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Abstract

We give a dual pair of linear programs for a min-max result of Mader describing the maximum number of
edge-disjoint T-paths in a graph G = (V, E) with T C V. We conclude that there exists a polynomial-time
algorithm (based on the ellipsoid method) for finding a maximum number of T-paths in a capacitated graph,
where the number of T-paths using an edge does not exceed the capacity of that edge.
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1 Introduction

Let G = (V,E) be a graph and T' C V a set of terminals. A T-path is a path in G connecting different
vertices of T'. Let u(G,T) denote the maximum number of edge-disjoint T-paths in G.

A T-subpartition in G is a set P of |T'| disjoint subsets of V', each containing exactly one vertex from
T. If P is a T-subpartition in G then we denote the set of connected components of G \ UP by C(P). For
two disjoint sets Uy, Us C V, we denote by d¢ (U, Us) the set of edges from G with one endpoint in U; and
the other in Us. We write dg (U, Us) for |6¢(Uy, Us)| and 6 (U), da(U) for (U, V \ U) and dg(U,V \ U)
respectively. If the graph @ is clear from the context, the subscripts G are left out. If P is a T-subpartition
in G, then the number of components U in C(P) with dg(U) odd (these will be referred to as odd components

of P) is denoted ¢(P). It is clear that

w(G,T) < 1/2min{( Z da(P)) — q(P) | P a T-subpartition of G},
Pep

since every T-path has to leave one element and enter another element of the T-subpartition P, whereas for
every odd component of P there is at least one edge entering it (this edge has its other end in an element of
P) that is not used in any path of a collection of edge-disjoint T-paths. Define

v(G,T) :=1/2min{( > _ da(P)) - q(P) | P a T-subpartition of G}.
PeP

Note that v(G,T) is equal t0 3 p ocp da(P, Q) + Yoyee(p) Lda(U)/2]. Mader [4] proved the following min-

max relation for the maximum number of T-paths in a graph G = (V, E).
Theorem 1.1 (Mader) For a graph G = (V, E) and set of terminals T CV,
u(G,T) = v(G.T)

In this note, we will show that the above min-max relation can be interpreted as strong duality for two
dual linear programs having integer optimal solutions. We will show that it is possible to separate over the
feasible region of the primal problem in polynomial time. This implies that there exists a polynomial time

algorithm (using the ellipsoid method) for finding a maximum number of edge-disjoint T-paths in a graph



with a capacity function ¢ : E — Z 4, such that at most c(e) of the paths use edge e for every e € E (the
min-max result remains valid for this case, since one can simply replace an edge e with capacity c(e) by c(e)
parallel edges). The question whether a combinatorial polynomial time algorithm for this problem exists
remains open. The uncapacitated case however is a special case of linear matroid matching, cf. [2], and

therefore it can be solved by a combinatorial algorithm, cf. [3].

2 Linear programming formulation

Let T C V be a set of terminals in the graph G = (V, E), where V = {1,2,...,n}. Let T denote the
set of 1/2|T|(|T| — 1) ordered pairs {(u,v) | u,v € T, u < v}, and let E* denote the set of 2|E| ordered
pairs {(i,7) | {i,j} € E}. To encode a collection of edge-disjoint T-paths we will use binary vectors
T = (z%”)gf]g)eeg of dimension |E||T|(|T| — 1), where z}{’ = 1 indicates that in the collection there is a
T-path between u,v € T with u < v, which, when it is oriented from u to v, uses edge {i,j} € E in the

direction from 7 to j. Now, it is not difficult to see that u(G,T') is equal to the optimal value of the following

integer program.

max 1/2 ) > (2l -2l +all —2) st

(u,v)ET JEV
SN @ —ayy = > D (@it —al) YueT,VieV\T
(u,w)ET JEV (v, u)ET JEV
(@l +ay)<1 V{i,jl€E

(u,0)ET

oY @ +al)<dX)-1 VX CV\T with d(X) odd
(u,v) €T {i,j}€6(X)

zi? € {0,1} V(u,v) € T,V(i,j) € E*
In the above integer program, the equality constraints can be viewed as flow conservation constraints: they
say that for every terminal u and every non-terminal vertex i, there are equally many u—(T" \ {u}) paths
entering i and leaving i in a system of T-paths. The constraints of the second type are capacity constraints:
they say that paths in a system of T-paths are edge-disjoint. The constraints of the third type are the

odd-set constraints: they say that at least one edge from every odd cut §(X), with X C V' \ X, is not used



by any path in a system of edge-disjoint T-paths. These constraints are superfluous in the integer program,
but will imply integrality for the linear programming relaxation.

Next, we consider the linear programming relaxation of the above integer program: we allow the variables
z{ to take values in [R rather than just in {0,1}. In addition, we introduce nonnegative slack variables y,
for every e = {i,j} € E (corresponding to the capacity constraints). Now y. = 1 means that edge e is not

used (in either direction) by a feasible solution. The resulting linear program can be rewritten as follows.

max 1/2 Z zy s.t.

u€eT
SNy —ay = > Yy —ap) =2t VueT,VieV
(u,w)ET JEV (v,u)eT jJEV

2 =0 YueT,Vie V\T

Y @+ +ye=1 Ve={i,j} € E
(u,0)ET

Y ge=1 VX CV\T with d(X) odd
e€d(X)

w%ﬂ)’x%},ye >0 V(u,v)eT,Ve={i,jl€E

2MeR YueT,VieV.

The dual of the above linear program is the following.

min Z/\e— Z ox S.t.

eck XCV\T odd

Ae + Tyi — Tuj — Tyi +7yj >0 V(u,v) € T,Ve={i,j} € E
Tyw = —1/2 Yu €T
Tuw =0 Yu,v € T,u#v

Ae — > ox >0 Ve={i,j} € E
XCV\T odd: ees(x)

ox >0 VX CV\T odd

Ae,Tui €EIR Yee ELNueT, VieV
It can be shown that the optimal value v(G,T) of a Mader-dual is greater or equal to the optimal value of
the above dual linear program. Indeed, if we are given an optimal T-partition P, where the element of P

containing u € T is denoted P,, then a feasible solution for the dual linear program can be defined from it



as follows.

Ty = —1/2 YueT

Tuww = 0 Yu,v €T, u#v

i = 1/2 Vi€ P,\{u}

Tui = 0 Vie V\P,

ox = 1/2 VX e(C(P) odd

cx = 0 otherwise

Ae =1 Ve={i,j} € 6(P1, P2), P1, P> € P with P, # P,
Ae = 1/2 Ve={i,j}€d(P,X),PeP, X cC(P)

Ae =0 otherwise

With these choices for the values of the variables, the value of the dual program is equal to the value v(G, T
of the given optimal T-partition. Because u(G,T') is obviously smaller than or equal to the optimal value of
the primal program, Mader’s theorem proves that the above linear programs have integer optimal solutions,
and that their optimal value is u(G,T).

Now, to see that it is possible to separate in polynomial time over the feasible region of the primal linear

program, it suffices to prove that one can separate in polynomial time over the polyhedron
{y € RY | y(§(X)) > 1VX C V\ T with d(X) odd }.

Separating over this polyhedron amounts to finding an odd cut of minimum capacity in a capacitated graph,
which can be done in strongly polynomial time ([5]). By the ellipsoid method (cf [1]), it is also possible to
optimize over the feasible region of the primal linear program in polynomial time, and hence to determine
w(G,T) for a given graph G in polynomial time. Consequently, an optimal system of edge-disjoint T-paths
in G can be found in polynomial time (for example by iteratively deleting edges as long as this does not
reduce the p-value of the graph).

After seeing the above LP-formulation, both A. Schrijver [6, page 1285] and A. Sebd [7] (independently)

suggested a more concise LP-formulation for Mader’s edge disjoint T-paths problem, which is worth men-



tioning.

u(G,T) =max 1/2) x(5(t)) s.t.

teT

0<z,<1 VeeFE
z(6(X)) <d(X)—-1 VX CV\T with d(X) odd

2(8(1)) < z(6(X)) Vi€ T,¥X CV with X N T = {t}

A short proof of this identity, and of the fact that it is possible to separate in polynomial time over the

feasible region of this linear program, appears in [6, page 1285].
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