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PREFACE 

The work on the routines in this booklet started some years ago when a number of codes were 
written to study BVP phenomena. Due to interest from other users we updated and diversified 
these codes time and again. As a result their descriptions became more detailed. When we 
realized that the specialisation to certain subclasses of BVPs was gradually producing an 
entire family of problems oriented codes, the idea was born to collect their description, 
supplemented with some mathematical analysis. From the foregoing it follows that the 
present volume is not a course book; it rather contains mathematical backgrounds and 
computational details of a number of algorithms for solving linear boundary value problems. 
These algorithms are based on a special implementation of a multiple shooting approach 
(although the name sequential shooting would be more appropriate). Their important common 
feature is that they employ a special stable linear algebra solver, based on a decoupling of the 
multiple shooting recursion. These methods have been found to be at least as robust and 
efficient as other (sparse) solvers. In fact for some special cases (like multipoint problems) 
they are more efficient. Therefore we have devoted a separate chapter to these linear solvers, 
describing routines that can be used in combination with other (discretization) methods as 
well. 
We are well aware of the fact that often problems are nonlinear rather than linear. However, 
the mathematical descriptions and the codes treated in this book can be used almost directly in 
a quasilinearization approach. On the other hand, for nonlinear BVPs a similar diverse range 
of subproblems can be distinguished. The ideas given in the various chapters may be a source 
of inspiration for im plementing nonlinear counterparts. 
We like to say a word about the philosophy of this package: Although it is often possible to 
reformulate various classes of BVPs into a standard form (we give some hints how to achieve 
this), such a formulation often leads to more costly computations than are necessary. 
Moreover. as it will tum out. special problems have special characteristics: for instance, 
dichotomy. that plays such a crucial role in any well-conditioned two-point BVP may lose its 
meaning in a multipoint BVP. For certain applications one is often interested in the specific 
problem characteristics (like estimates for the fundamental solution or the Green's function). 
Our package makes such information available. We also strongly believe in the idea that a 
code should provide as much additional information as possible in order to enable the user to 
give a meaningful diagnosis. At minor points therefore we have traded efficiency for 
robustness. Consequently we make a distinction between various two-point boundary 
conditions, between two-point and multipoint problems and between finite and infinite 
intervals. Special attention is being paid to ODEs with parameters and BVPs with jump 
conditions (where, incidentally, multiple shooting is a natural approach, requiring not even 
continuity at a shooting point). Finally we also consider eigenvalue problems. 

Eindhoven, 
February 1992 

v 

RMM.Mattheij 
G.W M. Staarink 



CHAPTER I 

INTRODUCTION 

1. ODEs, BCs and BVPs 

In this chapter we give a brief overview of the various types of boundary value problems 
which will be discussed later. We also include a general introduction to the solution methods 
on which the algorithms in the next chapters are based. 

Consider the following ordinary differential equation (ODE) : 

(1.1) %X(t)=L(t)x(t)+r(t) ,000:S;t:S;P, 

where L(t) is an n x n -matrix function (assumed to be sufficiently smooth in our apUcations) 
and x (t), r (t) n -vector functions. Sometimes we shall have to consider the homogeneous case 
(r(t)=O) separately. 
The solution x(t) is subject to a boundary condition (BC). In its most general form we have a 
multipoint BC, 

where MI •... ,Mm+l are n xn-matrices. b is an n-vector and 0:.1, ... ,o:.m+l e [0:.,(3] are 
ordered, such that 0:.= 0:.1 < 0:.2 < ... <o:.m+1 = (3. 
A problem (1.1), (1.2) is called a (linear) boundary value problem (BVP). Most often we have 
m = I, i.e. a two-point BC, which we usually shall write as 

(1.3) M aX(o:.) + M pX(P) = b . 

In CHAPTER II we shall discuss methods for BVPs with two-point BC; as it will tum out. 
situations where M (l and/or M p have some zero rows allow for a particular, more efficient, 
treatment. 
A somewhat different situation occurs when (3=00. For such BVPs on infinite intervals we 
have to truncate the interval to a finite one in a deliberate way; moreover, the terminal 
condition matrix M p is often absent, thus leading to a "conditional" initial value problem. This 
is discussed in CHAPTER III. 
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CH.I,l 

For a genuine multipoint case (i.e. m ~2) the BVP may have inherently different properties, 
which calls for a special treatment. As a special limiting case of (1.2) we consider an integral 
condition of the form 

~ 
(1.4) r M(t)x('t)d't=b . 

Multipoint and integral BC are considered in CHAPfER IV. 
Sometimes the solution should obey certain relations which we may collectively indicate as 
singular. A singularity in the ODE is usually treated by analytical means and so does not have 
a special treatment here. 
If we have at a certain point y 

(1.5) x(yt)=x('y-)+c. 

where x(yt) and x(y") have to be understood as right and left limits, we obviously meet a 
problem at y. Such side conditions (and more general ones) are dealt with in CHAPTER VI. 
For yet another type of problem we may let the ODE and/or the BC depend on some 
parameters, which are either supplemented by sufficient additional BCs, or are to be chosen 
such that the solution of the BVP is unique, apart from a multiplicative constant, to mention 
the simplest case of an eigenvalue problem: 

(1.6) trx(t) =L(t)x(t) + AX(I). 

Here the BC (1.3) is assumed to be homogeneous, i.e. b =0; see CHAPTER VII. 
If 

(1.7) trx(t) =L(t)x(t)+K(t)A+ r(t). 

where K (t) is an n x I-matrix function and A a fixed I-vector, we have a so called parameter 
problem. For the 1 unknown parameters we need 1 additional BCs. Such problems are 
considered in CHAPTER V. 

Several of the routines that are developed to solve the various BVPs are useful in their own 
right. In particular this holds true for the linear algebra routines. We have adapted some of 
them in such a way that they can be used to solve certain sparse systems. In CHAPTER VIII 
we shall indicate more precisely which kind. 

In the introduction of each chapter an explicit reference is being made to the appropriate 
routines. 
The documentation of these routines, in particular their paramcter list, the table of error 
messages and an example. to demonstrate their use. is given in CHAPTER IX. 
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CH. 1,2 

2. Notational conventions 

For efficiency's sake we briefly review here some conventions that will be used throughout the 
book. 
We shall frequently meet partitioned matrices. As we shall also meet recursions. we adopt the 
convention that subscripts denote the iteration index, as in 

(2.1) Xj+1 =Aj Xi + di . 

Superscripts exclusively refer to partitioning, as in 

(2.2) A = [~:: ~~l. 
where A II, A 22 are assumed to be square blocks; trivially, when the order of A 11 is given. the 
sizes of the other blocks are determined. Corresponding to a matrix partitioning (2.2), we can 
have a vector partitioning. Let Aill be a k x k matrix (Ai as in (2.2» then in 

(2.3) Xi = [::~l. 
XjI is assumed to have k coordinates. This induces a consistent partitioning in the recursion 
(2.1) 

(2.4a) 

(2.4b) 

For matrices we also use the following partitioning 

(2.5a) 

to indicate a partitioning into columns and 

(2.5b) 

to indicate a partitioning into rows. 

Because of their favourable numerical properties we use orthogonal matrices as much as 
possible. Three important matrix factorizations are used throughout: 

3 



CH.l,2 

(2.6) A =Q U , 

where Q is an orthogonal matrix and U is an upper triangular matrix ( Gram-Schmidt or QU
factorization cf. [2]); 

(2.7) A =U Q , 

where U is an upper triangular matrix and Q an orthogonal matrix ( UQ-!actorization ); and 

(2.8) A =U1:VT, 

where U and V are orthogonal matrices and 1: a diagonal matrix with semi-positive diagonal 
elements ( singular value decomposition, cf. [2]). 

Regularly we shall use norms to measure matrices and vectors, i.e.IIA II and Ilxll for a matrix A 
and a vector x, respectively. Usually one may use any norm for this, but sometimes we give 
preference to the maximum norm (co-norm) as this is easy to compute, or to the Euclidean 
norm (2-norm) because of its orthogonal invariance, i.e. for orthogonal Q It Q2. 

3. General description or (multiple) shooting and decoupUng 

The algorithms that will be described in the subsequent chapters are all based on a special 
implementation of two basic methods: multiple shooting and decoupling. We shall briefly 
outline these methods here. 
For the ODE (1.1) let a two-point Be 

(3.1) M ax(a)+Mpx(I3)=b, 

be given (cf. (1.3» (for multipoint Be the derivation is similar, though more complicated, cf. 
chapter IV). 
Let F(t) be afundamental solution of (1.1) (Le. an n xn -matrix solution of the homogeneous 
part of (1.1» and wet) some particular solution of (1.1). Then because of the linearity, we 
may find the solution x(t) by superposition. That is: there exists some (unknown) vector c, 
such that 

(3.2) x(t) =F(t)c + wet). 

This c is (uniquely) determined by the Be (3.1), Le. 
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CH. 1,3 

(3.3) [MaF(a)+MpF(~)]c =b -Maw(a)-M~w(~). 

A natural way to detennine F(t) and wet) is starting at t =0. (with an arbritary, or (preferably) 
simple looking initial value) and using an initial value integrator. An algorithm based on this 
principle is called single shooting. This method is notorious for giving bad results for 
problems where, say, exp«~-a)maxIIL(t)lI) is large. By applying a superposition idea 
repeatedly on subsequent subintervals we obtain a mUltiple shooting method: Let [0., ~l be 
divided into N-l subintervals, say. [ti ,tj+tl, i=1. ... ,N-l (t1=a. tN=~). On each 
subinterval a fundamental solution F i (t) and a particular solution Wi (t) is computed (often 
Wi (tj) =0). So for some vectors Ci we have 

(3.4) x(t) =Fi(t)c; +Wi(t) , i=l, ... ,N. 

Here we have added the solutions FN(t) and WN(t) for esthetic reasons. 
By requiring continuity at the shooting points ti (a condition that might be relaxed in certain 
applications cr. chapter VI) we obtain a recurrence relation for the Cj : 

Together with the relation obtained from the Be (3.1 ),viz. 

this gives rise to N linear equations for the unknown C 1, ... , CN. 

Although multiple shooting seems to be more complicated than single shooting, the initial 
value instability is exponentially reduced by the length of the (maximal) subinterval (i.e. 
errors are expected to grow by not more than a factor exp«ti+l-tj) max IIL(t)lI) on 

t E [t, ,1.+!1 

The discrete BVP (3.5), (3.6) leads to the following linear system: 

(3.7) c=f 
FN-l(tN) -FN(tN) 

M aF lett) M pFN(tN) 

with c = ref. ... , c1]T. f= [If. ... ,11]T and where 
Ii =Wj+l(ti+l)-Wj(ti+l), i=l, ... , N-l, 

IN =b -MaW\(tl)-Mj3WN(tN). 

The solution of this system can be obtained by using any general linear algebraic solver. 
However the sparsity of this system requires a special treatment for efficiency reasons. 
Therefore we shall describe a method which solves such a discrete BVP by decoupling; we 
shall do this for the fonnulation (3.5), (3.6): Let e.g. Fi(ti )=1 and write Ai :=Fi(ti+I), then 
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(3.8a) ci+l=AiCi-1i .i=1. ...• N-I. 

(3.8b) 

Further Jet T 1 be an orthogonal matrix. Then compute recursively for i = 1 ....• N -1 

(3.9a) 

(3.9b) 

where Ti+l is an orthogonal and Ui+l an upper triangular matrix (i.e. (3.9b) is a QU
decomposition). By defining 

(3. lOa) ai := Trl Cj ,i=I .... ,N, 

(3. lOb) d; := Ti:;:'\ Ii .i=l ....• N-l. 

(3.1Oc) Mi :=Mi Ti ,i=l,N, 

we obtain the decoupled recursion 

(3.11) 

where aj satisfies the Be 

(3.12) 

For well-conditioned problems. it can be shown that the solution space S (of the homogeneous 
problem) is dichotomic , i.e. there exists a subspace S 1 (of dimension k say) of solutions that 
do not increase significantly for decreasing t and a complementary subspace S2 (of dimension 
n -k) of solutions that do not increase significantly for increasing t; in fact both subspaces 
may contain exponentially growing modes and in particular the exponentially growing modes 
(for increasing t) of the first subspace may cause instabilities for (single) shooting. Avoiding 
technical details, it can be shown that the dichotomy has visible effects on the decoupled 
recursion matrices Ui. Under fairly general conditions (dealing with the choice of T 1) the 
k x k left upper bloeks in the Ui reflect the incremental growth of the modes E S I and the 
(n -k)x(n -k) right lower blocks the growth of modes E S2. One may compare this idea 
with probably more familiar results in power methods, where the Aj are constant. The 
algorithm (3.9) then is essentially equivalent to subspace iteration (a predecessor of the QR 
algorithm without shifts). Partitioning Ui' ai and di as 

(3.13) U, = [i ~: 1, a, = [ :~ 1, d, = [~~ 1 ' 
respectively. we can write 
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(3.14a) 

(3.14b) 

Because of the said properties of Ej, it should be expected that (3.14a) is a stable recursion, 
i.e. if a r is given no significant error growth in the al will be present. On the other hand, 
(3.14b) will be stable givcn a value of aN (and assuming aJ-l' ... ,ar are known, so they 
just add to the source tcrm di~l)' This combination of forward and backward sweeps in 
appropriate directions is then used to stably compute both some fundamental solution of 
(3.14) and some particular solution. These arc used in tum with a superposition principle in 
(3.12), aftcr which thc Cj essentially follow from (3.lOa). 

References 

[1] U.M. Ascher, RM.M. Mattheij, RD. Russell. Numerical Solutions of Boundary Value 
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CHAPTER II 

TWO-POINT BVP 

1. Introduction 

Consider the ODE 

(1.1) %X(t)=L(t)x(t)+r(t) , c:x::;t::;~ 

and the two-point BC 

(1.2) M(lx(c:x)+Mpx(~)=b. 

The algorithm combines multiple shooting with decoupling (cL §I.3). In particular it 
computes the fundamental solutions sequentially by choosing them such that 

where Qi+l is an orthogonal and Ui+l an upper triangular matrix. 
On the subinterval [ti ,ti+1 ] we have 

Matching at the endpoints of the subintervals leads to 

which results into the recursion 

It is easy to see that 

Now any solution [aj} of recursion (1.7) can be written as 
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(1.9) aj = <1>; C + Zj , 

where {<1>j }!!1 is a fundamental solution of 0.7), i.e. 

and {zd!!1 a particular solution of (1.7). 

The computation of {<1>j }!!1 and {Zj }~l is employing the decoupHng in (1.7), which in tum is 
related to the dichotomy for a well-conditioned problem. Using [cI>i }!!l and {Zi }~ .. we can 
compute c from (cf.(1.2» 

(1.11) [M aQl <1>1 +M~QN <1>N 1 c = b -M aWt(tt) -MllwN(tN) 

-MaQIZI-MflQN ZN· 

Thenx(ti) follows from (1.9) and (1.8). 

Remark 1.12 

If the matrix [M a Q 1 <1>} + M P QN 4>N ] is ill-conditioned, computing c from (1.11) may result 
in an inaccurate computation of the x (ti). The routines compute a condition number eN which 
indicates whether this matrix is ill-conditioned or not (cf.(3.12». Another problem is that 
errors might be propagated in an unstable way when the recursion 0.7) is used (although this 
should not be any problem in a well-conditioned case). The routines compute an estimate of 
the amplification of errors, which we call the amplification factor (in fact another condition 
number). 

Quite often the matrices M a, M p have more structure. In particular M a or M p may have some 
systematically zero rows. This will be referred to as partially separated BC. If both M a and 
M p have zero rows (but for different row indices) and such that there total number equals n. 
the BC is referred to as (completely) separated. 

The methods discussed in this chapter are implemented in the routines MUTSGE (for general 
BC), MUTSPS (for partially separated BC), MUTSSE (for separated BC). 

2. Global description of the algorithms 

In this section we shall give an outline of the various algorithms for the various types of two
point BC. 

2.1 BVPs with general BC 

Consider the ODE (1.1) and the general two-point BC 

10 



(2.1) M aX (ex.) + M I}x(~) = b . 

Any solution of the ODE (1.1) can be written as 

(2.2) x(t) =F(t)c +w(t) , 

where F (t) is a fundamental solution of the homogeneous part of (1.1), i.e. 

(2.3) %F(t) =L(t)F(t), 

w (t) a particular solution of (1.1) and c a constant n -vector. 
After substituting (2.2) in (2.1) determine c from 

So the solution x of (1.1) and (2.1) may be computed by superposition as follows: 

(2.Sa) find a particular solution w (t) of the ODE (1.1), 

(2.5b) fmd a fundamental solution F (t) of the ODE (2.3), 

(2.Sc) find the n -vector c from equation (2.4). 

CH. II,2 

This method is mathematically equivalent to what would have been found by single shooting. 
However, in many interesting problems. the homogeneous part of the ODE (Ll) has fast 
growing modes, which makes e.g. the computation of the fundamental solution F (t) an 
unstable affair, cf. the remarks about dichotomy made in §L1.3. To reduce this instability. the 
interval [ex.. ~] is divided into subintervals [ti • ti +11, i = 1,2, ... , N -1 , say; then on each 
subinterval a particular solution Wi(t) and a fundamental solution Fi(t) is computed. This is 
called multiple shooting. Now, any solution of (1.1) on the subinterval can be written as 

(2.6) X(t)=Fi(t)ai+wi(t) ,i=l, ... ,N. 

There are several possibilities for choosing the fundamental solution Fi(t), i =1,2, ... , N. 

For the methods discussed here the Fi (I) are chosen such that 

where Qi+l is an orthogonal matrix and Ui+l an upper triangular matrix. By letting U 1 = I, we 
may include the case i =0, if we choose F l(tl)=Q 1, some orthogonal matrix. 
By matching the relations (2.6) at the points ti+1 • i = 1, ... , N -1, we then obtain 

If we denote 

11 
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we thus obtain the following upper triangular recursion: 

By our choice of the Fi we immediately see that 

Now let {.pi} f=l be a fundamental solution of (2.10), i.e. 

and let {Zi lf=l be some particular solution of (2.10). Then there should exist some vector c 
such that 

(2.13) ai = <Pi C + Zi , i = 1,2, ... , N. 

From (2.11) and (2.13) we therefore obtain the relation 

Aftersubstitutingx(tl) =x(a) andx(tN) =x(~) in the Be (2.1) we thus find: 

(2.15) [Ma.Ql <PI +MpQN <PN]C =b -Ma.wl(a)-MpwN(~) 
-MaQIZI-MpQN ZN· 

The vector c which follows from (2.15) gives us the desired solution values x (Ii) via (2.14), 

Remark 2.16 

In the case that the ODE (2.1) is homogeneous, Le. r(t) = 0, t E [a,~], there is no particular 
solution to be computed. Then (2.6), (2.8), (2.10), (2.11), (2.14) and (2.15) are to be replaced 
by: 

(2.6)' 

(2.8)' 

(2.10)' 

(2.11)' 

(2.14), x (ti) = Qi <Pi C , 
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(2.15)' 

respectively (for relevant indices i). 

2.2 BVPs with partially separated BC 

If we have a partially separated· BC, i.e. where in (2.1) the matrix M a. and/or M p have a few 
zero rows, this fact can be utilized to reduce the computational labour, in that a smaller 
number of basis solutions has 10 be computed. For our discussion the following typical Be is 

10 be considered: 

(2. 17a) 

(2.17b) 

Here IMa. and IMp are ks xn-mamces, 2Ma. is an (n -ks)xn-mamx and b 1 and b2 are ks-
vector and (n-ks)-vector, respectively; i.e. only Mp has systematically zeros, viz. in its last 
(n -ks ) rows. 

Remark 2.18 

If M u happens to have a number of zero rows instead of M 13, the arguments below are 
essentially the same. 

The reduction in computing Fj (t) consists of the fact that we only compute its first ks 
columns, viz. (F8t», by requiring that 

(2. 19a) 

The particular solution Wt(t) is then chosen such that it satisfies the decoupled initial value 
part, i.e. 

(2. 19b) 

Formally we thus see that the desired solution x should lie in a linear variety 
wt(t)E9 span(Fr(t», where Ff(t) is just some complementary part of the fundamental 
solution F I (t). From (2.17) and (2.19) we see that span(wI(t)1l span(F I (t». Now we can 
proceed as in the general case, i.e. we can divide [a, (3] into subintervals 
[tj,tj+d,i=1,2, ... ,N-1. On each subinterval [tj,tj+tl a partial fundamental solution 
Fil(t) and a particular solution Wj (t) is computed such that at the initial point of the interval: 
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This then means that there exist ks-vectors ail, such that for any i, 

(2.21) x(t) = F8t) ail +Wi(t). 

In our algorithm we choose Fil(t;) such that its columns are orthogonal. The analogue of (2.6) 
reads therefore: 

(2.22) 

where the n xks-matrix Qi~l has orthogonal columns and Vi+l is a ks xks upper triangular 
matrix. Now if we denote (cf. (2.9» 

then we obtain the following reduced upper triangular recursion: 

Remark2.2S 

Since we choose Wi+l(ti+l) orthogonal to span(Fi~l (ti+l» = span(Qi~I). we see that we can 
actually simplify (2.23) to 

Remark 2.27 

Wi+l(ti+l) is uniquely detennined by the requirements (2.20). We apparently should project 
Wi(ti+l) onto span(Qi~l) and subtract this from Wi(ti+l). Hence we find 

The computation of the ail from the Be is done in a similar way as in the preceding 
subsection; we compute a fundamental solution {<I>tJ f=l and a particular solution {Zil} f=l of 
(2.24). Since for some ks-vector c 1 there must hold 

(2.29) ail = CPr c I + Zil • 

we obtain the desired solution from 
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After substitutingx(tl) = x (a:) and X(tN) =x(~) in the Be (2.17a) we thus find c l from 

(2.31) [ 1M a.Q/ <1>/ + 1M pQtJ <I>~ ] c 1= b 1 - 1M a WI(a:) - 1M pWN(~) 
-lMaQ/ zJ-IMpQtJzrJ. 

Remarks 2.32 

(i) If the ODE is homogeneous we still have to compute solutions Wi (t) (but now of the 
homogeneous ODE) such that (2.19b) is satisfied. 

(ii) If the ODE is homogeneous and moreover b2 = O. then we can skip the computation of Wi 

and put di = 0 for all i. In such a case we have to replace (2.21), (2.24), (2.29), (2.30) and 
(2.31) by 

(2.21)' 

(2.24)' 

(2.29)' 

(2.30)' 

(2.31)' 

respectively. 

2.3 BVP with (completely) separated BC 

If we have (completely) separated BC then 1M a. = 0 in (2.17) as well. So 

(2.33a) 

(2.33b) 

where 1M P is a ks x n -matrix and 2M a. is an (n - kg) x n -matrix. 
We can use a similar approach as in § 2.2. However (2.29) until (2.31) are not needed. 
Indeed, as can be expected we have an explicit terminal value for the recursion (2.24) to 

compute the sequence {atJ •. ..• a/}. From (2.21) we derive 

After substitution in (2.33) we obtain 
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(2.35) 

Remark 2.36 

The same remarks as 2.32 apply to the separated case, i.e. if the problem is homogeneous and 
b2 = 0, we skip the computation of the {Wi (t)} and {Zit}. 
Instead of (2.34) and (2.35) we then have 

(2.34)' 

(2.35), 

3. Special features of the methods 

There are several aspects which make our routines different from other Multiple Shooting 
strategies. In the following subsections we shall describe some of them. This may help to 
understand the power and also the limitations of the method. 

3.1 Numerical realization of the integration 

Since the numerical integration accounts for the bulk of the computational labour, it is of 
fairly great importance to have this computation done efficiently. A first gain can be achieved 
quite simply. Realizing that the unstable solutions will inevitably dictate the stepsize if an 
absolute tolerance is given (and won't do for less if a relative tolerance is required), we need 
to use the adaptive integration control only for one solution on each subinterval. The other 
solutions are found at the thus determined grid. The grid is determined by the panicular 
solution Wj(t), or, if the problem is homogeneous, by the first column of Fi(t) (or Fil(t». The 
latter choice is induced by the wish to have points such that the most unstable solution is still 
integrated correctly (i.e. up to the required tolerance). See also [7]. 

3.2 Computing fundamental and particular solutions of recursions 

For solving a BVP with general Be or panially separated Be we have to compute a 
fundamental solution and a particular solution of recursions (2.10) and (2.24), respectively. As 
both recursions are of the same nature, we only discuss recursion (2.10). 

The impottant idea behind the decoupling method of §2 is that in well-posed linear BVP, the 
homogeneous solution space of (2.1) is dichotomic , Le. is such that for some integer kp 

("panitioning index") there exist a kp -dimensional subspace of increasing solutions and an 
(n-kp)-dimensional subspace of non-increasing solutions. Using this propeny and starting 
with a proper Ql (=Ft(tt», we can compute a set of Vi for which the first kp columns 
represent the subspace of increasing solutions and the last (n -kp) columns the subspace of the 
non-increasing solutions. In this way we have decoupled the increasing solutions and the 
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non-increasing solutions. This decoupling enables us to compute a fundamental solution of 
the upper triangular recursion (2.10) in a stable way as follows: 
We partition matrices and vectors as 

(3.1) Vi = [~ ~;] • ·i = [ :~ 1 
where Bi is a kp x kp -upper triangular matrix, Ei an (n - kp) x (n - kp )-upper triangular matrix. 
Ci a kp x(n -kp)-matrix, ail a kp-vector and a? an (n -kp)-vector. 
The recursion (2.10) can be rewritten as 

As the Bi represent the increasing solutions. the absolute value of the diagonal elements of Bi 
can be expected to be greater than 1. making forward computation of (3.2b) unstable. The Ej 
represent the non-increasing solutions. so the absolute value of the diagonal elements of Ei 
can be expected to be less than or equal to I, making forward computation of (3.2a) stable. 
Hence the obvious strategy for computing a fundamental solution {Cllj}!!l and a particular 
solution {Zj }!!1 of recursion (2.10) is to use (3.2a) in forward direction and (3.2b) in backward 
direction. So for the particular solution {Zj }!!1 we have the Be 

(3.3) Z r = 0 • z..J = 0 . 

Then Zi2 ,i=2.3, ...• N, using (3.2a) in forward direction, and zjl.i=N-l,N-2 •... , I 
using (3.2b) in backward direction, is computed. 
For the fundamental solution we have the recursion 

and the Be 

(3.5) Cllr = (0\1 ) ; Cll~ = (1\ 0). 

Now {Cll,2}!!l is computed via (3.4a) and {Cll: }}=N is then computed via (3.4b). 

As in fact the matrix Q 1 generates the sequences of {Qj} and {Uj} it is important to have a 
proper choice for Q 1. Indeed as was shown in [4] the desired splitting of the solution space 
into increasing and non-increasing solutions may not be achieved for general initial matrices 
Q It though in practice it is most likely that an arbitrary choice will do eventually. 
Nevertheless for a good stability of the recursion some effort to obtain a good guess is worth 
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paying for. For general Be no infonnation about kp nor the direction of the increasing 
solutions is available, so we just take Q 1 = I. If, after a few nonnalizations, a disorder of 
eigenvalues of the matrices Ui becomes visible, we perfonn a pennutation of the columns of 
Q 1 to hopefully restore an ordering in decreasing absolute magnitude. If needed this process is 
repeated a finite number of times. In § 4.3 we return to this. 
If the Be are partially separated, one has to realize that ks and kp may be different (ks 2! kp). 
Hence, in general one should try to obtain an ordering of the diagonal elements of the Vi, at 
least to such an extent that the kp x kp left upper part contains the eigenvalues which are in 
absolute value greater than 1; of course this can only be found by guessing and correcting as 
in the general case. 
Finally, if the Be are completely separated we necessarily have that ks = kp (or at least a 
reasonable choice of ks, if there is no exponential but only an ordinary dichotomy). For this, 
however, we presuppose the problem to be well-conditioned. which will be explained in the 
next subsection. 
As far as the Wi (ti) are concerned, we already remarked that they were in fact detennined by 
our desire to keep Wi (ti) in the same linear variety as Wi-l (tj). Of course this only makes sense 
in case the Be are (partially or completely) separated. If we use the strategy for general Be 
we have a complete freedom again. We have chosen for the option Wi (ti) = 0 because, in 
general, this gives 0 (1) components of all solutions involved, notably the desired particular 
one and the most unstable one. It was discussed in [7] that this was a sensible choice. 

3.4 Conditioning and stability 

The accuracy of the solution x(t) of a BVP, using the method as described in § 2, depends on: 

(i) The accuracy by which the fundamental solution Fi (Ii) and the particular solution 
Wi(ti) are computed. (This accuray is detennined by the user.) 

(ii) The accuracy by which the vector c in equation (2.15) is computed. 

(iii) The accuracy by which the fundamental solution {<I.>d f:1 or {4>n f:l and the 
particular solution {Zj If:l or (Zjl}~l of the recursion (2.10) and (2.24), respectively, 
is computed. 

First we will discuss point (ii). 
Since (2.15) resulted from the boundary conditions we have to investigate the effect of 
perturbations in the Be on the computed solution. Suppose we have a Be with a perturbed 
right-hand side, i.e. instead of (2.1) we have 

(3.6) Mai(o;)+M~i(~)=b +Ob . 

As x and i are both solutions of the ODE of the BVP, there exists a vector v such that 
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(3.7) x(t) -x(t) =F(t)v , 

where F (t ) is a fundamental solution. 

Subtracting (3.2) from (3.6) and using (3.7) we obtain: 

(3.8) [MaF(a)+M~F(~)]v =Ob . 

So we have 

(3.9) x(t) -x(t) =F(t)[M aF(a) +M~F(~) ]-1 ob 

and 

(3.10) max IIx(t)-x(t) II S; ma'S. IIF(t)[Mu F(a)+MpF(13)]-lIlIIBbIi. 
te(~~) IE(~p) 

Therefore we define a condition number eN of a BVP as 

(Notice that eN is independent of the fundamental solution F (t), as for any other 
fundamental solution G(t). say, there is a constant matrix P such that G (t) =F (t)P). 
As is shown in [8] if {ct>j } is defmed as in (3.4), then an estimate of eN is given by 

Basically the information to compute K is available (cf. (2.15». However when the BVP has 
(partially) separated BC. only ks « n) columns of Q 1, QN, ct>1, ct>N are computed. The 
separated BC can be written as 

For the condition number eN we have 
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As eN is independent of F (t) and we have taken F (I) such that 2M aFl(a) = 0, it is easy to 

see that if either [1M aF lea) + 1M ~Fl(~)] or 2M aF2(a) is ill-conditioned also the BVP will 
be ill-conditioned. Hence we compute 

Although a large Jel or a large K2 indicates that the BVP is ill-conditioned, it is possible to 

have an ill-conditioned BVP for which both Jel and K2 are of order one. For well-conditioned 
BVP with separated BC it is necessary that F2(t) contains only non-growing modes (in case 
of completely separated BC, all non-growing modes). To find out whether F2(a) would result 
in computing a growing solution, we recall that for the solution x (t) we had (cf. e.g. (2.29» 

and completing F l(t) to a fundamental solution F (I) = (F l(t) I F2(/» we thus see that 

(3. 17a) wet) = F2(t) c2 + z(t) , 

where z(t) is a particular solution of the ODE of the BVP and c2 an (n-ks)-vector. 
Supposing that z (t) is a smooth solution, a dominant mode in F2(t) will influence the growth 
of w (t), unless c 2 = O. However, by computing another particular solution v (t) say. where 

(3.17b) 

and thus 

(3.18) w(t)-v(t)=F2(t)e2 , 

we have a way to find out whether F2(t) contains dominant modes or not (see §4.4). 

For BVP with a dichotomic solution space we have the recursion (cf. (3.2»: 

(3. 19a) 

(3. 19b) 

To investigate the stability of (3.19) we examine the effects of additive perturbations {PrJ 
and {Pill of respectively (3.19a) and (3.19b), i.e. suppose {di1} and {d?} satisfy 
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(3.20a) 

(3.2Ob) 

(3.21a) 

(3,21b) 

which results in 

(3.22a) 

(3.22b) 

2 i i 2 
g, =>(C.I1 Ej)Prl, 

t.;1 J'"l+l 

where Om,q is a shorter notation for 

(3.23a) 

where 

(3.23b) 

(3.23c) 

; gt=Pt, 

ifq '?P 
if q <p' 

if q '?P 
ifq <p' 

CH.n,3 

If the pennutations Pil,pr- are of the same order, i.e.llp;lll s; 0, IIp?11 s; 0 for some 0, we have 

(3.24a) 

(3. 24b) 

One easily checks that a proper dichotomy implies reasonably bounded II Om,p II as well as 
such bounds for II n Ej II and II Cn B j )-111. This then establishes the stability of the 
computation of {<I>j }t!l and {Zi }t!l. 
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4. Computational aspects of the methods 

There are a number of aspects which have not been filled in yet. In this chapter we shall 
therefore treat some particular implementations as they are realized in the various routines. 

4.1 The use of RKF45 

A very reliable and fairly inexpensive integrator is RKF45, written by L.F. Shampine and 
H.A. Watts, a Runge Kutta Fehlberg routine which uses fifth order estimates combined with 
fourth order approximations (cf. [1]). This routine is the working horse in our codes and as 
long as the system is not stiff (in the sense that there is high activity of some modes) we have 
found it to work very well indeed (cf. [8]). We have changed the original routines to make that 
it only uses the combined fourth-fifth order integrator for the grid detennining solution, see § 
3.1. A special routine computes solutions on a given grid by the fifth order only. Another 
special feature is that it tenninates the calculations if five consecutive new points are found. 
Then an orthogonalization of the solution is performed and a new cycle is started. This QU
decomposition is carried out with elementary hennitians (Househ01der's method, cf. [2]). 
Rather than in the fonn (A Qj =) Qi+l Ui+1 we obtain Ql;.l in factored form. It is obvious that 
we only need to evaluate the first ks columns of Qi+l if we have (partially) separated Be. In 
the next subsection we consider how this will work out in the global computations. 
In the original routine RKF45 both a relative and an absolute tolerance has to be supplied. 
Because of the fact that for general BVP on finite intervals one is mainly interested in absolute 
accuracy and our strategy makes signifant growth per shooting interval unlikely anyway, we 
recommend to set the relative tolerance sufficiently smaller than the absolute tolerance. 

4.2 The choice of shooting points 

The idea to have shooting intervals consisting of 5 steps only was induced by considerations 
of optimal efficiency, cf. [8]. It is obvious that this strategy may give many more points for 
output than is needed by the user. Therefore a special device takes care of assembling these so 
called minor shooting intervals to major shooting intervals; the latter are such that the initial 
and tenninal points coincide with user requested output points. Here another powerful feature 
of the decoupling method is revealed. Because of the fact that the k-partitioning (kp ) 

coincides with the decoupling into increasing and decreasing modes, forward assembling of 
increments on minor intervals is relatively stable. Such an assembly may be described as 
follows: 
Let tjj be the initial point of the jth major shooting interval, i.e. tij is the jth output point. 

Define 

(4.1) Wo :=1 ; Go :=0. 

Now compute for s=1,2, . .. , 
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(4.2) 

If s is large enough. !hen W" describes the increment on the major interval [tij,tij+s] and Gs 

the forcing term on that inteIval. so that 

(of course s is only a local index for Ws and Gs ). 

Now we have five possible options for the (j + l)th output point ti}+! = tij+s : 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

choose s such that \I wsil ::;; p, p prescribed; 

choose s such that I t;'+8 - td = 6-a 
J J "'"N 

(N the number of intervals); 

choose s such that tj.+s equals the first next specified output point; 
J 

choose s such that eitherllWsll ::;; p. p prescribed or I tij+s - ti} I =~; 

choose s such that either Ilwsll::;; p, p prescribed or tij+s equals the first next 

specified output point. 

Remark 4.4 

Of course, it may be that these criteria above need shorter minor shooting intervals at the end 
of the major shooting interval. This is taken care of by the routines. 

Remark 4.5 

Criterion (i) is of interest if one suspects the maximal incremental growth to be changing on 
[a,~J and likes to monitor this so that the solution is equidistributed with respect to this. 
However. one should realize that it may lead to (undesirably) large intervals if there are mildly 
growing solutions only. 
Criteria (U) and (iii) may cause overflow problems if the given major shooting intervals are 
too large. Therefore only criteria (i), (iv) and (v) are implemented, allowing a p which is 
smaller than the square root of the largest positive real number that can be represented by the 
used computer. 

4.3 The computation of Q I and Q ( and the proper splitting 

Suppose we find the diagonal of the matrix U 2 not to be ordered properly (to recall: we need 
to have the diagonal elements appear more or less in non increasing absolute value). Then we 
use a permutation matrix P • which permutes the columns of U 2 according to the ordering of 
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the absolute value of these diagonal elements. Of course U'}}' is no longer upper triangular, so 
we perform another QU -decomposition, i.e. 

The matrix U z(new) replaces U z(old), whilst Q t(old) is replaced by 

(4.8) Q2(new) := Qz(old)R . 

If U 2 is still not found in order we repeat this procedure. In fact we do the same with the 
assembled product Us Us-I' .. U 2 on the first major shooting interval. On subsequent major 
intervals this reordering is no longer feasible. One should realize that neat problems have to be 
dichotomic (cf. [3]), i.e. after reaching the endpoint of the first major interval, we should have 
a good idea of kp. Indeed the routines choose kp equal to the position of that diagonal 
element of U 2 which is the smallest one (in absolute value) being 1 arger than 1. Of cource this 
only makes sense for an ordered diagonal. Although U 2 etc. are expected to be ordered in 
general, there might be situations where this is not the case. Therefore a global check on the 
increment on the whole interval [ a. ~ ] is made. If the ordering is found not to be satisfactory. 
a global reordering is performed using permutation matrices according to this. In fact this is 
rather cheap as it only requires matrix-matrix multiplications plus one QU-decomposition at 
each output point. This process is moreover stable if the norm of the assembled matrices does 
not outgrow TOL I EPS. where TOL is the absolute tolerance and EPS the machine constant. 

If the BC are (partially) separated we have to determine a Ql such that zMuQl =0 (cf. 
(2. 19a». This can be done conveniently as follows: 
Compute elementary hermitians PI, ... ,P,. such that 

is upper triangular. Now take Q I as the last ks columns of 

(4.10) Qt =PI ... P,. . 

(It is easily seen that this results in the desired matrix as 

Sometimes it is not clear beforehand whether rank( M a,) < n or rank( M p) < n . (Note that 
whenMp has some zero rows, say n-ks • rank(Mp) may be smaller than ks .) In such a case we 
may invoke the singular value decomposition (SVD) of these matrices to determine the 
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numerical rank. So consider 

(4.11) Ma=Uar.aV'b.. Mp=Up~V!, 

where U a, V IX> Up, V P are orthogonal matrices and l:(l, ~ diagonal matrices. Suppose r.a has 
ksl non-zero diagonal elements and ~ has ks2 non-zero diagonal elements. If both 
ks 1= ks2 = n we do not have separated Be. If ks2 < n we have 

So multiplying (2.2) by U~ we obtain 

which. denoting U! M a = M IX, U~ M P == M p. U~ b = 6, can be written as 

(4. 14a) 

(4. 14b) 

1M aX (0.) + IMflX<lJ) = 61 , 

2M aX (0.)= 62 • 

This is of the form (2.17). 
Of course it may be that kal S ks2. in which case it would be more profitable to regard the BVP 
as a problem on [ lJ ,(X], instead of on [ (X, lJ]. Therefore we compute both the SVD of M a and 
of M p and take the smallest of ks 1 and ks2 with the coresponding initial and terminal points 
(Le. either [ (X, \3 ] or [ \3, (X] ). 

4.4 The computation or the stability constants 

The actual solution of (2.15), (2.31) and (2.35) is done using a Crout routine (LU
decomposition). From this it follows that for general BC the quantity 1( in (3.12) can be 
computed without much additional effort, using this LU-decompostion. As we remarked lC is' 
at most a factor 2 amiss in comparison with the actual condition number (cf. (3.12». If the 
BC are (partially) separated we do not have all necessary information about the Ej available. 
It may be even so that 1(1 and lC2 (see (3.15) and (3.16» are moderate since the ill-conditioning 
is concealed by the particular solution Wi. In ordcr to dctect this we also compute another 
sequence of particular solutions {Vi} such that 

Then a lC3 is computed as 
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As an estimate for the condition number eN we now better take 

The user may find the K': as an output parameter ER(4). 

Of course it is possible that the matrices [M aQl4>l +MI}QN4>N]. [1M aQ/4>/ + IMIiQN4>~] 
or 2M aQ 1 (cf. (2.5), (2.31), (2.35). respectively) happen to be numerically singular. In that 
case a tenninal error, IERROR = 320 is given. 

Apart from this condition number another quantity is of importance. In fact we need to 
compute the maximal value in nonn of suitable Green's functions ( cf. [5]). This is an almost 
impossible task and therefore we are satisfied with a somewhat heuristical estimate of them. 
Note that in (3.24) the magnitude of the quantities II <n Ej)!! and 11 (n Brl)!1 may be 
blamed if the local errors are blown up significanlly. Hence it makes sense to monitor the 
diagonal elemenls of lhe product matrices Ep ... Eq and Bq-l ... Bp-l for arbritary p and q 

(p ';?: q), as they essentially reflect the growth of lhe basis solutions. Thinking of (3.24) we 
therefore also compute 

(4.18) A}=mF (mF (1 + k (11 1 Ej I))), 

where E} denotes the k -th diagonal element of Ej. 

(4.20) alz(k) = mrx (CJ}I Br I tl, .... (/=tL I Br I )-1 • I Bill -1 ). 

(4.21) af3(k) = m~x (a I Efl .... , lIt I Er I . I Ef!). 

(4.22) Ai =mjx (afl(k) + af2(k) x af3(k» • 

where B} denotes the k-th diagonal element of Bj . 

As an estimate of the amplification factor AI (being a bound for the Green's functions in tum) 
we take 

(4.23) AI = max (A) , A} ). 

The user may find AI as an output parameter ER(5). 
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If At is such that the global rounding error is larger than the discretization error, a warning 
error, IERROR = 300, is given. 

Remark 4.24 

If there are constant modes or very slowly growing modes or very slowly decreasing modes, 
At will be of the order of the number of output points. 

Remark 4.25 

The computation of At depends on the number of output points. If the problem is dichotomic, 
the influence of the number of output points on the estimate At is small. However, if there is 
no dichotomy on the interval [ a ,13], the choice of the output points determines whether At is 
a good estimate for the amplification factor or not. If the problem is not dichotomic, it will be 
locally dichotomic on subintervals [a,a2], [a3,~], ... ,[am,I3], say, with different 
subspaces of growing modes and nongrowing modes on each subinterval. In order to detect 
these changes of the dichotomy on [a, 13] and to get a reasonable estimate At for the 
amplification factor, the output points should be chosen such that, besides a. and 13. each 
subinterval [ a. a1 ], ... , [ CXm , 13 ] contains at least one output point. 
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CHAPTER III 

BVP ON INFINITE INTERVALS 

1. Introduction 

If for an ODE 

(1.1) -9tX(t) =L(t)x(t) + r(t), ex $ t < 00, 

aBC is given 

(1.2) M aX (ex) + M""x(oo) = b, 

then it can be shown that x can be written as 

where wet) is a bounded particular solution and F2(t) is a matrix solution (F2(t) an n Xkb

matrix say) of bounded homogeneous solutions (see [1]). Let us denote the complementary 
part of the fundamental solution by F l(t). If F l(t) consists of exponentially increasing modes 
exclusively, then it is possible using the decoupling idea to effectively "remove" them doing 
the backward sweep of the multiple shooting recursion. To this end it is assumed that the 
particular interval [ex, 13] is specified where the output values are wanted. The shooting 
process then continues over an interval [13, 'Y], where 'Y is such that the modes in Fi(t) have 
grown sufficiently large to expect the backward sweep of the recursion algorithm, cr. §II.3.2, 
to damp their effect to (user specified) accuracy. 
For some problems there may be some slower growing modes (like polynomially growing) 
present. This requires a special technique, like extrapolation. The routine MUTSIN for solving 
the BVP (1.1), (1.2), has therefore some special provisions for doing this efficiently. 

Remark 1.4 

Although the algorithm computes c2 from the (usually) singular system 
[M aF2(ex) + M ooF2(13)] c 2 = Ii (where Ii is derived from the BC in a least-squares sense) we 
can still detenninc a quantity like the condition number. As a consequence often a diagnosis 
can still be given if something goes wrong or when output variables should not be trusted. 
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2. Global description of the algorithm 

Consider the ODE 

(2.1) %x(t) = L(t)x(t) + ret), a. S. t < 00 , 

where L (t) is an n x n -matrix and r (t), x (t) are n -vectors for all t. Let the Be be given by 

(2.2) M aX (a.) + M oox(oo) = b. 

If we assume that the solution space is dichotomic (cf. §U.3.2), then there exist integers ku and 
kb (ku + kb = n) and a fundamental solution F (t), such that 

where FI(t) contains ku columns and F2(t) kb columns such that F2(t) precisely represents 
the bounded homogeneous solutions. Under suitable conditions, cf. [2], there exist at least one 
bounded particular solution of (2.1), wet). Hence for some constant kb-vector c 2 we find 

Upon substituting (2.4) in (2.2) we find 

Note that in case F2(t), W (t) -+ 0, t -+ 00, the condition above reduces to an initial value 
condition (though rank deficient!). Because of the requirements on F2(t) and w (t), the 
problem (2.1), (2.2) is sometimes also called a conditionally stable initial value problem. The 
main question therefore is how to find the non-increasing ("stable") manifold. 
With some adaptations this can be done along the lines of the method described in chapter II. 
Suppose we like to have output values for x on the interval [<X,~] within an accuracy TOL. Let 
us assume that FI consists of exponentially increasing solutions only. Then there certainly 
exists a point y, such that 

(2.6) IiF(y)P F(~rlll > TOL-I. where P = r~ :l 
in other words, each of the increasing solutions has grown at least by TOL-I. We then 
proceed as follows: use a mUltiple shooting strategy as in § 11.2.1, with at least a. = t 10 ~ = tM 

and y= tN as output points, resulting in an upper triangular recursion 

(cf. (11.2.11», with 
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Then compute a particular solution {tj } of (2.7), satisfying 

(2.9) Z f = 0 , ztJ = 0 

and a partial fundamental solution {"'Pi} ( 'Pj is n xkb), satisfying 

(2.10) 'l'r =1 ; 'I'~ = 0, 

Clearly for some kb-vector c2 we have (within accuracy TOL!) 

From (2.8), (2.11) and (2.2) we thus derive the following rclation for c2: 

(2.12) [M aQ 1 '1'1 + M ... QM 'PM ] c2 = b - M a Wl(O:) - M"" WM«(3) 
-MaQIZI-MooQM zM· 

The matrix appearing in (2.12) on the left is n Xkb. Therefore we solve this system in a 
least-squares sense. 

3. Special features 

The previously outlined algorithm is implemented as MUTSIN. For the computation of the 
multiple shooting recursion on the interval [ 0:, 'Y] the same strategy is used as in §II.3.1-II.3.3 
for BVP with general BC. 

3.1 Errors introduced by finite choice of 'Y 

In §2 we considered the case of exponentially increasing solutions in Fl(t). For our upper 
triangular shooting recursion (2.7) this means that in 

(3.1) Vi = [~ ~;]. 
we may assume that liB i+\ II ;;::: K e ?.(t;+1 - 'i) for some negative A. and (not large) positive 1(. That 
means that on [ (3 • 'Y] = [ tM • tN ] we expect 

(3.2) 

Since we do not know the bounded (and non increasing) solutions at tN exactly we choose 
their component in span(Fl(tN» to be zero, cf. (2.9) and (2.10). Hence we introduce a 
truncation error T/N) cf. [2], which satisfies the homogeneous part of (II.3.2b): 
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Because of the boundedness of those solutions we have 

(3.3a) IIT~)II = 0(1). 

whence. 

Hence if eA.f:y-~) S TOL (TOL the required accuracy) this truncation error is not significant. 

3.2 Conditioning 

The system (2.5) is rank deficient, so the conditioning with respect to the BC (as was 
introduced in §1I.3.4) has to be redefined here. Since we virtually rule out the increasing 
components we may define the subcondilion numbers cf. [2] : 

where l--P = [~ ~l and + denotes a pseudo-inverse. By making use of the approximate 

{Qj 'I'j} instead of F Ii), we can estimate CNp(~) by (cf. (11.3.13» 

3.3 Problems with polynomially increasing modes 

If there exist increasing modes that grow "slower" than an exponential function of t. the 
construction in §3.1 to find a terminal point may result in exceedingly large values ofy. Under 
certain circumstances, however, we do not need to go that far. 
In order to describe them, let F l(t) be split further into 

where G2(t) is an n xkq-matrix representing the polynomially increasing modes, Gl(t) an 
n xke-matrix representing the exponentially increasing modes. We now consider two (non 
exclusive!) possibilities: 

(i) lim L(t), lim r(t) exists. 
I~"" t~ ... 

This means that both w (t) and G2(t) have asymptotically constant directions. If we partition 
the truncation error Tj(N) in two components, viz. 
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(3.7) TiQV' = [ g;::~: ]. 
where [Tj(N)]t has ke components, then it makes sense to try some asymptotic expansion for 
[TON)]2, e.g. 

where (j) > 0 and vo. vI,' .. are independent of tN; obviously the user should provide the 
model for this. 
If we apply this idea we see that the point y is mainly determined by the exponential behaviour 
of G l(t) (cf. (3.3b». On the other hand, in order to employ (3.8), one should choose several 
terminal conditions instead. 

(ii) lim W (t) exists. 
t -+<» 

This still allows fairly general ODE (in particular with a fundamental solution of which the 
directions are not asymptotically constants). Because of boundedness of W (t) we may try an 
asymptotic expansion like 

where (j) and uo, U 1, ... are independent of t (we assume t - a, large enough); again the user 
should provide the proper model. If we choose y large enough. so that exponentially 
increasing modes have been damped out within TaL on [a,. ~ ]. we can employ (3.9) in 
combination with (2.8) (note that Wj(tj) =0). Indeed, within TaL, we may write for the 
actually found solution f: 

(3.10a) 

with 

(3. lOb) 

(3.1Oc) 

where 'Pj is an n xkq-matrix, representing the polynomially increasing modes and c a 
constant kq-vector. only depending on the choice ofy. Now one should realize that {'Pj } can 
be computed in much the same way as {'Pi}. The only difference is that we use a recursion 
like (2.7) with B j as the incremental matrix instead and a partitioning such that the left upper 
block is ke • From this we see that e (tj) is in fact completely determined by the unknown c; c 
in tum can in principle be found together with the vectors uO,ul, ... from monitoring f(ti) 

for various values of tj. Note that we only need kq points t. to find c in case x is a constant 
vector. 
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4. Computational aspects 

The code MUTSIN is based on the computational framework as outlined in chapter n. Some 
special aspects are considered below. 

4.1 Determination of'Y and bounded solutions 

In order to find a suitable value for 'Y, MUTSIN keeps track of the diagonal elements of the Bi 
(cf. §4.3). In order to estimate a A as in (3.2) it takes 

(4.1) A:=(Inm)/(Il-a), 

N 
where m is the absolutely smallest diagonal element of Q Bi. From this a value of 'Y is 

computed as 

(4.2) 'Y
'- A _ In TOL .-.., X, 

Arriving at t = 'Y it is checked whether the increment is large enough indeed, and if necessary a 
new (larger) 'Y is computed, using an updated A. If the latter value of'Y is still insufficient to 
give large enough increments. a warning error IERROR = 335 occurs. It may happen that 'Y as 
defined by (4.2) is already quite large (due to a pessimistic choice of the partitioning 
parameter ku). Therefore the user should provide a maximum value of 'Y, 'Ymax say, If 'Y 
becomes larger than 'Ymax. 'Ymax is taken as the value for 'Yand a warning error IERROR = 330 
occurs. 

4.2 Use of BC and determination of conditioning constants 

System (2.12) can be written as 

(4.3) [M .Qtl01 'I'd + M .Q" [01 'I'M]) [~21 =6, 

where b =b -MaQIZ}-M""QM ZM. To solve (4.3) a singular value decomposition (SVD) 
is used, that is we detennine orthogonal matrices U, V and a semi-positive diagonal matrix l:, 
such that 

where l: = diag(olt .... on). with 01 ~ •.• ~ Ok. ~ 0, 0*<.+1 = ... =On = 0, and 

Then (4.3) can be rewritten as 
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(4.5) :Ey = uT 6. 

To have a meaningful solution of (4.5) it is necessary that the vector uT 6 = (~l' ... ,~)T 
satisfies the conditions 

(4.6) OJ =0 => ~j =0, i=l .... ,n . 

We call the problem inconsistent with respect to the BC if (4.6) is false. Numerically we 
consider OJ to be zero if the computed OJ 5',; TOL and hence we check whether 

(4.7) OJ 5',;TOL => ~i 5',;TOL ,i=l, ... ,n 

is true or false. If (4.7) is false a warning error IERROR = 340 is given. It is possible that 
IERROR = 340 occurs after the warning error IERROR = 335. In that case IERROR = 335 is 
likely to cause IERROR = 340 too. 

If we write :E =diag(ol, ... • 0/,0, ... ,0) (1gb), we can define its pseudo~inverse as 
:E+=diag(of1, ... ,0rl,0, ...• 0) and hence solve (4.5) in a straightforward manner. For a 
well-posed problem we should expect I=kb' so we have as an estimate for the condition 
number: 

(4.8) 11:= [Ok.. ]-1. 

If [ok.. r 1 > TOL -1 we should call the problem ill-conditioned (as TOL means numerically 

zero) and a warning error IERROR = 345 is given. In such a case, and -more generally- if 
01+1, ... , Ok.. are smaller than or equal to TOL, we choose 

unless 1 + 1 = 1. Although clearly we cannot give a unique solution then, we can still give a 
basis of a meaningful manifold, viz. those components that can be found from singular vectors 
corresponding to 0/+1 • .•. 'Ok..' Let us write 

(4.10) v=[vil "·Ivk,.], 

then these basis solutions are defined by 

(4.11) {Qi 'Pi Vj }i'!1 , j = 1+1, ... ,kb. 

From the pseudo-inverse we get some bounded particular solution as well. 
Clear1y uniqueness requires more independent conditions in (2.2). 
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4.3 Use of MUTSIN for problems with slowly increasing modes 

For problems without an exponential dichotomy MUTSIN may fail to compute a bounded 
solution being accurate up to TOL. If the warning error IERROR = 335 occurs. there might 
be some non-exponential growing modes. It is also possible that the problem is not 
dichotomic (in which case ER(5) should be large). When there are non-exponentially growing 
modes MUTSIN can still be used in combination with asymptotic expansions. 
First consider case (i) of §3.3. One should then set IEXT equal to 1 and C equal to a desired 
new value of y. A new call to MUTSIN results in the computation of a new solution using the 
new value of 'Y. This means that one can use approximate solutions for various 'Y and hence 
utilize asymptotics. Because of the variety of possible expansions the user should write 
himself a program that calls MUTSIN and then uses Richardson extrapolation (for instance). 
Obviously. denoting the approximate value of x (a) obtained from using 'Yas a terminal point 
by xf.,.a). it follows from an assumption like (3.8) that also xf..a) has an expansion in "fro. 
In case (ii) of §3.3 the fundamental solutions 'It; and 'Pj are stored in the array PHIREC. 
Then not only an approximate xf.,.a) is given but also the values of the non-exponentially 
increasing solutions at the output points. 
When applying the previous idea. one should realize that all computations are exact within 
o (TOL). This implies that under circumstances it is advisable to choose the parameter TOL 
fairly small in order to have a vector for which Richardson extrapolation is still meaningful. 
Also. the code is designed to choose 'Y as small as possible when slowly increasing modes 
(that should not influence its choice !) are detected. If 'Y happens to be equal to 'Ymax. the actual 
found partitioning integer ke is based on the criterion that exponentially growing modes 
should at least correspond to a A. (cf. (4.1» such that (4.2) is satisfied. Hence the value C - A 
(=Ymax-a) should not be chosen too small compared to the interval length B - A (=I3-a). the 
latter being considered to be relevant for the problem as such. 
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CHAPTER IV 

MULTIPOINT BVP AND INTEGRAL BVP 

1. Introduction 

In this section we first describe the problem briefly. 
Consider the ODE: 

(1.1) 4t X(t)=L(t)x(t)+r(t) , o.::;t ::;p, 

where L(t) is an n x n-matrix function and x(t) and ret) are n-vector functions. Let for x(t) 

the boundary condition (BC) be given: 

where MI •...• Mm+l are (n xn)-matrices, b is an ii-vector; the points o.t. ..•• <Xm+t. with 
a. = 0.1 < 0.2 < ... < o.m+l = p, are the so called switching points. 
A possible way to solve a multipoint BVP (1.1), (l.2) is to map the intervals [o.i ,<li+d. 
i = 1 •...• m onto one and the same interval [0, 1] say and solve for the solution on these 
intervals simultanously. Denoting the solution at [o.i ,o.i+l] by Xi (t) we thus have 

(1.1)' 4t x(t) = L(t) x(t) + r(t). 

where x(t) = [xf(t), .. . ,X;!;(t)]T. r(t) = [rf •... ,r;!;(t)]T and 

L(t) = 
Lm(t) 

(where Lj (t) and rj (t) arc properly transformed from [<Xl. 0.;+11 ~ [0. 1 D. A coresponding 
two-point BC is now given by 

(1.2)' Mox(O) + Ml x(1) = b 
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For (Ll)' and (1.2), one can use a routine of chapter II. Note however that this system has 
order n x m now! Hence we look for a cheaper solution. 

Because of the linearity of (1.1) we may write the solution x(t) as: 

(1.3) x(t)=F(!Xi,t)cj +w(aj,I), aj '5.t '5.ai+l, 

where F(!Xi, I) is a fundamental solution on [ai, !Xi+I] and w(ai, t) a particular solution of 
(1.1) on [!Xi, ai+l}. In principle we may identify F (!Xi, t) with F (aj, t) for i:F: j, thus 
reducing (1.3) to the well known superposition of solutions. However, as was shown in [1] the 
dichotomy character might be different on each subinterval: that is the dimension of the non 
decreasing mode subspace may become smaller after such a point ai; this is called 
polychotomy. Hence it makes sence to consider the F(ai,t) separately. at least 
computationally, cf. [2]. Matching in the usual way gives us the relation for the Ci. We obtain: 

(1.4a) F(!Xi ,ai+l) Ci = F (ai+h!Xi+I) Ci+1 + w(aj+h!Xi+I) - w(ah!Xi+l) 
and the BC 

OAb) 

The method now uses multiple shooting on each interval [aj,ai+t1. In this way we obtain a 
discrete analogue of OAa) and (lAb) which constitutes a linear system A of order m x n. The 
conditioning of the problem can be measured by II A-III as well as by monitoring the growth 
behaviour of the fundamental solutions. These quantities are actually accounted for by the 
routine, see §4. 

Remark 1.5. 

If the dichotomy does not change on consecutive intervals [aj ,ai+t1, ... ,[ai+baj+k+l] say, 
the fundamental solutions F (aj +1 , t) 1 = 1, ... ,k can be identified with F (ai, t), the 
particular solutions w (ai+l, t) , I = 1, ... ,k with w(aj ,I) and the Ci+[, 1=1, ... , k with Cj. 

As a consequence (1.4a,b) change into 

j =1, ... , i-I andj =i+k+l, ... , m, 
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(1.6b) 

(1.6c) 

This gives a linear system of order (m - k) x n. 

If we consider the limit case where the number of switching points goes to infinity (and the 
weight Mi are scaled appropiately), we arrive at an integral condition 

Po 

(1.7) I M(t)x(t)dt = b , 

where M (t) is an n x n matrix function and b an n -vector. This requires an extra 
discretisation for casting the problem into a form compatible with multipoint Be. Another 
way, though often more costly than the method we shall outline below, is to augment (1.1) 

with -9ty(t) =M(t)x(t), y(a) = 0, so that we have an ODE 

and a (two-point) Be 

Obviously, the ODE (1.1)" is of order 2n. 

Finally, it is possible to have a combination of a multipoint (including two-point) and integral 
Be. A mixed condition has the form (1.8a,b) 

(1.8a) 

(1.8b) 

where for some I <n, 1M b ...• 1Mm+l are I xn matrices and 2M(t) is an (n -l)xn matrix 
function. 
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Remark 1.9 

Sometimes a BC describing e.g. discontinuities at certain points is confusingly called a 
multipoint BC. However, as can be checked those discontinuities would increase the total 
number of BC beyond n. If this is the case one should use the methods described in chapter 
VI. 

The algorithm discussed in this chapter have been implemented in the routines MUTSMP for 
BC of type (1.2) and MUTSMI forBC oftype (1.7) or (1.8). 

2. Global description of the algorithms 

We shall consider the multipoint and integral case separately. 

2.1 BVP with multipoint BC 

As mentioned in § 1, multiple shooting is used on each interval [Cli • Cli+l] to compute a 
fundamental solution and a particular solution. Each interval [Clj • Clj +11 is divided into say 
Nj-l subintervals. To simplify the notation we shall use a local index j to describe them; Le. 
let the interval [Cli ,Clj+I] be split up into subintervals [tj_l, tj ], j =2, ...• Nj. tl =Clj and 

tN, =ai+l. 

Like in the algorithm described in [3] for two-point BVP, fundamental solutions Fj (Cli , t) and 

particular solutions Wj(Clj ,t) are computed such that: 

where the Qj+I(i) are orthogonal and the Uj+l(i) upper triangular and Wj(Cli ,tj)=O. (Here we 
identify F l(Clj ,Clj) with F (Clj ,Cli) and WI(Clj • Clj) with W(Clj ,Clj ». 
For the solution x(t) we have: 

from which the following upper triangular recursion for the aj (i) is obtained: 

where 

Now assume that {¢>j(i)}~l is a fundamental solution of (2.3) and {Zj(i)}~l a particular 
solution. Then for some vector Cj we should have: 
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By matching at the points O:i we obtain a recursion for the {q} in the usual way. So for the 
solution of the BVP at the switching points 0: .. 0:2, ... , <x'iI+t we have: 

and 

Substituting (2.6) in the BC gives a BC for the sequence {ciJ!'!} (cf. (l.4b» viz. 

Denoting: 

(2.8a) Mi =Mj Qt(i)<Pt(i) i=I, ... , m-l, 

(2.8b) Mm =Mm Qt(m)<l'>l(m) + Mm+l QN .. (m)<PN.,(m). 

(2.8c) llj = <l'>N,(i). i =1, ... , m-l • 

we obtain the linear system: 

(2.9a) Ac=q. 

where 

41 



CH. IV;!. 

nl -OZ 

(2.9b) A= 
nm-l -Om 

MI Mz . Mm-l Mm 

Remark 2.10 

In the case the ODE (1.1) is homogeneous, i.e. ret) = 0, tE [a, ~], the computation of 
panicular solutions is skipped. Then (2.2), (2.3), (2.5), (2.6) have to be replaced by: 

(2.2)' 

(2.3)' 

(2.5)' 

(2.6a)' 

(2.6b)' 

respectively. 
Moreover, the vector 6 in (2.7) equals b and the vector q in (2.9a) becomes: 

q = [OT, OT , ... , OT, bT ]T. 

2.2 BVP with integral BC 

When we have a BC like (1.7) the situation becomes more complicated in two ways: First, 
there are no natural candidates for switching points and second we need to use a quadrature 
formula to implement the integral conditiion practically. 

By using a marching technique and orthogonalisation after a fairly small number of 
gridpoints, cf. (2.1), we have a means to check the growth behaviour of the various modes. 
When a change is noted at such a minor shooting point, we basically choose it as a switching 
point (the refinement of this idea is discussed in §3.2). 
A more complicated problem is to discretise the BC. Assuming we have a quadrature formula 
of appropriate order (Le. compatible with the integrator of the ODE), we determine 
approximations 

Ij+1 • 

(2.11) J M(t)Fj(aj,t)dt =Mj(i) 
) 
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(2.12) J M(t)wj(t)dt = v/i) 
J 

In discrete form the BC then results in 

(where we use the same notation for indices as in §2.1) 
By substituting (2.5) in (2.13) we find the multipoint BC 

If we denote 

eH. IV,2 

and IIi> nj, qj as in (2.8c,d,e), then we end up with a system like (2.9a,b) for the unknown 
vectorc. 

3. Special features of the methods 

The actual computation of the solutions F «lj ,t) and W «lj , t) on each interval is basically the 
same as described in [§II.3], i.e. the algorithm uses the adaptivity feature for the integration of 
the particular mode only. It also uses the decoupled form of the recursion (2.3) for the 
computation of <l>j(i) and Zj(i). Below we summarize some more aspects. 

3.1 Computation of the <l>J(i) 

As was shown in [l] a well conditioned multipoint boundary value problem is dichotomic on 
each interval [(lj ,<li+l]' However, we basically should reckon with a different partitioning 
integer kp (cf. §II.3.2), indicating the dimension of the nondecreasing solution space, on each 
such interval. If we denote this integer at the i,k interval by k(i), then we know from [1] that 
for well conditioned multipoint boundary value problems, k(i) is a non-increasing set, i.e. 

k(l)~k(2)~ ... ~k(m). The fundamental solution (<f)j(i)}f,;l cf.(2.3) on the i'k interval is 
then computed using the Be: 

where the superscript refers to an obvious local partitioning involving the integer k(i). 
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Like in the two-point case there is, in general, no information available for choosing the 
particular solution Wj(ai, t) in a special way. Hence Wj(<lt, tj) = 0 is a good one, simplifying 
the formulae in (2.4)-(2.9) substantially. At t = al the algorithm initially chooses 
Q 1(1) = F I(al , al) == I and checks the ordering of the diagonal clements of the first upper 
triangular matrices Uj(1), computed after reaching the endpoint of a minor shooting interval. 
If this ordering is found to be improper it performs a permutation of columns like in §II.3.3. 
Arriving at t=a2 we have a complete freedom to choose F l(a2, (2). A very useful choice is: 

Indeed, if the dichotomy is invariant on [ al ,a3] we may proceed on [ a2, a3 ] like we did on 
the previous interval, thus computing an upper triangular recursion for the superposition 
vectors aj(1) and aj(2) combined. By formally writing 

we may the extend the recursion (2.3) for i == lover the index range j = 1, ... , N 1 +N2-1. 
If QNP) is found not to be a good starting value on the interval [a2, a3] (for similar reasons 

as the identity might be an improper starting matrix on [ al , <l2]) a permutation of its columns 
is carried out until some satisfactory ordering on the diagonal of the upper triangular malices 
Uj(2) has been found. Since for well conditioned multipoint BVP, {k(i)}r:l is a non
increasing set. a permutation is carried out on the first k (i) columns of ~,(1) only. 

Since the number of minor shooting intervals may be fairly large (cf. §II.4.2) assembling of 
these into major shooting intervals causes an additional problem for integral Be. 
By using the notation in §II.4.2 of Ws and Gs, we see that we may write 

with WI == U 2(i), G J == d2(i). 
Hence for I ~ Ni-l 

(3.5) 

Whether 1 may be taken as large as Ni-1 depends on max \I M j (OWj II. Indeed although Wj 
J 

I 
may be found in a relatively stable way, forming the (partial) sum ~ Mj (i) Wj will invoke 

I 
errors of the order of I~ II Mj(i )1111 Wj II EPS (where EPS is the machine constant). Since we 

expect II Mj(i )11 to be of a moderate size, the assembling to major shooting intervals should be 
confined to cases where \I Wj II does not exceed the characteristic stability constant TOL I EPS 
(TOL being the required accuracy). 
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3.3 Reduction of the system (2.9) 

If the choice (3.2) is a proper one then we can identify eland C2 in (2.5). so the system (2.9a) 

is of order (m -l)xn only. being of the fonn: 

(3.6a) Ac=q 

where 

(3.6b) A= 

and where we have denoted for short (L=N l+N 2-1) : 

Bj =Mj • j = 3, ... , m • 

Hopefully it will be clear how further reductions can be carried out now. Such a further 
reduction may arise either from an even longer interval [(Xl, Cl.i ], 1>3 where the dichotomy is 
invariant or from an invariance on other consecutive intervals. In particular it may happen that 
the order of the thus obtained matrix A is just n; in such a situation we virtually have reduced 
the procedure to that of the two-point case. 

Remark 3.7 

Note that this reduction would make sense for integral BC as well (since assembling does not 
increase the nonns of the BC matrices significantly), were it not that the sequential approach 
(cf. (3.2» would also cause the II Wj II (cf. (3.4» to grow. 

3.4 Special solution of the algebraic system (2.9) 

Instead of solving the system (2.9) (or its condensed variant (3.6» by LU -decomposition, we 
do the following: Rewrite the matrix A for simplicity as: 
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(3.8) A= 

qT =[qf,qL ...• q~] 

At the i Ih switching point interval, let k (0 be the partitioning integer, i.e. there are k (i) 
increasing solutions at that interval. From [1] we know that (kCi)} is a non-increasing set, i.e. 
we expect kO) ~ k(2) ~ ... ~ k(N-I) = keN). 
In the recursion (cf. (2.9) and (3.7» 

we have 

(3. lOa) 

where Rj~\ is a k(i) xk (i) matrix and the identity matrix I is of order n -k(i+l), and 

(3. lOb) S, = [~ s~22l ' 
where Sj is a (n -k(i»x(n -kei» matrix and the identity matrix I is of order k(t). 

We now like to solve (3.9) plus Be again by superposition. Since we do not have a uniform 
dichotomy on [a,!)l we use a more refined fundamental solution {'¥iltf.l (cf. §3.1). By 
assumption we let the partitioning depend on the index. 

(3.11) 
[
'Pll 'P12] 

'Pi= 0 'P12 , 'Plloforderk(i). 

(At i = N we have the same partitioning as for i = N -1) 
At i = 1 we define: 

and compute 

(3.13a) 

(For S?, the right lower block of S t. see (3.10», where 'fF has the same order as S? and 
'f'? 
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Now compute 'P12 as follows: 

(3. 13b) 22 [/1c(l}-k(2) 0] 
'Pz- = 0 ..pp' 

if k(l) > k(2) and 'P12 = 'fir2 otherwise. 

and from this 'fi %2 etc .. In general we have 

(3.14a) \fJ lZ} _ S .22 \lJ 22 
T 1+ - 1 I, , 

(3.14b) 

if k(l) > k(l+1) and 'PlJl = 'filJl otherwise. 

At i=N we set 

(3.15) ['PhIl 'f'~]=[h(N-1)10]. 

Then we have 

(3.1~ ~N=[~ :pH~' !~1, 

CH.IV,3 

where 'fi~.l is oforderk(N -I), 'fi~ keN -1)x(n -k(N -1» and 'fiJil is of order n -keN -1) 
(the latter already being computed in the forward sweep). Next we have 

(3. 17a) 'f'~1 =RN I 'fi~+RN2'fiJil. 

(3.17b) 'f'h~l =RN I 'fiJI. 

And in general: 

where 'Pfl is of order k(l) and 'fill is oforderk(i -1). 
Then: 

(3. 19a) 

(3. 19b) \Illi
l 

- R.1l \T~.1l 
I , - - ,Tt , 

Note that this scheme to compute {'Pi} is a generalisation of the dichotomic case dealt with in 
chapter II. 
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Finally we compute a particular solution {Pi}, which is done in a similar way as the 
commputation of the fundamental solution. We start with 

(3.20a) Pf =0 , p,J =0 

(again the partioning here and below is local!). At each of the switching points where 
k(i+I) < k(i) we add a sufficient number of zeros to obtain a larger second component vector, 
so for i = 1, ... , N 

(3.20b) 

(3.2Oc) 

~.21 '- S·22p .2 _ q.2 . 
YI+ .- I I I' 

P~l =Pi~l' ifk(i)=k(i+l), 

P.~l = [p'~1]' if k (il > k(1 +1) • 

i.e. the first k(i) - k(i+l) elements Ofpi~l are O. 

At the backward sweep we typically compute 

(3.2Od) 

where Pi l is a vector of order k (i - 1). 

(3.20e) 

where qi!..1 represents the first k(i-l) elements of qi-!
The solution {c;} of (2.9) is then given by: 

(3.21) Ci = 'I'i V + Pi , 

where the vector v can be found from: 

(3.22) [I~ Tj 'I'j ] v = ,; I~ Ti Pi 

3.5 Conditioning and stability 

Since multipoint problems are essentially more complicated than two-point ones, the 
algorithm outlined before and - as a consequence - also its stability analysis is more difficult 
As we already indicated, the homogeneous solution space is polychotomic , that is dichotomic 
on each interval ((1.j, (1.j+l] and moreover such that non-decreasing basis solutions may 
become non-increasing at one of the switching points at most. Since the algorithm is tuned to 
monitor the particular dichotomy on each interval, it follows from arguments in § U.3.2 that 
the recursion~ are used in stable directions only (that is if we assume well-conditioning, so 
polychotomy cf. [1]). The only remaining problem then is the conditioning of the system in 
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(3.22), that is of the matrix W defined by 

m • 
(3.23) W := Y Mi 'Pi . 

1~ 

One can show that in general, given m actually used switching points 

(3.24) II w-111 S(m+l)CN, 

where for a multipoint BC 

(3.25a) 

or for an integral BC 

(3.25b) 
~ 

CN := maJ). II F(t)[IM(t)F(t)dt ]-111 
IE la.Pl 

CH. IV,3 

with F (t) any fundamental solution. Note that (3.25) is a straightforward generalization of 
(11.3.12) and is a measure for amplifications of perturbations in the BC. For stability with 
respect to perturbations in the ODE as such we may monitor appropiate blocks of the upper 
triangular matrices, just as in the two-point case, cf. chapter II. 

4. Computational aspects 

The routine MUTSMP basically uses the same strategy for computing the upper triangular 
recursion on the intervals [<Xj,O;+l], i=l, ... ,m as the routine MUTSGE for two-point BVP (see 
chapter II). Only the choice of the Ql(i) , i =2, ... ,m (that is the orthogonal value for 
F (a.; ,0;» and the computation of the k-partitionings are different (see next section). The 
computations of the {C;}[';,l is decribed in §3. Once knowing the Ci, the computation of the 
solution at the ilk interval [<Xi. 0;+\ ] is the same as in the two-point case (see chapter II). The 
routine MUTSMI computes a solution of a BVP with a mixed integral multipoint Be. 

4.1 The computation of Q\(i) 

On the first interval [ <Xl, <xz] we do the same as in the two-point case, i.e. Q \(1) = I and if this 
N 

is not a satifactory choice, the columns of QI(1) are permuted such that diagonal( rl Uj(1» is 
j='-

ordered. As a first choice forQ\(i), i = 2, ... , m we take (see §3.2) 

Since the dichotomic character of the solution space may change at each switching point. it 
may be necessary to carry out a permutation of columns of Qi(l). Anticipating that the 
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problem is well-conditioned (i.e. the partitioning parameters satisfy k(i -I);?! k(O) no column 
interchanges are necessary for the last n - k (i - I) columns. So an initial choice of Q 1 (i) is 

N. 
accepted if the first k(i-l) elements of diagonal(jlUj(i» are ordered; otherwise a 

permutation of the first k (i - 1) columns of Q 1 (i) is carried out. At this stage the partitioning 
parameter k(O is computed as the number of elements of the first k(i -1) elements of 

Ni 
diagonal(}] Uj(;» which are greater than 1 If no permutations are needed and k(i -1) =k(i) 

then the two succesive intervals [<Xi-I> <Xi] and [<Xi, <Xi+d are assembled (see §3.2). 
However, it is possible that. due to discretization errors, the computed k(i) does not 
correspond to the proper partitioning. Therefore, after the above described procedure, 
globally correct partitioning parameters are determined. 

4.2 The computation of MJ(i) and wii) 

One of the problems for integral BC is to obtain sufficiently accurate approximations for 
Mj(i) and wj(i) (cf. (2.11),(2.12». that is such that their errors commensurate with errors 
caused by discretizing the ODE. The simplest way to do this is to apply the same integration 
formular for (2.11), (2.12) as used in RKF45: We apply RKF45 to the augmented particular 
problems (cf. §2.1) 

(4.2) f, [ ~~:'.:~ ] = [ ~~t~ ] /j(a;. t) • 

with Fj(<Xj , t) = Qj(i), Mj(<Xi,t) = 0 and 

(4.3) f, [~;i:::?] = [~~i)] Wj(tt,.t) {g)] · 
with Wj(<Xj,tj) = 0, v;(<Xj,tj) =0. One should note that this yields 

As for other routines in this package, the adaptivity is used when computing Wj (<Xi, t) only. 

4.3 Determination of switching points <Xt for integral BC 

If we have integral BC (or a mixed integral multipoint Be) we do not know whether there are 
switching points nor where they possibly are. In view of the delicate way we have to choose 
the initial values of the fundamental solutions F (<Xj ,t), cf. §3.2, it is important to find a 
balance between checking incremental growth and concluding that a switch in the dichotomy 
patem has taken place. 
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We start off with the strategy as outlined in §3.2. An output point is certainly chosen if the 
I 

accumulated sidepoint condition matrix. J~ Mj(l), cf.(3.5), is found to be larger than or equal 

to TOLfEPS. or any time before, when user requested. Initially, the method finds a 
partitioning k(1) at the first minor shooting point and basically updates this index. at each new 
(minor) shooting point; if necessary a permutation is carried out to obtain a correct ordering. 
For a switching point a;, 1 < i < m + I, we have: there is a mode which is growing on 
[ai, a; ] and is decreasing on [a; ,Om ]. Using this property a minor shooting point t/, say, is 

I 
considered to be a switching point a;, say, if there is a diagonal element of Jl Uj greater than 

2 and the same diagonal element of Ul+1 is less than 1. Here Uj is the incremental matrix of 
the fundamental solution on the minor shooting interval [tj-l, tj]. Because a constant mode 
may result in a diagonal element alternative greater then 1 and less than 1, due to 
discretization errors, only modes with an incremental growth greater than 2 on [ai, CI.; ] are 
considered. 
Anticipating polychotomy only the first k(i -1) diagonal elements have to be checked and a 
permutation on the next subinterval [a; ,a;+I] should be restricted to the first kef) columns 
only. 

Note that there can be at most n switching point between al and Om+l. 

4.4 Finding a globally correct partitioning 

Although the algorithm tries to determine a correct partitioning parameter k(i) on each 
interval [ a; • ai+l ], its resolution of the growth behaviour of the various modes may be fairly 

small (e.g. if CI.;+l-CI.; is small) and/or it may be misled by non growing- non decreasing 
modes. Since a normal (that is a well-conditioned) situation implies the existence of a non 
increasing sequence (k(i)}, we need a check on this and - if this ordering turn out not to be 
monotonic - an update. This is done by the following procedure: 

step 1: 

step 2: 

step 3: 

step 4: 

step 5: 

Compute on each interval [CI.;, a;+1 ], i = 1 •...• m, a partitioning parameter 
Ni 

k(i), where k(i) is the number of elements of diagonal(Jl Uj(i», which are 

greater than 1. 

Determine the lowest index I, where k(l) > k(l-l). lfno such index exists, goto 
step 8. 

Determine the lowest index j < I, where k U) < k (l). 

Determine the index p > I, where 
k(l) = k(l+l) = ... = k(P) ~ k(p+l) 

Compute a global partitioning parameter k(l) say, for the interval [aj ,C/.p+! ] by 
checking the increments over [ aj ,ap +1 ] in an obvious way, taking into account 
the various permutations at the switching points. 
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step 6: The new updated sequence (k(i)}~l is defined as 

[ 

k(i) i = 1, ... ,j-l,p+l, ... , m 
k(O:= max(kJl),k(I» ~ : j, ... , 1-1 

k(l) l-l, ... ,p 

step 7: Go back to step 2. 

step 8: The current sequence (k(i)}~l is correct. 

With this procedure we get, at least theoretically, a good choice for the sequence of the k (i). 
However, if the problem is not polychotomic also this procedure may not be satisfactory, 
naturally, and a large amplification factor may result (as is to be expected of course). 

4.5 The computation of stability constants 

Since the algorithm computes fundamental solutions at (possibly "enlarged") switching 
intervals, it does some bookkeeping of stability constants. The computations of the stability 
constant eN (see §3.5) is a straightforward matter and its value can be found in ER(4). If in 

N 
(3.22) the matrix [ I~ Ti 'Pi ] is numerically singular a terminal error IERROR = 320 is given. 

Concerning the "amplification factor", which is an estimate for the Green's functions. the 
algorithm computes an estimate for this on each interval. Therefore the output value in ER(5) 
is the maximum of such factors over the entire region. If the ampli fication factor is such the 
the global rounding error is greater than the discretization error, a warning error. IERROR = 
300, is given. 

Remark 4.4 

If the partitioning is incorrect, we may expect at least ER(5) to be "large". On the other hand, 
due to the special way the algorithm tries to seck the appropiate partitionings, it should be 
expected that a large value of ER(5) has to be attributed to the problem. 
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CHAPTER V 

BVP WITH PARAMETERS 

1. Introduction 

Some ODE contain one or more parameters which are to be detennined along with the 
solution. They can be described by the ODE 

(1.1) %X(t) =L(t)x(t) +C(t)z + r(t) , as t S ~, 

where L(t) is an n xn -matrix function, C (t) an n xl-matrix function (I ~ 1), x(t) and r(t)are 
n -vector functions and z is a constant I-vector, the vector of parameters. Note the linearity in 
x and z. (In the next chapter we shall consider ODE that contain products of x (t) and scalar z , 
so-called eigenvalue problems.) Since both x(t) and z are unknown, we need n +1 Be, which 
we assume to be two-point Be of the following fonn: 

where M a, M p are (n + I) X n -matrices, P a, P p are (n + I) X I-matrices, b% is an n -vector and 
Bz is an I-vector. Since z is constant, the Be (1.2a) can also be written as 

(1.2b) Max(a)+Mpx(~)+Mz z =b , 

whereMz =Pa+Pp. 

We can augment (1.1) with 

(1.3) ft z = 0 , 

thus having an ODE of order n + I : 

The BVP (1.2a), (1.4) is actually a two-point BVP of order n +1, and can be solved using the 
routines from chapter II. However, we rather like to preserve the lower-order fonn (1.1) and 
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this requires some manipulations reminiscent of the multipoint case, chapter IV. In particular 
the homogeneous problem may be skew polychotomic, i.e. have switching points where the 
dichotomy splitting changes; here, however, the dimension of the subspace of non-decreasing 
modes is increasing. As in the integral BC case these switching points are not known in 
advance. Actually it can be shown that the parameter BVP is the adjoint of a suitable 
integral/multipoint BVP, cf. [1]. 

In order to compute the solution of (1.1), (1.2), we apply a multiple shooting strategy as 
before. Denoting the switching points as 0.1, ••• ,<Xm+l (0.1 = a, <Xm+1 = ~), then the following 
three types of solutions are computed on each subinterval [ai, ai+l ]: 

(i) F (CXj , t), being a fundamental solution of (1.1); 

(ii) Z (ai, t), being an n X I-matrix function satisfying 

(1.5) 

(iii) a particular solution w(CXj. t) of (l.I) for z = 0, Le. satisfying 

(1.6) 

It follows then that there exists a vector Cj such that 

Matching at the switching points yields the following relation for the Cj: 

and the BC 

The relations (1.8), (1.9) constitute a linear system for the unknowns c 1, ... ,Cm and z; the 
order of the matrix is m x n + I. 
The algorithm discussed in this chapter has been implemented in the routine MUTSPA. 
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2. Global description of the algorithm 

As in the multipoint case, cf. §IV.2.1, we use multiple shooting with minor shooting points tj 
on each interval [CJ.j ,CJ.i+l J. (So again the index j is local). We start the integration at t\ =CJ.l 

with W1(CJ.t.t,)=O, F\(Clt.tl)=1 and ZI(CJ.ht\)=0. At the next (minor) shooting point tj+\ 

0=1, ... , Ni -1) we similarly choose Wj+l(Clt.tj+l)=O. Zj+l(CJ.t. tj+l) = 0 and the initial value 
for Fj+l(CJ.htj+l) via 

where Qj+l(1) is orthogonal and Uj+l(1) is upper triangular. 
When, for j > 1 it is found that the growth of any of the various modes (as can be monitored 
from the diagonal of the Uj(l» is changing from decreasing to increasing, a switching point 
Cl2 is chosen and the marching is continued, etc. 
On a general interval [ Clj ,CJ.i+1 ] we have for suitable aj(i) 

which gives the following recursion for the aj(i): 

where 

Let {cJ>j(i) If,!l be a fundamental solution of (2.3), {Yj(i) If,!l a particular matrix solution of 

and {zj(i)l~l a particular solution of (2.3) with z = 0, then for some suitable vector Cj we 
have 

The sequence of vectors now can be found by matching at the points CJ.i and using the Be. We 
find 
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So for the BC we find 

where 

By finally denoting for i = 1, ... , m -1, 

(2. lOa) 'Pi = <l>N(i) • . 
(2. lOb) 

(2.1Oc) 

(2.1Od) 

we obtain the linear system 

(2. 11 a) Ac=q, 

where 

(2.11b) A= 
'Pm-I -Om Dm_1 

Ba. Bp Bz 
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Remark 2.12 

If no switching point is detected, Le. if m = 1, the matrix A simplifies to an (n +l)th order 

matrix 

(2. llb)' A = [8«+BI3I Bz J. 

Remark 2.13 

If the ODE is homogeneous. i.e. r (t) = O. t e [ a. ~]. there is no need to compute the 
particular solution of the ODE and the recursion. The expressions (2.3), (2.6), (2.7) and (2.9) 
should then be simplified accordingly, cf. remark IV.2.10. 

3. Special features of the method 

Many special aspects that were described for the multipoint and integral BC case in chapter IV 
also apply to the parameter problem considered in this chapter. They will be briefly indicated 
below, along with some other ones. 

3.1 Computation of the (f>j(i) and Yj(i) 

It can be shown that a well-conditioned parameter problem is skew polychotomic, with a 
dichotomic structure of the fundamental solution on each intClVal [<Xi, ai+1]. The dimension 
of the non-decreasing solution space at [ai • <Xi +1 ], say ke~, forms a non-decreasing sequence, 

i.e. k(1)::; k(2)::;' .. ::; kern). The fundamental solution {(f>j(l)}!!:\ is then found from (2.3) 
using the BC 

The particular matrix solution {Yj(i)}~\ is similarly computed using the decoupled form of 
the recursion, cf. (2.5), and has the Be 

(3.2) Y t (0 = 0; Y rJ. (i) = 0 . . 
Note that Yfci) is an (n -k(l» x I-matrix and YrJ. (i) a k (i) x I-matrix . . 

As before. the particular solution Wj( ai, tj) is chosen such that Wj (<Xi, tj) = O. Similarly, we 
choose Zj(aj ,Ij) = 0. 
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The computation of F 1 (at, t) is essentially the same as described in § IV. 3.2. If a change of k
partitioning is noticed (here such that the subspace of non-decreasing modes is increased. 
rather than decreased as in the integral Be case) a new switching point a2 is chosen. As initial 
value for F 1 (a2 , a0 we take 

If QN P) is found not to be a good starting value on the interval [a2, t ], t suficiently large, a 

permutation of the last n -k(l) columns of QN1(l) may be carried out to obtain a more 

appropriate ordering of the diagonal of the Vj (2); this is of course a strategy complementary 
to the one outlined in §IV.3.2. 

3.3 Special solution of the linear system (2.11) 

The sparse system (2.11) is solved by a special technique in order to save both memory and 
computer time. Instead of (2.11) we rather consider the augmented system. Define 

Then we have for the augmented system: 

(3.4a) A e = q, 
where 

Sl Rz t\ 41 

(3.4b) A= ,c= ,q= 
Sm-l Rm C/II-l 4/11-1 

Bl Bm cm b 

This linear system has the same structure as the linear system (1.3.7) which resulted from the 
discrete BVP (1.3.5),(1.3.6). In fact applying multiple shooting to the two-point BVP 

using the switching points aI, ...• am as shooting points and starting on each subinterval 
[ai, <li+l ] with a fundamental solution H (t), where 
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[
II 0] 

H(t) = 0 Qi(1) 

would lead to the linear system (3.4). Note that (3.5) is equivalent to (1.1), (1.2) and 0.4). 
Although the Sj and R j +1 in (3.4) have a special structure, we will solve (3.4) in a general way; 
that is, we will consider the Sj and Ri+l to be full matrices. In this case system (3.4) is called a 
general discrete two-point BVP, which can be written as 

(3.6) Sj tj + Ri +1 ti+l = 4j+l, i = I, ... , m-I 

For well-conditioned two-point BVP the solution space of the homogeneous problem is 
dichotomic. In order to use the ideas outlined in chapter II for two-point BVP. we shall now 
show how to transform Sj and Rj+l appropriately for use in a forward-backward algorithm. 
Let Oland T 1 be orthogonal matrices such that 

where V I is upper triangular. Then let 02 be an orthogonal matrix such that 

where W 2 is upper triangular. 
This process gives in general 

(3.9) Sj OJ = Tj Vi , 

where Tj, OJ are orthogonal matrices and Vi, Wj+l are upper triangular matrices. Finally 
define 

(3.10) f · 1 - T·-I A. and e· - 0.-1 .c. 1+ - ''11 ,-, {;" 

then we have the transformed system 

(3.lla) 

and aBC 

(3.1Ib) 
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If system (3.11) is well-conditioned. it is dichotomic. i.e. for some integer kp there exist a kp-
dimensional subspace of increasing solutions and an (n -kp)-dimensional subspace of non
increasing solutions. Moreover these two subspaces are disjoint. Using this property and 
starting with a proper 0 1. we can compute a set of Vj and Wj+I for which the first kp columns 
represent the subspace of increasing solutions and the last (n - kp ) columns the subspace of 
non-increasing solutions. Partitioning of the matrices and vectors results in 

(3.l2a) W ·22 e·21 - V·22 e 2+f·2 J t+l 1+ - t , ,+. 

(3. 12b) Wi~\ ej~l + Wj~1 ej~l = Vjll ejl + Vj l2 e? + /;~l • 
which can also be written as 

(3. 13a) 

(3.13b) 

where Wj~\, Vill are kp xkp-matrices, Wj~. Vj22 are (n -kp)x(n -kp)-matrices, ejI'/;~I are 
kp-vectors and er-,ft+l (n -kp)-vectors. 
Forward computation of (3. 12a) and backward computation of (3.12b) are stable. Hence the 
obvious strategy for computing a fundamental solution {Si) f=t and a particular solution 
(Pi }f=t of recursion (3.11) is to use (3.12a) in forward direction and (3.12b) in backward 
direction. So for the particular solution {Pi} f=l we have the BC 

(3.14) Pf =0 ,P':' =0. 

Then P(- , i = 2, 3, ... , m, using (3. 13a), and Pil , i = m-l,m-2, .... 1. using (3.13b), is 
computed. 
For the fundamental solution we have the recursion 

(3. 15a) 

(3.15b) 
and the BC 

02 1 - (W.22 )-1 V·22 02 '0,+ - ,+1 ,'0, , 

(3.16) Sf= [01l]; SJr = [110]. 

Now {S1Jf=2 is computed via (3. 14a) and {Sr }t=m-I is then computed via (3.14b). 
The solution of (3.11) can be written as 

(3.17) ej = Sj a + Pj, i = 1 .... , m , 

for some (n + 1 )-vector a . Substituting (3.17) into (3.11 b) we have 

from which a can be computed. Then the ei can be computed via (3.17) and then the Cj via 
(3.10). 
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Remark 3.19 

In order to compute a solution of (3.13) in a stable way, it is necessary that the Wi~~ and the 
Vill are nonsingular. Moreover the diagonal elements of (W a~ )-1 V (2 and (Vil1)-lWi~\ should 

be less than or equal to 1. 

Remark 3.20 

It is not necessary that the Wi~\ and Vj22 are nonsingular, Le. it is not necessary that all Si and 
Ri+l are nonsingular. If the dichotomy induces a splitting such that the ViII and Wi~ are 
nonsingular and [8191 + B~ em] is nonsingular. we still have a solution for the general 
discrete BVP (3.5) 

3.4 Conditioning and stability 

As a BVP with parameters can be written as a two-point BVP (3.5), it is obvious that we have 
for the condition number eN: 

(3.21) 

where H (t) is a fundamental solution of (3.5a), Moreover we have 

For stability we have to investigate the (growth of) solutions between two successive 
switching points; this is essentia1ly similar to investigating the recursion of the two-point 
BVP, and recursions (3.11) or (3.13). For stability only the homogeneous part of a recursion is 
of interest; for (3.13) the latter can be written as 

(3.23a) e·21 - (W.22 )-1 V·22e2 ,+ - ,:n ", 

(3.23b) 

Denoting E · l·-(W·22 )-1 V22 B·-\ ·_(V.lI)-1 W.l 1 and ,+.- '+1 " ,+.-, 1+1 

(3.24a) 

(3.24b) 

This is similar to the recursion derived from a two-point BVP and therefore the same formula 
can be used to compute the amplification factor, cf. §II.3.4. 
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Remark (3.25) 

Note that the effect of accumulated errors as given in (U.3.22) depends on Bi:;\ and B{j.\ Ci+l 

and not on B;+1 itself. So even if Wj~\ is singular and therefore B;+1 is not defined, Bi:;\ and 
the quantity "B( •. \ Ci+l" are still meaningful. 

4. Computational aspects 

The routine MUTSPA basically uses the same strategy for computing the upper triangular 
recursion on the intervals [<Xi .<x;+d. i = 1, ... ,m, as the routine MUTSGE does for two
point BVP (see chapter I). Only the choice of the Q \(0, i = 2, ...• m (that is the 
"orthogonalized" F\(<x; • <Xi» and the computation of the k-partitionings are different. The 
computation of the {Ci} f,!l is decribed in §3. Once knowing the Cj. the computation of the 
solution at the i th interval [<Xi. <Xi+l] is the same as in the two-point case (see chapter II). In 
the next sections we discuss how to find the switching points, the choice of Q 1 (i), how to find 
a correct global partitioning and how to find a correct partitioning for the general discrete 
two-point BVP (cf. system (3.11». 

4.1 The computation of switching points 

A well-conditioned parameter problem is skew polychotomic, that is the dimension k(i), say. 
of the non-decreasing solution space on [ <Xi • <Xi +1 ] forms a non-decreasing sequence, i.e. 
k(l) S k(2) S' .. S k(m). 
For a switching point <Xi. say. we potentially have a mode which is decreasing on [<Xl. <Xi ] 

and increasing on [<Xi. <Xm+l J. Using this property a minor shooting point, t[ say. is considered 
[ 

to be a switching point ai. say, if there is a diagonal element of n Uj less than 0.5 and if the 
j=~ 

same diagonal element of U/+l is greater than 1. Here Uj is the incremental matrix of the 
fundamental solution on the minor shooting interval [tj-l • tj J. 
Because a more or less constant mode may result in a diagonal element fluctuating around 1, 
only modes with an incremental growth less than O.S on [ al • t, ] are considered. 
Anticipating skew polychotomy, only the last n -k(i) diagonal elements have to be checked; 
there are at most n switching points between <Xl and <Xm+l. i.e. m S n + 1. 

4.2 The computation of Q l(i) 

On the first interval [al • <X2] we do the same as in the two-point case, i.e. Q 1(1) = I and if this 
is not a satisfactory choice, the columns of Ql(1) are permuted such that diagonal U2(1) is 
ordered. As a first choice for Q 1 (i). i = 2, ... , m. we take 

This choice is satisfactory if the diagonal of the incremental matrix V 2(i) of the fundamental 
solution on the first minor shooting intcrval on [ai • <Xi+l 1 is ordercd. Otherwise the columns 
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of Q to) are permuted such that the diagonal of IV 2(i ~ is ordered. At this stage the 
partitioning parameter ki is computed as the number of diagonal elements ofl V2(i~ which are 
greater than 1. 
Although this stategy results in a set of actual switching points and an increasing sequence of 
k-partitioning parameters ke~, it is possible that, due to discretization errors, the computed 
k (i) does not correspond to the proper partitioning. Therefore, after the above described 
procedure, globally correct partitioning parameters are determined. 

4.3 Finding a globally correct partitioning 

Although the algorithm tries to detennine a correct partitioning parameter k(O on each 
interval [ <Xi ,(X.i+l], its resolution of the growth behaviour of the various modes may be fairly 
small (e.g. if (X.i+l-<Xi is small) and/or it may be misled by non-growing non-decreasing 
modes. Sinee a nonnal (that is a wen-conditioned) situation implies the existence of a non
decreasing sequence {k (i)}, we need a check on this and - if this ordering turns out not to be 
monotonic - an update. This is done by the following procedure: 

step 1: 

step 2: 

step 3: 

step 4: 

step 5: 

step 6: 

step 7: 

step 8: 

Compute on each interval [<Xi, (X.i+d, i = 1, ..• , m, a partitioning parameter 
Ni 

k(i), where k(O is the number of elements of diagOnalCll Uj(i», which are 

greater than 1. 

Detennine the highest index I, wbere k (I) > k (1 + 1). If no such index exists, 
goto step 8. 

Detennine the highest index j > 1. where k (j) < k (I). 

Detennine the index p < I , where 
k(l) = k(l-I) = ... = k(P) ~ k(P-l). 

Compute a global partitioning parameter tel) say, for the interval [Clp • Clj+l ] by 
checking the increments over [CJ.p ,<lj+l] in an obvious way, taking into account 
the various pennutations at the switching points. 

The new updated sequence {k 0) } l!l is defined as 

[ 

k(i) ,i=I, ... ,p-l,j+l, ... ,m 
k(O:= max(k.co.k(l» ,~:I+I, ... , j 

k (1) • l - P , ... , 1 

Go back to step 2. 

The current sequence {k (i)} l!1 is correct. 

With this procedure we get, at least theoretically. a good choice for the sequence of the k (i). 
However, if the problem is not skew polychotomic also this procedure may not be 
satisfactory, naturally, and a large amplification factor may result (as is to be expected of 
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course). 

4.4 The computation of Oland kp of system (3.6) 

Generally there is no information for choosing 0 J, so we start with 0 I = I and compute a V t 
and a W 2. If the diagonal of W 21 V 1 is not ordered, the columns of 0 1 are permuted such that 
the diagonal of W 21 V 1 is ordered. The k -partitioning (kp ) is defined in a similar way as in the 

two-point B VP case, Le. kp is equal to the position of that diagonal element of W 21 V 1 which 
is the smallest one (in absolute value) being greater than L However, this kp may not be the 

globally best one for the recursion. Therefore a global check of the increment fj WJ+\ Vj is 

made. If the ordering of this product is not found to be satisfactory, a global reordering is 
performed using permutation matrices according to this. 
The question remains what to do when some of the Wi+l or Vi arc singular. There still may be 
a stable solution (see §3.4) if the singularity of Wi+l occurs in the kp xkp left upper block of 
Wi+l (Le. Wi~\) and if the singularity of Vi occurs in the right (n -kp) x(n -kp) lower block 
of Vi (Le. V j22). Therefore each zero diagonal element of Vi and Wi+t will be given the value 
of the machine constant (Le. the value of ER(3». If there is a proper dichotomy this will 
result in a correct global partitioning. If there is no proper dichotomy this will result in either a 
large amplification factor or either a numerically singular Vitt or Wi~1. In the latter case a 
terminal error IERROR=315 is given. 

4.5 The computation of the stability constants 

Since the algorithm computes fundamental solutions at switching intervals, it does some 
bookkeeping of stability constants. The computation of the condition number eN (see §3.5) is 
a straightforward matter and its value can be found in ER( 4). 
Concerning the "amplification factor", which is an estimate for the Green's functions, the 
algorithm computes an estimate for this on each interval and also for system (3.11). The 
largest of these values can be found in ER(5) 

Remark 4.2 

If the partitioning is incorrect, we may expect at least ER(5) to be "large". On the other hand, 
due to the special way the algorithm tries to seek the appropriate partilionings, it should be 
expected that a large value ofER(5) has to be attributed to the problem. 
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CHAPTER VI 

ODE WITH DISCONTINUOUS DATA 

1. Introduction 

In the preceding chapters we descibed BVP for which the right-hand side of the ODE and the 
solution were both continuous with respect to the independent variable. In this chapter we will 
consider BVP for which the solution or the right-hand side of the ODE is discontinuous at 
certain points. 
Let a = al < al < ... < <Xm+l = ~ be switching points. Consider the ODE 

(1.1) !X(t)=Lj(t)x(t)+r;(t), aj'5.t<<Xi+l,i=l, ... ,m, 

where the Li (t) are bounded continuous n x n -matrix functions and the 'j (t) are bounded 
continuous n -vector functions. 

For a solution x(t) of (1.1) we define: 

Although the ODE (1.1) is discontinuous at al, ... , t:Y..m, there are continuous solutions of 
(1.1). For specifying a discontinuous solution of (1.1) at <X2, ••• , am, we need side conditions 
at a2 •...• <Xm, which have the form 

(1.3) Zrx(<xf) +Ztx(at) = bi , i =2 •.... m, 

where Zr, Zi+ are n x n -matrices, bi an n -vector. 
These side conditions are completed by a (multipoint) BC, i.e. 

where the M j are n x n -matrices and b is an n -vector. 
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Two cases can be distinguished for the side conditions: 

i) jump conditions at O:i • like 

[
Ip 0] [/p 0] [Si] (1.5a) 0 I,,_p x(o:f) = 0 I,,_p x(o:t) + 0 • Si :t. 0 . 

E.g. if both Zr and zt are nonsingular. we have a jump condition. 

ii) internal boundary conditions at O:i. like 

[
Ip 0] [0 0] lSi] (1.5b) 0 I,,_p x(o:f) = 0 I,,_p x(o:t) + 0 ' Sj:t.O. 

Jump conditions just make the solution discontinuous and are not genuine BC, whereas 
internal BC in part determine the solution locally. 

As in chapter IV. we compute fundamental solutions F (<Xi. t) and particular solutions w (<Xi. t) 
consecutively on the intervals [O:i • «i+l] and try to determine the vectors Ci in 

(1.6) x(t)=F(<Xi,t)cj +w«l;,t). (l; St SO:j+l. 

The major difference with both the two-point and the multipoint case is that we have to use 
the side condition 0.3) at t = O:j. j = 2, ... , m. instead of employing continuity there as 
before. This gives for i = 1, ...• m -1. 

Together with the BC (cf. 0.4», 

m-l A 

(1.7b) Y MjF(O:i.o:f)Cj + [Mm F(«m.a,1;)+Mm+lF(<<m.<<m+l)]Cm =b. 
~ 

where 

We have a linear system to be solved for the unknown C b ... , Cm • 

The algorithm described below has been implemented as the routine MUTSDD. 
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2. Global description of the algorithm 

The basic part of the algorithm essentially follows the ideas outlined in chapter IV, i.e. it 
determines minor shooting intclVals and assembles them into major shooting intervals. 
Boundary points of such a major shooting intelVal are either user requested output points or 
switching points; in contrast to the regular multipoint case, however, no assembly across a 
switching point is being made. 
Let us use the terminology of § IV.2 again: On each intelVal [CJ.; , ai+l] orthogonal matrices 
Qj(i) and upper triangular matrices U/i) are computed. For the solutionx(t) we have 

This gives the following recursion 

Moreover, let {<I>j(i)}~ll and {Zj(i)}~ll be a fundamental and particular solution of (2.2). 
Then for some vector Cj we have 

At the switching points we have 

(2.4a) x (at) = wl(ai, CJ.;+) + Q l(i) [z 10) + q,ICi) Cj ] , i = I, ... , m • 

Substituting (2.4) in (1.3), we obtain 

(2.5) Ki Cj + Li+l Ci+l = qi , i = 1 •... , m -1 , 

where 

(2.6a) 

(2.6b) 

(2.6c) 

Substituting in (1.4) we obtain 
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(2.7) I~ Mj Ci =b , 

where 

(2.8b) 

(2.8c) 

This gives the linear system 

(2.9a) Ac = q, 

where 

(2.9b) A= 

Kl L2 

Km-l Lm 
MI M2 .. Mm-l Mm 

CH. VI,2 

,c= q -, -

This system resembles the multipoint system obtained in (IV.2.9), but for a different form of 
the blocks Ki, Li+l. as compared to fli. Oi+l there. In general Ki, Li+l are not upper triangular 
and therefore we call systems like (2.9) a general discrete multipoint BVP. In the next section 
we descibe how to solve these systems. 

3. Special features of the methods 

For most aspects we can refer to chapters II and IV. What is really different here is the 
solution of the linear system (2.9). 
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3.1. Solution of the system (2.9) 

There is no special structure for the Ki and Li+l in system (2.9). Moreover some of the Mi 
may be singular. Therefore we will describe how to solve general discrete multipoint BVPs. 
There is a strong similarity between discrete multipoint BVPs and continuous multipoint 
BVPs. Therefore we can make use of the ideas of chapter IV. 
Consider the recursion 

and a multipoint BC 

m+l 
(3.tb) ~. MjXi. =b , 

l~ J 

where Ai, Bi+lt Mj are n x n -matrices, Xi. gi+l, b are n -vectors and 
l=il <i2< ... <im+l=N. 
Recursion (3.1a) can be split up into m subrecursions: 

where 

A solution {Xj (I)} ~l of (3.2) can be written as 

where Fil) is a fundamental solution of (3.2), Wj(l) a particular solution of (3.2) and at some 
constant vector. 
For I == 2, ... , m. we have Xi, == X I (I) == XNjl - 1). which gives the recursion for the al: 

and a multipoint BC for the al: 

(3Ab) 

This system is similar to system (IV. 1.4). The ij can be considered as the discrete version of 
the switching points of chapter IV. Similar to continuous multipoint BVPs we have that, if 
the problem is well-conditioned. the problem is polychotomic, which means that recursion 
(3.1) is polychotomic. so the subrecursions (3.2) are dichotomic and for the so called k
partitionings k (I) of the subrecursions we have 
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(3.5) k(1)~k(2)~'" ~k(m). 

To compute a fundamental solution and a particular solution of the subrecursions (3.2). the 
same method is used as in the case of discrete two-point BVPs (cf. §V.3.3). That is. the 
recursions are transformed into appropriate upper triangular recursions and the fundamental 
solutions and particular solutions are computed using the forward-backward algorithm. 

Let {'Pj(I)}~l be the fundamental solution and {Pj(l)}~1 the particular solution of the upper 

triangular recursion; let {0/l)}~1 be the orthogonal transformation matrices. Then for some 
Cl we have 

As the problem is polychotomic, the 0 1(1+1) are chosen such that 

(3.7) OI(I+l)=ON,(l)PI.l=l .... ,m-l 

where PI is a permutation matrix. which only permutes the first k(l) columns of ON/(l). where 

k(l) is the k-partitioning of the llh subrecursion (3.2) (cf. §IVA.3). 
Matching at the "switching points ij" and substituting (3.6) in the Be (3.tb). we obtain the 
linear system for the Cl : 

(3.8) Ac=q 
where 

ill -02 

A= 
ilm- 1 -Om 

MI M2 . Mm-l Mm 

cT = [cf, . ..• CJ;-l ,C~] qT = [qf, ... , q~-l ,b"T]. 

and for l = 1 •...• m - 1 • 

ill = 'PN/(l). 

ql =ON',l(l)Ol(l+l)P}(l+l)-PN,(l), 

Ml =Ml Ol(l)'P1(l). 
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~ m 
b =b - ~MJ Ol(l)Pl(l) -Mm+l ON.,(m)PN .. (m). 

This system is similar to system (IV.2.9). The method for solving such systems is described in 
§IV.3.4. Having the solution for the el, (3.6) is used to find the solutions Xj of (3.1). 

3.2 Conditioning and stability 

The condition number eN for BVP with discontinuous data is defined as follows: Let F (t) be 
a fundamental solution of ODE (1.1) and let (G (i) } ~l be a fundamental solution of recursion 
(1.7a), i.e. of the recursion 

Define the matrix solution H (t) of ODE (1.1) as 

(3.10) H(t) := F(t)G(i). ext 5,; t 5,; exft-I> i = 1, ... , m-1. 

Then 

(3.11) 

Hthe ODE is polychotomic, we can choose the F(t) such that maJ). 1\ F(t)11 $1. For such an 
IE 1a..\5] 

F(t) we have 

(3.12) 

Conditioning of the discrete multipoint B VP (3.1) is similar to the conditioning of 
(continuous) multipoints BVPs. Let {G(l) }t!.l be a fundamental solution of recursion (3.1a), 
then the condition number eND is dermed as 

If the recursion (3.1) is polychotomic, the G(i) can be chosen such that \I G(i)1I 5,; 1 and for 
eND we have 
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Remark 3.15 

The right-hand side of (3.12) is the condition number of the discrete multipoint BVP (1.7). 
Therefore the estimate of the eND of (1.7) is also an estimate for eN . 

4. Computational aspects 

The routine MUTSDD basically uses the same strategy for computing the upper triangular 
recursion, the fundamental and particular solutions of the upper triangular recursion and the 
k -partitioning on the intervals [ at ,art-1 ], i == I, ... , m, as the routine MUTSGE uses for the 
two-point BVP. As a first choice for the Q1(i) we use: Qt(l)=l, Q1(i+l)=QN,(i), 

i == I, ... , m -1. 
For the resulting discrete multipoint BVP, the routine MUTSDD basically uses the same 
strategy for computing the upper triangular recursions of the subrecursions as is used for 
discrete two-point BVP (see §V.3.3, §VAA). For the choice of the Ol(i) and the global k
partitioning basically the same strategy is used as in the case of multipoint BVP (see §IV.4.1, 
§IVAA). 

4.1 The computation of the stability constants 

As an estimate for the condition number eN of the problem, we take the estimate for the 
condition number eND of the discrete multipoint BVP. The algorithm for solving system 
(3.8) delivers the matrix, from which the estimate is computed. If this matrix is singular a 
terminal error IERROR==320 is given. The output value of ER(4) is the estimated value for 
eN. 
For each interval [ at , al+1 ] i == 1, ... , m, an error amplification factor, which is an estimate 
for the Green's functions, is computed. The output value of ER(5) is the maximum of these 
amplification factors. 
For the discrete multipoint BVP an error amplification factor, being the estimate for the 
discrete Green's functions, is computed for each subrecursion. The output value of ER(6) is 
the maximum of these error amplification factors. 
If the value of ER(5) or ER(6) is such that the global rounding error is greater than the 
discretization error, warning errors IERROR == 300 or IERROR = 305 are given. 

Remark 4.1 

If the partitioning on the intervals [ at , aft 1 ] is incorrect, we may expect at least ER(5) to be 
"large". If the partitioning of the discrete multipoint BVP is incorrect, we may expect at least 
ER(6) to be "large". However, due to the special way the algorithm tries to seek the 
appropriate partitionings, large values for ER(5) or ER(6) have to be attributed to the problem. 
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4.2 Internal Be 

If there are internal BCs, then for some i either Z{t.l or Ziti is singular. and therefore either 
Ki or Li+l is singular. In general. we may have singular matrices Ai or Bi+l in the discrete 
multipoint BVP (3.1). If it is impossible to compute a fundamental and particular solution of 
the subrecursions (3.2), because of a singu1ar Ai or Bi+l' a terminal error IERROR = 315 is 
given. 
On the other hand, realizing that an internal BC at ai+l should control only growing modes on 
[at, ai+l] and an internal BC at at+l should control only decreasing modes on [at+l. tXi+z] 
and the special way the algorithm tries to seek appropriate partitionings and fundamental 
solutions. a terminal error IERROR = 315 should be attributed to the problem. 
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CHAPTER VII 

EIGENVALUE PROBLEMS 

1. Introduction 

Consider the ODE 

(1.1) frX(t ,'A) =L(t)x(t ,'A) + 'AK(t)x(t • 'A) ,a. ~ t ~ P, 

where K (t) is an n x n -matrix function. Let a homogeneous BC 

(1.2) Max (a, 'A) +Mpx(P,'A) == 0 

be given. Then (Ll). (1.2) is called an eigenvalue problem, where 'A is an eigenvalue and the 
nontrivial solution x (t ,'A) an eigensolution. Formulated this way we obviously do not have 
uniqueness of x (any multiple of x(t ,'A) is also an eigensolution). By viewing both x and 'A as 
unknowns it can be seen that (Ll) is in fact a nonlinear equation for the "solution" (xT , 'Al, 
despite the linearity in x. This makes it suitable for using a nonlinear BVP solver. We 
augment (1.1) by the simple equation j.. = 0 and (1.2) by fixing the solution x (t ,'A) somewhere 
(thus making it unique). Here we shall use a method based on successively computing 
approximations found from integrating (1.1) with a fixed (though recursively updated) A. Let 
in the neighbourhood of the eigenvalue 'Ae , F (t, 'A) be a fundamental solution of (1.1). Then 
any solution x(t ,'A) can be written as 

(1.3) x(t,A)=F(t,'A)c('A). 

for c('A) E IR". 
After substitution of this in the BC (1.2) we should have for Ae : 

(1.4) R('Ae)c('Ae) =0, 
where 

Apparently, for an eigenvalue 'Ae we should have that R('Ae) is singular. By applying an 
iterative rootfinding algorithm to the latter property we can employ the type of multiple 
shooting approach of chapter II to (1.1), having only a nonlinear algebraic problem via R ('A). 
It should be realized that (1.1), (1.2) can constitute a very complicated problem, potentially: 
the eigenvalue Ae can be multiple. If this multiplicity is only algebraic. the method below is 
certainly not necessarily reliable; if the multiplicity is geometric, then it may give results 
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under special circumstances only. 

The algorithm decribed in this chapter is implemented in the routine MUTSEI. 

2. Global description of the algorithm 

Our algorithm will be based on two ideas: in the first place a method to detennine an 
approximate solution manifold and in the second place a nonlinear scalar solver. Assume for a 
given value A, F (t , A) has been obtained using a multiple shooting approach with decoupling. 
Rather than using a classical way of updating A, based on zeroing det( R (A» (see (1.5» we 
shall use appropriate infonnation from the singular value decomposition 

(2.1) R (A) = U (A) l:(A) VT (A) , 

where U (A), V (A) are orthogonal matrices and l:(A) is a diagonal matrix with semi-positve 
diagonal entries OI(A), ... , all (A), where 

Since the number of (numerical) nonzero singular values is equal to the (numerical) rank of 
R (A), it follows that (aiming initially at a rank: (n -1) matrix R (Ae» it makes sense to use 

on (A) as a function of A that should be zeroed. Realizing that all (A) might be a complicated 
function we use an interval method applied to 

(2.3) peA) := sgn (det(R (A») all (A) . 

The factor sgn( det( R (A) ) ) is employed to make sure that peA) switches sign at least once (in 
the case of a single eigenvalue). Note that a lower and an upper bound for Ae has to be 
supplied. An advantage of an interval method is that the iteration can be stopped when 
sufficient accuracy has been achieved, viz. by controlling the interval width via a tolerance 
parameter. 
Given a single eigenvalue Ae, a solution x (t ,Ae) can be found directly using VII (Ae ), the last 
column of V (Ae), i.e. 

For multiple eigenvalues the iteration function (2.3) cannot be guaranteed to work 
satisfactorily. Moreover, if the numerical rank of the null-space of R (Ae) is larger than ooe, 
say I, an eigensolution may be any linear combination of the solutions F (t. Ae) Vj (Ae), with 
j = n • n - 1, . . . , n -I + 1, where v j (Ae ) denotes the singular vector in V CAe) corresponding to 
OjCAe). 
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Remark 2.5 

For quite a few Stunn-Liouville problems the homogeneous system (Ll) does not have 
strongly increasing or decreasing modes, but rather rapidly oscillating ones. Consequently, 
although instability, caused by growth of certain modes, is not a likely problem, sufficient 
accuracy may be a problem as this oscillation requires very many grid points. 

3. Special features: conditioning 

Usually an iteration is perfonned on det( R (A) ). Although it is undeniably true that 
det( R (A) ) = 0 whenever A is an eigenvalue of the problem, one should realize that det( R (A) ) 
is the product of eigenvalues of the matrix R. If some of these are very large (in magnitude) 
or behave erratically in a neighbourhood of I.e, the iteration may be far from efficient, or even 
lead to a numerically unsatisfactory result. On the other hand, it is not unrealistic to use the 
sign of R (A) as a mean to detennine on which side of the "zero" Ae we are wotking. This fact, 
combined with the robustness of a singular value decomposition (and in particular the 
measure for singularity as indicated by the magnitude of 0/1 (A), cf. [2]) make the iteration 
function p(A) to be our favorite. Below we shall give a pertubation analysis. 

Let the BC (1,1) be perturbed by small matrices oMa. oMp. Then we obtain a perturbed 
matrix R (Ae) + oR (I.e), where 

(3.1) R(A) + oR (A) = (M a + oM ~F(o.,A) + (MI3 + 8M(3)F (\3, A). 

Note that [R (ie) + 0 R (ie) 1 being singular in general means ie :f:.Ae and F (t , ie ):f:.F (t , I.e). 
However, given enough regularity with respect to A, we may say that 

(3.2) OR (ie) ::: oM aF (a, Ae) + oM ~ (\3, Ae) . 

Due to the nonnalisation of the fundamental solutions (as we computed them via the 
algorithm of chapter II) it follows that 

(3.3) 118R(ie)1\ ~II oMall +11 OMp" . 

Moreover, from what we just said we may assume that R (ie) + 0 R (ie) ::: R (Ae) + 0 R (ie ). 
By ordering the singular values of the latter perturbed matrix in decreasing order (as for 
R (Ae» it follows that they differ from the corresponding singular values of the unperturbed 
R(Ae) by II oR(ie)II at most. It can also be shown that the perturbation ofvn(Ae) (cf. (2.4» in 

the direction orthogonal to v is ::: II 0 R (ie )" (given multiplicity 1). Hence, as a measure for 
01l-1(:1'e) 

the condition number we shall use 

This is a meaningful estimate of the "condition number" 
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(3.5) eN := m~xll F (t ,'}..e) [R (Ae) ]+11 , 

where [R ('}..) ]+ is the pseudo-inverse V ('}..) 1:+(A.) U T ('}..) 

(D('}..) = diagonal( 0-1 ('}..), ••• ,O'n-I('}..).O). 

CHVII,3 

Note that this "condition number" is a straightforward analogue of that defined in (2.3.12). If 
the null-space of R ('}..e) is of rank larger than one. the condition number is apparently infinite 
(or very large, if it concerns the numerical rank). However. for geometrical multiplicity 
I, I > 1, it was remarked in §2 that the potential eigenspace was of rank l. Hence the 
condition number estimate should then read 

(3.6) K := [ an-I (Ae) ]-1 , 

being an obvious upper bound for (3.5) with appropriately defined [R ('}..e) ]+. 

4. Computational aspects 

The routine MUTSEI basically uses the strategy employed in MUTSGE. The extra feature is 
the use of the nonlinear solver ZEROIN. 

4.1 The use of ZEROIN 

A reliable method for approximately detennining the zero of a nonlinear function, for which 
an interval is given where it has opposite signs at the endpoints. is usually based on the secant 
method (or something alike) stabilized with bisection. A successful implementation of this 
idea is the routine ZEROIN, cf. [1]. This routine is used to "solve" p('}..) =0, cr. (2.3). Hence 
the user should supply two (interval end-) points Amin and Amax. where he presumes that 
p(Amin) x p(AmaJ < O. If, after evaluation of p(AmW and p(AmaJ the routine detects that this 
assumption is violated, a tenninal error is given, with the actual value of p being printed. 
From this a better idea of suitable points Amin and Amax might be obtained in order to restart 
the routine. 

4.2 Accuracy of the result 

Since the integrator is working with tolerances given in ER(1) and ER(2), one cannot expect -
in general- that the eigenvalue is obtained with significantly higher accuracy than ER(2). 

4.3 The solution space 

As decribed in §2 we may have an eigenspace of dimension> 1. In this case the algorithm 
may fail. Our iteration function p('}..) is implicitly assuming that deteR ('}..» is changing sign at 
'}..e. which may no longer be true for (algebraic) multiplicity> 1. Nevertheless, given the 
absolute tolerance ER(2), all singu1ar values smaller or equal to this value are considered to be 
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zero. When this number turns out to be larger than 1, a more-dimensional space of basic 
solutions is given, ef. the discussion in §3.4.2. 
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CHAPTER VIII 

SPECIAL LINEAR SOLVERS 

1. Introduction 

Using multiple shooting techniques to compute approximate solutions of linear B VPs, results 
into solving sparse linear systems, as decribed in the preceding chapters. These sparse linear 
systems can be considered as general discrete B VPs. Three sparse linear systems can be 
distinguished: 

i) Linear systems resulting from two-point BVPs. 

ii) Linear systems resulting from multipoint BVPs. 

iii) Linear systems resulting from two-points BVPs with parameters. 

For these three cases we have the routines SPLSl, SPLS2 and SPLS3, respectively. 

2. General discrete BVPs 

In this section we will descibe the three types of discrete BVPs. 

2.1 General discrete two-point BVPs 

Consider the sparse linear system 

(2.1) Ax =b. 
where 

AI B2 XI gz 

A= ,x= ,b= 
AN~I BN XN-I gN 

MI MN XN b 

Here Ai, Bi+1 are (full) n x n -matrices. M h MN are n x n -matrices, Xi, gi+h b are n -vectors. 
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Writing problem (2.1) in a recursive way. we have to consider the recursion 

and aBC 

(2.2b) 

The method for solving this type of linear system is described in §V.3.3 and is implemented in 
routine SPLS 1. 

2.2 General discrete multipoint BVPs 

Consider the sparse linear system 

(2.3) Ax= b, 
where 

A= ,x= ,b== 
Xm-l 

Xm 

Here Ai, Bi+1 are (full) n x n -matrices, M J, ••• ,Mm are n x n -matrices. Xi, gi+l> b are n
vectors. 
Writing problem (2.3) in a recursive way we have to consider the recursion 

and a multipoint BC 

k 
(2.4b) > Mi. Xi· ==b, 

J~ J J 

where 1 == i 1 < i2 < ... < ik = m. Le. Ml = 0 if I '# ij. j = 1, ... , k. (Here we have taken into 
account that some of the Mi are 0.) 
The ij can be considered as the discrete version of the switching points of the continuous 
multipoint BVP. 
The method for computing an approximate solution is decribed in §VI.3.1. 
For discrete multipoint BVP we have the routine SPLS2. 
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2.3 General discrete two-point BVP with parameters 

Consider the sparse linear system 

(2.5) Ax=b 
where 

A= 

xT = [xL ... ,Xli-I, xli,zT], bT = [gf, . .. , gJi,bI'bJ], 

Ai,8i+1 are (full) n x n-matrices, Di+l are n x I-matrices, M 1> MN arc (n+l)x n -matrices, M z 

is an (n + 1) x I-matrix, Xi, gi+h bx. are n -vectors and z, bz are I-vectors. 

Writing system (2.5) in a recursive way we have to consider the recursion 

(2.6a) Ai xi + 8i+1 Xi+l + Di+1 Z = gi+1o i = 1, ... , N -1 , 

and aBC 

The I-vector z can be considered as a vector of I parameters. The method for computing an 
approximate solution of (2.5) is described in §V.3.3. 
For discrete two-point BVPs with parameters we have the routine SPLS3. 
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CHAPTER IX 

DOCUMENTATION 

1. Introduction 

BOUNDPAK is a package containing Fortran '77 subroutines for solving linear BVP, using 
the algorithms which are described in the preceding chapters. There are nine subroutines for 
various B VP of ODE and three subroutines for discrete B VP. 
BOUNDPAK is desi!,'lled for non-stiff problems and uses a multiple shooting technique to 
compute an approximation of the solution of the BVP at given output points. 

The important subroutines of BOUNDPAK for the various types of problems are: 

MUTSGE 
MUTSPS 
MUTSSE 
MUTSIN 
MUTSMP 
MUTSMI 
MUTSPA 
MUTSDD 
MUTSEI 

SPLSI 
SPLS2 
SPLS3 

for two-point BVP with general Be 
for two-point BVP with partially separated Be 
for two-point BVP with completely separated Be 
for two-point BVP with Be at infinity 
for multipoint BVP 
for BVP with an integral Be 
for two point BVP with paramcters 
for BVP with discontinuous data 
for eigenvalue problems 

for discrete two-point BVP 
for discrete multipoint BVP 
for discrete two-point BVP with parameters 

In §2 - § 13 the documentation of these subroutines is given, § 14 contains the list of error 
messages and § 15 the names of all the subroutines in BOUNDPAK. 

Remark 1.1 

The subroutines require a value (or the machine constant EPS. In general the machine epsilon 
is a suitable value for EPS. 
However, in the case of a discrete BVP, the EPS is used to dctenninc whether a matrix is 
singular or not, by checking the diagonal clements of the upper triangular matrix, obtained 
from the QU-decomposition or the UQ-decomposilion. Due La rounding errors, the machine 
epsilon might be too small to detect a singular matrix, which will result in an improper 
partitioning and a rather large amplification factor. In such cases a multiple of the machine 
epsilon will be a more suitable value for EPS. 



For the machine epsilon we have the subroutine EPSMAC: 
SUBROUTINE EPSMAC(EPS) 
DOUBLE PRECISION EPS 

On exit EPS contains the value of the machine epsilon. 

Remark 1.2 

CH. IX,l 

In the dbcumentation of the suboontines an example of t.beir use is given. The progralllS for 
these examples have been run OR an Olivetti M24 personal computer, operating under MS
DOS V2.11, using the Olivetti MS~Fortran V3.13 RI.O compiler and the MS Object Linker 
V2.01 (large). 
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2. Subroutine MUTSGE 

**************** 
SPECIFICATION 
**************** 

SUBROUTINE MUTSGE(FLIN. FINH, N, IHOM, A, B, MA, MB, BCV, ALI, ER, 

1 NRTI, TI, NTI, X, U, NU, Q, D, KPART, PHI, W. LW, IW, LIW, !ERROR) 

C INTEGER N, IHOM, NRTI, NTI, NU, LW, IW(LIW), LIW, !ERROR 

C DOUBLE PRECISION A, B, MA(N,N), MB(N,N), BCV(N), ALI, ER(5), TI(NTI), 

C 1 X(N,NTI), U(NU.NTI), Q(N,N,NTI), D(N,NTI), PHI{NU,NTI), W(LW) 

C EXTERNAL FUN, FINH 

**************** 
Purpose 
**************** 

MUTSGE solves the two-point BVP: 

trX(t)=L(t)x(t)+r(t) , A $;t $;B or B $;t $;A , 

withBC: 

MA x(A) +M8 x(B) =BCV 

where MA and MB are the BC matrices and BCV the BC vector. 

**************** 
Parameters 
**************** 

FLIN SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLIN(N. T. FL) 
DOUBLE PRECISION T. FL(N,N) 

where N is the order of the system. FLIN must evaluate the matrix L (t) of the 
differential equation for t = T and place the result in the array FL(N,N). 
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSGE 
is called. 

FINH SUBROUTINE. supplied by the user. with specification: 
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MUTSGE 

SUBROUTINE FINH(N, T, FR) 
DOUBLE PRECISION T. FR(N) 

CH.IX,2 

where Nis the order of the system. FINH tmlst evaluate the: vector r(t).,or the 
differential equation for t = T and place the resnll.in FR(1). FR(2), ... , FR(N). 
FINH must be declared as EXTERNAL in the (sub)program from which MUTSGE 
is called. 
In the case that the system is homogeneous FINH is· a dummy and one can use 
FLIN for FINH in the call to MUTSGE. 

N INTEGER. the order of the system: 
Unchanged on exit. 

IHOM INTEGER. 
IHOM indicates whether the. system·is homogeneous Of inhomogeneous. 
IHOM = 0 : the system is homogeneous, 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 

A,B DOUBLE PRECISION, the two boundary points; 
Unchanged on exit. 

MA,MB DOUBLE PRECISION array of dimension (N, N). 
On entry: MA and MB must contain the matrices in the BC: 
MAX(A)+MB x(B}=BCV. 
Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector. 
Unchanged on exit. 

ALl DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2* ALI. a new output point is inserted. 
If ALI ~ 1 the defaults are: 
IfNRTI=·O: ALI := max(ER(l), ER(2» I (2*ER(3», 
if NRTI ~ 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
On exit ALlcontains the actually used incremental factor. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(l) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(1) into 
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ER(1) := 1.d-12 + 2 * ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant EPS (see Remark 1.1) 
On exit ER(2) and ER(3) are unchanged. 
On exit ER(4) contains an estimate of the condition number of the BVP. 
On exit ER(5) contains an estimate of the amplification factor. 

NRTI INTEGER. 
On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
I) NRTI = 0, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
2) NRTI = I, the output points are supplied by the user in the array TI. 
3) NRTI > I, the subroutine computes the (NRTI+ 1) output points TI(k) by: 

TI(k) = A + (k-I) * (B - A)/NRTI; 
soTI(l) = A and TI(NRTI+l) = B . 

Depending on the allowed incremental factor ALI, more output points may be 
inserted in the cases 2 and 3. On exit NRTI contains the total number of output 
points. 

TI DOUBLE PRECISION array of dimension (NTI). 
On entry: if NRTI = 1 , TI must contain the required output points in strict 
monotone order: A = TI(1) < ... < TI(k) = B or A = TI(I) > ... > TI(k) = B 
(k denotes the total number of required output points). 
On exit: TI(i), i = 1,2, ... , NRTI, contains the output points. 

NTI INTEGER. 
NTI is the dimension of n and one of the dimensions of the arrays X. U, Q. D, 
PHI. When NOTI denotes the total number of output points then 
NTI ;;::: max(5. NOTI + 1). If the routine was called with NRTI > 1 and ALI $ I, the 
total number of required output points is (the entry value ofNRTI) + I, 
so NTI ~ max(5, NRTI + 2). 
Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N, NTI). 
On exit X(i,k) , i=1,2, ... , N contains the solution of the BVP at the output point 
n(k). k=l, ... , NRTI. 

U DOUBLE PRECISION array of dimension (NU. NTI). 
On exit U(i,k.) i=1,2, ... ,NU contains the relevant elements of the upper triangular 
matrix Uk. k = 2, ... ,NRTI. The elements are stored column wise, the jth column 
of Uk is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j. k), where oj = (j-l) * j 
/2. 
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NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to N * (N+ 1) /2. 
Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N.N, NTI). 

CH.IX,2 

On exit Q(ij,k) i = 1,2, ... , N. j = 1,2, ...• eN contains the N columns, of the 
orthogonal matrix Qk, k = 1, ... , NR..TI. 

D DOUBLE PRECISION array of dimension (N~,NTI). 
If IHOM = 0 the array El has no real use and, the user is recommended, to use the 
same array for the X and'the D; 
IflHOM= 1 : on exit D(i,k) i = 1,2" ... , N contains lheinhomogeneous termdA;, 
k = 1,2 •...• NRTI, of the mnltiple shooting recursion: 

KPART INTEGER. 
On exit KP ART oontains the global k -partition of the upperuiangular matrices Uk. 

PHI DOUBLE PRECISION array of dimension (NU, NTI); 
On exit PHI contains a fundamental. solution of the multiple shooting recursion. 

The fundamental solution. is upper uiangular and is stored in the same way as the 

Uk. 

W DOUBLE PRECISION array of dimension (L W). 
Used as work space. 

LW INTEGER 

L W is the dimension ofW. 
If IHOM=O : L W ~. 8*N + 7*N*N ; if IHOM=l : LW ~ 9*N + 7*N"'N. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 
LIW is the dimension ofIW. LIW ~ 4*N + 1. 
Unchanged on exit. 

!ERROR INTEGER 

Error indicator; ifIERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 
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**************** 
Auxiliary Routines 
**************** 

MUTSGE CH.IX,2 

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAV, CDI, CNRHS, 
COPMAT, COPVEC, CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP. FC2BVP, 
FQUS, FUNPAR, FUNRC, GTUR, INPRO, lNTCH, KPCH. LUDEC, MATVC, PSR, 
QEVAK, QEV AL, QUDEC, RKFlS, RKFSM, SBVP, SOLDE, SOLUPP, SORTD, T AMVC, 
TUR, UPUP, UPVECP. 

**************** 
Remarlcs 
**************** 

MUTSGE is written by G.W.M. Staarink and R.M.M. Mattheij. 
Last update: november 1991. 

**************** 
Method 
**************** 

See chapter II. 

**************** 
Example of the use of MUTSGE 
**************** 

Consider the ordinary differential equation 

~X(t)=L(t)X(t)+r(t), OStS6 

and a boundary condition M oX (0) + MNX (6) = C with 

[ 

1 - 2cos(2t) 0 1 + 2Sin(2t)] 
L(t) = 0 2 0 

-1 - 2sin(2t) 0 1 + 2cos(2t) 

[

(-1 + 2cos(2t) - 2sin(2t »e ,] 
r(t)= -e' 

( 1 - 2cos(2t) - 2sin(t»e ' [

1 +e6j 
, C = 1 +e6 

1 +e6 

The solution of this problem is: x (t) = ( et , et • et )T. 
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In the next program the solution is computed and compared to the exact solution. 
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2). 

DOUBLE PRECISION A,B,MA(3,3),MB(3,3).BCV(3),ALI,ER(5).TI(12), 
1 X(3,12),U(6,12),Q(3,3,12),D(3,12),PHIREC(6,12),W(90), 
2 EXSOL,AE 

INTEGER IW(13) 
EXTERNAL FLIN,FINH 

c 
C SETTING OF THE INPUT PARAMETERS 
C 

c 

N=3 
IHOM= 1 
ALI=O 
ER(l) = l.D-l1 
ER(2) = l.D-6 
CALL EPSMAC(ER(3» 
NRTI=IO 
NTI= 12 
NU=6 
LW=90 
LIW=13 
A=O.OO 
B=6.00 

C SETTING THE BC MATRICES MA AND MB 
C 

DO 1100 I = 1 , N 
DOIOOOJ=l,N 

MA(IJ) = 0.00 
MB(I,J) = 0.00 

1000 CONTINUE 
MA(I,I) = 1.00 
MB(I,I) = 1.00 

1100 CONTINUE 
C 
C SETTING THE BC VECTOR BCV 
C 

C 

BCV(1) = 1.00 + DEXP(6.DO) 
BCV(2) = BCV(l) 
BCV(3) = BCV(1) 

C CALL MUTSGE 
C 
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CALL MUTSGE(FLIN,FINH,N,IHOM,A,B,MA,MB,BCV,ALI,ER,NRTI,TI,NTI, 

C 

1 X,U,NU.Q,D,KPART,PHIREC,W,LW,IW,LIW,IERROR) 
IF «IERRORNE.0).AND.(IERRORNE.2oo).AND.(IERRORNE.213).AND. 

1 (IERROR.NE.3OO» GOTO 5000 

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND 
C WRITING OF THE SOLUTION AT THE OUTPUTPOINTS 
C 

WRITE(6,2oo) 
WRITE(6,19O) ER(4),ER(5) 
WRITE(6,21O) 
WRITE(6,2oo) 
DO 15OOK= 1, NRTI 
EXSOL = DEXP(TI(K» 
AE = EXSOL - X(1,K) 
WRITE(6,220) K,TI(K),X(1,K),EXSOL,AE 
DO 1300 1=2, N 

AE = EXSOL - X(I,K) 
WRITE(6,230) X(I,K),EXSOL,AE 

1300 CONTINUE 
1500 CONTINUE 

STOP 
5000 WRITE(6,300) IERROR 

STOP 
C 
190 FORMATe CONDmONNUMBER = ',010.3.1, 

1 'AMPLIFICATION FACTOR = ',D1O.3J) 
200 FORMAT(, ') 

210 FORMAT(, I ' ,6X, 'T' ,8X,' APPROX. SOL.' ,9X:EXACT SOL: ,8X, 
1 • ABS. ERROR ') 

220 FORMAT(, '.I3,3X.F7.4,3(3X,DI6.9» 
230 FORMAT(, '.13X.3(3X,D16.9» 
300 FORMATe TERMINAL ERROR IN MUTSGE: IERROR = ',[4) 
C 

C 

C 

C 

END 

SUBROUTINE FLIN(N,T,FL) 

DOUBLE PRECISION T,FL(N,N) 
DOUBLE PRECISION TI,SI,CO 

TI= 2.00* T 
SI = 2.00 * DSIN(TI) 
CO = 2.00 * DCOS(TI) 
FL(1,I) = 1.00 - CO 
FL(1,2) = 0.00 
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FLO ,3) = 1.00 + SI 
FL(2,1) = 0.00 
FL(2,2) = 2.00 
FL(2,3) = 0.00 
FL(3,1) = -1.00 + SI 
FL(3,2) :: 0.00 
FL(3,3) = 1.00 + CO 

C 
RETURN 

C ENDOFFLIN 
END 

C 
SUBROUTINE FINH(N,T,FR) 

C 
OOUBLE PRECISION T,FR(N) 
DOUBLE PRECISION TI,SI,CO 

C 
TI = 2.00 "'T 
SI = 2.00 * OSIN(fI) 
CO = 2.00 * OCOS(TI) 
TI=OEXP(T) 
FR(t) = (-1.00 + CO - SI)"'TI 
FR(2) = - TI 
FR(3) = (1.00 - CO - SI)*TI 

C 
RETURN 

C ENDOFFINH 
END 

CONDITION NUMBER :: 0.1330+01 
AMPLIFICATION FACTOR = 0.2210+01 

I T APPROX. SOL. EXACT SOL. ABS.ERROR 

1 0.0000 0.1000000010+01 0.1000000000+0 1 -0.1207565140-07 
0.1000000010+01 0.1000000000+01 -0.1497546040-07 
0.1000000010+01 0.1000000000+01 -0.1307191510-07 

2 0.6000 0.1822118820+01 0.1822118800+01 -0.2309103550-07 
0.1822118820+01 0.1822118800+01 -0.1861502860-07 
0.1822118800+01 0.1822118800+01 0.2764792170-08 

3 1.2000 0.3320116940+01 0.3320116920+01 -0.1629500000-07 
0.3320116950+01 0.3320116920+01 -0.2997026720-07 
0.3320116900+01 0.3320116920+01 0.2531908550-07 

4 1.8000 0.6049647450+01 0.6049647460+01 0.1894478060-07 
0.6049647520+01 0.6049647460+01 -0.5211540620-07 
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0.604964743D+Ol 0.6049647460+01 0.319208493D-07 
5 2.4000 0.1102317630+02 0.I10231764D+02 0.450974791D-07 

0.1102317640+02 0.1102317640+02 -0.360646266D-07 
0.110231764D+02 0.l10231764D+02 0.539664380D-08 

6 3.0000 0.200855369D+02 0.200855369D+02 0.7161649050-08 
0.2008553690+02 0.2oo855369D+02 -0.169556351 D-07 
0.2oo855369D+02 0.2008553690+02 -0. 136451952D-07 

7 3.6000 0.3659823450+02 0.365982344D+02 -0. 159334164D-07 
0.3659823450+02 0.3659823440+02 -0. 1925725OOD-07 
0.365982344D+02 0.3659823440+02 -O.500945774D-08 

8 4.2000 0.666863311D+02 0.66686331OD+02 -0.1930621000-07 
0.6668633110+02 0.6668633100+02 -0.3134112700-07 
0.6668633100+02 0.6668633100+02 0.1707719480-07 

9 4.8000 0.1215104180+03 0.121510418D+03 0.1028886840-07 
0.121510418D+03 0.121510418D+03 -0.5032746490-07 
0.1215104170+03 0.1215104180+03 0.3725069670-07 

10 5.4000 0.2214064160+03 0.2214064160+03 0.4896491750-07 
0.221406416D+03 0.2214064160+03 -0.3608251830-07 
0.2214064160+03 0.2214064160+03 0.2070527220-07 

11 6.0000 0.4034287930+03 0.403428793D+03 0.1207570220-07 
0.4034287930+03 0.4034287930+03 0.1497551240-07 
0.4034287930+03 0.403428793D+03 0.1307211 05D-07 
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3. Subroutine MUTSPS 

*********"'****** 
SPECIFICATION 

"''''''''''" .. ,,'''*''''''''''''''''''*''' 

SUBROUTINE MUTSPS(FLIN, FINH, N, mOM, KSP, A, B, MA, MB, BCV, ALI, 

t ER, NRTI. TI, NTI, X, U, NU, Q, NQD, ZI, D, KPART, PHI, W, LW, 

2 IW,LIW,IERROR) 
C INTEGER N, IHOM, KSP, NRTI, NTI, NU, NQD, LW, IW(LIW), LIW, IERROR 
C OOUBLE PRECISION A. B, MA(N,N), MB(N,N), BCV(N), ALI, ER(5), TI(NTI), 

C 1 X(N,NTI), U(NU,NTI), Q(N,NQD,NTI), ZI(NQD,NTI), D(NQD,NTI), 

C 2 PHI(NU,NTI), W(LW) 

C EXTERNAL FLIN, FINH 

"'**"'***"''''*'''*'''*** 
Purpose 
"'**"'*"'********** 

MUTSPS solves the two-point BVP with partially separated BC: 

withBC: 

f,X(t)=L(t)x(t)+r(t) • A!.t!.B or B!.t!.A. 

IMA x(A)+ 1MB x(B)=BCVl 
2MA x(A) + 2MB x(B) = BCV2 

where IMA. 1MB are KSPxN BC matrices. 2MA, 2MB are (N-KSP)xN BC matrices and 
either 2MA =0 or2M8 =0, BCVI an KSP BC vector and BCV2 an (N-KSP) BC vector. 
Moreover, if KSP equals N. MUTSPS checks whether the BC are partially separated or not. If 
not MUTSGE is used to compute the solution. otherwise a KSP < N is determined and the BC 
are tran~formed such that the last N - KSP rows of either MA or M8 are zero. 

*******"'''''''''''''**** 
Parameters 
"''''*'''************ 

FUN SUBROUTINE. supplied by the user with specification: 

SUBROUTINE FLIN(N. T. FL) 
DOUBLE PRECISION T, FL(N,N) 

where N is the order of the system. FLIN must evaluate the matrix L (t) of the 
differential equation for t = T and place the result in the array FL(N,N). 
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FUN must be declared as EXTERNAL in the (sub)program from which MUTSPS 
is called. 

FINH SUBROUTINE, supplied by the user, with specification: 

SUBROUTINE FINH(N, T, FR) 
DOUBLE PRECISION T, FR(N) 

where N is the order of the system. FINH must evaluate the vector r(t) of the 
differential equation for t = T and place the result in FR(l), FR(2), ... , FR(N). 

FINH must be declared as EXTERNAL in the (sub)program from which MUTSPS 
is called. 
In the case that the system is homogeneous FINH is a dummy and one can use 
FUN for FINH in the call to MUTSPS. 

N INTEGER, the order of the system. 
Unchanged on exit. 

IHOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous, 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 

KSP INTEGER 
KSP denotes the k-separation, i.e. the number of rows of IMA and 1MB 
On entry: 
if 0 < KSP < N the BC are partially separated and if on entry IERROR = 0, the last 
N-KSP rows of MB are supposed to be zero. If on entry IERROR = 1, the last 
N - KSP rows of M A are supposed to be zero. 
If KSP = N, the routine checks whether the BC are partially separated or not. If not 
MUTSGE is called to compute the solution. otherwise the BC are transformed 
appropriately. 
On exit KSP contains the used k-separation. (IfKSP = N we have general BC). 

A,B DOUBLE PRECISION, the two boundary points. 
Unchanged on exit. 

MA,MB DOUBLE PRECISION array of dimension (N,N). 
On entry: MA and MB must contain the matrices in the Be: 
MA x(A) +MB x(B) =BCV, where 
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If on entry 0 < KSP < N and IERROR = 0, the last (N - KSP) rows of MB are 
supposed to be zero and if IERROR = 1 the last (N - KSP) rows of MA are 
supposed to be zero. 
On exit: if on entry KSP=N and the BC are found to be partially separated, MA and 
MB will contain the transformed BC matrices. otherwise the MA and MB are 
unchanged. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the Be vector; BCV=(BCVl, BCV2)T. 
On exit: if on entry KSP=N and the BC are found to be partially separated, BCV 
will contain the transformed BC vector, otherwise BCV is unchanged. 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two suceessive output points becomes greater than 
2* ALI, a new output point is inserted. 
If ALI:S;; 1 the defaults are: 
IfNRTI = 0: ALI := max(ER(1), ER(2» / (2*ER(3», 
if NRTI > 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
On exit ALI contains the actually used incremental factor. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(1) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(1) into 
ER(1):= l.d·12 + 2 * ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant EPS (see Remark 1.1). 
On exit ER(2) and ER(3) are unchanged. 
On exit ER(4) contains an estimate of the condition number of the BVP. 
On exit ER(5) contains an estimate of the amplification factor. 

NRTI INTEGER. 
On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
1) NRTI = 0, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
2) NRTI = 1, the output points are supplied by the user in the array TI. 
3) NRTI > 1, the subroutine computes the (NRTI+ 1) output points TI(k) by: 

TI(k) = A + (k-l) * (B - A) /NRTI; 
so TI(1) = A and TI(NRTI+ 1) = B . 

Depending on the allowed incremental factor ALI, more output points may be 
inserted in the cases 2 and 3. On exit NRTI contains the total number of output 
points. 
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TI DOUBLE PRECISION array of dimension (NTI). 

On entry: if NRTI = 1 • TI must contain the required output points in strict 
monotone order: A = Tl(1) < ... < TI(k) = B or A = TI( 1) > ... > TI(k) = B 
(k denotes the total number of required output points). 
On exit: TI(i). i = 1.2, ... , NRTI. contains the output points. 

NTI INTEGER. 
NT! is the dimension ofTI and one of the dimensions of the arrays X, U, Q. ZI. D, 
PHI. 
Let NOTI be the total number of output points. then NTI ;;:: max(5. NOTI + 1). If 
the routine was called with NRTI > 1 and ALI ~ 1. the total number of required 
output points is (the entry value ofNRTI) + 1. so NTI ~ max(5, NRTI + 2). 
Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N, NTI). 
On exit X(i,k) ,i = 1,2, ... ,N contains the solution of the BVP at the output point 
TI(k), k = 1, ... , NRTI. 

U DOUBLE PRECISION array of dimension (NU. NTI). 
On exit U(i.k) i = 1.2, ... , NU contains the relevant elements of the upper 
triangular matrix Uk., k = 2, ... ,NRTI. The elements are stored column wise. the 
jth column of Uk. is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j, k), wherenj 
=(j-l)*j/2. 

NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to KSP '" (KSP + 1) /2. 
Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N. NQD. NTI). 
On exit Q(i,j,k) i = 1.2, ... , Nt j = 1.2, ... , KSP contains the N columns of the 
orthogonal matrix Qk1, k = 1, ... , NRTI. 

NQD INTEGER 
NQD is one of the dimension of Q. ZI, D. NQD ~ KSP. 
Unchanged on exit 

ZI DOUBLE PRECISION array of dimension (NQD, NTI) If the BC are partially 
separated the array ZI is used for storing the particular solution Zi, i = 1, ... , NRTI 
of the multiple shooting recursion. Otherwise the array ZI is not used. 

D DOUBLE PRECISION array of dimension (NQD, NTI). 
On exit D(i,k) i = 1,2, ... , KSP contains the inhomogeneous term dk.}, 
k = 1,2, ... , NRTI, of the multiple shooting recursion. 
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KP ART INTEGER. 
On exit KP ART contains the global k -partition of the upper triangular matrices Uk. 

PHI DOUBLE PRECISION array of dimension (NU, NTI). 
On exit PHI contains a fundamental solution of the multiple shooting recursion. 
The fundamental solution is upper triangular and is stored in the same way as the 
Uk. 

W DOUBLE PRECISION array of dimension (L W). 

Used as work space. 

LW INTEGER 
LW is the dimension ofW. LW ~ lO*N + 6*N*N + N*KSP. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LlW INTEGER 
LlW is the dimension ofIW. LlW ~ 3*N + KSP + 2. 
Unchanged on exit. 

!ERROR INTEGER 
On entry IERROR is used as a type indicator for the BC. 
If on entry 0 < KSP < N then 
IERROR = 0 indicates that 2MB =0, 
!ERROR = 1 indicates that 2MA =0. 
On exit !ERROR is an error indicator. 
If !ERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 

"''''''''''''''''''''''''' ......... *** ... 
Auxiliary Routines 
"''''''' ... "' ... '" "''''''' ... * "' ......... 

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAV, CDI. CNRHS, 
COPMAT, COPVEC, CONDW, CQIZI, CROUT, CWISB, DEFINC, DUR, FCBVP, 
FC2BVP,FQUS,FUNPAR,FUNRC, GOPBC,GTUR, INPRO,INTCH, KPCH, LUDEC, 
MATVC, MUTSGE, MTSP, PSR, QEVAK, QEVAL, QUDEC, RKFlS, RKFSM, SBVP, 
SOLDE. SOLUPP, SORTD, TAMVC, TUR. UPUP, UPVECP. 
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"''''*'''''''''''''''*''''''''''''**''' 

Remarks 

*"'*"'''''''''''''*'''*''''''''''''''' 

MUTSPS 

MUTSPS is written by G.W.M. Staarink and R.M.M. Mattheij. 
Last update: november 1991. 

"''''*'''''''''* * "'''''''''''''''''''* 
Method 

******"'***"'**"''''''' 

See chapter II 

"'***"'''''''''''''''''''''''''*'''''' 

Example of the use of MUTSPS 

"'''''''****'''''''''''''''**'''* 

Consider the ordinary differential equation 

trX(t) L(t) xCt) + r(t), O:S; t :s; 6 

and a boundary condition MoX(O) +MNX(6) = C with 

[
1 -2cos(2t) 0 1 + 2Sin C2t)] [(-1 + 2cos(2t)- 2Sin(2t»et

] 
L(t)= 0 2 0 ,r(t)= -e' • 

-1 - 2sin (2t) 0 1 + 2cos (21) ( 1 - 2cos (2l) - 2sin(t) )et 

MA = [g ~ b1, MB = fg ~ bl and C = [::::1. 
1 0 oj lo 0 oj 1 ] 

The solution of this problem is: x(t) = (e t , et , et)T. 

In the next program the solution is computed and compared to the exact solution. 
This program has been run on an Olivetti M24 personal computer (see Remark 1.2). 

C 

DOUBLE PREOSION A,B,MA(3,3),MB(3,3),BCV(3),ALI,ER(5),TI(15), 
1 X(3, 12),U(3, 12),Q(3,2,12),ZI(2, 12),0(2, 12),PHI(3, 12), W(90), 
2 EXSOL.AE 

INTEGER IW(13) 
EXTERNAL FLIN,FINH 

C SETIING OF THE INPUT PARAMETERS 
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C 

C 

N=3 
KSP=2 
IERROR=O 
IHOM= 1 
ALI=O 
ER(l) = I.D-11 
ER(2) = I.D-6 
CALL EPSMAC(ER(3» 
NRTI=1O 
NTI= 12 
NU=3 
NQD=2 
LW=90 
LIW= 13 
A=O.OO 
B=6.00 

MUTSPS CR. IX,3 

C SETflNG THE BC MATRICES MA AND MB 
C 

DO 10001= 1 ,N 
DO 1000J= 1 ,N 

MA(l,J) = 0.00 
MB(I,J) = 0.00 

1000 CONTINUE 

C 

MA(1,3) = 1.00 
MA(2,2) = 1.00 
MA(3,1) = 1.00 
MB(l ,3) = 1.00 
MB(2,2) = 1.00 

C SETTING THE BC YECTOR BCY 
C 

C 

BCY(l) = 1.00 + DEXP(6.DO) 
BCY(2) = BCY(l) 
BCY(3) = 1.DO 

C CALL MUTSPS 
C 

C 

CALL MUTSPS(FLIN,ANH,N,IHOM,KSP,A,B,MA,MB,BCV,ALI,ER,NRTI,TI, 
1 NTI,X,U,NU,Q,NQD,ZI,D,KPART,PHI,W,L W,IW,LIW,IERROR) 

IF «IERRORNE.0).AND.(IERRORNE.200).AND.(IERRORNE.213).AND. 
1 (lERRORNE.300» GOTO 5000 

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING 
C OF THE SOLUTION AT THE OUTPUTPOINTS 
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C 
WRlTE(* ,200) 
WRITE(*,190) ER( 4 ),ER(5) 
WRlTE(*,21O) 
WRITE(* ,200) 
DO 1500K= 1 ,NRTI 

EXSOL = DEXP(TI(K» 
AE = EXSOL - X(l,K) 
WRITE(6,220) K,TI(K),X(l,K),EXSOL,AE 
D01300I=2,N 

AE = EXSOL - X(I,K) 
WRITE(* ,230) X(I,K),EXSOL,AE 

1300 CONfINUE 
1500 CONflNUE 

STOP 
5000 WRITE(6,300) IERROR 

STOP 
C 
190 FORMATC CONDITION NUMBER = ',DIO.3,/, 

1 ' AMPLIFICATION FACTOR = ',DlO.3,/) 
200 FORMATC ') 
210 FORMAT(, I ·.6X,'T'.8X,'APPROX. SOL.',9X,'EXACT SOL.',8X, 

1 'ABS. ERROR') 
220 FORMAT(, ',I3,3X,F7.4,3(3X,D16.9» 
230 FORMATC ·,13X,3(3X,D16.9» 
300 FORMATC TERMINAL ERROR IN MUTSPS: IERROR = ',14) 
C 

C 

C 

C 

END 

SUBROUTINE FLIN(N,T,FL) 

DOUBLE PRECISION T,FL(N,N) 
DOUBLE PRECISION TI,SI,CO 

TI = 2.00* T 
SI = 2.00 11< DSIN(TI) 
CO = 2.00 * DCOS(TI) 
FL(l,I) = 1.00 - CO 
FL(l,2) = 0.00 
FL(l,3) = 1.00 + SI 
FL(2,l) = 0.00 
FL(2,2) = 2.00 
FL(2,3) = 0.00 
FL(3,1)= -1.DO+ SI 
FL(3,2) := O.DO 
FL(3,3) = I.DO + CO 
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C 
RETURN 

C ENOOFFLIN 
ENO 

C 
SUBROUTINE FINH(N,T,FR) 

C 
OOUBLE PRECISION T,FR(N) 
OOUBLE PRECISION TI,SI,CO 

C 
TI =2.00 * T 
SI = 2.00 * DSIN(TI) 
CO :::: 2.00 * OCOS(TI) 
TI= DEXP(T) 
FR(l) = (-1.00 + CO - SI)*TI 
FR(2) = - TI 
FR(3) = (1.00 - CO - SI)*TI 

C 
RETURN 

C ENDOFFINH 
END 

CONDITION NUMBER = 0.1000+01 
AMPLIFICATION FACTOR = 0.1430+01 

I T APPROX. SOL. EXACT SOL. ABS.ERROR 

.<XJOO .1000000000+01 .1000000000+01 .0000000000+00 
.1000000020+01 .1000000000+01 -.171180516D-07 
.1000000020+01 .1 OOOOOOOOD+O 1 -.160840654 D-07 

2 .6000 .1822118820+01 .1822118800+01 -.2096599070-07 
. 182211882D+01 .1822118800+01 -.176029289D-07 
.1822118800+01 .1822118800+01 .955206580D-09 

3 1.2000 .332011694D+01 .332011692D+Ol -.1455819110-07 
.3320116950+01 .3320116920+01 -.254962655D-07 
.3320116900+01 .3320116920+01 .2421958280-07 

4 1.8000 .6049647450+01 .6049647460+01 .1930120150-07 
.604964751D+01 .6049647460+01 -.430982885D-07 
.6049647440+01 .604964746D+01 .2833314650-07 

5 2.4000 .1102317630+02 .l10231764D+02 .540218572D-07 
.1 102317640+02 .1102317640+02 -.664868463D-07 
.1102317640+02 .11 02317640+02 -.1809264030-07 

6 3.0000 .2008553690+02 .2008553690+02 -.122056782D-07 
.2008553690+02 .2008553690+02 -.2141010920-07 
.2008553690+02 .2008553690+02 -.216627782D-07 
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7 3.6000 .3659823450+02 .3659823440+02 -.3154698190-07 
.3659823450+02 .3659823440+02 -.1969397800-07 
.3659823440+02 .3659823440+02 .1073615860-08 

8 4.2000 .6668633110+02 .6668633100+02 -.2494699910"()7 
.6668633110+02 .6668633100+02 -.2707322720-07 
.6668633100+02 .6668633100+02 .2906593010-07 

9 4.8000 .1215104180+03 .1215104180+03 .1224435660-07 
.1215104180+03 .1215104180+03 -.4183128510"()7 
.1215104170+03 .1215104180+03 .4059084800-07 

10 5.4000 .2214064160+03 .2214064160+03 .5608814040"()7 
.2214064160+03 .2214064160+03 -.6332527390-07 
.2214064160+03 .2214064160+03 .2281808520-08 

11 6.0000 .4034287940+03 .4034287930+03 -.7553637720-08 
.4034287930+03 .4034287930+03 .1711799770-07 
.4034287930+03 .4034287930+03 .1608407270-07 
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4. Subroutine MUTSSE 

**************** 
SPECIFICATION 
**************** 

SUBROUTINE MUTSSE(FLIN, FINH, N, IHOM, KSP, A, B, MA, BCV, ALI, ER, 
] NRTI, TI, NTI, X. U, NU, Q, NQD. D, ZI, W. LW, IW, LIW, IERROR) 

C INTEGER N, IHOM. KSP, NRTI, NTI. NU, NQD, LW, IW(LIW). LIW, IERROR 
C DOUBLE PRECISION A. B, MA(N.N), BCV(N), ALI, ER(5). TI(NTI). X(N,NTI). 
C 1 U(NU,NTI), Q(N,NQD,NTI). D(NQD,NTI}. ZI(NQD,NTI), W(LW) 

C EXTERNAL FLIN. FINH 

**************** 
Purpose 
**************** 

MUTSSE solves the two-point BVP with completely separated BC: 

frx(t)=L(t)x(t)+r(t) , A $t $B or B $t $A , 

withBC: 

1MB x(B) = BeV} 

2MA x(A) = BeV2 

where 1MB is a KSP xN BC matrix, 2MA an (N-KSP) xN BC matrix, BeV1 an KSP BC 
vector and BeV2 an (N - KSP) BC vector. 

**************** 
Parameters 
**************** 

FLIN SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLIN(N, T, FL) 
DOUBLE PRECISION T, FL(N,N) 

where N is the order of the system. FLIN must evaluate the matrix L (t) of the 
differential equation for t = T and place the result in the array FL(N,N). 
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSSE 
is called. 
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FINH SUBROUTINE, supplied by the user, with specification: 

SUBROUTINE FINH(N, T. FR) 
DOUBLE PRECISION T. FR(N) 

CH. IX,4 

where N is the order of the system. FINH must evaluate the vector r(t) of thc 
differential equation for t = T and place the result in FR(1). FR(2) ....• FR(N). 

FINH must be declared as EXTERNAL in the (sub)program from which MUTSSE 
is called. 
In the case that the system is homogeneous FINH is a dummy and one can use 
FLIN for FINH in the call to MUTSSE. 

N INTEGER, the order of the system. 
Unchanged on exit. 

!HOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous. 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 

KSP INTEGER 
KSP denotes the k-separation, i.e. the number of rows of 1MB. 

On entry: 0 < KSP < N. 
Unchanged on exit. 

A,B DOUBLE PRECISION, the two boundary points. 
Unchanged on exit. 

MA DOUBLE PRECISION array of dimension (N,N). 
MA is used to supply the boundary condition matrices 1MB and 2MA. 

On entry the first KSP rows of MA must contain the matrix 1MB and the last 
(N - KSP) rows of MA must contain the matrix 2MA 

Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector; BCV=(BCyl, BCy2l. 
Unchanged on exit. 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2 =I: ALI, a new output point is inserted. 
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If ALI ::;; 1 the defaults arc: 
If NRTI = 0: ALI := max(ER(I), ER(2» / (2*ER(3», 
if NRTI > 0 : ALI :== SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
On exit ALI contains the actually used incremental factor. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(1) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(1) into 
ER(l) := l.d-12 + 2 * ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant (EPS). 
On exit ER(2) and ER(3) are unchanged. 
On exit ER( 4) contains an estimate of the condition number of the BVP. 
On exit ER(5) contains an estimate of the amplification factor. 

NRTI INTEGER. 
On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
1) NRTI == 0, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
2) NRTI == 1, the output points are supplied by the user in the array TI. 
3) NRTI > 1, the subroutine computes the (NRTI+l) output points TI(k) by: 

TI(k) = A + (k-l) * (B - A) /NRTI; 
so TI(l) = A and TI(NRTI+l) = B . 

Depending on the allowed incremental factor ALI, more output points may be 
inserted in the cases 2 and 3. On exit NRTI contains the total number of output 
points. 

TI DOUBLE PRECISION array of dimension (NTI). 
On entry: if NRTI == 1 , TI must contain the required output points in strict 
monotone order: A = TI(I) < ... < TI(k) == B or A = TIO) > ... > TI(k) = B 
(k denotes the total number of required output points). 
On exit: TIO), i = 1,2, .... NRTI, contains the output points. 

NTI INTEGER. 

NTI is the dimension ofTI and one of the dimensions of the arrays X, U, Q, ZI, D, 
PHI. 
Let NOTI be the total number of output points, then NTI ~ max(S, NOTI + 1). If 
the routine was called with NRTI > 1 and ALI ::;; 1 the total number of required 
output points is (the entry value ofNRTI) + 1, so NTI ~ max(S, NRTI + 2). 
Unchanged on exit. 
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X DOUBLE PRECISION array of dimension (N, NTI). 
On exit X(i,k) , i :: 1,2, ... , N contains the solution of the BVP at the output point 
TI(k), k:: 1, ... , NRTI. 

U DOUBLE PRECISION array of dimension (NU,NTO. 
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper 
triangular matrix Uk, k = 2, ... ,NRTI. The elements are stored column wise, the 
jth column of Uk is stored in U(nj + 1. k), U(nj + 2, k), ... , U(nj + j. k). where nj = 
(j-l) * j /2. 

NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to KSP * (KSP + 1) /2. 
Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N, NQD, NTI). 
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2, ... , KSP contains the N columns of the 
orthogonal matrix Qkl , k = I, ... , NRTI. 

NQD INTEGER 
NQD is one of the dimension of Q, ZI, D. NQD ~ KSP. 
Unchanged on exit. 

D DOUBLE PRECISION array of dimension (NQD. NTI). 
On exit D(i,k) i = 1.2, ... , KSP contains the inhomogeneous term d,l, 
k = 1,2 •... , NRTI, of the multiple shooting recursion. 

ZI DOUBLE PRECISION array of dimension (NQD. NTI) 
The array ZI is used for storing the particular solution Zj, i = 1, ... , NRTI of the 
multiple shooting recursion. 

W DOUBLE PRECISION array of dimension (L W). 
Used as work space. 

LW INTEGER 
LW is the dimension ofW. LW~ 10*N + 6*N*N + N*KSP. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 
LIW is the dimension of IW. LIW ~ 3*N + KSP + 2. 
Unchanged on exit. 
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IERROR INTEGER 
Error indicator. 

MUTSSE 

If IERROR = 0 then there arc no errors detected; integration from A to B. 
If IERROR = 1 then there are no errors detected; integration from B to A. 
See § 14 for the other errors. 

**************** 
Auxiliary Routines 
**************** 

CR.IX,4 

This routine calls the BOUNDPAK library routines AMTES. APLB. COl. CNRHS, 
COPMAT. COPVEC, CONDW, CQIZI, CROUT, CWISB, DEFINC, DUR, FCBVP, 
FC2BVP, FQUS, FUNPAR, INPRO, INTCH, KPCH, LUDEC, MATVC, QEVAK, QEVAL, 
QUDEC, RKFlS, RKFSM, SOLDE, SOLUPP, SORTD. TAMVC, UPUP, UPVECP. 

**************** 
Remarks 
**************** 

MUTSSE is written by G.W.M. Staarink and R.M.M. Mattheij. 
Last update: november 1991. 

**************** 
Method 
**************** 

See chapter II 

**************** 
Example of the use of MUTSSE 
**************** 

Consider the ordinary differential equation 

~X(t)==L(t)x(t)+r(t), 0~t~6 

and a boundary condition MA x (0) + M8 x(6) == C with 

[

1 - 2eos (2t) 0 1 + 2sin (2t)] [(_1 + 2eos (2t) - 2sin (2t »e t 

L(t): 0 2 0 • ret) e t 

-1 - 2sin (2t) 0 1 + 2eDs (2t) ( 1 - 2eos(2t) - 2sin(t »et 

[
0 0 oj 

MA == 0 00. 
100 [

0 0 IJ M8 == t 1 0 and 
000 
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The solution of this problem is: x(t) = (e t , el , e' )T. 

In the next program the solution is computed and compared to the exact solution. 
This program has been run on a Olivetti M24 personal computer (see Remark t .2). 

C 

DOUBLE PRECISION A,B,MA(3,3),BCV(3),ALI,ER(5),TI(15), 
1 X(3,12),U(3, 12),Q(3,2, 12),D(2, 12),ZI(2, 12),W(90), 

2 EXSOL,AE 
INTEGER IW(13) 
EXTERNAL FLIN ,FINH 

C SETIING OF THE INPUT PARAMETERS 
C 

C 

N=3 
KSP=2 
IHOM= 1 
ALI == 0 
ER(1) = 1.D-l1 
ER(2) == 1.D-6 
CALL EPSMAC(ER(3» 

NRTI = 10 
NTl= 12 
NU==3 
NQD=2 
LW=90 

LIW=13 
A =0.00 
B=6.oo 

C SETIING THE BC MATRICES MA AND MB 
C 

DOI000I=l,N 
DO I000J= 1 ,N 

MA(I,J) = 0.00 
1000 CONTINUE 

c 

MAO ,3) == 1.00 
MA(2,2) == 1.00 
MA(3,}) == I.DO 

C SETIING THE BC VECTOR BCV 
C 

BCV(1) == DEXP(6.DO) 
BCV(2) == BCV(1) 
BCV(3) = 1.00 
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C 
C CALL MUTSSE 
C 

CALL MUTSSE(FLIN,FINH,N ,IHOM,KSP,A,B ,MA,BCV ,ALI ,ER,NRTI,TI,NTI , 

C 

] X,U,NU,Q,NQD,D,ZI,W,LW,IW,LIW,IERROR) 
IF «IERRORGT.l).AND.(IERRORNE.200).AND.(IERRORNE.213).AND. 

1 (IERRORNE.300» GOTO 5000 

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING 
C OF THE SOLUTION AT THE OUTPUTPOINTS 
C 

WRlTE(* ,200) ER( 4 ),ER(5) 
WRITE(* ,21 0) 
DO 1500 K = 1 , NRTI 

EXSOL = DEXP(TI(K» 
AE = EXSOL - X(1,K) 
WRITE(6,220) K,TI(K),X(1,K),EXSOL,AE 
D01300I=2,N 

AE :::: EXSOL - X(I,K) 
WRlTE(* ,230) X(J,K),EXSOL,AE 

1300 CONTINUE 
1500 CONTINUE 

STOP 
5000 WRITE(6,300) IERROR 

STOP 
C 
200 FORMAT(, CONDITION NUMBER = ',DIO.3,/, 

1 'AMPLIFICATIONFACTOR= ',DIO.3,J) 
210 FORMAT(' I ',6X,'T',8X,'APPROX. SOL.',9X,'EXACT SOL.',8X, 

1 ' ABS. ERROR' ,J) 
220 FORMATe ',I3,3X,F7.4,3(3X,D16.9» 
230 FORMATe ',13X,3(3X,D16.9» 
300 FORMATC TERMINAL ERROR IN MUTSSE: IERROR = ',14) 
C 

C 

C 
C 

C 

END 

SUBROUTINE FLIN(N,T,FL) 

DOUBLE PRECISION T,FL(N,N) 
DOUBLE PRECISION TI,SI,CO 

TI:::: 2.00 * T 
SI :::: 2.DO * DSIN(TI) 
CO == 2.00 * DCOS(TI) 
FL(l,t) = 1.00 - CO 
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FL(1,2) = 0.00 
FL(1,3) = 1.00 + SI 
FL(2,1) = 0.00 
FL(2,2) = 2.00 
FL(2,3) = 0.00 
FL(3, 1) = -1.00 + SI 
FL(3,2) = 0.00 
FL(3,3) = 1.00 + CO 

C 
RETURN 

C ENOOFFLIN 
END 

C 
SUBROUTINE FINH(N,T,FR) 

C 
C 

OOUBLE PRECISION T,FR(N) 
OOUBLE PRECISION TI,SI,CO 

C 
TI = 2.00 * T 
SI = 2.00 * DSIN(TI) 
CO = 2.00 * OCOS(TI) 

TI = OEXP(T) 
FR(l) = (-1.00 + CO - SI)*TI 

FR(2) = -TI 
FR(3) = (1.00 - CO - SI)*TI 

C 
RETURN 

C ENDOFFINH 
END 

CONDITION NUMBER = 0.1000+01 
AMPLIFICATION FACTOR = 0.2260+01 

I T APPROX. SOL. EXACT SOL. ABS.ERROR 

.0000 .1000000000+01 .1000000000+01 .0000000000+00 
.9999998800+00 .1000000000+01 .1198455300-06 
.9999999100+00 .1000000000+01 .8984049520-07 

2 .6000 .1822118660+01 .1822118800+01 .1448218800-06 
.1822118750+01 .1822118800+01 .4616840400-07 
.1822118870+01 .1822118800+01 -.7384970040·07 

3 1.2000 .3320116870+01 .3320116920+01 .5448212950-07 
.3320116880+01 .3320116920+01 .3998012630-07 
.332011706D+Ol .332011692D+Ol -.1367928650-06 
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4 1.8000 .6049647510+01 .6049647460+01 -.4254154180-07 
.6049647410+01 .6049647460+01 .5349036590-07 
.6049647570+01 .6049647460+01 -.1013002400-06 

5 2.4000 .1102317650+02 .1102317640+02 -.8779759670-07 
.1102317630+02 .1102317640+02 .9816984030-07 
.1102317640+02 .1102317640+02 -.6260716390-09 

6 3.0000 .2008553690+02 .2008553690+02 -.1837828730-07 
.2008553670+02 .2008553690+02 .1770602440-06 
.2008553680+02 .2008553690+02 .1442763810-06 

7 3.6000 .3659823420+02 .3659823440+02 .2560267520-06 
.3659823440+02 .3659823440+02 .7257956010-07 
.3659823450+02 .3659823440+02 -.7284108960-07 

8 4.2000 .6668633090+02 .6668633100+02 .1277836220-06 
.6668633100+02 .6668633100+02 .5295052570-07 
.6668633120+02 .6668633100+02 -.2018777680-06 

9 4.8000 .1215104180+03 .1215104180+03 -.3162270450-07 
.1215104170+03 .1215104180+03 .5800426090-07 
.1215104180+03 .1215104180+03 -.1744745220-06 

10 5.4000 .2214064160+03 .2214064160+03 -.1237193320-06 
.2214064160+03 .2214064160+03 .1014431630-06 
.2214064160+03 .221406416D+03 -.4261849540-07 

11 6.0000 .4034287930+03 .4034287930+03 .2407642800-07 
.4034287930+03 .403428793D+03 .0000000000+00 
.403428793D+03 .4034287930+03 .0000000000+00 
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S. Subroutine MUTSIN 

"'''''''''''''''''''''''''''''''''''''''''''''' 

SPECIFICATION 
"''''***'''*''''''''''''**'''*''' 

SUBROUTINE MUTSIN(FLIN, FINH, N, IHOM, A, B, C, BMA, BMINF, BCV. 
I ALI, ER, NRTI, 11, NTI, IEXT, X, NRSOL, U, NU. Q. D, KU, KE, 

2 KEXT,KPART, PHI, W,LW.IW,LIW,IERROR) 
C INTEGER N, IHOM, NRTI. NTI. IEXT, NRSOL, NU, KU, KE, KEXT, LW, 
C 1 IW(LIW), LIW, !ERROR 
C OOUBLE PRECISION A, B, BMA(N,N), BMINF(N,N), BCV(N), ALI. ER(5), 
C 1 TI(NTI). X(N,NTI,N), U(NU,NTI). Q(N,N,NTI), D(N,NTI), 
C 2 PHI(NU,NTI), W(LW) 

C EXTERNAL FLIN, FINH 

************"'*"'''' 

Purpose 
"'''''''**'''*.******'''''' 

MUTSIN solves the two-point BVP defined on an infinite interval: 

trx(t)=L(t)x(t)+r(t) • t >A , 

withBC: 

MA x(A) +Moox(oo)=BCV 

where MA and M ... are the BC matrices and BCV the BC vector. 
MUTSIN gives output on a subinterval [ A, B ], specified by the user. 

"'***"''''''''''''''''''''''**'''''' 

Parameters 
******"'''''''*'''''''''''' .... 

FUN SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLIN(N, T, FL) 
DOUBLE PRECISION T, FL(N,N) 

where N is the order of the system. FLIN must evaluate the matrix L (t) of the 
differential equation for t = T and place the result in the array FL(N,N). 
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSIN 
is called. 
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FINH SUBROUTINE, supplied by the user, with specification: 

SUBROUTINE FINH(N, T, FR) 
DOUBLE PRECISION T, FR(N) 

CH. IX,S 

where N is the order of the system. FINH must evaluate the vector r(l) of the 
differential equation for t = T and place the result in FR(l), FR(2), ... , FR(N). 
FINH must be declared as EXTERNAL in the (sub)program from which MUTSIN 
is called. 
In the case that the system is homogeneous FINH is a dummy and one can use 
FUN for FINH in the call to MUTSIN. 

N INTEGER. the order of the system. 
Unchanged on exit. 

IHOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous, 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 

A,B DOUBLE PRECISION. 
A,B denotes the interval [ex. P] (see § IIl2). If M 00 ~ 0, B should be taken 
sufficiently large. Unchanged on exit. 

C DOUBLE PRECISION. 
When IEXT = 0 C must contain the value for Yma. (see §m.4). The actually used 
value for y is stored in TI(KEXT). 
When IEXT ~ 0, the routine computes an solution using the given value in C as the 
new value fory. IfTI(l) < TI(KEXT) then C must be greater than TI(KEXT) and C 
must be smaller than TI(KEXT) ifTI(KEXT) < TI(l). 
Note that on subsequent call to MUTSIN with IEXT ~ 0, the value of KE may 
change. 
Unchanged on exit. 

BMA DOUBLE PRECISION array of dimension (N, N). 
On entry BMA must contain the BC matrix MA • 

Unchanged on exit. 

BMINF DOUBLE PRECISION array of dimension (N, N) 
On entry BMINF must contain the BC matrix Moo. 
Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector. 
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Unchanged on exit 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2* ALI. a new output point is inserted. 
If ALI S I the defaults are: 
If NRTI SO: ALI := max(ER(I), ER(2» / ER(3), 
if NRTI > 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
On the extension interval [ B • C ], an allowed incremental factor equal to 
SQRT(RMAX) is used. 
On exit ALI contains the actually used incremental factor on the interval [ A , B ]. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(I) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(l) into 
ER(1):= 1.d-12 + 2'" ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant BPS (see Remark 1.1), 
On exit ER(2) and ER(3) are unchanged. 
On exit ER( 4) contains an estimation of the condition number of the BVP. 
On exit ER(5) contains an estimated error amplification factor. 

NRTI INTEGER. 
On entry NRTI is used to specify the required output points on the interval [A,B]. 
There are three ways to specify the required output points: 
1) NRTl SO, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
2) NRTI = 1, the output points are supplied by the user in the array TI. 
3) NRTI > I, the subroutine computes the (NRTI+l) output points TI(k) by: 

TI(k) = A + (k-l) '" (B - A) /NRTI; 
so TI(1) = A and TI(NRTI+l) = B . 

Depending on the allowed incremental factor ALI, more output points may be 
inserted in the cases 2 and 3. On exit NRTI contains the total number of output 
points on the interval [A,B]. 

TI DOUBLE PRECISION array of dimension (NTI). 
On entry: if NRTI = 1 , TI must contain the required output points in strict 
monotone order: A = TI(1) < ... < Tl(k) = B or A = TI(l) > ... > TI(k) = B 
(k denotes the total number of required output points). 
On exit: TI(i), i = 1,2, ...• NRTI, contains the output points and TI(j), 
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j = NRTI + 1, ... , KEXT the points used on the interval [B ,y]. 

NTI INTEGER. 
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D, 
PHI. 
If k denotes the number of output points on the interval [A,B] and m denotes the 
number of points used on the extension interval (B , y 1, then 
NTI ~ max(S, k + 1) + m. 
If the routine was called with NRTI > 1 and ALI S; 1 then k = NRTI + 1 and m ~ 1, 
as at least one point is needed on the extension interval, i.e. y, so 
NTI ~ max(S, NRTI + 2) + 1. 
If the incremental factor of a homogeneous solution on the interval 
[ B , Y ] becomes greater than SQRT(RMAX) an additional point is used on the 
extension interval. In this case m > 1. 
Unchanged on exit. 

IEXT INTEGER. 
IEXT is a flag concerning the extension interval. On the first call to MUTSIN, 
IEXT must be zero. When the extension interval [ B , C ] is too small. a new call to 
MUTSIN with IEXT = 1 and a new value for C results in the computation of a new 
solution with the new value for C. In this case MUTSIN continues the integration 
from the old value of C to the new value of C, so only the value fOr IEXT and C 
may be changed between succesive calls. 
Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N, NTI, N). 
On exit X(i,k.l), i = 1,2, ... , N contains the solution of the BVP at the output 
point TI(k), k = 1, ... , NRTI. If there is no unique solution the base of the 
manifold is given in X(i,kj), j = 2, ...• NRSOL. 

NRSOL INTEGER. 
On exit NRSOL contains the infonnation concerning the uniqueness of the 
solution. If NRSOL = 1 the solution is unique, otherwise the solution of the 
problem is a manifold for which the base is given in X(i,k,j), j = 2, ... , NRSOL. 

U DOUBLE PRECISION array of dimension (NU, NTI). 
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper 
triangular matrix Uk, k = 2, ... , KEXT. The elements are stored column wise, the 
jth column of Uk is stored in U(nj + I, k), U(nj + 2, k), ... ,U(nj + j. k), where nj = 
(j-l) '" j /2. 

NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to N '" (N+ 1) /2. 
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Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N, N, NTI). 
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2, ... , N contains the N columns of the 
orthogonal matrix Qb k = 1, ... , KEXT. 

D DOUBLE PRECISION array of dimension (N, NTI). 

If IHOM = ° the array D has no real use and the user is recommended to use the 
same array for the X and the D. 
IfIHOM = 1 : on exit D(i,k) i = 1,2, ... , N contains the inhomogeneous tenn db 
k = 1,2, ... , KEXT, of the multiple shooting recursion. 

KEXT INfEGER. 
KEXT denotes the total number of points used to compute the solution. If k denotes 
the number of output points on the interval [ A , B ] and m the number of points 
used on the extension interval [ B , C ], then KEXT = k + m. 
On entry: if lEXT = 0, no value for KEXT is needed; if lEXT = 1, KEXT must 
contain the exit value of the previous call to MUTSIN. 
On exit: KEXT contains the value for k + m. 

KU INfEGER. 
On exit KU is the number of detected unbounded growing modes on the interval 
[ A , C ]. Growing modes with an increment greater than 2 are considered to be 
unbounded modes. 

KE INfEGER. 
On entry: when lEXT *' 0, KE must contain the value from the previous call to 
MUTSIN. 
On exit: KE contains the detected number of exponentially growing modes on the 
interval [ B , C ]. Growing modes are considered to be exponentially increasing 
when there increment on the interval [ B , C ] is greater than 
1/ max(ER(1), ER(2». 

KP ART INfEGER. 

On exit KPART contains the global k-partition of the uppertriangular matrices U", 

PHI DOUBLE PRECISION array of dimension (NU, NTl). 
On exit PHI contains the (KE + 1 )th till the Nth columns of the fundamental 
solution of the multiple shooting recursion. The fundamental solution is upper 
triangular and is stored in the same way as the U", 

W DOUBLE PRECISION array of dimension (L W). 
Used as work space. 
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LW INTEGER 
L W is the dimension of W. 
If IHOM = 0: LW ~ 8*N + 7*N*N; if IHOM = 1: LW ~ 9*N + 7*N*N. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as worlc space. 

LIW INTEGER 
LIW is the dimension of IW. LIW ~ 4*N + 1. 
Unchanged on exit. 

IERROR INTEGER 
Error indicator; ifIERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 

**************** 
Auxiliary Routines 
********"'******* 

CH. IX,S 

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMA V. CDI. CEVIN. 
CNRHS, COPMAT. COPVEC. CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP, 
FC2BVP, FQUS, FUNPAR. FUNRC. GTURI. INPRO, INTCR, KPCH, LUDEC, MATVC, 
PSR, QEV AK, QEV AL, QUDEC, RKFIS, RKFSM, SBVP, SOLDE, SOLUPP. SORTO. 
TAMVC. TUR, UPUP, UPVECP. 

**"'*"'*****"'***** 
Remarlcs 

"'****"'**"'''''''''''''''''''''' 

MUTSIN is written by G.W.M. Staarink and R.M.M. Mattheij. 
Last update: november 1991. 

****"'**"''''*''''''**** 
Method 
"''''************** 

See chapter III. 

**************** 
Example of the use of MUTSIN 
**************** 
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Consider the ordinary differential equation 

d [2 2+0.4t] [-4-0.4t] 
Ttx(t) = 0 -O.4t x(t) + 0.4 t 

and a boundary condition 

The solution of this problem is: 

X(I) = [ l-exp( -0.2t2) t I +exp( -0.212)]T . 

In the next program the solution is computed and compared to the exact solution. 
This program has been run on a OLIVETTI M24 personal computer (see Remark. 1.2). 

C 

DOUBLE PRECISION A,B,C,MA(2.2),MINF(2,2),BCV(2),AMP ,ER(5),TI(l3), 
1 X(2,13,2),U(3.13).Q(2,2,13).D(2.13),PHIREC(3.13), 
2 W(46),XEX,E,ERR 

INTEGER IW(9) 
EXTERNAL FLIN.FINH 

C SETTING OF THE INPUT PARAMETERS 
C 

C 

N=2 
IHOM= 1 
A=O.OO 
B= 10.00 
C=20.00 
ER(l) = 1.10-12 
ER(2) = 1.0-6 
CALL EPSMAC(ER(3» 
NRTI= 10 
NTI= 13 
IEXT=O 
NU=3 
LW=46 
LIW=9 

C SEITING THE BC MATRICES MA AND MINF AND THE BC VECTOR BCV 
C 

MA(1,I) = 0.00 
MA(1,2) = 0.00 
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MA(2,1) = 0.00 
MA(2.2) = 1.00 
MINF(l,l) = 1.00 
MINF(1,2) = 0.00 
MINF(2,1) = 0.00 
MINF(2,2) = 0.00 
BCV(1) = 1.00 
BCV(2) = 2.00 

C CALL TO MUTSIN 
C 

MUTSIN CH. IX,5 

CALL MUTSIN(FLIN,FINH,N,IHOM,A,B.C,MA,MINF,BCV,AMP,ER,NRTI,TI,NTI, 

C 

1 IEXT,X,NRSOL,U,NU,Q,D,KU,KE,KEXT,KPART,PHIREC,W.LW. 
2 IW,LIW.IERROR) 

IF «(IERROR.EQ.0).OR.«(lERROR.GE.200).AND.(IERROR.LE213».OR. 
1 (IERROR.EQ.300).OR.«(IERROR.GE.330).AND. 
2 (IERROR.LE.340») THEN 

C PRINTING A, B ,THE ACTUAL USED VALUE FOR GAMMA, TOLERANCE, 
C CONDITION NUMBER AND AMPLIFICATION FACTOR. 
C 

WRITE(* ,100) A,B,TI(KEXT),ER(2).ER(4),ER(5) 
C 
C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND PRINTING 
C THE SOLUTION AT THE OUTPUT POINTS. 
C 

WRITE(* ,110) 
00 1100 K = 1 ,NRTI 

E = DExp(-O.2dO"'TI(K)"'TI(K» 
XEX= l.00-E 
ERR = XEX - X(l,K,I) 
WRITE(*,120) TI(K),x(1,K,l),XEX,ERR 
XEX= l.00+E 
ERR = XEX - X(2,K.l) 
WRITE(*,130) X(2.K,1),XEX,ERR 

1100 CONTINUE 
IF (NRSOL.GT.l) THEN 

WRITE(* ,140) 
DO 1200K= l,NRTI 

WRITE(* ,150) TI(K),X(1,K,2) 
WRITE(*, 160) X(2,K,2) 

1200 CONTINUE 
ENDIF 

C ENDIF NRSOL 
ELSE 
WRITE(* ,300) IERROR 
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ENDIF 
C ENDIF IERROR 
C 
100 FORMAT(' A ',012.S,2X,'B = ',OI2.5,2X,'C = ',012.5,/, 

1 'TOL = ',012.S,2X,' COND = ',012.S,2X,' AMPLI = ',012.S,/) 
110 FORMAT(' ',3X,'T' ,9X,'X APPROX' ,IIX,'X EXACT', llX,'ERROR' ,/) 
120 FORMAT(, ',F7.3,3(2X,OI6.9» 
130 FORMATC ',7X.3(2X.016.9» 
140 FORMATC SOLUTION IS OF THE FORM X + LAMBOA * PHI' j,' ',3X, 'T', 

1 12X,'PHI',/) 
150 FORMAT(' ',F7.5,2X,016.9) 
160 FORMAT(' ',9X,016.9) 
300 FORMAT(, TERMINAL ERROR IN MUTSIN: IERROR = ',B) 

C 

C 
C 

C 

C 
C 

C 

STOP 
END 
SUBROUTINE FLIN(N,T,F) 

OOUBLE PRECISION T,F(2,2) 

F(1,I) = 2.00 
F(1,2) = 2.00 + 0.400 * T 
F(2.1) = 0.00 
F(2,2) = -0.400 * T 
RETURN 
END 
SUBROUTINE FINH(N,T,R) 

DOUBLE PRECISION T,R(2) 

R(1) = -0.400 * T - 4.00 
R(2) = O.4DO * T 
RETURN 
END 

A= .000000+00 B= .100000+02 C= .169550+02 
TOL= .100000-05 COND= .100000+01 AMPLI= .199810+01 

T 

.000 

1.000 

X APPROX 

.2220446050-15 
.2000000000+01 
.1812692470+00 

X EXACT 

.0000000000+00 

.2000000000+01 

.1812692470+00 
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.181873075D+01 .1818730750+01 .569801983D-1O 
2.000 .550671036D+OO .5506710360+00 . 189427252D-09 

. 144932896D+Ol .144932896D+Ol -.189325000D-09 
3.000 .834701112D+OO .8347011120+00 -.691497193D-09 

.1 16529889D+Ol .1165298890+01 .692252700D-09 
4.000 .959237798D+OO .9592377960+00 -.192215954D-08 

.104076220D+Ol .1040762200+01 . 192774530D-08 
5.000 .9932620550+00 .9932620530+00 -.160490565D-08 

.100673795D+Ol .1006737950+01 .. 164617830D-08 
6.000 .999253414D+OO .9992534140+00 -.210793272D-09 

.100074659D+Ol .1000746590+01 .5157598790-09 
7.000 .999944546D+OO .9999445480+00 .216747531 D-08 

.100005545D+Ol .1000055450+01 .8594214230-10 
8.000 .999997223D+OO .9999972390+00 . 166426903D-07 

. 1 00000276D+O 1 .1000002760+01 .7936096220-11 
9.000 .999999785D+00 .9999999080+00 . 123031966D-06 

. 1 00000009D+O 1 .1000000090+01 .434541292D-12 
10.000 .999999089D+OO .999999998D+00 .909093262D-06 

. 1 OOOOOOOOD+O 1 .1000000000+01 .139888101D-13 
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6. Subroutine MUTSMP 

**************** 
SPECIFICATION 
**************** 

SUBROUTINE MUTSMP(FLIN, FINH, N, IHOM, TBP, NBP. BCM, BCV, ALI, 
I ER, NRTI, TI, NTI, X, U, NU, Q, D, 
2 KPART, PHI, W, LW, IW, LIW, IERROR) 

C INTEGER Nt IHOM. NBP, NRTI(NBP), NTI. NU, KPART(NBP), LW. IW(LIW), 
C 1 LIW. IERROR 
C OOUBLE PRECISION TBP(NBP), BCM(NBP), BCV(N), ALI. ER(5), TI(NTI). 
C 1 X(N.NTI). U(NU.NTI), Q(N,N.NTI). D(N.NTl)t PHI(NU.NTI)t W(LW) 
C EXTERNAL FLINt FINH 

**************** 
Purpose 
**************** 

MUTSMP solves the multipoint BVP: 

trX(t)=L(t)X(t)+r(t) , III Silk or Ilk St Sill, 

withBC: 

where MI. j = 1, ...• k are the Be matrices, BCV the BC vector and at < ... < Ilk or 
Ill> ... > Ilk the switching points. 

**************** 
Parameters 
**************** 

FUN SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLIN(N, T, FL) 
DOUBLE PRECISION T, FL(N,N) 

where N is the order of the system. FUN must evaluate the matrix L (I) of the 
differential equation for t = T and place the result in the array FL(N,N). 
FUN must be declared as EXTERNAL in the (sub)program from which MUTSMP 
is called. 
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ANH SUBROUTINE, supplied by the user. with specification: 

SUBROUTINE ANH(N, T. FR) 
DOUBLE PRECISION T, FR(N) 

where N is the order of the system. ANH must evaluate the vector r (t) of the 
differential equation for t = T and place the result in FRO). FR(2) •... , FR(N). 
ANH must be declared as EXTERNAL in the (sub)program from which MUTSMP 
is called. 
In the case that the system is homogeneous ANH is a dummy and one can use 
A..IN for ANH in the call to MUTSMP. 

N INTEGER, the order of the system. 
Unchanged on exit. 

mOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous, 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 

TBP DOUBLE PRECISION array of dimension (m), m ~ NBP. 
On entry TBP must contain the switching points aj. j = 1 •...• NBP in monotone 
order. i.e. TBP(j) = aj, j = 1, ... , NBP. 
Unchanged on exit. 

NBP INTEGER. NBP is the number of switching points. 
Unchanged on exit. 

BCM DOUBLE PRECISION array of dimension (N. N, m), m ~ NBP. 
On entry: BCM( .•. , j) must contain the BC matrix Mj, j = 1, ... , NBP. 
Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector. 
Unchanged on exit. 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2'" ALI, a new output point is inserted. 
If ALI ~ 1 the defaults are: 
IfNRTI(1) = 0 : ALI := max(ER(l), ER(2» I (2*ER(3», 
if NRTI(l) *' 0: ALI := SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
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On exit ALI contains the actually used incremental factor. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(l) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(1) into 
ER(I):= l.d-12 + 2 * ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant EPS (see Remarlc 1.1). 
On exit ER(2) and ER(3) are unchanged. 
On exit ER(4) contains an estimate of the condition number of the BVP. 
On exit ER(5) contains an estimate of the amplification factor. 

NRTI INTEGER array of dimension (m), m ;;:: NBP 
On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
I) NRTI(l) = 0, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
2) NRTI(l) = 1. the output points are supplied by the user in the array TJ. 
3) NRTI(I) > 1, in this case the intervals [ TBP(j -1 , TBP(j) ], j = 2, ... , NBP are 

divided into NRTI(j) subintervals of equal length. The endpoints of 
these intervals are the required output points. 

Depending on the allowed incremental factor ALI. more output points may be 
inserted in the cases 2 and 3. 
On exit: NRTI(1) contains the total number of output points. 
For j = 2, ... , NBP: if NRTI(j) < ° then no change of dichotomy is detected on the 
succesive intervals [TBP(j-l), TBP(j) ] and [TBP(j) • TBP(j+l) ]. 
If NRTI(j) > ° then a change of dichotomy is dectected at TBP(j) and NRTI(j) 
contains the number of output points on the interval [ TBP(i) , TBP(j) ], where 
i < j, NRTI(i) > 0, NRTI(k) < 0, i < k < j, i.e. TBP(i) is the previous point where a 
change of dichotomy was detected. 

TI DOUBLE PRECISION array of dimension (NTI). 
On entry: if NRTI = 1 , TI must contain the required output points in strict 
monotone order: (Xl = TI(l) < ... < TI(k) = (Xk or (Xl = TI(1) > ... > TI(k) = (Xk 

(k denotes the total number of required output points). The output points must 
include all switching points (Xj, j = 1 •... , NBP. 
On exit: TI(i), i = 1,2 •... , NRTI(l), contains the output points. 

NTI INTEGER. 

NTI is the dimension of TI and one of the dimensions of the arrays X. U, Q. D. 
PHI. When m(j) denotes the number of output points on the interval 
[ TBP(j - 1) , TBP(j) ], j = 2, ... , NBP, and m the number of output points on the 
interval [TBP(1). TBP(NBP)], i.e. m = m(2) + ... +m(NBP)-NBP+2. then 
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NTI ~ m + 1 + max( 4 -m(NBP) ,0). 
If the routine was called with NRTI(l) > 1 and ALI S; 1 then 
m = NRTI(2) + ... + NRTI(NBP)+ 1 • m(NBP)=NRTI(NBP)+ 1 ; so 
NTI ~ 2 + NRTI(2) + ... + NRTI(NBP) + max(3 - NRTI(NBP) • 0). 
Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N. NTI). 

CH. IX,6 

On exit X(i,k) • i = 1.2, ... , N contains the solution of the BVP at the output point 
TI(k). k = 1, ... , NRTI(1). 

U DOUBLE PRECISION array of dimension (NU, NTI). 
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper 
triangular matrix Ub k = 2, ... , NRTI(1) The elements are stored column wise, 
the jth column of Uk is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j, k), where 
nj = (j -1) ... j /2. 

NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to N'" (N + 1) /2. 
Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N. N. NTI). 
On exit Q(i,j,k) i = 1,2 •... ,Nt j = 1,2, ... , N contains the N columns of the 
orthogonal matrix Q", k = 1, ... , NRTI(1). 

D DOUBLE PRECISION array of dimension (N,NT!). 
If IHOM = 0 the array D has no real use and the user is recommended to use the 
same array for the X and the D. 
IfIHOM = 1 : on exit D(i,k) i = 1,2, ... , N contains the inhomogeneous term db 
k = 1,2 •... ,NRTI(1), of the multiple shooting recursion. 

KPART INTEGER array of dimension (m). m ~ NBP 
On exit KP ART(j) contains the global partitioning parameter on the interval 
[TBP(ij). TBP(ij+l) ],j = 1, ... , where theTBP(ij) are the points where a change 
of dichotomy has been detected; i 1 < i2 < ... and NRTI(ij) > O. 

PHI DOUBLE PRECISION array of dimension (NU, NTI). 
On exit PHI contains a fundamental solution of the multiple shooting recursion. 
The fundamental solution is upper triangular and is stored in the same way as the 

U", 

W DOUBLE PRECISION array of dimension (L W). 
Used as work space. 
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LW INTEGER 
L W is the dimension of W. 
If IHOM=O : LW ~ (8 + 2.5*NBP)*N + (7 + 1.5*NBP)*N*N. 
If IHOM= 1 : L W ~ (9 + 2.5*NBP)*N + (7 + l.5*NBP)*N*N. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 
LIW is the dimension of IW. LIW ~ (4 + NBP)*N + NBP + 2. 
Unchanged on exit. 

IERROR INTEGER 
Error indicator; if IERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 

**************** 
Auxiliary Routines 
**************** 

CH.IX,6 

This routine calls the BOUNDPAK library routines AMTES, APLB, COl, CNRHS, 
COPMAT, COPVEC, CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP, FC2BVP, 
FQUS, FUNPAR, FUNRC, GKPMP, GTUR, INPRO, INTCH, KPCH, LUDEC, MATVC, 
MTSMP, PSR, QEV AK, QEV AL, QUDEC, RKFlS, RKFSM, 5MBVP, SOLDE, SOLUPP, 
SORTD, TAMVC, TUR, UPUP, UPVECP. 

**************** 
Remarks 
**************** 

MUTSMP is written by G.W.M. Staarink and RM.M. Mattheij. 
Last update: november 1991. 

**************** 
Method 
**************** 

See chapter IV. 
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**************** 
Example of the use of MUTSMP 
**************** 

Consider the ordinary differential equation 

:t x(t) =L(t) x(t) + ret) , -1 ~ t ~ 1 

and a boundary condition: 

where 

[
- t + Ih - (t + Ih ) cos (2t ) 1 + (t + Ih) sin (2t) 1 

L (t) = - 1 + (t + % ) sin (2t) - t + Ih + (t + % ) cos (2t) J ' 

[
(-3 + cos (t)(cos(t) - sin (t»(2t + 1» etl 

ret) = (-1 + sin (t)(sin(t) - cos (t»(2t + 1»e-t . 

CH.IX,6 

The solution of this problem is: x(t) = (e-t , e-t )T. TIle ODE has fundamental solutions 
growing like exp ( - t 2) and exp (t), so there is a change of dichotomy at t = O. 

In the next program the solution is computed and compared to the exact solution. 
This program has been run on a OLIVETII M24 personal computer (see Remark 1.2). 

C 

DOUBLE PRECISION TBP(3),BCM(2,2,3),BCV(3),ALI,ER(5),TI(10), 
1 X(2,10),U(3, 10),Q(2,2,1O),D(2, 10),PHIREC(3, 1 0),W(79), 
2 EXSOL,AE 

INTEGER KPART(3),NRTI(3),lW(19) 
EXTERNAL FLIN,FINH 

C SETTING OF THE INPUT PARAMETERS 
C 

N=2 
IHOM= 1 
NBP=3 
TBP(1) = ·1.00 
TBP(2) = 0.00 
TBP(3) = 1.00 

ALI = 0 
ER(1) = I.D·11 
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C 

ER(2) = 1.D-6 
CALL EPSMAC(ER(3» 
NRTI(1) = 2 
NRTI(2)=4 
NRTI(3)=4 
NTI= 10 
NU=3 
LW=79 
LIW = 19 

MUTSMP 

C SETTING THE BC MATRICES 
C 

00 1100 I = 1 , NBP 
00 1100 J = 1 , N 
DO ll00L= 1, N 

BCM(J,L,I) = 0.00 
1100 CONTINUE 

C 

BCM(l,l,l) = 1.00 
BCM(2,l,2) = 1.00 
BCM(2,2,3) = 1.00 

C SETTING THE BC VECTOR BCV 
C 

C 

BCV(l) = DEXP(1.00) 
BCV(2) = 1.00+ DEXP(-1.DO) 

C CALL MUTSMP 
C 

CH.IX,6 

CALL MUTSMP(FLIN ,FINH,N,IHOM,TBP,NBP,BCM,BCV ,ALI,ER,NRTI,TI,NTI, 
1 X,U,NU,Q,D,KP ART,PHIREC,W,LW,IW,LIW,IERROR) 

IF «IERROR.NE.0).AND.(IERROR.NE.200).AND.(IERROR.NE.213).AND. 
1 (IERROR.NE.240» GOTO 5000 

C 
C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND 
C WRITING OF THE SOLUTION AT THE OUTPUTPOINTS 
C 

WRITE(6,200) (TBP(I),I=l,NBP) 
WRlTE(6,190) ER(4),ER(5) 
WRITE(6,21O) 
DO 1500 K = 1 , NRTI(1) 
EXSOL = DEXP(TI(K» 
AE = EXSOL - X(1,K) 
WRITE(6,220) K,TI(K),X(l,K),EXSOL,AE 
D01300I=2,N 

AE = EXSOL - X(I,K) 
WRITE(6,230) X(I,K),EXSOL,AE 
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1300 CONTINUE 
1500 CONTINUE 

STOP 
5000 WRITE(6.300) IERROR 

STOP 
C 
190 FORMATC CONDITION NUMBER = ',DIO.3J, 

1 ' AMPLIFICATION FACTOR = ',D1O.3J) 
200 FORMATC SWITCHING POINTS: "3(FS.2,3X)J) 
210 FORMAT(, I' ,6X, 'T' .8X,' APPROX. SOL.' ,9X, 'EXACT SOL. ',8X, 

1 'ABS. ERROR',/) 
220 FORMAT(' ',I3,3X,F7.4.3(3X,DI6.9» 
230 FORMAT(' ·,13X,3(3X,D16.9» 
300 FORMATC TERMINAL ERROR IN MUTSMP: IERROR = ',14) 

C 

C 

C 

C 

C 

END 

SUBROUTINE FLIN(N,T,FL) 

DOUBLE PRECISION T,FL(N.N) 
DOUBLE PRECISION TI,SI,CO 

T1 =2.00*T 
SI = (T+O.5oo)*DSIN(Tl) 
CO = (T+O.Soo)"'DCOS(TI) 
TI = -T + 0.500 
FL(l,I) = Tl - CO 
FL(1,2) = 1.00 + SI 
FL(2,1) = -1.00 + SI 
FL(2,2) = TI + CO 

RETURN 
C ENDOFFLIN 

C 

C 

C 

END 

SUBROUTINE FINH(N,T,FR) 

DOUBLE PRECISION T,FR(N) 
DOUBLE PRECISION TI.ET,sI,CO 

SI=DSIN(T) 
CO=DCOS(T) 
TI = (CO - SI) '" (2"'T + 1.00) 
ET = DEXP( -T) 
FR(1) = (-3.00 + CO*TI) '" ET 
FR(2) = (-1.00 - SI"'TI) * ET 

50 

CH.IX,6 



MUTSMP CH. IX.6 

C 
RETURN 

C ENDOFFINH 
END 

SWITCHING POINTS: -1.00 .00 1.00 

CONDITION NUMBER = 0.6130+01 
AMPLIFICATION FACTOR = 0.5430+01 

I T APPROX. SOL. EXACT SOL. ABS.ERROR 

1 -1.000 .2718281830+01 .2718281830+01 .0000000000+00 
.2718281750+01 .2718281830+01 .1352834560-01 

2 -.150 .2116999980+01 .2111000020+0 1 .3920493130-01 
.2116999910+01 .2111000020+01 .1083402830-06 

3 -.500 .1648121180+01 .1648121270+01 .9332855360-01 
.1648121140+01 .1648121210+01 .1282831020-06 

4 -.250 .1284025210+01 .1284025420+01 .1503415180-06 
.1284025290+01 .1284025420+01 .1274391010-06 

5 .000 .9999998080+00 .1000000000+01 .1916808950-06 
.9999998910+00 .1000000000+01 .1093736300-06 

6 .250 .1188005710+00 .1188001830+00 .2117650960-06 
.1188006940+00 .1188007830+00 .8860111600-07 

7 .500 .6065303740+00 .6065306600+00 .2853095410-06 
.6065307180+00 .6065306600+00 -.5806055030-07 

8 .750 .4123662840+00 .4723665530+00 .2684191610-06 
.4723661900+00 .4123665530+00 -.2313133630-06 

9 1.000 .3678793060+00 .3678794410+00 .1349627320-06 
.3618796330+00 .3678194410+00 -.1916808950-06 
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7. Subroutine MUTSMI 

**************** 
SPECIFICATION 
**************** 

SUBROUTINE MUTSMI(FLIN, FINH, FMT, N, IHOM, A, B, NRTI, ALI, TI, 
NTI, ER, BCV, X. TSW, NSW, NRSW, U, NO, Q, D, 

2 KP, PHI, BMI. W, LW, IW. LIW. IERROR) 
C IN1EGER N, IHOM, NRTI, NTI, NSW, NRSW, NO, KP(NSW), LW, IW(LIW), 
C 1 LIW, IERROR 
C DOUBLE PRECISION A, B, ALI, TI(NTI), ER(5), BCV(N), X(N,NTI), 
C 1 TSW(NSW), U(NU,NTI), Q(N,N,NTI), D(N,NTI), 
C 2 BMI(N,N,NTI), PHI(NU,NTI), W(LW) 
C EXTERNAL FLIN, FINH, FMT 

**************** 
Purpose 
**************** 

MUTSMI solves BVP with integral BC: 

ix(t)=L(t)x(t)+r(t) , A SB , 

with BC: 

B I M(t)x(t)dt = Bev . 

where M (t) is an NxN matrix function and BCV an N-vector. 

**************** 
Parameters 
**************** 

FUN SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLIN(N, T, FL) 
DOUBLE PRECISION T. FL(N,N) 

where N is the order of the system. FLIN must evaluate the matrix L (t) of the 
differential equation for t = T and place the result in the array FL(N,N). 
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSMI 
is called. 

S3 



MUTSMI 

FINH SUBROUTINE, supplied by the user, with specification: 

SUBROUTINE FINH(N, T , FR) 
DOUBLE PRECISION T, FR(N) 

CH.IX.7 

where N is the order of the system. FINH must evaluate the vector r (t) of the 
differential equation for t = T and place the result in FR(I), FR(2), ... , FR(N). 
FINH must be declared as EXTERNAL in the (sub)program from which MUTSMI 
is called. 
In the case that the system is homogeneous FINH is a dummy and one can use 
FUN for FINH in the call to MUTSMI. 

FMT SUBROUTINE supplied by the user, with specification: 

SUBROUTINE FMT(N, T, FM) 
DOUBLE PRECISION T, FM(N,N) 

where N is the order of the system. FMT must evaluate the matrix M (t) of the 
integral BC for t = T and place the result in the array FM(N,N). 
FMT must be declared as EXTERNAL in the (sub)program from which MUTSMI 
is called. 

N INTEGER, the order of the system. 
Unchanged on exit. 

IHOM INTEGER. 
mOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous, 
mOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 

A,B DOUBLE PRECISION, the two boundary points. 
Unchanged on exit. 

NRTI INTEGER 
On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
1) NRTI = 0, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
2) NRTI = I, the output points are supplied by the user in the array TI. 
3) NRTI > 1, the subroutines computes the (NRTI+l) output points TI(k) by: 

TI(k) = A + (k-l) '" (B - A) /NRTI 
so TI(1) = A and TI(NRTI+l) = b. 

More output points may be inserted in the cases 2 and 3, depending on the allowed 
incremental factor ALI. Also if a new switching point is detected or if 

II I M(t)x(t)dt II becomes larger than ER(2) / ER(3) , a new output point is 
inserted. 
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On exit NRTI contains the total number of output points. 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2* ALI, a new output point is inserted. If ALI S 1 the defaults are: 
IfNRTI = 0: ALI := max(ER(1), ER(2» I (2*ER(3», 
if NRTI '# 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
On exit ALI contains the actually used incremental factor. 

TI DOUBLE PRECISION array of dimension (NTI). 
On entry: if NRTI = 1 , TI must contain the required output points in strict 
monotone order: A = TI(1) < ... < TI(k) = B or B = TI(l) > ... > TI(k) = B 
(k denotes the total number of required output points). 
On exit: TI(k), k = 1,2, ... , NRTI, contains the output points. 

NT! INTEGER. 
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, 0, 
BMI, PHI. 
Let m be the total number of output points then NTI ~ max(5, m + I), 
If the routine was called with NRTI > 1 and ALI S 1 the total number of required 
output points is NRTI + 1, so NTI ~ max(5, NRTI + 2), if the required output 
points include possible switching points, otherwise NTI ~ max(5, NRTI + 2) + k, 
where k denotes the number of switching points between A and B (k S N). 
Unchanged on exit. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(1) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(1) into 
ER(1) := Ld-12 + 2 * ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant EPS (see Remark 1.1). 
On exit ER(2) and ER(3) are unchanged. 
On exit ER(4) contains an estimate of the condition number of the BVP. 
On exit ER(5) contains an estimate of the amplification factor. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector. 
Unchanged on exit. 

55 



MUTSMI CH.IX,7 

X DOUBLE PRECISION array of dimension (N. NTI). 
On exit X(i.k) • i = 1,2, ... , N contains the solution of the BVP at the output point 
TI(k). k = 1, ... , NRTI. 

TSW DOUBLE PRECISION array of dimension (m), m 2: N + 2. 
On exit TSW contains the NRSW detected switching points. Note that the 
boundary points A and B are also switching points and that the maximum number 
of switching points is N + 2. 

NSW INTEGER. NSW denotes the number of possible switching points. 
On entry NSW 2: N + 2. 
Unchanged on exit. 

NRSW INTEGER. 
On exit NRSW contains the number of detected switching points. 

U DOUBLE PRECISION array of dimension (NU, NTI). 
On exit U(i,k) i = 1,2, ...• NU contains the relevant elements of the upper 
triangular matrix U", k = 2, ... ,NRTI. The elements are stored column wise. the 
jth column of U" is stored in U(nj + 1. k). U(nj + 2. k), ... , U(nj + j, k). where nj = 
G-1) * j /2. 

NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to N * (N + 1) /2. 
Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N. N, NTI). 
On exit Q(ij.k) i = 1,2, ...• N, j = 1,2, ... , N contains the N columns of the 
orthogonal matrix Q", k = 1, ... , NRTI. 

D DOUBLE PRECISION array of dimension (N. NTI). 
If IHOM = 0 the array D has no real use and the user is recommended to use the 
same array for the X and the D. 
If IHOM = 1 : on exit D(i.k) i = 1,2, ...• N contains the inhomogeneous term d". 
k = 1.2, ... , NRTI. of the multiple shooting recursion. 

KP INTEGER 
On exit KP(j) contains the global partitioning parameter of the interval 
[TSW(j), TSWG + 1) ].j = 1, ...• NRSW-1. 

PHI DOUBLE PRECISION array of dimension (NU,NTI). 
On exit PHI contains a fundamental solution of the multiple shooting recursion. 
The fundamental solution is upper triangular and is stored in the same way as the 
Uk. 
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BMI DOUBLE PRECISION array of dimension (N,N,NTI). 
On exit BMI(. , . ,j) contains the BC matrix of the discretised integral BC at the 
output point TI(j), j = I, ... , NRTI - 1. 

W DOUBLE PRECISION array of dimension (L W). 

Used as work space. 

LW INTEGER 
LW is the dimension ofW. 
If N < 8 : L W ~ 15 '" N '" N + 21 '" N . 
If N ~ 8 : L W ~ (3 '" N '" N '" N + 11 '" N '" N) /2 + 5 '" N. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 
LIW is the dimension ofIW. LIW ~ N"'N + 6"'N + NT!. 
Unchanged on exit. 

IERROR INTEGER 
Error indicator; if IERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 

**"'*"''''**'''*'''***** 
Auxiliary Routines 
**"'''''''*********** 

This routine calls the BOUNDPAK library routines AMTES, ANORMl, APLB, CDI, 
CHDIAU, CKPSW ,CNRHS, COPMAT, COPVEC, CONDW, CPRDIA, CROUT, CWISB, 
DEFINC, DETSWP, DURIN, FCBVP, FCIBVP, FQUS, FUNPAR, FUNRC, GKPMP, 
INPRO, INTCH, KPCH, LUDEC, MATVC, PSR, QEV AK, QEV AL, QUDEC, RKFlS, 
RKFSM, 5MBVP, SOLDE, SOLUPP, SORTD, TAMVC, UPUP, UPVECP. 

*******"'**"'*"'''''''''' 
Remarks 

***"'''''''******''''''** 

MUTSMI is written by G.W.M. Staarink and R.M.M. Mattheij. 
Last update: november 1991 
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**************** 
Method 
**************** 

See chapter IV. 

**************** 
Example of the use of MUTSMI 
**************** 

MUTSMI 

Consider the ordinary differential equation 

:Zx(t)=L(t)X(t)+r(t). -4StS4 

and an integral boundary condition: 

where 

4 1 M(t)x(t)dt =b , 
..!4 

[1 0 1 [ -e-t 1 rl 01 [2 sinh 4] 
L(t)= 0 -2tJ • r(t)= (2t-l)e-t M(t)= lO IJ • b = 2sinh4 . 

The solution of this problem is: x (t) = [ cosh t • r t ]T. 

CH.IX,7 

The ODE has fundamental solutions growing like - e _1
1 and - el • so there is a change of 

dichotomy at t = O. 

In the next program the solution is computed and compared to the exact solution. 
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2). 

C 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSIONTI(10),ER(5).X(2.10),BCV(2).TSW(4).Q(2.2,10),U(3.10), 

1 D(2,1O),BMl(2,2,10),PHI(3,10),W(102) 
INTEGER KP(4),IW(27) 
EXTERNAL FLIN.FINH,FMT 

C SETIlNG OF THE INPUT PARAMETERS 
C 

N=2 
NU=3 
NTI= 10 
NSW=4 
LW= 102 
LIW=27 
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C 

IHOM= 1 
ER(l) = l.lD-12 
ER(2) = l.D-6 
CAlL EPSMAC(ER(3» 
A=-4.OO 
B =4.00 
ALI = 0.00 
NRTI= 8 

MUTSMI 

C SETTING THE BOUNDARY CONDITION VECTOR 
C 

C 

BCV(I) = 2.00 * DSINH(4.OO) 
BCV(2) = BCV(l) 

C CALL TO MUTSMI 
C 

CR. IX,7 

CALL MUTSMI(FLIN,FINH,FMT,N,IHOM,A,B,NRTI,ALI,TI,NTI,ER,BCV,X, 
I TSW,NSW,NRSW,U,NU,Q,D,KP,PHI,BMI,W,LW,IW,LIW,IERROR) 

IF (IERROR.NE.O) GOTO 2000 
C 
C WRITING OF THE SWITCHING POINTS, THE CONDITION NUMBER AND 
C THE ERROR AMPLIFICATION ERROR. 
C 

WRITE(*,200) (TSW(I),I=l,NRSW) 
WRITE(*,210) ER(4),ER(5) 
WRITE(* ,220) 
DO 1300 I = I , NRTI 
E = DCOSH(TI(I» 
AE = X(l,I) - E 
WRlTE(*,230) I,TI(I),X(1,I),E,AE 
E = DEXP(-TI(I» 
AE = X(2,I) - E 
WRlTE(* ,240) X(2,I),E,AE 

1300 CONTINUE 
STOP 

2000 WRlTE(* ,300) IERROR 
STOP 

C 
200 FORMATC SWITCHING POINTS:' ,4(FlO.6,4X),/) 
210 FORMATe CONDITION NUMBER = ',DI2.5,1 

1 ' AMPLIFICATION FACTOR = ',DI2.5,1) 
220 FORMATe I',6X,'T',8X,'APPROX. SOL. ',7X, 'EXACT SOL.',9X, 

1 ' ABS. ERROR' ,I) 
230 FORMAT(' ',I3,3X,F7.3,3(3X,DI6.9» 
240 FORMATC ',13X,3(3X,DI6.9» 
300 FORMATC TERMINAL ERROR IN MUTSMI: IERROR = ',14) 
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C 

C 

C 

C 

C 

C 

MUTSMl 

END 
SUBROUTINE FLIN(N,T,FL) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION FL(N,N) 

FL(I,l) = I.DO 
FL( 1 ,2) = O.DO 
FL(2,1) = O.DO 
FL(2,2) = -2.DO*T 
RETURN 
END 
SUBROUTINE FINH(N,T,FR) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION FR(N) 

E=DEXP(-T) 
FR(1) =-E 
FR(2) = (2.DO*T - I.DO) * E 
RETURN 
END 
SUBROUTINE FMT(N,T,FM) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION FM(N,N) 
FM(1,l) = 1.DO 
FM(1,2) = 0.00 
FM(2,1) = 0.00 
FM(2,2) = 1.00 
RETURN 
END 

SWITCHING POINTS: -4.000000 .000000 4.000000 
CONDITION NUMBER = 0.100030+01 
AMPLIFICATION FACTOR = 0.170670+01 

I T APPROX. SOL. EXACT SOL. ABS.ERROR 

1 -4.000 .2730823280+02 .273082328D+02 .328726202D-08 
.545981500D+02 .545981500D+02 .535869304D-08 

2 -3.000 .1006766200+02 .100676620D+02 .891424357D-08 
.200855369D+02 .200855369D+02 .109678666D-07 

3 -2.000 .3762195720+01 .376219569D+Ol .241194678D-07 
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.7389056150+01 .7389056100+01 .5073919770-07 
4 -1.000 .1543080700+01 .1543080630+01 .6407154780-07 

.2718282200+01 .2718281830+01 .3750987070·06 
5 .000 .100000011 0+01 .100000000D+Ol .1073816810-06 

.1000000020+01 .1000000000+01 .1735920720-07 
6 1.000 .1543080670+01 .1543080630+01 .3253437790-07 

.3678791970+00 .3678794410+00 -.2438842380-06 
7 2.000 .3762195700+01 .3762195690+01 .1234111080-07 

.1353351780+00 .1353352830+00 -.1049495900-06 
8 3.000 .1006766200+02 .1006766200+02 .1101397730-07 

.4978705260-01 .4978706840-01 -.1578235720-07 
9 4.000 .2730823280+02 .2730823280+02 -.4455102950-10 

.1831563150-01 .1831563890-01 -.7434540460-08 
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8. Subroutine MUTSPA 

**************** 
SPECIFICATION 
**************** 

SUBROUTINE MUTSPA(FLIN, FINH, FCT, N, L, NPL, IHOM, A, B, MA, MB, BCV, 

ALI, ER, NRTI, TI, NTI, X. Z, TSW, NSW, NRSW, U, NU. Q, D, 

2 KPART, CIt PHI, VI, W, LW, IW, LIW, IERROR) 
C INTEGER N, L. NLP, IHOM, NRTI. NTI, NU, NSW. NRSW, KPART(NSW), LW, 
C IW(LIW), LIW, IERROR 

C DOUBLE PRECISION A. B, MA(NPL,NPL), MB(NPL,NPL), BCV(NPL). ALI. ER(S), 
C 1 TI(NTI), X(N,NTI), Z(L), TSW(NSW), U(NU,NTI). Q(N,N,NTI). 

C 2 D(N,NTI), CI(N,NTI,L), PHI(NU,NTI). YI(N,NTI,L), W(LW) 

C EXTERNAL FLIN, FINH, FCT 

**************** 
Purpose 
**************** 

MUTSPA solves the two-point BVP with parameters: 

-itX(t)=L(t)X(t)+C(t)z +r(t) , A 5:t 5:B or B 5:t 5:A , 

withBC: 

where z is an L-vector containing the L parameters, MA and MB are NPLxN matrices, PA 

and PB are NPLxL matrices. Bx. an N-vector and Bz an L-vector. 

**************** 
Parameters 
**************** 

FLIN SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLIN(N, T, FL) 
DOUBLE PRECISION T, FL(N,N) 

where N is the order of the system. FLIN must evaluate the matrix L (t) of the 
differential equation for t = T and place the result in the array FL(N,N). 
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FUN must be declared as EXTERNAL in the (sub)program from which MUTSPA 
is called. 

FINH SUBROUTINE, supplied by the user, with specification: 

SUBROUTINE FINH(N, T, FR) 
DOUBLE PRECISION T, FR(N) 

where N is the order of the system. FINH must evaluate the vector r (t) of the 
differential equation fort = T and place the result in FRO), FR(2), ... , FR(N). 
FINH must be declared as EXTERNAL in the (sub)program from which MUTSPA 
is called. 
In the case that the system is homogeneous FINH is a dummy and one can use 
FUN for FINH in the call to MUTSPA. 

FCT SUBROUTINE, supplied by the user. with specification: 

SUBROUTINE FCf(N, L, T, FC) 
DOUBLE PRECISION T, FC(N,L) 

where N is the order of the system and L the number of parameters. FCT must 
evaluate the N x L matrix C (t) of the differential equation for t = T and place the 
result in the array FC(N,L). 
FCT must be declared as EXTERNAL in the (sub)program from which MUTSPA 
is called. 

N INTEGER, the order of the system. 
Unchanged on exit. 

L INTEGER, the number of parameters 
Unchanged on exit. 

NPL INTEGER. 
NPL is the dimension of the arrays MA, MB and BCV. NPL must have the value 
N+L. 
Unchanged on exit. 

IHOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous, 
IHOM = 0 : the system is homogeneous, 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 

A,B DOUBLE PRECISION, the two boundary points. 
Unchanged on exit. 
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MA,MB DOUBLE PRECISION array of dimension (NPL, NPL). 
On entry: MA and MB must contain the BC matrices: [MA I PAl and [Msi Psl 
respectively. 
Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (NPL). 

On enlty BCY must contain lite BC vector [:: l 
Unchanged on exit. 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2* ALI. a new output point is inserted. 
If ALI S; 1 the defaults are: 
IfNRTI = 0: ALI := max(ER(1). ER(2» / (2"'ER(3», 
if NRTI -:# 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
On exit ALI contains the actually used incremental factor. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(1) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(1) into 
ER(I) := l.d-12 + 2 '" ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant EPS (see Remark 1.1). 
On exit ER(2) and ER(3) are unchanged. 
On exit ER(4) contains an estimate of the condition number of the BVP. 
On exit ER(5) contains an estimate of the amplification factor. 

NRTI INTEGER. 
On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
1) NRTI = 0, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
2) NRTI = 1, the output points are supplied by the user in the array TI. 
3) NRTI > 1, the subroutine computes the (NRTI+l) output points TI(k) by: 

TI(k) = A + (k-I) '" (B - A) /NRTI; 
so TI(1) = A and TI(NRTI+ I) = B . 

Depending on the allowed incremental factor ALI. more output points may be 
inserted in the cases 2 and 3. Furthermore detected switching points are also 
inserted. On exit NRTI contains the total number of output points. 
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TI DOUBLE PRECISION array of dimension (NTI). 

On entry: if NRTI = 1 , TI must contain the required output points in strict 
monotone order: A = TI(l) < ... < TICk) = B or A = TI(l) > ... > TICk) = B 
Ck denotes the total number of required output points). 
On exit: TI(i), i = 1,2, ... , NRTI, contains the output points, including possible 
switching points. 

NTI INTEGER. 
NTI is the dimension ofTI and one of the dimensions of the arrays X. U. Q. D, CI, 
PHI,YI. 
Let m be the total number of output points then NTI 2! max(5, m + 1). 
If the routine was called with NRTI > 1 and ALI S 1 the total number of required 
output points is NRTI + 1 , so NTI 2! max(5, NRTI + 2), if the required output 
points include possible switching points, otherwise NTI 2! max(5,NRTI+2) + k, 
where k is the number of switching points between A and B (k S N). 
Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N, NTI). 
On exit X(i,k) , i = 1,2, ... , N contains the solution of the BVP at the output point 
TI(k), k = 1, ... , NRTI. 

Z DOUBLE PRECISION array of dimension (L) 
On exit the array Z contains the values of the L parameters. 

TSW DOUBLE PRECISION array of dimension (NSW) 
On exit TSW contains the NRSW switching points: 
A = TSW(l), ... , TSW(NRSW) = B. 

NSW INTEGER. 
NSW is the dimension of array TSW and array KPART. NSW 2! N + 2 ! 
Unchanged on exit 

NRSW INTEGER. 
On exit NRSW contains the total number of detected switching points. 

U DOUBLE PRECISION array of dimension (NU, NTI). 
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper 
triangular matrix V k, k = 2, ... , NRTI. The elements are stored column wise, the 
jth column of Vi:. is stored in U(nj + I, k), U(nj + 2, k), ... , U(nj + j, k). where nj = 
(i-I) '" j /2. 

NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to N >I< (N + 1) /2. 
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Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N, N, NTI), 
On exit Q(ij,k) i =: 1,2, ... , N, j =: 1,2, ... , N contains the N columns of the 
orthogonal matrix Q", k = 1, ... , NRTI. 

D DOUBLE PRECISION array of dimension (N, NTI). 
If mOM = 0 the array D has no real use and the user is recommended to use the 
same array for the X and the D. 
If mOM =: 1 : on exit D(i,k) i = 1,2, ... , N contains the inhomogeneous term db 
k = 1,2 •... , NRTI, of the multiple shooting recursion. 

KP ART INTEGER array of dimension (NSW) 
On exit KPARTG) contains the global partitioning parameter of the interval 
[ TSW(j) , TSW(j+ 1) ], j = 1, ... , NRSW-1. 

CI DOUBLE PRECISION array of dimension (N, NTI, L) 
On exit CI(ij,k) i = 1, ... , N, k = 1,. , . , L contains the NxL matrix Cj, 
j = 2, ... , NRTI. 

PHI DOUBLE PRECISION array of dimension (NU. NTI), 
On exit PHI contains a fundamental solution of the multiple shooting recursion 
(V.2.3). The fundamental solution is upper triangular and is stored in the same way 
as the UIr.. 

YI DOUBLE PRECISION array of dimension (N, NTI, L), 
On exit YI contains the particular matrix solution Yj of recursion (V .2.5). The 
particular N x L matrix solution is stored in the same way as the C j. 

W DOUBLE PRECISION array of dimension (LW), 
Used as work space. 

LW INTEGER 
L W is the dimension of W. 
L W ?:. 7 * NRSW * NPL '" (NPL + 1) /2 + 4 '" NPL '" (NPL + 1) 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 
LIW is the dimension of IW. LIW ?:. N"'N + 8*N + 4 *L + 2. 
Unchanged on exit. 
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IERROR INTEGER 
Error indicator; if IERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 

**************** 
Auxiliary Routines 
**************"'* 

eH. IX,S 

This routine calls the BOUNDPAK library routines AMTES. APLB. BCMAV, CAMPF, CCI, 
COl, CFUNRC, CHDIAU, CKPSW, CNRHS, COPMAT, COPVEC, CONDW, CPRDIA, 
CPSRC, CROUT, CUVRC, CGTURC. CWISB, DEFINC, DETSWP, DURPA. FCBVP, 
FC2BVP. FQUS, FUNPAR, FUNRC. GKPPA, CPABC, CPARC. CSPABV, lNPRO, 
INTCH, KPCH, LUDEC,MATVC. PSR, QEVAK. QEV AL, QUDEC, RKF1S, RKFSM, 
SBVP, SOLDE. SOLUPP, SORTO, SPARC, SPLSl, TAMVC, UPUP, UPVECP. 

**************** 
Remarks 
**************** 

MUTSPA is written by G.W.M. Staarink and RM.M. Mattheij. 
Last update: november 1991. 

**************** 
Method 

"'''''''''''''''''''''''''* * "''''''''''''' 

See chapter V. 

"''''*****''''''''''''''''''''''''''' 
Example of the use of MUTSPA 
*"'*********"''''*** 

Consider the ordinary differential equation with parameter z 

frX(t)=L(t)X(t)+C(t)z+r(t) , -5~t~5 

and a boundary condition M .[ x (~5) 1 + M P [ x~) 1 = b. where 

L (I) = [~ 1..2 (tl]. C (I) = [ l/CO~h (I)]. r (I) = [ (I-sinh (7~/COSh (I) ]. 

M IJ. = [g ~ ~ l' M ~ = [~ ~ ~l o 1 ~h 0 -1 ih 

68 



MUTSPA CH.IX,8 

and b = [ 2, 2 cosh (5), 2 sinh (5) ]T. 

This problem has a switching point at t = 0 and the solution is: 

x(t) = (1- exp(2(t -5», 1 + exp(-t»T and z =-2. 

In the nex.t program the solution is computed and compared to the exact solution. 
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2). 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION BCMA(3,3),BCMB(3,3),BCV (3),ER(5),TI(13),TSW( 4), 

1 X(2, 13),Z(I), U(3, 13),Q(2,2,13),D(2, 13) ,PHI(3, 13),CI(2, 13,1), 
2 YI(2,13,1),W(174) 

INTEGER KP(4),IW(26) 
EXTERNAL FLIN,FINH,FCT 

C SETTING OF THE INPUT PARAMETERS 
C 

C 

N=2 
L=l 
NPL=3 
NSW=4 
mOM = 1 
NTI= 13 
NU=3 
LW= 174 
LIW=26 
ER(1) = 1.10-12 
ER(2) = 1.0-6 
CALL EPSMAC(ER(3» 
A=-5.oo 
B =5.00 
ALI = 0.00 
NRTI=lO 

C SETTING THE BOUNDARY CONDITIONS 
C 

BCMA(1,l) = 0.00 
BCMA(1,2) = 0.00 
BCMA(1,3) = -1.00 
BCMA(2,1) = 0.00 
BCMA(2,2) = 1.00 
BCMA(2,3) = 0.500 
BCMA(3,l) = 0.00 
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BCMA(3,2) = 1.00 
BCMA(3,3) = -0.5DO 
BCMB(l, 1) = I.DO 
BCMB(l,2) = O.DO 
BCMB(1,3) = O.DO 
BCMB(2,1) = O.DO 
BCMB(2,2) = I.DO 
BCMB(2,3) = 0.5DO 
BCMB(3,1) = 0.00 
BCMB(3,2) = -1.DO 
BCMB(3,3) = 0.500 
BCV(1) = 2.DO 

MUTSPA 

BCV(2) = 2.00 * DCOSH(5.DO) 
BCV(3) = 2.00 '" OSINH(5.00) 

C CALL MUTSPA 
C 

CH. IX,S 

CALL MUTSPA(FLIN,ANH,FCT,N,L,NPL,IHOM,A,B,BCMA,BCMB,BCV,AMP,ER, 
1 NRTI,TI,NTI,X,Z,TSW ,NSW ,NRSW,U,NU,Q,O,KP,CI,PHI,YI,W, 
2 LW,IW,LIW,IERROR) 

IF (IERROR.NE.O) GOTO 5000 
C 
C PRINTING OF THE SWITCHING POINTS, CONDITION NUMBER AND 
C AMPLIFICATION FACTOR 
C 

C 

WRITE(*,105) (TSW(J),J=l,NRSW) 
WRITE('" ,11 0) ER( 4),ER(5) 

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION ANO WRITING OF 
C THE SOLUTION AT THE OUTPUTPOINTS 
C 

WRITE(*,*)' Z= ',Z(l) 
WRlTE(*, 120) 
DO 1200 I = 1 , NRTI 
El = 1.DO - OEXP(2.DO*(TI(I)-5.00» 
E2 = El - X(l,l) 
WRlTE(*,130) TI(I),X(1,I),El,E2 
El = 1.00 + OEXP(-TI(l» 
E2 = El - X(2,I) 
WRITE(*,135) X(2,I),El,E2 

1200 CONTINUE 
STOP 

5000 WRITE(*,l00) IERROR 
STOP 

100 FORMAT(, TERMINAL ERROR IN MUTSPA: IERROR = ',14) 
105 FORMAT(, SWITCHING POINTS: ',4(F7.2,3X» 
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110 FORMATC CONDITION NUMBER = ',D12.5J, 
1 ' AMPLIFICATION FACTOR = '.D12.5J) 

120 FORMAT(' 'J,5X,'T'.5X,'APPROX.SOL.',7X,'EXACT SOL.',8X, 
1 'ABS. ERROR',/) 

130 . FORMAT(, ',F7.3,3(2X.DI6.9» 
135 FORMAT(' ',7X,3(2X,DI6.9» 

END 

C 

C 

C 

C 

C 

C 

SUBROUTINE FLIN(N,T,F) 

DOUBLE PRECISION T,F(N,N),TI 

F(l,I) = 2.00 
F(l,2) = 0.00 
F(2, 1) = 0.00 
F(2,2) = DT ANH(T) 
RETURN 
END 
SUBROUTINE FINH(N,T,F) 

DOUBLE PRECISION T,F(N) 

F(1) = -2.00 
F(2) = ( 1.00 - DSINH(T» I DCOSH(T) 
RETURN 
END 
SUBROUTINE FCT(N,L,T,F) 

DOUBLE PRECISION T,F(N,L) 

F(1,I) = 0.00 
F(2,1) = 1.00 I DCOSH(T) 
RETURN 
END 

SWITCHING POINTS: -5.00 .00 5.00 
CONDITION NUMBER = .100680+01 
AMPLIFICATION FACTOR = .20633D+01 

z= -1.99999998386800 

T APPROX. SOL. EXACT SOL. 

-5.000 .999999998D+00 .9999999980+00 
.1494131590+03 . 149413159D+03 

-4.000 .9999999850+00 .9999999850+00 
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.105471187D-13 

.806599587D-08 

.693889390D-13 
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.5559814950+02 .5559815000+02 .5525555620-06 
-3.000 .9999998870+00 .9999998870+00 .4545253060-12 

.2108553650+02 .2108553690+02 .4002767330-06 
-2.000 .9999991680+00 .9999991680+00 .2937428080-11 

.8389055890+01 .8389056100+01 .2071475760-06 
-1.000 .9999938560+00 .9999938560+00 .1858879720-10 

.3718281750+01 .3718281830+01 .7462988140-07 
.000 .9999546000+00 .9999546000+00 .1143397600-09 

.1999999980+0 ] .2000000000+01 .2013353020-07 
1.000 .9996645370+00 .9996645370+00 .6748059890-09 

.1367879440+01 .1367879440+01 .6111466220-08 
2.000 .9975212440+00 .9975212480+00 .3729636600-08 

.1135335280+01 .1135335280+01 .1926353740-08 
3.000 .9816843430+00 .9816843610+00 .1827383540-07 

.1049787070+01 .1049787070+01 .1596738520-08 
4.000 .8646646500+00 .8646647170+00 .6642156620-07 

.1018315640+01 .1018315640+01 .3128819870-08 
5.000 .1613198930-07 .0000000000+00 -.1613198930-07 

.1006737940+01 .1006737950+01 .8065983880-08 
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9. Subroutine MUTSDD 

**************** 
SPECIFICATION 

**************** 

SUBROUTINE MUTSMP(Fl,IN, FINH, N, IHOM, TSP, NSP, BCM, BCV, ZM, ZP, 

1 BI, ALI, ER, NRTI, TI, NTI, X, U, NU, Q, D, 

2 KPART, PHI, W, LW, IW, LIW, IERROR) 

C INTEGER N, IHOM(NSP), NSP, NRTI(NSP), NTI, NU, KPART(NSP), LW, IW(LIW), 

C 1 LIW, IERROR 

C DOUBLE PRECISION TBP(NBP), BCM(NBP), BCV(N), ZM(N,N,NSP), ZP(N,N,NSP). 

C 1 BI(N,NSP), ALI, ER(6). TI(NTI). X(N,NTI), U(NU,NTI), 

C 2 Q(N,N,NTI), D(N,NTI), PHI(NU,NTI), W(LW) 

C EXTERNAL FLIN. FINH 

**************** 
Purpose 
**************** 

MUTSDD solves the BVP with discontinuous data: 

:t x(t) = L(t)x(t) + ret) (Xi S; t < (Xi+l ,i = 1, ... , m , 

with side conditions 

and aBC 

where the Lj(t) are bounded continuous matrix functions,the ri(t) are bounded continuous 
vector functions, the Z{tl, ZitI are the side conditions matrices, the bi+l are the side 
conditions vectors, the Mj are the BC matrices, b the BC vector and (Xl < ... < <Xm+l or 
(Xl > ... > <X.m+1 the switching points. 

**************** 
Parameters 
**************** 
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FUN SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLIN(N, T, FL) 
DOUBLE PRECISION T, FL(N,N) 

CH.IX,9 

where N is the order of the system. FLIN must evaluate for t = T the corresponding 
matrix Li(t) of the differential equation and place the result in the array FL(N,N). 
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSDD 
is called. 

FINH SUBROUTINE, supplied by the user, with specification: 

SUBROUTINE FINH(N, T, FR) 
DOUBLE PRECISION T, FR(N) 

where N is the order of the system. FINH must evaluate for t = T the coresponding 
vector rj(t) of the differential equation and place the result in FR(l), FR(2), ... , 
FR(N). 
FINH must be declared as EXTERNAL in the (sub)program from which MUTSDD 
is called. 
In the case that the system is homogeneous, i.c. all the 'j = 0, FINH is a dummy and 
one can use FLIN for FINH in the call to MUTSDD. 

N INTEGER, the order of the system. 
Unchanged on exit. 

IHOM INTEGER array of dimension (k), k ;;:: NSP 
IHOM(i) indicates whether the system is homogeneous or inhomogeneous on 
[ ai ,<Xi+l ]. i = I, ... , NSP-I. 
On entry: 
IHOM(i) = 0 : the system is homogeneous on [<Xi • <Xi +1 ], 
IHOM(i) = 1 : the system is inhomogeneous on [ai ,aj+l J. 
On exit IHOM(i), i=l, ... ,NSP-l is unchanged; IHOM(NSP) = 0, if the whole 
system is homogeneous, otherwise IHOM(NSP) = 1. 

TSP DOUBLE PRECISION array of dimension (k), k ;;:: NBP. On entry TSP must 
contain the switching points aj , j = 1, ... , NSP in monotone order, i.e. 
TSP(j) = aj,j = 1, ... , NSP. 
Unchanged on exit. 

NSP INTEGER. NSP is the number of switching points. 
Unchanged on exit. 

BCM DOUBLE PRECISION array of dimension (N,N,k), k ;;:: NSP . 
. On entry: BCM( .•. ,j) must contain the BC matrix Mj,j = 1, ... , NSP. 
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During computation the array BCM will be overwritten. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector. 
During computation the array BCV will be overwritten. 

ZM DOUBLE PRECISION array of dimension (N. N. k), k ~ NSP. 
On entry ZM( . , . t j) must contain the side condition matrix ZFt j = 2, ...• NSP-t. 
During computation the array ZM will be overwritten. 

ZP DOUBLE PRECISION array of dimension (N, Nt k), k ~ NSP. 
On entry ZP( .•. ,j) must contain the side condition matrix Z/, j = 2, ... , NSP-I. 
During computation the array ZP will be overwritten. 

BI DOUBLE PRECISION array of dimension (N. k). k ~ NSP. 
On entry BI( .• j) must contain the side condition vector B j, j = 2 •... , NSP-I. 
During computation the array BI will be overwritten. 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2 '" ALI, a new output point is inserted. 
If ALI S 1 the defaults are: 
IfNRTI(1) = 0: ALI := max(ER(l). ER(2» / (2"'ER(3», 
if NRTI(1) '* 0: ALI := SQRT(RMAX). where RMAX is the largest positive real 
number which can be represented on the computer used. 
On exit ALI contains the actually used incremental factor. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(1) must contain a relative tolerance for solving the differential 
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will 
change ER(I) into 
ER(1):= 1.d-12 + 2'" ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation. 
On entry ER(3) must contain the machine constant BPS (see Remark 1.1). 
On exit ER(2) and ER(3) are unchanged. 
On exit ER(4) contains an estimate of the condition number of the BVP. 
On exit ER(5) contains an estimate of the amplification factor. 
On exit ER(6) contains an estimate of the amplification factor of the discrete 
multipoint BVP. 

NRTI INTEGER array of dimension (k), k ~ NBP 

On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
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1) NRTI(1) = 0, the subroutine automatically determines the output points using the 
allowed incremental factor ALI. 

2) NRTI(1) = 1, the output points are supplied by the user in the array TI. 
3) NRTI(1) > I,in this case the interval [TBPG-I), TBPG) ],j = 2, ... , NSP, are 

divided into NRTIG) subintervals of equal length. The endpoints of 
these subintervals are the required output points. 

Depending on the allowed incremental factor ALI, more output points may be 
insened in the cases 2 and 3. 
On exit: NRTI(1) contains the total number of output points. 
For j = 2, ... , NBP: if NRTIG) < 0 then no change of dichotomy is detected on the 
succesive intervals [TBPG-I), TBPG)] and [TBPG) , TBPG+I)]. IfNRTIG) > 0 
then a change of dichotomy is dectected at TBPG) and NRTIG) contains the 
number of output points on the interval [ TBP(i) , TBP(j) ], where i < j, 
NRTI(i) > 0, NRTI(k) < 0, i < k < j, i.e. TBP(i) is the previous point where a 
change of dichotomy was detected. 

TI DOUBLE PRECISION array of dimension (NTI). 
On entry: if NRTI = 1 , TI must contain the required output points in strict 
monotone order: al = TI(I) < ... < TI(k) = at or al = TI(1) > ... > TI(k) = at 
(k denotes the total number of required output points). The output points must 

include all switching points aj, j = 1, ... , NBP. 
The routine split the switching points aj' j = 2, ... , NSP - 1 into two output 

points aJ := aj (1-EPS) and at := aj (1 + EPS). 
On exit: TI(i), i = 1,2, ... , NRTI(l), contains the output points. 

NTI INTEGER. 
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D, 
PHI. When mG) denotes the number of output points on the interval 
[ TBP(j - 1) , TBPG) ], j = 2, ... , NBP, and m the number of output points on the 
interval [TBP(1), TBP(NBP)], i.e. m = m(2) + ... + m(NBP), then 
NTI ~m + I + max(4-m(NBP), 0). 
If the routine was called with NRTI(1) > 1 and ALI S; I then mG) = NRTI(j) + I ,j 
= 2, ... , NBP, so 
NTI ~ NBP + NRTI(2) + ... + NRTI(NBP) + max(3 - NRTI(NBP),O). 
Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N,NTI). 
On exit X(i,k) , i = 1,2, ... , N contains the solution of the BVP at the output point 
TI(k), k = I, ... , NRTI(1). 

U DOUBLE PRECISION array of dimension (NU,NTI). 
On exit U(i , k) i = 1,2, ... , NU contains the relevant elements of the upper 
triangular matrix Uk.. k = 2, ... , NRTI(I) The elements are stored column wise, 
the jth column of Uk is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j, k), where 

nj = (j - 1) * j /2. 
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NU INTEGER. 
NU is one of the dimensions ofU and PHI. 
NU must be at least equal to N '" (N + 1) /2. 
Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N,N,NTI). 

CH.IX,9 

On exit Q(i , j, k) i = 1,2, ... , N, j = 1,2, ... , N contains the N columns of the 
orthogonal matrix Qko k = I, ... ,NRTI(l). 

D DOUBLE PRECISION array of dimension (N,NTl). 
If IHOM = 0 the array D has no real use and the user is recommended to use the 
same array for the X and the D. 
If IHOM = 1 : on exit D(i, k) i = 1,2, ...• N contains the inhomogeneous tenn die, 
k = 1,2, ...• NRTI(1), of the multiple shooting recursion. 

KP ART INTEGER array of dimension (k), k ~ NBP 
On exit KPART(j) contains the global partitioning parameter on the interval [ 
TBP(ij) , TBP(ij+l) 1, j = 1, ... , where the TBP(ij) are the points where a change 
of dichotomy has been detected; i 1 < i2 < ... and NRTl(ij) > O. 

PHI DOUBLE PRECISION array of dimension CNU,NTI). 
On exit PHI contains a fundamental solution of the multiple shooting recursion. 
The fundamental solution is upper triangular and is stored in the same way as the 
Uk. 

W DOUBLE PRECISION array of dimension (L W). 
Used as wolk. space. 

LW INTEGER 
L W is the dimension of W. 

L W ~ N '" (3 '" N '" N + 14 '" N + 15) /2 + NSP '" N '" (3 '" N + 5) /2 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 

LIW is the dimension ofIW. LIW ~ (4 + NBP)"'N + 4 '" NBP . 
Unchanged on exit. 

IERROR INTEGER 

Error indicator; if IERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 
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**************** 
Auxiliary Routines 
**************** 

MUTSDD CH. IX.9 

This routine calls the BOUNDPAK library routines AMTES, APLB, CAMPF. CDI, 
CFUNRC, CKLREC, CNRHS, COPMAT. COPVEC, CONDW, CPSRC, CTIMI, CTIPL, 
CROUT,CUVRC, CWISB, DEFUNC, DUR,FCBVP,FC2BVP,FQUS,FUNPAR. FUNRC, 
GKPMP, GTUR, GTUVRC, INPRO, INTCH, KPCH, LUDEC, MATVC, MTSDD, PSR, 
QEV AK, QEV AL, QUDEC, RKFIS, RKFSM, 5MBVP, SOLDE, SOLUPP, SORTD, 
SORTDO, SPLS2, SSDBVP, TAMVC, TUR, TUVRC, UPUP, UPVECP, UQDEC. 

**************** 
Remarks 
**************** 

MUTSMP is written by G.W.M. Staarink and R.M.M. Mattheij. 
Last update: november 1991. 

**************** 
Method 
**************** 

See chapter IV. 

**************** 
Example of the use of MUTSDD 
**************** 

Consider the ordinary differential equation 

d -3St<0,i=1 
(JjX(t)=Li(t)x(t)+ri(t), OStS3,i=2' 

a jump condition at t = 0: 
Zf x (0-) + Zi x (0+) = b2 

and a boundary condition: 
Mt x (-3)+M2 X(0+)+M 3 x(3)=b, 

[ 

111.1 + 11.1 cos(2t) 1 - ih sin(2t) 0 ] [- 211.1 - cos(2t) + Sin(2t)] 
L 1(1) = - 1 - 11.1 sin(2t) lit2 - 11.1 cos(2t) 0 , , l(t) = _11.1 + cos(2t) + sin(2t) , 

o 0 -1 1 

[ 

ih + 3cos(2t) 1 - 3sin(2t) 0 ] [- 111.1 - 3 (cos(2t) - sin(2t) )] 
L 2(t) = -1 - 3sin(2t) 11.1 - 3cos(2t) 0 , '2(t) = 11.1 + 3 (cos(2t) + sin(2t» , 

o 0 -1 1 
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Z2 =1. Z2 =-1, bz=(l,-2.0)T. 

M 1 = [8 8 8j, M z = [8 ~ 8]. M 3 = [~ 8 8j. b = [
1 
+ Si~3) e-

3j. 
001 000 000 1 

The solution of this problem is: 
x(t) = (1 +cos(t)e 21 - sin(t)et ,1- sin(t)e 21 - cos(t)e t .1)T, -3 S t < 0 
x (t) = (l + sin(t) e-l , 1 + cos(t) e-l • I)T, 0 S t S 3. 

For t < 0 the ODE has fundamental solutions growing like exp (2 t ), exp (t) and exp ( - t ); 
for t ~ 0 the ODE has fundamental solutions growing like exp (2 t ) and ep ( - t ), so there is a 
change of dichotomy at t = O. 

In the next program the solution is computed and compared to the exact solution. 
This program has been run on a OLIVEITI M24 personal computer (see Remark 1.2). 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION TSP(3),BCM(3.3,3),BCV (3),ZM(3,3,3),zp(3,3,3),BI(3,3), 

1 ER(6),TI(13),x(3,13),U(6,13).Q(3.3,13),D(3,13),PHI(6,13),W(189) 
INTEGER IHOM(3).KP(3),NRTI(3»)W(33) 
EXTERNAL FLIN,FINH 

C SETTING OF THE INPUT PARAMETERS 
C 

C 

N=3 
NSP=3 
IHOM(l)= 1 
!HOM(2)= 1 
TSP(I) = -3.00 
TSP(2) = 0.00 
TSP(3) = 3.00 
ER(I) = I.D·11 
ER(2) = I.D-6 
CALL EPSMAC(ER(3» 
ALI = 0.00 
NTI= 13 
NU=6 
LW= 189 
LIW=33 
NRTI(l) = 2 
NRTI(2)=5 
NRTI(3) = 5 

C SETTING THE BC MATRICES BCM, THE BC VECTOR BCV AND THE SIDE 
C CONDmON MATRICES ZM, ZP AND VECTOR BI. 
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C 
DO 1200 L = 1 , NSP 

DO 11001= I.N 
DO 1100 J = 1 , N 

IF (I.EQ.J) THEN 
ZM(I,I,L) = 1.00 
ZP(I,I,L) = -1.00 

ELSE 
ZM(I),L) = 0.00 
ZP(I),L) = 0.00 

ENDIF 
BCM(I),L) = 0.00 

MUTSDD CH. IX.9 

1100 CONTINUE 
BI(l,L) = 1.00 
Bl(2,L) = -2.00 
Bl(3,L) = 0.00 

1200 CONTINUE 

C 

BCM(3,3,1) = 1.00 
BCM(2.2,2) = 1.00 
BCM(I,I,3) = 1.00 
BCV(1) = 1.00 + DSIN(TSp(3»'" DEXP( -TSP(3» 
BCV(2) = 2.00 
BCV(3) = 1.00 

C CALL MUTSDD 
C 

C 

C 

C 

CALL MUTSDD(FLIN,FINH,N,IHOM,TSP,NSP ,BCM,BCV,ZM,ZP,BI,ALI,ER, 
1 NRTI,TI.NTI,X,U.NU,Q,D.KP,PID,W,LW,IW,LIW,IERROR) 

IF «(IERROR.NE.0).AND.(IERROR.NE.200).AND.(IERROR.NE.213).AND. 
1 (IERROR.NE.300» THEN 

WRITE(* ,300) ffiRROR 
STOP 

ENDIF 
CALL OUTPUT(N.ER,TI,X,NTI,NRTI,NSP) 
STOP 

300FORMAT(, TERMINAL ERROR IN MUTSDD : ffiRROR = ',13) 
END 

SUBROUTINE FLIN(N,T .FL.) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION FL(N,N) 

T2=2.00"'T 
C = DCOS(T2) /2.00 
S = DSIN(T2) /2.00 
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IF (T.LT.O.OO) THEN 
FL(1,1) = 1.500+ C 
FL(l,2) = 1.00 - s 
FL(l,3) = 0.00 
FL(2,l) = -1.00 - S 
FL(2,2) = 1.500 - C 
FL(2,3) = 0.00 
FL(3,l) = 0.00 
FL(3,2) = 0.00 
FL(3,3) = -1.00 

ELSE 
FL(l,l) = 0.500 + 3.00*C 
FL(I,2) = 1.00 - 3.00*S 
FL(l,3) = 0.00 
FL(2.1) = -1.00 - 3.00*S 
FL(2,2) = 0.500 - 3.00*C 
FL(2,3) = 0.00 
FL(3,l) = 0.00 
FL(3,2) = 0.00 
FL(3.3) = -1.00 

ENDIF 
RETURN 

MUTSDD 

C ENDOFFLIN 

C 

C 

END 
SUBROUTINE FINH(N,T.FR) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION FR(N) 

T2=2.00*T 
C = DCOS(T2) /2.00 
S = DSIN(T2) /2.00 
IF (T.LT.O.OO) THEN 
FR(1) = -2.500 - C + S 
FR(2) = -0.500 +C + S 
FR(3) = 1.00 

ELSE 
FR(l) = -1.500 - 3.00*(C - S) 
FR(2) = 0.500 + 3.00*(C + S) 
FR(3) = 1.00 

ENDIF 
RETURN 

C ENDOFFINH 
END 
SUBROUTINE OUTPUT(N,ER,TI,X,NTI,NRTI,NSP) 

C 
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C 

MUTSDD 

IMPLICIT DOUBLE PREOSION (A-H,O-Z) 
DIMENSION TI(NTI),X(N.NTI).ER(6) 
INTEGER NRTI(NSP) 

CH.IX,9 

C PRINTING OF THE CONDITION NUMBER AND THE AMPLIFICATION FACTOR. 
C 

C 

WRITE(NOUT,200) 
WRITE(NOUT,245) ER(4).ER(5),ER(6) 
WRITE(NOUT,200) 

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING 
C OF THE SOLUTION AT THE OUTPUTPOINTS 
C 

WRITE(NOUT ,2(0) 
WRlTE(NOUT.250) 
WRITE(NOUT,200) 
DO 2100 K = 1 , NRTI(I) 

C = DCOS(TI(K» 
S = DSIN(TI(K» 
E2T = DEXP(2.oo*TI(K» 
ET = DEXP(TI(K» 
EMT = DEXP(-TI(K» 
IF (TI(K)LT.O.oo) THEN 
EXSOLl = 1.00 + C*E2T - S*ET 
EXSOL2 = 1.00 - S '" E2T - C * ET 

ELSE 
EXSOLl = 1.00 + S lie EMT 
EXSOL2 = 1.00 + C lie EMT 

ENDIF 
AE=EXSOL1- X(I,K) 
WRlTE(NOUT ,260) K,TI(K),X( l,K),EXSOL l,AE 
AE = EXSOL2 - X(2,K) 
WRITE(NOUT,270) X(2,K),EXSOL2,AE 
EXSOL3 = 1.00 
AE = EXSOL3 - X(3,K) 
WRlTE(NOUT,270) X(3,K),EXSOL3,AE 

2100 CONTINUE 
RETURN 

200 FORMATC ') 
245 FORMATC CONDITION NUMBER = ',DI0.3J, 

1 ' AMPLIFICATION FACTORS = ',DIO.3,3X,DlO.3) 
250 FORMATe I' ,6X, 'T' ,8X,' APPROX. SOL.' ,9X, 'EXACT SOL. ' ,8X, 

1 'ABS. ERROR') 
260 FORMATC ',I3,3X,F7.4,3(3X,DI6.9» 
270 FORMATC ',13X,3(3X,D16.9» 

RETURN 
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END 

CONDITION NUMBER = .1010+01 
AMPLIFICATION FACfORS = .2160+01 .2000+01 

I T APPROX. SOL. EXACfSOL. ABS.ERROR 

1 -3.0000 .1004572000+01 .1004572010+01 .6066441570-08 
.1049638620+01 .1049638630+01 .3822061780-08 
.1000000000+01 .1000000000+01 .0000000000+00 

2 -2.4000 .1055208070+01 .1055208070+01 .7578609960-08 
.1072453740+01 .1072453740+01 .3081541240-08 
.1000000000+01 .1000000000+01 .0000000000+00 

3 -1.8000 .1154767920+01 .1154767920+01 .8123057560-08 
.1064165380+01 .1064165400+01 .1119512130-07 
.1000000000+01 .1000000000+01 .0000000000+00 

4 -1.2000 .1313597110+01 .1313597130+01 .2387683580-07 
.9754125990+00 .9754126200+00 .2080388130-07 
.1000000000+01 .1000000000+01 .2220446050-15 

5 -.6000 .1558468630+01 .1558468670+01 .3690139860-07 
.7171132530+00 .7171132560+00 .2627430500-08 
.1000000000+01 .1000000000+01 .2220446050-15 

6 .0000 .2000000340+01 .2000000000+01 -.3398240490-06 
.1440752220-15 .2210200340-14 .2066125120-14 
.1000000000+01 .1000000000+01 .1110223020-15 

7 .0000 .1000000340+01 .1000000000+01 -.3398240460-06 
.2000000000+01 .2000000000+01 -.1110223020-14 
.1000000000+01 .1000000000+01 .1110223020-15 

8 .6000 .1309882450+01 .1309882360+01 -.8831963360-07 
.1452953730+01 .1452953790+01 .6324083550-07 
.1000000000+01 .1000000000+01 .0000000000+00 

9 1.2000 .1280724790+01 .1280724780+01 -.7577428020-08 
.1109140030+01 .1109140060+01 .2889021360-07 
.1000000000+01 .1000000000+01 .4440892100-15 

10 1.8000 .1160975920+01 .1160975930+01 .6043944010-08 
.9624437320+00 .9624437460+00 .1433293530-07 
.1000000000+01 .1000000000+01 .1110223020-15 

11 2.4000 .1061276630+01 .1061276640+01 .7113462930-08 
.9331051470+00 .9331051510+00 .4009707230-08 
.1000000000+0 1 .1000000000+01 .1110223020-15 

12 3.0000 .1007025950+01 .1007025950+01 .0000000000+00 
.9507111770+00 .9507111760+00 -.1261657330-08 
.1000000000+01 .1000000000+01 .0000000000+00 
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10. Subroutine MUTSEI 

SPECIFICA TlON 
•••••••••••••••• 

SUBROUTINE MUTSEI(FLINE, N, A, B, EIG, MAt MB, ALI, ER, NRTI. TI, 
I NTI,X,NRSOL, U, NU, Q, KPART, PIn, W,LW.IW,LIW, IERROR) 

C INTEGER N, NRTI. NTI. NRSOL, NU, LW. IW{LIW), LIW. IERROR 
C DOUBLE PRECISION A, B. EIG(2), MA(N,N), MB(N,N), ALI, ER(5), TI(NTI), 
C 1 X(N,NTI,N), U(NU.NTI), Q(N.N.NTI), PIn(NU.NTI), W{LW) 

C EXTERNAL FUN 

.***.**** ••••••• 
Purpose 
*.**** ••• ******* 

MUTSEI solves the eigenvalue problem: 

t,X(t,A.)=L(t.A.)X(t,A.) , A ~t ~B or B ~t ~A , 
withBC: 

MA x(A,A.)+MB x(B ,A.)=O, 

where A is the parameter, L(t ,A) an NxN matrix function, MA and MB are NxN matrices. 

**************** 
Parameters 
*** •• *********** 

FLlNE SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FLINE(N, T, FL, ALAM) 
DOUBLE PRECISION T, FL(N,N), ALAM 

where N is the order of the system. FLINE must evaluate the matrix L (t , A.) of the 
differential equation for t = T. A. = ALAM and place the result in the array 
FL(N,N). 
FLINE must be declared as EXTERNAL in the (sub)program from which 
MUTSGE is called. 

N INTEGER, the order of the system. 
Unchanged on exit. 
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A,B DOUBLE PRECISION, the two boundary points. 
Unchanged on exit. 

EIG DOUBLE PRECISION array of dimension (2) 
On entry EIG(l) and EIG(2) must contain the endpoints of an interval in which the 
required eigenvalue lies. 
On exit EIG(l) and EIG(2) contains the endpoints of the interval in which an 
eigenvalue is found, where I EIG(l) - EIG(2) I < ER(2) + EIG(l) '" ER(I). 
EIG(1) is taken as an approximate for the eigenvalue. 

MA,MB DOUBLE PRECISION array of dimension (N, N). 
On entry: MA and MB must contain the matrices in the BC: 
MA X(A,A) +M8 x(B ,A)=O. 
Unchanged on exit. 

ALI DOUBLE PRECISION. 
On entry ALI must contain the allowed incremental factor of the homogeneous 
solutions between two successive output points. If the increment of a 
homogeneous solution between two successive output points becomes greater than 
2 '" ALI, a new output point is inserted. 
If ALI S 1 the defaults are: 
IfNRTI = 0: ALI := max(ER(l), ER(2» I (2"'ER(3», 
if NRTI '¢ 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real 
number which can be represented on the computer used. 
On exit ALI contains the actually used incremental factor. 

ER DOUBLE PRECISION array of dimension (5). 
On entry ER(1) must contain a relative tolerance for solving the differential 
equation and computing the eigenvalue. If the relative tolerance is smaller then 1.0 
d-12 the subroutine will change ER(l) into 
ER(1):= l.d-12 + 2'" ER(3). 
On entry ER(2) must contain an absolute tolerance for solving the differential 
equation and computing the eigenvalue. 
On entry ER(3) must contain the machine constant EPS (see Remark. 1.1). 
On exit ER(2) and ER(3) are unchanged. 
On exit ER(4) contains an estimate of the condition number of the BVP. If on exit 
ER(4) = -1, then NRSOL = N. 
On exit ER(5) contains an estimate of the amplification factor. 

NRTI INTEGER. 
On entry NRTI is used to specify the required output points. There are three ways 
to specify the required output points: 
1) NRTI = 0, the subroutine automatically determines the output points using the 

allowed incremental factor ALI. 
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2) NRTI = I, the output points are supplied by the user in the array TI. 
3) NRTI > 1, the subroutine computes the (NRTI+ 1) output points TI(k) by: 

TI(k) = A + (k-l)'" (B - A) /NRTI; 
so TI(1) = A and TI(NRTI+ 1) = B . 

Depending on the allowed incremental factor ALI, more output points may be 
inserted in the cases 2 and 3. On exit NRTI contains the total number of output 
points. 

TI DOUBLE PRECISION array of dimension (NTI). 
On entry: if NRTI = 1 , TI must contain the required output points in strict 
monotone order: A = TI(l) < ... < TI(k) = B or A = TI(l) > ... > TI(k) = B 
(k denotes the total number of required output points). 
On exit: TI(i), i = 1,2, ... , NRTI, contains the output points. 

NTI INTEGER. 
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q. D. 
PHI. Let m be the total number of output points then NTI ;?; max(5, m + 1). 
If the routine was called with NRTI > 1 and ALI ::; 1 the total number of required 
output points is NRTI + 1, so NTI;?; max(5, NRTI + 2). 
Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N, NTI. N), 
On exit X(i,k.l) ,i = 1,2, ... , N, 1 = 1 , ... , NRSOL, contains the eigensolutions, 
at the output points TI(k), k = 1, ... , NRTI, corresponding with the computed 
eigenvalue EIG(l). 

NRSOL INTEGER. 
On exit NRSOL contains the number of independent eigensolutions. 

U DOUBLE PRECISION array of dimension (NU,NTI). 
On exit U(i,k) i = 1;;', ... , NU contains the relevant elements of the upper 
triangular matrix UJe, k = 2, ... ,NRTI. The elements are stored column wise, the 
jth column of Uk is stored in U(nj + I, k), U(nj + 2, k) , ... , U(nj + j, k) where nj 
= G-l)'" j /2. 

NU INTEGER. 
NU is one of the dimensions of U and PHI. 
NU must be at least equal to N ... (N+ 1) /2. 
Unchanged on exit. 

Q DOUBLE PRECISION array of dimension (N, N, NTI). 
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2, ... , N contains the N columns of the 
orthogonal matrix Qk, k = 1, ... , NRTI. 
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KPART INTEGER. 
On exit KP ART contains the global k -partition of the upper triangular matrices V". 

PHI DOUBLE PRECISION array of dimension (NU, NTI). 
On exit PHI contains a fundamental solution of the multiple shooting recursion. 
The fundamental solution is upper triangular and is stored in the same way as the 

V". 

W DOUBLE PRECISION array of dimension (L W). 
Used as wort space. 

LW INTEGER 
L W is the dimension of W. LW ;;:: S*N + 7*N*N. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 

Used as wort space. 

LIW INTEGER 
LIW is the dimension ofIW. LIW ;;:: 4*N. 
Unchanged on exit. 

IERROR INTEGER 
Error indicator; ifIERROR = 0 then there are no errors detected. 
See §14 for the other errors. 

**************** 
Auxiliary Routines 
**************** 

This routine calls the BOUNDPAK library routines AMTES. APLB. BCMAV, CDI, CNRHS. 
COPMAT, COPVEC. CONDW. CRROL, CROUT. CWISB, DEFINC, OUR. FCBVP, 
FCEBVP. FQUS. FUNPAR, FUNRC. INPRO, INTCH, KPCH. LUDEC, MATVC, MTSE, 
QEVAK, QEV AL, QUDEC, RKFlS, RKFSM, SOLDE, SOLUPP, SORTO, TAMVC, UPUP, 
UPVECP. 

**************** 
Remarks 
**************** 

MUTSEI is written by G.W M. Staarink and R.M.M. Mattheij. 
Last update: november 1991. 
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*********** ••••• 
Method 
••••• *********** 

See chapter VII. 

**************** 
Example of the use of MUTSEI 
*********** •• *.* 

Consider the ordinary differential equation 

d [0 1] tli-:x (t , 'A.) = -'A. 0 x (t • 'A.) ,OS t S 1 

and a boundary condition x (0) = 0 and x (l) = O. 

This problem has an eigenvalue 'A.. = 1C2 and an eigensolution x(t, 'A..) = ( sin~1tt) ,COS(1t»T. 

In the next program this eigenvalue and eigensolution is computed, starting with an initial 
intelVal for 'A. : [ 9 , 11 ]. 
This program has been run on a OLIVETII M24 personal computer (see Remark 1.2), 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION EIG(2),BMA(2,2),BMB(2,2),ER(5),TI(12).X(2,12,2), 

1 U(3,I2),Q(2,2,I2),PHI(3,12),W(44) 
INTEGER IW(8) 
EXTERNAL FLINE 

C 
C SET INPUT PARAMETERS 
C 

N=2 
NU=3 
NTI= 12 
NRTI=lO 
LW=44 
LIW=8 
A=O.oo 
B = 1.00 
AMP = 0.00 
ER(1) = 1.10-12 
ER(2) = 1.00-6 
CALL EPSMAC(ER(3» 
DO 11001= 1 ,N 
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DO 1100J= 1 ,N 
BMA(I) = 0.00 
BMB(I) = O.DO 

1100 CONTINUE 

C 

BMA(l,l) = 1.00 
BMB(2,l) = 1.00 
EIG(1) = 9.00 
EIG(2) = 11.000 

C CALL MUTSEI 
C 

MUTSEI CH. IX,lO 

CALL MUTSEI(FLINE,N,A,B,EIG,BMA,BMB,AMP,ER,NRTI,TI.NTI, 
1 X,NRSOL,U ,NU,Q,KPART ,PHI,W,LW JW ,LIW,IERROR) 

IF «(IERROR.NE.0).AND.(IERROR.NE.200).AND.(IERROR.NE.213).AND. 
1 (IERROR.NE.300» GOTO 5000 

C 
C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING 
C OF THE EIGENVALUE END EIGENSOLUTION 
C 

C 

WRITE(*,2oo) ER(4).ER(5) 
PI = 4.00 * DATAN(1.00) 
EXLAM = PI * PI 
ERR = EXLAM - EIG(I) 
WRITE(* ,210) EXLAM,EIG(I),ERR 
WRITE(* ,220) 
DO 1500K= I,NRTI 
T=PI *TI(K) 
XEX = DSIN(f) I PI 
ERR = XEX - X(1,K,l) 
WRITE(* ,230) K. TI(K),x(1 .K,1 ),XEX,ERR 
XEX = DCOS(f) 
ERR = XEX - X(2,K,I) 
WRITE(*,240) X(2,K,l ),XEX,ERR 

1500cONTINUE 
STOP 

200 FORMAT(' CONDITION NUMBER = ',D12.SJ, 
1 ' AMPLIFICATION FACTOR = ',DI2.SJ) 

210 FORMAT(' EXACT LAMBDA = ',D20.13J: COMPo LAMBDA = ',D20.13J, 
1 ' ERROR = ' .020.13,1) 

220 FORMAT(, ',/,9X, 'T' ,6X,' APPROX. EIGENSOL. '3X, 'EXACT EIGENSOL.' , 
1 8X,'ERROR',I) 

230 FORMAT(' ',I2,2X,F8.5,3X,3(D16.9,3X» 
240 FORMAT(, ,,15X,3(D16.9,3X» 
300 FORMAT(, TERMINAL ERROR IN MUTSEI: IERROR = ' ,14) 

STOP 
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5000 WRITE(* ,300) IERROR 
END 

C 

C 

C 

SUBROUTINE FLINE(N,T,FL,PARM) 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION FL(N,N) 

FL(1.1) = 0.00 
FL(1,2) = 1.00 
FL(2.1) = -PARM 
FL(2,2) = 0.00 
RETURN 
END 

CONDITION NUMBER = .707110+00 
AMPLIFICATION FACTOR = .231170+02 

EXACT LAMBDA = .98696044010890+01 
COMPo LAMBDA = .98696045590340+01 
ERROR = -.1579442141519D-06 

T APPROX. EIGENSOL. EXACT EIGENSOL. 

1 .00000 -.222615390D-lO .0000000000+00 
. 1 OOOOOOOOD+O 1 .1000000000+01 

2 .10000 .983631646D-Ol .983631643D-Ol 
.951056520D+OO .95lO565160+oo 

3 .20000 . 187097863D+OO .1870978570+00 
.8090170270+00 .809016994D+00 

4 .30000 .257518123D+OO .257518lO70+00 
.587785293D+OO .5877852520+00 

5 .40000 .302730718D+OO .3027306910+00 
.3090 17026D+OO .3090169940+00 

6 .50000 .318309923D+OO .3183098860+00 
.289859515D-08 .612574227D-16 

7 .60000 .302730735D+OO .3027306910+00 
-.3090170370+00 -.3090169940+00 

8 .70000 .257518145D+OO .257518lO70+oo 
-.5877853420+00 -.5877852520+00 

9 .80000 . 187097885D+OO .1870978570+00 
-.809017123D+00 -.809016994D+00 

lO .90000 .983631789D-Ol .983631643D-01 
-.9510566730+00 -.9510565160+00 

11 1.00000 -.222615346D-lO .389976865D-16 
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ERROR 

.222615390D-lO 
.0000000000+00 
-.2910917060-09 
-.39401 1335D-08 
-.595535582D-08 
-.327274168D-07 
-.152225198D-07 
-.409873473D-07 
-.2616171980.07 
-.3135593960-07 
-.3634069420.07 
-.289859508D-08 
-.4312505400-07 
.4257599640-07 

-.379209960D-07 
.892135977D-07 

-.281338394D-07 
. 128821307D-06 

-.146072169D-07 
. 156757917D-06 
.222615736D-lO 
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-.1000000200+01 -.1000000000+01 .1999015590-06 
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11. Subroutine SPLSI 

SPECIFICATION 
•••••••••••••••• 

SUBROUTINE SPLSI(N, mOM, A, B, G, NRI, MI, MN, BCY, NREC, X, Q, 
1 U, Y, NU, PHI, D, KP, EPS, COND, AF, W, LW, IW, LIW, IERROR) 

C INTEGER N, IHOM, NRI, NREC, NU, KP, LW, IW(LIW), LIW, IERROR 
C DOUBLE PRECISION A(N,N,NRI), B(N,N,NRI), G(N,NRI), Ml(N.N), 
C I MN(N.N). BCY(N), X(N,NRI), Q(N,N,NRI), U(NU,NRI), 
C 2 Y(NU,NRI), PHI(NU,NRI), D(N,NRI), BPS, COND, AF, W(L W) 

•••••••••••••••• 
Purpose 
•••••••••••••••• 

SPLSI solves the discrete two-point BVP: 

Ai Xi+Bi+lXi+l = gi+l. i = 1, ... ,NREC-1. 

withBC: 

MIx 1 + MNREC XNREC = BCV 

whereAj. Bi+hM J,MNREC are NxN matrices, Xi, gi+l and BeY are N-vectors . 

•••••••••••••••• 
Parameters 
•••••••••••••••• 

N INTEGER, the order of the system. 
Unchanged on exit 

IHOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous, 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit 

A DOUBLE PRECISION array of dimension (N. N, NRI). 
On entry A( . , . , i) must containt the matrix Ai • i = 1, ... , NREC - 1. 
Unchanged on exit. 

B DOUBLE PRECISION array of dimension (N, N, NRI). 
On entry B( . , .• i) must contain the matrix Bj, i = 2, ... , NREC, 
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On exit: if in the call to SPLSI the same array is used forB and Q;.B wiUcomain 
the Qs; otherwise B is unchanged.. 

G DOUBLE PRECISION array of dimension (N. NRI). 
If mOM = 0, the array G has no real use and the. user is recommended to use·tlIe 
same array for the X and the G. 
IfIHOM =1, then on entry G(. ,i) must contain the vector gj. i= 2, ...• NREC. 
On exit: ifin the. call toSPLSl the same array is used for the G_D. theG win 
contain the values foe the D; otherwise the G is unchanged. 

NRI INTEGER. 
NRI is one of the dimension orA, B, G, X, Q • .u, v. PHI andD; NRJ;~ NREC + 1. 
Unchanged on exit. 

Ml,MN DOUBLE PRECISION array of dimension (N. N). 
On entry : Ml must contain the matrix M I and MN must contain the matrix 
MNREC of the BC: 
Mixi +MNRECXNREC =BCV. 
Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector. 
Unchanged on exit. 

NREC INTEGER. 
On entry NRECmust contain the total number of the Xi of the recursion. 
Unchanged on exit. 

X DOUBLE PREOSION array of dimension (N. NRI). 
On exit X(i,k) • i = 1 •... , N contains thesolutiOnxk, k=l, ... , NREC. 

Q DOUBLE PRECISION array of dimension(N. N, NRI). 
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2~ ... , N contains the N columns of the 
orthogonal transfonnation matrix Qt, k =·1, ... , NREC. 

U DOUBLE PRECISION array of dimension (NU, NRO. 
On exit U(i,k) i = 1, ... , NU contains the relevant elements of the upper triangular 
matrix Uk, k = 2, ... , NREC. of the transfonned upper triangular recursion. The 
elements are stored column wise, the jth column of Uk is stored in U(nj + I, k). 
U(nj + 2. k), ... , U(nj + j, k) where nj = (j-l) * j /2. 

V DOUBLE PREOSION array of dimension (NU, NRI). 
On eit V(i.k) i = 1, ... , NU contains the relevant elements of the upper triangular 
matrix Vk, k = 1, ... , NREC, of the transformed. upper triangular recursion. The 
elements are stored in the same way as the Uk. 
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NU INTEGER. 
NU is one of the dimensions ofU, V and PHI. 
NU must be at least equal to N '" (N + 1) /2. 
Unchanged on exit. 

PHI DOUBLE PRECISION array of dimension (NU, NRI). 

CH.IX.ll 

On exit PHI contains a fundamental solution of the transformed upper triangular 
recursion. The fundamental solution is upper triangular and is stored in the same 
way as the Uk.. 

D DOUBLE PRECISION array of dimension (N, NRI). 
If IHOM = 0 the array D has no real use and the user is recommended to use the 
same array for the X and the D. 
If IHOM = 1 : on exit D(i,k) i = I" ... , N contains the inhomogeneous term dk., 
k = 2, ... , NREC, of the transformed recursion. 
It is possible to use the same array for the G and D in the call to SPLS I. If this is 
the case, this array will contain the values of the D on exit. 

KP INTEGER. 
On exit KP contains the global k-partition of the transformed upper triangular 
recursion. 

BPS DOUBLE PRECISION. 
On entry BPS must contain the machine constant BPS (see Remark 1.1). 
Unchanged on exit. 

COND DOUBLE PRECISION. 
On exit COND contains an estimate of the condition number. 

AF DOUBLE PRECISION. 
On exit AF contains an estimate of the amplification factor. 

W DOUBLE PRECISION array of dimension (L W). 
Used as work space. 

LW INTEGER 
L W is the dimension of W. 
LW~3 *N +2'" N"'N. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 

LIW is the dimension of IW. LIW ~ 4 '" N. 
Unchanged on exit. 
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IERROR INTEGER 
Error indicator; if IERROR ::: 0 then there are no errors detected. 
See § 14 for the other errors. 

"'*"''''************ 
Auxiliary Routines 
"''''*'''******'''***** 

CH. IX,ll 

This routine calls the BOUNDPAK library routines AMTES, APLB •. BCMAV. CAMPF. 
CFUNRC. COPMAT, COPVEC, CONDW. CPSRC. CROUT. CUVRC;FQUS.GTUVRC, 
INPRO. INTCH. LUDEC. MATVC. QEVAK, QEVAL, QUDEC. SBVP. SOLOS. SOLUPP, 
SORTO, SORTDO, T AMVC, TUVRC, UPUP, UPVECP. 

**************** 
Remarks 
**************** 

SPLSI is written by O.W.M. Staarink and RM.M. Mattheij; 
Last update: november 1991. 

****"'*****"'***"'* 
Method 
****"'*********** 

See chapter vm. 

**************** 
Example of the use of SPLS 1 
**************** 

Consider the recursion: 

Ai Xi + Bj+l Xi+l ::: gj+l • i::: 1, ...• 10, 
withBC: 

where 

[
1-66] Ai = -4 2 -10 • 

-2 7 -12 [-2 7 -3] 
Bi +1 = 8 3 5 , 

416 

[
0 0 0] [0 0 1] Ml = 1 0 0 • MIl = 1 0 0 • 
010 000 
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b = ( -2 , 3 + 2-10 , 2 )T. 

The solution of this problem is; x(i) = (1 + 21- i ,2, -1 - 2i-ll)T. 

In the next program the solution is computed and compared to the exact solution. 
This program has been run on a OLIVETTI M24 personal computer (see Remark. 1.2). 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(3,3,12),B(3,3,12),G(3,12),BMl(3,3),BMN(3,3),BCV(3), 

1 X(3,12),U(6,12),V(6,12),PHI(6,12),W(27) 
INTEGER IW(12),IB(12) 

C 
C SETIING OF THE INPUT PARAMETERS 
C 

C 

N=3 
IHOM= 1 
NU=6 
NRl= 12 
LW=27 
LlW= 12 
NREC=l1 
CALL EPSMAC(EPS) 

C SETIING OF THE RECURSION AND BC 
C 

DO 1100 I = 1 • NREC-l 
A(1.1.I) = 1.00 
A(I,2,I) = -6.00 
A(1,3,I) = 6.00 
A(2.I,I) = -4.00 
A(2,2,I) = 2.00 
A(2.3,I) = -10.00 
A(3,I,I) = -2.00 
A(3,2,I) = 7.00 
A(3,3,I) = -12.00 

1100 CONTINUE 
DO 12001= 2 ,NREC 
B(1,l,I) = -2.00 
B(I,2,I) = 7.00 
B(1,3,I) = -3.00 
B(2,I,I) = 8.00 
B(2,2,I) = 3.00 
B(2,3.!) = 5.00 
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B(3,1,1) = 4.00 
B(3,2,I) = 1.00 
B(3,3,1) = 6.00 
0(1,1) = -2.00 
0(2,1) = 19.00 
0(3,1) = 24.00 

1200 CONTINUE 
DO 13001= I,N 
DO 1300J= I,N 
BMl(I,J) = 0.00 
BMN(IJ) = 0.00 

1300 CONTINUE 

C 

BMl(2,1) = 1.00 
BMl(3,2) = 1.00 
BMN(I,3) = 1.00 
BMN(2,1) = 1.00 
BCV(I) = -2.00 
BCV(2) = 3.00 + 2.00 ** (-10) 
BCV(3) = 2.00 
IERROR=O 

C CALL TO SPLSI 
C 

SPLSI CH. IX,ll 

CALL SPLSl(N,IHOM,A,B,O,NRI,BMl,BMN,BCV ,NREC.x,B,U,V,NU,PID,O, 
1 KP .EPS,COND,AF,W ,LW,IW,LIW,IERROR) 

IF «(IERROR.NE.O).AND.(IERROR.NE.710» OOTO 3000 
C 
C WRITINO OF TIlE SOLUTION AND TIlE ABSOLUfE ERROR 
C 

CALL OUTSOL(COND,AF,KP,X,N,NRI,NREc) 
STOP 

3000 WRITE(* ,100) IERROR 
STOP 

C 
100 FORMAT(' TERMINAL ERRROR IN SPLSI : IERROR = ',14,1) 

END 
C 

C 

C 

SUBROUTINE OUTSOL(COND,AF,KP,X,N,NRI,NREc) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION X(N,NRI) 

WRITE(IO,200) COND,AF,KP 
WRITE(IO, 100) 
DO 1100 I = 1 , NREC 
11=1-1 
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Nl =1 -NREC 
SI = 1.00 + 2.00 ** 11 
S2=2.00 

SPLSl 

S3 = -1.00 - 2.00 ** Nl 
WRITEOO,110) I,X(1,I),SI,SI-X(1,I) 
WRITEOO,120) X(2,I),S2,s2-X(2,I) 
WRITE(lO,120) X(3,I),S3,S3-X(3,1) 

1100 CONTINUE 
C 
100 FORMATC 'J,' 1',7X,'XAPPROX',l1X;XEXACT',14X,'ERROR'J) 
110 FORMATC ',I2,3X,3(D16.9,3X» 
120 FORMAT(, ',5X,3(D16.9,3X» 
200 FORMAT(' 'J,' CONDmONNUMBER = ',DI2.5J, 

1 'AMPLIFICATIONFACTOR= ',o12.5J) 
RETURN 
END 

CONDmON NUMBER = .100380+01 
AMPLIFICATION FACTOR = .315910+01 

1 XAPPROX X EXACT ERROR 

1 .2000000000+01 .2000000000+01 -.888178420D-15 
.2000000000+01 .2000000000+01 .0000000000+00 

-.1000976560+01 -.1000976560+01 .222044605D-15 
2 .1500000000+01 .1500000000+01 .222044605D-15 

.2000000000+01 .2000000000+01 -.1332267630.14 
-.100195313D+Ol -.1001953130+01 -.44408921OD-15 

3 .1250000000+01 .1250000000+01 -.222044605D-15 
.2000000000+01 .2000000000+01 .2220446050.15 

-.1003906250+01 -.1003906250+01 -.444089210D-15 
4 .1125000000+01 .1125000000+01 -.133226763D-14 

.2000000000+01 .2000000000+01 .6661338150.15 
-.1007812500+01 -.1007812500+01 .222044605D-15 

5 .1062500000+01 .1062500000+01 -.6661338150.15 
.2000000000+01 .2000000000+01 .444089210D-15 

-.1015625000+01 -.1015625000+01 .222044605D-15 
6 .1031250000+01 .1031250000+01 -.2220446050.15 

.2000000000+01 .2000000000+01 -.444089210D-15 
-.1031250000+01 -.1031250000+01 -.2220446050.15 

7 .1015625000+01 .1015625000+01 .0000000000+00 
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.2000000000+01 .2000000000+01 -.4440892100-15 
-.1062500000+01 -.1062500000+01 -.2220446050-15 

8 .1007812500+01 .1007812500+01 -.1776356840-14 
.2000000000+01 .2000000000+01 .2220446050-15 

-.1125000000+01 -.1125000000+01 .1554312230-14 
9 .1003906250+01 .1003906250+01 -.1332267630-14 

.2000000000+01 .2000000000+01 .8881784200-15 
-.1250000000+01 -.1250000000+01 .1332267630-14 

10 .1001953120+01 .1001953130+01 .6661338150-15 
.2000000000+01 .2000000000+01 .0000000000+00 

-.1500000000+01 -.1500000000+01 .2220446050-15 
11 .1000976560+01 .1000976560+01 .8881784200-15 

.2000000000+01 .2000000000+01 -.4440892100-15 
-.2000000000+01 -.2000000000+01 .0000000000+00 
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12. Subroutine SPLS2 

**************** 
SPECIFICATION 
********* ......... **** 

SUBROUTINE SPLS2(N, IHOM. A. B, G, NRI, U, MI, KMI, BCV, NREC. X, Q, 
1 U. V, NUt PIn. D. KP, BPS. CONDo AF. W, LW, IW, UW. IERROR} 

C INTEGER N. IHOM. NRI. U(KMI}. NREC(KMl}. NU, KP(KMl}. 
C 1 LW,IW(LIW),LIW,IERROR 

C DOUBLE PRECISION A(N.N,NRI}, B(N.N,NRI}, G(N,NRI}, MI(N.N,KMI}. 

C 1 BCV(N}. X(N,NRI). Q(N.N,NRI}. U(NU.NRI). V(NU,NRI}. 
C 2 PIn(NU,NRI}, D(N,NRI}. BPS, CONDo AF. W(LW) 

****"''''''' ... ''''''''' "''''*** 
Purpose 
*********"'*"'''''''*''' 

SPLS2 solves the discrete two-point BVP: 

withBC: 

~ Mjxi. =b 
J~ J 

where Ai. Bi+1> Mj are NxN matrices. Xi. gi+l and b are N-vectors and 
1 = i 1 < i 2 < ... < i" = m . 
The subindices ij are the so called. "switching points" 

* ...... **** ... ***"'**** 
Parameters 
*** ... **** ... ***"'*** 

N INTEGER, the order of the system. 
Unchanged. on exit. 

IHOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous. 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exit. 
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A DOUBLE PRECISION array of dimension (N, N, NRI). 

On entry A( . , . , i) must con taint the matrix Ai, i = 1, ... , m -I, 
Unchanged on exit 

B DOUBLE PRECISION array of dimension (N, N, NRI). 
On entry B( . , . , i) must contain the matrix Bi. i = 2, ... , m. 

CH. IX,12 

On exit: if in the call to SPLS2 the same array is used for B and Q, B will contain 
the Qs; otherwise B is unchanged. 

G DOUBLE PRECISION array of dimension (N, NRI). 
If mOM = 0, the array G has no real use and the user is recommended to use the 
same array for the X and the G. 
If mOM = I, then on entry G( . , i) must contain the vector gi. i = 2, ... , m. 
On exit: if in the call to SPLS2 the same array is used for the G and D, the G will 
contain the values for the D; otherwise the G is unchanged. 

NRI INTEGER. 
NRI is one of the dimension of A, B, G, X, Q, U, V, PHI and D. NRI ~ m + 1. 
Unchanged on exit. 

11 INTEGER array of dimension (KMI). 
On entry U(j), j = 1, ... , k must containt the subindex ij of the Xii in the 

multipoint BC. 
Unchanged on exit. 

MI DOUBLE PRECISION array of dimension (N, N, KMI). 
On entry: MI( .•.• j), j = 1, ... , k must contain the matrix Mj of the multipoint 

BC. 
Unchanged on exit. 

KMI INTEGER. 
KMI is one of the dimension of II, MI, NREC and KP. 
On entry KMI must have the value of k. i.e. the total number of the BC matrices 
Mj. 
Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector b . 
Unchanged on exit. 

NREC INTEGER array of dimension (KMI). 
On entry NREC(1) must contain the total number of the Xi of the recursion, Le. 
NREC(1) =m. 
On exit: NREC(l) is unchanged. 

For j = 2, ... , KMI: if NREC(j) < 0 then no change of dichotomy is detected in the 
recursion between the "switching points" IJ(j-l) and 11(j+l). IfNREC(j) > 0 then 
a change of dichotomy is detected at IJ(j) and NREC(j) = U(j)-IJ(i)+l, where i <j, 
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NREC(i) > 0, NREC(1) < 0, i < I < j, i.e. U(i) is the previous "switching point" 
where a change of dichtomy was detected. 

X DOUBLE PRECISION array of dimension (N, NRI). 
On exit X(i,k) , i = 1, ... , N contains the solution Xk, k= I, ... , NREC(I). 

Q DOUBLE PRECISION array of dimension (N, N, NRl). 
On exit Q(iJ,k) i = 1,2 •... , N, j = 1,2, ... , N contains the N columns of the 
orthogonal transfonnation matrix Qk, k = 1, ... , NREC(I). 

U DOUBLE PRECISION array of dimension (NU, NRI). 
On exit U(i,k) i = 1 •... , NU contains the relevant elements of the upper triangular 
matrix Uk. k = 2, ... , NREC(1), of the transfonned upper triangular recursion. 
The elements are stored column wise, the jth column of Uk is stored in U(nj + I, k), 

U(nj + 2, k) , ... , U(nj + j, k) where nj = (j -1) '" j /2. 

V DOUBLE PRECISION array of dimension (NU. NRI). 
On eit V(i.k) i = 1, ... , NU contains the relevant elements of the upper triangular 
matrix Vk. k = 1, ...• NREC(I), of the transfonned upper triangular recursion. 

The elements are stored in the same way as the Uk. 

NU INTEGER. 
NU is one of the dimensions of U, V and PHI. 
NU must be at least equal to N '" (N + 1) /2. 
Unchanged on exit. 

PHI DOUBLE PRECISION array of dimension (NU, NRI). 
On exit PHI contains a fundamental solution of the transfonned upper triangular 
recursion. The fundamental solution is upper triangular and is stored in the same 
way as the Uk. 

D DOUBLE PRECISION array of dimension (N, NTI). 
If IHOM = ° the array D has no real use and the user is recommended to use the 
same array for the X and the D. 
If IHOM = 1 : on exit D(i,k) i = 1" ... , N contains the inhomogeneous tenn dk, k 
= 2, ... , NREC(l). of the transfonned recursion. 
It is possible to use the same array for the G and D in the call to SPLS2. If this is 
the case, this array will contain the values of the D on exit. 

KP INTEGER. 
On exit KP contains the global k-partition of the transfonned upper triangular 
recursion. 

EPS DOUBLE PRECISION. 
On entry BPS must contain the machine constant BPS (see Remark 1.1). 
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Unchanged on exit. 

COND DOUBLE PRECISION. 
On exit COND contains an estimate of the condition number. 

AF DOUBLE PRECISION. 
On exit AF contains an estimate of the amplification factor. 

W DOUBLE PRECISION array of dimension (L W). 
Used as work space. 

LW INTEGER 
L W is the dimension of W. 
LW~3 *N +2 * N* N. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 
Used as work space. 

LIW INTEGER 
LIW is the dimension ofIW. LIW ~ 4 * N + (N + 1) * KMI. 
Unchanged on exit. 

!ERROR INTEGER 
Error indicator; if IERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 

**************** 

"'" Auxiliary Routines 
**************** 

CH.IX,12 

This routine calls the BOUNDPAK library routines AMTES, APLB, CAMPF, CFUNRC, 
COPMAT, COPVEC, CPSRC. CROUT, CUVRC, FQUS, GKPMP, GTUVRC, INPRO, 
INTCH, LUDEC, MATVC. QEVAK, QEVAL, QUDEC. 5MBVP, SOLDE, SOLUPP, 
SORTD, SORTDO, TAMVC, TUVRC. UPUP, UPVECP. 

**************** 
Remarks 

"'''''''* *"'** * "''''** * "'''' 

SPLS2 is written by G. W.M. Staarink and RM.M. Mattheij. 
Last update: november 1991. 
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**************** 
Method 
**************** 

See chapter VllI. 

**************** 
Example of the use of SPLS2 
**************** 

Consider the recursion: 

SPLS2 

Ai Xi + Bi+lXi+l = gi+l i = 1, ... ,10. 
and a multipoint boundary condition: M tXt +M2X6 + M3Xn = b. 
where 

[ ~h 2 2] [~h 2 11.1] 
Ai = -111.1 0 2 ,i = 1. ... ,5, Ai = - tlh 0 11.1 • i = 6, ... , 10, 

2 1 2 2 1 11.1 

[
-1 Wi! 1] 

Bi = -i It ~ · i = 2, ... ,11 • 

gi = (211.1 ,-811.1 • l1)T ,i = 2, ... ,6, 
gi = (4, -7 , 121h)T ,i = 7, ... ,11 , 

[0 0 0] [0 0 0] [0 1 0] Mt = 000 , M2= 0 0 1 ,M3= 0 0 0 . 100 000 000 
b = (2. -1 , 1)T . 

The solution of this problem is: Xi = ( I , 2 ,-1 )T. 

In the next program the solution is computed and compared to the exact solution. 

CH.IX,12 

This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2). 
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C 

C 

SPLS2 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(3,3,12),B(3,3,12),G(3, 12),BMI(3,3.3),BCV (3), 

1 X(3,1 2),U(6,12),V(6, 12),PHI(6,12),W(126) 
INTEGER D(3),NREC(3),KP(3),IW(24) 

N=3 
IHOM= 1 

NU=6 
NRI= 12 
KMI=3 
LW= 126 
LIW=24 
CALL EPSMAC(EPS) 
NREC(I} = 11 
D(1)= 1 
11(2) = 6 
D(3) = NREC(1) 

C SETTINO OF THE RECURSION AND BC 
C 

DO 1100 I = 1 , 10 
11=1+1 
A(1,I,I) = -0.500 
A(2, 1 ,I) = -1.500 
A(3, 1 ,I) = 2.000 
A(1,2,1) = 2.000 
A(2,2,I) = 0.000 
A{3,2,I) = 1.000 
IF (I.LT.U(2» THEN 

A(1,3,I) = 2.000 
A(2,3,I) = 2.000 
A(3,3.I) = 2.000 
G(l,I1) = 2.500 
G(2.Il) = -8.SDO 
0(3,11) = 11.000 

ELSE 
A(1,3.I) = 0.500 
A(2.3.1) = 0.500 
A(3.3,1) = 0.500 
0(1,11) = 4.000 
0(2,11) = -7.000 
0(3,11) = 12.500 

ENDIF 
B(1,1,n) = -1.000 
B(2,1,11) = -5.000 
B(3,1,11) = 8.000 
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B{1,2,Il) = 1.5DO 
B(2,2,11) = 0.500 
B(3,2,11) = 1.000 
B(1,3,11) = 1.000 
B(2,3,11) = 1.000 
B(3,3,11) = 1.000 

1100 CONTINUE 
DO 1200L = 1 , KMI 
DO 1200 I = 1 , N 
DO 1200 J = 1 , N 

BMI(I,J,L) = 0.00 
1200 CONTINUE 

C 

BMI(3,I,I) = 1.00 
BM[(2,3,2) = 1.00 
BMI(l,2,3) = 1.00 
BCV(1) = 2.DO 
BCV(2) =-1.00 
BCV(3) = 1.DO 
IERROR=O 

C CALL TO SPLS2 
C 

SPLS2 CH.IX,12 

CALL SPLS2(N,IHOM,A,B,G,NRI,U,BMI,KMI,BCV,NREC,X,B,U,V,NU,PHI, 
1 G,KP,EPS,COND,AF,W;L W ,IW ;LIW ,IERROR) 

IF «(IERR0R.NE.0).AND.(IERROR.NE.710» GOTO 3000 
CALL OUTSOL(IJ,COND.AF,KP,X,N,NRI,NREC(l» 
STOP 

3000 WRITE(*,IOO) IERROR 
STOP 

100 FORMAT(, TERMINAL ERRROR IN SPLS2 : IERROR = ',I4,/) 
END 

c 

C 

C 

SUBROUTINE OUTSOL(lJ,COND,AF .KP,X,N,NRI,NREC) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION X(N,NRI) 
INTEGER IJ(3),KP(3) 

WRITE(*,190) (11(1),[=1,3) 

WRITE(* ,200) COND,AF,(KP(J),J=1.2) 
El = 1.00 
E2 = 2.00 
E3 = -1.00 
WRITE(*,loo) 

DO 1100 I = 1 , NREC 
11=1-1 
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WRITE(*,110) I,X(1,I).El,EI-X(1,I) 
WRITE(*,120) X(2,I),E2,E2-X(2,1) 
WRITE("',120) X(3,1).E3,E3-X(3.I) 

1100 CONTINUE 
C 
100 FORMATC ' J,' l' ,7X,'X APPROX' ,11X:X EXACf' ,14X:ERROR' J) 
110 FORMAT(' ',I2,3X,3(D16.9,3X» 
120 FORMATe ',5X,3(D16.9,3X» 
190 FORMATC "SWITCHING POINTS" lJ = ',3(I2,3X» 
200 FORMATC 'J,' CONDITION NUMBER = ',012.5J, 

1 ' AMPLIFICATION FACfOR = ',012.SJ, 
2 'K-PARTITIONINGS = ',2(I2,2X)J) 

300 FORMAT(, ') 
310 FORMAT(' 0(' ,12, ') = ',3(D16.9,3X» 

RETURN 
END 

"SWITCHING POINTS" U = 1 6 11 

CONDmON NUMBER = .123050+01 
AMPLIFICATIONFACfOR = .494030+01 
K-PARTITIONINGS = 2 1 

I XAPPROX X EXACf 

1 .1000000000+01 .1000000000+01 
.2000000000+01 .2000000000+01 

-.1000000000+01 -.1000000000+01 
2 .1000000000+01 .1000000000+01 

.2000000000+01 .2000000000+01 
-.1000000000+01 -.1000000000+01 

3 .1000000000+01 .1000000000+01 
.2000000000+01 .2000000000+01 

-.1000000000+01 -.1000000000+01 
4 .1000000000+01 .1000000000+01 

.2000000000+01 .2000000000+01 
-.1000000000+01 -.1000000000+01 

5 .1000000000+01 .1000000000+01 
.2000000000+01 .2000000000+01 

-.1000000000+01 -.1000000000+0 1 
6 .1000000000+01 .1000000000+01 
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ERROR 

.0000000000+00 

.0000000000+00 
-.9992007220-15 
.5551115120-15 
.0000000000+00 
.8881784200-15 

-.6661338150-15 
.2220446050-15 

-.1110223020-14 
.0000000000+00 
J 110223020-14 

.0000000000+00 
-.2220446050-15 
.2220446050-15 

-.5551115120-15 
.0000000000+00 
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.2000000001>+01 .2000000001>+01 .0000000000+00 
-.1000000001>+01 -.1000000001>+01 -.2220446050-15 

7 .1000000001>+01 .1000000001>+01 -.4440892100-15 
.2000000001>+01 .2000000001>+01 .1110223020-14 

-.1 000000000+01 -.1000000001>+01 -.1110223020-14 
8 .1000000001>+01 .1000000001>+01 .2220446050.15 

.2000000001>+01 .2000000001>+01 .2220446050.15 
-.1000000001>+01 -.1000000001>+01 -.1221245330.14 

9 .1000000000+01 .1000000001>+01 .2220446050-15 
.2000000000+01 .2000000000+01 .2220446050-15 

-.1000000001>+01 -.1000000001>+01 .4440892100-15 
10 .1000000000+01 .1000000001>+01 -.2220446050-15 

.2000000001>+01 .2000000000+01 .1332267630-14 
-.1000000001>+01 -.1000000001>+01 -.8881784200-15 

11 .1000000000+01 .1000000001>+01 -.2220446050-15 
.2000000001>+01 .2000000001>+01 .2220446050-15 

-.1000000001>+01 -.1000000001>+01 -.8881784200.15 
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13. Subroutine SPLS3 

"''''''''''''''''''''''''''''''''''''''''''' ... 
SPECIFICATION 

"'''''''''' .. ''' .. '''''' ... '''''' ... ''' 
SUBROUTINE SPLSl(N, mOM, A, B, C, G, L, NREC, MI, MN, MZ, BCV, 

1 NPL, BPS. X, NX, Z, CONDo AF. W. LW. IW, LIW. IERROR) 
C INTEGER N, IHOM, L, NREC, NPL, NX. LW, IW(LIW), LIW, IERROR 
C OOUBLE PRECISION A(N,N,NREC), B(N,N,NREC). C(N,L,NREc), G(N,NREC). 
C 1 Ml(NPL,N). MN(NPL,N), MZ(N,L), BCV(NPL), BPS, 

C 2 X(N,NX), Z(L), COND, AF. W(LW) 

............ "''''''''''''' ... '''''' ... ''' ...... 
Purpose 
...... "'**"''''''''''''''''''' ............ 

SPLS3 solves the discrete two-point BVP WITH PARAMETERS: 

Aj xj+Bj Xi+l +Cj z =gj • i = 1 •...• NREC. 

withBC: 

where Ai. Bj+l are NxN matrices, Cj an NxL matrix, gj an N-vector, Mlo MNREC are 
(N+L)xN matrices, Mz an (N+L) xL matrix and b an (N+L)-vector. 
The vector z contains the L parameters. 

*"' ... * ... "'''''''''' ... *****''' 
Parameters 
***"''''* ... *'''****'''** 

N INTEGER, the order of the system. 
Unchanged on exit. 

IHOM INTEGER. 
IHOM indicates whether the system is homogeneous or inhomogeneous. 
IHOM = 0 : the system is homogeneous. 
IHOM = 1 : the system is inhomogeneous. 
Unchanged on exiL 

A DOUBLE PRECISION array of dimension (N, N, NREC). 
On entry A( . , .• i) must contain the matrix Aj • i = I, ... , NREC. 
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Unchanged on exit. 

B DOUBLE PRECISION array of dimension (N, N, NREC). 
On entry B( . , . , i) must contain the matrix Bj, i = 1, ...• NREC. 
Unchanged on exit. 

C DOUBLE PRECISION array of dimension (N. L. NREC). 
On entry C( .•. , i) must contain the matrix Cj. i = 1, ... , NREC. 
Unchanged on exit. 

G DOUBLE PRECISION array of dimension (N, NREC). 

CH. IX,13 

If mOM = 0, the array G has no real use and the user is recommended to use the 
same array for the X and the G. 
If mOM = 1, then on entry G( . , i) must contain the vector gi, i = 1, ... , NREC. 
Unchanged on exit. 

L INTEGER, the number of parameters. 
Unchanged on exit. 

NREC INTEGER. 
NREC is one of the dimension of A, B, C and G. On entry NREC must contain the 
total number of recursions. 
Unchanged on exit. 

Ml,MN DOUBLE PRECISION arrays of dimension (NPL, N). 
On entry : Ml must contain the matrix M 1 and MN must contain the matrix 
MNREC of the BC; 
MIXl +MNRECXNREC+l +Mz z =b. 
Unchanged on exit. 

MZ DOUBLE PRECISION array of dimension (NPL, L). 
On entry MZ must contain the matrix Mz of the BC. 
Unchanged on exit. 

BCV DOUBLE PRECISION array of dimension (N). 
On entry BCV must contain the BC vector b . 
Unchanged on exit. 

NPL INTEGER. 
NPL is one of the dimension of M1. MN, MZ and BCV. On entry NPL must be 
equaltoN+L! 
Unchanged on exit. 

EPS DOUBLE PRECISION. 
On entry EPS must contain the machine constant EPS (see Remark 1.1). 
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Unchanged on exit. 

X DOUBLE PRECISION array of dimension (N, NX). 
On exit X(i,k) , i = 1, ... , N contains the solution x", k=l, ...• NREC + 1. 

NX INTEGER. 
NX is one of the dimension of X. On entry NX ~ NREC + 1. 
Unchanged on exit. 

Z DOUBLE PRECISION array of dimension (L) 
On exit Z(i), i = I, ... , L contains the solution for the parameters. 

COND DOUBLE PRECISION. 
On exit COND contains an estimate of the condition number. 

AF DOUBLE PRECISION. 
On exit AF contains an estimate of the amplification factor. 

W DOUBLE PRECISION array of dimension (L W). 
Used as work space. 

LW INTEGER 
L W is the dimension of W. 
If IHOM = 0 : LW~NPL*NPL*(7*NREC/2 + 11)+ NPL*(5*NREC/2+ 8) + 1. 
IfIHOM= 1 : LW~NPL*NPL*(7*NREC/2 + 11)+ NPL*(7*NREC/2 + 10) + 1. 
Unchanged on exit. 

IW INTEGER array of dimension (LIW) 

Used as work space. 

LIW INTEGER 
LIW is the dimension of IW. LIW ~ 4 * NPL. 
Unchanged on exit. 

IERROR INTEGER 

Error indicator; if IERROR = 0 then there are no errors detected. 
See § 14 for the other errors. 

**************** 
Auxiliary Routines 
**************** 

This routine calls the BOUNDPAK library routines AMlES, APLB, BCMAV, CAMPF. 
CAPARC.CFUNRC,COPMAT,COPVEC.CONDW,CPSRC, CROUT,CUVRC,FQUS, 
GTUVRC,INPRO, INTCH, LUDEC, MATVC, QEVAK. QEV AL. QUDEC, SBVP, SOLDE, 
SOLUPP,SORTD, SORTDO, SPLSl, TAMVC, TUVRC. UPUP, UPVECP. 
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**************** 
Remarks 
**************** 

SPLS3 

SPLS3 is written by G.W.M. Staarink and RM;M. Mattbeij. 
Last update: november 1991. 

**************** 
Method 
**************** 

See chapter VIII. 

******** ... * ............ ** 
Example of the use of SPLS 1 
************** ... * 

Consider the recursion: 

Ai Xi + Bi+1 xt+1 + Ci Z =gi+l i = 1, ... ,10. 
and a boundary condition: 

MIXt +M2Xn +Mz z =b , 
where 

Ai = [~ ::~]. Ci = [ :].1 = 1 ..... 10. 

[1 -1] [1 -1] Bi= 1 5 ,i=1, ... ,5,Bi= 1 3 ,i=6 .... ,10, 

gi=(15lh,5ih)T ,i=I, ... ,5, gj=(l5lh,71h)T.i=6, ... , 10, 

The solution of this problem is: Xi = (2 , _1)T. z = I1h. 

In the next program the solution is computed and compared to the exact solution. 

CH. IX,13 

This program has been run on a OLlVETfI M24 personal computer (see Remark 1.2). 
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IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION A(2,2, 1 0),B(2,2, 1 O),C(2, 1,1 0),G(2, 1 O),BM 1 (3,2), 

1 BMN(3,2),BMZ(3,1),BCV(3),X(2,11),Z(1),W(550) 
INTEGER IW(l2) 

C 
C SETTING OF THE PARAMETERS 
C 

C 

N=2 
L=l 
NPL=3 
IHOM= 1 
NX=l1 
NREC = 10 
LW=550 
LIW= 12 
CALL EPSMAC(EPS) 

C SETTING OF THE RECURSION AND BC 
C 

DO 11001= 1,10 
A(l,l,I) = 3.00 
A(l,2,1) = -5.00 
A(2,1,1) = 3.00 
A(2,2,1) = -1.00 
C(l,l,I) = 1.00 
C(2,1,I) = 1.00 

1100 CONTINUE 
DO 1200 I = t , 5 
B(l,t,I) = 1.00 
B(1,2,I) = -1.00 
B(2, 1 ,I) = 1.00 
B(2,2,I) = 5.00 
G(1,I) = 15.500 
G(2,I) = 5.500 

1200 CONTINUE 
DO 1300 I = 6 , 10 

B(1, t ,I) = 1.00 
B(1,2,I) = -1.00 
B(2, t ,I) = 1.00 
B(2,2,I) = 3.00 
G(l,l) = 15.500 
G(2,1) = 7.500 

1300 CONTINUE 
BM1(1,1) = 0.00 
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BMl(2.1) = 1.00 
BMl(3,1) = 0.00 
BMl(1,2) = 0.00 
BMl(2,2) = 0.00 
BMl(3,2) = 1.00 
BMN(1,l) = 1.00 
BMN(2,1) = 0.00 
BMN(3.1) = 0.00 
BMN(1,2) = 0.00 
BMN(2,2) = 1.00 
BMN(3,2) = 0.00 
BMZ(l,l) = 1.00 
BMZ(2,1) = 0.00 
BMZ(3,l) = 1.00 
BCY(1) = 3.500 
BCY(2) = 1.000 
BCY(3) = 0.500 

SPLS3 CH.IX,13 

CALL SPLS3(N,IHOM,A,B,C.G,L,NREC,BMl,BMN.BMZ,BCY,NPL,EPS, 
1 X,NX,Z,COND.AF,W ,LW,IW ,LIW,IERROR) 

IF «(lERROR.NE.0).AND.(lERR0R.NE.71O» GOTO 3000 
C 
C WRITING OF THE SOLUTION 
C 

CALL OUTSOL(COND,AF,X,N,NX,NREC,Z,L) 
STOP 

3000 WRITE(· ,100) IERROR 
STOP 

100 FORMAT(, TERMINAL ERRROR IN SPLS3 : IERROR = ',I4J) 
END 

C 

C 

SUBROUTINE OUTSOL(COND,AF,X,N,NX,NREC,Z,L) 

IMPLICIT DOUBLE PREOSION (A-H,O-Z) 
DIMENSION X(N,NX),Z(L) 

WRITE('" ,200) COND,AF 
El = 1.500 
E2=2.00 
E3 = -1.00 
WRITE(·,210) 
DO 11ooJ= l,L 

WRITE("',220) Z(J),El,E1-Z(J) 
1100 CONTINUE 

WRITE('" ,300) 
WRITE("',loo) 
DO 12001= l,NREC+l 

WRITE(*,llO) I,X(1,I),E2.E2-X(1,I) 
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WRITE(*,120) X(2,I),E3.E3-X(2,I) 
1200 CONTINUE 
C 
100 FORMATC' '.1,' r ,7X,'X APPROX' ,1lX:X EXACT' ,14X,'ERROR' J) 
110 FORMAT(, ',I2,3X,3(DI6.9,3X) 
120 FORMAT(, ',5X.3(D16.9,3X» 
200 FORMAT(' ',/,' CONDITION NUMBER = ',DI2.5J, 

1 'AMPLIFACATIONFACTOR = ',DI2.5'/J) 
210 FORMAT(, ',4X,'ZAPPROX',llX,'ZEXACT',14X,'ERROR'J) 
220 FORMAT(, ',3(D16.9,3X» 
300 FORMA T(' ') 
310 FORMATC D(' ,12,') = ',3(D16.9,3X) 

RETURN 
END 

CONDmONNUMBER = .188830+01 
AMPLIFACATIONFACTOR = .110000+02 

Z APPROX Z EXACT ERROR 

.1500000000+01 .1500000000+01 -.399680289D-14 

I XAPPROX X EXACT ERROR 

1 .2000000000+01 .2000000000+01 -.133226763D-14 
-.1000000000+01 -.1000000000+01 -.166533454D-14 

2 .2000000000+01 .2000000000+01 . 133226763D-14 
-.1000000000+01 -.1000000000+01 .111022302D-14 

3 .2000000000+01 .2000000000+01 .4440892100-15 
-.1000000000+01 -.I00000000D+Ol -.222044605D-15 

4 .2000000000+01 .2000000000+01 .44408921OD-15 
-.1000000000+01 -.1000000000+01 .0000000000+00 

5 .2000000000+01 .2000000000+01 .4440892100-15 
-.1000000000+01 -.1000000000+01 .444089210D-15 

6 .200000000D+Ol .2000000000+01 .4440892lOD-15 
-.1000000000+0 1 -.1000000000+01 .444089210D-15 

7 .2000000000+01 .2000000000+01 -.177635684D-14 
-.1000000000+01 -.1000000000+01 .0000000000+00 

8 .2000000000+01 .200000000D+01 -.4440892IOD-15 
-.1000000000+01 -.1000000000+01 .111022302D-14 
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9 .2000000000+01 .2000000000+0 1 -.888178420D-15 
-.1000000000+01 -.1000000000+01 .222044605D-15 

10 .2000000000+01 .2000000000+01 .2220446050-15 
-.1000000000+01 -.I00000000D+Ol -.111022302D-15 

11 .2000000000+01 .2000000000+01 -.1776356840-14 
-.1000000000+01 -.1000000000+01 .8881784200-15 
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14. Error messages 

When an error is detected by one of the routines of BOUNDPAK,a tenninal or warning error 
message with an error number IERROR is given. Three grouPS of error numbers can be 
distinguished: 

i) 100 ~ IERROR < 200 
These errors are INPUT errors and are detected before the actual computation starts. 
They are TERMINAL errors and occur when one or more parameters in the actual call 
to a BOUNDPAK routine have a wrong value. 

ii) 200 ~ IERROR < 300 
These errors are detected during the computation of the upper triangular recursion. 
Some are WARNING errors, but most are TERMINAL errors. 

iii) 300 S IERROR < 400 
These errors are detected during the computation of the solution of the linear multiple 
shooting system. These errors indicate that there is something wrong with your 
problem. Some are WARNING errors, others are TERMINAL errors. 

Remark 14.1 

BOUNDPAK contains a lot of subroutines. In most computer systems BOUNDPAK will be 
available via a BOUNDPAK library, which contains the object code of the subroutines. 
Therefore the most common way to use subroutines from BOUNDPAK is to write a program, 
in which calls are made to subroutines from BOUNDPAK, compile it and then link it with the 
BOUNDPAK library to obtain an execution code. The advantage is evident; instead compiling 
the program together with the BOUNDPAK package, only the program has to be compiled. 
However there is a disadvantage, namely, some programming errors are not detected, which 
would have been detected if the program together with the BOUNDPAK package was 
compiled as one large program. These undetected programming errors may cause an error 

,.. nr}issage when the program is run. Therefore, if an error message occurs and according to your 
program it should not occur, check for the following mistakes in your program: 

- Wrong number of parameters in a call to a subroutine. 

'/- - Parameters not in the right POSi~tion in a call to a subroutine. 

- Wrong type of parameter, e.g. integer parameter declared as real or real parameter 
declared as integer, etc. 

- External subroutine not declared as external. 
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14.1 Errors detected by the subroutines: 

INPUT errors. 

100 N< 1 
TERMINAL ERROR. 

101 mOM ¢ 0 and !HOM ¢ 1 
TERMINAL ERROR 

102 A=B or NRTI < O. 
TERMINAL ERROR 

ERRORS 

103 Either ER(l) or ER(2) or ER(3) is negative. 
TERMINAL ERROR. 

104 Value ofNTItoo small 
TERMINAL ERROR 

1 05 Value of NU is too small. 
TERMINAL ERROR. 

106 Either the value of L W or LIW is too small. 
TERMINAL ERROR 

107 Either KSP < 1 or KSP ~ Nor NQD < KSP. 
TERMINAL ERROR. 

108 IHOM = 0 and BCV = 0, so the solution will be zero. 
TERMINAL ERROR 

109 Either A < B and C S; B or A > B and C ~ B. 
TERMINAL ERROR. 

CH.IX,14 

110 Subroutine is called with IEXT = 1, but the given value for C is wrong. It should be 
greater (less) than the actual used value for y in the previous call to the subroutine 
(stored in TI(KEXT» if A is less (greater) than B. 
TERMINAL ERROR. 

111 Value of NSP is too small. 
TERMINAL ERROR. 

112 NRTI(l) < O. 
TERMINAL ERROR. 
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113 1< 1. 
TERMINAL ERROR. 

114 NPL*N+L. 
TERMINAL ERROR. 

115 IHOM(i) * 0 and IHOMCi) * 1 for i=l, ... , NSP-l. 

120 The routine was called with NRTI = 1. but the given output points in the array TI are 
not in strict monotone order. 
TERMINAL ERROR. 

121 The routine was called with NRTI = 1, but the first given output-point or the last 
output-point is not equal to A or B. 
TERMINAL ERROR. 

122 The switching points are not given in strict monotone order. 
TERMINAL ERROR. 

123 The routine was called with NRTI(1) = 1 • but the given output points in the array TI 
do not include all switching points. 
TERMINAL ERROR. 

Errors detected during computation. 

200 This indicates that there is a minor shooting interval on which the incremental growth 
is greater than the AMP. The cause of this error lies in the used method for 
computing the fundamental solution. 
WARNING ERROR. 

201 This indicates that there is a minor shooting interval on which II Mj (i) II is greater than 

max(ER(I) • ER(2» I ER(3). i.e. TOL I EPS. 
WARNING ERROR. 

213 This indicates that the relative tolerance was too small. The subroutine has changed it 
into a suitable value. 
WARNING ERROR. 

215 This indicates that during integration the particular solution or a homogeneous 
solution has vanished, making a pure relative error test impossible. Must use non-zero 
absolute tolerance to continue. 
TERMINAL ERROR. 

216 This indicates that during integration the requested accuracy could not be achieved. 
User must increase error tolerance. 
TERMINAL ERROR. 
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218 This indicates that the input parameter N ~ 0, or that either the relative tolerance or 
the absolute tolerance is negative. 
TERMINAL ERROR. 

222 This indicates that the increment of a fundamental solution has become greater than 
the allowed incremental factor ALI, so a new output point has to be inserted. However 
the current value of NTI is too small to insert a new output point. Output value is an 
estimate for NTI, taking into account possible not yet detected new output points, 
which have to be inserted when the increment of a fundamental solution becomes 
greater than ALI. 
When changing the value of NTI, do not forget to change the arrays for which NTI is 
one of the dimensions. 
TERMINAL ERROR 

223 This indicates that the value of NTI is too small to compute the next necessary 
upertrlangular matrix in the extension interval. Increase the value of NTI. 
When changing the value of NTI, do not forget to change the arrays for which NTI is 
one of the dimensions. 
TERMINAL ERROR. 

224 This indicates that to avoid unnecessary overflow a new point has to be inserted, but 
the current value of NTI is too smal to insert new points. Output value is an estimate 
for NTI, taking into account possible not yet detected new points, which has to be 
inserted to avoid unnecessary overflow. 
When changing the value of NTI, do not forget to change the arrays for which NTI is 
one of the dimensions. 
TERMINAL ERROR 

225 This indicates that a switching point is detected and has to be inserted in the output 
points. However, the current value of NTI is too small to insert a new output point. 
Output value is an estimate for NTI, taking into account the possible number of 
switching points, which are not detected at this stage. 
When changing the value of NTI, do not forget to change the arrays for which NTI is 
one of the dimensions. 
TERMINAL ERROR. 

226 This indicates that II M(i)1I has become greater then max(ER(1) , ER(2» I ER(3) 
(TOL I EPS) and a new output point has to be inserted. However the current value of 
NTI is too small to insert a new output point. Output value is an estimate for NTI, 
taking into account possible not yet dectected new output points, which have to be 
inserted if II M{OIl becomes greater than TOL/EPS. 
When changing the value of NTI, do not forget to change the arrays for which NTI is 
one of the dimensions. 
TERMINAL ERROR. 
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250 This indicates that it was not possible to compute an SVD within 30 iterations. 
TERMINAL ERROR. 

300 This indicates that the global error is probably larger than the error tolerance due to 
instabilities in the system. Most likely the problem is ill-conditioned. Output value is 
the estimated amplification factor. 
WARNING ERROR. 

305 This indicates that the global error is probably larger than the error tolerance due to 
instabilities in the discrete multipoint BVP. derived from the side conditions and BC. 
Most likely the problem is ill-conditioned. Output value is an estimate for the 
amplification factor. 
WARNING ERROR. 

310 This indicates that one of the Uk is singular. 
TERMINAL ERROR. 

315 This indicates that the discrete multipoint BVP, derived from the side conditions and 
BC is singular. 
TERMINAL ERROR. 

320 This indicates that the problem is probably too ill-conditioned with respect to the BC. 
TERMINAL ERROR. 

325 This indicates that the problem is probably too ill-conditioned with respect to the BC. 
TERMINAL ERROR. 

330 The computed value for Ymax is larger than the given maximum value for y in C. 
Output value is the estimated value for y. The given value for Ymax is used for further 
computations. 
WARNING ERROR 

331 The computed number of unbounded growing modes on the interval [ex. ~] differs 
from the computed number of growing modes on the interval [a.. y]. This might be 
caused by a very slowly increasing mode, or the problem is not dichotomic. 
WARNING ERROR. 

335 The number of exponentially growing modes is not the same as the number of 
unbounded modes. Probably the problem has non exponentially growing modes. It is 
also possible that the problem is not dichotomic. so check the value of ER(5). 
WARNING ERROR. 

340 This indicates that the BC is inconsistent with respect to the BC-vector. If also error 
335 has occurred. then most probably both erros occured for the same reason. 
Otherwise. most probably the used value for B has been too small, so a larger value 
for B will solve this problem. 
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WARNING ERROR. 

345 This indicates that the problem is ill-conditioned. A basis for a meaningful manifold 
will be computed. 
WARNING ERROR. 

350 This indicates that p(EIG(1» * p(EIG(2» ~ O. Output values are the p(EIG(1» and 
p(EIG(2». 
TERMINAL ERROR. 

355 This indicates that no eigenvalue was found in the given interval. Output values are 
the boundary points of the given interval. 
TERMINAL ERROR. 

Errors of the special linear solvers. 

600 N<1. 
TERMINAL ERROR. 

601 mOM *' 0 and IHOM *' 1. 
TERMINAL ERROR. 

602 NREC<2. 
TERMINAL ERROR. 

603 Value ofNRI is too small. 
TERMINAL ERROR. 

605 Value of NU is too small. 
TERMINAL ERROR. 

606 Either the value of L W or LIW is too small. 
TERMINAL ERROR. 

611 KMI<2. 
TERMINAL ERROR. 

612 NREC(l) < 3. 
TERMINAL ERROR. 

613 L<1. 
TERMINAL ERROR. 

614 Either NREC < 2 or NX < NREC + 1 or NPL *' N + L. 
TERMINAL ERROR. 
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621 Either IJ(I) * 1 or IJ(KMI) '* NREC(1). 
TERMINAL ERROR. 

622 The switching points are not given in strict monotonic order. 
TERMINAL ERROR. 

700 This indicates that the global error is probably larger than 1 / EPS, due to instabilities 
in the system. Most likely the problem is ill-conditioned. Output value is the 
estimated amplification factor. 
WARNING ERROR. 

710 This indicates that one of the Ai or Bj is singular in such a way that the linear system 
is singular. 
TERMINAL ERROR. 

720 This indicates that the problem is probably too ill-conditioned with respect to the BC. 
TERMINAL ERROR. 
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15. Names of subroutines in BOUNDPAK. 

In the next table aU the names of the BOUNDPAK subroutines are given. 

AMTES ANORMI APLB 
BCMAV 
CAMPF CAPARC CCI CDI 
CFUNRC CHDIAU CKLREC CKPSW CNRHS 
CONDW COPMAT COPVEC CPABC CPARC 
CPRDIA CPSRC CQIZI CRHOL CROUT 
CSPABV CTIMI CTIPL CUVRC CWISB 
DEFINC DETSWP DUR DURIN DURPA 
EPSMAC 
FC2BVP FCBVP FCEBVP FCIBVP FCPBVP 
FQUS FUNPAR FUNRC 
GKPMP GKPPA GOPBC GTUR GTURI 
GTUVRC 
INPRO INTCH 
KPCH 
LUDEC 
MATUP MATVC MTSDD MTSE MTSI 
MTSMP MTSP MTSS MUTSDD MUTSEI 
MUTSGE MUTSIN MUTSMI MUTSMP MUTSPA 
MUTSPS MUTSSE 
PSR 
QEVAK QEVAL QUDEC 
RKFIS RKFSM 
SBVP 5MBVP SOLDE SOLUPP SORTO 
SORTDO SPARC SPLSI SPLS2 SPLS3 
SSDBVP SVD 
TAMVC TUR TUVRC 
UPUP UPVECP UQDEC 
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