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1

Introduction

1.1 General

Bose-Einstein condensation is the macroscopic occupation of the lowest energy state in
a system of bosons. The phenomenon, a form of quantum degeneracy, was predicted
in the 1920’s by Einstein to occur in a sample of bosonic atoms [1]. This type of
condensation occurs when the thermal de Broglie wavelength, ΛdB , becomes of the
same order of magnitude as the mean interparticle separation, O(n−1/3), with n the
particle density. Differently formulated, when the phase-space density D is on the order
of unity

D = nΛ3
dB = n(2π~2/mkBT )3/2 ≥ 2.61, (1.1)

with ~ Planck’s constant divided by 2π, m the mass of an atom, kB Boltzmann’s
constant, and T the temperature.

Bose-Einstein condensates in a dilute gas of alkali atoms have been created at
temperatures on the order of 1 nK to 1 µK for densities between 1014 cm−3 and 1015

cm−3. Systems at these low temperatures closely resemble the ideal situation for which
this type of condensation was predicted to occur. BEC-like phenomena can also occur in
systems resembling less an ideal gas, i.e. systems in the non-dilute regime or embedded
in an external medium, at considerably higher temperatures. Indeed superfluidity of
liquid helium is ascribed to Bose-Einstein condensation [2] and superconductivity is
ascribed to BEC of Cooper pairs [3], which are effectively composite bosons constituted
by electrons in a bulk conductor. These systems are far from being a noninteracting
gas and the relatively strong interactions between the constituents greatly complicate
the theoretical analysis.

In 1995 the first experimental realizations of BEC in the low density regime were
demonstrated in dilute gases of the alkali atoms rubidium [4], sodium [5], and lithium
[6]. Soon the condensation of other elements followed. Nowadays all alkali elements
[7,8], hydrogen [9], metastable helium [10,11], ytterbium [12], and chromium [13] have
been Bose-Einstein condensed. Since this phenomenon is a result of Bose statistics
it is not limited to samples of (bosonic) atoms, also dilute gases of bosonic molecules
are able to form a BEC. Condensation to a molecular BEC has been observed for the
composite bosons 6Li2 [14,15] and 40K2 [16,17].



4 1 Introduction

Almost all of the low density BEC’s mentioned before are created by employing laser
cooling [18] and evaporative cooling [19] to reach the low temperatures necessary [20].
The most common approach for making a BEC is to start by loading a magneto-optical
trap (MOT) with atoms. Such a trap is a combination of an inhomogeneous magnetic
field and a light field consisting of two counter-propagating near-resonant laser beams
for each trapping dimension (normally six beams in total). The loading usually takes
place via atom capture from a background vapor, or by atom capture from a beam
of slow atoms. Typical temperatures for atoms in a MOT are 100 µK to 1 mK and
densities between 1010 cm−3 to 1011 cm−3. The temperature in the MOT is limited
by the Doppler temperature, although sub-Doppler cooling (with the associated recoil
temperature as temperature limit) might occur in the center of the MOT. The next
step towards BEC is to transfer the atoms from the MOT into a magnetic trap (MT),
or into an optical trap in which the atoms can be cooled down further by means of
evaporative cooling, until the regime of quantum degeneracy is reached.

During evaporative cooling, the hottest atoms (tail of the Boltzmann distribution)
of the sample are continuously being removed. In a MT this is achieved by means of an
rf-field causing the hottest atoms to spin-flip, changing their state to untrapped ones
causing them to leave the trap. In an optical trap, the hottest atoms are removed by
lowering the intensity of the trapping laser and therefore changing the trap depth. Since
the hottest atoms have an energy exceeding the average energy per atom, removing
them will effectively reduce the average energy per atom of the atoms remaining in the
trap.

Provided the energy is redistributed among the atoms, i.e. the tail of the Boltzmann
distribution will continuously be replenished, the sample equilibrates to a new energy
distribution with a lower temperature. The redistribution of the energy among the
atoms is governed by elastic, good, collisions. Inelastic two- and three-body collisions,
leading to atom loss, are called bad collisions. For efficient evaporative cooling, the
number of good collisions has to considerably outweigh the number of bad collisions,
which requires a large elastic cross section.

1.2 The scattering length

For the temperatures under consideration only a few partial waves contribute to colli-
sions. The regime in which only the lowest partial wave (l=0 for bosons) is relevant is
indicated as the ultracold regime. For these so-called ultracold collisions only s-wave
scattering is important (for bosons), since higher partial waves cannot pass the cen-
trifugal barrier ~2l(l + 1)/(mr2), with r the interatomic separation and l the relative
angular momentum quantum number.

At near zero energy the s-wave radial wavefunction at long range is proportional
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Figure 1.1 Scattering wavefunction times r in the zero temperature limit, for triplet 87Rb

and interactionless atoms (V=0). When extrapolating the wavefunction at long range to

short distances, the r-axis is crossed at a distance equal to the scattering length.

to a sine
u0 ∼ sin(kr + δ0) ≈ sin k(r − a), (1.2)

with k the wavenumber, δ0 the s-wave phaseshift, and

a = − lim
k↓0

1
k

tan(δ0) (1.3)

the scattering length. Figure 1.1 illustrates the radial wavefunction for two different
situations: for two interactionless atoms and for triplet scattering (S=1) of two ground
state 87Rb atoms, with valence electron spin 1

2 . At long range these wavefunctions
are equal except for a displacement a, due to the interaction potential governing the
collision at short range. The same shift would be obtained when the interatomic
interaction potential would be replaced with one of a hard sphere of diameter a. The
elastic scattering cross section for a pair of bosonic atoms in a spin-polarized gas in the
zero temperature limit becomes

σ = 8πa2, (1.4)

which is larger by a factor of 2 as compared to the cross section for non-identical
particles.

For temperatures below the critical temperature a Bose Einstein condensate will
form. In the limit of weak interactions (na3 � 1), one can use a mean field ap-
proximation in which the atomic interaction potentials are replaced by the zero-range
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pseudopotential 4π~2a
m δ(~ri − ~rj), yielding a condensate self-energy

U |φ|2 =
4π~2a

m
|φ|2, (1.5)

with φ the condensate wavefunction, normalized such that |φ|2 = n. The behavior of
the condensate can then be described by the Gross-Pitaevskii equation

i~φ̇ =
(
− ~

2m
∇2 + V trap(~r) + U |φ|2

)
φ, (1.6)

with V trap the (usually harmonic) trapping potential used for confining the atoms.
Large condensates require a positive scattering length, i.e. effectively repulsive

interactions, for stability. The effectively attractive interactions that correspond to a
negative scattering length lead to instability for large condensates, ending in a collapse.
Although a negative a inhibits the creation of large condensates, it is possible to have
stable condensates for a small number of atoms. 7Li has such a negative scattering
length [21, 22], but the creation of a Bose-Einstein condensate with this isotope of
lithium is still possible [6].

Clearly, knowledge of the scattering length, is needed for understanding the be-
havior of samples of ultracold dilute gases. Via the elastic scattering cross section, a
determines the time needed for evaporative cooling and an unfavorably sized scatter-
ing length can even render an attempt to create a BEC impossible [23]. Its value is
sensitive to the specific interactions between the scattering atoms (see figure 1.1 and
section 2.6) and it does not only vary between the kinds of atoms which scatter but also
between different isotopic variants, or specific spin states of the same isotope. There-
fore it is important to understand the relevant interactions if one wants to predict the
magnitude or behavior of a.

1.3 Manipulating the scattering length

In the past several techniques for manipulating the scattering properties of atoms have
been proposed. By far the most important one is the use of a magnetically tunable
Feshbach resonance (see figure 1.2). The application of these resonances in cold-atom
physics has been suggested in 1992 [24] and the existence of this type of resonance
was first demonstrated experimentally in 1998 [25]. Since then many experiments
have been performed making use of Feshbach resonances and in fact most contem-
porary (ultra)cold-atom experiments make use of them. A striking example is the
realization of a Bose Einstein condensate in a sample of 85Rb [26], which was possible
despite the negative scattering length (a=-443a0 for both atoms in the commonly used
|f = 2,mf = −2〉 state [27]) at magnetic fields far from a resonance preventing the
creation of a large stable BEC. Feshbach resonances also allow to switch from a positive
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Figure 1.2 Typical behavior of the scattering length a versus magnetic field B in the

vicinity of a magnetically tunable Feshbach resonance at B0. For a magnetic field far from

B0 the scattering length approaches a background value abg. The dashed line indicates

the value of the scattering length without the presence of the Feshbach resonance. A more

detailed description of Feshbach resonances can be found in section 2.6.

scattering length to a negative one. The group of Hulet demonstrated the formation
and propagation of matter-wave solitons in a quasi-one-dimensional 7Li BEC with a
small negative a [28]. When the scattering length is switched from a positive value
to a negative value one expects the ejection of a fraction of the atoms, a phenomenon
first observed at JILA [29], where this spectacle was given the name “Bosenova”. In
the 1970’s Efimov predicted a universal set of bound trimer states to appear for three
identical bosons with resonant two-body interactions [30] (i.e., a very large scattering
length). The experimental control over the scattering length also makes it possible to
increase its magnitude into the regime for which Efimov states are predicted to exist.
Only very recently, more than 30 years after the prediction, evidence for the existence
of Efimov States was obtained in an experiment which could not have been performed
without control over the scattering length [31]. By sweeping a magnetic field across
a Feshbach resonances, it is possible to “trap” scattering atoms permanently in the
(“Feshbach”) molecular state [32]. This method has become a standard technique for
making ultracold molecules [33] and is at the basis of molecular BEC’s.

It was already mentioned before that magnetically tunable Feshbach resonances
are not the only method to change the interaction properties of cold atoms. Other
techniques have been proposed to alter a, but their use until now is limited to a
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proof-of-principle experiment for one of them. This method uses laser light to drive a
transition between two free atoms and an electronically exited molecular state. In this
scenario the scattering length is a function of the laser light’s detuning with respect
to the afore mentioned transition. Fedichev et al. proposed this method in 1996 [34]
and the effect was experimentally demonstrated in 2005 [35]. Another technique is
the application of a dc electric field across a sample of cold atoms [36]. Fields on the
order of 105 V/cm could be needed before changes to the interaction properties become
apparent.

The counterpart of BEC in a sample of fermionic atoms is the BCS transition
in which two atoms couple together in momentum space. It is worth noting that a
magnetic field sweep over a Feshbach resonance can convert a sample of fermionic atoms
into a sample of bosonic molecules and reversal of the sweep will recover the fermionic
atoms. In other words a simple sweep of a magnetic field can change completely the
statistics obeyed by the constituents of a sample; be it Fermi statistics with a BCS
transition on the “atomic” side of the resonance, or Bose statistics with the BEC
transition on the “molecular” side of the resonance [37]. In the crossover regime, which
is the part of the sweep close to resonance where the scattering length diverges, the
sample is no longer a weakly interacting gas since na3 becomes much larger than 1 and
only a many-body theory can describe the properties of the sample correctly. Recently
superfluidity in the crossover regime was unambiguously demonstrated experimentally
[38]. This cross-over regime is not yet fully understood and research is ongoing.

1.4 This thesis

In this thesis a theoretical method is developed which enables one to describe the in-
teraction and scattering of (ultra)cold atoms to unprecedented precision. It is also
unparalleled in comprehensiveness: it allows the prediction of a large and varied set
of experimental data for all isotopes of the same element. The method relies on the
extraction of a few parameters which completely summarize the behavior of the atoms
in the (ultra)cold regime. The method is presented in chapter 2 and in chapter 3 it is
applied to the “workhorses” of cold-atom physics: the atomic species 85Rb and 87Rb.
We extract these few parameters to a very high precision from several recent high-
precision experiments, allowing us to predict e.g. the 87Rb spinor condensate to be
ferromagnetic: a prediction for which the scattering length has to be calculated with a
precision better than 1%. We also predict Feshbach resonances at experimentally acces-
sible magnetic field strengths; resonances searched for and found by the experimental
group of Rempe. In close collaboration with his group we “fine-tune” the interaction
parameters found previously, by making use of only one of the observed resonances.
We then obtain agreement with 42 out of the observed 43 resonance field strengths and
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are able to identify bound states inducing the Feshbach resonances at these locations.
Chapter 4 describes the results of this collaboration.

With a thorough understanding of the rubidium interactions, we then switch to
lithium which has a fermionic (6Li) and a bosonic (7Li) isotope. Both are being used
in cold-atom experiments. In chapter 5 we evaluate the interaction parameters for
lithium allowing us to predict magnetic field strengths for which a sample of fermionic
6Li atoms can be regarded as strongly interacting. Furthermore, a three-level method
for measuring mean-field shifts, based on radio-frequency techniques, is introduced. For
weak interactions we find proportionality of resonance shifts to interaction strengths.
In the strongly interacting regime, however, these shifts become very small reflecting
the quantum unitarity limit and many-body effects. Most interesting is the fact that
in this regime the shifts are small both for large positive a and for large negative a,
likely reflecting the universality of the interaction energy.

In chapters 6 and 7 the interactions between lithium atoms are reinvestigated,
making use of newly available experimental data and with the updated interaction
parameters special attention is paid to locating field strengths at which magnetically
tunable Feshbach resonances occur in the scattering of lithium atoms. In chapter 7,
the isotopes under investigation are the fermionic 6Li and the bosonic 7Li. Molecules
created by magnetically sweeping over these resonances will have a fermionic character.
One magnetic field strength is predicted at which two different fermionic molecules can
be created simultaneously. Furthermore, parameters for an analytic model describing
the scattering phase δ(B,E) (with B the magnetic field strength and E the colli-
sion energy) proximate to a Feshbach resonance are determined from coupled channels
calculations. Chapter 6 results from a collaboration with the experimental group of
Salomon: p-wave Feshbach resonances were searched for and found.
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2

Interaction and scattering of pairs of alkali

atoms

2.1 One particle Hamiltonian

We consider the electronic ground state of the alkali atoms. The valence electron has
spin s= 1

2 while the nucleus has spin i which equals e.g. 1 for 6Li, 3
2 for 7Li and 87Rb

and 5
2 for 85Rb. These spins combine to a total angular momentum ~f = ~s+~i with each

f -state (2f + 1)-fold degenerate in the absence of an external field. In total there are
2(2i + 1) possible ‘ground states’ for an alkali atom, split over two different f -states.
Note that lower case characters are used to indicate single atom properties while we
reserve capitals for two-atom systems.

The above mentioned degeneracy for alkali atoms is lifted by interactions both
within the atom and with external fields. The nuclear spin interacts with the valence
electron spin, leading to the hyperfine splitting for an atom j,

V hf
j =

ahf

~2
~sj ·~ij (2.1)

with ahf the hyperfine constant. Note that our spin vectors ~s and~i have the dimension
of an angular momentum (include a factor ~), so the ahf has the dimension of energy.

Atom j placed in a magnetic field ~B experiences a Zeeman energy

V Z
j =

(
γe,j~sj − γn,j

~ij

)
· ~B, (2.2)

where γe,j and γn,j are the electronic and nuclear gyromagnetic ratios. The behavior
of the valence electron in alkali atoms is influenced by the electrons filling the inner
shells causing the gyromagnetic ratio γe,j to be slightly different from that of a free
electron. While s and i have the same order of magnitude, the ratio γe/γn is of order
103.

Equations (2.1) and (2.2) lead to the familiar graphs for the energy of the hyperfine
states as a function of the magnetic field Bẑ (see figure 2.1). We will label these one
atom hyperfine states by |f,mf 〉 even though f is only a good quantum number for
B = 0.
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7Li has the same diagram; as have all atoms with nuclear spin

i=3/2.

2.2 Two particle Hamiltonian

Two alkali atoms experience in the first instance a mutual central interaction. This
central interaction can be written as

V cen = VS(r)PS + VT (r)PT , (2.3)

with PS,T the projection operators on the singlet and triplet subspaces and r the
interatomic separation. The singlet (S = 0) and triplet (S = 1) potentials differing by
twice the exchange energy V exch, are given by

VS,T = V disp − (−1)S
V exch, (2.4)

with the dispersion energy V disp described by

V disp = −
(
C6

r6
+
C8

r8
+
C10

r10
+
C11

r11
+
C12

r12
+ . . .

)
, (2.5)

at larger distances, in which Cn are dispersion coefficients determined by electric
multipole-multipole interactions in second order, except for C11, which arises in third
order and is negative (i.e., repulsive).
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An analytic asymptotic expression for the exchange energy in Eq. (2.4) has been
derived by Smirnov and Chibisov [1]:

V exch = Jr
7
2α−1e−2αr. (2.6)

In Eq. (2.6), −α2/2 is the atomic ionization energy and J is a normalization constant; r
and α in atomic units. It is difficult to calculate J from first principles. The most reli-
able values come from Hartree-Fock calculations for the diatom system which, however,
lead to a somewhat different radial behavior.

Leaving out the center of mass kinetic energy and including the above interactions
the total effective Hamiltonian for two colliding ground-state alkali atoms becomes

H =
~p 2

2µ
+

2∑
j=1

(
V hf

j + V Z
j

)
+ V cen, (2.7)

in which the first term represents the kinetic energy with µ the reduced mass of the
atoms and ~p the relative momentum operator.

For collisions of two identical atoms the hyperfine term can be written as the sum
of two parts with different symmetry with respect to the exchange of the electron or
nuclear spins,

V hf =
ahf

2~2
(~s1 + ~s2) · (~i1 +~i2) +

ahf

2~2
(~s1 − ~s2) · (~i1 −~i2) ≡ V hf+ + V hf−. (2.8)

The convenience of this splitting arises from the fact that V hf−, being antisymmetric
in ~s1 and ~s2, is the only term coupling singlet and triplet states.

For the interactions mentioned up to now the system of two colliding atoms is invari-
ant under independent rotations of the spin system and of the orbital system around
the axis through the overall center of mass parallel to the magnetic field. Therefore
the projection of the total spin angular momentum ~f1 + ~f2 ≡ ~F and of the orbital an-
gular momentum ~l along this axis are separately conserved during the collision. Since
V cen only depends on r and not on r̂ = ~r/r, ~l is even conserved as a 3D vector. As
a consequence, mF and the rotational quantum numbers l and ml are good quantum
numbers.

Two other interactions are present which are much weaker than the above-mentioned
effects, but nevertheless can play a significant role for interpreting cold atom experi-
ments (see chapter 4). The first one is a direct interaction between the spins of the
electrons via their magnetic moment. This very weak interaction is given by

V µ(~r) = µ0
~µ1 · ~µ2 − 3(~µ1 · r̂)(~µ2 · r̂)

4πr3
, (2.9)

with µ0 = 4π · 10−7Hm−1 and ~µj the electron magnetic dipole moment of atom j. We
leave out the much weaker magnetic dipole interactions in which the nuclear magnetic



16 2 Interaction and scattering of pairs of alkali atoms

moments are involved. Second, the spin-orbit interaction V so of the spins of the valence
electrons is given by a complicated expression [2] that contains contributions from
the magnetic fields generated by the orbital currents of electrons and nuclei. For
interatomic distances larger than 13 to 14 a0 this complicated expression reduces for
one valence electron outside closed shells in both alkali atoms to the well-known sum
of two effective atomic spin-orbit couplings:

V fs =
2∑

j=1

2Efs

3~2
~̀
j · ~sj , (2.10)

with ~̀
j the valence electron orbital angular momentum of atom j, and Efs the fine-

structure splitting.
Separate ground state alkali atoms (2S1/2) have valence electron orbital angular

momentum ` = 0 and therefore contributions of (2.10) vanish in this case. However, for
small interatomic separations the electron clouds overlap and an important additional
contribution arises as a second order effect in V so via an intermediate coupling to
electronically excited molecular states [2, 3].

In total, we thus have a spin-spin interaction V ss between the valence electrons,
consisting of two parts:

V ss = (V ss)µ + (V ss)so , (2.11)

a magnetic dipole part and a part arising from V so in second order. The dipole part,
when expressed in the spin vectors ~si is given by

(V ss)µ =
µ0γ

2
e

4πr3
[~s1 · ~s2 − 3(~s1 · r̂)(~s2 · r̂)] . (2.12)

The part (V ss)so has effectively the same spin-angle structure (the factor between
square brackets), but is multiplied by a different radial factor. This factor has been
calculated via an ab initio electronic structure calculation by Mies et al. [4] and can
be approximated as an exponentially decaying form f(r) for increasing r.

The total V ss apparently has the structure of a scalar product of two irreducible
spherical tensors of rank 2:

V ss = f(r) [(~s1, ~s2)2 · (r̂, r̂)2] . (2.13)

As a consequence, it is invariant under the simultaneous 3D rotations of the internuclear
vector ~r and the spin degrees of freedom, thus conserving the total molecular angular
momentum. On the other hand, it is not invariant under independent rotations of ~r
and the spin degrees of freedom. It therefore obeys triangle type S and l selection rules
for a second rank tensor: it couples only spin triplet states and it couples for instance
the l = 0 and 2 rotational states of the two atom system.
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As mentioned before, the spin-spin interaction is rather weak and it does not con-
serve l,ml, F,mF and therefore couples many states. In most cases these interactions
can safely be neglected. That these interactions cannot always be neglected is illus-
trated by the observation of Feshbach resonances in 133Cs [5] and 87Rb [6] in which
colliding ultracold atoms, approaching each other in an s-wave, resonate with an l=2
or even l=4 (quasi-)bound state coupled via the spin-spin interaction to the entrance
channel (in the l=4 case this interaction is needed twice: s-wave ↔ d-wave ↔ g-wave).

2.3 Accumulated phase method

Cold collision phenomena are extremely sensitive to very small changes of the short-
range part of the central interatomic interaction. As a consequence, except for hydrogen
and lithium atoms, ab-initio theoretical potentials are of little use for the description
of cold collisions. The accumulated phase method [7, 8] is an approach that enables
one to bypass the insufficiently known potential within an interatomic distance r0 by
means of a boundary condition on the relative wave function at a distance r0. The
idea is that the boundary condition contains less parameters [actually three; a crucial
advantage of the accumulated phase method compared to multichannel quantum defect
(MQDT) methods is that it specifies the needed number of parameters uniquely] than
the detailed potential within r0.

The only conditions that need to be fulfilled for the method to be applicable are:

1. r0 should be so small that the energy difference of the lowest S = 1 and S =
0 two-atom electron states (see figures 2.2 and 2.3) is large compared to the
atomic hyperfine coupling, so that the singlet-triplet coupling due to V hf− can
be neglected.

2. On the other hand r0 has to be so large that the singlet and triplet potentials
for atomic distances r > r0 are known or can be expressed in a small set of
(dispersion and exchange) parameters to be determined from experiment.

3. For interatomic distances smaller than r0 the WKB approximation should be
valid enabling one to specify the boundary condition as a phase of the real-valued
oscillating radial wave function.

4. The energy E relative to threshold and the angular momentum l value that play a
role in the collision are so small that a rapidly converging expansion of the S = 1
and S = 0 WKB phases in powers of E and l(l + 1) is possible, thus containing
a small number of parameters.
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In view of the possibility that conditions 1 and 2 are contradictory, it is far from
obvious that a suitable r0 value can be found. In the nineties when three U.S. ex-
perimental groups made a vigorous attempt to create a BEC in an alkali atomic gas,
our group was able to predict the signs and rough magnitude of the scattering lengths
for almost all alkali species, determining the stability (a > 0) or instability (a < 0)
of a BEC. This essential information could be obtained using the accumulated phase
method using a value 19 and even 20a0 for r0. These values were still reconcilable with
condition 1. For example, a predicted negative a for spin-up 85Rb atoms and a positive
a for 87Rb led Wieman and Cornell in 1995 to switch from 85Rb to 87Rb leading to
the first successful realization of BEC in an ultracold atomic gas [9].

The excessive theoretical precision needed for the present “state of the art” BEC
experiments force us to shift r0 to much smaller distances. Even 16a0 would not be
small enough to avoid a detrimental hyperfine coupling. Note that V hf has the order
of magnitude of an atomic hyperfine splitting, i.e. 0.1K. For instance 87Rb has an
atomic hyperfine splitting of 0.33K and 85Rb 0.15K, which should be compared to the
S = 0 ↔ 1 energy splitting at 16a0 of 75K. A new insight, combined with recently
published spectroscopic data, shedding a new light on the singlet potential allowed
us to use the r0 = 16a0 value with a new approach. We will come back this more
sophisticated variant of the accumulated phase method in section 2.5.

2.4 Mass scaling

We note that the influence of E, l and the isotopic mass difference on the local phase
φ(E, l) at r0 comes only from the radial range, where the WKB approximation is valid,
so that up to a constant

φ(E, l) =
1
~

∫ r

p(r)dr =
∫ r [

2µ
~2

(E − V )− l (l + 1)
r2

] 1
2

dr. (2.14)

Furthermore, with respect to conditions 3 and 4 above, we point out that for the
(ultra)cold colliding atoms (T . 1µK) and near-dissociation bound states we are most
often considering, E is close to 0 (compared to the depth of the potential at r0) and l
is at most 4. The small E and l ranges then allow a first order Taylor expansion for
φ(E, l) (see figure 2.4) yielding

φ(E,L) = φ0 + EφE + l(l + 1)φl, (2.15)

with

φE ≡ ∂φ

∂E

∣∣∣∣
l=0

=
∫
µdr
~2k

∝ √µ (2.16)

and

φl ≡ ∂φ

∂l(l + 1)

∣∣∣∣
E=0

=
∫

dr
2kr2

∝ 1
√
µ
, (2.17)
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Figure 2.4 Part A illustrates the development of the wavefunction’s phase at r0 for three
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The horizontal arrow indicates the typical E and l range for which we apply the first order

approximation. Typical rubidium potentials are used for the calculation. Note that for

clarity the energies referred to in part A exceed the energies used in practice by more than

an order of magnitude.
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with k = k(r) the local wave number.
By making use of this method we introduce two (S=0,1) times three (φ0, φE, and

φl) parameters which have to be determined by comparison of theoretically predicted
to experimentally determined properties of cold collisions or weakly bound states.

As can be seen from Eqns (2.14) and (2.16,2.17) the phase parameters are mass
dependent, implying we would need a total of six parameters (three for singlet and three
for triplet) for the description of each isotope of a species. However, Seto et al. [10]
have been able to describe 12148 observed transition frequencies between singlet states
of the 85Rb2, 87Rb2, and 85Rb87Rb molecules with a common potential up to r=25a0,
without any sign of a Born-Oppenheimer breakdown. The analysis by Seto et al. uses a
pure C6 dispersion tail at r values where our analysis shows higher dispersion terms to
be significant. We were able to conclude that this affects the derived singlet potential
up to radii of about 23.5a0 to a negligible extent. It is also important to point out that
any analysis based on transition frequencies such as that of Seto et al. can yield relative
potential values only, i.e. the absolute energy position of the resulting VS curve can be
shifted arbitrarily. On the basis of this result, we were able to conclude that the singlet
part of 85Rb+85Rb and 87Rb+87Rb systems can be described with a common potential
VS up to a radius r=23.5a0. This implies that we can relate the parameters for these
different isotopes by mass scaling, expecting no signs of break-down effects for the
Born-Oppenheimer approximation within the contemporary experimental precision.

From Eqns (2.16,2.17) it is clear that φE and φl should be mass scaled as

85φE = R 87φE and 85φl = R−1 87φl, (2.18)

with R =
√
m85/m87, in which mx is the atomic mass of xRb.

The mass scaling for φ0 deviates a little from the above equations due to the
well-known mass independent contribution of approximately π/4 to the accumulated
phase due to the quantum mechanical penetration into the inner wall of the poten-
tial [11](Ch.VI-9). Whereas for the boundary condition on the radial wave function
the accumulated phase φ0 may be given modulo π, it is of importance for the mass
scaling to know the total phase. Since each “modulo-π phase-cycle” corresponds to one
additional (vibrational) bound state in the potential we can express the total accumu-
lated phase as φ0 = n′bπ+ φ0,π, with nb

′ the number of zero-energy s-wave vibrational
nodes up to the radius of interest (r0) and φ0,π the modulo-π part of the total phase.
Given the k ∝

√
m behavior, the scaled 85φ0,π becomes

85φ0,π = R 87φ0,π + (1−R)
π

4
− 85n′bπ +R 87n′bπ. (2.19)

The last term gives rise to a number of discrete values for the mass-scaled phase de-
pending on the number of nodes (up to r0) contained in the potential. The interval



22 2 Interaction and scattering of pairs of alkali atoms

between these discrete values is approximately (1 − R)π ≈ 0.012π ≈ 0.036 (for Rb).
This discretisation can be exploited when trying to extract information from experi-
mental data of multiple isotopes (see figure 2.5). An implication is that one is able to
deduce the number of nodes contained in the potential up to r0 and thereby the total
numbers of bound states contained in the complete singlet and triplet potentials, since
additional nodes beyond r0 can be calculated using the potential derived. For the case
of 87Rb we thus find 41 triplet bound states. For 85Rb this number is 40.

For lithium the situation is different in the sense that ab initio potentials for the
short range part of the potential are a lot more reliable. Although more reliable, they
are not accurate enough to predict scattering properties with the precision needed
nowadays. In our analysis of the lithium interactions we base the calculations on a
combination of the ab initio potentials and the accumulated phase method. Theoretical
potentials are used for calculation of the wavefunction up to r0 and at this radius we
apply an adjustment of the phase, a phase jump ∆φ0(E, l) = ∆φ0, which is added to or
subtracted from the accumulated phase derived from the ab initio potential. The energy
and relative angular momentum dependence of the accumulated phase is expected to
be accounted for to a sufficient degree of accuracy by the ab initio potentials.

2.5 Adiabatic accumulated phase method

In this section we come back to the new variant of the accumulated phase method
that we introduced in chapter 3 [published as Phys. Rev. Lett. 88, 93201 (2002)]
and enables us to achieve an unprecedented precision. To begin with we consider the
sum V hf of the single-atom hyperfine interactions, Eq. (2.8). Its part V hf+ is diagonal
in S (and I), and therefore commutes with the central interaction (2.3). At r0 it can
therefore be included effectively in the Hamiltonian as a constant:

ahf

2~2
~S · ~I =

ahf

4~2
{~F 2 − ~S2 − ~I2} → ahf

4~2
{F (F + 1)− S(S + 1)− I(I + 1)}, (2.20)

that can simply be added to the triplet potential. It thus leads to a splitting according
to I and F (it vanishes for S = 0 in which case F = I). This splitting was already
included in the conventional accumulated phase method.

The new insight concerns the role of V hf− and the realization that the above con-
dition 1 (section 2.3) for the applicability of the accumulated phase method can be
relaxed to some extent, making it possible to shift r0 to larger atom-atom distances.
In the thesis of previous Ph.D. candidates in our group the range of smaller interatomic
distances was subdivided in two intervals [see Fig. 2.6(A)]. In one interval V hf is so
small compared to V exch, i.e. to the S = 0 to S = 1 splitting of potential curves that
the coupling due to V hf− can be neglected. Going to larger r this is followed be a range
in which V hf and V exch are comparable. It was thought that r0 should preferably be
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Figure 2.5 (A) Contour plot of the reduced χ2 as a function of 87νDT and C6 for 87Rb

data only. The dispersion coefficient C6 is expected to be within the interval indicated

by the horizontal arrow [12]. (B) The dashed line indicates the bottom of the “deepest

trench” in the χ2 surface of part (A), with the overall minimum indicated by the square.

The solid lines indicate equivalent ‘trenches’ in the χ2 surface for 85Rb data only, with

the minimum (of each ’trench’) indicated by a solid circle, making use of mass scaling to

translate 87νDT into 85φ0,T . Different solid lines correspond to a different number 87n′b of

nodes assumed to be contained by the triplet potential for 87Rb up to r0:
87n′b=19,. . .,25.

Note that this plot is generated without optimizing φE, φl, J , and C8.
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Figure 2.6 Part (A) illustrates the conception of the radial ranges in the traditional

accumulated phase method. Part (B) shows the radial intervals as thought of in the

“adiabatic accumulated phase method”.

chosen as far right as possible in the V hf � V exch interval in view of condition 2, which
requires pure decoupled singlet and triplet radial waves. However, as long as the WKB
is valid in this interval, as is generally the case, a change of phase of a decoupled S = 0
or 1 radial wave at one point is equivalent to the same change at another point. This
implies that r0 can be chosen arbitrarily in the V hf � V exch range. Now consider what
happens when we move into the region where V hf ∼ V exch. One will first pass through
an interval where the V hf− coupling is not negligible but still takes place adiabatically,
i.e. V hf− mixes the S = 0 and 1 states, but the radial waves are still decoupled when
expressed in a new local basis of mixed spin states [see Fig. 2.6(B)]. This enables us to
move r0 into this left-hand part of the V hf ∼ V exch interval. Changing the phase of a
(predominantly) S = 0 or 1 radial wave at such a point is still completely equivalent to
an equal phase change at an r0 point chosen in the V hf � V exch interval. An r0 choice
in this “V hf ∼ V exch with adiabatic V hf− influence” interval is still allowed as long
as the local spin mixing due to V hf− is included in the boundary condition together
with pure singlet and triplet phases for the radial waves, for the coupled radial inte-
gration further to the right. Note that the l centrifugal splitting and the SIF splitting
according to Eq. (2.20) is included in the boundary condition via φl and φE terms.
Note also that we generally use the vibrational “quantum numbers” at dissociation,
νD at the dissociation energy of the singlet and triplet potentials (νDS and νDT ) as
model independent quantities to characterize the singlet and triplet phases φS and φT

in order to avoid the r0 dependence of these phases [13]. As a third remark we point
out that the spin mixing ar r0 depends only on the local energy spacing between the
S = 0 and 1 potentials, i.e. on V exch. It is independent of the “past history” of the
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collision left of r0, which depends also on the absolute depth of the potential.
To illustrate the advantages of this “adiabatic accumulated phase method” we com-

pare a calculation including the adiabatic spin mixing at r0 to one without, i.e. the
conventional approach. In both cases we consider the optimization of the potential
parameters given a set of 87Rb experimental data. For simplicity we show how one of
the parameters, the coefficient J in the exchange interaction (2.6), depends on r0. In
Fig. 2.7 each of the curves shows the behavior of the relative deviation ∆J/Jth of the
optimal J value from the value Jth estimated by Smirnov and Chibisov [1]. The curve
with squares shows the result of a calculation along conventional lines. Each point
indicated on the curve represents the outcome of a separate χ2 optimization. The os-
cillations may be interpreted as a “switch on” effect due to the sudden switch on of the
spin mixing during the coupled integration right of r0. Switching on the spin mixing
adiabatically at r0 gives rise to the curve with filled circles. Clearly, the oscillation is
strongly reduced. Even shifting r0 to 15a0 keeps the oscillation amplitude to below
the 12% level1. Figure 2.7 suggests that one might just as well select a small value
for r0 near 11a0 in order to avoid the spin mixing issue altogether. If we would have
done that from the beginning, however, we would have missed a key message from
the calculation: the fact that the final results are highly independent of the central
potentials within an interatomic distance of 16a0. This applies in particular to the
exchange potential V exch for which the Smirnov-Chibisov radial dependance (2.6) is
valid for larger interatomic distances. The same applies to the asymptotic expression
(2.5) for the dispersion potential. Note that for rubidium we make use of the singlet
potential derived by Seto et al. [10] for r < 23.5a0 and are therefore only limited by
V exch.

2.6 Resonances

The possibility to change the effective interaction between scattering atoms was men-
tioned in chapter 1. In this section we will take a closer look at the physics underlying
one of the methods mentioned, the magnetically tunable Feshbach resonance. First
shape resonances will be discussed after which Feshbach resonances will be explained.
This section will be concluded with a brief discussion on the interplay of both, which
is of importance when studying relatively high energy (but still s-wave) scattering of
atoms in the situation that the scattering length has an anomalously large value away
from the resonance (like for 6Li).

Scattering resonances are continuations of bound states in the continuum. A dif-
ference with bound states is that their definition is not unique. Quite a number of

1When we restrict ourselves to the experimental data available at the time of publishing chapter

3, we can stay within 10% for r0 = 16a0
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Figure 2.7 Fractional correction to the literature value Jth for the strength of the ex-

change energy versus r0 (see text). The line with squares corresponds to calculations

with the traditional accumulated phase method, while the curve with the solid circles

corresponds to calculations performed with the “adiabatic accumulated phase method”.

Note that this graph is generated using the most recent experimental data available. For

the analysis described in chapter 3, the amplitude of the oscillation was within 10% for

r = 16a0 (for the adiabatic variant).

resonance theories have been proposed in the literature since the fourties of the pre-
vious century. A very elegant definition makes use of poles of the scattering matrix S
(some references discussing poles of the S-matrix and scattering resonances are [14–17]).
Shape resonances were a well-known phenomenon in nuclear physics, before the first
shape resonance was discovered in the scattering of cold atoms by Boesten et al. [18].

Let us consider the s-wave scattering of two 87Rb atoms in the spin stretched state,
with interaction potential V (r). Introducing a scaling parameter λ, (λ ≈ 1), the
interactions between two atoms can be scaled yielding the scaled interaction potential
V ′(r) = λV (r). By varying λ slightly we can introduce additional bound states or expel
them by increasing or decreasing λ, because the potential is made more respectively
less attractive. As mentioned before, the (almost) bound state closest to threshold
plays a profound role in the interaction between two atoms and its position is closely
related to the exact details of the potential. Figure 2.8 shows how the scattering length
changes as λ varies. The general pattern is a slowly varying background value with
singularities at almost regular intervals. The singularities occur whenever a “bound”
state is exactly at threshold.
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Figure 2.8 Scattering length as a function of the potential depth. The interaction po-

tential is multiplied by λ.

To understand this it is illustrative to see what happens to the bound states, i.e.
the single channel S-matrix poles in the complex k-plane, when λ is lowered, i.e. the
potential is made less attractive. Figure 2.9(A) depicts the trajectory of a bound state
in the complex k-plane, represented by a pole in the S-matrix (a 1x1 matrix in this
case) for positive pure imaginary values of k. An initially bound state becomes more
weakly bound as λ becomes smaller, i.e. the pole moves down along the imaginary axis
and will be located at the origin for a specific potential depth. When the potential is
weakened more, the pole crosses the real k axis and moves further down in the complex
k-plane, along the negative imaginary axis.

Translating the trajectory in the complex k-plane to a trajectory in the E-plane [see
figure 2.9(B)] it must be realized that the k to E mapping is a two-to-one mapping,
since E=~2k2/2m. This ambiguity is reflected in the existence of a physical and a
non-physical complex E-plane (a two-sheeted Riemann surface), which are connected
via the positive real E axis, which is a branch-cut. When the pole enters the non-
physical sheet (i.e. for negative imaginary k), it no longer represents a bound state,
but a virtual state, although it is still on the negative E axis.

The scattering matrix changes as a function of the potential depth. With one
bound state, i.e. one pole of the S-matrix, close to threshold it is natural to write
S = SbgPSresP in which SresP describes the resonant influence of the close-to-threshold
pole and SbgP summarizes the influence of all other poles (the additional “P” in the
superscript is to avoid confusion with Sbg and Sres which will be introduced below; the
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Figure 2.9 Path of the pole in the S-matrix, corresponding to the s-wave bound state

(bs) closest to threshold, resulting from making the interaction potential less attractive (i.e.

by making λ smaller, see text). Part (A) indicates the path in the complex k-plane, part

(B) indicates the equivalent path in the complex E-plane. Note the branch-cut symbolized

by the bold positive real E-axis. The pole moves from the physical to the non-physical

sheet and becomes a virtual state (vs).

choice for the letter “P” will then also become apparent). We will write the position of
a pole in the S-matrix on the positive imaginary axis as k = iκb and on the negative
imaginary axis as k = −iκvs (note that κvs > 0). The resonant part of the S-matrix
can be obtained by writing S = F∗(k)/F(k), with the Jost-function given by [15,19]

F(k) =
(

1− k

iκb

)
g(k) or

(
1 +

k

iκvs

)
g(k), (2.21)

where we have to use the first term on the right-hand side if we have a bound state
at hand, or the second term if we have a virtual state; g(k) is a smooth function of k
summarizing the influence of all distant background poles. Therefore we find

S =
(
iκb + k

iκb − k

)
g(k)∗

g(k)
or

(
iκvs − k

iκvs + k

)
g(k)∗

g(k)
≡ e2iδresP

e2iδbgP
, (2.22)

with the resonance phase shift δresP=− arctan k
κb

(or δresP=+arctan k
κvs

) and the back-
ground phase shift δbgP=− arg[g(k)]. A background scattering length can be de-
fined in terms of the low energy behavior of the total scattering phase shift δ(k) =
δbgP(k) + δresP(k):

δ(k) = −kabgP −arctan
(
k

κb

)
+O(k3) or −kabgP +arctan

(
k

κvs

)
+O(k3), (2.23)

with abgP a background value related to the range of the potential [19, 20] and the
arctangent term a resonant part.

The resonance described above is a shape resonance and has a single channel char-
acter, meaning that this type of resonance can occur in single channel scattering. An
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example is the scattering of triplet 85Rb atoms with a
85Rb
T = −388a0 (see chapter 3),

which deviates largely from the range of the potential which is in the order of 100a0

for rubidium. To exploit these resonances experimentally one would need to change
the depth or shape of the interaction potential, but there are other ways to change the
effective interactions between scattering atoms, e.g. with magnetically tunable Fesh-
bach resonances. Their character, however, is different from the resonances described
above.

Feshbach resonances

In general the scattering of two atoms involves more than just one channel. In the
range where the hyperfine interaction has the same order of magnitude as the exchange
interaction, mixing between different channels can take place giving rise to multi-
channel resonances. Feshbach resonances are such resonances.

Consider two atoms whose internal + relative angular eigenstate we label by |α〉.
When these two atoms undergo a scattering process they may change their state to
a different one, e.g. |β〉, during the scattering. The collection of all states to which
coupling may take place can be divided into two spaces. One space, P, containing all
open channels (including the incoming channel) and a space Q containing the remain-
ing, closed, channels. A channel is open whenever the total energy of the two atoms
is higher than the asymptotic (threshold) energy of that channel, i.e. if the atoms can
“separate to infinity” in the channel. Now suppose the afore-mentioned atoms in state
|α〉 are put in a magnetic field B. Then their energy will be Zeeman shifted by an
amount µαB, with µα the appropriate magnetic moment (see figure 2.1). Since the
asymptotic energy of a channel equals the sum of the internal energies of the two sepa-
rate atoms in the corresponding states, it is easy to understand that thresholds of the
different channels can be shifted relative to one another by applying a magnetic field.
Likewise, the energies of bound states contained in channels other than the incoming
channel can be shifted, relative to the energy of the two scattering atoms. This is
illustrated in figure 2.10, part (A) and (B), and the magnetic field strength for which
the energy of a bound state in channel |β〉 is degenerate with the threshold energy of
the scattering atoms in channel |α〉 is indicated by B0. For scattering in a magnetic
field B = B0 the atoms will resonantly couple to the bound state in the channel |β〉,
which has a profound influence on the phase shift and hence on the scattering length
a(B) as is shown in figure 2.10(C).

Introducing the projection operator P with the property P 2 = P which projects
onto the subspace P and the equivalent operator Q for projection onto Q (obeying
P +Q = 1), we can write the Schrödinger equation as

(E −HPP )|ΨP 〉 = HPQ|ΨQ〉 (2.24)
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Figure 2.10 Principle of a Feshbach resonance. Part (A) illustrates the potentials corre-

sponding to two different channels with threshold energies indicated by the dashed lines.

The solid line within the potential indicates a bound state in the channel with the higher

potential. (B) shows how the threshold energies and the energy of the bound state depend

on the magnetic field B. At B = B0 the energy of the bound state crosses the thresh-

old energy of the black channel, causing the scattering length associated with the black

channel to diverge, as is indicated by part (C).

(E −HQQ)|ΨQ〉 = HQP |ΨP 〉. (2.25)

Here the notation HPP = PHP , HPQ = PHQ, |ΨP 〉 = P |Ψ〉, etc. is used. We can
formally solve these equations by making use of the Green operator [E+ − HQQ]−1

(with E+ = E + i0), inserting |ΨQ〉 = 1
E+−HQQ

HQP |ΨP 〉 into Eq. (2.24) yielding the
equation for the P subspace

(E −Heff)|ΨP 〉 = 0, (2.26)

with the effective hamiltonian

Heff = HPP +HPQ
1

E+ −HQQ
HQP , (2.27)

which can be interpreted as the sum of a direct effect and an indirect effect: cou-
pling from P space to Q space, propagation in Q space and re-emission into P space.
Expanding the Green operator in discrete eigenstates and continuum eigenstates of
HQQ

1
E+ −HQQ

=
∑

i

|φi〉〈φi|
E − εi

+
∫
|φ(ε)〉〈φ(ε)|
E+ − ε

dε (2.28)
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and assuming there is only one discrete bound state of HQQ with an energy close to E
and neglecting the continuum part of HQQ, Eq. (2.26) can be simplified to

(E −HPP )|ΨP 〉 = HPQ
|φb〉〈φb|HQP |ΨP 〉

E − εb
(2.29)

with the formal solution

|ΨP 〉 = |Ψ+
P 〉+

1
E+ −HPP

HPQ
|φb〉〈φb|HQP |ΨP 〉

E − εb
, (2.30)

in which |Ψ+
P 〉 is an eigenstate of HPP satisfying the outgoing wave boundary condi-

tions, i.e., a solution of the homogeneous part of Eq. (2.29). Multiplication from the
left with 〈φb|HQP leads to the solution

|ΨP 〉 = |Ψ+
P 〉+

1
E+ −HPP

HPQ|φb〉
〈φb|HQP |Ψ+

P 〉
E − εb − 〈φb|HQP

1
E+−HP P

HPQ|φb〉
, (2.31)

and hence the expression for the S matrix

Sji = Sbg
ji − 2πi

〈Ψ−
j |HPQ|φb〉〈φb|HQP |Ψ+

i 〉
E − εb − 〈φb|HQP

1
E+−HP P

HPQ|φb〉
, (2.32)

which exhibits a resonant character. By writing the complex energy shift as [11](App.
AII)

〈φb|HQP
1

E+ −HPP
HPQ|φb〉 = ∆res − 1

2
iΓres, (2.33)

∆res = 〈φb|HQP
c.p.v.

E −HPP
HPQ|φb〉, (2.34)

−1
2
iΓres = −iπ〈φb|HQP δ(E −HPP )HPQφb〉, (2.35)

in which c.p.v. refers to the Cauchy principal value, a resonance shift and width can be
distinguished. With appropriate phases φR

bn the numerator of Eq. (2.32) can be written
as (2π)−1ei(φR

bj+φR
bi)Γ1/2

bj Γ1/2
bi , defining real positive partial width amplitudes Γ1/2

bn by

eiφR
bnΓ1/2

bn = (2π)1/2〈φb|HQP |Ψ+
n 〉 = (2π)1/2〈Ψ−

n |HPQ|φb〉 (2.36)

and the corresponding partial widths

Γbn = 2π
∣∣〈φb|HQP |Ψ+

n 〉
∣∣2 = 2π

∣∣〈Ψ−
n |HPQ|φb〉

∣∣2 (2.37)

for the formation and decay of the bound state b from and into the open channel n.
Eq. (2.32) thus gets the form

Sji = Sbg
ji − i

ei(φR
bj+φR

bi)Γ1/2
bj Γ1/2

bi

E − εb −∆res + 1
2 iΓ

res
. (2.38)
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We now define a resonance energy εres in terms of the real part of the denominator:

εres = εb + <
(

∆res − 1
2
iΓres

)
(2.39)

We are especially interested in the elastic S-matrix element Sii for the channel i
with the higher threshold in the case of more than one open channel. Referring the
energy E to the threshold of this channel we have

Sii = Sbg
ii − ie2iφR

bi
Γbi

E − εres + i=
(
−∆res + 1

2 iΓ
res

) . (2.40)

The various quantities in the right-hand side are functions of E and B. For small
positive E one can show that Γbi can be written as 2Cki, whereas

εres = ∆µ(B −B0) (2.41)

not far from resonance, with B0 the field strength where the resonance energy εres

crosses the threshold of channel i and ∆µ the difference in magnetic moment between
the bound and free states of the two atom system. We thus obtain

Sii = Sbg
ii − ie2iφR

bi
Γbi

−∆µ(B −B0) + i=
(
−∆res + 1

2 iΓ
res

) (2.42)

= Sbg
ii − ie2iφR

bi
2Cki

−∆µ(B −B0) + i=
(
−∆res + 1

2 iΓ
res

) . (2.43)

To first order in k this equation reads

1− 2ikia = 1− 2ikia
bg + 2ikie

2iφR
bi

C/∆µ
(B −B0)− i=

(
−∆res + 1

2 iΓ
res

)
/∆µ

, (2.44)

so that the total (complex) scattering amplitude a is given by

a = abg

(
1− e2iφR

∆el

B −B0 + 1
2 i∆inel

)
(2.45)

in terms of the scattering length abg for the background scattering and a Feshbach
resonance part, the latter containing a “resonance mixing phase” φR and positive real
(in)elastic field widths ∆el(∆inel) defined by

∆ele
2iφR ≡ C

abg∆µ
e2iφR

bi (2.46)

∆inel
1
2
∆µ ≡ =

(
∆res − 1

2
iΓres

)
E=0

. (2.47)

The case of one open channel has been considered before [21]. In that situation
Eq. (2.40) reduces to

Sii = Sbg
ii − i

Γbi

E − εb −∆res + 1
2 iΓbi

(2.48)
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and (2.45) to

a = abg

(
1− ∆B

B −B0

)
, (2.49)

due to a vanishing φR and φinel. The quantity ∆B is the magnetic field width over
which the scattering length a changes sign with respect to the background value (see
figure 2.10).

Interplay

Two sections earlier it was mentioned that some atoms have an anomalously large
background scattering length, e.g. 85Rb. When the scattering of this species is studied
at relatively high (but still s-wave) energies, in a magnetic field which is tuned near a
Feshbach resonance, two resonances are important: a shape resonance in addition to
this Feshbach resonance. Their mutual interplay has been studied by Marcelis [19] and
it was shown that the energy shift and width of Eq. (2.48) becomes

∆res(E) =
− 1

2Avs

k2 + κ2
vs

(2.50)

Γ(E) =
Avsk

κvs (k2 + κ2
vs)
, (2.51)

with Avs > 0 and for k real and positive (i.e. for real and positive energies on the
physical Riemann sheet) if a virtual state causes the anomalously large scattering
length, or

∆res(E) =
1
2Ab

k2 + κ2
b

(2.52)

Γ(E) =
Abk

κb (k2 + κ2
b)
, (2.53)

if a bound state is the cause, with Ab > 0.
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rubidium interactions from three
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Published in Phys. Rev. Lett. 88, 93201 (2002)

Combining the measured binding energies of four of the most weakly bound rovibrational

levels of the 87Rb2 molecule with results of two other recent high-precision rubidium exper-

iments, we obtain exceptionally strong constraints on the atomic interaction parameters

in a highly model independent analysis. The comparison of 85Rb and 87Rb data, where

the two isotopes are related by a mass scaling procedure, plays a crucial role. We predict

scattering lengths, clock shifts, and Feshbach resonances with an unprecedented level of

accuracy. Two of the Feshbach resonances occur at easily accessible magnetic fields in

mixed-spin channels. One is related to a d-wave shape resonance.

3.1 Introduction

After the first realization of Bose-Einstein condensation (BEC) in a dilute ultracold gas
of rubidium atoms [1], experiments with the two isotopes 87Rb and 85Rb further led
to an amazingly rich variety of BEC phenomena, ranging from the controlled collapse
of a condensate with tunable attractive interactions [2] to the realization of an atomic
matter wave on a microchip [3]. Because of the large number of groups that have
started doing experiments with these atomic species and the growing complexity and
subtlety of the planned experiments, there is a clear need for a more precise knowledge
of the interactions between ultracold rubidium atoms in the electronic ground state,
since these determine most of the properties of the condensate. For instance, despite a
widespread interest, to our knowledge, not until now has any experimental group been
able to locate the predicted [4] magnetic-field induced Feshbach resonances that can
be used to tune the interactions between ultracold 87Rb atoms. Being able to switch
on or off these interactions at will by a mere change of magnetic field may well be
one of the main assets of matter waves compared to light waves in the new matter
wave devices. In an atomic interferometry device, in particular, a nonlinear interaction
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between interfering waves may be introduced or eliminated by changing a field applied
at the intersection point.

In this Letter, combining the results of three very recent high-precision observations,
we come close to a complete and model-independent specification of the interaction
properties of ultracold rubidium atoms. The fact that two isotopes 85Rb and 87Rb
are involved in the measurements makes the constraints exceptionally strong and also
increases the predictive power: the interaction properties of any other fermionic or
bosonic isotope with mass number 82, 83, 84, or 86 are now known with about the
same precision. Using mass scaling to relate the different isotopes we are able for the
first time to deduce for each of the isotopes the exact numbers of bound Rb2 states
with total spin S = 0 (singlet) and 1 (triplet). As an illustration of the predictive
power we predict two Feshbach resonances in mixed-spin scattering channels for 87Rb
at easily accessible fields that could lead to new time dependent phenomena in coherent
spin oscillations and spin waves. There are numerous effects, such as spinor condensate
energy differences, which are proportional to differences of scattering lengths. Because
these differences are unusually small in Rb, the potentials must be very accurate to
calculate them to reasonable accuracy.

3.2 Analysis of recent high-precision experiments

The first of the three high-precision experiments is the recent measurement of four of
the highest bound rovibrational levels of the 87Rb2 molecule with 10 kHz precision [5].
The second experiment is the improved characterization [6] of the elastic scattering
near a Feshbach resonance in 85Rb, leading to a more precise determination of the
resonance field B0 = 154.9(4) G and the nearby field strength B′0 ≡ B0+∆ = 165.85(5)
G, where the scattering length goes through zero [∆ is the (elastic) resonance width].
The third experimental ingredient going into our analysis is the measurement [7] of
12148 transition frequencies between X1Σ+

g vibrational levels of the (85Rb)2, (87Rb)2,
and 85Rb87Rb molecules, leading to a highly accurate singlet Rb + Rb potential [8].
Moreover, within the accuracy of this experiment a comparison of levels for the three
studied isotopomers shows no sign of Born-Oppenheimer break-down effects, i.e., the
observed levels agree with a simple radial Schrödinger equation containing a common
singlet potential VS(r) and the reduced atomic mass. Calculation shows [9] that this
justifies neglecting such effects also in our analysis.

This set of extremely precise measurements calls for a very careful construction
of the interatomic total spin S = 0 and 1 potentials, depending on the interatomic
separation r. We combine the singlet potential of Ref. [7] with a long-range part equal
to the difference Vdisp − Vexch of a dispersion term and an exchange term, starting
at a variable radius rS between 21 and 23.5 a0 (1 a0 = 0.529Å). The part Vdisp(r)
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includes C6, C8, C10 terms and retardation, while Vexch(r) is assumed to be given by
the asymptotic form 1

2Jr
7/2α−1 exp(−2αr), derived by Smirnov and Chibisov [10] for

r values where the overlap of the electron clouds is sufficiently small [α = 0.554a−1
0 ,

following from the ionization potential 1
2α

2 of the Rb atom in atomic units (au)].
The triplet potential is subject to a larger uncertainty. For its short range part an

ab initio potential is usually taken. To get rid of this model dependence, we use the
accumulated phase method [11]: the “history” of the atom-atom motion is summarized
by a boundary condition at an interatomic distance r0, in the form of the phase φT (E, l)
of the oscillating triplet radial wave function ψ depending on energy E and angular
momentum l. Specifying φT (E, l) is equivalent to giving the logarithmic derivative
ψ′/ψ at r = r0. In all of our previous work we neglected the singlet-triplet mixing by
the hyperfine interaction Vhf of the nuclear and electronic spins in the range r < r0,
in order to deal with pure singlet and triplet radial waves until the boundary. Here,
however, we introduce a new variant that allows us to choose a larger r0 than would
otherwise be possible: we include the adiabatic mixing by Vhf in the two-atom spin
states but still neglect its influence on the radial wave functions to avoid dependence
on the history other than via the pure triplet phase. Model calculations show that
in this form the scattering calculations have the required accuracy for r0 values up
to 16 a0. The experimental data for either ultracold or weakly bound atoms that we
analyze comprise a small E and l range near E = l = 0. In this range a first order
Taylor expansion φT (E, l) = φ0

T + EφE
T + l(l + 1)φl

T is adequate, which reduces the
information contained in VT (r) for r < r0 to three phase parameters only. In principle,
these would be needed for both the 85Rb and 87Rb systems. However, since we expect
Born-Oppenheimer breakdown effects to be negligible also for the triplet channel in
the distance range r < r0, we use mass scaling to express φ0

T , φ
E
T , φ

l
T for 85Rb in terms

of the three phase parameters for 87Rb. Beyond r0 we construct VT (r) from VS(r) by
adding 2Vexch(r).

Applying this method we carry out a full quantum scattering calculation for a set of
eight experimentally measured quantities. This set consists of five quantities for 87Rb
and three for 85Rb. The 87Rb data are the four bound state energies and the ratio of
scattering lengths a1−1/a21 = 1.062(12) for atomic scattering in condensates of 87Rb
atoms in the hyperfine states (f,mf ) = (1,−1) and (2, 1) [12]. For 85Rb we include the
Feshbach resonance fields B0 and B′0, as well as the energy 0.7(1) mK of the g-wave
shape resonance observed in the scattering of a pair of cold atoms in the total spin
S = 1 state [13].

With a least-squares search routine we determine optimal values for the parameters
C6, C8, J, φ

0
T (87Rb), φE

T (87Rb), φl
T (87Rb). C10 is kept fixed at the value calculated

by Marinescu et al. [14], but the effect of ±10% variations around this value and an
estimated upper bound for the influence of higher dispersion terms are included in the



40 3 Inter-isotope determination of ultracold rubidium interactions. . .

Table 3.1 Interaction parameters (au) derived from experiments without (column A) and

including (column B) the requirement VS = Vdisp − Vexch for r0 < r < rS .

Quantity A B
C6/103 4.703(9) 4.698(4)
C8/105 5.79(49) 6.09(7)
C10/107 7.665(Ref. [14]) 7.80(6)
C11/109 . . . -0.86(17)
C12/109 . . . 11.9(Ref. [22])
J.102 0.45(6) 0.42(2)

aT (87Rb) +98.98(4) +98.99(2)
aS(87Rb) +90.4(2) +90.0(2)
aT (85Rb) -388(3) -387(1)
aS(85Rb) +2795+420

−290 +2400+370
−150

vDT (mod 1),nbT (87Rb) 0.4215(3), 41 0.4214(2), 41
vDS(mod 1),nbS(87Rb) 0.455(1), 125 0.456(1), 125
vDT (mod 1),nbT (85Rb) 0.9471(2), 40 0.9470(1), 40
vDS(mod 1),nbS(85Rb) 0.009(1), 124 0.011(1), 124

final error bars. Column A of Table 3.1 summarizes the main results of the calculations.
We find a value for C6 in agreement with the theoretical value 4691(23) obtained by
Derevianko et al. [15]. The C8 value agrees with that calculated by Marinescu et al. [14].
To our knowledge this is the first experimental determination of C8 from a combined set
of cold-atom + bound state data. Our analysis also yields the first experimental value
of the strength of Vexch from such data. The coefficient J agrees with the most recent
theoretical value in Ref. [16]. Table 3.1 also gives the values of the pure singlet and
triplet scattering lengths for both 85Rb and 87Rb, following from C6, C8, J, φ

0
T (87Rb),

as well as the fractional vibrational quantum numbers at dissociation vD(mod. 1) [11]
and the numbers of bound states nb. The reduced minimum χ2 value is 0.5.

3.3 Predictions of Rb scattering properties

The foregoing makes clear that a major step forward has been made possible by the new
experiments, two of which make use of a Bose-Einstein condensate. This is a firm basis
for making a variety of interesting predictions. As a first example we predict the 87Rb
f = 1 spinor condensate to be ferromagnetic, i.e., it is favorable for two f = 1 atoms
to have their spins parallel, because the mean field interaction is more repulsive for
total F = 0 than for F = 2: The calculated scattering lengths are aF=2 = +100.4(1)a0

and aF=0 = +101.8(2)a0. In a recent preprint Klausen et al. [17] independently came
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Table 3.2 Predictions of collisional frequency shifts for the 87Rb fountain clock, compared

to two recent experiments.(
1
n

∆ν
ν

)
exp

(10−24cm3) Ref. Present theory (10−24cm3)

-56+84
−21 [18] -72.5 ± 3.3

-50(10)+22
−34 [19] -32.8 ± 0.7

-60(16)+29
−46 [19] -41.5 ± 2.9

Table 3.3 Resonance fields B0 and widths ∆ for 87Rb.

B0(G) 403(2) 680(2) 899(4) 1004(3)
∆(mG) < 1 15 < 5 216

to this conclusion of a ferromagnetic spinor condensate by calculating the scattering
lengths for several assumed numbers of triplet bound states.

We are also able to predict collisional frequency shifts in an 87Rb fountain clock
for arbitrary choices of partial densities of atomic hyperfine states. Table 3.2 compares
our calculated fractional frequency shifts normalized to total atom density n for two
recent experiments [18,19]. We find good agreement with the three measured shifts.

For various applications there is widespread interest for predictions of magnetic-
field values at which Feshbach resonances are to be expected in the scattering of two
87Rb atoms in the (f,mf ) = (1,+1) state. With our interaction parameters we expect
them at the four resonance field values B0 given in Table 3.3 together with the widths
∆. The B0 values are to be compared with the values 383, 643, 850, and 1018 G
predicted in 1997 [4]. It is interesting that the broadest resonance at 1004 G shows a
doublet structure [9].

Figure 3.1 shows Feshbach resonances that we predict to occur in the mixed spin
channels (2,+1)+(1,-1) and (2,-1)+(1,+1) at easily accessible field values of 1.9 and
9.1G, respectively. The graphs show the predicted field-dependent scattering lengths
a(B), which are complex functions due to the presence of exothermal inelastic decay
channels. The generalized analytic expression for the field dependence in this case
is [9]:

a(B) = a∞

(
1− e2iφR

∆el

B −B0 + 1
2 i∆inel

)
, (3.1)

with ∆el and ∆inel the (in)elastic resonance widths and φR a resonance phase constant,
arising due to inelasticity. Note that the real part of the scattering length does not
go through infinity. It turns out that the 1.9G resonance is an l = 2 resonance, which
couples via the spin-spin interaction Vss to the s-wave incident channel. Actually, this
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Figure 3.1 (A) Real (solid line) and imaginary (dashed line) parts of the scattering

length a(B) in s-wave 87Rb (2,+1)+(1,-1) mixed spin scattering channel, showing the

presence of a Feshbach resonance at 1.9G. The imaginary part is proportional to summed

rate coefficient G for decay into all open channels. (B) Same for Feshbach resonance in

(2,-1)+(1,+1) channel at 9.1G.

resonance is the “hyperfine analog state” [9] in the (2,+1)+(1,-1) scattering channel
of the d-wave shape resonance of 87Rb occurring in the spin-stretched (2,+2)+(2,+2)
spin channel [13], i.e., a state with essentially the same spatial dependence and differing
only in its hyperfine spin structure [20]. It is located at a comparable low energy above
threshold. In a similar way the l = 0 resonance at 9.1G is the hyperfine analog state
of two of the l = 0 bound states observed [5] at roughly 25MHz below threshold in the
(2,+2)+(2,+2) and (1,-1)+(1,-1) channels, belonging to the same rotational band as
the d-wave shape resonance. They might play a role in the damping of coherent spin
oscillations of the type which are being observed in experiments at JILA [21].

3.4 Extended analysis

Until now we assumed the expression for Vdisp to be valid for interatomic distances
larger than rS . We now extend Vdisp with C11 and C12 terms and assume it to be
valid also between 18 a0 and rS . This leads us to a more ambitious approach that
allows us to determine C10 and C11 as two more free parameters in the least squares
search: we take into account the additional constraint arising from the equality VS(r) =
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Vdisp(r)−Vexch(r) by imposing this equality at five r points as additional “experimental
data” with a standard deviation of 0.5%. We thus effectively include the bound states
of Ref. [7] with outer turning points in the range considered. In the search we take
C12 equal to the theoretical value 11.9 × 109 of Ref. [22]. In column B of Table 3.1
the resulting optimal parameter values are given together with error bars based on a
25 % uncertainty in C12. We find a value for C10 differing from the theoretical value
7.665 × 107 au [14] by only 1.8%. While the above attractive Cn terms with even n

arise from the interatomic multipole-multipole interaction in second order, a C11 term
is expected [23] as a repulsive third order dispersion term arising from the mutual dipole
excitation and deexcitation of the atoms with an intermediate quadrupole transition
between excited states in each of the atoms. Note that the ratio C11/C12 = −0.072 is
comparable to the rigorous value -0.028 for H atoms [24] and the ab initio ratio -0.041
for Cs atoms [25]. The remaining residue of the fit, concentrated at the smallest radii in
the radial interval may well be due to the summed contributions of further (attractive
and repulsive) dispersion terms beyond the C12 contribution plus correction terms to
the Smirnov-Chibisov exchange expression. Note that the values of the lower dispersion
coefficients are dominated by the close-to-threshold measurements, whereas the higher
ones are determined primarily by the Seto potential in the middle range r0 < r < rS .
We expect that experiment will prove the value of this more ambitious approach.

For completeness we point out that a weak contribution to the total atom-atom
force is still missing in the above picture: the interatomic spin-spin interaction Vss. One
component of Vss is the well-known magnetic dipole interaction between the valence
electron spins of the interacting atoms. An additional contribution, which arises from
the electronic spin-orbit coupling as a second-order effect, has been experimentally
determined for the first time for rubidium atoms by Freeland et al. [5]. Calculation
shows that Vss has a negligible influence on the previous analysis.

3.5 Conclusions

In summary, combining the results of three recent high-precision experiments we have
come close to a complete and model independent specification of the interaction prop-
erties of cold rubidium atoms. We have determined the van der Waals coefficients C6,
C8, C10, C11, and the strength J of the exchange interaction. We have thus reached
a consistent picture of the interactions, with which it is possible to predict essentially
all parameters needed for a complete description of a rubidium Bose-Einstein conden-
sate or thermal gas of any isotope in an arbitrary spin state. New experimental data,
in particular on the Feshbach resonances, will undoubtedly be helpful to confirm the
above consistent picture and to further narrow down the error limits. We believe that
our approach sets an example for similar experimental and theoretical work for other
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(combinations of) atomic species. From a theoretical point of view, it is fascinating
that it is possible to achieve a level of precision for the interaction properties approach-
ing that for collisions of cold hydrogen atoms, based on a combination of experimental
results and a sound framework of collision physics.
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Feshbach resonances in rubidium 87:

Precision measurement and analysis

A. Marte, T. Volz, J. Schuster, S. Dürr, G. Rempe, E. G. M. van Kempen, and B. J.
Verhaar

Published in Phys. Rev. Lett. 89, 283202 (2002)

More than 40 Feshbach resonances in rubidium 87 are observed in the magnetic-field range

between 0.5 and 1260 gauss for various spin mixtures in the lower hyperfine ground state.

The Feshbach resonances are observed by monitoring the atom loss, and their positions

are determined with an accuracy of 30 mG. In a detailed analysis, the resonances are

identified and an improved set of model parameters for the rubidium interatomic potential

is deduced. The elastic width of the broadest resonance at 1007 G is predicted to be

significantly larger than the magnetic-field resolution of the apparatus. This demonstrates

the potential for applications based on tuning the scattering length.

4.1 Introduction

A Feshbach resonance is an exciting tool for controlling the atom-atom interaction in
ultracold atomic gases. The elastic s-wave scattering length a can be tuned over orders
of magnitude simply by applying a magnetic field. Feshbach resonances have been
observed in various alkali atoms [1–7]. They have been used to induce a controlled im-
plosion of a Bose-Einstein condensate (BEC) [8], to create a coherent superposition of
an atomic BEC and a molecular state [9], and to realize a bright soliton in a BEC [6,7].
Future applications could include experiments with the Mott-insulator phase transi-
tion [10], a Tonks gas [11], effects beyond the mean-field theory [12], and the creation
of a molecular BEC [13]. In addition, the binding energies of ro-vibrational molecular
states close to the dissociation threshold can be determined with high accuracy from
the position of Feshbach resonances leading to a precise knowledge of the interatomic
potential [14]. A Feshbach resonance showing up in elastic collisions is often accom-
panied by strong changes in the inelastic collision properties [15, 16]. This offers a
strategy for searching for new Feshbach resonances by monitoring the resulting atom
loss.
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Surprisingly, no Feshbach resonance has been observed in 87Rb, which is the isotope
used in most of today’s BEC experiments. In 1995, a search with atoms in the |f,mf 〉 =
|1,−1〉 state was carried out, but no resonances were found [17]. Meanwhile various
experiments [18–21] greatly improved the knowledge of the Rb interatomic potential.
Recent models based on this [22, 23] are consistent with the observations of Ref. [17].
But these models predict four Feshbach resonances in the |1, 1〉 state.

This letter reports the observation of more than 40 Feshbach resonances in 87Rb
with most (but not all) atoms prepared in the |1, 1〉 ground state. The theoretical
model is extended to various spin mixtures and to bound states with rotational quan-
tum number l ≤ 3. Thus, all except one of the resonances can be clearly identified.
Moreover, the measured position of one Feshbach resonance is used for an improved fit
of the model parameters. The relative deviation between the predicted and observed
positions is 1.6 × 10−3 (rms). The observed loss might be due to two- or three-body
inelastic collisions, but should be purely three body for those resonances which involve
only the |1, 1〉 state. The broadest resonance at 1007 G offers the possibility to tune
the scattering length and investigate its loss mechanism.

4.2 Experimental method

The experiment is performed with a new setup similar to our previous one [24], but
with all relevant components significantly improved. In particular, atoms are captured
in a vapor-cell magneto-optical trap (MOT) at a loading rate of 7×1010 s−1. The atoms
are transferred to a second MOT, in which 6× 109 atoms are accumulated by multiple
transfer within 2 s. The atoms are then loaded into a Ioffe-Pritchard magnetic trap
with a lifetime of 170 s. The measured bias-field drift of less than 1 mG/h illustrates
the excellent stability of the magnetic trap. After 26 s of evaporative cooling, a BEC
with up to 3.6× 106 atoms is formed in the |1,−1〉 state.

The |1, 1〉 state, in which the resonances are predicted, cannot be held in a magnetic
trap. Therefore the atoms are now loaded into an optical dipole trap made of a single
beam from an Yb:YAG laser at a wavelength of 1030 nm. A laser power of 45 mW
is focused to a waist of 15 µm, resulting in measured trap frequencies of 930 Hz and
11 Hz, and an estimated trap depth of kB × 20 µK.

Once the atoms are in the optical trap, a radio-frequency field is used to transfer
the atoms to the desired |1, 1〉 state. With a Stern-Gerlach method, the fraction of
atoms that end up in the |1, 1〉 state is determined to be roughly 90%. Almost all other
atoms are in the |1, 0〉 state. Next, a homogeneous magnetic field is applied in order
to observe a Feshbach resonance. The field is created using the compensation coils of
the magnetic trap which are in near-perfect Helmholtz configuration. Up to 1760 A
of current are stabilized with a home-built servo to a few ppm. The magnetic field is
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Figure 4.1 l = 0 Feshbach resonances in a coupled-channel calculation. Bound-state

energies (solid lines) are shown as a function of magnetic field with quantum numbers

(f1, f2)v
′ assigned at B = 0. Additionally, dissociation threshold energies (dotted lines)

are shown for four different entrance channels (min
f1, m

in
f2). A Feshbach resonance (•)

occurs, when a bound state with quantum number mF crosses a dissociation threshold

with the same mF .

held at a fixed value for typically 50 ms and then quickly switched off. Although many
Feshbach resonances are rapidly crossed when the magnetic field is turned on or off,
no significant loss of atoms is observed from these rapid crossings. After switching off
the magnetic field, the atoms are released from the optical trap, and 14 ms later an
absorption image of the expanded cloud is taken.

The search for Feshbach resonances was typically performed with a purely thermal
cloud of 4×106 atoms in the optical trap at a temperature of 2 µK, corresponding to a
peak density of 2× 1014 cm−3. The magnetic-field range between 0.5 and 1260 G was
scanned and 43 Feshbach resonances were found. The magnetic-field values of these
resonances Bexp are listed in Tabs. 4.1 and 4.2. The fields were calibrated with 30 mG
precision using microwave spectroscopy in the vicinity of each resonance.

4.3 Theoretical perspective on the 43 Feshbach resonances

In order to analyze these results theoretically, both continuum and bound-state calcu-
lations are carried out using an accurate description of the atomic interaction between
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two Rb atoms [23]. An introduction to the theory of Feshbach resonances can be found
in Refs. [25, 26]. The strong central part of the interaction, consisting of singlet and
triplet potentials, conserves the orbital quantum numbers l,ml and the total-spin mag-
netic quantum number mF separately. (In bound-state spectroscopy, l is often called
N .) In the ultracold regime, with this part of the interaction included, Feshbach reso-
nances are expected to occur only when an l = 0 bound state with a certain value of mF

crosses the dissociation threshold of an entrance channel with the same mF . Figure 4.1
shows these crossings in the E-B plane as solid dots along various (min

f1,m
in
f2) thresh-

olds. The resonance fields obtained from these bound-state calculations are listed in
Tabs. 4.1 and 4.2 (l = 0 quantum number). The same field values also follow from the
B-dependence of the elastic S-matrix element, as obtained in a continuum calculation.

In Fig. 4.1, the bound states are labelled (f1, f2)v′, with the vibrational quantum
number v′ = -1, -2, -3, . . . counting from the corresponding (f1, f2) threshold. At
B = 0, the exchange interaction couples the atomic spins f1, f2 to a total molecular
spin F and causes a splitting between states with the same (f1, f2)v′ but different F .
In the presence of a strong external magnetic field, however, mf1 and mf2 become
good quantum numbers instead of F , while mF is always a good quantum number.
What constitutes a strong field in this sense depends on the size of the F -splitting at
B = 0. For small |v′|, the F -splitting is hardly visible in Fig. 4.1.

The much weaker spin-spin interaction Vss consists of the magnetic dipole-dipole
interaction of the valence electrons together with a second-order spin-orbit term [27].
Because of to its tensor form it breaks the spatial spherical symmetry and allows a
redistribution between the angular momenta of the spin and spatial degrees of freedom
so that the sum ml +mF is the only conserved quantum number. Vss admixes an l = 0
component in otherwise pure l = 2 bound states and therefore induces additional s-wave
Feshbach resonances in the ultracold regime. Resonances of this type have previously
been observed in Cs [14], but up to now never in 85Rb or 87Rb. The resulting resonance
fields are again listed in the tables (l = 2 resonances). For clarity, the l = 2 bound
states and resonances have been left out in Fig. 4.1. For mixed species resonances, such
as |1, 0〉 ⊗ |1, 1〉, the l = 1 partial wave can be populated in the entrance channel, thus
opening up the possibility to observe resonances due to l = 1 or l = 3 bound states.

4.4 Fine-tuning the interaction parameters

The set of potential parameters used in this calculation is obtained as follows. The field
value 911.74 G of one resonance is added to the set of eight experimental data already
included in the analysis of Ref. [23]. This particular resonance was chosen, because
the corresponding bound state is a pure triplet state and the previous experimental
constraints on the singlet potential [20] are much stronger than those on the triplet
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potential. Then, a least-squares analysis is applied with the column A parameters of
Tab. I in Ref. [23] as starting values. This leads to an adjusted set of parameter values
differing from the starting values by less than 1σ; in atomic units: C6 = 4.707 × 103,
C8 = 5.73 × 105, C10 = 7.665 × 107 (Ref. [28]), J = 0.486 × 10−2, aS(87Rb) =
+90.6, aT (87Rb) = +98.96, vDS(87Rb) = 0.454, and vDT (87Rb) = 0.4215. Coupled-
channel calculations [25,26] based on these fine-tuned parameters then yield theoretical
resonance fields Bth. The relative deviation of all these positions from the observations
is 1.6× 10−3 (rms). Compared to the four resonance positions predicted in [23], this is
an improvement of a factor of 6. Since only one resonance position was included in the
fit, the excellent agreement with all other positions demonstrates the accuracy of the
model. Note that the observed position of maximum loss might deviate from the pole
of the elastic scattering length [29]. However, such deviations are typically not larger
than the elastic widths of the resonances; and they are small as discussed below.

4.5 Discussing the experimental results

Some resonances are so close together that they cannot be identified merely from their
positions. In these cases, a Stern-Gerlach method was used to experimentally determine
which mf states incurred the strongest atom loss. Thus the entrance channel could
be clearly identified, in particular when additionally varying the initial spin mixture.
The entrance channel of the non-identified resonance at 1236.73 G was also determined
with this method.

An interesting property of a Feshbach resonance – besides its position – is its
strength. The strength of the elastic resonance is proportional to the field width ∆
over which the scattering length has opposite sign [26], as listed in Tab. 4.1. The
strength of the inelastic scattering properties is quantified by the loss rate. The dom-
inant loss for the resonances in Tab. 4.1 arises from inelastic three-body collisions.
This is because for the parameters of the experiment, single-body loss is negligible;
and since the |1, 1〉 entrance channel is the absolute ground state of atomic 87Rb, in-
elastic two-body collisions cannot occur [15]. (This is not the case for the resonances
in Tab. 4.2.) The three-body loss is characterized by the coefficient K3 in the rate
equation Ṅ = −K3〈n2〉N , where N is the atom number and n the density. The depth
d listed in Tab. 4.1 is a nonlinear, yet monotonic function of K3. In Tab. 4.1, one finds
a clear trend that stronger resonances with larger ∆ cause faster loss, i.e. larger d.
This is plausible, although the theory of three-body losses is not yet fully understood,
especially in the vicinity of Feshbach resonances [26,29].

Interestingly, the widths ∆ of the l = 0 resonances in Tab. 4.1 are much smaller
than for other alkali atoms [4,5,15,21]. This is due to the approximate phase equality
of the waves reflected from the short-range singlet and triplet potentials, that is also
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responsible for other remarkable 87Rb phenomena: the coexistence of condensates in
different hyperfine states [18] and the smallness of the fountain-clock frequency shift
[23].

All resonances display a nearly symmetric loss feature. A Gaussian is fit to the
atom loss at a 50-ms hold time in order to extract the depth and the width of the atom
loss. The Gaussian was chosen for convenience and because it fits well to the data. The
obtained rms widths are between 20 and 100 mG for almost all resonances. For small d,
this width is identical to the width of the resonance in K3 (if two-body loss is absent).
For large d, however, the nonlinear dependence of d on K3 broadens the observed width
at a given hold time, somewhat similar to saturation broadening of spectral lines. In
addition, the finite temperature of the cloud gives rise to a broadening of typically
20 mG and leads to a shift of similar size. The observed rms width of 24(4) mG at
965.96 G sets an experimental upper limit to thermal and technical broadening.

The broadest resonance is centered at 1007 G (see Fig.4.2). The theoretical predic-
tion for its elastic width, ∆ = 170(30) mG, is large compared to the above-mentioned
upper bound on the experimental broadening of 24(4) mG. This demonstrates the
potential for a controlled variation of the scattering length with the present setup.

For various field values, the decay of the atom number was also measured as a
function of time. If one assumes that the loss can be described by a rate equation,
three-body loss dominates (see above). Values of K3 determined from a fit are shown
in Fig. 4.2. Note that the value K3 = 3.2(1.6)× 10−29 cm6s−1 obtained away from the
resonance is consistent with the measured value K3 = 4.3(1.8)× 10−29 cm6s−1 for the
|1,−1〉 state [30]. The absence of two-body loss makes this resonance an ideal candidate
for testing theories of three-body loss [29]. The values ofK3 in Fig. 4.2 are much smaller
than those for 85Rb [16], where exciting experiments have been performed [8,9]. Three-
body loss will therefore not be a substantial problem for applications.

All data obtained here fit well to a three-body decay, but the initial atom number
extrapolated from the fit is a factor of up to 2 lower at the 1007 G resonance as
compared to the off-resonance value. Since no data were taken for hold times shorter
than 10 ms, this observation suggests the existence of an additional loss mechanism
acting on much faster timescales. This could be related to molecule formation and
dissociation when suddenly switching the magnetic field on and off [31]. Note, however,
that here loss from a purely thermal cloud is observed, while loss from a BEC is
discussed in Ref. [31].

4.6 Conclusions

To summarize, more than 40 Feshbach resonances have been observed in 87Rb. All
except one were identified by theory. After including one of the observed resonances in
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Figure 4.2 Asymmetric shape of the broadest Feshbach resonance. The number of atoms

(◦) remaining in the trap after a 50 ms-hold time is displayed as a function of magnetic

field. The three-body loss rate coefficient K3 is also shown (•).

fitting the model parameters, theory and experiment are in excellent agreement. The
magnetic field control is so accurate that it should be possible to resolve changes in the
elastic scattering length on the broadest resonance at 1007 G.
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Table 4.1 Feshbach resonances in the |1, 1〉⊗|1, 1〉 entrance channel. The experimentally

observed positions Bexp are compared with the theoretical predictions Bth calculated at

2 µK. Also shown are the observed depths d, defined as the fraction of atoms lost during a

50 ms-hold time. Note that the presence of atoms in spin states other than |1, 1〉 prevents

d from reaching 100%. For comparison, theoretical results for the elastic widths ∆ of the

resonances are listed. The last columns list the quantum numbers of the (quasi) bound

state that gives rise to the resonance. Some very weak l = 2 resonances could not be

detected experimentally.

Bexp(G) Bth(G) d(%) ∆(mG) l(f1, f2)v′,mF F mf1,mf2

406.23 406.6 57 0.4 0(1,2)-4, 2 0,2
685.43 685.8 78 17 0(1,2)-4, 2 1,1
911.74 911.7 72 1.3 0(2,2)-5, 2 4

1007.34 1008.5 64 170 0(2,2)-5, 2 2

. . . 377.2 . . . � 0.1 2(1,1)-2, 0 -1,1

. . . 395.0 . . . � 0.1 2(1,1)-2, 0 0,0
856.85 857.6 < 10 � 0.1 2(1,1)-2, 1 2 0,1

. . . 249.1 . . . � 0.1 2(1,2)-4, 1 -1,2
306.94 306.2 34 � 0.1 2(1,2)-4, 0 -1,1
319.30 319.7 54 < 0.1 2(1,2)-4, 2 0,2
387.25 388.5 53 < 0.1 2(1,2)-4, 1 0,1
391.49 392.9 63 0.3 2(1,2)-4, 3 3 1,2
532.48 534.2 57 < 0.1 2(1,2)-4, 0 0,0
551.47 552.0 66 0.2 2(1,2)-4, 2 1,1
819.38 819.3 29 < 0.1 2(1,2)-4, 1 1,0

632.45 632.5 77 1.5 2(2,2)-5, 4 4 2,2
719.48 719.5 77 0.5 2(2,2)-5, 3 4 1,2
831.29 831.3 67 0.2 2(2,2)-5, 2 4
930.02 930.9 78 < 0.1 2(2,2)-5, 2 2
978.55 978.3 36 < 0.1 2(2,2)-5, 1 4

1139.91 1140.9 10 � 0.1 2(2,2)-5, 1 2
. . . 1176.1 . . . � 0.1 2(2,2)-5, 0 4
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Table 4.2 Experimentally observed Feshbach resonances in other entrance channels

|1, min
f1〉 ⊗ |1, min

f2〉.

Bexp(G) Bth(G) l(min
f1,m

in
f2) Bexp(G) Bth(G) l(min

f1,m
in
f2)

391.08 391.7 0(0,1) 825.11 825.1 3(0,1)
417.20 417.7 2(0,1) 965.96 966.0 1(0,1)
535.01 536.6 2(0,1) 1137.97 1135.5 1(0,1)
548.60 550.7 2(0,1) 414.34 413.6 0(0,0)
669.19 670.7 0(0,1) 661.43 662.2 0(0,0)
802.94 805.0 2(0,1) 729.43 728.5 2(0,0)
821.04 821.7 2(0,1) 760.73 762.1 2(0,0)
840.95 841.0 2(0,1) 1167.14 1167.1 2(0,0)
981.54 981.7 2(0,1) 1208.69 1209.4 2(0,0)
1162.15 1162.5 2(0,1) 1252.68 1254.9 2(0,0)
1236.73 . . . -(0,1) 692.75 693.6 0(-1,1)
1237.19 1238.1 2(0,1) 1216.32 1216.6 2(-1,1)
1256.96 1257.1 0(0,1)
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Radio-frequency techniques were used to study ultracold fermions. We observed the ab-

sence of mean-field “clock” shifts, the dominant source of systematic error in current

atomic clocks based on bosonic atoms. This absence is a direct consequence of fermionic

antisymmetry. Resonance shifts proportional to interaction strengths were observed in a

three-level system. However, in the strongly interacting regime, these shifts became very

small, reflecting the quantum unitarity limit and many-body effects. This insight into an

interacting Fermi gas is relevant for the quest to observe superfluidity in this system.

5.1 Introduction

Radio-frequency (RF) spectroscopy of ultracold atoms provides the standard of time.
However, the resonance frequencies are sensitive to the interactions between atoms,
leading to the so-called clock shifts of the unperturbed resonances [1]. These shifts
limit the accuracy of current atomic clocks [2, 3], but can also be used to characterize
atomic interactions.

RF spectroscopy has previously been applied to cold atoms to determine the size
and temperature of atom clouds [4,5]. RF methods have also been used for evaporative
cooling, for preparing spinor Bose-Einstein condensates (BEC) [6,7], and as an output
coupler for atom lasers [5, 8]. In all these experiments, shifts and broadenings due to
atomic interactions were negligible. Recently, density-dependent frequency shifts of
RF transitions were observed in rubidium [9] and sodium [10] BECs. These frequency
shifts are proportional to the difference in mean-field energies of two internal atomic
states and allow scattering lengths to be extracted. Mean field shifts in BECs have
been observed also by optical spectroscopy [11,12].

Here, we apply RF spectroscopy to ultracold clouds of fermions and demonstrate
several phenomena: (1) the absence of a clock shift in a two-level system because of
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fermionic antisymmetry, (2) the emergence of mean-field shifts in a three-level system
after the relaxation of pair correlations, (3) the limitation of mean-field shifts because
of the unitarity limit, and (4) the universality of the interaction energy in a dense cloud,
independent of the attractive or repulsive nature of the two-particle interactions.

Research in ultracold fermions has advanced rapidly, with six groups now having
cooled fermions into quantum degeneracy [13–18]. A major goal of this research is to
induce strong interactions by tuning magnetic fields to scattering resonances (called
Feshbach resonances). Under these conditions, Cooper pairs of fermions may form,
leading to superfluidity. This would establish a model system for studying Bardeen-
Cooper-Schrieffer (BCS) pairing at densities nine orders of magnitude lower than in
previous realizations in 3He and superconductors. We show that RF spectroscopy can
be used to characterize interactions between fermions in the regime where superfluidity
has been predicted [19,20].

5.2 Experimental techniques

Our experimental technique for preparing ultracold fermions has been considerably im-
proved since our earlier work [17,21]. Because the Pauli exclusion principle suppresses
elastic collisions between identical fermions at low temperatures and prevents evapo-
rative cooling, we cooled fermionic 6Li sympathetically with bosonic 23Na loaded into
the same magnetic trap. In contrast to previous work, we cooled both species in their
upper hyperfine states (23Na : |F,mF 〉 = |2,+2〉, 6Li : |F,mF 〉 = |3/2,+3/2〉), where
F and mF are the quantum numbers for the total spin and its z component respec-
tively. This led to a reduction of inelastic loss processes, boosting our final fermion
atom numbers by two orders of magnitude. We could produce BECs that contained up
to 10 million sodium atoms in the |2,+2〉 state by evaporatively cooling pure bosonic
samples in the magnetic trap. For a Bose-Fermi mixture, the finite heat capacity of
the bosons limited the final lithium temperature after the 30 s evaporation cycle to
∼0.3TF for 10 million fermions and ∼TF for 50 million fermions [22], where TF is the
Fermi temperature.

The spin states of 6Li of most interest for superfluid pairing are the two lowest states
|1〉 and |2〉 (|1/2,+1/2〉 and |1/2,−1/2〉 at low field), which are predicted to have an
inter-state s-wave Feshbach resonance at ∼ 800 G [24, 25]. However, both states are
high-field seeking at these fields, which makes them unsuitable for magnetic trapping.
We therefore transferred the atoms into an optical trap. For these experiments, 6 to 8
million |3/2,+3/2〉 lithium atoms were loaded into the optical trap at T ∼TF ∼ 35µK
[26]. The atoms were then transferred to the lowest energy state |1〉, with an adiabatic
frequency sweep around the lithium hyperfine splitting of 228 MHz. Magnetic fields of
up to ∼ 900 G were applied, a range encompassing the |1〉 − |2〉 Feshbach resonance.
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Using RF-induced transitions near 80 MHz, we could create mixtures of states |1〉, |2〉
and |3〉 (|3/2,−3/2〉 at low field), and explore interactions between fermions in these
states.

5.3 Absence of clock shift

Collisions between atoms cause a shift of their energy, which is usually described by the
mean-field effect of all the other atoms on the atom of interest. For example, atoms in
state |2〉 experience an energy shift 4π~2

m n1a12 due to the presence of atoms in state |1〉.
Here ~ is Planck’s constant divided by 2π, m is the mass of the atom, n1 is the density
of |1〉 atoms and a12 is the interstate scattering length. We use the convention that
positive scattering length corresponds to a repulsive interaction. Density-dependent
shifts of the resonance frequency for the transition that connects two states have been
observed in laser-cooled [1] and Bose-condensed clouds [9, 10].

In the case of ultracold fermions, only interactions between different internal states
are allowed. For a system of density n, let us compare the energy of a gas prepared
purely in state |1〉, to a gas in which one atom is transferred into state |2〉. The energy
difference is hν12+ 4π~2

m na12, where ν12 is the resonance frequency of the non-interacting
system. Similarly, the energy difference between a gas prepared purely in state |2〉, and
a gas in which one atom is transferred into state |1〉 is hν12 − 4π~2

m na12.
However, these energy shifts should not affect the resonance for a coherent transfer

out of a pure state. For fermions in the initial pure state, the pair-correlation function
vanishes at zero distance because of the antisymmetry of the wavefunction. During
any coherent transfer process, the state vectors of all the atoms rotate “in parallel”
in Hilbert space, i.e. the superposition of the two spin states has the same relative
phase for all atoms. Thus, the atoms remain identical and cannot interact in the s-
wave regime. The mean-field energy is thus established only after the coherence of
the superposition state is lost and the pair correlations have relaxed, forming a purely
statistical mixture of the two states.

It is a consequence of Fermi statistics that spectroscopic methods do not measure
the equilibrium energy difference between the initial and final state of the system, but
rather measure the unperturbed resonance frequency. The expected absence of the
clock shift has led to suggestions for the use of fermions in future atomic clocks [27].
Our work presents an experimental demonstration of this phenomenon.

We determined the transition frequency between states |1〉 and |2〉, first starting
with a pure state |1〉, and then with a pure state |2〉 sample. The absence of a splitting
between these two lines proves the suppression of the clock shift. Fig. 5.1 shows an
example of such measurements. The magnetic field was ramped up to 570 G with the
cloud in state |1〉. At this field, a12 ∼ 150 a0. Therefore, the expected equilibrium
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Figure 5.1 Absence of the clock shift. RF transitions were driven between states |1〉 and

|2〉 on a system prepared purely in state |1〉 (solid circles), and purely in state |2〉 (open

circles). Mean-field interactions would have resulted in 5 kHz shifts for the two curves in

opposite directions. Gaussian fits (solid lines) to the data are separated by 0.04±0.35 kHz.

This gives a clock-shift suppression factor of 30. Arb., arbitrary units.

mean-field shifts were ∆ν = ±5 kHz for our mean density of 3 × 1013 cm−3 [28]. The
interaction between states |1〉 and |2〉 at this magnetic field was also observed in the
mutual evaporative cooling of the two states in the optical trap. RF pulses of 140µs
duration were applied at frequencies near the unperturbed resonance ν12 ∼ 76 MHz.
Atoms in states |1〉 and |2〉 could be monitored separately by absorption imaging,
because they are optically resolved at this field. We observed a suppression of the clock
shift by a factor of 30 (Fig. 5.1). Using the same method, we observed the absence of
the clock shift at several other magnetic fields. In particular, we observed a suppression
of more than three orders of magnitude at ∼ 860 G [29].

P-wave interactions [23] could lead to a nonvanishing clock shift. However, at these
low temperatures, they are proportional to T or TF , whichever is higher, and are
therefore strongly suppressed.

5.4 Measurement of a12 − a13

We can measure mean-field shifts and scattering lengths spectroscopically by driving
transitions from a statistical mixture of two states to a third energy level. (While this
work was in progress, use of a similar method to measure scattering lengths in fermionic
40K was reported [30].) Specifically, we recorded the difference between the RF spectra
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for the |2〉 → |3〉 transition in the presence and in the absence of state |1〉 atoms. The
presence of atoms in state |1〉 is then expected to shift the resonance by [31]:

∆ν =
2~
m
n1(a13 − a12) (5.1)

In our experimental scheme to determine the interaction energy at different mag-
netic fields (Fig. 5.2), the system was prepared by ramping up the magnetic field to
500 G with the atoms in state |1〉. Either partial or complete RF transfer to state |2〉
was then performed. The number of atoms in state |1〉 was controlled by adjusting the
speed of a frequency sweep around the |1〉→|2〉 resonance. A fast, non-adiabatic sweep
created a superposition of the two states, whereas a slow, adiabatic sweep prepared
the sample purely in state |2〉. A wait time of 200 ms was allowed for the coherence
between states |1〉 and |2〉 to decay and the system to equilibrate.

Typical parameters for the decohered |1〉 − |2〉 mixture were mean-density n1 ∼
2.4 × 1013 cm−3 and T ∼ 0.7TF . The magnetic field was then changed to the desired
value, and the transition from state |2〉 to state |3〉 was driven with 140µs RF pulses
[Fig. 5.2(C)]. We monitored the appearance of atoms in state |3〉 and the disappearance
of atoms from state |2〉, using simultaneous absorption imaging. Fig. 5.2(D) shows the
unperturbed and perturbed resonances at the magnetic field B = 480G. The position
of the unperturbed resonance ν23 also determines the magnetic field to an accuracy of
< 0.1 G. Fig. 5.2(E) shows absorption images of atoms in state |3〉, obtained for different
values of the applied radio-frequency. One can clearly see the spatial dependance
and thus the density dependence of the mean-field shift: Close to the unperturbed
resonance, the low density wings of the cloud are predominantly transferred, whereas
the high-density central part of the cloud is transferred only at sufficient detuning. To
suppress spurious effects from this spatial dependence, only a small central part of the
images was used to extract the transferred atomic fraction.

To ensure that our mean-field measurements were performed on a statistical mix-
ture, we measured the timescale for decoherence in our system. The decay of the
|1〉 − |2〉 coherence at 500 G was observed by monitoring the |2〉 → |3〉 transfer at the
measured unperturbed resonance ν23, as a function of wait time (Fig. 5.3). For wait
times that are small compared to the decoherence time of the |1〉 − |2〉 superposition,
the |2〉 → |3〉 RF drive places each atom in an identical three-state superposition.
All mean-field shifts are then absent and the resulting transfer is unchanged from the
unperturbed case. For longer wait times, the |1〉 − |2〉 superposition decoheres and
mean-field interactions set in. This shifts the resonance frequency of the |2〉 → |3〉
transition, reducing the transferred fraction at ν23. The measured decoherence time
of ∼ 12 ms was attributed mainly to the sensitivity of ν12 to magnetic field varia-
tions across the cloud. These inhomogeneities cause the relative phase of the |1〉 − |2〉
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Figure 5.2 Schematic of the mean-field measurement and representative spectra at 480G.

(A) Hyperfine structure of the ground state of 6Li. (B and C) Experimental scheme: (B)

preparation of a mixture of atoms in states |1〉 and |2〉, and (C) RF spectroscopy of

the |2〉 → |3〉 transition using a variable radio frequency (νRF). (D) The fraction of

atoms transferred from |2〉 to |3〉, with |1〉 atoms absent (solid circles), and present (open

circles). The mean-field shift is computed from gaussian fits to the data (solid lines).

(E) Spatial images of state |3〉 for the perturbed resonance. The optical trap was turned

off immediately after the RF pulse and absorption images of the atoms were taken after

120 µs expansion time. The central section of ∼ 150 µm vertical extent was used to extract

the transferred fractions in (D). (E) also shows images of states |2〉 and |1〉 for zero RF

detuning. States |3〉 and |2〉 were imaged simultaneously to observe their complementary

spatial structure. State |1〉 was imaged after 760 µs expansion time to record its density

for normalization purposes.
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Figure 5.3 Emergence of mean-field shifts due to decoherence at 500 G. Decoherence

leads to a reduction of the |2〉 → |3〉 transfer at the unperturbed resonance ν23. An

exponential fit to the data (solid line) gives a time constant of 12 ms.

superposition in different parts of the trap to evolve at different rates, given by the
local ν12. Atoms that travel along different paths within the trap therefore acquire
different phases between their |1〉 and |2〉 components. Being no longer in identical
states, s-wave interactions between them are allowed. The inhomogeneities scale with
B, whereas the sensitivity of the transition scales with ∂ν12/∂B. We would thus expect
the decoherence time to vary inversely with the product of these two quantities. Our
hypothesis is supported by our observation of longer decoherence times at higher fields,
where B × ∂ν12/∂B is lower.

Fig. 5.4(A) summarizes the results of our mean-field measurements for a wide range
of magnetic fields up to 750 G. For magnetic fields up to 630G, our data can be
explained fairly well using Eq. 5.1 with the theoretical calculations of the scattering
lengths shown in Fig. 5.4(B), and an effective density of n1 = 2.2 × 1013 cm−3, which
is consistent with the initial preparation of the system at 500 G. A narrow resonance
of a12 at ∼ 550 G [21, 25, 32] is indicated by the data, but was not fully resolved. We
also see additional structure near 470 G, which is not predicted by theory and deserves
further study.

For fields above 630 G, the measured shifts strongly deviate from the predictions
of Eq. 5.1, indicating a different regime of interactions. In the region between 630 G
and 680G, the two scattering lengths are expected to be large and positive, with
a13 � a12 [Fig.5.4(B)]. Eq. 5.1 would thus predict large positive mean-field shifts. In
contrast, we observe very small shifts, indicating almost perfect cancellation of the
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Figure 5.4 Spectroscopic measurement of interaction energy. (A) Frequency shift versus

magnetic field for the |2〉 → |3〉 resonance due to atoms in state |1〉. The shifts are

computed by monitoring the arrival fraction in state |3〉 for 140 µs RF pulses, except at

750 G. At 750G, because of strong inelastic losses between |3〉 and |1〉 atoms, we monitored

the loss of atoms in state |2〉 after applying RF sweeps of 3 ms duration and 2 kHz width.

All the data points are normalized to the same atom number in state |1〉. The fit at low

fields (solid line) uses Eq. 5.1 with n1 = 2.2× 1013 cm−3 and the theoretical calculations

of the scattering lengths. The error bars reflect uncertainty in the state |1〉 atom number,

and the uncertainty in the gaussian fits to the spectra. The dashed line indicates the

position of the predicted a13 resonance. (B) S-wave scattering lengths a12 and a13 as a

function of magnetic field, obtained from a highly model-independent quantum scattering

calculation. The calculation makes use of the presently available 6Li experimental data [40]

in a coupled channel approach to deduce accumulated phases that characterize the less

well-known, short-range parts of the 6Li + 6Li scattering potential [32]. a12 has a narrow

Feshbach resonance at 550 G and a wide one at 810 G. a13 has a wide Feshbach resonance

at 680 G.
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two contributions. We also observe essentially no mean-field shifts between 680G and
750 G, where the two scattering lengths are predicted to be very large in magnitude
and of opposite signs, and in a simple picture should add up to a huge negative shift.
These results are evidence for new phenomena in a strongly interacting system, where
the scattering length becomes comparable to either the inverse wavevector of interacting
particles, or the interatomic separation.

5.5 Role of unitarity

Eq. 5.1 is valid only for low energies and weak interactions, where the wave vector of the
two particles, k, satisfies k � 1/|a|. For arbitrary values of ka, the s-wave interaction
between two atoms is described by replacing the scattering length a with the complex
scattering amplitude:

f =
−a

1 + k2a2
(1− ika) (5.2)

The real part of f , Re(f) determines energy shifts, and hence the ground state
properties of an interacting many-body system. The imaginary part, Im(f) determines
the (inverse) lifetime for elastic scattering out of a momentum state, and hence the
dynamic properties of the system such as thermalization rates. For k|a| → ∞, the
elastic cross-section σ = 4πIm(f)/k monotonically approaches the well known “unitar-
ity limited” value of 4π/k2. On the other hand, the two particle contribution to the
mean-field energy, proportional to −Re(f) = a/(1 + k2a2), peaks at |a| = 1/k, and
then, counter-intuitively, decreases as 1/|a| for increasing |a|. Averaging Re(f) over
a zero-temperature Fermi distribution with Fermi momentum ~kF , limits its absolute
value to 1.05/kF , and markedly weakens its dependence on the exact value of a in the
kF |a| > 1 regime [33]. This results in a prediction for the mean-field energy that is
sensitive to the sign of the scattering length, remains finite for kF |a| � 1, and never
exceeds 0.45EF , where EF is the Fermi energy. Hence, this approach could qualita-
tively explain our results in the 630−680 G region, but it is in clear contradiction with
negligible resonance shifts in the 680− 750 G region [34].

We suggest that these discrepancies might be due to the fact that we are in the
high density regime, where n|a|3 approaches unity. In a degenerate Fermi gas, the in-
terparticle spacing is comparable to the inverse Fermi wavevector, k3

F = 6π2n. Hence,
the unitarity limit coincides with the breakdown of the low-density approximation
(n|a|3 � 1) and higher-order many-body effects can become important. Some recent
many-body calculations [35–37] suggest that in the regime kF |a| � 1 (or n|a|3 � 1),
the interaction energy is always negative and independent of both sign and magnitude
of a. This suggests that whenever the scattering length is large, either positive or
negative, the interaction energy is a universal fraction of the Fermi energy [33]. This is
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a possible explanation for the small line shifts that we observed for fields above 630 G,
where the interactions are strong in both states.

This picture is consistent with other recent experimental observations [30,33,38,39].
Expansion energy measurements in a mixture of states |1〉 and |2〉 of 6Li [39], showed
a negative interaction energy at 720 G, which is on the repulsive side of the predicted
Feshbach resonance. RF spectroscopy in 40K [30] has also shown some saturation of
the mean-field in the vicinity of a Feshbach resonance, which may reflect the unitarity
limit.

5.6 Conclusions

In characterizing an interacting Fermi gas by RF spectroscopy, we have demonstrated
absence of clock shifts in a two-level system, and introduced a three-level method
for measuring mean-field shifts. For strong interactions, we have found only small
line shifts that may reflect both the unitarity limit of binary collisions and many-
body effects. It would be very important to distinguish between two-body and many-
body effects by studying the gas over a broad range of temperatures and densities.
In a very dilute and very cold gas, the weakly interacting limit could be extended to
very large values of |a|, thus allowing for direct verification of molecular calculations.
This presents experimental challenges, because cooling changes the density and the
temperature together. It would also be interesting to study similar phenomena in
bosonic gases, in order to distinguish to what extent the high density many-body
effects depend on quantum statistics. This new insight into the physics of strongly
interacting Fermi gases must be taken into account in the search for superfluidity in
these systems.
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We report the observation of three p-wave Feshbach resonances of 6Li atoms in the lowest

hyperfine state f = 1/2. The positions of the resonances are in good agreement with

theory. We study the lifetime of the cloud in the vicinity of the Feshbach resonances and

show that, depending on the spin states, two- or three-body mechanisms are at play. In

the case of dipolar losses, we observe a nontrivial temperature dependence that is well

explained by a simple model.

6.1 Introduction

In the presence of a magnetic field, it is possible to obtain a quasidegeneracy between
the relative energy of two colliding atoms and that of a weakly bound molecular state.
This effect, known as a Feshbach resonance, is usually associated with the divergence
of the scattering length and is the key ingredient that led to the recent observation of
superfluids from fermion atom pairs of 6Li [1–4] and 40K [5]. Up to now these pairs
were formed in s-wave channels but it is known from condensed matter physics that
fermionic superfluidity can arise through higher angular momentum pairing: p-wave
Cooper pairs have been observed in 3He [6] and d-wave in high-Tc superconductivity [7].
Although Feshbach resonances involving p or higher partial waves have been found in
cold atom systems [8–10], p-wave atom pairs have never been directly observed.

In this paper we report the observation of three narrow p-wave Feshbach resonances
of 6Li in the lowest hyperfine state f = 1/2. We measure the position of the resonance
as well as the lifetime of the atomic sample for all combinations |f = 1/2,mf 〉+ |f =
1/2,m′

f 〉, henceforth denoted (mf ,m
′
f ). We show that the position of the resonances

are in good agreement with theory. In the case of atoms polarized in the ground
state (1/2, 1/2), the atom losses are due to three-body processes. We show that the
temperature dependence of the losses at resonance cannot be described by the threshold
law predicted by [11] on the basis of the symmetrization principle for identical particles.
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Figure 6.1 Coupled channels calculation of p-wave binding energies, which give rise

to Feshbach resonances at threshold. The two-atom states (full line) are indicated by

their quantum number (mf1 , mf2), while the bound state (dashed line) is labelled by the

molecular quantum numbers S, I, and l.

In the case of atoms polarized in (-1/2,-1/2) or that of a mixture (1/2,-1/2), the losses
are mainly due to two-body dipolar losses. These losses show a nontrivial temperature
dependence that can nevertheless be understood by a simple theoretical model with
only one adjustable parameter. In the (1/2,-1/2) channel, we take advantage of a
sharp decrease of the two-body loss rate below the Feshbach resonance to present a
first evidence for the generation of p-wave molecules.

6.2 Identification of the resonance-inducing state

The p-wave resonances described in these paper have their origin in the same singlet
(S = 0) bound state that leads to the s-wave Feshbach resonances located at 543 G
and ∼ 830 G. The latter has been used to generate stable molecular Bose-Einstein
condensates [1–4]. In order to discuss the origin of these resonances, it is useful to
introduce the molecular basis quantum numbers S, I, and l, which correspond to the
total electron spin S=s1+s2, total nuclear spin I = i1 + i2, and orbital angular
momentum l . Furthermore, the quantum numbers must fulfill the selection rule

S + I + l = even, (6.1)

which is a result of the symmetrization requirements of the two-body wave-function.
Since the atomic nuclear spin quantum numbers are i1 = i2 = 1, and S = 0, there
are two possibilities for the total nuclear spin in combination with an s-wave (l = 0)
collision: I = 0 and I = 2. These two states give rise to the two aforementioned s-wave
Feshbach resonances. For p-wave (l = 1) collisions only I = 1 is possible. This bound
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Table 6.1 Theoretical and experimental values of the magnetic field BF at the p-wave

Feshbach resonance for 6Li atoms in |f1 = 1/2, mf1〉 and |f1 = 1/2, mf2〉.

(mf1 ,mf2) Theory (G) Experiment (G)
(1/2,1/2) 159 160.2(6)
(1/2,-1/2) 185 186.2(6)
(-1/2,-1/2) 215 215.2(6)

state may then give rise to the three p-wave Feshbach resonances of Fig. 6.1. This
threshold state does not suffer from exchange decay, and is therefore relatively stable.
Our predicted resonance field values BF (Tab. 6.1) result from an analysis which takes
into account the most recent experimental data available for 6Li. The calculation has
been performed for all spin channels (mf ,m

′
f ) and a typical collision energy of 15 µK.

A more detailed analysis will be published elsewhere [12].

6.3 Experimental method

Experimentally, we probe these p-wave resonances using the setup described in previous
papers [13, 14]. After evaporative cooling in the magnetic trap, we transfer ∼ 5 × 105

atoms of 6Li in |f = 3/2,mf = 3/2〉 in a far-detuned crossed optical trap at low
magnetic field. The maximum power in each arm is P 0

h = 2 W and P 0
v = 3.3 W

in the horizontal and vertical beam respectively and corresponds to a trap depth of
∼ 80µK. The oscillation frequencies measured by parametric excitation are respectively
ωx = 2π × 2.4(2) kHz, ωy = 2π × 5.0(3) kHz, ωz = 2π × 5.5(4) kHz, where the x (y)
direction is chosen along the horizontal (vertical) beam. A first radio-frequency (rf)
sweep brings the atoms to |f = 1/2,mf = 1/2〉 and, if necessary, we perform a second
rf transfer to prepare the mixture (1/2,−1/2) or the pure (−1/2,−1/2). The variable
magnetic field B is the sum of two independent fields B0 and B1. B0 offers a wide
range of magnetic field while B1 can be switched off rapidly. After the radio-frequency
transfer stage, we ramp the magnetic field to B0 ∼ 220 G with B1 ∼ 8 G in 100 ms.
When needed, we reduce in 100 ms the power of the trapping beams to further cool
the atoms. For the coldest samples, we obtain at the end of this evaporation sequence
N ∼ 105 atoms at a temperature ∼ 5 µK. This corresponds to a ratio T/TF ∼ 0.5,
where kBTF = ~(6Nωxωyωz)1/3 is the Fermi energy of the system. To reach the
Feshbach resonance, we reduce B0 in 4 ms to its final value B0,f ∼ BF, near the
Feshbach resonance. At this stage, we abruptly switch off B1 so that the total magnetic
field is now close to resonance. After a waiting time in the trap twait = 50 ms, we switch
off the trapping and the magnetic field and we measure the remaining atom number
after a 0.35 ms time of flight.
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Figure 6.2 Atom number vs magnetic field B0,f after a 50 ms wait for atoms in the spin

mixture (1/2,−1/2) at T ∼ 14µK. The sharp drop close to B0 ∼ 186 G over a range

' 0.5 G is the signature of the p-wave Feshbach resonance predicted by theory.

We show in Fig. 6.2 the dependence of the atom number on the final value of B0,f

in the case of the spin mixture (1/2,-1/2) at a temperature T ∼ 14 µK. As expected
from theory, we observe a sharp drop of the atom number for values of the magnetic
field close to 186 G. The other two p-wave Feshbach resonances have a similar loss
signature and Tab. 6.1 shows that for all spin channels, the resonance positions are in
good agreement with predictions. Note that in table 6.1, the uncertainty is mainly due
to the magnetic field calibration while the short term stability is . 50 mG.

6.4 Trap losses

To evaluate the possibility of keeping p-wave molecules in our trap, we have studied
the lifetime of the gas sample at the three Feshbach resonances. We have measured
the number N of atoms remaining in the trap after a variable time twait. Accounting
for two- and three-body processes only, N should follow the rate equation

Ṅ

N
= −G2〈n〉 − L3〈n2〉, (6.2)

where n is the atom density and 〈na〉 =
∫

d3r na+1/N (a = 1, 2) is calculated from the
classical Boltzman distribution. In this equation, we can safely omit one-body losses
since the measured decay time is ∼ 100 ms, much smaller than the one-body lifetime
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Figure 6.3 Variations of (A) three-body and (B) two-body loss rates vs temperature at

the Feshbach resonance. (A): �: atoms in the Zeeman ground state |f = 1/2, mf = 1/2〉,
B0,f ∼ 159 G. (B): �: atoms polarized in |f = 1/2, mf = −1/2〉, B0,f ∼ 215 G. •:
mixture |f = 1/2, mf = 1/2〉+ |f = 1/2, mf = −1/2〉, B0,f ∼ 186 G. In both cases, the

full line is a fit to the data using prediction of Eq. 6.4 with the magnetic field as the only

fitting parameter.

∼ 30 s.

In the (1/2,1/2) channel, we find that three-body losses are dominant. The depen-
dence of L3 with temperature is very weak [Fig. 6.3(A)]. A theoretical calculation of
the temperature dependence of three-body loss rate has been performed in [11] and
it predicts that in the case of indistinguishable fermions L3 should be proportional to
Tλ, with λ ≥ 2. Although this prediction seems in disagreement with our experimental
results, the analysis of [11] relies on a Wigner threshold law, i.e. a perturbative calcu-
lation based on the Fermi golden rule. At the Feshbach resonance where the scattering
cross-section is expected to diverge, this simplified treatment is not sufficient. This
suggests that three-body processes must be described by a more refined formalism,
analogous to the unitary limited treatment of the s-wave elastic collisions [15]. To
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Table 6.2 parameters characterizing the two-body loss rates for (1/2,-1/2) and (-1/2,-

1/2) spin channels.

(mf1 ,mf2)
K

cm3 · µK · s−1

γ

µK
µ

µK ·G−1

(1/2,-1/2) 1.21× 10−13 0.05 117
(-1/2,-1/2) 7.33× 10−13 0.08 111

confirm this assumption, we have compared the loss-rates at two given temperatures
(T = 2 µK and T = 8 µK, respectively) for various values of the magnetic field (Fig.
6.4). If the threshold law is valid, then the ratio L3(2 µK)/L3(8 µK) should always be
smaller than (2/8)2 ∼ 0.0625 (full line of Fig. 6.4). As seen before, experimental data
show no significant variation of L3 with temperature near resonance. However, when
the magnetic field is tuned out of resonance we recover a dependence in agreement
with [11].

In contrast to s-wave Feshbach resonances where dipolar losses are forbidden in the
f = 1/2 manifold [16], the losses at resonance are found to be dominantly two-body
in the (1/2,-1/2) and (-1/2,-1/2) channels. The variations of the two-body loss rate
with temperature are displayed in Fig. 6.3(B). The temperature dependence appears
very different in the two cases. We show now that this is the consequence of a strong
sensitivity to magnetic field detuning from resonance, rather than a specific property of
the states involved. In an extension of the work presented in [17], we describe inelastic
collisions by two noninteracting open channels coupled to a single p-wave molecular
state [18]. This model leads to an algebra close to the one describing photoassociation
phenomena [19] and the two-body loss rate at energy E is given by

g2(E) =
KE

(E − δ)2 + γ2/4
. (6.3)

Here δ = µ(B − BF) is the detuning to the Feshbach resonance and K, µ and γ are
phenomenological constants depending on the microscopic details of the potential [21].
For each channel, these parameters are estimated from our coupled-channel calculation
(Tab. 6.2). To compare with experimental data, Eq. (6.3) is averaged over a thermal
distribution and for δ > 0 and δ � γ we get

G2 ∼ 4
√
π
K

γ

(
δ

kBT

)3/2

e−δ/kBT . (6.4)

Equation 6.4 is used to fit the data of Fig. 6.3(B), with B −BF as the only fitting
parameter. We get a fairly good agreement if we take B −BF = 0.04 G (resp. 0.3 G)
for the (-1/2,-1/2) [resp. (1/2,-1/2)] channel, illustrating the extreme sensitivity of G2



6.5 Formation of molecules using a Feshbach resonance 75

159,5 159,6 159,7 159,8 159,9 

0,01 

0,1 

1 

  

  

  
 

  
 

 

Magnetic Field [G] 

L
3
(
2

 
µ

K
)
/
L

3
(
8

 
µ

K
)

Figure 6.4 Ratio L3(T = 2µK)/L3(T = 8 µK) of the three-body decay rate for two

different temperatures for a gas of atoms polarized in |f = 1/2, mf = 1/2〉. Full line:

threshold law L3 ∼ T 2.

to detuning and temperature. This feature was also qualitatively tested by measuring
the variations of G2 with magnetic field at constant temperature. Another interesting
feature of Eq. 6.4 is that it predicts that the width δB of the Feshbach resonance, as
measured by atom losses, should scale like kBT/µ. For a typical temperature T ∼
15 µK, this yields δB ∼ 0.15 G, in agreement with the resonance width shown in Fig.
6.2.

From Eq. 6.4, we see that G2 nearly vanishes at δ = 0. The thermal average of
(6.4) for δ = 0 yields G2(δ = 0) ∝ KkBT . The ratio between the maximum two-body
loss rate (δ = 3kBT/2) and that at δ = 0 is then ∼ kBT/γ, ∼ 102 for ∼ 10 µK. In
the region δ < 0 where we expect to form molecules, we benefit from a 1/δ2 further
reduction of the two-body losses [see Eq. 6.4].

6.5 Formation of molecules using a Feshbach resonance

We have checked the production of molecules in (1/2,-1/2) by using the scheme pre-
sented in [13, 22]. We first generate molecules in |S = 0, I = 1, l = 1〉 by ramping
in 20 ms the magnetic field from 190 G> BF to Bnuc = 185 G < BF. At this stage,
we can follow two paths before detection (Fig. 6.5). Path 1 permits to measure the
number N1 of free atoms: by ramping down in 2 ms the magnetic field from 185 G to
176 G, we convert the molecules into deeply bound molecular states that decay rapidly
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Figure 6.5 Molecules are generated by ramping from a magnetic field higher than BF to

Bnuc < BF. From there, two paths are used. In path 1 (dashed line), the magnetic field is

decreased to create tightly bound molecules that will not appear on absorption images. In

path 2 (dash dotted line), the magnetic field is ramped up across resonance to dissociate

the molecules. The efficiency of the molecule production is simply given by (1−N1/N2)

where Ni is the atom number measured after path i.

by two-body collisions. Path 2 gives access to the total atom number N2 (free atoms
+ atoms bound in p-wave molecules). It consists in ramping up the magnetic field in
2 ms from Bnuc to 202 G> BF to convert the molecules back into atoms. Since the
atoms involved in molecular states appear only in pictures taken in path 2, the num-
ber of molecules in the trap is (N2 − N1)/2. In practice, both sequences are started
immediately after reaching Bnuc and we average the data of 25 pictures to compensate
for atom number fluctuations. We then get N1 = 7.1(5) × 104 and N2 = 9.1(7) × 104

which corresponds to a molecule fraction 1 −N1/N2 = 0.2(1). Surprisingly, we failed
to detect any molecule signal when applying the same method to (1/2,1/2) atoms.

Since the dramatic reduction of inelastic losses close to a s-wave Feshbach reso-
nance [23] was a key ingredient to the recent observation of fermionic superfluids, the
formation of stable atom pairs requires a full understanding of the decay mechanisms
at play close to a p-wave resonance. In this paper we have shown that in the particular
case of two-body losses, the maximum losses take place when the detuning is positive.
Since stable dimers are expected to be generated for negative detuning, dipolar losses
should not present a major hindrance to further studies of p-wave molecules.
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We perform an analysis of recent experimental measurements and improve the lithium

interaction potentials. For 6Li a consistent description can be given. We discuss theoretical

uncertainties for the position of the wide 6Li Feshbach resonance, and we present an

analytic scattering model for this resonance, based on the inclusion of a field-dependent

virtual open-channel state. We predict new Feshbach resonances for the 6Li-7Li system,

and their importance for different types of crossover superfluidity models is discussed.

7.1 Introduction

Resonances in cold atomic gases offer the key to connections with challenging condensed
matter physics. In particular, resonances make lithium atomic systems very versatile.
The first Bose-Einstein condensates (BEC) were quite small in number due to a negative
scattering length [1], later Feshbach resonances [2] have been used to create condensates
with positive scattering length and to generate bright solitons [3, 4] by changing the
scattering length a back to negative. Even more interesting is the usability to form
molecules, since the Feshbach resonance results from bringing a molecular state on
threshold. The connection between fermionic atoms and composite bosons (molecules)
has great impact for the study of the well-known crossover problem between BEC and
Bardeen-Cooper-Schrieffer (BCS)-type superfluidity [5–7].

In this Rapid Communication, we study several Feshbach resonances in the lithium
system. We first review the knowledge of the interatomic interaction potentials, and
use experimental data as input to improve these potentials. We discuss the special
situation for the wide 6Li resonance, where the background scattering length depends
strongly on the magnetic field. This will be interpreted as a field-dependent virtual state
(a second resonance) which is situated close to threshold. The full energy-dependent
scattering process can be parametrized according to a simple analytical model that
encapsulates both field-dependent resonances. Further, we apply our knowledge of
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the lithium interactions to a system of 6Li-7Li, and find several Feshbach resonances
which are accessible in current experimental setups. The underlying molecular state is
of a composite fermionic nature, which allows for a new type of crossover physics —
the transition of an atomic BEC to a molecular Fermi-type of superfluidity. Recently,
Feshbach resonances in a heteronuclear Bose-Fermi mixture have been observed [8, 9],
where polar fermionic molecules underly the resonance state.

7.2 The interaction model

For an accurate prediction of resonance properties, we need a detailed understand-
ing of the actual interatomic potentials. Here we describe how we improved the
precision of existing potentials by using recent experimental measurements as in-
put. The potentials can be divided in two radial intervals. For large interatomic
separations r the potential is given by the sum of the dispersive Van der Waals
tail V vdw(r) = −C6/r

6 − C8/r
8 − C10/r

10 and the exchange contribution V ex
S (r) =

(−1)S+1Cexr7/2α−1e−2αr [10], resulting in two potentials: a singlet (S = 0) and a
triplet (S = 1) potential. The coefficient Cex is taken from Refs. [11, 12], α is directly
related to the ionization energy α2/2 [13], and C8 and C10 are taken from Refs. [14].
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For smaller r we use the model singlet and triplet potentials which have also been used
in Refs. [15, 16].

These short-range and long-range potentials are smoothly connected at r = 18a0,
with a0 the Bohr radius. To overcome the inaccuracies of the short-range potentials,
we make use of the accumulated phase method [15]. A boundary condition is applied
on the partial-wave radial wave functions at r = 17.5a0 in the form of a WKB phase
φS,T (E, `) = φ0

S,T (E, `)+∆φS,T . The first term on the right-hand side is calculated by
radial integration of the model potential up to 17.5a0 and is expected to account for
the energy and angular momentum dependence of the accumulated phase to a sufficient
degree of accuracy. The second term is an energy and angular momentum independent
shift of the phase, determined from experimental data. These corrections ∆φS,T to the
accumulated singlet and triplet phases can be converted to the more physical quantities
νDS,DT , which are the fractional vibrational quantum numbers at dissociation.

We determine the free parameters of our interaction potentials νDS , νDT , and C6

from experimental input by means of a χ2 minimization. An interisotope analysis in
which 7Li is related to 6Li by means of a simple mass-scaling relation failed, yield-
ing inconsistent results for νDS . This is a strong indication of a breakdown of the
Born-Oppenheimer approximation for the singlet potential. Such a breakdown was
demonstrated in detailed spectroscopy [17]. We therefore avoid mass scaling of the
singlet potential, and we perform two different analyses. In the first analysis, we only
take 6Li data into account. In the second analysis we investigate 7Li as well, however,
we only do a mass scaling for the triplet potential. Our total set of 6Li experiments
comprises 6 data points. The zero crossing of the scattering length of a system in the
two lowest hyperfine states [18,19]; in the same spin state configuration, the positions
of the narrow [20] and wide [7] Feshbach resonances; and the measurement of the scat-
tering length in the lowest and third to lowest hyperfine state [21] and the binding
energy of the most weakly bound triplet state [22].

7.3 Application of the interaction model

In our first analysis we obtain a minimum in the reduced χ2 distribution of χ2 =
0.5. The corresponding parameter values are νDS = 0.3496(5), equivalent with a
singlet scattering length aS = 45.3(1)a0 and νDT = 0.9954(2), corresponding to aT =
−2025(70)a0. For the leading dispersion coefficient we find C6 = 1388(6) at. units.
This result has been obtained with a Cex of Ref. [12]. When we weaken Cex to the
value of Ref. [11], we find that the optimal C6 is shifted to C6 = 1390 at. units. The
scattering lengths found are consistent with previous determinations [16, 22]. Our C6

coefficient agrees with the values found in ab initio calculations [14,23].
The objective of a second analysis [24] is to reevaluate the position of the wide
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s-wave Feshbach resonance of 6Li in the two lowest hyperfine states, without making
use of the experimental result B0=822G [7]. Here we want to combine all available cold
collision data on lithium, and we add the positions of three p-wave Feshbach resonances,
which have been measured recently [25], and experimental data of 7Li [3,26], to the set
of experiments. In this combined isotope analysis we perform a mass scaling procedure
for the triplet boundary condition only. As explained above, we will not mass-scale the
singlet potential but rather optimize the boundary conditions for the singlet potential
independently for the two isotopes, by making νDS,7 a free parameter independent of
νDS,6.

Since the p-wave resonances are measured with high accuracy, we also allow for
small corrections of the angular momentum dependence of φ0

S(E, `) via the parameter
∆φl

S by means of an addition ∆φl
S · l(l + 1) cf. [27]. By optimizing the interaction

parameters (νDS,6, νDS,7, νDT,6, ∆φl
S) for various fixed values of C6 we are able to

obtain a minimum reduced χ2 of 0.7. The dependency of χ2 on C6 is rather weak and
therefore the set of experiments does not restrict the C6 coefficient to an acceptable
degree. However, the minimal χ2 occurs for C6 = 1390.6 at. units close to ab initio
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values, when using Cex from Ref. [11], positioning the wide Feshbach resonance at
B0 = 826 G. We estimate 808 G < B0 < 846 G for 1388 < C6 < 1393 at. units, see
Fig. 7.1. For Cex from Ref. [12] we find a minimum χ2 = 0.5 for C6 = 1395.6.

7.4 Analytic resonance model

From now on, the properties of the Feshbach resonances will be derived from our first
analysis. First, we study the wide B0 = 822 G Feshbach resonance in the two lowest
hyperfine states of 6Li. This resonance is quite remarkable for two reasons: it has a
large width of the order of 100 G, and its background scattering length abg is strongly
depending on the magnetic field, which can be seen from the inset of Fig. 7.2. At
zero field, abg is 3 and positive, while for large field values abg is large and negative,
indicating the presence of a nearby virtual state in the open-channel subspace P [28].
Consequently several important quantities, such as the S and T matrices which sum-
marize the collision process, depend nontrivially on the collision energy E. Here we will
apply the model discussed in Ref. [28] to this s-wave Feshbach resonance. This model
takes the virtual state into account explicitly, and gives an analytical description of all
important two-body quantities near the Feshbach resonance.

In general, the relation between the background scattering length abg, the range of
the potential aP

bg, and the virtual state pole κvs, is given by abg = aP
bg − 1/κvs. The

range of the potential is related to the Van der Waals coefficient C6, and does not
depend on the magnetic field. Therefore, we account for the field dependence of abg by
generalizing the model of Ref. [28] to the case of a field-dependent virtual-state κvs(B).
The complex energy shift is then given by

A(E,B) = ∆res(E,B)− i

2
Γ(E,B)

=
−iAvs(B)

2κvs(B)[k + iκvs(B)]
, (7.1)

where Avs(B) is related to the coupling matrix element between the open-channel
virtual state and the closed-channel bound state responsible for the Feshbach resonance.
Our wavenumber units are such that E = k2.

The total scattering length is then given by

a(B) = aP
bg −

1
κvs(B)

− lim
E→0

Γ(E,B)/2
k[εb(B) + ∆res(E,B)]

, (7.2)

where εb(B) = ∆µmag(B − B0) is the energy of the bare closed-channel bound state,
∆µmag = 2.0µB the magnetic moment, µB the Bohr magneton, and B0 = 539.5 G the
field where the bare closed-channel energy crosses threshold. For a fixed B value, the
parameters Avs(B) and κvs(B) are obtained by fitting Eq. (7.2) to the coupled-channels
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Figure 7.3 (color online) Two thresholds for the 6Li-7Li system which show the coinci-

dence of two Feshbach resonances. Inset: scattering length as a function of magnetic field,

for the two coinciding Feshbach resonances.

result for a(B), using two close-lying data points where we assume Avs and κvs locally
constant. Repeating this for every field value, we obtain explicit expressions for the
non-trivial energy dependence of the complex energy shift, using only the zero-energy
information contained in a(B). Note that there are only two free parameters, and
abg(B) is fixed once κvs(B) is known.

The fit functions are summarized in Table 7.1. In Fig. 7.2 we compare the dressed
(quasi-)molecular state calculated by coupled-channels methods and by our analytical
model, which agrees excellent. Therefore, this model can be used to analytically de-
scribe the S and T matrices [28], scattering phase shifts, etc., with similar precision as
a full coupled channels calculation, for a large range of energies and magnetic fields.
We note also that the narrow 543 G Feshbach resonance (width of order 0.1 G) can be
described by Feshbach theory. Here, however, an easier description is possible based
on only one single background part and a single resonance state, since the narrow
resonance has a ‘local’ background scattering length of the order of aP

bg. For narrow
resonances [29, 30], the typical resonance features in the continuum scattering which
depend on the details of the potential, are very important to the BEC-BCS crossover
physics, since they are visible for energies less than the Fermi energy, resulting in a
nonuniversal crossover picture.
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Table 7.1 Parameters of the virtual-state model. For the magnetic fields of interest

(530 G. B . 830 G), the parameters are given by a third-order polynomial fit, c0 +c1B +

c2B
2 + c3B

3. For Avs(B) the units are given by [cn] = K2G−n, and for κvs(B) the units

are given by [cn] = K1/2G−n. The range of the potential is given by aP
bg = 45 a0.

c0 c1 c2 c3

Avs(B) 1.62 · 10−5 −5.10 · 10−8 6.07 · 10−11 −2.56 · 10−14

κvs(B) 4.65 · 10−2 −1.54 · 10−4 1.92 · 10−7 −8.26 · 10−11

7.5 Creating fermionic molecules

Now we turn to the final topic of this paper, the study of Feshbach resonances in a
6Li fermion - 7Li boson mixture. We use again our first analysis of the interaction
parameters for 6Li, and perform a simple mass scaling of the accumulated phases for
the 6Li-7Li system. As discussed before, this leads to less accurate predictions for the
resonance positions as suggested by the accuracies from the 6Li interaction parameters.
We estimate the inaccuracies in the mixed isotope resonance positions to be of order a
few Gauss, due to inaccuracies of the mass-scaling relations.

Feshbach resonances in the 6Li-7Li system have been studied before in Ref. [16],
where only the case of magnetically trappable atoms was investigated. Moreover, those
resonances are accompanied by large inelastic exchange losses. We investigate only
6Li-7Li hyperfine state combinations where exchange losses are absent. Within these
boundaries, there are still numerous resonances present, and we restrict ourselves to the
most interesting results. The 6Li-7Li |1/2, 1/2〉⊗|1, 1〉 channel has the lowest energy in
the two-body hyperfine diagram. Therefore, this channel will not suffer from magnetic
dipolar relaxation. We find five Feshbach resonances at magnetic field values of 218 G,
230 G, 251 G, 551 G, and 559 G. Measurements of these resonances might provide
the missing information to exactly locate the position of the wide 6Li resonance, as all
mixed resonances arise from the same underlying bound state in the triplet potential.

Feshbach resonances between bosons and fermions give rise to a fundamentally
different type of crossover physics. Already some work on the interactions in Bose-Fermi
mixtures can be found in the literature [31,32], however, in order to describe correctly
the many-body physics and interactions close to resonance, more research is needed.
To make the system feasible, some requirements have to be fulfilled. For a stable BEC,
a positive scattering length for the bosons is required. Approaching the resonance from
the atomic side, the mixed boson-fermion scattering length will become negative, and
stability of the system could become an issue. At the other side of the resonance, it is
important that the effective interaction between the fermionic molecules is attractive.
Point-like composite fermions do not undergo s-wave collisions. However, close to
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resonance the molecules are long stretched, and an effective interaction mediated via
the bosons could be possible. An approach similar to Ref. [33] could be conclusive on
this and on the expected dependence of the inelastic rate coefficient on the scattering
length. Also, the effect of Pauli blocking will not be as strong as in Ref. [33] since a
three-body decay process with only one fermion and two bosons involved is possible.
However, a reduction with respect to the pure bosonic case could still be expected.

Another interesting situation occurs when two Feshbach resonances coincide. Fur-
ther away from resonance, where the size of the molecule is comparable to the size of
the potential, s-wave collisions are not allowed for these composite fermions. There-
fore, in order to preserve superfluid behavior in this region, two different molecular spin
configurations are needed to allow for s-wave collisions between molecules. Moreover,
it is desirable that the two resonances responsible for the molecule formation coincide.
Such a coincidence can be found from Fig. 7.3, where the 6Li-7Li |1/2,−1/2〉 ⊗ |1, 1〉
and |3/2,−3/2〉 ⊗ |1, 1〉 bound states and thresholds are plotted as a function of mag-
netic field. Every crossing of a bound state with threshold indicates the position of
a Feshbach resonance. It can be seen that at B = 305 G two Feshbach resonances
coincide. These two threshold channels have the same bosonic 7Li state, but a differ-
ent fermionic 6Li state. This coincidence is systematic, and will not depend on the
interaction parameters. The scattering lengths as a function of the magnetic field can
be seen in the inset of Fig. 7.3.

In conclusion, we analyzed recent experimental measurements for lithium, and
showed that mass scaling between 6Li and 7Li fails for the singlet potential. We investi-
gated uncertainties in the wide 6Li resonance position, and demonstrated an analytical
model for this resonance that includes the nearby virtual state. Finally, we showed
that 6Li-7Li mixtures feature accessible Feshbach resonances, giving rise to fermionic
molecules, yielding new BCS-BEC crossover physics.
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Summary

The research described in this thesis is part of an international effort with the aim
of studying ultracold quantum degenerate gas samples like Bose-Einstein condensates
and Fermi degenerate systems, consisting of atoms confined in magnetic or optical
traps. The behavior of such samples is governed by the inter-atomic interactions and
the resulting properties of the atom-atom scattering. At the relevant temperatures of
1nK to 10µK a key property is the atom-atom scattering length a.

In chapter 2 a theoretical method is presented which enables one to describe the
interaction and scattering of (ultra)cold atoms to unprecedented precision. It is also
unparalleled in comprehensiveness: it allows the prediction of a large and varied set
of experimental data for all isotopes of the same element. The method relies on the
extraction from experiments of a few (phase) parameters which completely summarize
the behavior of the atoms in the (ultra)cold regime. In chapter 3 the method is ap-
plied to the “workhorses” of cold-atom physics: the atomic species 85Rb and 87Rb.
We extract the foregoing parameters to a very high precision from several recent high
precision experiments, allowing us to predict e.g. the 87Rb spinor condensate to be
ferromagnetic: a prediction for which the scattering length has to be calculated with a
precision better than 1%. We also predict Feshbach resonances at experimentally acces-
sible magnetic field strengths; resonances searched for and found by the experimental
group of Rempe. In close collaboration with his group we “fine-tune” the interaction
parameters found previously, by making use of only one of the observed resonances.
We then obtain agreement with 42 out of the observed 43 resonance field strengths and
are able to identify bound states inducing the Feshbach resonances at these locations.
Chapter 4 describes the results of this research.

With a thorough understanding of the rubidium interactions, we then switch to
lithium which has a fermionic (6Li) and a bosonic (7Li) isotope. Both are being used
in cold-atom experiments. In chapter 5 we evaluate the interaction parameters for
lithium allowing us to predict magnetic field strengths for which a sample of fermionic
6Li atoms can be regarded as strongly interacting. Furthermore, a three-level method
for measuring mean-field shifts, based on radio-frequency techniques, is introduced. For
weak interactions we find proportionality of resonance shifts to interaction strengths.
In the strongly interacting regime, however, these shifts become very small reflecting
the quantum unitarity limit and many-body effects. Most interesting is the fact that
in this regime the shifts are small both for large positive a and for large negative a,
likely reflecting the universality of the interaction energy.
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In chapters 6 and 7 the interactions between lithium atoms are reinvestigated,
making use of newly available experimental data and with the updated interaction
parameters special attention is paid to locating field strengths at which magnetically
tunable Feshbach resonances occur in the scattering of lithium atoms. In chapter 6
scattering events in a gas of (fermionic) 6Li atoms are studied. In chapter 7 we show
that a consistent description of the 6Li+6Li system can be given. We discuss theoret-
ical uncertainties for the position of the wide 6Li Feshbach resonance and present an
analytic scattering model for this resonance, based on the inclusion of a field-dependent
virtual open-channel state. We predict new Feshbach resonances for the 6Li-7Li system,
and their importance for different types of crossover superfluidity models is discussed.
Molecules created by magnetically sweeping over these resonances will have a fermionic
character. One magnetic field strength is predicted at which two different fermionic
molecules can be created simultaneously.



Samenvatting

Het werk beschreven in dit proefschrift maakt deel uit van een internationale inspan-
ning, gericht op het bestuderen van ultrakoude gedegenereerde quantumgassen, zoals
Bose-Einstein condensaten en Fermi gedegenereerde gassen, bestaande uit atomen
opgesloten in een magnetische of optische val. Het gedrag van zo’n gaswolkje wordt
bepaald door de interatomaire interacties en de daaruit voortvloeiende atoom-atoom
verstrooiings-eigenschappen. Bij de in dit proefschrift relevante temperaturen (1nK tot
10µK) treedt één van die eigenschappen sterk op de voorgrond: de verstrooiingslengte
a.

In hoofdstuk 2 wordt een theoretische methode gepresenteerd die ons in staat stelt
de verstrooiings-eigenschappen van (ultra)koude atomen met een ongekende precisie
te beschrijven. De methode is ook ongeëvenaard wat betreft het toepassingsgebied:
op basis ervan kan een grote en gevarieerde verzameling experimentele gegevens voor-
speld worden voor alle isotopen van hetzelfde element. De methode is gebaseerd op
het samenvatten van het interatomair gedrag in het ultrakoude regime met slechts een
paar (fase-)parameters. In hoofdstuk 3 passen we de methode toe op het “werkpaard”
van de koude-atomen fysica: de atomen 85Rb en 87Rb. We bepalen de bovengenoemde
parameters met een zeer grote nauwkeurigheid uit een aantal recente hoge-precisie ex-
perimenten. Hierdoor zijn we bijvoorbeeld in staat om te voorspellen dat het gedrag
van een 87Rb “spinor” condensaat ferromagnetisch zal zijn: een voorspelling waarvoor
de verstrooiingslengte met een precisie van ten minste 1% berekend dient te worden.
Tevens voorspellen we Feshbach resonanties bij magnetische veldsterkten die experi-
menteel realiseerbaar zijn; resonanties die na zoekwerk ook zijn waargenomen door de
experimentele groep van Rempe. In een nauw samenwerkingsverband met zijn groep
hebben we de eerder bepaalde interactie parameters onderworpen aan een fijnafstem-
ming, door gebruik te maken van (slechts) één van de waargenomen resonanties. Na
deze fijnafstemming komt onze theorie goed overeen met de experimenten, waardoor
we voor 42 van de 43 resonantie veldsterkten in staat waren om de gebonden toes-
tand te kunnen identificeren die de resonantie veroorzaakt. Hoofdstuk 4 beschrijft de
resultaten van dit onderzoek.

Met een gedegen begrip van de rubidium interacties concentreren we ons ver-
volgens op lithium, waarvan een fermionische (6Li) en een bosonische (7Li) isotoop
bestaat. Beide worden gebruikt in de experimentele koude-atomen fysica. In hoofd-
stuk 5 evalueren we de interactie parameters van lithium, waardoor we in staat zijn
om te voorspellen voor welke magnetische veldsterkten we een gaswolkje 6Li atomen
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kunnen beschouwen als sterk wisselwerkend. Daarnaast introduceren we een, op rf-
techniek gebaseerde, drie-niveau methode om “mean-field” verschuivingen te meten.
Voor zwakke interacties vinden we proportionaliteit van de resonantie verschuiving met
de sterkte van de wisselwerking. In het regime van de sterke wisselwerking, daarente-
gen, worden deze verschuivingen zeer klein, hetgeen een signaal is van de unitariteits
limiet en van veel-deeltjes effecten. Zeer interessant is dat de verschuivingen klein zijn
voor zowel zeer grote positieve a als voor zeer grote negatieve a, hetgeen waarschijnlijk
een weerspiegeling is van de universaliteit van de interactie energie.

In de hoofdstukken 6 en 7 worden de interacties tussen lithium atomen nogmaals
onder de loep genomen, waarbij we gebruik maken van recenter beschikbaar gekomen
experimentele data. Met een volledig aangepaste set parameters zoeken we veldsterk-
ten waarbij Feshbach resonanties optreden bij de verstrooiing van lithium atomen. In
hoofdstuk 6 bestuderen we verstrooiings-verschijnselen in een gaswolkje van (fermion-
ische) 6Li atomen. In hoofdstuk 7 laten we zien dat het mogelijk is een consistente
beschrijving te geven van het 6Li+6Li systeem. We beschouwen de theoretische onzek-
erheid in de positie van de brede 6Li Feshbach resonantie. Tevens presenteren we een
analytisch verstrooiingsmodel voor deze resonantie, gebaseerd op het meenemen van
een veld-afhankelijke virtuele toestand in het open kanaal. We voorspellen nieuwe
Feshbach resonanties in het 6Li+7Li systeem en beschouwen het belang hiervan voor
de verschillende typen van “crossover” fysica. Fermionische moleculen kunnen worden
gemaakt door het magnetische veld te variëren over een bereik waarbij een Feshbach
resonantie wordt gepasseerd. We voorspellen één resonantie veldsterkte waarbij het
mogelijk is om simultaan twee verschillende fermionische moleculen te maken.



Dankwoord

Graag wil ik tot slot een aantal mensen noemen die een enorme steun zijn geweest
bij de totstandkoming van dit proefschrift. Allereerst natuurlijk Boudewijn Verhaar
voor de enthousiaste en stimulerende begeleiding. Ook mijn tweede promotor Herman
Beijerinck wil ik bedanken voor de stimulerende begeleiding en copromotor Servaas
Kokkelmans voor de prettige samenwerking.

Binnen de vakgroep AQT wil ik iedereen dank zeggen voor de plezierige contacten
gedurende de promotie en bij de theoretische groep wil ik Leon, Johan, Maikel en
Bout bedanken voor de gezellige tijd. Bij de experimentele groep gaat mijn dank uit
naar Edgar Vredenbregt die de gave heeft om problemen met apparatuur in het lab te
verhelpen door ernaast te gaan staan en er enkel naar te kijken. Ik ben ook Frank, Jan-
Pieter en Karin erkentelijk voor hun hulp bij het experimentele deel van mijn promotie.
Louis van Moll en Jolanda van de Ven mogen natuurlijk ook niet onvermeld blijven,
vanwege hun inventieve hulp bij het aanpassen van de opstelling. Alle waardering
heb ik voor Rina Boom. Haar hulp bij het afhandelen van de nodige bureaucratische
rompslomp was onmisbaar. De collega promovendi van AQT wil ik bedanken voor
de goede sfeer en fijne tijd. Kenian, Maarten, Bert, Bart, Veronique, Bout, Edwin,
Gabriel, Alquin, Paul en Simon: Bedankt! And of course the Australian guys, Colin,
Luke, Lincoln, Rob and Jonathan: Thanks!

I would also like to thank W. Ketterle, C. Salomon and the members of their research
groups for the nice and fruitful collaborations. Also thanks go out to D. Heinzen for
the collaboration we had. I am grateful to G. Rempe and the members of his research
group, especially Andreas Marte and Stephan Dürr, for contributions to our combined
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