : sz ~ t : s ~ { a . b } E tSEMt _ 1 (a . b) II l (s ~a) - l (s ~ b) = 0)}

In view of our computation of TR(sem). the conjunct t~{a,b}EtSEMt(a,b) is not
surprising. The last conjunct, however. is complicated and we use a different way to com
pute (LUB k : k ~ 0: f t (STOP({ a ,b .z }))).

For k . k ~ 0. process Tt is defined by

aTt {a,b,z}

tTt { t It E {a. b. z }* II t ~ {a. b} E tSEMt (a ,b) II (As : sz ~ t : l (s ~a) -l (s ~b)= 0)}

Then T 0 = <{a.b,z}.{z}*> and T 1 :2 pref(TR(z*;(a;b)*;z*)).

hence.

T 0 ~ f(STOP({a,b.z})) ~ T 1

Moreover.

T = (LUB k : k ~ 0: Tt)

We prove f(Tt) = Tt +1·

Let k ~ 0.

Due to the similarity of sem and zsem. we prove only that for all s . s E t f (Tt). we

have l(s~a)-l(s~b)= 0 - szE tf(Tt)

Let sEt.f(Tt).

Since f(Tt) = p-Tt bpref(TR(S)) we may take w,w E t(p-Tt w pref(TR(S))), such
that s = w~{a,b,z}.
Since p-Tt and pref(TR(S)) are prefix-closed we assume that w does not end on a com
pound symbol. Notice that (Property 1.3.3)

wE t(p·Tt w pref(TR(S))) - wE tpref(TR(S)) II w~{p-a.p-b,p-z}E tp-Tt

We derive

l (s ~a) - l (s ~ b) = 0

{s = w~{a,b,z}}
l(w~a)-l(w~b)= 0

{ w E tpref(TR (S)), hence l (w ~ p-a)- l (w ~ p-b) ~ l (w ~a)- l (w ~b) }

l (w ~ p-a)- l (w ~ p·b) ~ 0 II l (w ~a) -l (w ~b)= 0

{ w~{p-a,p-b}E tSEMt(ra.p-b)}

l(w~p-a)-l(w~p-b)= 0 II l(w;a)-l(w~b)= 0

2.4 Recursive components

= I structure of S . w does not end in r z)

l(wtp-a)-l(wtrb)=OI\ wEtTR(S)

I w tIp-a .p-b, p·z }E tp-Tt. definition of Tk

(wtlp·a.p·b.p·z})p·zEtp-Tk II wEtTR(S)

= I definition of projection. structure of S I
w rz ztlra.p-b.p·ziE tp-Tk A w rz zE tpref(TR(S))

= I definition of weaving I
w p-z z E t(p-Tt w pref(TR(S)))

= I w t I a. b. z I= s • structure of S. w does not end in a compound symbol I
szE t(p-Tk bpref(TR(S)))

= I definition of f I
sz E tf(Tk)

Finally. we derive

To 5.; f(STOP({a,b,zl)) 5.; Tt

=> I f is monotonic I
(LUB k : k ;;>- 0: f k (T 0)) 5.; (LUB k : k ;;>- 1 : f k (STOP({ a. b, z))))

5.; (LUB k : k ;;>- 0: f" (T 1))

= { f(Tk) = Tk+l• definition of zsem)

(LUBk :k ;;>-o:Tt) 5.; TR(zsem) C: (LUBk :k;;>-t:T1)

= I definition of T l
T t: TR(zsem) !;; T

= { antisymmetry of !;; I
TR(zsem)= T

(End of Example)

75

The theory of this section is easily extended to components with more than one subcom
ponent of the same type and to components with previously defined subcomponents as
well.

E.g., component c defined by

76

com c(A):

sub p , q : c , r : d bus

s
moe

A program notation

has trace structure (LUB k : k ~ 0: f k (STOP(A))) where f: T(A) --+ T(A) is defined
by

f(T) =~ rT b q·T b r·TR(d) b pref(TR(S))

Exercises

0. Determine the process of component cat defined by

com cat (a , b) :

sub p : cat bus

(a :ra)*;a ,b ;(p-b ;b)*

moe

L Derive a component that represents an integer value. The initial value is zero. The
alphabet is I a, b, z} where a denotes an increment by one. b denotes a decrement
by one, and z denotes 'the value equals zero'.

2. A binary bag is a component that accepts zeroes and ones. A previously stored zero
or one may be retrieved. Give a formal specification of a process that specifies such a
bag. and derive a component according to that specification.

3. Prove that component sem defined by

com sem (a , b) :

sub p : sem bus

a;((p-a;a lb);(a lpob;b))*

moe

has trace structure SEM (a . b).

4. Determine the least and the greatest fixpoints of the functions associated with
com c (a , b) : sub p : c bus S moe

where S is given by

(i) (a;p-a;pob;b)*

Exercises

(ii) (a ;p-a ;b;p-b)*

(iii) (p-a ;a ;b;p-b)*

(iv) (a;b;p•a;p-b)*

(v) (a;b;p-b;p-a)*

(End of Exercises)

2.5 Unique fixpoints of recursive components

77.

In this section we take a closer look at the fixpoints of the function associated with a
directly recursive component. A generalization of the theory of this section can be found
in [11). There is. however. a difference in the lattices that are considered. Let component
c be defined by

com c(A):

sub p: c bus

s
moe

and let f T (A) _. T (A) be the associated function, i.e.

f(T} = p-Tbpref(TR(S)).

We study conditions under which f has exactly one fixpoint.

First we switch from processes to trace sets. For the sake of brevity we define trace set U
by U = tpref(TR (S)).

For a fixpoint <A. V > off we derive

<A. V > is a fixpoint off

= { definition of f I
<A. V > = <p-A .p-V > b pref(TR(S))

= { Property 2.4.2, definition of U I
<A.V> = <A.{tltEU A dp·AErVHA>

= {set calculus I
<A.V> = <A.{tltEUA (Ev:vEV:t~p·A=p-v)JtA>

{A= A I
V = {tltEUA (Ev:vEV:t~rA=p-v)JtA

For a non-empty prefix-closed trace set Y we define Q (Y) by

78 A program notation

Q (Y) = {X I X !;;;; Y 1\ X is non-empty and prefix-closed }

(Q (Y) , !;;;;) is a complete lattice with least element {e} and greatest element Y.

In view of the derivation above we define g : Q (A*) -+ Q (A*) by

g(V) = {titEU 1\ (Ev:vEV:ttrA=rvJltA

Then the following property holds.
}'

Property 2.5.0

<A, V > is a fixpoint of f

(End of Property)

V is a fixpoint of g

Inspired by the computations of least fixpoints (cf. Section 2.4) we define another function
h: Q(U)-+ Q(U), which is closely related to f, by

h(W) = {titEU 1\ (Ew:wEW:drA=rCwtA))}

Finally, we define two functions G and H that relate g, h, Q (A*), and Q (U) :

G :Q(A*)-+ Q(U) with G(V) = {tltEU 1\ (Ev:vEV:drA=p-v)}

H: Q(U)-+ Q(A *) with H(W)= WtA

We then have (cf. Figure 2.2)

Property 2.5.1

g = H ·G and h = G .n

(End of Property)

Property 2.5.2

G and H are upward continuous.

Proof

Let V(i : i ~ 0) be an ascending chain in Q (A*). We derive

t EG((U i: i ~ 0: V(i)))

{ definition of G }

t E U 1\ (E v : v E (U i : i ~ 0 : V (i)) : t t r A = r v)

Figure2.2

2.5 Unique fixpoints of recursive components

{ definition of union } "'"

tEU 1\ (Ev:(Ei:i;li:O:vEV(i)):t~p·A=p·v)

{ predicate calculus }

(E i : i ;li: 0 : t E U 1\ (E v : v E V (i) : t ~ p- A = p- v))

{ definition of G }

(E i : i ;li: 0: t E G (V (i)))

{ set calculus }

t E (U i: i ;li:O: G(V(t)))

Hence. G ((U i : i ;li: 0: V (l))) = (U i : l ;li: 0: G (V (i))).

79

The upward continuity of H is a consequence of Corollary 1.6.5 (projection is upward
continuous).

(End of Proof)

From Property 2.5.1 and Property 2.5.2 we deduce

Property 2.5.3

g and h are upward continuous

(End of Property)

The following theorem shows how the fixpoints of g and h are related.

Theorem 2.5.4

0 V is a fixpoint of g ::;. G (V) is a fixpoint of h

1 W is a fixpoint of h ::;. H (W) is a fixpoint of g

2 The poset of fixpoints of g is isomorphic to the poset of fixpoints of h

Proof

0. Assume V is a fixpoint of g. We derive

h(G(V))

= { Property 2.5.1 }

G·H(G(V))

80

{Property 2.5.1 }

G(g (V))

{ V is a fixpoint of g

G(V)

1. Similar

2. For a fixpoint V of g we have H • G (V) g (V) = V .

Forafixpoint W of h wehave G.H(W) = h(W) = W.

A program notation

Hence, G and H are bijections between the fixpoints of g and those of h, the one
being the inverse of the other.

Furthermore (Property 2.5.2). both G and H are monotonic.

(End of Proof)

Since g and h are upward continuous. both have a least fixpoint and a greatest fixpoint
(Knaster-Tarski).

The least fixpoint of h equals (U i: i ~ 0: h 1({e})) and is denoted by JLh. The greatest
fixpoint of h is denoted by vh. Since JLh is the greatest lower bound of all fixpoints of
h. we have JLh !: vh.

Application of Property 2.5.0 and Theorem 2.5.4 yields

Property 2.5.5

f has one fixpoint - vh !: JLh

(End of Property)

We have now obtained a very nice result. From the text of component c it is clear that
only the structure of command S can play a role. And indeed. we have shown that all
information is in the function h which was defined by (replacing U by tpref(TR(S)))

h: Q(tpref(TR(S))) -+ Q(tprej(TR(S)))

h(W) = {tIt E tpref(TR(S)) /\ (E w: wE W: t~rA r (w~A))}

The following theorem has also been proved in [11].

2.5 Unique fixpoints of recursive components

Theorem 2..5.6

If (Au:uEvh II u~A¢E:(Ew:wEvh:u~A=w~A lll(w~p-A)<l(wtA)))

then f has exactly one fixpoint.

Proof

Assume that the given condition holds (referred to as 'assumption').
We prove by induction on l(u ~ P' A) that u E vh ::;> u E p.h .
The theorem then follows from Property 2.5.5.

Base utrA = E

From h({e})= {tIt E tpref(TR(S)) II ttrA = E} we conclude u Eh({e}). and hence.

uE(Ui:i ~O:hi({e}))=p.h

Step l(utrA) > o

We derive

u E vh

{ vh is a fixpoint of h

u E h (vh)

= {definition of h,u Evh {;: tpref(TR(S)) l
(Ev :vEvh :utrA = p-(vtA))

= { assumption.l(ut p-A) > 0, hence vt A ¢ E)

81

(Ev:vEvh:utrA=r(vtA)II (Ew:wEvh:vtA=wtA lll(wtrA)<l(wtA)))

::;> { predicate calculus)

(E w: wE vh: utrA = r (wtA) II l(wfrA) < l(utrA))

::;> { induction hypothesis)

(Ew:wEvh:utrA =r<wtA)II wEp.h)

= { p.h {;: vh l
(E w: w Ep.h: utrA = P' (wtA))

= I definition of h l
u E p.h

(End of Proof)

It is, in general. not easy to compute vh. We weaken Theorem 2.5.6 to a theorem that is
more easily applied. The next theorem can also be found in [20].

82 A p:rog:ram notation

Theorem 2.5. 7

If (Au: u Etpref(TR(S)): l(utrA) ~ l(utA)) then f has exactly one fixpoint.

Proof

Assume that the given condition holds. We show that the condition of Theorem 2.5.6
holds as well. We derive

u Evh fl utA~ E

{calculus I
uEvh fl (Es,t.a:aEA:u=sat fl ttA=E)

::;.> { vh is prefix-closed I
(E s . a . a E A : utA = sat A A sa E v h A s E v h)

::;.> { assumption applied to s)

(Es.a:aEA:utA=satA fl saEvh A l(strA)~l(stA))

I property of projection and length l
(Es.a:aEA:utA=satA fl saEvh A l(satrA)<l(satA))

::;.> I predicate calculus l
(Ew:wEvh:utA=wtA A l(wtrA)<l(wtA))

(End of Proof)

Example 2.5.8

Component ex is defined by

com ex(a):

sub p: ex bus

(a :ra)*

moe

Component ex satisfies the condition of Theorem 2.5.7 .

Hence, any solution of T = r T b pref (TR ((a : ra)*)) is the least solution of it. We
show that RUN(a) is a solution.

RUN(p-a) b pref(TR((a :ra)*))

= { Property 1.4.2.3 l
pref(TR ((a :ra)*))t{ a l

= { calculus)

RUN(a)

2.5 Unique fixpoints of recursive components

Hence, TR (ex) = RUN(a)

(End of Example)

Example 2.5.9

This example demonstrates that the condition of Theorem 2.5. 7 is not necessary.

com ex(a .b):

sub p: ex bus

(a;p-b lp-a;b)

moe

Trace p-a b does not satisfy the requirement of Theorem 2.5.7.

However. h({EI) = {E,a). h({E.a}) = {E.a.p-a.p-ab) and

h({E,a,p·a,p-abl) = {E.a.p-a.p-ab,ap-b} = tpref(TR(S))

Hence. JA.h = vh = t pref (TR (S)) : we have exactly one fixpoint.

(End of Example)

Example 2.5.10

This example demonstrates that Theorem 2.5.7 is indeed weaker than Theorem 2.5.6.

com ex(a):

sub :ex bus

(a I p-a)*

moe

83

The condition of Theorem 2.5.7 is not satisfied: the lead of compound symbols over simple
symbols is unbounded. The greatest fi.xpoint of h equals RUN(a .p·a) and for all
t, t Etpref(TR(S)), we have ttla}Etpref(TR(S)). Hence, the condition of Theorem
2.5.6 is satisfied and TR(ex) =RUN(a).

(End of Example)

For a discussion of other forms of recursion we recommend [11].

84

Exercises

0. Prove that for g. h, G. and H as defined in this section

(i) h(WHA = g(W~A)

(ii) G • g = h • G

1. Prove that component cat defined by

com cat (a . b) :

sub p : cat bus

(a :ra)";a ;b :(rb ;b)*

moe

A program notation

has a unique fixpoint. viz.<{ a .b }. {t I(E m .n: 0 ~ m ~ n: t = anbm)}>.

2. Determine the process of

com rem(a .b):

sub p : rem bus

a;((ra:a lb);(a lp-b;b))*

moe

3. Let f : T (A) --+ T (A) be upward continuous and let T. T E T (A). be a fixpoint
of I such that

(A t : t E tT A t ¢ e: (E s : s E tT : l (s)< l (t) A t E t f (<A • pre/ ({ s}) >))

Prove that T is the least fixpoint of f . Apply the above to the recursive component
with alphabet I a ,b} and command (a :ra I a ;b I rb ;b)*.

(End of Exercises)

3 From specification to program text

3.0 Introduction

As we have seen in the previous chapters there are many ways in which a process may be
specified. One may use enumeration, a state graph, a program text or a predicate. A predi
cate specifies what traces do belong to the trace set of a process, whereas a program text
suggests how the traces of the process may be generated.
In this chapter we formalize the notion of a specification. Furthermore we present some
theorems that are useful in the derivation of a program text from such a specification.

3.1 Specifications

A specifi.aJtion of a process is a pair <A .P > . where A is an alphabet and P is a predi
cate on A* such that P(E) holds.

Specification <A , P > specifies the process

<A.{t ltEA* 1\ (As :s ~t :P(s)))>

Note

Let <A. P > specify T. From P(E) we infer E E tT. For any t. tEA*. we have

(As : s ~ t : P(s))

{tEA*)

(As : s ~ t :sEA* A P(s))

= { calculus. transitivity of ~ }

(As :s ~t :sEA* 1\ (Av :v ~s :P(v)))

Hence, <A . P > specifies a process, i.e. a non-empty prefix-closed trace structure.

(End of Note)

Instead of using a lambda-notation like <A . (>o.t : t € A*: P(t))> we use the notation
<A. t: P(t)>.

85

86 From specification to program text

Example 3.1.0

SEM 1 (a . b) is specified by < {a . b l. t : 0 ~ l (t t a) - l (t t b) ~ 1 >
SEM (a . b) is specified by <I a • b }. t : 0 ~ l (t t a) -l(ft b) >

<I a I. t : l (t) is even > specifies STOP(a)

(End of Example)

The following property is useful when one wants to enumerate the traces of a process
given by a specification. up to some fixed length.

Property 3.1.1

Let <A . P > be a specification of T. Then T is the least solution of

VET(A): (At.a :tEtV A aEA :P(ta)::;.. taEtV)

Proof

For any t . t E tT, and symbol a . a EA. we have

tEtT A aEA A P(ta)

I <A .P> specifies T I
(As :s ~t :P(s)) A tEA" A aEA A P(ta)

= I calculus I
(As: s ~ ta: P(s)) A ta EA •

I <A . P > specifies T I
ta EtT

Hence. T is a solution of the equation. Let V. VET (A). be a solution. By induction on
the length of t we prove that for all t . t E tT. we have t E tV.

Base t =E. Since V E T(A). we have E EtV.

Step t = sa with a EA. We derive

sa EtT

= { T is prefix-closed }

s E tT A a E A A sa E tT

::;.. { induction hypothesis }

s E tV A a E A II sa E t T

3.1 Specifications

::;. I <A . P > specifies T I
s E tU A a E A A P(sa)

::;. { U is a solution of the equation }

sa EtU

(End of Proof)

87

Let T be specified by <A ,P >. From the property above we infer that tT is determined
by the following rules.

(i) E EtT

(ii) t EtT A a EA 1\ P(ta) ::;. ta EtT

(iii) tT contains no other traces then those that belong to it on account of (i) and
(ii).

Example 3.1.2

The traces of length at most three of the process specified by

< {a , b }. t : H (t t a) -l(d b) < 2 >

are e.b .ba .bb, bab, bba and bbb.

(End of Example)

Property 3.1.3

Let <A . P > be a specification of T. Then T is the greatest solutio!} of

U E T (A) : (At : t E tU : P(t))

Proof

We derive

<A • P > specifies T

::;. I definition of ·specifies' I
(At : t E tT : P(t))

Hence. T is a solution. For any U. U E T (A). we have

(At : t E tU: P(t))

= I U is prefix-closed. aU = A

88

(A t : t E tU : t E A* A (A s : s ~ t : P(s)))

= I <A .P > specifies T

(A t : t E tU : t E tT)

I aT= aU}

U!.:T

(End of Proof)

From specification to program text

We now list some examples that are used in the next sections. All these examples involve
storage and retrieval of zeroes and ones. We use the following symbols.

aO a zero is stored

al a one is stored

bO a zero is retrieved

bl a one is retrieved

Example 3.1.4 (bounded bag)

For natural number k a k -bounded bag is specified by

<laO.al,bO.bll.t: l(t~bO) ~ l(t~aO)

A l (t t bJ) ~ l (t tal)

A 0 ~ l (t t I aO . a] }) - l (t t I bO . bl}) ~ k

>

(End of Example)

Example 3.1.5 (unbounded bag)

An unbounded bag is specified by

<{aO.al.bO.bl}.t: l(ttbO) ~ l(ttaO) A I(ttbl) ~ l(ttal)>

(End of Example)

Example 3.1.6 (unbounded sorter)

An unbounded sorter is specified by

3.1 Speciftcations

<{aO.al,bO,bJ).t: Ht~bO)~l(ttaO)A l(ttbl)~l(ttal)

A (As : t = sbl : l (s taO)= l(s tbO))
>

89

(End of Example)

Exercises

0. Let <A . P > be a specification. Show that RUN (A) is the greatest solution of

UET(A): (At.a :tEtU A aEA :P(ta):;. taEtU)

Show that STOP(A) is the least solution of

UET(A): (At:tEtU:P(t))

1. Specify a k -bounded sorter (cf. Example 3.1.6).

2. Extend the specification of a bag (Example 3.1.5) such that symbol e corresponds to
'the bag is empty'.

3. Give a specification of the following mechanisms.

(i) A binary first-in first-out queue.

(ii) The mechanism accepts a series of zeroes followed by a one. after which it
delivers the same number of zeroes followed by a one.

(iii) The mechanism generates any sequence of a's, b 's, and c 's in which no two
adjacent symbols are equal.

(iv) The mechanism generates the sequence of positive numbers as follows. First one
a is generated. then two a ·s are generated. and so on. Between each sequence of
a ·s a b is generated. Typical traces are a, aba. and abaabaaaba.

(v) The mechanism represents a natural number, initially zero. Possible events are

u : increment value by one (up)

d : decrement value by one (down)

z : the value equals zero (zero)

(vi) The same as (v) but now negative values are allowed: the mechanism represents
an integer.

(End of Exercises)

90 From specification to program text

3.2 The Conjunction-Weave Rule

In this section we investigate the relation between processes and their weave. in terms of
specifications. Our first theorem is called the Conjunction-Weave Rule. abbreviated as
CW-rule.

Theorem 3.2.0
i'

(CW-rule)

Let <A . P > and < B . Q > be specifications of processes T and U respectively. Then
T w U is specified by

<AUB.t:P(dA)II Q(dB)>

Proof

<A U B. t: P(t ~A) II Q (t ~B) > is a specification. since

P(dA)II Q(dB)

= I definition of projection l
P(e) 11 Q (e)

{ <A.P> and <B.Q> arespecifications l
true

Furthermore. a(T w U) =AU Band for any t. t E(A U B)*. we have

t Et(Tw U)

= I definition of weaving

d A E tT II dB EtU

{ <A . P > specifies T and < B . Q > specifies U l
(A s : s ~ t t A : P (s)) II (A s : s ~ dB : Q (s))

= I Property 1.1.4.3 J

(As : s ~ t : P(s t A)) II (As : s ~ t : Q (s ~B))

I predicate calculus J
(As: s ~ t: P(stA) II Q(stB))

(End of Proof)

Example 3.2.1

An unbounded bag is specified by

<laO ,a). bO. bl}, t: l(ttbO) ~ l(daO) II l(dbl) ~ l(dal)>

3.2 The Conjunction-Weave Rule 91

We derive component bag such that TR(bag) is the process specified above. From the
specification of SEM(a,b). viz. <{a.bl.t:l(ttb)~l(tta)>. and the CW-rule we
infer

TR(bag) = SEM(aO .bO) w SEM(al ,bl)

Since I aO. bO In { al . bl) = 0 . we may replace this weave by a blend:

TR(bag) = SEM(afJ .bO) b SEM(al.bl)

These observations lead to the following solution in which sem is the component of
Example 2.4.3 .

com bag (afJ. al .bO .bl):

sub p.q: sem bus

[p·a = af). rb = bO. q·a = al. q·b = bl]

E

moe

(End of Example)

In the example above we replaced a weave by a blend which is allowed on account of Pro
perty 1.4.0 . The following theorem. also called the Composition Rule. shows a more gen
eral method.

Theorem 3.2.2 (Composition Rule)

Let c and d be components with alphabets A and B respectively.
Let A U B = { x 0 , ... , xn_ 1) and let component cd be defined by

com cd (A U B) :

sub p : c • q : d bus

(Sol · · · I Sn-1)*

moe

where for i. 0 ~ i < n. s,
S;

S;

= rx;;x;

q·x1 ;x;

= rx; .q·x;;x,

Then TR(cd) = TR(c)wTR(d)

Proof

if X; EA \B

if X; EB\A

if x, EA n B

The alphabets of TR (cd) and TR (c) w TR (d) are equal. viz. A U B. Let S denote the
command of cd. We compute

92 From specification to program text

TR(cd)

= { definition of the process of a component l
(p-TR (c) w q·TR (d) w pref(TR (S))) ~(A U B)

{structure of S. compound symbols are removed by tCA U B))

(p-TR(c)w q·TR(d) w TR (S))t(A U B)

From the structure of S we infer

" tEtTR(S') => drA =r(ttA)A ttq·B=q·(ttB)

Hence.

t E t(p-TR (c) w q·TR (d)w TR(S))

=> I definition of weaving l
ttrA Etp-TR(c) A ttq·BEtq·TR(d) A tEtTR(S)

=> { structure of S, see above }

ttrA Etp-TR(c) A ttq·B Etq·TR(d) A ttp-A = P' (dA) A ttq·B = q· (£tB)

=> { substitution l
p-(£tA)Ep-tTR(c) A q·(ttB)Eq·tTR(d)

= I definition of r l
dA EtTR(c) A dB EtTR(d)

Together with our computation of TR (cd) this yields

TR (cd) !: TR (c) w TR (d)

We are left with the proof obligation t(TR (c) w TR (d)) ~ tTR (cd).

This is done by constructing a function h from t(TR (c) w TR (d)) into
t(p-TR(c)wq·TR(d)wpref(TR(S)))suchtbath(t)t(AUB) = t

h is defined inductively by

h (e) = e

h (ta) = h (t) ra a

h (ta) = h (t) q·a a

if a EA \B

if a EB\A

h(ta) = h(t)p-aq·aa ifaEArlB

Then. evidently. h (t)Et(p-TR(c)w q·TR(d)w pref(TR(S))) and h(t)t(A U B)= t.

(End of Proof)

3.2 The Conjunction-Weave Rule

Example 3.2.3

A k -bounded bag is specified by

<laO.al .bO.bl}.t: O~l(daO)-l(dbO)~k

A O~l(dal)-l(dbl)~k

A O~l(d{aO,aJ})-l(d{bO,bJ})~k

>

For component bagk that satisfies this specification. we have, according to the CW-rule

TR(bag") = SEMt(aO.bO)w SEM"(al .bl)w SEM"({aO,al }.{bO.bJ})

A component for SEMt (a .b) is given by sem" (Example 2.3.6).

A component for SEMt ({ aO .al}. { bO .bl}) is given by csemk (Example 2.3.7).

Application of the Composition Rule yields a program with 3 subcomponents:

com bagk (aO .al .bO .bl):

sub p . q : semk . r : csem" bus

(p-a .r·aO :aO I p-b .r·bO ;bO I q·a.r·al ;a} I q·b.r·bl ;bl)*

moe

93

From the text of cs6mfl in Example 2.3.7 we infer that the following component satisfies
the specification as well.

com bagdaO.al .bO.bl):

sub p , q • r : sem~:: bus

(p-a .r·a ;aO I p-b ,r•b;bO I q·a .r·a;al I q·b.r·b ;bl)*

moe

(End of Example)

Example 3.2.4

A sorter is specified by

<laO ,a} ,bO ,bl}, t: 0 ~ HdaO)-l(ttbO)

A o ~ z (t tan -l (t tbl)

A (As: t = sbl: l(staO) = l(stbO))

>

The last conjunct expresses that a one may be retrieved only if there is no zero to be

retrieved.

94 From specification to program text

ln Example 2.4.4 we derived component zsem, that has specification:

<{a.b.zl.t:O~l(tta)-l(ttb)l\ (As:t=sz:l(sta)-l(stb)=O)>

which is apart from renaming - expressed by the first and the third conjunct of the
specification of sorter.
The second conjunct specifies SEM (al , bl). This yields component sorter given by

com sorter(aO.al.bO.bl):

sub p;~ zsem , q : sem bus

(poa;aO lp-b;b() lp-z.q·b;bllq·a;al)*

moe

(End of Example)

Exercises

0. } Derive component rwdup specified by

<(a,b.c}.t:(Au,v:t=uava V t=ubvb V t=ucvc:v~e)>

1. Component ebag is an unbounded bag that has additional symbol e to denote the
emptiness of the bag. Give a specification for ebag and derive a program text from
that specification.

2. Construct components that have {a. b} as their alphabet and that have as
specification predicate:

(i) l (t ta) = 0

(ii) ZCtta)= l(ttb)

(iii) l(tta>= o v zccrb)= o
(iv) l (t ta) ~ l (t tb) ~ 5

(v) l (tf a) . zctt b) ~ 9

(vi) l (d a) + l(d b) ~ 5

3. Derive a program for a bounded sorter.

4. Component c has alphabet A. A = I a 0 , ... , am_ 1). and component d has alphabet
B. B = {bo, ... ,bn-1}.

Exercises

Component cd is defined by

com cd (A U B) :

sub p : c . q : d bus

(rao:aol · · · I ram-1;am-1)*

.(q·bo:bol · · · iq·bn-1;bn-1)*

moe

(A n B is not necessarily empty)

95

Prove that TR (cd) = TR (c) w TR (d). Compute TR (cd) if the comma in the

command is replaced by a bar. Compute TR (cd) if the comma in the command is

replaced by a semicolon.

(End of Exercises)

3.3 The Conjunction-Blend Rule

In this section we consider an analogue of the CW-rule for the blending operator. It will

turn out that the analogue is too complicated to be useful. The main purpose of this sec

tion is to show the source of the complications. Since blending equals weaving followed

by projection, we first consider the projection operator.

Property 3.3.0

Let <A . P > be a specification of process T. and let B be an alphabet. Then

<AnB.t:(Eu:uEA*/\ (Av:v ~u:P(v)):t=u~B)>

specifies Tt B.

Proof

a(Tt B)= A n B. and for any t. t E (A n B)*. we have

t E tTt B

{ Tt B is prefix-closed I
(As : s ~ t : s E tTt B)

{ definition of projection I
(As : s ~ t : (E u : u E tT : s = ut B))

{ <A, P > specifies T }

96 From speciftcation to program text

(As : s ~ t : (E u : u E A* 1\ (A v : v ~ u : P(v)) : s = u ~B))

(End of Proof)

The predicate t: (As :s ~t :(Eu :uEA* A (Av :v ~u :P(v)):s = u~B))doesnot
look very attractive. One might hope that the simpler one given by

t: (As:s~t:(Eu:uEA*A P(u):s=u~B))

would describe tTt B as well. Unfortunately. this is in general not true as the following
example demonstrates.

Example 3.3.1

Process T is specified by < {a. b }. P > where

P(t) - t = € V (E w :wE {a .b I*: t = wa).

Then T = <{a.b}.{a}*> and T~b = <{bl.lel>

~

For any n. n ~ 0. we have bn = (bn a) ~b. Hence.

< { b I. t: (E u : u E {a. b }* 1\ P(u) : t = u t b)> specifies < { b}. { b I*>.

We conclude that the specifications

<I b}. t: (E u : u E I a. b I* 1\ (A v : v ~ u : P(v)) : t = u ~B)> and

< { b }. t: (E u : u E {a. b I' A P(u): t = u ~B)>

specify different processes.

(End of Example)

Combining Property 3.3.0 and the CW-rule yields

Theorem 3.3.2 (CB-rule)

Let <A .P> and <B .Q > be specifications ofT and U respectively. Then

<A + B . t : (E u : u E (A U B)* A (A v : v ~ u : P (v t A) A Q (v t B)) : t = u t (A + B)) >

specifies T b U .

(End of Theorem)

The CB-rule is not useful when deriving programs from a specification. It shows how
difficult the relation between components and their blend can be. Moreover. it is the

3.3 The Conjunction-Blend Rule

projection that should be blamed for it.

Exercises

0. Determine a specification of SEM 2(a . b) using the CB-rule and

SEM2(a,b) = SEM 1(a.c)bSEM 1(c.b).

97

1. For symbols aO. al. bO. bl and for integer k. k ;il; 1. proce_ss BAGk (aO . al . bO. bl)
has alphabet { aO. al. bO. bl) and trace set

{ t It E { aO , al . bO. bl)* A (A s : s ~ t : 0 ~ l (s ~ aO) - l (s ~ bO) ~ k

A 0 ~ l (s ~al)- l (s tbl) ~ k

A O~l(stlaO.ai})-l(st{bO.bl))~k))

Prove that for all k and n. k ;il; 1 A n ;il; 1 :

BAGk (aO ,al .bO .bl) b BAGn (bO .bl .cO ,cl) ¢; BAGk+n (aO .al .cO ,cl)

(End of Exercises)

3.4 Context-free grammars

A trace structure T may be viewed as a language tT over alphabet aT. cf. [6]. One may
wonder what kind of languages are generated by components. Some research on this topic
can be found in [11]. In this section we show how a component can be constructed whose
trace set corresponds to a language given by a context-free grammar. We first give ·an
informal introduction to context-free grammars. For a detailed treatment we recommend
[6].

A context-free grammar G is a quadruple. G = <A .N .S .P>, where

A is an alphabet. the set of tefminals •

N is an alphabet. the set of non-terminals . A n N = 0.

S is an element of N . the start symbol.

P is a finite subset of N X(A UN)*. the set of production rules

The relation -+ on (AU N)*is defined by (a, (3. v E (A UN)* and X EN)

a X fj a v fj if (X • v) E P

98 From specification to program text

The k -fold composition of is denoted by ..!. .

The reflexive and transitive closure of is denoted by .!.

The language of grammar G . denoted by L (G). is defined by

L(G) = {v lvEA*/\ S.!. vI

Informally. a trace t E A • is an element of L (G) if it can be obtained by means of a sys
tematic rewriting process on elements of (A UN)* that begins with start symbol S and in
which repeatedly a left-hand part of a production rule is replaced by a right-hand part
until no non-terminal remains.

Let G. G = <A. N .S. P > . be a context-free grammar.

In general. L (G) is not prefix-closed.
We construct component g with alphabet A U {J}. where J (pronounced as 'tick') is a
fresh symbol. and

t EL(G) - t JEtTR(g)

Since L (G) = ! t It E (A UN)* 1\ S .!. t l n A • we first construct component h. which
has trace structure

<A U N U { J }. pre f ({ t I (E u : u E (A U N)* A S .!. u : t = u J)}) >

Then g with aTR(g)=AU{J} and tTR(g) = tTR(h)n(AU{JJ)* satisfies our
requirements.

Since the intersection of processes with equal alphabets is equal to the weave of these
processes. we have

TR(g) = (TR(h)w <AU N U {J}.(A U {J})*>)t(A U IJ})

The projection on A U { J l is needed to get rid of the non-terminals in the alphabet of the
weave. This projection can be obtained (Property 1.4.2.3) by a blend :

TR(g) = (TR(h)w <AU N U {J}.(A U {J})*>) b RUN(N)

Component h is given by

com h (A U N U { J}) :
sub p: h bus

S;J I (Col ... ICk-tiDol ··· 1Dm-t1Eoi · · ·IEn-t)*:rJ:J

moe

3.4 Context-free grammars

where S is the start symbol of G .

C1 • 0 ~ i < k. corresponds to P; : if P1 = (X. ao · · · ar_ 1) then
C; = rX:ao:···;ar-1•

D1 = p-a; ;a1 for 0 ~ i < m.

E1 = r X 1 ; X 1 for 0 ~ i < n.

Command C; corresponds to the application of production P1 •

Command D1 corresponds to copying terminal a 1 •

Command E; corresponds to copying non terminal X; . ·

Let I denote the function associated with component h. Then

tf(Sl'OP(A UN U (J})) = (E.S ,S Jl. and for k. k ;;at. 0,

99

pref({ t I(E u : u E (AU N)* I\ S.!. u : t = u J)}) !:;;; tf k+ 1(SI'OP(A UN U {JJ)) and

tfk+1(SI'OP(AUNU{J)))!: pref({ti(Eu:uE(AUN)*/\ S.!. u:t=uJ)I)

Hence.

TR (h) = <A UN U { J}.pref ({ t I (E u : u E (A UN)* I\ S .!. u : t = u J)})>

We now have to realize components c and d such that

TR(c) = <AUNU{J}.(AU(J})*> and TR(d)=RUN(N).

Component d is defined by

com d(N): (X 0 1 · · · IX,_ 1)* moe

Component c is defined by

com c(A UN U {J}):

(aol · · · lam-11 J)*

I (Xo:Xo).Xo. · · · .(X,-1;X,-t).X,_t

moe

The part (X 0 ; X 0), X 0 • · · • .(X, _1 ; X, _1). X, -t has been added to include N in the
alphabet of c. Ot may be omitted if the requirement 'the alphabet of the command equals
the alphabet of the component' is weakened to 'the alphabet of the command is a subset of
the alphabet of the component')

We now have components h, c. and d, such that

TR(g) = (TR (h) w TR(c)) b TR(d)

100 From specification to program text

L'sing the Composition Rule one can easily construct g.

Example 3.4.0

Let G = < { a . b }. { S I. S • { S a . S -> bSS) > . Then h is given by

com h (a . b. S . .J):

sub p~: h bus

S;.J 1 (p-S;a lp-S;b;S;Sip-a;a lp-b;b lp-S;S)";p-.J;.J

moe

Components c and d are given by

com c (a . b . .J. S) : (a I b I .J)* I (S ; S) . S moe

com d (S) : S * moe

Component he is defined as

com he (a • b . .J. S) :

sub p : h • q : c bus

(p-a .q·a ;a I p-b .q·b: b I r .J .q· .J; .J Ip-S .q·S :S)*

moe

According to the Composition Rule we have TR (he) = TR (h) w TR (c).

The ultimate component g is given by

com g (a . b . .J) :

sub p : he • q : d bus

[p-a =a. p-b =b. r".J = .J. p-S = q·S]

moe

(End of Example)

3.4 Context-free grammars 101

Exercises

0. Let G = <Ia .b }.{S}.S. {S-a, S- bSS }>. cf. Example 3.4.0. Consider com
ponent g defined by

com g (a , b . J):

sub p: g bus

a,J
I (poa ;a I p-a ;b ;a ;a I p·b ;b)*:r J; J

moe

Show that g corresponds to L(G).

1. An unbounded stack of binary values can be specified by grammar G with

alphabet : I aO • al , bO. bl } ;

N: {S};

P: {S-e. S-+aOSbOS. s-alSblS};

start symbol : S

Derive a component that corresponds to L(G).

(End of Exercises)

4 Deadlock

4.0 Introduction

Deadlock is a well-known phenomenon in the domain of concurrent processes. cf. [2]. It
is usually explained in terms of shared resources. We illustrate deadlock by the following
example.

Component cO has alphabet laO.bO.~.qO.e0./0}. The meaning of the symbols is as
follows.

aO : acquire resource A

bO : release resource A

~ : acquire resource P

qO : release resource P

eO : initiation of a computation using resources A and P

fO : termination of the computation initiated by eO

Component c1 has alphabet lal.bl.pl.ql ,el, fl}. The symbols have the same meaning
as the corresponding symbols of component cO.
Furthermore. we have components exA and exP that guarantee mutual exclusion in the
use of A and P respectively. The components are given by

com cO(aO .bO .~ .qO ,eO. fQ): (aO ;~:eO: /0 :bO ;qO)* moe

com cl(al,bl,pl.ql,el,fl): (pl;al:el;fl;ql;bl)" moe

com exA (aO .al .bO .bl): (aO :bO I al ;bl)* moe

com exP(~. pl. qO. ql): (~; qO I pl : ql)* moe

We consider the composite U of these components:

U = TR(cO)w TR(cl)w TR(exA)w TR(exP)

Typical traces of tU are

aO ~eO fO bO qO pl al el /1 ql bl

aO ~ eO fO bO qO aO ~ eO

aO pl

102

4.0 Introduction 103

The last one. aOpl , has no extension in tU: from the command of cO we infer that pO is
the only candidate of the set (aO . bO • pO . qO, eO . fO} and extension with pO is not in
accordance with exP. A similar argument shows that none of the elements of
(al , bl , pl . ql, el • fl } are possible as an extension of aOpl .
For each component. however. the projection of aOpl on the alphabet of that component
may be extended (with respect to that component). Phrased differently : the composite
has terminated whereas none of the subcomponents have terminated. We say that the
system is in a deadlock.

In the next sections we give a formalization of deadlock and we derive properties thereof.

4.1 Lock

In Section 1.2 we discussed a mechanistic appreciation of processes. For a set X of
processes we have

t is the trace thus far generated with respect to (W T: T EX: T)

=
(AT: T EX : ttaT is the trace thus far generated with respect to T)

For process T and trace t. t E tT. we define the successor set of t with respect to T.
denoted by S(t .T). by

S(t.T) = {a Ia EaT A taEtT}

Let T be a process and let t be the trace thus far generated with respect to the mechanism
described by T. If S (t , T) = C2', we say that the mechanism has terminated. If
S (t , T) ¢ C2'. the mechanism eventually gets involved in a next event thereby extending
t with the symbol associated with that event.

We call T a non-terminating process if

(A t : t E t T : S (t . T) ¢ C2')

Notice that the negation of non-terminating is 'may terminate'.

Property 4.1.0

Let T be a process and let s and be elements of tT. Then

s -t ::;. S(s ,T) = S(t ,T)

(End of Property)

Due to the last property we may extend the notion of successor set from traces to states.
Then S([t],T)=S(t,T)forall t,tEtT.

104 Deadlock

Property 4.1.1

Let T be a process. T is a non-terminating process if and only if each node of the
state graph of T has an outgoing arc.

(End of Property)

In the sequel >X is a set of processes and U = (W T: T EX: T).

Property 4.1.2

(AT:TEX:S(ftaT.T)=0)::;. S(t.U)=0

Proof

We derive

S(t .U);e 0

I definition of successor set)

(E a :a E aU : ta E tU)

I predicate calculus. aU = (U T : T EX :aT))

(E T : T E X : (E a : a E aT : ta E tU))

::;. I U = (W T : T E X : T))

(E T : T EX : (E a · a EaT : tar aTE tT))

= I definition of projection)

(ET:TEX :(Ea :aEaT:(daT)aEtT))

= I definition of successor set l
(E T: TEX: S(daT.T)¢ 0)

(End of Proof)

For t • t E tU • we define lock (t • X) by

lock (t . X) E S (t • U) = 0 A (E T : T E X : S (d aT. T) ¢ 0)

lock free (X) is defined by

lockfree(X) = (At:tEtU: -.lock(t.X))

If -.lock/ ree (X) holds. we say that X has danger of lock.

4.1 Lock

Property 4.1.3

0 lock free (0)

1 lock free (IT}) for any process T

(End of Property)

Property 4.1.4

lockfree(X)- (At:tEtU: S(t,U)=0- (AT:TEX:S(ttaT.T)=0))

Proof

We derive

lock free (X)

{ definition of lockfree

(At :tEtU: -.lock(t,X))

I definition of lock. predicate calculus }

(At :tEtU:S(t.U)¢0 V (AT:TEX:S(ttaT,T)=0))

= { predicate calculus }

(At :tEtU:S(t,U)=0 => (AT:TEX:S(daT.T)=0))

I Property 4.1.2 }

(A t : t E tU : S (t , U) = 0 - (A T : T E X : S (t taT, T) = 0))

(End of Proof)

Property 4.1.4 may be phrased as

'The composite of a set"of mechanisms has no danger of lock' and
'The composite has terminated if and only if all composing parts have terminated'

are equivalent.

Theorem 4.1.5

Let X be a set of processes and let U = (W T : T E X : T).

Let for V, V E X, V denotes the process (W T : T E X 1\ T ¢ V : T).

Then

lockfree(X) = (AT: T EX: lockfree({ T .T}))

Proof

For any T, T EX, and t , t E tU, we have

105

106

(A V : V E X : S (£t a V, V) = 0)

::;.. I predicate calculus I
(AV:VEX A V¢T:S(t~aV,V)=0)

::;.. I Property 4.1.2 with U replaced by f and X replaced by X\ (T} }

S(t~af .h= 0

Hence,

Deadlock

(AT:TEX:S(daT,T)=0)::;.. (AT:TEX:S(daf.h=0) (*)

We derive

(AT: TE X: lockfree((T .f)))

I Property 4.1.4 applied to (T. f} }
(A T : T E X : (A t . t E tU : S (t • U) = 0 - S (t ~aT. T) = 0 A S (t ~af, f) = 0))

I Property 4.1.2 }

(AT:TEX:(At:tEtU:S(t,U)=0::;.. S(ttaT.T)=0A S(ttaT.T)=0))

I predicate calculus }

(A t : t E tU : S (t • U) = 0 ::;..

I(*) l

(AT: TEX: S(ftaT,T)= 0)

A (AT: TEX: S(daf.f>= 0))

(At :tEtU:S(t,U)=0::;.. (AT:TEX:S(t~aT,T)=0))

I Property 4.1.2 }

(At :tEtU:S(t,U)=0- (AT:TEX:S(daT.T)=0))

I Property 4.1.4)

lock free (X)

(End of Proof)

A consequence of Theorem 4.1.5 is:

a system that has danger of lock with respect to its components can always be cut
into two parts such that the system has danger of lock with respect to these two
parts.

Example 4.1.6

Consider components cO. cl , exA , and exP that were introduced in Section 4.0 :

com cO(aO ,bO .pO ,qO .eO ./0): (aO ;pO ;eO: /0 ;b() ;qO)* moe

4.1 Lock

com cl (al .bl .pi .ql .el./1): . (pl ;al ;el; fl ;ql ;bl)" moe

com exA (a{) ,al. bO .bl): (aO ;bO I al ;bl)" moe

com exP(pO.pl ,qO,ql): (pO :qO I pl ;ql)" moe

Let X = {TR(cO).TR(cl).TR(exA).TR (exP)} and let U = (W T: TEX: T).

Then aOpl EtU, S(aOpl .U)= 121 and S(aOpltaTR(cO),TR(cO)) ¢121.

Hence. lock (aOpl .X) and also

lock (aOpl, { TR(cO).TR(cl)w TR(exA)w TR(exP)}).

Notice, that lockfree({ TR(cl). TR(exA), TR(exP)}).

(End of Example)

The next theorem shows how larger lockfree systems can be built from smaller ones.

Theorem 4.1. 7

107

Let X and Y be sets of processes. Let U = (W T : T E X : T) and let
V = (W T : T E Y : T). Then

lockfree(X) A lockfree(Y) A lockfree({U, V}) => lockfree(X U Y)

Proof

Assume lock free (X) A lockfree(Y) A lockfree ({ U, V }). For any t, t E t(U w V), we
derive

s (t • u w v) = 121

= { Property 4.1.4, lockfree ({ U. V}) l
S(ttau .U) = 121 A S(tta V, V) = 121

= {Property 4.1.4, lockfree (X) and lockfree(Y) l
(AT:TEX:S(ttaUtaT.T)=121)/\ (AT:TEY:S(ttavtaT.T)=121)

= { T EX implies aT !,:;; aU, T E Y implies aT !,:;; a V l
(AT: T EX: S(daT ,T) = 121) A (AT: T EY: S(daT ,T) = 121)

= (predicate calculus l
(AT: TEXUY: SCttaT,T)= 121)

Application of Property 4.1.4 yields lockfree (X U Y)

(End of Proof)

108 Deadlock

In general, the converse of Theorem 4.1. 7 does not hold. as the following example shows.

Example 4.1.8

Components cO. c1 and c2 are defined by

com cO(a.b): (a*lb*) moe

com cl'<.a . b) : (a * I b) moe

com c2 (a . b) : a • I b . (b ; b) moe (TR(c2)= <{a,b}.(a}*>)

Then TR(cO)w TR(cl)w TR(c2) = <(a.b },(a}*>. For all t. t E (a}*. we have

S (t. <I a. b }.(a }* >) = I a}¢ 0.

Hence. lock free ({ TR (cO). TR (cl). TR (c2)}).

Wehave bEt(TR(cO)wTR(cl)). S(b.TR(cO)wTR(c1))=0.

and S (b . TR (cO)) = { b } ¢ 0. Hence locJcfree (I TR (cO). TR (cl)}).

We conclude

lock free ({ TR (cO). TR (cl), TR (c2)}) 1\ ..,zockfree ({ TR (cO). TR (cl)})

(End of Example)

Most mechanisms. such as bags. queues. and stacks, correspond to non-terminating
processes. In general, we are not interested in mechanisms that may terminate. Notice that
for U = (W T: T EX: T), we have

U is non-terminating ::> lock free (X)

In the next section we define deadlock. In general. the implication above does not hold for
deadlock.

Exercises

0. T and U are non-terminating processes such that ai n aU contains at most one ele
ment. Prove that T w U is also non-terminating.

1. Tis a process. Prove lockfree({T,STOP}).

4.1 Lock 109

2. Prove that for any set X of processes:

lock free (X)

- (A Y : Y !: X : lock free (((W T : T E Y : T) . (W T : T E X\ Y : T) }))

3. T is a process and a is a symboL Prove

lockfree({T.STOP(a)}) 5 (At: t EtT: S(t .T) ¢{a})

4. Components cO. cJ. exA • and exP are defined as in Example 4.1.6 .
Let T = TR (cO) b TR (exA) b TR (exP). Determine the state graph of T. Deter
mine also the state graph of T b TR(cl). What are your conclusions?

5. Component ex is defined by

com ex (a • b • c) :

sub p.q · sem 1 bus

(p-a;a lp-b.q•a;b lq·b;c)*

moe

Show that TR (ex) = SEM 1(a . b) w SEM 1(b . c). Let S denote the command of
ex.

Determine lockfree ({ p-SEM 1(a .b).q·SEM 1(b .c).pref(TR (S))))

(End of Exercises)

4.2 Deadlock

In Section 4.0 we considered components cO, cJ. exA , and exP. defined by

comcO(~.M.~.~.~./0): (~;~;~;~;M;~)· moe

com cl(al.bl.pl.ql.el./1): (pl;aJ:el;fJ;qJ;bl)* moe

com exA (~ .al .M .bl): (~ :M I al ;bJ)* moe

com exP(~ .pl.~ .ql): (~;~I pl ;ql)* moe

Let X= {TR(cO).TR(cl).TR(exA).TR(exP)} and let U = (W T: TEX: T).

Then -.lock free (X).

110 Deadlock

Let y be a symbol. We add RUN (y) to these processes. For any t, t E t(U w RUN (y)),
we have ty E t(U w RUN(y)). Hence. U w RUN (y) is a non-terminating process. from
which we infer

lock free (X U (RUN (y)})

Nevertheless. the mechanism described by the weave of these five processes has danger of
deadlock in the usual sense of the word. These observations lead to the following
definition.

For a set X of processes deadlock free (X) is defined by

deadlock free (X) = (A Y : Y !: X : lock free (Y))

If -.deadlock free (X) holds, we say that X has danger of deadlock.

Property 4.2.0

deadlock free (X) - (A Y : Y !: X : deadlockfree (Y))

(End of Property)

Property 4.2.1

For processes T and U we have

0 deadlock free (I T. u}) = lockfree (I T. u n
1 T w U is non-terminating ::;. deadlockfree({ T .U})

(End of Property)

Property 4.2.2

Let T and U be non-terminating processes such that aT n aU contains at most one
element. Then deadlock free ({ T. U }).

Proof

Let t E t(T w U). then t~aT E tT and t~aU E tU Since T and U are non-terminating.
we can choose a,aEaT, and b.bEaU, such that (t~aT)aEtT and (daU)bEtU
Since aT n aU contains at most one element. we have three cases.

(i) a = b

(ii) a f. aU

(iii) b f. aT

4.2 Deadlock Ill

In case (i) we have ta E t(T w U). in case (ii) we have ta E t(T w U). and in case (iii) we
have tb E t(T w U).

Hence. T w U is non-terminating.

Application of Property 4.2.1.1 yields deadlockfree ({ T .U}).

(End of Proof)

We do not have an analogue of Theorem 4.1.5 that holds for deadlockfree. If X has n
elements. then P(X) has 2" elements. and to assure deadlockfree(X) requires in the
worst case 2" investigations. Notice that lockfree (X) requires only n investigations.
A similar conclusion holds for Theorem 4.1.7.

The best we can prove is the following.

Theorem 4.2.3

Let X be a set of processes such that deadlockfree (X) holds. and let V be a process.
Then

(A Y : Y S: X: lockfree ({ V, (W T: T EY : T)})) => deadlockfree(X U { V})

Proof

We derive

(A Y: Y S: X: lockfree({ V ,(W T: TEY: T)}))

= { Property 4. 1.3.1 }

(A Y : Y S: X: lock free ({ V}) A lock free ({ V. (W T: T E Y: T)}))

{ deadlock free (X) }

(A Y : Y S: X: lockfree(Y) A lockfree ({ V}) A lockfree ({ V. (W T T EY: T)}))

=> {Theorem 4.1.7 }

(A Y: Y S: X: lock free (Y U { V}))

= { deadlock free (X) }

(A Y: Y S: XU { V}: lockfree(Y))

{ definition of deadlockfree }

deadlock free (X U I V})

(End of Proof)

112 Deadlock

An even more serious problem is the following. We consider again components
cO , cl , exA , and exP.

Figure 4.0 shows the state graph of TR (cO) w TR (exA) w TR (exP). Projection on
(eO, /0, al. bl. pl. ql} yields the blend, the state graph of which is shown in Figure 4.1 .

Apparently. we have deadlockfree ((TR(cO) b TR(exA) b TR (exP) .TR (cl))). The state
graph of the blend of the four processes is shown in Figure 4.2. Evidently, all information
about deadlock has disappeared.

From Figure 4.2 one concludes that initially eO is possible. However, internal events aO
and pl bring the system to a grinding halt (as explained in Section 4.0).

It looks as if we have lost our hierarchical way of composing. It seems that. in order to
avoid deadlock. one has to keep track of the internal structure of the components.

In Chapter 5. we cope with problems like these. We give conditions under which the
situation described above does not occur.

7-~' 0

cz~r·~.'\

~~·-.o'·)
Figure 4.0

~.a~·
Figure 4.1

Figure 4.2

4.2 Deadlock

Finally we define deadlockfree for components. Let component c be defined by

com c(A):

sub Po: co, ... • Pn-1: Cn-1 bus

[xo= Yo,··· ,Xm-1 = Ym-11

s
moe

Then TR (c) = T~ A where

T = (W i: 0' i < n: (p;·TR(c;n;:::. :;:~:) w pref(TR(S))

113

Let X be the set consisting of all (pi·TR(c;)) ;:: :;;:~;. 0' i < n. and pref(TR (S)).

We call c deadUx:kfree if deadlockfree(X) holds.

Exercises

0. Determine which of the following sets of processes are deadlockfree.

(i) { SEM 1(a .b). SEM 1(b .c) .SEM1(c ,d)}

(ii) I SEM 1(a .b). SEM 1(b ,c). SEM 1(c .a)}

(iii) I SYNC l,t(a . b) , SEM 2Ca. b) . STOP }

(iv) { SI'OP(a). SI'OP(b). RUN(a ,c)}

1. Provide counterexamples for the following conjectures.

(i) deadUx:kfree(X) /\ deadlockfree(l V. (W T: T EX: T)})

::;. deadlockfree(X U { V})

(ii) deadUx:kfree (X) /\ (A T : T EX : deadlock free (IT. V}))

::;. deadlock free (X U I V})

2. X is a set of processes. For T E X we define disabled (T. X) by

disabled(T .X) s (Et :t EtU: S(daT.T)¢ 121 /\ (As: ts EtU: S(ts ,U)naT = 121))

where U = (W T: T EX: T).

disable free (X) is defined by disable free (X) s (A T : T EX : ..,disabled (T. X))

Derive properties of disablefree that are similar to the properties of Ux:kfree and
deadlock free.

(End of Exercises)

5 Livelock and nondeterminism

S.O Introduction

Let T and U be processes. As explained in Section 1.4 we view T b U as the specification
of the composite of the mechanisms specified by T and U respectively. This composite
behaves according to T w U.
Symbols of aT n aU are called internal symbols. They correspond to internal events.
Symbols of aT + aU are called external symbols. They correspond to external events.
The blend of T and U does not contain any information about the internal events.

ln this chapter we have the following assumption about the behaviour of a composite.

The internal events occur automatically and instantaneously as
soon as they can, without being observed or controlled by the
environment of the process:

C.A.R. Hoare [8. section 3.5]

Consider processes T and U defined by

T = pref(TR((a ;xI b ;y)')) and U = pref(TR((a ;x)"))

Then T b U = pref(TR((b ;y)*))

From T b U one concludes that the composite eventually gets involved in event b . How
ever. whenever event b can occur. internal events are possible and. according to our
assumption. an internal event will happen. It is not guaranteed that b will ever happen.

This phenomenon is called livelock. Ot is also known as infinite clu:rtter or as diver
gence). The behaviour of the composite is not in accordance with T b U.

The phenomenon of nondeterminism is illustrated by the following example.

LetT= <{a.b.x.y}.{e.x.xa.y.yb)>. Then TbRUN(x.y)= <{a,b}.{E.a.b}>.
From T b RUN (x .y) one may infer that either a or b may happen initially. From our
assumption. however. we conclude that either x or y will occur instantaneously after
which a is not possible any more or b is not possible any more. This is not reflected in
<{a.b},{e.a.b)>. We say that the composite ofT and RUN(x.y) has (internal)
nondeterminism.

114

5.0 Introduction 115

In the sequel we study conditions under which we can guarantee the blend of processes to
be a proper specification of the composite of the corresponding mechanisms.

Since livelock and nondeterminism arise when certain events are concealed. we first study
the relation between the mechanism described by a process T and the mechanism
described by Tt B. where B is a subset of aT. Notice that Tt B = T b RUN(aT\B).

In examples a process T is sometimes specified by a command S.
Then T = pref (TR (S)).

Processes are also specified by state graphs. Unless stated otherwise. the alphabet of the
corresponding process consists of all labels that occur in the state graph.

s.t Livelock

For process T and subset B of aT we define livelock(B .T) and livelockfree(B ,'T) by

livelock (B. T) =: (E t : t E tT : (An : n ~ 0: (E u : u E B * A tu E tT : l (u) > n)))

livelockfree (B , T) - -.[ivelock (B, T)

If T is obvious from the context we omit T and write livelock (B) and livelockfree (B).

Applying Konig's Lemma (cf. [10]) yields

Property S.t.O

Let T be a process with a finite alphabet. and let B be a subset of aT such that
livelock (B) holds.

Then there exists a trace t. t E tT, and an infinite sequence b (i : i ~ 0) such that
(A i : i ~ 0: b (i)E B) and such that all finite prefixes of tb (i : i ~ 0) belong to tT.

(End of Property)

Property s.t.t

For process T and subsets A and B of aT such that A !::;;; B. we have

livelock (A) =:> livelock (B)

livelockfree (B) =:> livelockfree (A)

(End of Property)

116 Livelock and nondeterminism

Exercises

0. Disprove: livelockfree (A , T) fl livelockfree (B , T) ::;. livelockfree (A U B. T)

1. Prove

(i) livelockfree (0. T)

(ii) T is non-terminating ::;. livelock (aT. T)

2. Disprove: livelock (aT. T) ::;. T is non-terminating

3. Prove that for processes T and U:

livelockfree (aT n aU. T) V livelockfree (aT n aU. U)

::;. livelockfree (aT n aU. T w U)

4. Prove

(i) (A n : n ~ 0 : (E t : t E tSEM (a • b) : (E u : u E { b }* fl tu E tSEM (a • b) : l (u) > n)))

(ii) livelockfree({b l.SEM(a ,b))

(iii) -.livelockfree({a }.SEM(a .b))

(End of Exercises)

117

S.2 Independence and Transparency

Let T be a process and let B be a subset of aT. The complement of B with respect to
aT. i.e. aT\ B . is denoted by B. According to Property 1.4.2.3 we have

Tt B = T b RUN(B)

In the sequel we investigate conditions under which Tt B is a proper description of the
composite of the mechanisms associated with T and RUN(B).

To that end we define four types of independence. each type being more restrictive than

the previous ones. We give a mechanistic appreciation of each type.

For j.O'- j<4. I 1(B.T). pronounced as 'B is j-independent with respect toT', is
defined by

l 0(B ,T) -
lt(B .T) -
MB.T) =
/3(B .T) =

(At : t E tT : S (t . T) !;; B :> S (t . T) = S (t t B. Tt B))

(As.t:sEtT A t€tT: stB '-ttB :> (Eu:su€tT:sutB=utB))

(At: t EtT: (E u: u E(B)* A tu EtT: S(tu .T) = S(t~B .TtB)))

~(B ,T) A livelockfree(B. T)

An appreciation in terms of the mechanism specified by T is the following.

lo(B .T):

liB .T):

If the mechanism enters a state in which only events of B are possible.
then the mechanism behaves according to Tt B.

From each state of the mechanism it is possible to continue such that the
behaviour of the mechanism is as expected from Tt B.

From each state of the mechanism it is possible to enter a state (via events
of B) such that only events of B are possible. The mechanis~ behaves in
that state according to Tt B.

For each state of the mechanism it is guaranteed that performing internal
events (events of B) will terminate in a state in which only events of B
are possible. The mechanism behaves in that state according to Tt B.

If / 3(B • T) holds we say that B is transparent with respect to T.

In the sequel T is a fixed process and B is a subset of aT.
We write 11 (B) instead of li (B . T).

118

Property 5.2.0

For any t . t E tT. we have S (t . T) n B !: S (dB • Tt B)

(End of Property)

Lemma 5.2.1

Livelock and nondeterminism

I1(B)- (As,v:sEtT II (stB)vEtTtB:(Eu:suEtT:sutB=(stB)v))

Proof

We derive

(As.v :sEtT II (stB)vetTtB :(Eu :suEtT:sutB = (stB)v))

= { definition of projection }

(A s. v. t : s E tT II t E tT II (s t B) v = t t B : (E u : su E tT : su t B = (s t B) v))

= {substitution }

(As .v.t: s EtT II t EtT II (stB)v = ttB: (E u: su EtT: sutB = ttB))

= { definition of prefix }

(As. t : s E tT II t E tT II st B ~ t t B : (E u :suE tT: sut B = tt B))

= { definition of /1 }

lt(B)

(End of Proof)

Theorem 5.2.2

0 lt(B) ::;> l;,(B)

1 I2(B) ::;> lt(B)

2 /3(B) ::;> I2(B)

Proof

0. Assume / 1(B). Let t. t E tT. be such that S(t. T)!: B. We have to prove
S(t.T)= S(ttB.TtB). We derive

a ES(ttB .TtB)

= I definition of successor set }

Ctt B)a E tTt B

= {Lemma 5.2.1}

5.2 Independence and Transparency

(E u : tu € tT : tu t B = (t t B) a)

{ S (t , T) !:: B)

a E S(t .T)

Hence, S (t , T) = S (t t B . Tt B)

1. Assume 12(B). Lets and t besuchthat sEtT II tEtT II stB ~ttB.

119

We prove the existence of v such that sv E tT II svt B = tt B by the following pro
gram. (The notation is from [3])

v:=E {invariant svEtT II svtB ~ttB.variantfunction Z(ttB)-l(vtB)}

:do svtB :¢: ttB

.... {svtB<ttB)

od

let b besuchthat (svtB)b ~ttB.then bES(svtB,TtB)

:let u. u E (B)*, be such that S(svu. T) = S(svt B .Tt B). u exists du~ to MB)

{ svub E tT II svub t B = svb t B ~ t t B II b E B)

;v:=vub

{svEtT II svtB=ttB)

2. Assume Ia(B). Let t e tT. We have to prove the existence of v, v E (B)", such that
tv EtT II S(tv,T)= S(ttB .TtB).

Consider the following program.

v:=E

{ invariant tv E tT II v E (if)*

variant function l(v). bounded since livelockfree(B))

:do S (tv . T) n ii :¢: 121

.... let b be such that b E S (tv , T) n ii
{ tvb E tT II vb E (if')*)

;v:=vb

od

{S(tv,T)nB=121 II vE(B)*, hence, S(tv,T)~ B II tvtB =ttB.

From fo(B)weinfer S(tv,T)= S(tvtB.TtB)= S(ttB.TtB)}

We conclude (E v: v E(B)* II tv EtT: S(tv .T)= S(ttB .TtB))

(End of Proof)

120 Livelock and nondeterminism

Corollary 5.2.3

If livelockfree (if) then lo(B). / 1(B). I2CB). and /3(B) are equivalent.

(End of Corollary)

The following example shows that the implications in Theorem 5.2.2 are proper implica
tions : the converses of these implications do not hold in generaL

Example 5.2.4

0. Process T is defined by command a ; a *I b .
For t E tT, not ending in symbol b we have -.(S (t , T) !: { b}).
For t E tT. ending in symbol b we have S(t .T) = I2J = S(t tl> .Ttl>).

Hence. /0({b 1).

Since atb ~btl> A (Au :au E tT : autb ¢ btb). we have -./1({ b }).

We conclude lo({ b}) 1\ -./1({ b }).

1. Process T is defined by (a I b)* .
From t E tT :::> tb E tT we infer /1({ b }).
On the other hand we have (At : t EtT: S(t .T) = (a .b} ¢ { b }), which implies
-./2({ b }).

Weconclude / 1({1>}) 1\ ... J2({b)).

2. Process Tis defined by a*;b;c .
Fort EtT. ending in b or c we have S(t, T) = S(ttc .Ttc).
Fort EtT. not ending in b or c we have S(tb .T) = S(t tc .Ttc).
Hence. Ml c }).
Since for all n.. n. ~ 0. an E tT we have ... J3({ c }).

Weconclude /2({cl) A ... Ji{cl).

(End of Example)

The next theorem relates independence to state graphs.

Theorem 5.2.5

lt(B) :::> (A s , t : s E tT A t E tT : s - t :::> s t B- t t B)

Proof

5.2 Independence and Transparency

Assume 11 (B). Let s and t be elements of tT such that s - t.
Let v E B* be such that (st B) v E tTtB. We derive

true

= I definition of prefix }

s t B :s; (s t B) v

= I Lemma 5.2.1. (stB)v EtTtB }

(E u: su EtT: sutB = (stB)v)

I property of projection }

(Eu: suEtT: (stB)(utB)= (stB)v)

= I property of concatenation }

(E u :suE tT : u t B = v)

= ls-t}

(E u : tu E tT: ut B = v)

= I properties of concatenation and projection }

(Eu :tuEtT:tutB = (ttB)v)

::;:. I definition of projection)

Cd B)v E tTtB

For reasons of symmetry we conclude

(A v : v E B * : (s t B) v E tTt B := (t t B) v E tTt B)

Hence. st B -ttB

(End of Proof)

Corollary S.2.6

121

If B is transparent with respect to T then the number of states of Tt B is at most
the number of states of T.

(End of Corollary)

The following theorem is another consequence of Theorem 5.2.5.

Theorem S.2. 7

Let B be transparent with respect to T. A state graph of Tt B is obtained from the
state graph of T by removing all arcs labeled with symbols of ii thereby identifying
the states connected by these.

122 Livelock and nondeterminism

Proof

We have to show that for B transparent, s E tT, c E jj, and seE tT :

(A t . u : t E [s lr 1\ u E [sclr : t t B - u t B)

Let B be transparent with respect to T. Then h(B. T) (cf. Theorem 5.2.2).
Let s E tT. c E jj and scEtT. We derive

t E [s lr 1\ u E [sc lr
(definition of equivalence class l

t -s 1\ u-sc

=> (Theorem 5.2.5 }

dB - s t B A u t B - set B

= (cEB)

dB-stB A utB-stB

=> (transitivity of - }

ttB-utB

(End of Proof)

Notice that lo(B . T) can be expressed in terms of states:

10(B.T) E (At:tEtT:S([t],T)!:B => S([t],T)=S([ttBJ.TtB)).

since the extension of successor set from traces to states yields

S(t,T)= S([t].T)forall t.tEtT.

Theorem 5.2.8

None of the independencies are closed under union.

Proof

Process Tis defined by command a ;b I x ;b ;a . Then / 3({ a}) and J3({b }).

From S(x.T)= (b)¢ (a.b}= SCxt(a.b).Tt(a.b))weconclude ... Jo((a.b)).

Theorem 5.2.2 yields that for any j. 0 ~ j < 4.

I1 ((a}) 1\ I1 ((b}) 1\ -.J1 ((a.b})

(End of Proof)

Let B be a !-independent subset of aT and let t E tT. b E B. c E jj such that
tc E tT 1\ tb E tT.

5.2 Independence and Transparency 123

Then tdB =dB ~tbtB. Since B is !-independent. there exists au. uE(B)'. such
that tcub E tT. Hence, the choice of c instead of b does not disable b.

Phrased differently: symbols of B cannot be disabled by symbols of if.
Suppose that B and C are !-independent subsets of aT. A symbol of B n C cannot be
disabled by a symbol not in B nor by a symbol not in C, hence, only by symbols in
Bnc.
This observation might lead to the conjecture that !-independence is closed under intersec
tion. The next theorem, however, shows that none of the independencies are closed under
intersection.

Theorem 5.2.9

None of the independencies are closed under intersection.

Proof

By the following counterexamples.

0. Process T is defined by the state graph of Figure 5.0 .
Figure 5.0

We have 4({ a ,b}) fl. 4({ a ,c})

From S (be. T) = 0 !: {a} and S(bda, Tta) = {a} we infer ~10((a}).

1. Process T is defined by

the state graph of Figure 5.1 .

b c Figure 5.1

Trace t, t E tT, consisting of b 's and c 's may be extended with aa if and only if
the number of b 's is even and the number of c 's is even. It may be extended with a
single a only, if the num6er of b 'sand the number of c 's are both odd.

We have J1({a,b}) and Mia ,c }).
Examination of traces bca and aa yields ~11({ a}).

a

2. Process T is given by the state graph of Figure 5.2 .
~ • •
. ~

b

Figure 5.2

124 Livelock and nondeterminism

We have /2({ a)), Ml b)), /3({ a D. and /3({ b)).

Since for all t . t E tT. the successor set S (t , T) is non-empty, we have ... / 2(0) and.
hence. -./3(0).

(End of Proof)

After having studied the counterexamples of the previous theorem one could hope for

ME) A I3(C) ::;.. fo(B n c)
We supply a counterexample for this implication as well. Notice that such a counterexam
ple provides a proof of Theorem 5.2.9 as well. The example provides insight into condi
tions under which one may hope for more positive results. Since the example is a nice
illustration of the theory, we devote a theorem to it.

Theorem 5.2.10

There exists a process T and there exists subsets B and C of aT such that

/3(B) 1\ /3(C) 1\ -.f0(B n C).

Proof

We construct process T that has alphabet {a, b . x l. such that 13({a. x }), / 3({ b, x }), and
-.10({ x }) hold.

Evidently, livelockfree ({a)) and livelockfree (I b)) have to hold.

Process T will be symmetric with respect to a and b.

Figure 5.3 shows the state graph of T.

T~l a, b)= SYNC 2.2Ca .b). hence livelockfree ({a}) and livelockfree ({ b }).

Tt I a , x) corresponds to the command (a ; a)*; (a ; x I x ; x).

Tt { b, x) corresponds to the command (b ; b)*; (b; x I x ; x).

xx is possible if and only if the parity of the a's is even and the parity of the b 'sis even;
a single x is possible if the parity of a's is odd and the parity of the b "sis odd.

Figure 5.3

5.2 Independence and Transparency 125

We have .JO({ a. x}) A livelockfree ((b)). hence ! 3({ a. x)). For reasons of symmetry
Ml b. x}) holds as well.

From S(abx.T)=0 A S(abxtx.Ttx)= {x}weinfer -..JO({x}).

(End of Proof)

In the trace structure that was exhibited in the proof of Theorem 5.2.10 we have
livelock ((a. b }). From the definition of 3-independence it is evident that !3(B) cannot be

proved in the presence of livelock Cii).
The next theorem is the main theorem of this section.

Theorem 5.2.11

Let T be a process and let B and C be subsets of aT such that T does not have livelock
with respect to aT\(B nc). Then

B and C are transparent with respect to T

::;::. B n C is transparent with respect to T

(End of Theorem)

This theorem may also be phrased as

'in the absence of livelock, transparency is closed under intersection'

For a proof of Theorem 5.2.11 we :first derive some lemmata. T is a process and B and C
are subsets of aT.

Lemma 5.2.12

/3(B) A !3(C) A b E B n C

::;::. (As .t: sb EtT A st EtT: (E u: sbu EtT: sbut(B nc)= stt(B nc)))

Proof

Assume /3(B) A !3(C) A b E B n C.
For reasons of symmetry we assume b E C.

Let s and t be such that sb E tT A st E tT. We derive

sl>tc = stc ~ sttc
::;> { !l(C). sb EtT A st EtT }

(E u : sbu e tT : sbu tc = st tc)

126 Livelock and nondeterminism

=> I application of projection on B)

(E u: sbu EtT: sbu~(B nc) = st~(B nC))

(End of Proof)

Lemma 5.2.13

If livelocklree (B n C) then

13(B) 1\ 13(C) 1\ b E B n C

=> (As,t :sbEtT 1\ stEtT 1\ sb~(BnC)~st~(BnC):

(E u: sbu EtT: sbu~(B nc) = st~(B n C)))

Proof

Assume livelocklree(B n C) 1\ J3(B) 1\ J3(C) 1\ bE B n C.

From livelocklree (B n c) we infer that the function I given by

I (t) = (MAX u : tu E tT 1\ u E (B n c)* : l (u))

is well-defined.

By induction on I (s) we prove that for all s. s E tT 1\ sb E tT :

(At:stEtT 1\ sb~(BnC)~st~(BnC): (Eu:sbuEtT: sbu~(BnC)=st~(BnC)))

Base

Let s be such that s E tT 1\ sb E tT 1\ I (s) = 0.

Let t be such that st E tT 1\ sb ~(B n C) ~ st ~(B n C). We derive

sb~(B nc) ~ sd(B nc)

lbEBnc l
(E u • y : v E (B n C)* 1\ u E aT • : st = svbu)

I l(s) = 0)

(E u : u EaT*: st = sbu)

=> I st E tT. application of projection)

(E u: sbu EtT: st~(B nC)= sbu~(B nC))

Step

Let s be such that s E tT 1\ sb E tT 1\ I (s) > 0.

Lett besuchthat stEtT 1\ sb~(BnC)~sd(BnC)

Then t = vbuo for some v E (B n C)* and 11oE aT* (cf. Base)

5.2 Independence and Transparency

We distinguish two cases:

(i) v = E.

Then t = bUo. hence, (E u : sbu E tT : sbu t(B n C)= sft(B n C))

(ii) v = cv0 with c E

For reasons of symmetry we assume c fl B .
We then have

st = scvobUo 1\ c fl B 1\ VoE (B n c)* (cf. Figure 5.4).

We derive

sb E tT 1\ scvobUoE tT 1\ c f. B

::;. l sd B = st B. tT is prefix-closed l
S (set B . Tt B) = S (s t B . Tt B) 1\ sb E tT 1\ sc E tT

::;. { b E B n C. hence (s t B) b E tTt B)

bES(sdB.TtB) 1\ scEtT

::;. II2(B) J

(E u : u E (jj)* 1\ scu E tT : scub E tT)

Choose v1 E (B)* such that scv1b E tT (cf. Figure 5.5)
We derive

scv1 tB = stB ~ sttB 1\ scv1 EtT 1\ st EtT

=> { l1(B))

(E u : scv1u E tT : scv1u t B = st t B)

::;. { application of projection on C

(E u : scv1u E tT: scv1ut(B n C)= st tCB n C))

Choose ul such that SCVtUl E tT 1\ SCVtUl t<B n c)= st t<B n c)
(cf. Figure 5.6)

From c fl B n C and v1 E (ii)* we infer

f(scvl) ~ f(s)-1< f(s)

Furthermore we have

SCVtbt(B nc) = sbt(B n C)~ stt(B n C)= scvlult(B n c)
1\ scv1u1EtT 1\ scv1b EtT 1\ scv1EtT

Hence. we may apply the induction hypothesis with
s replaced by scv1 and t replaced by u1•

127

Figure 5.4

Figure 5.5

Figure 5.6

128

This yields u 2 such that

5cv1bUzEtT II 5cv1bUz~(BnC)= 5cv1u1 ~(BnC)
(cf. Figure 5. 7)

Our last step is the derivation

5b~B ~ 5cv1bUz~B
:::;. { J1(B). 5b E tT II 5cv1bUz E tT }

(E u : 5bu E tT : 5bu ~ B = 5cv1bUz ~B)

:::;. { application of projection on C }

(E u : 5bu E tT: 5bu~(B n c)= 5CVJbUz~(B n c))

{ 5cv1bUz ~(B n C)= 5t~(B n C) }

(E u : 5bu E tT: 5bu~(B n C)= 5t~(B n C))

(End of Proof)

Combining Lemma 5.2.12 and Lemma 5.2.13 yields

Lemma 5.2.14

If livelockfree (B n C) then

13(B) II 13(C) II bEaT

:::;. (A5.t: 5bEtT II 5tEtT II 5b~(BnC)~5t~(BnC):

Livelock and nondeterminism

Figure 5.7

(E u : 5bu E tT : 5bu ~(B n C)= 5t ~(B n C)))

(End of Lemma)

We now prove Theorem 5.2.11 .

Proof

Let T be a process and let B and C be subsets of aT such that JiB). J3(C). and
livelockfree (B n C) hold.

We have to prove h(B n C).

Since livelockfree (B n C) holds it suffices (Corollary 5.2.3) to prove 11(B n C).

Let 50 E tT and 51 E tT such that 50 ~(B n C) ~ 51 ~(B n C).

The following program shows the existence of t. tEaT*. such that

5o(EtT II 5o(~(BnC)=51 ~(BnC).

5.2 Independence and Transparency

s := E ;t := s1

l invariant st EtT 1\ s ~So 1\ st~(B nc) slt(B n c)

variant function l (s0)- l (s) }

;do s¢so

-+ {s<sol

let b be such that sb ~ s0

129

{ sbt(B n C)~ s0 tCB n C)~ sJ(B n C)= stt(B n C), apply Lemma 5.2.14 }

:choose u such that sbu EtT 1\ sbut(B n C)= sttCB n C)

od

{ sbu EtT 1\ sb ~So 1\ sbut(B nc)= stt(B nc)= slt(B nc) I
; s := sb ; t := u

(s = so. hence sot € tT 1\ Sot tCB n C)= s1 t(B n C) }

(End of Proof)

As a consequence of Theorem 5.2.11 we have

Theorem 5.2.15

Let T be a process with a finite alphabet. and let A be a subset of aT such that T
does not have livelock with respect to aT\A . Then there exists a smallest set B.
A c;;; B c;;; aT. that is transparent with respect to T.

Proof

From Property 5.1.1 we infer livelockfree(B). for any B. A c;;; B c;;; aT. According to
Theorem 5.2.11 we then have J3(B n C) for any transparent B and C with
A c;;; B c;;; aT and A ~ C c;;; aT. Moreover, aT is transparent with respect to T, hence.
the intersection of all transparent subsets of aT containing A equals the smallest tran
sparent subset of aT containing A .

(End of Proof)

In the next section we relate transparency to (internal) nondeterminism.

130

Exercises

0. Prove lo(fi!J. T) and 11(0. T)

Disprove 12(0, T) and 13(0 , T)

1. Prove

Livelock and nondeterminism

11(B. T) := (As. b : s E tT A b E B A (s t B)b E tTt B : (E u : u E (B)': sub E tT))

2. Determine livelockfree ({a}) and J0({ b)) for the processes defined by the following
commands.

(i) (a ;b)*

(ii) (a I b)*

(iii) (a I a : b)*

(iv) a *I b •

(v) alb*

(vi) (a ; b I a ; a ; b)*

(vii)(a lb;a':b*)

3. Let p and q be positive integers. Prove that {a . c} is transparent with respect to
SEMP (a .b)w SEM

9
(b .c)

4. T and U are processes. aT n aU contains at most one element. aT\aU is tran
sparent with respect to T and aU\aT is transparent with respect to U.

Show that aT+aU is transparent with respect to T w U.

5. Let S denote the command (p-a :a I p-b. q·a ;b I q·b ;c)*. and let

T = SEM1(p·a .p·b)w SEM1(q·a .q·b)w pref(TR(S))

(i) Show that Tt{a .b .c} = SEM1(a .b)w SEM1(b .c)

(ii) Determine livelockfree ({a ,b ,c}. T) and fo({ a .b ,c},T)

6. T is a process with a finite alphabet. Subset B of aT is called strongly independent
if (At :tEtT:S(dB.TtB)!: S(t.T)).

Prove

(i) fi!J and aT are strongly independent.

(ii) The strongly independent subsets of aT form a complete lattice.

(iii) B and if are strongly independent = T = (Tt B) w (Tt B)

Exercises 131

For A , A ~ aT, m (A) denotes the-' smallest strongly independent subset of aT
containing A .

(iv) Show that m (A) is well-defined and prove T = (W a :a EaT : m((a}))

(End of Exercises)

S.3 Transparency and nondeterminism

In this section we relate the theory developed in the previous sections to the theory of CSP
in [8]. We present a short introduction to the model defined in [8]. For a more detailed
treatment we also recommend [1].

A CSP- process is defined as a triple <A • F. D > where

A is an alphabet

F is a set of pairs (t . X) where t E A • and X ~ A

D is a subset of A •

Let P. P = <A . F. D > . be a CSP-process. The set F is called the failure set of P. It
consists of pairs (t , X) where t is a trace. t E A •. and X is a so-called refusal set of t.
F is used to model nondeterminism.

Set D is called the set of divergences of P and consists of 'all traces of P after which P
behaves chaotically'.

The triple <A. F. D > should satisfy the following conditions (cf. [8, 3.9])

CO (E.121)EF

Cl (tu,X)EF::;. (t.121)EF

C2 (t ,X)E F A Y!::: X ::;. (t ,Y)EF

C3 (t.X)EF A aEA ::;. (t.XU{iz})EF V (ta,121)EF

C4 D !::: (t l(t ,121)€ F}

C5 tED A uEA*::;. tuED

C6 t E D A X !::: A ::;. (t , X) E F

The alphabet of P is denoted by a P . The set (t I (t .121) E F } is called the trace set of P
and is denoted by tP.

From conditions CO and Cl we infer that tP is non-empty and prefix-closed.
From C2 we conclude that the refusal sets of a trace t, t EtP, are determined by the
maximal refusal sets of t •

132 Livelock and nondeterminism

A mechanistic appreciation of P is the following.

With P a mechanism is associated. With that mechanism in operation a so-called trace

thus far generated, say t. is associated. Initially t = E. At any moment t E tP.

If t is an element of D anything may happen: the mechanism may refuse any event or
may get involved in any event. This is expressed by conditions C5 and C6. The mechan
ism behaves chaotically.

If t is not an element of D, we consider the set {a I (ta, 0) E F). For an element b of
that set there exist two possibilities.

(i) (EX: (t .X)EF: b EX). Then b may happen but b may also be refused ('depend
ing on some internal event. b may get disabled').

(ii) (A X : (t , X) E F : b EX). Then b may happen. either since the environment ini
tiates b or since the mechanism does so.

With CSP-process P we associate the process (i.e. the non-empty prefix-closed trace struc
ture) <aP. tP > .

For t. t E tP. the successor set S(t. <aP. tP >) is also denoted by S(t .P). Notice that
S(t,P)= {a l(ta,0)EF}. Fromcondition C3 we infer

Property 5.3.0

Let P. P = <A . F. D > be a CSP-process and let t E tP. Then

(A X : X ~ A\ S (t . P) : (t . X) E F)

(End of Property)

The set of all CSP-processes is denoted by H, and the set of all non-empty prefix-closed
trace structures is denoted by K (both sets with respect to the same universe 0). We
then have the following mappings.

tr: H -+ K defined by tr(P) = <aP. tP >

pr:K-+ H definedby pr(T)= <aT.{(t,X)ItEtT 1\ X~aT\S(t,T)}.0>

Property 5.3.1

tr (pr (T)) = T for all T. T E K

Proof

For any T, T E K, we have

5.3 Transparency and npndeterminism

tr (pr (T))

= { definition of pr l
tr(<aT.{(t.X) ltEtT A X£: aT\S(t.T)l.0>)

= { definition of tr and tP l
<aT.{t ltEtT A 0£: aT\S(t.T))>

= { calculus I
T

(End of Proof)

Property 5.3.2

For all P. P = <A • F. D >.

pr(tr(P))= <A.{(t,X) l(t.X)EF A X £:A\S(t.P)}.0>

Proof

For any P. P = . <A . F. D > . we derive

pr(tr(P))

= { definition of tr l
pr(<A. It l(t .0)E Fl>)

= { definition of pr and successor set l
<A.{(t.X) l(t.0)EF A X£: A\S(t.P)).0>

= {Property 5.3.0 and condition C2 l
<A.{(t,X) l(t.X)EF A X£: A\S(t,P)).0>

(End of Proof)

Let P. P = <A . F. D >. be a CSP-process and let B be a subset of aP.

The projection of P on B. denoted by Pt B. is the CSP-process <AB. FB. DB> where

AB = B

FB = {(t.X) IX£: B A (tEDB V (Eu :(u,XUB)EF:t = utB))}

DB = { t I (E u. v : v E B * A u ED : t = (u t B) v)}

133

U{t I(Eu.v :vEB* A (An :n ~O:(Es :sE(B)* A l(s)> n :usEtP));t = (utB)v)}

(B denotes the complement of B with respect to aP)

134 Livelock and nondeterminism

Example 5.3.3

T is defined by T pre/ (TR (b; x I c; y)).

Let P pr(T). then P = <A .F .D > where

A= {b,c,x,y);

the set of (t • X) in F such that X is maximal equals

{(E. { x ,y 1). (b. { b, c .y }), (c. { b .c ,x 1). (bx .I b. c. x .y }).(cy .I b. c. x .y))};

D=0

Let B = lx.y).then P~B = <Aa.Fa.DB> where

Aa=lx.y};

Fa= I(E,{x}).(E.Iy}).(E,0)

. (x , I x . y)) . (x • { x)) , (x .I y l) . (x . 0)

. (y .I X. y}) • (y .I X}) • (y • { y)). (y . 0)

I:

Notice that Pt B may refuse x as well as y initially. but not both.

tr(P~B)= <{x.y}.IE.x.y}> and pr(tr(P~B))= <A'.F'.D'> where

A'= lx ,y };

F' = I C€.0)

. (x • { x • y)) • (x • I x J) . (x .I y }) , (x . 0)

, (y ,I X, y}), (y ,I X}), (y , { y}) , (y, 0)

I:
D'=0

Notice that pr (tr (Pt B)) :;>:!: Pt B

(End of Example)

For an informal definition of determinism we quote C.A.R. Hoare [8].

'whenever there is more than one event possible. the choice between
them is determined externally by the environment of the process. It
is determined either in the sense that the environment can actually
make the choice. or in the weaker sense that the environment can
observe which choice has been made at the very moment of that
choice.'

5.3 Transparency and nondeterminism

A formal definition is given by

P is deterministic = pr (tr (P)) = P

Application of Property 5.3.2 yields

Theorem 5.3.4

P. P = <A • F, D >, is deterministic

- D=0 A (At.X:(t.X)EF:Xt::A\S(t,P))

(End of Theorem)

In the sequel P. P = <A , F. D > . is a CSP-process and B is a subset of A .

Furthermore. <An . F B • Dn > denotes the CSP-process Pt B .

livelockfree (ij. <aP. tP >) and I 0(B, < aP. tP >)are abbreviated to

livelockfree (iJ) and I 0(B) respectively.

135

B is called transparent with respect to P if B is transparent with respect to <aP. tP >.
i.e. if I 0(B) A livelockfree (B) holds.

Property 5.3.5

(tP)tB!;;;; t(PtB)

Proof

For any t. t E B•. we derive

tE(tP)tB

= { definition of projection l
(E u : u E tP : t = ut B)

= { definition of tP l
(Eu :(u.0)EF:t = utB)

{ predicate calculus)

(Eu :(u,0)EF:t =utB A

=> { definition of Dn)

(As: s E (Ji)• A us EtP: S(us .P)n Ji ;e 0)

V (E s: s e(Ji)• A us EtP: S(us ,P)!;;;; B)))

(Eu:(u.0)EF:t=utB A (utBEDn V (Es:sE(B)0 A usEtP:S(us.P)!;B)))

136 Livelock and nondeterminism

::;. I Property 5.3.0 }

(E u: (u .0)E F: t = u~B 1\ (u~B EDB V (E s: s E(B)*: (us .B)EF)))

::;. { predicate calculus. definition of projection I
(E u: (u.0)EF: (t = u~B 1\ utB EDB) V (Es: s E(B)*: (us .B)EF 1\ t = ustB))

::;. { calculus I
(Eu:(u.0)EF:tEDB V (Ev:(v.B)EF:t=vtB))

{ F is non-empty. (e,0)E F }

tEDB V (Ev:(v.B)EF:t=vtB)

{ definition of F B I
(t .0)EFB

= I definition of t(Pt B) }

tEt(P~B)

(End of Proof)

Property 5.:3.6

livelockfree (B) ::;. (tP)t B = t(Pt B)

Proof

Assume livelockfree (B). For any t. t E B *. we have

tEt(PtB)

= I definition of Pt B }

(t .0)EFB

{ definition of FB I
t E DB V (E u : (u. B)E F : t = u t B)

{ definition of DB. livelixkfree (B) }

(E u . v : u E D 1\ v E B * : t = (u t B)v) V (E u : (u • B) E F : t = u .t B)

::;. { condition C5. B • C A * I
(E u : u ED : t = u ~B) V (E u : (u. B)E F : t = u t B)

::;. I conditions C4 an Cl }

(E u : (u . 0) E F : t = u t B) V (E u : (u • 0) E F : t = u t B)

= { definition of tP }

t E(tP)tB

Hence. t(Pt B) C (tP)t B. Combining this with Property 5.3.4 yields

5.3 Transparency and nondeterminism 137

t(P~B) (tP)tB.

(End of Proof)

Property 5.3. 7

If P is deterministic then livelrx:kfree (ij) - DB = 0

Proof

If P is deterministic then D = 0 (Theorem 5.3.4). We derive

livelockfree (B)

{ definition of livelockfree }

(At : t E tP : (En : n ~ 0: (Au : u E (B)* A l (u)> n : t¥ f tP)))

= { definition of DB. D = 0 }

DB= 0

(End of Proof)

We are now ready for the main theorem of this section.

Theorem 5.3.8

Let P be a deterministic CSP-process and let B be a subset of the alphabet of P. Then

P~ B is deterministic = B is transparent with respect to P

Proof

(i) Assume P~ B is deterministic. We derive

P~ B is deterministic

=> { Theorem 5.3.2 }

DB= 0

{ P is deterministic. Property 5.3.7 }

livelockfree (ij)

For any t. t E tP. such that S(t, P) S: B. we have

tEtPA S(t.P)S:B

= I Property 5.3.0 }

138 Livelock and nondeterminism

(t.aP\S(t.P))EF A S(t.P)r;;. B

~ {S(t.P)r;;.B =: ifS:aP\S(t.P))

(t.B U B\S(t.P))EF

~ I definition of FB }

(dB .B\S(t .P))E FB

~ I Pt B is deterministic. Theorem 5.3.4 }

B\S(t.P)r;;. B\S(ttB.PtB)

{set calculus. S(t .P) S: B }

S (dB . Pt B) S: S (t . P)

= I Property 5.2.0 }

S(ttB.PtB)= S(t.P)

= {livelockfree (B). Property 5.3.6 }

S(dB. <aP.tP> tB)= S(t. <aP.tP >)

Hence. livelockfree (if) A I 0(B) which is equivalent to B is transparent with
respect to P.

(ii) Assume B is transparent with respect to P. Then livelockfree (B) A I 0(B).
From livelockfree(if) and P is deterministic we infer DB= 0 (Property 5.3.7).
We derive

livelockfree (B)

~ I definition of FB. DB = 0 }

F B = I (t . X) I X r;;. B A (E u : (u , X U if) E F : t = u t B))

= { P is deterministic, Theorem 5.3.4 }

FB = l(t .X) IX S: B A (Eu: (u.XUB)EF A XU if S: aP\S(u.P):t = utB))

Forany X. X S: B. and u. uEaP*.wehave

XS:B A (u.XUB)EF A XUBS:aP\S(u.P)

= I set calculus }

X S: B A (u.X Uif)EF A S(u .P) S: B A X U.ii S: aP\S(u.P)

~ Uo(B) and t(PtB)= (tP)tB }

X r;;.B A (u.XUB)EF A xu.iir;;.aP\S(utB.PtB)

~ { definition of F B. set calculus }

(utB.X)EFB A X S: B\S(utB.PtB)

Hence.

5.3 Transparency and nondeterminism

(t .X)EF8

* l previous derivation }

(Eu:(u.XUB)EF II X~B II XUBf;aP\S(t.P):t=u~B)

* l derivation above }

X{; B\S(t .P~B)

139

Furthermore. we have D8 = 0. Application of Theorem 5.3.4 yields P~B is deter
ministic.

(End of Proof)

For a deterministic CSP-process P we have. by definition. pr (tr (P)) = P. We have also.
cf. Property 5.3 .1. tr (pr (T)) = T for T E K . Hence, K rna y be identified with the set of
deterministic CSP-processes. Theorem 5.3.8 expresses that this set is closed under projec
tion on transparent alphabets.

We conclude that mechanisms that have (internal) nondeterminism cannot be described in
terms of trace structures. That does not bother us, since we are not interested in mechan
isms that have (internal) nondeterminism.

We shall avoid internal nondeterminism. either by guaranteeing that projection is done on
a transparent alphabet or by implementing processes in such a way that internal events do
rwt occur automatically and instantaneously.
We discuss such implementations in Chapter 6.

This concludes our discussion of CSP-processes.

140 Livelock and nondeterminism

5.4 Transparent components

In this section we apply the theory of Section 5.2 to components. Let component c be
defined by

com c(A):

sub Po:c 0 , ..• ,p,._ 1 :c,._1 bus

[xo= YO• · · ·, Xm-1 = Ym-1]

"s
'' moe

Then TR (c)= Tt A where

T = (Wi:O~i<n:(p··TR(c-))x• xm-I)w ef(TR(S))
1 t Yo···· 'Ym-1 pr

In view of the theory developed in the previous sections we call c livelockfree if
livelockfree (aT\A. T) holds.

We call c transparent if A is transparent with respect to T.

Since for any process T, aT is transparent with respect to T, we have

Property 5.4.0

A component without subcomponents is transparent.

(End of Property)

Implementing a transparent component (i.e. constructing a mechanism that behaves
according to its trace structure) is relatively easy since it does not matter how fast and in
which order internal events will happen.

If component c is not transparent we implement the command of c in such a way that
the nondeterminism of c is resolved without affecting TR (c).

Example 5.4.1 (cf. Example 2.3.6)

Component sem 1 with TR (sem 1) = SEM 1(a. b) is defined by

com sem 1(a,b): (a;b)* moe

Component sem 2 with TR(sem 2) = SEM 2(a ,b) is defined by

5.4 Transparent components

com sem 2(a .b):

sub p . q ; sem 1 bus

[p·a = a.rb = q·a.q·b = b]

E

moe

LetT= SEMt(a,q·a)wSEM 1(q•a,b).

Then TR(sem 2)= Tt{a,bl.

141

Figure 5.8

The state graph of T is shown in Figure 5.8 . It does not contain any cycle of compound
symbols. Hence. livelockfree({ q·a }.T) holds. In states 0. 2, and 3 the successor sets are
subsets of {a. b 1. They equal the successor sets obtained by projection on {a. b 1. Hence.
l 0({a,b}.T).

We conclude that sem 2 is transparent.·

(End of Example)

Example .5.4.2

We transform component sem 2 of the previous
example into component asem 2 by removing the
equalities:

com asem 2(a. b):

sub p.q: sem 1 bus

(p-a :a I p-b;q·a I q·b ;b)*

moe

.. :r~· · l··
·I -~1·
o• p.a • a •

Figure 5.9

Let T = SEM 1(p-a.rb)w SEM 1(q·a,q·b)w pref(TR(S)) where S denotes the com
mand of asem2• The state graph of T is shown in Figure 5.9 . Since there is no cycle of
compound symbols, asem 2 is livelockfree.

From S(p·a a p-b q·a p-a.T)= \a I and S(a.Ttla .b}) ={a ,b I we infer

~10({ a .b }.T).

Hence, asem 2 is not transparent.

If a and b are events that are initiated by the environment we implement S in such a
way that the choice between ra and q·b (state 1) is postponed until the environment
has initiated event a or b.

(End of Example)

142 Livelock and nondeterminism

Example 5.4.3

We construct component wsem 2 that has

trace structure SEM 1 (a , b) w SEM 1(b , c) :

com wsem 2(a .b ,c):

sub p ,q: sem 1 bus

(p-a;a lp-b,q·a;b lq·b;c)*

moe

L,~t T = SEM 1(p-a ,p-b) w SEM 1(q·a .q·b)w prej(TR(S)).

Figure 5.10

Tlte state graph ofT is shown in Figure 5.10. Since S(q·a.T)=f21 and
S(q·a,SEM 1(q·a,q·b))~ 0, wsem 2 is not deadlockfree. The number of consecutive
compound symbols is bounded by 2. Hence, wsem 2 is livelockfree.

Command S should be implemented in such a way that p-b or q·a will happen only if
the environment initiates b. As in Example 5.4.2, the choice (state 2) should be post
poned.

If events a and c are initiated by the implementation we regard the implementation of
pre/ (T R (a ; (b ; a : c)*) as a valid one.

(End of Example)

Example 5.4.4

In Example 2.3.3 we derived (recursive) component sem with TR(sem) = SEM(a .b):

com sem(a .b):

sub p : sem bus

((a I p-b): (p-a I b))*

moe

Let T = SEM (p-a , p-b) w pref (TR (S)) where S denotes the command of sem.

For any n . n ~ 0. we have

(p-ap-b)" EtSEM(ra ,p-b) and a(p-a p-b)" Etpref(TR(S)).

Hence. a (p-a p-b)n E tT. We conclude that sem is not livelockfree.

In Example 2.3.3 we showed that S may be replaced by S' where
S' =(a :p-a I a ;b I p-b ;b)*. without affecting TR(sem).

5.4 Transparent components 143

Choosing S' instead of S yields a component that is livelockfree. However. since
S(a p-a p-b.T)= lb) and S(a,T~la.b))= la.bl. it is not transparent.

The choice of p-b should be postponed until the environment initiates b.

(End of Example)

One may wonder why we did not choose the name deterministic instead of transparent.
The reason is that there exists another form of nondeterminism that has not been dis
cussed yet. It is the choice between (external) events that are initiated by a component.

Consider component guess defined by

com guess (a . b . x . y) : (a ; x I b ; y)* moe

Suppose events a and b are to be initiated by the component. and events x and y are to
be initiated by the environment. In [8] component guess is considered deterministic since
the choice between a and b can be observed by the environment. We do. however. con
sider guess as a nondeterministic process. since some internal choice has to be made
between a and b , and the environment does not have any knowledge about the way in
which this choice is made.

Exercises

0. Determine which of the following components are transparent.

(1) com semia.b): a:(a.b)* moe

(2) com semia ,b):

sub p: sem 1 bus

(a ;p-a)*,(p-b ;b)*

moe

(3) com ex(a.b):

sub p .q ; sem 1 bus

(a ;(p-a I q·a)I b;(p-b I q·b))*

moe

144

(4) rom sem 2(a .b):

sub p: sem 1 bus

[p-b = b] (a ;p-a)*

moe

(5) rom sem(a,b):

sub p : sem bus

a :(a ;p-a I b;a I b ;p-b)*

moe

(6) rom sem(a .b):

sub p : sem bus

a ;((b I p-a ;a);(p-b ;b I a))*

moe

(7) rom ex(a,b):

sub p: ex bus

a;p-b lp-a;b

moe

(8) rom run (a ,b):

sub p : run bus

(a ;p-a)*

moe

(End of Exercises)

Livelock and nondeterminism

6 Implementation Aspects

6.0 Introduction

In this chapter we discuss implementations of processes. Although we implement
processes as (electrical) circuits. most concepts introduced do not depend on this choice.
To a great extent we have been inspired by the work of Alain J. Martin ([12]).

This chapter differs from the previous ones: it is less formal and we do not provide
proofs. We just present some ideas about implementations. Many of these still require
further research.

The synchronization of events is solved by a so-called four-phase lw.n.dslw.king protocol.
We do not distinguish between 'input symbols' and 'output symbols'. We do. however.
make a distinction between events that are initiated by a component and those that are ini
tiated by the environment of that component. It will turn out that the difference between
these types of events is very small.

The circuits we derive are delay-insensitive in the sense that their behaviour does not
depend on delays in wires and switching elements. We do not prove their delay
insensitivity formally.

6.1 Notations

For sequential programs we use the guarded command language with CSP-syntax (cf. [7]):

[· · ·] instead of if ft

* [· · ·] instead of do od

Execution of an if-statement amounts to suspension of the program until one or more of
the guards evaluate to true. after which a statement of which the guard is true is selected.

*[true _, S] is abbreviated to * [S J
[B _, skip] is abbreviated to [B J

('do S forever')

('waituntil B')

With symbol a we associate a pair (a0 • a;) of boolean variables. One may associate an
'output wire' with Go and an 'input wire' with a;. The value true will correspond to a
high level voltage on the associated wire and the value false will correspond to a low level
voltage on the associated wire. If x is such a boolean variable then

145

146

xi means x true

x! means x :=false

C'set x to a high level voltage')

('set x to a low level voltage')

[x 1 may be interpreted as 'wait until x has a high level voltage'.

[-.x 1 may be interpreted as 'wait until x has a low level voltage·.

Implementation Aspects

Events are either passive or active. Active events are initiated by the mechanism. whereas
passive events are initiated by the environment of the mechanism. Notice that the
environment of a .!_llechanism may be a mechanism as well.

Let a be a symbol. The occurrence of a in a process in which a is passive corresponds to
the following sequence of actions in the implementation

(a passive)

After execution of [ad ; a0 i event a 'has happened·.

The sequence [-.a; 1 ; a.! is used to return to the state -.a. A -.a;.

The environment of the implementation performs a by the sequence

(environment of passive a)

The occurrence of a in a process in which a is active corresponds to

(a active)

After execution of aJ; [a;] event a 'has happened'.

The environment performs a by the sequence

(environment of active a)

Apparently.

the pair (a0 • a;) of a mechanism corresponds to the pair (a; . a0) of the environ
ment. If (a • • a1) is active then (a; . a0) is passive and vice versa.

The synchronization thus obtained is called four-phase ho:ndshaking. For a synchroniza
tion protocol in which both mechanism and environment may initiate a we refer to [131.

The transformation of symbol a into such a sequence is called ho:ndshaking expansion.

Example 6.1.0

Consider component sem 1 defined by com sem 1(a. b): (a :b)* moe. If a is passive
and b is active. handshaking expansion yields

6.1 Notations 147

If both a and b are active. we have

These programs express the behaviour of mechanisms with respect to a;. a0 • b;. and bo.
In the next section we realize such a mechanism.

6.2 Circuits

For the construction .of our circuits we assume the existence of the following basic ele
ments.

An And-element has two inputs and one output. If both inputs are true the output will
be true. otherwise the output will be false. If x and y are inputs and z is output this is
expressed by

x II y -+ zf

~x V ~y zl

A C-element, cf. [15]. has two inputs and one output. If the inputs have the same value
then the output will also receive that value. otherwise the output does not change its
value. This is expressed by

X II y -+ zf

-.x 1\ -.y zl

An Inverter has one input and one output. The output receives as its value the negation of
the value of the input. It is expressed by

x zl

-.x zt

Figure 6.0 shows how these basic elements are represented in pictures of circuits.

And-element Inverter

C-element

Figure 6.0

148 Implementation Aspects

An Inverter in front of an And-element or C-element may be incorporated in that element.
thus yielding a new basic element. The Inverter is drawn as a circle attached to the ele
ment. As an example, consider the specification

X A ~y -+ zf

~x A y zl

This denotes a C-element with
inputs x and ~y. and output z.

The corresponding circuit is shown in Figure 6.1

Example 6.2.0

Figure 6.1

We show an implementation of SEM 1(a. b) where a is passive and b is active (cf. Exam
ple 6.1.0). Handshaking expansion yields

Initially we have ~a. A ~a1 A -.b. A -.b1 • This state equals the state after a.l. Hence. we
need an additional variable. say x. to be able to trigger b0 T. Initially ""X holds. We pro
pose

* [[a;) ; a0 T ; xT ; [-.a, A x) ; a.l ; b0 T : [b1] ; xl ; [-.x] ; b0 l ; [-.b1]]

We then have

(0) a 1 A -.x A -.b1
.... a.T

-.a, A X a.l

(1) ao xi

b; xl

(2) -.a. A x b.f

-.x b)

Since in the period from a.T until a) we have -.b1 • we may transform (0) into

(0') (a; 1\ ""X) A -.b, -t a 0 T
(... a, A x) V b1 -+ a0 l

This is a combination of a C-element and an And-element :

a1 1\ -.x -+ yT

-.a, A X -+ y!

6.2 Circuits

y A ..,b; -+ a0 t

... y V b; -+ a0 !

Initially '""Y holds.

A similar reasoning yields for (1) and (2)

(1') '""b; A ao -+ xt a C-element

b; A '""ao -+ xl

(2') ..,a
0

A X -+ bot an And-element

ao v x bo!

149

The ultimate circuit is shown in Figure 6.2 . The fat dots denote so-called internal forks.

As in [12]. we assume that the propagation delay in a forked wire is short compared to the
delays in the basic elements.

Exercises

0. Consider the circuit shown in Figure 6.2 . What happens if the environment executes
b;t; a;t ?

1. Derive a circuit that is an implementation of SEM 1(a, b) with a and b active. Use

* [aof ; [a;] ; xt ; [X 1 ; ao! ; [.... a;] ; bot : [b,] ; x! ; [...,X 1 ; bo!; [.... b;]]

Derive from the resulting circuit an implementation with a passive and b active.

(End of Exercises)

X

Figure 6.2

150 Implementation Aspects

6.3 Active and Passive

Suppose we have a circuit corresponding to a process with passive a. We wish to connect
an ·activator· (cf. Figure 6.3) to a; and a 0 such that its other two wires. p; and Po, yield
an active version of a .

Action Pol is to be executed
as soon as the original circuit
is willing to acknowledge a;.

This yields

A
PASSIVE

ao

ACTIVATOR

a;

Notice that the 'return to zero phase' has been moved to the right. We have

""'P; a;l (an Inverter)
\

P; a;!

and

ao Poi

-.ao -+ p)

(a wire)

I I

ao : o<]
a;

We conclude (cf. Figure 6.4)

Theorem 6.3.0 (From passive to active)

Po

P;

Figure 6.3

: Po

P;

Figure 6.4

If event a has been implemented as passive. by the pair (a0 , a;) . then an implemen
tation with a active is obtained by placing an Inverter in front of a;.

(End of Theorem)

Warning 6.3.1

Transforming a passive event into an active event in the way described above may intro
duce nondeterminism. This is shown by the following example.

Component select is defined by com select (a . b . x . y) : (a ; x I b ; y)* moe. It is imple
mented such that a and b are passive, and x and y are active. The state graph of the
implementation is shown in Figure 6.5 . We did not label all arcs : opposite sides of
squares have the same label.

Notice that in state 4 a choice is made between a0 l and b0 t. To implement this choice a
new basic element. an Arbiter-element . is needed. We do not discuss nor introduce such
an element. We assume that this implementation of select exists.

6.3 Active and Passive 151

The environment behaves according to com env (a . b . x . y) : (a ; x ; b ; y)* moe with a
and b active and x and y passive. The implementation never enters state 4 and the com
munication between environment and component behaves as expected.

If b is transformed into an active event. however. the following may happen. The
inverter will cause b,T and the implementation will react with b0 • The environment will
cause a;T and the mechanism enters state 5. The mechanism is suspended until b;l hap
pens and the environment is suspended until a.,T happens. Both events will not occur: the
system is in a deadlock.

If both a and b are activated the situation is even worse. Depending on the speed of the
inverters used. the mechanism will enter state 5 or state 6.

Activating a or b transforms the implementation into a nondeterministic mechanism in
the sense that events may be initiated by the mechanism based on some decision unknown
to the environment.

We conclude that activating a passive event is not allowed if the implementation makes a
choice between the acceptance of that event and the acceptance of other events.

In this monograph we restrict ourselves to components that do not require the use of
Arbiter-elements.

(End of Warning)

152 Implementation Aspects

Suppose event a has been implemented as an active event. We wish to connect a 'passiva
tor· (cf. Figure 6.6) to a; and a. such that its other two wires, p; and p •• yield a passive
version of a .

The original circuit may
initiate a (by auf) as soon
as that is possible. It is not
acknowledged until the
environment initiates a

(by p;l) as well. This
yields

A
ACTIVE

[[a0 1\ p;]; a;l.p0 l; [-.a. 1\ -.p;]; a;l.p.J.]

which gives rise to a C-element.

We conclude (cf.,Figure 6.7)

Theorem 6.3.2 (from active to passive)

ao

PASSIVATOR
Po

a;

Figure 6.6

r-----P;

r-._--~ __ _. _____ ~
...._ ___ __. a;

Figure 6.7

If event a has been implemented active by the pair (a0 • a,) then an implementation
with a passive is obtained by using a C-element as shown in Figure 6.7.

(End of Theorem)

(Transforming an active event into a passive event does not introduce nondeterminism.)

Consider the circuit shown in Figure
6.8 . It consists of a C-element and
a part called M. The occurrence of
event a corresponds to the sequence

Projection on (a0 • a; } and (Po , p; } yields respectively

a;l ; a01 ; a;l ; a)

p) ; p;l : p.! ; p;!

(passive)

(active)

Figure 6.8

We conclude that removing the C-element transforms event a from passive into active.
This transformation does not introduce nondeterminism.

In general we cannot transform an active event into a passive event by removing an
Inverter. This is demonstrated by the following example.

6.3 Active and Passive 153

a~--~~------------~

Figure 6.9

Example 6.3.3

In Section 6.2 we derived a circuit for SEM 1(a. b) in which a is passive and b is active
(cf. Figure 6.2). Removing the inverters to which b; is connected yields the circuit shown
in Figure 6.9 .

After a;f nothing will happen until b1t has occurred. This is not a valid implementation
of SEM 1(a .b).

(End of Example)

There is another remark on the difference between activators and passivators. In the next
section we show how the composite of processes may be obtained by connecting wires that
correspond to the same symbol. In view of the handshaking protocol we will connect
events of different types only. If both implementations are active then a C-element is
used (cf. Figure 6.10). Notice the symmetry of the connection (it is not known which of
the implementations is turned into a passive one).

If both implementations are passive then a choice can be made (cf. Figure 6.11). This
choice should be such that no nondeterminism is introduced.

ao ao

f a a : a
a passive passive active active

a, al

J Figure 6.10 a : a
passive passive

Figure 6.11

154 Implementation Aspects

Exercises
a,------.'!_r----b;

ao.-----.----~-4~---4------bo
Figure 6.12

0. An implementation of SEM 1(a . b) with a passive and b active may be obtained by
implementing

which is obtained from the handshaking expansion and postponing of the second half
of the expansion of a .

Show that this program yields the circuit shown in Figure 6.12 .

Should it be regarded as a valid implementation ?

Transform the circuit such that both a and b are active.

Transform the circuit such that both a and b are passive.

Figure 6.13

1. In Figure 6.13 the event corresponding to (aa. a; J is active.

Figure 6.14

The circuit of Figure 6.14 is obtained by subsequently passivating. activating. pas
sivating. and activating (a0 • a;).

Show that the two circuits are equivalent.

2. Two active events may be connected using a passivator. Is the (symmetric) circuit
shown in Figure 6.15 an appropriate connection between passive events ?

(End of Exercises)

..
Figure 6.15

155

6.4 Components with subcomponents

In this section we discuss implementations of components that have subcomponents. We
first consider components with command € :

com c(A):

sub p 0 :c 0 , .•• ,pn_1 :cn- 1 bus

[xo= Yo.··· ,Xm-1 = Ym-1]

€

moe

Due to the restrictions imposed on program texts. each compound symbol occurs exactly
once in the equalities. We assume that the subcomponents have already been imple
mented. Furthermore we assume that· c is transparent.

With an element a of A two wires a0 and a; are associated. Each element of A occurs
in an equality. We connect the output wire of the symbol to which a is equated with a0 •

and we connect its input wire to a; .

Each equality between compound symbols yields a connection in the way described in Sec
tion 6.3:

If the events have different types the connection is straightforward. If the events are both
active a passivator is used. H the events are both passive one of these is activated.

In the last case one of the events should allow activation. i.e. activation should not cause
nondeterminism. If such a choice is not possible we do not implement c (we consider the
program as being wrong). Notice that activating may also be done by removing a passiva
tor.

Finally. we may activate or passivate the implementation of the elements of A .

Example 6.4.0

Component run 1 is defined by com run 1(a): a* moe. Then TR (run 1) = RUN (a).

With a passive. handshaking expansion yields

which is just a wire.

Component run 2 • with TR(run 2)= RUN(a.b). is defined by

com run 2(a.b):

sub p • q : run 1 bus

[p-a = a.q·a = b]

e

moe

156 Implementation Aspects

.. a;

t : a;

.. ao ao

: b; : b;

t bo bo

Figure 6.16 Figure 6.17

The method described above yields the circuit of Figure 6.16.

An implementation with both a and b active is obtained by adding inverters, and is
shown in Figure6.17.

(End of Example)

Example 6.4.1

An implementation of SEM 2(a . b) with a passive and b active can be obtained from
implementations of SEM 1(a.b) with a passive and b active (cf. Example 5.4.1 and
Example 6.2.0). It is based on the program

com sem 2(a .b):

sub p.q: sem 1 bus

[ra = a.p-b = q·a,q·b = b]

e

moe

The circuit is shown in Figure 6.18 .

(End of Example)

Figure 6.18

6.4 Components with subcomponents 157

Finally. we consider components without equalities. Let c be defined by

com c(A):

sub Po:c 0, ... •Pn-l:cn-l bus

s
moe

We assume that c is livelockfree. Notice that the subcomponents have only elements in
common with S.

The implementation of pref (TR (S)) should be such that no (internal) nondeterminism
arises (cf. Section 5.4). It turns out that the handshaking protocol often guarantees the
absence of nondeterminism, as shown in the following example.

Example 6.4.2

We implement (cf. Example 5.4.3) component wsem 2 defined by

com wsem 2(a,b,c):

sub p,q: sem 1 bus

(p·a;a lp·b,q·a;b lq·b;c)*

moe

We assume that subcomponents p·sem 1 and q·sem 1 have been implemented with all
events active.

We implement wsem 2 with a. b, and c passive. In accordance with the strategy
explained in Example 5.4.3 an alternative of the command is executed if both subcom
ponent and environment initiate that alternative.

This yields the following expansions (output of a subcomponent is treated as input of the
circuit corresponding to the command. and vice versa) :

*[[p-a, A a; - p-a;T.a); [-.p-a0 A -.a;]; p-a;l.a0 l]]

* [[p•b0 A q•a0 A b; -+ p-b;T. q•a;f. b) ; [-.p-b
0

A -.q·a, A -.b;] ; p·b;l. q·a1l, b0 l]J

*[[q·bo A C; -+ q·b;l.c0 T; [-.q•b0 A -.c;]; q•b;l,c0 l]]

The first and the last one give rise to a C-element (with forked output). The middle one
yields two C-elements.

158 Implementation Aspects

The circuit is shown in Figure 6.19.

We can activate a. b. and c by removing three C-elements (passivators). This yields
Figure 6.20 .

Composing wsem 2 with RUN(b). i.e. connecting b; and b0 yields SEMz(a .c). This cir
cuit, shown in Figure 6.21. is also obtained when connecting implementations of
SEM 1(a. b) in which both a and b are active.

(End of Example)

C;

Figure 6.19

p.ao

~
q,ao q.bo

p.sem
1 q.a; q.sem 1

p.a; p,b; q.b;

Figure 6.2 0

Figure 6.21

159

6.5 Final Remarks

We have shown how a certain class of processes can be implemented as delay-insensitive
circuits. Nondeterminism did not play a role in the examples. due to the fact that we did
not use Arbiter-elements. A treatment of these elements falls beyond the scope of this
monograph. A typical process for which an Arbiter-element is needed is SEM 1(a .I b. c})
in which a • b. and c are passive.

A general method for the translation of commands into circuits has to be investigated.
Since processes correspond to minimal deterministic state graphs. it is worthwhile to con
sider the translation from state graphs into circuits as welL For suggestions we refer to
[17] and [19].

The concepts active and passive and the relations between these are very usefuL The con
cepts 'input' and 'output' should be reserved for the description of processes on a higher
level.

We have claimed that the circuits we derive are delay-insensitive in the sense that their
behaviour does not depend on delays in wires and switching elements. A proof of such a
claim must be based on a formalization of delay-insensitivity. In [21] delay-insensitivity
is formalized and a classification of delay-insensitive processe is given.

7 Conclusions

In the preceding chapters we discussed several aspects of concurrent processes. The alge
braic structure underlying these processes is relatively simple. Properties of operators like
projection, weaving. and blending are easily formulated in terms of lattice theory.

Program texts provide a neat and concise way for the representation of processes. More
over. the use of subcomponents admits a hierarchical way of constructing processes.

Phenomena like deadlock, livelock and nondeterminism have been succinctly expressed in
terms of trace structures. This enabled us to formulate and prove many properties and
theorems related to these concepts.

We conclude that Trace Theory is an adequate formalism for the description of concurrent
processes.

Compared to other formalisms trace structures form a subclass of all possible processes.
That subclass. however. is the class of mechanisms in which we are interested. We do not
implement nondeterministic processes. On the other hand we do allow environments of
processes to behave nondeterministically. In our formalism nondeterminism is captured
by transparency. We showed that in the absence of livelock transparency is closed under
intersection.

Due to the Conjunction-Weave Rule and the Composition Rule the derivation of programs
from specifications is often straightforward. Our program notation is close to implementa
tions. We showed examples of circuits that correspond to program texts. Again. the
hierarchical structure of components plays an important role.

The derivation of circuits is based on four-phase handshaking and the notions of passive
and active events. It turns out that nontransparency (i.e. internal nondeterminism) does
not play an important role in these derivations.

External nondeterminism, however. cannot be resolved that easily. This form of non
determinism is caused by transforming passive events into active events.

The derivation of circuits from programs requires further research.

Another topic that deserves further research is the communication of values.

Consider a mechanism that repeatedly inputs a value. say x. via channel a after which it
outputs the value 2 · x via channel b. The events the mechanism may be involved in are
pairs (c. v) where c is the name of a channel and v is an integer value. If we do not
take the values into account, the mechanism is specified by SEM 1(a. b).

The trace structure SEM 1 (a . b) is called the communication structure of this mechanism.
Besides the communication structure we have a predicate that relates the sequences of

160

161

values transmitted via b to the sequence of values transmitted via a .

When the mechanism described above is composed with a mechanism that repeatedly
inputs a value. say y. via channel b after which it outputs the value 3 · y via channel c.
we expect a mechanism that inputs via a a value x: after which it outputs via c the value
6 · x:. The communication structure of this composite will be SEM 2(a. c). the composite
of SEM 1(a.b) and SEM 1(b,c).

A theory needs to be developed that supports the reasoning above. Since output values
have to be computed whereas input values have to be accepted only. we expect that in this
theory a distinction between input and output will have to be made.

In this thesis we did not distinguish between input and output. Such a distinction would
have complicated the theory needlessly. Notice that we postponed the introduction of
'active' and 'passive' until implementation aspects were considered.

Finally, it has been a pleasure to write this monograph:

a pleasure to build up the theory of the first chapters and a pleasure to apply it in the sub
sequent chapters.

We enjoyed the development of programs as well as the development of circuits. Actu
ally, these activities turned out to be -in essence- very similar.

8 References

[0] Birk.hoff. G.
Lattice Theory.
American Mathematical Society. Providence. 1967.
(AMS Colloquium Publications: vol. 25).

[1] Brookes. S.D. and A.W. Roscoe
An Improved Failures Model for Communicating Processes.
Seminar on Concurrency; ed. S.D. Brookes. A.W. Roscoe. G. Winskel.
Springer. Berlin. 1985.
(Lecture Notes in Computer Science: 197); pp. 281-305.

[2] Dijkstra. Edsger W.
Cooperating Sequential Processes.
Programming Languages; ed. F. Genuys.
Academic Press. New York, 1968; pp. 43-112.

[3] Dijkstra. Edsger W.
A Discipline of Programming.
Prentice-Hall. New York. 1976.

[4] Dijkstra. Edsger W.
Lecture Notes "Predicate transformers". (Draft).
Eindhoven University of Technology. 1982.
(EWD 835).

[5] Gilbert. William J.
Modern Algebra with Applications.
John Wiley & Sons. New York. 1976.

[6] Ginsburg. Seymour
The Mathematical Theory of Context-free Languages.
Me Graw-Hill. New York. 1966.

[7] Hoare. C.A.R.
Communicating Sequential Processes.
Communications of the ACM 21 (1978); pp. 666-677.

162

[8] Hoare. C.A.R.
Communicating Sequential Processes.
Prentice Hall. 1\"ew York, 1985.

[9] Hopcroft. J.E. and J.D. Ullman
Formal Languages and their Relation to Automata.
Addison-Wesley, New York. 1969.

[10] Konig. D.
Theorie der endlichen und unendlichen Graphen.
Chelsea. New York, 1950.

[11] Kuijpers, Evert P.J.
Recursive Components.
Eindhoven University of Technology, 1985.
(Master's Thesis).

[12] Martin, Alain J.
The Design of a Self-Timed Circuit for Distributed Mutual Exclusion.
Proceedings 1985 Chapel Hill Conference on VLSI: ed H. Fuchs.
Computer Science Press, Rockville. 1985; pp. 247-260.

[13] Martin. Alain J.
The Probe: an Addition to Communication Primitives.
Information Processing Letters 20 (1985); pp. 125-130.

[14] Mazurkiewicz, A.
Concurrent Program Schemes and Their Interpretation.
Report DAIMI. PB-78.
Aarhus University, 1977.

[15] Miller, R.E.
Switching Theory. Vol2: Sequential Circuits and Machines: chapter 10.
John Wiley & Sons. New York, 1965.

[16] Milner, Robin
A Calculus of Communicating Systems.
Springer. Berlin, 1980.
(Lecture Notes in Computer Science: 92).

163

164 References

[17] Molnar. C.E. , T.P. Fang and F.U. Rosenberger
Synthesis of Delay-Insensitive Modules.
Proceedings 1985 Chapel Hill Conference on VLSI; ed. H.Fuchs.
Computer Science Press. Rockville. 1985; pp. 67-86.

[18] Rem. Martin
Concurrent Computations and VLSI Circuits.
Control Flow and Data Flow: Concepts of Distributed Programming;
ed. M. Broy.
Springer. Berlin. 1985; pp. 399-437.

[19] Snepscheut. Jan LA. van de
Trace Theory and VLSI Design.
Springer. Berlin. 1985.
(Lecture Notes in Computer Science: 200).

[20] Udding. Jan Tijmen
On recursively defined sets of traces.
Eindhoven University of Technology. 1983.
(THE Memorandum JTUOa).

[21] Udding. Jan Tijmen
Classification and composition of delay-insensitive circuits.
Ph.D.-thesis.
Eindhoven University of Technology. 1984.

Index

activator 150
active 146
alphabet 4
And-element 147
Arbiter-element 150

bag 88
blend 22
bounded bag 88

C-element 147
CB-rule 96
chain 40

- ascending 40
descending 40

command 53
component 53
Composition Rule 91
compound symbol 59
concatenation 4
conjunctive 40
context-free grammar 97
continuous 41
-upward 41
-downward 41

CSP-process 131
CW-rule 90

deadlock 110
deadlockfree 110
delay-insensitive 145

determinism 134
deterministic 135
disjunctive 40
divergence 114
divergences 131

165

equality 62

external event 114
external symbol 22

failure set 131
:fixpoint 51. 77
four-phase handshaking 146

greatest lower bound 40
greatest upper bound 40

H 132
handshaking expansion 146

inclusion 12
independence 11 7
infinite chatter 114
internal event 114
internal fork 149
internal symbol 22
intersection 12
Inverter 147

K 132
Knaster-Tarski 50

lattice 40
complete 40

length 5
Lift Theorem 8
livelock 115
livelockfree 115
lock 104
lockfree 104

166

monotonic 40

non-terminating process 103
nondeterminism 114
nonrecursive component 60

passivator 152
passive 146
prefix 5
prefix closure 5. 11
prefix-closed 5, 11
process 11
projection 5, 12

recursive component 70
refusal set 131
regular 35
RUN(A) 13

SEM1 13
SEM1 (A .B) 31
SEM(A .B) 48

semaphore 11
simple symbol 59
sorter 93
specification 85
state 34
-final 35
- initial 35

state graph 35
- deterministic 35
-minimal 35
- nondeterministic 35

STOP 13
STOP(A) 13
subcomponent 59
successor set 103
symbol 4
SYNC 26
SYNCp,q(A .B) 26

T(A) 43
trace 4

trace set 4
trace structure 11
trace thus far generated 11, 132
transparent 117
- component 140

unbounded bag 88
unbounded sorter 88
union 12
universally conjunctive 41
-over non-empty sets 41

universally disjunctive 41
over non-empty sets 41

weave 14

Samenvatting

Dit proefscbrift bestaat uit twee delen. In het eerste deel (de hoofdstukken 1. 2 en 3)
wordt een formalisme behandeld. In bet tweede deel (de hoofdstukken 4. 5 en 6) wordt
de ontwikkelde theorie toegepast.

De tbeorie. bekend onder de naam tracetheorie, Ievert een model voor bet gedrag van een
aantal samenwerkende mechanismen die gelijktijdig actief zijn. Een mechanisme wordt
gekarakteriseerd door een paar:

de verzameling van mogelijke gebeurtenissen waarbij bet mechanisme betrokken is en

de verzameling van mogelijke opeenvolgingen van dergelijke gebeurtenissen.

Gebeurtenissen worden voorgesteld door symbolen en de mogelijke opeenvolgingen worden
voorgesteld door symboolrijen (traces). Een aldus verkregen paar beet een proces. Op de
collectie van processen worden relaties en operaties gedetlnieerd. Deze komen overeen met
relaties tussen de corresponderende mechanismen en met. bijvoorbeeld, bet samenstellen
van mechanismen.

De verzameling van processen vormt een volledig tralie. Eigenschappen van de operaties
worden bescbreven in termen van tralietheorie.

Een proces kan worden weergegeven met een programmatekst. Een programma is niet
aileen een compacte beschrijving van een proces maar geeft ook een idee over mogelijke
implementaties. De afgeleide tralie-eigenscbappen vormen een basis voor de bebandeling
van recursieve programma· s.
Er worden regels gegeven waarmee bet afleiden van een programma uit een gegeven
specificatie wordt vergemakkelijkt. Als voorbeeld laten wij zien hoe een programma kan
worden afgeleid dat past bij een gegeven contextvrije grammatica.

In boofdstuk 4 komt bet begrip deadlock aan de orde. Deadlock wordt gedefinieerd inter
men van processen.

Het samenstellen van een aantal processen Ievert een nieuw proces. Bij dit proces onder
scheiden we twee soorten symbolen:

interne symbolen die de onderlinge samenwerking van de delen betreffen

externe symbolen die de communicatie met de buitenwereld betreffen.

De uiteindelijke bescbrijving van een mecbanisme bevat geen informatie over de
wisselwerking tussen de delen waaruit bet mecbanisme is opgebouwd. Deze beschrijving
wordt verkregen door bet proces te projecteren op de collectie externe symbolen. Bij pro
jectie kan (intern) nondeterminisme ontstaan. In boofdstuk 5 wordt bet begrip trans
parantie gedefinieerd. Intern nondeterminisme treedt niet op indien men zicb beperkt tot
projectie op transparante verzamelingen. Het begrip livelock speelt bierbij een verrassende

167

168

rol. In de afwezigheid van livelock is transparantie gesloten onder doorsnede.

In hoofdstuk 5 wordt tevens aandacht geschonken aan de relatie tussen processen in ons
formalisme en processen zoals deze zijn gedefinieerd door C.A.R. Hoare.

In hoofdstuk 6 beschouwen we implementaties. Deze zijn gebaseerd op een zogeheten 'four
phase handshaking protocol". Symbolen zijn actief dan wel passief. Actieve symbolen
worden geinitieerd door bet mechanisme en passieve symbolen worden geYnitieerd door de
omgeving. Het omzetten van actief naar passief en vice versa is relatief eenvoudig.
Activeren van een passief symbool kan leiden tot nondeterminisme.
De schakelingen die worden afgeleid zijn vertragingsongevoelig in de zin dat hun gedrag
niet afhangt van vertragingen in draden en schakelelementen.

Curriculum vitae

Op 3 september 1947 werd ik geboren te Eindhoven. Na bet behalen van de diploma·s
MULG-B en HBS-B volgde de militaire dienst.

In 1969 begon de studie Wis - en Natuurkunde aan de universiteit van Utrecht. Het afstu
deren vond plaats onder Ieiding van dr. J.D. Stegeman metals onderwerp Fouriertransfor
maties op locaal compacte groepen. In 1973 studeerde ik met lof af.

Na deze studie ben ik tot 1976 als wetenschappelijk medewerker werkzaam geweest bij de
N.V. Philips. metals taak het ontwikkelen en onderhouden van IBM systeemsoftware. In
deze periode ontstond mijn belangstelling voor formele methoden als gereedschap bij het
programmeren.

Van 1976 tot 1982 was ik verbonden aan het Instituut voor Hoger Beroepsonderwijs te
Eindhoven. eerst als docent wiskunde. later ook als docent informatica. Vanaf 1979 was
ik belast met de Ieiding van de afdeling Informatica van de avond-HTS. In dezelfde
periode werd samen met dr. J. van Tiel een aanvang gemaakt met de serie Voortgezette
Wiskunde.

In de tussentijd volgde ik informaticacolleges aan de Technische Hogeschool Eindhoven.
Dit resulteerde niet aileen in het behalen van de lesbevoegdheid Informatica maar ook in
een hernieuwde wetenschappelijke belangstelling voor dit vakgebied. In 1982 werd ik
benoemd tot wetenschappelijk medewerker in de vakgroep Informatica van de THE.
Sindsdien heb ik me bezig gehouden met onderzoek en onderwijs op de gebieden program
meren. didactiek van het programmeren en parallellisme. Het laatste onderzoeksgebied
heeft onder Ieiding van prof. dr. M. Rem geleid tot deze dissertatie.

169

STELLING EN

behorend bij bet proefschrift

A Formalism
for

Concurrent Processes

van

Anne Kaldewaij

Eindhoven.
6 mei 1986

1. Trace theorie is een adequaat formalisme voor bet beschrijven van parallelle pro
cessen.

?,. Met de in dit proefschrift gebruikte programmanotatie kan elke contextvrije taal
vvorden beschreven.

3. De trace structuur SEM 3(a. b) bevat Fn traces ter lengte n. vvaarbij Fn bet n de

getalvanFibonacciis: Fo= 1. F1= 1 en Fn+2=Fn+FnH·

4. Zij X een Hausdorff-ruimte en zij Y. Y ~ X. voorzien van de door X geinduceerde
topologie locaal compact. Dan geldt

Y=X ::> YisopeninX

Met behulp hiervan kan bet bevvijs van de Pontryagin dualiteitsstelling in [0] gecorri
geerd vvorden.

[0] Walter Rudin, Fourier Analysis on Groups.

Interscience Publishers. John Wiley & Sons, 1967.

5. Zij X een rij gehele getallen. Het minimum aantal stijgende deelrijen dat een partitie
van X vormt is gelijk aan de maximale lengte van enige niet-stijgende deelrij van X.

Lit. Anne Kaldevvaij. On the decomposition of sequences into ascending subse
quences.

in Information Processing Letters, 21 (1985), p 69.

6. Intern nondeterminisme zoals beschreven in [1]. speelt bij bet implementeren van
processen een geringe rol.

[1] Hoare C.A.R .. Communicating Sequential Processes.

7. Naast de zeven beperkt transponeerbare reeksen (les sept modes transpositiOns
limitees) van de componist Olivier Messiaen bestaan er. afgezien van de chromatische
reeks. nog precies drie, te weten

C-Es-E-G-As-8-C

C-Es F-Fis A-BC

C-0-F-Fis-Gis-B-C

Lit. Olivier Messiaen. Techniques de mon langage musical.

Alphonse Leduc. Paris

Sietze Kaldewaij. Analyse van Dieu parmi rwus.

Utrechts Conservatorium. Mariaplaats 28 Utrecht. 1982.

8. Bij bet informaticaonderwijs op middelbare scholen en in bet hoger beroepsonderwijs
dient men zich meer toe te leggen op bet overdragen van inzichten. Apparatuur speelt
daarbij een verwaarloosbare rol.

9. Het beoefenen van informatica vereist een groot abstractievermogen. Dit dient tot
uiting te komen in de eerstejaars curricula van de universitaire informatica
opleidingen.

10. Bij bet huidige wetenschapsbeleid trooste men zich met bet gezegde

'sterke snoei geeft grote bloei'.

