

Application of rewriting techniques to verification problems

Citation for published version (APA):
Koprowski, A. (2005). Application of rewriting techniques to verification problems. In J. M. T. Romijn, G. Smith, &
J. C. Pol, van de (Eds.), IFM 2005 Doctoral Symposium on Integrated Formal Methods (Eindhoven, The
Netherlands, November 29, 2005) (pp. 76-80). (Computer Science Reports; Vol. 05-29). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/fdea4088-b0e0-4c8b-ac93-e665c2c9ad91

Application of Rewriting Techniques to
Verification Problems

Adam Koprowski

Technical University of Eindhoven
Department of Computer Science

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
A.Koprowski@tue.nl

Abstract. The goal of the project is to employ techniques from term
rewriting to verification problems. The relationship between liveness prop-
erties and termination of term rewrite systems (TRSs) is of particular
interest. The emphasis is on the investigation of such properties for infi-
nite state space systems where standard model checking techniques fail.
Next to developing the necessary underlying theory and performing a
case study analysis, the possibility to automate this approach is of great
importance. In this paper we discuss the motivation of such work, present
the results obtained so far, discuss related work and present plans for the
further research.

1 Motivation

The problem of proving termination of term rewrite systems has been studied
extensively and still attracts a lot of attention of term rewriting community.
Although in general undecidable, for a broad spectrum of term rewrite systems
encountered in practice termination can be proven and a number of techniques
has been developed to serve this goal.1

Apart from the theoretical results, possibility to automate the process of
proving termination of TRSs was always an important issue. A number of tools
for proving termination of TRSs in a fully automated manner has been developed
by different authors and an annual termination competition is being organized
to stimulate further work and improvement in that area.2

Now our main motivation is to make use of the aforementioned results and
develop a method to prove liveness properties by means of TRS termination. The
important point is that particular infinite state space models can be encoded by
means of finite TRSs. Now, since termination proofs do not depend in any way
on exploration of a state space, such problems can be tackled by our approach,
whereas standard model checking approach fails for them. We will present the
motivating example to illustrate our approach in Section 3.4.
1 For an overview of term rewriting in general, and termination of term rewriting in

particular, reader is refereed to, for instance, [5].
2 See http://www.lri.fr/∼marche/termination-competition for more details.

76

2 Related work

The idea of transforming verification problems to problems of termination of
TRSs goes back to Giesl and Zantema. In [1] they presented two such trans-
formations. The first one is sound and complete, that is a termination of the
transformed TRS is equivalent to a liveness question at hand. The second one is
only sound but significantly simpler. In [2] a slightly different setting has been
discussed.

As already remarked in [1] the sound and complete transformation presented
there is by far too complicated to be of practical use – even for simple input
systems termination of transformed TRSs is difficult to show. On the other
hand the preliminary case study conducted by authors revealed that the sound
transformation from [1] is often not strong enough and results in non-terminating
TRSs for problems where liveness do hold. That was the motivation for seeking
an alternative transformation; more powerful, but still suitable for automatic
termination provers. We will present such a transformation in Section 3.2.

3 Preliminary results

After giving some preliminaries in Section 3.1 we present the transformation
from liveness problems to (relative) termination problems of TRSs (3.2). Then
in 3.3 we describe TPA – a tool developed by authors for solving such (relative)
termination problems. In Section 3.4 we illustrate our approach with an example.

3.1 Preliminaries

For a signature Σ and a set of variables V, we denote the set of terms over
Σ and V by T (Σ,V). We denote the set of variables occurring in a term t
by Var(t). A rewrite rule is a pair (`, r), written ` → r, with `, r ∈ T (Σ,V),
` /∈ V, Var(r) ⊆ Var(`). A term rewriting system (TRS) is a set of rewrite rules.
The rewrite relation →R for a TRS R is defined by s →R t if there exists a
rewrite rule ` → r ∈ R, a substitution δ and a context C such that s = C[`δ]
and t = C[rδ]. A TRS R is called terminating (SN(R)3) if there is no infinite
reduction t1 →R t2 →R

For two relations R,S we define R/S ≡ S∗ · R · S∗. We call an infinite
R∪S reduction fair with respect to R if it contains infinitely many R-steps. The
relative termination problem is to decide given two TRSs R,S whether SN(R/S).
Note that SN(R/S) is equivalent to lack of infinite →R ∪ →S reductions fair
with respect to →R.

Let top be a fresh unary symbol in Σ (top /∈ Σ). A term t ∈ T (Σ ∪{top},V)
is called a top term if it contains exactly one instance of the top symbol, at the
root of the term. We denote the set of top terms by Ttop(Σ,V). A TRS over
Σ ∪ {top} is called a top term rewrite system (top TRS) if for all its rules ` → r
either both ` and r are top terms (top rule) or both ` and r do not contain an
instance of the top symbol (non-top rule).
3 It is usual to write SN(R) instead of SN(→R).

77

3.2 Transformation from liveness problems to termination problems

We make a concise presentation of the underlying theory and then present the
transformation. For more elaborate description we refer the reader to [3] and [4].

We extend the notion of liveness as considered in [1] by introducing fairness.
We define liveness with respect to a set of states S, two relations modelling
computations →,

=→ ⊆ S × S, a set of initial states I ⊆ S and a set of good
states G ⊆ S denoted as Live(I,→,

=→, G) to hold iff:

∀t1, t2, . . . :


t1 ∈ I

∀i : ti → ti+1 ∨ ti
=→ ti+1

∀i∃j > i : tj → tj+1

 =⇒ ∃i : ti ∈ G

Now we represent the computation states by terms, so S becomes T (Σ,V)
and I,G ⊆ T (Σ,V). Abstract reduction relations → and =→ now correspond to
rewrite relations of two TRSs over the same signature Σ: R and R=, respectively.
As a shorthand for →R we write → and for →R= we simply write =→. Just like
it is usual to write SN(R) rather than SN(→R), we will write Live(I,R, R=, G)
rather than Live(I,→R,→R= , G).

Given some set of terms P we are going to restrict to the set of good states
being terms not containing an instance of some term from P (we will denote this
set by G(P)). Now we are going to investigate liveness properties of the form:
Live(Ttop(Σ,V), R, R=, G(P)) for some top TRSs R and R=. This is equivalent
to proving that every infinite fair reduction of top terms contains a term which
does not contain an instance of any of the terms from P . Now we will present
a transformation that relates this problem with the (relative) termination of
transformed systems.

Definition 1 (LT) Let R and R= be top TRSs over Σ∪{top} and P ⊆ T (Σ,V).
The transformed systems LT(R) and LT=(R=, P) over Σ ∪ {top, ok, check} are
defined as follows:

LT(R)

` → r for all non-top rules ` → r in R

top(ok(`)) → top(check(r)) for all top rules top(`) → top(r) in R

LT=(R=, P)

` → r for all non-top rules ` → r in R=

top(ok(`)) → top(check(r)) for all top rules top(`) → top(r) in R=

check(p) → ok(p) for all p ∈ P

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

f(x1, . . . , ok(xi), . . . , xn) → ok(f(x1, . . . , xn))
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

78

The following theorem from [3] relates relative termination of transformed
systems with the liveness problem they originated from.

Theorem 2 (Soundness) Let R,R= be top TRSs over Σ ∪ {top}, let P ⊆
T (Σ,V). Then:

SN(LT(R)/ LT=(R=, P)) =⇒ Live(Ttop(Σ,V), R, R=, G(P))

It is worth noting that under some mild additional restrictions our transfor-
mation is also complete. For details we again refer to [3].

3.3 Proving (relative) termination automatically

In the preceding section we saw how to transform liveness problems to (relative)
termination problems. To deal with such problems the first author developed
a tool, TPA (Termination Proved Automatically), that aims at solving such
problems in an automated way. It is the first tool that also supports relative ter-
mination of TRSs, which was one of the main motivations to develop it. It uses a
number of termination proving techniques, most notably semantic labelling with
natural numbers, which, for the time being, is used by no other tool. It got 3rd
place in the aforementioned termination competition in 2005. More information
about TPA can be found on its web-page, http://www.win.tue.nl/tpa.

3.4 Example

Example 1 (Cars over a bridge). There is a road with cars going in two direc-
tions. But on their way there is a bridge which is only wide enough to permit
a single lane of traffic. So there are lights indicating which side of the bridge
is allowed to cross it. We want to verify the following liveness property: every
car will eventually cross the bridge. For that clearly we need some assumptions
about the lighting system. We want to be as general as possible so instead of
assuming some particular algorithm of switching lights we just require them to
change in a fair way, that is in the infinite observation of the system there must
be infinitely many light switches. Also we assume that before a light switches
at least one car will pass (otherwise liveness is lost as lights can change all the
time without any cars passing).

This system can be modelled with a unary top symbol whose arguments start
with a binary symbol left or right indicating which side has a green light. The
arguments of left and right start with unary symbols new and old representing
cars waiting to cross the bridge. The constant bot stands for the end of the
queue. New cars are allowed to arrive at the end of the queue at any time. What
we want to prove is that finally no old car remains. The top TRS modelling this
system follows:

(1) top(left(old(x), y)) → top(right(x, y)) (6) top(right(x, bot)) → top(left(x, bot))

(2) top(left(new(x), y)) → top(right(x, y)) (7) top(left(old(x), y))
=→ top(left(x, y))

(3) top(right(x, old(y))) → top(left(x, y)) (8) top(left(new(x), y))
=→ top(left(x, y))

(4) top(right(x, new(y))) → top(left(x, y)) (9) top(right(x, old(y)))
=→ top(right(x, y))

(5) top(left(bot, y)) → top(right(bot, y)) (10) top(right(x, new(y)))
=→ top(right(x, y))

(11) bot
=→ new(bot)

79

We have the following semantics of the rules: (1) − (4) car passes and the
light changes; (5)− (6) : no car waiting, light can change; (7)− (10) car passes,
light remains the same; (11) New car arriving.

By using our approach, in a way described in the preceding sections, the
liveness property stating that every old car can eventually cross the bridge, can
be transformed to a question of relative termination of TRS. This question, in
turn, can be positive answered in a fully automated way by the use of TPA .

4 Conclusions and further research

We presented a framework for verification of liveness properties, that can work
also for infinite state space systems. This method requires the model of the
system to be given as TRS but then the proof that liveness property holds is
delivered automatically by TPA by first transforming the TRS and then proving
termination of the transformed TRS.

Clearly this is just the beginning of the journey and a lot of extensions is
possible, among which the following ones we find particularly interesting and
worth further investigation:

– Clearly our definition of fairness and of liveness problems we are aiming at
could enjoy some generalization. Of particular interest would be the direction
allowing us to deal not only with liveness but also with safety properties.

– Once the framework is mature enough it would be interesting to perform a
case study analysis, on real-life examples.

– Some techniques for proving termination generalize to relative termination
and as such they are used in TPA. But, since relative termination plays an
important role in dealing with liveness with fairness, we believe that further
development of relative termination techniques would be of great interest.

– As soon as such techniques are available implementing them in TPA would
be a natural next step, increasing the applicability of the tool.

References

1. Jürgen Giesl and Hans Zantema. Liveness in rewriting. In Proc. 14th RTA, LNCS
2706, pages 321–336, 2003.

2. Jürgen Giesl and Hans Zantema. Simulating liveness by reduction strategies. Electr.
Notes Theor. Comput. Sci., 86(4), 2003.

3. Adam Koprowski and Hans Zantema. Proving liveness with fairness using rewrit-
ing. In Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005,
Vienna, Austria, September 19-21, 2005, Proceedings, volume 3717 of Lecture Notes
in Computer Science, pages 232–247. Springer, 2005.

4. Adam Koprowski and Hans Zantema. Proving liveness with fairness using rewriting.
Technical Report CSR 05-06, Eindhoven University of Technology, Eindhoven, The
Netherlands, March 2005.

5. TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

80

