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Numerical Analysis of Unsteady Viscoelastic
Contraction Flows of Multi-Mode Fluids

Frank P.T. Baaijens
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, and
EUT, CPC, P.O. Boz 513, 5600 MB Eindhoven

Abstract. The flow of multi-mode differential model fluids through planar and
axisymmetric 4:1 contractions is studied numerically, and comparison with experi-
mental results is made when appropriate. The Phan-Thien/Tanner and the Modified
Upper Convected Maxwell constitutive models are investigated. An efficient algo-
rithm is constructed by employing discontinuous interpolants for the extra stress
components and the pressure field. An operator splitting methodology is adopted
to extract the advective parts of the constitutive equation. The advective parts
of the constitutive equations are solved by application of a Time-Discontinuous/
Galerkin Least-Squares method. Satisfactory agreement with previous work and
experimental results is obtained.

1 Introduction

Accurately solving general viscoelastic flow problems for high values of elasticity is
still a major research challenge. A particularly difficult task is the resolution of flow
problems involving multiple relaxation modes in a computationally effective way.
This is necessary because most existing polymeric fluids (even carefully constructed
test fluids like the so-called Boger fluids or the M1-fluid) require the use of multiple
relaxation modes. Furthermore, there is an experimentally driven thrust towards
unsteady computations, as upon increasing the so-called Deborah number (De), and
thereby the relative importance of elastic effects over viscous phenomena, polymer
flows may pass through a number of dynamic flow transitions, as is for instance
elegantly demonstrated by McKinley et al. [12]. Finally, careful characterization of
the fluids rheology, for instance by Quinzani et al. [14], has revealed that non-linear
viscoelastic models are required to model the fluid.

The above obsérvations form the basis of the objectives of the current study: to
construct an efficient numerical algorithm to analyse unsteady viscoelastic flows of
multi-mode non-linear viscoelastic fluids. /

The use of continuous interpolations of the extra stress components, see e.g.
Marchal and Crochet [11], yields an inefficient algorithm as it entails the use of a
very high number of degrees of freedoms for the stresses, particularly in the case of
multi-mode models. Furthermore, a spécial interpolation of the extra stress tensor is
needed to satisfy the so-called inf-sup condition on the velocity-stress interpolation.
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A class of methods that can easily handle multiple modes is based on particle
tracking, see Dupont et al. [5], Luo and Mitsoulis [10], Hulsen et al. [7]. However,
in conjunction with an Oldroyd-B fluid, this method produced highly oscillatory
results as is demonstrated by Park et al. [13]. Furthermore, the iterative method
is invariably of the Picard type, giving notoriously slow convergence, as reported
by Hulsen et al. [7] and Rosenberg et al. [15]. As yet, no unsteady version of this
method appears to be available.

Mixed methods using a discontinuous interpolation of the extra stress tensor(s)
bypass the computational restrictions of the aforementioned class of mixed methods.
This methodology was first introduced for viscoelastic flows by Fortin et al. [6]. For
equal order velocity discontinuous-stress interpolation, this technique satisfies the
inf-sup condition as shown by Ying [17]. The use of discontinuous interpolation of
the stress field requires a special procedure to handle the advective terms. Fortin et
al. [6] applied the Discontinuous Galerkin (DG) method, see Johuson [8], also named
after Lesaint and Raviart [9]. Although this technique is very effective and is one of
the best-known linear advection algorithms, its implementation is cumbersome and
non-standard. In order to be computationally effective for multiple mode models,
the stress variables need to be eliminated by static condensation at the element
level. To be able to do this, the elements need to be sequenced in a special ordering.
Such an ordering is only possible for flows without recirculation, otherwise a block
relaxation process needs to be applied, giving a slowdown in convergence of the
iterative method. ;

In this study a discontinuous stress interpolation is applied because it results in
satisfaction of the inf-sup condition of the stress velocity interpolation and allows
a static condensation of the stress variables at the element level, thereby allowing
an efficient handling of muliple modes. However, the advection algorithm will be
different. Rather than using a DG method, the so-called Time-Discontinuous /
Galerkin Least-Squares method (TD/GLS), see Johnson [8] and Shakib et al. [16]
is applied, in conjunction with a discretization of the total (or material) deriva-
tive. The method is shown to be convergent upon mesh refinement for a number of
flow problems using a number of non-linear material models with single or multiple
modes up to moderate values of the De number. Furthermore, comparison with
experimental results is sought when appropriate.

2 Viscous flow

Problem definitio=: To access and illustrate some of the difficulties encountered
in a mixed stress-velocity-pressure formulation in the presence of singularities, New-
tonian flow is studied first.

Problem 1 (MV) Find (7,4,p) , such that for all (s,7,q)
(s,7—27D,) =0 1)

~(D,,7)+(V-%,p)=0 (2)

(¢,V-i@)=0 (3)
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The notation (.,.) implies: (A4,B) = [, A: B dQif A and B are two tensors, while
(a,b) = Jo ab dQ if a and b are two scalars.

Discretization: Let @;, P; denote a discretization of order ¢ on quadrilaterals and
triangles respectively. The suffix ()¢ denotes the use of a discontinuous interpolation,
ie. continuous within an element, but discontinuous at element interfaces. Three
discretization are investigated. First, in the case of a regular velocity-pressure for-
mulation a (%, p) — Q2 P{ element is used. Secondly, a continuous interpolation for
the extra stress tensor is employed: (7,%,p) — Q2Q,P¢. Thirdly, a discontinuous
interpolation of 7 is incorporated: (7,%,p) — Q4Q,PL.

Test problem: As a test problem the four-to-one contraction problem is used.
The geometry is depicted in fig. 1. The dimensions are chosen as: Hy = 4, Hy =1,
Ly = Ly = 8. The flow is from left to right. Along the entry, a parabolic velocity
profile is prescribed with a maximum velocity of 0.1.

The predicted extra stress 735 is depicted in fig. 2. The continuous interpolation
of T clearly causes significant oscillations that are not present in the other two
interpolations. Hence, upon using a mixed formulation it is advantageous to apply
a discontinuous interpolation of the extra stress field.

3 Viscoelastic flow

Problem definition: The unsteady flow of a Phan-Thien Tanner (PTT) and
of a Modified Upper Convected Maxwell (MUCM) fluid is studied in a plane or
torsionless axisymmetric flow situation.

The method proposed in this manuscript is based on an operator splitting method-
ology. The material rate in the constitutive equation represents the advective part.
During each time step this stress advection is dealt with separately from the remain-
ing part of the constitutive equation.

"Introduce the operator £; that represents the material rate as
E,T=Zt—r+ﬁ-‘7r (4)

and define the operators Lp (for PTT) and L (for MUCM) as

1 i
[,pT,' =-L. T; —T;* LT + ('9—‘ + ':;tl'(f,g))f,t (5)

'z

and
LyTi=—=L 1; —7;- LT + A(tr(1))1s, Altr(7s)) = 511-(1 + (Fitr(7:))*")(6)

Let p denote the previous (at ¢ = ¢,) position of the particle currently (at
t = t,41) located at &. Then, for each time interval ¢, — t,4;, the following
approximation of the material rate is employed,

(&, tat1) = T(F, ta) v
ST @

’Lt‘nT =
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Suppose, for the time being, that 7:(P,t,) is known, then for each time interval
I,, the mixed weak formulation of problem PVE is given by

Problem 2 (MPVE) Given 7i(,t.), find (Ti,%,p) at t = tny1, such that for all
(3,‘,’!7,!]) ;= PorM

(80, LT + LaTi — 2%&,) =0, i=1,...,N (8)
N \\4

- (D‘u,z'r’UDu'*_zTi)'l'(V 'E’p) =0 (9)
=1

(¢,V @) =0 » (10)

with 8; = 6; if a = P and 6; = A(tr(1;))™" if a= M.

The remaining problem is to determine 7(#,,) for each mode. Eq. (8) requires
knowledge of T, = T(B(Z,tay1),1s) for all Z € Q. This field can be obtained by
advecting the stress field at t = 1,, To = 7(Z,t,), by the known velocity field
computed from the preceding problem, say @(#,t). This advection problem is solved
with a so-called space-time Galerkin Least-Squares finite element method, see Shakib
[16] and Baaijens [2].

Clearly, the mixed problem MPVE and the advection problem are coupled. To
find the actual solution they are solved in a decoupled fashion in association with
an iterative procedure. Problem MPVE is non-linear and the Newton iteration
scheme is used to find an approximate solution. At the beginning of each Newton
iteration, the advection problem is solved first, using the most recently computed
approximation of the velocity field. This supplies an estimate for 7, as required to
solve problem MPVE. This iterative procedure is continued until convergence.

Discretization: Based on the results of the Newtonian flow example, the following
discretization is employed:(7;, @, p) — Q4Q,P{. In the advection step a continuous
bi-quadratic interpolation is used.

Test problems: Two test geometries are experimented with: the plane and ax-
isymmetric four-to-one (4:1) contraction problem. These geometries are selected due
to the presence of a corner singularity. C

The 4:1 contraction geometry is sketched in fig. 1. In all computations a one-
step Newton iteration procedure is adopted and the time step is fixed at At = 0.01
for example 1 and At = 0.1 for example 2.

Example 1: plane 4:1 contraction. Recently, Armstrong et al. [1] published
detailed LDV and birefringence measurements of a 5.0 % wt PIB/C14 solution
through a plane contraction. This material has been extensively characterized by
Quinzani et al. [14]. In their study, Armstrong et al. used measured velocity
profiles along the centreline of the contraction to compute the viscoelastic response of
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the material using several non-linear constitutive models (Giesekus, Bird-DeAguiar,
PTT and Acierno et al.). They concluded that the PTT model gave the best fit on
the elongational viscosity. The PTT model is therefore used in this work to compute

the viscoelastic flow.
The linear viscoelastic spectrum employed is listed in table 1.

mode # 9,‘ 7 &;
1 0.6855 | 0.0400 | 0.25
2 . |0.1396 | 0.2324 | 0.25
3 0.0389 | 0.5664 | 0.25
4 0.0059 | 0.5850 | 0.25
(0) solvent ~10.0020

Table 1: Parameter setting of multi-mode PTT model to fit 5.0 %wt PIB/C14
solution

Based on shear data, &; was selected as 0.13. However, normal stress measure-
ments along the centreline of the contraction suggested the use of &; = 0.25. This
value is used in all multi-mode computations of this PIB solution.

The shear-rate-dependent Deborah number (De) is defined as

()7
De=—2L 11
2n(7) (11)
with
Tez — Ta
U =W 12
1 = (12)

In all computations the shear rate is specified by ¥ = 53> where < v > is the
average velocity in the downstream channel, and Hs is half the gapwidth of the
downstream strip. The channel dimensions are: Ly = 0.05, Ly = 0.01, H; = 0.0032
and H, = 0.0095. '

Only one analysis is discussed here: De = 0.77. The maximum velocity at the
exit is 0.2554, while a parabolic velocity profile is assumed.

Three meshes have been used, called Mesh1, Mesh2 and Mesh3. As a represen-
tative, Mesh1 is depicted in fig. 3. Some characteristic mesh parameters are given

in table 2

Mesh # | hmi # elements | # nodes
1 2.15e-4 270 1167
2 1.06e-4 | 520 2197
-3 2.07e-4 540 2291

Table 2: Characteristic mesh parameters
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Fig. 4 compares the computed first normal stress difference along the centreline
for Mesh1 (solid line), Mesh2 (dashed line) and Mesh3 (dotted line) with the mea-
surements of Armstrong et al. [1]. Computed and measured results are in reasonable
agreement, while convergence upon mesh refinements is also demonstrated.

Example 2: axisymmetric 4:1 contraction. Coates et.al [4] studied the be-
haviour of the MUCM model in axisymmetric contractions for a single relaxation
time. The MUCM model is designed to give Newtonian behaviour near the singular-
ity. In this study a qualitative comparison is made with the results of Coates et al.
[4] for the four-to-one contraction problem. The channel dimensions are: Ly = 16,
L2 = 32, Hl“—'— 4 and H2 =1.

At both the entrance and exit a parabolic velocity profile is prescribed; in all
cases the maximum velocity at the exit ¥pn., = 2. A sequence of De numbers is
computed by increasing the relaxation time 6.

Fig. 5 compares the computed vortex size of this work as a function of the De
number with experimental results of Boger et al. [3] and the numerical results of
Coates et al. [4]. The dimensionless vortex size is defined as the vortex length
divided by the upstream tube diameter. As reported by Coates et al. [4], the
computed results match the experimental results unexpectedly well. Coates et.al [4]
could not reach values of De larger than 2.69, while the current method converges
at least up to De = 6.11. No attempt has been made yet to reach higher values of
De.

4 Conclusions

An efficient algorithm to compute the unsteady flow of multi-mode differential model
fluids through planar and axisymmetric contractions has been constructed. The
algorithm is efficient in the sense that all stress and pressure degrees of freedom
can be eliminated on the element level by means of static condensation. Therefore,
computation of the Jacobian matrix roughly scales with the number of modes, while
solving the resulting system of equations is no more expensive than solving the .
regular Stokes problem in a velocity-pressure setting.

‘Comparison with other work, notably Coates et al. [4], shows that upon using
the MUCM model the computed stress fields at De = 2.29 compare well, while the
vortex growth matches the experimental results of Boger et al. [3]. Also, much
higher De could be obtained with the current method than with the EEME method
employed by Coates et al. [4].

Knowledge of the local stress behaviour in the contraction flow is essential for
judging the behaviour of a particular constitutive equation. The results presented
by Armstrong et al. [1] are therefore extremely valuable. The agreement of the
predicted stress fields along the symmetry line of the plane 4:1 contraction with
experimental results is satisfactory. :

It is a great challenge to push the current method towards predicting the un-
steady three-dimensional flow patterns in axisymmetric contraction flows described
by McKinley et al. [12]. It is believed that the current method is sufficiently efficient
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to be extended towards three-dimensional computations. This will the subject of
future work.
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