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Cut-on cut-off transition in flow ducts: comparing
multiple-scales and finite-element solutions

Nick C. Ovendef
University College London, WC1E 6BT, United Kingdom.

Walter Eversmah
University of Missouri-Rolla, Rolla, MO 65409-0257, USA.

Sjoerd W. Rienstra
Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

The phenomenon of cut-on cut-off transition of acoustic modes in ducts with mean flow is examined us-
ing an analytical multiple-scales solution, and compared to solutions obtained from a numerical finite-element
method. The analytical solution, derived for an arbitrary duct with irrotational mean flow, remains valid to
leading-order throughout the duct. In other words, it is a composite solution, encompassing both the inner
boundary-layer solution in the neighbourhood of thetransition point and the outer slowly varying modal solu-
tion far upstream and downstream. Several test cases are defined and presented within a geometry representa-
tive of a high-bypassturbofan engine. The cases span a widerealistic range of frequenciesand circumferential
mode number s both with and without mean flow, including one numerically-challenging investigation of cut-
off cut-on transition of a mode. The agreement isin most casesremarkably good. Slight differencesin position
of the pressure pattern can be observed for cases with mean flow, which seem due to the dlight variationsin
mean flow fields obtained from both methods. When cut-on cut-off transition occurs for high Helmholtz num-
ber and high radial mode number a certain amount of modal scattering is observed. An attempt is made to
explain this by incorporating the presence of neighbouring modesin the asymptotic scaling argumentsfor the
turning point region. The composite solution should enable designersto continueto use multiple-scalestheory
to examineflow pressureand noisetransmission insidean engine duct, whilst now being abletoincludedirectly
the contributions of modes undergoing transition without encountering singular behaviour.
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Roso, 000s Coo = reference values,

v, p, 0,6 ¢ velocity, pressure, density, sound speed, potential

v, P, 0, C ¢ time-harmonic velocity, pressure, density, sound speed, potential perturbations
V,P,D,C = mean flow velocity, pressure, density, sound speed

Uo, V10, Po, Do, Co approximate mean flow variables

X,r,0,t axial, radial, azimuthal angle, time coordinate

e, &, & unit vectors inx, r, 9-direction

X eX, slow variable

cut-on cut-off transition point ifX, X coordinate

= (square root of) eigenvalue ¢f, in axisymmetric geometry: radial modal wave number
ratio of specific heats

small parameter, representing typical axial duct slope

SIx|3/2

3

axial modal wave number

reduced axial wave number, Eq. (19)

factor of Y, in annular duct eigensolution

eigensolution of Laplace operator in a cross-sectional plane

= Helmholtz number (dimensionless angular frequency)

X
X
I

E_RAxT vy ® R
I

. Introduction

SUND transmission through a duct of slowly-varying creestion can be modelled using the theory of multiple
cales. This theory was first applied to ducts without mean'fiamd extended in later works to include cases

with mean irrotational flof, mean swirling flow and most recently non-axisymmetdacts (with mean irrotational

flow).# The multiple scales approach provides an attractive alternative to a full numerical solution of acoustic modes
in aeroengine ducts, as the calculation complexities are only marginally more than finding the eigenmodes inside a
straight duct. Indeed, a recent comparison of multipleescablutions of sound propagatiwith those obtained from

a numerical finite-element method shows good agergracross a range of realistic engine frequerkies.

The multiple-scales approach allows sound s$raission to be represented by a summatiorslofvly varying
modes, which depend on a slow axial variable based on the the slope of the duct walls as a small parameter. Crucially,
the amplitudes of these modes vary on the slow scale andetermined via a solvability condition. However, the
multiple-scales approximation breaks down at positions w/ittee amplitude of a particat mode becomes singular.
These singular transition points areagogous to the turning points observedsiolutions to Sclirdinger’s equation,
and represent the complete reflection of a cut-on propagating mode and transmission of a cut-off attenuating mode (or
vice-versa).

The turning-point behaviour of such a mode can be analysed by examining the solution in a boundary-layer region
encompassing the singularity. Within this region, the original slowly-varying assumption fails to hold and a different
approximation leads to the non-convective axial variation of the mode satisfying Airy’s equation. Such an analysis
was performed for both axisymmettié ¢ and non-axisymmetric duétsilike in cases of no mean flow, irrotational
mean flow and mean swirling flow (axisymmetric only). In all cases it was shown that the incident cut-on mode is
completely reflected in the axial plane with a phase shift (. In the event that an isolated acoustic mode undergoes
cut-on cut-off transition, no energy is propagated beyoedrinsition point. Similar partial reflection of modes also
appear to occur in lined ducts (so-callaear transition) where the refleati@oefficient has magnitude and phase
determined by the properties of the mean flow and liner impedance.

An understanding of cut-on cut-off behaviour in hard-wabieicts is important for engine design applications. The
usual design of rotors and stators is such that at least for the first harmonic all interaction modes are cut-off. Cutting
off acoustic modes by varying the duct geometry could, in principle, add to further reduction of the noise output of an
engine. However, reflection of a cut-on mode may also result in the mode becoming trapped inside a section of the
duct, possibly leading to acoustic resonance and instability; such a scenario has been investigated greviously.

In this paper, an explicit analytical solution for transition, either from cut-on to cut-off or vice-versa, is compared
against the solution obtained from a numerical finite-element method. The analytical sbjdigsived for an arbitrary
duct with mean irrotational flow, remains uniformly valid to leading-order throughout the duct. In other words, it is a
composite solution, encompassinglbtte inner boundary-layer solution inet neighbourhood of thtransition point
and the outer slowly varying modal solution far upstream and downstream. This composite solution can therefore be
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applied exactly as a normal slowly-varying mode, without any need to calculate the size of the boundary layer around
the transition point, nor match the inner and outer solutions together at some intermediate interface. Such a solution
should enable designers to continueusee multiple-scales theory to examinewl pressure and noise transmission
inside an engine duct, whilst now being able to includediy the contributions of wdes undergoing transition
without encountering singular behaviour. The finite-element soltfisolves directly the potential flow equations for

linear acoustic perturbations of a compressible inviscid isentropic irrotational mean flow, which form the original basis
for the multiple scales approximation.

To test the analytical composite solution, absolute pressure plots are compared against those obtained from the
finite-element model. Following in a similar manner as a previous comparison of two of the dytkeveral cases
of modes undergoing transition from cut-on to cut-off axamined within a generic engine inlet-duct geometry at
realistic engine frequencies, with andtlout irrotational mean flow. An add@nal numerically challenging case of
an attenuating mode cutting-on in the duct is also examined.

The outline of the paper is as follows. Section Il details the derivation of the potential flow governing equations
and boundary conditions which are common to both moddétsigawith a description of the duct geometry. The
subsequent sections Ill and IV then describe briefly the derivation of the multiple-scales solution for simple modal
transition and the finite-element model respectively. Témults and discussion of seven test cases are presented in
section V followed by an discussion on the occurrence of modal scattering in section VI and conclusions in section
VII.

Il. Potential Flow Mode€

A. Derivation of the governing equations

Consider compressible perfect isentropic irrotational gas flow, consisting of a subsonic mean flow and small acoustic
disturbances, inside a duct of slowly-varying cross section. The problem can be non-dimensionalised by scaling all
spatial dimensions on a typical duct widi,, densityp on some reference value for the gas, velocitiesy and

sound speed on a reference sound speed of the gastimet on Ry, /Co and pressur@ on poocgo. The perfect gas
condition implies constant heat capacities and the ratio of specific heats at constant pressure and volume is taken as
y = 1.4. Itis further assumed that (i) the acoustic variatiarestoo rapid for heat conduction (Péclet number is large)

and (ii) the viscous forces are negligible (Reynolds benis large). The resulting governing equations are

ap - /00 _ L ~ dp _, _
LAV =0, (5 +5-V8)+Vp=0  yp=p. E= L= (1)
ot ot do
The assumption that the flow is irrotational allows us to introduce a velocity poténtiahered = V¢, and to
integrate the above momentum equation to obtain a variant of Bernoulli’'s equation, where
ap 1
ot 2

62
y—1

<12
|Vo|” + @)
is a conserved quantity throughout the flow.

Following the analysis of Rienstrathe flow is split into a steady irrotational mean flow, with no swirling compo-
nent, and infinitesimally small harmonic perturbations of angular frequency (Helmholtz numnbef) to represent
the acoustic part. Thus,

[5.5.p.¢] =[V.D.P.C] +Re[[v¢,p, D, c]éwt}. 3)
Substitution of this form into the governing equation leads to the following system
1,2 C? 2 P 1

vV.(DV)=0, Z|V|°"+—=—=E, C?’=y—=Dr1 4

(DV) 5IVIT+ - S (4)

for the mean flow field, given some constdat The acoustic field can be described, after eliminating pressure and
density perturbations, as a solution to the general convected wave equation

V-(DV$) ~ D(iw+V -V)[C (v +V -V)¢|=0. 5)
The pressure and density perturbations can subsequently be recovergdiyaime expressions
p=-D(iw+V-V)p, p = C?p. (6)
30f18
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B. Test geometry and boundary conditions

Both the multiple-scales soluti6i? and the finite-element mod8 1 .
can be applied to ducts of arbitrary shape, although for this paper tg_g»
inlet duct is taken to be axisymmetric. The duct geometry can be |
described ideally in cylindrical coordinatés, r, ) wherex is the 067 1
axial coordinate with unit vectagy, r is the radial coordinate with ¢4
unit vectore, andé is the azimuthal coordinate with unit vector

€. The test geometry chosen represents a realistic generic infest|
duct geometry of a high-bypass turbofan engine, similar to the one
used in a previous comparison paper of two of the authoFhe .|
positions of the inner spinner and outer nacelle can thus be defined
by two nondimensional radial functions= R;(x) andr = Ry(x) 04
respectively. A cross-sectional schematic of the inlet duct usedqg| i
shown in Fig. i. The reference vwads for nondimensionalisation are
taken atx = 0, such thaR»(0) = 1. The outer radiu®, and inner 0.8 I——
radiusR; are described by the following formulas -1

1

0 0.5 1 x 15 2

) e—ll(l—y) _ e—ll
Rz(x) = 1—0.18453/° + 0~10158Ts 7) Figurei. Generic inlet duct of a high-bypass turbofan
engine.

Ri(x) = max0, 0.64212— (0.04777+ 0.98234/%%2),

wherey = x/L andL = 2 (and not 186393 like ir) is the length of the duct.

The sound is taken to be emitted from the left of the source plaxe-ad, which roughly represents the position of
the turbofan inside a real aeroengine. The incident cut-on sound waves then propagate from left-to-right in a positive
sense axially. As this is an inlet duct, any mean flow is assumed to come from the opposite direction to the incident
sound, approaching the fan from the right of the picture. For both solutions, the mean flow is selected by its Mach
numberM attained at the source plare= 0 with nondimensional sound spe€dand densityD set equal to unity
there (sdJ (0) = M). These conditions fix the constatin the mean flow governing equations, and the axial mass
flux F. Applying radial boundargonditions that the normal velocity vaies at the spinner and at the outer wall
consequently determines the mean flow field completely throughout the duct.

As we are examining the phenomenon of cut-on cut-off transition, both inner and outer walls are assumed to be
hard with infinite impedance. Hence for the acoustic fitie necessary boundary condition to be imposed at the walls
is that the normal velocity vanishes at both inner and outer walls. In other wa¢gds); = 0 atr = R, (x), whereng
andny are the outer normals fd®; and R, respectively.

[11.  Multiple-scales approach and composite solution

A. Sowly varying mean flow

The WKB approximation is based on the assumption that the geometry and mean fibowdyevarying on a length

scale much longer than a typical acoustic wave length. As we are interested in waves typically equal to or shorter

than a duct radius, geometry and mean flow should vary slowly on a lengthscale much longer than the duct radius.

The approximate mean flow solution, compatible with the WKB approach, is then obtained by the method of slow

variation1! For the analysis, a slow axial variable = ¢x is defined, where « 1 is a small nondimensional

parameter representing the typical slope of the duct walhke slowly varying duct walls can therefore be expressed

as functions of this slow variable, so that for any arbitrarily duet Ry (X, 6) andr = Rx(X, 6) for inner and outer

walls respectively. Note that without change of notation we in the actual calculatiorand results tb definition

from Egs. (7) ofR (x), i.e. depending orx, whereas in the analysis the functidRswill be assumed to depend ot
Assuming the mean flow is irrotational with axial variations in the slow varixbtely, it follows? that it is nearly

uniform, and we can expand the mean flow variables in termg@bbtain

V(X,1,0; ) = Ug(X)ex + eVio(X,1,0) + O, P(X,r,0;¢) = Po(X) + O(s?),

2 ) (8)
D(X.r,8; ) = Do(X) + O(e?), C(X,r1,0;8) = Co(X) + O(&?).

Here,eV, o represents a small crosswise mean flow component ig,thadey directions; for the case of an axisym-
metric duct, this is purely radidl. The solution to the mean flow equations, Egs. (4), in terms of the two defined
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physical constantg andF is given by

F 1., Dyt
s Y0 + = E,
Do(X) & feerdrde’ 270 (v =1

Uo(X) = 9

with Cp and Pp obtained from the other relations in Eqgs. (4).

B. Sowly varying acoustic modes

On obtaining a mean flow consistent with the slowly-varying approximation, the method of multiple-scales (MS)
enables the acoustic field in a slowly varying duct to be represented as a summation of slowly varying modes of the
form*

i X
¢ (X, 1,05 8) = NOX)Y(r, ; X) eXp(—;/ M(C;S)dC>- (10)
The functiomy (r, 8; X) is the solution to the following eigenvalue problem in the cross-sectional plane
19 (9 1 92 )
(2= (r= —_ = 11
<r8r (r8r>+r2892)w v, (11)
with hard-wall boundary conditions
W 1R oy .
o =R 90 9 atr = R(X,r,0),i =1 (12)

and the slow axial variablX acts as a parameter. The eigenvadewith eigensolution) satisfies the dispersion
relation

(@ — nUg)?
T u? =a?, (13)
0

which, in turn, determines the axial wavenumpeiX; £) = u(X) + O(£2). It expedites the analygiso normalise
the eigensolution by integtiag its square across the cross-sectional plane at ¥asthtion, ensuring

21 rRx(X,0)
/ / Y2(r,0; X)rdrdo = 1. (14)
0 R

1(X,60)

For our test case of an axisymmetric annular duct, the eigensolution is a combination of Bessel functions of first and
second kinds multiplied bg~'™ for circumferential wavenumben (for a spinning moden # 0). Explicitly then,

we havé

W(r,0: X) = Jn(@r) = YOO Ymler) e ™ for m 0, (15)

g ( R227m2/a2 _ R127m2/a2 )

7T \[aR2Y[p(@R)?  [aRy Yih(@RpJ?
whereY (X) and the radial eigenvalug X) can be determined from the hard-walled boundary condition in Eq. (12)
now simplified to%—‘f’ = 0. Thus,

Jole(ORXT _ JplaOR(X)] _
YinleCOR (01~ Yl R(X)]

Y(X). (16)
For a hollow cylindrical ductR; = 0) these expressions reduceXdX) = 0, a(X) determined from the boundary
conditionJ,,(«R2) = 0, and

2\ —1/2 )
v 6: x) = m@n_ /2 (Rzz—ﬂ) e ™ for m 0. (17)

In(@R2) T a?

Lastly, the slowly varying amplituddl (X) is determined from aolvability conditiorf# 12to be

_ Co(X)
B T e) 49
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for some constan® (obtained from the sound source) and where

2
o(X)z\/l—(Cg—Ug)%, (19)

is defined as the reduced axial wavenumb&he reduced axial wavenumber is the axial wavenumber rescaled without
its convected part, explicitly
Coo — Ug
= wW— 5.
Cs— U2

The two solutions of the square root represent two copatémodes travelling in opposite directions axially along
the duct. For cut-on modes that propagate axially in the dugs, purely real, whereas for cut-off modes that are
attenuated and do not propagate along the dui,purely imaginary (see Fig. ii).

C. Cut-on cut-off transition

Hard-wall transition points occur in a slowly-varying duct when the reduced axial wavenumber, Eq. (19), becomes
zero (see Fig. ii) making the modal amplitutig X) in Eq. (18) singular. Hence in the neighbourhood of such a
point X, with o (X;) = 0, the slowly varying assumption breaks down and a new approximation to the leading-order
governing equations is necessary. For non-swirling mean flow, the analysis perfdtfoedn isolated propagating

cut-on mode reveals that at the singular point, the mode is completely reflected into its opposite running counterpart
with a phase shift ogn. Thus, for such an isolated mode propagating in the positidirection towards the singular
(transitional) point aX; we find that ahead of transitioX(< X;),

X X
¢ = NX)w(r,9; X) exp( y Czw 02 dX) |:exp(__ ’ C(;)Coa dX)+|exp( y chid)(/>]’ (20)
t 0 t t

where the first term represents the incident mode &edsecond the reflected mode. Beyond the transition point
X > Xi, a cut-off attenuated mode is transmitted of the form

H X
¢=N(X)W(r,9;X)exp(lg/X “’Uo dX exp( /Xé)co'al ) 1)
)

which does not propagate axially and carries no energy. It is important to remark here that the inclusion of the reflected
mode is needed to conserve acoustic energy throughout thé duct.

The expressions Eq. (20) and Eq. (21) represent the so-calledsolution to the problem, as they are only valid
away from the transition locatioX; when|X — X¢| ~ 1. In the neighbourhooX — X¢| ~ £2/3 an inner solution
holds to leading order, the non-convective axially varying part of which is a solution to Airy’s eqdltiowhilst it
is relatively straightforward tonatch the inner and outer solutions to obtain the required reflection coefficient, it is
extremely difficult to use them alone to evaluate the resulting pressure and velocity perturbations inside the duct. This
is because the inner region can take up a sizable proportibtied duct in reality and, of course, no exact axial station
X exists where the inner solution ceases to be valid and the outer solution can be substituted instead. Such a problem
may be circumvented by finding a composite solWtiamich is valid to leading order throughout the duct. For the
case of an incident cut-on mode propagating in the posKhgidrection described above, a composite multiple-scales
solution for this mode can be derived to leading order of the form

1/6 . 2/3 wU
31 (X wCyo 3i X wCho L% wo2pdx!
/ r,0; X = = dX' | A= 7dx e "G (22
¢ Q 1”( )|: 280’3 Xq Cg—Ug :| (28 X4 CZ ( )

Here, Ai is the Airy function of the first kind, and the eigensolutigtr, 6; X) and the mean flow field are exactly
as those determined for a normal slowly-varying mode in previous andlys&be constant is obtained from the
source of the incident sound and differs from Qen Eq. (18) by some constant§ = Zﬁe% Q. As one might
expect, using the asymptotes of(8) given in the appendix by Egs. (28) it can be shown that in the liXitg X;
andX > X;, the composite solution, Eq. (22), tends to Eq. (20) and Eq. (21) respectively.
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cut-off Ieft-runninq\

®

o (Xt) =
-1 1
realaxis __ _ __ ____ — R - ; i~ .. S S ——
cut-on left-running i cut-on right-running

&

H cut-off right-running

=2

£

Figureii. Sketch of thelocation (: ) of the reduced axial wavenumber of three right-running (o) and their corresponding left-running
(—0o) modes () in complex plane. The second mode is about the passthe turning point X, corresponding too = 0.

D. Cut-off cut-on transition

A more general composite solutibderived directly from the acoustic governing equation, Eq. (5), is

1/6 i rX oY
31 (X wC LX 2o gx
=0 1//(r9 X) —/ 209 _ax’|  {aAi(s) +bBis)le G 23)
208 [y, cZ-u3
for
3i (X wCoo . \2/3
- aow™) (24)

The arbitrary constanis andb are set by the two counterpart modes approackin§rom either side. From such

a general solution we can derive cut-off cut-on transition, when an isolated cut-off mode propagating in the positive
X-direction becomes cut-on at the poi. Clearly in this case, foK > X; and|X — X;| ~ 1 we must only have a
transmitted cut-on propagating modergal and positive) of the form

i »Ug NG X Cpo /
x oo — i Jx Z Ude

» =NX)Y(r, 6; X) e’ - Ug

(25)

From applying the large argument asymptotes in Egs. (28) for both Airy functiofs And Bis) ass — —oo
(corresponding toX > X; ando real and positive), the required composite solution for cut-off cut-on transition
satisfying Eq. (25) can be found and takes the form

oUg

1/6
/ 31 wCoo ., _ o L X oY g
¢=7Q 1//(f 0; X)[ 28;/)({ - U2dX} {Bi(s) —iAi(s)}e " %~ u (26)

V. Finite-element solution

The numerical model for duct propagation is based on a finite element (FEM) discretization of the steady flow
field equations, Egs. (4), and the acoustic field equations, Eq. (5) and Eq. (6) on the axisymmetric domain shown in
Fig. iii. The computational domain coists of the defined duct geometry, shown between dashed boundaries, plus
extensions which are required in the mean flow model to assure locally uniform flow. The acoustic source plane is at
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Figureiii. Calculational domain of FEM solution (including the lead-in)

the left domain boundary. The right domain boundary is extended from the nominal inlet plane, defined by the real
duct geometry, to the exit plane where mean flow and acoustic boundary conditions are imposed.

A. FEM model for duct propagation

The steady compressible flow field is obtained from a Galerkin FEM formulation in terms of velocity potential of the
first of equations Egs. (4), the continuity equation, lineediat each step of an iterative process with density allowed

to be spatially dependent. The secard! third of equations Egs. (4), the momentum equation and state equations,
are subsidiary relations used to update the density paddsof sound at each step. Mass flow rate is specified on

the source plane and the exit plane is assumed an eqeredtsurface. The computational source and exit planes

are generally placed a distance from the non-uniformoregif the duct to assure locally uniform flow. In acoustic
results presented here the source plane extensiof8githes the local outer duct radius, and at the termination plane

the extension is @5 times the local duct radius. The mean flow fieddiescribed in terms of the mean flow velocity
potential which is required as input data for the acoustic FEM model. The mean flow mesh is the same as the acoustic
mesh to simplify data transfer.

The finite element model for acoustic propagation is also a Galerkin formulation based on the acoustic convected
wave equation in terms of acoustic potential, Eq. (5). Equa (6) are the acoustic momentum (or energy) and
state equations used to post process the acoustic potential to obtain the acoustic pressure and the acoustic density.
The source is introduced at the source plane in termsaidémt (right-runmg) acoustic potential modal amplitudes.
Reflected (left-runmig) acoustic potential modal ampides are obtained as part of the solution. At the termination
plane the acoustic field is represented by transmittgth{{ruinning) acoustic potentialodal amplitudes and reflected
(left running) acoustic potential modal afitpdes. The termination plane is assed to be non-reflecting, and this
is forced by requiring that reflected modal amplitudes vanish. Acoustic power is computed at the source plane and
termination plane based on acoustic potential modal amplitudes by using the definition of Morteyid in the
case of irrotational acoustic perturbations on irrotational mean flow. In addition, acoustic power is computed at any
specified axial location using the Morfey definition, but by post-processing the acoustic potential.

FEM modelling of acoustic propagation and radiatiomon-uniform mean flow is presented in detail in previ-
ous workst% 14 More specific details of FEM applications to ducted flows terminated by reflection-free boundary
conditions can be found elsewhéfe!®

B. Comparison of the multiple scales(MS) and FEM formulations

There are no differences in the field equations (3-6) used in the multiple scales solution and the finite element model,
including the convention for non-dimeogalisation. The MS solution proceedsihe basis of the primitive variables,
whereas FEM is in terms of mean flow and acoustic potentials, with acoustic pressure recovered by post-processing.
In both formulations the source is introduced by acoustic modal amplitudes.

The FEM formulation admits scattering as an integral part of the solution, manifested at the source and termina-
tion planes by coupling between incident, transmitted and reflected modal amplitudes. In general there is observed
reflection of the incident mode and other modes which are not incident as well as transmission of modes which are not
incident. This will be clearly seen in examples which aresented. Such scattering is not such a direct feature of the
multiple-scales solution.
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The ability of the MS solution to capture the essential details of the FEM solution is of principal interest in this
investigation.

V. Results

The seven test cases considered examine a single aadiastic mode undergoing transition from cut-on to cut-off
(or vice-versa) at one axial location along the test geometry. The cases have realistic engine frequencies (Helmholtz
numbers) lying in the range 11 66 and realistic circumferential wavenumbers lying in the rangesa.. Three of
the cases are without mean flow to serve as useful benchmarks, whereas the other four have a mean flow which attains
an axial mach number of.B at the source plane. To ensure the mean flow profiles are equal for both methods at the
source plane, the straight lead-in required for the FEM solution to the left of the test geometry is also included in the
MS solution and its plots; see Figs. i and iii. For cases@, the mode in question undergoes cut-on cut-off transition
and the finite-element (FEM) solution is compared to the multiple-scales (MS) composite solution given by Eq. (22).
Case 7, however, is of an incident attenuated mode that cuts on close to the source plane, and here the FEM solution
is compared to the appropriate composite solution given by Eqg. (26).

For each test case, contour plots of@hte pressure are obted from both FEM and MS solutions and plotted
side-by-side for direct comparison. On the contour plot from the MS solution, a black dotted line is drawn at the axial
location where transition is predicted to ocdwe, atx = x;. From the FEM solution, a data table is also provided for
each case, containing the power and amplitudes (magnitude and phase) of all the relevant incident and reflected modes
at the source plane as well as of all the transmitted modes at the termination plane. This data highlights the magnitude
and extent of any modal scattering predicted by the FEM model.

Error estimates and the brief discussion later on the occurrence of modal scattering requires some estimate of the
small parametet. This can be given by the typical slope of the duct geometry, which for the outer nacelle is d@bout 0
Of course, the slope of the inner spini&(R; (x)) is clearly larger than this. However, the spinner’s centralness in the
duct means that its slope is actually less important. This is due to the behaviour of the cross-sectional eigenfunction
¥ at smallr, which goes like™ for circumferential ordem. Therefore, taking = 0.1 can be regarded as a highly
reasonable estimate.

Casel. No-flowwithm=21L,w=41landn=4

We start with a benchmark case (Fig. 1) without mean flow, but with realisttmdw in aero-engine applications.
Transition point occurs (from MS) a¢ = 1.49. The agreement is evidently excellent. The WKB assumption of no
exchange of energy between other radial modes than the incident and its mirror reflection is confirmed by Table 1 of
modal powers (from FEM). Note important features such as (i) interference of incident and reflected modes creates
the bumps in absolute pressure implying a standing #va(ig the largest pressure rise occurs just ahead of transition

due to Airy function’s behaviour.

Case2. M =05withm=10,w=11andn=1

The second case is with low radial maale- 1, relatively lowm andw, but with strong mean flow (Fig. 2). Itis based
on a case already attempted by Thiele et’glwhich provides a further comparison. The inner solution appears to
span the majority (if not all) of the duct. From Table 2 we see that no scattering into neighbouring modes occurs. The
unadjusted MS solutionM = 0.5 andw = 11) is already very similar to the FEMbkution, but is slightly receded.
We speculate (given the excellentragment of the no-flow case above and the typical error in the approximate MS
mean flow of@ (¢2) which is here a few percent) that this may largegyexplained by the slight mean flow differences
between MS and FEM. The MS solution can be ‘tuned’ to achieve a better match, either by adjusting the frequency or
the mean flow. The position of the turning point is highly sensitive; 26 mean flow anc 1% frequency alteration
is required. Indeed, Thiele et al. also found for a similar configuratioe=(11.129) the same features including a
highly sensitive position of the turning point to mean flow variations.

This is easily explained by noting that the positiongfis determined by (X;) = 0 with Egs. (9), (16) and (19),
which may be considered as a set of algebraic equatioll in and X. This means that

XM + AM, @ + Aw) = X(M, 0) + O(AM) + O(Aw).

If AM = 09(¢2) (which may be expected), the error ¥ is also®(¢2), and thus the error i% is ©(e), in other
words, in the order of 10%, which is indeed what we observe. In the same way it is clear that only a@kiff)an
eitherM or w should suffice for readjustment.
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Case 3. No-flowwithm=51, w =66andn =2

The next case is for no flow but with highandw; see Fig. 3. Excellent agreement once again is obtained in terms of
absolute pressure and prediction of the transition point location and modal reflection, while Table 3 confirms absence
of modal scattering.

Cased4d. M =05withm=51, w=575andn=2

The fourth case, Fig. 4, is relatively difficult numerically, with realistic high frequency and mean flow. The agreement
is again very good despite the transition point in the MStsmtubeing slightly to the left of that in the FEM solution.
Table 4 shows no significant modal scattering.

Case5. No-flowwithm =20, =502andn=7

This case, Fig. 5, examines the composite solution’s behaviour with high radial order modes. For this no-flow case
there is very little if no scattering perceivable (onlyoait 1% of the power leaks into mode 6; see Table 5) and the
agreement is excellent. Howeveomapare this to the a high-radial order case with mean flow below (case 6).

Case6. M =05withm=20,0w =444andn=7

This case, Fig. 6, is for a mode of high radial order and high frequency and large mean flow. Prediction of the transition
point seems to be fairly accurate but notice (Table 6) ttgelamount of scattering into the neighbouring cut-on modes
(n = 6-transmittedn = 8-reflected).

Case7. M =05withm=5,0=198andn=5

Finally, in Fig. 7, we present a challenging cut-off, cut-on transition case obtained from the other composite solution
given by Eg. (26). An incident cut-off mode rapidly cuts-on a short distance away from the sourcexplan@.{8)

and a reflected cut-off mode must be produced. The two solutions show similar features, such as large pressure
amplitudes over the surface of the spinner and in the hollow part close to the centre line. Some scatter is apparent into
other radial modes; see Table 7.

VI. Somethoughtson modal scattering

Suppose we have two slowly varying modes, which are independent (albeit approximate) solutions of the problem
whenever they are non-singular.

a)Coal

¢ = mm(r 0; X) exp( /Xt C2 ’) ml/fz(r 0; X)exp( /Xt CC;COGZ ’)}
( wC_gO >1/2 exp('g ) 7C§)B?Jgdx/). 27)

From the linearity of the probkim it follows that no interaction with each othe necessary or to be expected. However,

this changes near a turning point where (say)= 0 and mode 1 has to share its energy with other modes because
(a) itis not any more an approximate solution of the problem and (b) the energy flux associated with mode 1 vanishes
beyond the turning point.

In order for mode 2 to exchange energy with mode 1, it has to be as singular, or at least of the same order of
magnitude, as mode 1. The obvious first candidate is the mirror (the same but opposite-running) mode, of which
o2 = o1 = 0. This is however, not always the only possible candidate.

So we are posed the question: suppose that moade Irevde 2 are neighbouringades, under what conditions
doesoz ~ o1 in the turning point boundary layer (given that order of magnitude estimates of all other factors do not
alter inside the boundary layer)?

First we note from the definition, Eq. (19), efthat foroq = 0 ando> to be nearly zero, both; anda; must be
approximately equal t6C3 — U2)Y2w, which is only possible (if the duct diameter is not very small) if botnde
are large; this is certainly true in our examples demonstrating modal scattering.
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From the previous analyse8 it follows that in the boundary layer,
X = Xy + 6237,

we have
CotCor — UotUy
Ca —U&

where subscriptindicates evaluation & = X; andA is given by

/
o2(X) = o2 (Xt + 237 te) = —282/3( + Z—:)/\—lg + O(c*3?),

3 ZwZCCZJt (C()[Cét — U()[Uét a_{>
(Ca —U2)2\  C3 —Ua at

In the original analysis. = @ (1) by assumption, but this is not fully satisfied herewais large. For the question:
when isoz ~ o1, we first note that

2 2
o )
from which we immediately get
2 2 2
G2 1% i 9 2
2 — O[z 291
1 1

For large order, the differenao between consecutive eigenvalues tends to a constass, is@f the same order as
o1 if:
2 2\2
Ad 12 232 (Cg —VYg)
—201=¢ 202
o 20°C§

&.
Since normally the term’/a in A dominates, we have

— ~¢g — -2 VY7

o o (202C3)1/3

Asw =~ (C3 — U2)Y2q, this turns into

2 2(Ae)3CE
(o fo)?(C§ — Ug) /2%

For a hollow duct we have for large ord@e = j/,/R(X) = (n+ 3m — $)7/R and soAa = x/R. For an annular
duct of hub-tip ratich we havex >~ nz/(1 — h)R and soAx = 7/(1 — h)R. In either case we see that floandw
high enough indeed modal scattering may be expected. The order of magnitudic —2) is indeed consistent with
oure = 0.1 andw ~ 50 of the cases in question where scattering was observed.

VIl. Conclusions

A theoretical framework has been established ferrttodelling of the propagation of sound in a non-uniform duct
with mean subsonic compressible flow in the case when the incident mode of propagation encounters a cut-off or cut-
on transition. The analysis is based on the assumption that the duct geometry and flow field are slowly varying, leading
to application of the method of multiple scales. Far away from the transition the multiple scales solution consists of
slowly varying duct modes. At the transition they becasirgular, and a local solution is necessary to connect the
cut-on and the cut-off parts of the mode. This set of local solutions is impractical, but it has been shown possible to
construct a composite solution, encompassing the boutalgey solution in the nghbourhood of the trasition point
and the outer slowly varying modal solution far from the transition into a single expression. Such a theoretical model
has been benchmarked here by comparison with a fully numerical model based on the finite element method.

Cases used for our comparison are varied, with and without mean flow, and over a range of circumferential modes,
radial modes and frequencies. Cases include thoseasitbw as one incident propagating mode to as many as eight
propagating modes, and include a particularly intergstimse with an incident non-propagating mode (cut-off at the
source) which cuts on close to the source.

11 0f 18

American Institute of Aeronautics and Astronautics



Comparisons between multiple scales results and finite element results are presented in the form of contours of
equal pressure magnitude, which for most cases showtdineling wave character associated with the analytically
predicted complete reflection of the incident mode into its mirror image propagating in the opposite direction. Contour
plots are supplemented with tables ofimkent, reflected, and transmitted mbgdawer and reflected and transmitted
modal amplitudes generated by the firddlement model. The finite element gbbn always shows some scattering
into reflected and transmitted modes adjacent to the incicheates. This scattering is small in most instances, in
accordance with the assumptions of the multiple scales analysis. In these cases the agreement between FEM and the
multiple scales solution is invariably good (with flow) oroetlent (without flow). An explanation for this difference,
which is consistent with theory, is ththe accuracy of the analytical mean flo@(E?), typically a few percent) is
seen to produce an error 6f(¢), of the order of 10 percent, in the position of the transition.

In some cases, one of which is shown here, the finite eleswution shows significdrscattering into adjacent
modes, which is not predicted by the multiple scales solution. In our study such an occurrence was limited to cases with
mean flow and with many initially propagating modes (eight in the case shown here), with the highest order modes
having cut-off ratios which cluster near unity. In these cases with scattering, the multiple scales solution captures
the basic features of the acoustic field, but does not predict the scattering mechanism by which acoustic power leaks
through the turning point.

The observation of significant scattering in certain cases has led to an extension of the multiple scales analysis by
asymptotic scaling arguments in the turning point region. This has identified circumstances under which the presence
of neighbouring modes is necessary and modal interaction is likely to occur.

The challenging case of an incident mode, cut-off at the source, and cutting on close to the source, shows generally
good agreement between the multiple-ssadolution and the finite-elementstion, with FEM showing evidence of
scattering into adjacent modes. This, however, dam¢seem to be a particulargperty of this onfiguration.

Aside from the benchmark comparisons which were the main thrust of the current investigation, calculations of
the standing wave field associated with cut-off phenomenon revealed high acoustic pressures in the neighbourhood of
the turning point. This may well have implications for nacelle structural integrity and structure-borne noise.

Appendix

Related to Bessel functions of ordérare the Airy function® Ai and Bi, solutions ofy” — xy = 0, with the
following asymptotic behaviour (introduge= %|x|%?)

. _cost —gm) et
_ cos¢ + % et
B|(X) =~ % X > —00), =~ W (X = 00). (28b)
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(a) FEM

1

(b) MS

Figure 1. No-flow with m = 21, » = 410and n = 4. Transition at x = 1.49.

Table 1. FEM modal amplitudes and modal power for M =0.0,m =21, w =410,n=4

modal amplitudes (modulus and phase)

modal powers

* Phase of transmitted mode is relative to exit plane.

Table 2. FEM modal amplitudes and modal power for M = 0.5, m=10,w =110,n=1

modal amplitudes (modulus and phase)

n | input reflected transmitté&d input reflected transmitted
1| 0.00 | 1.28806-03 —0.16011| 4.65308-93 —1.00415| 0.0000 1.2609-07 | 1.3199-06
2 | 0.00 | 1.24518-03 —2.07156| 7.59902-03 —2.41687| 0.0000 1.4446-07 | 4.1023-06
3| 0.00 | 1.49994-02  1.32924| 1.78118-02 —2.74923| 0.0000 1.7160-05 | 1.6330-05
4| 1.00 | 9.98636-01 1.73083| 7.33522-02  0.73351| 5.2870-02 | 52734-02 | 9.4760-05
5| 0.00 | 1.30240-02 —1.43072| 1.96820-05 —2.72645| 0.0000 2.1353-06 | 0.0000

6 | 0.00 | 797316705 0.84398| 2.66586-07 0.20589| 0.0000 0.0000 0.0000

7 | 0.00 | 1.4999505 1.13319| 1.25423-08 —3.04410| 0.0000 0.0000 0.0000

modal powers

n | input reflected transmittéd input reflected transmitted
1| 1.00 | 6.83653-01  0.31240| 4.95448-02 —1.34561| 2.0844-02 | 2.0844-02 | 0.0000
2 | 0.00 | 8.13841-03 —0.67365| 1.58488-04 —2.14545| 0.0000 0.0000 0.0000
3| 0.00 | 6.58219-04 2.66479| 1.49392-05 0.74636| 0.0000 0.0000 0.0000
* Phase of transmitted mode is relative to exit plane.
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() MS,M = 0.5, w = 11.08, transition ak; = 0.94. (d)y MS,M = 0.514,0w = 11.0, transition at = 0.92.

Figure2. M = 0.5withm =10, w = 110 and n = 1. Transition at x; = 0.84 (unadjusted), at Xt = 0.94 (w adjusted) and at xy = 0.92(M
adjusted).

(a) FEM (b) MS

Figure 3. No-flow with m = 51, » = 66.0and n = 2. Transition at xt = 1.29.
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Table 3. FEM modal amplitudes and modal power for M = 0.0, m =51, w = 66.0,n = 2

modal amplitudes (modulus and phase)

modal powers

n | input reflected transmittéd input reflected transmitted
1| 0.00 | 6.72025-03  2.25428| 7.97928-03  0.58151| 0.0000 1.4091-06 | 1.3114-06
2| 1.00 | 9.99891-01 —3.03406| 7.10642-05 0.79078| 3.3347-02 | 3.3344-02 | 0.0000
3| 0.00 | 9.32808-04 164194 6.79870-09 3.04031| 0.0000 0.0000 0.0000
4 | 0.00 | 87004505 —1.51414| 3.34634-09 —1.99459| 0.0000 0.0000 0.0000
* Phase of transmitted mode is relative to exit plane.

15

(a) FEM

Figure4. M = 0.5withm =51, w = 57.5and n = 2. Transition at x; = 0.9356(unadjusted).

Table 4. FEM modal amplitudes and modal power for M = 0.5, m =51, w =575,n=2

modal amplitudes (modulus and phase)

modal powers

n | input reflected transmitté&d input reflected transmitted
1| 0.00 | 46437503 0.25482| 2.33365-02 —2.18438| 0.0000 7.6128-07 | 4.3142-06
2| 100 | 6.71150-01  1,91208| 7.01745-05 —0.88275| 1.3573-02 | 1.3525-02 | 0.0000

3| 0.00 | 1.54454-01 241438| 1.53737-06 0.93476| 0.0000 4.3465-05 | 0.0000

4 | 0.00 | 3.8688503 1.23189| 2.86459-07 —2.59817 | 0.0000 0.0000 0.0000

5| 0.00 | 247703-04 —1.30422| 1.03903-07 —0.08191| 0.0000 0.0000 0.0000

* Phase of transmitted mode is relative to exit plane.
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(a) FEM

(b) MS

Figure5. No-flow with m = 20, » = 50.2and n = 7. Transition at xt = 1.25.

Table5. FEM modal amplitudes and modal power for M = 0.0,m =20, w =502, n =7

modal amplitudes (modulus and phase)

modal powers

n | input reflected transmittéd input reflected  transmitted
1| 000 | 9.79832-04 1.75305| 5.67365-03 —1.81000| 0.0000 8.1703-08 | 2.2494-06
2| 0.00 | 6.20071-04 —0.19682| 4.71254-03  2.91263| 0.0000 4.2842-08 | 1989606
3| 0.00 | 5.73870-04 —2.00684 | 6.47028-03 144566 | 0.0000 3.3281-08 | 3.3317-06
4 | 0.00 | 1.95037-03 —297036| 1.00937-02 0.31196| 0.0000 3.3145-07 | 6.7235-06
5| 0.00 | 9.79360-03 2.84038| 1.85307-02 —0.49332| 0.0000 7.0020-06 | 1.7260-05
6 | 0.00 | 7.47880-02 —1.97637| 9.14736-02  0.18077 | 0.0000 3.1977-04 | 2.6909-04
7 | 1.00 | 9.85999-01 —0.49319| 1.57594-03 1.33494| 3.3261-02 | 3.2341-02 | 0.0000
8 | 0.00 | 1.71606-01  2.38235| 2.57213-06 —2.40985| 0.0000 2.9241-04 | 0.0000
9 | 0.00 | 5.70550-04 —3.00552| 7.25713-08 0.53864 | 0.0000 0.0000 0.0000

10| 0.00 | 2.76103-04 2.95400| 6.76850-09  0.72034 | 0.0000 0.0000 0.0000

* Phase of transmitted mode is relative to exit plane.

(a) FEM

(b) MS

Figure6. M = 0.5withm =20, w = 444 and n = 7. Transition at xt = 1.11.
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Table 6. FEM modal amplitudes and modal power for M = 0.5, m =20, 0 =444,n=7

modal amplitudes (modulus and phase)

modal powers

n | input reflected transmittéd input reflected  transmitted
1| 000 | 260377-03 —2.49574| 1.05164-02 2.05856| 0.0000 1.0804-06 | 2.1964-06
2 | 0.00 | 1.93046-03 2.67222| 7.54334-03 0.75997 | 0.0000 7.0209-07 | 1.5307-06
3| 0.00 | 253907-03  1.64990| 8.62162-03 0.35758| 0.0000 1.0013-06 | 1.8830-96
4| 0.00 | 4.05321-03 228672 | 4.92354-02  1,38552| 0.0000 1.9903-06 | 5.4733-05
51| 0.00 | 1.51628-02 —1.68721| 9.40746-02 —259292| 0.0000 2.0986-05 | 1.6789-04
6 | 0.00 | 6.02846-02 —0.33907 | 4.83654-01 —298763| 0.0000 2.3334-04 | 3.3562-03
7 | 1.00 | 3.34318-01 246029 | 3.65047-02 —1.37429| 1.3976-02 | 3.7818-03 | 0.0000
8 | 0.00 | 6.99441-01 260611| 1.04325-03 —0.35725| 0.0000 6.3504-03 | 0.0000
9 | 0.00 | 3.28409-02 201446| 9.62889-05 255026 | 0.0000 0.0000 0.0000

10 | 0.00 | 3.96434-04 0.65910| 1.16562-05 —0.75301| 0.0000 0.0000 0.0000
* Phase of transmitted mode is relative to exit plane.
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(a) FEM (b) MS

Figure7. M = 0.5withm =5, w = 19.8and n = 5. Transition at xt = 0.18.

Table 7. FEM modal amplitudes and modal power for M =05, m=5,0 =198,n=5

modal amplitudes (modulus and phase)

modal powers

n | input reflected transmittéd input reflected  transmitted
1| 000 | 2.67560-03 1.22725| 3.96519-03  1.94943| 0.00000 | 2.8561-06 | 6.6590-07
2| 0.00 | 2.31483-03 —3.01568 | 4.52353-03 —227140| 0.00000 | 1.6552-06 | 8.0149-07
3| 0.00 | 9.29487-03 —0.79894 | 3.55049-02 —1.21018| 0.00000 | 1.1720-05 | 3.7076-05
4 | 0.00 | 240597-02 —2.19160| 1.05487-01 257662 | 0.00000 | 4.4124-05| 23322-04
5| 1.00 | 1.30404-01 —0.26518| 3.6970501 —2.35150| 0.00000 | 0.0000 8.4441-04
6 | 0.00 | 2.48182-02 —0.74233| 4.75458-03 —2.59301| 0.00000 | 0.0000 0.0000

7 | 0.00 | 3.19080-03 —0.60445| 5.60118-04 0.28489| 0.00000 | 0.0000 0.0000

* Phase of transmitted mode is relative to exit plane.
T The mode is cut-off and therefore propagates no energisawn, only by interaction with the cut-on reflected modes.
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