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Depth map calculation for a variable number of moving
objects using Markov sequential object processes

M.N.M. van Lieshout

CWI/Eurandom
PO Bozx 4079, 1009 AB Amsterdam, The Netherlands

Abstract: We advocate the use of Markov sequential object processes for tracking a variable
number of moving objects through a video frame with a view towards depth map calculation.
A regression model based on a sequential object process is related to the Hough transform;
regularisation terms are incorporated to control within and between frame object interac-
tions. We construct a Markov chain Monte Carlo method for finding the optimal tracks and

associated depth maps, and illustrate the approach by a sport sequence.

1 Introduction

1.1 Motivation

Tracking moving objects is the dual task of detecting the objects in a video sequence and
following their movements throughout the sequence. Thus, a tracking algorithm must decide
whether there are any objects of a specified kind in each of the image frames; if so, it
determines the number of objects, their locations, shapes, sizes and spatial relationships
within each frame, as well as their movements across frames. In other words, for each object
a record has to be kept of the frame in which it is first seen in the observation window, its
trajectory over time, and possibly the frame in which the object is last observed.

Object tracking is important, as motion is a prime source of semantic information. Ap-
plications include monitoring and surveillance, robotics, and biomedical image analysis. Our
motivation comes from the need to transform plentiful 2D content to a format suitable for
display on a 3D-TV in light of the dearth of ‘true’ 3D content. To do so, our goal is to infer
a depth map. Indeed, when two objects pass each other, their partial order relation becomes
apparent, and can be propagated over frames. It is interesting to note that the occlusion that
is often claimed to hinder higher order vision tasks is actually a great help in this context.
We use the set of partial depth order relations between object pairs to determine this depth
map. This depth map together with the original (2D) video may be viewed on a Philips 3D
display. Such a display takes video and the associated depth map and creates in real-time 9
views enabling glasses free 3D-TV [www.philips.com/3DSolutions].

Motion tracking is a complex task, and the classical approach is to tackle easier subprob-
lems [5, 24, 25]. In an initialisation phase, the number of objects to be followed is decided
upon, and their positions and velocities are measured. To deal with measurement noise, a
set of equations is derived for the movement of an object from one frame to the next. These
in turn form the basis for a Kalman or data-association filtering phase that outputs cleaned,
more robust object coordinates and relates these to the measurements [3, 11]. Note though



that the Kalman filter can be proved to be optimal only for the prediction of the unobserved
state of a linear system under Gaussian noise, a condition that rarely holds for features ex-
tracted from video data. For this reason, particle filters [6] were proposed which use a Monte
Carlo approximation to the posterior probability distribution. However, the approach suffers
from initialisation problems when dealing with a variable number of objects [9, 25|, and is
not able to capture interactions between the objects [12].

An alternative to Gaussian modelling is to use the Hough transform [8], which translates
complex feature recognition problems into easier to handle local peak detection problems.
In tracking, the equations for the movement of an object from one frame to the next can
be expressed in terms of translation and rotation parameters, evidence for which in turn is
accumulated in Hough space [10]. The Hough transform is robust against noise and occlusion;
its main disadvantage is the need for storage, although this may be alleviated somewhat by
restriction of the parameter space.

1.2 Background and related work

The goal of this paper is to present a coherent theoretical framework for deriving partial
depth order relations between a variable number of moving objects and using these relations
to calculate a depth map. In particular, we advocate the use of (sequential) spatial object
processes, building on successful work on the application of stochastic geometric ideas to
computer vision problems.

The idea to use Markov object processes as priors in vision can be traced back to the
early 1990s [1, 2, 19, 20]. By their very nature, such models — in combination with a term for
assessing the fit of the hypothesized scene with the data image(s) — allow for an unknown,
variable number of objects, and may exhibit complicated interactions between objects. More-
over, there is no need for linearity or Gaussianity assumptions, and the posterior distribution
quantifies the uncertainty about the validity of the hypothesis. The ideas were taken up and
applied to a variety of pattern recognition problems in fields such as confocal microscopy [22]
or remote sensing [13, 23|, to name but a few. Recently, [12] proposed an object process
prior with a view towards the movements of a colony of ants. A sequential, data driven
Metropolis—Hastings algorithm was designed, and shown to be effective in dealing with in-
teractions between the ants, but less so in case of occlusion.

Being mostly concerned with objects that do not overlap or have a similar appearance,
the above-mentioned papers do not take into account the relative depths of objects in the
scene. The work [17] concerned with recognition of piles of mushrooms in a single image
frame did, but at high computational cost. Recently, [14, 15] introduced so-called Markov
sequential object processes, that seem to be well suited to deal with depth ordering and
occlusion because — in contrast to classical Markov object processes — they explicitly model
the permutation order of the objects involved. This paper is a first study into the use of
such models for depth map estimation by tracking moving objects. Its plan is as follows.
First, in Section 2, we fix notation. In Section 3 we propose a regression model based on
a sequential object process to assess the likelihood of hypothesised scenes and relate it to
the Hough transform. Section 4 introduces further regularisation terms to control within and
between frame object interactions. Section 5 is devoted to the construction of a Markov chain



Monte Carlo method for finding the optimal tracks. Section 6 gives an example concerning
a sports sequence, and the paper closes with a summary and discussion of future work.

2 Preliminaries and notation

2.1 Setup

The experimental data consist of a sequence of image frames y = (y%;i = 1,...,I), where
yt = (yft ;te€T),i=1,...,I. The ‘“mage space’ T is an arbitrary finite set of pixels, and
I € N is the number of frames. The observed value 3} at pixel t € T in frame i ranges over a
set V that is arbitrary, typically {0,1,...,255}¢ with d = 1 for grey level images and d = 3
for coloured ones.

Every image frame depicts a scene that contains objects of a certain type that we are
interested in. Here, we suppose the ‘object space’ D x L of possible objects to be a Carte-
sian product of location and object parameters. The set D is a compact subset of R? and
is used to specify the location of the object; L is an arbitrary complete separable metric
space. Typically, the specification of an object includes shape and size parameters, as well
as parameters for colour or texture. In the example to be presented later on, the objects will
be coloured ellipses, so that L = [amin, Gmax] X [bmin, bmax] X [0,7] X {0, ...,255}3. The first
two components correspond to the ellipse minor and major axis respectively, the third one to
its orientation; the three discrete components specify the ellipse’s RGB colour. Note though,
that far more general object classes are possible, for example that of all polygons in R%2. We
assume that each object x € D x L determines a region R(x) C T in image space that is
‘occupied’ by the object, and refer to it as the ‘template’ of x in T

An object configuration is simply a finite vector of objects X = (1, -, %) where z; €
DxL, j=1,---,n, n > 0. The objects may be in any spatial relation to each other; the
number of objects is variable and may be zero. A configuration X is mapped to a ‘signal’
image 6;(X), t € T. In the absence of blur and shadows,

o | O(z;) ifte€ R(xj)\ Up<;R(xk)
0:(%) '_{ b ifteT\iJR(x;) ‘ )

where 6(z) € © for some parameter space © is the object’s assumed ideal (noise-free) image
and 6y is the assumed ‘background’ signal. The example given in this work assumes a single
colour for 6(z), but more complex images with texture variation may be possible. Note that
among the objects occupying a given pixel, the one with the smallest index determines the
signal. Thus, the model explicitly accounts for occlusion, in contrast to unordered object
processes [2, 12] and in a simpler way than in [17].

2.2 Gibbsian modification of Poisson sequential object processes

The basic reference model for an object configuration is the Poisson object process. Under
this model, the sequence length is Poisson distributed, and objects are independent and
identically distributed. More formally, given a finite diffuse Borel measure p on (D, Bp),



usually Lebesgue measure, with u(D) > 0, and a Borel probability measure py, on the space
of object parameters (L, Br,), write

© e_ll'(D)
v(F)=3 /(DXL)n 1{(z1,...,20) € F}d(p x pr)(@1) ... d( x pr) (@)
n=0

defined for F' in the o-algebra on finite marked sequences generated by the product Borel
o-fields on (D x L)™ where the term for n = 0 should be read as exp [—u(D)]1{0 € F}.

Other distributions may be specified by a density with respect to v. We use the Gibbs
formulation and write g(X) o exp [—E(X)]. We refer to the exponent E(-) as a ‘Hamiltonian’
or ‘energy function’ in keeping with standard statistical physics terminology. Since infinite
valued energies are allowed, no restriction other than absolute continuity is imposed.

Our data consist of video sequences, hence we consider sequences x = (X!,... b ) dis-
tributed according to

£(x) o exp [~U ()] (2)

with respect to the I-fold product measure v/

above, with energy function U(-).

, analogously to the single image frame case

3 The regression model

Suppose © and V' are compatible in the sense that an L, distance can be defined between
the data and signal images. Then, upon observation of the video sequence y, write

I
U(x) = Zx\in(yi, o(x))? (3)

for p = 1,2 and \; > 0. This energy function describes the ‘forward problem’ of image
formation and measures the goodness of fit between the hypothesised object configurations
and the actual data sequence. In probabilistic terms, (3) amounts to assuming independent
Gaussian noise at each pixel for p = 2, and independent Laplacian (double exponential) noise
for p = 1 [2]. Clearly, where appropriate, other types of noise could be used instead.

Given observation of y, we seek ‘the’ minimiser of the energy function. Since it is a sum
of individual pixel error terms, optimisation of (3) over object configurations is equivalent
to least squares respectively least absolute deviation regression. Note however that such
a minimum may be non-existent or non-unique. Indeed, adding extra objects ‘behind’ the
signal of those closer to the camera (having a lower index) does not affect the energy function.

3.1 Markov property

Note that the potential energy required for adding object & to the X* in frame i to obtain the
vector (X', &) for signal (1) and energy (3) is given by

XY lw = 0©)P —lyi - 6ol”] - (4)

tER()\Ur R(z},)



Equation (4) clearly depends only on R(¢) and those objects R(z%) that overlap R(€). Note
that if £ were added at position k, (4) would be replaced by

S [k - 0P - Iy - 6]

teR(€)\Ui<rR(z})

As R(£)\Ui<r R(z}) = R(€) \Ul<k:R(mg’)mR(§);A0 R(z?), the difference in energy does not depend
on those R(z}) with [ < k that do not overlap R(€). The second term involves only z! with
[ > k, and then only those that overlap R(£) (otherwise, the signal at ¢ would be 6p). Note
that the role of the objects with | < k£ and [ > k is different: the first determine the set of
pixels over which to take the sum, the second ones’ signal value is used.

Since the energy is finite, the above remarks amount to saying that the single frame energy
function E defines a ‘Markov sequential object process’ [15] with respect to the overlapping
objects relation

u~v < R(u) N R(w) # 0. (5)

If u ~ v, the object v is said to be a (directed) neighbour of w.

3.2 Relation to Hough transform

Consider the track of a newly arrived object against an empty background. Write b for its
birth frame, d its death frame, u; for the object in frame ¢ = b,...,d, and (vi)f;bl for the
translation vectors between frames. The track thus parameterised will be denoted by .
Furthermore, suppose that the signal is translation invariant, so that 6;(u + A) = 6;_a(u)
for all pixels t, A with ¢t — A € T. Then, the decrease in energy is

vO) -U@ = N Y [lsh— 6ol — [y} — 6]
teR(up)

d—1
S e S [l — 6o — [t — 6]
i=b teR(u,’)

The first term corresponds to the Hough transform for detecting the initial presence of an
object by letting each pixel vote for the objects that contain it with strength |y? — 6o|P — |y? —
6 (up)|P; the second term is a recursive Hough transform voting for the movement from u; by
v; with strength

lyits, — 0olP — lyits, — O(us) [P

for each pair of pixels (¢,t + v;) with t € R(u;).

4 Regularisation

Although model (3) tells us how to deal with Hough transforms in cases of occlusion, the
optima thus obtained have undesirable features. Since the energy function depends on the
signal only, one may add any number of objects hidden behind those in an optimum solution



without affecting the optimality. Thus, we impose a repulsive Markov overlapping object
term to favour solutions with minimum numbers of objects. Also the correlation between
objects in subsequent frames is not taken into account. Hence, we add link terms favouring
objects close to similar ones in neighbouring video frames.

More formally, we shall specify the probability density of an I-variate sequential spatial
process. An alternative equivalent definition is to specify a density of a sequential marked
spatial process with marks in {1,...,I} denoting the frame in which the object lives. Write
§ for the vector of link functions, and define the energy function

I I I—-1
U(x;8y) =M Y _Vi(Y1®) + A2 Y Va(®) + Az ) Va(®, &, 541 (6)
=1 =1 =1

and weights A; > 0. The reference distribution is the product measure of unit rate Poisson
sequences for the ordered objects in each frame, and counting measure on the countable space
of link functions for the matching between frames. The function V; corresponds to (3). In
the next subsections, we shall discuss respectively V5 and V3 in more detail.

4.1 Within frame interaction

As in object recognition, in order to avoid over fitting, a natural condition for V3 is to impose
Markovianity with respect to the overlapping object relation. In this paper, we use the
Strauss prior given by

V2(X) = Bn(X) — mo(X)

where n(X) is the length of the point sequence X, and n,(X) is the number of pairs {u,v} in
X for which R(u) N R(v) # (. The parameter J is a real, v is negative. Clearly, if we add a
new object u to the sequence,

Va((X, u)) — Va(X) = B — y#{z:i € X : R(u) N R(z:) # 0}

depends only on those existing objects that overlap R(u). Therefore, such updates are ‘local’
operations.
More generally, one might use a pairwise interaction model

Va(®) =D Blak) + Y ok, )
P

k<l
for some symmetric function ¢(-,-) > 0, and intensity function 3(-). The first order mark

term could penalise colours close to the background, or favour large objects over small ones.

4.2 Propagation over frames

In the previous section, we defined inhibition between the objects in a single frame. Between
frames, we would like to have attraction, that is, temporal cohesion. Let

Smn ={(M,N,m): M C{1,..., m};N C{l,...,n};|M|=|N|}



with m,n € Ny, and # : M — N a bijection. Given an s € Sy, the coordinates are
written by M(s), N(s), and 7(s) respectively [16]. Then, for two configurations ¥, *! in
consecutive frames, and s%'*! € Sn(zi)n(x+1), take V3 of the form

V(& 2 s = N r@ R )+ Y A+ Y AETH ()

leM (shit+1) 1¢M (sii+1) I¢N (sii+1)

+ > p1 {m(s¥ (1) > m(s4 1) (k) }

xR eRYI<ke M (shitl)

+ > p1 {m (s (1) > (87 (k)]
z~vzE EXITLI<kEN (sthitl)
The positive valued function A(-) penalises unmatched objects, whereas the positive valued
function 7(-,-) is a dissimilarity measure for its arguments (symmetric of course). The pa-
rameter p forces a similar ranking in index between objects that overlap in one frame in all
other frames.
The function (7) can be thought of as a discrete Markov transition probability kernel in
frame-time for the step from X* to x*+1.

5 Metropolis—Hastings sampler

Our goal is to find the optimal configuration sequence and links, in the sense of minimising
the energy function. We shall do this by simulated annealing within the Metropolis—Hastings
framework.

More specifically, for any scene sequence x = (%!, ...,%!), matchings s = (s%*1);_y 11,
and data sequence y, our transition kernel has the following form:

P(x;s;y,F) = sz (x;8,y, F) (8)

where p; € (0, 1) is the probability of selecting move type 7 from among the m possibilities, and
P;(x, F') is the probability using move type ¢ of updating state x into a new state belonging
to the set F. Clearly, ) . p; = 1. The probability kernels P; follow the proposal/acceptance
strategy common to all Metropolis—Hastings algorithms[7, 4]. For example,

I n(X)+1

Puisiy.F) = Y pomse > | Mou€) € Fhate, i ) x )

1
¥ 1{xeF};M TESES Z/M (1 = afx, 515 ) % 1) )

is the probability kernel for insertion of a randomly chosen new object without links at a
random position in the sequence describing a randomly chosen frame. The notation af(-,-) is
used for the acceptance probabilities.



Inspired by [4, 16], we propose the following move types: birth and death of matched
or unmatched objects, reorderings and rematchings, and modification of object location and
characteristics. Below, we shall derive the Hastings ratios for these move types.

Birth and death moves are implemented in the following way. The probability of such a
move is ppg. Then, with probability 1/2, a birth is selected, with probability 1/2, a death.
Then, it is decided randomly whether the object to be born or die is linked to objects in
either of the neighbouring frames or not. In the first case, a further random choice is made
about the type of the connection.

We shall assume that the displacement kernel k is symmetric in the sense that k(u|v) =
k(v|u). Reversibility of change moves is guaranteed by the assumption that K (u|v) > 0 if and
only if K (v|u) > 0. Furthermore, we shall assume that for every pair of objects u # v, there
is a path u = wy, ..., w, = v of distinct objects such that K(w2|wi) -+ K(wn|wp—1) > 0.

Birth of singly matched object A frame is selected uniformly from the set {1,...,T}.
With probability 1/2, the object to be born is a modified version of some object in the
previous frame, with probability 1/2 of one in the next image frame.

Thus, suppose frame 7 is chosen with current configuration X* and a new object would be
matched to one in frame ¢— 1. If ¢ = 1, no transition occurs. Otherwise, try and choose one of
the points in frame ¢— 1 that is not yet matched to an object in the current frame uniformly at
random, say xZ_l, again with the proviso that if such an object cannot be found, no transition
occurs. Generate a new object according to the probability kernel k(&|zh ")d(u x u1)(€) and
insert it into the object sequence X* at a uniformly chosen position j to obtain c;(%,£). Add
the match between a:fc_l and £ to s' 1% and adjust the indices to obtain cj(sifl’i, &, xi_l) and
cj(s%+1 €), the latter provided 4 < I. Accept the move according to the Hastings ratio

n(X1) — [M(s 1)) 1
IN(s=B) \ M(s% )] + 1 k(¢ )

exp [-UX';sy) + U(x;8;y)]

where x' differs from x only in frame i with X/ = ¢;(X%,£), and s’ is identical to s except
for the matchings involving frame i which are replaced by c¢;(s* 1, ¢, 257 1) and ¢; (s, ¢)
whenever appropriate.

The move that adds an object matched to a similar one in the next image frame is
completely analogous.

Birth of doubly matched object A frame is selected uniformly from the set {1,...,I}.
If frame 1 or [ is selected, the current state remains unchanged.

Thus, suppose frame i € {2,...,I — 1} is chosen with current configuration ®. Try and
choose one of the points in frame 7—1 that is not yet matched to an object in the current frame
uniformly at random, say $f;1, and a randomly chosen object in frame ¢ + 1 that is not yet
matched to frame i either, say zi!l. If either of such objects cannot be found, no transition
occurs. Generate a new object according to the probability kernel k(€|zk *)d(u x pur,)(€) and
insert it into the object sequence X' at a uniformly chosen position j to obtain c;j (%, €). Add
the match between xf;l and ¢ to s* 1% and adjust the indices to obtain Cj(si_l’i,é,wfc*l).
Also add the match between ¢ and z:! to sb**! taking into account the updated indices in



the object sequence in frame ¢ to obtain Cj(si’i“, ¢, z¢+1). Accept the move according to the
Hastings ratio

(nE) — IM(sH))) (n(&+) = [N(s41)))
(IM(s+1) 0 N (s 19)] + 1) k(a1

exp [-U(X;sy) + U(x;8:y)]

where x’ differs from x only in frame i with X/ = ¢;(%¢,¢), and s’ is identical to s except for
the matchings involving frame i which are replaced by c;(s" 1%, ¢, 2i71) and ¢;(s%F, &, 2¥H1).

Birth of unmatched object A frame is selected uniformly from the set {1,...,I}.

Thus, suppose frame i € {1,...,I} is chosen with current configuration X*. Generate
a new object according to (u x ur)(D x L)~'d(u x ur)(€), and insert it into the object
sequence X* at a uniformly chosen position j to obtain cj (%1,¢), and adjust the indices for
the matchings involving frame i to obtain c¢;(s'~'% &) and ¢;(s%"*1,€), if they exist. Accept
the move according to the Hastings ratio

(u x pr)(D x L)
n(X) + 1 — [N (s 14) U M (s 1))

exp [—U(x’; s'sy) + U(x;s; y)]

where x' differs from x only in frame i with X/ = ¢;(X!,¢), and &' is identical to s except
for the matchings involving frame i which are replaced by c¢;(s~ 1%, ¢, a:}c_l) and c;(s"11,¢€)
whenever appropriate.

Death of singly matched object A frame is selected uniformly from the set {1,...,I}.
With probability 1/2, the object to be deleted is a modified version of some object in the
previous frame, with probability 1/2 of one in the next image frame.

Thus, suppose frame 3 is chosen with current configuration %* and the object to be deleted
should be matched to one in frame ¢ — 1. If ¢ = 1 or there are no suitably matched objects in
frame ¢, no transition occurs. Otherwise, choose one of the points in the current frame that
is matched to an object in frame ¢ — 1 uniformly at random, say :cfc_l and a:f, and delete :z:}
from %! to obtain i”&_l). Delete the match between :v};l and :v; from st~ and adjust the
indices to obtain séj,’f) and sé’iﬁ,), the latter provided i < I. Accept the move according to
the Hastings ratio

NG\ M(s41)] k(aflo} )
n(@ 1)~ IM(s M) +1

exp [-U(x';8";y) + U(x;8;y)]

where x’ differs from x only in frame ¢ with X = i’ff > and s’ is identical to s except for the

matchings involving frame ¢, which are replaced by sé:ll;\f) and sz(’iﬁ,) whenever appropriate.

The move that deletes an object matched to a similar one in the next image frame is
completely analogous.
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Death of doubly matched object A frame is selected uniformly from the set {1,...,I}.

Thus, suppose frame 3 is chosen with current configuration %* and the object to be deleted
should be matched to modified ones in frames ¢ — 1 and ¢ + 1. If ¢ = 1 or I, or there are
no suitably matched objects in frame 4, no transition occurs. Otherwise, choose one of the

doubly matched objects in frame ¢ uniformly at random, say xﬁ with its matches acfc_l and

zit1) and delete z! to obtain 5{"&71). Delete the match between xzfl and z! from s~ and
adjust the indices to obtain sz(:;,’é) Also delete the match between a:; and zi*t! and adjust

the indices to obtain sz(’flr]\ll) Accept the move according to the Hastings ratio

[M(s54) 0 N (519 k(aflo} )
(W& D) = M )+ 1) (&) = [N+ 1)

exp [—U(x'; ssy) + U(x;s; y)]

where x’ differs from x only in frame ¢ with ¥/ = 5{'27 1) and s’ is identical to s except for the

matchings involving frame ¢, which are replaced by si:;j\f) and s'(’zrﬂll)

Death of unmatched object A frame is selected uniformly from the set {1,...,I}.
Thus, suppose frame 7 is chosen with current configuration X* and the object to be deleted
should not be matched to any object in a consecutive frame. If there are no such objects in
frame 4, no transition occurs. Otherwise, choose one of the unmatched points in the current
frame uniformly at random, say z!, and delete z} from X’ to obtain 5(”&_ ) Adjust the indices

to obtain sz:ll;) and sé’iﬁ,), if they exist. Accept the move according to the Hastings ratio

n()_fz) _ |N(Si—1,i) U M(sz’,i+1)|
(b x pL)(D x L)

exp [-U(X;s";y) + U(x;s;y)]

where x’ differs from x only in frame i with ¥/ = 5{'2_ 1) and s’ is identical to s except for the

matchings involving frame 4 which are replaced by sé:;j\f) and sz’iﬁ,) whenever appropriate.

Modification of permutation order A frame is selected uniformly from the set {1,...,I}.
If the selected frame contains less than two objects, the current state remains unchanged.

Otherwise, select a current position k, and another position | # k uniformly over the
options. Then propose to interchange the objects :1:; and :c}c in the current configuration X
to obtain cg(®¥). Adjust the indices for the matchings involving frame i to obtain cg;(si~1%)
and cy(s%11), if they exist. Accept the move according to the Hastings ratio

exp [-U(x;s";y) + U(x;s;y)]

where x' differs from x only in frame i with X/ = ¢y(%*), and s’ is identical to s except for
the matchings involving frame i which are replaced by ci(s* 1) and cp(s***!) whenever
appropriate.

As for births and deaths of objects, assume the probability of proposing to add a match
equals that of proposing to delete a match.
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Birth of match Select a pair (i — 1,7), i € {2,...,I} of consecutive frames uniformly at
random.

Try and choose one of the points in frame 7 — 1 that is not yet matched to an object in
frame 7 uniformly at random, say wﬁ:l, and a randomly chosen object in frame ¢ that is not
yet matched to frame i — 1, say zj. If either of such objects cannot be found, no transition
occurs. Otherwise, add the match (xf;l,wf) to si~1¢ to obtain ¢y (s*1%, k,1). Accept the
move according to the Hastings ratio

(nx) — [M(sH)]) (n(F) — IN(s17)])

R . I- . .
IN(s=19)| + 1 exp [ U(x;s'y) +U(x; S,Y)]

where s’ is identical to s except for s~ which is replaced by c+(si*1”', k,1l).

Death of match Select a pair (i — 1,7), ¢ € {2,...,I} of consecutive frames uniformly at
random.
Try and choose one of the points in frame ¢ — 1 that is matched to an object in frame 3

uniformly at random, say :v;'c_l matched to :v} If no such object can be found, no transition

occurs. Otherwise, delete the match between xz_l and z! from s~ to obtain c¢_ (s~ k, 1).
Accept the move according to the Hastings ratio

[N (s 1)
(1)~ IM(s19)[ + 1) (n(Z) — IN(s19)] + 1)

exp [-U(x;8;y) + U(x;8;y)]
where s’ is identical to s except for s*~1* which is replaced by c_(s* 1%, k,1).

Modification of object A frame is selected uniformly from the set {1,...,I}.

Thus, suppose frame i is chosen with current configuration ®¥!. Provided the length of %
is non-zero, choose one of the objects in the current frame uniformly at random, say .’Ej-, and
replace it by a new object generated according to the probability kernel K (& |x;)d(,u x ) (&)
to obtain ¢;(X?,£). Do not alter the match functions, in other words, give £ the matches of
w; Accept the move according to the Hastings ratio

%ﬂg exp [-U(X';85y) + U(x;8; )]

where x’ differs from x only in frame i with X = ¢;(X", £).

5.1 Proof of convergence

In addition to the conditions on k and K, assume all p; in (8) are non-zero, and the (sequential)
object process defined by the Hamiltonians Vi, ..., V3 is locally stable and hereditary (so that
(6) can be properly normalised into a probability distribution). Restrict the Metropolis—
Hastings chain to the set of (x,s) which have positive probability density of occurring. We
claim that this chain Z,,, n € Ny with the transitions outlined in the previous subsection
converges in total variation to the distribution (6) from almost all initial states.
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To prove the claim, we must establish aperiodicity and positive recurrence. To do so,
consider the Dirac measure §y on z, := {(0,0). Then, Z, is irreducible with respect to
this measure, as the empty state z, can be reached with positive probability by visiting
each frame in turn, deleting the matches first and then deleting the by now unmatched
objects, if necessary applying a series of change moves first. By assumption, the proposal
probabilities are positive, and under the assumptions on the kernels £ and K and that the
target distribution is hereditary, so are the acceptance probabilities. We conclude that Z, is
irreducible.

By construction, (6) is an invariant measure, so that Z,, being irreducible, is positive
recurrent, and (6) is the unique invariant probability measure [21, p. 155].

The state z, is an accessible atom for Z,,. Since the 1-step probability of staying in z,
exceeds for instance the death proposal probability, hence is strictly positive, Z,, is strongly
aperiodic [21, p. 150].

It remains to establish that the atom z, is Harris recurrent for the Markov chain Z,.
To do so, employ renewal theory. Note that the stopping times 7;, j = 1,...,00 defined by
70 := 0 and recursively by

1 =inf{n > 751 : Z, = 2.}

satisfy F [11|Zo = z4] < o0, and a fortiori P(m < o0|Zyp = 2z,) = 1 by Thm 4.5.3 in [21].
(In equilibrium, Z,, spends a non-null fraction of time in 2,). Hence, when started in the
empty state, the Markov chain returns to z, infinitely often. In other words {z,} is a Harris
recurrent set.

From a computational point of view, most of the Hastings ratios involve only the frame
being updated, and only the links with direct neighbours. Therefore, the Markov properties
discussed before imply a local computational effort.

6 Example

We study an example in sports tracking: the ball and bat in a table tennis sequence (see
Figure 1). Both objects of interest can be conveniently described mathematically by an
ellipse with three shape parameters: the orientation and half lengths of both axes. We took
5 pixels for the minimum half axis length, 40 for the maximum one. The reference measures
for position and shape were Lebesgue. The colour of an ellipse was described by a discrete
RGB space, equipped with the equal weight mixture of data frame histograms.

Regarding the parameters in model (6), the background colour was found by consideration
of the RGB colour histograms. In Vi, an Lo criterion was used with 0 = 128 in Gaussian
noise terms. The function V5 adds a penalty 50 for each object, 5 for each pair of overlapping
ellipses. In V3, we took A(-) = 5 = p constant; the dissimilarity term 7(x1,x2) is the sum of
d?(z1,12)/800 with d(-, -) the Euclidean distances between centres, of the absolute differences
in axes lengths and orientation (modulo 7), and normalised absolute differences in RGB space,
with normalisation 1/255.

With respect to the Metropolis—Hastings algorithm, we used a Gaussian kernel with vari-
ance 800 for k(:|-) just for the position; shape and colour attributes remain unchanged. The
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modification kernel K(-|-) is a mixture of kernels for modification of location, size, orienta-
tion, and colour with equal weights. The real valued characteristics are updated distributed
uniformly in a neighbourhood corresponding to 5 percent of the allowed range, the dis-
crete colour is chosen from the reference probability measure. The probability of selecting a
matched birth/death, an unmatched birth/death, a change in index or match were all 1/10.
The probability of a change move was 2/5. Within these classes, uniformly distributed choices
were made.

A convenient way to represent the relative position of objects is to plot the average depth
map

(X)) teT, (9)

M-

j=1

over k Metropolis—Hastings steps after burn-in for each image frame, where the depth of
object vector X = (z1,...,%,) at pixel ¢t € T is defined as

dh(3) = noitl 955 if t € R(zj) \ Up<jR(xk)
B0 if t € T\ UR(z;)

for n > 1, and d;(0) = 0.

For the tennis sequence, after a burn-in of 30,000 steps, annealing was performed for
temperatures 7, = 1.0/(1+0.005%n) with 50 steps for each n = 0,...,1000. The near-optimal
configuration is as depicted in Figure 1. The annealed depth map is the correct one with
the bat under the ball. If we would not have included a temporal cohesion term, the depth
values of both bat and ball in the first and third frame would have been (3 x 255)/4. Note
that there are slight deviations from an elliptic shape in the bat because of the perspective.

The depth map (9) at fixed temperature 5 with & = 300,000 Metropolis—Hastings steps
after a burn-in of 50,000 steps is given in Figure 2. It can be seen that the correct relative
depths are found, but the depth value of, say, the ball is less than 255 with smaller values
near the edge.

7 Summary and future work

In this paper, we presented an application of Markov sequential object processes to the
calculation of depth maps for scenes involving a variable number of interacting objects that
may change over time with a view to 3D-TV. The model proposed here is able to cope with
the occlusion caused by having objects at different depths, maintains the identity of objects
as well as their relative depth over consecutive video frames, and ensures fit to the data. The
computational complexity of the model can be handled by a suitably designed Metropolis—
Hastings algorithm. In contrast to commonly used filtering methods, the sampler goes back
and forth between frames, gathering depth information when objects overlap and transferring
this information on to other frames that do not provide depth cues. As most interest focuses
on the optimal depth map, a simulated annealing scheme may be used. The approach was
illustrated by a table tennis video sequence.
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This work concentrated on objects that are described by a few shape parameters. How-
ever, the theoretical framework presented here is not limited to such cases, indeed includes
e.g. polygons of arbitrary shape, or even completely general closed sets [18]. In the future,
we intend to formalise such a segmentation based approach and evaluate its effectiveness for
scenes that are not composed of simple objects against a homogeneous background.
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Figure 1: Data masked by annealed object sequence (top) and annealed object sequence
overlaid upon the data (bottom).
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[ 51, 541=  0.111k

Figure 2: Depth map averaged over 300,000 Metropolis—Hastings steps after a burn-in of
50,000 steps at temperature 5.



