

Constructive formal methods and protocol standardization

Citation for published version (APA):
Mooij, A. J. (2006). Constructive formal methods and protocol standardization. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR612838

DOI:
10.6100/IR612838

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR612838
https://doi.org/10.6100/IR612838
https://research.tue.nl/en/publications/28f389b7-50ca-4ac6-ac08-bf385a1b36f0

Constructive formal
methods and protocol

standardization

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 2 oktober 2006 om 16.00 uur

door

Arjan Johan Mooij

geboren te Rotterdam

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. J.F. Groote

Copromotor:
dr. J.M.T. Romijn

Constructive formal methods
and protocol standardization

Arjan J. Mooij

Promotor: prof.dr.ir. J.F. Groote (Technische Universiteit Eindhoven)
Copromotor: dr. J.M.T. Romijn (Technische Universiteit Eindhoven)

Kerncommissie:

prof.dr. W.H. Hesselink (Rijksuniversiteit Groningen)
prof.dr.ir. J.-P. Katoen (RWTH Aachen University)
dr. S. Mauw (Technische Universiteit Eindhoven)

The work in this thesis is supported by the NWO as a part of project “Improving
the Quality of Protocol Standards” (project number 016.023.015).

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

IPA dissertation series 2006-14.

c© Arjan J. Mooij, 2006.

Printing: Printservice Technische Universiteit Eindhoven
Cover design: Oranje Vormgevers

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Mooij, Arjan J.

Constructive formal methods and protocol standardization / Arjan Johan
Mooij. – Eindhoven : Technische Universiteit Eindhoven, 2006.
Proefschrift. – ISBN 90-386-0794-6. – ISBN 978-90-386-0794-8
NUR 993
Subject headings: programming ; formal methods / software description ;
formal proofs / distributed programming / computer networks ; protocols
CR Subject Classification (1998): F.3.1, D.1.3, F.3.2, D.2.4, C.2.2

Preface

Upon completing this thesis, it is tempting to look forward to an exciting future
career. At the same time, however, I do realize that there have been a lot of
people that enabled me to develop myself this far. As it is easy to get used to such
valuable people, I will use this preface to express my gratitude to them.

I like to thank my copromotor Judi Romijn for offering me a position on her
research project, for the supervision, and for the discussions on different styles of
computer science research. I would like to thank Nicu Goga for the collaboration,
and in particular for his interest and concern during the pregnancy leave of Judi.
Wieger Wesselink has done a great job in improving my understanding of several
techniques by forcing me to explain them properly. Furthermore I like to thank
him for his work on the tool implementation that is discussed in Chapter 9 of this
thesis. I would also like to thank my promotor Jan Friso Groote for accepting me
in his research group, and for allowing me to explore a wide range of topics.

Wim Hesselink, Joost-Pieter Katoen and Sjouke Mauw are thanked for taking part
in the committee to judge this thesis. In particular I thank Wim Hesselink and
Sjouke Mauw for enabling me to smoothen some irregularities.

Apart from the research leading to this thesis, there was time to work on other
subjects. During the last year I have enjoyed the research collaboration with
Brijesh Dongol from the University of Queensland. I have also appreciated my
local teaching duties; I like to thank these colleagues for their trust and support.

The weekly sessions of the Eindhoven Tuesday Afternoon Club are memorable. In
a pleasant and challenging atmosphere, these afternoons have clearly contributed
to my skills in (at least) mathematics and problem solving. In particular I am
greatly indebted to Wim Feijen, from whom I have learned many things about
mathematics and computer science.

Apart from having contact with scientific colleagues, it is indispensable to have
some external distractions. In my case, a lot of people have contributed to this,
namely by together making music. I have especially valued the atmosphere of
mutual inspiration. Finally I would like to thank my parents for providing a safe
environment from which I could study and develop myself.

i

ii

Contents

0 Introduction to the thesis 1

I ISO/IEEE 1073.2: Medical Device Communication 3

1 Introduction 5

1.1 Introduction to the protocol standard 5

1.1.1 ISO/IEEE 1073.2.2: base standard 5

1.1.2 ISO/IEEE 1073.2.3: remote control extension 6

1.1.3 Our contributions . 6

1.2 Preliminaries . 8

1.2.1 Basic MSC . 9

1.2.2 High-level MSC . 9

2 Partial-order framework 11

2.1 Extended partial order model . 11

2.1.1 Running example . 12

2.1.2 LATERs: LAbeled Transitive Event Relations 12

2.1.3 Isomorphism . 13

2.1.4 Elementary later operators 13

2.1.5 Deadlocks . 14

2.1.6 Prefix . 15

2.1.7 Projection . 16

iii

2.1.8 Sets of laters . 16

2.1.9 Partial synchronization . 17

2.2 Asynchronous communication . 17

2.2.1 Label-wise trichotomy . 18

2.2.2 Communication causalities 18

2.2.3 History parameter . 20

2.3 Semantics of compositional MSC 20

2.3.1 Basic MSC . 21

2.3.2 High-level MSC . 21

2.3.3 MSC . 22

2.4 Implementations . 23

2.4.1 Decomposition . 23

2.4.2 Recomposition . 23

2.4.3 Recomposition and decomposition 24

2.4.4 Monotonicity . 24

2.4.5 Relation with operational formalisms 24

2.5 Conclusions . 25

3 Realizability criteria 27

3.1 Realizability problem . 28

3.1.1 Implementation contains specification 28

3.1.2 Specification contains implementation 28

3.1.3 Sound choice . 31

3.2 Classification of realizability criteria 33

3.2.1 Non-local choice . 34

3.2.2 Propagating choice . 34

3.2.3 Non-deterministic choice . 35

3.2.4 Race choice . 36

3.3 Related literature . 36

3.3.1 Definitions of non-local choice 37

3.3.2 Implied scenarios . 37

iv

3.3.3 Delayed choice . 38

3.3.4 Boiler example . 38

3.3.5 Reconstructible choice . 40

3.4 Conclusions . 40

4 Realizing non-local choice 43

4.1 Views on non-local choice . 43

4.1.1 Traditional approaches . 44

4.1.2 Our approach . 44

4.2 A solution for two processes . 45

4.2.1 Simple pattern . 45

4.2.2 Related approach . 46

4.2.3 Generalized pattern . 46

4.3 A solution for arbitrarily many processes 47

4.3.1 Running example . 47

4.3.2 Pattern . 48

4.3.3 Implementation . 50

4.3.4 Relation with compositional MSC 52

4.4 Relation with the case studies . 53

4.4.1 Base standard . 53

4.4.2 Remote control extension 53

4.4.3 Health-Level Seven . 54

4.5 Conclusions . 55

5 Conclusions 57

II IEEE 1394.1: FireWire Bridges 59

6 Introduction 61

6.1 Introduction to the protocol standard 61

6.1.1 IEEE 1394: underlying standard 61

6.1.2 IEEE 1394.1: intended extension 62

v

6.1.3 Abstractions . 63

6.1.4 Net update: maintaining a spanning tree 63

6.1.5 Some related spanning tree work 65

6.1.6 Our contributions . 66

6.2 Preliminaries . 67

6.2.1 Processes, actions and assertions 67

6.2.2 Programming language . 67

6.2.3 Hoare triples and the theory of Owicki/Gries 68

6.2.4 Method of Feijen/van Gasteren 69

6.2.5 Safety, termination, and deadlock freedom 71

6.2.6 Lemmas . 71

7 A spanning tree algorithm for dynamic networks 73

7.1 Algorithm . 73

7.1.1 Refined specification . 74

7.1.2 Additions of edges . 74

7.1.3 Removals of edges . 75

7.1.4 Example . 76

7.1.5 Discussion . 76

7.2 Proof . 77

7.2.1 Refined specification . 77

7.2.2 Partial correctness . 78

7.2.3 Stabilization . 79

7.2.4 Removals of edges . 80

7.3 Conclusions and further work . 80

8 A formal reconstruction of net update 81

8.1 Notations . 82

8.2 Abstract algorithm . 82

8.2.1 Refined Specification . 83

8.2.2 Partial correctness . 84

8.2.3 Stabilization . 89

vi

8.2.4 Deadlock freedom . 91

8.2.5 Initialization and topology changes 95

8.2.6 Full annotation . 96

8.2.7 Performance improvement 98

8.2.8 Example . 99

8.3 Implementation . 100

8.3.1 Convenient shape . 100

8.3.2 Explicit parallelism . 101

8.3.3 Deployment . 102

8.4 Comparison . 103

8.5 Conclusions and further work . 103

9 Incremental verification of Owicki/Gries proof outlines 105

9.1 Related work . 106

9.1.1 Theory of Owicki/Gries in Isabelle 106

9.2 Design points . 106

9.2.1 Decomposing the proof obligation 107

9.2.2 Stabilizing the proof scripts 107

9.2.3 Exploiting invariants . 108

9.3 Experimental environment . 109

9.3.1 Running example: parallel linear search 109

9.3.2 Program model . 110

9.3.3 Proof obligations . 112

9.3.4 Proof scripts . 115

9.4 Experiments . 116

9.4.1 Small algorithms . 116

9.4.2 Larger algorithms . 117

9.5 Conclusions and further work . 118

10 Conclusions 119

Bibliography 121

vii

viii

Chapter 0

Introduction to the thesis

An important feature of many electronic devices is their ability to communicate
with other devices. A typical example from the field of consumer electronics is
connecting a personal computer to a digital camera or to a network of computers.
In particular communication between devices from different manufacturers must
be possible. In this way many distributed networks of interconnected devices arise,
in which parallelism is inevitable.

To enable these networks to operate successfully, the manufacturers need to agree
on the communication protocols to be used. Such protocols are usually described
in international protocol standards, which are maintained by organizations like
the ANSI, the IEEE, and the ISO. The development of a standard is a long-term
effort of a great number of parties, each with a specific interest in the standard.

Developing and reasoning about parallel systems is generally considered to be
complicated. Moreover, the quality of many current protocol standards is poor,
and hence the proper functioning of these protocols cannot be guaranteed. If after
publication of the standard all errors would be detected by each manufacturer,
for example by testing their own products, there is still the danger that different
parties try to fix the protocol in incompatible ways.

In the last few decades, much computer science research has focussed on formal
methods, which are mathematical techniques that can be used to establish correct
algorithms and to describe them properly. A wide range of techniques has been
developed, and currently the most popular ones are specification, simulation and
verification. Specification is used to define an algorithm, simulation is used to
explore some behavior of a given algorithm, and verification is used to completely
check the correctness of a given algorithm. The primary goal of these particular
techniques seems to be finding errors in a given algorithm, while constructive
formal techniques that guide the development of correct algorithms receive far less

1

2 Chapter 0 Introduction to the thesis

attention. In this thesis we explore the use of constructive methods.

Formal methods have mainly been applied by academia and to algorithms that
have already been developed. In this work we reach out to the industry in order
to demonstrate how the use of formal methods can improve the quality of protocol
standards that are still under development. At the same time we extract and
address theoretical topics that lead to a better applicability of formal methods.

To this end we have worked on several protocol standards and applied various kinds
of formal methods during the standardization process. In this thesis we emphasize
our theoretical contributions, while we only briefly describe our practical results
on the protocol standards. In order to motivate and to explain the issues we have
worked on, we also provide short descriptions of the protocol standards.

This thesis consists of two rather independent parts according to the two main
standards we have been involved in. Each part contains its own introduction and
conclusions. Part I is related to the ISO/IEEE 1073.2 standard for medical device
communication, and it addresses the realizability of MSC scenario specifications.
Part II is related to the IEEE 1394.1 standard for FireWire bridges, and it ad-
dresses distributed spanning tree algorithms for dynamic networks.

Part I

ISO/IEEE 1073.2: Medical
Device Communication

3

Chapter 1

Introduction

In this chapter we introduce Part I of this thesis. This part is based on our work
on the protocol standard ISO/IEEE 1073.2, which we describe in Section 1.1.
Afterwards, in Section 1.2 we present some basic concepts that will be used in the
chapters that follow.

1.1 Introduction to the protocol standard

The ISO/IEEE 1073 Standard for Medical Device Communications is a family
of standards, where the substandards in the ISO/IEEE 1073.2 series address the
general communication services. In this section we introduce the relevant sub-
standards and describe the issues we have worked on. More details can be found
in [MGWB03, MG05].

1.1.1 ISO/IEEE 1073.2.2: base standard

The ISO/IEEE 1073.2.2 standard is the base protocol standard, which enables
the communication of patient-related data for the treatment of patients or for the
documentation of medical procedures. In the context of a network of medical devi-
ces and managerial computer systems, a manager-agent communication system is
defined, where the agent usually incorporates a medical device that provides data,
and where the manager receives data. Although a manager can communicate with
several agents, the protocols are defined for a single manager-agent pair. This
standard is based on European pre-standard ENV 13735 [CEN00].

5

6 Chapter 1 Introduction

SCO detects Operation deletion

delete operation from MDIB

msc Operation Delete

AgentManager

‘‘Operation Delete’’ Event Report

 ‘‘Operation Delete’’ Event Report Result

Manager Agent

 Refresh Operation Contextmsc

get information from SCO

 ‘‘Refresh Operation Context’’ Action

‘‘Refresh Operation Context’’ Action Result

Figure 1.1 Some basic MSCs for remote control

1.1.2 ISO/IEEE 1073.2.3: remote control extension

The base standard supports so-called remote configuration, but it was considered
to be too restrictive for performing tasks on a medical device through a communi-
cation system. These intended tasks include obtaining medical information, and
configuring, programming and operating the device. Therefore the base standard
was extended with remote control functionality.

The protocol description in the draft remote control standard ISO/IEEE 1073.2.3
consisted of some scenarios describing typical intended behaviors, like the examples
in Figure 1.1, and some accompanying textual descriptions. The scenarios are
expressed in a kind of message sequence chart (MSC, [ITU00, Ren99]). MSC is a
visual formalism that is widely used in the telecommunication sector, although in
academia it is often considered as inadequate. The standard does not contain any
description of requirements, i.e. desired properties, on the protocol.

1.1.3 Our contributions

Although communication systems in the medical domain must be reliable un-
der all circumstances, a formal analysis is no common part of the development
of this standard. Initially we have analyzed the state transition tables in the
base standard, and we have proposed modifications for the problems found, see
[MGWB03]. Like the remote control standard, no requirements on the protocols in
the base standard were described. Therefore we have primarily considered general
properties like absence of deadlock.

In contrast to the base standard, the draft remote control standard did not even
contain a formal definition of the protocol, e.g. in the form of state transition

1.1 Introduction to the protocol standard 7

Operation Invoke (with SCO lock)

Operation Invoke Refresh Operation Context

Operation DeleteSCO Operation Invoke Error

Refresh Operation Attributes

Start−up

Figure 1.2 Derived high-level MSC for remote control

tables. So before analyzing the remote control standard, we needed to synthesize
such a formal definition. In the literature, many algorithms have been proposed
for synthesizing a (formal) protocol implementation from a message sequence chart
specification. To apply such an algorithm, we have used the textual descriptions
in the draft standard to create some additional variations of the basic MSCs, and
to derive a high-level MSC that describes the overal structure of the protocol, see
Figure 1.2.

Message sequence charts describe behavior from a full-system’s perspective, while
distributed implementations describe behavior in terms of the individual process
instances. Therefore protocol synthesis algorithms mainly project the MSCs on
the individual instances. However, this technique does not work properly for
MSCs that contain a so-called non-local choice. In case of non-local choice, usually
unspecified behavior and even deadlocks are introduced, thus resulting in protocols
with undesired behavior. This leads to the realizability problem, viz. whether there
exists an implementation with the same behavior as a given MSC specification.

The (high-level) MSC that we have derived for remote control contains a non-local
choice. For example, in the first basic MSC from Figure 1.1 the Manager instance
has initiative, while in the second basic MSC the Agent instance has initiative. As
the two process instances are independent, and both have initiative in a different
basic MSC, synthesized implementations admit implied behaviors like the one in
Figure 1.3.

In the literature, the problem of implementing MSCs that contain non-local choice
is almost completely ignored. Nevertheless, it is a very practical problem as non-
local choice is often inevitable. In Chapter 4 we investigate some approaches to
this problem, and we propose some ways to slightly modify MSC specifications
that contain non-local choice in such a way that they become realizable. These
modifications introduce a little additional behavior, but in a controlled way. We
also discuss the application of these techniques to the ISO/IEEE 1073.2 standard.

8 Chapter 1 Introduction

msc implied behavior

 ‘‘Operation Delete’’
 Event Report Result

 Agent waits for

 Action Result
 ‘‘Refresh Operation Context’’
 Manager waits for

Manager Agent

SCO detects Operation deletion

 ‘‘Refresh Operation Context’’ Action

‘‘Operation Delete’’ Event Report

Figure 1.3 Implied behavior in synthesized implementations

Non-local choice is the best-studied realizability criterion. Absence of non-local
choice guarantees that there is at most one process instance that determines the
choice, but this is not enough to guarantee realizability. Namely, the other process
instances must somehow resolve the choice, i.e. the decision must be propagated to
these instances. In Chapter 3 we propose and motivate a complete characterization
of realizability criteria.

To study these aspects of the realizability problem in a convenient way, we need
an appropriate formal model in which both specifications and implementations
can be discussed. In Chapter 2 we introduce our framework that is based on the
partial order model from [Pra86, KL98]. We also give a denotational semantics of
compositional MSC in terms of this model.

The framework from Chapter 2 is used for the technical details in Chapters 3 and
4. Nevertheless the majority of the latter two chapters is comprehensible with just
a basic understanding of MSC. In Chapter 5 we conclude Part I of this thesis.

1.2 Preliminaries

In this section we introduce the subset of the graphical Message Sequence Chart
(MSC) language that we use. This language is used to describe behaviors of a
collection of autonomous process instances that can communicate via asynchronous
message communication. Section 2.3 contains a formal semantics of MSC in a
textual representation.

1.2 Preliminaries 9

1.2.1 Basic MSC

The best-known kind of MSC is basic MSC, see the two examples in Figure 1.1.
A basic MSC contains for each process instance a vertical axis, on top of which
the name of the instance is printed. Each axis contains a series of events that are
only allowed to occur in the order in which they are depicted, from top to bottom.
There are three kinds of events:

• internal action, which is depicted by a rectangle that contains a description
of the action;

• send event, which is depicted by an outgoing arrow with an attached name
that describes the message to be sent;

• receipt event, which is depicted by an incoming arrow with an attached name
that describes the message to be received.

Each receipt event can only occur after the corresponding send event. The arrows
of corresponding send and receipt events are usually connected, but this is not the
case for the MSC extension called compositional MSC.

Sometimes a part of an instance axis is used as a co-region, which denotes that
no order between the events in that region is imposed. Many other extensions
have been proposed, but we will stick to this manageable subset of the graphical
language.

1.2.2 High-level MSC

High-level MSC is used to combine several basic MSCs, see the example in Figu-
re 1.2. It consists of a directed graph in which each node is labeled by a (possibly
empty) basic MSC. One of the nodes is designated as the initial node, which is
depicted by a triangle. The directions of the edges define the order in which the
basic MSCs from the nodes may be executed. Each possible behavior corresponds
to the sequential composition of the basic MSCs encountered at a single path
through the graph. Hence the nodes with several outgoing edges denote choice.

The sequential composition of two basic MSCs is defined instance-wise, i.e. by
connecting the axes that belong to the same process instance. In particular in
compositional MSC it is possible that the send and receive event of a single message
are located in different basic MSCs. In textual representations, keyword seq is
used to denote sequential composition, and keyword alt is used to denote choice.

10 Chapter 1 Introduction

Chapter 2

Partial-order framework

In this chapter that is primarily based on [MRW06], we develop a formal framework
for compositional MSC [GMP03, MM01] to support our study of realizability in
Chapter 3. Compositional MSC is an MSC extension that allows the send event
and the receipt event of a single message to be located in different basic MSCs.

Several kinds of semantics have been proposed for MSC specifications (e.g. [MR94,
KL98, Hey00, UKM03]), while implementations are typically expressed in terms
of finite state machines. To compare specifications and implementations, two
different formalisms must then be related, usually via execution traces (in fact
a third formalism), see e.g. [AEY03]. We prefer to use one single formalism for
both implementations and specifications, and we want to stay close to the MSC
specification formalism. Therefore we use a partial order semantics [Pra86] for
our study, and sketch the relation with operational formalisms. In addition to the
partial order model in [Pra86, KL98], we introduce a way to model deadlocks and
a more sophisticated way to deal with communication.

Overview In Section 2.1 we introduce our partial order model, which we extend
with communication in Section 2.2. These two sections are rather independent
from MSC, but they are the basis of the semantics of compositional MSC in Secti-
on 2.3. In Section 2.4 we define the typical way of synthesizing an implementation,
and we conclude this chapter in Section 2.5.

2.1 Extended partial order model

In this section we define a partial order model and extend it with deadlocks, to
make it suitable for studying realizability criteria.

11

12 Chapter 2 Partial-order framework

alt

msc

YX

c

ex3msc

YX

ex2

d(
c

)seq

ex1

a

msc

YX

e2e1

e3 e6

e7

e4

e5

e8
e10
e11
e12

e
b

b

c

e9

e13

Figure 2.1 Running example

2.1.1 Running example

We illustrate our techniques using a running example. Figure 2.1 contains a (high-
level) MSC consisting of the three basic MSCs ex1, ex2 and ex3. It specifies the
behavior of process instances X and Y , such that first the behavior of ex1 occurs,
followed by either the behavior of ex2 or the behavior of ex3. For reference purposes
we have included arbitrary event names (e1 to e13) in the basic MSCs.

2.1.2 LATERs: LAbeled Transitive Event Relations

As a semantic model of behavior, we introduce the notion of a later, which is an
acronym for labelled transitive event relation. A later (E,<, l) is a triple that
consists of an event set E, a transitive causality relation <: < ⊆ E × E and a
labeling function l : E → L for a given set of labels L.

The behavior of a later is such that any event e : e ∈ E models a single action
with label l.e; the event can occur at most once and it may only occur after all
events f : f < e have already occurred. As < is not required to be asymmetric,
it is not guaranteed that all events can occur. The notion of an event is used to
handle multiple occurrences of an action with the same label. Compared to the
partial orders in [Pra86], a later is an lposet in which the partial order constraint
has been weakened.

In our running example, let laters p1, p2 and p3 correspond to the basic MSCs
ex1, ex2 and ex3 in which only the causalities per instance (on each vertical axis)
are considered, i.e. without communication. So, p1 = ({e1, e2, e3}, {e2 < e3}, l1)
and, as we will see later on, l1 = {e1 7→!(a,X, Y), e2 7→?(a,X, Y), e3 7→!(b, Y,X)}.
Labeling function l1 maps event e1 to the label !(a,X, Y), which we use to denote
an action of instance X that sends a message a to instance Y . Similarly, event
e2 is mapped to the label ?(a,X, Y), which denotes an action of instance Y that
receives a message a from instance X. The structure of p1 can be visualized as

e1 e2 e3 such that relation < corresponds to the transitive closure of
relation →.

2.1 Extended partial order model 13

In an interleaved execution model where the events are labeled with atomic actions,
the maximal behaviors of a partially ordered later are its linearizations. The
linearizations of a later (E,<, l) are the execution traces e1 · . . . · en such that
{e1, . . . , en} = E, and for each two indices i and j both ei = ej ⇒ i = j and
ei < ej ⇒ i < j. The three linearizations of later p1 are e1 · e2 · e3, e2 · e1 · e3,
and e2 · e3 · e1. We prefer to reason about the (more abstract) laters instead of
linearizations, because they are better related to MSC and they avoid decomposing
each later into several over-specific total orders. Another advantage is that they
can be used to model true concurrency, where events can (partially) overlap.

The most elementary laters are the empty later, with no events, and the singleton
laters, with only one event with a label k : k ∈ L. We introduce the following
abbreviations for them:

[ǫ] = (∅, ∅, ∅)
[k] = ({e}, ∅, {e 7→ k}) for k : k ∈ L and arbitrary e

2.1.3 Isomorphism

The event set of a later is abstract in the sense that a consistent renaming of the
events yields a later with the same behavior. This is formalized in the following
notion of isomorphism. Laters (E,<, l) and (E′, <′, l′) are isomorphic, denoted
(E,<, l) ≃ (E′, <′, l′), if there is a bijection ∼: ∼⊆ E × E′ such that both

• (∀e, e′ : e ∼ e′ : l.e = l′.e′)

• (∀e, f, e′, f ′ : e ∼ e′ ∧ f ∼ f ′ : (e < f ≡ e′ <′ f ′))

Relation ≃ is an equivalence relation. In what follows we will hardly mention
≃ explicitly, and implicitly assume that where necessary ≃ has been exploited
to obtain suitable laters, e.g. ones that are event disjoint. This conforms to the
pomset style used in [KL98].

2.1.4 Elementary later operators

We often need to relate events to the process instance in which they occur. We
assume a fixed set of instance names I, and a function φ : L → I that maps labels
to the instance in which the actions with that label occur. For a later (E,<, l),
[HJ00] uses the slightly different function φ′ : E → I, which can be obtained from
our later-independent φ as follows: φ′.e = φ.(l.e) .

To construct larger laters from the elementary laters, we use the following elemen-
tary operators on event disjoint laters (i.e. Ep ∩ Eq = ∅):

14 Chapter 2 Partial-order framework

(Ep, <p, lp) ‖ (Eq, <q, lq) = (Ep ∪ Eq, <p ∪ <q, lp ∪ lq)

(Ep, <p, lp) ◦S (Eq, <q, lq) = (Ep ∪ Eq, <p ∪ <◦S
∪ <q, lp ∪ lq)

where <◦S
= Ep × Eq

(Ep, <p, lp) ◦W (Eq, <q, lq) = (Ep ∪ Eq, (<p ∪ <◦W
∪ <q)

+, lp ∪ lq)
where <◦W

= {(e, f) | e, f : e ∈ Ep ∧ f ∈ Eq ∧ φ.(lp.e) = φ.(lq.f)}

Operator ‖ denotes parallel composition, and operators ◦S and ◦W denote strong
(or pure, or synchronous) and weak (or asynchronous) sequential composition,
respectively. These operators are associative and they have unit element [ǫ]. Since
parallel composition is also commutative, we can use ‖ as a quantifier.

In our running example, φ.(!(a,X, Y)) = X and φ.(?(a,X, Y)) = Y . Let laters p4

and p5 be defined as p4 = p1 ◦W p2 and p5 = p1 ◦W p3. The structure of p5 is
visualized as e1 e9 e10 e11 e12 e2 e3 e8 e13 .

2.1.5 Deadlocks

A later (E,<, l) contains a deadlock if there is an event e : e ∈ E such that e < e.
Conversely, a later is deadlock-free if the (transitive) causality relation is a strict
partial order, i.e. the conjunction of the following holds:

• irreflexive: (∀e :: ¬(e < e))

• asymmetric: (∀e, f :: ¬(e < f ∧ f < e))

• transitive: (∀e, f, g :: e < f ∧ f < g ⇒ e < g)

The definitions of deadlock and deadlock-free are consistent, since asymmetry im-
plies irreflexivity, and transitivity plus irreflexivity implies asymmetry. All laters
that can be obtained from the elementary laters using the elementary later opera-
tors are deadlock-free.

For example, consider later p′5 (to be defined in Section 2.2) with the following

structure: e1 e2 e3 e8 e9 e10 e11 e12 e13 . In this later
there is a circular dependency between events e10 and e11. From the transitivity
of relation < it follows that e10 < e10, hence e10 is a deadlock.

The interpretation of the causality relation is such that the set of events “behind
any deadlock” cannot occur either. We define the set of deadlocked events ∆ for
a later (E,<, l) as follows:

∆.(E,<, l) = {f | e, f : e ∈ E ∧ f ∈ E ∧ e < e ∧ e < f}

In our example we obtain ∆.p′5 = {e10, e11, e12, e13}, and hence events e1, e2, e3,
e8 and e9 are the only events that can occur in later p′5.

2.1 Extended partial order model 15

2.1.6 Prefix

A natural way to compare laters is to compare their possible behaviors. If all
possible behaviors of a later p are contained in the possible behaviors of a later q,
we call p a prefix of q. In an interleaved execution model this corresponds to trace
inclusion.

To determine whether p is a prefix of q, we only need to consider the deadlock-free
part of p. If p is a prefix of q, then (1) p may contain fewer events than q, (2) on
this smaller event set, p may contain more causalities than q, (3) q’s labeling of
events is respected by p, and (4) for each event that is in both p and q, all events
that precede the event in q are also in p.

Formally, later p is a prefix of later q, to be denoted by p � q, if for some laters
(Ep, <p, lp) ≃ p and (Eq, <q, lq) ≃ q the following four conditions hold:

1. Ep ⊆ Eq

2. <q ∩(Ep × Ep) ⊆ <p

3. lp ∩ (Ep × L) = lq ∩ (Ep × L)

4. (∀e, f :: e <q f ∧ f ∈ Ep ⇒ e ∈ Ep)

where Ep = Ep\∆.(Ep, <p, lp)

In the running example several prefix relations hold, such as p1 � p4 and p1 � p5.

As a corollary of p � q, we have Ep ⊆ Eq for Eq = Eq\∆.(Eq, <q, lq). Prefix order
� is a pre-order (i.e. reflexive and transitive) with smallest element [ǫ]. Some
typical prefixes are p � p‖q, q � p‖q, p � p ◦S q and p � p ◦W q. In comparison
with [KL98], our definition is more explicit, it can deal with deadlocks, and it
allows <q ∩(Ep × Ep) to be strictly smaller than <p.

Parallel composition is monotonic in both arguments, while both kinds of sequen-
tial composition are only monotonic in their second argument. In general, sequen-
tial composition is not monotonic in its first argument. For example, let p = [ǫ],
q = ({e}, {e < e}, {e 7→ k}) and r = [k]. Both kinds of sequential composition
yield p ◦ r = r and q ◦ r � q. Although p � q, we do not have p ◦ r � q ◦ r,
because r 6� q. This observation has directed our study in Section 3.1.2 towards
an action-prefix alike operator instead of a full sequential composition operator.

A special kind of prefix is a causality extension:

< ⊆ <′ ⇒ (E,<′, l) � (E,<, l)

As an example consider later p′5, which is a causality extension of later p5.

16 Chapter 2 Partial-order framework

2.1.7 Projection

To restrict the set of events of a later, we define a projection operator π that
restricts a later to the events in process instance i as follows:

πi.(E,<, l) = (F,< ∩(F × F), l ∩ (F × L))
where F = {e | e : e ∈ E ∧ φ.(l.e) = i}

The relation with parallel composition is p � (‖i : i ∈ I : πi.p). In general
it is not guaranteed that (‖i : i ∈ I : πi.p) � p. For example, consider p =
({e1, e2}, {e1 < e2}, {e1 7→ k1, e2 7→ k2}) such that φ.k1 6= φ.k2. Then (‖i : i ∈ I :
πi.p) = ({e1, e2}, ∅, {e1 7→ k1, e2 7→ k2}), which is not a prefix of p.

Furthermore, projection is monotonic with respect to causality extensions in the
sense that:

< ⊆ <′ ⇒ πi.(E,<′, l) � πi.(E,<, l)

2.1.8 Sets of laters

Usually a single later cannot describe all possible behavior of a system. Therefore
we also study a set of laters (which is the notion of a process in [Pra86]), which
represents the set of behaviors of the individual laters (like a choice). We lift each
elementary later operator ⊕ and the projection operator π as follows:

P ⊕ Q = {p ⊕ q | p, q : p ∈ P ∧ q ∈ Q}
πi.P = {πi.p | p : p ∈ P}

To lift the prefix order �, we define order ⊑ as follows:

P ⊑ Q ≡ (∀p : p ∈ P : (∃q : q ∈ Q : p � q))

Order ⊑ is a pre-order with smallest element ∅. Like before, parallel composition
is monotonic in both arguments, while both kinds of sequential composition are
only monotonic in their second argument. Relation

.
= defined as

P
.
= Q ≡ P ⊑ Q ∧ Q ⊑ P

is an equivalence relation. Equivalence P
.
= Q denotes that P and Q have the

same sets of deadlock-free prefixes, which means that they are trace equivalent.
Thus sets of laters can be interpreted as the delayed choice [BM95] between the
individual laters.

2.2 Asynchronous communication 17

2.1.9 Partial synchronization

In Section 4.3 we will use the constraint-oriented style of programming, see e.g.
[Bri90]. Therefore we introduce the partial synchronization operator that is known
from LOTOS [ISO89], which combines two behaviors by merging certain pairs of
events. In terms of laters, it can be defined as follows for a given set of labels K:

P ‖K Q = (
⋃

p, q : p ∈ P ∧ q ∈ Q : p ‖K q)
p ‖K q = {(Ep ∪ Eq, <p ∪ <d ∪ <q, lp ∪ lq) | Ep, Eq, <p, <d, <q, lp, lq :

(Ep, <p, lp) ≃ p ∧ (Eq, <q, lq) ≃ q ∧
(∀e : e ∈ Ep ∧ e ∈ Eq : lp.e = lq.e ∧ lp.e ∈ K) ∧
<d= {(e, e) | e : (e ∈ Ep ∧ lp.e ∈ K ∧ e 6∈ Eq) ∨

(e ∈ Eq ∧ lq.e ∈ K ∧ e 6∈ Ep) } }

This definition is similar to the definition of parallel composition. The event
disjointness requirement on laters only holds for the events with labels that are
not in K. The events with a label from K must be synchronized, and hence we
require that if such an event is present in both Ep and Eq, then it has the same
label in lp and lq. If such an event is not present in both Ep and Eq, then it
becomes a deadlock event via <d.

Notice that the result of the partial synchronization of single laters is a set of
laters. In many cases it could be expressed as a single later, but not in cases like
the following:

• p = ({e1, e2, e3, e4}, {e1 < e3, e2 < e4}, {e1 7→ a, e2 7→ a, e3 7→ b, e4 7→ c})

• q = ({e3, e4, e5}, {e5 < e3, e5 < e4}, {e3 7→ b, e4 7→ c, e5 7→ a})

Depending on whether event e5 is matched with e1 or with e2, either events e2 and
e4 or events e1 and e3 cannot occur respectively. Hence the result of p ‖{a,b,c} q

cannot be expressed in terms of a single later.

Furthermore, notice that P ‖∅ Q
.
= P ‖Q. Recalling that L denotes the set of all

labels, we even have P ‖L P
.
= P thanks to considering trace equivalence. Since

‖K on sets of laters is associative and commutative, we can use ‖K as a quantifier.

2.2 Asynchronous communication

In this section we develop an operator that introduces in a later the causalities
that correspond to asynchronous message communication. This is the most com-
monly used communication model, although [EMR02] investigate the consequences
of other models. To model distributed systems with communication via messa-
ge passing, some labels are used to denote sending or receiving a message. The

18 Chapter 2 Partial-order framework

most liberal causalities are obtained by matching sends and receipts in their or-
der of occurrence. This does not require that messages with identical names are
communicated in FIFO order.

2.2.1 Label-wise trichotomy

To match events properly, we need to determine the order in which events with
identical labels occur. For simplicity reasons, we assume for each label that the
events with that label are totally ordered; at least, in the deadlock-free part of
the later. Since this deadlock-free part is strict partially ordered, we only need
trichotomy (or comparability) for events with identical labels. For notational
convenience, we require this property for the whole later and for all labels.

The label-wise trichotomy property T is defined as follows:

T.P ≡ (∀p : p ∈ P : T.p)
T.(E,<, l) ≡ (∀e, f : l.e = l.f : e = f ∨ e < f ∨ f < e)

As we will see in Section 2.3, this only imposes a few, acceptable restrictions on
MSCs. This property is maintained under causality extensions and event restricti-
ons, it holds for the elementary laters, and it is maintained under sequential com-
position; only for a parallel composition (Ep, <p, lp)‖(Eq, <q, lq) label-disjointness
is required, i.e. (∀e, f : e ∈ Ep ∧ f ∈ Eq : lp.e 6= lq.f).

2.2.2 Communication causalities

We define operator Γ.p, which introduces the communication causalities in a later
p. For compositional MSC, we must also address communication between two
sequentially composed laters. Therefore we introduce a parameter t of type later,
which denotes the history, i.e. the entire preceding behavior of later p. The default
value of parameter t is [ǫ].

For each message m, we must ensure that each receipt event (with label ?m) is
preceded by the corresponding send event (with label !m). In case there are more
receive events than send events, these remaining receipt events are turned into
deadlocks. Thus we obtain (provided T.t and T.P hold):

2.2 Asynchronous communication 19

Γt.P = {Γt.p | p : p ∈ P}
Γt.(E,<b, l) = (E, (<b ∪ <c)

+∪ <d, l)
where <c=<′

c ∩ (E × E) and <d=<′
d ∩ (E × E)

and (E′, <′, l′) = t ◦W (E,<b, l) and E′ = E′\∆.(E′, <′, l′)
and <′

c= {(e, f) | e, f,m : e ∈ E′ ∧ f ∈ E′ ∧ l′.e =!m ∧ l′.f =?m ∧
(#g :: g <′ e ∧ l′.g =!m) = (#g :: g <′ f ∧ l′.g =?m)}

and <′
d= {(f, f) | f,m : f ∈ E′ ∧ l′.f =?m ∧

(#g :: g ∈ E′ ∧ l′.g =!m) ≤ (#g :: g <′ f ∧ l′.g =?m)}

In this definition, first an auxiliary later (E′, <′, l′) is computed as the sequential
composition of t and (E,<b, l). Then causalities <′

c are defined for the matching
communications, and causalities <′

d are defined for the deadlocked receipt events.
Finally, only the causalities on events E (i.e. not on events from previous behavior
t) are added to later (E,<b, l).

For the running example, we define later p′4 = Γ[ǫ].p4 and p′5 = Γ[ǫ].p5. When
visualizing p′4 and p′5, we add the additional communication causalities according
to <′

c with dashed arrows, and the additional deadlock causality for unmatched
receipts (<′

d) with a dotted arrow as follows:

p′4:

e1 e4 e5

e2 e3 e6 e7 p′5:

e1 e9 e10 e11 e12

e2 e3 e8 e13

For p′4 this then boils down to: e1 e2 e3 e4 e5 e6 e7 .
For p′5, the result was already visualized in Section 2.1.

Since Γ is a causality extension, it maintains predicate T . However, Γ can introduce
deadlocks. The following are some closure properties of Γ:

(shrinking) Γt.p � p

(idempotence) Γt.p = Γt.(Γt.p)
(monotonicity) p � q ⇒ Γt.p � Γt.q

These properties can even be generalized to sets of laters.

Consider the three laters x, y and z. If x and z are label-disjoint, then condition
Γt.(x‖z) � Γt.x denotes that each event from later z is contained in the set of
deadlocked events ∆.(Γt.(x‖z)) of Γt.(x‖z). For this kind of expressions, we have
the following rules:

• multiple deadlock extension, provided x and y‖z are label-disjoint:

Γt.(x‖y) � Γt.x ∧ Γt.(x‖z) � Γt.x ≡ Γt.(x‖y‖z) � Γt.x

• elimination, provided x‖y and z are label-disjoint:

Γt.(x‖y‖z) � Γt.(x‖y) ⇒ Γt.(x‖z) � Γt.x

20 Chapter 2 Partial-order framework

2.2.3 History parameter

History parameter t of Γ is necessary for our study of sequential composition in
Section 3.1. There we exploit the following important property:

Γt.({p} ◦W Q)
.
= Γt.({p} ◦W Γt◦W p.Q)

which can be proved by splitting
.
= in its two directions:

Γt.({p} ◦W Γt◦W p.Q) ⊑ Γt.({p} ◦W Q)
⇐ {monotonicity of Γ}

{p} ◦W Γt◦W p.Q ⊑ {p} ◦W Q

⇐ {monotonicity of ◦W }
Γt◦W p.Q ⊑ Q

≡ {shrinking Γ}
true

Γt.({p} ◦W Q) ⊑ Γt.({p} ◦W Γt◦W p.Q)
≡ {idempotence of Γ}

Γt.(Γt.({p} ◦W Q)) ⊑ Γt.({p} ◦W Γt◦W p.Q)
⇐ {monotonicity of Γ}

Γt.({p} ◦W Q) ⊑ {p} ◦W Γt◦W p.Q

⇐ {calculus}
(∀q : q ∈ Q : Γt.(p ◦W q) � p ◦W Γt◦W p.q)

For the remaining �, note that the event sets and the labeling are identical, and
hence we only need to show that the left-hand side contains more causalities than
the right-hand side. Since ◦W is associative, (E′, <′, l′) is identical in both Γ’s.
Since the events of q are contained in the events of p ◦W q, the orders introduced
by Γ in the right term are a subset of the orders introduced by Γ in the left term.

2.3 Semantics of compositional MSC

Using the preceding concepts, we define a semantics of compositional MSC as an
extension of the MSC semantics of [KL98]. For simplicity reasons, we delay the
introduction of the communication causalities; in Section 3.1 we will show how
they can be introduced earlier (like in [KL98]). We start by giving the semantics
of basic MSC, then the semantics of high-level MSC, and finally we complete this
semantics by including the communication causalities.

2.3 Semantics of compositional MSC 21

2.3.1 Basic MSC

A common representation of basic MSCs is a graphical one like in Figure 2.1, but
they can also be transformed into a textual representation. The semantics (without
communication) of a basic MSC B in the instance-oriented textual representation
[Ren99] is defined as a later M

bmsc
[[B]] as follows:

M
bmsc

[[〈 〉]] = [ǫ]
M

bmsc
[[inst i;S endinst;B]] = M

inst
[[S]](i) ‖ M

bmsc
[[B]]

As communication is not yet considered, the individual process instances are ad-
dressed independently, and combined using parallel composition. In turn, later
M

inst
[[S]](i) considers the description S of a single instance i:

M
inst

[[〈 〉]](i) = [ǫ]
M

inst
[[a;S]](i) = M

inst
[[a]](i) ◦S M

inst
[[S]](i)

M
inst

[[co 〈 〉 endco]](i) = [ǫ]
M

inst
[[co a;C endco]](i) = M

inst
[[a]](i) ‖ M

inst
[[co C endco]](i)

M
inst

[[in n from j]](i) = [?(n, j, i)]
M

inst
[[out n to j]](i) = [!(n, i, j)]

M
inst

[[local b]](i) = [b(i)]

The events per instance are combined using sequential composition in their order of
occurrence, and the events in co-regions are combined using parallel composition.
Finally the single events are mapped to elementary laters.

Function φ, which maps events to instances, can then be defined as follows:
φ.(?(n, j, i)) = i, φ.(!(n, i, j)) = i and φ.(b(i)) = i . By construction, for each
basic MSC B the corresponding later M

bmsc
[[B]] is a strict partial order.

To ensure that predicate T is satisfied, we assume that no instance name occurs
more than once per bMSC [Ren99], and we require that in each co-region the
events are label disjoint. The interest in co-regions is usually very limited (they
are completely excluded in [HJ00, GMP03]), so this is no severe restriction. The
unrealistic assumption that for each message name there is at most one send event
and at most one receipt event per bMSC [KL98], is not required here.

2.3.2 High-level MSC

High-level MSCs are often represented by a finite directed graph, in which each
node is labeled with a basic MSC, and in which one node is designated as initial
node. Each possible behavior corresponds to the sequential composition of the
basic MSCs encountered at a single path through the graph. We prefer the graph

22 Chapter 2 Partial-order framework

to be normalized such that if a node has more than one outgoing edge, then the
basic MSC associated with the node is the empty one. In this way the choices are
made explicit in nodes without an associated basic MSC.

This graphical representation of high-level MSC can also be transformed into a
textual representation. The semantics (without communication) of high-level MSC
A in textual representation is defined as a set of laters M

hmsc
[[A]] as follows:

M
hmsc

[[empty]] = {[ǫ]}
M

hmsc
[[msc name;B endmsc]] = {M

bmsc
[[B]]}

M
hmsc

[[A seq B]] = M
hmsc

[[A]] ◦W M
hmsc

[[B]]
M

hmsc
[[A alt B]] = M

hmsc
[[A]] ∪ M

hmsc
[[B]]

By construction, each later in M
hmsc

[[...]] is a strict partial order, and satisfies predi-
cate T . Following the standardized semantics of MSC, we consider weak sequential
composition and delayed choice. The use of delayed choice is sometimes referred
to as the wait-and-see approach.

We do not explicitly address iteration, since it can be expressed via least fixed
points and sequential composition. Sometimes the parallel composition of high-
level MSCs, denoted by par, is also considered. Its semantics can easily be ex-
pressed in terms of operator ‖ on sets of laters, but we will not consider it in our
current study.

2.3.3 MSC

Finally we introduce the causalities imposed by communication:

M
msc

[[A]] = M [ǫ]
msc

[[A]]
M t

msc
[[A]] = Γt.M

hmsc
[[A]]

This is a proper definition since M
hmsc

[[A]] satisfies predicate T . By construction,
predicate T also holds for M t

msc
[[A]]. Note that the application of Γt may introduce

deadlocks, which violate the strict partial order property. This illustrates one of
the reasons for our extended partial order semantics.

Using the example laters from Sections 2.1 and 2.2, the semantics of the MSC
in Figure 2.1 corresponds to Γ[ǫ].({p1} ◦W ({p2} ∪ {p3})), which simplifies via
{Γ[ǫ].(p1 ◦W p2), Γ[ǫ].(p1 ◦W p3)} into {p′4, p

′
5}. These two laters represent the

possibility of either performing ex1 followed by ex2, or ex1 followed by ex3.

In [GMP03] there is a restriction that receive events in bMSCs may not be matched
to send events in future bMSCs. In [MM01] an extension is proposed that drops
this restriction. We consider the extension, since the original restriction conflicts
with elegant rules, like sequential composition of two bMSCs being equal to simply
connecting the instance axis [Ren99].

2.4 Implementations 23

2.4 Implementations

In this section we define the usual way of obtaining an implementation for a given
specification. The difference between them is that a specification describes beha-
vior in terms of all process instances, while an implementation describes behavior
in terms of each individual instance. Thus an implementation for an instance can
be represented by a set of laters that contain events of that instance only.

Many synthesis algorithms have been proposed to generate an implementation.
These algorithms are very similar, although they differ in the formalism that is
used for the transformation (process algebra, automata theory, etc.) and the
kind of output that is generated (Petri-net, state chart, etc.). The basic idea is
to decompose the specification according to the instances. The joint execution
behavior of an implementation is obtained by recomposing the instances.

We do not consider the unusual implementation with message parameters proposed
in [Gen05], which effectively boils down to renaming the messages and shifting the
moments of choice. In such an implementation, additional parameters in a request
message are sometimes used to fix the choice that should made by the receiver of
the request.

2.4.1 Decomposition

The typical decomposition D of a set of laters M to its instances is:

D.M = {i 7→ πi.M | i : i ∈ I}

In this function, each instance name is mapped to the corresponding projection of
M . Since projection is an event restriction, each projection of M satisfies predicate
T if M itself satisfies predicate T .

For our running example, the decomposition of the laters, D.{p′4, p
′
5}, yields the

following: {X 7→ { e1 e4 e5 , e1 e9 e10 e11 e12 }, Y 7→ {

e2 e3 e6 e7 , e2 e3 e8 e13 } }.

Let us briefly investigate what might be lost by decomposition. For a singleton
set {(E,<, l)}, note that E and l are partitioned per instance, and hence only the
causalities between different instances are lost. For each later in a larger set M ,
also the link between its projections in the different instances is lost.

2.4.2 Recomposition

To study the joint execution behavior of the decompositions, the decomposition
has to be recomposed. Using the definition from the previous section, the typical

24 Chapter 2 Partial-order framework

recomposition R of a decomposition with history t becomes:

Rt.{i 7→ πi.M | i : i ∈ I} = Γt.(‖i : i ∈ I : πi.M)

This is a proper definition provided T.M holds, since T is maintained under parallel
composition with disjoint labels. The projections are label-disjoint, since for each
label k all events with that label belong to one instance, viz. φ.k .

2.4.3 Recomposition and decomposition

Combining the definitions of recomposition and decomposition, we obtain for any
set of laters M and history t the expression

(Rt ◦ D).M = Γt.(‖i : i ∈ I : πi.M)

where ◦ denotes function composition.

Given an MSC specification A and a history t, the behavior of this specification
is expressed by M t

msc
[[A]] and the behavior of its usual implementation is expressed

by (Rt ◦ D).M t
msc

[[A]].

2.4.4 Monotonicity

We stress that Rt ◦ D is not monotonic with respect to ⊑. However, Rt ◦ D is
monotonic with respect to causality extensions like Γt, for each set of laters M

and history t:
(Rt ◦ D).(Γt.M) ⊑ (Rt ◦ D).M

which can be proved as follows:

(Rt ◦ D).(Γt.M) ⊑ (Rt ◦ D).M
≡ {definition of Rt ◦ D}

Γt.(‖i : i ∈ I : πi.(Γ
t.M)) ⊑ Γt.(‖i : i ∈ I : πi.M)

⇐ {monotonicity of Γ}
(‖i : i ∈ I : πi.(Γ

t.M)) ⊑ (‖i : i ∈ I : πi.M)
⇐ {property of ‖}

(∀i : i ∈ I : πi.(Γ
t.M) ⊑ πi.M)

⇐ {calculus}
(∀i,m : i ∈ I ∧ m ∈ M : πi.(Γ

t.m) � πi.m)
≡ {monotonicity of π with respect to causality extension Γt}

true

2.4.5 Relation with operational formalisms

Using our later representation, implementations in operational formalisms can
easily be obtained. In an interleaved execution model where the labels denote

2.5 Conclusions 25

atomic actions, the set of maximal behaviors of a single later are the linearizations
of the maximal deadlock-free prefix. The set of maximal behaviors of a set of
laters is the union of the maximal behaviors of the individual laters.

In turn, linearizations can easily be transformed to process algebraic expressions
using the delayed choice operator [BM95]. The implementation of our running
example corresponds to the following CSP-style implementation:

X : !a · (?b · !c + ?d)
Y : ?a · !b · (?c + !d · ?c)

Notice that there are no actions for events e7, e10, e11 and e12 since these events
cannot occur, i.e. they are guaranteed to be behind a deadlock. As we consider
trace equivalence, the process algebra expression contains no deadlock δ.

2.5 Conclusions

We have argued that for the study of realizability one single formalism should be
used to express both MSC specifications and their implementations. Instead of
adopting the usual notion of execution traces for this purpose, we prefer to use a
more abstract formalism that is closer to MSC. Therefore we have extended the
notion of a labeled partially-ordered set, also known as an lposet, into a so-called
later that allows deadlocks.

It is further work to reconsider the symbols that are used for the operators. In
particular the symbol ◦W for sequential composition is in fact too large, and the
use of a comma in the usual set notation like {p , q} is too small to denote choice.
The last series of expressions in Section 4.3 also illustrates this issue.

In our framework both distributed implementations and MSC specifications can
be conveniently expressed. In particular for the specifications, we have developed
a denotational semantics for compositional MSC. In Chapter 3 we will use this
framework to study realizability.

26 Chapter 2 Partial-order framework

Chapter 3

Realizability criteria

In this chapter that is primarily based on [MGR05, MRW06], we deal with reali-
zability criteria for compositional MSC. A specification is called realizable if there
exists an implementation that is trace equivalent to it. We propose a complete clas-
sification of realizability criteria for the choice construct. The best-known criterion
is non-local choice [BAL97], but also various other criteria [Hél01, HJ00, Gen05]
have been proposed to determine the realizability of a given MSC. In addition to
non-local choice, we define two classes of problems related to the propagation of
choice, and we use them to discuss some related work.

On the one hand, many existing realizability criteria seem to be tricky formali-
zations of intuitions about realizability. On the other hand, theoretical work like
[AEY05] investigates the decidability and worst-case time complexity of checking
whether an MSC is realizable, but it provides no practical criteria. In contrast to
both approaches, we start by studying under what circumstances specifications are
trace equivalent to their implementations, and by formally deriving a realizability
condition that is both necessary and sufficient. Based on this condition, we derive
our classification of realizability criteria for compositional MSC.

The following is an overview of the many conditions that will be introduced:

derived condition sound choice
¬ non-local choice
propagating choice

¬ non-deterministic choice

¬ race choice

Overview Section 3.1 is the most technical section, in which we study under
what conditions specifications and implementations are trace equivalent. These
conditions are used to derive a complete classification of realizability criteria in
Section 3.2. In Section 3.3 we use these criteria to point out some errors in related
work, and we conclude this chapter in Section 3.4.

27

28 Chapter 3 Realizability criteria

3.1 Realizability problem

In this section, we study whether compositional MSC specifications are realizable,
i.e. whether the behavior of compositional MSC specifications is trace equivalent
to the behavior of their implementations. Using the notions from Chapter 2, this
property can be expressed as: for each MSC A and history t

M t
msc

[[A]]
.
= (Rt ◦ D).M t

msc
[[A]]

In what follows we will investigate for which MSCs this property holds. This
will lead to derived condition N in Section 3.1.2, which we require for each choice
within the MSC.

Using the definition of
.
=, we study this property by splitting

.
= into ⊑ and ⊒.

3.1.1 Implementation contains specification

We first show that the specification is contained in the implementation, i.e. for
each MSC A and history t:

M t
msc

[[A]] ⊑ (Rt ◦ D).M t
msc

[[A]]

It can be proved as follows:

(Rt ◦ D).M t
msc

[[A]]
= {definition of Rt ◦ D}

Γt.(‖i : i ∈ I : πi.M
t
msc

[[A]])
⊒ {property of π and ‖; monotonicity of Γ}

Γt.M t
msc

[[A]]
= {definition of M t

msc
[[A]]; idempotence of Γ}

M t
msc

[[A]]

3.1.2 Specification contains implementation

In the remainder we derive conditions under which the implementation is contained
in the specification, i.e. for each MSC A and history t:

(Rt ◦ D).M t
msc

[[A]] ⊑ M t
msc

[[A]]

We will set up an inductive argument based on the structure of the high-level
MSC, assuming that the following rewrite rules have been applied:

(empty) seq C → C

(A seq B) seq C → A seq (B seq C)
(A alt B) seq C → (A seq C) alt (B seq C)

3.1 Realizability problem 29

These rules do not change the occurrences of choice, but they ensure that the first
argument of sequential composition is just a single basic MSC.

Using the property of Γ and ◦W in Section 2.2, we derive an alternative characte-
rization of M t

msc
[[...]] in which communication is addressed earlier (like in [KL98]):

M t
msc

[[msc name;A endmsc]] = M t
msc

[[msc name;A endmsc seq empty]]
M t

msc
[[empty]] = {[ǫ]}

M t
msc

[[msc name;A endmsc seq B]]
.
= Γt.({M

bmsc
[[A]]} ◦W M t ◦W Mbmsc[[A]]

msc
[[B]])

M t
msc

[[A alt B]] = M t
msc

[[A]] ∪ M t
msc

[[B]]

Case: empty

This is the base case, which has a very simple proof:

(Rt ◦ D).M t
msc

[[empty]]
= {alternative characterization of Rt ◦ D}

(Rt ◦ D).{[ǫ]}
= {calculus}

{[ǫ]}
= {alternative characterization of Rt ◦ D}

M t
msc

[[empty]]

Case: sequential composition

This inductive case can be proved as follows:

(Rt ◦ D).M t
msc

[[msc name;A endmsc seq B]]
.
= {alternative characterization of Rt ◦ D}

(Rt ◦ D).(Γt.({M
bmsc

[[A]]} ◦W M t◦W Mbmsc[[A]]
msc

[[B]]))
⊑ {monotonicity of (RT ◦ D)}

(Rt ◦ D).({M
bmsc

[[A]]} ◦W M t◦W Mbmsc[[A]]
msc

[[B]])
⊑ {• see below}

Γt.({M
bmsc

[[A]]} ◦W (Rt◦W Mbmsc[[A]] ◦ D).M t◦W Mbmsc[[A]]
msc

[[B]])
.
= {induction hypothesis, monotonicity of Γ and ◦W }

Γt.({M
bmsc

[[A]]} ◦W M t◦W Mbmsc[[A]]
msc

[[B]])
.
= {alternative characterization of Rt ◦ D}

M t
msc

[[msc name;A endmsc seq B]]

The step marked • follows from the following rule, where m denotes a later that
does not order events in different instances, and M denotes a set of laters:

(Rt ◦ D).({m} ◦W M)
.
= Γt.({m} ◦W (Rt ◦W m ◦ D).M)

This rule can be proved as follows:

30 Chapter 3 Realizability criteria

(Rt ◦ D).({m} ◦W M)
= {definition of R ◦ D}

Γt.(‖i : i ∈ I : πi.({m} ◦W M))
= {distribution}

Γt.(‖i : i ∈ I : πi.{m} ◦W πi.M)
= {distribution}

Γt.((‖i : i ∈ I : πi.{m}) ◦W (‖i : i ∈ I : πi.M))
= {use that m does not order events in different instances}

Γt.({m} ◦W (‖i : i ∈ I : πi.M))
.
= {property of Γ and ◦W }

Γt.({m} ◦W Γt◦W m.(‖i : i ∈ I : πi.M))
= {definition of R ◦ D}

Γt.({m} ◦W (Rt◦W m ◦ D).M)

This proof exploits that sequential composition is weak. In view of the graphical
syntax of MSC, it would be more natural to define sequential composition as
strong. However, the above rule only holds for weak sequential composition. If
we would start to replace ◦W by ◦S from the top of the above proof, then after
the second step we get a term in which ◦W and ◦S are equivalent, and after the
third step we get stuck as we need ◦W again. Although this does not prove that
strong sequential composition is infeasible, it is at least an indication that weak
sequential composition might be the strongest one that is realizable.

Case: basic MSC

This case is a corollary of case sequential composition:

(Rt ◦ D).M t
msc

[[msc name;A endmsc]]
= {alternative characterization of Rt ◦ D}

(Rt ◦ D).M t
msc

[[msc name;A endmsc seq empty]]
.
= {use case: sequential composition}

M t
msc

[[msc name;A endmsc seq empty]]
= {alternative characterization of Rt ◦ D}

M t
msc

[[msc name;A endmsc]]

Case: choice

This inductive case can be proved as follows:

3.1 Realizability problem 31

(Rt ◦ D).M t
msc

[[A alt B]]
= {alternative characterization of Rt ◦ D}

(Rt ◦ D).(M t
msc

[[A]] ∪ M t
msc

[[B]])
⊑ {N see below}

(Rt ◦ D).M t
msc

[[A]] ∪ (Rt ◦ D).M t
msc

[[B]]
.
= {induction hypothesis (twice)}

M t
msc

[[A]] ∪ M t
msc

[[B]]
= {alternative characterization of Rt ◦ D}

M t
msc

[[A alt B]]

So a choice between realizable MSCs A and B, given a history t, is realizable if
the following condition N holds:

(Rt ◦ D).(M t
msc

[[A]] ∪ M t
msc

[[B]]) ⊑ (Rt ◦ D).M t
msc

[[A]] ∪ (Rt ◦ D).M t
msc

[[B]]

This condition is both sufficient and necessary. If it does not hold, implementations
contain additional behavior, which is usually called implied behavior.

Note that this condition reflects that the core implementation problem is that one
collective choice is specified (see the right-hand side), while it must be implemented
in a distributed way (see the left-hand side). Since this condition does not hold
for each two MSCs A and B, we will study it in more detail in Section 3.1.3.

3.1.3 Sound choice

Before discussing our characterization of realizability criteria in Section 3.2, we
first strengthen derived condition N from Section 3.1.2 into a more convenient one
for this purpose. Using the definition of Rt ◦ D, it is equivalent to:

Γt.(‖i :: πi.(M
t
msc

[[A]] ∪ M t
msc

[[B]])) ⊑ Γt.(‖i :: πi.M
t
msc

[[A]]) ∪ Γt.(‖i :: πi.M
t
msc

[[B]])

Or formulated differently, for each function f :: [I → (M t
msc

[[A]] ∪ M t
msc

[[B]])] repre-
senting per instance a chosen later, (at least) one of the following holds (where g

and h denote functions):

(∃g : g :: [I → M t
msc

[[A]]] : Γt.(‖i :: πi.fi) � Γt.(‖i :: πi.gi))

(∃h : h :: [I → M t
msc

[[B]]] : Γt.(‖i :: πi.fi) � Γt.(‖i :: πi.hi))

Checking this condition is quite involved in practice, since arbitrary combinations
of projected laters f (i.e. from both M t

msc
[[A]] and M t

msc
[[B]]) need to be considered.

To reduce the number of combinations, we strengthen this condition in two steps.
We first concentrate on the term in the first existential quantification:

32 Chapter 3 Realizability criteria

Γt.(‖i :: πi.fi) � Γt.(‖i :: πi.gi)
⇐ { common design decision: monotonicity }

Γt.(‖i :: πi.fi) � Γt.(‖i : πi.fi � πi.gi : πi.gi)
⇐ { adapt left-hand side to right-hand side: domain split; monotonicity }

Γt.((‖i : πi.fi � πi.gi : πi.gi) ‖ (‖i : πi.fi 6� πi.gi : πi.fi))
� Γt.(‖i : πi.fi � πi.gi : πi.gi)

≡ { property of Γ: multiple deadlock extension rule }
(∀j : πj .fj 6� πj .gj :

Γt.((‖i : πi.fi � πi.gi : πi.gi) ‖ πj .fj) � Γt.(‖i : πi.fi � πi.gi : πi.gi))
⇐ { property of Γ: elimination rule }

(∀j : πj .fj 6� πj .gj :
Γt.((‖i : i 6= j : πi.gi) ‖ πj .fj) � Γt.(‖i : i 6= j : πi.gi))

To continue, let us abbreviate Γt.((‖i : i 6= j : πi.gi)‖πj .fj) � Γt.(‖i : i 6= j : πi.gi)
as P.g.j.fj . Then we can concentrate on the remainder as follows:

(∀f ::
(∃g :: (∀j : πj .fj 6� πj .gj : P.g.j.fj)) ∨
(∃h :: (∀j : πj .fj 6� πj .hj : P.h.j.fj)))

⇐ { disturb symmetry between the instances }
(∀f :: (∃k ::

(∃g :: πk.fk � πk.gk ∧ (∀j : πj .fj 6� πj .gj : P.g.j.fj)) ∨
(∃h :: πk.fk � πk.hk ∧ (∀j : πj .fj 6� πj .hj : P.h.j.fj))))

≡ { case j = k follows from the left conjunct }
(∀f :: (∃k ::

(∃g :: πk.fk � πk.gk ∧ (∀j : πj .fj 6� πj .gj ∧ j 6= k : P.g.j.fj)) ∨
(∃h :: πk.fk � πk.hk ∧ (∀j : πj .fj 6� πj .hj ∧ j 6= k : P.h.j.fj))))

⇐ { use tautology (∀f, k ::
(∃g :: πk.fk � πk.gk ∧ (∀j : πj .fj 6� πj .gj : {πj .fj} 6⊑ πj .M

t
msc

[[A]])) ∨
(∃h :: πk.fk � πk.hk ∧ (∀j : πj .fj 6� πj .hj : {πj .fj} 6⊑ πj .M

t
msc

[[B]]))) }
(∀f :: (∃k ::

(∀g, j : {πj .fj} 6⊑ πj .M
t
msc

[[A]] ∧ j 6= k : P.g.j.fj) ∧
(∀h, j : {πj .fj} 6⊑ πj .M

t
msc

[[B]] ∧ j 6= k : P.h.j.fj)))
⇐ { quantifier shunting }

(∃k :: (∀j : j 6= k :
(∀f, g : {πj .fj} 6⊑ πj .M

t
msc

[[A]] : P.g.j.fj) ∧
(∀f, h : {πj .fj} 6⊑ πj .M

t
msc

[[B]] : P.h.j.fj)))
≡ { dummy renaming }

(∃k :: (∀j : j 6= k :
(∀g, n : n ∈ πj .M

t
msc

[[B]] ∧ {n} 6⊑ πj .M
t
msc

[[A]] : P.g.j.n) ∧
(∀h,m : m ∈ πj .M

t
msc

[[A]] ∧ {m} 6⊑ πj .M
t
msc

[[B]] : P.h.j.m)))

Thus we obtain what we call the sound choice property for a choice between MSCs
A and B given a history t: there exists an instance k such that for each instance
j : j 6= k both

3.2 Classification of realizability criteria 33

• (∀ g :: [I → M t
msc

[[A]]], n : n ∈ πj .M
t
msc

[[B]] ∧ {n} 6⊑ πj .M
t
msc

[[A]]:

Γt.((‖i : i 6= j : πi.gi) ‖ n) � Γt.(‖i : i 6= j : πi.gi))

• (∀ h :: [I → M t
msc

[[B]]], m : m ∈ πj .M
t
msc

[[A]] ∧ {m} 6⊑ πj .M
t
msc

[[B]]:

Γt.((‖i : i 6= j : πi.hi) ‖ m) � Γt.(‖i : i 6= j : πi.hi))

Here functions g and h represent a chosen later per instance. Later n : n ∈
πj .M

t
msc

[[B]] ∧ {n} 6⊑ πj .M
t
msc

[[A]] denotes a later from MSC B that is no prefix of
any later from MSC A. Note that behaviors occurring both in MSC A and MSC
B are not problematic for the choice between A and B. The �-term expresses
that later n (or later m) cannot perform any behavior. Instance k and condition
j 6= k ensure that some instance may have initiative.

The choice in our running example is not a sound choice, as can be pointed out
by considering both options for k. For k = X, we can choose n = πY .(Γp1.p3)
and gX = Γp1.p2, which violate the first � term; and similarly for k = Y . We will
discuss it in more detail using the non-local choice criterion in Section 3.2.

Notice that instead of considering arbitrary combinations of projected laters, on
the left-hand side of the � in this condition, the combinations of projected laters
contain only one later n from B, or only one later m from A respectively. Finally
we stress that this condition is stronger than condition N.

3.2 Classification of realizability criteria

In this section we present our classification of realizability criteria based on the
sound choice property from Section 3.1.3. If each choice in a specification is a
sound choice, then the specification is trace equivalent to its usual implementation,
and hence the specification is realizable. In the remainder of this section we will
motivate and define our realizability criteria. For reasons of overview, we first
schematically depict how our criteria are classified in comparison with sound choice
and derived condition N from Section 3.1.2:

derived condition sound choice
¬ non-local choice
propagating choice

¬ non-deterministic choice

¬ race choice

Our criteria are independent, and examples of MSCs with some of these properties
can be generated using the MSCs in Figure 3.1, viz. by considering a choice between
MSC msc base and the MSCs corresponding to the particular criteria of interest.

34 Chapter 3 Realizability criteria

P Q

msc msc_base

X

P Q

msc msc_NLC

P Q

msc msc_NDC

P Q

msc msc_RC

XY
Z

X

Figure 3.1 Basic MSCs to illustrate our classification

3.2.1 Non-local choice

From the perspective of a single process instance, the first question in a choice is
whether the instance should initiate some behavior or it should just wait to receive
a message that must be sent after the choice. An instance has initiative in an
MSC if some first event of the instance is labeled with either an internal action, or
sending a message, or receiving a message that was sent before the choice. A choice
between two MSCs is local if at most one instance has initiative in these MSCs;
otherwise several instances can independently start executing different MSCs. This
is sometimes called cross-talk [KM00], and it typically leads to implied behaviors.

Non-local choice follows naturally from sound choice, and in particular from its
�-terms. Observe that a later n is likely to be problematic if for each label-disjoint
later x we have Γt.(x‖n) 6� Γt.x. Using the elimination rule for Γ, this condition
follows from Γt.n 6� [ǫ], which means that projected later n has initiative. Due
to condition j 6= k in the definition of sound choice, only instance k may have
initiative, i.e. no two different instances, say i and j, may have initiative. This
leads to the non-local choice (NLC) criterion for a choice between MSCs A and B

given a history t:

(∃i, j,m, n :: i 6= j ∧ m ∈ πi.M
t
msc

[[A]] ∧ {m} 6⊑ πi.M
t
msc

[[B]] ∧ Γt.m 6� [ǫ]
∧ n ∈ πj .M

t
msc

[[B]] ∧ {n} 6⊑ πj .M
t
msc

[[A]] ∧ Γt.n 6� [ǫ])

The difference with other variants of non-local choice in [BAL97, HJ00] is in our
first two conjuncts on both m and n, where we ensure that sound choice is violated.
The choice in the running example of Chapter 2 is non-local, since due to events
e4 and e8 both X and Y have initiative.

3.2.2 Propagating choice

Absence of non-local choice is not sufficient to guarantee sound choice. It does
guarantee that there is at most one process instance that determines the choice,
viz. instance k in the definition of sound choice. The other instances j have no
initiative and hence their chosen laters n are characterized by Γt.n � [ǫ]. What

3.2 Classification of realizability criteria 35

remains to guarantee sound choice is that the other instances can resolve the choice
using their first event, which is characterized by the propagating choice property
for a choice between MSCs A and B given a history t: for each instance j both

• ∀ g :: [I → M t
msc

[[A]]], n : n ∈ πj .M
t
msc

[[B]] ∧ {n} 6⊑ πj .M
t
msc

[[A]] ∧ Γt.n � [ǫ]:

Γt.((‖i : i 6= j : πi.gi) ‖ n) � Γt.(‖i : i 6= j : πi.gi)

• ∀ h :: [I → M t
msc

[[B]]], m : m ∈ πj .M
t
msc

[[A]] ∧ {m} 6⊑ πj .M
t
msc

[[B]] ∧ Γt.m � [ǫ]:

Γt.((‖i : i 6= j : πi.hi) ‖ m) � Γt.(‖i : i 6= j : πi.hi)

The issue of propagation has not yet really been recognized, and as a consequence
it is frequently ignored.

3.2.3 Non-deterministic choice

Propagating choice is an important property, but it is not easy to check for a given
MSC. Therefore we are interested in a simple criterion that violates it. Consider
a process instance without initiative, i.e. all first events are real receipts. Once
a matching message arrives, a question is whether this is sufficient to derive the
decision made about the choice. This is clearly not the case if the MSCs have a
common first receipt.

A simple case that violates propagating choice is when the MSCs contain behaviors
m and n that are different, although they share a common prefix p, i.e. p � m and
p � n. In case such a prefix p starts with a receipt behavior, instance j cannot
resolve the choice using one of its initial events. This is characterized by the non-
deterministic choice (NDC) criterion for a choice between MSCs A and B given a
history t:

(∃j,m, n, p :: p � m ∧ p � n ∧
m ∈ πj .M

t
msc

[[A]] ∧ {m} 6⊑ πj .M
t
msc

[[B]] ∧ Γt.m � [ǫ]
∧ n ∈ πj .M

t
msc

[[B]] ∧ {n} 6⊑ πj .M
t
msc

[[A]] ∧ Γt.n � [ǫ]
∧ (∃g, h : g :: [I → M t

msc
[[A]]] ∧ h :: [I → M t

msc
[[B]]] :

(Γt.((‖i : i 6= j : πi.gi) ‖ p) 6� Γt.(‖i : i 6= j : πi.gi)
∨ Γt.((‖i : i 6= j : πi.hi) ‖ p) 6� Γt.(‖i : i 6= j : πi.hi))))

This criterion can be made more syntactic by weakening the inner existential
quantification into condition p 6� [ǫ].

36 Chapter 3 Realizability criteria

P Q

msc M0

A

R

C

P Q

msc M1

B

R

C

P Q

msc M2

A

R

D

P Q

msc M3

B

R

D

Figure 3.2 Non-local choice without implied behaviors

3.2.4 Race choice

Absence of non-deterministic choice can easily be checked, but it is not enough
to guarantee propagating choice. It does guarantee that each process instance
can resolve the choice when no initiating receipt event can end up receiving a
message intended for a non-initial receipt event in another MSC. In case messages
arrive in a different order than in which their receipt is specified in the bMSC,
the instance may incorrectly derive which decision has been made. In contrast to
non-deterministic choice, this property takes into account the asynchrony of the
communication. So the first message receipt in one MSC, may actually have been
sent according to another MSC in which the receipt is not the first event of the
recipient. These cases are characterized by the race choice (RC) criterion for a
choice between MSCs A and B given a history t:

(∃j :: (∃g, n :: g :: [I → M t
msc

[[A]]]
∧ n ∈ πj .M

t
msc

[[B]] ∧ {n} 6⊑ πj .M
t
msc

[[A]] ∧ Γt.n � [ǫ]
∧ Γt.((‖i : i 6= j : πi.gi) ‖ n) 6� Γt.(‖i : i 6= j : πi.gi)
∧ (∀p : p � n ∧ {p} ⊑ πj .M

t
msc

[[A]] :
Γt.((‖i : i 6= j : πi.gi) ‖ p) � Γt.(‖i : i 6= j : πi.gi)))

∨ (∃h,m :: h :: [I → M t
msc

[[B]]]
∧ m ∈ πj .M

t
msc

[[A]] ∧ {m} 6⊑ πj .M
t
msc

[[B]] ∧ Γt.n � [ǫ]
∧ Γt.((‖i : i 6= j : πi.hi) ‖ m) 6� Γt.(‖i : i 6= j : πi.hi)
∧ (∀p : p � m ∧ {p} ⊑ πj .M

t
msc

[[B]] :
Γt.((‖i : i 6= j : πi.hi) ‖ p) � Γt.(‖i : i 6= j : πi.hi))))

This definition of race choice boils down to a choice that is not a propagation
choice and not a non-deterministic choice.

3.3 Related literature

In this section we discuss various related issues from the literature and we point
out some errors in related work.

3.3 Related literature 37

3.3.1 Definitions of non-local choice

A frequently-referenced paper for the definition of non-local choice is [BAL97].
Although much literature suggests the equivalence of the various definitions in
[BAL97], we show that they are inconsistent. The informal introduction contains
the following description:

“When the wait-and-see strategy can be used to resolve a non-determinism
within each process, we call the branching a local branching choice.
Otherwise, when explicit synchronization between the processes is ne-
cessary to resolve a non-determinism, we call the branching a non-local
branching choice.”

Recall from Section 2.3 that the wait-and-see strategy boils down to the use of
delayed choice. After introducing a formal semantic definition and a syntactic
characterization (similar to ours), the following explanation of the syntactic version
is given:

“An MSC specification has no non-local branching choice iff at each of
its branching points, the first events in all basic MSCs are sent by the
same process.”

Usually this last version is used to define and to detect non-local choice, while the
first one is used as a convenient property about implementations. However, it is
easy to see that these two definitions are different by studying a choice between
the MSCs msc base and msc RC from Figure 3.1. Since process instance P is
the only instance that has initiative, it is local according to the second definition.
Then according to the first definition all non-determinism should be resolved, but
process instance Q shows the contrary.

3.3.2 Implied scenarios

Implied scenarios are scenarios that are not contained in the MSC specification,
but that are contained in implementations of the MSC. Although implied scenarios
can result from propagation problems, only the relation with non-local choices
(according to the syntactic definition of [BAL97]) has been studied. In [Uch03]
the following two observations are made:

1. “Non-local choices are implied scenarios;”

2. “nevertheless the converse is not the case.”

In contrast, [Muc03] makes the following two observations:

38 Chapter 3 Realizability criteria

P Q

msc M0

X

Y

P Q

msc M1

X

Z

Figure 3.3 Hidden non-local choice

3. “Notice that a non-local choice is not enough to have an implied scenario.”

4. “To have an implied scenarios these conditions hold: i) there is a non-local
branching choice in the MSC specification so that ii) ...”

There are two contradictions here. Observation 3 falsifies erroneous observation 1,
which can be shown by a choice between the two MSCs from Figure 3.2, where
more than one process instance has initiative but no implied behaviors result.

In turn, observation 2 falsifies erroneous observation 4, which can be shown by a
choice between the MSCs msc base and msc RC from Figure 3.1. Implementations
of this example, without non-local choice, contain implied scenarios with the prefix
!Z · !X · ?X; another example can be found in [Uch03]. Nevertheless observation 4
is the basis of the procedure in [Muc03] for detecting implied behavior.

3.3.3 Delayed choice

The widely accepted solution to non-deterministic choice is to use delayed choice
semantics instead of ordinary choice semantics. Since this solution is effective quite
often (though not always), it has become part of the MSC standard. Sometimes,
it can even eliminate non-local choice by factoring out a common non-local prefix
of the MSCs after which a local choice remains.

However, we could not find any warning for the following possible side-effect.
Namely, delayed choice can also expose non-local choice, e.g. in a choice between
the MSCs from Figure 3.3. Although the choice itself is local, after applying
delayed choice it becomes non-local.

3.3.4 Boiler example

A popular example to illustrate methods for detecting implied scenarios is a boiler
system [UKM01, Muc02], see Figures 3.4(a) and 3.4(b) without the dashed trigger
messages. This example contains non-local choice, since in the choice both the
Sensor and the Control can initiate behaviors. Implementations of this system
contain implied scenarios like the one in Figure 3.4(c).

3.3 Related literature 39

ActuatorControlDatabaseSensor

msc Terminate

 Off

ActuatorControlDatabaseSensor

msc Register

 Pressure

 Trigger

Sensor Database Control Actuator

 Analysismsc

 Query

 Data
 Command

 Initialisemsc

Sensor Database Control Actuator

 On

(a) Basic MSCs

Register

Analysis Terminate

Initialise

(b) High-level MSC

msc implied scenario

Sensor Database Control Actuator

 Data

 Query

 Trigger

 On

 Off

 Pressure

 Trigger

 On

(c) Implied scenario

Figure 3.4 Boiler example

We wondered whether these implied scenarios are really caused by non-local choice.
As an experiment, the choice can be made local by introducing a trigger message
from the the Control to the Sensor before the the Sensor may initiate an event in
a basic MSC. Then, although the choice becomes local, there are still the same
kind of implied scenarios. So we prefer to conclude that the real problem in this
example is propagation of the choice to the Sensor; more specifically the choice is
a race choice.

40 Chapter 3 Realizability criteria

M1msc

DBA C

m2

DBA

msc M2

m1

m3
m4

m7

m5
m6

(a) Basic MSCs

M2M1

(b) High-level MSC

BA C D
m1

m5

m7

m3
m4

m2

first M2, then M1first M1, then M2

m6

(c) Implied behavior

Figure 3.5 Reconstructible choice example from [HJ00]

3.3.5 Reconstructible choice

In [HJ00] the reconstructible choice criterion is proposed in order to guarantee
realizability, and it is mentioned explicitly that the communication channels are
not assumed to be order preserving. However, this claim on reconstructability
contradicts their example of a reconstructible MSC in [HJ00, Figure 15]. We have
copied the MSC for this example into Figures 3.5(a) and 3.5(b).

Implementations allow behaviors that start as depicted in Figure 3.5(c), where
process instance D starts to execute MSC M2 followed by MSC M1, while the
other instances start to execute MSC M1 followed by MSC M2. However, prefix
!m1 · !m5 · ?m5 shows that this behavior is not part of the specified behavior. In
terms of our classification, the choice is not properly propagated to instance D;
more specifically the choice is a race choice.

3.4 Conclusions

We have studied the realizability problem for compositional MSC, especially in
relation with choice. Although realizability can be determined by comparing a

3.4 Conclusions 41

given MSC specification with its synthesized implementation, it is more effective
to have realizability criteria that can be applied to specifications.

Instead of inventing criteria based on some intuition about realizability, we have
shown that it pays off to constructively derive necessary formal conditions. Thus
we have derived a complete classification of realizability criteria for compositional
MSC. The need for such a classification is clearly indicated by the many errors we
have found in related work in the literature.

A line of further work is to derive other realizability criteria, because a choice
that is no sound choice may still be realizable, and because more syntactic criteria
would be easier to check for a given MSC and even to automate. It would also
be interesting to formally relate some other proposed criteria to the realizability
problem. Finally the realizability of other MSC constructs may be studied, of
which parallel composition is a challenging one.

42 Chapter 3 Realizability criteria

Chapter 4

Realizing non-local choice

In this chapter that is primarily based on [MG05, MGR05], we study how to obtain
a reasonable implementation for MSCs that contain non-local choice. Among the
realizability criteria from Chapter 3, non-local choice is the best-known criterion,
but hardly any solution has been developed and there is definitely no standard
implementation. Nevertheless it is an important issue, since non-local choice is
almost inevitable in MSC specifications of distributed systems with autonomous
computational units.

We propose a new direction to implement MSCs with non-local choice such that
a little more behavior is introduced, but in a controlled way. We consider both
a solution for systems with two process instances, and a solution for arbitrary
numbers of instances. Both techniques require some practical assumptions on the
MSC specification. Finally we apply these techniques to our case studies.

Overview In Section 4.1 we discuss several views on non-local choice, and we
motivate our technique described in Section 4.2 and its generalization described
in Section 4.3. Then in Section 4.4 we discuss the impact of these techniques on
the case studies, and Section 4.5 contains the conclusions.

4.1 Views on non-local choice

In this section we discuss some ways to address the best-known choice problem
from Chapter 3, viz. non-local choice.

43

44 Chapter 4 Realizing non-local choice

4.1.1 Traditional approaches

For most MSCs that contain non-local choice, there exists no implementation
with exactly the same behavior. Therefore such MSCs are often considered as
erroneous, and hence methods are needed that either detect them syntactically
(e.g. [BAL97]), or detect them by generating the resulting implied behaviors (e.g.
[Muc03, UKM03]). However, these approaches do not address how to implement
a given MSC that contains non-local choice.

An obvious approach to overcome the problems resulting from non-local choice is
to generate all implied behaviors and explicitly include them in the specification.
Although implementations of the resulting specification contain no implicit extra
behaviors, the MSC specification has become more complicated, which is definitely
not desired from a practical point of view.

The problems with non-local choice can also be seen as implementation issues,
and hence they should not even be addressed in a specification. To obtain an
implementation, some coordination protocol needs to be introduced (e.g. [LL97])
which usually requires additional messages. Although this may lead to a nice
layered design, the specific coordination protocol should be made explicit in order
to obtain consistent implementations. In some cases non-local choice can be solved
using synchronous communication, but implementing this in terms of asynchronous
communication usually yields a bad performance.

4.1.2 Our approach

The source of the problems with non-local choice is that the implementations are
distributed. Since the process instances are independent computational units, a
coordination problem arises when the instances together need to make a transition
in the high-level MSC. Nowadays this problem is mainly observed for choice, but in
fact it also arises for strong sequential composition of MSCs. The latter issue has
been solved by defining its semantics to be weak sequential composition (see also a
remark in Section 3.1), which usually corresponds to the intentions of the developer
of the MSC. For choice the use of delayed choice semantics is not sufficient.

Suppose that during execution all process instances have reached a given non-
local choice. In absence of a coordination protocol, it can usually not be avoided
that the instances initiate the execution of several different MSCs. This means
that implementations of choice should allow, to some degree, parallel execution of
the basic MSCs. Of course, the amount of additional parallel behavior should be
minimal, and as soon as possible the behavior should converge to the behavior of a
conventional (or synchronous) choice. Sections 4.2 and 4.3 describe this approach
in more detail.

4.2 A solution for two processes 45

P Q

msc

Request

R

P Q

msc

Announce

A

P Q

msc

Confirm

Request

RC C

Request

Confirm

msc

QP

...

(a) Basic MSCs

A RC

(b) Original hMSC

A R

A C

(c) Proposed hMSC

RA

A

CA

(d) Difference hMSC

Figure 4.1 Simple MSC patterns for two processes

4.2 A solution for two processes

In this section we consider a system consisting of two process instances, say P and
Q. For such a system we propose a way to implement an MSC that specifies a
choice that is non-local but propagating. Our proposal is such that a little more
behavior is introduced, but in a controlled way.

4.2.1 Simple pattern

Our approach assumes that the MSC specification has a certain shape, which
we will explain using the MSCs in Figure 4.1. In particular the basic MSCs in
Figure 4.1(a) assume that there are three different kinds of messages, viz. Request,
Confirm and Announce, that do not occur in the remainder of basic MSC A. Notice
that basic MSCs A, RC and C may contain some internal actions in instance Q,
and their depicted behavior may be followed by some additional behavior.

46 Chapter 4 Realizing non-local choice

For the specification we consider the high-level MSC from Figure 4.1(b), which is a
frequently occurring pattern. The choice is non-local, and usual implementations
of this choice contain unspecified behaviors that result in deadlocks.

To obtain an implementation, we propose to break the symmetry of the choice.
More specifically, we propose to implement it as the high-level compositional MSC
from Figure 4.1(c), where MSC RC has been split into basic MSCs R and C.

Then the basic MSCs can be interpreted as asymmetric negotiation scenarios.
If instance P receives an Announce message from instance Q, basic MSC A is
executed. Even after sending the Request message in basic MSC RC, i.e. in basic
MSC R, instance P may still receive Announce messages from instance Q that
indicate that basic MSC A must be executed. Once the Confirmation message
arrives, execution of basic MSC RC can be completed by executing basic MSC
C. Thus the Request message may be sent in parallel with parts of basic MSC
A. Notice that the behavior of instance Q is not changed in this way, and that
instance Q behaves as a kind of arbiter in the sense that it determines the order
in which basic MSCs A and RC are executed.

In this implementation, the second choice is local for arbiter Q, and the first choi-
ce is local for instance P as the behavior of instance Q in the left alternative is
contained in the right alternative. Nevertheless, the implementation may contain
race choice if MSC A contains no message from instance P to instance Q. If
MSC A contains a message from instance P to instance Q, the extra behaviors are
depicted in Figure 4.1(d). Notice that MSC A can be executed several times bet-
ween sending and receiving a Request message. The extra behaviors that we have
introduced, start with behavior that leads to a deadlock in usual implementations.

4.2.2 Related approach

In [GY84] another implementation is proposed. They break the symmetry of the
choice by calling the two process instances ‘winner’ and ‘loser’ respectively. When
the instances detect interference between behaviors initiated by different instances,
the synchronization between them is restored by discarding the behavior initiated
by the loser. So their implementation also slightly deviates from the original
specified behavior, but in a different way than our solution. They propose to
ignore the additional behavior, while we store it for later use. In our case studies,
their modification is not acceptable.

4.2.3 Generalized pattern

The pattern from Section 4.2.1 for a system with two process instances addresses
only binary choice. In this section we sketch how it can be generalized to arbitrary
choice. In the high-level MSC the successor MSCs of each non-local choice must

4.3 A solution for arbitrarily many processes 47

 Sn S1

 ARC

M

RCm AnA1RC1

(non−local choice node)

(local choice node) (local choice node)

Figure 4.2 High-level MSC pattern

be partitioned into RC MSCs and A MSCs, see Figure 4.2. Each RCi denotes a
renaming of basic MSC RC from Figure 4.1(a), and each Ai denotes a renaming
of a basic MSC A. The renaming must be such that all Announce messages are
different, and that all Request messages are different. For convenience reasons, we
have introduced a node RC and a node A, which are empty nodes that group the
RC and A MSCs together.

To apply our technique for solving non-local choice, we must ensure that when
instance P has sent a Request message, it still makes sense for instance Q to
receive the message after execution of an A MSC. This is guaranteed if after any
A MSC, i.e. in any node S, node RC is reachable. In addition, via the open
outgoing edge of any node S also extra RC MSCs and an arbitrary series of A

MSCs may be reachable.

4.3 A solution for arbitrarily many processes

In this section we extend our approach for non-local choice from Section 4.2 to
systems with an arbitrary number of process instances, and to MSCs in which
several instances have initiative. We first address the MSC pattern we assume,
followed by a description of our proposed implementation. Finally we relate it to
a proposed MSC extension.

4.3.1 Running example

To illustrate our approach, we use a simplified version of the well-known ATM
example [UKM03]. We have restricted it to its core non-local choice problem, as
depicted in Figure 4.3. For later use, the MSCs contain some extra annotations;
in particular the basic MSCs have been split by a horizontal line.

We briefly explain the functionality of this simplified ATM. In node A some re-

48 Chapter 4 Realizing non-local choice

User ATM Bank

msc Request

s0

t0
CardIn

Password

Verify

(a) bMSC Request

s1

t1

User ATM

msc Interrupt1

Bank

Cancel

CancelMsg

CardOut

(b) bMSC Interrupt1

s2

t2

User ATM

msc Response1

BalanceMsg

Balance

Bank

(c) bMSC Response1

t1

s1

DC

B

s0

t0

A

Request

Response2
t’1

s1

t2

s2
Response1

t’2

s2
Interrupt2

Interrupt1

(d) High-level MSC

t’2

s2

User ATM

msc Interrupt2

Balance

Bank

(e) bMSC Interrupt2

User Bank

s1

t’1

msc Response2

Cancel

CardOut

ATM

(f) bMSC Response2

Figure 4.3 Simplified ATM example

petitive behavior is started with MSC Request. It consists of inserting a card and
entering a password, followed by verifying the bank account. Then node B is
reached, in which the user can choose to:

• interrupt and cancel the account verification, which corresponds to: MSC
Interrupt1 → node C → MSC Interrupt2 → node A;

• wait for a balance report and press the cancel button to end the session:
MSC Response1 → node D → MSC Response2 → node A.

4.3.2 Pattern

As discussed in Section 2.3, we assume the high-level MSC to be such that the
choices are made explicit in (choice) nodes without an associated basic MSC. Thus
we can easily interpret the high-level MSC as a graph in which the edges are labeled
with (concatenated) basic MSCs, while the nodes contain no basic MSC anymore.

To apply our approach, each basic MSC must be split into a (preferably small)
front part that may be executed in parallel, and the remaining tail part that will
be part of a real choice. To solve non-local choice, in each node the choice between

4.3 A solution for arbitrarily many processes 49

the tails of the successor MSCs must be a local choice. This can be achieved as
follows:

1. choose an instance to become the “arbiter”, which is typically a process in-
stance that has in each basic MSC an event that occurs in an early stage;

2. split the basic MSCs in the edges into a front and a tail, such that for each
node with more than one outgoing edge, the arbiter is the only instance with
initiative in the tails of the edges. (If a tail is empty for an instance, also the
tails of successor MSCs are involved in deciding whether the instance has
initiative.)

The basic MSCs must be split in such a way that also the following conditions
hold:

1. for each node and for each two of its outgoing edges e and f with different
fronts, the node reached via edge e is no terminal node and it has an outgoing
edge with the same front as edge f ;

2. for each two edges e and f (from any two nodes) with different fronts, the
event labels in the front of edge e do not occur in the front of edge f ;

3. for each two edges e and f (from any two nodes), the event labels in the
front of edge e do not occur in the tail of edge f (nor in the tail of edge e).

The first condition reflects that additional front behaviors, which are the additional
parallel behaviors, can indeed be used in subsequent nodes. If it does not hold, a
wrong arbiter might have been chosen. It is also possible that the MSC lacks some
unavoidable behavior. To illustrate this, in our running example it is tempting
to omit basic MSC Interrupt2. Thus this condition can constructively help to
improve the MSC specification without studying its implementation.

The motivation for the last two conditions is quite technical and it will be discussed
upon their use. Although our pattern contains some restrictions, it includes the
patterns from Section 4.2.

Running example

Let us apply this pattern to our running example. All choices have been made
explicit in the empty nodes A, B, C and D, and the only node with more than
one outgoing edge, viz. node B, suffers from non-local choice.

To check the pattern, an arbiter must be chosen. Using the heuristics from the first
step, instance ATM should be an appropriate arbiter. The next step is to split the
basic MSCs according to this arbiter. This is depicted by horizontal dashed lines

50 Chapter 4 Realizing non-local choice

in the basic MSCs in Figure 4.3. This way of splitting fulfills the first condition,
e.g. in node B after MSC Interrupt1 it is possible to execute the front of MSC
Response1 namely as front of MSC Interrupt2. The last two conditions also turn
out to hold.

For reference purposes, we introduce names s0, s1, s2, t0, t1, t2, t′1 and t′2 for the
basic MSC parts as indicated in Figure 4.3. For example, using M

inst
[[. . .]] from

Section 2.3, we obtain for process instance User in terms of laters:

s0 = [ǫ] t0 = [!CardIn] ◦W [!Password]
s1 = [!Cancel] t1 = [?CancelMsg] ◦W [?CardOut] t′1 = [?CardOut]
s2 = [ǫ] t2 = [?BalanceMsg] t′2 = [ǫ]

4.3.3 Implementation

In this section, we focus on the implementation for a single process instance, since
the implementations for the other instances can be defined analogously. We will
use techniques from constraint-oriented programming, and in particular the partial
synchronization operator defined in Section 2.1.

We use V to denote the set of nodes in the high-level MSC, and E to denote
the set of labeled edges. More specific, we represent each edge as a four-tuple
(v,m, n,w) ∈ E as follows: the edge is directed from node v to node w, and m and
n are the front and the tail respectively of the corresponding basic MSC projected
on the process instance to be implemented.

Our implementation is described in Figure 4.4, where the smallest solution of I.v

denotes the implementation for the process instance, given that v is the initial
node of the high-level MSC. For I.v we only consider the initial node v, while
we consider all nodes v for Ii.v and Ia.v, which are to be discussed next. Recall
from Section 2.1 that ‖ denotes parallel composition, ◦W denotes (weak) sequential
composition, and ∪ denotes (delayed) choice.

The term I.v is defined as the synchronized execution of the term Ii.v.m for each
individual front m in the MSC. Each term Ii.v.m expresses where front m may be
executed in relation with all tails, as described below. The intended synchronized
execution is a kind of parallel composition that synchronizes the tails. Therefore
we use the partial synchronization operator ‖K , which only synchronizes the events
with labels from set K. For this set K we use the labels of the events in the tails.
To apply this operator successfully, we exploit the last two (technical) conditions
mentioned above.

The term Ii.v.m describes the implementation in node v with respect to the inac-
tive front m. If m is the front of a successor basic MSC of node v, its execution
can be started and hence it becomes active. Otherwise it remains inactive, and a
usual choice is performed on the tails of the successor basic MSCs of node v.

4.3 A solution for arbitrarily many processes 51

I.v = (‖K m : (∃v′, n′, w′ :: (v′,m, n′, w′) ∈ E) : Ii.v.m)

Ii.v.m =

{

(∃n,w :: (v,m, n,w) ∈ E) : Ia.v.m.[ǫ]
(∀n,w :: (v,m, n,w) 6∈ E) :

(
⋃

m′, n′, w′ : (v,m′, n′, w′) ∈ E : {n′} ◦W Ii.w
′.m)

Ia.v.m.p = (
⋃

m′, n′, w′ : (v,m′, n′, w′) ∈ E :
{

m 6= m′ : Ia.w′.m.(p ◦W n′)
m = m′ : {(p ‖ m′) ◦W n′} ◦W Ii.w

′.m

)

Figure 4.4 Formalized implementation for a single process instance

The term Ia.v.m.p describes the implementation in node v with respect to the
active front m. The additional parameter p is used to accumulate the sequence of
executions of tails since front m became active. In case the tail of a basic MSC
with front m is executed, then it is required that front m was executed along the
path p to node v, which is expressed by the term (p ‖ m′).

Running example

To illustrate this approach on our ATM example, we first apply it to the high-level
description in terms of s and t. Afterwards, the specific details can be substituted
to obtain the final implementations. First we give the instantiations of some of
the formulas:

I.A = Ii.A.s0 ‖K Ii.A.s1 ‖K Ii.A.s2

Ii.A.s1 = {t0} ◦W Ii.B.s1

Ii.B.s1 = Ia.B.s1.[ǫ]
Ia.B.s1.[ǫ] = {([ǫ]‖s1) ◦W t1} ◦W Ii.C.s1 ∪ Ia.D.s1.([ǫ] ◦W t2)
Ii.C.s1 = {t′2} ◦W Ii.A.s1

Ia.D.s1.([ǫ] ◦W t2) = {(([ǫ] ◦W t2) ‖ s1) ◦W t′1} ◦W Ii.A.s1

After simplification we obtain the following implementation per process instance:

I.A = Ii.A.s0 ‖K Ii.A.s1 ‖K Ii.A.s2

Ii.A.s0 = {s0 ◦W t0} ◦W {t1 ◦W t′2, t2 ◦W t′1} ◦W Ii.A.s0

Ii.A.s1 = {t0} ◦W {s1 ◦W t1 ◦W t′2, (t2‖s1) ◦W t′1} ◦W Ii.A.s1

Ii.A.s2 = {t0} ◦W {(t1‖s2) ◦W t′2, s2 ◦W t2 ◦W t′1} ◦W Ii.A.s2

As an aid in understanding this solution, note that I.A corresponds to the Petri-net
in Figure 4.5. By substituting the specifics and eliminating the partial synchroni-
zation operator, the following final implementations are obtained:

52 Chapter 4 Realizing non-local choice

s0

s1 s2

t2

t0

t1

t’2 t’1

Figure 4.5 Petri-net for a single process instance in our running example

IUser = {[!CardIn] ◦W [!Password]} ◦W

{ [!Cancel] ◦W [?CancelMsg] ,
[!Cancel] ◦W [?BalanceMsg] ,
[?BalanceMsg] ◦W [!Cancel]

} ◦W {[?CardOut]} ◦W IUser

IATM = {[?CardIn] ◦W [?Password] ◦W [!Verify]} ◦W

{ [?Cancel] ◦W [!CancelMsg] ◦W [!CardOut] ◦W [?Balance] ,
[?Balance] ◦W [!BalanceMsg] ◦W [?Cancel] ◦W [!CardOut]

} ◦W IATM

IBank = {[?Verify] ◦W [!Balance]} ◦W IBank

The implementation for the ATM (which is the arbiter) and for the Bank are
the usual ones. The possible behavior for the User has been extended, but it is
intuitive in relation to Figure 4.3. In particular after pressing Cancel, the user can
get a BalanceMsg instead of a CancelMsg, which resolves the potential deadlock.

4.3.4 Relation with compositional MSC

Another example of our approach is a producer-consumer system, which could be
naturally specified using the MSC in Figure 4.6. The choice in this MSC is non-
local, but our approach can provide an implementation, where instance P is the
arbiter. This implementation corresponds to the behavior that is used in [MM01]
to advocate the MSC extension that is called compositional MSC. Although the
version in terms of compositional MSC is more precise for an implementation, our
specification is simpler and more intuitive for a system specification and it still
allows an implementation using the technique presented in this section.

4.4 Relation with the case studies 53

Producer Consumer

msc msc_abort

msc_delivermsc_abort

msc msc_deliver

Producer Consumer

abort

deliver

Figure 4.6 Producer-consumer example

4.4 Relation with the case studies

In this section we relate the implementation technique from Section 4.2 to the
protocol standards we have worked on.

4.4.1 Base standard

In [MGWB03] we reported on our analysis of the communication protocols in the
base standard, and in particular ENV 13735. We analyzed and extended its draft
state tables, and we proposed modifications to overcome the problems found. The
main kind of problems were:

• inconsistencies (e.g. nomenclature) between the manager and the agent;

• interference between typical scenarios.

Given our work on MSCs, it is interesting to study the last problem in an MSC
context. For illustration purposes, we have included in Figure 4.7 a rough sketch
of an MSC specification for this protocol. This specification contains non-local
choices, and the interference problems we have found seem to be related to this.
In fact the state transition tables already contained incomplete fragments of our
implementation techniques.

4.4.2 Remote control extension

We have developed our techniques in order to apply them to the non-local choice
in the remote control package. From Figures 1.1 and 1.2 it follows that the agent
should become the arbiter. Then the deadlock scenario of Figure 1.3 can be avoided
by continuing the deadlock behavior as depicted in Figure 4.8. The developers of
the remote control package have agreed with such a solution, and it is used as the
basis of the state transition tables that will be included in the standard.

54 Chapter 4 Realizing non-local choice

 Association Reject Response

 Association Request

Manager Agent

 Connect Indication Event

 Association Request

 Association Accept Response

 "Copy Containment Tree"

 Association Abort

 MDS State Change Notification to reconfiguring

 MDS State Change Result to reconfiguring

 "Update Containment Tree"

 MDS State Change Notification to configured

 MDS State Change Result to configured

 "(re−)configure scanners"

 Association Release Request

Association Release Response

Figure 4.7 Sketch of an MSC specification for ENV13735

get information from SCO

SCO detects Operation deletion

Manager Agent

delete operation from MDIB

msc example solution

‘‘Refresh Operation Context’’ Action Result

 ‘‘Refresh Operation Context’’ Action

‘‘Operation Delete’’ Event Report

 ‘‘Operation Delete’’ Event Report Result

Figure 4.8 New behavior for remote control

4.4.3 Health-Level Seven

In [WGMS05] we reported on our analysis of parts of the Health Level Seven (HL7)
standard. This is an ANSI standard that provides a comprehensive framework for

4.5 Conclusions 55

electronic health information. The most-widely used HL7 specification is called
Infrastructure Management, which facilitates health-care applications to exchange
key sets of clinical and administrative data. Non-local choice also played a role in
this standard, and our techniques could be applied again. However, as a result of
our work, this standardization committee has even started to work on a proposal
to fundamentally simplify the interaction framework.

4.5 Conclusions

We have focused on the best-known realizability problem, viz. non-local choice. In
the literature, MSCs with non-local choice are often simply classified as erroneous
MSCs. However, non-local choice is often present in practical MSCs. Because
no existing solution could be employed successfully to our case studies, we have
proposed a new direction.

We have proposed alternative implementations that allow a little more behavior
than the usual ones. In particular the extra behaviors have been introduced in the
deadlock states of usual implementations. Upon application of these techniques,
the extra behaviors must be validated by the designers. In contrast, the approach
to eliminate deadlocks that is described in Section 6.2.5 does not suffer from this
problem. We have successfully applied our techniques to the ISO/IEEE 1073.2
standard, and the additional behavior turned out to correspond to the intuition of
the developers. As a recognition of this work, our names have been added to the
list of authors of these standards.

Further work is to explore additional properties of our approach, including whether
there exist implementations that are even closer to the original specification. It
would also be interesting to investigate whether ignoring the additional behavior as
in [GY84] can be integrated, and how propagation problems can be addressed. For
the analysis of our proposal for arbitrary numbers of components, our theory about
realizability in Chapter 3 must at least be extended with parallel composition,
which in turn will require additional properties of laters in Chapter 2.

56 Chapter 4 Realizing non-local choice

Chapter 5

Conclusions

Many protocols are developed by reasoning about a couple of typical scenarios,
which makes it easy to overlook situations in which these scenarios interfere. The
realizability problems we have addressed are instances of this phenomenon that
can even lead to deadlocks. Further efforts in developing and transferring proper
techniques for constructing protocols are clearly necessary.

Our work has directly influenced and improved the protocols in the ISO/IEEE
1073.2 standard for medical device communication. We started with verifying and
adjusting some existing state transition tables, and later on we also created state
transition tables from a couple of typical scenarios. As a recognition of this work,
our names have been added to the list of authors of these standards. In addition,
this practical work has served as inspiration to several theoretical contributions.

In Chapter 2 we have argued that the relation between MSC specifications and
their implementations should be studied using one single formalism. Therefore
we have proposed a framework based on partial orders, which is more abstract
than the usual notion of execution traces. In Chapter 3 we have demonstrated its
use by constructively deriving a complete classification of realizability criteria for
compositional MSC.

The MSC specifications in our case studies were not realizable due to non-local
choice, but the problem of how to systematically obtain proper implementations
for such MSC specifications has largely been ignored in the literature. In Chapter 4
we have proposed a new approach to constructively address the problem of imple-
menting specifications that contain non-local choice. Our approach introduces a
little more behavior, and it turns out to be appropriate for our case studies.

57

58 Chapter 5 Conclusions

Part II

IEEE 1394.1: FireWire
Bridges

59

Chapter 6

Introduction

In this chapter we introduce Part II of this thesis. This part is based on our
work on the protocol standard IEEE 1394.1, which we describe in Section 6.1.
Afterwards, in Section 6.2 we present some basic concepts that will be used in the
chapters that follow.

6.1 Introduction to the protocol standard

The development of the IEEE 1394.1 Standard for High Performance Serial Bus
Bridges [IEE05] had been initiated in 1996, and it was finished by the end of 2004.
It is developed on top of the IEEE 1394 Standard for a High Performance Serial
Bus [IEE96]. The latter standard is also known as the FireWire standard, and
it has been studied extensively. In this section we introduce these two standards
and describe the issues we have worked on. More details can be found in [Rom99,
vLRG03].

6.1.1 IEEE 1394: underlying standard

The IEEE 1394 standard enables efficient communication between connected de-
vices that are physically close to each other. To this end the IEEE 1394 standard
defines a bus as a non-empty collection of connected IEEE 1394 devices, but the
maximum number of devices per bus is limited. Each device is a computational
unit that has a unique identity and that belongs to exactly one bus. A total order
on these device identities is given.

This standard defines how the devices on a single bus can communicate with each
other in terms of communication between connected devices, see Figure 6.1. The

61

62 Chapter 6 Introduction

bus

devices

Figure 6.1 IEEE 1394 bus

available types of message communication include unreliable broadcast and reliable
point-to-point communication.

The buses are dynamic in the sense that topology changes can occur, primarily by
connecting and disconnecting wires. These topology changes can be decomposed
into the following elementary topology changes:

• creating a new device: a corresponding singleton bus is created;

• connecting two devices: the corresponding buses are merged;

• disconnecting two devices: the corresponding bus may be split into two buses;

• deleting a device on a singleton bus: the corresponding bus is deleted.

Upon a topology change, all devices on the related buses are notified that the
topology has changed. This notification does not include any information about
the specific topology changes that have occurred. After a topology change, the
devices on the bus execute a protocol to determine the new topology of the bus.

6.1.2 IEEE 1394.1: intended extension

To lift the limitation on the number of devices that can communicate with each
other, and to enable efficient communication between connected devices that are
not physically close to each other, the IEEE 1394 standard was extended. This
extension must be transparent to the ordinary IEEE 1394 devices, in the sense
that these devices must be able to continue functioning on their bus without any
modification.

To this end, the IEEE 1394.1 standard introduces bi-directional bridges to inter-
connect pairs of buses, in a similar way as the IEEE 802.1 MAC Bridge Standard.
Such an IEEE 1394.1 bridge consists of two portals, which are special devices on
the buses that are connected by the bridge, see Figure 6.2. Apart from the usual
communication capabilities on the buses, the two portals of each bridge can also
directly communicate with each other.

6.1 Introduction to the protocol standard 63

bridgeportals

Figure 6.2 IEEE 1394.1 bridges

6.1.3 Abstractions

To conveniently study the latter standard, we need some abstractions with respect
to views like Figure 6.3(a). Since the IEEE 1394.1 extension must be transparent
to the ordinary IEEE 1394 devices, we abstract from the ordinary devices and
assume that each portal can communicate with all portals at its bus. Similarly,
we do not consider buses without any bridge portal. Moreover, we abstract from
the details of the connection between the two portals of every single bridge.

To get closer to the realm of normal graph theory, we want to abstract from the
portals. Thus we can consider a network with buses as nodes and bridges as
edges as depicted in Figure 6.3(b). Since the portals are the computational units,
the nodes and the edges become (parallel) computational units. Each edge gets
a unique identity, it can maintain persistent (with respect to topology changes)
data, and it can communicate with the nodes it connects; and each node can
communicate with its incident edges.

This is our main abstraction, although it is unconventional in the sense that data
can only be persistently stored in the edges. In Chapter 7 we use the different
abstraction that is also used in [Per85], viz. the line graph (or interchange graph)
of the previous abstract network, as depicted in Figure 6.3(c). In this abstraction
each bridge is represented by a node, and each bus is represented by a (possibly
empty) series of edges.

Both abstractions yield a dynamic network in which the nodes can locally detect
whether additions and removals of any connected edge have occurred. This can
be used to detect topology changes efficiently, and it avoids the need for a self-
stabilizing algorithm [Dij74, Gär03] with its inherent performance drawbacks.

6.1.4 Net update: maintaining a spanning tree

The IEEE 1394.1 standard enables the communication of messages between devices
on different buses by assigning to each bus a unique identity and by constructing

64 Chapter 6 Introduction

b

c d

a e

(a) Explicit portals

dc

ab e

(b) Network

b a

(c) Line graph

Figure 6.3 Graph abstractions

routing tables. This functionality is based on a distributed algorithm that is called
net update, which has to maintain a rooted directed spanning tree on the network
of buses and bridges.

A spanning tree of a connected undirected graph is a connected acyclic subgraph
that contains all the nodes. In addition, the edges of the spanning tree must be
directed towards one single node, which is the root of the tree. Phrased differently,
a rooted directed spanning tree of an undirected connected network is a directed
subgraph containing all nodes such that

• each node has at most one outgoing edge in the subgraph;

• the subgraph is acyclic;

• the subgraph is connected.

The spanning tree must be maintained under topology changes, which requires a
kind of plug-and-play or self-configuration property. As the topology changes may
disturb the tree, the requirement is that if (during a sufficiently large period of
time) no more topology changes occur, eventually a spanning tree is computed.
In comparison with the IEEE 802.1 standard, the IEEE 1394.1 standard should
benefit from the IEEE 1394 property that all devices on a bus are notified whenever
a device (e.g. a bridge portal) is added to or removed from the bus.

To illustrate the potential of the topology changes on maintaining a spanning tree,
we briefly illustrate them using the four example networks in Figure 6.4. These
networks, which can correspond to both abstractions discussed before, contain the
four nodes a, b, c and d. The (undirected) edges in the networks are represented
by lines (including the arrows) between the nodes, and the (directed) edges in
the spanning tree are represented by arrows between the nodes. The transitions
between the networks denote some topology changes and a way to maintain the
spanning tree.

When an edge is added to the network, it might be necessary to extend the tree;
if this is necessary it suffices to extend the tree with that edge and possibly turn
around some other edges (see cases 1 and 2). Removal of an edge from the network

6.1 Introduction to the protocol standard 65

5

4

b a

c d

b a

c d

b a

c d

b a

c d
3

21

Figure 6.4 Example topology changes

that is no part of the tree does not involve a change in the tree (see case 3).
Removal of an edge that is a part of the tree involves removing that edge from the
tree, therewith splitting a tree into two trees (see case 4). However, if these two
trees are in the same component of the network, the tree must also be extended
and possibly modified (see case 5). Note that nodes a and b cannot locally detect
whether the removal of the edge between nodes a and b is a case 4 or a case 5
removal (see the dashed lines). In general this also holds for the addition of an
edge (case 1 or 2).

6.1.5 Some related spanning tree work

The computation of minimum spanning trees has been extensively studied. A
minimum spanning tree of a graph with weighted edges is a spanning tree with
minimum weight. According to [BG92], a distributed algorithm for that purpose
exists for graphs in which the minimum spanning tree is uniquely determined, and
this is the case if all edge weights are distinct. Furthermore, [GHS83] states that
for graphs with neither distinct edge weights nor distinct node identities, no such
a distributed algorithm exists that uses a bounded number of messages.

Many algorithms for minimum spanning trees are based on one of the two classical
algorithms for computing spanning trees: Prim-Dijkstra’s algorithm and Kruskal’s
algorithm. In Prim-Dijkstra’s algorithm a single tree is formed. Initially a root
node is chosen; then the algorithm successively adds an edge with minimal weight
that extends the tree with a node that is not yet in the tree.

Kruskal’s algorithm builds fragments of the spanning tree which are themselves
spanning trees. Initially each node is a singleton fragment; then the algorithm
successively adds an edge with minimal weight that combines two different frag-
ments. Prim-Dijkstra’s algorithm has a more centralized nature than Kruskal’s
algorithm. Because in practice distributivity is a desired property, Kruskal’s algo-
rithm is usually preferred over Prim-Dijkstra’s algorithm, and many distributed
algorithms have been derived from it, e.g. [GHS83].

In contrast to the computation of spanning trees, we need to address distributed
maintenance of spanning trees under topology changes. In case the topology
changes are restricted to additions only, most distributed computing algorithms

66 Chapter 6 Introduction

can be used thanks to their incremental nature. In [AAG87] a general algorithm
structure is proposed that extends any algorithm on static networks to dynamic
networks, by initiating upon each topology change another algorithm that resets
the static algorithm to an initial state.

In contrast to minimum spanning trees, we only need arbitrary spanning trees.
The most-used distributed algorithm for maintenance of such spanning trees is
part of the IEEE 802.1 standard, which is described in [Per85, Per00]. It uses the
line graph abstraction, but also a procedure to convert the spanning tree into a
spanning tree of the original network is described. To compute (and maintain) the
spanning tree, every few seconds each bridge broadcasts its unique identity. The
bridge with the minimal identity is elected as the root of the tree; then the tree
is constructed by including for each bridge a shortest path to the root. To make
the computed spanning tree unique, bridge identities are used to break ties in case
there are multiple shortest paths to the root. Even after the spanning tree has
been computed, the algorithm continues to periodically send messages in order to
detect topology changes and to maintain the spanning tree. This is not a desired
property for IEEE 1394.1, and we will further address this issue in Chapter 7.

6.1.6 Our contributions

Our work on this standard was prompted by the problems of the standardization
committee in getting net update correct. In particular the possibility that buses
are split, has led to many consecutive net update proposals that only differ in some
of the details. The net update proposals describe the distributed spanning tree
algorithm in terms of the portals, typically including some detailed fragments of
C code. To get a grip on this (kind of) algorithm, we apply various abstractions
to the underlying network. In Section 6.1.3, we have already described the basic
abstractions, but we will also abstract from various low-level algorithms that are
available (or can be implemented) within one bus or bridge.

The easiest and most obvious solution to their problems would be to use a known
spanning tree algorithm. However, such algorithms would not exploit the topology
change detection mechanisms from the IEEE 1394 standard as required. We have
explored two other directions: First, in Chapter 7, we present a new distributed
algorithm for computing and maintaining an arbitrary spanning tree in a dynamic
network in which each node has a unique identity. This algorithm is based on IEEE
802.1, but it has not been adopted by the standardization committee, because they
did not want to make rigorous changes anymore. This is also the reason that our
efforts on this algorithm are limited.

The second approach is to try to fix the net update proposals. Attempts to analyze
and to prove the correctness of industrial algorithms are frequently based on formal
verification techniques like model checking, which require limited human input. In
[vLRG03] a model checker is used to verify some of the net update proposals. A

6.2 Preliminaries 67

well-known problem in model checking is the so-called explosion of the state space
of the system, which mainly occurs in systems with many interacting processes,
and systems containing data. The algorithm we want to analyze fits both profiles,
which explains the limited results of [vLRG03]: some errors have been detected,
but a full verification of the proposed fixes is still infeasible, see also [Vor04, Huo05].

A typical problem of verifying a given algorithm against a specification, is that the
information about how the algorithm was intended to fulfill the specification is not
available. Instead of such an a-posteriori verification, in Chapter 8, we formally
reconstruct a version of net update from its specification. Such a formal derivation
shows how the requirements influence the algorithm under development; and as
an important side-effect it provides a correctness proof. In Chapter 9, we develop
some tool-support for the programming method that we have used. Finally in
Chapter 10 we conclude Part II of this thesis.

6.2 Preliminaries

In this section we summarize the main formal techniques [FvG99] that we use.

6.2.1 Processes, actions and assertions

A parallel program consists of a (possibly dynamic) collection of components.
Execution of a single component results in a process consisting of a sequence
of atomic actions; execution of a parallel program results in a fair interleaving
of these processes. Thus an atomic action is an action that is guaranteed to
be executed without interference of any other action. A control point (or an
interleaving point) in a component is a location between two consecutive atomic
actions of the component. A component is said to be “at a control point” if
execution of the component so far ended at the control point.

An annotated program is a program that is annotated with assertions. An asser-
tion is a predicate on the state of the system and it is located at a control point.
An assertion at a component’s control point is correct if the state of the system
satisfies the assertion whenever the component is at the control point. A correctly-
annotated program (or a proof outline) is a program in which all assertions are
correct. Usually an assertion P is denoted as {P}, and an atomic statement S

with pre-assertion P is denoted as {P} S.

6.2.2 Programming language

The components are described using the following language constructions, based
on the Guarded Command Language (GCL):

68 Chapter 6 Introduction

• skip : the empty statement ;

• x, y := E,F : a multiple assignment, which first evaluates expressions E

and F , and then assigns their values to variables x and y respectively;

• x: P.x : a non-deterministic assignment, which non-deterministically as-
signs variable x a value X satisfying P.X;

• S;T : sequential composition, which first executes statement S and then
executes statement T ;

• if B0 → S0 [] B1 → S1 fi : alternative construct, which, once one of the
guards B0 or B1 holds, executes one of the statements S0 or S1 for which
the corresponding guard holds;

• do B → S od : repetitive construct, which repeatedly evaluates guard B

and executes statement S, until the guard evaluates to false;

• par x: P.x → S.x rap : parallel composition, which executes statement S.x

for all x: P.x in parallel (where P must be stable during the execution).

The usual atomic statements are the skip statement, assignment statements and
the evaluations of guards. Larger atomic statements can be denoted by placing
a series of statements within atomicity brackets 〈...〉. In a final implementati-
on, all atomic statements must be implementable. We will use await (B) as an
abbreviation of if B → skip fi.

6.2.3 Hoare triples and the theory of Owicki/Gries

A basic notion for the correctness of assertions is a Hoare triple [Hoa69]. A Hoare
triple {P} S {Q} is a boolean that has the value true if and only if each termi-
nating execution of statement S that starts from a state satisfying predicate P

is guaranteed to end up in a final state satisfying predicate Q. This definition
expresses partial correctness, since termination is not considered.

Hoare triples for atomic statements are usually defined using weakest liberal pre-
conditions. The weakest liberal precondition (wlp for short) of a statement S is
a predicate transformer, to be denoted by wlp.S. The wlp.S of a predicate Q, to
be denoted by wlp.S.Q, is the weakest precondition P such that {P} S {Q} is a
correct Hoare triple. More formally {P} S {Q} ≡ [P ⇒ wlp.S.Q], in which the
square brackets are a shorthand for “for all states”, i.e. a universal quantifier bin-
ding all free variables. The following two properties of Hoare triples {P} S {Q} are
particularly important: they are anti-monotonic in P , and universally conjunctive
in Q:

[X ⇒ Y] ∧ {Y } S {Q} ⇒ {X} S {Q}

6.2 Preliminaries 69

{P} S {(∀x :: Q.x)} ≡ (∀x :: {P} S {Q.x})

Composite statements are usually flattened into atomic actions using small the-
orems. E.g., a selection statement {P} if B → {Q} S fi {R} with inner asser-
tion Q is flattened into an atomic evaluation of guard B (with proof obligation
[P ∧ B ⇒ Q]) and a statement {Q} S {R}.

Partial correctness

For the partial correctness of an annotation we use the Owicki/Gries theory [OG76]
in the terminology of [FvG99]. It states that an assertion P in a component is
correct whenever the following two conditions hold:

• local correctness is guaranteed, i.e. if P is an initial assertion then P is
implied by the precondition of the program, and if P is preceded by atomic
action {Q} S then P is established by that action, i.e. {Q} S {P} is a correct
Hoare triple; and

• global correctness (or maintenance, or interference freedom) under each ato-
mic action {Q} S in the other components is guaranteed, i.e. {P ∧Q} S {P}
is a correct Hoare triple.

Invariants

We consider three kinds of invariants. A repetition invariant is an assertion that
is placed at the control point of a repetition and at the last control point of
each body of the repetition. For local correctness it must be established by the
statement preceding the repetition, and it must be (re-)established by each body
of the repetition. Global correctness only needs to be proved once.

An invariant of a parallel composition is an assertion that is placed at the control
point of the parallel composition and at all control points within. It is correct if
it is locally correct at the control point of the parallel composition, maintained
under each atomic statement within the parallel composition, and globally correct
under each statement outside the parallel composition. A special case is a system
invariant, which is an assertion that is placed at each control point. It is correct
if it is implied by the precondition of the program, and it is maintained by each
atomic statement.

6.2.4 Method of Feijen/van Gasteren

Before a program’s correctness can be proved using the theory of Owicki/Gries, a
full annotation must have been invented. To start verifying an annotation before

70 Chapter 6 Introduction

the full annotated program has been developed, rely-guarantee methods (see e.g.
[XdRH97]) have been proposed. These methods allow to verify each single com-
ponent based on a rely-guarantee abstraction of the other components. However,
during program development it is likely that such abstractions are not available.
Others focus on constructing the annotation (together with the program) and on
verifying parts of it as soon as possible. In what follows we describe the program-
ming method of Feijen/van Gasteren [FvG99].

The method of Feijen/van Gasteren addresses the construction of parallel programs
hand-in-hand with a suitable annotation and correctness proof. Being based on
the style of [Dij76], assertions play an important role. We first summarize so-
me conventions. Multiple assertions can be placed at a control point. Such a
sequence of assertions denotes their conjunction, and the assertions are called co-
assertions. Since Hoare triples {P} S {Q} are conjunctive in Q, the correctness
of individual co-assertions can be proved independently. A queried assertion is an
assertion which correctness has not yet been proved. Usually a queried assertion
Q is denoted as {?Q}.

Program development starts by expressing the specification of the program in
terms of a preliminary program, called the computation proper, and some queried
assertions, like post-conditions. Then, one-by-one, all queried assertions must
become correct assertions (as described below). The proof obligations for local
correctness give rise to a typical style in which programs are constructed from the
required assertions towards the initial control point. When all assertions (including
those related to the original specification) are correct assertions, the developed
program is correct with respect to the specification.

If a queried assertion’s correctness (in the current annotated program) cannot yet
be proved, there are mainly two solutions (which can also be combined):

• introduce additional queried assertions in the current annotation;

• modify the program.

An important issue is whether these two steps can endanger correctness of the
prior assertions. Since Hoare triples {P} S {Q} are anti-monotonic in P , intro-
ducing additional assertions cannot endanger the correctness of the prior asserti-
ons. However, modifying the program may turn all correct assertions into queried
assertions again. The typically-used modifications of the program are inserting
statements (for local correctness) and changing atomic actions.

In the common case that the changes of the atomic actions can only reduce the
program’s behavior, correctness of the annotation is maintained. This leads to a
style in which non-determinism is used as a way to postpone design decisions. For
example, as long as the execution order of a series of statements does not matter,
they can be executed in parallel.

6.2 Preliminaries 71

6.2.5 Safety, termination, and deadlock freedom

Although progress is not formally addressed by [OG76] and [FvG99], it needs to
be considered to obtain a suitable program. In this thesis we apply the usual ad-
hoc approach to progress, although recently in [DM06] we have developed a more
rigorous approach to address it.

We typically start by developing an initial program that is partially correct, i.e.
“no bad thing can happen”. After this safety property, we deal with progress,
which consists of termination and deadlock freedom. To maintain safety while
modifying the program for progress, we will only restrict the possible behavior.
Typically the possible behavior of the program is reduced by reducing the amount
of non-determinism, i.e. by strengthening the guards of an alternative composition.

We first address termination (typically using variant or bound functions), because
in contrast to deadlock-freedom, it is also maintained by restricting the possible
behavior afterwards. The last thing we address is deadlock-freedom, again by
restricting the behavior, i.e. by avoiding that a deadlock state will be reached.
The only statements that can cause a deadlock are the blocking statements, viz.
selection statements and non-deterministic assignments. A selection statement
is non-blocking whenever its pre-assertion guarantees that (at least) one of its
guards holds. Similarly, a non-deterministic assignment is non-blocking whenever
its pre-assertion guarantees that there exists a suitable value to be assigned.

6.2.6 Lemmas

In this section we provide two little useful lemmas that we have developed.

Proof reduction for parallel compositions

Consider a parallel program with a component in which the following annotated
program fragment occurs:

{A}
par x : P.x →

{B.x}
...
{C.x}

rap
{D}

• If assertion B.x (for all x : P.x) is globally correct, and assertion A is such
that [A ≡ (∀x : P.x : B.x)], then assertion B.x (for all x : P.x) is locally
correct (by definition). Moreover assertion A is globally correct as each

72 Chapter 6 Introduction

statement that would violate A, would also violate B.x (for some x : P.x),
but the latter is impossible as B.x is globally correct.

• If assertions A and C.x (for all x : P.x) are globally correct, and assertion D

is locally correct, then assertion D is globally correct. Nevertheless, for the
global correctness proof of assertion D, it may be necessary to strengthen
assertion D using A and C.x (for all x : P.x).

Program transformation

Consider a parallel program that contains variables x, y and A, and in which all
annotation has been removed. We assume that variables x and y are local variables
that can only be accessed by the single component in which the following program
fragment occurs:

x := A ;
y := A

During some executions of this program fragment, no statements are executed in
between these two assignments. Hence correctness of the program is maintained by
executing these two assignments atomically. Then the assignment to y is equivalent
to the assignment y := x.

〈 x := A ;
y := x 〉

As variables x and y are not accessible by other components, no component can
distinguish between this statement and the following program fragment in which
the atomicity brackets have been omitted:

x := A ;
y := x

Chapter 7

A spanning tree algorithm
for dynamic networks

In this chapter that is based on [MGW04], we present a distributed algorithm for
maintaining an arbitrary spanning tree in a dynamic network. The goal is to make
the algorithm in the IEEE 802.1 standard applicable to dynamic networks. Our
algorithm can serve as a simpler alternative for the spanning tree algorithm in the
IEEE 1394.1 standard, but it can also be used in more general dynamic networks.

We use the line graph abstraction from Section 6.1.3 and assume the nodes to
be computational units that can store data and that have a unique identity. We
assume that a total order on these node identities is given, and that the edges
can be used as buffered communication channels. Upon adding or removing an
edge, the corresponding communication channel is reset. For simplicity of the
nomenclature, we restrict the topology changes to additions and removals of edges
such that between any two nodes there is at most one edge, and such that there
are no self-loops.

Overview In Section 7.1 we sketch the algorithm in an informal way. A formal
treatment can be found in Section 7.2. Section 7.3 gives the conclusions.

7.1 Algorithm

Before describing our algorithm, we first refine the specification from Section 6.1.4.
The basis of our spanning tree algorithm will be an algorithm that deals with
additions of edges only, which are usually the simplest kind of topology changes.
Removals of edges will be addressed by superimposing another algorithm, inspired

73

74 Chapter 7 A spanning tree algorithm for dynamic networks

by [AAG87]. Finally, we give an example, and discuss some properties of the
algorithm. As a convention we use variables v and w for nodes.

7.1.1 Refined specification

The algorithm must compute a spanning tree whenever (during a sufficiently lar-
ge period of time) no more topology changes occur. As the algorithm must be
fully-distributed, we refine the requirements of a spanning tree from Section 6.1.4
into local requirements that only refer to nodes and their direct neighbors in the
network. For that purpose additional variables need to be introduced in the no-
des. Like [AG94], we introduce three local variables per node v with the following
requirements:

• parent.v of type node identity. It encodes the tree and it ensures that each
node has at most one parent. It indicates the neighbor (if any) of the node
that is its direct parent in the tree. In case a node has no parent, i.e. it is a
root, then parent.v = v.

• dist.v of type natural. It ensures acyclicity of the tree by requiring that
dist.(parent.v) < dist.v if v is not a root, thus exploiting that order < on the
naturals is irreflexive and transitive. Intuitively, dist.v can be interpreted as
an upperbound on the distance from node v to the root of the tree.

• root.v of type node identity. It ensures that the tree is spanning, i.e. any two
neighbor nodes belong to the same tree. For that purpose a unique identity
is assigned to each tree. Using that nodes have unique identities, we identify
trees by the identity of their sole root. So we require root.v = v if v is a root,
and root.v = root.w for each neighbor w of node v.

Notice that the spanning tree requirements from Section 6.1.4 are fulfilled if these
requirements are established.

In [AG94] it is assumed that each node can atomically perform an operation on
its own variables and inspect the variables of a neighbor node. This provides a
convenient way of abstracting from the message communication, and we will use
a related abstraction in Chapter 8. For the algorithm in the current chapter,
the use of this abstraction yields an implementation with a bad performance, and
hence we will directly consider the way in which neighbor nodes communicate their
(root, dist) value to each other, viz. using messages.

7.1.2 Additions of edges

Assuming that initially the network contains no edges, we initialize each node v

such that parent.v = v∧ root.v = v∧dist.v = 0, which establishes the requirements

7.1 Algorithm 75

above. The remaining algorithm for each node v deals with additions of edges:

do true →
if an edge between v and w has been added →

send a message (root.v, dist.v) to neighbor w

[] a message from a neighbor w has arrived →
receive a message (r, d) from neighbor w ;
if (r, d + 1) < (root.v, dist.v) →

parent.v, root.v, dist.v := w, r, d + 1 ;
send a message (root.v, dist.v) to all neighbors except w

[] (root.v, dist.v) ≤ (r, d + 1) → skip
fi

fi
od

When the node detects that an incident edge has been added, it sends a message
over the edge. Upon receipt of a message (r, d) from node w, node v can assign
to (parent.v, root.v, dist.v) the value (w, r, d + 1) such that node w becomes its
parent. To guarantee stabilization, this assignment is only performed if the node’s
(root, dist) value decreases by this assignment, i.e. its root becomes smaller, or its
root remains equal and its dist becomes smaller. Thus the neighbor with the smal-
lest known (root, dist) is chosen as parent. If the node performs the assignment, it
informs all neighbors by sending a message to them.

The (root, dist) value of a node never increases, and handling an arrived message
results in a decrease of this value or a decrease in the number of messages in the
system. Hence this algorithm stabilizes if (during a sufficiently large period of
time) no more edges are added.

7.1.3 Removals of edges

To deal with removals of edges, we will use a variant of the reset technique from
[AAG87]. Apart from the start criterion and the part of the network that needs to
be reset, we refer to [AAG87] for the details of the reset procedure. In [AAG87],
a reset is initiated upon each topology change, and it is propagated only over the
edges that have been used for communication.

Since our algorithm can easily deal with additions of edges, we only use the reset
technique in case an edge is removed. We consider the main guarded commands
above as atomic statements, and when a node detects that an edge has been
removed, it initiates a reset. Thus we use the technique in [AAG87] as a way to
abstract from all topology changes apart from the ones we can easily deal with.

Exploiting that the messages only contain information about neighbor nodes, the
refined specification suggests that a node does not need to initiate a reset if the
edge did not lead to its parent. If a node detects that an edge leading to its parent

76 Chapter 7 A spanning tree algorithm for dynamic networks

has been removed, and there is another known (by storing per edge the message
with the smallest value) edge that leads to a node with a smaller (root, dist)-value,
that node can become its parent, and no reset is necessary. Otherwise, the node
must reset itself and its incident edges. If a node resets itself, the children of the
node must also be reset. So the reset only needs to be propagated over the child
relation (the inverse of the parent relation).

7.1.4 Example

To get an operational idea of how this algorithm can behave, Figure 7.1 describes
some possible behavior of the algorithm. It is based on the topology changes that
were described in Figure 6.4. We define the following strict total order on the node-
identities: a < b < c < d. The three-tuples represent (parent, root, dist) values,
and the messages are labeled with their (r, d) content. For the topology changes
the following kind of abbreviations are used: “add a ∼ d” for the “addition of
an edge between nodes a and d”, and “rem a ∼ d” for the “removal of an edge
between nodes a and d”. The details of the reset are hidden in dashed boxes.

7.1.5 Discussion

Our algorithm stabilizes if no more topology changes occur. Once all resets have
terminated, the node with the minimal identity stabilizes. Stabilized nodes will
not change the value of their variables nor send any message. When all messages
sent by this node have been received by its direct neighbors, these neighbors will
also stabilize; and so on. Thus the algorithm stabilizes in a time proportional to
the diameter of the network, like in [Per85].

Thus if during a sufficiently large period of time no more topology changes occur,
no messages are being communicated. In contrast, the self-stabilizing algorithm
in [Per85] needs regular message communication for the detection of topology
changes. If only a relatively small number of topology changes occur, our algorithm
uses fewer messages than [Per85]. Some initial messages of the algorithm for
additions of edges can even be integrated with the reset protocol of [AAG87].
Moreover, the size of our messages is smaller than the ones used in [Per85].

If a node is not involved in a reset, it can possibly do some higher-level functionality
(e.g. forwarding data) using the currently existing tree. The waiting time, i.e. the
period during which it cannot do so, is the duration of the reset. In our algorithm
this is dynamically determined for each node that is involved, since we use the
reset from [AAG87]. In [Per85] and [AG94], the waiting time depends on the
(theoretical) maximum number of nodes in the network. Such a static waiting
time usually involves a larger overhead than a dynamic one.

7.2 Proof 77

rem a~b

5

a,2

c,0 b,0 c,0

 b,1

a,1

a b c d

(b, b, 1)

(a, a, 1) (a, a, 1) (b, a, 2)

(d, a, 2)

(c, a, 3)

(a, a, 0)

(b, b, 0) (c, c, 0)
reset reset

a b c

rem a~b

 b,0 c,0

4

 (b, b, 1)

 (b, a, 2)(a, a, 1)

 (c, c, 0)(b, b, 0)

(a, a, 0)

reset

cba

 a,1

b,0

add a~b

 a,0

1

(a, a, 1)

 (b, a, 2)

 (b, b, 1)(a, a, 0) (b, b, 0)

 a,2 a,1

add c~d

c
2

d
 (a, a, 1)(b, a, 2)

3
c d

rem c~d
(b, a, 2) (a, a, 1)

Figure 7.1 Example behavior

7.2 Proof

In this section we show how the correctness of the algorithm can be proved. We will
first provide invariants for the algorithm for additions of edges only. Afterwards
we will use these invariants to discuss the various conditions related to removals
of edges.

7.2.1 Refined specification

To formalize the refined specification, we introduce a binary irreflexive symmetric
relation ∼, such that v ∼ w denotes that v and w are neighbors in the network.
Then the refined specification can be formalized as (the conjunction of):

0: (∀v : v 6= parent.v : v ∼ parent.v)

1: (∀v : v 6= parent.v : dist.(parent.v) < dist.v)

78 Chapter 7 A spanning tree algorithm for dynamic networks

2: (∀v : parent.v = v : root.v = v)

3: (∀v, w : v ∼ w : root.v ≤ root.w)

In the last requirement one might expect the term root.v = root.w instead of the
term root.v ≤ root.w. Thanks to the symmetry of ∼, these are equivalent, but our
choice is formally weaker and simplifies the rest of this treatment.

Before showing that the algorithm stabilizes if all edge additions have been detec-
ted and all messages have been received, we show that the algorithm is partially
correct, i.e. it establishes the requirements upon stabilization.

7.2.2 Partial correctness

We first weaken the requirements into a set of system invariants such that upon
stabilization the requirements are implied. For that purpose we introduce some
formalizations for topology changes and communication. We introduce a boolean
variable S.v.w to denote that an edge v ∼ w has been added, but node v has not
yet detected this. We use Cw→v to denote the bag of messages communicated by
node w to node v. Furthermore we use C ⊖ m to denote a bag C from which an
element m has been removed, and |C| to denote the number of elements in bag C.

Requirements 0 and 2 do not need to be weakened as they contain variables of one
node only. Requirement 3 needs to be established by message communications and
therefore we weaken it with a disjunct that expresses that a relevant message is
communicated to node v (see below). To keep requirement 1 simple, we just rewrite
it by exploiting requirement 0, and requirement 3 for the two pairs (parent.v, v)
and (v, parent.v).

In turn, the weakening of requirement 3 can be endangered by addition of an
edge. Since node w can easily restore it using message communication, we weaken
requirement 3 also with a disjunct S.w.v. Thus we obtain the following system
invariants:

I0: (∀v : v 6= parent.v : v ∼ parent.v)

I1: (∀v : v 6= parent.v : (root.(parent.v), dist.(parent.v)) < (root.v, dist.v))

I2: (∀v : parent.v = v : root.v = v)

I3: (∀v, w : v ∼ w :

root.v ≤ root.w ∨ (∃r′, d′ : (r′, d′) ∈ Cw→v : r′ ≤ root.w) ∨ S.w.v)

Note that these invariants imply the original requirements when there are no more
messages in the system, and all edge additions have been detected. To simplify

7.2 Proof 79

the proof that our algorithm maintains these invariants, we annotate it with in-
termediate assertions. To avoid extra auxiliary variables, we split the statement
“receive a message” from a communication channel into “read the message” and
“remove the message” from the communication channel. By reading a message, a
node can obtain the contents of the message, and by removing the message it is
removed from the communication channel.

do true →
〈 if S.v.w →

send a message (root.v, dist.v) to neighbor w ;
S.v.w := false

[] a message from a neighbor w has arrived →
read a message (r, d) from neighbor w ;
{v ∼ w}{(root.w, dist.w) ≤ (r, d)}
{root.v ≤ root.w ∨ (∃r′, d′ : (r′, d′) ∈ Cw→v : r′ ≤ root.w) ∨ S.w.v}
if (r, d + 1) < (root.v, dist.v) →

{v ∼ w}{(root.w, dist.w) < (r, d + 1)}{(r, d + 1) < (root.v, dist.v)}
{r ≤ root.w ∨ (∃r′, d′ : (r′, d′) ∈ Cw→v ⊖ (r, d) : r′ ≤ root.w) ∨ S.w.v}
send a message (r, d + 1) to all neighbors except w ;
parent.v, root.v, dist.v := w, r, d + 1

[] (root.v, dist.v) ≤ (r, d + 1) → skip
fi ;
{root.v ≤ root.w ∨ (∃r′, d′ : (r′, d′) ∈ Cw→v ⊖ (r, d) : r′ ≤ root.w) ∨ S.w.v}
remove a message (r, d) from node w

fi 〉
od

Additional required invariant:

I4: (∀d, r, v, w : (r, d) ∈ Cw→v : (root.w, dist.w) ≤ (r, d))

Maintenance of invariant I4 is guaranteed using the descendence of the (root, dist)
values. All invariants in this section can be initialized by requiring initially that
for each node v we have (parent.v, root.v, dist.v) = (v, v, 0), and by having no edges
nor messages.

7.2.3 Stabilization

To prove stabilization we impose a well-founded function on the state of the sy-
stem such that it is a variant function for the algorithm, i.e. it decreases in each
execution of the body of the repetition. We impose as variant function the four-
tuple [(#v, w :: S.v.w), (

∑

v :: root.v), (
∑

v :: dist.v), (
∑

v, w :: |Cv→w|)] with
the lexicographical order, in which # is used as “the number of”-quantifier. We
have used addition of node identities as an abbreviation of concatenation with the
lexicographical order. We assume that the dist-values are natural numbers.

80 Chapter 7 A spanning tree algorithm for dynamic networks

The first guarded command decreases it via assignment S.v.w := false. In the
second guarded command, it is decreased by either decreasing (root.v, dist.v) in
the first guarded command of the inner selection, or by decreasing |Cw→v| after
the second guarded command of the inner selection.

7.2.4 Removals of edges

Finally we discuss the influence of edge removals. Using the invariants, we can
derive various conditions that were just mentioned earlier. Removals of edges can
only endanger invariant I0. It can easily be restored if there is a known (from
previously received messages) neighbor with a smaller (root, dist) than v, namely
by using that neighbor as the parent. Otherwise, the invariant can be restored
by an assignment parent.v := v, which in turn requires an assignment root.v := v

for invariant I2. This assignment requires that the incident edges are reset for
invariant I3 and I4. For invariant I1 the current children of the node must also
possibly be reset, so the reset must propagate over the child relation.

7.3 Conclusions and further work

We have presented an algorithm for computing and maintaining a spanning tree
in a dynamic network. In comparison with the self-stabilizing algorithm in IEEE
802.1, our algorithm exploits properties of dynamic networks like IEEE 1394.1.
Thus the algorithm improves on performance, and in the waiting time in which
data cannot be forwarded through the network. Furthermore, the algorithm does
not require any configuration or tuning of network dependent parameters.

To simplify the nomenclature, we have imposed some restrictions on the network.
It is further work to eliminate them, although we do not expect any serious changes
of the algorithm. The reason is that multiple edges can be addressed by explicitly
referring to edges instead of to pairs of neighbor nodes, and that self-loops are just
a local issue.

To conveniently develop this spanning tree algorithm, we have used a variant of the
reset technique from [AAG87] to abstract from some topology changes. We have
first developed an algorithm that can deal with most of the topology changes, and
then we have addressed the remaining topology changes using a reset. Thus we
do not need to get into the complications of implementing a reset on a dynamic
network. As we will show in Chapter 8, the spanning tree algorithm in IEEE
1394.1 has a similar structure as the spanning tree algorithm in this chapter.

Chapter 8

A formal reconstruction of
net update

In this chapter that is based on [MW03], we formally reconstruct a version of the
spanning tree algorithm of net update, starting from its specification. In contrast
to the alternative algorithm proposed in Chapter 7, in the current chapter we
try to stay close to the net update proposals. In the IEEE 1394.1 standard,
algorithms are described as low-level implementations for the portals. Attempts
to formalize and to analyze algorithms are often based on such an implementation-
level description, see e.g. [vLRG03]. However, in order to understand the essence
of the algorithm, the portals are not the right entities to start reasoning about.

Since net update is closely related to spanning trees, we prefer to abstract from
the portals and from the message communication. Thus we can reason about a
graph and about communication via shared variables. From Section 6.1.3 we use
the abstraction in which buses become nodes and bridges become edges.

In this graph context we develop a distributed spanning tree algorithm that is
strikingly similar to net update. More specifically, we systematically derive a
version of net update starting from its requirements. Such a derivation shows how
the requirements influence the algorithm under construction; and as a side-effect
it provides a correctness proof. The crucial parts have also been checked using
the theorem prover PVS, which is discussed in Chapter 9. Our derivation is not
intended to address methodological issues and heuristics, but it is a way to get a
grip on net update. That is, the high-level design decisions are primarily motivated
by the net update proposals.

Finally we use a transformational approach to decompose the implementations of
the buses and bridges into implementations of the underlying portals. This is also
the place where the message communication is explicitly introduced, which is in a

81

82 Chapter 8 A formal reconstruction of net update

much later stage than using the approach from Chapter 7. The algorithm we thus
obtain is an algorithm that is distributed at two levels.

Overview In Section 8.1 we introduce some notations. Then in Section 8.2
we develop an abstract algorithm, which in turn is implemented in Section 8.3.
Finally Sections 8.4 and 8.5 evaluate the results and contain the conclusions.

8.1 Notations

We introduce some nomenclature, notations and abbreviations for the two graphs
that we consider, namely an undirected graph for the network, and a directed
subgraph of this graph for the spanning tree. As a convention we use variables u,
v and w for nodes, and variables e, f , g and h for edges.

An edge (with identity) e between nodes u and v in the undirected graph is denoted
by e : u ∼e v, and an edge e from node u to node v in the directed subgraph is
denoted by e : u →e v. Each edge from the undirected graph occurs in the
directed subgraph in at most one direction. An edge of the undirected graph that
is not in the directed subgraph is called a muted edge; for an edge e : u ∼e v we
correspondingly define mut.e ≡ ¬(u →e v ∨ v →e u).

Frequently we want to indicate for a node all incident edges or all self-loops in the
graph, or all outgoing edges, all incoming edges or all muted edges in the subgraph.
As an abbreviation we introduce for each node v the sets edge.v and loop.v, and
out.v, in.v and mut.v respectively. Notice that mut.e denotes whether edge e is
muted, and that mut.v denotes the set of muted edges incident to node v.

We introduce the following atomic operations for an edge e : v ∼e w:

mute e : v →e w ≡ out.v,mut.v := out.v\{e},mut.v ∪ {e} ‖
in.w,mut.w := in.w\{e},mut.w ∪ {e}

unmute e : mut.e as v →e w ≡ mut.v, out.v := mut.v\{e}, out.v ∪ {e} ‖
mut.w, in.w := mut.w\{e}, in.w ∪ {e}

turn e : v →e w ≡ mute e ; unmute e as w →e v

8.2 Abstract algorithm

In this section we reconstruct a version of net update for a graph abstraction. We
discuss the topology changes in Section 8.2.5, and ignore them until then.

We start by massaging the specification from Section 6.1.4 into a more appropriate
shape. Then we develop an initial version of the algorithm that is partially correct,
i.e. whenever the algorithm stabilizes all requirements are fulfilled. Afterwards

8.2 Abstract algorithm 83

we ensure that the algorithm stabilizes by reducing the possible behavior of the
algorithm. Finally we prevent that (unwanted) deadlocks occur, again by reducing
the possible behavior.

While developing the algorithm, we regularly focus on fragments of the algorithm
and its annotation, and temporarily omit the rest. For the sake of completeness,
Section 8.2.6 contains a fully-annotated version of the whole algorithm. Although
we treat the algorithm in a non-operational way, one example behavior has been
included in Section 8.2.8.

8.2.1 Refined Specification

The algorithm must compute a spanning tree whenever (during a sufficiently large
period of time) no more topology changes occur. As the algorithm must be fully-
distributed, we refine the requirements of a spanning tree from Section 6.1.4 into
local requirements that only refer to nodes (or edges) and their direct neighbors
in the network. For that purpose additional variables need to be introduced in the
nodes or edges. As argued in Section 6.1.3 the nodes cannot store persistent data,
and hence we only introduce variables in the edges.

To ensure that each node v has at most one outgoing edge, we require

0: (∀v :: |out.v| ≤ 1)

To guarantee acyclicity, we associate with each edge e a natural variable1 dist.e.
Exploiting irreflexivity and transitivity of order < on the naturals, we require

1: (∀v :: (∀f, g : f ∈ out.v ∧ g ∈ in.v : dist.f < dist.g))

Intuitively, dist.v can be interpreted as an upperbound on the distance from node
v to the root of the tree.

For connectivity, we use that two nodes in a tree are connected if and only if they
belong to the same tree. So if each node stores the unique identity of the tree it
belongs to, we could require that each two neighbor nodes in the graph store the
same tree identity. For a unique identity of a tree, we could exploit that the tree
is rooted by using the unique identity of its root node. However, this is impossible
as nodes cannot store persistent data.

Therefore we distribute these stored tree identities to the edges and require that
all incident edges of a node store the same identity (see 2 below). Since root
nodes have no unique identity, we use the identity of one2 of its incoming edges
or self-loops unless it has no edges (see 3 below). Note that since a muted edge

1Net update jargon: hops to prime.
2Net update jargon: the prime portal of the tree.

84 Chapter 8 A formal reconstruction of net update

is symmetric with respect to the nodes it connects, we cannot use the identity of
a muted non-self-loop as a unique identity of a root node. So we associate with
each edge e a variable root.e of type edge identity, and require:

2: (∀v :: (∀f, g : f ∈ edge.v ∧ g ∈ edge.v : root.f = root.g))

3: (∀v : edge.v 6= ∅ ∧ out.v = ∅ : (∃f : f ∈ in.v ∪ loop.v : root.f = f))

Notice that the spanning tree requirements from Section 6.1.4 are fulfilled if these
four requirements are established.

8.2.2 Partial correctness

In this section we define the overall shape of the algorithm by developing an initial,
but partially-correct, version of the algorithm. In general, numerous algorithms
can be developed for a given specification, and hence many design decisions will be
made in this section. To stay close to net update, we include some short high-level
descriptions of the way net update is supposed to behave before we derive the
corresponding part of the algorithm.

In net update, each node locally tries to establish the requirements related to the
node. However, while a node establishes its own requirements, some requirements
related to its neighbors may be endangered. Nodes signal3 their neighbors when
some of their requirements may be violated, such that they can re-establish them.
Net update does not terminate, but it stabilizes when no node is signaled anymore
and all nodes have established their requirements.

To formalize the ideas in this description, we explicitly associate with each node
v its requirements Q.v. For later use, we slightly rephrase requirements 0 and 3
to make them more homogeneous. We define Q.v as the conjunction of

Q.v.0 ≡ (∀f, g : f ∈ out.v ∧ g ∈ out.v : f = g)
Q.v.1 ≡ (∀f, g : f ∈ out.v ∧ g ∈ in.v : dist.f < dist.g)
Q.v.2 ≡ (∀f, g : f ∈ edge.v ∧ g ∈ edge.v : root.f = root.g)
Q.v.3 ≡ edge.v = ∅ ∨ (∃f :: f ∈ out.v) ∨ (∃f : f ∈ in.v ∪ loop.v : root.f = f)

Notice that the original requirements are fulfilled if Q.v holds for all nodes v. For
nodes v : edge.v = ∅, requirement Q.v reduces to true. Since such nodes cannot
communicate with other nodes or edges, we will not consider them any further.

To formalize the signals, we associate with each combination of a node v and
an edge f : f ∈ edge.v a boolean variable sig.vf to indicate whether node v has
been signaled via edge f . Then we are heading for an algorithm, for each node
v : edge.v 6= ∅, of the following shape:

3Net update jargon: a bus reset (and hence net update) is initiated on the neighbor bus.

8.2 Abstract algorithm 85

do true →
par f : f ∈ edge.v → sig.vf := false rap ;

...

{? Q.v ∨ (∃f : f ∈ edge.v : sig.vf)}
await((∃f : f ∈ edge.v : sig.vf))

od

Observe that this is just a partial algorithm in the sense that we still have to
fill in the gap “...” in such a way that the queried assertion becomes a correct
assertion. Each node v starts to reset variable sig.vf for all incident edges, and
then it executes the gap to establish Q.v unless it gets signaled. Afterwards, once
it has been signaled, it starts over again. Upon stabilization, in each node the
(currently) queried assertion holds and the negation of the await-guard holds.
Hence (∀v :: Q.v) holds, which fulfills the specification.

Note that the queried assertion can be made correct by inserting an assignment
sig.vf := true for some edge f : f ∈ edge.v. However, such an assignment is likely
to endanger stabilization. Later on we will deal with stabilization in detail, but
for the moment we will already avoid such assignments.

In net update, the (currently) queried assertion is established in two phases, which
turns out to be related to the internal structure of condition Q.v. Observe that
all terms in Q.v.0, Q.v.1 and Q.v.2 are about pairs of edges, while Q.v.3 can be
witnessed by one edge. In net update, first a witness edge4 is elected for Q.v.3,
and then based on this edge Q.v.0, Q.v.1 and Q.v.2 are established.

The queried assertion in the last program fragment contains many dependencies
between variables of different edges, which is not a convenient basis for developing
an algorithm in which the data is distributed. Therefore we strengthen this asser-
tion into an assertion R.v in which each term refers to the variables of at most one
edge. Like in Section 8.2.1, this requires the introduction of additional variables.
Since we are dealing with an intermediate assertion, such variables can also be
introduced in the nodes, see also Section 8.2.5.

For the parts related to conditions Q.v.2 and Q.v.0, we exploit the transitivity
and the symmetry of =. We strengthen these parts into conjuncts R.v.0 and R.v.1
of R.v by introducing in each node v fresh local variables r and e of type edge
identity:

R.v.0 ≡ (∀f : f ∈ edge.v : sig.vf ∨ root.f = r)
R.v.1 ≡ (∀f : f ∈ out.v : sig.vf ∨ f = e)

Because the parts related to condition Q.v.1 are asymmetric, we distinguish bet-
ween outgoing and incoming edges. We strengthen these parts into conjuncts R.v.2
and R.v.3 by introducing in each node v a fresh local natural variable d:

4Net update jargon: an alpha portal, which leads towards the prime portal of the tree.

86 Chapter 8 A formal reconstruction of net update

R.v.2 ≡ (∀f : f ∈ out.v : sig.vf ∨ dist.f ≤ d)
R.v.3 ≡ (∀f : f ∈ in.v : sig.vf ∨ d < dist.f) ∨ (∀f : f ∈ out.v : sig.vf)

The second disjunct in R.v.3 may be left out, but our version is weaker. Similarly
we could also introduce a disjunct (∀f : f ∈ in.v : sig.vf) in R.v.2, but our
asymmetric combination turns out to simplify the rest of our derivation. To really
decouple the variables of different edges, we can use R.v.1 to rewrite R.v.2 and
strengthen R.v.3 into

R.v.2 ≡ sig.ve ∨ e 6∈ out.v ∨ dist.e ≤ d

R.v.3 ⇐

{

(sig.ve ∨ e 6∈ out.v ∨ e 6∈ in.v) ∧
(∀f : f ∈ in.v : sig.vf ∨ d < dist.f ∨ f = e)

What remains are the parts related to condition Q.v.3. Since we are considering
a node v : edge.v 6= ∅, we can eliminate the first disjunct. For simplicity reasons,
we strengthen the remaining parts into conjunct R.v.4 by using variable e as a
witness:

R.v.4 ≡ sig.ve ∨ e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)

Note that R.v implies the queried assertion in node v, and hence it is sufficient to
turn R.v into a correct assertion.

We first consider the local correctness of queried assertion R.v. Conditions R.v.3
and R.v.4 suggest that we should consider the conditions on edge e separately. The
conditions for the other edges are such that they can be established independently.
More specifically, we insert a parallel composition that establishes for each edge
f : f 6= e the conjuncts in R.v about edge f , and we require the conjuncts in R.v

about edge e as invariants of the parallel composition. Note that in particular
these invariants must be established as pre-assertion of the parallel composition.

The global correctness of assertion R.v will follow from the global correctness of
the assertions and invariants that we have introduced for its local correctness (see
Section 6.2.6). So we are developing a program fragment of the following shape:

...
{inv ? sig.ve ∨ root.e = r} {inv ? sig.ve ∨ e 6∈ out.v ∨ dist.e ≤ d}
{inv ? sig.ve ∨ e 6∈ out.v ∨ e 6∈ in.v}
{inv ? sig.ve ∨ e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}

par f, u : u ∼f v ∧ f 6= e →
...
{? sig.vf ∨ root.f = r} {? sig.vf ∨ f 6∈ out.v} {? sig.vf ∨ f 6∈ in.v ∨ d < dist.f}

rap
{R.v}

We first deal with the local correctness of the last series of queried assertions. For
simplicity reasons, we insert one large atomic statement in the parallel compositi-
on. We first discuss some ways to establish the individual queried assertions, and
then we combine them into alternatives of an if-statement. At this point we can
hardly decide which alternatives are necessary, but fortunately we can introduce

8.2 Abstract algorithm 87

as many alternatives as we like, since alternatives can safely be eliminated later
on (upon need).

Recall that we do not want to establish these assertions using an assignment
to sig.vf ; but if sig.vf already holds, a skip is sufficient to fulfill all of them.
Alternatively, we can fulfill the first assertion by inserting an assignment root.f :=
r. For the second assertion we can insert a statement {f ∈ out.v} mute f or
{f ∈ out.v ∧ u 6= v} turn f . To establish the last assertion we can insert an
assignment {f ∈ in.v} dist.f := d+1. Although for this last assertion we could also
mute incoming edges, this turns out to only complicate the rest of the derivation.
Because it is important that edges can also be unmuted, we also consider the
statement {f ∈ mut.v} unmute f as u →f v.

For the global correctness of the last series of queried assertions, we consider
each statement in node v that can possibly endanger these assertions in a node
u : u 6= v. To prevent such a violation, we accompany these statements with
suitable assignments that evaluate to sig.uf := true. For example, for the first
assertion each assignment that assigns a value r to root.f is extended with an
assignment sig.uf := sig.uf ∨ (root.f 6= r ∧ u 6= v). Thus we obtain:

...
{inv ? sig.ve ∨ root.e = r} {inv ? sig.ve ∨ e 6∈ out.v ∨ dist.e ≤ d}
{inv ? sig.ve ∨ e 6∈ out.v ∨ e 6∈ in.v}
{inv ? sig.ve ∨ e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}

par f, u : u ∼f v ∧ f 6= e →
〈 if f ∈ out.v →

root.f, sig.uf := r, sig.uf ∨ (root.f 6= r ∧ u 6= v) ;
mute f

[] f ∈ out.v ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true ;
turn f

[] f ∈ in.v ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ mut.v ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true ;
unmute f as u →f v

[] f ∈ mut.v →
root.f, sig.uf := r, sig.uf ∨ (root.f 6= r ∧ u 6= v)

[] sig.vf →
skip

fi 〉
{sig.vf ∨ root.f = r} {sig.vf ∨ f 6∈ out.v} {sig.vf ∨ f 6∈ in.v ∨ d < dist.f}

rap

Note that each guarded command establishes the post-assertion within the parallel
composition, and that the guards of the selection statement cover all cases. In what
follows we will refer to these guarded commands in terms like muting an outgoing
edge, turning an outgoing edge, maintaining an incoming edge, unmuting a muted
edge and maintaining a muted edge respectively.

We continue with the remaining queried invariants. Their maintenance under the
statement in the parallel composition in node v is guaranteed, thanks to condition
f 6= e. Maintenance of these invariants in a node u : u 6= v under the statements in

88 Chapter 8 A formal reconstruction of net update

node v is guaranteed for the first and the third invariant. For the second invariant,
upon maintaining an incoming edge, variable sig.uf must also become true in case
dist.f increases, i.e. if dist.f ≤ d. For the last invariant, upon muting an outgoing
edge, variable sig.uf must also become true in case (root.f = f ∧ u 6= v) holds.

For the local correctness of the first two invariants we insert an assignment to local
variables r and d that establishes their last disjunct. For the local correctness of
the other two invariants we require them as pre-assertions of this assignment:

...
{? sig.ve ∨ e 6∈ out.v ∨ e 6∈ in.v}
{? sig.ve ∨ e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}

r, d := root.e, dist.e ;

{inv sig.ve ∨ root.e = r} {inv sig.ve ∨ e 6∈ out.v ∨ dist.e ≤ d}
{inv sig.ve ∨ e 6∈ out.v ∨ e 6∈ in.v}
{inv sig.ve ∨ e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}

par f, u : u ∼f v ∧ f 6= e →
〈 if f ∈ out.v →

root.f, sig.uf := r, sig.uf ∨ ((root.f 6= r ∨ root.f = f) ∧ u 6= v) ;
mute f

[] f ∈ in.v ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r ∨ dist.f ≤ d

...
fi 〉

rap

The global correctness of these queried assertions follows from the arguments given
for maintenance of the invariants. For their local correctness, an assignment to
local variable e needs to be introduced. We will establish the two assertions in
different ways. For the second assertion, we insert an assignment that selects an
edge e that fulfills the assertion. For the first assertion, we generalize the assertion
to all edges of the node, and require it as a pre-assertion of this assignment.

...
{? (∀f : f ∈ edge.v : sig.vf ∨ f 6∈ out.v ∨ f 6∈ in.v)}

e: e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)

Notice that it is not yet guaranteed that such an edge e exists, but we postpone
this issue to Section 8.2.4.

The global correctness of the queried assertion is guaranteed by the same argument
as before. Since this assertion is a post-assertion of the assignments sig.vf := false,
we establish its local correctness by dropping disjunct sig.vf and requiring the
equivalent condition loop.v ⊆ mut.v as a repetition invariant.

This repetition invariant is globally correct as it cannot be endangered by other
nodes. Its maintenance under the body of the repetition is also guaranteed, since
each atomic statement in node v maintains it. Initialization of this invariant can
be established by inserting mute statements before the repetition. After using
loop.v ⊆ mut.v to simplify some statements, and eliminating the annotation, we
thus obtain:

8.2 Abstract algorithm 89

par f : f ∈ loop.v →
〈 if f 6∈ mut.v → mute f [] f ∈ mut.v → skip fi 〉

rap ;

do true →
par f : f ∈ edge.v → sig.vf := false rap ;

e: e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e) ;
r, d := root.e, dist.e ;

par f, u : u ∼f v ∧ f 6= e →
〈 if f ∈ out.v →

root.f, sig.uf := r, sig.uf ∨ root.f 6= r ∨ root.f = f ;
mute f

[] f ∈ out.v →
root.f, dist.f, sig.uf := r, d + 1, true ;
turn f

[] f ∈ in.v →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r ∨ dist.f ≤ d

[] f ∈ mut.v ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true ;
unmute f as u →f v

[] f ∈ mut.v →
root.f, sig.uf := r, sig.uf ∨ (root.f 6= r ∧ u 6= v)

[] sig.vf →
skip

fi 〉
rap ;

await((∃f : f ∈ edge.v : sig.vf))
od

Thus we have obtained a partially-correct algorithm, for which we have not yet
guaranteed that it stabilizes nor that it is deadlock-free.

8.2.3 Stabilization

In this section we modify the algorithm such that it stabilizes. As described in
Section 6.2.5, we ensure that partial correctness is maintained by only strengthe-
ning the guards. In what follows, we impose a well-founded function on the state
of the system, and ensure that its value is descending (i.e. it never increases) and
it decreases regularly.

We propose a function that consists of three parts. Upon stabilization we have
¬sig.vf for each edge f : f ∈ edge.v, so we head for a function that decreases
under an assignment {sig.vf} sig.vf := false. Since for a spanning tree we need
in fact a minimum number of (non-muted) edges, we want a function that de-
creases under mute-statements. Furthermore, for such an algorithm it turns out
to be (at least) convenient to introduce a total order ≤ on the edge identities,
which we use to choose a function that decreases if root.f for an edge f decrea-
ses. Combining these ingredients, we impose as a variant function the three-tuple
[(
∑

f :: root.f), (#f :: ¬mut.f), (#v, f :: sig.vf)] with the lexicographical order,
in which # is used as “the number of”-quantor. We have used addition of edge
identities as an abbreviation of concatenation with the lexicographical order. The

90 Chapter 8 A formal reconstruction of net update

variant function is well-founded since each edge has one unique identity, and we
assume the network to be finite.

Then we need to ensure that this function decreases regularly. Note that upon
passing the await statement, guard (∃f : f ∈ edge.v : sig.vf) holds stably up to
the parallel composition with assignments sig.vf := false, which then decreases
the variant function. So after one execution of the body of the repetition, each
further execution yields a decrease of the function.

What remains is to ensure that this function is descending. The only statement
that may increase it is the large atomic statement in the parallel composition.
For each assignment root.f := r we must require pre-assertion r ≤ root.f ; and
for unmuting an edge we must even require pre-assertion r < root.f . For each
assignment that evaluates to sig.vf := true we also require r < root.f , except if
it is combined with a mute statement. For updating an incoming edge this boils
down to a combined pre-assertion (r, d) < (root.f, dist.f), which can also be used
to simplify the assignment to sig.uf . Since these pre-assertions are part of an
atomic region, we directly strengthen the preceding guards of the selection. Thus
we obtain:

par f : f ∈ loop.v →
〈 if f 6∈ mut.v → mute f [] f ∈ mut.v → skip fi 〉

rap ;

do true →
par f : f ∈ edge.v → sig.vf := false rap ;

e: e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e) ;
r, d := root.e, dist.e ;

par f, u : u ∼f v ∧ f 6= e →
〈 if f ∈ out.v ∧ r ≤ root.f →

root.f, sig.uf := r, sig.uf ∨ root.f 6= r ∨ root.f = f ;
mute f

[] f ∈ out.v ∧ r < root.f →
root.f, dist.f, sig.uf := r, d + 1, true ;
turn f

[] f ∈ in.v ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ mut.v ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true ;
unmute f as u →f v

[] f ∈ mut.v ∧ r ≤ root.f →
root.f, sig.uf := r, sig.uf ∨ (root.f 6= r ∧ u 6= v)

[] sig.vf →
skip

fi 〉
rap ;

await((∃f : f ∈ edge.v : sig.vf))
od

Thus we have obtained a partially-correct and stabilizing algorithm, which is not
yet guaranteed to be deadlock-free. From this version of the algorithm we have
for each f, u, v : u ∼f v the following three important properties:

8.2 Abstract algorithm 91

Descendence : Both (root.f, dist.f) and root.f are descending in time.
Direction : Every statement in node v that affects f ensures f 6∈ out.v.
Signalling : Every change of root.f by node u : u 6= v also ensures sig.vf .

8.2.4 Deadlock freedom

In this section we ensure that there are no unwanted deadlocks. As described in
Section 6.2.5, we ensure that partial correctness and stabilization are maintained
by only strengthening the guards. Since stabilization is in fact a desired deadlock
and it is achieved by the await-statements, we will not consider these statements.

In what follows, we ensure that the other statements are non-blocking by requiring
some pre-assertions. Dealing with these assertions turns out to be quite technical,
because many assertions need to be introduced and because some of the proofs are
complicated. The correctness of these proofs has been checked using the theorem
prover PVS as described in Section 9.4.

To ensure that the if-statement within the parallel composition is non-blocking,
we must require the disjunction of its guards as pre-assertion:

par f, u : u ∼f v ∧ f 6= e →
{? sig.vf ∨ r ≤ root.f} {? sig.vf ∨ f 6∈ in.v ∨ (r, d) < (root.f, dist.f)}

〈 if ... fi 〉
rap

Their global correctness is guaranteed by the signalling property and the direction
property (f 6∈ in.v) respectively. For their local correctness, we also require them
(for all f : f ∈ edge.v ∧ f 6= e) as pre-assertion of the parallel composition.

The global correctness of these pre-assertions of the parallel composition is gu-
aranteed by construction (see Section 6.2.6). Since these pre-assertions are also
required post-assertions of assignment r, d := root.e, dist.e, their local correctness
is guaranteed by requiring the following pre-assertions of this assignment:

{? (∀f : f 6= e ∧ f ∈ edge.v : sig.vf ∨ root.e ≤ root.f)}
{? (∀f : f 6= e ∧ f ∈ in.v : sig.vf ∨ (root.e, dist.e) < (root.f, dist.f))}

r, d := root.e, dist.e

The global correctness of these assertions is guaranteed by the descendence pro-
perty of edge e, and the signalling and direction properties of edge f respectively.
Since these assertions are required post-assertions of the selection of an edge e,
their local correctness can be established by strengthening the criteria of that
selection:

〈 e: S.v.e 〉

92 Chapter 8 A formal reconstruction of net update

where S.v.h ≡ ((h ∈ out.v ∧ h 6∈ in.v) ∨ (h ∈ in.v ∪ loop.v ∧ root.h = h))
∧ (∀f : f 6= h ∧ f ∈ edge.v : root.h ≤ root.f)
∧ (∀f : f 6= h ∧ f ∈ in.v : (root.h, dist.h) < (root.f, dist.f))

For maintenance of invariant P0 below we have already strengthened h ∈ out.v
with a conjunct h 6∈ in.v.

To guarantee that the selection of an edge e: S.v.e causes no deadlock, we require
as a system invariant that there exists such an edge e:

P0 (∀v : edge.v 6= ∅ : (∃h : h ∈ edge.v : S.v.h))

Maintenance of invariant P0 under the mute statements that establish loop.v ⊆
mut.v is guaranteed using the above strengthening. Thus invariant P0 can only be
endangered by the if-statement in the large parallel composition. In what follows,
we focus on a node u with an edge g : S.u.g in relation to a statement in node v.
We use r and d for variables of node v.

We first consider the statements in nodes v : v 6= u that affect an edge f : v ∼f u

with g 6= f . We will ensure that in case S.u.g is violated by such a statement, S.u.f

is established, and hence invariant P0 is maintained. Using the direction property
(f 6∈ in.u), S.u.g can only be violated by an assignment {r < root.g} root.f := r.
Using S.u.g this assignment establishes (∀h : f 6= h∧ h ∈ edge.u : root.f < root.h).
What remains to establish S.u.f is to ensure that f ∈ out.u holds. The only
possibly-violating statements that do not guarantee this are muting an outgoing
edge and maintaining a muted edge. Using S.u.g and condition r < root.g (and
hence r < root.f), we can exclude them by strengthening their guards with a
conjunct root.f ≤ r (unless u = v).

Then we consider the statements in nodes v : v 6= u, that affect an edge f : v ∼f u

with g = f . We will ensure that S.u.g, or rather S.u.f , cannot be violated by such
a statement. Since S.u.f implies f 6∈ mut.u, we do not need to consider statements
for muted edges. Fortunately the statements for f ∈ in.v and turning f ∈ out.v
cannot violate S.u.f . So what remains is muting an outgoing edge. Since this
statement can violate S.u.f , we want to strengthen its guard with a conjunct that
implies ¬S.u.f . Using f ∈ out.v (i.e. f ∈ in.u), a local way to do this is using a
conjunct root.f 6= f .

Finally, we consider the statements in node v : v = u that affect an edge f : f ∈
edge.v ∧ f 6= e. In case g = e, S.v.e is maintained if we require pre-assertion
(root.e, dist.e) ≤ (r, d). In case g 6= e, we will ensure that S.v.g is maintained if
¬S.v.e holds, viz. by requiring pre-assertion (∀h : S.v.h : root.h < r) ∨ S.v.e.

8.2 Abstract algorithm 93

par f, u : u ∼f v ∧ f 6= e →
{? (root.e, dist.e) ≤ (r, d)} {? (∀h : S.v.h : root.h < r) ∨ S.v.e}
{sig.vf ∨ r ≤ root.f} {f 6∈ in.v ∨ (r, d) < (root.f, dist.f)}

〈 if f ∈ out.v ∧ r = root.f ∧ root.f 6= f →
mute f

[] f ∈ out.v ∧ r < root.f →
root.f, dist.f, sig.uf := r, d + 1, true ;
turn f

[] f ∈ in.v ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ mut.v ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true ;
unmute f as u →f v

[] f ∈ mut.v ∧ r ≤ root.f ∧ (r = root.f ∨ u = v) →
root.f := r

[] sig.vf →
skip

fi 〉
rap

Since we have strengthened some guards related to f ∈ out.v and f ∈ mut.v, we
must again ensure as a pre-assertion that at least one of the guards evaluates to
true. As a basis we use the two corresponding pre-assertions from the beginning
of this section. Thanks to including the option to unmute a muted edge (in
Section 8.2.2), these assertions are strong enough for the guards related to f ∈
mut.v. For the guards related to f ∈ out.v we require an extra pre-assertion, viz.
sig.vf ∨ f 6∈ out.v ∨ r < root.f ∨ root.f 6= f :

par f, u : u ∼f v ∧ f 6= e →
{? sig.vf ∨ f 6∈ out.v ∨ r < root.f ∨ root.f 6= f}
{? (root.e, dist.e) ≤ (r, d)} {? (∀h : S.v.h : root.h < r) ∨ S.v.e}
{sig.vf ∨ r ≤ root.f} {f 6∈ in.v ∨ (r, d) < (root.f, dist.f)}

〈 ... 〉
rap

We first consider assertion (∀h : S.v.h : root.h < r) ∨ S.v.e. Although we could
continue with it in its current shape, we will try to eliminate it. First we strengthen
it into a more convenient condition as follows:

(∀h : S.v.h : root.h < r) ∨ S.v.e

⇐ { use conjunct (∀f : f ∈ edge.v : root.h ≤ root.f) of S.v.h }
(∃f : f ∈ edge.v : root.f < r) ∨ S.v.e

≡ { calculus }
(∀f : f ∈ edge.v : r ≤ root.f) ⇒ S.v.e

By definition of S.v.e, we can use required assertion (root.e, dist.e) ≤ (r, d) to
reduce this condition to true, if we strengthen an invariant and an assertion by
leaving out disjunct sig.vf , and generalize that assertion into (∀f : f 6= e ∧ f ∈
in.v : (r, d) < (root.f, dist.f)). Thus we obtain:

{? inv e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}
par f, u : u ∼f v ∧ f 6= e →

{? (root.e, dist.e) ≤ (r, d)} {? sig.vf ∨ f 6∈ out.v ∨ r < root.f ∨ root.f 6= f}
{? (∀f : f 6= e ∧ f ∈ in.v : (r, d) < (root.f, dist.f))}

〈 if ... fi 〉
rap

94 Chapter 8 A formal reconstruction of net update

Note that the strengthened invariant is indeed maintained by the algorithm; its
local correctness can be achieved by leaving out disjunct sig.vf from the related
assertions. The strengthened assertion is globally correct under the other nodes
using the direction property, and the node itself cannot violate it. Its local cor-
rectness is guaranteed by leaving out disjunct sig.vf in the related pre-assertion.

The global correctness of the remaining queried assertions is guaranteed using
the descendence property and the signalling property respectively. Their local
correctness is guaranteed by requiring the following pre-assertion of the preceding
assignment:

{? (∀f : f 6= e ∧ f ∈ out.v ∧ root.f = f : sig.vf ∨ root.e < f)}
r, d := root.e, dist.e

Using the descendence and the signalling property, the global correctness of this
queried assertion is guaranteed. For its local correctness, note that it is a post-
assertion of the selection of an edge e : S.v.e. Therefore we strengthen predicate
S into

S.v.h ≡ ((h ∈ out.v ∧ h 6∈ in.v) ∨ (h ∈ in.v ∪ loop.v ∧ root.h = h))
∧ (∀f : f 6= h ∧ f ∈ edge.v : root.h ≤ root.f)
∧ (∀f : f 6= h ∧ f ∈ in.v : (root.h, dist.h) < (root.f, dist.f))
∧ (∀f : f 6= h ∧ f ∈ out.v ∧ root.f = f : root.h < f)

By strengthening S we also strengthen invariant P0; hence we have to reconsider its
correctness. Thanks to the descendence property, the additional conjunct cannot
lead to more violations of S.v.h in invariant P0 if we require the additional invariant

P1 (∀f :: root.f ≤ f)

which itself is maintained by the descendence property. Whenever S.v.f must
be established, we must also ensure that the new conjunct is established. Recall
that each time that S.v.f must be established in a state where S.v.g holds, it is
accompanied with an assignment that establishes root.f < root.g. Using S.v.g the
new conjunct follows from invariant P1.

What remains is the related condition (∀h : S.v.h : root.h < r) ∨ S.v.e. It
still reduces to true, if we also strengthen assertion sig.vf ∨ f 6∈ out.v ∨ r <

root.f ∨ root.f 6= f into (∀f : f 6= e ∧ f ∈ out.v ∧ root.f = f : r < f). Its
local correctness can be achieved by leaving out disjunct sig.vf from the related
assertions. Its global correctness follows from invariant P1.

Thus we obtain the following algorithm (in which we left out the annotation):

8.2 Abstract algorithm 95

par f : f ∈ loop.v →
〈 if f 6∈ mut.v → mute f [] f ∈ mut.v → skip fi 〉

rap ;

do true →
par f : f ∈ edge.v → sig.vf := false rap ;

e: S.v.e ;
r, d := root.e, dist.e ;

par f, u : u ∼f v ∧ f 6= e →
〈 if f ∈ out.v ∧ r = root.f ∧ root.f 6= f →

mute f
[] f ∈ out.v ∧ r < root.f →

root.f, dist.f, sig.uf := r, d + 1, true ;
turn f

[] f ∈ in.v ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ mut.v ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true ;
unmute f as u →f v

[] f ∈ mut.v ∧ r ≤ root.f ∧ (r = root.f ∨ u = v) →
root.f := r

[] sig.vf →
skip

fi 〉
rap ;

await((∃f : f ∈ edge.v : sig.vf))
od

Thus we obtained a partially correct, stabilizing and deadlock-free algorithm.
What remains is initialization and topology changes.

8.2.5 Initialization and topology changes

In this section we deal with the following two related issues: initialization of the
system invariants and dealing with the topology changes. Since our algorithm
has to deal with dynamically changing topologies, for initialization we can simply
assume that initially there are no nodes and no edges. All other (possibly more re-
alistic) “initial” configurations can be obtained using the topology changes, which
need to be considered anyhow.

There are two basic building blocks of the network topology, viz. a node without
edges (i.e. a bus without bridge portals), and an edge that connects two nodes with
only one incident edge (i.e. a bridge). To be able to build all possible network
topologies, we consider the following topology changes: creating and removing
such basic building blocks, and merging and splitting nodes.

Upon a topology change, all nodes that are involved in the topology change are
notified5. Since the structure of the main computational unit of the algorithm (i.e.
the bus) may be changed by topology changes, we adopt the net update proposal
to abort and afterwards restart the algorithm in the nodes that are notified about

5Net update jargon: a bus reset occurs.

96 Chapter 8 A formal reconstruction of net update

a topology change. Using that the algorithm for any node has no pre-assertion, we
can guarantee the correctness of the algorithm and its annotation by only ensuring
that the system invariants are maintained by the topology changes.

Both the creation and the removal of nodes without edges obviously maintain the
invariants. The creation of an edge f that connects two nodes containing only
that edge maintains the invariants if the edge is non-muted and root.f has initial
value f . The invariants are also maintained by removal of an edge such that the
remaining nodes have no edges. Furthermore invariant P1 is not affected by either
merging or splitting nodes.

To ensure that invariant P0 is maintained by merging nodes u and v into a node
w : edge.w 6= ∅, we must ensure that an edge h : S.w.h can be chosen. Typical
candidates are edges h with the smallest (root.h, dist.h) value such that S.u.h or
S.v.h holds. For the last two conjuncts of S.w.h, we must require invariant P2:

P2 (∀f : ¬mut.f : f ≤ root.f ≡ dist.f ≤ 0)

To maintain this invariant under creation of an edge f , we require initial value
0 for dist.f . This invariant is also maintained by the algorithm if we adopt the
following invariant (which is also maintained):

P3 (∀f :: 0 ≤ dist.f)

In general, invariant P0 is not maintained under splitting nodes. As topology
changes cannot be avoided, violations of the invariant should be detected and
restored. Since the invariant is of the shape “for each node some locally checkable
condition holds”, its violation can locally be detected by at least one node. In
general it cannot be locally restored by the nodes that can detect the violation. So
a more global approach is needed, like a network reset6, e.g. [AAG87] but using our
more restricted start criterion, that re-initializes the network under maintenance
of the invariants. This is possible since the invariants hold in an empty graph, and
both adding edges and nodes, and merging nodes maintain the invariant. For the
details of a possible network reset procedure we refer to [AAG87].

8.2.6 Full annotation

We have frequently left out parts of the algorithm and its annotation. In this
section we provide the fully annotated program for each node v : edge.v 6= ∅. Its

6Net update jargon: panic, but in many cases net update first attempts to restore the invariant
locally. Apart from some conditions that correspond to violations of our invariant P0, the main
start criterion for panic exploits that if a reset is necessary, then dist.f , for some edge f , would
eventually exceed a certain large value. Like in [AG94], this depends on an upperbound on the
size of the network. Although in practical applications a large upperbound is usually available,
there is a risk for performance problems.

8.2 Abstract algorithm 97

proof has been checked using the theorem prover PVS as discussed in Section 9.4.

par f : f ∈ loop.v →
〈 if f 6∈ mut.v → mute f [] f ∈ mut.v → skip fi 〉

rap ;

{inv loop.v ⊆ mut.v}
do true →

par f : f ∈ edge.v → sig.vf := false rap ;

{loop.v ⊆ mut.v}
e: S.v.e ;
{loop.v ⊆ mut.v} {e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}
{(∀f : f 6= e ∧ f ∈ edge.v : sig.vf ∨ root.e ≤ root.f)}
{(∀f : f 6= e ∧ f ∈ in.v : (root.e, dist.e) < (root.f, dist.f))}
{(∀f : f 6= e ∧ f ∈ out.v ∧ root.f = f : root.e < f)}

r, d := root.e, dist.e ;

{inv sig.ve ∨ root.e = r} {inv sig.ve ∨ e 6∈ out.v ∨ dist.e ≤ d}
{inv loop.v ⊆ mut.v} {inv e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}

par f, u : u ∼f v ∧ f 6= e →
{sig.vf ∨ r ≤ root.f} {(∀f : f 6= e ∧ f ∈ in.v : (r, d) < (root.f, dist.f))}
{(root.e, dist.e) ≤ (r, d)} {(∀f : f 6= e ∧ f ∈ out.v ∧ root.f = f : r < f)}

〈 if f ∈ out.v ∧ r = root.f ∧ root.f 6= f →
mute f

[] f ∈ out.v ∧ r < root.f →
root.f, dist.f, sig.uf := r, d + 1, true ;
turn f

[] f ∈ in.v ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ mut.v ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true ;
unmute f as u →f v

[] f ∈ mut.v ∧ r ≤ root.f ∧ (r = root.f ∨ u = v) →
root.f := r

[] sig.vf →
skip

fi 〉
{sig.vf ∨ root.f = r} {sig.vf ∨ f 6∈ out.v} {sig.vf ∨ f 6∈ in.v ∨ d < dist.f}

rap ;

{R.v} {loop.v ⊆ mut.v}
await((∃f : f ∈ edge.v : sig.vf))

od
Invariants:

P0: (∀v : edge.v 6= ∅ : (∃h : h ∈ edge.v : S.v.h))
P1: (∀f :: root.f ≤ f)
P2: (∀f : ¬mut.f : f ≤ root.f ≡ dist.f ≤ 0)
P3: (∀f :: 0 ≤ dist.f)

Definitions:
S.v.h ≡ ((h ∈ out.v ∧ h 6∈ in.v) ∨ (h ∈ in.v ∪ loop.v ∧ root.h = h))

∧ (∀f : f 6= h ∧ f ∈ edge.v : root.h ≤ root.f)
∧ (∀f : f 6= h ∧ f ∈ in.v : (root.h, dist.h) < (root.f, dist.f))
∧ (∀f : f 6= h ∧ f ∈ out.v ∧ root.f = f : root.h < f)

R.v ≡ (∀f : f ∈ edge.v : sig.vf ∨ root.f = r)
∧ (∀f : f ∈ out.v : sig.vf ∨ f = e)
∧ (∀f : f ∈ out.v : sig.vf ∨ dist.f ≤ d)
∧ ((∀f : f ∈ in.v : sig.vf ∨ d < dist.f) ∨ (∀f : f ∈ out.v : sig.vf))
∧ sig.ve ∨ edge.v = ∅ ∨ e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)

98 Chapter 8 A formal reconstruction of net update

8.2.7 Performance improvement

Notice that in statement e : S.v.e, the variables of all incident edges are involved.
This assumes a snapshot on all incident edges, which may yield a considerable
performance penalty. In this section we show that the snapshot is not required to
be consistent.

To formalize this snapshot, we introduce in each node the local variables root′,
dist′ and state′. Then we precede the selection of an edge e with for each edge
f : f ∈ edge.v an assignment root′.f, dist′.f, state′.f := root.f, dist.f, state.v.f ,
where we use state.v.f as a shorthand to denote whether edge f is an incoming
edge, an outgoing edge or a muted edge with respect to node v. To show that an
edge e can safely be selected using these copied values, we propose to replace the
corresponding part of the algorithm by:

edge′ := ∅ ;

{inv loop.v ⊆ mut.v} {inv (∃e : e ∈ edge.v : T.v.e)}
par f : f ∈ edge.v →

sig.vf := false ;
root′.f, dist′.f, state′.f, edge′ := root.f, dist.f, state.v.f, edge′ ∪ {f}

rap ;

{loop.v ⊆ mut.v} {(∃e : e ∈ edge.v : T.v.e)} {edge′ = edge.v}
{(∀f : f ∈ out.v ∧ root.f = f : f ∈ out′.v ∧ root′.f = f)}
{(∀f : f ∈ edge.v : (root.f, dist.f) ≤ (root′.f, dist′.f))} {(∀f : f ∈ in.v : f ∈ in′.v)}
{(∀f : f ∈ edge.v : (sig.vf ∧ f 6∈ in.v) ∨ (root.f, dist.f) = (root′.f, dist′.f))}
{(∀f : f ∈ edge.v : (f ∈ out′.v ∨ (f ∈ in′.v ∪ loop.v ∧ root′.f = f)) ⇒

(f ∈ out.v ∨ (f ∈ in.v ∪ loop.v ∧ root.f = f)))}
e: T.v.e ;

{loop.v ⊆ mut.v} {e ∈ out.v ∨ (e ∈ in.v ∪ loop.v ∧ root.e = e)}
{(∀f : f 6= e ∧ f ∈ edge.v : sig.vf ∨ root.e ≤ root.f)}
{(∀f : f 6= e ∧ f ∈ in.v : (root.e, dist.e) < (root.f, dist.f))}
{(∀f : f 6= e ∧ f ∈ out.v ∧ root.f = f : root.e < f)}

where T.v.e ≡ (root, dist, state.v := troot, tdist, tstate).(S.v.e)
with for f : f ∈ edge′: troot.f, tdist.f, tstate.f = root′.f, dist′.f, state′.f
and for f : f 6∈ edge′: troot.f, tdist.f, tstate.f = root.f, dist.f, state.v.f

All previous assertions are trivially maintained by this modification. We first
consider the local correctness of the last series of assertions, which are the post-
assertions according to Section 8.2.6. It follows from two parts: the pre-assertions
of the selection of an edge e and the definition of T.v.e in case edge′ = edge.v:

T.v.e ≡ (e ∈ out′.v ∨ (e ∈ in′.v ∪ loop.v ∧ root′.e = e))
∧ (∀f : f 6= e ∧ f ∈ edge.v : root′.e < root′.f)
∧ (∀f : f 6= e ∧ f ∈ in′.v : (root′.e, dist′.e) < (root′.f, dist′.f))
∧ (∀f : f 6= e ∧ f ∈ out′.v ∧ root′.f = f : root′.e < f)

8.2 Abstract algorithm 99

Then we consider the pre-assertions of the selection of an edge e, apart from
the first three ones. For their global correctness, note that they reflect many
global correctness arguments that we used before, especially the three properties
mentioned in Section 8.2.3. Their local correctness is established conjunct-wise for
each edge.

The global correctness of assertion edge′ = edge.v is guaranteed, and its local
correctness is established conjunct-wise for each edge (we have left out the corres-
ponding annotation). Note that we use local variable edge′ only for the annotation.

The remaining assertion and invariant (∃e : e ∈ edge.v : T.v.e) deserve special
attention. Their local correctness and maintenance under the statements in the
new parallel composition is guaranteed by construction. Their proof of global
correctness is analogous to the first part of the proof of maintenance of P0 in
Section 8.2.4.

8.2.8 Example

To get an operational idea of how the algorithm can behave, we have included in
Figure 8.1 one possible behavior of the algorithm. The steps are coarse-grained in
the sense that they represent executions of a full body of the repetition of a node.
Furthermore, it does not contain any topology change.

a, 2

a, 1

a, 0

a, 1

a, 2

a, 1

a, 0

a, 1 a, 1

b, 1

a, 0

a, 1

a, 1 c, 1

a, 0

b, 1b, 1

b, 0

a, 0

c, 1c, 1

c, 0

a, 0

b, 0d, 0b, 0

a, 0

c, 0

Figure 8.1 Example behavior

The figure contains a sequence of seven networks. The upper-left network is a
just initialized network, and the lower-left network is a stabilized network. The
networks contain four nodes that are interconnected by four edges with identities
a, b, c, d : a < b < c < d. The nodes are represented by circles, the edges ∼f are
represented by lines labeled with root.f, dist.f , and in particular the edges → in
the spanning tree are represented by arrows between nodes. For clarity reasons,

100 Chapter 8 A formal reconstruction of net update

we did not explicitly include the identities of the edges, but they can easily be
derived from the initial network since initially for each edge f we have root.f = f .
A filled dot near a node v and an edge f denotes that sig.vf holds. Diagonal
arrows indicate the node that is going to perform the body of the repetition of the
algorithm according to this scenario.

8.3 Implementation

In Section 8.2, we have developed an algorithm for a graph abstraction of an
IEEE 1394.1 network. In this section we show that abstract algorithms can easily
be implemented on the underlying portals, which are the computational units.
We first transform the algorithm into a more convenient shape. Then we use a
transformational technique, which does not depend on the previous annotation,
to make the parallelism in the nodes and edges more explicit. Finally we assign
these parallel components to the portals.

8.3.1 Convenient shape

We first transform the algorithm from Section 8.2, including the optimization of
Section 8.2.7, into a more convenient shape for the transformation. Using the
snapshot from Section 8.2.7, assignment r, d := root.e, dist.e can be transformed
into the local assignment r, d := root′.e, dist′.e (see Section 6.2.6). We also make
the ranges of the parallel compositions more homogeneous by extending them to all
incident edges of the node and introducing additional selection statements within
their bodies. Furthermore we abstract from some details by introducing functions
F and G (which we will not explicitly specify). Thus in the rest of this section we
consider the following algorithm for each node v : edge.v 6= ∅:

par f : f ∈ edge.v →
〈 if 〈 f ∈ loop.v\mut.v → mute f [] f 6∈ loop.v\mut.v → skip fi 〉

rap ;

do true →
par f : f ∈ edge.v →

sig.vf := false ;
root′.f, dist′.f, state′.f := root.f, dist.f, state.v.f

rap ;

e, r, d := F (root′, dist′, state′) ;

par f, u : u ∼f v →
root.f, dist.f, state.v.f, state.u.f := G(e, r, d, f, root.f, dist.f, state.v.f)

rap ;

await((∃f : f ∈ edge.v : sig.vf))
od

8.3 Implementation 101

8.3.2 Explicit parallelism

In this section, we make the parallelism in the nodes more explicit. For each node
v : edge.v 6= ∅ we introduce one component7 C.v and a component B.f.v per
edge f : f ∈ edge.v. Component C.v is a version of the algorithm that delegates
the statements in the parallel compositions with respect to edge f to component
B.f.v.

The communication and synchronization between these components must be via
the bus, so we have to introduce message communication. In what follows we
briefly describe the implementations of the three constructions that need to be
implemented:

• sequential compositions S;T can be replaced by distributed sequential com-
positions, i.e. by sending a message upon completion of statement S, and
only starting the execution of statement T after receiving the message;

• assignments x := E can be replaced by distributed assignments, i.e. by
sending a message with value E, and after receiving this value assigning it
to local variable x;

• statements await(E) can be replaced by waiting for a message that gua-
rantees condition E, and sufficiently often sending the message.

We introduce 6 types of messages, some of which have parameters, with names that
weakly reflect their purpose: “ready”, “request”, “response” (r, d, s), “update”
(e, r, d), “done” and “awake”. Then we obtain for component C.v:

par f : f ∈ edge.v →
receive “ready” from B.f.v

rap ;

do true →
par f : f ∈ edge.v →

send “request” to B.f.v ;
receive “response” (root′.f, dist′.f, state′.f) from B.f.v

rap ;

e, r, d := F (root′, dist′, state′) ;

par f : f ∈ edge.v →
send “update” (e, r, d) to B.f.v ;
receive “done” from B.f.v

rap ;

receive at least one “awake” from B.f.v, for at least one edge f
od

And for component B.f.v, with f, v, u : u ∼f v, we obtain:

7Net update jargon: the coordinator of the bus, but it delegates less, i.e. it is more centralized,
and hence it does not optimally exploit the potential parallelism on the bus.

102 Chapter 8 A formal reconstruction of net update

〈 if 〈 f ∈ loop.v\mut.v → mute f [] f 6∈ loop.v\mut.v → skip fi 〉 ;
send “ready” to C.v ;

do true →
if ∃ “request” from C.v →

receive “request” from C.v ;
sig.vf := false ;
send “response” (root.f, dist.f, state.v.f) to C.v ;

receive “update” (e, r, d) from C.v ;
root.f, dist.f, state.v.f, state.u.f := G(e, r, d, f, root.f, dist.f, state.v.f) ;
send “done” to C.v

[] sig.vf →
send “awake” to C.v

fi
od

This implementation using messages is just a sketch that can still be improved,
e.g. with respect to the amount of “awake” messages.

8.3.3 Deployment

Finally we map these components and the data to the portals, as depicted in
Figure 8.2. For each edge f : u ∼f v, we equip the corresponding bridge with
components B.f.u and B.f.v, and with the variables of the edge. Strictly speaking,
for each self-loop only one component B.f.v should be created, but it turns out
that the more homogeneous option of two component, viz. B.f.u and B.f.v, does
no harm. The identity of the edge is just the identity of one of its portals.

Less straightforward is to ensure that on each bus (i.e. a node) with at least one
portal there is exactly one component C. To ensure that there is at least one
component C, we equip each portal with such a component; and to ensure that
there is at most one component C, a leader election protocol can be used on the
bus to activate only one of them. Such a leader8 election protocol on a single bus
is already part of the IEEE 1394 standard.

CCC
B B

BB
B B

Bus communication

Bridge

Bus

Figure 8.2 Deployment architecture

8Net update jargon: the portal with the highest physical identity, which is computed by each
portal after the self-identification phase on the bus.

8.4 Comparison 103

8.4 Comparison

In absence of the topology change of splitting a bus, our algorithm is effectively
equal to net update. The issues caused by splitting a bus raised much discussion
in the last stages of the development of net update. In case splitting a bus causes
a node to lose all paths to the root of the spanning tree, our algorithm initiates
a (global) reset, while net update contains some local mechanisms and a stronger
reset criterion that try to avoid a reset. In general a global mechanism is necessary,
but we have not compared the efficiency of the two approaches.

This non-trivial algorithm is distributed at two levels, namely at the bus-bridge
level and at the portal level. Thanks to the abstractions we have used, we could
deal with these two levels in isolation, and we did not need to address various
minor low-level issues that play a role in the description of net update in the
standard.

In comparison to net update, our final algorithm allows more non-determinism,
which we have initially introduced as a means to delay design decisions. The result
is that our algorithm does not guarantee shortest paths to the root (which was
no part of our specification), and that our algorithm better exploits the potential
parallelism within each bus.

8.5 Conclusions and further work

We have analyzed the spanning tree algorithm of net update by reconstructing a
version of it, starting from its specification. There is a striking similarity between
net update and the algorithm we have thus obtained, but they are not completely
identical. Hence this analysis is not a correctness proof of net update, but it
exposes the core ideas of net update.

In comparison with the model checking approach, our approach requires more
human effort. On the other hand, there is no real method that describes how to
use the results of a model checker to fix an algorithm that happens to be incorrect.
Our approach is constructive in the sense that it provides clues on how to obtain
a correct algorithm, and it reveals the essential ingredients of the algorithm.

Our derivation is based on the method of [FvG99], and it is mainly guided by the
proof obligations for its correctness. In addition we have used a few hints about
the way net update is supposed to behave. Thus the algorithm is developed hand-
in-hand with its correctness proof. Applying these techniques to a case study like
the present one is quite laborious, but the proposed style of reasoning remains
effective. This illustrates that these techniques are valuable for the analysis of
complex industrial algorithms.

Nevertheless there is a considerable danger that attempts to apply this method

104 Chapter 8 A formal reconstruction of net update

end up in a complete mess. On one side this can be caused by not identifying
the right concepts, but on the other side for large algorithms and for algorithms
with many requirements, a large amount of the work consists of copying assertions,
applying simple substitutions, and doing many similar proofs. Therefore we will
experiment in Chapter 9 with some tool support for this method.

As sketched in Section 6.2 the essence of this method is not complicated, though a
complaint about applications of it, is that it would not be intuitive. The requested
intuition is demanded in terms of concrete operational behavior of the algorithm,
while a virtue of this method is that it is based on an axiomatic semantics, which
is more abstract than an operational semantics. Independent of any particular
formal method used, it is extremely important to construct algorithms using proper
abstractions, especially in case non-determinism plays an important role like in
parallel systems.

This method also illustrates that large parts of the construction of algorithms
follow directly from the proof obligations. Instead of using formalizations only as
a means to precise definition, more attention should be payed to the opportunities
of formula manipulation. Nevertheless, at some points real design decisions must
be made, which cannot be motivated by formulae alone. In this chapter, these
decisions are typically marked by short descriptions of net update.

An important direction for further work is to identify the right formal concepts
and abstractions for the design of distributed algorithms, e.g. the way in which
the message communication is introduced. In Chapter 7 we have described an
algorithm directly in terms of messages, similar to the style proposed in [Gol03].
In the current chapter we have experimented with another approach, similar to
the one advocated in [Hoo00]. In this way we design a distributed algorithm
like any other parallel algorithm in terms of variables, while the messages are
only introduced in the implementation. Although this approach seems not to be
feasible for Chapter 7 as discussed in Section 7.1, it does introduce two nice levels
of abstraction, which in turn can be developed using different techniques.

Chapter 9

Incremental verification of
Owicki/Gries proof outlines

In this chapter that is based on [MW05], we develop some tool support for the pro-
gramming method of Feijen/van Gasteren [FvG99]. This assertion-based method
is based on the theory of Owicki/Gries [OG76], and supports the construction of
parallel algorithms hand-in-hand with their correctness proof.

To enhance the applicability of assertion-based methods, the required amount of
human effort needs to be reduced. In this chapter we focus on the proof efforts.
Since current theorem provers offer much automatization, we address the integra-
tion of automated theorem provers with assertion-based methods. In this way we
can also assess the practical usability of current automated theorem provers.

Applications of assertion-based methods, including [FvG99], are typically incre-
mental: an initially incomplete annotation is extended repeatedly until all proof
obligations can be proved. In contrast to much related work that focuses on the
formalization of languages, we emphasize this incremental nature.

To experiment with our approach, we have implemented a tool that uses the
PVS theorem prover [ORS92] as a back-end. Nevertheless this chapter is largely
independent from any specific theorem prover.

Overview In Section 9.1 we evaluate related work, after which we describe the
main ingredients of our approach in Section 9.2. Based on these ingredients, in
Section 9.3 we discuss the tool that we have developed and the generated PVS
input files. In Section 9.4 we present the practical results that we have obtained.
Finally Section 9.5 contains the conclusions.

105

106 Chapter 9 Incremental verification of Owicki/Gries proof outlines

9.1 Related work

Tool support for formal methods is a very active research area. Aside from the
enormous interest in techniques related to model checking, some (recent) work
addresses axiomatic proofs based on Hoare logic and on the theory of Owicki/Gries.
In this overview of related work, we discuss some work on using theorem provers
for the verification of programs.

In [Hoo98] and related publications, there are experiments in modeling proof rules
in PVS. The emphasis is on distributed real-time systems, and reusable theories
about time have been developed. However, the models of case studies look ad-hoc,
and exploiting automatization of PVS is not a key issue.

Other related work originates from formalizing the Java programming language,
e.g. in [Ábr05, JP03]. Distracting complications in such a language are the many
object-orientation issues. In [JP03] threads and concurrency are excluded, and in
[Ábr05] the emphasis is on formalizations of the semantics of the language instead
of exploiting theorem prover capabilities. Getting closer to our methodological
goals, [Fra99] addresses the construction of sequential programs and their correct-
ness proofs in the style of [Dij76].

9.1.1 Theory of Owicki/Gries in Isabelle

The closest related work is [PN02, NPN99], in which the Owicki/Gries theory is
formalized in the Isabelle theorem prover [Pau94]. This work has some nice theo-
retical aspects. For example, the formalization does not refer explicitly to control
points, which are also not contained in the Owicki/Gries theory itself. Moreover,
using that the proof obligations are generated within the Isabelle theorem prover,
soundness with respect to operational semantics has been proved.

For practical use, there is a dedicated Isabelle tactic. To prove an annotated
program, a user submits a goal of the shape “this given annotated program is
correct” to the theorem prover. Then the tactic is applied to conclude that this goal
follows from a large proof obligation, consisting of the corresponding Owicki/Gries
proof obligations. Afterwards, this large proof obligation needs to be proved using
the theorem prover’s usual techniques. For effective practical use, this approach
has some disadvantages which we discuss in Section 9.2.

9.2 Design points

Although the approach of [PN02] is related to our goals, it does not effectively
support incremental assertion-based methods. In what follows we discuss the
problems and our proposals to overcome them. We will not compare the theorem

9.2 Design points 107

provers in detail, although in Section 9.4 we briefly address this issue.

9.2.1 Decomposing the proof obligation

To verify an annotated program, the tactic of [PN02] generates one big combined
proof obligation. This is probably caused by the fact that tactics in the theorem
prover need to transform a single proof into one other proof goal. Afterwards, the
theorem prover is used to try to prove the generated proof obligation. Such an
approach has two disadvantages.

First, dealing with large proof obligations heavily relies on the capabilities of
theorem provers to reduce them into smaller chunks that can easily be proved.
As mentioned by [JP03], this easily becomes a bottleneck, because when the size
of proof obligations exceeds certain limits, theorem provers become very time
consuming or run out of memory. It is advantageous to split proof obligations into
smaller ones before employing a theorem prover.

The second problem originates from the incremental and iterative nature of the
assertion-based methods. In typical applications, a program and its annotation are
repeatedly modified as required for parts of their proof that cannot be completed
yet. Since these frequent changes are usually small, many parts of a previous proof
attempt can be reused, at least theoretically. So much theorem proving work can
be saved by splitting proof obligations into reusable parts.

To maximize the reuse of unchanged parts of the proof obligation, we propose to
split the proof obligation such that the typical steps in the methods only affect a
small number of parts. In correspondence with the structure of the Owicki/Gries
theory, this can be achieved by splitting according to the assertion being proved, to
local or global correctness and to the particular statement being involved. Thus the
individual parts of the proof obligation can be identified by a triple (“local/global”,
assertion, statement).

9.2.2 Stabilizing the proof scripts

A step that occurs very often in assertion-based methods is adding an assertion.
Apart from the new proof obligations for correctness of the assertion itself, the
assertion also pops up in many existing proof obligations. More specifically, the
assertion pops up as a conjunct in the left argument of some Hoare triples. Since
Hoare triples are anti-monotonic in their left argument, see Section 6.2.3, their
correctness is maintained. In terms of the wlp-versions of the proof obligations, the
assertion pops up as a conjunct in the antecedent of the implication, which indeed
weakens the proof obligation. However, there is no guarantee that the old proof
script of the theorem prover is also a proof script for the new proof obligation. In
practice this hinders the effective use of theorem provers for incremental methods.

108 Chapter 9 Incremental verification of Owicki/Gries proof outlines

Instead of trying to correct the old proof scripts, we propose to ensure that there
are no textual changes in these proof obligations, nor in the ingredients employed
by the old proof scripts. To that end, we need to fully decouple the assertions from
each other. Consider the typical example [P ∧Q ⇒ Z] (e.g. a proof obligation for
local correctness) with predicates P , Q and Z. To decouple Z from P and Q, we
use the principle of indirect inequality and obtain (∀X :: [X ⇒ P∧Q] ⇒ [X ⇒ Z]),
assuming that predicate X is fresh (i.e. not yet in use). Then P and Q can be
decoupled using that implication is conjunctive in its consequent:

(∀X :: [X ⇒ P] ∧ [X ⇒ Q] ⇒ [X ⇒ Z])

In a theorem prover this can be modeled as proof obligation [X ⇒ Z], after
declaring dummy predicate X as a logical variable and posing the two axioms
[X ⇒ P] and [X ⇒ Q]. If (later on) this proof obligation should be weakened
into [P ∧ Q ∧ R ⇒ Z], then only an axiom [X ⇒ R] needs to be added. Hence
correctness of the old proof script for [X ⇒ Z] cannot be endangered as long as all
used axioms are employed explicitly. Note that these introduced axioms cannot
cause soundness problems, since dummy X was fresh.

Instead of introducing a fresh predicate X for each proof obligation, we can exploit
the structure of the Owicki/Gries theory to reuse some of them. Namely, the
antecedent of the implication in each proof obligation is the conjunction of all
assertions at one or two control points. We introduce a fresh predicate per control
point, relate it to the corresponding assertions using axioms, and use (combinations
of) these predicates instead of the dummy predicate explained before. In case
there are two control points involved, viz. for global correctness proofs, this can
be justified by applying the technique of indirect inequality to [P ∧Q ⇒ Z] twice,
yielding:

(∀X,Y :: [X ⇒ P] ∧ [Y ⇒ Q] ⇒ [X ∧ Y ⇒ Z])

9.2.3 Exploiting invariants

Usually some assertions are located at several control points. Such assertions are
typically invariants, and many of their proof obligations (and proofs) are almost
identical. For effective practical use, the redundant part of this proof load must be
reduced. To this end we propose not to treat invariants just as abbreviations, but
to use the dedicated proof rules from Section 6.2.3. Apart from the well-known
repetition invariants supported by [PN02], we also consider invariants of parallel
compositions.

9.3 Experimental environment 109

Figure 9.1 Tool architecture

9.3 Experimental environment

In this section we describe the experimental environment we have built, which is
schematically depicted in Figure 9.1. Our proof generator reads the annotated
program, and recursively decomposes it into atomic actions and assertions. Then
internally the corresponding proof obligations are generated independent of the
target theorem prover. Finally input files for the specific theorem prover (e.g. PVS)
are generated that consist of proof obligations and corresponding proof scripts.
Afterwards they are verified by the theorem prover in batch-mode.

In case some proof obligations are not successfully verified by the theorem prover,
there are two options:

• the proof obligation does not hold, and hence the annotated program must
be adapted (according to the assertion-based method);

• the proof obligation holds, but the generated proof script is not appropriate.

In the latter case, the user can influence the proof scripts by supplying proof
guidance. In either case, afterwards our tool is used again to generate the new
proof obligations and proof scripts.

In what follows, we first describe how to model the program in PVS, and then
we show the generated proof obligations. Finally, we explain the generated proof
scripts and the opportunities to influence them using proof guidance. As the
modeling language of PVS is generally considered to be very readable, we will
only briefly explain some aspects of it.

9.3.1 Running example: parallel linear search

As a running example we use a parallel linear search algorithm, which solves the
following problem: Given a number of boolean functions on the naturals, find a
value that is mapped by one of these functions to the value true. A collection of
components ought to be used, such that for each function there is a component
that is completely dedicated to the function.

110 Chapter 9 Incremental verification of Owicki/Gries proof outlines

var f : [comp → [nat → bool]],
x : [comp → nat],
b : bool

0: {inv b ⇒ (∃c:comp :: fc(xc))}
par (c : comp):

1:
do ¬(b ∨ fc(xc)) →

2: {¬fc(xc)}
xc := xc + 1

od
3: ; {(∃c:comp :: fc(xc))}

b := true
4: {(∃c:comp :: fc(xc))}

rap
5: {(∃c:comp :: true) ⇒ (∃c:comp :: fc(xc))}

Figure 9.2 Parallel linear search example

A solution is the annotated program of Figure 9.2, which is a generalization of
the two-component version in [FvG99]. The upper part consists of the declaration
of the variables, in which the type comp denotes the set of component identifiers.
For each component c, function fc is the corresponding given function. Variable b

is a shared program variable of type boolean, and for each component c, variable
xc is a local program variable of type natural.

The lower part contains the annotated program. The numbers that are followed
by a colon are labels that identify the control points. If termination of the system
needs to be guaranteed, we must assume that there exists an x that fulfills the
post-assertion (at label 5), and that initially (∀c:comp :: xc = 0) holds.

9.3.2 Program model

In this section we discuss our model of atomic statements and assertions in PVS.

Identifiers

For the reuse as proposed in Section 9.2, we need identifiers for the assertions and
statements. We only explicitly assign identifying labels to the control points, and
identify the assertions and statements by the label of their control point and some
serial number (or rather character). For example, the invariant at the control
point with label 0, and the statement and assertion at the control point with label
2 in the running example are referred to as inv 0a, stat 2 and ass 2a.

9.3 Experimental environment 111

Data types

Elementary data types are part of the default library of PVS, so only the additional
domain-specific data types need to be modeled. In the running example only a
type comp for the identifiers of the components needs to be defined.

comp: type

Then a type state can be defined as a record that contains all variables. It will be
used to denote states of the entire program.

state: type = [# f : [comp → [nat → bool]] ,
x : [comp → nat] ,
b : bool

#]

Annotation

The two types of annotation, viz. assertions and invariants, are just predicates on
the state.

inv 0a: pred[state] =
lambda (s : state): s‘b ⇒ exists (c : comp): s‘f(c)(s‘x(c))

ass 2a(c : comp): pred[state] =
lambda (s : state): not(s‘f(c)(s‘x(c)))

Note that in the language of PVS, s‘b selects field b from record s.

Statements

Recall that we only need to address the atomic statements, since their composition
into larger statements is part of the program’s structure. The atomic actions
are typically assignments and evaluations of guards. We model the assignments
directly using their wlp. Notice that for the guards of the repetitions, evaluation to
true and evaluation to false are two different atomic actions, and hence they could
be modeled using two wlp predicate transformers. We prefer to model guards as a
single predicate since the corresponding two wlp predicate transformers can easily
be generated from it.

wlp stat 2(c : comp)(p : pred[state]): pred[state] =
lambda (s : state): p(s with [‘x(c) := s‘x(c) + 1])

guard 1a(c : comp): pred[state] =
lambda (s : state): not(s‘b or s‘f(c)(s‘x(c)))

112 Chapter 9 Incremental verification of Owicki/Gries proof outlines

9.3.3 Proof obligations

Using these definitions, we can describe the generated proof obligations. We will
distinguish between local correctness, global correctness and invariance.

Control points

Before presenting the proof obligations for correctness of the annotated program,
we first address the implementation of the technique described in Section 9.2.2.
For each control point, say with label i, we introduce a logical variable lab i, and
relate it with axioms to the assertions and invariants that hold at the control point.

lab 2: [comp → pred[state]]

lab 2 inv 0a: axiom
forall (s : state): forall (c : comp): lab 2(c)(s) ⇒ inv 0a(s)

lab 2 ass 2a(c : comp): axiom
forall (s : state): forall (c : comp): lab 2(c)(s) ⇒ ass 2a(c)(s)

To apply the technique from Section 9.2.2 to the proof obligations for invariants
of parallel compositions, we also define a logical variable scp i for each control
point i in which a parallel composition starts. We relate this logical variable to
the control points in the scope of the parallel composition using an axiom.

scp 0: pred[state]

def scp 0: axiom
forall (s : state):

scp 0(s) = (lab 0(s)
or (exists (c : comp): lab 1(c)(s))
...
or (exists (c : comp): lab 4(c)(s)))

In fact scp is just an abbreviation, which could be defined directly without a
separate axiom. However, in that case the PVS theorem prover will often expand
scp which leads to bad performance. Rather than working directly with the above
definition of scp, we want to use properties of scp similar to the relations between
control points and assertions above. The above axiom is only used in the generated
proof script for the following relation between scp variables and invariants.

scp 0 inv 0a: lemma
forall (s : state): scp 0(s) ⇒ inv 0a(s)

9.3 Experimental environment 113

Local correctness

Now we consider the proof obligations for the local correctness of the assertions and
invariants. We assume that the initial assertion of the program is the precondition
of the program. Recall that if an assertion {P} is not an initial assertion, then
it must be established by the preceding statement {Q} S, i.e. {Q} S {P} must
be a correct Hoare triple. We directly generate the proof obligations in their wlp
version.

loc ass 4a stat 3: lemma
forall (s : state):

forall (c : comp): lab 3(c)(s) ⇒
wlp stat 3(c)(ass 4a(c))(s)

Such a lemma “loc ass 4a stat 3”, for the local correctness of assertion ass 4a by
preceding atomic statement stat 3, is structured as follows:

• For all states,

• and for each component that is about to execute the statement,

• the statement establishes the post-assertion.

For the local correctness of the post-assertion of a parallel composition we generate
the following proof obligation.

loc ass 5a stat 4: lemma
forall (s : state):

(forall (c : comp): lab 4(c)(s)) ⇒
ass 5a(s)

This proof rule is only complete in case the type comp is non-empty. In contrast
to many tools, in PVS the types are allowed to be empty. This rule can easily be
extended to the special case that comp is empty, but the resulting inhomogeneous
rule turns out to have a bad influence on the performance of the prover.

To aid proving the above lemma, we also generate for each parallel composition
the following additional lemma. We need to make this trivial lemma explicit to
ensure that it is exploited, although its proof is simply generated.

parallel statement lemma 0: lemma
forall (P : [comp → bool], Q : [comp → bool]):

(forall (c : comp): P (c)) ⇒
((forall (c : comp): Q(c)) = (forall (c : comp): P (c) ⇒ Q(c)))

114 Chapter 9 Incremental verification of Owicki/Gries proof outlines

Global correctness

Then we continue with global correctness. Recall that each assertion {P} of a
component must be maintained under each statement {Q} S that can be executed
by another component, i.e. {P ∧ Q} S {P} must be a correct Hoare triple. We
directly generate the proof obligations in their wlp version.

glob ass 4a stat 2: lemma
forall (s : state):

forall (c : comp): lab 4(c)(s) ⇒
forall (d : comp): lab 2(d)(s) ⇒

not(c = d) ⇒
wlp stat 2(d)(ass 4a(c))(s)

Such a lemma “glob ass 4a stat 2”, for the global correctness of assertion ass 4a
under statement stat 2, is structured as follows:

• For all states,

• if there is a component at the control point of the assertion,

• then for each component that is about to execute the statement,

• such that the two components are different (i.e. in the common enclosing
parallel compositions, not all identifying variables are equal),

• the statement (re-)establishes the assertion.

Invariants

Finally we address invariants of parallel compositions. Local correctness as a
pre-assertion of the parallel composition is the same as for assertions. Global cor-
rectness under the statements outside the parallel composition is almost the same,
but with the first occurrence of lab replaced by scp. What remains is maintenance,
or invariance, under each statement within the parallel composition.

inv inv 0a stat 2: lemma
forall (s : state):

scp 0(s) ⇒
forall (c : comp): lab 2(c)(s) ⇒

wlp stat 2(c)(inv 0a)(s)

Notice that term scp 0(s) is not superfluous in case the invariant is placed within
another parallel composition. Such a lemma “inv inv 0a stat 2”, for invariance of
invariant inv 0a under statement stat 2, is structured as follows:

9.3 Experimental environment 115

• For all states,

• if there is a component within the scope of the parallel composition,

• then for each component that is about to execute the statement,

• the statement (re-)establishes the invariant.

9.3.4 Proof scripts

For these generated proof obligations, proof scripts are generated that rely on the
automatization offered by PVS. Such an automated proof might be feasible since
atomic actions are typically simple. Furthermore, proving these proof obligations
might be easier than proving correctness of the algorithm, since an annotation can
be exploited. However, we must be prepared that human intervention in the proof
is required, so we also discuss some possibilities for human guidance.

Default script

The default proof script consists of the following three parts:

(skosimp* :preds? t)

(lemma “lab 2 ass 2a”)
(inst -1 “s!1” “c!1”)
... ...

(branch (grind :if-match nil)
((then (try (reduce) (fail) (skip))

(then (inst? :if-match all) (then (reduce :if-match all) (fail))))))

The first command decomposes the top-level structure of the proof obligation and
introduces skolem constants (and type constraints) for the bound variables, viz.
for the state and for the identifying variables of the components. Then the axioms
that relate control points to assertions are explicitly employed (as required in
Section 9.2.2), and the known constants are substituted.

From a logical point of view, the order in which the axioms are introduced is ir-
relevant. However, it turns out that PVS prioritizes the axioms introduced last,
which can have serious consequences for the run-time performance. We have ex-
ploited the heuristic that for a global correctness proof of an assertion, it is usually
very important to use that the assertion is also a conjunct at the left-hand side of
the Hoare triple. Hence we have ensured that the corresponding axiom is the last
axiom that is introduced.

What remains in the script is the real work, consisting of some strategies to au-
tomatically complete the proof. It is in fact an extension of the “lazy-grind”

116 Chapter 9 Incremental verification of Owicki/Gries proof outlines

strategy. First it applies “grind” without quantifier instantiation, and then it re-
peatedly tries the normal “reduce” with heuristic quantifier instantiation. If this
“reduce” does not complete the proof, then repeatedly all instantiations of a bound
variable are substituted and “reduce” is applied again. This proof script does not
use induction, since we did not need it so far.

Proof hints

The strategies in the last line of the default proof script may become very time-
consuming. Therefore it is often effective to interrupt the prover after a while
and to restart after applying proof hints. Using proof hints, the generated proof
script can be improved by reducing the employed collection of assertions, thereby
exploiting that usually developers can easily indicate which assertions are not
relevant for a proof. In [GGH05] a similar notion of dependency relations is used
to provide an a-posteriori summary of a huge manual interactive proof.

Manual proof

Suppose a generated proof script is still very time consuming, or it cannot prove
the proof obligation. If the proof obligation does hold, then the user can manually
develop a PVS proof script and provide it to our tool. In this way completeness
of our proof approach is established, but it would not be practical to use many
manual proofs.

9.4 Experiments

In this section we summarize some experiments to investigate the strength of our
method, and in particular of the developed proof scripts. To measure the run
times, we have used a 3 GHz Intel Pentium 4 processor with hyper-threading.

9.4.1 Small algorithms

We have experimented first with some elementary annotated algorithms, based on
e.g. [FvG99, Moo02, PN02]. These examples include a parallel linear search, a
wait-free consensus protocol, monitored phase synchronization, and some mutual
exclusion algorithms (like semaphores, ticket algorithm and Peterson’s algorithm
for two components). Using our tool environment, correctness of these examples
has been proved automatically without using any proof guidance. Each example
required less than a minute of system time.

9.4 Experiments 117

The parallel linear search example has revealed a peculiarity of the automated
strategies of PVS. The antecedent of the assertion at control point 5 (see Figu-
re 9.2), viz. (∃c:comp :: true), is correctly skolemized to true after introducing a
skolem constant of type comp. However, it turns out that the automated strate-
gies do not use this skolem constant, and hence the antecedent has effectively been
weakened to just true. The result is that the proof obligation is not automatically
provable, although we could finally circumvent this problem. We have reported
this issue to the developers of PVS, and in November 2005 we have been informed
that it has been fixed and that the fix will be part of the forthcoming release of
PVS.

Since [GH98] rates the automation in Isabelle and PVS as comparably good, we
have initiated some experiments with Isabelle as a back-end. The study in [Kou06]
extends our work to Isabelle, and it indicates that from our practical perspective,
the automatization in Isabelle is less effective than the automatization in PVS,
especially in treating quantifications. Since quantifications occur frequently, this
seriously increases the required amount of manual interaction with the prover.

9.4.2 Larger algorithms

We have also verified two larger algorithms. First of all, we have verified the fully-
annotated wait-free handshake register from [Hes98], see also [Moo02]. In [Hes98]
it is mentioned that it “took only some eight hours” to construct his mechanical
proof in the NQTHM prover. Using our default proof script, correctness of this
annotated algorithm has been proved in about two minutes of system time, without
using any proof hints or manual proofs.

The most complicated algorithm we have verified is the distributed spanning tree
algorithm from Section 8.2.6. It needs to be mentioned that there is a huge gap
in complexity between this algorithm and the other algorithms we have discussed.
In particular, dynamic networks needed to be modeled and there are complicated
assertions and statements. This verification effort has revealed one small error in
an earlier version of the manually constructed annotation. After strengthening
one invariant in a straightforward manner, the annotated algorithm has been pro-
ved. In addition we have separately verified the claims about maintenance of the
annotation under topology changes from Section 8.2.5.

For this spanning tree algorithm, almost 90% of the generated proof obligations
has been proved automatically, and 33 proof obligations have been proved after
supplying proof hints. Finally manual proofs have been provided for 11 proof
obligations, which is less than 4% of the total number of proof obligations. Some
automated proofs have been interrupted after a while in order to save time, so
these results might be improved by letting PVS run much longer using the default
scripts. Running the whole proof again takes about two and half hour of system
time.

118 Chapter 9 Incremental verification of Owicki/Gries proof outlines

9.5 Conclusions and further work

Using our tool that generates proof obligations and proof scripts, and feeds them to
PVS, more than 95% of the proof obligations for the spanning tree algorithm from
Chapter 8 could be handled automatically. By splitting proof obligations into small
chunks, and by designing proof scripts that are robust against common program
modifications, we have made our approach suitable for incremental methods.

The generated proof scripts rely on the automatization provided by the theorem
prover. For further work, the proof scripts may be refined, e.g. by clever case
analysis or by optimizations for typical patterns. Also additional theorem provers
may be used, but special attention is required for dealing with quantifiers, which
is currently a weak point of automated theorem provers.

The current tool deals with partial correctness only. A possible extension would be
to check the deadlock freedom of selected statements based on their pre-assertion.
Another extension would be to verify simple termination arguments based on a gi-
ven variant function, which must be well-founded, and which must be decremented
by each statement.

Based on these techniques, experiments need to be done with truly incremental
developments, e.g. in the style of [FvG99]. Therefore our tool should be extended
with better interaction with the user, and it would be nice to hand over the
bookkeeping from the user to the tool. A point of concern in such an integrated
tool environment is a lack of flexibility, while constructing an algorithm requires
the use of suitable abstractions and notational devices for the specific problem
under consideration.

An awkward disadvantage of using a theorem prover like PVS to try to prove a
given proof obligation, is that a failing proof attempt usually provides no clue
whatsoever. This is in sharp contrast with the manual calculational proofs in
[FvG99], which are used constructively to guide the further program development.
This is an important issue that needs to be addressed in order to obtain effective
tool support of constructive formal methods.

Chapter 10

Conclusions

During the development of a distributed algorithm, the sting is often in the tail as
it turns out to be complicated to get some details right. We have addressed such
problems for IEEE 1394.1’s distributed spanning tree algorithm, which is called net
update. After presenting an alternative algorithm in Chapter 7, we have derived
in Chapter 8 a distributed spanning tree algorithm that is strikingly similar to net
update. For the latter approach, the need for effective theorem prover support
became clear, which we have developed in Chapter 9.

Chapters 8 and 9 show that the programming method of [FvG99] can be used to
analyze non-trivial industrial algorithms. Although the overall structure of the
spanning tree algorithm was prescribed by the net update proposals, the method
helped to fill in many details in a constructive way; typically these details were
the ones that were changed in almost every consecutive net update proposal.

A final issue that needs to be addressed is the influence of our work on the final
standard. The model checking work by [vLRG03] has had the biggest influence,
probably because it is close to the descriptions of the net update proposals. The
more abstract work in Chapters 7 and 8 has had very limited influence, mainly
because the work was performed during a late stage of protocol development.
It has increased our understanding of the intended algorithm, and it has helped
to construct counter-examples for some of the many proposals. Unfortunately
we must conclude that the algorithm in the final standard [IEE05] has not been
completely verified before its approval.

Nevertheless, formal analysis does contribute to the quality of protocol standards,
especially when formal methods experts are part of the protocol development team.
In particular for applying constructive formal methods, it is important to make
the specification of the protocols very explicit, and in an early development phase.
Thus sound contributions can be delivered at the right moment, which is more

119

120 Chapter 10 Conclusions

constructive than trying to correct existing (wrong) proposals, and which makes
it easier to get these contributions into the final protocol standard.

Chapters 7 and 8 underline (once more) the importance of solving problems at the
right level of abstraction. In particular we have used various levels of abstraction
and distribution, and we have used a reset technique to abstract from a class of
topology changes. Apart from using any particular formal method, recognizing
in an early stage of algorithm development the need for convenient abstractions,
would increase the quality of protocol standards.

Bibliography

[AAG87] Y. Afek, B. Awerbuch, and E. Gafni. Applying static network pro-
tocols to dynamic networks. In Proceedings of the 28th Annual Sym-
posium on Foundations of Computer Science, pages 358–370. IEEE,
1987. [66, 74, 75, 76, 80, 96]

[Ábr05] E. Ábrahám. An assertional proof system for multithreaded Java -
theory and tool support. PhD thesis, Universiteit Leiden, January
2005. [106]

[AEY03] R. Alur, K. Etessami, and M. Yannakakis. Inference of message se-
quence charts. IEEE Transactions on Software Engineering, 29:623–
633, 2003. [11]

[AEY05] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verifica-
tion of MSC graphs. Theoretical Computer Science, 331:97–114, 2005.
[27]

[AG94] A. Arora and M.G. Gouda. Distributed reset. IEEE Transactions on
Computers, 43(9):1026–1039, September 1994. [74, 76, 96]

[BAL97] H. Ben-Abdallah and S. Leue. Syntactic detection of process diver-
gence and non-local choice in message sequence charts. In Proceedings
of the 3rd workshop on Tools and Algorithms for the Construction and
Analysis of Systems, volume 1217 of LNCS, pages 259–274. Springer,
1997. [27, 34, 37, 44]

[BG92] D.P. Bertsekas and R.G. Gallager. Data networks. Prentice-Hall, Inc.,
1992. [65]

[BM95] J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining
message sequence charts. In Proceedings of the 7th conference on
Formal Description Techniques, pages 340–354, 1995. [16, 25]

[Bri90] E. Brinksma. Constraint-oriented specification in a constructive spe-
cification technique. In Proceedings of the REX Workshop on Stepwise

121

122 Bibliography

Refinement of Distributed Systems, volume 430 of LNCS, pages 130–
152, 1990. [17]

[CEN00] European Committee for Standardization (CEN). Health informatics
- Interoperability of patient connected medical devices, 2000. European
prestandard ENV 13735: 2000 E. [5]

[Dij74] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974. [63]

[Dij76] E.W. Dijkstra. A discipline of programming. Prentice-Hall, Engle-
wood Cliffs, 1976. [70, 106]

[DM06] B. Dongol and A.J. Mooij. Progress in deriving concurrent programs:
emphasizing the role of stable guards. In Proceedings of the 8th con-
ference on Mathematics of Program Construction, volume 4014 of
LNCS, pages 140–161. Springer, 2006. [71]

[EMR02] A.G. Engels, S. Mauw, and M.A. Reniers. A hierarchy of commu-
nication models for message sequence charts. Science of Computer
Programming, 44:253–292, 2002. [17]

[Fra99] M.G.J. Franssen. Cocktail: a tool for deriving correct programs. In
Proceedings of the 6th Workshop on Automated Reasoning, 1999. [106]

[FvG99] W.H.J. Feijen and A.J.M. van Gasteren. On a method of multipro-
gramming. Springer, 1999. [67, 69, 70, 71, 103, 105, 110, 116, 118,
119]

[Gär03] F.C. Gärtner. A survey of self-stabilizing spanning-tree construction
algorithms. Technical Report IC/2003/38, Swiss Federal Institute of
Technology (EPFL), School of Computer and Communication Scien-
ces, June 2003. [63]

[Gen05] B. Genest. Compositional message sequence charts (CMSCs) are bet-
ter to implement than MSCs. In Proceedings of 11th conference on
Tools and Algorithms for the Construction and Analysis of Systems,
volume 3440 of LNCS, pages 429–440. Springer, 2005. [23, 27]

[GGH05] H. Gao, J.F. Groote, and W.H. Hesselink. Lock-free dynamic hash
tables with open addressing. Distributed Computing, 17:21–42, 2005.
[116]

[GH98] W.O.D. Griffioen and M. Huisman. A comparison of PVS and Isabel-
le/HOL. In Proceedings of the 11th conference on Theorem Proving in
Higher Order Logics, volume 1479 of LNCS, pages 123–142. Springer,
1998. [117]

Bibliography 123

[GHS83] R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algo-
rithm for minimum-weight spanning trees. ACM Transactions on
Programming Languages and Systems, 5(1):66–77, January 1983. [65]

[GMP03] E.L. Gunter, A. Muscholl, and D.A. Peled. Compositional message
sequence charts. International Journal on Software Tools for Techno-
logy Transfer, 5(1):78–89, November 2003. [11, 21, 22]

[Gol03] D. Goldson. Extending the theory of Owicki and Gries with asynchro-
nous message passing. In Proceedings of the 10th Asia-Pacific Softwa-
re Engineering Conference, pages 532–541. IEEE Computer Society,
2003. [104]

[GY84] M.G. Gouda and Y.T. Yu. Synthesis of communicating finite-state
machines with guaranteed progress. IEEE Transactions on Commu-
nications, COM-32(7):779–788, July 1984. [46, 55]

[Hél01] L. Hélouët. Some pathological message sequence charts and how to
detect them. In Proceedings of the 10th SDL forum, volume 2078 of
LNCS, pages 348–364. Springer, 2001. [27]

[Hes98] W.H. Hesselink. Invariants for the construction of a handshake regis-
ter. Information Processing Letters, 68:173–177, 1998. [117]

[Hey00] S. Heymer. A semantics for MSC based on Petri-Net components. In
Proceedings of the 2nd workshop on SDL And MSC, 2000. [11]

[HJ00] L. Hélouët and C. Jard. Conditions for synthesis of communicating
automata from HMSCs. In Proceedings of the 5th workshop on Formal
Methods for Industrial Critical Systems, 2000. [13, 21, 27, 34, 40]

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969. [68]

[Hoo98] J. Hooman. Developing proof rules for distributed real-time systems
with PVS. In Proceedings of the workshop on Tool Support for System
Development and Verification, volume 1 of BISS Monographs, pages
120–139. Shaker, 1998. [106]

[Hoo00] R.R. Hoogerwoord. A formal development of distributed summation.
Computing Science Report 00-09, Technische Universiteit Eindhoven,
April 2000. [104]

[Huo05] X. Huo. A concurrent wave panic protocol for dynamic 1394.1 net-
works. Master’s thesis, Technische Universiteit Eindhoven, July 2005.
[67]

124 Bibliography

[IEE96] Institute of Electrical and Electronics Engineers. IEEE standard for a
high performance serial bus, August 1996. IEEE Std 1394-1995. [61]

[IEE05] Institute of Electrical and Electronics Engineers. IEEE standard for
high performance serial bus bridges, July 2005. IEEE Std 1394.1-2004.
[61, 119]

[ISO89] International Standards Organization. Information processing sys-
tems – Open Systems Interconnection – LOTOS - a formal description
technique based on the temporal ordering of observational behaviour,
1989. ISO 8807:1989. [17]

[ITU00] International Telecommunication Union - Telecom Standardization.
Message Sequence Chart, 2000. ITU-T Recommendation Z.120. [6]

[JP03] B.P.F. Jacobs and E. Poll. Java program verification at Nijmegen:
developments and perspective. Report NIII-R0318, University of Nij-
megen, 2003. [106, 107]

[KL98] J.-P. Katoen and L. Lambert. Pomsets for message sequence charts.
In Proceedings of the 1st workshop on SDL and MSC, 1998. [8, 11,
13, 15, 20, 21, 29]

[KM00] E. Kindler and A. Martens. Cross-talk revisited: what’s the problem?
Petri Net Newsletter, 58:4–10, April 2000. [34]

[Kou06] J.C. Koudijs. Automated verification of Owicki/Gries proof outlines:
comparing PVS and Isabelle. Master’s thesis, Technische Universiteit
Eindhoven, January 2006. [117]

[LL97] S. Leue and P.B. Ladkin. Implementing and verifying MSC specifica-
tions using Promela/XSpin. In Proceedings of the 2nd SPIN workshop,
volume 32 of DIMACS Series, 1997. [44]

[MG05] A.J. Mooij and N. Goga. Dealing with non-local choice in IEEE
1073.2’s standard for remote control. In Proceedings of the 4th SDL
and MSC workshop on System Analysis and Modeling, volume 3319
of LNCS, pages 257–270. Springer, 2005. [5, 43]

[MGR05] A.J. Mooij, N. Goga, and J.M.T. Romijn. Non-local choice and be-
yond: intricacies of MSC choice nodes. In Proceedings of the 8th con-
ference on Fundamental Approaches to Software Engineering, volume
3442 of LNCS, pages 273–288. Springer, 2005. [27, 43]

[MGW04] A.J. Mooij, N. Goga, and J.W. Wesselink. A distributed spanning
tree algorithm for topology-aware networks. In Proceedings of the
2nd conference on Design, Analysis, and Simulation of Distributed
systems, pages 169–178. The Society for Modeling and Simulation
International, 2004. [73]

Bibliography 125

[MGWB03] A.J. Mooij, N. Goga, J.W. Wesselink, and D. Bošnački. An analysis of
medical device communication standard IEEE 1073.2. In Proceedings
of the 2nd conference on Communication Systems and Networks, pa-
ges 74–79. IASTED, ACTA Press, 2003. [5, 6, 53]

[MM01] P. Madhusudan and B. Meenakshi. Beyond message sequence graphs.
In Proceedings of the 4th conference on Fundamental Approaches to
Software Engineering, volume 2245 of LNCS, pages 256–267. Springer,
2001. [11, 22, 52]

[Moo02] A.J. Mooij. Formal derivations of non-blocking multiprograms. Mas-
ter’s thesis, Technische Universiteit Eindhoven, August 2002. Also
appeared as Computer Science Report 02-13, Technische Universiteit
Eindhoven, 2002. [116, 117]

[MR94] S. Mauw and M.A. Reniers. An algebraic semantics of basic message
sequence charts. The Computer Journal, 37(4):269–277, 1994. [11]

[MRW06] A.J. Mooij, J.M.T. Romijn, and J.W. Wesselink. Realizability cri-
teria for compositional MSC. In Proceedings of the 11th conference
on Algebraic Methodology And Software Technology, volume 4019 of
LNCS, pages 248–262. Springer, 2006. An earlier extended version
appeared as Computer Science Report 06-11, Technische Universiteit
Eindhoven, 2006. [11, 27]

[Muc02] H. Muccini. An approach for detecting implied scenarios. In Pro-
ceedings of the 2nd workshop on Scenarios and State Machines: Mo-
dels, Algorithms, and Tools, 2002. [38]

[Muc03] H. Muccini. Detecting implied scenarios analyzing non-local bran-
ching choices. In Proceedings of the 6th conference on Fundamental
Approaches to Software Engineering, volume 2621 of LNCS, pages
372–386. Springer, 2003. [37, 38, 44]

[MW03] A.J. Mooij and J.W. Wesselink. A formal analysis of a dynamic dis-
tributed spanning tree algorithm. Computer Science Report 03-16,
Technische Universiteit Eindhoven, December 2003. [81]

[MW05] A.J. Mooij and J.W. Wesselink. Incremental verification of Owic-
ki/Gries proof outlines using PVS. In Proceedings of the 7th Inter-
national Conference on Formal Engineering Methods, volume 3785 of
LNCS, pages 390–404. Springer, 2005. [105]

[NPN99] T. Nipkow and L. Prensa Nieto. Owicki/Gries in Isabelle/HOL. In
Proceedings of the 2nd conference on Fundamental Approaches to Soft-
ware Engineering, volume 1577 of LNCS, pages 188–203. Springer,
1999. [106]

126 Bibliography

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319–340, 1976. [69, 71, 105]

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: a prototype verifica-
tion system. In Proceedings of the 11th Conference on Automated
Deduction, volume 607 of LNAI, pages 748–752. Springer, 1992. [105]

[Pau94] L.C. Paulson. Isabelle: a generic theorem prover, volume 828 of LN-
CS. Springer, 1994. [106]

[Per85] R. Perlman. An algorithm for distributed computation of a spanning
tree in an extended LAN. In Proceedings of the 9th Symposium on
Data Communications, pages 44–53. ACM, 1985. [63, 66, 76]

[Per00] R. Perlman. Interconnections: bridges, routers, switches, and inter-
networking protocols. Addison-Wesley, Amsterdam, 2000. [66]

[PN02] L. Prensa Nieto. Verification of parallel programs with the Owicki-
Gries and rely-guarantee methods in Isabelle/HOL. PhD thesis, Tech-
nische Universität München, 2002. [106, 107, 108, 116]

[Pra86] V. Pratt. Modelling concurrency with partial orders. International
Journal of Parallel Programming, 15(1):33–71, 1986. [8, 11, 12, 16]

[Ren99] M.A. Reniers. Message sequence chart: syntax and semantics. PhD
thesis, Technische Universiteit Eindhoven, June 1999. [6, 21, 22]

[Rom99] J.M.T. Romijn. Analyzing industrial protocols with formal methods.
PhD thesis, Universiteit Twente, October 1999. [61]

[Uch03] S. Uchitel. Incremental elaboration of scenario-based specifications
and behaviour models using implied scenarios. PhD thesis, Faculty of
Engineering of the University of London, February 2003. [37, 38]

[UKM01] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios
in message sequence chart specifications. In Proceedings of the 8th
European Software Engineering Conference, pages 74–82. ACM Press,
2001. [38]

[UKM03] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral mo-
dels from scenarios. IEEE Transactions on Software Engineering,
29(2):99–115, February 2003. [11, 44, 47]

[vLRG03] I. van Langevelde, J.M.T. Romijn, and N. Goga. Founding FireWire
bridges through Promela prototyping. In Proceedings of the work-
shop on Formal Methods for Parallel Programming. IEEE Computer
Society Press, 2003. [61, 66, 67, 81, 119]

Bibliography 127

[Vor04] S. Vorstenbosch. A global reset-protocol for a dynamic 1394.1 net-
work. Internship report, Technische Universiteit Eindhoven, May
2004. [67]

[WGMS05] J.W. Wesselink, N. Goga, A.J. Mooij, and R. Spronk. Formal me-
thods impact on ANSI standard HL7/IM: filling gaps in MSC theory.
In Proceedings of the 18th Canadian Conference on Electrical and
Computer Engineering, pages 1656–1659. IEEE, 2005. [54]

[XdRH97] Q. Xu, W.-P. de Roever, and J. He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Aspects of
Computing, pages 149–174, 1997. [70]

Index

bridge, 62
bus, 61

causality extension, 15
control point, 67

delayed choice, 16

event restriction, 16

global correctness, 69
Guarded Command Language, 67

implied behavior, 31
indirect inequality, 108
invariant, 69

later, 12
local correctness, 69

Message Sequence Chart, 8
model checking, 66
mute, 82

net update, 64
non-deterministic choice, 35
non-local choice, 34

panic, 96
partial correctness, 69
partial synchronization, 17
portal, 62
prefix, 15
process algebra, 25
progress, 71
propagating choice, 35

race choice, 36
realizable, 28
reset, 66

sound choice, 32
spanning tree, 64

theorem proving, 105
trichotomy, 18

wait-and-see, 22

128

Summary

This research is part of the NWO project “Improving the Quality of Protocol
Standards”. In this project we have cooperated with industrial standardization
committees that are developing protocol standards. Thus we have contributed to
these international standards, and we have generated relevant research questions
in the field of formal methods.

The first part of this thesis is related to the ISO/IEEE 1073.2 standard, which
addresses medical device communication. The protocols in this standard were de-
veloped from a couple of MSC scenarios that describe typical intended behavior.
Upon synthesizing a protocol from such scenarios, interference between these sce-
narios may be introduced, which leads to undesired behaviors. This is called the
realizability problem.

To address the realizability problem, we have introduced a formal framework that
is based on partial orders. In this way the problem that causes the interference
can be clearly pointed out. We have provided a complete characterization of
realizability criteria that can be used to determine whether interference problems
are to be expected. Moreover, we have provided a new constructive approach
to solve the undesired interference in practical situations. These techniques have
been used to improve the protocol standard under consideration.

The second part of this thesis is related to the IEEE 1394.1-2004 standard, which
addresses High Performance Serial Bus Bridges. This is an extension of the IEEE
1394-1995 standard, also known as FireWire. The development of the distributed
spanning tree algorithm turned out to be a serious problem.

To address this problem, we have first developed and proposed a much simpler
algorithm. We have also studied the algorithm proposed by the developers of
the standard, namely by formally reconstructing a version of it, starting from
the specification. Such a constructive approach to verification and analysis uses
mathematical techniques, or formal methods, to reveal the essential mechanisms
that play a role in the algorithm. We have shown the need for different levels of
abstraction, and we have illustrated that the algorithm is in fact distributed at two
levels. These techniques are usually applied manually, but we have also developed

129

an approach to automate parts of it using state-of-the-art theorem provers.

Samenvatting

Dit onderzoek maakt deel uit van het NWO project “Improving the Quality of
Protocol Standards”. In dit project hebben we samengewerkt met industriële
standaardisatie commissies die protocol standaarden ontwerpen. Zodoende heb-
ben we bijgedragen aan deze internationale standaarden, en hebben we relevante
onderzoeksvragen opgeleverd op het gebied van formele methoden.

Het eerst deel van dit proefschrift is gerelateerd aan de ISO/IEEE 1073.2 stan-
daard, die gaat over de communicatie tussen medische apparaten. De protocollen
in deze standaard werden ontwikkeld op basis van een aantal MSC scenario’s die
typisch gewenst gedrag beschrijven. Bij het samenstellen van een protocol uit zul-
ke scenario’s, kunnen verstoringen tussen deze scenario’s worden gëıntroduceerd
die tot ongewenst gedrag leiden. Dit wordt wel het realiseerbaarheids-probleem
genoemd.

Om het realiseerbaarheids-probleem te behandelen, hebben we een formeel raam-
werk gëıntroduceerd dat is gebaseerd op partiële ordeningen. Op deze manier kan
het probleem dat de verstoringen veroorzaakt helder naar voren worden gebracht.
Wij hebben een volledige karakterisering van realiseerbaarheids-criteria vastgesteld
die gebruikt kan worden om te bepalen of ongewenste verstoring te verwachten
is. Daarnaast hebben we een nieuwe constructieve benadering opgeleverd om in
praktische situaties de ongewenste verstoring te verhelpen. Deze technieken zijn
gebruikt om de door ons bestudeerde protocol standaard te verbeteren.

Het tweede deel van dit proefschrift is gerelateerd aan de IEEE 1394.1-2004 stan-
daard, die gaat over het efficiënt verbinden van seriële communicatie-bussen door
middel van bruggen. Dit is een uitbreiding van de IEEE 1394-1995 standaard,
welke ook bekend staat als FireWire. De ontwikkeling van het gedistribueerde
opspannende boom algoritme bleek een lastig probleem te zijn.

Om dit probleem aan te pakken, hebben we eerst een veel eenvoudiger algoritme
ontworpen en voorgesteld. We hebben ook het door de ontwerpers voorgestelde
algoritme bestudeerd, namelijk door een versie ervan formeel te reconstruëren,
te beginnen bij de specificatie. Zo’n constructieve benadering van verificatie en
analyse maakt gebruik van wiskundige technieken, oftewel formele methoden, om

131

de essentiële mechanismen te onthullen die een rol spelen in het algoritme. Wij
hebben de behoefte aan verschillende lagen van abstractie aangetoond, en we heb-
ben laten zien dat het algoritme eigenlijk gedistribueerd is op twee niveaus. Deze
technieken worden doorgaans handmatig toegepast, maar wij hebben ook een me-
thode ontwikkeld om delen te automatiseren met behulp van geavanceerde stelling
bewijzers.

Curriculum Vitae

Arjan Mooij was born in Rotterdam on the 3rd of June 1979. He completed the
pre-university education at the Carolus Borromeus College in Helmond in 1997.
Afterwards he studied computer science at the Technische Universiteit Eindhoven.
In 2002 he graduated cum laude on his master’s thesis entitled “Formal derivations
of non-blocking multiprograms”. His master’s thesis was written under supervision
of Wim Feijen and it addresses the calculational design of non-blocking parallel
algorithms. Subsequently he has worked on the NWO project “Improving the
Quality of Protocol Standards”, which has led to the present thesis.

133

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process

Algebra. Faculty of Mathematics and Compu-
ting Science, TUE. 1996-01

A.M. Geerling. Transformational Develop-

ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science, KUN.
1996-02

P.M. Achten. Interactive Functional Pro-

grams: Models, Methods, and Implementati-

on. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation

of Functional Languages on Parallel Machi-

nes with Distrib. Memory. Faculty of Mathe-
matics and Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard

Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchro-

nization, and Fault-Tolerance. Faculty of Ma-
thematics and Computer Science, UvA. 1996-
07

H. Doornbos. Reductivity Arguments and

Program Construction. Faculty of Mathema-
tics and Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics

and its Denotational Dual. Faculty of Mathe-
matics and Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake

Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering

Specification Formalism. Faculty of Mecha-
nical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in

Lambda Calculus and its Relation to Type In-

ference. Faculty of Mathematics and Compu-
ting Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and

Partition Refinement for Model Checking. Fa-
culty of Mathematics and Computing Science,
TUE. 1996-13

M.M. Bonsangue. Topological Dualities in

Semantics. Faculty of Mathematics and Com-
puter Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs

of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-

mations in Context. Faculty of Computer Sci-
ence, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Da-

ta Types. Faculty of Mathematics and Com-
puting Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory

in Logic and Mathematics. Faculty of Mathe-
matics and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for

Explicit Substitution. Faculty of Mathematics
and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-

bra. Faculty of Mathematics and Computing
Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional

Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Tes-

ting. Faculty of Computer Science, UT. 1998-
01

G. Naumoski and W. Alberts. A

Discrete-Event Simulator for Systems Engi-

neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communicati-

on for Multiprocessor Computation. Faculty
of Mathematics and Computer Science, UU.
1998-03

J.S.H. van Gageldonk. An Asynchronous

Low-Power 80C51 Microcontroller. Faculty of

Mathematics and Computing Science, TUE.
1998-04

A.A. Basten. In Terms of Nets: System De-

sign with Petri Nets and Process Algebra. Fa-
culty of Mathematics and Computing Science,
TUE. 1998-05

E. Voermans. Inductive Datatypes with

Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic

Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulati-

on of Surface Processes. Faculty of Mathema-
tics and Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative

Evolutionary Search. Faculty of Mathematics
and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Stu-

dy on Indecisiveness in Sample Selection. Fa-
culty of Mathematics and Natural Sciences,
RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization

in Real-Time Distributed Databases. Facul-
ty of Mathematics and Computing Science,
TUE. 1999-06

M.A. Reniers. Message Sequence Chart:

Syntax and Semantics. Faculty of Mathema-
tics and Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to sa-

tisfiability problems. Faculty of Mathematics
and Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Pro-

tocols with Formal Methods. Faculty of Com-
puter Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata

for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for

Hybrid Systems. Faculty of Mechanical Engi-
neering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts

and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neu-

ral Prediction System. Faculty of Mathema-
tics and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implemen-

tation of Attribute Grammars. Faculty of Ma-
thematics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for

Parallel Program Construction. Faculty of
Mathematics and Computing Science, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and State-

craft in the Dutch Republic. Faculty of Mathe-
matics and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A strati-

fied approach to the verification of distributed

algorithms. Faculty of Mathematics and Com-
puter Science, UU. 2000-02

W. Mallon. Theories and Tools for the

Design of Delay-Insensitive Communicating

Processes. Faculty of Mathematics and Na-
tural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Ai-

ded Verification of Protocols. Faculty of Sci-
ence, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the

MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and

Packaging Plant. Faculty of Mechanical En-
gineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deri-

ving Correct Programs. Faculty of Mathema-
tics and Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging

Heterogeneous Applications. Faculty of Natu-
ral Sciences, Mathematics and Computer Sci-
ence, UvA. 2000-08

E. Saaman. Another Formal Specification

Language. Faculty of Mathematics and Natu-
ral Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary

Search Discovering and Representing Search

Space Structure. Faculty of Mathematics and
Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-

putational approach to knowledge, observation

and communication. Faculty of Mathematics
and Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java pro-

grams in higher order logic using PVS and

Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-

cesses through Structured Reflection. Facul-
ty of Mathematics and Computing Science,
TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syn-

tax and semantics. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2001-05

R. van Liere. Studies in Interactive Visua-

lization. Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and

Testing of Event Sequences. Faculty of Ma-
thematics and Computing Science, TU/e.
2001-07

J. Hage. Structural Aspects of Switching

Classes. Faculty of Mathematics and Natu-
ral Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-

sis of Data in Environmental Epidemiology:

A Case-study into Acute Effects of Air Pol-

lution Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Chec-

king. Faculty of Computer Science, UT. 2001-
10

D. Chkliaev. Mechanical verification of con-

currency control and recovery protocols. Fa-
culty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk. Generation and presenta-

tion of formal mathematical documents. Fa-

culty of Mathematics and Computing Science,
TU/e. 2001-12

A.T. Hofkamp. Reactive machine control:

A simulation approach using χ. Faculty of
Mechanical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduc-

tion techniques for model checking. Faculty of
Mathematics and Computing Science, TU/e.
2001-14

M.C. van Wezel. Neural Networks for In-

telligent Data Analysis: theoretical and expe-

rimental aspects. Faculty of Mathematics and
Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Speci-

fication and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding

Legacy Software Systems. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-

cess Algebra. Faculty of Natural Sciences, Ma-
thematics, and Computer Science, UvA. 2002-
04

R.J. Willemen. School Timetable Construc-

tion: Algorithms and Complexity. Faculty of
Mathematics and Computer Science, TU/e.
2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifica-

tion of Probabilistic, Real-time and Parame-

tric Systems. Faculty of Science, Mathematics
and Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Compu-

ting. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding

and Cost-Optimality in Model Checking of Ti-

med and Hybrid Systems. Faculty of Science,
Mathematics and Computer Science, KUN.
2002-08

R. van Stee. On-line Scheduling and Bin

Packing. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering:

Concepts and Algorithms. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics

for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of

Semantical Models. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary

Computation to Constraint Satisfaction and

Data Mining. Faculty of Mathematics and
Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Scien-
ce, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Fa-
culty of Mathematics and Computer Science,
TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage

for Video on Demand. Faculty of Mathema-
tics and Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reu-

sed: Techniques for component composition

and construction. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over Ty-

ped Source Code Representations. Faculty of
Natural Sciences, Mathematics, and Compu-
ter Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Fa-
culty of Mathematics and Natural Sciences,
UL. 2003-04

T.A.C. Willemse. Semantics and Verifica-

tion in Process Algebras with Data and Ti-

ming. Faculty of Mathematics and Computer
Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of

Catalytic Reactions. Faculty of Mathematics
and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of

Tertiary Storage. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia Process An-

notation – CoMPAs. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2003-08

D. Distefano. On Modelchecking the Dyna-

mics of Object-based Software: a Foundatio-

nal Approach. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science, UT.
2003-09

M.H. ter Beek. Team Automata – A For-

mal Approach to the Modeling of Collaborati-

on Between System Components. Faculty of
Mathematics and Natural Sciences, UL. 2003-
10

D.J.P. Leijen. The λ Abroad – A Functional

Approach to Software Components. Faculty
of Mathematics and Computer Science, UU.
2003-11

W.P.A.J. Michiels. Performance Ratios for

the Differencing Method. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms

and Their Use in Interactive Theorem Pro-

ving. Faculty of Mathematics and Computer
Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing

– Splicing and Membrane systems. Faculty of
Mathematics and Natural Sciences, UL. 2004-
03

S. Maneth. Models of Tree Translation. Fa-
culty of Mathematics and Natural Sciences,
UL. 2004-04

Y. Qian. Data Synchronization and Brow-

sing for Home Environments. Faculty of Ma-
thematics and Computer Science and Faculty
of Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduction and

Probabilistic Specification Formats. Faculty of
Sciences, Division of Mathematics and Com-
puter Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis:

a Type-Theoretical Formalization and Appli-

cations. Faculty of Science, Mathematics and
Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bar-

gaining Games: An Evolutionary Investigati-

on of Fundamentals, Strategies, and Business

Applications. Faculty of Technology Manage-
ment, TU/e. 2004-08

N. Goga. Control and Selection Techniques

for the Automated Testing of Reactive Sys-

tems. Faculty of Mathematics and Computer
Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:

Representations, Algorithms and Proofs. Fa-
culty of Science, Mathematics and Computer
Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty
of Mathematics and Computer Science, UU.
2004-11

I.C.M. Flinsenberg. Route Planning Algo-

rithms for Car Navigation. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Me-

dia Processing Using Conditionally Guaran-

teed Budgets. Faculty of Mathematics and
Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed

Systems. Faculty of Sciences, Division of Ma-
thematics and Computer Science, VUA. 2004-
14

F. Alkemade. Evolutionary Agent-Based

Economics. Faculty of Technology Manage-
ment, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Esti-

mation Using a Single Base Station. Faculty

of Mathematics and Computer Science, TU/e.
2004-16

S.M. Orzan. On Distributed Verification

and Verified Distribution. Faculty of Scien-
ces, Division of Mathematics and Computer
Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-

oriented Editor for Structured Documents.
Faculty of Mathematics and Computer Scien-
ce, UU. 2004-18

E. Eskenazi and A. Fyukov. Quan-

titative Prediction of Quality Attributes

for Component-Based Software Architectures.
Faculty of Mathematics and Computer Scien-
ce, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Scien-
ce, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory

Machine Control by Predictive-Reactive Sche-

duling. Faculty of Mechanical Engineering,
TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-

tem for Multithreaded Java -Theory and Tool

Support- . Faculty of Mathematics and Natu-
ral Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling

in Bone Tissue. Faculty of Biomedical Engi-
neering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-

trol - Expression and Enforcement. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free

Parallel Algorithms. Faculty of Mathematics
and Computing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Ana-

lysis of Internet Applications. Faculty of
Mathematics and Computer Science, TU/e.
2005-05

M.T. Ionita. Scenario-Based System Archi-

tecting - A Systematic Approach to Develo-

ping Future-Proof System Architectures. Fa-

culty of Mathematics and Computing Scien-
ces, TU/e. 2005-06

G. Lenzini. Integration of Analysis Techni-

ques in Security and Fault-Tolerance. Facul-
ty of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Transfor-

mations. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2005-
08

T. Wolle. Computational Aspects of Tree-

width - Lower Bounds and Network Reliabili-

ty. Faculty of Science, UU. 2005-09

O. Tveretina. Decision Procedures for

Equality Logic with Uninterpreted Functions.
Faculty of Mathematics and Computer Scien-
ce, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Popu-

lations in Dynamic Environments. Faculty of
Biomedical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Gene-

tic Programming: Classification and Symbo-

lic Regression. Faculty of Mathematics and
Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-

sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of

Hybrid Systems using Simulation Relations.
Faculty of Science, Mathematics and Compu-
ter Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Ope-

rational Semantics. Faculty of Mathematics
and Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Proba-

bilistic Systems. Faculty of Mathematics and
Computer Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Struc-

ture of pi-Calculus Processes with Replication.
Faculty of Mathematics and Natural Sciences,
UL. 2005-17

P. Zoeteweij. Composing Constraint Sol-

vers. Faculty of Natural Sciences, Mathema-
tics, and Computer Science, UvA. 2005-18

J.J. Vinju. Analysis and Transformation of

Source Code by Parsing and Rewriting. Fa-
culty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and

Replication of Processes with Data. Faculty of
Sciences, Division of Mathematics and Com-
puter Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell. Fa-
culty of Science, UU. 2005-21

Y.W. Law. Key management and link-layer

security of wireless sensor networks: energy-

efficient attack and defense. Faculty of Elec-
trical Engineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional Software

Deployment Model. Faculty of Science, UU.
2006-01

R.J. Corin. Analysis Models for Security

Protocols. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2006-
02

P.R.A. Verbaan. The Computational Com-

plexity of Evolving Systems. Faculty of Scien-
ce, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-

mal Specification and Analysis of Hybrid Sys-

tems. Faculty of Mathematics and Computer
Science and Faculty of Mechanical Enginee-
ring, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of

UML Models: Tool Support and Compositio-

nality. Faculty of Mathematics and Natural
Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Auto-

mata - Techniques and Applications. Faculty
of Science, Mathematics and Computer Scien-
ce, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting.
Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-

assisted verification of JML programs. Facul-
ty of Science, Mathematics and Computer Sci-
ence, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular

Simulations. Faculty of Biomedical Enginee-
ring, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sciences,
UL. 2006-10

G. Russello. Separation and Adaptation of

Concerns in a Shared Data Space. Faculty
of Mathematics and Computer Science, TU/e.
2006-11

L. Cheung. Reconciling Nondeterministic

and Probabilistic Choices. Faculty of Scien-
ce, Mathematics and Computer Science, RU.
2006-12

B. Badban. Verification techniques for Ex-

tensions of Equality Logic. Faculty of Scien-
ces, Division of Mathematics and Computer
Science, VUA. 2006-13

A.J. Mooij. Constructive formal methods

and protocol standardization. Faculty of
Mathematics and Computer Science, TU/e.
2006-14

	Preface
	Contents
	0. Introduction to the thesis
	Part I: ISO/IEEE 1073.2: medical device communication
	1. Introduction
	2. Partial-order framework
	3. Realizability criteria
	4. Realizing non-local choice
	5. Conclusions
	Part II. IEEE 1394.1: firewire bridges
	6. Introduction
	7. A spanning tree algorithm for dynamic networks
	8. A formal reconstruction of net update
	9. Incremental verification of Owicki/Gries proof outlines
	10. Conclusions
	Bibliography
	Index
	Summary
	Samenvatting
	Curriculum Vitae

