

Bottum-up abstract interpretation of logic programs

Citation for published version (APA):
Codish, M., Dams, D. R., & Yardeni, E. (1992). Bottum-up abstract interpretation of logic programs. (Computing
science notes; Vol. 9224). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/4c427f62-197c-4e5e-aa3f-b45ffe217fc8

Eindhoven University of Technology

Department of Mathematics and Computing Science

Bottum-up Abstract Interpretation
of Logic Programs

by

M. Codish D. Dams E. Yardeni
92/24

Computing Science Note 92/24
Eindhoven, September 1992

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Bottom-up Abstract Interpretation of Logic Programs*

Michael Codisht Dennis Dams§ Eyal Yardenill

Abstract

This paper presents a formal framework for the bottom-up abstract interpretation of
logic programs which can be applied to approximate answer substitutions, pariial an­
swer substitutions and call patterns for a given program and arbitrary initial goal. The
framework is based on a Tp like semantics defined over a Herbrand universe with vari­
ables which has previously been shown to determine the answer substitutions for arbitrary
initial goals. The first part of the paper reconstructs this semantics to provide a more
adequate basis for abstract interpretation. A notion of abstract substitution is introduced
and shown to determine an abstract semantic function which for a given program can be
applied to approximate the answer substitutions for an arbitrary initial goal.

The second part of the paper extends the bottom-up approach to provide approxima­
tions of both partial answer substitutions and call patterns. This is achieved by applying
Magic Sets and other existing techniques to transform a program in such a way that
the answer substitutions of the transformed program correspond to the partial answer
substitutions and call patterns of the original program. This facilitates the analysis of
concurrent logic programs (ignoring synchronization) and provides a collecting semantics
which characterizes both success and call patterns.

*To appear in Theoretical Computer Science.
*Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3030 Heverlee,

Belgium
§Department of Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eind­

hoven, the Netherlands
VDepartment of Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel

1

1 Introduction

The framework of abstract interpretation provides the basis for a semantic approach to
dataflow analysis. A program analysis is viewed as a non-standard semantics defined over a
domain of data descriptions where the syntactic constructs in the program are given corre­
sponding non-standard interpretations. For a given language, different choices of a semantic
basis for abstract interpretation may lead to different approaches to analysis of programs in
that language. For logic programs we distinguish between two main approaches: "bottom-up
analysis" and "top-down analysis" [18]. The first is based on a bottom-up semantics such as
the standard Tp semantics, the latter on a top-down semantics such as the SLD semantics.

The meaning of a logic program P in the standard Tp semantics is the set of ground atoms
in P's vocabulary which are implied by the program. An abstraction of the Tp function
will typically provide an approximation of a program's (ground) success patterns and hence
provide the basis for applications such as type analysis [15,33]. In a top-down semantics, the
meaning of a program usually associates with an initial goal the set of answer substitutions
for that goal. The semantics is usually based on some form of SLD resolution possibly
considering a specific computation rule. Typically, a top-down semantics is extended to a
collecting semantics in which the call patterns of a program are recorded. The call patterns
for a program (with an initial goal) specify the set of calls that may arise in computations.
Such information determines how each clause in the program might be called and hence
provides the basis for program specialization. A typical example is mode analysis (e.g., [20]).

Abstractions of the Tp semantics are often not useful for program analysis as they describe
only ground instances of atoms. In addition, they are not useful for analysing concurrent
logic programs as they describe only success patterns while concurrent programs are also
characterized by failing and diverging computations. Furthermore, as the evaluation of a
bottom-up semantics does not correspond to the operational behaviour of a program (which
is top-down in nature), it is not readily extended to provide information about call patterns.

This paper presents a framework for the bottom-up abstract interpretation of logic pro­
grams which attempts to overcome these deficiencies. The proposed framework provides a
uniform approach to the analysis of logic programs which is shown suitable to approximate
success patterns, partial success patterns and call patterns. The concrete semantics which is
the foundation of our framework is based on the work of Falaschi et al. [13] which presents
a bottom-up semantics for logic programs defined over a domain of non-ground Herbrand
interpretations. The advantage of this semantics is that it captures the operational notion of
the logic variable. The meaning of a program is a set of non-ground atoms which is shown
to determine the set of answer substitutions for an arbitrary initial goal. This semantics
provides the basis for the bottom-up analysis of logic programs as described in [3, 4, 8, 16].
In this paper we reconstruct the semantics defined in [13] to provide a more natural basis
for abstract interpretations which are determined by a notion of abstract substitutions. The
resulting framework is similar to those defined independently in [3, 4] and [16] and can be
applied to approximate the answer substitutions for a given program and arbitrary initial
goal.

The main contribution of this paper is in the extensions of this framework. The analysis
of concurrent logic programs is facilitated by extending the framework to approximate the
partial answer substitutions for a program with an initial goal. Partial answer substitutions

2

are substitutions which correspond to the results of partial computations of the initial goal,
regardless if these computations eventually succeed, fail or diverge. This extension turns out
to be especially simple given the result of Falaschi and Levi [12] which demonstrates how to
augment a program by adding to it a set of unit clauses so that the answer substitutions of
the augmented program are precisely the partial answer substitutions of the original program.
This implies that the partial answer substitutions of the original program can be approximated
by approximating the answer substitutions of the augmented program.

A similar approach is applied to approximate the call patterns of a logic program. We
use the Magic Set method [5, 7] to transform a program with initial goal so that the answer
substitutions of the transformed program correspond to the call patterns of the original pro­
gram. We demonstrate this technique for both sequential and concurrent logic programs and
prove its correctness.

The rest of the paper is organized as follows. Section 2 gives the notation and preliminary
definitions which will be used throughout. Section 3 reconstructs the bottom-up semantics
originally defined in [13] to provide the foundation for our bottom-up framework. Section 4
presents a general framework for abstractions which are determined by a given definition of
abstract substitutions. Section 5 notes that analyses based on the definitions in the previous
section are inherently exponential. A join operator is defined and used to define a more
abstract semantic definition. Section 6 describes extensions of the framework to provide
approximations of partial answer substitutions and call patterns. Finally, Section 7 concludes.

2 Preliminaries

In the following we assume familiarity with the standard definitions and notation for logic
programs [17]. Throughout, I;, II and Var will respectively denote a set of function symbols,
a set of predicate symbols and a denumerable set of variables. The non-ground term algebra
over I; and Var is denoted Term(I;, Var) or Term for short. The set of atoms constructed
from predicate symbols in II and terms from Term is denoted Atom(II, I;, Var) or Atom for
short. Goals are finite sequences of atoms. A goal is typically denoted by ii, by (al, ... , an)
or simply by al,"" an. The empty atom sequence is denoted by true. A logic program is a
finite set of Horn clauses of the form h +- b where h is an atom, called the head, and b is a
goal, called the body. The sets of atoms which occur as heads and in bodies of the clauses of
a logic program P are denoted heads(P) and atoms(P) respectively. We often write Pa for
a program P with initial goal G. In this case, atoms(Pa) includes the atoms of G.

Substitutions. A substitution is a mapping from Var to Term which acts as the identity almost
everywhere. It extends to apply to any syntactic object in the usual way. A substitution ()
is finitely represented by the set {x f-> ()(x) I ()(x) i- x}. The identity substitution is denoted
by L The application of a substitution () to a syntactic object S is denoted by S . () (or S())
instead of ()(S). If El is a set of substitutions, then SEl = {S() I () EEl}. Composition of
substitutions p and (j and restriction of (j to V <;; Var are defined as usual and denoted p(j

and (j r V respectively. A substitution (j is idempotent if (j(j = (j. In this paper we restrict our
interest to idempotent substitutions, unless explicitly stated otherwise. The set of idempotent
substitutions is denoted Sub. Note that Sub is not closed under composition. However, in the
following, compositions are performed only when the result is guaranteed to be idempotent.
We fix a partial function mgu which maps a pair of syntactic objects to an idempotent most

3

general unifier of the objects, if such exists. Thus, a statement () = mgu(s, t) implies that s
and t are unifiable.

Equivalence relations. If ~ is an equivalence relation on a set X, we denote by [x]~ the
equivalence class of x E X. When clear from the context we abbreviate [x]~ by [x]. In the
following we will often abuse notation and let the elements of a set denote their corresponding
equivalence classes.

Renaming. A variable renaming is a (not necessarily idempotent) substitution which is a
bijection on Var. Syntactic objects (e.g., atoms, sets of atoms) tl and t2 are equivalent up
to renaming, denoted tl ~ t2, if, for some variable renaming P, tIP = t2. The set of variables
that occur in a syntactic object t is denoted vars(t). Given an equivalence class 1 of syntactic
objects and a finite set of variables V <;; Var, it is always possible to find a representative t
of 1 (Le., an object t such that [t] = 1) wruch contains no variables from V.

For any syntactic object s, T, : Atom/~' -+ Atom' is a function which takes a sequence of
equivalence classes of atoms and returns a corresponding sequence of representatives which are
renamed apart from the variables in s and from each other: T ,(at, ... , an) = (at, ... , an) such
that for 1 ::; i,j ::; nand i '" j: [a;] = ai, vars(ai) n vars(s) = 0 and vars(ai) n vars(aj) = 0.
In the following we let T denote T p where P is an implicitly assumed program.

Operational semantics. The operational semantics of a logic program is typically defined in
terms of a transition system on States = Atom' X Sub. A program P is associated with the
transition system (States, -+ p), where: -+ p <;; States x States is the smallest relation such
that s -+p S' if s = (A}, ... ,Ai, ... ,AnjB), s' = (At, ... ,Ai_t,B1 , ... ,Bm,A i+1, ... ,An;Oa),
H <- Bl, ... ,Bm is a renaming of a clause from P (which contains no variables from s),
and u = mgu(Ai(), H). The reflexive and transitive closure of -+ p is denoted by -+p; the
subscript P will often be omitted when no confusion can arise. Given a program P, () E Sub
is an answer substitution (or answer for short) for a goal G iff there is a substitution ()f such
that (G;€) -+' (true;()f) and () = ()f fvars(G).

3 Concrete semantics

This section presents a bottom-up semantics for logic programs which provides the basis for
bottom-up abstractions in the following sections. It reconstructs the semantics defined in [13]
to associate each clause head in a program with a set of substitutions. The meaning of a
program then specifies for each clause head a set of its instances which are implied by the
program. Conceptually, we would like to associate each clause in a program with a set of
substitutions (representing instances of its head). It is however notationally more convenient
to define the semantics as mapping atoms to sets of substitutions. In most cases, we can
assume without loss of generality that a program's clauses are uniquely determined by its
heads (e.g., by renaming clauses apart). However, the correctness of our formalization does
not depend on this assumption.

Our decision to alter the semantics of [13] is motivated by the observation that abstractions
for logic programs are naturally defined in terms of some notion of abstract substitution.
That is, an abstract semantic domain is determined given a definition which specifies how
to approximate (sets of) substitutions. It is straightforward to show that our semantics is
consistent with that of [13] and hence can be applied to determine a mapping which associates
an arbitrary goal with the set of its answer substitutions.

4

3.1 Concrete domain

The semantics will be defined in terms of mappings from atoms to sets of substitutions which
are intended to specify instances of the heads of a program's clauses. Such mappings are
lifted to an appropriate notion of equivalence up to renaming.

DEFINITION 3.1. concrete semantic domain
We equip (Atom --> 28ub) with the preordering ~ defined by

it ~ h ¢> 'v'aEAt,m [a·!t(a)] <;; [a·fz(a)].

The equivalence relation induced by ~ is denoted ~ 101 and the corresponding partial order
by [;;Int. The concrete domain of interpretations is defined by Int = (Atom --> 28.b)/~Inl'

It follows that:

PROPOSITION 3.2.
(Int, [;;Iot) is a complete partial order with bottom element -LInt = AaEA',m . 0.

In the following we will refer to the atoms of an interpretation:

DEFINITION 3.3. atoms of an interpretation

atoms: Int --> 2At'm/-

atoms(j) = { [ali] I a E Atom, Ii E f(a) }.

3.2 Concrete semantics

Falaschi et al. [13] define a semantic operatorl Sp : 2A"m/_ --> 2A"m/_ similar to the standard
Tp operator. The semantics of a program P is the least fixed point of Sp which specifies a
set of non-ground atoms which are implied by P. This semantics is attractive for purposes
of program analysis as it captures both declarative and operational aspects of programs:
opemtiona/ because the meaning of a program is shown to determine the answer substitutions
for arbitrary goals, declamtive because the set of ground instances of a program's meaning
corresponds to the standard minimal model (Tp) semantics.

In the following definitions we reformulate this semantics of [13]. The meaning of a
program P is defined as the least fixed point of an operator Fp : Int --> Int which maps
each clause head to a set of substitutions. In the sequel it will be convenient to lift the mgu
function as follows:

DEFINITION 3.4. lifted mgu
Let P be a program and fEInt. Define the function mgUj : Atom' x Atom" --> 28• b as
follows:

mguj(b,(at, ... ,an) = { mgU(b,TP(al8l, ... ,anlin)1 !i~~fai)' }

IThis semantics is called the "S sema.ntics" in [13] where the operator is denoted Ts.

5

Note that for any I E Int, mguf((), ()) = {f}. Furthermore, observe that a unification of the
form mguf(b, b) has the effect of "combining" the substitutions which I associates with the
respective atoms in b.

DEFINITION 3.5. concrete semantic function
Let P be a logic program. Define Fp : Int --> Int by:

Fp(!) = >'h . U { 01 h <- b, a E_ A!om', }
0= mguf(b, a)

Note that Fp is well-defined because I ~ f' implies that h· mguf(b, il) ~ h· mgu!'(b, il).

PROPOSITION 3.6.

The function Fp : Int --> Int is monotonic and continuous.

PROOF. Standard. o

We denote the concrete meaning of a program P by [P] "n = IIp(Fp). It is straightforward
to show that [Plon is consistent with the S semantics defined in [13] in the sense that
atoms([P]"n) = IIp(Sp).

3.3 Answer substitutions

To show how the meaning of a program determines the answer substitutions for arbitrary
initial goals, we follow [13] and introduce the following:

DEFINITION 3.7. answers determined by an interpretation
Let I E Int. Define ansf : Atom' --> 2Sub by

ansf(b) = U { mguf(b, il) r vars(b) I a E Atom' }

LEMMA 3.8.

Let P be a logic program. Then (J E Sub is an answer for a goal G iff there exists (J' E
ans[P)"n (G) such that G() ~ G()'.

PROOF. Follows directly from the observation that atoms([P]"n) = IIp(Sp) and the strong
soundness and completeness results of [14]. 0

EXAMPLE 1. Let P be the program2 :

member (x , [xlxs]).
member(x,[_lxs]) :- member(x,xs).

2 A "_" denotes an anonymous variable.

6

[P]wn maps the first clause (head) to the set {f} (taking n = 0 in Definition 3.5): it maps
the second clause (head) to the set

{{ XS t-> [x I -D, {xs t-> [-, x I -D, {xs t-> [-, -, x I -D, ... } .

The function ans[Plwn maps the goal member(1,{2,3}) to 0; it maps the goal member(1,{1,2,3})
to {f} and it maps the goal member(x,{1,2,3}) to the set

{{x t-> 1}, {x t-> 2}, {x t-> 3}}.

4 Abstract Semantics

This section defines a framework for the bottom-up abstract interpretation oflogic programs.
A particular abstraction is determined by specifying how sets of substitutions are to be
abstracted. An appropriate notion of abstract substitution is then shown to determine an
abstract semantic domain and an abstract semantic function. This follows the spirit of the
denotational approach to abstract interpretation defined by Nielson [23] and advocated by
Marriott and S¢ndergaard (e.g., [19]). The abstract meaning of a program is a mapping
which associates an abstract substitution with each clause head. This mapping is shown
to approximate the concrete semantics from the previous section and can hence be used to
approximate the set of answer substitutions for an arbitrary initial goal.

We assume the standard framework of abstract interpretation as defined in [10] in terms
of Galois insertions.

DEFINITION 4.1. Galois insertion [21J
A Galois insertion is a quadruple (E, Ct, D,,) where:

1. (E, [;;E) and (D, [;;D) are complete lattices called concrete and abstract domains respec­
tively;

2. a: E -> D and, : D -> E are monotonic functions called abstraction and concretization
functions respectively; and

3. a(,(d)) = d and e [;;E ,(a(e)) for every d E D and e E E.

We say that elements of D describe elements of E. By abuse of notation, we sometimes let
D denote both the abstract domain and the Galois insertion. When E = 2Sub or E = Int we
call D a domain of abstract substitutions or abstract interpretations respectively.

4.1 Abstract substitutions

In the following we construct a domain of abstract interpretations by associating abstract
substitutions with the clause heads of a program. The intention is that an abstract substi­
tution should describe instances of the head of the clause it is associated with. As different
sets of substitutions 8 1 and 8 2 may denote equivalent instances of an atom a (namely, when
a·81 ~ a·82), we impose an additional constraint on a domain of abstract substitutions, the
purpose of which will become clear in Definition 4.3.

7

DEFINITION 4.2. abstraction substitutions
A domain of abstract substitutions is a Galois insertion (2Sub, a, ASub, 7) such that for every
8 1 ,82 E 2 Sub and a E Atom,

a·81 ~ a·82 '* 0''Ya(81) ~ 0·'Ya(82).

Consider the following examples of domains of abstract substitutions.

EXAMPLE 2. identity
It is straightforward to show that taking (ASub, !;;AS.b) = (2 S• b, ~) and a = 7 = id provides
a domain of abstract substitutions.

EXAMPLE 3. dependency relations [9]
A relation R over a lattice X is additive if (x R x' /I Y R y') '* (x U y) R (x' U y'). A
dependency relation is an additive equivalence relation (reflexive, symmetric and transitive)
over 2 Var. We let dep(R) denote the smallest dependency relation which contains a relation
R. We say that a relation R implies a relation R' if dep(R) ;;:> dep(R'). We let Dep denote
the complete lattice of relations over 2 Var modulo the equivalence induced by dep (i.e., R ~
R' '* dep(R) = dep(R')) ordered by implication. We let [WI f-+ W{, ... , W. f-+ W~l denote
the relation {(WI, W{), ... , (W., W~)}; when sets are singleton, set brackets are dropped. It
is straightforward to show that (2 s•b, a, Dep, 'Y) is a domain of abstract substitutions where
a : 2 S• b --> Dep and 7 : Dep --> 2 Sub are defined by:

a(8) = { (V, W) 1 VOEe vars(VO) = vors(WO) }, and

7(R) = { 01 VIvo W)ER vars(VO) = vars(WO) }.

A dependency relation R is intended to describe those substitutions 0 which satisfy the
condition that for every (V, W) E R (and hence in dep(R)), the terms in VO are ground iff
the terms in WO are ground. A particular case is when V = 0 (or respectively W = 0); in
this case it means that the terms in we (or respectively VO) are ground for any e.
For instance a({x >-+ f(a)}) = [x f-+ 0], a({x >-+ fey)}) = [x f-+ y], and a({f}) = 0.

EXAMPLE 4. function symbols
Let Sym = Var --> 2E be the complete lattice ordered by SI !;;Sym S2 '* "Ix 81 (x) ~ 82(x).
We denote by symbols(t) the set offunction symbols (and constants) occurring in a term (or
set of terms) t. Let a: 2 Sub --> Sym and 7: Sym --> 2 Sub be defined by

a(8) = Ax . symbol8(x8), and

'Y(s) = { 01 "Ix symbol8(xO) ~ sex) }.

Forinstancea({x >-+f(a)}) = Ay • if y == x then {f,a} else 0, a({x >-+f(y)}) = Ay • if Y ==
x then {J} else 0, and a({ f}) = Ay . 0.

It is straightforward to show that (2Sub, a, Sym, 7) is a domain of abstract substitutions.

8

4.2 Abstract interpretations

A domain of abstract substitutions naturally lifts to a domain of abstract interpretations:

DEFINITION 4.3. abstract interpretations
Let (2Sub, a, ASub, 'y) be a domain of abstract substitutions. The induced domain of abstract
interpretations (Int, a, AInt,,) is constructed as follows:

1. The function, : (Atom --> ASub) --> Int is defined by:

2. The domain Atom --> ASub is equipped with the preordering ::5 defined by:

3. The equivalence relation induced by ::5 is denoted ~ AIn' and the corresponding partial
order on AInt = (Atom --> ASub)/~Alnt is denoted [;;AIn',

4. The function, is lifted to AInt --> Int (by taking ,([gJ~AInt) = ,(g)).

5. The function a : Int --> AInt is defined by:

aU) = [a 0 fJ~AInt

In the sequel we often introduce a domain of abstract interpretations AInt induced from a
domain of abstract substitutions ASub and refer to the implicitly defined a", a and :y.

EXAMPLE 5. Let AInt be the domain of abstract interpretations induced from ASub = Dep
and consider g" g2 : Atom --> Dep which map the atom p(x, y) to [{x, y} +-+ 0J and [{ x, y, z} +-+

0J respectively (and map all other atoms to LV,.)' Observe that leg,) = ,(g2); both specify
the set of all ground instances of p(x, y). This illustrates two points:

1. ,: (Atom --> ASub) --> Int is not injective (and hence it is lifted to a function of type
AInt --> Int which is);

2. the equivalence relation ~ AIn. on Atom --> ASub has the effect of "restricting" elements
of ASub to the variables in the corresponding atoms.

LEMMA 4.4. Let AInt be induced from ASub. Then a is well-defined.

PROOF.
Jt ~Int 12

{} 'Vh h·Jt(h) ~ h'h(h)
=> 'Vh h ·:ya(j,(h)) ~ h ·:ya(hCh))
{} [:YoaoJtJ = [:YoaohJ

""Int "'Int
{} ,(aoj,) = ,(aoh)
{} aoJt ~ AIntaoh
=> a(j,) = a(h)

by the def. of'" Int

by Def. 4.2 1
by the def. of '" Int

~Y the def. of 'Y 1
follows directly from Def. 4.3 (3)

by the def. of a]

9

o

LEMMA 4.5.
Let Alnt be induced from ASub. Then (Int,o<,Alnt,"'"I) is a Galois insertion.

PROOF.

1. (Alnt, I;;Alnt) is a complete lattice with bottom element .lAInt = AaEAtom . .lAsub'

2. 0< is monotonic:
h I;;lnt h

{o} 'Ih [h·!t(h)J <;; [h'Mh)J by the def. of ~Int

=;. 'Ih [h''Yii(!t(h»J <;; [h''Yii(h(h»J
{o} ['YoiiohJ I;;lnt ['YoiiohJ

from Der. 4.2 (see Lemma 1 in apdx.)

by the def. of ~Int

{o} "'"I (iiof,) I;;lnt "'"I (iioh) by the def. of, J

{o} [iioltJ I;;AInt [iiohJ by the def. of ~Alnt

{o} 0< (f,) I;; AI n t 0< (h) by the def. of a]

3. The monotonicity of "'"I follows directly from Definition 4.3.

4. "'"10<(1) ;;Jlnt I
{o} ['Yo[iio/tAlntt ;;Jlnt I Int
{o} 'Ih [h''Yii(l(h»J 2 [h'/(h)J
{o} true

by the defs. of'"Y and a

by the def. of ~Int

'1&(9) ;2 9 I

5. O<"'"I(g) = g: follows directly from the definitions of 0< and "'"I and the fact that ii'Y(") = ".
o

4.3 Abstract semantics

An abstract semantics is defined in terms of an abstract unification lunction which is required
to be sale.

DEFINITION 4.6. safe abstract unification function
Let P be a program, Alnt a domain of abstract interpretations induced from ASub and
g E Alnt. We say that mgu: : Atom' X Atom', ASub is a safe abstract unification function
if for all a E Atom' and h ;- bE P

Note that since the syntactic structure of elements of ASub is unspecified, we cannot
rename apart abstract objects involving them. Instead, renaming apart is assumed to be
handled in the definition of abstract unification. The following example illustrates a safe
abstract unification function for Dep which is similar to that introduced and proved safe in
[9J. Note that for any 9 E (Atom --+ Dep)/~ there is a representative g E Atom --+ Dep such
that for every atom h, vars(g(h» <;; vars(h). Hence it is straightforward to extend Y to
rename apart abstract objects, as assumed in the following.

10

EXAMPLE 6. Let Alnt be induced from Dep and 9 E Alnt. Define mguf : Atom' X Atom' -->

Dep as follows. Let (ajKl"'" a~Kn) = T{alg(al)"'" ang(an») in

mgu;({bt, ... , bn), (at, ... , an) =

;91 K; U {({x},vars(t»! x t-> t E mgu((bt, ... ,b.),(a;' ... ,a~) }

For instance, if 9 maps the atom append ([x I xl] ,y , [x I z]) to K = {x 1, y} <-+ Z and
T{append([x I xl], y, [x I Z])K) = {append([x I xl], y, [x I z])[{xl, y} HZ]). Then

mgu; ((append(x, y, z»), (append([x I xl], y, [x I z]))) = [x <-+ {x, xl},
y <-+ y,
Z H {x,z},
{xl, y} HZ].

While we do not introduce an explicit operator to restrict the result of the abstract unification
to the variables in append(x,y ,z), this functionality is captured by the equivalence induced
by 1 on Alnt. Denoting [x H {x, Xl}, Y H y, Z H {x, z}, {xl, y} <-+ z] by Kl we might say
that the restriction OfKl to {x,y,z} is K2 = [{x,y} H z] because append(x,y,Z)''Y(KJ) ~
append(x, y, Z)·'Y(K2).

In the sequel we assume that mgu: denotes a safe abstract unification function.

DEFINITION 4.7. abstract semantic function

FP : Alnt --> Alnt

h+-bEP,_uEAtom', }
K = mguf(b,a)

PROPOSITION 4.8. Fp is continuous and monotonic.

Denote [PDab. = Ijp(FP). The following theorem, which states the central result of this
section, shows that [PDab. indeed approximates the concrete semantics.

THEOREM 4.9. safety
For any logic program P, [PD". r;;; ,([PDab.).

PROOF. The theorem is implied by (see e.g. [30])

VgEAln! Fp(I(g» I;; I(FP(g»

which is equivalent, applying the definitions of Fp, FP, I;;Int and " to showing that for all
9 E Alnt and h E Atom:

[h.u{e ~;lt;:': __ }] ~ [h''Y(U{K ~;lt;:': _ _ })]
e = mgu.,(g)(b, a) K = mguf(b, a)

This follows easily from the safety of mguf (Definition 4.6) and monotonicity of 'Y' 0

11

4.4 Termination

In order to guarantee termination of analyses based on the abstract semantics described
above, we must impose sufficient conditions to guarantee that Fp has finitely computable
fixpoints. Standard conditions such as the reqnirement that AInt is ascending chain finite 3

(see e.g. [30]), are too restrictive. This is because our abstract domains are defined in terms
of mappings from Atom to ASub and Atom is an infinite set. However, for a given program
P, the functions (Fp)n(.l) (n ;::: 0) only assign I< oF .lAS,b to the atoms in heads(P). Hence
a sufficient condition on ASub is to require that for every a E Atom, there are no infinite
chains in ASub under the ordering induced by AInt:

PROPOSITION 4.10. termination
Let AInt be a domain of abstract interpretations induced from ASub. Define for a E Atom the
partial order!;;a on ASub by I< !;;a 1<' ¢> [a·'1(I<)] <;; [a·'1(I<')]. If there are no infinite ascending
!;;a chains in ASub for any atom a then there exists a finite n such that Ijp(FP) = (Fp)n(.l).

PROOF. Let gn = (Fp)n(.l) for n ;::: 0 and for an atom h let g! : Atom -> ASub
denote the abstract interpretation which maps h to gn(h) and all other atoms to .lASu!. The
condition implies that for each h E heads(P), the chain {[g!]~AI.t In;::: O} will be finite. By
construction, gn = U [g:]~ AI.t. Because heads (P) is a finite set, the chain go, gl, g2, ...

hEhead,(P)

will therefore also be finite. 0

EXAMPLE 7. The domain (2 S,b, a, Dep, '1) satisfies the condition of Proposition 4.10. To see
this, observe that for any atom a and I< E Dep there exists 1<' E Dep such that vars(1<') <;;
vars(a) and a .,(1<) = a·,(K'). Hence if AInt is the domain of abstract interpretations induced
from Dep and P is a logic program, then FP : AInt -> AInt has a finite least fixedpoint.

5 Practical bottom-up analysis

The complexity of an analysis based on the framework described in the previous section is
determined by the number of iterations it may take to reach a least fixed point of FP and
by the cost of each single iteration. The number of iterations is bounded by the height
(i.e., the length of the longest chain) of the abstract domain AIntj the cost of one iteration
depends on the number of abstract unifications it involves and on the complexity of each such
unification (note that this operation is generic and hence we cannot assume anything about
its complexity). For a program of size N, each iteration of FP may involve O(2(N+1)/ogN)

abstract unifications as explained below. Although there exist more efficient ways to compute
the least fixed point of a function (e.g., as in [28] where recomputing the results of previous
iterations is avoided), the complexity of an analysis based on the evaluation of /fp(FP) is
inherently exponential and hence not practical. In this section we present an alternative, the
join semantic operator Fj[: AInt -> AInt, which involves O(N3) abstract unifications (albeit
at the cost of accuracy).

3 A complete lattice X is ascending chain finite if every nonempty subset Y S; X contains a maximal
element; in this case every monotonic function defined on X has a finite ascending Kleene sequence.

12

5.1 Complexity

Let P be a program of size N, 9 = (FP)k(.l) and consider the number of abstract unifications
needed to evaluate (FP(g))(h) for a clause h +- blo"" bn in P (assuming for the present
that h determines a unique clause). Figure 1 demonstrates the evaluation as specified in
Definition 4.7. The top row contains the body of the clause, which should be (abstractly)

(at

(at a~) -+

Figure 1: Evaluation of FP(g)(h).

unified with each of the other rows. These consist of sequences of clause heads from the
program. The "i to the right contain the respective results of the abstract unifications.
Apart from the top row, there is a row for every combination of n clause heads from the
program, so q is O(NN) as both n and the number of clauses in Pare O(N). The" in the
bottom right corner is defined by " = U{"\ ... , "g} and is the required value for (FP(g))(h).
This demonstrates that evaluation of (FP(g))(h) might involve O(NN) (abstract) unifications
and hence, each iteration O(N(N+1)) or O(2(N+1)logN) unifications.

The above analysis is pessimistic. Usually the maximal number of atoms occurring in
the body of a clause is bounded by a constant K. In that case the complexity is reduced to
O(N(K+1)) which is polynomial. Furthermore, if the number of clauses defining a predicate
is also bounded, then we get a linear complexity. However, since these constants might be
large, we prefer an algorithm that guarantees better complexity.

5.2 A join approximation

The idea behind the definition of the alternative FI : Alnt -> Alnt is motivated by the
observation that the O(NN) rows of Figure 1 contain only O(N) distinct atoms. We would
like to exploit this fact by decomposing the abstract unification of a row a;, ... , a~ with
bl , ... , bn into n unifications of a{ with bi. But instead of composing the results for each
row to evaluate the corresponding "i (which would again involve O(NN) compositions) we
first take the join for each column and then compose the resulting abstract substitutions.
This is illustrated in Figure 2 where we assume that heads(P) = {hl, ... ,hr } and denote
i<~ = mgu;«bi),(hj)) (1 S; i S; n, 1 S; j S; r). The k; (1 S; i S; n) are defined by

k i = U{i<i 11 S; j S; r}. Note how the number ofrows changed from q in Figure 1 to r here.
The result ,,' is evaluated by composing the ki (1 S; i S; n). This composition is captured

13

(bt) (bn)

(h1) (h1) -> -1
"1

-1 "n

(h r) (h r) -> -r
"1

-r "n
__ U __ U

K1 Kn -> ,,'
Figure 2: Evaluation of Ff(g)(h).

by defining: ,,' = mguf«(b1 , ... ,bn),(b1, ... ,bn) where 9 maps bi to Ki for 1:S i:S n (see
comment after Definition 3.4).

Thus, the evaluation of ,,' involves (n·r) + 1 abstract unifications. This amounts to O(N 2)

unifications for each clause and O(N3) unifications for one iteration of Ff(g).

After introducing a formal definition we justify the safety of this approach in Theorem 5.3
below.

DEFINITION 5.1. joined semantic function
Let P be a logic program. Define Ff : Alnt -> Alnt by:

Ff(g) = Ah . U K hi = u{mgug"(b;,a) I a E heads(P)},
{

h<-b1 , ... ,bn EP,1:Si:Sn, }

K = mguf«(bt, ... , bn), (b1, ... , bn)

where 9 maps bi to Ki for 1 :S i :S n.

PROPOSITION 5.2.
Ff is continuous and monotonic.

Denote [PDioin = /fp(Ff). The following theorem shows that [PDioin indeed approximates
the concrete semantics.

THEOREM 5.3. safety
For any logic program P, [PD"n [;; ,([P]ioin)'

PROOF. See appendix. o

EXAMPLE 8. Let P be the program from Figure 3 which specifies the quicksort relation.
Let Alnt be the domain of abstract interpretations induced from Dep and let 9 E Alnt be
the abstract interpretation described by Table 1 below. In fact, 9 = [P]ioin and hence the

14

qs ([], []) .
qs([xlu] ,y) :­

split(x,u,v,w),
qs(v,vi),
qs(w,wi),
append(vi,[xlwi],y).

gt(s(O),O).
gt(s(x),s(y)) gt(x,y).

le(O,O).
le(O,s(O)).
le(s(x),s(y)) .- le(x,y).

split (x, [], [], []) .
split (x, [ului], [ulv] ,W)

gt(X,U),
split(x,ui,v,w).

split(x, [u,lui] ,v, [ulw])
le(x,u),
split(x,ui,v,w).

append([],y ,y).
append([xlxi] ,y, [xlz]) .­

append(xi,y,z).

Figure 3: A logic program for quicksort.

table summarizes the ground dependency analysis for P. Consider the second clause in the
definition of the predicate qs /2:

qs([x I u], y) : -split(x, u, v, w), qs(v, vi), qs(w, wi), append(vi, [x I wi], y).

Evaluating Ft(g)(qs([x I u], y)) involves 24 abstract unifications as there are 3 x 2 x 2 x 2
sequences of heads in P which match the clause body. Evaluation of Fj(g)(qs([x I uJ, y))
involves 10 abstract unifications and is carried out as follows4 :

1. abstract unification of split (x, u, v, w) with the table entries 3,4,5 gives5 :

;<1 = [u <-+ v <-+ w <-+ 0J UDep [x <-+ u <-+ v <-+ w <-+ 0] = [u <-+ v <-+ w <-+ 0J;

2. abstract unification of qs (v, vi) with the table entries 1,2 gives:

;<2 = [v <-+ vI <-+ 0J UDep [v <-+ vlJ = [v <-+ vI];

3. abstract unification of qs (w, wi) with the table entries 1,2 gives:

;<3 = [w <-+ wI <-+ 0J UDep [w <-+ wlJ = [w <-+ wlJ;

4. abstract unification of append (vi, [x I wi] ,y) with the table entries 6,7 gives:

;<4 = [vI <-+ 0, {x, wI} <-+ yJ UDep [{vI, x, wI} <-+ yJ = [{ vI, x, wI} <-+ yJ;

4. To simplify the presentation, abstract substitutions are restricted to the relevant variables.
'Note that the join on nep is defined by R UDep R' = dep(R) n dep(R').

15

clause no. clause head abstract substitution

1. qs ([J. []) 0
2. qs([xlu] ,y) u - 0,x - y
3. split(x, [J. [J. []) 0
4. split (x, [ulu1], [ulv] ,w) x f-+ U f-+ ul +-+ v H W H 0
5. split(x,[u,lu1] ,v,[ulw]) x H U f-+ ul f-+ v +-t W +--t 0
6. append ([] ,y ,y) 0
7. append ([x I x 1] ,y , [x I z]) {x1,y}_z
8. gt(s(O),O) 0
9. gt(s(x),s(y» x-y<-+0
10. 1e(O,O) 0
11. 1e(O,s(0» 0
12. 1e(s(x),s(y» x<-+y-0

Table 1: Ground dependencies for quicksort.

(

split(x,u,v,w), split(x,u,v,w),)
5 A / qs(v,v1),) / qs(v,v1),) - [0]

. mgug \ qs(w, w1), '\ qs(w, w1), - u <-+ ,x <-+ y

append(v1, [x I w1]' y) append(v1, [x I w1], y)
where if maps split (x, u, v ,w) to K}, qs (v, vi) to K2, qs(w ,w1) to K-3 and

append(v1, [xlw1] ,y) to "4.

5.3 Approximating answer substitutions

In order to provide approximations of the answer substitutions for a logic program with an
initial goal, we provide the following:

DEFINITION 5.4. abstract answers
Let Alnt be a domain of abstract interpretations induced from ASub. The abstract answers
for a given goal and a program P which are determined by 9 E Alnt are specified by the
function ans: : Atom' -+ ASub defined by

ans:(b1 , ... , bn) = mgut((bt, ... , bn), (bt, ... , bn))

where 11 maps b; to U{mgu:(b;,h) I h E heads(P)} for 1:S: i:S: n.

The following theorem provides the basis for approximating the answer substitutions for a
program P with an initial goal G.

16

THEOREM 5.5. Let AInt be a domain of abstract substitutions induced from ASub. Let P
be a logic program. Then for any goal G,

[G· ans[p) ,on (G)] ~ [G·1' (anso.)jOin (G))].

PROOF. The proof of the more general theorem which states that for any g E AInt and
fEInt such that f [;;lnt ,(g), [G· ansJ(G)] ~ [G '1'(ansf(G))], is similar to that of Theorem
5.3. 0

EXAMPLE 9. Consider the quicksort program from Example 8 with the goal qs([3, 1,2], x).

ans[1.) . . (qs([3,1,2],x)) = [x <-+ 0]
JOin

which specifies that any answer for this goal binds x to a ground term.

6 Modeling Control

Standard semantics typically associate programs with entities which capture the essence of
their behaviour while abstracting away details related to the text of the program as well as
the control of the execution model. For semantics-based program analysis an enhanced or
"collecting" semantics which recaptures some of these details is usually required. After all,
the purpose of program analysis is often to analyse the text of the program with respect to the
control of its execution model. In general, the fact that collecting semantics can be viewed
as uncovering details which the standard semantics has hidden imposes a restriction on the
choice of semantic models upon which program analyses can be based.

In the case of logic programs, standard semantics traditionally associate programs with
the set of ground atoms which they imply. Program analyses, in contrast, are often required
to capture: (1) answer substitutions for a query; and (2) call patterns, which provide infor­
mation about how particular clauses in the program are used in refutations of a query. It is
no coincidence that in most cases practical abstract interpretations of logic programs approx­
imate top-down semantics based on SLD resolution (e.g., [6]). The information concerning
control and textual details of a program are more naturally recovered (and collected) from
such semantics.

In this paper we have first introduced a bottom-up semantics (basically that of [13]) which
captures answer substitutions and we demonstrated how abstract interpretations can provide
approximations of answer substitutions. In this section we are concerned with analyses which
capture more (control) details of a computation. In particular we show how to approximate
(a) the partial answers, and (b) the call patterns of a goal. However, instead of enhancing
the semantics, we propose to enhance the program so that its standard meaning reflects the
additional information required. The key idea is to enhance a program P by a transformation
M so that the standard meaning of M(P) reflects the additional information to be collected
by an analysis of P. This idea is further investigated in [2].

17

6.1 Abstracting for partial answer substitutions

Concurrent logic programs are characterized not by their successful computations alone but
also by computations which fail, suspend or diverge. To fully characterize such programs,
additional sequencing and branching information is required. A rough approximation can
be obtained by ignoring synchronization, viewing a concurrent logic program as a pure logic
program. However, in this case analyses should consider all computations (Le., success, fail,
suspend, diverge).

In this section we demonstrate how to provide approximations of the partial answer sub­
stitutions of a logic program. Partial answer substitutions are substitutions which correspond
to the partial computations of the goal, regardless if they eventually succeed, fail, suspend
or diverge. Ignoring synchronization implies that analyses based on our framework cannot
reason about reactive properties of concurrent programs. However, it is useful for a wide
range of applications that do not focus on such properties.

DEFINITION 6.1. partial answer substitutions
Let P be a program. We say that () E Sub is a partial answer substitution (or partial answer
[or short) [or a goal G if (G; E) --->' (G'; ()') and () = ()' f vars(G).

Falaschi and Levi [12J show that the partial answer substitutions of a logic program P can be
determined by adding to P an additional unit clause for each predicate in P and considering
the answer substitutions of the transformed program.

DEFINITION 6.2. transformed program pb
Let P be a program and G a goal. We denote by Pb the program constructed by adding
to P a clause of the form p(xt, ... , xn) for every predicate pin in Pa where Xl,"" Xn are
distinct variables.

PROPOSITION 6.3.
Let P be a logic program. Then () E Sub is a partial answer for a goal G iff there exists
()' E ans[p~1 (G) such that G() ~ G()'.

G con

PROOF. See [12J.

EXAMPLE 10.

Consider the following program P with the goal G = p(x):

p([a!x)) :- p(x).

The corresponding transformed program pb is:

p([a!x)) :- p(x).
pU.

The goal G has no answer substitutions in P. However, its partial answers:

{E, {x >-> [a I-H, {x >-> [a, a I-]}, {x >-> [a, a, a I-]}, ... }

can be obtained as ans[p~1 (G).
G con

18

o

The partial answer substitutions for a program with initial goal PG can be approximated
by approximating the answer substitutions of PtJ. In particular, ans[1,l].. will provide such

G Jom
an approximation.

COROLLARY 6.4. safety
Let Alnt be a domain of abstract interpretations induced from ASub and let P be a logic
program. If (J E Sub is a partial answer for a goal G then there exists (J' E ;y(ans[1,l] . . (G))

G Jom
such that G(J ~ G(J'.

PROOF. Immediate from Proposition 6.3 and Theorem 5.5. o

EXAMPLE 11. Let (Int, a, Alnt, "I) be the domain of abstract interpretations induced from
(2 Sub ,a,Sym,'Y) (defined in Example 4). For g E Alnt let mguf : Atom' x Atom' ---; Sym
be defined by mguf(b, il) = a(mg'U.y(g)(b, a)). Consider the program P from the previous
example:

p([alx]) :- p(x).

The abstract meaning [p.L];,;n maps pC [a I x]) to {'a', , I '}. The partial answers of the goal
p(x) are approximated by K, = {'a',' I '} indicating that any partial answer for p(x) binds x
to a term containing only those function symbols. Hence, since the arity of' I ' is 2 and the
arity of 'a' is 0, x is bound to a tree in which all leaves are either 'a' or variables.

6.2 Abstracting for call patterns

Often, analyses of logic programs are required to provide in addition to the success patterns
of a program (and goal) also its call patterns. Call patterns determine how the clauses of a
program will be "used" in computations; such information may for example provide the basis
for program specialization and optimization.

Top-down semantics for logic programs are readily extended to collect call patterns as
the evaluation of the recursive semantic functions usually corresponds to the operational be­
haviour of programs. Typically, an additional argument can simply be added to the semantic
equations and used to accumulate the sets of call patterns which correspond to the calls
which arise in actual computations. OLDT resolution ([32]) is an example of such a seman­
tics which extends SLD resolution by recording the calls arising in computations of the initial
goal together with their answer substitutions (if any).

In bottom-up semantics there is no corresponding notion of calls, and extension of these
semantics to collecting interpretations is not as straightforward. However, there exist methods
to transform a logic program so that the bottom-up evaluation of the transformed program
corresponds to the operational (top-down) behaviour of the original program. The Magic Set
and Alexander methods ([5, 1, 27]) are such techniques, which appeared first in the context
of deductive databases. Bry shows in [7] that both collecting semantics like OLDT and these
transformation methods are instances of the same fixpoint semantics, which is called the
Backward Fixpoint Procedure and defined in terms of a meta-interpreter.

19

Here we apply the Magic Set method to capture both calls and answers for a program
with an initial goal. We consider two different computational models, distinguished by their
computation rule. Recall that the answers for a given goal are independent of the compu­
tational rule. However, this is not the case for the set of calls which arise in computations.
The semantic model which is based on a non-deterministic computation rule (which is the
one that we have been considering so far, see Section 2) is useful for approximating the be­
haviour of concurrent logic programs. The semantics with a left-to-right computation rule
is defined similarly, by choosing the leftmost atom from the goal for every reduction. This
model approximates better the execution model of Prolog. We sometimes distinguish between
the two models by referring to programs as "sequential logic programs" or "pure logic pro­
grams", depending on whether we assume, respectively, a left-to-right or a non-deterministic
computation rule.

DEFINITION 6.5. call patterns
Let P be a (sequential or pure) logic program and G a goal. We say that an instance a'P of
an atom a E atoms(PG) is a call pattern (or a call for short) if

(G;f)""'* (... ,a, ... ;'P) ~

where the label a'P on the transition arrow denotes the atom selected by the computation
rule.

The following definition describes how the Magic Set method transforms a program with
initial goal PG into the magic program Pit.

DEFINITION 6.6. magic program pit
Let P G be a program with initial goal G = al,"" an' The magic program Pit is obtained
by transforming PG as follows .

• For sequential logic programs:

(sl) replace G by the clauses af +- ai\ ... , atl for 1 ::; i ::; n;

(s2) replace each clause h +- bl , ... , bm E P (m 2': 0) by the clauses
bf +- hC, bf, ... , btl for 1 ::; i ::; m and hA +- hC, bf, ... , b~ .

• For pure logic programs:

(pl) replace G by the clauses af f- al', ... ,a'f_ua41, ... ,a-: for 1 ~ i ~ n;

(p2) replace each clause h +- bl , ... , bm E P (m 2': 0) by the clauses
bf +- hC, bj, ... , bf_l> bl'rl, ... , b~ for 1 ::; i ::; m and h'P +- hC, bf, ... , b~;

(p3) for each predicate p'P In in the program obtained by applying the rules (p1) and
(p2), add the fact p'P(Xl,"" xn), where Xl>"" Xn are distinct variables.

The Co, A- and P-annotations on atoms are just labels, so, e.g., vars(p) = vars(pC) for atom
p. An annotated atom pc is read as "p is a call"; the atoms pA and p'P are interpreted as "p
has an answer substitution" and "p has a partial answer substitution" respectively. So, for

20

example, the first transformed clause in rule (s2) in the above definition can be informally
read as: "bi is a call if h is a call and there are answers for bt till bi - 1". Note that the Magic
Set transformation leads to a quadratic increase in size.

EXAMPLE 12.

Let P a be the initialized sequential logic program

<- p(a).

p(x) <- q(x), p(f(x)).

Then the transformed program pit is

pC (a) .

{(x) <- pC (x) .

pC(f(x)) <- pC(x), qA(x).

pA(x) <- pC(x) , qA(x), pA(f(x)).

The tirst clause in Pit reads as "p(a) is a call"; the third clause is read "p(f(x)) is a call if
p(x) is a call and q(x) has an answer substitution".

The concrete meaning of pit provides atoms([Pit]con) = {pC(a), qC(a)}, while the calls
of Pa are {p(a), q(a)}. Note that p(f(a)) is not a call because q(a) does not have an answer
substitution. The fact that Pa has no answer substitutions (note that it has no facts) is
reflected by the fact that atoms([Pit]con) does not contain atoms of the form pA or qA.

It has been proven in [7, 5, 29] that the Magic Set and Alexander methods are sound
and complete proof procedures for ground instances of calls and answers of sequential logic
programs: for every atom a in the Herbrand interpretation of the original program, there
is a corresponding atom aA for the magic program, and reversely. We extend this result
for non-ground atoms6 and pure logic programs; furthermore, we need the property that the
bottom-up evaluation of the magic program indeed corresponds to top-down execution of the
original program, in the sense that for every call a in the top-down evaluation of the original
program, there is a corresponding atom aC represented by the meaning of the transformed
program. These extensions are reflected in the theorem below, the proof of which can be
found in the appendix.

THEOREM 6.7. soundness of magic
Consider a partial computation ofa (sequential or pure) logic program P with initial goal G.
Let a E atoms(Pa) and <p E Sub and suppose that a<p is a call in this computation. Then:

1. aC<p E atoms([Pit]con);

2. (a) if P is a sequential logic program and a is an answer substitution for a<p, then
a E ans[pMJ (aA<p);

G con

6 Bry [7] claims that pre-encoding of variables can be applied to extend these results for non-ground instances.
However, as demonstrated in Example 13 (below), completeness does not always hold. Also Ramakrishnan
((25]) considers a non-ground case, however, the proof is lacking.

21

(b) if P is a pure logic program and a is a partial answer substitution for alP, then
a E ans[P&'I,on(aP<p).

The other direction of the theorem (completeness) does not hold. The following example
shows that not every atom of the form pC represented by the meaning of Ptf necessarily
corresponds to a call in P:

EXAMPLE 13. counter example
Let PG be the initialized sequential logic program:

+- q.

q +- pea), p(x), rex).

p(x).

The transformed program Ptf is

qC.

pC (a) +- qC.

pC (x) +- qC, pA (a) .

rC(x) +- qC, pA(a), pA(x).

qA +- qC, pA(a), pA(x), rA(x).

pA (x) +- pC (x) .

The calls that arise in the computation of PG are {q, p(a),p(x), rex n. However, the bottom­
up meaning of Ptf indicates also a call of the form r(a).

This example demonstrates an essential difference between methods such as OLDT resolution
and the Magic Set approach. On one hand, the magic approach does cause the evaluation of
the bottom-up semantic function to correspond more closely to the operational behaviour of
a program. However, while OLDT resolution specifies pairs of calls and corresponding answer
substitutions, the bottom-up semantics of the magic program specifies a set of calls and a set
of atoms which determine the answers for arbitrary goals. While OLDT resolution computes
answers only for those goals which are called in the course of a computation (for an initial
goal), this does not carryover precisely through the Magic Set transformation (although it is
safe and in most cases sufficiently accurate).

A more precise approach involves modifying the Magic Set transformation replacing rules
(s2) and (p2) in Definition 6.6 by:

(s2') replace each clause h +- b1 , ••• , bm E P (m ;::: 0) by the clauses
bf +- hC, bt, ... , btl for 1 :-::; i :-::; m and hA +- bt, . .. , b~;

(p2') replace each clause h +- bt, ... ,bm E P (m;::: 0) by the clauses
bf +- hC,br, ... ,br..l,b41, ... ,b~ for 1:-::; i:-::; m and hP +- br, ... ,b~.

22

In this approach, evaluation of the bottom-up semantics no longer corresponds to the op­
erational behaviour of the original program. Furthermore, the bottom-up evaluation of the
(concrete or abstract) meaning of a transformed program is less efficient as the least fixed
point evaluates alI of the implied instances of the original program. However, the transformed
programs now determine precisely the answer and partial answer substitutions for any goal.
Note that the transformed clauses of the form hA <- bf, ... ,b~ and h'P <- bj, ... ,b?:, are
isomorphic to the original program clauses. Proving soundness (for the set of calIs deter­
mined) in this approach is a simplification of the proof of Theorem 6.7. We conjecture that
completeness holds in this case. That is, the set of calIs determined contains precisely those
that arise in computations.

Given that the calI patterns for a program PG are captured by the answer substitutions
of the magic program Pit, we can approximate the set of calls by the framework described
in the previous sections. In particular, if a is a specific occurrence of an atom in a program,
we can approximate the ways that a will be activated as a calI in the computations of PG, as
expressed by the following corollary.

COROLLARY 6.B. safety
For a program P with initial goal G and a E atoms(PG):

a(} is a call in P G => aC (} E atoms('1'([Pit];"n»

PROOF.

a(} is a calI in PG
=> aC(} E atoms([Pit]con)
=> aC(} E atoms('1'([Pit];"n»

EXAMPLE 14.

by Theorem 6.7

by Theorem 5.3
o

Consider the quicksort (sequential) program from Figure 3 with an initial goal of the form
qs(zl, z2) (zl and z2 are bound to arbitrary terms):

<- qs(zl,z2).

qs([].[]).

qs([xlu] ,y) <- split(x,u,v,~), qs(v,vl),
qs(~,~l), append(vl,[xl~l] ,y).

The magic program includes the following clauses:

qsC(v,vl) <- qsc([xlu],y), splitA(x,u,v,~).

qBc(~,~l) <- qsc([xlu],y), splitA(x,u,v,~), qsA(v,vl).

23

Applying the ground dependency abstraction defined in Example 3 to approximate the answer
substitutions of the transformed program provides the information that in any activation of
the second qs/2 clause, the call qs(v, vi) has variable v ground. Furthermore, since the
variable vi does not occur in the body of the corresponding transformed clause we may
infer that it is uninstantiated. A similar argument holds for the call qs(w, wi) so that we
may derive that the calls qs(v, vi) and qs(w, wi) are "independent" (and can be executed in
parallel [22]).

7 Conclusions

We have presented a formal framework for the bottom-up abstraction of sequential and con­
current logic programs which is suitable for analysing answer substitutions, partial answer
substitutions and call patterns. The framework is based on a bottom-up semantics for logic
programs which evolves from that defined by Falaschi et al. [13J. This semantics was first
applied in the context of abstract interpretation by Barbuti et al. [3, 4J. It was independently
used by us in [8] and by Kemp and Ringwood in [16]. The semantics of [13J provides an at­
tractive basis for abstraction due to its simplicity, its similarity to the standard Tp semantics
and due to the correspondence to the operational semantics (namely answer substitutions)
which is further discussed in [14]. Marriott and Si1lndergaard also introduce a bottom-up
semantics in [19] where they sketch an example dataflow analysis based on its abstraction.

The main contribution of this paper is in the extensions of the bottom-up framework to
approximate partial answer substitutions and call patterns. The first extension applies a result
of Falaschi and Levi [12J. They show that a program can be augmented so that the answer
substitutions of the augmented program correspond to the partial answer substitutions of the
original program. We apply this result in defining a safe approximation to partial answers.
Approximations of this type are useful as a basis for analyses of concurrent logiC programs
which are not concerned with reactive aspects.

A similar strategy is followed to evaluate call patterns in a bottom-up framework, by
extending programs with Magic Sets [5]. This idea is already suggested by Marriott and
S¢ndergaard in [19]. Our result basically shows that the bottom-up semantics of logic pro­
grams can be extended to a collecting semantics which approximates both success and call
patterns. To the best of our knowledge, a proof of safety of the Magic Set transformation
for abstract interpretation (see Theorem 6.7) has not been previously published. Since the
submission of this paper, similar results have been reported by Nilsson [24J, by Debray and
Ramakrishnan [11] and by Ramakrishnan [26]. Furthermore, the conjecture made in Sec­
tion 6.2 concerning completeness of the modified Magic Set transformation has recently been
proven by Steiner [31].

Acknowledgements

We acknowledge Moreno Falaschi, Rob Gerth and Giorgio Levi for their helpful comments.
Kim Marriott suggested to us the idea of applying the Magic Set method. Example 13 is due
to John Gallagher who deserves special thanks for his thorough review of an earlier version
of this paper. The comments and suggestions of the anonymous referees are appreciated.

24

Appendix

LEMMA 1. Let (2Sub, a, ASub, 'Y) be a domain of abstract substitutions (see Definition 4.2).
Then for any atom a E Atom and 0 1 , O2 E 2Sub :

[a· 0 1J ~ [a· 0 2J =} [a· 'Ya(01)J ~ [a· 'Ya(02)J

PROOF. Assume the premise of the lemma and let 0~ ~ 02 be such that a . 0 1 ~ a . O2
(such a 0~ always exists). Then we have by Definition 4.2 that [a· 'Ya(0dJ = [a· 'Ya(0~)J
and by monotonicity of a and 'Y that [a· 'Ya(0~)J ~ [a. 'Ya(02)J. 0

THEOREM 5.3
For any logic program P, [P]"n [;; ""),([P];o,n)'

PROOF. As in the proof of Theorem 4.9, we show that

"VgEAlnt Fp("")'(g)) [;; "")'(Ff(g)).

Throughout the proof, we denote Ii = b1, ... ,bn , ii = ab ... ,an and let the index i range
between 1 and n. We show that for every g E Alnt and h E Atom:

h <- Ii E P, }]
ii E heads(p)n, ~

0= mgu,(g) (Ii, ii)

[h''Y(U{K

where 9 maps b, to K, for 1 :::; i :::; n.

h <- Ii E P, 1:::; i :::; n,
K, = U{mguf(b" a) I a E heads(P)},
K = mgut(b, Ii) })] (1)

Take an element [hllJ in the left-hand side of equation (1). So there exist h <- Ii E P and
ii E heads(p)n such that II E mgu,(g) (Ii, Ii) which implies that
II = mgu((b1, ... ,bn),T(a1111, ... ,anlln)) where II, E ,(g)(a,). The proof proceeds in two
steps:

1. Let..p, = mgu((bi),T(ailli)) and (1 = mgu((~, ... ,bn),T(b1..p1, ... ,bn..pn))' We show
that hu ~ hll.

Denote A = T(a,II" ... ,anOn), B = (b" ... ,bn), and B = T(b" ... ,bn). Observe that
there exists..p such that T(b1..p1, ... ,bn..pn) = B..p. In this notation mgu(B,A) = II,
mgu(B,B..p) = (1 and by construction B..p ~ B..p' where..p' = mgu(A,B). By Lemma 2
(below) it follows that B(1 ~ BII, which implies (due to renaming) that h(1 ~ hll.

2. We show that [hu] is an element of the right-hand-side of equation (1). Denote

K" = mguf(b"a,), K, = u{ mguf((b,),(a))! a E heads(P) }, and K = mguf(Ii,Ii).

By safety of abstract unification there exist ..p: E 'Y(K,,) such that b,..p: ~ b,..p,. By
construction K" [;;ASub Ki and hence by monotonicity of 'Y, ..p: E 'Y(K,).

Safety of abstract unification implies that there exist (1' E 'Y(K) such that 1i(1 ~ 1i(1'. 0

25

LEMMA 2. Let A, Band E be syntactic objects such that E is less instantiated than B,
mgu(A, E) = 'Ij;', mgu(A, B) = () and mgu(B, EJ'Ij;') = rI. Then BrI ~ B(}.

PROOF. The proof relies on the following definitions (which are slightly non-standard: <
is not a partial order here but rather a pre-order). Let p, q and r be atoms. If p :::; r and
q :::; r then we say that r is an upper bound for p and q; r is a least upper bound (lub) for p
and q if r is an upper bound and for any other atom r' which is an upper bound of p and q,
r:::; r'. It follows that if rand r' are both lubs of p and q then r ~ r'. If () = mgu(p, q) then
p(} is a lub for p and q. Assuming the premise of the lemma we have

1. (a) () = mgu(A, B) =} B(} is a lub of A and B.

(b) a = mgu(B, E'Ij;') =} BrI is a lub of Band E'Ij;'.
(c) 'Ij;' = mgu(A, E) =} E'Ij;' is a lub of A and E.

2. E :::; B by construction, so (Ia) gives that B(} is an upper bound of A and E.

3. From (Ic) and (2) we get E'Ij;' :::; B(} which implies that B(} is an upper bound for E'Ij;'
and B.

4. B(} is also a lub for E'Ij;' and B because if C is any upper bound of E'Ij;' and B then
A:::; E'Ij;':::; C (from Ic) and B :::; C so C is an upper bound of A and B. But B(} is a
lub of A and B, so B(} :::; C, which implies that B(} is a lub for E'Ij;' and B.

5. From (4) and (Ib) we get that B(} and BrI are both lubs for E'Ij;' and B; so B(} ~ BrI.

o

THEOREM 6.7
Consider a partial computation of a (sequential or pure) logic program P with initial goal G.
Let a E atoms(PG), <p E Sub and suppose that a<p is a call in this computation. Then:

1. (2)

2. (a) if P is a sequential logic program and rI is an answer substitution for a<p, then

(3)

(b) if P is a pure logic program and rI is a partial answer substitution for a<p, then

rI E ans[pi¥'),on(aP <p). (4)

In the following, we abbreviate atoms([P~lon) and ans[pi¥'),on(a) by atoms and ans(a)

respectively (for a E Atom). Substitutions will always be assumed to be implicitly restricted,
so we write rI E ans(a) rather than rI r vars(a) E ans(a). When referring to a clause in P,
it will be assumed to be an appropriate (depending on the context) renaming; similarly, we
assume an appropriate renaming when referring to an element of atoms. An atom of the form
b(_, ... , _) will sometimes be written as b(_).

26

The following lemma is used to prove Theorem 6.7. It concerns a partial computation (of
a program PG) starting with the atomic goal (a; a) (where a E atoms(PG)) where the first
call, aa, is reduced yielding a partial answer substitution {). The lemma states that if we
already know that the call aa is in the bottom-up meaning of the transformed program Pt/'
(Le., aa E atoms), then the partial answer substitution {) is also in the bottom-up meaning
of Pt/' (Le., {) E ans(aPa)). A similar result holds for the direct subgoals of a. Observe that
in the statement of the lemma {) = ()(3.

LEMMA 3. Let PG be an initialized program, a,~,oo.,bm E atoms(PG), b:t,oo.,bm E
atoms(PG)* and a,(),(3 E Sub. Consider the following computation in PG:

(a;a) ~ (b1,oo.,bm ;a()) -+n (bt,oo.,bm ;a()(3)

where n ~ 0 and (3 = (31 ... (3m such that for 1 ::; j ::; m,

(bj;a()(31 OO '(3j_l) -+* (bj ;a()(31°o·(3j).

Assume that

then:

aCa E atoms

()(3 E ans(aP a), and furthermore

(3j E ans(bI' a()(31 00 • (3j-t).

(5)

(6)

(7)

(8)

(9)

PROOF OF LEMMA 3. The proof is by induction on the lenght n + 1 of the computation in
(5). Note that (5) implies that there is a clause h <-- b1 , •.. , bm in P such that

() = mgu(aa, h).

So by Definition 6.6, the following clauses are in Pt/' (1::; j ::; m):

bf <-- hC, bi, 00 • , bI'-I, bI'+J, 00 • , b~.

bI'(_, 00', -).

hP
<-- hC, bi, 00', b~.

(10)

(11)

(12)

(13)

Let n = O. From (12) we know that bI'(_) E atoms, so by the definition of [Pt/'lon

(see Section 3.2) we have with (13), (7) and (10) that hP() E atoms. (Operationally, we are
unifying here the atoms in the body of clause (13) with aCa and the bI'(_) respectively.) So,
by (10), aP a() E atoms, and because (3 = f, aP a()(3 E atoms, from which (8) follows. (9) is
also proven easily.

Now suppose n > O. Unifying (see Table 2) the body ofthe clause bf <-- hC, bt, ... , b~
for j = 1 in (11) with the atoms aCa,bt(_),oo.,b~(_) obtained from (7) and from (12) by
having j range from 2 to m gives, using (10):

bf() E atoms (14)

27

and because dom(o) n vars(b1) = 0 (this follows from the form of (5)), (14) it follows that

bf a() E atoms (15)

Because computation (6) for j = 1 has length smaller than n + 1, we may apply the induction
hypothesis to (15) to conclude:

(31 E ans(bi a()). (16)

clause body he, bf, .. "' b:;'
old atoms a"a, bf(_), ... , b,';;(_)
new call bra()
new answer (31 E ans(bi a())

Table 2: Argument for (31 E ans(bi a()).

In a similar way as we derived (14), we can now unify (see Table 3) the body of the clause
bg <- hC, bi, bf, ... , b~forj = 2in(11)with the elements aCa,bia()(3"bf(_), ... ,b~(_)
from atoms which are obtained from (7), from (16) and from (12) by having j range from 3
to m, giving (compare (15)):

bg a()(31 E atoms.

The induction hypothesis implies again (compare (16)):

(32 E ans(bf a()(3d·

clause body he, b{, b;' .. "' b:;'
old atoms a"a, bi a()(31, bn-), ... , b,';;(_)
new call b~ a()(31
new answer (32 E ans(bf a()(31)

Table 3: Argument for (32 E ans(bf all(31).

(17)

(18)

We can repeat this for the clauses for j = 3 up to m in (11) successively, to obtain in
general for 1 ::; j ::; m:

(3j E ans(bJ a()(31 ... (3i-l).

This completes the proof of (9). We now combine this result with (13) and (7) to unify the
body of hP <- he, bi, ... , b~ with the elements aC a, bi a0(31, ... , b~ a()(31 ... (3m of atoms
giving (see Table 4)

hP a()(31·· ·(3m E atoms. (19)

28

With (10) this now implies (recall that ;31 .. ·;3m = ;3)

(J;3 = mgu(a'P a, h'P a(J;3).

Thus,

clause body he, b[, ... , b:;'
old atoms a~ a, b[a(J;31, ... , b:;' a(J;31 .. ·;3m
new call hF a(J;31 .. ·;3m
new answer (J;3 E ans(a""a)

Table 4: Argument for (J;3 E ans(a'Pa).

which completes the proof of (8).

(20)

o

We now proceed with the proof of Theorem 6.7. We prove 1 and 2(b); the proof of 2(a)
is similar.

PROOF OF THEOREM 6.7.

1. The proof of (2) is by induction on the depth d of (an occurence of) acp in the compu­
tation tree which is induced by the transition relation -+p. We assume without loss of
generality that the initial goal is atomic; its depth is o.
base: d = 0:
There is one call with depth 0, which is GEo Because GC is a fact in P-tt, GC, E atoms.

induction step: d + 1:
Consider the call bicp(Jp of depth d + 1 in the following computation:

(G;E) -+* ({Jl,a,?i2;cp) ~ (ih,b1, ... ,bm,{J2;cp(J)-+*

(
-I -I (J) bi'l'Bp 91, ... , bi , ... , g2; <P P -+ (21)

in which {Jj and {JJ (j = 1,2) are conjunctive goals. In [12], Falaschi and Levi prove a
generalization of the Switching Lemma [17] which applies to the case of partial compu­
tations. Specialized to computation (21) above, it states that when we change the order
in which the atoms are selected for reduction, the last state of the resulting computation
will be a variant (renaming) of the last state of (21). Therefore we may assume without
loss of generality that after the selection of atom a in the computation, no more reduc­
tion of atoms in the ?ii take place, in other words, we may assume that {JJ = {Jj (j = 1,2).
By the same lemma we may assume that the reductions of b1, ... , bi- 1, bi+1, ... , bm take
place in a left-to-right fashion. So the computation has the following form:

(G;E) -+* ({Jl,a,{i2;cp) ~ ({J},bt, •.. ,bm,{J2;CP(J)-+*

(22)

29

and there exist /31,' .. , /3;-I, /3;+1, ... , /3m such that p = /31 ... /3;-1/3;+1' .. /3m and:

for 1 :s; j :s; i - 1:

for i + 1 :s; j :s; m:

(bj;cp()/31···/3j-1) --.* (bj ;CP()/31···/3j-1/3j)

(bj ; CP()/31" '/3;-1/3;+1" ·/3j-1) --.*
(bj;cp()/31" '/3;-1/3;+1" ·/3j-1/3j).

(23)

(24)

Because the call acp has depth :s; d, we may apply the induction hypothesis to derive

(25)

We can now apply Lemma 3 (see (9» to this to infer

for 1:S; j:S; i - 1: /3j E ans(bJcp()/31" ·/3j-1)

for i + 1 :s; j :s; m: {3j E ans(bJ cp6{31 ... (3;-1{3;+1 ... (3j-1). (26)

We know there is a clause h <- b1 , . .. , bm in P, so in Pi: there is the clause:

bf <- hC, bf, ... , bl'-t, b4w .. , b~ (27)

such that

() = mgu(acp, h). (28)

Now unifying the atoms in the body of clause (27) with the atoms obtained from (25)
and (26) gives

bf CP()/31 ... /3;-1/3;+1 ... /3m E atoms

which completes the proof of (2).

2. Consider the partial answer substitution ()/3 to the call acp in the following computation:

(G;f) --.* ([h,a,Y2;cp) ~ (Y1,bI, ... ,bm ,Y2;CP()) --.* (Y1,b1, ... ,bm ,Y2;CP()/3) (29)

(again, by the generalized Switching Lemma we may assume that the Y; do not change).
From the form of this computation, it follows there is the following clause in Pi::

From the first part of the theorem, (2), we already know that

aCcp E atoms.

(30)

(31)

The generalized Switching Lemma again implies that we can assume without loss of
generality that the atoms bj (1 :s; j :s; m) in (29) are solved in a left·to-right order, so
that we can apply Lemma 3, giving

/3j E ans(bJcpIJ/31" ·/3j-1)

Now (30), (31) and (32) give

()/3 E ans(AP cp).

30

(32)

References

[IJ F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic Sets and other strange ways to
implement logic programs. In Proceedings of the 5th ACM SIGMOD-SIGACT Sympo­
sium on Principles of Database Systems, pages 1-15, 1986.

[2J R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modelling Prolog control. In
Proceedings of the 19th ACM Symposium on the Principles of Programming Languages,
pages 95-104. ACM Press, 1992. Submitted for publication.

[3J R. Barbuti, R. Giacobazzi, and G. Levi. A declarative approach to abstract interpretation
of logic programs. Technical Report TR-20/89, Dipartimento di Informatica, Universita
di Pis a, Corso Italia 40, 56125 Pisa, Italy, 1989.

[4J R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for semantics-based
bottom-up abstract interpretation of logic programs. Technical Report TR 12/91, Di­
partimento di Informatica, Universita di Pis a, Corso Italia 40, 56125 Pisa, Italy, 1991.
To appear in ACM Transactions on Programming Languages and Systems.

[5J C. Beeri and R. Ramakrishnan. On the power of magic. In Proceedings of the 6th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego,
California, 1987.

[6J M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Pro­
grams. Journal of Logic Programming, 10(2):91-124,1991.

[7J F. Bry. Query evaluation in recursive databases: Bottom-up and top-down reconciled.
Technical report, ECRC, Munich, 1989. An shorter version of this paper appeared at
the 16t International Conference on Deductive and Object-Oriented Databases, Kyoto,
Japan, 1989.

[8J M. Codish, D. Dams, and E. Yardeni. Abstract unification and a bottom-up analysis
to detect aliasing in logic programs. Technical Report CS90-1O, Weizmann Institute of
Science, Department of Computer Science, May 1990.

[9J M. Codish, M. Falaschi, and K. Marriott. Suspension analysis for concurrent logic pro­
grams. In K. Furukawa, editor, Proceedings of the 8th International Conference on Logic
Programming, pages 331-345. The MIT Press, Cambridge, Massachusetts, 1991. Sub­
mitted for publication.

[lOJ P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM Symposium on the Principles of Programming Languages, pages 238-252,
Los Angeles, California, 1977.

[11 J S. Debray and R. Ramakrishnan. Canonical computations of logic programs. Techni­
cal report, Department of Computer Science, University of Arizona-Tucson, July 1990.
Submitted for publication.

[12J M. Falaschi and G. Levi. Finite failures and partial computations in concurrent logic
languages. Theoretical Computer Science, 75:45-66, 1990.

31

[13] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the
operational behavior of logic languages. Theoretical Computer Science, 69(3):289-318,
1989.

[14] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A model-theoretic reconstruction
ofthe operational semantics oflogic programs. Technical Report TR-32/89, Dipartimento
di Informatica, U niversita di Pisa, Corso Italia 40, 56125 Pisa, Italy, June 1989. To appear
in Information and Computation.

[15] N. C. Heintze and J. Jaffar. A finite presentation theorem for approximating logic pro­
grams. In Proceedings of the 17'h ACM Symposium on the Principles of Programming
Languages, pages 197-209, 1990.

[16] R. Kemp and G. Ringwood. An algebraic framework for the abstract interpretation of
logic programs. In S. Debray and M. Hermenegildo, editors, Proceedings of the North
American Conference on Logic Programming, pages 506-520. The MIT Press, Cam­
bridge, Massachusetts, 1990.

[17] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

[18] K. Marriott and H. S!2!ndergaard. Bottom-up abstract interpretation of logic programs.
In Proceedings of the Fifth International Conference and Symposium on Logic Program­
ming, Washington, Seattle, August 1988.

[19] K. Marriott and H. S!2!ndergaard. Semantics-based dataflow analysis of logic programs.
In G. Ritter, editor, Information Processing 89. North-Holland, 1989.

[20] C. Mellish. Abstract interpretation of prolog programs. In S. Abramsky and C. Hankin,
editors, Abstract Interpretation of Declarative Languages, pages 181-198. Ellis Horwood
Ltd, 1987.

[21] A. Melton, D. Schmidt, and G. Strecker. Galois connections and computer science appli­
cations. In D. Pitt et at., editor, Category Theory and Computer Programming, pages
299-312. Springer-Verlag, 1986. Lecture Notes in Computer Science 240.

[22] K. Muthukumar and M. Hermenegildo. Determination of variable dependence informa­
tion through abstract interpretation. In Proceedings of the North American Conference
on Logic Programming, Cleveland, Ohio, October 1989. MIT Press. To appear in the
Journal of Logic Programming.

[23] F. Nielson. Strictness analysis and denotational abstract interpretation. Information and
Computation, 76:29-92, 1988.

[24] U. Nilsson. Abstract interpretation: A kind of magic. In Programming Language Imple­
mentation and Logic Programming 91, pages 299-309. Springer-Verlag, 1991. Extended
version to appear in the Journal of Theoretical Computer Science.

[25] R. Ramakrishnan. Magic templates: A spellbinding approach to logic programs. In
Proceedings of the 5th International Conference and Symposium on Logic Programming,
August 1988.

32

[26J R. Ramakrishnan. Magic templates: A spellbinding approach to logic programs. Journal
of Logic Programming, 11:189-216, 1991.

[27J J. Rohmer, R. Lesccer, and J.-M. Kerisit. The Alexander method, a technique for the
processing of recusive axioms in deductive databases. New Generation Computing, 4,
1986.

[28J H. Schmidt, W. Kiessling, U. Giintzer, and R. Bayer. Compiling exploratory and goal­
directed deduction into sloppy delta-iteration. In Proceedings of the Symposium on Logic
Programming, pages 234-243, San Francisco, California, 1987. Computer Society Press
of IEEE.

[29J H. Seki. On the power of Alexander templates. In Proceedings of the 8th ACM SIGACT­
SIGMOD-SIGART Symposium on the Principles of Database Systems, Philadelphia,
Pennsylvania, 1989.

[30J H. S~ndergaard. Semantic based analysis and transformation oflogic programs. Technical
Report 12, The University of Melbourne, June 1990. Revised version of PhD thesis,
University of Copenhagen, December 1989.

[31J J. Steiner. Personal communication.

[32J H. Tamaki and T. Sato. OLD resolution with tabulation. In E. Y. Shapiro, editor,
Proceedings of the 3rd International Conference on Logic Programming, London, July
1986. Springer-Verlag. Lecture Notes in Computer Science Vol. 225.

[33J E. Yardeni and E. Shapiro. A type system for logic programs. Journal of Logic Pro­
gramming, 10:125-135, 1991.

33

In this series appeared:

90/1 W.P.de Roever-
H.Barringer-
C. Courcoubetis-D. Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J .M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90120 M.Rem

90f2l K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance AnalysiS of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Ge1drop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
1. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR Seljee

92/17 W.M.P. van der Aalst

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pAS.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

92/18 R.Nederpelt
F. Kamarcddine

92/19 1.C.M.Baeten
1.A.Bergstra
S.A.Smolka

92/20 F.Kamarcddine

92/21 F.Kamarcddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.PolI

A unified approach to Type Theory through a refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

Non well-founded ness and type freeness ean unify the
interpretation of functional application. p. 16.

A useful lambda notation. p. 17.

Nominalization. Predication and Type Containment. p. 40.

BOllum-up Abstract Interpretation of Logic Programs.
p. 33.

A Programming Logic for Fro. p. IS.

	Abstract
	1. Introduction
	2. Preliminaries
	3. Concrete semantics
	3.1 Concrete domain
	3.2 Concrete semantics
	3.3 Answer substitutions
	4. Abstract Semantics
	4.1 Abstract substitutions
	4.2 Abstract interpretations
	4.3 Abstract semantics
	4.4 Termination
	5. Practical bottom-up analysis
	5.1 Complexity
	5.2 A join approximation
	5.3 Approximating answer substitutions
	6. Modeling Control
	6.1 Abstracting for partial answer substitutions
	6.2 Abstracting for call patterns
	7. Conclusions
	Appendix
	References

