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Subset Selection: Robustness and Imprecise Selection

Paul van der Laan
Eindhoven University of Technology
Department of Mathematics and Computing Science

Eindhoven, The Netherlands

“Although this may seem a paradox, all exact science is dominated by
the idea of approximation.”

Bertrand Russell

“If you think that Subset Selection is of little importance, think again!”

Summary

Assume k (integer k£ > 2) independent populations are given. The associated independent
random variables have distributions with an unknown location parameter. The goal is to
select the best population, this is the population with largest value of the location parame-
ter. First, this paper reviews some distributional and robustness results for Subset Selection
from Normal populations. Spccial attention is given to the probability of correct selection.
Secondly, some distributional results are given. Explicit expressions for expectation and vari-
ance of the subset size using Subset Selection are presented. Finally, some remarks are made
concerning a generalized selection goal using Subset Selection. Instead of selecting precisely
the best population, an imprecise selection can be applied, that is selection of a population
in the neighbourhood of the best population. The generalized Subset Selection goal is to
select a non-empty subset of populations that contains at least one almost best population
with a certain confidence level. For a collection of populations with an unknown location
parameter an almost best population, or more accurately an e-best population, is defined as
a population with location parameter on a distance less than or equal to ¢ (with ¢ > 0) from
the maximal value of the location parameter for all populations. The selection of an almost
best population is compared with the selection of the best one from an application point of
view. Some efficiency results are presented.



1. Introduction

In practice we are often confronted with the problem of selection. For, a general goal in
many experiments is to select the best treatment out of several treatments. Each treatment
is described by a qualitative factor characterized by a parameter value. Often this parameter
will be a location parameter. Especially in the field of testing varieties statistical selection
is an essential feature. For most kinds of selection problems a quantitative methodology
of selection is needed. The usual statistical approach is to test the so-called homogeneity
hypothesis. This homogeneity hypothesis states that all parameter values are equal to each
other. In this context two remarks can be made. First, in general the treatments will differ
so that a consistent test will reject the null hypothesis if the numbers of observations are
large enough. Secondly, after rejecting the homogeneity hypothesis the statistical conclusion
is that the treatments differ but not which treatment is the best. Multiple comparisons and
simultaneous confidence intervals can give additional information.

Let us consider the problem of selecting the best variety from a number k (integer k > 2)
of varieties. The best variety is defined as the variety with the largest value of the location
parameter. If there are more than one contenders for the best because there are ties, it is
assumed for continuity reasons and for computational convenience that one of these is ap-
propriately tagged. We assume that the selection is based on the average yield per plot of
constant size.

Furtheron, we assume that the experiments design is a complete randomized design with n
plots for each variety or as a randomized complete block design with k plots per block and
the plots randomly associated to the & varieties. Statistical selection procedures can possibly
help us to improve our selection. A short description of the basic approaches will be given in
section 2.

There are many goals to consider and we shall do that in section 3. The advantages and
disadvantages of Subset Selection will also be mentioned in section 3, together with remarks
on the meaning of certain characteristics of this statistical selection procedure. Some exact
results concerning the expectation and variance of the subset size are presented in section 4.
In section 5 some recent results from literature concerning robustness of selection procedures
are presented.

In variety testing it is important that selection of the best variety can be guaranteed in some
sense or another. Otherwise, we may turn around in a circle during a large period of several
years. The principle of a statistical procedure is that the probability of an error, an incorrect
selection, is under control. In a selection problem the probability of correct selection is from
a practical point of view as important as the power of a test. To be sure, or almost sure,
that we don’t miss the best variety, the probability of correct selection of the best variety has
to be taken into account. However, from a practical point of view, an experimenter may be
satisfied with an almost best variety instead of the best variety. But also in that situation
we want to have a confidence requirement that the best or an almost best variety will be

selected. We return to this point in section 6. Finally, we conclude with some comments in
section 7.

2. Basic approaches in statistical selection
The main approaches in handling with selection of the best population (variety or treat-

ment) are the Subset Selection approach and the Indifference Zone approach (GUPTA and
PANCHAPAKESAN (1979)). These two basic approaches suggested by GUPTA (1956, 1965)



and BECHHOFER (1954), respectivily, will be concisely considered.

Assume k(k > 2) independent Normal random variables X3, ..., Xj are given. These random
variables are associated with the k populations indicated by m1,...,m%, and may be sample
means. The assumed Normal distributions have common known variance o and unknown
means fi1,..., 4x. The collection of u’s is denoted by the vector p = (f1, ..., tk)-

The goal is to select the best population, that is the population with mean ppg, where
pu) < .- < pii) denote the ordered values of py, ..., k-

The Subset Selection procedure selects a subset, non-empty and as small as possible, with the
probability requirement that the probability of a Correct Selection CS is at least P* (with
1/k < P* < 1). A CS means in this context that the best population is an element of the
selected subset. The selection procedure runs as follows. Select population 7; in the subset

if and only if X; > 112?2(ka -d (i=1,..,k).

The selection constant d must be determined in such a way that P(CS) > P* for all possible
parameter configurations. Tables with values of the selection constant d can be found in
GIBBONS, OLKIN and SOBEL (1977) and in BUTLER and BUTLER (1987).

The second approach is the so-called Indifference Zone approach. Using the Indifference Zone
approach the goal is to indicate the best population. The procedure is to select that pop-
ulation that resulted in the largest sample value. The probability requirement is that the
probability of a CS is at least P*, whenever the best population is at least §*(> 0) away from
the second best. Using the Indifference Zone approach CS means that the best population
produced the largest sample value and consequently it is also indicated as the best popu-
lation. The minimal probability P* can only be guaranteed if the common size n of the &
samples, on which the response variables are based, is large enough. Tables for 7 = §*n/2/o
can be found in GIBBONS, OLKIN and SOBEL (1977) and BUTLER and BUTLER (1987).
Notice that n can be computed as (7o /§*)2. With the chosen minimal n it can be guaranteed
with minimal probability P* that the selected (indicated) variety is less than §* away from
the best. From this it follows that the Indifference Zone approach is important for the design
phase.

The Least Favourable Configuration LFC (all 4’s are equal to each other) for Subset Selection
is easier to handle with than the LFC for the Indifference Zone approach. It is also possible
to consider two characteristics, one primary and one secondary in importance, and to choose
from the subset the one which is satisfactory in terms of the secondary characteristic.

In practice the Subset Selection approach can be used as a screening procedure. Even when
the ultimate goal of the experimenter is to choose the best, the approach can be applied to
eliminate inferior varieties.

Some introductory remarks on selection procedures and some literature can be found in van
der LAAN (1987). In this paper we shall concentrate on the Subset Selection approach.

3. Goals

In this section we shall in illustration describe a number of goals which may be relevant
from a practical point of view in the field of variety testing. We mention the following
goals:

i. Selection of the best variety.

ii. Selection of the t best varieties (with 2 < ¢t < k). We can do this with or without ordering
of the varieties. In the first case we indicate a variety as the best one, another variety
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as the second best, etc. In the second case we produce a collection of t varieties without
ranking them.

iii. Selection of a subset of varieties that will contain at least the best variety.

iv. Selection of a subset of varieties that will contain at least the ¢t (with 2 < t < k) best
varieties.

v. Selection of a subset that contains at least one almost best variety.

In the literature different generalizations and modifications have been proposed. We refer to
GUPTA and PANCHAPAKESAN (1979) for references.

An interesting result has been achieved by HSU (1981, 1984). Selecting a subset with con-
fidence P* for containing the best, he also gives simultaneously confidence intervals for the
differences of the varieties compared with the best one. He integrated both approaches, the
Indifference Zone approach and the Subset Selection approach. His method is known as
"Multiple Comparisons with the Best’. His method restricts the comparisons to the following
differences pix) — g1, ..., fjp] — ftk- Let X; be the sample mean of n observations (i = 1,...,k)

and suppose that o2 is unknown. Let s* be the best estimator of 02 based on d degrees of
freedom. Define

C:={Vi: min (X: — X; + hs(2/n)/?) > 0}
1
and
D; := max|0, I?;?X (Xi— Xi+ 113(2/72)1/2)] )
]

The constant h satisfies

[ [ #7G+2/masicw) = b,

w=0 z=-—c0

where G(w) is the distribution function of w = s/¢, ®(2) is the standard Normal cumulative
distribution function (cdf), and P* is the desired confidence. Values of the constant h are
given in table A4 of GIBBONS, OLKIN and SOBEL (1977). HSU (1981) proved that for all
configurations of the p’s the following holds

P[Vxy € C and pppy—p; < D; forall i) > P* .

Simultaneously with the selection also a confidence statement can been made, and both
conclusions with simultaneous confidence level P*. In van der LAAN and VERDOOREN
(1990) an application in the field of variety testing has been given.



4. The Subset Size

Subset selection is a flexible form of selection, because the number of replications has not to
be determined in advance.

Also after the experiment has been carried out, the selection can be executed. The influence
of the number of replications can be conducted from the (expected) size of the subset. Hence,
the expected size of the subset can be considered as a crucial quantity. A relatively large
subset means, apart from random fluctuations, that the number of replications is small or
the expected yields of the varieties are close together, or both.

Indicating the subset size with S the following theorems for populations with general cdf F
can be proved.

Theorem 4.1. The distribution of S is given by

s °o k
Ps=9= ¥ ¥ [ II Fle-ug+m-9

71<..<i, r=1 'y J=e+l

II {FC = g+ ep)-
is1
2 T

N

—F(w - ;lv[,-j] + i, — d)}dF(IE) ,

for s = 1,...;k.

Corollary 4.1. The distribution of S under the Least Favourable Configuration LFC is
P(S = | LFC) = ( b ) ( s ) /{F(z) — Flz = )} 1F**(z — d) dF(z) .
-
Theorem 4.2. For the expected subset size E(S|LFC) one finds
oo
E(S|LFC) = k / F*Y(z 4 d) dF(z)
and for the variance of S under the LFC

var{S|LFC} = k(2k - 1) / F*(z + d) dF(z)—

—2k(k — 1) / F*¥(z + d)F(z) dF(z)-



In the tables 4.1 and 4.2 some results are presented for standard Normal distributions.

—k2] / F*Y(2 + d) dF(z)]? .

-0

Table 4.1. E{S|LFC} for standard Normal distributions for some values of k and d.
d
k 1 1.5 2 2.5 3 3.5 4 4.5 5
2 1.52 1.71 1.84 1.92 1.97 1.99 2.00 2.00 2.00
5 2.47 3.26 3.94 4,43 4.73 4.89 4.96 4.99 5.00
10 3.41 5.09 6.74 8.09 9.02 9.57 9.83 9.94 9.98
25 4.99 8.68 13.05 17.28 20.66 22.89 24.12 24.68 24.90
Table 4.2. Standard deviation of S under the LFC for standard Normal distributions
for some values of k£ and d.
d
k 1 1.5 2 2.5 3 3.5 4 4.5 5
2 .500 453 364 267 181 115 .068 .038 .020
5 1.14 1.20 1.08 .848 .595 381 225  .125 .066
10 1.78 214 212 1.80 1.32 863 .511 .281 .145
25 291 4.13 4.73 4.50 3.62 2.51 1.52 .083 .042
Theorem 4.3. If
m -
Crm(a) = (af(a= 1)) {lna =3 (1~ 1/a)/i}
=1

and

i(l -1/a)/i=0 for m<0,

=1
then for the Logistic distribution the following holds
E(S|LFC) = k1 - (k - 1)/aCk-1(a)]

and




var(S|LFC) = k(k — 1){k/aCr_1(a) + (k — 2)/a}{1 - (k — 1)/aCi_1(a)} ,

where a = exp(8d) (> 1) with 8 the scale parameter of the Logistic distribution.
5. Robustness of Subset Selection

First it is possible to examine the robustness of the lower bound for the P(CS) against
departures from the assumption of a common known standard deviation oo. This, in fact,
was done by DRIESSEN, van der LAAN and van PUTTEN (1990), who considered Normal
populations and several values of P*, namely .75, .90, .95 and .99, respectively. This investi-
gation has been executed by varying the standard deviations in the interval I = [@~ 10y, a0y),
with a > 1, and determining the minimum value of the corresponding lower bound of P(CS).
The vector of standard deviations (o4, ..., 0% ), where o; is the standard deviation of popula-
tion m;(i = 1,...,k), is denoted by 0.

The following selection rule has been used:

7i(t =1,...,k) in subset iff X;> max X;- dagn'1/2 ,
15k

where the selection constant d has to be chosen such that the P*-requirement has been met.
For the LFC the following holds

k-1
Pyrc[CSlo] = / T1 (oxoy + doooy )o(y) dy -
=1

DRIESSEN et al. (1990) define the loss L as a function of k, P*, a and o0p by the difference

between P* and the minimum of the P(CS), where the elements of the vector o are varying
in I. It follows that

ope k=1 -1 o’
L=P a-IPgl?gl / " a7 d" + sy)p(y) dy

with ¢(-) the standard Normal density. From this it follows that L is independent of g¢. As a
matter of fact a discretization is necessary. It appears that there is a serious lack of robustness
in the sense that the actual lower bound of the P(C'S) can be considerably smaller than the
pretended lower bound P* of the probability of correct selection based on the assumption of
a common known variance for the chosen values of P*. This lack of robustness is substantial
for large values of k and for large values of a. But also for small values of k and o the
experimenter must not neglect in general the loss due to the departure from the assumption
of equal variances. For P* = 0.90, £ = 100 and a = 1.5 the loss is 0.362. For the same value
of k and a = 2.0 the loss is very large, namely 0.776. But also for small values of k the loss
is essential, for instance for k = 5 the loss for @ = 1.5 is already 0.180.

For P* = 0.95 and k = 10 the loss runs from 0.0 for a = 1, via (all the time approximately)
0.38 for @ = 2 and 0.66 for a = 3, to 0.8 for @ = 4. For k = 3 the numbers are 0.0, 0.22, 0.35
and 0.42, respectivily. For k = 100 these numbers are 0.0, 0.7, 1.0 and 1.0, respectivily.

For P* = 0.90 and a = 2 table 5.1 gives an illustration of the loss for different values of k.



Table 5.1. The loss L for different values of k (P* = 0.90 and a = 2).

k 2 3 5 10 25 100
L1016 0.22 031 040 0.56 0.78

Secondly, it is also possible to investigate the robustness of the Subset Selection procedure
against deviations from the assumption of Normality. One can study the concequences of de-
viations in that sense that instead of Normality the observations are Logistically distributed,
all the time standardized distributions. The Logistic distribution is symmetric and has a
shape similar to that of the Normal distribution. The tails of the Logistic density are heavier
than those of the Normal density.

In order to study robustness of the P(CS) the value of P* is compared with the real lower
bound, thus under the LFC, based under the assumption of Logistically distributed observa-
tions with known scale parameter [, thus with density

f(e) = B exp(~B(z — u)){1 + exp(~B(z - )} ? .

For standard Logistic observations the P(CS|LFC) can be determined using results in van
der LAAN (1989). One finds

P(CS|LFC) =1~ (k - 1)a~ Cy_y(a)

1

where a = exp(73~2d) with d the selection constant of the selection rule defined in section 2.
Exact values of the actual minimal probability for some values of P*-Normal, when in reality
the observations are standard Logistically distributed are given in table 5.2.

Table 5.2. Minimal probability of CS when in reality the Logistic distribution is valid,
for some values of P*.

P*-Normal = 0.90
k 2 3 4 5 6 7 10
min. P | .906 .905 .902 .900 .898 .896 .890

P*-Normal = 0.95
k 2 3 4 3 6 7 10
min P | 951 .949 .946 .944 .943 .941 .937

For the situation that the random variables are the means of n > 1 independent and standard
Logistically distributed observations simulations have been carried out (van der LAAN and
van PUTTEN (1990)). Having the Central Limit Theorem in mind it is not surprising that



for large values of n the results are generally in still better agreement with Normal results.
Some results are presented in table 5.3.

Table 5.3. Some simulation results for the Logistic distribution.

P*-Normal = 0.90 and n = 10
k 2 3 4 5 6 7 10
min P | .899 .901 .893 .892 .901 .899 .88&9

P*-Normal = 0.95 and » = 10
k 2 3 4 5 6 7 10
min P | .952 .949 .946 .952 .949 .950 .943

Finally, it is possible to make a comparison between the selection constants for standard
Normal populations and those for standard Logistic populations. In table 5.4 some results
are presented.

Table 5.4. A comparison between Normal and Logistic results for P* = 0.90 and some
values of k.

k  Normal Logistic Rel. error

2| 1.8124 | 1.7581 -0.030
3 2.2302 | 2.1906 -0.018
4| 24516 | 2.4319 -0.008
5 2.5997 | 2.5995 -0.000
6| 2.7100 | 2.7280 0.007
T 27972 2.8322 0.013
8| 2.8691| 2.9198 0.018
9| 2.9301 | 2.9954 0.022
10 | 2.9829 | 3.0619 0.026
25| 3.3911 | 3.6104 0.065
50 | 3.6584 | 4.0063 0.095

The differences between the Normal and Logistical results are for k < 10 rather small. Only
for the cases k = 25 and k = 50 the difference is not so small. The difference becomes larger
with increasing k.



6. Imprecise Subset Selection

The requirement to select precisely the best variety may be a strong one if the best variety
is not far away from the other varieties. In practice, objections against selection procedures
are more or less concentrated on large subsets using the subset selection approach. In the
situation sketched before it is clear that with a large P* one has to pay automatically with
large expected subsets. Anotler possibility is to increase the common number of observations
on which X is based. However, using the subset selection approach the common sample size
is generally assumed fixed in practice. A possible way out is a so-called impricise subset
selection. .

Let us assume that the best variety and the second best are near each other. More accurately:
the average yields are close together, say on a distance less than ¢, where ¢ > 0, but relatively
small. In such a situation it is often not of pactical interest whether one selects the best one
or the next best. Not every difference in yield is important. In other words we are content
with a more or less imprecise selection. In many real world problems it is of interest to select
the best or an almost best variety. This approach leads to the consideration that one may
generalize the selection goal to a selection of an almost best variety. A consequence of this
generalization is that the least favourable configuration becomes more difficult. This is not
an essential disadvantage. The goal is to select a small but nonempty subset such that the
selected subset will contain the best variety or an almost best one with confidence P*. In
general, the generalization of selecting the best to selecting an almost best variety will result
in subsets of smaller expected size.

Some aspects of selecting an almost best population have been considered in van der LAAN
(1991a, 1991b, 1992a).

Definition 6.1. A treatment T; is called an e-best treatment if and only if u; > Bk — &
with £ > 0.

From Def. 6.1 it follows that the best treatment is also e-best. Thus for each £ > 0 there
always exists at least one e-best treatment. If ¢ = 0, then there exists only one £-best treat-
ment, namely the best treatment, assuming there are no ties.

Definition 6.2. A correct selection CS is a selection of a subset C which contains at least
one e-best treatment.

We use the following selection rule R for determining a subset C. A treatment Ti(i = 1,...,k)

is in the subset C if and only if X; > 1121:%c X; — ¢, were the selection constant ¢ > 0 has to
J

be determined such that P(CS) > P*. The best treatment is denoted by Tixy.
It can be proved that

inf pP(CS) = P(T(k) € CI“[I] = Pk~1] = Hik) — 5) .

From this it follows that for Normal distributions with common scale parameter o the selec-
tion constant ¢ is equal to

c=do—¢,

where d can be found in BUTLER and BUTLER (1987). Without loss of generality we



assume that ¢ = 1. In table 6.1 a comparison is made between the P* value for subset
selection of an e-best treatment and the probability of correct selection of the best treatment
for different values of k, ¢ and P*. The computations are based on interpolations so are of
limited accuracy. The efficiency of both procedures is measured by the relative gain G, in
minimal probability of correct selection. G, is defined as the gain in minimal probability of
correct selection for an e-best treatment relative to that of a best treatment.

Table 6.1. The probability of correct selection of the best treatment using the selection
constant for selection of an e-best treatment, and the relative gain G, (with

P* = 0.90).
e=0.2

k | Min. Pr. | G,
for best | in %
2 0.868 3.7
3 0.865 4.0
4 0.864 4.2
5 0.863 4.3
6 0.863 4.3
7 0.862 4.4
8 0.862 4.4
9 0.862 4.4
10 0.862 4.4
25 0.860 4.7
50 0.859 4.8
100 0.859 4.8
500 0.858 4.9
1000 0.858 4.9
2000 0.857 | 5.0

10



e=0.5

k min. Pr. | G,
for best | in %
2 0.820 9.8
3 0.813 | 10.7

4 0.810  11.1
5 0.809 | 11.2
6 0.807 | 11.5
7 0.806 | 11.7
8 0.805| 11.8
9 0.805| 11.8
10 0.804 | 11.9
25 0.801 | 124
50 0.799 ) 12.6
100 0.797 | 129
500 0.795 | 13.2
1000 0.794 | 134
2000 0.793 | 13.5

For € = 1 one finds for k = 10 a minimal probability of 0.655 so G, = 37%.
Some results for G, are summarized in table 6.2 for different values of P*.

Table 6.2. The relative gain G, for different values of P*.

k=10,e =02
P~ 0.80 090 095 0.975 0.99 0.995 0.999
min P 0.739 0.862 0.927 0.962 0.983 0.9917 0.9977

in % 8.3 4.4 2.5 1.4 0.7 0.33 0.13

k=10,e=05
P* 0.80 0.90 0.95 0.975 0.99 0.995 0.999
min P 0.648 0.804 0.893 0.942 0.973 0.9868 0.9959

G,
in % 23.5 119 64 3.5 1.7 0.83 0.31

The relative gain G, becomes smaller with increasing P* for the cases considered. For fixed
e(e > 0) we can write G, = G,(c) as

11



+o0

/ FFYz 4 cte) f(z) do
-oo+°°

/ P*1(z + ) f(e) de

-0

Gr(e) = -1,

where ¢ is the selection constant for subset selection of an e-best treatment meeting the
P*-requirement. One has ¢ = ¢(P*), an increasing function of P*, and

liTm G.(c)=0.

Definition 6.3. A density is strongly unimodal if and only if f(z) is log-concave (that is log
f(z) is a concave function).

(DHARMADHKARI and JOAG-DEV (1988)).

The following theorem holds.

Theorem 6.1. If f(z) is strongly unimodal, then G,(c) is a decreasing function of P*.

Proof:
We notice that the quantity

+co

Gle) := / F*Y(z +¢) f(z) da

-0

can be written as

G(c) = Plmax (X3, X3,..., X% )~ X1 < ¢]

= Fk14 F(c)

where * means the convolution. F and hence (cf. van der LAAN (1970)) F*-1 are strongly
unimodal. Since strong unimodality is preserved under convolution (DHARMADHKARI and
JOAG-DEV (1988), G(c) has a log-concave density. It follows (KARLIN 1968)) that G itself
is log-concave. From this it follows that log G(c + &) — G(¢) is a decreasing function of ¢, so
G.(c) is a decreasing function of c.

7. Concluding remarks

During decades of years we are used to apply statistical tests, like analysis of varince tests, to
problems that are real selection problems. Especially in the field of variety testing many prob-
lems are in fact selection problems. We think it is important to investigate the possibilities
to use statistical selection procedures for certain problems in variety testing. The statement
of JOHN TUKEY ‘An approximate answer to the right problem is worth a good deal more
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than an exact answer to an approximate problem’ illustrates that an exact formulation as
a selection problem is worthwile. Not for all designs of experiments this problem has been
solved.

In this paper we have tried to discuss some aspects of selection which are of interest from a
practical point of view.

From the presented results it can be concluded that subset selection for Normal populations
is not very robust against deviations of a common variance. It seems that small deviations
from the Normal shape are not of great influence on the selection characteristics. The results
from Logistic populations can be considered as an indication. Selection of an almost best
population is worthwile to be considered in practice. In any case, subset selection remains
an important tool in the statistician’s tool bag.
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