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The Acquisition Queue

D. Denteneer∗ J.S.H. van Leeuwaarden⋄ I.J.B.F. Adan⋄

Abstract

We propose a new queueing model named the acquisition queue. It differs from con-
ventional queueing models in that the server not only serves customers, but also performs
acquisition of new customers. The server has to divide its energy between both activi-
ties. The number of newly acquired customers is uncertain, and the effect of the server’s
acquisition efforts can only be seen after some fixed time period δ (delay).

The acquisition queue constitutes a (δ + 1)-dimensional Markov chain. The limit-
ing queue length distribution is derived in terms of its probability generating function,
and an exact expression for the mean queue length is given. For large values of δ the
numerical procedures needed for calculating the mean queue length become computation-
ally cumbersome. It is therefore that we complement the exact expression with a fluid
approximation.

One of the key features of the acquisition queue is that the server performs more ac-
quisition when the queue is small. Together with the delay, this causes the queue length
process to show a strongly cyclic behavior. We propose and investigate several ways of
planning the acquisition efforts. In particular, we propose an acquisition scheme that is
designed specifically to reduce the cyclic behavior of the queue length process.

Keywords: Acquisition queue, delay, higher-dimensional Markov chain, queueing the-
ory, discrete-time, generating function approach, fluid approximation, scheduling, cyclic
behavior.

AMS 2000 Subject Classification: 60K25, 68M20, 90B22, 34H05, 60J20.

1 Introduction

In conventional queueing systems customers arrive at a service entity according to some
renewal process that is independent of the service process. In this paper we introduce a
model that requires the server to perform itself the acquisition of customers. The server has
to divide its energy between serving customers presently waiting and performing acquisition
of new customers. The number of newly acquired customers is uncertain, and the effect of
the server’s acquisition efforts can only be seen after some fixed period of time.

We divide time into slots of equal length, and we assume that in each slot the server has
η units of energy to spend, where one unit of energy is needed to serve one customer. The
server divides its energy according to s units for serving customers, and α units for performing
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acquisition. Hence η = s + α with η, s, α non-negative integers. Let Xn denote the number
of customers waiting in the queue at the beginning of time slot n. We assume that the server
does not waste energy, so when there are fewer than s customers present at the beginning of
a time slot n, the server will use αn = α + max{0, s − Xn} units of energy for acquisition.
Let A denote the random variable that represents the number of customers acquired with one
unit of energy spent on acquisition. We assume that customers acquired due to an acquisition
effort in slot n arrive at the queue at the beginning of slot n+δ+1 (with δ some non-negative
integer). The queue length process can then be described as X0 = 0 and

Xn+1 = (Xn − s)+ +

αn−δ
∑

k=1

An,k, n = 0, 1, . . . , (1)

where x+ = max{0, x} and the An,k are random variables i.i.d. according to A. We refer to
the queueing model defined by (1) as the acquisition queue.

1.1 Motivation

The acquisition queue is motivated from data transfer in cable networks organized via a
request-grant procedure. In these networks, a user should first send a request to some central
server, and once this request gets granted, the user waits in the data queue until the data
of his actual message gets transmitted. The central server schedules the available network
capacity among the processes of handling requests and transmitting data.

In cable networks, there is typically a substantial transmission delay, defined as the time
required to transmit a signal from the user to the central server and vice versa. Due to this
delay, scheduling decisions must be taken in advance so that they can be communicated to
the users. Consequently, there is a time lag between granting a request and transmitting
the data associated with the request. Therefore, one is naturally led to consider periodical
scheduling, for which slots are grouped together into frames of consecutive slots, η say. The
nature of each slot in the frame is periodically determined by the central server and broadcast
to all users.

Let Xn now denote the size of the data queue at the beginning of frame n. Let δ represent
the transmission delay such that a request made in frame n can be scheduled at the earliest in
frame n+ δ +1. Further assume that every frame, α slots are used for handling new requests.
Then, the acquisition queue (1) serves as a model for the data queue. The quantity αn can
be interpreted as the number of slots in frame n that are used for handling requests, and the
sum in (1) equals the total number of new data packets for which transmission is granted.
For more background on this application, we refer to [3, 4].

1.2 Key features

One of the key features of (1) is that there is some natural form of input balancing. When there
is little work (i.e. Xn < s), more energy is spent on acquisition, which is expected to result
in more work in the future. Another key feature is the delay δ between the acquisition effort
and the actual arrival of the acquired customers. This not only makes the analysis harder
(note that (1) is a (δ + 1)-dimensional Markov chain), but it might also corrupt the input
balancing. Indeed, when newly acquired customers arrive at the queue, the situation might
be totally different from that of δ + 1 slots ago. A third feature of (1) is the cyclic behavior.
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It is intuitively clear that the delay δ may result in a strongly correlated arrival process, and
therefore in a cyclic behavior of the queue length process. Fig. 1 displays a sample path for
slot 1,000 until slot 1,300 for η = 10, δ = 10, α = 0, and A Poisson distributed with µA = 3.

We see in Fig. 1 that the sample path has settled on a cyclic pattern. Each cycle can be
subdivided into three consecutive periods. First, there is a period of length δ +1 in which the
queue length is approximately zero. Then there is a period of length δ +1 in which the queue
length increases. Finally, in a third period, the queue is drained until it hits zero, upon which
a new cycle starts. Figs. 2-3 display results for α = 1, 2. The larger α, the less restrictive the
pattern. Fig. 4 displays results for δ = 0 , so that the cyclic pattern is no longer there.

This cyclic behavior might have severe consequences for performance measures like the
mean and variance of the queue length, and we aim at smoothing the arrival process and
reducing the correlation of the arrival process by planning the server’s acquisition efforts in
an appropriate way.

1.3 Acquisition planning

The parameter α in αn = α + max{0, s − Xn}, see (1), can be interpreted as the amount of
energy guaranteed for acquisition. In each slot at least α energy units are used for acquisition.
Since the value of α is fixed, we refer to this type of acquisition planning as static acquisition
planning. The value of α has an impact on the queue length process. The heuristic rationale
is that a larger value of α makes the arrival process more stable, but less adaptive to the
current queue length. That is, the larger α, the less room (i.e. max{0, η − α − Xn}) there is
for input balancing.

There are thus two, unfortunately conflicting, heuristics that guide a judicious choice of α.
On the one hand, setting α small ensures that customers are served as quickly as possible,
and one would expect that this keeps the queue of waiting customers small. On the other
hand, setting α large stabilizes the arrival process, which could possibly lead to smaller queue
lengths. In choosing the right value of α, one should strike the proper balance between these
two considerations.

One could also consider a model in which the server is totally free to choose the acquisition
effort in slot n, ᾱn units say. This type of free acquisition planning then leads to the following
modification of the acquisition queue

X̄n+1 = (X̄n − (η − ᾱn))+ +

ᾱn−δ
∑

k=1

An,k, (2)

with ᾱn ∈ {0, 1, . . . , η} for every n. We derive a scheme for choosing the value ᾱn based on
the queue length at the beginning of the slot and the acquisition effort in the previous δ slots
(of which the result is still not known).

The goals of this paper are to derive the limiting queue length distribution for the acquisition
queue (1) and to develop rules and heuristics for choosing α and ᾱn in (2). We primarily aim
at dealing with the cyclic behavior caused by the delay δ.

1.4 Outline of the paper

For δ = 0, Equation (1) defines a one-dimensional Markov chain, and the pgf of the limiting
queue length distribution is obtained in van Leeuwaarden et al. [9]. For δ = 1, 2, . . . the
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Figure 1: Sample path of the process defined
by (1), for η = 10, δ = 10, α = 0, and A
Poisson distributed with µA = 3.
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Figure 2: Sample path of the process defined
by (1), for η = 10, δ = 10, α = 1, and A
Poisson distributed with µA = 3.
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Figure 3: Sample path of the process defined
by (1), for η = 10, δ = 10, α = 2, and A
Poisson distributed with µA = 3.
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Figure 4: Sample path of the process defined
by (1), for η = 10, δ = 0, α = 0, and A
Poisson distributed with µA = 3.

approach from [9] does not carry over. Yet, we are able to derive an exact solution, presented
in Sec. 2. The solution, though, is rather complex, since it requires the determination of
s(s + 1)δ boundary probabilities. We therefore derive in Sec. 3 an exact expression for the
mean limiting queue length that is of more compact form and does allow for an intuitive
interpretation, although it still contains terms that can only be calculated from the boundary
probabilities. Since this calculation becomes prohibitively cumbersome for somewhat larger
values of δ, we develop in Sec. 4 an approximation for the mean queue length based on a fluid
approximation. This approximation provides valuable information on the (cyclic) behavior of
the delayed acquisition queue, which we use for developing rules as to choose an appropriate
value for ᾱn (free acquisition planning) in Sec. 5. In Sec. 6, a simulation-based comparison is
made between the performance of the various types of acquisition planning. We end in Sec. 7
with some conclusions.
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2 Exact solution

Let A(z) =
∑

∞

k=0
P(A = k)zk be the pgf of A and define aj

k = P(A1 + . . . + Aj = k),
where Ai i.i.d. as A for all i. Denote by µA and σ2

A the mean and variance of A. Let
Mn = (s − Xn)+. From (1) it is clear that {(Xn, Mn−1, . . . , Mn−δ)} is a Markov chain. The
variables Mn−1, . . . , Mn−δ constitute our memory, in the sense that these variables keep track
of all acquisition efforts of which the outcome is still not known. We henceforth assume that
this Markov chain is irreducible and aperiodic; for example, this holds when P(A = k) > 0
for all k ≥ 0. The ergodicity condition is formulated in the following lemma.

Lemma 1. The Markov chain {(Xn, Mn−1, . . . , Mn−δ)} is ergodic if

αµA − s < 0. (3)

Proof By partitioning the state space of the Markov chain {(Xn, Mn−1, . . . , Mn−δ)} into
levels i, where level i is the subset of states for which the queue length is i, i = 0, 1, . . ., it
is readily seen that the probability transition matrix is an M/G/1-type stochastic matrix,
see [10]. Hence, the ergodicity condition is the usual condition stating that the average drift
should be negative, which in this case reduces to inequality (3). For an alternative proof of
(3), based on Foster’s criterion, the reader is referred to [3]. �

In the sequel we assume that (3) is satisfied. The Markov chain {(Xn, Mn−1, . . . , Mn−δ)}
then has a unique limiting distribution

π(k, m1, . . . , mδ) = lim
n→∞

P(Xn = k, Mn−1 = m1, . . . , Mn−δ = mδ), (4)

where k ≥ 0 and mi ∈ {0, . . . , s} for all i. Let X denote a random variable distributed
according to the limiting queue length distribution

π(k) := P(X = k) = lim
n→∞

P(Xn = k). (5)

The probability generating function of X is then given by

G(z) =
s

∑

m1=0

· · ·
s

∑

mδ=0

Gm1,...,mδ
(z), (6)

where

Gm1,...,mδ
(z) =

∞
∑

k=0

π(k, m1, . . . , mδ)z
k. (7)

In the analysis below we make use of the normalization condition

s−1
∑

k=0

s
∑

m1=0

· · ·

s
∑

mδ=0

π(k, m1, . . . , mδ)(s − k) =
s − αµA

1 + µA

, (8)

which can be explained as follows. The left-hand side of (8) clearly expresses the additional
acquisition effort per slot. On average, the guaranteed acquisition effort brings per slot αµA

of new customers to the queue, each customer requiring one unit of energy. Hence, αµA of the
remaining s energy units per slot are spent on serving these customers. This leaves s − αµA

energy units, of which only (s − αµA)/(1 + µA) units can be spent on additional acquisition
(since one unit of acquisition results on average in µA new customers).
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2.1 Case δ = 0

We start from the balance equations (for k = 0, 1, . . .)

π(k) =
k+s
∑

k′=s

π(k′)aα
k−k′+s +

s−1
∑

k′=0

π(k′)aα+s−k′

k . (9)

Multiplying both sides of (9) by zk, summing over all values of k, and rearranging terms
yields

G(z) =
A(z)α

∑s−1

k=0
π(k)(zsA(z)s−k − zk)

zs − A(z)α
. (10)

Expression (10) is of indeterminate form, but the s boundary probabilities π(0), . . . , π(s− 1)
can be determined by consideration of the zeros of the denominator in (10) that lie on or
within the unit circle. The following lemma is taken from [1].

Lemma 2. If αµA < s and P(A = 0) > 0, it holds that zs − A(z)α has s zeros on or within
the unit circle.

Denote the s zeros of zs − A(z)α in |z| ≤ 1 by z0 = 1, z1, . . . , zs−1, which are assumed to
be simple (and thus distinct). Since the function G(z) is finite on and inside the unit circle,
the numerator of the right-hand side of (10) needs to be zero for each of the s zeros, i.e.,
the numerator should vanish at the exact points where the denominator of the right-hand
side of (10) vanishes. For z0 = 1, this is trivial, so Lemma 2 and (10) lead to s − 1 (non-
trivial) equations in terms of the s boundary probabilities. The final equation follows from
the normalization condition (8).

If zs − A(z)α has zeros of multiplicity greater than two, sufficiently many equations are
obtained from setting the derivatives (up to the multiplicity) of the numerator of the right-
hand side of (10) equal to zero.

2.2 Case δ = 1

In this case we include one memory variable Mn−1 into our state description, and we distin-
guish between the balance equations for states (k, m1) with m1 = 0

π(k, 0) =
s

∑

i=0

k+s
∑

k′=s

π(k′, i)aα+i
k−k′+s , (11)

and with m1 ∈ {1, . . . , s}

π(k, m1) =
s

∑

i=0

π(s − m1, i)a
α+i
k . (12)

Multiplying both sides of (11) and (12) by zk and summing over all values of k yields

G0(z) = z−s
s

∑

i=0

(

Gi(z) −
s−1
∑

k=0

π(k, i)zk
)

A(z)α+i, (13)

and

Gm1
(z) =

s
∑

i=0

π(s − m1, i)A(z)α+i, m1 ∈ {1, . . . , s}, (14)
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respectively. Upon substituting (14) into (13) and rearranging terms we find

G0(z) =
A(z)α(

∑s
i=0

∑s−1

k=0
π(k, i)(A(z)s+α+i−k − zkA(z)i)

zs − A(z)α
. (15)

Hence, (14) and (15) still contain s(s + 1) boundary probabilities

π(k, m1), k = 0, . . . , s − 1, m1 = 0, . . . , s,

which should be determined. We therefore match these unknowns by equally many equations:
s2 equations follow from (12), s − 1 equations follow from Lemma 2 and (15), and a final
equation is provided by the normalization condition (8).

2.3 Case δ = 2

We now include two memory variables Mn−1 and Mn−2 into our state description, but for the
balance equations we only need to distinguish between the states (k, m1, m2) with m1 = 0
and m1 ∈ {1, . . . , s}. We get

π(k, 0, m2) =

s
∑

i=0

k+s
∑

k′=s

π(k′, m2, i)a
α+i
k−k′+s, (16)

and for m1 ∈ {1, . . . , s}

π(k, m1, m2) =
s

∑

i=0

π(s − m1, m2, i)a
α+i
k , (17)

and so we obtain for m2 ∈ {0, . . . , s}

G0,m2
(z) = z−s

s
∑

i=0

(

Gm2,i(z) −
s−1
∑

k=0

π(k, m2, i)z
k
)

A(z)α+i, (18)

Gm1,m2
(z) =

s
∑

i=0

π(s − m1, m2, i)A(z)α+i, m1 ∈ {1, . . . , s}. (19)

Upon rearranging terms in (18) for m2 = 0 we get

G0,0(z) =
A(z)α(

∑s
i=1

G0,i(z)A(z)i −
∑s

i=0

∑s−1

k=0
π(k, 0, i)zkA(z)i)

zs − A(z)α
. (20)

Equations (18)-(20) contain s(s + 1)2 boundary probabilities

π(k, m1, m2), k ∈ {0, . . . , s − 1}, m1, m2 ∈ {0, . . . , s}, (21)

which can again be matched by equally many equations. In this case, s2(s+1) equations follow
from (17) for k ∈ {0, . . . , s− 1}, m1 ∈ {1, . . . , s}, m2 ∈ {0, . . . , s}, s− 1 equations follow from
Lemma 2 and (20) (using (18) and (19)), and one equation follows from the normalization
condition (8). So we need an extra s2 equations. For this, we consider the probabilities
π(k, 0, m2), k ∈ {0, . . . , s − 1}, m2 ∈ {1, . . . , s}, see Figure 5. Note that these probabilities
can be expressed through (16) in terms of the probabilities π(k′, m2, i), k′ ∈ {s, . . . , 2s − 1},
m2 ∈ {1, . . . , s}, i ∈ {0, . . . , s}, only. Each of the latter probabilities can be written in terms
of the boundary probabilities through (17), yielding s2 equations.
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Figure 5: The states corresponding to the boundary probabilities (21) and the additional
probabilities π(k′, m2, i), k′ ∈ {s, . . . , 2s − 1}, m2 ∈ {1, . . . , s}, i ∈ {0, . . . , s}.

2.4 General case

It might be clear from the analysis for δ = 2 that we can take a similar approach for δ =
3, 4, . . .. We start from the balance equations

π(k, 0, m2, . . . , mδ) =

s
∑

i=0

k+s
∑

k′=s

π(k′, m2, . . . , mδ, i)a
α+i
k−k′+s, (22)

and for m1 ∈ {1, . . . , s}

π(k, m1, m2, . . . , mδ) =
s

∑

i=0

π(s − m1, m2, . . . , mδ, i)a
α+i
k , (23)

and obtain

G0,m2,...,mδ
(z) = z−s

s
∑

i=0

(

Gm2,...,mδ ,i(z) −

s−1
∑

k=0

π(k, m2, . . . , mδ, i)z
k
)

A(z)α+i, (24)

Gm1,...,mδ
(z) =

s
∑

i=0

π(s − m1, m2, . . . , mδ, i)A(z)α+i, m1 ∈ {1, . . . , s}. (25)

For m2 = m3 = . . . = mδ = 0 we get from (24)

G0,...,0(z) =

∑s
i=1

G0,...,0,i(z)A(z)α+i −
∑s

i=0

∑s−1

k=0
π(k, 0, . . . , 0, i)zkA(z)α+i

zs − A(z)α
. (26)

We should then still determine the s(s + 1)δ boundary probabilities

π(k, m1, . . . , mδ), k ∈ {0, . . . , s − 1}, m1, . . . , mδ ∈ {0, . . . , s} (27)

and so we need equally many equations. Equation (23) immediately yields s2(s + 1)δ−1

equations, and we thus search for an extra s(s + 1)δ−1 equations.
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Consider (22) for m2 ∈ {1, . . . , s}. The probabilities on the right-hand side of (22) can
be written in terms of the boundary probabilities through (23), which yields s2(s + 1)δ−2

equations. Likewise, (22) for m2 = 0 and m3 ∈ {1, . . . , s} yields s2(s + 1)δ−3 equations, and
we can repeat this trick all the way up to (22) for m2 = . . . = mδ−1 = 0, mδ ∈ {1, . . . , s}
(yielding s2 equations). Altogether, this leads to

s2(s + 1)δ−2 + s2(s + 1)δ−3 + . . . + s2

equations. Together with the s− 1 equations from Lemma 2 and (26), and the normalization
condition (8), we then have exactly s(s + 1)δ−1 equations.

A demonstration of the implementation of this analytical solution will be provided in Section
3 (see Table 1).

3 Mean limiting queue length

In principle, the mean of X follows from evaluating the first derivative of (6) at z = 1, but
this does not lead to a particularly nice expression. Instead, we apply a method that was first
used by Kingman [8], which is based on the manipulation of

Pn = (Xn − s)+, Mn = (s − Xn)+. (28)

For these variables we have

Xn − s = Pn − Mn, (Xn − s)2 = P 2
n + M2

n. (29)

Let M denote a random variable distributed according to the limiting distribution of Mn,
and hence M is equal in distribution to (s − X)+. We then derive the following result.

Theorem 1. The mean limiting queue length in the acquisition queue defined by (1) can be
expressed as

EX =
ασ2

A

2(s − αµA)
+

σ2
A

2(1 + µA)
+

s + αµA

2
+ E(M2)

µ2
A − 1

2(s − αµA)
+ ER

µA

s − αµA

, (30)

where
ER = lim

n→∞

E(PnMn−δ). (31)

Proof Define

Sn−δ =

α+Mn−δ
∑

i=1

Ai. (32)

Since Xn − s = Pn − Mn = Xn+1 − Sn−δ − Mn, taking expectations at both sides, letting
n → ∞, and rearranging terms gives

EM =
s − αµA

1 + µA

. (33)

Next, using Pn = Xn+1 − Sn−δ and (29) yields

(Xn − s)2 = P 2
n + M2

n = (Xn+1 − Sn−δ)
2 + M2

n

= X2
n+1 − 2Xn+1Sn−δ + S2

n−δ + M2
n

= X2
n+1 − 2 (Pn + Sn−δ)Sn−δ + S2

n−δ + M2
n

= X2
n+1 − 2PnSn−δ − S2

n−δ + M2
n, (34)
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i.e.,
2sXn = s2 + X2

n − X2
n+1 + 2PnSn−δ + S2

n−δ − M2
n. (35)

Furthermore, from (32),

E
(

S2
n−δ

)

= (α + E(Mn−δ))σ2
A +

(

α2 + 2αE(Mn−δ) + E(M2
n−δ)

)

µ2
A, (36)

and

E(PnSn−δ) = αE(Pn)µA + E(PnMn−δ)µA

= αE (Xn − s + Mn) µA + E(PnMn−δ)µA. (37)

Taking expectations in (35), substituting (36) and (37), letting n → ∞, and rearranging terms
leads to

2EX(s − αµA) = (s − αµA)2 + 2αEM(µA + µ2
A) + (α + EM)σ2

A

+E(M2)(µ2
A − 1) + 2µAER, (38)

with ER as in (31). Finally, substituting (33) into (38) yields (30). �

Expression (30) contains two unknown terms: a term E(M2) that is related to the energy
spent on acquisition, and a correlation term ER. Both terms can be expressed in terms of
the boundary probabilities. One readily sees that

E(M2) =
s−1
∑

k=0

s
∑

m1=0

· · ·
s

∑

mδ=0

π(k, m1, . . . , mδ)(s − k)2. (39)

In case δ = 0, we obviously have that ER = 0. To determine ER for δ = 1, note that R
satisfies

R
d
=

(

α+M1
∑

j=1

A1,j − s
)+

(s − X)+, (40)

where
d
= denotes equality in distribution, and hence

ER = E

(

α+M1
∑

j=1

A1,j − s
)+

(s − X)+,

=
s−1
∑

k=0

s
∑

m1=0

π(k, m1)E
(

α+m1
∑

j=1

A1,j − s
)+

(s − k). (41)

With max{x, 0} = x − min{x, 0} we get

E

(

α+m1
∑

j=1

A1,j − s
)+

= (α + m1)µA − s −

s−1
∑

n=0

aα+m1

n (n − s). (42)

Substituting (42) into (41) gives an expression for ER that consists of finitely many terms
only. Similar expressions can be obtained for δ ≥ 2. For δ = 2 we have

R
d
=

((

α+M2
∑

j=1

A2,j − s
)+

+

α+M1
∑

j=1

A1,j − s
)+

(s − X)+. (43)
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Introducing the notation

Un =

α+Mn
∑

j=1

An,j − s, (44)

we can write (43) as

R
d
= (U+

2 + U1)
+(s − X)+

= max{0, U1, U1 + U2}(s − X)+. (45)

In general, we find for δ ≥ 1 that

R
d
= max{0, U1, U1 + U2, . . . , U1 + U2 + . . . + Uδ}(s − X)+, (46)

and conditioning as in (41) leads to explicit expressions for ER.

Table 1 displays values of EX, P(X ≤ s − 1), E(M2) and ER for η = 10 and A Poisson
distributed with µA = 0.99. These values were obtained by determining the s(s+1)δ boundary
probabilities as outlined in Sec. 2. Observe that EX, E(M2) and ER increase as functions
of δ, and EX increases as a function of α. The case α = 5 is extreme because the stability
condition (3) is only just satisfied. EX becomes large because of the 1

2
ασ2

A/(s − αµA) term,
while E(M2) and ER become negligibly small (mainly because P(X ≤ s − 1) is small).

The entries in Table 1 for α = 0 (so s = 10) and δ = 2 require the determination of 1210
boundary probabilities, and hence solving a system of equally many linear equations. For even
larger values of s and δ the set of boundary probabilities may become prohibitively large. It is
therefore that we search for approximations for E(M2) and ER that can be easily calculated
for larger values of s and δ. E(M2) can be written as E(M2) =

∑s−1

j=0
P(X = j)(s− j)2, from

which we find that

(

s−1
∑

j=0

P(X = j)(s − j)
)2

≤

s−1
∑

j=0

P(X = j)(s − j)2 ≤ s

s−1
∑

j=0

P(X = j)(s − j), (47)

where the first inequality follows from Jensen’s inequality. Together with (33) this leads to
the following bounds

(s − αµA

1 + µA

)2

≤ E(M2) ≤ s
s − αµA

1 + µA

. (48)

These bounds, and some further improvements, have been presented in [2]. No simple bounds
on ER can be derived. Instead, we derive a fluid approximation for ER in the next subsection.

4 A fluid approximation

We now employ a heuristic argument to construct an approximation for ER, which, together
with the bounds (48), gives an approximation for EX. The argument is based on inspection
of the sample paths of various realizations of the process defined by (1).

The cyclic behavior discussed in Subsec. 1.2 is typically observed in case µA > 1 and δ ≥ 1,
irrespective of the actual distribution of A, suggesting that we can construct a deterministic
approximation of the sample path. Our approximation for ER is then obtained by evaluating
ER for this deterministic approximation.
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EX P(X ≤ s − 1)

α δ = 0 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2

0 5.2133 5.3684 5.4777 0.8625 0.8164 0.7939
1 5.2759 5.4614 5.5911 0.8282 0.7785 0.7555
2 5.3791 5.6076 5.7653 0.7713 0.7213 0.6999
3 5.5830 5.8781 6.0783 0.6637 0.6230 0.6067
4 6.1847 6.5984 6.8776 0.4447 0.4229 0.4150
5 54.7128 55.3828 55.8741 0.0145 0.0140 0.0139

E(M2) ER

α δ = 0 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2

0 35.6196 38.2757 39.3444 0 1.5931 2.7066
1 23.8530 25.6764 26.3761 0 1.5184 2.5753
2 14.6221 15.6768 16.0687 0 1.4003 2.3640
3 7.7711 8.2424 8.4145 0 1.2060 2.0219
4 3.0273 3.1733 3.2232 0 0.8540 1.4299
5 0.0552 0.0573 0.0579 0 0.0336 0.0584

Table 1: EX, P(X ≤ s−1), E(M2), ER for η = 10 and A Poisson distributed with µA = 0.99.

More formally, we define a deterministic process {xn} from (1) by replacing An by its
expected value µA, yielding

xn+1 = (xn − s)+ + µA(α + (s − xn−δ)
+). (49)

Given initial values x0 = . . . = xδ = αµA, it is easy to see that (49) yields for j = 1, . . . , δ + 1

xδ+j = j(η − αµA)µA − (j − 1)s.

At the beginning of slot 2δ + 1 the queue has built up to the level (δ + 1)(η − αµA)µA − sδ,
after which the queue is drained at rate s − αµA. This yields

x2δ+1+j = (δ + 1)(η − αµA)µA − (δ + j)s + jαµA,

for j = 1, . . . , L∗. Here L∗ is the smallest value l for which x2δ+1+l hits αµA. Consequently,
an approximation for L∗ can be obtained from x2δ+1+L∗ ≈ αµA, that is,

L∗ ≈
(δ + 1)(η − αµA)µA − sδ

s − αµA

. (50)

After instant 2δ + 1 + L∗ the sequence repeats itself. Hence the cycle length equals L =
2δ + 1 + L∗ ≈ (δ + 1)(µA + 1). We therefore approximate ER as

ER ≈ lim
N→∞

1

N

N
∑

n=1

(s − xn)+(xn+δ − s)+

≈
1

L

L
∑

n=1

(s − xn)+(xn+δ − s)+. (51)
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Now for µA > 1, we can approximate the latter sum by the terms n = 2, . . . , δ + 1 (since
s − xn > 0), so that

ER ≈
1

L

δ
∑

j=1

(s − αµA)+(j(η − αµA)µA − (j − 1)s − s)+

=
1

L

1

2
δ(δ + 1)(s − αµA)((η − αµA)µA − s)+

≈
1

2

δ

µA + 1
(s − αµA)((η − αµA)µA − s)+. (52)

Substituting (52) into (30) yields the following approximation for EX.

EX ≈
ασ2

A

2(s − αµA)
+

σ2
A

2(1 + µA)
+

s + αµA

2
+ E(M2)

µ2
A − 1

2(s − αµA)

+
1

2
δ

µA

µA + 1
((η − αµA)µA − s)+. (53)

The bounds in (48) for E(M2) can again be used to obtain explicit expressions.
In order to assess the quality of (53) we have carried out a number of simulations. Denote

by α∗ the mean acquisition effort per slot, i.e.,

α∗ =
η

1 + µA

. (54)

The mean number of acquired customers per slot, denoted by λ, is then given by

λ = α∗µA =
ηµA

1 + µA

. (55)

Figs. 6-7 display EX (obtained by simulation) as a function of λ for A Poisson, η = 10, α = 0
and δ = 1, 5, 10. The results we present are based on a simulation of 10,000,000 slots, in
which we start from an empty queue and neglect the first 1,000,000 slots. The dashed lines
represent the approximations that follow from (53) (where we substitute for EM2 the average
of the two bounds in (48)). Fig. 6 leads us to conclude that the approximations are excellent
for α = 0. There are some marked differences between Fig. 6 and Fig. 7. Most importantly,
the approximation by (53) is less accurate in case α = 1. This is so in particular for the
higher traffic intensities.

From these and many other examples we conclude that (53) is in general sharp, but breaks
down in heavy traffic conditions for α ≥ 1. The latter is because the deterministic approxi-
mation to the sample path is less convincing for increasing values of α, compare e.g. Figs. 1-3.
Also, obviously, the deterministic approximation of the sample path is more convincing for
large values of δ.

4.1 Properties of the mean queue length

Approximation (53) suggests various interesting properties for EX. Firstly, consider EX as
a function of the delay δ. Equation (53) suggests that δ has no impact on the mean queue
length in case µA ≤ 1. However, in case µA > 1, EX increases linearly with δ. It follows in
particular that the correlation term ER is the dominating term in the expression for EX, and
that EX grows without bounds for δ tending to infinity.
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Figure 6: EX for A Poisson distributed with
µA = 3, η = 10, α = 0 and δ = 1, 5, 10.
The dashed lines represent the approxima-
tions that follow from (53).
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Figure 7: EX for A Poisson distributed with
µA = 3, η = 10, α = 1 and δ = 1, 5, 10.
The dashed lines represent the approxima-
tions that follow from (53).

Secondly, consider EX as function of α. In order to set α such that the mean limiting queue
length is kept small, there are two considerations. The smaller α, the quicker the queue is
emptied, while the larger α, the more the arrival process is smoothened. The approximation
(53) can be used to strike the proper balance between these two considerations.

Thirdly, consider EX as function of λ. Equation (53) suggests that the mean limiting
queue length is not necessarily monotonic in the traffic intensity for δ ≥ 1 and α ≥ 1 (see also
Fig. 7). To see this, observe that the approximation (52) of ER is not monotonic in µA. This
follows easily as this approximation is nonnegative, and equals 0 both for small values of µA

(i.e. µA ≤ 1) and for µA = s/α. Now for large values of δ, the correlation term will dominate
EX, which then is non-monotonic too.

This non-monotonicity can be explained informally as follows. Observe that the input to
the queue consists of two sources: (Xn − s)+ and a sum which increases in (s − Xn−δ)

+. As
the traffic intensity approaches the stability bound, the cyclic behavior of the sample paths
vanishes. Hence, increasing the traffic intensity causes the input to be less bursty, and this
results in smaller queue lengths. Another way to see this is by observing that the bursts of
arriving customers that follows periods in which the system is (relatively) empty are caused
by an inflow of magnitude (s − αµA)µA + αµA = (η − αµA)µA. Now this latter expression
is non-monotonic in µA. This type of non-monotonic behavior, though remarkable, is not
uncommon in systems that involve control and feedback delay. Situations in which these
characteristics lead to unwanted oscillations and increased delay occur if the traffic dynamics
can be expressed via a difference equation or differential equation that involves a delayed
response, see e.g. [5, 6, 7].

5 Free acquisition planning

We have discussed in Subsec. 1.2 how the delay δ may result in cyclic behavior and a strongly
correlated arrival process. This can have severe consequences for the mean queue length, see
(30), since the correlation term ER becomes dominant in high-load situations. We now aim
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at smoothening the arrival process and reducing the correlation of the arrival process. We
will do so by choosing an appropriate scheme for free acquisition planning, see (2).

Recall where the cyclic behavior comes from. More acquisition is performed when the queue
is small, and less acquisition is performed when the queue is large. This type of acquisition
planning is expected to lead to a smoother arrival process of customers. However, the delay δ
upsets the balance. The impact of a corrective decision, like more acquisition if the system is
less busy, is only seen δ slots later. If the system is busier δ slots later, the extra arrivals might
just have the opposite effect. This phenomenon of control decisions that have the opposite
effect as one had in mind is precisely what is captured by the correlation term. That is,
ER = limn→∞ E[(Xn − s)+(s−Xn−δ)

+] might be viewed as a measure for the performance of
the acquisition planning. Ideally, ER equals zero, and a high value of ER indicates that the
type of acquisition planning balances the input poorly. It might be clear that the larger δ,
the more unlikely it is that the static acquisition planning adopted by the delayed acquisition
queue balances the input well.

Our primary goal is to reduce the mean limiting queue length by constructing an acquisition
scheme that balances the input properly despite a substantial delay. In balancing the input,
one would want λ (see (55)) customers to arrive to the queue each slot. This is not feasible,
since we are dealing with a stochastic arrival process, but it might serve as a guiding principle.
Say we are at the beginning of slot n. We have spent ᾱn−δ + ᾱn−δ+1 + · · · + ᾱn−1 units of
energy on acquisition in the previous δ slots and we are still free to choose ᾱn, which makes
that the number of arriving customers in the next δ + 1 slots is given by

δ
∑

k=0

ᾱn−k
∑

i=1

Ak,i, (56)

where the Ak,i are i.i.d. as A. Ideally, there will be η − ᾱn customers at the beginning of
slot n, so that in each slot all waiting customers can be served. In that case, we would have
Xn = η − ᾱn and

δ
∑

k=0

ᾱn−k
∑

i=1

Ak,i = (δ + 1)λ. (57)

In reality, this wil not be the case, but we will take these values as a benchmark. So, we aim
at choosing ᾱn such that

Xn − (η − ᾱn) +
δ

∑

k=0

ᾱn−k
∑

i=1

Ak,i = (δ + 1)λ. (58)

This benchmark gives rise to a useful scheme for acquisition planning. However, since we don’t
know that outcome of the Ak,i in (58) we replace these random variables by their expectation
µA, and upon some rewriting we get

ᾱ∗

n =
1

1 + µA

[

η + (δ + 1)λ − Xn − µA

δ
∑

k=1

ᾱn−k

]

= α∗ +
1

1 + µA

[

(δ + 1)λ − Xn − µA

δ
∑

k=1

ᾱn−k

]

(59)
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To make sure that ᾱn is integer-valued, and no energy is waisted, we then choose ᾱn according
to

ᾱn = max{0, ⌊ᾱ∗

n⌋, η − Xn}. (60)

6 Comparison of acquisition schemes

In order to assess the merit of various acquisition schemes, we have carried out a number of
simulations. We let A be Poisson distributed, and set η = 10, δ = 10. The results we present
are based on a simulation of 10,000,000 slots, in which we start from an empty queue and
neglect the first 1,000,000 slots. We also verify some of the properties that were stated in
Subsec. 4.1.
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Figure 8: EX for A Poisson distributed with
η = 10, δ = 10, for α = 0, 1, 2, 3 and free
acquisition planning (60).
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Figure 9: ER for A Poisson distributed with
η = 10, δ = 10, for α = 0, 1, 2, 3 and free
acquisition planning (60).

Figs. 8-9 give results for static acquisition planning with α = 0, 1, 2, 3 and free acquisition
planning according to (60). Fig. 8 displays the mean limiting queue length. The curves
obtained from static acquisition planning all have an asymptote at λ = η − α. For most
values of λ, α = 0 results in the largest mean queue length, while (60) results in the smallest
mean queue length. For static acquisition planning, the non-monotonic behavior mentioned
in Subsec. 4.1 is clearly visible for α = 1. Fig. 9 displays the correlation term ER. For static
acquisition planning, ER tends to zero as λ goes to its maximum sustainable value. Free
acquisition planning succeeds in keeping the ER small, except for high values of λ, where the
difference with static acquisition planning, case α = 0, is negligible. As mentioned before, a
small correlation term indicates that the acquisition scheme balances the input well.

From many other simulations we observed that free acquisition performs better for increas-
ing values of δ. The larger δ, the more (relatively) ER is reduced by free acquisition planning.
This can be explained as follows. Equation (60) determines the appropriate acquisition effort
by estimating the number of customers that will arrive in the future. Denote the total acqui-
sition effort in the δ previous slots by t. The estimated number of future arrivals is then tµA.
Hence, the larger δ, the larger t, and the more precise the estimation of the number of future
arrivals will be. A similar argument can be used for describing the influence of the arrival
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distribution. The more volatile the distribution, the less accurate the estimation of the future
arrivals will be.

7 Conclusions

We have introduced the acquisition queue as a new type of queueing model, and obtained
the pgf of the limiting queue length distribution. Using a method of Kingman [8] and a
fluid approximation, we have obtained an approximation to the mean limiting queue length.
Simulations have shown that the approximation is precise, although it breaks down in heavy-
traffic situations.

Both the exact solution and the approximation revealed a number of interesting properties
of the acquisition queue. We showed that the mean limiting queue length is increasing in the
delay δ and grows without limits for δ tending to infinity. Also, rather remarkably, we showed
that for δ ≥ 1 and α ≥ 1, the mean limiting queue length is not monotonic in the traffic
intensity. The mean limiting queue length first grows with the traffic intensity, but as the
traffic intensity approaches its maximum sustainable value, the mean limiting queue length
decreases substantially.

We proposed a type of acquisition planning that determines the acquisition effort in slot
n based on the queue length at the beginning of slot n and total acquisition effort in the δ
previous slots. Numerical examples showed good performance, mainly due to the fact that
the correlation of the input process is reduced.
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