

BOUNDPAK : numerical software for linear boundary value
problems
Citation for published version (APA):
Mattheij, R. M. M., & Staarink, G. W. M. (1992). BOUNDPAK : numerical software for linear boundary value
problems. (EUT-Report; Vol. 92-WSK-01). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/09e38d29-2640-44dc-b234-debba447823f

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

BOUNDPAK

Numerical Software for Linear
Boundary Value Problems

Part One

by

R.M.M. Mattheij and G.W.M. Staarink

EUT Report 92-WSK-01
Eindhoven, February 1992

Department of Mathematics and Computing Science

Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven, The Netherlands

ISBN 9038600224

ISSN 0167-9708

Coden: TEUEDE

CONTENTS

PART ONE

PREFACE

CHAPTER I Introduction

1.
2.
3.

ODEs, BCs and BVPs
Notational conventions
General description of (multiple) shooting and decoupling
References

CHAPTERll Two-point BVP

1..
2.

3.

4.

Introduction.
Global description of the algorithms
2.1 BVP with general BC
2.2 BVP with partially separated BC
2.3 BVP with (completely) separated BC

Special features of the methods
3.1 Numerical realization of the integration
3.2 Computing fundamental and particular solutions of recursions
3.3 Choosing QJ and Wj(tj)

3.4 Conditioning and stability
Computational aspects of the methods
4.1 The use of RKF45
4.2 The choice of shooting points
4.3 The computation of Q 1 and Q t and the proper splitting
4.4 The computation of the stability constants
References

CHAPTER III BVP on infinite intervals

1.
2.
3.

4.

Introduction
Global deSCription of the algorithm
Special features
3.1 Errors introduced by finite choice of 'Y
3.2 Conditioning
3.3 Problems with polynomially increasing modes

Computational aspects

v

1

1
3
4
7

9

9
10
10
13
15
16
16
16
17
18
22
22
22
23
25
27

29

29
30
31
31
32
32
34

4.1 Detennination of'Y and bounded solutions 34
4.2 Use of BC and detennination of conditioning constants 34
4.3 Use ofMUTSIN for problems with slowly increasing modes 36
References 36

CHAPTER IV Multipoint BVP and integral BVP 37

1.
2.

3.

4.

Introduction
Global description of the algorithms
2.1 BVP with multipoint BC
2.2 BVP with integral BC

Special features of the methods
3.1 Computation of the Wj (i)
3.2 Choosing F 1 «Xi ,(Xj) and Wj (a; ,tj)
3.3 Reduction of the system (2.9)
3.4 Special solution of the algebraic system (2.9)
3.5 Conditioning and stability

Computational aspects
4.1 The computation of Q 1 (i)
4.2 The computation of Mj(t) and Wj(i)

4.3 Detennination of switching points (Xj for integral BC
4.4 Finding a globally correct partitioning
4.5 The computation of the stability constants
References

CHAPTER V BVP with parameters

l.
2.
3.

4.

Introduction
Global description of the algorithm
Special features of the method
3.1 Computation of the <Pj(i) and Yj(i)

3.2 Choosing F l«Xj ,(Xi), Zj«Xj ,tj) and Wj (a; ,tj)
3.3 Special solution of the linear system (2.11)
3.4 Conditioning and stability
Computational aspects
4.1 The computation of switching points
4.2 The computation of Q lei)

4.3 Finding a globally correct partitioning
4.4 The computation of Oland kp of system (3.6)
4.5 The computation of the stability constants
References

ii

37
40
40
42
43
43
44
45
45
48
49
49
50
50
51
52
52

55

55
57
59
59
59
60
63
64
64
64
65
66
66
67

CHAPTER VI ODE with discontinuous data

1.
2.
3.

4.

Introduction
Global description of the algorithm
Special features of the method
3.1 Solution of the system (2.9)
3.2 Conditioning and stability

Computational aspects
4.1 Computation of the stability constants
4.2 Internal Be

CHAPTER VII Eigenvalue problems

1.
2.
3.
4.

Introduction
Global description of the algorithm
Special features: conditioning
Computational aspects
4.1 The use ofZEROIN
4.2 Accuracy of the result
4.2 The solution space
References

CHAPTER VIII Special linear solvers

1.
2.

Introduction
General discrete BVPs
2.1 General discrete two-point BVPs
2.2 General discrete multipoint BVPs
2.3 General discrete two-point BVP with parameters

iii

69

69
71
72

73
75
76
76
77

79

79
80
81
82
82
82
82
83

85

8S
85
85
86
87

PART TWO

CHAPTER IX Documentation 1

1. Introduction. 1
2. Subroutine MUTSGE 3
3. Subroutine MUTSPS 13
4. Subroutine MUTSSE 23
5. Subroutint MUTSIN 33
6. Subroutine MUTSMP 43
7. Subroutine MUTSMI 53
8. Subroutine MUTSPA 63
9. Subroutine MUTSDD 73
10. Subroutine MUTSEI 85
11. Subroutine SPLS 1 93
12. Subroutine SPLS2 101
13. Subroutine SPLS3 111
14. Error messages 119
15. Names of subroutines in BOUNDPAK 127

iv

PREFACE

The work on the routines in this booklet started some years ago when a number of codes were
written to study BVP phenomena. Due to interest from other users we updated and diversified
these codes time and again. As a result their descriptions became more detailed. When we
realized that the specialisation to certain subclasses of BVPs was gradually producing an
entire family of problems oriented codes, the idea was born to collect their description,
supplemented with some mathematical analysis. From the foregoing it follows that the
present volume is not a course book; it rather contains mathematical backgrounds and
computational details of a number of algorithms for solving linear boundary value problems.
These algorithms are based on a special implementation of a multiple shooting approach
(although the name sequential shooting would be more appropriate). Their important common
feature is that they employ a special stable linear algebra solver, based on a decoupling of the
multiple shooting recursion. These methods have been found to be at least as robust and
efficient as other (sparse) solvers. In fact for some special cases (like multipoint problems)
they are more efficient. Therefore we have devoted a separate chapter to these linear solvers,
describing routines that can be used in combination with other (discretization) methods as
well.
We are well aware of the fact that often problems are nonlinear rather than linear. However,
the mathematical descriptions and the codes treated in this book can be used almost directly in
a quasilinearization approach. On the other hand, for nonlinear BVPs a similar diverse range
of subproblems can be distinguished. The ideas given in the various chapters may be a source
of inspiration for im plementing nonlinear counterparts.
We like to say a word about the philosophy of this package: Although it is often possible to
reformulate various classes of BVPs into a standard form (we give some hints how to achieve
this), such a formulation often leads to more costly computations than are necessary.
Moreover. as it will tum out. special problems have special characteristics: for instance,
dichotomy. that plays such a crucial role in any well-conditioned two-point BVP may lose its
meaning in a multipoint BVP. For certain applications one is often interested in the specific
problem characteristics (like estimates for the fundamental solution or the Green's function).
Our package makes such information available. We also strongly believe in the idea that a
code should provide as much additional information as possible in order to enable the user to
give a meaningful diagnosis. At minor points therefore we have traded efficiency for
robustness. Consequently we make a distinction between various two-point boundary
conditions, between two-point and multipoint problems and between finite and infinite
intervals. Special attention is being paid to ODEs with parameters and BVPs with jump
conditions (where, incidentally, multiple shooting is a natural approach, requiring not even
continuity at a shooting point). Finally we also consider eigenvalue problems.

Eindhoven,
February 1992

v

RMM.Mattheij
G.W M. Staarink

CHAPTER I

INTRODUCTION

1. ODEs, BCs and BVPs

In this chapter we give a brief overview of the various types of boundary value problems
which will be discussed later. We also include a general introduction to the solution methods
on which the algorithms in the next chapters are based.

Consider the following ordinary differential equation (ODE) :

(1.1) %X(t)=L(t)x(t)+r(t) ,000:S;t:S;P,

where L(t) is an n x n -matrix function (assumed to be sufficiently smooth in our apUcations)
and x (t), r (t) n -vector functions. Sometimes we shall have to consider the homogeneous case
(r(t)=O) separately.
The solution x(t) is subject to a boundary condition (BC). In its most general form we have a
multipoint BC,

where MI •... ,Mm+l are n xn-matrices. b is an n-vector and 0:.1, ... ,o:.m+l e [0:.,(3] are
ordered, such that 0:.= 0:.1 < 0:.2 < ... <o:.m+1 = (3.
A problem (1.1), (1.2) is called a (linear) boundary value problem (BVP). Most often we have
m = I, i.e. a two-point BC, which we usually shall write as

(1.3) M aX(o:.) + M pX(P) = b .

In CHAPTER II we shall discuss methods for BVPs with two-point BC; as it will tum out.
situations where M (l and/or M p have some zero rows allow for a particular, more efficient,
treatment.
A somewhat different situation occurs when (3=00. For such BVPs on infinite intervals we
have to truncate the interval to a finite one in a deliberate way; moreover, the terminal
condition matrix M p is often absent, thus leading to a "conditional" initial value problem. This
is discussed in CHAPTER III.

1

CH.I,l

For a genuine multipoint case (i.e. m ~2) the BVP may have inherently different properties,
which calls for a special treatment. As a special limiting case of (1.2) we consider an integral
condition of the form

~
(1.4) r M(t)x('t)d't=b .

Multipoint and integral BC are considered in CHAPfER IV.
Sometimes the solution should obey certain relations which we may collectively indicate as
singular. A singularity in the ODE is usually treated by analytical means and so does not have
a special treatment here.
If we have at a certain point y

(1.5) x(yt)=x('y-)+c.

where x(yt) and x(y") have to be understood as right and left limits, we obviously meet a
problem at y. Such side conditions (and more general ones) are dealt with in CHAPTER VI.
For yet another type of problem we may let the ODE and/or the BC depend on some
parameters, which are either supplemented by sufficient additional BCs, or are to be chosen
such that the solution of the BVP is unique, apart from a multiplicative constant, to mention
the simplest case of an eigenvalue problem:

(1.6) trx(t) =L(t)x(t) + AX(I).

Here the BC (1.3) is assumed to be homogeneous, i.e. b =0; see CHAPTER VII.
If

(1.7) trx(t) =L(t)x(t)+K(t)A+ r(t).

where K (t) is an n x I-matrix function and A a fixed I-vector, we have a so called parameter
problem. For the 1 unknown parameters we need 1 additional BCs. Such problems are
considered in CHAPTER V.

Several of the routines that are developed to solve the various BVPs are useful in their own
right. In particular this holds true for the linear algebra routines. We have adapted some of
them in such a way that they can be used to solve certain sparse systems. In CHAPTER VIII
we shall indicate more precisely which kind.

In the introduction of each chapter an explicit reference is being made to the appropriate
routines.
The documentation of these routines, in particular their paramcter list, the table of error
messages and an example. to demonstrate their use. is given in CHAPTER IX.

2

CH. 1,2

2. Notational conventions

For efficiency's sake we briefly review here some conventions that will be used throughout the
book.
We shall frequently meet partitioned matrices. As we shall also meet recursions. we adopt the
convention that subscripts denote the iteration index, as in

(2.1) Xj+1 =Aj Xi + di .

Superscripts exclusively refer to partitioning, as in

(2.2) A = [~:: ~~l.
where A II, A 22 are assumed to be square blocks; trivially, when the order of A 11 is given. the
sizes of the other blocks are determined. Corresponding to a matrix partitioning (2.2), we can
have a vector partitioning. Let Aill be a k x k matrix (Ai as in (2.2» then in

(2.3) Xi = [::~l.
XjI is assumed to have k coordinates. This induces a consistent partitioning in the recursion
(2.1)

(2.4a)

(2.4b)

For matrices we also use the following partitioning

(2.5a)

to indicate a partitioning into columns and

(2.5b)

to indicate a partitioning into rows.

Because of their favourable numerical properties we use orthogonal matrices as much as
possible. Three important matrix factorizations are used throughout:

3

CH.l,2

(2.6) A =Q U ,

where Q is an orthogonal matrix and U is an upper triangular matrix (Gram-Schmidt or QU
factorization cf. [2]);

(2.7) A =U Q ,

where U is an upper triangular matrix and Q an orthogonal matrix (UQ-!actorization); and

(2.8) A =U1:VT,

where U and V are orthogonal matrices and 1: a diagonal matrix with semi-positive diagonal
elements (singular value decomposition, cf. [2]).

Regularly we shall use norms to measure matrices and vectors, i.e.IIA II and Ilxll for a matrix A
and a vector x, respectively. Usually one may use any norm for this, but sometimes we give
preference to the maximum norm (co-norm) as this is easy to compute, or to the Euclidean
norm (2-norm) because of its orthogonal invariance, i.e. for orthogonal Q It Q2.

3. General description or (multiple) shooting and decoupUng

The algorithms that will be described in the subsequent chapters are all based on a special
implementation of two basic methods: multiple shooting and decoupling. We shall briefly
outline these methods here.
For the ODE (1.1) let a two-point Be

(3.1) M ax(a)+Mpx(I3)=b,

be given (cf. (1.3» (for multipoint Be the derivation is similar, though more complicated, cf.
chapter IV).
Let F(t) be afundamental solution of (1.1) (Le. an n xn -matrix solution of the homogeneous
part of (1.1» and wet) some particular solution of (1.1). Then because of the linearity, we
may find the solution x(t) by superposition. That is: there exists some (unknown) vector c,
such that

(3.2) x(t) =F(t)c + wet).

This c is (uniquely) determined by the Be (3.1), Le.

4

CH. 1,3

(3.3) [MaF(a)+MpF(~)]c =b -Maw(a)-M~w(~).

A natural way to detennine F(t) and wet) is starting at t =0. (with an arbritary, or (preferably)
simple looking initial value) and using an initial value integrator. An algorithm based on this
principle is called single shooting. This method is notorious for giving bad results for
problems where, say, exp«~-a)maxIIL(t)lI) is large. By applying a superposition idea
repeatedly on subsequent subintervals we obtain a mUltiple shooting method: Let [0., ~l be
divided into N-l subintervals, say. [ti ,tj+tl, i=1. ... ,N-l (t1=a. tN=~). On each
subinterval a fundamental solution F i (t) and a particular solution Wi (t) is computed (often
Wi (tj) =0). So for some vectors Ci we have

(3.4) x(t) =Fi(t)c; +Wi(t) , i=l, ... ,N.

Here we have added the solutions FN(t) and WN(t) for esthetic reasons.
By requiring continuity at the shooting points ti (a condition that might be relaxed in certain
applications cr. chapter VI) we obtain a recurrence relation for the Cj :

Together with the relation obtained from the Be (3.1),viz.

this gives rise to N linear equations for the unknown C 1, ... , CN.

Although multiple shooting seems to be more complicated than single shooting, the initial
value instability is exponentially reduced by the length of the (maximal) subinterval (i.e.
errors are expected to grow by not more than a factor exp«ti+l-tj) max IIL(t)lI) on

t E [t, ,1.+!1

The discrete BVP (3.5), (3.6) leads to the following linear system:

(3.7) c=f
FN-l(tN) -FN(tN)

M aF lett) M pFN(tN)

with c = ref. ... , c1]T. f= [If. ... ,11]T and where
Ii =Wj+l(ti+l)-Wj(ti+l), i=l, ... , N-l,

IN =b -MaW\(tl)-Mj3WN(tN).

The solution of this system can be obtained by using any general linear algebraic solver.
However the sparsity of this system requires a special treatment for efficiency reasons.
Therefore we shall describe a method which solves such a discrete BVP by decoupling; we
shall do this for the fonnulation (3.5), (3.6): Let e.g. Fi(ti)=1 and write Ai :=Fi(ti+I), then

5

CH. 1,3

(3.8a) ci+l=AiCi-1i .i=1. ...• N-I.

(3.8b)

Further Jet T 1 be an orthogonal matrix. Then compute recursively for i = 1• N -1

(3.9a)

(3.9b)

where Ti+l is an orthogonal and Ui+l an upper triangular matrix (i.e. (3.9b) is a QU
decomposition). By defining

(3. lOa) ai := Trl Cj ,i=I ,N,

(3. lOb) d; := Ti:;:'\ Ii .i=l• N-l.

(3.1Oc) Mi :=Mi Ti ,i=l,N,

we obtain the decoupled recursion

(3.11)

where aj satisfies the Be

(3.12)

For well-conditioned problems. it can be shown that the solution space S (of the homogeneous
problem) is dichotomic , i.e. there exists a subspace S 1 (of dimension k say) of solutions that
do not increase significantly for decreasing t and a complementary subspace S2 (of dimension
n -k) of solutions that do not increase significantly for increasing t; in fact both subspaces
may contain exponentially growing modes and in particular the exponentially growing modes
(for increasing t) of the first subspace may cause instabilities for (single) shooting. Avoiding
technical details, it can be shown that the dichotomy has visible effects on the decoupled
recursion matrices Ui. Under fairly general conditions (dealing with the choice of T 1) the
k x k left upper bloeks in the Ui reflect the incremental growth of the modes E S I and the
(n -k)x(n -k) right lower blocks the growth of modes E S2. One may compare this idea
with probably more familiar results in power methods, where the Aj are constant. The
algorithm (3.9) then is essentially equivalent to subspace iteration (a predecessor of the QR
algorithm without shifts). Partitioning Ui' ai and di as

(3.13) U, = [i ~: 1, a, = [:~ 1, d, = [~~ 1 '
respectively. we can write

6

CH. 1,3

(3.14a)

(3.14b)

Because of the said properties of Ej, it should be expected that (3.14a) is a stable recursion,
i.e. if a r is given no significant error growth in the al will be present. On the other hand,
(3.14b) will be stable givcn a value of aN (and assuming aJ-l' ... ,ar are known, so they
just add to the source tcrm di~l)' This combination of forward and backward sweeps in
appropriate directions is then used to stably compute both some fundamental solution of
(3.14) and some particular solution. These arc used in tum with a superposition principle in
(3.12), aftcr which thc Cj essentially follow from (3.lOa).

References

[1] U.M. Ascher, RM.M. Mattheij, RD. Russell. Numerical Solutions of Boundary Value
Problemsjor ODE, Prentice-Hall. Englewood Cliffs, 1987.

[2] G.A. Golub, c.F. van Loan. Matrix Computations, Johns Hopkins University Press,
Baltimore, 1983.

[3] RM.M. Mattheij, Stable computation of solutions of unstable initial value recursions,
BIT 22 (1982), 79-83.

[4] RM.M. Malthcij. G.W.M. Staarink. An efficient algorithm for solving general linear
two-point BVP, SIAM J. Sci. Stat. Comput. 5 (1984),745-763.

7

CHAPTER II

TWO-POINT BVP

1. Introduction

Consider the ODE

(1.1) %X(t)=L(t)x(t)+r(t) , c:x::;t::;~

and the two-point BC

(1.2) M(lx(c:x)+Mpx(~)=b.

The algorithm combines multiple shooting with decoupling (cL §I.3). In particular it
computes the fundamental solutions sequentially by choosing them such that

where Qi+l is an orthogonal and Ui+l an upper triangular matrix.
On the subinterval [ti ,ti+1] we have

Matching at the endpoints of the subintervals leads to

which results into the recursion

It is easy to see that

Now any solution [aj} of recursion (1.7) can be written as

9

CH.n,l

(1.9) aj = <1>; C + Zj ,

where {<1>j }!!1 is a fundamental solution of 0.7), i.e.

and {zd!!1 a particular solution of (1.7).

The computation of {<1>j }!!1 and {Zj }~l is employing the decoupHng in (1.7), which in tum is
related to the dichotomy for a well-conditioned problem. Using [cI>i }!!l and {Zi }~ .. we can
compute c from (cf.(1.2»

(1.11) [M aQl <1>1 +M~QN <1>N 1 c = b -M aWt(tt) -MllwN(tN)

-MaQIZI-MflQN ZN·

Thenx(ti) follows from (1.9) and (1.8).

Remark 1.12

If the matrix [M a Q 1 <1>} + M P QN 4>N] is ill-conditioned, computing c from (1.11) may result
in an inaccurate computation of the x (ti). The routines compute a condition number eN which
indicates whether this matrix is ill-conditioned or not (cf.(3.12». Another problem is that
errors might be propagated in an unstable way when the recursion 0.7) is used (although this
should not be any problem in a well-conditioned case). The routines compute an estimate of
the amplification of errors, which we call the amplification factor (in fact another condition
number).

Quite often the matrices M a, M p have more structure. In particular M a or M p may have some
systematically zero rows. This will be referred to as partially separated BC. If both M a and
M p have zero rows (but for different row indices) and such that there total number equals n.
the BC is referred to as (completely) separated.

The methods discussed in this chapter are implemented in the routines MUTSGE (for general
BC), MUTSPS (for partially separated BC), MUTSSE (for separated BC).

2. Global description of the algorithms

In this section we shall give an outline of the various algorithms for the various types of two
point BC.

2.1 BVPs with general BC

Consider the ODE (1.1) and the general two-point BC

10

(2.1) M aX (ex.) + M I}x(~) = b .

Any solution of the ODE (1.1) can be written as

(2.2) x(t) =F(t)c +w(t) ,

where F (t) is a fundamental solution of the homogeneous part of (1.1), i.e.

(2.3) %F(t) =L(t)F(t),

w (t) a particular solution of (1.1) and c a constant n -vector.
After substituting (2.2) in (2.1) determine c from

So the solution x of (1.1) and (2.1) may be computed by superposition as follows:

(2.Sa) find a particular solution w (t) of the ODE (1.1),

(2.5b) fmd a fundamental solution F (t) of the ODE (2.3),

(2.Sc) find the n -vector c from equation (2.4).

CH. II,2

This method is mathematically equivalent to what would have been found by single shooting.
However, in many interesting problems. the homogeneous part of the ODE (Ll) has fast
growing modes, which makes e.g. the computation of the fundamental solution F (t) an
unstable affair, cf. the remarks about dichotomy made in §L1.3. To reduce this instability. the
interval [ex.. ~] is divided into subintervals [ti • ti +11, i = 1,2, ... , N -1 , say; then on each
subinterval a particular solution Wi(t) and a fundamental solution Fi(t) is computed. This is
called multiple shooting. Now, any solution of (1.1) on the subinterval can be written as

(2.6) X(t)=Fi(t)ai+wi(t) ,i=l, ... ,N.

There are several possibilities for choosing the fundamental solution Fi(t), i =1,2, ... , N.

For the methods discussed here the Fi (I) are chosen such that

where Qi+l is an orthogonal matrix and Ui+l an upper triangular matrix. By letting U 1 = I, we
may include the case i =0, if we choose F l(tl)=Q 1, some orthogonal matrix.
By matching the relations (2.6) at the points ti+1 • i = 1, ... , N -1, we then obtain

If we denote

11

CH.II,2

we thus obtain the following upper triangular recursion:

By our choice of the Fi we immediately see that

Now let {.pi} f=l be a fundamental solution of (2.10), i.e.

and let {Zi lf=l be some particular solution of (2.10). Then there should exist some vector c
such that

(2.13) ai = <Pi C + Zi , i = 1,2, ... , N.

From (2.11) and (2.13) we therefore obtain the relation

Aftersubstitutingx(tl) =x(a) andx(tN) =x(~) in the Be (2.1) we thus find:

(2.15) [Ma.Ql <PI +MpQN <PN]C =b -Ma.wl(a)-MpwN(~)
-MaQIZI-MpQN ZN·

The vector c which follows from (2.15) gives us the desired solution values x (Ii) via (2.14),

Remark 2.16

In the case that the ODE (2.1) is homogeneous, Le. r(t) = 0, t E [a,~], there is no particular
solution to be computed. Then (2.6), (2.8), (2.10), (2.11), (2.14) and (2.15) are to be replaced
by:

(2.6)'

(2.8)'

(2.10)'

(2.11)'

(2.14), x (ti) = Qi <Pi C ,

12

CH. II,2

(2.15)'

respectively (for relevant indices i).

2.2 BVPs with partially separated BC

If we have a partially separated· BC, i.e. where in (2.1) the matrix M a. and/or M p have a few
zero rows, this fact can be utilized to reduce the computational labour, in that a smaller
number of basis solutions has 10 be computed. For our discussion the following typical Be is

10 be considered:

(2. 17a)

(2.17b)

Here IMa. and IMp are ks xn-mamces, 2Ma. is an (n -ks)xn-mamx and b 1 and b2 are ks-
vector and (n-ks)-vector, respectively; i.e. only Mp has systematically zeros, viz. in its last
(n -ks) rows.

Remark 2.18

If M u happens to have a number of zero rows instead of M 13, the arguments below are
essentially the same.

The reduction in computing Fj (t) consists of the fact that we only compute its first ks
columns, viz. (F8t», by requiring that

(2. 19a)

The particular solution Wt(t) is then chosen such that it satisfies the decoupled initial value
part, i.e.

(2. 19b)

Formally we thus see that the desired solution x should lie in a linear variety
wt(t)E9 span(Fr(t», where Ff(t) is just some complementary part of the fundamental
solution F I (t). From (2.17) and (2.19) we see that span(wI(t)1l span(F I (t». Now we can
proceed as in the general case, i.e. we can divide [a, (3] into subintervals
[tj,tj+d,i=1,2, ... ,N-1. On each subinterval [tj,tj+tl a partial fundamental solution
Fil(t) and a particular solution Wj (t) is computed such that at the initial point of the interval:

13

CH.lI,2

This then means that there exist ks-vectors ail, such that for any i,

(2.21) x(t) = F8t) ail +Wi(t).

In our algorithm we choose Fil(t;) such that its columns are orthogonal. The analogue of (2.6)
reads therefore:

(2.22)

where the n xks-matrix Qi~l has orthogonal columns and Vi+l is a ks xks upper triangular
matrix. Now if we denote (cf. (2.9»

then we obtain the following reduced upper triangular recursion:

Remark2.2S

Since we choose Wi+l(ti+l) orthogonal to span(Fi~l (ti+l» = span(Qi~I). we see that we can
actually simplify (2.23) to

Remark 2.27

Wi+l(ti+l) is uniquely detennined by the requirements (2.20). We apparently should project
Wi(ti+l) onto span(Qi~l) and subtract this from Wi(ti+l). Hence we find

The computation of the ail from the Be is done in a similar way as in the preceding
subsection; we compute a fundamental solution {<I>tJ f=l and a particular solution {Zil} f=l of
(2.24). Since for some ks-vector c 1 there must hold

(2.29) ail = CPr c I + Zil •

we obtain the desired solution from

14

CH. II,2

After substitutingx(tl) = x (a:) and X(tN) =x(~) in the Be (2.17a) we thus find c l from

(2.31) [1M a.Q/ <1>/ + 1M pQtJ <I>~] c 1= b 1 - 1M a WI(a:) - 1M pWN(~)
-lMaQ/ zJ-IMpQtJzrJ.

Remarks 2.32

(i) If the ODE is homogeneous we still have to compute solutions Wi (t) (but now of the
homogeneous ODE) such that (2.19b) is satisfied.

(ii) If the ODE is homogeneous and moreover b2 = O. then we can skip the computation of Wi

and put di = 0 for all i. In such a case we have to replace (2.21), (2.24), (2.29), (2.30) and
(2.31) by

(2.21)'

(2.24)'

(2.29)'

(2.30)'

(2.31)'

respectively.

2.3 BVP with (completely) separated BC

If we have (completely) separated BC then 1M a. = 0 in (2.17) as well. So

(2.33a)

(2.33b)

where 1M P is a ks x n -matrix and 2M a. is an (n - kg) x n -matrix.
We can use a similar approach as in § 2.2. However (2.29) until (2.31) are not needed.
Indeed, as can be expected we have an explicit terminal value for the recursion (2.24) to

compute the sequence {atJ •. ..• a/}. From (2.21) we derive

After substitution in (2.33) we obtain

15

CH.II,2

(2.35)

Remark 2.36

The same remarks as 2.32 apply to the separated case, i.e. if the problem is homogeneous and
b2 = 0, we skip the computation of the {Wi (t)} and {Zit}.
Instead of (2.34) and (2.35) we then have

(2.34)'

(2.35),

3. Special features of the methods

There are several aspects which make our routines different from other Multiple Shooting
strategies. In the following subsections we shall describe some of them. This may help to
understand the power and also the limitations of the method.

3.1 Numerical realization of the integration

Since the numerical integration accounts for the bulk of the computational labour, it is of
fairly great importance to have this computation done efficiently. A first gain can be achieved
quite simply. Realizing that the unstable solutions will inevitably dictate the stepsize if an
absolute tolerance is given (and won't do for less if a relative tolerance is required), we need
to use the adaptive integration control only for one solution on each subinterval. The other
solutions are found at the thus determined grid. The grid is determined by the panicular
solution Wj(t), or, if the problem is homogeneous, by the first column of Fi(t) (or Fil(t». The
latter choice is induced by the wish to have points such that the most unstable solution is still
integrated correctly (i.e. up to the required tolerance). See also [7].

3.2 Computing fundamental and particular solutions of recursions

For solving a BVP with general Be or panially separated Be we have to compute a
fundamental solution and a particular solution of recursions (2.10) and (2.24), respectively. As
both recursions are of the same nature, we only discuss recursion (2.10).

The impottant idea behind the decoupling method of §2 is that in well-posed linear BVP, the
homogeneous solution space of (2.1) is dichotomic , Le. is such that for some integer kp

("panitioning index") there exist a kp -dimensional subspace of increasing solutions and an
(n-kp)-dimensional subspace of non-increasing solutions. Using this propeny and starting
with a proper Ql (=Ft(tt», we can compute a set of Vi for which the first kp columns
represent the subspace of increasing solutions and the last (n -kp) columns the subspace of the
non-increasing solutions. In this way we have decoupled the increasing solutions and the

16

CH. II,3

non-increasing solutions. This decoupling enables us to compute a fundamental solution of
the upper triangular recursion (2.10) in a stable way as follows:
We partition matrices and vectors as

(3.1) Vi = [~ ~;] • ·i = [:~ 1
where Bi is a kp x kp -upper triangular matrix, Ei an (n - kp) x (n - kp)-upper triangular matrix.
Ci a kp x(n -kp)-matrix, ail a kp-vector and a? an (n -kp)-vector.
The recursion (2.10) can be rewritten as

As the Bi represent the increasing solutions. the absolute value of the diagonal elements of Bi
can be expected to be greater than 1. making forward computation of (3.2b) unstable. The Ej
represent the non-increasing solutions. so the absolute value of the diagonal elements of Ei
can be expected to be less than or equal to I, making forward computation of (3.2a) stable.
Hence the obvious strategy for computing a fundamental solution {Cllj}!!l and a particular
solution {Zj }!!1 of recursion (2.10) is to use (3.2a) in forward direction and (3.2b) in backward
direction. So for the particular solution {Zj }!!1 we have the Be

(3.3) Z r = 0 • z..J = 0 .

Then Zi2 ,i=2.3, ...• N, using (3.2a) in forward direction, and zjl.i=N-l,N-2 •... , I
using (3.2b) in backward direction, is computed.
For the fundamental solution we have the recursion

and the Be

(3.5) Cllr = (0\1) ; Cll~ = (1\ 0).

Now {Cll,2}!!l is computed via (3.4a) and {Cll: }}=N is then computed via (3.4b).

As in fact the matrix Q 1 generates the sequences of {Qj} and {Uj} it is important to have a
proper choice for Q 1. Indeed as was shown in [4] the desired splitting of the solution space
into increasing and non-increasing solutions may not be achieved for general initial matrices
Q It though in practice it is most likely that an arbitrary choice will do eventually.
Nevertheless for a good stability of the recursion some effort to obtain a good guess is worth

17

CH. II,3

paying for. For general Be no infonnation about kp nor the direction of the increasing
solutions is available, so we just take Q 1 = I. If, after a few nonnalizations, a disorder of
eigenvalues of the matrices Ui becomes visible, we perfonn a pennutation of the columns of
Q 1 to hopefully restore an ordering in decreasing absolute magnitude. If needed this process is
repeated a finite number of times. In § 4.3 we return to this.
If the Be are partially separated, one has to realize that ks and kp may be different (ks 2! kp).
Hence, in general one should try to obtain an ordering of the diagonal elements of the Vi, at
least to such an extent that the kp x kp left upper part contains the eigenvalues which are in
absolute value greater than 1; of course this can only be found by guessing and correcting as
in the general case.
Finally, if the Be are completely separated we necessarily have that ks = kp (or at least a
reasonable choice of ks, if there is no exponential but only an ordinary dichotomy). For this,
however, we presuppose the problem to be well-conditioned. which will be explained in the
next subsection.
As far as the Wi (ti) are concerned, we already remarked that they were in fact detennined by
our desire to keep Wi (ti) in the same linear variety as Wi-l (tj). Of course this only makes sense
in case the Be are (partially or completely) separated. If we use the strategy for general Be
we have a complete freedom again. We have chosen for the option Wi (ti) = 0 because, in
general, this gives 0 (1) components of all solutions involved, notably the desired particular
one and the most unstable one. It was discussed in [7] that this was a sensible choice.

3.4 Conditioning and stability

The accuracy of the solution x(t) of a BVP, using the method as described in § 2, depends on:

(i) The accuracy by which the fundamental solution Fi (Ii) and the particular solution
Wi(ti) are computed. (This accuray is detennined by the user.)

(ii) The accuracy by which the vector c in equation (2.15) is computed.

(iii) The accuracy by which the fundamental solution {<I.>d f:1 or {4>n f:l and the
particular solution {Zj If:l or (Zjl}~l of the recursion (2.10) and (2.24), respectively,
is computed.

First we will discuss point (ii).
Since (2.15) resulted from the boundary conditions we have to investigate the effect of
perturbations in the Be on the computed solution. Suppose we have a Be with a perturbed
right-hand side, i.e. instead of (2.1) we have

(3.6) Mai(o;)+M~i(~)=b +Ob .

As x and i are both solutions of the ODE of the BVP, there exists a vector v such that

18

CH. II,3

(3.7) x(t) -x(t) =F(t)v ,

where F (t) is a fundamental solution.

Subtracting (3.2) from (3.6) and using (3.7) we obtain:

(3.8) [MaF(a)+M~F(~)]v =Ob .

So we have

(3.9) x(t) -x(t) =F(t)[M aF(a) +M~F(~)]-1 ob

and

(3.10) max IIx(t)-x(t) II S; ma'S. IIF(t)[Mu F(a)+MpF(13)]-lIlIIBbIi.
te(~~) IE(~p)

Therefore we define a condition number eN of a BVP as

(Notice that eN is independent of the fundamental solution F (t), as for any other
fundamental solution G(t). say, there is a constant matrix P such that G (t) =F (t)P).
As is shown in [8] if {ct>j } is defmed as in (3.4), then an estimate of eN is given by

Basically the information to compute K is available (cf. (2.15». However when the BVP has
(partially) separated BC. only ks « n) columns of Q 1, QN, ct>1, ct>N are computed. The
separated BC can be written as

For the condition number eN we have

19

CH. II,3

As eN is independent of F (t) and we have taken F (I) such that 2M aFl(a) = 0, it is easy to

see that if either [1M aF lea) + 1M ~Fl(~)] or 2M aF2(a) is ill-conditioned also the BVP will
be ill-conditioned. Hence we compute

Although a large Jel or a large K2 indicates that the BVP is ill-conditioned, it is possible to

have an ill-conditioned BVP for which both Jel and K2 are of order one. For well-conditioned
BVP with separated BC it is necessary that F2(t) contains only non-growing modes (in case
of completely separated BC, all non-growing modes). To find out whether F2(a) would result
in computing a growing solution, we recall that for the solution x (t) we had (cf. e.g. (2.29»

and completing F l(t) to a fundamental solution F (I) = (F l(t) I F2(/» we thus see that

(3. 17a) wet) = F2(t) c2 + z(t) ,

where z(t) is a particular solution of the ODE of the BVP and c2 an (n-ks)-vector.
Supposing that z (t) is a smooth solution, a dominant mode in F2(t) will influence the growth
of w (t), unless c 2 = O. However, by computing another particular solution v (t) say. where

(3.17b)

and thus

(3.18) w(t)-v(t)=F2(t)e2 ,

we have a way to find out whether F2(t) contains dominant modes or not (see §4.4).

For BVP with a dichotomic solution space we have the recursion (cf. (3.2»:

(3. 19a)

(3. 19b)

To investigate the stability of (3.19) we examine the effects of additive perturbations {PrJ
and {Pill of respectively (3.19a) and (3.19b), i.e. suppose {di1} and {d?} satisfy

20

(3.20a)

(3.2Ob)

(3.21a)

(3,21b)

which results in

(3.22a)

(3.22b)

2 i i 2
g, =>(C.I1 Ej)Prl,

t.;1 J'"l+l

where Om,q is a shorter notation for

(3.23a)

where

(3.23b)

(3.23c)

; gt=Pt,

ifq '?P
if q <p'

if q '?P
ifq <p'

CH.n,3

If the pennutations Pil,pr- are of the same order, i.e.llp;lll s; 0, IIp?11 s; 0 for some 0, we have

(3.24a)

(3. 24b)

One easily checks that a proper dichotomy implies reasonably bounded II Om,p II as well as
such bounds for II n Ej II and II Cn B j)-111. This then establishes the stability of the
computation of {<I>j }t!l and {Zi }t!l.

21

CH. n,4

4. Computational aspects of the methods

There are a number of aspects which have not been filled in yet. In this chapter we shall
therefore treat some particular implementations as they are realized in the various routines.

4.1 The use of RKF45

A very reliable and fairly inexpensive integrator is RKF45, written by L.F. Shampine and
H.A. Watts, a Runge Kutta Fehlberg routine which uses fifth order estimates combined with
fourth order approximations (cf. [1]). This routine is the working horse in our codes and as
long as the system is not stiff (in the sense that there is high activity of some modes) we have
found it to work very well indeed (cf. [8]). We have changed the original routines to make that
it only uses the combined fourth-fifth order integrator for the grid detennining solution, see §
3.1. A special routine computes solutions on a given grid by the fifth order only. Another
special feature is that it tenninates the calculations if five consecutive new points are found.
Then an orthogonalization of the solution is performed and a new cycle is started. This QU
decomposition is carried out with elementary hennitians (Househ01der's method, cf. [2]).
Rather than in the fonn (A Qj =) Qi+l Ui+1 we obtain Ql;.l in factored form. It is obvious that
we only need to evaluate the first ks columns of Qi+l if we have (partially) separated Be. In
the next subsection we consider how this will work out in the global computations.
In the original routine RKF45 both a relative and an absolute tolerance has to be supplied.
Because of the fact that for general BVP on finite intervals one is mainly interested in absolute
accuracy and our strategy makes signifant growth per shooting interval unlikely anyway, we
recommend to set the relative tolerance sufficiently smaller than the absolute tolerance.

4.2 The choice of shooting points

The idea to have shooting intervals consisting of 5 steps only was induced by considerations
of optimal efficiency, cf. [8]. It is obvious that this strategy may give many more points for
output than is needed by the user. Therefore a special device takes care of assembling these so
called minor shooting intervals to major shooting intervals; the latter are such that the initial
and tenninal points coincide with user requested output points. Here another powerful feature
of the decoupling method is revealed. Because of the fact that the k-partitioning (kp)

coincides with the decoupling into increasing and decreasing modes, forward assembling of
increments on minor intervals is relatively stable. Such an assembly may be described as
follows:
Let tjj be the initial point of the jth major shooting interval, i.e. tij is the jth output point.

Define

(4.1) Wo :=1 ; Go :=0.

Now compute for s=1,2, . .. ,

22

CH. ll,4

(4.2)

If s is large enough. !hen W" describes the increment on the major interval [tij,tij+s] and Gs

the forcing term on that inteIval. so that

(of course s is only a local index for Ws and Gs).

Now we have five possible options for the (j + l)th output point ti}+! = tij+s :

(i)

(ii)

(iii)

(iv)

(v)

choose s such that \I wsil ::;; p, p prescribed;

choose s such that I t;'+8 - td = 6-a
J J "'"N

(N the number of intervals);

choose s such that tj.+s equals the first next specified output point;
J

choose s such that eitherllWsll ::;; p. p prescribed or I tij+s - ti} I =~;

choose s such that either Ilwsll::;; p, p prescribed or tij+s equals the first next

specified output point.

Remark 4.4

Of course, it may be that these criteria above need shorter minor shooting intervals at the end
of the major shooting interval. This is taken care of by the routines.

Remark 4.5

Criterion (i) is of interest if one suspects the maximal incremental growth to be changing on
[a,~J and likes to monitor this so that the solution is equidistributed with respect to this.
However. one should realize that it may lead to (undesirably) large intervals if there are mildly
growing solutions only.
Criteria (U) and (iii) may cause overflow problems if the given major shooting intervals are
too large. Therefore only criteria (i), (iv) and (v) are implemented, allowing a p which is
smaller than the square root of the largest positive real number that can be represented by the
used computer.

4.3 The computation of Q I and Q (and the proper splitting

Suppose we find the diagonal of the matrix U 2 not to be ordered properly (to recall: we need
to have the diagonal elements appear more or less in non increasing absolute value). Then we
use a permutation matrix P • which permutes the columns of U 2 according to the ordering of

23

CH.II,4

the absolute value of these diagonal elements. Of course U'}}' is no longer upper triangular, so
we perform another QU -decomposition, i.e.

The matrix U z(new) replaces U z(old), whilst Q t(old) is replaced by

(4.8) Q2(new) := Qz(old)R .

If U 2 is still not found in order we repeat this procedure. In fact we do the same with the
assembled product Us Us-I' .. U 2 on the first major shooting interval. On subsequent major
intervals this reordering is no longer feasible. One should realize that neat problems have to be
dichotomic (cf. [3]), i.e. after reaching the endpoint of the first major interval, we should have
a good idea of kp. Indeed the routines choose kp equal to the position of that diagonal
element of U 2 which is the smallest one (in absolute value) being 1 arger than 1. Of cource this
only makes sense for an ordered diagonal. Although U 2 etc. are expected to be ordered in
general, there might be situations where this is not the case. Therefore a global check on the
increment on the whole interval [a. ~] is made. If the ordering is found not to be satisfactory.
a global reordering is performed using permutation matrices according to this. In fact this is
rather cheap as it only requires matrix-matrix multiplications plus one QU-decomposition at
each output point. This process is moreover stable if the norm of the assembled matrices does
not outgrow TOL I EPS. where TOL is the absolute tolerance and EPS the machine constant.

If the BC are (partially) separated we have to determine a Ql such that zMuQl =0 (cf.
(2. 19a». This can be done conveniently as follows:
Compute elementary hermitians PI, ... ,P,. such that

is upper triangular. Now take Q I as the last ks columns of

(4.10) Qt =PI ... P,. .

(It is easily seen that this results in the desired matrix as

Sometimes it is not clear beforehand whether rank(M a,) < n or rank(M p) < n . (Note that
whenMp has some zero rows, say n-ks • rank(Mp) may be smaller than ks .) In such a case we
may invoke the singular value decomposition (SVD) of these matrices to determine the

24

CH.II,4

numerical rank. So consider

(4.11) Ma=Uar.aV'b.. Mp=Up~V!,

where U a, V IX> Up, V P are orthogonal matrices and l:(l, ~ diagonal matrices. Suppose r.a has
ksl non-zero diagonal elements and ~ has ks2 non-zero diagonal elements. If both
ks 1= ks2 = n we do not have separated Be. If ks2 < n we have

So multiplying (2.2) by U~ we obtain

which. denoting U! M a = M IX, U~ M P == M p. U~ b = 6, can be written as

(4. 14a)

(4. 14b)

1M aX (0.) + IMflX<lJ) = 61 ,

2M aX (0.)= 62 •

This is of the form (2.17).
Of course it may be that kal S ks2. in which case it would be more profitable to regard the BVP
as a problem on [lJ ,(X], instead of on [(X, lJ]. Therefore we compute both the SVD of M a and
of M p and take the smallest of ks 1 and ks2 with the coresponding initial and terminal points
(Le. either [(X, \3] or [\3, (X]).

4.4 The computation or the stability constants

The actual solution of (2.15), (2.31) and (2.35) is done using a Crout routine (LU
decomposition). From this it follows that for general BC the quantity 1(in (3.12) can be
computed without much additional effort, using this LU-decompostion. As we remarked lC is'
at most a factor 2 amiss in comparison with the actual condition number (cf. (3.12». If the
BC are (partially) separated we do not have all necessary information about the Ej available.
It may be even so that 1(1 and lC2 (see (3.15) and (3.16» are moderate since the ill-conditioning
is concealed by the particular solution Wi. In ordcr to dctect this we also compute another
sequence of particular solutions {Vi} such that

Then a lC3 is computed as

2S

CH. II,4

As an estimate for the condition number eN we now better take

The user may find the K': as an output parameter ER(4).

Of course it is possible that the matrices [M aQl4>l +MI}QN4>N]. [1M aQ/4>/ + IMIiQN4>~]
or 2M aQ 1 (cf. (2.5), (2.31), (2.35). respectively) happen to be numerically singular. In that
case a tenninal error, IERROR = 320 is given.

Apart from this condition number another quantity is of importance. In fact we need to
compute the maximal value in nonn of suitable Green's functions (cf. [5]). This is an almost
impossible task and therefore we are satisfied with a somewhat heuristical estimate of them.
Note that in (3.24) the magnitude of the quantities II <n Ej)!! and 11 (n Brl)!1 may be
blamed if the local errors are blown up significanlly. Hence it makes sense to monitor the
diagonal elemenls of lhe product matrices Ep ... Eq and Bq-l ... Bp-l for arbritary p and q

(p ';?: q), as they essentially reflect the growth of lhe basis solutions. Thinking of (3.24) we
therefore also compute

(4.18) A}=mF (mF (1 + k (11 1 Ej I))),

where E} denotes the k -th diagonal element of Ej.

(4.20) alz(k) = mrx (CJ}I Br I tl, (/=tL I Br I)-1 • I Bill -1).

(4.21) af3(k) = m~x (a I Efl , lIt I Er I . I Ef!).

(4.22) Ai =mjx (afl(k) + af2(k) x af3(k» •

where B} denotes the k-th diagonal element of Bj .

As an estimate of the amplification factor AI (being a bound for the Green's functions in tum)
we take

(4.23) AI = max (A) , A}).

The user may find AI as an output parameter ER(5).

26

CH. 11,4

If At is such that the global rounding error is larger than the discretization error, a warning
error, IERROR = 300, is given.

Remark 4.24

If there are constant modes or very slowly growing modes or very slowly decreasing modes,
At will be of the order of the number of output points.

Remark 4.25

The computation of At depends on the number of output points. If the problem is dichotomic,
the influence of the number of output points on the estimate At is small. However, if there is
no dichotomy on the interval [a ,13], the choice of the output points determines whether At is
a good estimate for the amplification factor or not. If the problem is not dichotomic, it will be
locally dichotomic on subintervals [a,a2], [a3,~], ... ,[am,I3], say, with different
subspaces of growing modes and nongrowing modes on each subinterval. In order to detect
these changes of the dichotomy on [a, 13] and to get a reasonable estimate At for the
amplification factor, the output points should be chosen such that, besides a. and 13. each
subinterval [a. a1], ... , [CXm , 13] contains at least one output point.

References

[1] G.F. Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical
Computation, Prentice Hall, Englewood Cliffs, 1977.

[2] G.H. Golub, C.F. van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 1983.

[3] F.R de Hoog, RM.M. Mattheij, On dichotomy and well-conditioning in BVP. SIAM
J. Numer. Anal. 24 (1987). 89-105.

[4] RM.M. Mattheij, Characterization of dominant and dominated solutions of linear
recursions, Numer. Math. 35 (1980),421-442.

[5] RM.M. Maltheij, Estimates for the errors in the solutions of linear boundary value
problems, due to perturbations, Computing 27 (1981). 299-318.

[6] RM.M. Mattheij. The conditioning of linear boundary value problems. SIAM J.
Numer. Anal. 19 (1982). 963-978.

[7J RM.M. Mattheij, G.W.M. Staarink, On optimal shooting intervals. Math. Compo 42
(1984),25-40.

27

CH. II.4

[8) R.M.M. Mattheij, G.W.M. Staarink, An efficient algorithm for solving general linear
two-point BVP, SIAM J. Sci. Stat. Comput. 5 (1984),745-763.

[9] R.M.M. Mattheij, Decoupling and stability of BVP algorithms, SIAM Review 27
(1985),1-44.

28

CHAPTER III

BVP ON INFINITE INTERVALS

1. Introduction

If for an ODE

(1.1) -9tX(t) =L(t)x(t) + r(t), ex $ t < 00,

aBC is given

(1.2) M aX (ex) + M""x(oo) = b,

then it can be shown that x can be written as

where wet) is a bounded particular solution and F2(t) is a matrix solution (F2(t) an n Xkb

matrix say) of bounded homogeneous solutions (see [1]). Let us denote the complementary
part of the fundamental solution by F l(t). If F l(t) consists of exponentially increasing modes
exclusively, then it is possible using the decoupling idea to effectively "remove" them doing
the backward sweep of the multiple shooting recursion. To this end it is assumed that the
particular interval [ex, 13] is specified where the output values are wanted. The shooting
process then continues over an interval [13, 'Y], where 'Y is such that the modes in Fi(t) have
grown sufficiently large to expect the backward sweep of the recursion algorithm, cr. §II.3.2,
to damp their effect to (user specified) accuracy.
For some problems there may be some slower growing modes (like polynomially growing)
present. This requires a special technique, like extrapolation. The routine MUTSIN for solving
the BVP (1.1), (1.2), has therefore some special provisions for doing this efficiently.

Remark 1.4

Although the algorithm computes c2 from the (usually) singular system
[M aF2(ex) + M ooF2(13)] c 2 = Ii (where Ii is derived from the BC in a least-squares sense) we
can still detenninc a quantity like the condition number. As a consequence often a diagnosis
can still be given if something goes wrong or when output variables should not be trusted.

29

CR. m,2

2. Global description of the algorithm

Consider the ODE

(2.1) %x(t) = L(t)x(t) + ret), a. S. t < 00 ,

where L (t) is an n x n -matrix and r (t), x (t) are n -vectors for all t. Let the Be be given by

(2.2) M aX (a.) + M oox(oo) = b.

If we assume that the solution space is dichotomic (cf. §U.3.2), then there exist integers ku and
kb (ku + kb = n) and a fundamental solution F (t), such that

where FI(t) contains ku columns and F2(t) kb columns such that F2(t) precisely represents
the bounded homogeneous solutions. Under suitable conditions, cf. [2], there exist at least one
bounded particular solution of (2.1), wet). Hence for some constant kb-vector c 2 we find

Upon substituting (2.4) in (2.2) we find

Note that in case F2(t), W (t) -+ 0, t -+ 00, the condition above reduces to an initial value
condition (though rank deficient!). Because of the requirements on F2(t) and w (t), the
problem (2.1), (2.2) is sometimes also called a conditionally stable initial value problem. The
main question therefore is how to find the non-increasing ("stable") manifold.
With some adaptations this can be done along the lines of the method described in chapter II.
Suppose we like to have output values for x on the interval [<X,~] within an accuracy TOL. Let
us assume that FI consists of exponentially increasing solutions only. Then there certainly
exists a point y, such that

(2.6) IiF(y)P F(~rlll > TOL-I. where P = r~ :l
in other words, each of the increasing solutions has grown at least by TOL-I. We then
proceed as follows: use a mUltiple shooting strategy as in § 11.2.1, with at least a. = t 10 ~ = tM

and y= tN as output points, resulting in an upper triangular recursion

(cf. (11.2.11», with

30

CH.m,2

Then compute a particular solution {tj } of (2.7), satisfying

(2.9) Z f = 0 , ztJ = 0

and a partial fundamental solution {"'Pi} ('Pj is n xkb), satisfying

(2.10) 'l'r =1 ; 'I'~ = 0,

Clearly for some kb-vector c2 we have (within accuracy TOL!)

From (2.8), (2.11) and (2.2) we thus derive the following rclation for c2:

(2.12) [M aQ 1 '1'1 + M ... QM 'PM] c2 = b - M a Wl(O:) - M"" WM«(3)
-MaQIZI-MooQM zM·

The matrix appearing in (2.12) on the left is n Xkb. Therefore we solve this system in a
least-squares sense.

3. Special features

The previously outlined algorithm is implemented as MUTSIN. For the computation of the
multiple shooting recursion on the interval [0:, 'Y] the same strategy is used as in §II.3.1-II.3.3
for BVP with general BC.

3.1 Errors introduced by finite choice of 'Y

In §2 we considered the case of exponentially increasing solutions in Fl(t). For our upper
triangular shooting recursion (2.7) this means that in

(3.1) Vi = [~ ~;].
we may assume that liB i+\ II ;;::: K e ?.(t;+1 - 'i) for some negative A. and (not large) positive 1(. That
means that on [(3 • 'Y] = [tM • tN] we expect

(3.2)

Since we do not know the bounded (and non increasing) solutions at tN exactly we choose
their component in span(Fl(tN» to be zero, cf. (2.9) and (2.10). Hence we introduce a
truncation error T/N) cf. [2], which satisfies the homogeneous part of (II.3.2b):

31

CH.llI.3

Because of the boundedness of those solutions we have

(3.3a) IIT~)II = 0(1).

whence.

Hence if eA.f:y-~) S TOL (TOL the required accuracy) this truncation error is not significant.

3.2 Conditioning

The system (2.5) is rank deficient, so the conditioning with respect to the BC (as was
introduced in §1I.3.4) has to be redefined here. Since we virtually rule out the increasing
components we may define the subcondilion numbers cf. [2] :

where l--P = [~ ~l and + denotes a pseudo-inverse. By making use of the approximate

{Qj 'I'j} instead of F Ii), we can estimate CNp(~) by (cf. (11.3.13»

3.3 Problems with polynomially increasing modes

If there exist increasing modes that grow "slower" than an exponential function of t. the
construction in §3.1 to find a terminal point may result in exceedingly large values ofy. Under
certain circumstances, however, we do not need to go that far.
In order to describe them, let F l(t) be split further into

where G2(t) is an n xkq-matrix representing the polynomially increasing modes, Gl(t) an
n xke-matrix representing the exponentially increasing modes. We now consider two (non
exclusive!) possibilities:

(i) lim L(t), lim r(t) exists.
I~"" t~ ...

This means that both w (t) and G2(t) have asymptotically constant directions. If we partition
the truncation error Tj(N) in two components, viz.

32

CH. III,3

(3.7) TiQV' = [g;::~:].
where [Tj(N)]t has ke components, then it makes sense to try some asymptotic expansion for
[TON)]2, e.g.

where (j) > 0 and vo. vI,' .. are independent of tN; obviously the user should provide the
model for this.
If we apply this idea we see that the point y is mainly determined by the exponential behaviour
of G l(t) (cf. (3.3b». On the other hand, in order to employ (3.8), one should choose several
terminal conditions instead.

(ii) lim W (t) exists.
t -+<»

This still allows fairly general ODE (in particular with a fundamental solution of which the
directions are not asymptotically constants). Because of boundedness of W (t) we may try an
asymptotic expansion like

where (j) and uo, U 1, ... are independent of t (we assume t - a, large enough); again the user
should provide the proper model. If we choose y large enough. so that exponentially
increasing modes have been damped out within TaL on [a,. ~]. we can employ (3.9) in
combination with (2.8) (note that Wj(tj) =0). Indeed, within TaL, we may write for the
actually found solution f:

(3.10a)

with

(3. lOb)

(3.1Oc)

where 'Pj is an n xkq-matrix, representing the polynomially increasing modes and c a
constant kq-vector. only depending on the choice ofy. Now one should realize that {'Pj } can
be computed in much the same way as {'Pi}. The only difference is that we use a recursion
like (2.7) with B j as the incremental matrix instead and a partitioning such that the left upper
block is ke • From this we see that e (tj) is in fact completely determined by the unknown c; c
in tum can in principle be found together with the vectors uO,ul, ... from monitoring f(ti)

for various values of tj. Note that we only need kq points t. to find c in case x is a constant
vector.

33

CR. I1I,4

4. Computational aspects

The code MUTSIN is based on the computational framework as outlined in chapter n. Some
special aspects are considered below.

4.1 Determination of'Y and bounded solutions

In order to find a suitable value for 'Y, MUTSIN keeps track of the diagonal elements of the Bi
(cf. §4.3). In order to estimate a A as in (3.2) it takes

(4.1) A:=(Inm)/(Il-a),

N
where m is the absolutely smallest diagonal element of Q Bi. From this a value of 'Y is

computed as

(4.2) 'Y
'- A _ In TOL .-.., X,

Arriving at t = 'Y it is checked whether the increment is large enough indeed, and if necessary a
new (larger) 'Y is computed, using an updated A. If the latter value of'Y is still insufficient to
give large enough increments. a warning error IERROR = 335 occurs. It may happen that 'Y as
defined by (4.2) is already quite large (due to a pessimistic choice of the partitioning
parameter ku). Therefore the user should provide a maximum value of 'Y, 'Ymax say, If 'Y
becomes larger than 'Ymax. 'Ymax is taken as the value for 'Yand a warning error IERROR = 330
occurs.

4.2 Use of BC and determination of conditioning constants

System (2.12) can be written as

(4.3) [M .Qtl01 'I'd + M .Q" [01 'I'M]) [~21 =6,

where b =b -MaQIZ}-M""QM ZM. To solve (4.3) a singular value decomposition (SVD)
is used, that is we detennine orthogonal matrices U, V and a semi-positive diagonal matrix l:,
such that

where l: = diag(olt on). with 01 ~ •.• ~ Ok. ~ 0, 0*<.+1 = ... =On = 0, and

Then (4.3) can be rewritten as

34

[~21 =Vy

CH. I1I,4

(4.5) :Ey = uT 6.

To have a meaningful solution of (4.5) it is necessary that the vector uT 6 = (~l' ... ,~)T
satisfies the conditions

(4.6) OJ =0 => ~j =0, i=l ,n .

We call the problem inconsistent with respect to the BC if (4.6) is false. Numerically we
consider OJ to be zero if the computed OJ 5',; TOL and hence we check whether

(4.7) OJ 5',;TOL => ~i 5',;TOL ,i=l, ... ,n

is true or false. If (4.7) is false a warning error IERROR = 340 is given. It is possible that
IERROR = 340 occurs after the warning error IERROR = 335. In that case IERROR = 335 is
likely to cause IERROR = 340 too.

If we write :E =diag(ol, ... • 0/,0, ... ,0) (1gb), we can define its pseudo~inverse as
:E+=diag(of1, ... ,0rl,0, ...• 0) and hence solve (4.5) in a straightforward manner. For a
well-posed problem we should expect I=kb' so we have as an estimate for the condition
number:

(4.8) 11:= [Ok..]-1.

If [ok.. r 1 > TOL -1 we should call the problem ill-conditioned (as TOL means numerically

zero) and a warning error IERROR = 345 is given. In such a case, and -more generally- if
01+1, ... , Ok.. are smaller than or equal to TOL, we choose

unless 1 + 1 = 1. Although clearly we cannot give a unique solution then, we can still give a
basis of a meaningful manifold, viz. those components that can be found from singular vectors
corresponding to 0/+1 • .•. 'Ok..' Let us write

(4.10) v=[vil "·Ivk,.],

then these basis solutions are defined by

(4.11) {Qi 'Pi Vj }i'!1 , j = 1+1, ... ,kb.

From the pseudo-inverse we get some bounded particular solution as well.
Clear1y uniqueness requires more independent conditions in (2.2).

35

CR. I1I,4

4.3 Use of MUTSIN for problems with slowly increasing modes

For problems without an exponential dichotomy MUTSIN may fail to compute a bounded
solution being accurate up to TOL. If the warning error IERROR = 335 occurs. there might
be some non-exponential growing modes. It is also possible that the problem is not
dichotomic (in which case ER(5) should be large). When there are non-exponentially growing
modes MUTSIN can still be used in combination with asymptotic expansions.
First consider case (i) of §3.3. One should then set IEXT equal to 1 and C equal to a desired
new value of y. A new call to MUTSIN results in the computation of a new solution using the
new value of 'Y. This means that one can use approximate solutions for various 'Y and hence
utilize asymptotics. Because of the variety of possible expansions the user should write
himself a program that calls MUTSIN and then uses Richardson extrapolation (for instance).
Obviously. denoting the approximate value of x (a) obtained from using 'Yas a terminal point
by xf.,.a). it follows from an assumption like (3.8) that also xf..a) has an expansion in "fro.
In case (ii) of §3.3 the fundamental solutions 'It; and 'Pj are stored in the array PHIREC.
Then not only an approximate xf.,.a) is given but also the values of the non-exponentially
increasing solutions at the output points.
When applying the previous idea. one should realize that all computations are exact within
o (TOL). This implies that under circumstances it is advisable to choose the parameter TOL
fairly small in order to have a vector for which Richardson extrapolation is still meaningful.
Also. the code is designed to choose 'Y as small as possible when slowly increasing modes
(that should not influence its choice !) are detected. If 'Y happens to be equal to 'Ymax. the actual
found partitioning integer ke is based on the criterion that exponentially growing modes
should at least correspond to a A. (cf. (4.1» such that (4.2) is satisfied. Hence the value C - A
(=Ymax-a) should not be chosen too small compared to the interval length B - A (=I3-a). the
latter being considered to be relevant for the problem as such.

References

[1] RM.M. Mattheij. On the computation of solutions of BVP on infinite intervals. Math.
Compo 48 (1987),533-549.

[2] F.R. de Hoog. RM.M. Mattheij. On non-invertible boundary value problems,
Numerical Boundary Value ODE's, (U. Ascher, R Russell, eds.), Birkhauser (1985).
55-76.

36

CHAPTER IV

MULTIPOINT BVP AND INTEGRAL BVP

1. Introduction

In this section we first describe the problem briefly.
Consider the ODE:

(1.1) 4t X(t)=L(t)x(t)+r(t) , o.::;t ::;p,

where L(t) is an n x n-matrix function and x(t) and ret) are n-vector functions. Let for x(t)

the boundary condition (BC) be given:

where MI •...• Mm+l are (n xn)-matrices, b is an ii-vector; the points o.t. ..•• <Xm+t. with
a. = 0.1 < 0.2 < ... < o.m+l = p, are the so called switching points.
A possible way to solve a multipoint BVP (1.1), (l.2) is to map the intervals [o.i ,<li+d.
i = 1 •...• m onto one and the same interval [0, 1] say and solve for the solution on these
intervals simultanously. Denoting the solution at [o.i ,o.i+l] by Xi (t) we thus have

(1.1)' 4t x(t) = L(t) x(t) + r(t).

where x(t) = [xf(t), .. . ,X;!;(t)]T. r(t) = [rf •... ,r;!;(t)]T and

L(t) =
Lm(t)

(where Lj (t) and rj (t) arc properly transformed from [<Xl. 0.;+11 ~ [0. 1 D. A coresponding
two-point BC is now given by

(1.2)' Mox(O) + Ml x(1) = b

37

Mo=
o 1

1 ' MI =
MI . . Mm

CR.IV,1

-1

-/

For (Ll)' and (1.2), one can use a routine of chapter II. Note however that this system has
order n x m now! Hence we look for a cheaper solution.

Because of the linearity of (1.1) we may write the solution x(t) as:

(1.3) x(t)=F(!Xi,t)cj +w(aj,I), aj '5.t '5.ai+l,

where F(!Xi, I) is a fundamental solution on [ai, !Xi+I] and w(ai, t) a particular solution of
(1.1) on [!Xi, ai+l}. In principle we may identify F (!Xi, t) with F (aj, t) for i:F: j, thus
reducing (1.3) to the well known superposition of solutions. However, as was shown in [1] the
dichotomy character might be different on each subinterval: that is the dimension of the non
decreasing mode subspace may become smaller after such a point ai; this is called
polychotomy. Hence it makes sence to consider the F(ai,t) separately. at least
computationally, cf. [2]. Matching in the usual way gives us the relation for the Ci. We obtain:

(1.4a) F(!Xi ,ai+l) Ci = F (ai+h!Xi+I) Ci+1 + w(aj+h!Xi+I) - w(ah!Xi+l)
and the BC

OAb)

The method now uses multiple shooting on each interval [aj,ai+t1. In this way we obtain a
discrete analogue of OAa) and (lAb) which constitutes a linear system A of order m x n. The
conditioning of the problem can be measured by II A-III as well as by monitoring the growth
behaviour of the fundamental solutions. These quantities are actually accounted for by the
routine, see §4.

Remark 1.5.

If the dichotomy does not change on consecutive intervals [aj ,ai+t1, ... ,[ai+baj+k+l] say,
the fundamental solutions F (aj +1 , t) 1 = 1, ... ,k can be identified with F (ai, t), the
particular solutions w (ai+l, t) , I = 1, ... ,k with w(aj ,I) and the Ci+[, 1=1, ... , k with Cj.

As a consequence (1.4a,b) change into

j =1, ... , i-I andj =i+k+l, ... , m,

38

CH.IV,l

(1.6b)

(1.6c)

This gives a linear system of order (m - k) x n.

If we consider the limit case where the number of switching points goes to infinity (and the
weight Mi are scaled appropiately), we arrive at an integral condition

Po

(1.7) I M(t)x(t)dt = b ,

where M (t) is an n x n matrix function and b an n -vector. This requires an extra
discretisation for casting the problem into a form compatible with multipoint Be. Another
way, though often more costly than the method we shall outline below, is to augment (1.1)

with -9ty(t) =M(t)x(t), y(a) = 0, so that we have an ODE

and a (two-point) Be

Obviously, the ODE (1.1)" is of order 2n.

Finally, it is possible to have a combination of a multipoint (including two-point) and integral
Be. A mixed condition has the form (1.8a,b)

(1.8a)

(1.8b)

where for some I <n, 1M b ...• 1Mm+l are I xn matrices and 2M(t) is an (n -l)xn matrix
function.

39

CH.IV,l

Remark 1.9

Sometimes a BC describing e.g. discontinuities at certain points is confusingly called a
multipoint BC. However, as can be checked those discontinuities would increase the total
number of BC beyond n. If this is the case one should use the methods described in chapter
VI.

The algorithm discussed in this chapter have been implemented in the routines MUTSMP for
BC of type (1.2) and MUTSMI forBC oftype (1.7) or (1.8).

2. Global description of the algorithms

We shall consider the multipoint and integral case separately.

2.1 BVP with multipoint BC

As mentioned in § 1, multiple shooting is used on each interval [Cli • Cli+l] to compute a
fundamental solution and a particular solution. Each interval [Clj • Clj +11 is divided into say
Nj-l subintervals. To simplify the notation we shall use a local index j to describe them; Le.
let the interval [Cli ,Clj+I] be split up into subintervals [tj_l, tj], j =2, ...• Nj. tl =Clj and

tN, =ai+l.

Like in the algorithm described in [3] for two-point BVP, fundamental solutions Fj (Cli , t) and

particular solutions Wj(Clj ,t) are computed such that:

where the Qj+I(i) are orthogonal and the Uj+l(i) upper triangular and Wj(Cli ,tj)=O. (Here we
identify F l(Clj ,Clj) with F (Clj ,Cli) and WI(Clj • Clj) with W(Clj ,Clj ».
For the solution x(t) we have:

from which the following upper triangular recursion for the aj (i) is obtained:

where

Now assume that {¢>j(i)}~l is a fundamental solution of (2.3) and {Zj(i)}~l a particular
solution. Then for some vector Cj we should have:

40

CH.IV,2

By matching at the points O:i we obtain a recursion for the {q} in the usual way. So for the
solution of the BVP at the switching points 0: .. 0:2, ... , <x'iI+t we have:

and

Substituting (2.6) in the BC gives a BC for the sequence {ciJ!'!} (cf. (l.4b» viz.

Denoting:

(2.8a) Mi =Mj Qt(i)<Pt(i) i=I, ... , m-l,

(2.8b) Mm =Mm Qt(m)<l'>l(m) + Mm+l QN .. (m)<PN.,(m).

(2.8c) llj = <l'>N,(i). i =1, ... , m-l •

we obtain the linear system:

(2.9a) Ac=q.

where

41

CH. IV;!.

nl -OZ

(2.9b) A=
nm-l -Om

MI Mz . Mm-l Mm

Remark 2.10

In the case the ODE (1.1) is homogeneous, i.e. ret) = 0, tE [a, ~], the computation of
panicular solutions is skipped. Then (2.2), (2.3), (2.5), (2.6) have to be replaced by:

(2.2)'

(2.3)'

(2.5)'

(2.6a)'

(2.6b)'

respectively.
Moreover, the vector 6 in (2.7) equals b and the vector q in (2.9a) becomes:

q = [OT, OT , ... , OT, bT]T.

2.2 BVP with integral BC

When we have a BC like (1.7) the situation becomes more complicated in two ways: First,
there are no natural candidates for switching points and second we need to use a quadrature
formula to implement the integral conditiion practically.

By using a marching technique and orthogonalisation after a fairly small number of
gridpoints, cf. (2.1), we have a means to check the growth behaviour of the various modes.
When a change is noted at such a minor shooting point, we basically choose it as a switching
point (the refinement of this idea is discussed in §3.2).
A more complicated problem is to discretise the BC. Assuming we have a quadrature formula
of appropriate order (Le. compatible with the integrator of the ODE), we determine
approximations

Ij+1 •

(2.11) J M(t)Fj(aj,t)dt =Mj(i)
)

42

I j +l •

(2.12) J M(t)wj(t)dt = v/i)
J

In discrete form the BC then results in

(where we use the same notation for indices as in §2.1)
By substituting (2.5) in (2.13) we find the multipoint BC

If we denote

eH. IV,2

and IIi> nj, qj as in (2.8c,d,e), then we end up with a system like (2.9a,b) for the unknown
vectorc.

3. Special features of the methods

The actual computation of the solutions F «lj ,t) and W «lj , t) on each interval is basically the
same as described in [§II.3], i.e. the algorithm uses the adaptivity feature for the integration of
the particular mode only. It also uses the decoupled form of the recursion (2.3) for the
computation of <l>j(i) and Zj(i). Below we summarize some more aspects.

3.1 Computation of the <l>J(i)

As was shown in [l] a well conditioned multipoint boundary value problem is dichotomic on
each interval [(lj ,<li+l]' However, we basically should reckon with a different partitioning
integer kp (cf. §II.3.2), indicating the dimension of the nondecreasing solution space, on each
such interval. If we denote this integer at the i,k interval by k(i), then we know from [1] that
for well conditioned multipoint boundary value problems, k(i) is a non-increasing set, i.e.

k(l)~k(2)~ ... ~k(m). The fundamental solution (<f)j(i)}f,;l cf.(2.3) on the i'k interval is
then computed using the Be:

where the superscript refers to an obvious local partitioning involving the integer k(i).

43

CH.IV,3

Like in the two-point case there is, in general, no information available for choosing the
particular solution Wj(ai, t) in a special way. Hence Wj(<lt, tj) = 0 is a good one, simplifying
the formulae in (2.4)-(2.9) substantially. At t = al the algorithm initially chooses
Q 1(1) = F I(al , al) == I and checks the ordering of the diagonal clements of the first upper
triangular matrices Uj(1), computed after reaching the endpoint of a minor shooting interval.
If this ordering is found to be improper it performs a permutation of columns like in §II.3.3.
Arriving at t=a2 we have a complete freedom to choose F l(a2, (2). A very useful choice is:

Indeed, if the dichotomy is invariant on [al ,a3] we may proceed on [a2, a3] like we did on
the previous interval, thus computing an upper triangular recursion for the superposition
vectors aj(1) and aj(2) combined. By formally writing

we may the extend the recursion (2.3) for i == lover the index range j = 1, ... , N 1 +N2-1.
If QNP) is found not to be a good starting value on the interval [a2, a3] (for similar reasons

as the identity might be an improper starting matrix on [al , <l2]) a permutation of its columns
is carried out until some satisfactory ordering on the diagonal of the upper triangular malices
Uj(2) has been found. Since for well conditioned multipoint BVP, {k(i)}r:l is a non
increasing set. a permutation is carried out on the first k (i) columns of ~,(1) only.

Since the number of minor shooting intervals may be fairly large (cf. §II.4.2) assembling of
these into major shooting intervals causes an additional problem for integral Be.
By using the notation in §II.4.2 of Ws and Gs, we see that we may write

with WI == U 2(i), G J == d2(i).
Hence for I ~ Ni-l

(3.5)

Whether 1 may be taken as large as Ni-1 depends on max \I M j (OWj II. Indeed although Wj
J

I
may be found in a relatively stable way, forming the (partial) sum ~ Mj (i) Wj will invoke

I
errors of the order of I~ II Mj(i)1111 Wj II EPS (where EPS is the machine constant). Since we

expect II Mj(i)11 to be of a moderate size, the assembling to major shooting intervals should be
confined to cases where \I Wj II does not exceed the characteristic stability constant TOL I EPS
(TOL being the required accuracy).

44

CR.IV,3

3.3 Reduction of the system (2.9)

If the choice (3.2) is a proper one then we can identify eland C2 in (2.5). so the system (2.9a)

is of order (m -l)xn only. being of the fonn:

(3.6a) Ac=q

where

(3.6b) A=

and where we have denoted for short (L=N l+N 2-1) :

Bj =Mj • j = 3, ... , m •

Hopefully it will be clear how further reductions can be carried out now. Such a further
reduction may arise either from an even longer interval [(Xl, Cl.i], 1>3 where the dichotomy is
invariant or from an invariance on other consecutive intervals. In particular it may happen that
the order of the thus obtained matrix A is just n; in such a situation we virtually have reduced
the procedure to that of the two-point case.

Remark 3.7

Note that this reduction would make sense for integral BC as well (since assembling does not
increase the nonns of the BC matrices significantly), were it not that the sequential approach
(cf. (3.2» would also cause the II Wj II (cf. (3.4» to grow.

3.4 Special solution of the algebraic system (2.9)

Instead of solving the system (2.9) (or its condensed variant (3.6» by LU -decomposition, we
do the following: Rewrite the matrix A for simplicity as:

45

CH.IV.3

(3.8) A=

qT =[qf,qL ...• q~]

At the i Ih switching point interval, let k (0 be the partitioning integer, i.e. there are k (i)
increasing solutions at that interval. From [1] we know that (kCi)} is a non-increasing set, i.e.
we expect kO) ~ k(2) ~ ... ~ k(N-I) = keN).
In the recursion (cf. (2.9) and (3.7»

we have

(3. lOa)

where Rj~\ is a k(i) xk (i) matrix and the identity matrix I is of order n -k(i+l), and

(3. lOb) S, = [~ s~22l '
where Sj is a (n -k(i»x(n -kei» matrix and the identity matrix I is of order k(t).

We now like to solve (3.9) plus Be again by superposition. Since we do not have a uniform
dichotomy on [a,!)l we use a more refined fundamental solution {'¥iltf.l (cf. §3.1). By
assumption we let the partitioning depend on the index.

(3.11)
[
'Pll 'P12]

'Pi= 0 'P12 , 'Plloforderk(i).

(At i = N we have the same partitioning as for i = N -1)
At i = 1 we define:

and compute

(3.13a)

(For S?, the right lower block of S t. see (3.10», where 'fF has the same order as S? and
'f'?

46

Now compute 'P12 as follows:

(3. 13b) 22 [/1c(l}-k(2) 0]
'Pz- = 0 ..pp'

if k(l) > k(2) and 'P12 = 'fir2 otherwise.

and from this 'fi %2 etc .. In general we have

(3.14a) \fJ lZ} _ S .22 \lJ 22
T 1+ - 1 I, ,

(3.14b)

if k(l) > k(l+1) and 'PlJl = 'filJl otherwise.

At i=N we set

(3.15) ['PhIl 'f'~]=[h(N-1)10].

Then we have

(3.1~ ~N=[~ :pH~' !~1,

CH.IV,3

where 'fi~.l is oforderk(N -I), 'fi~ keN -1)x(n -k(N -1» and 'fiJil is of order n -keN -1)
(the latter already being computed in the forward sweep). Next we have

(3. 17a) 'f'~1 =RN I 'fi~+RN2'fiJil.

(3.17b) 'f'h~l =RN I 'fiJI.

And in general:

where 'Pfl is of order k(l) and 'fill is oforderk(i -1).
Then:

(3. 19a)

(3. 19b) \Illi
l

- R.1l \T~.1l
I , - - ,Tt ,

Note that this scheme to compute {'Pi} is a generalisation of the dichotomic case dealt with in
chapter II.

47

CH. IV,3

Finally we compute a particular solution {Pi}, which is done in a similar way as the
commputation of the fundamental solution. We start with

(3.20a) Pf =0 , p,J =0

(again the partioning here and below is local!). At each of the switching points where
k(i+I) < k(i) we add a sufficient number of zeros to obtain a larger second component vector,
so for i = 1, ... , N

(3.20b)

(3.2Oc)

~.21 '- S·22p .2 _ q.2 .
YI+ .- I I I'

P~l =Pi~l' ifk(i)=k(i+l),

P.~l = [p'~1]' if k (il > k(1 +1) •

i.e. the first k(i) - k(i+l) elements Ofpi~l are O.

At the backward sweep we typically compute

(3.2Od)

where Pi l is a vector of order k (i - 1).

(3.20e)

where qi!..1 represents the first k(i-l) elements of qi-!
The solution {c;} of (2.9) is then given by:

(3.21) Ci = 'I'i V + Pi ,

where the vector v can be found from:

(3.22) [I~ Tj 'I'j] v = ,; I~ Ti Pi

3.5 Conditioning and stability

Since multipoint problems are essentially more complicated than two-point ones, the
algorithm outlined before and - as a consequence - also its stability analysis is more difficult
As we already indicated, the homogeneous solution space is polychotomic , that is dichotomic
on each interval ((1.j, (1.j+l] and moreover such that non-decreasing basis solutions may
become non-increasing at one of the switching points at most. Since the algorithm is tuned to
monitor the particular dichotomy on each interval, it follows from arguments in § U.3.2 that
the recursion~ are used in stable directions only (that is if we assume well-conditioning, so
polychotomy cf. [1]). The only remaining problem then is the conditioning of the system in

48

(3.22), that is of the matrix W defined by

m •
(3.23) W := Y Mi 'Pi .

1~

One can show that in general, given m actually used switching points

(3.24) II w-111 S(m+l)CN,

where for a multipoint BC

(3.25a)

or for an integral BC

(3.25b)
~

CN := maJ). II F(t)[IM(t)F(t)dt]-111
IE la.Pl

CH. IV,3

with F (t) any fundamental solution. Note that (3.25) is a straightforward generalization of
(11.3.12) and is a measure for amplifications of perturbations in the BC. For stability with
respect to perturbations in the ODE as such we may monitor appropiate blocks of the upper
triangular matrices, just as in the two-point case, cf. chapter II.

4. Computational aspects

The routine MUTSMP basically uses the same strategy for computing the upper triangular
recursion on the intervals [<Xj,O;+l], i=l, ... ,m as the routine MUTSGE for two-point BVP (see
chapter II). Only the choice of the Ql(i) , i =2, ... ,m (that is the orthogonal value for
F (a.; ,0;» and the computation of the k-partitionings are different (see next section). The
computations of the {C;}[';,l is decribed in §3. Once knowing the Ci, the computation of the
solution at the ilk interval [<Xi. 0;+\] is the same as in the two-point case (see chapter II). The
routine MUTSMI computes a solution of a BVP with a mixed integral multipoint Be.

4.1 The computation of Q\(i)

On the first interval [<Xl, <xz] we do the same as in the two-point case, i.e. Q \(1) = I and if this
N

is not a satifactory choice, the columns of QI(1) are permuted such that diagonal(rl Uj(1» is
j='-

ordered. As a first choice forQ\(i), i = 2, ... , m we take (see §3.2)

Since the dichotomic character of the solution space may change at each switching point. it
may be necessary to carry out a permutation of columns of Qi(l). Anticipating that the

49

CH. IVA

problem is well-conditioned (i.e. the partitioning parameters satisfy k(i -I);?! k(O) no column
interchanges are necessary for the last n - k (i - I) columns. So an initial choice of Q 1 (i) is

N.
accepted if the first k(i-l) elements of diagonal(jlUj(i» are ordered; otherwise a

permutation of the first k (i - 1) columns of Q 1 (i) is carried out. At this stage the partitioning
parameter k(O is computed as the number of elements of the first k(i -1) elements of

Ni
diagonal(}] Uj(;» which are greater than 1 If no permutations are needed and k(i -1) =k(i)

then the two succesive intervals [<Xi-I> <Xi] and [<Xi, <Xi+d are assembled (see §3.2).
However, it is possible that. due to discretization errors, the computed k(i) does not
correspond to the proper partitioning. Therefore, after the above described procedure,
globally correct partitioning parameters are determined.

4.2 The computation of MJ(i) and wii)

One of the problems for integral BC is to obtain sufficiently accurate approximations for
Mj(i) and wj(i) (cf. (2.11),(2.12». that is such that their errors commensurate with errors
caused by discretizing the ODE. The simplest way to do this is to apply the same integration
formular for (2.11), (2.12) as used in RKF45: We apply RKF45 to the augmented particular
problems (cf. §2.1)

(4.2) f, [~~:'.:~] = [~~t~] /j(a;. t) •

with Fj(<Xj , t) = Qj(i), Mj(<Xi,t) = 0 and

(4.3) f, [~;i:::?] = [~~i)] Wj(tt,.t) {g)] ·
with Wj(<Xj,tj) = 0, v;(<Xj,tj) =0. One should note that this yields

As for other routines in this package, the adaptivity is used when computing Wj (<Xi, t) only.

4.3 Determination of switching points <Xt for integral BC

If we have integral BC (or a mixed integral multipoint Be) we do not know whether there are
switching points nor where they possibly are. In view of the delicate way we have to choose
the initial values of the fundamental solutions F (<Xj ,t), cf. §3.2, it is important to find a
balance between checking incremental growth and concluding that a switch in the dichotomy
patem has taken place.

50

CH. IVA

We start off with the strategy as outlined in §3.2. An output point is certainly chosen if the
I

accumulated sidepoint condition matrix. J~ Mj(l), cf.(3.5), is found to be larger than or equal

to TOLfEPS. or any time before, when user requested. Initially, the method finds a
partitioning k(1) at the first minor shooting point and basically updates this index. at each new
(minor) shooting point; if necessary a permutation is carried out to obtain a correct ordering.
For a switching point a;, 1 < i < m + I, we have: there is a mode which is growing on
[ai, a;] and is decreasing on [a; ,Om]. Using this property a minor shooting point t/, say, is

I
considered to be a switching point a;, say, if there is a diagonal element of Jl Uj greater than

2 and the same diagonal element of Ul+1 is less than 1. Here Uj is the incremental matrix of
the fundamental solution on the minor shooting interval [tj-l, tj]. Because a constant mode
may result in a diagonal element alternative greater then 1 and less than 1, due to
discretization errors, only modes with an incremental growth greater than 2 on [ai, CI.;] are
considered.
Anticipating polychotomy only the first k(i -1) diagonal elements have to be checked and a
permutation on the next subinterval [a; ,a;+I] should be restricted to the first kef) columns
only.

Note that there can be at most n switching point between al and Om+l.

4.4 Finding a globally correct partitioning

Although the algorithm tries to determine a correct partitioning parameter k(i) on each
interval [a; • ai+l], its resolution of the growth behaviour of the various modes may be fairly

small (e.g. if CI.;+l-CI.; is small) and/or it may be misled by non growing- non decreasing
modes. Since a normal (that is a well-conditioned) situation implies the existence of a non
increasing sequence (k(i)}, we need a check on this and - if this ordering turn out not to be
monotonic - an update. This is done by the following procedure:

step 1:

step 2:

step 3:

step 4:

step 5:

Compute on each interval [CI.;, a;+1], i = 1 •...• m, a partitioning parameter
Ni

k(i), where k(i) is the number of elements of diagonal(Jl Uj(i», which are

greater than 1.

Determine the lowest index I, where k(l) > k(l-l). lfno such index exists, goto
step 8.

Determine the lowest index j < I, where k U) < k (l).

Determine the index p > I, where
k(l) = k(l+l) = ... = k(P) ~ k(p+l)

Compute a global partitioning parameter k(l) say, for the interval [aj ,C/.p+!] by
checking the increments over [aj ,ap +1] in an obvious way, taking into account
the various permutations at the switching points.

51

CH.IV,4

step 6: The new updated sequence (k(i)}~l is defined as

[

k(i) i = 1, ... ,j-l,p+l, ... , m
k(O:= max(kJl),k(I» ~ : j, ... , 1-1

k(l) l-l, ... ,p

step 7: Go back to step 2.

step 8: The current sequence (k(i)}~l is correct.

With this procedure we get, at least theoretically, a good choice for the sequence of the k (i).
However, if the problem is not polychotomic also this procedure may not be satisfactory,
naturally, and a large amplification factor may result (as is to be expected of course).

4.5 The computation of stability constants

Since the algorithm computes fundamental solutions at (possibly "enlarged") switching
intervals, it does some bookkeeping of stability constants. The computations of the stability
constant eN (see §3.5) is a straightforward matter and its value can be found in ER(4). If in

N
(3.22) the matrix [I~ Ti 'Pi] is numerically singular a terminal error IERROR = 320 is given.

Concerning the "amplification factor", which is an estimate for the Green's functions. the
algorithm computes an estimate for this on each interval. Therefore the output value in ER(5)
is the maximum of such factors over the entire region. If the ampli fication factor is such the
the global rounding error is greater than the discretization error, a warning error. IERROR =
300, is given.

Remark 4.4

If the partitioning is incorrect, we may expect at least ER(5) to be "large". On the other hand,
due to the special way the algorithm tries to seck the appropiate partitionings, it should be
expected that a large value of ER(5) has to be attributed to the problem.

References

[1] F.R. de Hoog, R.M.M. Mattheij, An algorithm for solving multipoint boundary value
problems, Computing, 38 (1987) pp. 219-234.

[2] F.R. de Hoog, R.M.M. Mattheij, On the conditioning of multipoint and integral
boundary value problems, SIAM J. Math. Anal. 20 (1989) pp. 200-214.

52

CH.IV,4

[3] R.M.M. Mattheij, G.W.M. Slaarink, An efficient algorithm/or solving genereallinear
two-point BVP, SIAM J. Sci. Stat. Compo 5 (1984), pp. 745-763.

53

CHAPTER V

BVP WITH PARAMETERS

1. Introduction

Some ODE contain one or more parameters which are to be detennined along with the
solution. They can be described by the ODE

(1.1) %X(t) =L(t)x(t) +C(t)z + r(t) , as t S ~,

where L(t) is an n xn -matrix function, C (t) an n xl-matrix function (I ~ 1), x(t) and r(t)are
n -vector functions and z is a constant I-vector, the vector of parameters. Note the linearity in
x and z. (In the next chapter we shall consider ODE that contain products of x (t) and scalar z ,
so-called eigenvalue problems.) Since both x(t) and z are unknown, we need n +1 Be, which
we assume to be two-point Be of the following fonn:

where M a, M p are (n + I) X n -matrices, P a, P p are (n + I) X I-matrices, b% is an n -vector and
Bz is an I-vector. Since z is constant, the Be (1.2a) can also be written as

(1.2b) Max(a)+Mpx(~)+Mz z =b ,

whereMz =Pa+Pp.

We can augment (1.1) with

(1.3) ft z = 0 ,

thus having an ODE of order n + I :

The BVP (1.2a), (1.4) is actually a two-point BVP of order n +1, and can be solved using the
routines from chapter II. However, we rather like to preserve the lower-order fonn (1.1) and

55

CH. V.I

this requires some manipulations reminiscent of the multipoint case, chapter IV. In particular
the homogeneous problem may be skew polychotomic, i.e. have switching points where the
dichotomy splitting changes; here, however, the dimension of the subspace of non-decreasing
modes is increasing. As in the integral BC case these switching points are not known in
advance. Actually it can be shown that the parameter BVP is the adjoint of a suitable
integral/multipoint BVP, cf. [1].

In order to compute the solution of (1.1), (1.2), we apply a multiple shooting strategy as
before. Denoting the switching points as 0.1, ••• ,<Xm+l (0.1 = a, <Xm+1 = ~), then the following
three types of solutions are computed on each subinterval [ai, ai+l]:

(i) F (CXj , t), being a fundamental solution of (1.1);

(ii) Z (ai, t), being an n X I-matrix function satisfying

(1.5)

(iii) a particular solution w(CXj. t) of (l.I) for z = 0, Le. satisfying

(1.6)

It follows then that there exists a vector Cj such that

Matching at the switching points yields the following relation for the Cj:

and the BC

The relations (1.8), (1.9) constitute a linear system for the unknowns c 1, ... ,Cm and z; the
order of the matrix is m x n + I.
The algorithm discussed in this chapter has been implemented in the routine MUTSPA.

56

CH.V,2

2. Global description of the algorithm

As in the multipoint case, cf. §IV.2.1, we use multiple shooting with minor shooting points tj
on each interval [CJ.j ,CJ.i+l J. (So again the index j is local). We start the integration at t\ =CJ.l

with W1(CJ.t.t,)=O, F\(Clt.tl)=1 and ZI(CJ.ht\)=0. At the next (minor) shooting point tj+\

0=1, ... , Ni -1) we similarly choose Wj+l(Clt.tj+l)=O. Zj+l(CJ.t. tj+l) = 0 and the initial value
for Fj+l(CJ.htj+l) via

where Qj+l(1) is orthogonal and Uj+l(1) is upper triangular.
When, for j > 1 it is found that the growth of any of the various modes (as can be monitored
from the diagonal of the Uj(l» is changing from decreasing to increasing, a switching point
Cl2 is chosen and the marching is continued, etc.
On a general interval [Clj ,CJ.i+1] we have for suitable aj(i)

which gives the following recursion for the aj(i):

where

Let {cJ>j(i) If,!l be a fundamental solution of (2.3), {Yj(i) If,!l a particular matrix solution of

and {zj(i)l~l a particular solution of (2.3) with z = 0, then for some suitable vector Cj we
have

The sequence of vectors now can be found by matching at the points CJ.i and using the Be. We
find

57

CR. V,2

So for the BC we find

where

By finally denoting for i = 1, ... , m -1,

(2. lOa) 'Pi = <l>N(i) • .
(2. lOb)

(2.1Oc)

(2.1Od)

we obtain the linear system

(2. 11 a) Ac=q,

where

(2.11b) A=
'Pm-I -Om Dm_1

Ba. Bp Bz

58

CH.V.2

Remark 2.12

If no switching point is detected, Le. if m = 1, the matrix A simplifies to an (n +l)th order

matrix

(2. llb)' A = [8«+BI3I Bz J.

Remark 2.13

If the ODE is homogeneous. i.e. r (t) = O. t e [a. ~]. there is no need to compute the
particular solution of the ODE and the recursion. The expressions (2.3), (2.6), (2.7) and (2.9)
should then be simplified accordingly, cf. remark IV.2.10.

3. Special features of the method

Many special aspects that were described for the multipoint and integral BC case in chapter IV
also apply to the parameter problem considered in this chapter. They will be briefly indicated
below, along with some other ones.

3.1 Computation of the (f>j(i) and Yj(i)

It can be shown that a well-conditioned parameter problem is skew polychotomic, with a
dichotomic structure of the fundamental solution on each intClVal [<Xi, ai+1]. The dimension
of the non-decreasing solution space at [ai • <Xi +1], say ke~, forms a non-decreasing sequence,

i.e. k(1)::; k(2)::;' .. ::; kern). The fundamental solution {(f>j(l)}!!:\ is then found from (2.3)
using the BC

The particular matrix solution {Yj(i)}~\ is similarly computed using the decoupled form of
the recursion, cf. (2.5), and has the Be

(3.2) Y t (0 = 0; Y rJ. (i) = 0 . .
Note that Yfci) is an (n -k(l» x I-matrix and YrJ. (i) a k (i) x I-matrix . .

As before. the particular solution Wj(ai, tj) is chosen such that Wj (<Xi, tj) = O. Similarly, we
choose Zj(aj ,Ij) = 0.

59

CH. V.3

The computation of F 1 (at, t) is essentially the same as described in § IV. 3.2. If a change of k
partitioning is noticed (here such that the subspace of non-decreasing modes is increased.
rather than decreased as in the integral Be case) a new switching point a2 is chosen. As initial
value for F 1 (a2 , a0 we take

If QN P) is found not to be a good starting value on the interval [a2, t], t suficiently large, a

permutation of the last n -k(l) columns of QN1(l) may be carried out to obtain a more

appropriate ordering of the diagonal of the Vj (2); this is of course a strategy complementary
to the one outlined in §IV.3.2.

3.3 Special solution of the linear system (2.11)

The sparse system (2.11) is solved by a special technique in order to save both memory and
computer time. Instead of (2.11) we rather consider the augmented system. Define

Then we have for the augmented system:

(3.4a) A e = q,
where

Sl Rz t\ 41

(3.4b) A= ,c= ,q=
Sm-l Rm C/II-l 4/11-1

Bl Bm cm b

This linear system has the same structure as the linear system (1.3.7) which resulted from the
discrete BVP (1.3.5),(1.3.6). In fact applying multiple shooting to the two-point BVP

using the switching points aI, ...• am as shooting points and starting on each subinterval
[ai, <li+l] with a fundamental solution H (t), where

60

CH. V,3

[
II 0]

H(t) = 0 Qi(1)

would lead to the linear system (3.4). Note that (3.5) is equivalent to (1.1), (1.2) and 0.4).
Although the Sj and R j +1 in (3.4) have a special structure, we will solve (3.4) in a general way;
that is, we will consider the Sj and Ri+l to be full matrices. In this case system (3.4) is called a
general discrete two-point BVP, which can be written as

(3.6) Sj tj + Ri +1 ti+l = 4j+l, i = I, ... , m-I

For well-conditioned two-point BVP the solution space of the homogeneous problem is
dichotomic. In order to use the ideas outlined in chapter II for two-point BVP. we shall now
show how to transform Sj and Rj+l appropriately for use in a forward-backward algorithm.
Let Oland T 1 be orthogonal matrices such that

where V I is upper triangular. Then let 02 be an orthogonal matrix such that

where W 2 is upper triangular.
This process gives in general

(3.9) Sj OJ = Tj Vi ,

where Tj, OJ are orthogonal matrices and Vi, Wj+l are upper triangular matrices. Finally
define

(3.10) f · 1 - T·-I A. and e· - 0.-1 .c. 1+ - ''11 ,-, {;"

then we have the transformed system

(3.lla)

and aBC

(3.1Ib)

61

CH.V.3

If system (3.11) is well-conditioned. it is dichotomic. i.e. for some integer kp there exist a kp-
dimensional subspace of increasing solutions and an (n -kp)-dimensional subspace of non
increasing solutions. Moreover these two subspaces are disjoint. Using this property and
starting with a proper 0 1. we can compute a set of Vj and Wj+I for which the first kp columns
represent the subspace of increasing solutions and the last (n - kp) columns the subspace of
non-increasing solutions. Partitioning of the matrices and vectors results in

(3.l2a) W ·22 e·21 - V·22 e 2+f·2 J t+l 1+ - t , ,+.

(3. 12b) Wi~\ ej~l + Wj~1 ej~l = Vjll ejl + Vj l2 e? + /;~l •
which can also be written as

(3. 13a)

(3.13b)

where Wj~\, Vill are kp xkp-matrices, Wj~. Vj22 are (n -kp)x(n -kp)-matrices, ejI'/;~I are
kp-vectors and er-,ft+l (n -kp)-vectors.
Forward computation of (3. 12a) and backward computation of (3.12b) are stable. Hence the
obvious strategy for computing a fundamental solution {Si) f=t and a particular solution
(Pi }f=t of recursion (3.11) is to use (3.12a) in forward direction and (3.12b) in backward
direction. So for the particular solution {Pi} f=l we have the BC

(3.14) Pf =0 ,P':' =0.

Then P(- , i = 2, 3, ... , m, using (3. 13a), and Pil , i = m-l,m-2, 1. using (3.13b), is
computed.
For the fundamental solution we have the recursion

(3. 15a)

(3.15b)
and the BC

02 1 - (W.22)-1 V·22 02 '0,+ - ,+1 ,'0, ,

(3.16) Sf= [01l]; SJr = [110].

Now {S1Jf=2 is computed via (3. 14a) and {Sr }t=m-I is then computed via (3.14b).
The solution of (3.11) can be written as

(3.17) ej = Sj a + Pj, i = 1 , m ,

for some (n + 1)-vector a . Substituting (3.17) into (3.11 b) we have

from which a can be computed. Then the ei can be computed via (3.17) and then the Cj via
(3.10).

62

CH. V,3

Remark 3.19

In order to compute a solution of (3.13) in a stable way, it is necessary that the Wi~~ and the
Vill are nonsingular. Moreover the diagonal elements of (W a~)-1 V (2 and (Vil1)-lWi~\ should

be less than or equal to 1.

Remark 3.20

It is not necessary that the Wi~\ and Vj22 are nonsingular, Le. it is not necessary that all Si and
Ri+l are nonsingular. If the dichotomy induces a splitting such that the ViII and Wi~ are
nonsingular and [8191 + B~ em] is nonsingular. we still have a solution for the general
discrete BVP (3.5)

3.4 Conditioning and stability

As a BVP with parameters can be written as a two-point BVP (3.5), it is obvious that we have
for the condition number eN:

(3.21)

where H (t) is a fundamental solution of (3.5a), Moreover we have

For stability we have to investigate the (growth of) solutions between two successive
switching points; this is essentia1ly similar to investigating the recursion of the two-point
BVP, and recursions (3.11) or (3.13). For stability only the homogeneous part of a recursion is
of interest; for (3.13) the latter can be written as

(3.23a) e·21 - (W.22)-1 V·22e2 ,+ - ,:n ",

(3.23b)

Denoting E · l·-(W·22)-1 V22 B·-\ ·_(V.lI)-1 W.l 1 and ,+.- '+1 " ,+.-, 1+1

(3.24a)

(3.24b)

This is similar to the recursion derived from a two-point BVP and therefore the same formula
can be used to compute the amplification factor, cf. §II.3.4.

63

CH. V,3

Remark (3.25)

Note that the effect of accumulated errors as given in (U.3.22) depends on Bi:;\ and B{j.\ Ci+l

and not on B;+1 itself. So even if Wj~\ is singular and therefore B;+1 is not defined, Bi:;\ and
the quantity "B(•. \ Ci+l" are still meaningful.

4. Computational aspects

The routine MUTSPA basically uses the same strategy for computing the upper triangular
recursion on the intervals [<Xi .<x;+d. i = 1, ... ,m, as the routine MUTSGE does for two
point BVP (see chapter I). Only the choice of the Q \(0, i = 2, ...• m (that is the
"orthogonalized" F\(<x; • <Xi» and the computation of the k-partitionings are different. The
computation of the {Ci} f,!l is decribed in §3. Once knowing the Cj. the computation of the
solution at the i th interval [<Xi. <Xi+l] is the same as in the two-point case (see chapter II). In
the next sections we discuss how to find the switching points, the choice of Q 1 (i), how to find
a correct global partitioning and how to find a correct partitioning for the general discrete
two-point BVP (cf. system (3.11».

4.1 The computation of switching points

A well-conditioned parameter problem is skew polychotomic, that is the dimension k(i), say.
of the non-decreasing solution space on [<Xi • <Xi +1] forms a non-decreasing sequence, i.e.
k(l) S k(2) S' .. S k(m).
For a switching point <Xi. say. we potentially have a mode which is decreasing on [<Xl. <Xi]

and increasing on [<Xi. <Xm+l J. Using this property a minor shooting point, t[say. is considered
[

to be a switching point ai. say, if there is a diagonal element of n Uj less than 0.5 and if the
j=~

same diagonal element of U/+l is greater than 1. Here Uj is the incremental matrix of the
fundamental solution on the minor shooting interval [tj-l • tj J.
Because a more or less constant mode may result in a diagonal element fluctuating around 1,
only modes with an incremental growth less than O.S on [al • t,] are considered.
Anticipating skew polychotomy, only the last n -k(i) diagonal elements have to be checked;
there are at most n switching points between <Xl and <Xm+l. i.e. m S n + 1.

4.2 The computation of Q l(i)

On the first interval [al • <X2] we do the same as in the two-point case, i.e. Q 1(1) = I and if this
is not a satisfactory choice, the columns of Ql(1) are permuted such that diagonal U2(1) is
ordered. As a first choice for Q 1 (i). i = 2, ... , m. we take

This choice is satisfactory if the diagonal of the incremental matrix V 2(i) of the fundamental
solution on the first minor shooting intcrval on [ai • <Xi+l 1 is ordercd. Otherwise the columns

64

CH. VA

of Q to) are permuted such that the diagonal of IV 2(i ~ is ordered. At this stage the
partitioning parameter ki is computed as the number of diagonal elements ofl V2(i~ which are
greater than 1.
Although this stategy results in a set of actual switching points and an increasing sequence of
k-partitioning parameters ke~, it is possible that, due to discretization errors, the computed
k (i) does not correspond to the proper partitioning. Therefore, after the above described
procedure, globally correct partitioning parameters are determined.

4.3 Finding a globally correct partitioning

Although the algorithm tries to detennine a correct partitioning parameter k(O on each
interval [<Xi ,(X.i+l], its resolution of the growth behaviour of the various modes may be fairly
small (e.g. if (X.i+l-<Xi is small) and/or it may be misled by non-growing non-decreasing
modes. Sinee a nonnal (that is a wen-conditioned) situation implies the existence of a non
decreasing sequence {k (i)}, we need a check on this and - if this ordering turns out not to be
monotonic - an update. This is done by the following procedure:

step 1:

step 2:

step 3:

step 4:

step 5:

step 6:

step 7:

step 8:

Compute on each interval [<Xi, (X.i+d, i = 1, ..• , m, a partitioning parameter
Ni

k(i), where k(O is the number of elements of diagOnalCll Uj(i», which are

greater than 1.

Detennine the highest index I, wbere k (I) > k (1 + 1). If no such index exists,
goto step 8.

Detennine the highest index j > 1. where k (j) < k (I).

Detennine the index p < I , where
k(l) = k(l-I) = ... = k(P) ~ k(P-l).

Compute a global partitioning parameter tel) say, for the interval [Clp • Clj+l] by
checking the increments over [CJ.p ,<lj+l] in an obvious way, taking into account
the various pennutations at the switching points.

The new updated sequence {k 0) } l!l is defined as

[

k(i) ,i=I, ... ,p-l,j+l, ... ,m
k(O:= max(k.co.k(l» ,~:I+I, ... , j

k (1) • l - P , ... , 1

Go back to step 2.

The current sequence {k (i)} l!1 is correct.

With this procedure we get, at least theoretically. a good choice for the sequence of the k (i).
However, if the problem is not skew polychotomic also this procedure may not be
satisfactory, naturally, and a large amplification factor may result (as is to be expected of

65

eH. vA

course).

4.4 The computation of Oland kp of system (3.6)

Generally there is no information for choosing 0 J, so we start with 0 I = I and compute a V t
and a W 2. If the diagonal of W 21 V 1 is not ordered, the columns of 0 1 are permuted such that
the diagonal of W 21 V 1 is ordered. The k -partitioning (kp) is defined in a similar way as in the

two-point B VP case, Le. kp is equal to the position of that diagonal element of W 21 V 1 which
is the smallest one (in absolute value) being greater than L However, this kp may not be the

globally best one for the recursion. Therefore a global check of the increment fj WJ+\ Vj is

made. If the ordering of this product is not found to be satisfactory, a global reordering is
performed using permutation matrices according to this.
The question remains what to do when some of the Wi+l or Vi arc singular. There still may be
a stable solution (see §3.4) if the singularity of Wi+l occurs in the kp xkp left upper block of
Wi+l (Le. Wi~\) and if the singularity of Vi occurs in the right (n -kp) x(n -kp) lower block
of Vi (Le. V j22). Therefore each zero diagonal element of Vi and Wi+t will be given the value
of the machine constant (Le. the value of ER(3». If there is a proper dichotomy this will
result in a correct global partitioning. If there is no proper dichotomy this will result in either a
large amplification factor or either a numerically singular Vitt or Wi~1. In the latter case a
terminal error IERROR=315 is given.

4.5 The computation of the stability constants

Since the algorithm computes fundamental solutions at switching intervals, it does some
bookkeeping of stability constants. The computation of the condition number eN (see §3.5) is
a straightforward matter and its value can be found in ER(4).
Concerning the "amplification factor", which is an estimate for the Green's functions, the
algorithm computes an estimate for this on each interval and also for system (3.11). The
largest of these values can be found in ER(5)

Remark 4.2

If the partitioning is incorrect, we may expect at least ER(5) to be "large". On the other hand,
due to the special way the algorithm tries to seek the appropriate partilionings, it should be
expected that a large value ofER(5) has to be attributed to the problem.

66

CH. V,4

References

[1] R.M.M. Maltheij, On boundary value problems for ODE with parameters,
EQUADIFF, Differential Equations (C.M. Dafennos ct al., cds.), Marcel Dekker
(1989). 481 - 489.

67

CHAPTER VI

ODE WITH DISCONTINUOUS DATA

1. Introduction

In the preceding chapters we descibed BVP for which the right-hand side of the ODE and the
solution were both continuous with respect to the independent variable. In this chapter we will
consider BVP for which the solution or the right-hand side of the ODE is discontinuous at
certain points.
Let a = al < al < ... < <Xm+l = ~ be switching points. Consider the ODE

(1.1) !X(t)=Lj(t)x(t)+r;(t), aj'5.t<<Xi+l,i=l, ... ,m,

where the Li (t) are bounded continuous n x n -matrix functions and the 'j (t) are bounded
continuous n -vector functions.

For a solution x(t) of (1.1) we define:

Although the ODE (1.1) is discontinuous at al, ... , t:Y..m, there are continuous solutions of
(1.1). For specifying a discontinuous solution of (1.1) at <X2, ••• , am, we need side conditions
at a2 •...• <Xm, which have the form

(1.3) Zrx(<xf) +Ztx(at) = bi , i =2 •.... m,

where Zr, Zi+ are n x n -matrices, bi an n -vector.
These side conditions are completed by a (multipoint) BC, i.e.

where the M j are n x n -matrices and b is an n -vector.

69

CH. VI.I

Two cases can be distinguished for the side conditions:

i) jump conditions at O:i • like

[
Ip 0] [/p 0] [Si] (1.5a) 0 I,,_p x(o:f) = 0 I,,_p x(o:t) + 0 • Si :t. 0 .

E.g. if both Zr and zt are nonsingular. we have a jump condition.

ii) internal boundary conditions at O:i. like

[
Ip 0] [0 0] lSi] (1.5b) 0 I,,_p x(o:f) = 0 I,,_p x(o:t) + 0 ' Sj:t.O.

Jump conditions just make the solution discontinuous and are not genuine BC, whereas
internal BC in part determine the solution locally.

As in chapter IV. we compute fundamental solutions F (<Xi. t) and particular solutions w (<Xi. t)
consecutively on the intervals [O:i • «i+l] and try to determine the vectors Ci in

(1.6) x(t)=F(<Xi,t)cj +w«l;,t). (l; St SO:j+l.

The major difference with both the two-point and the multipoint case is that we have to use
the side condition 0.3) at t = O:j. j = 2, ... , m. instead of employing continuity there as
before. This gives for i = 1, ...• m -1.

Together with the BC (cf. 0.4»,

m-l A

(1.7b) Y MjF(O:i.o:f)Cj + [Mm F(«m.a,1;)+Mm+lF(<<m.<<m+l)]Cm =b.
~

where

We have a linear system to be solved for the unknown C b ... , Cm •

The algorithm described below has been implemented as the routine MUTSDD.

70

eH. VI,2

2. Global description of the algorithm

The basic part of the algorithm essentially follows the ideas outlined in chapter IV, i.e. it
determines minor shooting intclVals and assembles them into major shooting intervals.
Boundary points of such a major shooting intelVal are either user requested output points or
switching points; in contrast to the regular multipoint case, however, no assembly across a
switching point is being made.
Let us use the terminology of § IV.2 again: On each intelVal [CJ.; , ai+l] orthogonal matrices
Qj(i) and upper triangular matrices U/i) are computed. For the solutionx(t) we have

This gives the following recursion

Moreover, let {<I>j(i)}~ll and {Zj(i)}~ll be a fundamental and particular solution of (2.2).
Then for some vector Cj we have

At the switching points we have

(2.4a) x (at) = wl(ai, CJ.;+) + Q l(i) [z 10) + q,ICi) Cj] , i = I, ... , m •

Substituting (2.4) in (1.3), we obtain

(2.5) Ki Cj + Li+l Ci+l = qi , i = 1 •... , m -1 ,

where

(2.6a)

(2.6b)

(2.6c)

Substituting in (1.4) we obtain

71

m A A

(2.7) I~ Mj Ci =b ,

where

(2.8b)

(2.8c)

This gives the linear system

(2.9a) Ac = q,

where

(2.9b) A=

Kl L2

Km-l Lm
MI M2 .. Mm-l Mm

CH. VI,2

,c= q -, -

This system resembles the multipoint system obtained in (IV.2.9), but for a different form of
the blocks Ki, Li+l. as compared to fli. Oi+l there. In general Ki, Li+l are not upper triangular
and therefore we call systems like (2.9) a general discrete multipoint BVP. In the next section
we descibe how to solve these systems.

3. Special features of the methods

For most aspects we can refer to chapters II and IV. What is really different here is the
solution of the linear system (2.9).

72

eH. VI,3

3.1. Solution of the system (2.9)

There is no special structure for the Ki and Li+l in system (2.9). Moreover some of the Mi
may be singular. Therefore we will describe how to solve general discrete multipoint BVPs.
There is a strong similarity between discrete multipoint BVPs and continuous multipoint
BVPs. Therefore we can make use of the ideas of chapter IV.
Consider the recursion

and a multipoint BC

m+l
(3.tb) ~. MjXi. =b ,

l~ J

where Ai, Bi+lt Mj are n x n -matrices, Xi. gi+l, b are n -vectors and
l=il <i2< ... <im+l=N.
Recursion (3.1a) can be split up into m subrecursions:

where

A solution {Xj (I)} ~l of (3.2) can be written as

where Fil) is a fundamental solution of (3.2), Wj(l) a particular solution of (3.2) and at some
constant vector.
For I == 2, ... , m. we have Xi, == X I (I) == XNjl - 1). which gives the recursion for the al:

and a multipoint BC for the al:

(3Ab)

This system is similar to system (IV. 1.4). The ij can be considered as the discrete version of
the switching points of chapter IV. Similar to continuous multipoint BVPs we have that, if
the problem is well-conditioned. the problem is polychotomic, which means that recursion
(3.1) is polychotomic. so the subrecursions (3.2) are dichotomic and for the so called k
partitionings k (I) of the subrecursions we have

73

CH. VI.3

(3.5) k(1)~k(2)~'" ~k(m).

To compute a fundamental solution and a particular solution of the subrecursions (3.2). the
same method is used as in the case of discrete two-point BVPs (cf. §V.3.3). That is. the
recursions are transformed into appropriate upper triangular recursions and the fundamental
solutions and particular solutions are computed using the forward-backward algorithm.

Let {'Pj(I)}~l be the fundamental solution and {Pj(l)}~1 the particular solution of the upper

triangular recursion; let {0/l)}~1 be the orthogonal transformation matrices. Then for some
Cl we have

As the problem is polychotomic, the 0 1(1+1) are chosen such that

(3.7) OI(I+l)=ON,(l)PI.l=l ,m-l

where PI is a permutation matrix. which only permutes the first k(l) columns of ON/(l). where

k(l) is the k-partitioning of the llh subrecursion (3.2) (cf. §IVA.3).
Matching at the "switching points ij" and substituting (3.6) in the Be (3.tb). we obtain the
linear system for the Cl :

(3.8) Ac=q
where

ill -02

A=
ilm- 1 -Om

MI M2 . Mm-l Mm

cT = [cf, . ..• CJ;-l ,C~] qT = [qf, ... , q~-l ,b"T].

and for l = 1 •...• m - 1 •

ill = 'PN/(l).

ql =ON',l(l)Ol(l+l)P}(l+l)-PN,(l),

Ml =Ml Ol(l)'P1(l).

74

CH. VI,3

~ m
b =b - ~MJ Ol(l)Pl(l) -Mm+l ON.,(m)PN .. (m).

This system is similar to system (IV.2.9). The method for solving such systems is described in
§IV.3.4. Having the solution for the el, (3.6) is used to find the solutions Xj of (3.1).

3.2 Conditioning and stability

The condition number eN for BVP with discontinuous data is defined as follows: Let F (t) be
a fundamental solution of ODE (1.1) and let (G (i) } ~l be a fundamental solution of recursion
(1.7a), i.e. of the recursion

Define the matrix solution H (t) of ODE (1.1) as

(3.10) H(t) := F(t)G(i). ext 5,; t 5,; exft-I> i = 1, ... , m-1.

Then

(3.11)

Hthe ODE is polychotomic, we can choose the F(t) such that maJ). 1\ F(t)11 $1. For such an
IE 1a..\5]

F(t) we have

(3.12)

Conditioning of the discrete multipoint B VP (3.1) is similar to the conditioning of
(continuous) multipoints BVPs. Let {G(l) }t!.l be a fundamental solution of recursion (3.1a),
then the condition number eND is dermed as

If the recursion (3.1) is polychotomic, the G(i) can be chosen such that \I G(i)1I 5,; 1 and for
eND we have

7S

CH. VI,3

Remark 3.15

The right-hand side of (3.12) is the condition number of the discrete multipoint BVP (1.7).
Therefore the estimate of the eND of (1.7) is also an estimate for eN .

4. Computational aspects

The routine MUTSDD basically uses the same strategy for computing the upper triangular
recursion, the fundamental and particular solutions of the upper triangular recursion and the
k -partitioning on the intervals [at ,art-1], i == I, ... , m, as the routine MUTSGE uses for the
two-point BVP. As a first choice for the Q1(i) we use: Qt(l)=l, Q1(i+l)=QN,(i),

i == I, ... , m -1.
For the resulting discrete multipoint BVP, the routine MUTSDD basically uses the same
strategy for computing the upper triangular recursions of the subrecursions as is used for
discrete two-point BVP (see §V.3.3, §VAA). For the choice of the Ol(i) and the global k
partitioning basically the same strategy is used as in the case of multipoint BVP (see §IV.4.1,
§IVAA).

4.1 The computation of the stability constants

As an estimate for the condition number eN of the problem, we take the estimate for the
condition number eND of the discrete multipoint BVP. The algorithm for solving system
(3.8) delivers the matrix, from which the estimate is computed. If this matrix is singular a
terminal error IERROR==320 is given. The output value of ER(4) is the estimated value for
eN.
For each interval [at , al+1] i == 1, ... , m, an error amplification factor, which is an estimate
for the Green's functions, is computed. The output value of ER(5) is the maximum of these
amplification factors.
For the discrete multipoint BVP an error amplification factor, being the estimate for the
discrete Green's functions, is computed for each subrecursion. The output value of ER(6) is
the maximum of these error amplification factors.
If the value of ER(5) or ER(6) is such that the global rounding error is greater than the
discretization error, warning errors IERROR == 300 or IERROR = 305 are given.

Remark 4.1

If the partitioning on the intervals [at , aft 1] is incorrect, we may expect at least ER(5) to be
"large". If the partitioning of the discrete multipoint BVP is incorrect, we may expect at least
ER(6) to be "large". However, due to the special way the algorithm tries to seek the
appropriate partitionings, large values for ER(5) or ER(6) have to be attributed to the problem.

76

CH. VI,4

4.2 Internal Be

If there are internal BCs, then for some i either Z{t.l or Ziti is singular. and therefore either
Ki or Li+l is singular. In general. we may have singular matrices Ai or Bi+l in the discrete
multipoint BVP (3.1). If it is impossible to compute a fundamental and particular solution of
the subrecursions (3.2), because of a singu1ar Ai or Bi+l' a terminal error IERROR = 315 is
given.
On the other hand, realizing that an internal BC at ai+l should control only growing modes on
[at, ai+l] and an internal BC at at+l should control only decreasing modes on [at+l. tXi+z]
and the special way the algorithm tries to seek appropriate partitionings and fundamental
solutions. a terminal error IERROR = 315 should be attributed to the problem.

77

CHAPTER VII

EIGENVALUE PROBLEMS

1. Introduction

Consider the ODE

(1.1) frX(t ,'A) =L(t)x(t ,'A) + 'AK(t)x(t • 'A) ,a. ~ t ~ P,

where K (t) is an n x n -matrix function. Let a homogeneous BC

(1.2) Max (a, 'A) +Mpx(P,'A) == 0

be given. Then (Ll). (1.2) is called an eigenvalue problem, where 'A is an eigenvalue and the
nontrivial solution x (t ,'A) an eigensolution. Formulated this way we obviously do not have
uniqueness of x (any multiple of x(t ,'A) is also an eigensolution). By viewing both x and 'A as
unknowns it can be seen that (Ll) is in fact a nonlinear equation for the "solution" (xT , 'Al,
despite the linearity in x. This makes it suitable for using a nonlinear BVP solver. We
augment (1.1) by the simple equation j.. = 0 and (1.2) by fixing the solution x (t ,'A) somewhere
(thus making it unique). Here we shall use a method based on successively computing
approximations found from integrating (1.1) with a fixed (though recursively updated) A. Let
in the neighbourhood of the eigenvalue 'Ae , F (t, 'A) be a fundamental solution of (1.1). Then
any solution x(t ,'A) can be written as

(1.3) x(t,A)=F(t,'A)c('A).

for c('A) E IR".
After substitution of this in the BC (1.2) we should have for Ae :

(1.4) R('Ae)c('Ae) =0,
where

Apparently, for an eigenvalue 'Ae we should have that R('Ae) is singular. By applying an
iterative rootfinding algorithm to the latter property we can employ the type of multiple
shooting approach of chapter II to (1.1), having only a nonlinear algebraic problem via R ('A).
It should be realized that (1.1), (1.2) can constitute a very complicated problem, potentially:
the eigenvalue Ae can be multiple. If this multiplicity is only algebraic. the method below is
certainly not necessarily reliable; if the multiplicity is geometric, then it may give results

79

CHVU,l

under special circumstances only.

The algorithm decribed in this chapter is implemented in the routine MUTSEI.

2. Global description of the algorithm

Our algorithm will be based on two ideas: in the first place a method to detennine an
approximate solution manifold and in the second place a nonlinear scalar solver. Assume for a
given value A, F (t , A) has been obtained using a multiple shooting approach with decoupling.
Rather than using a classical way of updating A, based on zeroing det(R (A» (see (1.5» we
shall use appropriate infonnation from the singular value decomposition

(2.1) R (A) = U (A) l:(A) VT (A) ,

where U (A), V (A) are orthogonal matrices and l:(A) is a diagonal matrix with semi-positve
diagonal entries OI(A), ... , all (A), where

Since the number of (numerical) nonzero singular values is equal to the (numerical) rank of
R (A), it follows that (aiming initially at a rank: (n -1) matrix R (Ae» it makes sense to use

on (A) as a function of A that should be zeroed. Realizing that all (A) might be a complicated
function we use an interval method applied to

(2.3) peA) := sgn (det(R (A») all (A) .

The factor sgn(det(R (A))) is employed to make sure that peA) switches sign at least once (in
the case of a single eigenvalue). Note that a lower and an upper bound for Ae has to be
supplied. An advantage of an interval method is that the iteration can be stopped when
sufficient accuracy has been achieved, viz. by controlling the interval width via a tolerance
parameter.
Given a single eigenvalue Ae, a solution x (t ,Ae) can be found directly using VII (Ae), the last
column of V (Ae), i.e.

For multiple eigenvalues the iteration function (2.3) cannot be guaranteed to work
satisfactorily. Moreover, if the numerical rank of the null-space of R (Ae) is larger than ooe,
say I, an eigensolution may be any linear combination of the solutions F (t. Ae) Vj (Ae), with
j = n • n - 1, . . . , n -I + 1, where v j (Ae) denotes the singular vector in V CAe) corresponding to
OjCAe).

80

CHVll,2

Remark 2.5

For quite a few Stunn-Liouville problems the homogeneous system (Ll) does not have
strongly increasing or decreasing modes, but rather rapidly oscillating ones. Consequently,
although instability, caused by growth of certain modes, is not a likely problem, sufficient
accuracy may be a problem as this oscillation requires very many grid points.

3. Special features: conditioning

Usually an iteration is perfonned on det(R (A)). Although it is undeniably true that
det(R (A)) = 0 whenever A is an eigenvalue of the problem, one should realize that det(R (A))
is the product of eigenvalues of the matrix R. If some of these are very large (in magnitude)
or behave erratically in a neighbourhood of I.e, the iteration may be far from efficient, or even
lead to a numerically unsatisfactory result. On the other hand, it is not unrealistic to use the
sign of R (A) as a mean to detennine on which side of the "zero" Ae we are wotking. This fact,
combined with the robustness of a singular value decomposition (and in particular the
measure for singularity as indicated by the magnitude of 0/1 (A), cf. [2]) make the iteration
function p(A) to be our favorite. Below we shall give a pertubation analysis.

Let the BC (1,1) be perturbed by small matrices oMa. oMp. Then we obtain a perturbed
matrix R (Ae) + oR (I.e), where

(3.1) R(A) + oR (A) = (M a + oM ~F(o.,A) + (MI3 + 8M(3)F (\3, A).

Note that [R (ie) + 0 R (ie) 1 being singular in general means ie :f:.Ae and F (t , ie):f:.F (t , I.e).
However, given enough regularity with respect to A, we may say that

(3.2) OR (ie) ::: oM aF (a, Ae) + oM ~ (\3, Ae) .

Due to the nonnalisation of the fundamental solutions (as we computed them via the
algorithm of chapter II) it follows that

(3.3) 118R(ie)1\ ~II oMall +11 OMp" .

Moreover, from what we just said we may assume that R (ie) + 0 R (ie) ::: R (Ae) + 0 R (ie).
By ordering the singular values of the latter perturbed matrix in decreasing order (as for
R (Ae» it follows that they differ from the corresponding singular values of the unperturbed
R(Ae) by II oR(ie)II at most. It can also be shown that the perturbation ofvn(Ae) (cf. (2.4» in

the direction orthogonal to v is ::: II 0 R (ie)" (given multiplicity 1). Hence, as a measure for
01l-1(:1'e)

the condition number we shall use

This is a meaningful estimate of the "condition number"

81

(3.5) eN := m~xll F (t ,'}..e) [R (Ae)]+11 ,

where [R ('}..)]+ is the pseudo-inverse V ('}..) 1:+(A.) U T ('}..)

(D('}..) = diagonal(0-1 ('}..), ••• ,O'n-I('}..).O).

CHVII,3

Note that this "condition number" is a straightforward analogue of that defined in (2.3.12). If
the null-space of R ('}..e) is of rank larger than one. the condition number is apparently infinite
(or very large, if it concerns the numerical rank). However. for geometrical multiplicity
I, I > 1, it was remarked in §2 that the potential eigenspace was of rank l. Hence the
condition number estimate should then read

(3.6) K := [an-I (Ae)]-1 ,

being an obvious upper bound for (3.5) with appropriately defined [R ('}..e)]+.

4. Computational aspects

The routine MUTSEI basically uses the strategy employed in MUTSGE. The extra feature is
the use of the nonlinear solver ZEROIN.

4.1 The use of ZEROIN

A reliable method for approximately detennining the zero of a nonlinear function, for which
an interval is given where it has opposite signs at the endpoints. is usually based on the secant
method (or something alike) stabilized with bisection. A successful implementation of this
idea is the routine ZEROIN, cf. [1]. This routine is used to "solve" p('}..) =0, cr. (2.3). Hence
the user should supply two (interval end-) points Amin and Amax. where he presumes that
p(Amin) x p(AmaJ < O. If, after evaluation of p(AmW and p(AmaJ the routine detects that this
assumption is violated, a tenninal error is given, with the actual value of p being printed.
From this a better idea of suitable points Amin and Amax might be obtained in order to restart
the routine.

4.2 Accuracy of the result

Since the integrator is working with tolerances given in ER(1) and ER(2), one cannot expect -
in general- that the eigenvalue is obtained with significantly higher accuracy than ER(2).

4.3 The solution space

As decribed in §2 we may have an eigenspace of dimension> 1. In this case the algorithm
may fail. Our iteration function p('}..) is implicitly assuming that deteR ('}..» is changing sign at
'}..e. which may no longer be true for (algebraic) multiplicity> 1. Nevertheless, given the
absolute tolerance ER(2), all singu1ar values smaller or equal to this value are considered to be

82

CH VIl,4

zero. When this number turns out to be larger than 1, a more-dimensional space of basic
solutions is given, ef. the discussion in §3.4.2.

References

[1] J.C.P. Bus, T.J. Dekker, Two efficient algorithms with guaranteed convergence for
finding a zero of a function, Mathematical Centre, report NW 13n4, Amsterdam
(1974).

[2] RM.M. Mattheij, F.R de Hoog, On non-invertible boundary value problems,
Numerical Boundary Value ODEs (U. Ascher, R Russell, eds.), Birk:hiiuser (1985),
55-76.

83

CHAPTER VIII

SPECIAL LINEAR SOLVERS

1. Introduction

Using multiple shooting techniques to compute approximate solutions of linear B VPs, results
into solving sparse linear systems, as decribed in the preceding chapters. These sparse linear
systems can be considered as general discrete B VPs. Three sparse linear systems can be
distinguished:

i) Linear systems resulting from two-point BVPs.

ii) Linear systems resulting from multipoint BVPs.

iii) Linear systems resulting from two-points BVPs with parameters.

For these three cases we have the routines SPLSl, SPLS2 and SPLS3, respectively.

2. General discrete BVPs

In this section we will descibe the three types of discrete BVPs.

2.1 General discrete two-point BVPs

Consider the sparse linear system

(2.1) Ax =b.
where

AI B2 XI gz

A= ,x= ,b=
AN~I BN XN-I gN

MI MN XN b

Here Ai, Bi+1 are (full) n x n -matrices. M h MN are n x n -matrices, Xi, gi+h b are n -vectors.

85

CH. VIll,2

Writing problem (2.1) in a recursive way. we have to consider the recursion

and aBC

(2.2b)

The method for solving this type of linear system is described in §V.3.3 and is implemented in
routine SPLS 1.

2.2 General discrete multipoint BVPs

Consider the sparse linear system

(2.3) Ax= b,
where

A= ,x= ,b==
Xm-l

Xm

Here Ai, Bi+1 are (full) n x n -matrices, M J, ••• ,Mm are n x n -matrices. Xi, gi+l> b are n
vectors.
Writing problem (2.3) in a recursive way we have to consider the recursion

and a multipoint BC

k
(2.4b) > Mi. Xi· ==b,

J~ J J

where 1 == i 1 < i2 < ... < ik = m. Le. Ml = 0 if I '# ij. j = 1, ... , k. (Here we have taken into
account that some of the Mi are 0.)
The ij can be considered as the discrete version of the switching points of the continuous
multipoint BVP.
The method for computing an approximate solution is decribed in §VI.3.1.
For discrete multipoint BVP we have the routine SPLS2.

86

CH. VIII,2

2.3 General discrete two-point BVP with parameters

Consider the sparse linear system

(2.5) Ax=b
where

A=

xT = [xL ... ,Xli-I, xli,zT], bT = [gf, . .. , gJi,bI'bJ],

Ai,8i+1 are (full) n x n-matrices, Di+l are n x I-matrices, M 1> MN arc (n+l)x n -matrices, M z

is an (n + 1) x I-matrix, Xi, gi+h bx. are n -vectors and z, bz are I-vectors.

Writing system (2.5) in a recursive way we have to consider the recursion

(2.6a) Ai xi + 8i+1 Xi+l + Di+1 Z = gi+1o i = 1, ... , N -1 ,

and aBC

The I-vector z can be considered as a vector of I parameters. The method for computing an
approximate solution of (2.5) is described in §V.3.3.
For discrete two-point BVPs with parameters we have the routine SPLS3.

87

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

BOUNDPAK

Numerical Software for Linear
Boundary Value Problems

Part Two

by

R.M.M. Mattheij and G.W.M. Staarink

EUT Report 92-WSK-01
Eindhoven, February 1992

Department of Mathematics and Computing Science

Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven, The Netherlands

ISBN 9038600224

ISSN 0167-9708

Coden: TEUEDE

CONTENTS

PART TWO

CHAPTER IX Documentation 1

1. Introduction. 1
2. Subroutine MUTSGE 3
3. Subroutine MUTSPS 13

4. Subroutine MUTSSE 23
5. Subroutint MUTSIN 33
6. Subroutine MUTSMP 43
7. Subroutine MUTSMI 53
8. Subroutine MUTSPA 63
9. Subroutine MUTSDD 73
to. Subroutine MUTSEI 85
11. Subroutine SPLS 1 93
12. Subroutine SPLS2 101
13. Subroutine SPLS3 111
14. Error messages 119
15. Names of subroutines in BOUNDPAK 127

CHAPTER IX

DOCUMENTATION

1. Introduction

BOUNDPAK is a package containing Fortran '77 subroutines for solving linear BVP, using
the algorithms which are described in the preceding chapters. There are nine subroutines for
various B VP of ODE and three subroutines for discrete B VP.
BOUNDPAK is desi!,'lled for non-stiff problems and uses a multiple shooting technique to
compute an approximation of the solution of the BVP at given output points.

The important subroutines of BOUNDPAK for the various types of problems are:

MUTSGE
MUTSPS
MUTSSE
MUTSIN
MUTSMP
MUTSMI
MUTSPA
MUTSDD
MUTSEI

SPLSI
SPLS2
SPLS3

for two-point BVP with general Be
for two-point BVP with partially separated Be
for two-point BVP with completely separated Be
for two-point BVP with Be at infinity
for multipoint BVP
for BVP with an integral Be
for two point BVP with paramcters
for BVP with discontinuous data
for eigenvalue problems

for discrete two-point BVP
for discrete multipoint BVP
for discrete two-point BVP with parameters

In §2 - § 13 the documentation of these subroutines is given, § 14 contains the list of error
messages and § 15 the names of all the subroutines in BOUNDPAK.

Remark 1.1

The subroutines require a value (or the machine constant EPS. In general the machine epsilon
is a suitable value for EPS.
However, in the case of a discrete BVP, the EPS is used to dctenninc whether a matrix is
singular or not, by checking the diagonal clements of the upper triangular matrix, obtained
from the QU-decomposition or the UQ-decomposilion. Due La rounding errors, the machine
epsilon might be too small to detect a singular matrix, which will result in an improper
partitioning and a rather large amplification factor. In such cases a multiple of the machine
epsilon will be a more suitable value for EPS.

For the machine epsilon we have the subroutine EPSMAC:
SUBROUTINE EPSMAC(EPS)
DOUBLE PRECISION EPS

On exit EPS contains the value of the machine epsilon.

Remark 1.2

CH. IX,l

In the dbcumentation of the suboontines an example of t.beir use is given. The progralllS for
these examples have been run OR an Olivetti M24 personal computer, operating under MS
DOS V2.11, using the Olivetti MS~Fortran V3.13 RI.O compiler and the MS Object Linker
V2.01 (large).

2

2. Subroutine MUTSGE

SPECIFICATION

SUBROUTINE MUTSGE(FLIN. FINH, N, IHOM, A, B, MA, MB, BCV, ALI, ER,

1 NRTI, TI, NTI, X, U, NU, Q, D, KPART, PHI, W. LW, IW, LIW, !ERROR)

C INTEGER N, IHOM, NRTI, NTI, NU, LW, IW(LIW), LIW, !ERROR

C DOUBLE PRECISION A, B, MA(N,N), MB(N,N), BCV(N), ALI, ER(5), TI(NTI),

C 1 X(N,NTI), U(NU.NTI), Q(N,N,NTI), D(N,NTI), PHI{NU,NTI), W(LW)

C EXTERNAL FUN, FINH

Purpose

MUTSGE solves the two-point BVP:

trX(t)=L(t)x(t)+r(t) , A $;t $;B or B $;t $;A ,

withBC:

MA x(A) +M8 x(B) =BCV

where MA and MB are the BC matrices and BCV the BC vector.

Parameters

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N. T. FL)
DOUBLE PRECISION T. FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L (t) of the
differential equation for t = T and place the result in the array FL(N,N).
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSGE
is called.

FINH SUBROUTINE. supplied by the user. with specification:

3

MUTSGE

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T. FR(N)

CH.IX,2

where Nis the order of the system. FINH tmlst evaluate the: vector r(t).,or the
differential equation for t = T and place the resnll.in FR(1). FR(2), ... , FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSGE
is called.
In the case that the system is homogeneous FINH is· a dummy and one can use
FLIN for FINH in the call to MUTSGE.

N INTEGER. the order of the system:
Unchanged on exit.

IHOM INTEGER.
IHOM indicates whether the. system·is homogeneous Of inhomogeneous.
IHOM = 0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

A,B DOUBLE PRECISION, the two boundary points;
Unchanged on exit.

MA,MB DOUBLE PRECISION array of dimension (N, N).
On entry: MA and MB must contain the matrices in the BC:
MAX(A)+MB x(B}=BCV.
Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
Unchanged on exit.

ALl DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2* ALI. a new output point is inserted.
If ALI ~ 1 the defaults are:
IfNRTI=·O: ALI := max(ER(l), ER(2» I (2*ER(3»,
if NRTI ~ 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.
On exit ALlcontains the actually used incremental factor.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(l) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

4

MUTSGE CH.IX,2

ER(1) := 1.d-12 + 2 * ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant EPS (see Remark 1.1)
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP.
On exit ER(5) contains an estimate of the amplification factor.

NRTI INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
I) NRTI = 0, the subroutine automatically determines the output points using the

allowed incremental factor ALI.
2) NRTI = I, the output points are supplied by the user in the array TI.
3) NRTI > I, the subroutine computes the (NRTI+ 1) output points TI(k) by:

TI(k) = A + (k-I) * (B - A)/NRTI;
soTI(l) = A and TI(NRTI+l) = B .

Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

TI DOUBLE PRECISION array of dimension (NTI).
On entry: if NRTI = 1 , TI must contain the required output points in strict
monotone order: A = TI(1) < ... < TI(k) = B or A = TI(I) > ... > TI(k) = B
(k denotes the total number of required output points).
On exit: TI(i), i = 1,2, ... , NRTI, contains the output points.

NTI INTEGER.
NTI is the dimension of n and one of the dimensions of the arrays X. U, Q. D,
PHI. When NOTI denotes the total number of output points then
NTI ;;::: max(5. NOTI + 1). If the routine was called with NRTI > 1 and ALI $ I, the
total number of required output points is (the entry value ofNRTI) + I,
so NTI ~ max(5, NRTI + 2).
Unchanged on exit.

X DOUBLE PRECISION array of dimension (N, NTI).
On exit X(i,k) , i=1,2, ... , N contains the solution of the BVP at the output point
n(k). k=l, ... , NRTI.

U DOUBLE PRECISION array of dimension (NU. NTI).
On exit U(i,k.) i=1,2, ... ,NU contains the relevant elements of the upper triangular
matrix Uk. k = 2, ... ,NRTI. The elements are stored column wise, the jth column
of Uk is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j. k), where oj = (j-l) * j
/2.

5

MUTSGE

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to N * (N+ 1) /2.
Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N.N, NTI).

CH.IX,2

On exit Q(ij,k) i = 1,2, ... , N. j = 1,2, ...• eN contains the N columns, of the
orthogonal matrix Qk, k = 1, ... , NR..TI.

D DOUBLE PRECISION array of dimension (N~,NTI).
If IHOM = 0 the array El has no real use and, the user is recommended, to use the
same array for the X and'the D;
IflHOM= 1 : on exit D(i,k) i = 1,2" ... , N contains lheinhomogeneous termdA;,
k = 1,2 •...• NRTI, of the mnltiple shooting recursion:

KPART INTEGER.
On exit KP ART oontains the global k -partition of the upperuiangular matrices Uk.

PHI DOUBLE PRECISION array of dimension (NU, NTI);
On exit PHI contains a fundamental. solution of the multiple shooting recursion.

The fundamental solution. is upper uiangular and is stored in the same way as the

Uk.

W DOUBLE PRECISION array of dimension (L W).
Used as work space.

LW INTEGER

L W is the dimension ofW.
If IHOM=O : L W ~. 8*N + 7*N*N ; if IHOM=l : LW ~ 9*N + 7*N"'N.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension ofIW. LIW ~ 4*N + 1.
Unchanged on exit.

!ERROR INTEGER

Error indicator; ifIERROR = 0 then there are no errors detected.
See § 14 for the other errors.

6

Auxiliary Routines

MUTSGE CH.IX,2

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAV, CDI, CNRHS,
COPMAT, COPVEC, CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP. FC2BVP,
FQUS, FUNPAR, FUNRC, GTUR, INPRO, lNTCH, KPCH. LUDEC, MATVC, PSR,
QEVAK, QEV AL, QUDEC, RKFlS, RKFSM, SBVP, SOLDE, SOLUPP, SORTD, T AMVC,
TUR, UPUP, UPVECP.

Remarlcs

MUTSGE is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991.

Method

See chapter II.

Example of the use of MUTSGE

Consider the ordinary differential equation

~X(t)=L(t)X(t)+r(t), OStS6

and a boundary condition M oX (0) + MNX (6) = C with

[

1 - 2cos(2t) 0 1 + 2Sin(2t)]
L(t) = 0 2 0

-1 - 2sin(2t) 0 1 + 2cos(2t)

[

(-1 + 2cos(2t) - 2sin(2t »e ,]
r(t)= -e'

(1 - 2cos(2t) - 2sin(t»e ' [

1 +e6j
, C = 1 +e6

1 +e6

The solution of this problem is: x (t) = (et , et • et)T.

7

MUTSGE CH.IX,2

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

DOUBLE PRECISION A,B,MA(3,3),MB(3,3).BCV(3),ALI,ER(5).TI(12),
1 X(3,12),U(6,12),Q(3,3,12),D(3,12),PHIREC(6,12),W(90),
2 EXSOL,AE

INTEGER IW(13)
EXTERNAL FLIN,FINH

c
C SETTING OF THE INPUT PARAMETERS
C

c

N=3
IHOM= 1
ALI=O
ER(l) = l.D-l1
ER(2) = l.D-6
CALL EPSMAC(ER(3»
NRTI=IO
NTI= 12
NU=6
LW=90
LIW=13
A=O.OO
B=6.00

C SETTING THE BC MATRICES MA AND MB
C

DO 1100 I = 1 , N
DOIOOOJ=l,N

MA(IJ) = 0.00
MB(I,J) = 0.00

1000 CONTINUE
MA(I,I) = 1.00
MB(I,I) = 1.00

1100 CONTINUE
C
C SETTING THE BC VECTOR BCV
C

C

BCV(1) = 1.00 + DEXP(6.DO)
BCV(2) = BCV(l)
BCV(3) = BCV(1)

C CALL MUTSGE
C

8

MUTSGE CH.IX,2

CALL MUTSGE(FLIN,FINH,N,IHOM,A,B,MA,MB,BCV,ALI,ER,NRTI,TI,NTI,

C

1 X,U,NU.Q,D,KPART,PHIREC,W,LW,IW,LIW,IERROR)
IF «IERRORNE.0).AND.(IERRORNE.2oo).AND.(IERRORNE.213).AND.

1 (IERROR.NE.3OO» GOTO 5000

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND
C WRITING OF THE SOLUTION AT THE OUTPUTPOINTS
C

WRITE(6,2oo)
WRITE(6,19O) ER(4),ER(5)
WRITE(6,21O)
WRITE(6,2oo)
DO 15OOK= 1, NRTI
EXSOL = DEXP(TI(K»
AE = EXSOL - X(1,K)
WRITE(6,220) K,TI(K),X(1,K),EXSOL,AE
DO 1300 1=2, N

AE = EXSOL - X(I,K)
WRITE(6,230) X(I,K),EXSOL,AE

1300 CONTINUE
1500 CONTINUE

STOP
5000 WRITE(6,300) IERROR

STOP
C
190 FORMATe CONDmONNUMBER = ',010.3.1,

1 'AMPLIFICATION FACTOR = ',D1O.3J)
200 FORMAT(, ')

210 FORMAT(, I ' ,6X, 'T' ,8X,' APPROX. SOL.' ,9X:EXACT SOL: ,8X,
1 • ABS. ERROR ')

220 FORMAT(, '.I3,3X.F7.4,3(3X,DI6.9»
230 FORMAT(, '.13X.3(3X,D16.9»
300 FORMATe TERMINAL ERROR IN MUTSGE: IERROR = ',[4)
C

C

C

C

END

SUBROUTINE FLIN(N,T,FL)

DOUBLE PRECISION T,FL(N,N)
DOUBLE PRECISION TI,SI,CO

TI= 2.00* T
SI = 2.00 * DSIN(TI)
CO = 2.00 * DCOS(TI)
FL(1,I) = 1.00 - CO
FL(1,2) = 0.00

9

MUTSGE CH.IX,2

FLO ,3) = 1.00 + SI
FL(2,1) = 0.00
FL(2,2) = 2.00
FL(2,3) = 0.00
FL(3,1) = -1.00 + SI
FL(3,2) :: 0.00
FL(3,3) = 1.00 + CO

C
RETURN

C ENDOFFLIN
END

C
SUBROUTINE FINH(N,T,FR)

C
OOUBLE PRECISION T,FR(N)
DOUBLE PRECISION TI,SI,CO

C
TI = 2.00 "'T
SI = 2.00 * OSIN(fI)
CO = 2.00 * OCOS(TI)
TI=OEXP(T)
FR(t) = (-1.00 + CO - SI)"'TI
FR(2) = - TI
FR(3) = (1.00 - CO - SI)*TI

C
RETURN

C ENDOFFINH
END

CONDITION NUMBER :: 0.1330+01
AMPLIFICATION FACTOR = 0.2210+01

I T APPROX. SOL. EXACT SOL. ABS.ERROR

1 0.0000 0.1000000010+01 0.1000000000+0 1 -0.1207565140-07
0.1000000010+01 0.1000000000+01 -0.1497546040-07
0.1000000010+01 0.1000000000+01 -0.1307191510-07

2 0.6000 0.1822118820+01 0.1822118800+01 -0.2309103550-07
0.1822118820+01 0.1822118800+01 -0.1861502860-07
0.1822118800+01 0.1822118800+01 0.2764792170-08

3 1.2000 0.3320116940+01 0.3320116920+01 -0.1629500000-07
0.3320116950+01 0.3320116920+01 -0.2997026720-07
0.3320116900+01 0.3320116920+01 0.2531908550-07

4 1.8000 0.6049647450+01 0.6049647460+01 0.1894478060-07
0.6049647520+01 0.6049647460+01 -0.5211540620-07

10

MUTSGE CH. IX,2

0.604964743D+Ol 0.6049647460+01 0.319208493D-07
5 2.4000 0.1102317630+02 0.I10231764D+02 0.450974791D-07

0.1102317640+02 0.1102317640+02 -0.360646266D-07
0.110231764D+02 0.l10231764D+02 0.539664380D-08

6 3.0000 0.200855369D+02 0.200855369D+02 0.7161649050-08
0.2008553690+02 0.2oo855369D+02 -0.169556351 D-07
0.2oo855369D+02 0.2008553690+02 -0. 136451952D-07

7 3.6000 0.3659823450+02 0.365982344D+02 -0. 159334164D-07
0.3659823450+02 0.3659823440+02 -0. 1925725OOD-07
0.365982344D+02 0.3659823440+02 -O.500945774D-08

8 4.2000 0.666863311D+02 0.66686331OD+02 -0.1930621000-07
0.6668633110+02 0.6668633100+02 -0.3134112700-07
0.6668633100+02 0.6668633100+02 0.1707719480-07

9 4.8000 0.1215104180+03 0.121510418D+03 0.1028886840-07
0.121510418D+03 0.121510418D+03 -0.5032746490-07
0.1215104170+03 0.1215104180+03 0.3725069670-07

10 5.4000 0.2214064160+03 0.2214064160+03 0.4896491750-07
0.221406416D+03 0.2214064160+03 -0.3608251830-07
0.2214064160+03 0.2214064160+03 0.2070527220-07

11 6.0000 0.4034287930+03 0.403428793D+03 0.1207570220-07
0.4034287930+03 0.4034287930+03 0.1497551240-07
0.4034287930+03 0.403428793D+03 0.1307211 05D-07

11

3. Subroutine MUTSPS

*********"'******
SPECIFICATION

"''''''''''" .. ,,'''*''''''''''''''''''*'''

SUBROUTINE MUTSPS(FLIN, FINH, N, mOM, KSP, A, B, MA, MB, BCV, ALI,

t ER, NRTI. TI, NTI, X, U, NU, Q, NQD, ZI, D, KPART, PHI, W, LW,

2 IW,LIW,IERROR)
C INTEGER N, IHOM, KSP, NRTI, NTI, NU, NQD, LW, IW(LIW), LIW, IERROR
C OOUBLE PRECISION A. B, MA(N,N), MB(N,N), BCV(N), ALI, ER(5), TI(NTI),

C 1 X(N,NTI), U(NU,NTI), Q(N,NQD,NTI), ZI(NQD,NTI), D(NQD,NTI),

C 2 PHI(NU,NTI), W(LW)

C EXTERNAL FLIN, FINH

"'**"'***"''''*'''*'''***
Purpose
"'**"'*"'**********

MUTSPS solves the two-point BVP with partially separated BC:

withBC:

f,X(t)=L(t)x(t)+r(t) • A!.t!.B or B!.t!.A.

IMA x(A)+ 1MB x(B)=BCVl
2MA x(A) + 2MB x(B) = BCV2

where IMA. 1MB are KSPxN BC matrices. 2MA, 2MB are (N-KSP)xN BC matrices and
either 2MA =0 or2M8 =0, BCVI an KSP BC vector and BCV2 an (N-KSP) BC vector.
Moreover, if KSP equals N. MUTSPS checks whether the BC are partially separated or not. If
not MUTSGE is used to compute the solution. otherwise a KSP < N is determined and the BC
are tran~formed such that the last N - KSP rows of either MA or M8 are zero.

*******"'''''''''''''****
Parameters
"''''*'''************

FUN SUBROUTINE. supplied by the user with specification:

SUBROUTINE FLIN(N. T. FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L (t) of the
differential equation for t = T and place the result in the array FL(N,N).

13

MUTSPS CH. IX,3

FUN must be declared as EXTERNAL in the (sub)program from which MUTSPS
is called.

FINH SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r(t) of the
differential equation for t = T and place the result in FR(l), FR(2), ... , FR(N).

FINH must be declared as EXTERNAL in the (sub)program from which MUTSPS
is called.
In the case that the system is homogeneous FINH is a dummy and one can use
FUN for FINH in the call to MUTSPS.

N INTEGER, the order of the system.
Unchanged on exit.

IHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

KSP INTEGER
KSP denotes the k-separation, i.e. the number of rows of IMA and 1MB
On entry:
if 0 < KSP < N the BC are partially separated and if on entry IERROR = 0, the last
N-KSP rows of MB are supposed to be zero. If on entry IERROR = 1, the last
N - KSP rows of M A are supposed to be zero.
If KSP = N, the routine checks whether the BC are partially separated or not. If not
MUTSGE is called to compute the solution. otherwise the BC are transformed
appropriately.
On exit KSP contains the used k-separation. (IfKSP = N we have general BC).

A,B DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

MA,MB DOUBLE PRECISION array of dimension (N,N).
On entry: MA and MB must contain the matrices in the Be:
MA x(A) +MB x(B) =BCV, where

14

MUTSPS CH. IX,3

If on entry 0 < KSP < N and IERROR = 0, the last (N - KSP) rows of MB are
supposed to be zero and if IERROR = 1 the last (N - KSP) rows of MA are
supposed to be zero.
On exit: if on entry KSP=N and the BC are found to be partially separated, MA and
MB will contain the transformed BC matrices. otherwise the MA and MB are
unchanged.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the Be vector; BCV=(BCVl, BCV2)T.
On exit: if on entry KSP=N and the BC are found to be partially separated, BCV
will contain the transformed BC vector, otherwise BCV is unchanged.

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two suceessive output points becomes greater than
2* ALI, a new output point is inserted.
If ALI:S;; 1 the defaults are:
IfNRTI = 0: ALI := max(ER(1), ER(2» / (2*ER(3»,
if NRTI > 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.
On exit ALI contains the actually used incremental factor.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into
ER(1):= l.d·12 + 2 * ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant EPS (see Remark 1.1).
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP.
On exit ER(5) contains an estimate of the amplification factor.

NRTI INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
1) NRTI = 0, the subroutine automatically determines the output points using the

allowed incremental factor ALI.
2) NRTI = 1, the output points are supplied by the user in the array TI.
3) NRTI > 1, the subroutine computes the (NRTI+ 1) output points TI(k) by:

TI(k) = A + (k-l) * (B - A) /NRTI;
so TI(1) = A and TI(NRTI+ 1) = B .

Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

15

MUTSPS CR. IX,3

TI DOUBLE PRECISION array of dimension (NTI).

On entry: if NRTI = 1 • TI must contain the required output points in strict
monotone order: A = Tl(1) < ... < TI(k) = B or A = TI(1) > ... > TI(k) = B
(k denotes the total number of required output points).
On exit: TI(i). i = 1.2, ... , NRTI. contains the output points.

NTI INTEGER.
NT! is the dimension ofTI and one of the dimensions of the arrays X, U, Q. ZI. D,
PHI.
Let NOTI be the total number of output points. then NTI ;;:: max(5. NOTI + 1). If
the routine was called with NRTI > 1 and ALI ~ 1. the total number of required
output points is (the entry value ofNRTI) + 1. so NTI ~ max(5, NRTI + 2).
Unchanged on exit.

X DOUBLE PRECISION array of dimension (N, NTI).
On exit X(i,k) ,i = 1,2, ... ,N contains the solution of the BVP at the output point
TI(k), k = 1, ... , NRTI.

U DOUBLE PRECISION array of dimension (NU. NTI).
On exit U(i.k) i = 1.2, ... , NU contains the relevant elements of the upper
triangular matrix Uk., k = 2, ... ,NRTI. The elements are stored column wise. the
jth column of Uk. is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j, k), wherenj
=(j-l)*j/2.

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to KSP '" (KSP + 1) /2.
Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N. NQD. NTI).
On exit Q(i,j,k) i = 1.2, ... , Nt j = 1.2, ... , KSP contains the N columns of the
orthogonal matrix Qk1, k = 1, ... , NRTI.

NQD INTEGER
NQD is one of the dimension of Q. ZI, D. NQD ~ KSP.
Unchanged on exit

ZI DOUBLE PRECISION array of dimension (NQD, NTI) If the BC are partially
separated the array ZI is used for storing the particular solution Zi, i = 1, ... , NRTI
of the multiple shooting recursion. Otherwise the array ZI is not used.

D DOUBLE PRECISION array of dimension (NQD, NTI).
On exit D(i,k) i = 1,2, ... , KSP contains the inhomogeneous term dk.},
k = 1,2, ... , NRTI, of the multiple shooting recursion.

16

MUTSPS CH.IX,3

KP ART INTEGER.
On exit KP ART contains the global k -partition of the upper triangular matrices Uk.

PHI DOUBLE PRECISION array of dimension (NU, NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.
The fundamental solution is upper triangular and is stored in the same way as the
Uk.

W DOUBLE PRECISION array of dimension (L W).

Used as work space.

LW INTEGER
LW is the dimension ofW. LW ~ lO*N + 6*N*N + N*KSP.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LlW INTEGER
LlW is the dimension ofIW. LlW ~ 3*N + KSP + 2.
Unchanged on exit.

!ERROR INTEGER
On entry IERROR is used as a type indicator for the BC.
If on entry 0 < KSP < N then
IERROR = 0 indicates that 2MB =0,
!ERROR = 1 indicates that 2MA =0.
On exit !ERROR is an error indicator.
If !ERROR = 0 then there are no errors detected.
See § 14 for the other errors.

"''''''''''''''''''''''''' *** ...
Auxiliary Routines
"''''''' ... "' ... '" "''''''' ... * "'

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAV, CDI. CNRHS,
COPMAT, COPVEC, CONDW, CQIZI, CROUT, CWISB, DEFINC, DUR, FCBVP,
FC2BVP,FQUS,FUNPAR,FUNRC, GOPBC,GTUR, INPRO,INTCH, KPCH, LUDEC,
MATVC, MUTSGE, MTSP, PSR, QEVAK, QEVAL, QUDEC, RKFlS, RKFSM, SBVP,
SOLDE. SOLUPP, SORTD, TAMVC, TUR. UPUP, UPVECP.

17

"''''*'''''''''''''''*''''''''''''**'''

Remarks

"'"'''''''''''''*'''*'''''''''''''''

MUTSPS

MUTSPS is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991.

"''''*'''''''''* * "'''''''''''''''''''*
Method

******"'***"'**"'''''''

See chapter II

"'***"'''''''''''''''''''''''''*''''''

Example of the use of MUTSPS

"'''''''****'''''''''''''''**'''*

Consider the ordinary differential equation

trX(t) L(t) xCt) + r(t), O:S; t :s; 6

and a boundary condition MoX(O) +MNX(6) = C with

[
1 -2cos(2t) 0 1 + 2Sin C2t)] [(-1 + 2cos(2t)- 2Sin(2t»et

]
L(t)= 0 2 0 ,r(t)= -e' •

-1 - 2sin (2t) 0 1 + 2cos (21) (1 - 2cos (2l) - 2sin(t))et

MA = [g ~ b1, MB = fg ~ bl and C = [::::1.
1 0 oj lo 0 oj 1]

The solution of this problem is: x(t) = (e t , et , et)T.

In the next program the solution is computed and compared to the exact solution.
This program has been run on an Olivetti M24 personal computer (see Remark 1.2).

C

DOUBLE PREOSION A,B,MA(3,3),MB(3,3),BCV(3),ALI,ER(5),TI(15),
1 X(3, 12),U(3, 12),Q(3,2,12),ZI(2, 12),0(2, 12),PHI(3, 12), W(90),
2 EXSOL.AE

INTEGER IW(13)
EXTERNAL FLIN,FINH

C SETIING OF THE INPUT PARAMETERS

18

CH.IX,3

C

C

N=3
KSP=2
IERROR=O
IHOM= 1
ALI=O
ER(l) = I.D-11
ER(2) = I.D-6
CALL EPSMAC(ER(3»
NRTI=1O
NTI= 12
NU=3
NQD=2
LW=90
LIW= 13
A=O.OO
B=6.00

MUTSPS CR. IX,3

C SETflNG THE BC MATRICES MA AND MB
C

DO 10001= 1 ,N
DO 1000J= 1 ,N

MA(l,J) = 0.00
MB(I,J) = 0.00

1000 CONTINUE

C

MA(1,3) = 1.00
MA(2,2) = 1.00
MA(3,1) = 1.00
MB(l ,3) = 1.00
MB(2,2) = 1.00

C SETTING THE BC YECTOR BCY
C

C

BCY(l) = 1.00 + DEXP(6.DO)
BCY(2) = BCY(l)
BCY(3) = 1.DO

C CALL MUTSPS
C

C

CALL MUTSPS(FLIN,ANH,N,IHOM,KSP,A,B,MA,MB,BCV,ALI,ER,NRTI,TI,
1 NTI,X,U,NU,Q,NQD,ZI,D,KPART,PHI,W,L W,IW,LIW,IERROR)

IF «IERRORNE.0).AND.(IERRORNE.200).AND.(IERRORNE.213).AND.
1 (lERRORNE.300» GOTO 5000

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING
C OF THE SOLUTION AT THE OUTPUTPOINTS

19

MUTSPS

C
WRlTE(* ,200)
WRITE(*,190) ER(4),ER(5)
WRlTE(*,21O)
WRITE(* ,200)
DO 1500K= 1 ,NRTI

EXSOL = DEXP(TI(K»
AE = EXSOL - X(l,K)
WRITE(6,220) K,TI(K),X(l,K),EXSOL,AE
D01300I=2,N

AE = EXSOL - X(I,K)
WRITE(* ,230) X(I,K),EXSOL,AE

1300 CONfINUE
1500 CONflNUE

STOP
5000 WRITE(6,300) IERROR

STOP
C
190 FORMATC CONDITION NUMBER = ',DIO.3,/,

1 ' AMPLIFICATION FACTOR = ',DlO.3,/)
200 FORMATC ')
210 FORMAT(, I ·.6X,'T'.8X,'APPROX. SOL.',9X,'EXACT SOL.',8X,

1 'ABS. ERROR')
220 FORMAT(, ',I3,3X,F7.4,3(3X,D16.9»
230 FORMATC ·,13X,3(3X,D16.9»
300 FORMATC TERMINAL ERROR IN MUTSPS: IERROR = ',14)
C

C

C

C

END

SUBROUTINE FLIN(N,T,FL)

DOUBLE PRECISION T,FL(N,N)
DOUBLE PRECISION TI,SI,CO

TI = 2.00* T
SI = 2.00 11< DSIN(TI)
CO = 2.00 * DCOS(TI)
FL(l,I) = 1.00 - CO
FL(l,2) = 0.00
FL(l,3) = 1.00 + SI
FL(2,l) = 0.00
FL(2,2) = 2.00
FL(2,3) = 0.00
FL(3,1)= -1.DO+ SI
FL(3,2) := O.DO
FL(3,3) = I.DO + CO

20

CH.IX,3

MUTSPS CH.IX,3

C
RETURN

C ENOOFFLIN
ENO

C
SUBROUTINE FINH(N,T,FR)

C
OOUBLE PRECISION T,FR(N)
OOUBLE PRECISION TI,SI,CO

C
TI =2.00 * T
SI = 2.00 * DSIN(TI)
CO :::: 2.00 * OCOS(TI)
TI= DEXP(T)
FR(l) = (-1.00 + CO - SI)*TI
FR(2) = - TI
FR(3) = (1.00 - CO - SI)*TI

C
RETURN

C ENDOFFINH
END

CONDITION NUMBER = 0.1000+01
AMPLIFICATION FACTOR = 0.1430+01

I T APPROX. SOL. EXACT SOL. ABS.ERROR

.<XJOO .1000000000+01 .1000000000+01 .0000000000+00
.1000000020+01 .1000000000+01 -.171180516D-07
.1000000020+01 .1 OOOOOOOOD+O 1 -.160840654 D-07

2 .6000 .1822118820+01 .1822118800+01 -.2096599070-07
. 182211882D+01 .1822118800+01 -.176029289D-07
.1822118800+01 .1822118800+01 .955206580D-09

3 1.2000 .332011694D+01 .332011692D+Ol -.1455819110-07
.3320116950+01 .3320116920+01 -.254962655D-07
.3320116900+01 .3320116920+01 .2421958280-07

4 1.8000 .6049647450+01 .6049647460+01 .1930120150-07
.604964751D+01 .6049647460+01 -.430982885D-07
.6049647440+01 .604964746D+01 .2833314650-07

5 2.4000 .1102317630+02 .l10231764D+02 .540218572D-07
.1 102317640+02 .1102317640+02 -.664868463D-07
.1102317640+02 .11 02317640+02 -.1809264030-07

6 3.0000 .2008553690+02 .2008553690+02 -.122056782D-07
.2008553690+02 .2008553690+02 -.2141010920-07
.2008553690+02 .2008553690+02 -.216627782D-07

21

MUTSPS CH. IX,3

7 3.6000 .3659823450+02 .3659823440+02 -.3154698190-07
.3659823450+02 .3659823440+02 -.1969397800-07
.3659823440+02 .3659823440+02 .1073615860-08

8 4.2000 .6668633110+02 .6668633100+02 -.2494699910"()7
.6668633110+02 .6668633100+02 -.2707322720-07
.6668633100+02 .6668633100+02 .2906593010-07

9 4.8000 .1215104180+03 .1215104180+03 .1224435660-07
.1215104180+03 .1215104180+03 -.4183128510"()7
.1215104170+03 .1215104180+03 .4059084800-07

10 5.4000 .2214064160+03 .2214064160+03 .5608814040"()7
.2214064160+03 .2214064160+03 -.6332527390-07
.2214064160+03 .2214064160+03 .2281808520-08

11 6.0000 .4034287940+03 .4034287930+03 -.7553637720-08
.4034287930+03 .4034287930+03 .1711799770-07
.4034287930+03 .4034287930+03 .1608407270-07

22

4. Subroutine MUTSSE

SPECIFICATION

SUBROUTINE MUTSSE(FLIN, FINH, N, IHOM, KSP, A, B, MA, BCV, ALI, ER,
] NRTI, TI, NTI, X. U, NU, Q, NQD. D, ZI, W. LW, IW, LIW, IERROR)

C INTEGER N, IHOM. KSP, NRTI, NTI. NU, NQD, LW, IW(LIW). LIW, IERROR
C DOUBLE PRECISION A. B, MA(N.N), BCV(N), ALI, ER(5). TI(NTI). X(N,NTI).
C 1 U(NU,NTI), Q(N,NQD,NTI). D(NQD,NTI}. ZI(NQD,NTI), W(LW)

C EXTERNAL FLIN. FINH

Purpose

MUTSSE solves the two-point BVP with completely separated BC:

frx(t)=L(t)x(t)+r(t) , A $t $B or B $t $A ,

withBC:

1MB x(B) = BeV}

2MA x(A) = BeV2

where 1MB is a KSP xN BC matrix, 2MA an (N-KSP) xN BC matrix, BeV1 an KSP BC
vector and BeV2 an (N - KSP) BC vector.

Parameters

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L (t) of the
differential equation for t = T and place the result in the array FL(N,N).
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSSE
is called.

23

MUTSSE

FINH SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T. FR)
DOUBLE PRECISION T. FR(N)

CH. IX,4

where N is the order of the system. FINH must evaluate the vector r(t) of thc
differential equation for t = T and place the result in FR(1). FR(2)• FR(N).

FINH must be declared as EXTERNAL in the (sub)program from which MUTSSE
is called.
In the case that the system is homogeneous FINH is a dummy and one can use
FLIN for FINH in the call to MUTSSE.

N INTEGER, the order of the system.
Unchanged on exit.

!HOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous.
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

KSP INTEGER
KSP denotes the k-separation, i.e. the number of rows of 1MB.

On entry: 0 < KSP < N.
Unchanged on exit.

A,B DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

MA DOUBLE PRECISION array of dimension (N,N).
MA is used to supply the boundary condition matrices 1MB and 2MA.

On entry the first KSP rows of MA must contain the matrix 1MB and the last
(N - KSP) rows of MA must contain the matrix 2MA

Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector; BCV=(BCyl, BCy2l.
Unchanged on exit.

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2 =I: ALI, a new output point is inserted.

24

MUTSSE CH. IX,4

If ALI ::;; 1 the defaults arc:
If NRTI = 0: ALI := max(ER(I), ER(2» / (2*ER(3»,
if NRTI > 0 : ALI :== SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.
On exit ALI contains the actually used incremental factor.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into
ER(l) := l.d-12 + 2 * ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant (EPS).
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP.
On exit ER(5) contains an estimate of the amplification factor.

NRTI INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
1) NRTI == 0, the subroutine automatically determines the output points using the

allowed incremental factor ALI.
2) NRTI == 1, the output points are supplied by the user in the array TI.
3) NRTI > 1, the subroutine computes the (NRTI+l) output points TI(k) by:

TI(k) = A + (k-l) * (B - A) /NRTI;
so TI(l) = A and TI(NRTI+l) = B .

Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

TI DOUBLE PRECISION array of dimension (NTI).
On entry: if NRTI == 1 , TI must contain the required output points in strict
monotone order: A = TI(I) < ... < TI(k) == B or A = TIO) > ... > TI(k) = B
(k denotes the total number of required output points).
On exit: TIO), i = 1,2, NRTI, contains the output points.

NTI INTEGER.

NTI is the dimension ofTI and one of the dimensions of the arrays X, U, Q, ZI, D,
PHI.
Let NOTI be the total number of output points, then NTI ~ max(S, NOTI + 1). If
the routine was called with NRTI > 1 and ALI ::;; 1 the total number of required
output points is (the entry value ofNRTI) + 1, so NTI ~ max(S, NRTI + 2).
Unchanged on exit.

25

MUTSSE CR.IX,4

X DOUBLE PRECISION array of dimension (N, NTI).
On exit X(i,k) , i :: 1,2, ... , N contains the solution of the BVP at the output point
TI(k), k:: 1, ... , NRTI.

U DOUBLE PRECISION array of dimension (NU,NTO.
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper
triangular matrix Uk, k = 2, ... ,NRTI. The elements are stored column wise, the
jth column of Uk is stored in U(nj + 1. k), U(nj + 2, k), ... , U(nj + j. k). where nj =
(j-l) * j /2.

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to KSP * (KSP + 1) /2.
Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N, NQD, NTI).
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2, ... , KSP contains the N columns of the
orthogonal matrix Qkl , k = I, ... , NRTI.

NQD INTEGER
NQD is one of the dimension of Q, ZI, D. NQD ~ KSP.
Unchanged on exit.

D DOUBLE PRECISION array of dimension (NQD. NTI).
On exit D(i,k) i = 1.2, ... , KSP contains the inhomogeneous term d,l,
k = 1,2 •... , NRTI, of the multiple shooting recursion.

ZI DOUBLE PRECISION array of dimension (NQD. NTI)
The array ZI is used for storing the particular solution Zj, i = 1, ... , NRTI of the
multiple shooting recursion.

W DOUBLE PRECISION array of dimension (L W).
Used as work space.

LW INTEGER
LW is the dimension ofW. LW~ 10*N + 6*N*N + N*KSP.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension of IW. LIW ~ 3*N + KSP + 2.
Unchanged on exit.

26

IERROR INTEGER
Error indicator.

MUTSSE

If IERROR = 0 then there arc no errors detected; integration from A to B.
If IERROR = 1 then there are no errors detected; integration from B to A.
See § 14 for the other errors.

Auxiliary Routines

CR.IX,4

This routine calls the BOUNDPAK library routines AMTES. APLB. COl. CNRHS,
COPMAT. COPVEC, CONDW, CQIZI, CROUT, CWISB, DEFINC, DUR, FCBVP,
FC2BVP, FQUS, FUNPAR, INPRO, INTCH, KPCH, LUDEC, MATVC, QEVAK, QEVAL,
QUDEC, RKFlS, RKFSM, SOLDE, SOLUPP, SORTD. TAMVC, UPUP, UPVECP.

Remarks

MUTSSE is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991.

Method

See chapter II

Example of the use of MUTSSE

Consider the ordinary differential equation

~X(t)==L(t)x(t)+r(t), 0~t~6

and a boundary condition MA x (0) + M8 x(6) == C with

[

1 - 2eos (2t) 0 1 + 2sin (2t)] [(_1 + 2eos (2t) - 2sin (2t »e t

L(t): 0 2 0 • ret) e t

-1 - 2sin (2t) 0 1 + 2eDs (2t) (1 - 2eos(2t) - 2sin(t »et

[
0 0 oj

MA == 0 00.
100 [

0 0 IJ M8 == t 1 0 and
000

27

MUTSSE

The solution of this problem is: x(t) = (e t , el , e')T.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a Olivetti M24 personal computer (see Remark t .2).

C

DOUBLE PRECISION A,B,MA(3,3),BCV(3),ALI,ER(5),TI(15),
1 X(3,12),U(3, 12),Q(3,2, 12),D(2, 12),ZI(2, 12),W(90),

2 EXSOL,AE
INTEGER IW(13)
EXTERNAL FLIN ,FINH

C SETIING OF THE INPUT PARAMETERS
C

C

N=3
KSP=2
IHOM= 1
ALI == 0
ER(1) = 1.D-l1
ER(2) == 1.D-6
CALL EPSMAC(ER(3»

NRTI = 10
NTl= 12
NU==3
NQD=2
LW=90

LIW=13
A =0.00
B=6.oo

C SETIING THE BC MATRICES MA AND MB
C

DOI000I=l,N
DO I000J= 1 ,N

MA(I,J) = 0.00
1000 CONTINUE

c

MAO ,3) == 1.00
MA(2,2) == 1.00
MA(3,}) == I.DO

C SETIING THE BC VECTOR BCV
C

BCV(1) == DEXP(6.DO)
BCV(2) == BCV(1)
BCV(3) = 1.00

28

CH. IX,4

MUTSSE CH.IX,4

C
C CALL MUTSSE
C

CALL MUTSSE(FLIN,FINH,N ,IHOM,KSP,A,B ,MA,BCV ,ALI ,ER,NRTI,TI,NTI ,

C

] X,U,NU,Q,NQD,D,ZI,W,LW,IW,LIW,IERROR)
IF «IERRORGT.l).AND.(IERRORNE.200).AND.(IERRORNE.213).AND.

1 (IERRORNE.300» GOTO 5000

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING
C OF THE SOLUTION AT THE OUTPUTPOINTS
C

WRlTE(* ,200) ER(4),ER(5)
WRITE(* ,21 0)
DO 1500 K = 1 , NRTI

EXSOL = DEXP(TI(K»
AE = EXSOL - X(1,K)
WRITE(6,220) K,TI(K),X(1,K),EXSOL,AE
D01300I=2,N

AE :::: EXSOL - X(I,K)
WRlTE(* ,230) X(J,K),EXSOL,AE

1300 CONTINUE
1500 CONTINUE

STOP
5000 WRITE(6,300) IERROR

STOP
C
200 FORMAT(, CONDITION NUMBER = ',DIO.3,/,

1 'AMPLIFICATIONFACTOR= ',DIO.3,J)
210 FORMAT(' I ',6X,'T',8X,'APPROX. SOL.',9X,'EXACT SOL.',8X,

1 ' ABS. ERROR' ,J)
220 FORMATe ',I3,3X,F7.4,3(3X,D16.9»
230 FORMATe ',13X,3(3X,D16.9»
300 FORMATC TERMINAL ERROR IN MUTSSE: IERROR = ',14)
C

C

C
C

C

END

SUBROUTINE FLIN(N,T,FL)

DOUBLE PRECISION T,FL(N,N)
DOUBLE PRECISION TI,SI,CO

TI:::: 2.00 * T
SI :::: 2.DO * DSIN(TI)
CO == 2.00 * DCOS(TI)
FL(l,t) = 1.00 - CO

29

MUTSSE CH. IX.4

FL(1,2) = 0.00
FL(1,3) = 1.00 + SI
FL(2,1) = 0.00
FL(2,2) = 2.00
FL(2,3) = 0.00
FL(3, 1) = -1.00 + SI
FL(3,2) = 0.00
FL(3,3) = 1.00 + CO

C
RETURN

C ENOOFFLIN
END

C
SUBROUTINE FINH(N,T,FR)

C
C

OOUBLE PRECISION T,FR(N)
OOUBLE PRECISION TI,SI,CO

C
TI = 2.00 * T
SI = 2.00 * DSIN(TI)
CO = 2.00 * OCOS(TI)

TI = OEXP(T)
FR(l) = (-1.00 + CO - SI)*TI

FR(2) = -TI
FR(3) = (1.00 - CO - SI)*TI

C
RETURN

C ENDOFFINH
END

CONDITION NUMBER = 0.1000+01
AMPLIFICATION FACTOR = 0.2260+01

I T APPROX. SOL. EXACT SOL. ABS.ERROR

.0000 .1000000000+01 .1000000000+01 .0000000000+00
.9999998800+00 .1000000000+01 .1198455300-06
.9999999100+00 .1000000000+01 .8984049520-07

2 .6000 .1822118660+01 .1822118800+01 .1448218800-06
.1822118750+01 .1822118800+01 .4616840400-07
.1822118870+01 .1822118800+01 -.7384970040·07

3 1.2000 .3320116870+01 .3320116920+01 .5448212950-07
.3320116880+01 .3320116920+01 .3998012630-07
.332011706D+Ol .332011692D+Ol -.1367928650-06

30

MUTSSE CH. IX,4

4 1.8000 .6049647510+01 .6049647460+01 -.4254154180-07
.6049647410+01 .6049647460+01 .5349036590-07
.6049647570+01 .6049647460+01 -.1013002400-06

5 2.4000 .1102317650+02 .1102317640+02 -.8779759670-07
.1102317630+02 .1102317640+02 .9816984030-07
.1102317640+02 .1102317640+02 -.6260716390-09

6 3.0000 .2008553690+02 .2008553690+02 -.1837828730-07
.2008553670+02 .2008553690+02 .1770602440-06
.2008553680+02 .2008553690+02 .1442763810-06

7 3.6000 .3659823420+02 .3659823440+02 .2560267520-06
.3659823440+02 .3659823440+02 .7257956010-07
.3659823450+02 .3659823440+02 -.7284108960-07

8 4.2000 .6668633090+02 .6668633100+02 .1277836220-06
.6668633100+02 .6668633100+02 .5295052570-07
.6668633120+02 .6668633100+02 -.2018777680-06

9 4.8000 .1215104180+03 .1215104180+03 -.3162270450-07
.1215104170+03 .1215104180+03 .5800426090-07
.1215104180+03 .1215104180+03 -.1744745220-06

10 5.4000 .2214064160+03 .2214064160+03 -.1237193320-06
.2214064160+03 .2214064160+03 .1014431630-06
.2214064160+03 .221406416D+03 -.4261849540-07

11 6.0000 .4034287930+03 .4034287930+03 .2407642800-07
.4034287930+03 .403428793D+03 .0000000000+00
.403428793D+03 .4034287930+03 .0000000000+00

31

S. Subroutine MUTSIN

"''

SPECIFICATION
"''''***'''*''''''''''''**'''*'''

SUBROUTINE MUTSIN(FLIN, FINH, N, IHOM, A, B, C, BMA, BMINF, BCV.
I ALI, ER, NRTI, 11, NTI, IEXT, X, NRSOL, U, NU. Q. D, KU, KE,

2 KEXT,KPART, PHI, W,LW.IW,LIW,IERROR)
C INTEGER N, IHOM, NRTI. NTI. IEXT, NRSOL, NU, KU, KE, KEXT, LW,
C 1 IW(LIW), LIW, !ERROR
C OOUBLE PRECISION A, B, BMA(N,N), BMINF(N,N), BCV(N), ALI. ER(5),
C 1 TI(NTI). X(N,NTI,N), U(NU,NTI). Q(N,N,NTI), D(N,NTI),
C 2 PHI(NU,NTI), W(LW)

C EXTERNAL FLIN, FINH

************"'*"''''

Purpose
"'''''''**'''*.******''''''

MUTSIN solves the two-point BVP defined on an infinite interval:

trx(t)=L(t)x(t)+r(t) • t >A ,

withBC:

MA x(A) +Moox(oo)=BCV

where MA and M ... are the BC matrices and BCV the BC vector.
MUTSIN gives output on a subinterval [A, B], specified by the user.

"'***"''''''''''''''''''''''**''''''

Parameters
******"'''''''*''''''''''''

FUN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L (t) of the
differential equation for t = T and place the result in the array FL(N,N).
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSIN
is called.

33

MUTSIN

FINH SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

CH. IX,S

where N is the order of the system. FINH must evaluate the vector r(l) of the
differential equation for t = T and place the result in FR(l), FR(2), ... , FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSIN
is called.
In the case that the system is homogeneous FINH is a dummy and one can use
FUN for FINH in the call to MUTSIN.

N INTEGER. the order of the system.
Unchanged on exit.

IHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

A,B DOUBLE PRECISION.
A,B denotes the interval [ex. P] (see § IIl2). If M 00 ~ 0, B should be taken
sufficiently large. Unchanged on exit.

C DOUBLE PRECISION.
When IEXT = 0 C must contain the value for Yma. (see §m.4). The actually used
value for y is stored in TI(KEXT).
When IEXT ~ 0, the routine computes an solution using the given value in C as the
new value fory. IfTI(l) < TI(KEXT) then C must be greater than TI(KEXT) and C
must be smaller than TI(KEXT) ifTI(KEXT) < TI(l).
Note that on subsequent call to MUTSIN with IEXT ~ 0, the value of KE may
change.
Unchanged on exit.

BMA DOUBLE PRECISION array of dimension (N, N).
On entry BMA must contain the BC matrix MA •

Unchanged on exit.

BMINF DOUBLE PRECISION array of dimension (N, N)
On entry BMINF must contain the BC matrix Moo.
Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.

34

MUTSIN CR.IX.s

Unchanged on exit

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2* ALI. a new output point is inserted.
If ALI S I the defaults are:
If NRTI SO: ALI := max(ER(I), ER(2» / ER(3),
if NRTI > 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.
On the extension interval [B • C], an allowed incremental factor equal to
SQRT(RMAX) is used.
On exit ALI contains the actually used incremental factor on the interval [A , B].

ER DOUBLE PRECISION array of dimension (5).
On entry ER(I) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(l) into
ER(1):= 1.d-12 + 2'" ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant BPS (see Remark 1.1),
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimation of the condition number of the BVP.
On exit ER(5) contains an estimated error amplification factor.

NRTI INTEGER.
On entry NRTI is used to specify the required output points on the interval [A,B].
There are three ways to specify the required output points:
1) NRTl SO, the subroutine automatically determines the output points using the

allowed incremental factor ALI.
2) NRTI = 1, the output points are supplied by the user in the array TI.
3) NRTI > I, the subroutine computes the (NRTI+l) output points TI(k) by:

TI(k) = A + (k-l) '" (B - A) /NRTI;
so TI(1) = A and TI(NRTI+l) = B .

Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points on the interval [A,B].

TI DOUBLE PRECISION array of dimension (NTI).
On entry: if NRTI = 1 , TI must contain the required output points in strict
monotone order: A = TI(1) < ... < Tl(k) = B or A = TI(l) > ... > TI(k) = B
(k denotes the total number of required output points).
On exit: TI(i), i = 1,2, ...• NRTI, contains the output points and TI(j),

35

MUTSIN CH.IX,5

j = NRTI + 1, ... , KEXT the points used on the interval [B ,y].

NTI INTEGER.
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D,
PHI.
If k denotes the number of output points on the interval [A,B] and m denotes the
number of points used on the extension interval (B , y 1, then
NTI ~ max(S, k + 1) + m.
If the routine was called with NRTI > 1 and ALI S; 1 then k = NRTI + 1 and m ~ 1,
as at least one point is needed on the extension interval, i.e. y, so
NTI ~ max(S, NRTI + 2) + 1.
If the incremental factor of a homogeneous solution on the interval
[B , Y] becomes greater than SQRT(RMAX) an additional point is used on the
extension interval. In this case m > 1.
Unchanged on exit.

IEXT INTEGER.
IEXT is a flag concerning the extension interval. On the first call to MUTSIN,
IEXT must be zero. When the extension interval [B , C] is too small. a new call to
MUTSIN with IEXT = 1 and a new value for C results in the computation of a new
solution with the new value for C. In this case MUTSIN continues the integration
from the old value of C to the new value of C, so only the value fOr IEXT and C
may be changed between succesive calls.
Unchanged on exit.

X DOUBLE PRECISION array of dimension (N, NTI, N).
On exit X(i,k.l), i = 1,2, ... , N contains the solution of the BVP at the output
point TI(k), k = 1, ... , NRTI. If there is no unique solution the base of the
manifold is given in X(i,kj), j = 2, ...• NRSOL.

NRSOL INTEGER.
On exit NRSOL contains the infonnation concerning the uniqueness of the
solution. If NRSOL = 1 the solution is unique, otherwise the solution of the
problem is a manifold for which the base is given in X(i,k,j), j = 2, ... , NRSOL.

U DOUBLE PRECISION array of dimension (NU, NTI).
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper
triangular matrix Uk, k = 2, ... , KEXT. The elements are stored column wise, the
jth column of Uk is stored in U(nj + I, k), U(nj + 2, k), ... ,U(nj + j. k), where nj =
(j-l) '" j /2.

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to N '" (N+ 1) /2.

36

MUTSIN CH.IX,S

Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N, N, NTI).
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2, ... , N contains the N columns of the
orthogonal matrix Qb k = 1, ... , KEXT.

D DOUBLE PRECISION array of dimension (N, NTI).

If IHOM = ° the array D has no real use and the user is recommended to use the
same array for the X and the D.
IfIHOM = 1 : on exit D(i,k) i = 1,2, ... , N contains the inhomogeneous tenn db
k = 1,2, ... , KEXT, of the multiple shooting recursion.

KEXT INfEGER.
KEXT denotes the total number of points used to compute the solution. If k denotes
the number of output points on the interval [A , B] and m the number of points
used on the extension interval [B , C], then KEXT = k + m.
On entry: if lEXT = 0, no value for KEXT is needed; if lEXT = 1, KEXT must
contain the exit value of the previous call to MUTSIN.
On exit: KEXT contains the value for k + m.

KU INfEGER.
On exit KU is the number of detected unbounded growing modes on the interval
[A , C]. Growing modes with an increment greater than 2 are considered to be
unbounded modes.

KE INfEGER.
On entry: when lEXT *' 0, KE must contain the value from the previous call to
MUTSIN.
On exit: KE contains the detected number of exponentially growing modes on the
interval [B , C]. Growing modes are considered to be exponentially increasing
when there increment on the interval [B , C] is greater than
1/ max(ER(1), ER(2».

KP ART INfEGER.

On exit KPART contains the global k-partition of the uppertriangular matrices U",

PHI DOUBLE PRECISION array of dimension (NU, NTl).
On exit PHI contains the (KE + 1)th till the Nth columns of the fundamental
solution of the multiple shooting recursion. The fundamental solution is upper
triangular and is stored in the same way as the U",

W DOUBLE PRECISION array of dimension (L W).
Used as work space.

37

MUTSlN

LW INTEGER
L W is the dimension of W.
If IHOM = 0: LW ~ 8*N + 7*N*N; if IHOM = 1: LW ~ 9*N + 7*N*N.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as worlc space.

LIW INTEGER
LIW is the dimension of IW. LIW ~ 4*N + 1.
Unchanged on exit.

IERROR INTEGER
Error indicator; ifIERROR = 0 then there are no errors detected.
See § 14 for the other errors.

Auxiliary Routines
********"'*******

CH. IX,S

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMA V. CDI. CEVIN.
CNRHS, COPMAT. COPVEC. CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP,
FC2BVP, FQUS, FUNPAR. FUNRC. GTURI. INPRO, INTCR, KPCH, LUDEC, MATVC,
PSR, QEV AK, QEV AL, QUDEC, RKFIS, RKFSM, SBVP, SOLDE, SOLUPP. SORTO.
TAMVC. TUR, UPUP, UPVECP.

"'*"'***"'*****
Remarlcs

"'****"'**"''''''''''''''''''''''

MUTSIN is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991.

****"'**"''''*''''''****
Method
"''''**************

See chapter III.

Example of the use of MUTSIN

38

MUTSIN CH.IX,5

Consider the ordinary differential equation

d [2 2+0.4t] [-4-0.4t]
Ttx(t) = 0 -O.4t x(t) + 0.4 t

and a boundary condition

The solution of this problem is:

X(I) = [l-exp(-0.2t2) t I +exp(-0.212)]T .

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark. 1.2).

C

DOUBLE PRECISION A,B,C,MA(2.2),MINF(2,2),BCV(2),AMP ,ER(5),TI(l3),
1 X(2,13,2),U(3.13).Q(2,2,13).D(2.13),PHIREC(3.13),
2 W(46),XEX,E,ERR

INTEGER IW(9)
EXTERNAL FLIN.FINH

C SETTING OF THE INPUT PARAMETERS
C

C

N=2
IHOM= 1
A=O.OO
B= 10.00
C=20.00
ER(l) = 1.10-12
ER(2) = 1.0-6
CALL EPSMAC(ER(3»
NRTI= 10
NTI= 13
IEXT=O
NU=3
LW=46
LIW=9

C SEITING THE BC MATRICES MA AND MINF AND THE BC VECTOR BCV
C

MA(1,I) = 0.00
MA(1,2) = 0.00

39

C

MA(2,1) = 0.00
MA(2.2) = 1.00
MINF(l,l) = 1.00
MINF(1,2) = 0.00
MINF(2,1) = 0.00
MINF(2,2) = 0.00
BCV(1) = 1.00
BCV(2) = 2.00

C CALL TO MUTSIN
C

MUTSIN CH. IX,5

CALL MUTSIN(FLIN,FINH,N,IHOM,A,B.C,MA,MINF,BCV,AMP,ER,NRTI,TI,NTI,

C

1 IEXT,X,NRSOL,U,NU,Q,D,KU,KE,KEXT,KPART,PHIREC,W.LW.
2 IW,LIW.IERROR)

IF «(IERROR.EQ.0).OR.«(lERROR.GE.200).AND.(IERROR.LE213».OR.
1 (IERROR.EQ.300).OR.«(IERROR.GE.330).AND.
2 (IERROR.LE.340») THEN

C PRINTING A, B ,THE ACTUAL USED VALUE FOR GAMMA, TOLERANCE,
C CONDITION NUMBER AND AMPLIFICATION FACTOR.
C

WRITE(* ,100) A,B,TI(KEXT),ER(2).ER(4),ER(5)
C
C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND PRINTING
C THE SOLUTION AT THE OUTPUT POINTS.
C

WRITE(* ,110)
00 1100 K = 1 ,NRTI

E = DExp(-O.2dO"'TI(K)"'TI(K»
XEX= l.00-E
ERR = XEX - X(l,K,I)
WRITE(*,120) TI(K),x(1,K,l),XEX,ERR
XEX= l.00+E
ERR = XEX - X(2,K.l)
WRITE(*,130) X(2.K,1),XEX,ERR

1100 CONTINUE
IF (NRSOL.GT.l) THEN

WRITE(* ,140)
DO 1200K= l,NRTI

WRITE(* ,150) TI(K),X(1,K,2)
WRITE(*, 160) X(2,K,2)

1200 CONTINUE
ENDIF

C ENDIF NRSOL
ELSE
WRITE(* ,300) IERROR

40

MUTSIN CH. IX,S

ENDIF
C ENDIF IERROR
C
100 FORMAT(' A ',012.S,2X,'B = ',OI2.5,2X,'C = ',012.5,/,

1 'TOL = ',012.S,2X,' COND = ',012.S,2X,' AMPLI = ',012.S,/)
110 FORMAT(' ',3X,'T' ,9X,'X APPROX' ,IIX,'X EXACT', llX,'ERROR' ,/)
120 FORMAT(, ',F7.3,3(2X,OI6.9»
130 FORMATC ',7X.3(2X.016.9»
140 FORMATC SOLUTION IS OF THE FORM X + LAMBOA * PHI' j,' ',3X, 'T',

1 12X,'PHI',/)
150 FORMAT(' ',F7.5,2X,016.9)
160 FORMAT(' ',9X,016.9)
300 FORMAT(, TERMINAL ERROR IN MUTSIN: IERROR = ',B)

C

C
C

C

C
C

C

STOP
END
SUBROUTINE FLIN(N,T,F)

OOUBLE PRECISION T,F(2,2)

F(1,I) = 2.00
F(1,2) = 2.00 + 0.400 * T
F(2.1) = 0.00
F(2,2) = -0.400 * T
RETURN
END
SUBROUTINE FINH(N,T,R)

DOUBLE PRECISION T,R(2)

R(1) = -0.400 * T - 4.00
R(2) = O.4DO * T
RETURN
END

A= .000000+00 B= .100000+02 C= .169550+02
TOL= .100000-05 COND= .100000+01 AMPLI= .199810+01

T

.000

1.000

X APPROX

.2220446050-15
.2000000000+01
.1812692470+00

X EXACT

.0000000000+00

.2000000000+01

.1812692470+00

41

ERROR

-.2220446050-15
.1998401440-14

-.5696657030-10

MUTSIN CH.IX,5

.181873075D+01 .1818730750+01 .569801983D-1O
2.000 .550671036D+OO .5506710360+00 . 189427252D-09

. 144932896D+Ol .144932896D+Ol -.189325000D-09
3.000 .834701112D+OO .8347011120+00 -.691497193D-09

.1 16529889D+Ol .1165298890+01 .692252700D-09
4.000 .959237798D+OO .9592377960+00 -.192215954D-08

.104076220D+Ol .1040762200+01 . 192774530D-08
5.000 .9932620550+00 .9932620530+00 -.160490565D-08

.100673795D+Ol .1006737950+01 .. 164617830D-08
6.000 .999253414D+OO .9992534140+00 -.210793272D-09

.100074659D+Ol .1000746590+01 .5157598790-09
7.000 .999944546D+OO .9999445480+00 .216747531 D-08

.100005545D+Ol .1000055450+01 .8594214230-10
8.000 .999997223D+OO .9999972390+00 . 166426903D-07

. 1 00000276D+O 1 .1000002760+01 .7936096220-11
9.000 .999999785D+00 .9999999080+00 . 123031966D-06

. 1 00000009D+O 1 .1000000090+01 .434541292D-12
10.000 .999999089D+OO .999999998D+00 .909093262D-06

. 1 OOOOOOOOD+O 1 .1000000000+01 .139888101D-13

42

6. Subroutine MUTSMP

SPECIFICATION

SUBROUTINE MUTSMP(FLIN, FINH, N, IHOM, TBP, NBP. BCM, BCV, ALI,
I ER, NRTI, TI, NTI, X, U, NU, Q, D,
2 KPART, PHI, W, LW, IW, LIW, IERROR)

C INTEGER Nt IHOM. NBP, NRTI(NBP), NTI. NU, KPART(NBP), LW. IW(LIW),
C 1 LIW. IERROR
C OOUBLE PRECISION TBP(NBP), BCM(NBP), BCV(N), ALI. ER(5), TI(NTI).
C 1 X(N.NTI). U(NU.NTI), Q(N,N.NTI). D(N.NTl)t PHI(NU.NTI)t W(LW)
C EXTERNAL FLINt FINH

Purpose

MUTSMP solves the multipoint BVP:

trX(t)=L(t)X(t)+r(t) , III Silk or Ilk St Sill,

withBC:

where MI. j = 1, ...• k are the Be matrices, BCV the BC vector and at < ... < Ilk or
Ill> ... > Ilk the switching points.

Parameters

FUN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FUN must evaluate the matrix L (I) of the
differential equation for t = T and place the result in the array FL(N,N).
FUN must be declared as EXTERNAL in the (sub)program from which MUTSMP
is called.

43

MUTSMP CR. IX,6

ANH SUBROUTINE, supplied by the user. with specification:

SUBROUTINE ANH(N, T. FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. ANH must evaluate the vector r (t) of the
differential equation for t = T and place the result in FRO). FR(2) •... , FR(N).
ANH must be declared as EXTERNAL in the (sub)program from which MUTSMP
is called.
In the case that the system is homogeneous ANH is a dummy and one can use
A..IN for ANH in the call to MUTSMP.

N INTEGER, the order of the system.
Unchanged on exit.

mOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

TBP DOUBLE PRECISION array of dimension (m), m ~ NBP.
On entry TBP must contain the switching points aj. j = 1 •...• NBP in monotone
order. i.e. TBP(j) = aj, j = 1, ... , NBP.
Unchanged on exit.

NBP INTEGER. NBP is the number of switching points.
Unchanged on exit.

BCM DOUBLE PRECISION array of dimension (N. N, m), m ~ NBP.
On entry: BCM(.•. , j) must contain the BC matrix Mj, j = 1, ... , NBP.
Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
Unchanged on exit.

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2'" ALI, a new output point is inserted.
If ALI ~ 1 the defaults are:
IfNRTI(1) = 0 : ALI := max(ER(l), ER(2» I (2*ER(3»,
if NRTI(l) *' 0: ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

44

MUTSMP CH.IX,6

On exit ALI contains the actually used incremental factor.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(l) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into
ER(I):= l.d-12 + 2 * ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant EPS (see Remarlc 1.1).
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP.
On exit ER(5) contains an estimate of the amplification factor.

NRTI INTEGER array of dimension (m), m ;;:: NBP
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
I) NRTI(l) = 0, the subroutine automatically determines the output points using the

allowed incremental factor ALI.
2) NRTI(l) = 1. the output points are supplied by the user in the array TJ.
3) NRTI(I) > 1, in this case the intervals [TBP(j -1 , TBP(j)], j = 2, ... , NBP are

divided into NRTI(j) subintervals of equal length. The endpoints of
these intervals are the required output points.

Depending on the allowed incremental factor ALI. more output points may be
inserted in the cases 2 and 3.
On exit: NRTI(1) contains the total number of output points.
For j = 2, ... , NBP: if NRTI(j) < ° then no change of dichotomy is detected on the
succesive intervals [TBP(j-l), TBP(j)] and [TBP(j) • TBP(j+l)].
If NRTI(j) > ° then a change of dichotomy is dectected at TBP(j) and NRTI(j)
contains the number of output points on the interval [TBP(i) , TBP(j)], where
i < j, NRTI(i) > 0, NRTI(k) < 0, i < k < j, i.e. TBP(i) is the previous point where a
change of dichotomy was detected.

TI DOUBLE PRECISION array of dimension (NTI).
On entry: if NRTI = 1 , TI must contain the required output points in strict
monotone order: (Xl = TI(l) < ... < TI(k) = (Xk or (Xl = TI(1) > ... > TI(k) = (Xk

(k denotes the total number of required output points). The output points must
include all switching points (Xj, j = 1 •... , NBP.
On exit: TI(i), i = 1,2 •... , NRTI(l), contains the output points.

NTI INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X. U, Q. D.
PHI. When m(j) denotes the number of output points on the interval
[TBP(j - 1) , TBP(j)], j = 2, ... , NBP, and m the number of output points on the
interval [TBP(1). TBP(NBP)], i.e. m = m(2) + ... +m(NBP)-NBP+2. then

45

MUTSMP

NTI ~ m + 1 + max(4 -m(NBP) ,0).
If the routine was called with NRTI(l) > 1 and ALI S; 1 then
m = NRTI(2) + ... + NRTI(NBP)+ 1 • m(NBP)=NRTI(NBP)+ 1 ; so
NTI ~ 2 + NRTI(2) + ... + NRTI(NBP) + max(3 - NRTI(NBP) • 0).
Unchanged on exit.

X DOUBLE PRECISION array of dimension (N. NTI).

CH. IX,6

On exit X(i,k) • i = 1.2, ... , N contains the solution of the BVP at the output point
TI(k). k = 1, ... , NRTI(1).

U DOUBLE PRECISION array of dimension (NU, NTI).
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper
triangular matrix Ub k = 2, ... , NRTI(1) The elements are stored column wise,
the jth column of Uk is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j, k), where
nj = (j -1) ... j /2.

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to N'" (N + 1) /2.
Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N. N. NTI).
On exit Q(i,j,k) i = 1,2 •... ,Nt j = 1,2, ... , N contains the N columns of the
orthogonal matrix Q", k = 1, ... , NRTI(1).

D DOUBLE PRECISION array of dimension (N,NT!).
If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.
IfIHOM = 1 : on exit D(i,k) i = 1,2, ... , N contains the inhomogeneous term db
k = 1,2 •... ,NRTI(1), of the multiple shooting recursion.

KPART INTEGER array of dimension (m). m ~ NBP
On exit KP ART(j) contains the global partitioning parameter on the interval
[TBP(ij). TBP(ij+l)],j = 1, ... , where theTBP(ij) are the points where a change
of dichotomy has been detected; i 1 < i2 < ... and NRTI(ij) > O.

PHI DOUBLE PRECISION array of dimension (NU, NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.
The fundamental solution is upper triangular and is stored in the same way as the

U",

W DOUBLE PRECISION array of dimension (L W).
Used as work space.

46

MUTSMP

LW INTEGER
L W is the dimension of W.
If IHOM=O : LW ~ (8 + 2.5*NBP)*N + (7 + 1.5*NBP)*N*N.
If IHOM= 1 : L W ~ (9 + 2.5*NBP)*N + (7 + l.5*NBP)*N*N.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension of IW. LIW ~ (4 + NBP)*N + NBP + 2.
Unchanged on exit.

IERROR INTEGER
Error indicator; if IERROR = 0 then there are no errors detected.
See § 14 for the other errors.

Auxiliary Routines

CH.IX,6

This routine calls the BOUNDPAK library routines AMTES, APLB, COl, CNRHS,
COPMAT, COPVEC, CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP, FC2BVP,
FQUS, FUNPAR, FUNRC, GKPMP, GTUR, INPRO, INTCH, KPCH, LUDEC, MATVC,
MTSMP, PSR, QEV AK, QEV AL, QUDEC, RKFlS, RKFSM, 5MBVP, SOLDE, SOLUPP,
SORTD, TAMVC, TUR, UPUP, UPVECP.

Remarks

MUTSMP is written by G.W.M. Staarink and RM.M. Mattheij.
Last update: november 1991.

Method

See chapter IV.

47

MUTSMP

Example of the use of MUTSMP

Consider the ordinary differential equation

:t x(t) =L(t) x(t) + ret) , -1 ~ t ~ 1

and a boundary condition:

where

[
- t + Ih - (t + Ih) cos (2t) 1 + (t + Ih) sin (2t) 1

L (t) = - 1 + (t + %) sin (2t) - t + Ih + (t + %) cos (2t) J '

[
(-3 + cos (t)(cos(t) - sin (t»(2t + 1» etl

ret) = (-1 + sin (t)(sin(t) - cos (t»(2t + 1»e-t .

CH.IX,6

The solution of this problem is: x(t) = (e-t , e-t)T. TIle ODE has fundamental solutions
growing like exp (- t 2) and exp (t), so there is a change of dichotomy at t = O.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETII M24 personal computer (see Remark 1.2).

C

DOUBLE PRECISION TBP(3),BCM(2,2,3),BCV(3),ALI,ER(5),TI(10),
1 X(2,10),U(3, 10),Q(2,2,1O),D(2, 10),PHIREC(3, 1 0),W(79),
2 EXSOL,AE

INTEGER KPART(3),NRTI(3),lW(19)
EXTERNAL FLIN,FINH

C SETTING OF THE INPUT PARAMETERS
C

N=2
IHOM= 1
NBP=3
TBP(1) = ·1.00
TBP(2) = 0.00
TBP(3) = 1.00

ALI = 0
ER(1) = I.D·11

48

C

ER(2) = 1.D-6
CALL EPSMAC(ER(3»
NRTI(1) = 2
NRTI(2)=4
NRTI(3)=4
NTI= 10
NU=3
LW=79
LIW = 19

MUTSMP

C SETTING THE BC MATRICES
C

00 1100 I = 1 , NBP
00 1100 J = 1 , N
DO ll00L= 1, N

BCM(J,L,I) = 0.00
1100 CONTINUE

C

BCM(l,l,l) = 1.00
BCM(2,l,2) = 1.00
BCM(2,2,3) = 1.00

C SETTING THE BC VECTOR BCV
C

C

BCV(l) = DEXP(1.00)
BCV(2) = 1.00+ DEXP(-1.DO)

C CALL MUTSMP
C

CH.IX,6

CALL MUTSMP(FLIN ,FINH,N,IHOM,TBP,NBP,BCM,BCV ,ALI,ER,NRTI,TI,NTI,
1 X,U,NU,Q,D,KP ART,PHIREC,W,LW,IW,LIW,IERROR)

IF «IERROR.NE.0).AND.(IERROR.NE.200).AND.(IERROR.NE.213).AND.
1 (IERROR.NE.240» GOTO 5000

C
C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND
C WRITING OF THE SOLUTION AT THE OUTPUTPOINTS
C

WRITE(6,200) (TBP(I),I=l,NBP)
WRlTE(6,190) ER(4),ER(5)
WRITE(6,21O)
DO 1500 K = 1 , NRTI(1)
EXSOL = DEXP(TI(K»
AE = EXSOL - X(1,K)
WRITE(6,220) K,TI(K),X(l,K),EXSOL,AE
D01300I=2,N

AE = EXSOL - X(I,K)
WRITE(6,230) X(I,K),EXSOL,AE

49

MUTSMP

1300 CONTINUE
1500 CONTINUE

STOP
5000 WRITE(6.300) IERROR

STOP
C
190 FORMATC CONDITION NUMBER = ',DIO.3J,

1 ' AMPLIFICATION FACTOR = ',D1O.3J)
200 FORMATC SWITCHING POINTS: "3(FS.2,3X)J)
210 FORMAT(, I' ,6X, 'T' .8X,' APPROX. SOL.' ,9X, 'EXACT SOL. ',8X,

1 'ABS. ERROR',/)
220 FORMAT(' ',I3,3X,F7.4.3(3X,DI6.9»
230 FORMAT(' ·,13X,3(3X,D16.9»
300 FORMATC TERMINAL ERROR IN MUTSMP: IERROR = ',14)

C

C

C

C

C

END

SUBROUTINE FLIN(N,T,FL)

DOUBLE PRECISION T,FL(N.N)
DOUBLE PRECISION TI,SI,CO

T1 =2.00*T
SI = (T+O.5oo)*DSIN(Tl)
CO = (T+O.Soo)"'DCOS(TI)
TI = -T + 0.500
FL(l,I) = Tl - CO
FL(1,2) = 1.00 + SI
FL(2,1) = -1.00 + SI
FL(2,2) = TI + CO

RETURN
C ENDOFFLIN

C

C

C

END

SUBROUTINE FINH(N,T,FR)

DOUBLE PRECISION T,FR(N)
DOUBLE PRECISION TI.ET,sI,CO

SI=DSIN(T)
CO=DCOS(T)
TI = (CO - SI) '" (2"'T + 1.00)
ET = DEXP(-T)
FR(1) = (-3.00 + CO*TI) '" ET
FR(2) = (-1.00 - SI"'TI) * ET

50

CH.IX,6

MUTSMP CH. IX.6

C
RETURN

C ENDOFFINH
END

SWITCHING POINTS: -1.00 .00 1.00

CONDITION NUMBER = 0.6130+01
AMPLIFICATION FACTOR = 0.5430+01

I T APPROX. SOL. EXACT SOL. ABS.ERROR

1 -1.000 .2718281830+01 .2718281830+01 .0000000000+00
.2718281750+01 .2718281830+01 .1352834560-01

2 -.150 .2116999980+01 .2111000020+0 1 .3920493130-01
.2116999910+01 .2111000020+01 .1083402830-06

3 -.500 .1648121180+01 .1648121270+01 .9332855360-01
.1648121140+01 .1648121210+01 .1282831020-06

4 -.250 .1284025210+01 .1284025420+01 .1503415180-06
.1284025290+01 .1284025420+01 .1274391010-06

5 .000 .9999998080+00 .1000000000+01 .1916808950-06
.9999998910+00 .1000000000+01 .1093736300-06

6 .250 .1188005710+00 .1188001830+00 .2117650960-06
.1188006940+00 .1188007830+00 .8860111600-07

7 .500 .6065303740+00 .6065306600+00 .2853095410-06
.6065307180+00 .6065306600+00 -.5806055030-07

8 .750 .4123662840+00 .4723665530+00 .2684191610-06
.4723661900+00 .4123665530+00 -.2313133630-06

9 1.000 .3678793060+00 .3678794410+00 .1349627320-06
.3618796330+00 .3678194410+00 -.1916808950-06

51

7. Subroutine MUTSMI

SPECIFICATION

SUBROUTINE MUTSMI(FLIN, FINH, FMT, N, IHOM, A, B, NRTI, ALI, TI,
NTI, ER, BCV, X. TSW, NSW, NRSW, U, NO, Q, D,

2 KP, PHI, BMI. W, LW, IW. LIW. IERROR)
C IN1EGER N, IHOM, NRTI, NTI, NSW, NRSW, NO, KP(NSW), LW, IW(LIW),
C 1 LIW, IERROR
C DOUBLE PRECISION A, B, ALI, TI(NTI), ER(5), BCV(N), X(N,NTI),
C 1 TSW(NSW), U(NU,NTI), Q(N,N,NTI), D(N,NTI),
C 2 BMI(N,N,NTI), PHI(NU,NTI), W(LW)
C EXTERNAL FLIN, FINH, FMT

Purpose

MUTSMI solves BVP with integral BC:

ix(t)=L(t)x(t)+r(t) , A SB ,

with BC:

B I M(t)x(t)dt = Bev .

where M (t) is an NxN matrix function and BCV an N-vector.

Parameters

FUN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T. FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L (t) of the
differential equation for t = T and place the result in the array FL(N,N).
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSMI
is called.

S3

MUTSMI

FINH SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T , FR)
DOUBLE PRECISION T, FR(N)

CH.IX.7

where N is the order of the system. FINH must evaluate the vector r (t) of the
differential equation for t = T and place the result in FR(I), FR(2), ... , FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSMI
is called.
In the case that the system is homogeneous FINH is a dummy and one can use
FUN for FINH in the call to MUTSMI.

FMT SUBROUTINE supplied by the user, with specification:

SUBROUTINE FMT(N, T, FM)
DOUBLE PRECISION T, FM(N,N)

where N is the order of the system. FMT must evaluate the matrix M (t) of the
integral BC for t = T and place the result in the array FM(N,N).
FMT must be declared as EXTERNAL in the (sub)program from which MUTSMI
is called.

N INTEGER, the order of the system.
Unchanged on exit.

IHOM INTEGER.
mOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous,
mOM = 1 : the system is inhomogeneous.
Unchanged on exit.

A,B DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

NRTI INTEGER
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
1) NRTI = 0, the subroutine automatically determines the output points using the

allowed incremental factor ALI.
2) NRTI = I, the output points are supplied by the user in the array TI.
3) NRTI > 1, the subroutines computes the (NRTI+l) output points TI(k) by:

TI(k) = A + (k-l) '" (B - A) /NRTI
so TI(1) = A and TI(NRTI+l) = b.

More output points may be inserted in the cases 2 and 3, depending on the allowed
incremental factor ALI. Also if a new switching point is detected or if

II I M(t)x(t)dt II becomes larger than ER(2) / ER(3) , a new output point is
inserted.

54

MUTSMI CH.IX,7

On exit NRTI contains the total number of output points.

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2* ALI, a new output point is inserted. If ALI S 1 the defaults are:
IfNRTI = 0: ALI := max(ER(1), ER(2» I (2*ER(3»,
if NRTI '# 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.
On exit ALI contains the actually used incremental factor.

TI DOUBLE PRECISION array of dimension (NTI).
On entry: if NRTI = 1 , TI must contain the required output points in strict
monotone order: A = TI(1) < ... < TI(k) = B or B = TI(l) > ... > TI(k) = B
(k denotes the total number of required output points).
On exit: TI(k), k = 1,2, ... , NRTI, contains the output points.

NT! INTEGER.
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, 0,
BMI, PHI.
Let m be the total number of output points then NTI ~ max(5, m + I),
If the routine was called with NRTI > 1 and ALI S 1 the total number of required
output points is NRTI + 1, so NTI ~ max(5, NRTI + 2), if the required output
points include possible switching points, otherwise NTI ~ max(5, NRTI + 2) + k,
where k denotes the number of switching points between A and B (k S N).
Unchanged on exit.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into
ER(1) := Ld-12 + 2 * ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant EPS (see Remark 1.1).
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP.
On exit ER(5) contains an estimate of the amplification factor.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
Unchanged on exit.

55

MUTSMI CH.IX,7

X DOUBLE PRECISION array of dimension (N. NTI).
On exit X(i.k) • i = 1,2, ... , N contains the solution of the BVP at the output point
TI(k). k = 1, ... , NRTI.

TSW DOUBLE PRECISION array of dimension (m), m 2: N + 2.
On exit TSW contains the NRSW detected switching points. Note that the
boundary points A and B are also switching points and that the maximum number
of switching points is N + 2.

NSW INTEGER. NSW denotes the number of possible switching points.
On entry NSW 2: N + 2.
Unchanged on exit.

NRSW INTEGER.
On exit NRSW contains the number of detected switching points.

U DOUBLE PRECISION array of dimension (NU, NTI).
On exit U(i,k) i = 1,2, ...• NU contains the relevant elements of the upper
triangular matrix U", k = 2, ... ,NRTI. The elements are stored column wise. the
jth column of U" is stored in U(nj + 1. k). U(nj + 2. k), ... , U(nj + j, k). where nj =
G-1) * j /2.

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to N * (N + 1) /2.
Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N. N, NTI).
On exit Q(ij.k) i = 1,2, ...• N, j = 1,2, ... , N contains the N columns of the
orthogonal matrix Q", k = 1, ... , NRTI.

D DOUBLE PRECISION array of dimension (N. NTI).
If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.
If IHOM = 1 : on exit D(i.k) i = 1,2, ...• N contains the inhomogeneous term d".
k = 1.2, ... , NRTI. of the multiple shooting recursion.

KP INTEGER
On exit KP(j) contains the global partitioning parameter of the interval
[TSW(j), TSWG + 1)].j = 1, ...• NRSW-1.

PHI DOUBLE PRECISION array of dimension (NU,NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.
The fundamental solution is upper triangular and is stored in the same way as the
Uk.

56

MUTSMI CH.IX,7

BMI DOUBLE PRECISION array of dimension (N,N,NTI).
On exit BMI(. , . ,j) contains the BC matrix of the discretised integral BC at the
output point TI(j), j = I, ... , NRTI - 1.

W DOUBLE PRECISION array of dimension (L W).

Used as work space.

LW INTEGER
LW is the dimension ofW.
If N < 8 : L W ~ 15 '" N '" N + 21 '" N .
If N ~ 8 : L W ~ (3 '" N '" N '" N + 11 '" N '" N) /2 + 5 '" N.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension ofIW. LIW ~ N"'N + 6"'N + NT!.
Unchanged on exit.

IERROR INTEGER
Error indicator; if IERROR = 0 then there are no errors detected.
See § 14 for the other errors.

"'*"'''''''*'''*****
Auxiliary Routines
"'''''''*********

This routine calls the BOUNDPAK library routines AMTES, ANORMl, APLB, CDI,
CHDIAU, CKPSW ,CNRHS, COPMAT, COPVEC, CONDW, CPRDIA, CROUT, CWISB,
DEFINC, DETSWP, DURIN, FCBVP, FCIBVP, FQUS, FUNPAR, FUNRC, GKPMP,
INPRO, INTCH, KPCH, LUDEC, MATVC, PSR, QEV AK, QEV AL, QUDEC, RKFlS,
RKFSM, 5MBVP, SOLDE, SOLUPP, SORTD, TAMVC, UPUP, UPVECP.

*******"'**"'*"''''''''''
Remarks

"'''''''***''''''**

MUTSMI is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991

57

Method

See chapter IV.

Example of the use of MUTSMI

MUTSMI

Consider the ordinary differential equation

:Zx(t)=L(t)X(t)+r(t). -4StS4

and an integral boundary condition:

where

4 1 M(t)x(t)dt =b ,
..!4

[1 0 1 [-e-t 1 rl 01 [2 sinh 4]
L(t)= 0 -2tJ • r(t)= (2t-l)e-t M(t)= lO IJ • b = 2sinh4 .

The solution of this problem is: x (t) = [cosh t • r t]T.

CH.IX,7

The ODE has fundamental solutions growing like - e _1
1 and - el • so there is a change of

dichotomy at t = O.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
DIMENSIONTI(10),ER(5).X(2.10),BCV(2).TSW(4).Q(2.2,10),U(3.10),

1 D(2,1O),BMl(2,2,10),PHI(3,10),W(102)
INTEGER KP(4),IW(27)
EXTERNAL FLIN.FINH,FMT

C SETIlNG OF THE INPUT PARAMETERS
C

N=2
NU=3
NTI= 10
NSW=4
LW= 102
LIW=27

58

C

IHOM= 1
ER(l) = l.lD-12
ER(2) = l.D-6
CAlL EPSMAC(ER(3»
A=-4.OO
B =4.00
ALI = 0.00
NRTI= 8

MUTSMI

C SETTING THE BOUNDARY CONDITION VECTOR
C

C

BCV(I) = 2.00 * DSINH(4.OO)
BCV(2) = BCV(l)

C CALL TO MUTSMI
C

CR. IX,7

CALL MUTSMI(FLIN,FINH,FMT,N,IHOM,A,B,NRTI,ALI,TI,NTI,ER,BCV,X,
I TSW,NSW,NRSW,U,NU,Q,D,KP,PHI,BMI,W,LW,IW,LIW,IERROR)

IF (IERROR.NE.O) GOTO 2000
C
C WRITING OF THE SWITCHING POINTS, THE CONDITION NUMBER AND
C THE ERROR AMPLIFICATION ERROR.
C

WRITE(*,200) (TSW(I),I=l,NRSW)
WRITE(*,210) ER(4),ER(5)
WRITE(* ,220)
DO 1300 I = I , NRTI
E = DCOSH(TI(I»
AE = X(l,I) - E
WRlTE(*,230) I,TI(I),X(1,I),E,AE
E = DEXP(-TI(I»
AE = X(2,I) - E
WRlTE(* ,240) X(2,I),E,AE

1300 CONTINUE
STOP

2000 WRlTE(* ,300) IERROR
STOP

C
200 FORMATC SWITCHING POINTS:' ,4(FlO.6,4X),/)
210 FORMATe CONDITION NUMBER = ',DI2.5,1

1 ' AMPLIFICATION FACTOR = ',DI2.5,1)
220 FORMATe I',6X,'T',8X,'APPROX. SOL. ',7X, 'EXACT SOL.',9X,

1 ' ABS. ERROR' ,I)
230 FORMAT(' ',I3,3X,F7.3,3(3X,DI6.9»
240 FORMATC ',13X,3(3X,DI6.9»
300 FORMATC TERMINAL ERROR IN MUTSMI: IERROR = ',14)

59

C

C

C

C

C

C

MUTSMl

END
SUBROUTINE FLIN(N,T,FL)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION FL(N,N)

FL(I,l) = I.DO
FL(1 ,2) = O.DO
FL(2,1) = O.DO
FL(2,2) = -2.DO*T
RETURN
END
SUBROUTINE FINH(N,T,FR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION FR(N)

E=DEXP(-T)
FR(1) =-E
FR(2) = (2.DO*T - I.DO) * E
RETURN
END
SUBROUTINE FMT(N,T,FM)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION FM(N,N)
FM(1,l) = 1.DO
FM(1,2) = 0.00
FM(2,1) = 0.00
FM(2,2) = 1.00
RETURN
END

SWITCHING POINTS: -4.000000 .000000 4.000000
CONDITION NUMBER = 0.100030+01
AMPLIFICATION FACTOR = 0.170670+01

I T APPROX. SOL. EXACT SOL. ABS.ERROR

1 -4.000 .2730823280+02 .273082328D+02 .328726202D-08
.545981500D+02 .545981500D+02 .535869304D-08

2 -3.000 .1006766200+02 .100676620D+02 .891424357D-08
.200855369D+02 .200855369D+02 .109678666D-07

3 -2.000 .3762195720+01 .376219569D+Ol .241194678D-07

60

CH.IX,7

MUTSMI CH.IX.7

.7389056150+01 .7389056100+01 .5073919770-07
4 -1.000 .1543080700+01 .1543080630+01 .6407154780-07

.2718282200+01 .2718281830+01 .3750987070·06
5 .000 .100000011 0+01 .100000000D+Ol .1073816810-06

.1000000020+01 .1000000000+01 .1735920720-07
6 1.000 .1543080670+01 .1543080630+01 .3253437790-07

.3678791970+00 .3678794410+00 -.2438842380-06
7 2.000 .3762195700+01 .3762195690+01 .1234111080-07

.1353351780+00 .1353352830+00 -.1049495900-06
8 3.000 .1006766200+02 .1006766200+02 .1101397730-07

.4978705260-01 .4978706840-01 -.1578235720-07
9 4.000 .2730823280+02 .2730823280+02 -.4455102950-10

.1831563150-01 .1831563890-01 -.7434540460-08

61

8. Subroutine MUTSPA

SPECIFICATION

SUBROUTINE MUTSPA(FLIN, FINH, FCT, N, L, NPL, IHOM, A, B, MA, MB, BCV,

ALI, ER, NRTI, TI, NTI, X. Z, TSW, NSW, NRSW, U, NU. Q, D,

2 KPART, CIt PHI, VI, W, LW, IW, LIW, IERROR)
C INTEGER N, L. NLP, IHOM, NRTI. NTI, NU, NSW. NRSW, KPART(NSW), LW,
C IW(LIW), LIW, IERROR

C DOUBLE PRECISION A. B, MA(NPL,NPL), MB(NPL,NPL), BCV(NPL). ALI. ER(S),
C 1 TI(NTI), X(N,NTI), Z(L), TSW(NSW), U(NU,NTI). Q(N,N,NTI).

C 2 D(N,NTI), CI(N,NTI,L), PHI(NU,NTI). YI(N,NTI,L), W(LW)

C EXTERNAL FLIN, FINH, FCT

Purpose

MUTSPA solves the two-point BVP with parameters:

-itX(t)=L(t)X(t)+C(t)z +r(t) , A 5:t 5:B or B 5:t 5:A ,

withBC:

where z is an L-vector containing the L parameters, MA and MB are NPLxN matrices, PA

and PB are NPLxL matrices. Bx. an N-vector and Bz an L-vector.

Parameters

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L (t) of the
differential equation for t = T and place the result in the array FL(N,N).

63

MUTSPA CH. IX,8

FUN must be declared as EXTERNAL in the (sub)program from which MUTSPA
is called.

FINH SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r (t) of the
differential equation fort = T and place the result in FRO), FR(2), ... , FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSPA
is called.
In the case that the system is homogeneous FINH is a dummy and one can use
FUN for FINH in the call to MUTSPA.

FCT SUBROUTINE, supplied by the user. with specification:

SUBROUTINE FCf(N, L, T, FC)
DOUBLE PRECISION T, FC(N,L)

where N is the order of the system and L the number of parameters. FCT must
evaluate the N x L matrix C (t) of the differential equation for t = T and place the
result in the array FC(N,L).
FCT must be declared as EXTERNAL in the (sub)program from which MUTSPA
is called.

N INTEGER, the order of the system.
Unchanged on exit.

L INTEGER, the number of parameters
Unchanged on exit.

NPL INTEGER.
NPL is the dimension of the arrays MA, MB and BCV. NPL must have the value
N+L.
Unchanged on exit.

IHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous,
IHOM = 0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

A,B DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

64

MUTSPA CH. IX,S

MA,MB DOUBLE PRECISION array of dimension (NPL, NPL).
On entry: MA and MB must contain the BC matrices: [MA I PAl and [Msi Psl
respectively.
Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (NPL).

On enlty BCY must contain lite BC vector [:: l
Unchanged on exit.

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2* ALI. a new output point is inserted.
If ALI S; 1 the defaults are:
IfNRTI = 0: ALI := max(ER(1). ER(2» / (2"'ER(3»,
if NRTI -:# 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.
On exit ALI contains the actually used incremental factor.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into
ER(I) := l.d-12 + 2 '" ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant EPS (see Remark 1.1).
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP.
On exit ER(5) contains an estimate of the amplification factor.

NRTI INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
1) NRTI = 0, the subroutine automatically determines the output points using the

allowed incremental factor ALI.
2) NRTI = 1, the output points are supplied by the user in the array TI.
3) NRTI > 1, the subroutine computes the (NRTI+l) output points TI(k) by:

TI(k) = A + (k-I) '" (B - A) /NRTI;
so TI(1) = A and TI(NRTI+ I) = B .

Depending on the allowed incremental factor ALI. more output points may be
inserted in the cases 2 and 3. Furthermore detected switching points are also
inserted. On exit NRTI contains the total number of output points.

65

MUTSPA CH.IX,8

TI DOUBLE PRECISION array of dimension (NTI).

On entry: if NRTI = 1 , TI must contain the required output points in strict
monotone order: A = TI(l) < ... < TICk) = B or A = TI(l) > ... > TICk) = B
Ck denotes the total number of required output points).
On exit: TI(i), i = 1,2, ... , NRTI, contains the output points, including possible
switching points.

NTI INTEGER.
NTI is the dimension ofTI and one of the dimensions of the arrays X. U. Q. D, CI,
PHI,YI.
Let m be the total number of output points then NTI 2! max(5, m + 1).
If the routine was called with NRTI > 1 and ALI S 1 the total number of required
output points is NRTI + 1 , so NTI 2! max(5, NRTI + 2), if the required output
points include possible switching points, otherwise NTI 2! max(5,NRTI+2) + k,
where k is the number of switching points between A and B (k S N).
Unchanged on exit.

X DOUBLE PRECISION array of dimension (N, NTI).
On exit X(i,k) , i = 1,2, ... , N contains the solution of the BVP at the output point
TI(k), k = 1, ... , NRTI.

Z DOUBLE PRECISION array of dimension (L)
On exit the array Z contains the values of the L parameters.

TSW DOUBLE PRECISION array of dimension (NSW)
On exit TSW contains the NRSW switching points:
A = TSW(l), ... , TSW(NRSW) = B.

NSW INTEGER.
NSW is the dimension of array TSW and array KPART. NSW 2! N + 2 !
Unchanged on exit

NRSW INTEGER.
On exit NRSW contains the total number of detected switching points.

U DOUBLE PRECISION array of dimension (NU, NTI).
On exit U(i,k) i = 1,2, ... , NU contains the relevant elements of the upper
triangular matrix V k, k = 2, ... , NRTI. The elements are stored column wise, the
jth column of Vi:. is stored in U(nj + I, k), U(nj + 2, k), ... , U(nj + j, k). where nj =
(i-I) '" j /2.

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to N >I< (N + 1) /2.

66

MUTSPA CH. IX,S

Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N, N, NTI),
On exit Q(ij,k) i =: 1,2, ... , N, j =: 1,2, ... , N contains the N columns of the
orthogonal matrix Q", k = 1, ... , NRTI.

D DOUBLE PRECISION array of dimension (N, NTI).
If mOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.
If mOM =: 1 : on exit D(i,k) i = 1,2, ... , N contains the inhomogeneous term db
k = 1,2 •... , NRTI, of the multiple shooting recursion.

KP ART INTEGER array of dimension (NSW)
On exit KPARTG) contains the global partitioning parameter of the interval
[TSW(j) , TSW(j+ 1)], j = 1, ... , NRSW-1.

CI DOUBLE PRECISION array of dimension (N, NTI, L)
On exit CI(ij,k) i = 1, ... , N, k = 1,. , . , L contains the NxL matrix Cj,
j = 2, ... , NRTI.

PHI DOUBLE PRECISION array of dimension (NU. NTI),
On exit PHI contains a fundamental solution of the multiple shooting recursion
(V.2.3). The fundamental solution is upper triangular and is stored in the same way
as the UIr..

YI DOUBLE PRECISION array of dimension (N, NTI, L),
On exit YI contains the particular matrix solution Yj of recursion (V .2.5). The
particular N x L matrix solution is stored in the same way as the C j.

W DOUBLE PRECISION array of dimension (LW),
Used as work space.

LW INTEGER
L W is the dimension of W.
L W ?:. 7 * NRSW * NPL '" (NPL + 1) /2 + 4 '" NPL '" (NPL + 1)
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension of IW. LIW ?:. N"'N + 8*N + 4 *L + 2.
Unchanged on exit.

67

MUTSPA

IERROR INTEGER
Error indicator; if IERROR = 0 then there are no errors detected.
See § 14 for the other errors.

Auxiliary Routines
**************"'*

eH. IX,S

This routine calls the BOUNDPAK library routines AMTES. APLB. BCMAV, CAMPF, CCI,
COl, CFUNRC, CHDIAU, CKPSW, CNRHS, COPMAT, COPVEC, CONDW, CPRDIA,
CPSRC, CROUT, CUVRC, CGTURC. CWISB, DEFINC, DETSWP, DURPA. FCBVP,
FC2BVP. FQUS, FUNPAR, FUNRC. GKPPA, CPABC, CPARC. CSPABV, lNPRO,
INTCH, KPCH, LUDEC,MATVC. PSR, QEVAK. QEV AL, QUDEC, RKF1S, RKFSM,
SBVP, SOLDE. SOLUPP, SORTO, SPARC, SPLSl, TAMVC, UPUP, UPVECP.

Remarks

MUTSPA is written by G.W.M. Staarink and RM.M. Mattheij.
Last update: november 1991.

Method

"'''''''''''''''''''''''''* * "'''''''''''''

See chapter V.

"''''*****'''''''''''''''''''''''''''
Example of the use of MUTSPA
*"'*********"''''***

Consider the ordinary differential equation with parameter z

frX(t)=L(t)X(t)+C(t)z+r(t) , -5~t~5

and a boundary condition M .[x (~5) 1 + M P [x~) 1 = b. where

L (I) = [~ 1..2 (tl]. C (I) = [l/CO~h (I)]. r (I) = [(I-sinh (7~/COSh (I)].

M IJ. = [g ~ ~ l' M ~ = [~ ~ ~l o 1 ~h 0 -1 ih

68

MUTSPA CH.IX,8

and b = [2, 2 cosh (5), 2 sinh (5)]T.

This problem has a switching point at t = 0 and the solution is:

x(t) = (1- exp(2(t -5», 1 + exp(-t»T and z =-2.

In the nex.t program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION BCMA(3,3),BCMB(3,3),BCV (3),ER(5),TI(13),TSW(4),

1 X(2, 13),Z(I), U(3, 13),Q(2,2,13),D(2, 13) ,PHI(3, 13),CI(2, 13,1),
2 YI(2,13,1),W(174)

INTEGER KP(4),IW(26)
EXTERNAL FLIN,FINH,FCT

C SETTING OF THE INPUT PARAMETERS
C

C

N=2
L=l
NPL=3
NSW=4
mOM = 1
NTI= 13
NU=3
LW= 174
LIW=26
ER(1) = 1.10-12
ER(2) = 1.0-6
CALL EPSMAC(ER(3»
A=-5.oo
B =5.00
ALI = 0.00
NRTI=lO

C SETTING THE BOUNDARY CONDITIONS
C

BCMA(1,l) = 0.00
BCMA(1,2) = 0.00
BCMA(1,3) = -1.00
BCMA(2,1) = 0.00
BCMA(2,2) = 1.00
BCMA(2,3) = 0.500
BCMA(3,l) = 0.00

69

C

BCMA(3,2) = 1.00
BCMA(3,3) = -0.5DO
BCMB(l, 1) = I.DO
BCMB(l,2) = O.DO
BCMB(1,3) = O.DO
BCMB(2,1) = O.DO
BCMB(2,2) = I.DO
BCMB(2,3) = 0.5DO
BCMB(3,1) = 0.00
BCMB(3,2) = -1.DO
BCMB(3,3) = 0.500
BCV(1) = 2.DO

MUTSPA

BCV(2) = 2.00 * DCOSH(5.DO)
BCV(3) = 2.00 '" OSINH(5.00)

C CALL MUTSPA
C

CH. IX,S

CALL MUTSPA(FLIN,ANH,FCT,N,L,NPL,IHOM,A,B,BCMA,BCMB,BCV,AMP,ER,
1 NRTI,TI,NTI,X,Z,TSW ,NSW ,NRSW,U,NU,Q,O,KP,CI,PHI,YI,W,
2 LW,IW,LIW,IERROR)

IF (IERROR.NE.O) GOTO 5000
C
C PRINTING OF THE SWITCHING POINTS, CONDITION NUMBER AND
C AMPLIFICATION FACTOR
C

C

WRITE(*,105) (TSW(J),J=l,NRSW)
WRITE('" ,11 0) ER(4),ER(5)

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION ANO WRITING OF
C THE SOLUTION AT THE OUTPUTPOINTS
C

WRITE(*,*)' Z= ',Z(l)
WRlTE(*, 120)
DO 1200 I = 1 , NRTI
El = 1.DO - OEXP(2.DO*(TI(I)-5.00»
E2 = El - X(l,l)
WRlTE(*,130) TI(I),X(1,I),El,E2
El = 1.00 + OEXP(-TI(l»
E2 = El - X(2,I)
WRITE(*,135) X(2,I),El,E2

1200 CONTINUE
STOP

5000 WRITE(*,l00) IERROR
STOP

100 FORMAT(, TERMINAL ERROR IN MUTSPA: IERROR = ',14)
105 FORMAT(, SWITCHING POINTS: ',4(F7.2,3X»

70

MUTSPA

110 FORMATC CONDITION NUMBER = ',D12.5J,
1 ' AMPLIFICATION FACTOR = '.D12.5J)

120 FORMAT(' 'J,5X,'T'.5X,'APPROX.SOL.',7X,'EXACT SOL.',8X,
1 'ABS. ERROR',/)

130 . FORMAT(, ',F7.3,3(2X.DI6.9»
135 FORMAT(' ',7X,3(2X,DI6.9»

END

C

C

C

C

C

C

SUBROUTINE FLIN(N,T,F)

DOUBLE PRECISION T,F(N,N),TI

F(l,I) = 2.00
F(l,2) = 0.00
F(2, 1) = 0.00
F(2,2) = DT ANH(T)
RETURN
END
SUBROUTINE FINH(N,T,F)

DOUBLE PRECISION T,F(N)

F(1) = -2.00
F(2) = (1.00 - DSINH(T» I DCOSH(T)
RETURN
END
SUBROUTINE FCT(N,L,T,F)

DOUBLE PRECISION T,F(N,L)

F(1,I) = 0.00
F(2,1) = 1.00 I DCOSH(T)
RETURN
END

SWITCHING POINTS: -5.00 .00 5.00
CONDITION NUMBER = .100680+01
AMPLIFICATION FACTOR = .20633D+01

z= -1.99999998386800

T APPROX. SOL. EXACT SOL.

-5.000 .999999998D+00 .9999999980+00
.1494131590+03 . 149413159D+03

-4.000 .9999999850+00 .9999999850+00

71

ABS.ERROR

.105471187D-13

.806599587D-08

.693889390D-13

CH. IX,S

MUTSPA CR. IX,8

.5559814950+02 .5559815000+02 .5525555620-06
-3.000 .9999998870+00 .9999998870+00 .4545253060-12

.2108553650+02 .2108553690+02 .4002767330-06
-2.000 .9999991680+00 .9999991680+00 .2937428080-11

.8389055890+01 .8389056100+01 .2071475760-06
-1.000 .9999938560+00 .9999938560+00 .1858879720-10

.3718281750+01 .3718281830+01 .7462988140-07
.000 .9999546000+00 .9999546000+00 .1143397600-09

.1999999980+0] .2000000000+01 .2013353020-07
1.000 .9996645370+00 .9996645370+00 .6748059890-09

.1367879440+01 .1367879440+01 .6111466220-08
2.000 .9975212440+00 .9975212480+00 .3729636600-08

.1135335280+01 .1135335280+01 .1926353740-08
3.000 .9816843430+00 .9816843610+00 .1827383540-07

.1049787070+01 .1049787070+01 .1596738520-08
4.000 .8646646500+00 .8646647170+00 .6642156620-07

.1018315640+01 .1018315640+01 .3128819870-08
5.000 .1613198930-07 .0000000000+00 -.1613198930-07

.1006737940+01 .1006737950+01 .8065983880-08

72

9. Subroutine MUTSDD

SPECIFICATION

SUBROUTINE MUTSMP(Fl,IN, FINH, N, IHOM, TSP, NSP, BCM, BCV, ZM, ZP,

1 BI, ALI, ER, NRTI, TI, NTI, X, U, NU, Q, D,

2 KPART, PHI, W, LW, IW, LIW, IERROR)

C INTEGER N, IHOM(NSP), NSP, NRTI(NSP), NTI, NU, KPART(NSP), LW, IW(LIW),

C 1 LIW, IERROR

C DOUBLE PRECISION TBP(NBP), BCM(NBP), BCV(N), ZM(N,N,NSP), ZP(N,N,NSP).

C 1 BI(N,NSP), ALI, ER(6). TI(NTI). X(N,NTI), U(NU,NTI),

C 2 Q(N,N,NTI), D(N,NTI), PHI(NU,NTI), W(LW)

C EXTERNAL FLIN. FINH

Purpose

MUTSDD solves the BVP with discontinuous data:

:t x(t) = L(t)x(t) + ret) (Xi S; t < (Xi+l ,i = 1, ... , m ,

with side conditions

and aBC

where the Lj(t) are bounded continuous matrix functions,the ri(t) are bounded continuous
vector functions, the Z{tl, ZitI are the side conditions matrices, the bi+l are the side
conditions vectors, the Mj are the BC matrices, b the BC vector and (Xl < ... < <Xm+l or
(Xl > ... > <X.m+1 the switching points.

Parameters

73

MUTSDD

FUN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

CH.IX,9

where N is the order of the system. FLIN must evaluate for t = T the corresponding
matrix Li(t) of the differential equation and place the result in the array FL(N,N).
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSDD
is called.

FINH SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate for t = T the coresponding
vector rj(t) of the differential equation and place the result in FR(l), FR(2), ... ,
FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSDD
is called.
In the case that the system is homogeneous, i.c. all the 'j = 0, FINH is a dummy and
one can use FLIN for FINH in the call to MUTSDD.

N INTEGER, the order of the system.
Unchanged on exit.

IHOM INTEGER array of dimension (k), k ;;:: NSP
IHOM(i) indicates whether the system is homogeneous or inhomogeneous on
[ai ,<Xi+l]. i = I, ... , NSP-I.
On entry:
IHOM(i) = 0 : the system is homogeneous on [<Xi • <Xi +1],
IHOM(i) = 1 : the system is inhomogeneous on [ai ,aj+l J.
On exit IHOM(i), i=l, ... ,NSP-l is unchanged; IHOM(NSP) = 0, if the whole
system is homogeneous, otherwise IHOM(NSP) = 1.

TSP DOUBLE PRECISION array of dimension (k), k ;;:: NBP. On entry TSP must
contain the switching points aj , j = 1, ... , NSP in monotone order, i.e.
TSP(j) = aj,j = 1, ... , NSP.
Unchanged on exit.

NSP INTEGER. NSP is the number of switching points.
Unchanged on exit.

BCM DOUBLE PRECISION array of dimension (N,N,k), k ;;:: NSP .
. On entry: BCM(.•. ,j) must contain the BC matrix Mj,j = 1, ... , NSP.

74

MUTSDD CH.IX,9

During computation the array BCM will be overwritten.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
During computation the array BCV will be overwritten.

ZM DOUBLE PRECISION array of dimension (N. N. k), k ~ NSP.
On entry ZM(. , . t j) must contain the side condition matrix ZFt j = 2, ...• NSP-t.
During computation the array ZM will be overwritten.

ZP DOUBLE PRECISION array of dimension (N, Nt k), k ~ NSP.
On entry ZP(.•. ,j) must contain the side condition matrix Z/, j = 2, ... , NSP-I.
During computation the array ZP will be overwritten.

BI DOUBLE PRECISION array of dimension (N. k). k ~ NSP.
On entry BI(.• j) must contain the side condition vector B j, j = 2 •... , NSP-I.
During computation the array BI will be overwritten.

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2 '" ALI, a new output point is inserted.
If ALI S 1 the defaults are:
IfNRTI(1) = 0: ALI := max(ER(l). ER(2» / (2"'ER(3»,
if NRTI(1) '* 0: ALI := SQRT(RMAX). where RMAX is the largest positive real
number which can be represented on the computer used.
On exit ALI contains the actually used incremental factor.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(I) into
ER(1):= 1.d-12 + 2'" ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation.
On entry ER(3) must contain the machine constant BPS (see Remark 1.1).
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP.
On exit ER(5) contains an estimate of the amplification factor.
On exit ER(6) contains an estimate of the amplification factor of the discrete
multipoint BVP.

NRTI INTEGER array of dimension (k), k ~ NBP

On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:

75

MUTSDD CH.IX.9

1) NRTI(1) = 0, the subroutine automatically determines the output points using the
allowed incremental factor ALI.

2) NRTI(1) = 1, the output points are supplied by the user in the array TI.
3) NRTI(1) > I,in this case the interval [TBPG-I), TBPG)],j = 2, ... , NSP, are

divided into NRTIG) subintervals of equal length. The endpoints of
these subintervals are the required output points.

Depending on the allowed incremental factor ALI, more output points may be
insened in the cases 2 and 3.
On exit: NRTI(1) contains the total number of output points.
For j = 2, ... , NBP: if NRTIG) < 0 then no change of dichotomy is detected on the
succesive intervals [TBPG-I), TBPG)] and [TBPG) , TBPG+I)]. IfNRTIG) > 0
then a change of dichotomy is dectected at TBPG) and NRTIG) contains the
number of output points on the interval [TBP(i) , TBP(j)], where i < j,
NRTI(i) > 0, NRTI(k) < 0, i < k < j, i.e. TBP(i) is the previous point where a
change of dichotomy was detected.

TI DOUBLE PRECISION array of dimension (NTI).
On entry: if NRTI = 1 , TI must contain the required output points in strict
monotone order: al = TI(I) < ... < TI(k) = at or al = TI(1) > ... > TI(k) = at
(k denotes the total number of required output points). The output points must

include all switching points aj, j = 1, ... , NBP.
The routine split the switching points aj' j = 2, ... , NSP - 1 into two output

points aJ := aj (1-EPS) and at := aj (1 + EPS).
On exit: TI(i), i = 1,2, ... , NRTI(l), contains the output points.

NTI INTEGER.
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D,
PHI. When mG) denotes the number of output points on the interval
[TBP(j - 1) , TBPG)], j = 2, ... , NBP, and m the number of output points on the
interval [TBP(1), TBP(NBP)], i.e. m = m(2) + ... + m(NBP), then
NTI ~m + I + max(4-m(NBP), 0).
If the routine was called with NRTI(1) > 1 and ALI S; I then mG) = NRTI(j) + I ,j
= 2, ... , NBP, so
NTI ~ NBP + NRTI(2) + ... + NRTI(NBP) + max(3 - NRTI(NBP),O).
Unchanged on exit.

X DOUBLE PRECISION array of dimension (N,NTI).
On exit X(i,k) , i = 1,2, ... , N contains the solution of the BVP at the output point
TI(k), k = I, ... , NRTI(1).

U DOUBLE PRECISION array of dimension (NU,NTI).
On exit U(i , k) i = 1,2, ... , NU contains the relevant elements of the upper
triangular matrix Uk.. k = 2, ... , NRTI(I) The elements are stored column wise,
the jth column of Uk is stored in U(nj + 1, k), U(nj + 2, k), ... , U(nj + j, k), where

nj = (j - 1) * j /2.

76

MUTSDD

NU INTEGER.
NU is one of the dimensions ofU and PHI.
NU must be at least equal to N '" (N + 1) /2.
Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N,N,NTI).

CH.IX,9

On exit Q(i , j, k) i = 1,2, ... , N, j = 1,2, ... , N contains the N columns of the
orthogonal matrix Qko k = I, ... ,NRTI(l).

D DOUBLE PRECISION array of dimension (N,NTl).
If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.
If IHOM = 1 : on exit D(i, k) i = 1,2, ...• N contains the inhomogeneous tenn die,
k = 1,2, ...• NRTI(1), of the multiple shooting recursion.

KP ART INTEGER array of dimension (k), k ~ NBP
On exit KPART(j) contains the global partitioning parameter on the interval [
TBP(ij) , TBP(ij+l) 1, j = 1, ... , where the TBP(ij) are the points where a change
of dichotomy has been detected; i 1 < i2 < ... and NRTl(ij) > O.

PHI DOUBLE PRECISION array of dimension CNU,NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.
The fundamental solution is upper triangular and is stored in the same way as the
Uk.

W DOUBLE PRECISION array of dimension (L W).
Used as wolk. space.

LW INTEGER
L W is the dimension of W.

L W ~ N '" (3 '" N '" N + 14 '" N + 15) /2 + NSP '" N '" (3 '" N + 5) /2
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER

LIW is the dimension ofIW. LIW ~ (4 + NBP)"'N + 4 '" NBP .
Unchanged on exit.

IERROR INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See § 14 for the other errors.

77

Auxiliary Routines

MUTSDD CH. IX.9

This routine calls the BOUNDPAK library routines AMTES, APLB, CAMPF. CDI,
CFUNRC, CKLREC, CNRHS, COPMAT. COPVEC, CONDW, CPSRC, CTIMI, CTIPL,
CROUT,CUVRC, CWISB, DEFUNC, DUR,FCBVP,FC2BVP,FQUS,FUNPAR. FUNRC,
GKPMP, GTUR, GTUVRC, INPRO, INTCH, KPCH, LUDEC, MATVC, MTSDD, PSR,
QEV AK, QEV AL, QUDEC, RKFIS, RKFSM, 5MBVP, SOLDE, SOLUPP, SORTD,
SORTDO, SPLS2, SSDBVP, TAMVC, TUR, TUVRC, UPUP, UPVECP, UQDEC.

Remarks

MUTSMP is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991.

Method

See chapter IV.

Example of the use of MUTSDD

Consider the ordinary differential equation

d -3St<0,i=1
(JjX(t)=Li(t)x(t)+ri(t), OStS3,i=2'

a jump condition at t = 0:
Zf x (0-) + Zi x (0+) = b2

and a boundary condition:
Mt x (-3)+M2 X(0+)+M 3 x(3)=b,

[

111.1 + 11.1 cos(2t) 1 - ih sin(2t) 0] [- 211.1 - cos(2t) + Sin(2t)]
L 1(1) = - 1 - 11.1 sin(2t) lit2 - 11.1 cos(2t) 0 , , l(t) = _11.1 + cos(2t) + sin(2t) ,

o 0 -1 1

[

ih + 3cos(2t) 1 - 3sin(2t) 0] [- 111.1 - 3 (cos(2t) - sin(2t))]
L 2(t) = -1 - 3sin(2t) 11.1 - 3cos(2t) 0 , '2(t) = 11.1 + 3 (cos(2t) + sin(2t» ,

o 0 -1 1

78

MUTSDD CH. IX,9

Z2 =1. Z2 =-1, bz=(l,-2.0)T.

M 1 = [8 8 8j, M z = [8 ~ 8]. M 3 = [~ 8 8j. b = [
1
+ Si~3) e-

3j.
001 000 000 1

The solution of this problem is:
x(t) = (1 +cos(t)e 21 - sin(t)et ,1- sin(t)e 21 - cos(t)e t .1)T, -3 S t < 0
x (t) = (l + sin(t) e-l , 1 + cos(t) e-l • I)T, 0 S t S 3.

For t < 0 the ODE has fundamental solutions growing like exp (2 t), exp (t) and exp (- t);
for t ~ 0 the ODE has fundamental solutions growing like exp (2 t) and ep (- t), so there is a
change of dichotomy at t = O.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVEITI M24 personal computer (see Remark 1.2).

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION TSP(3),BCM(3.3,3),BCV (3),ZM(3,3,3),zp(3,3,3),BI(3,3),

1 ER(6),TI(13),x(3,13),U(6,13).Q(3.3,13),D(3,13),PHI(6,13),W(189)
INTEGER IHOM(3).KP(3),NRTI(3»)W(33)
EXTERNAL FLIN,FINH

C SETTING OF THE INPUT PARAMETERS
C

C

N=3
NSP=3
IHOM(l)= 1
!HOM(2)= 1
TSP(I) = -3.00
TSP(2) = 0.00
TSP(3) = 3.00
ER(I) = I.D·11
ER(2) = I.D-6
CALL EPSMAC(ER(3»
ALI = 0.00
NTI= 13
NU=6
LW= 189
LIW=33
NRTI(l) = 2
NRTI(2)=5
NRTI(3) = 5

C SETTING THE BC MATRICES BCM, THE BC VECTOR BCV AND THE SIDE
C CONDmON MATRICES ZM, ZP AND VECTOR BI.

79

C
DO 1200 L = 1 , NSP

DO 11001= I.N
DO 1100 J = 1 , N

IF (I.EQ.J) THEN
ZM(I,I,L) = 1.00
ZP(I,I,L) = -1.00

ELSE
ZM(I),L) = 0.00
ZP(I),L) = 0.00

ENDIF
BCM(I),L) = 0.00

MUTSDD CH. IX.9

1100 CONTINUE
BI(l,L) = 1.00
Bl(2,L) = -2.00
Bl(3,L) = 0.00

1200 CONTINUE

C

BCM(3,3,1) = 1.00
BCM(2.2,2) = 1.00
BCM(I,I,3) = 1.00
BCV(1) = 1.00 + DSIN(TSp(3»'" DEXP(-TSP(3»
BCV(2) = 2.00
BCV(3) = 1.00

C CALL MUTSDD
C

C

C

C

CALL MUTSDD(FLIN,FINH,N,IHOM,TSP,NSP ,BCM,BCV,ZM,ZP,BI,ALI,ER,
1 NRTI,TI.NTI,X,U.NU,Q,D.KP,PID,W,LW,IW,LIW,IERROR)

IF «(IERROR.NE.0).AND.(IERROR.NE.200).AND.(IERROR.NE.213).AND.
1 (IERROR.NE.300» THEN

WRITE(* ,300) ffiRROR
STOP

ENDIF
CALL OUTPUT(N.ER,TI,X,NTI,NRTI,NSP)
STOP

300FORMAT(, TERMINAL ERROR IN MUTSDD : ffiRROR = ',13)
END

SUBROUTINE FLIN(N,T .FL.)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION FL(N,N)

T2=2.00"'T
C = DCOS(T2) /2.00
S = DSIN(T2) /2.00

80

IF (T.LT.O.OO) THEN
FL(1,1) = 1.500+ C
FL(l,2) = 1.00 - s
FL(l,3) = 0.00
FL(2,l) = -1.00 - S
FL(2,2) = 1.500 - C
FL(2,3) = 0.00
FL(3,l) = 0.00
FL(3,2) = 0.00
FL(3,3) = -1.00

ELSE
FL(l,l) = 0.500 + 3.00*C
FL(I,2) = 1.00 - 3.00*S
FL(l,3) = 0.00
FL(2.1) = -1.00 - 3.00*S
FL(2,2) = 0.500 - 3.00*C
FL(2,3) = 0.00
FL(3,l) = 0.00
FL(3,2) = 0.00
FL(3.3) = -1.00

ENDIF
RETURN

MUTSDD

C ENDOFFLIN

C

C

END
SUBROUTINE FINH(N,T.FR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION FR(N)

T2=2.00*T
C = DCOS(T2) /2.00
S = DSIN(T2) /2.00
IF (T.LT.O.OO) THEN
FR(1) = -2.500 - C + S
FR(2) = -0.500 +C + S
FR(3) = 1.00

ELSE
FR(l) = -1.500 - 3.00*(C - S)
FR(2) = 0.500 + 3.00*(C + S)
FR(3) = 1.00

ENDIF
RETURN

C ENDOFFINH
END
SUBROUTINE OUTPUT(N,ER,TI,X,NTI,NRTI,NSP)

C

81

CH.IX,9

C

MUTSDD

IMPLICIT DOUBLE PREOSION (A-H,O-Z)
DIMENSION TI(NTI),X(N.NTI).ER(6)
INTEGER NRTI(NSP)

CH.IX,9

C PRINTING OF THE CONDITION NUMBER AND THE AMPLIFICATION FACTOR.
C

C

WRITE(NOUT,200)
WRITE(NOUT,245) ER(4).ER(5),ER(6)
WRITE(NOUT,200)

C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING
C OF THE SOLUTION AT THE OUTPUTPOINTS
C

WRITE(NOUT ,2(0)
WRlTE(NOUT.250)
WRITE(NOUT,200)
DO 2100 K = 1 , NRTI(I)

C = DCOS(TI(K»
S = DSIN(TI(K»
E2T = DEXP(2.oo*TI(K»
ET = DEXP(TI(K»
EMT = DEXP(-TI(K»
IF (TI(K)LT.O.oo) THEN
EXSOLl = 1.00 + C*E2T - S*ET
EXSOL2 = 1.00 - S '" E2T - C * ET

ELSE
EXSOLl = 1.00 + S lie EMT
EXSOL2 = 1.00 + C lie EMT

ENDIF
AE=EXSOL1- X(I,K)
WRlTE(NOUT ,260) K,TI(K),X(l,K),EXSOL l,AE
AE = EXSOL2 - X(2,K)
WRITE(NOUT,270) X(2,K),EXSOL2,AE
EXSOL3 = 1.00
AE = EXSOL3 - X(3,K)
WRlTE(NOUT,270) X(3,K),EXSOL3,AE

2100 CONTINUE
RETURN

200 FORMATC ')
245 FORMATC CONDITION NUMBER = ',DI0.3J,

1 ' AMPLIFICATION FACTORS = ',DIO.3,3X,DlO.3)
250 FORMATe I' ,6X, 'T' ,8X,' APPROX. SOL.' ,9X, 'EXACT SOL. ' ,8X,

1 'ABS. ERROR')
260 FORMATC ',I3,3X,F7.4,3(3X,DI6.9»
270 FORMATC ',13X,3(3X,D16.9»

RETURN

82

MUTSDD CH. IX,9

END

CONDITION NUMBER = .1010+01
AMPLIFICATION FACfORS = .2160+01 .2000+01

I T APPROX. SOL. EXACfSOL. ABS.ERROR

1 -3.0000 .1004572000+01 .1004572010+01 .6066441570-08
.1049638620+01 .1049638630+01 .3822061780-08
.1000000000+01 .1000000000+01 .0000000000+00

2 -2.4000 .1055208070+01 .1055208070+01 .7578609960-08
.1072453740+01 .1072453740+01 .3081541240-08
.1000000000+01 .1000000000+01 .0000000000+00

3 -1.8000 .1154767920+01 .1154767920+01 .8123057560-08
.1064165380+01 .1064165400+01 .1119512130-07
.1000000000+01 .1000000000+01 .0000000000+00

4 -1.2000 .1313597110+01 .1313597130+01 .2387683580-07
.9754125990+00 .9754126200+00 .2080388130-07
.1000000000+01 .1000000000+01 .2220446050-15

5 -.6000 .1558468630+01 .1558468670+01 .3690139860-07
.7171132530+00 .7171132560+00 .2627430500-08
.1000000000+01 .1000000000+01 .2220446050-15

6 .0000 .2000000340+01 .2000000000+01 -.3398240490-06
.1440752220-15 .2210200340-14 .2066125120-14
.1000000000+01 .1000000000+01 .1110223020-15

7 .0000 .1000000340+01 .1000000000+01 -.3398240460-06
.2000000000+01 .2000000000+01 -.1110223020-14
.1000000000+01 .1000000000+01 .1110223020-15

8 .6000 .1309882450+01 .1309882360+01 -.8831963360-07
.1452953730+01 .1452953790+01 .6324083550-07
.1000000000+01 .1000000000+01 .0000000000+00

9 1.2000 .1280724790+01 .1280724780+01 -.7577428020-08
.1109140030+01 .1109140060+01 .2889021360-07
.1000000000+01 .1000000000+01 .4440892100-15

10 1.8000 .1160975920+01 .1160975930+01 .6043944010-08
.9624437320+00 .9624437460+00 .1433293530-07
.1000000000+01 .1000000000+01 .1110223020-15

11 2.4000 .1061276630+01 .1061276640+01 .7113462930-08
.9331051470+00 .9331051510+00 .4009707230-08
.1000000000+0 1 .1000000000+01 .1110223020-15

12 3.0000 .1007025950+01 .1007025950+01 .0000000000+00
.9507111770+00 .9507111760+00 -.1261657330-08
.1000000000+01 .1000000000+01 .0000000000+00

83

10. Subroutine MUTSEI

SPECIFICA TlON
••••••••••••••••

SUBROUTINE MUTSEI(FLINE, N, A, B, EIG, MAt MB, ALI, ER, NRTI. TI,
I NTI,X,NRSOL, U, NU, Q, KPART, PIn, W,LW.IW,LIW, IERROR)

C INTEGER N, NRTI. NTI. NRSOL, NU, LW. IW{LIW), LIW. IERROR
C DOUBLE PRECISION A, B. EIG(2), MA(N,N), MB(N,N), ALI, ER(5), TI(NTI),
C 1 X(N,NTI,N), U(NU.NTI), Q(N.N.NTI), PIn(NU.NTI), W{LW)

C EXTERNAL FUN

.***.**** •••••••
Purpose
*.**** ••• *******

MUTSEI solves the eigenvalue problem:

t,X(t,A.)=L(t.A.)X(t,A.) , A ~t ~B or B ~t ~A ,
withBC:

MA x(A,A.)+MB x(B ,A.)=O,

where A is the parameter, L(t ,A) an NxN matrix function, MA and MB are NxN matrices.

Parameters
*** •• ***********

FLlNE SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLINE(N, T, FL, ALAM)
DOUBLE PRECISION T, FL(N,N), ALAM

where N is the order of the system. FLINE must evaluate the matrix L (t , A.) of the
differential equation for t = T. A. = ALAM and place the result in the array
FL(N,N).
FLINE must be declared as EXTERNAL in the (sub)program from which
MUTSGE is called.

N INTEGER, the order of the system.
Unchanged on exit.

85

MUTSEI CH..IX,lO

A,B DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

EIG DOUBLE PRECISION array of dimension (2)
On entry EIG(l) and EIG(2) must contain the endpoints of an interval in which the
required eigenvalue lies.
On exit EIG(l) and EIG(2) contains the endpoints of the interval in which an
eigenvalue is found, where I EIG(l) - EIG(2) I < ER(2) + EIG(l) '" ER(I).
EIG(1) is taken as an approximate for the eigenvalue.

MA,MB DOUBLE PRECISION array of dimension (N, N).
On entry: MA and MB must contain the matrices in the BC:
MA X(A,A) +M8 x(B ,A)=O.
Unchanged on exit.

ALI DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2 '" ALI, a new output point is inserted.
If ALI S 1 the defaults are:
IfNRTI = 0: ALI := max(ER(l), ER(2» I (2"'ER(3»,
if NRTI '¢ 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.
On exit ALI contains the actually used incremental factor.

ER DOUBLE PRECISION array of dimension (5).
On entry ER(1) must contain a relative tolerance for solving the differential
equation and computing the eigenvalue. If the relative tolerance is smaller then 1.0
d-12 the subroutine will change ER(l) into
ER(1):= l.d-12 + 2'" ER(3).
On entry ER(2) must contain an absolute tolerance for solving the differential
equation and computing the eigenvalue.
On entry ER(3) must contain the machine constant EPS (see Remark. 1.1).
On exit ER(2) and ER(3) are unchanged.
On exit ER(4) contains an estimate of the condition number of the BVP. If on exit
ER(4) = -1, then NRSOL = N.
On exit ER(5) contains an estimate of the amplification factor.

NRTI INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
1) NRTI = 0, the subroutine automatically determines the output points using the

allowed incremental factor ALI.

86

MUTSEI CH.IX,lO

2) NRTI = I, the output points are supplied by the user in the array TI.
3) NRTI > 1, the subroutine computes the (NRTI+ 1) output points TI(k) by:

TI(k) = A + (k-l)'" (B - A) /NRTI;
so TI(1) = A and TI(NRTI+ 1) = B .

Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

TI DOUBLE PRECISION array of dimension (NTI).
On entry: if NRTI = 1 , TI must contain the required output points in strict
monotone order: A = TI(l) < ... < TI(k) = B or A = TI(l) > ... > TI(k) = B
(k denotes the total number of required output points).
On exit: TI(i), i = 1,2, ... , NRTI, contains the output points.

NTI INTEGER.
NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q. D.
PHI. Let m be the total number of output points then NTI ;?; max(5, m + 1).
If the routine was called with NRTI > 1 and ALI ::; 1 the total number of required
output points is NRTI + 1, so NTI;?; max(5, NRTI + 2).
Unchanged on exit.

X DOUBLE PRECISION array of dimension (N, NTI. N),
On exit X(i,k.l) ,i = 1,2, ... , N, 1 = 1 , ... , NRSOL, contains the eigensolutions,
at the output points TI(k), k = 1, ... , NRTI, corresponding with the computed
eigenvalue EIG(l).

NRSOL INTEGER.
On exit NRSOL contains the number of independent eigensolutions.

U DOUBLE PRECISION array of dimension (NU,NTI).
On exit U(i,k) i = 1;;', ... , NU contains the relevant elements of the upper
triangular matrix UJe, k = 2, ... ,NRTI. The elements are stored column wise, the
jth column of Uk is stored in U(nj + I, k), U(nj + 2, k) , ... , U(nj + j, k) where nj
= G-l)'" j /2.

NU INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to N ... (N+ 1) /2.
Unchanged on exit.

Q DOUBLE PRECISION array of dimension (N, N, NTI).
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2, ... , N contains the N columns of the
orthogonal matrix Qk, k = 1, ... , NRTI.

87

MUTSEI CH.IX.IO

KPART INTEGER.
On exit KP ART contains the global k -partition of the upper triangular matrices V".

PHI DOUBLE PRECISION array of dimension (NU, NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.
The fundamental solution is upper triangular and is stored in the same way as the

V".

W DOUBLE PRECISION array of dimension (L W).
Used as wort space.

LW INTEGER
L W is the dimension of W. LW ;;:: S*N + 7*N*N.
Unchanged on exit.

IW INTEGER array of dimension (LIW)

Used as wort space.

LIW INTEGER
LIW is the dimension ofIW. LIW ;;:: 4*N.
Unchanged on exit.

IERROR INTEGER
Error indicator; ifIERROR = 0 then there are no errors detected.
See §14 for the other errors.

Auxiliary Routines

This routine calls the BOUNDPAK library routines AMTES. APLB. BCMAV, CDI, CNRHS.
COPMAT, COPVEC. CONDW. CRROL, CROUT. CWISB, DEFINC, OUR. FCBVP,
FCEBVP. FQUS. FUNPAR, FUNRC. INPRO, INTCH, KPCH. LUDEC, MATVC, MTSE,
QEVAK, QEV AL, QUDEC, RKFlS, RKFSM, SOLDE, SOLUPP, SORTO, TAMVC, UPUP,
UPVECP.

Remarks

MUTSEI is written by G.W M. Staarink and R.M.M. Mattheij.
Last update: november 1991.

88

MUTSEI CH. IX,lO

*********** •••••
Method
••••• ***********

See chapter VII.

Example of the use of MUTSEI
*********** •• *.*

Consider the ordinary differential equation

d [0 1] tli-:x (t , 'A.) = -'A. 0 x (t • 'A.) ,OS t S 1

and a boundary condition x (0) = 0 and x (l) = O.

This problem has an eigenvalue 'A.. = 1C2 and an eigensolution x(t, 'A..) = (sin~1tt) ,COS(1t»T.

In the next program this eigenvalue and eigensolution is computed, starting with an initial
intelVal for 'A. : [9 , 11].
This program has been run on a OLIVETII M24 personal computer (see Remark 1.2),

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION EIG(2),BMA(2,2),BMB(2,2),ER(5),TI(12).X(2,12,2),

1 U(3,I2),Q(2,2,I2),PHI(3,12),W(44)
INTEGER IW(8)
EXTERNAL FLINE

C
C SET INPUT PARAMETERS
C

N=2
NU=3
NTI= 12
NRTI=lO
LW=44
LIW=8
A=O.oo
B = 1.00
AMP = 0.00
ER(1) = 1.10-12
ER(2) = 1.00-6
CALL EPSMAC(ER(3»
DO 11001= 1 ,N

89

DO 1100J= 1 ,N
BMA(I) = 0.00
BMB(I) = O.DO

1100 CONTINUE

C

BMA(l,l) = 1.00
BMB(2,l) = 1.00
EIG(1) = 9.00
EIG(2) = 11.000

C CALL MUTSEI
C

MUTSEI CH. IX,lO

CALL MUTSEI(FLINE,N,A,B,EIG,BMA,BMB,AMP,ER,NRTI,TI.NTI,
1 X,NRSOL,U ,NU,Q,KPART ,PHI,W,LW JW ,LIW,IERROR)

IF «(IERROR.NE.0).AND.(IERROR.NE.200).AND.(IERROR.NE.213).AND.
1 (IERROR.NE.300» GOTO 5000

C
C COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING
C OF THE EIGENVALUE END EIGENSOLUTION
C

C

WRITE(*,2oo) ER(4).ER(5)
PI = 4.00 * DATAN(1.00)
EXLAM = PI * PI
ERR = EXLAM - EIG(I)
WRITE(* ,210) EXLAM,EIG(I),ERR
WRITE(* ,220)
DO 1500K= I,NRTI
T=PI *TI(K)
XEX = DSIN(f) I PI
ERR = XEX - X(1,K,l)
WRITE(* ,230) K. TI(K),x(1 .K,1),XEX,ERR
XEX = DCOS(f)
ERR = XEX - X(2,K,I)
WRITE(*,240) X(2,K,l),XEX,ERR

1500cONTINUE
STOP

200 FORMAT(' CONDITION NUMBER = ',D12.SJ,
1 ' AMPLIFICATION FACTOR = ',DI2.SJ)

210 FORMAT(' EXACT LAMBDA = ',D20.13J: COMPo LAMBDA = ',D20.13J,
1 ' ERROR = ' .020.13,1)

220 FORMAT(, ',/,9X, 'T' ,6X,' APPROX. EIGENSOL. '3X, 'EXACT EIGENSOL.' ,
1 8X,'ERROR',I)

230 FORMAT(' ',I2,2X,F8.5,3X,3(D16.9,3X»
240 FORMAT(, ,,15X,3(D16.9,3X»
300 FORMAT(, TERMINAL ERROR IN MUTSEI: IERROR = ' ,14)

STOP

90

MUTSEI

5000 WRITE(* ,300) IERROR
END

C

C

C

SUBROUTINE FLINE(N,T,FL,PARM)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
DIMENSION FL(N,N)

FL(1.1) = 0.00
FL(1,2) = 1.00
FL(2.1) = -PARM
FL(2,2) = 0.00
RETURN
END

CONDITION NUMBER = .707110+00
AMPLIFICATION FACTOR = .231170+02

EXACT LAMBDA = .98696044010890+01
COMPo LAMBDA = .98696045590340+01
ERROR = -.1579442141519D-06

T APPROX. EIGENSOL. EXACT EIGENSOL.

1 .00000 -.222615390D-lO .0000000000+00
. 1 OOOOOOOOD+O 1 .1000000000+01

2 .10000 .983631646D-Ol .983631643D-Ol
.951056520D+OO .95lO565160+oo

3 .20000 . 187097863D+OO .1870978570+00
.8090170270+00 .809016994D+00

4 .30000 .257518123D+OO .257518lO70+00
.587785293D+OO .5877852520+00

5 .40000 .302730718D+OO .3027306910+00
.3090 17026D+OO .3090169940+00

6 .50000 .318309923D+OO .3183098860+00
.289859515D-08 .612574227D-16

7 .60000 .302730735D+OO .3027306910+00
-.3090170370+00 -.3090169940+00

8 .70000 .257518145D+OO .257518lO70+oo
-.5877853420+00 -.5877852520+00

9 .80000 . 187097885D+OO .1870978570+00
-.809017123D+00 -.809016994D+00

lO .90000 .983631789D-Ol .983631643D-01
-.9510566730+00 -.9510565160+00

11 1.00000 -.222615346D-lO .389976865D-16

91

CH.IX,10

ERROR

.222615390D-lO
.0000000000+00
-.2910917060-09
-.39401 1335D-08
-.595535582D-08
-.327274168D-07
-.152225198D-07
-.409873473D-07
-.2616171980.07
-.3135593960-07
-.3634069420.07
-.289859508D-08
-.4312505400-07
.4257599640-07

-.379209960D-07
.892135977D-07

-.281338394D-07
. 128821307D-06

-.146072169D-07
. 156757917D-06
.222615736D-lO

MUTSEI CH.IX,tO

-.1000000200+01 -.1000000000+01 .1999015590-06

92

11. Subroutine SPLSI

SPECIFICATION
••••••••••••••••

SUBROUTINE SPLSI(N, mOM, A, B, G, NRI, MI, MN, BCY, NREC, X, Q,
1 U, Y, NU, PHI, D, KP, EPS, COND, AF, W, LW, IW, LIW, IERROR)

C INTEGER N, IHOM, NRI, NREC, NU, KP, LW, IW(LIW), LIW, IERROR
C DOUBLE PRECISION A(N,N,NRI), B(N,N,NRI), G(N,NRI), Ml(N.N),
C I MN(N.N). BCY(N), X(N,NRI), Q(N,N,NRI), U(NU,NRI),
C 2 Y(NU,NRI), PHI(NU,NRI), D(N,NRI), BPS, COND, AF, W(L W)

••••••••••••••••
Purpose
••••••••••••••••

SPLSI solves the discrete two-point BVP:

Ai Xi+Bi+lXi+l = gi+l. i = 1, ... ,NREC-1.

withBC:

MIx 1 + MNREC XNREC = BCV

whereAj. Bi+hM J,MNREC are NxN matrices, Xi, gi+l and BeY are N-vectors .

••••••••••••••••
Parameters
••••••••••••••••

N INTEGER, the order of the system.
Unchanged on exit

IHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit

A DOUBLE PRECISION array of dimension (N. N, NRI).
On entry A(. , . , i) must containt the matrix Ai • i = 1, ... , NREC - 1.
Unchanged on exit.

B DOUBLE PRECISION array of dimension (N, N, NRI).
On entry B(. , .• i) must contain the matrix Bj, i = 2, ... , NREC,

93

SPI.:.S.l CH. IX,ll

On exit: if in the call to SPLSI the same array is used forB and Q;.B wiUcomain
the Qs; otherwise B is unchanged..

G DOUBLE PRECISION array of dimension (N. NRI).
If mOM = 0, the array G has no real use and the. user is recommended to use·tlIe
same array for the X and the G.
IfIHOM =1, then on entry G(. ,i) must contain the vector gj. i= 2, ...• NREC.
On exit: ifin the. call toSPLSl the same array is used for the G_D. theG win
contain the values foe the D; otherwise the G is unchanged.

NRI INTEGER.
NRI is one of the dimension orA, B, G, X, Q • .u, v. PHI andD; NRJ;~ NREC + 1.
Unchanged on exit.

Ml,MN DOUBLE PRECISION array of dimension (N. N).
On entry : Ml must contain the matrix M I and MN must contain the matrix
MNREC of the BC:
Mixi +MNRECXNREC =BCV.
Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
Unchanged on exit.

NREC INTEGER.
On entry NRECmust contain the total number of the Xi of the recursion.
Unchanged on exit.

X DOUBLE PREOSION array of dimension (N. NRI).
On exit X(i,k) • i = 1 •... , N contains thesolutiOnxk, k=l, ... , NREC.

Q DOUBLE PRECISION array of dimension(N. N, NRI).
On exit Q(ij,k) i = 1,2, ... , N, j = 1,2~ ... , N contains the N columns of the
orthogonal transfonnation matrix Qt, k =·1, ... , NREC.

U DOUBLE PRECISION array of dimension (NU, NRO.
On exit U(i,k) i = 1, ... , NU contains the relevant elements of the upper triangular
matrix Uk, k = 2, ... , NREC. of the transfonned upper triangular recursion. The
elements are stored column wise, the jth column of Uk is stored in U(nj + I, k).
U(nj + 2. k), ... , U(nj + j, k) where nj = (j-l) * j /2.

V DOUBLE PREOSION array of dimension (NU, NRI).
On eit V(i.k) i = 1, ... , NU contains the relevant elements of the upper triangular
matrix Vk, k = 1, ... , NREC, of the transformed. upper triangular recursion. The
elements are stored in the same way as the Uk.

94

SPLSI

NU INTEGER.
NU is one of the dimensions ofU, V and PHI.
NU must be at least equal to N '" (N + 1) /2.
Unchanged on exit.

PHI DOUBLE PRECISION array of dimension (NU, NRI).

CH.IX.ll

On exit PHI contains a fundamental solution of the transformed upper triangular
recursion. The fundamental solution is upper triangular and is stored in the same
way as the Uk..

D DOUBLE PRECISION array of dimension (N, NRI).
If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.
If IHOM = 1 : on exit D(i,k) i = I" ... , N contains the inhomogeneous term dk.,
k = 2, ... , NREC, of the transformed recursion.
It is possible to use the same array for the G and D in the call to SPLS I. If this is
the case, this array will contain the values of the D on exit.

KP INTEGER.
On exit KP contains the global k-partition of the transformed upper triangular
recursion.

BPS DOUBLE PRECISION.
On entry BPS must contain the machine constant BPS (see Remark 1.1).
Unchanged on exit.

COND DOUBLE PRECISION.
On exit COND contains an estimate of the condition number.

AF DOUBLE PRECISION.
On exit AF contains an estimate of the amplification factor.

W DOUBLE PRECISION array of dimension (L W).
Used as work space.

LW INTEGER
L W is the dimension of W.
LW~3 *N +2'" N"'N.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER

LIW is the dimension of IW. LIW ~ 4 '" N.
Unchanged on exit.

95

SPLSI

IERROR INTEGER
Error indicator; if IERROR ::: 0 then there are no errors detected.
See § 14 for the other errors.

"'*"''''************
Auxiliary Routines
"''''*'''******'''*****

CH. IX,ll

This routine calls the BOUNDPAK library routines AMTES, APLB •. BCMAV. CAMPF.
CFUNRC. COPMAT, COPVEC, CONDW. CPSRC. CROUT. CUVRC;FQUS.GTUVRC,
INPRO. INTCH. LUDEC. MATVC. QEVAK, QEVAL, QUDEC. SBVP. SOLOS. SOLUPP,
SORTO, SORTDO, T AMVC, TUVRC, UPUP, UPVECP.

Remarks

SPLSI is written by O.W.M. Staarink and RM.M. Mattheij;
Last update: november 1991.

****"'*****"'***"'*
Method
****"'***********

See chapter vm.

Example of the use of SPLS 1

Consider the recursion:

Ai Xi + Bj+l Xi+l ::: gj+l • i::: 1, ...• 10,
withBC:

where

[
1-66] Ai = -4 2 -10 •

-2 7 -12 [-2 7 -3]
Bi +1 = 8 3 5 ,

416

[
0 0 0] [0 0 1] Ml = 1 0 0 • MIl = 1 0 0 •
010 000

96

SPLSI CH.IX.ll

b = (-2 , 3 + 2-10 , 2)T.

The solution of this problem is; x(i) = (1 + 21- i ,2, -1 - 2i-ll)T.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark. 1.2).

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(3,3,12),B(3,3,12),G(3,12),BMl(3,3),BMN(3,3),BCV(3),

1 X(3,12),U(6,12),V(6,12),PHI(6,12),W(27)
INTEGER IW(12),IB(12)

C
C SETIING OF THE INPUT PARAMETERS
C

C

N=3
IHOM= 1
NU=6
NRl= 12
LW=27
LlW= 12
NREC=l1
CALL EPSMAC(EPS)

C SETIING OF THE RECURSION AND BC
C

DO 1100 I = 1 • NREC-l
A(1.1.I) = 1.00
A(I,2,I) = -6.00
A(1,3,I) = 6.00
A(2.I,I) = -4.00
A(2,2,I) = 2.00
A(2.3,I) = -10.00
A(3,I,I) = -2.00
A(3,2,I) = 7.00
A(3,3,I) = -12.00

1100 CONTINUE
DO 12001= 2 ,NREC
B(1,l,I) = -2.00
B(I,2,I) = 7.00
B(1,3,I) = -3.00
B(2,I,I) = 8.00
B(2,2,I) = 3.00
B(2,3.!) = 5.00

97

B(3,1,1) = 4.00
B(3,2,I) = 1.00
B(3,3,1) = 6.00
0(1,1) = -2.00
0(2,1) = 19.00
0(3,1) = 24.00

1200 CONTINUE
DO 13001= I,N
DO 1300J= I,N
BMl(I,J) = 0.00
BMN(IJ) = 0.00

1300 CONTINUE

C

BMl(2,1) = 1.00
BMl(3,2) = 1.00
BMN(I,3) = 1.00
BMN(2,1) = 1.00
BCV(I) = -2.00
BCV(2) = 3.00 + 2.00 ** (-10)
BCV(3) = 2.00
IERROR=O

C CALL TO SPLSI
C

SPLSI CH. IX,ll

CALL SPLSl(N,IHOM,A,B,O,NRI,BMl,BMN,BCV ,NREC.x,B,U,V,NU,PID,O,
1 KP .EPS,COND,AF,W ,LW,IW,LIW,IERROR)

IF «(IERROR.NE.O).AND.(IERROR.NE.710» OOTO 3000
C
C WRITINO OF TIlE SOLUTION AND TIlE ABSOLUfE ERROR
C

CALL OUTSOL(COND,AF,KP,X,N,NRI,NREc)
STOP

3000 WRITE(* ,100) IERROR
STOP

C
100 FORMAT(' TERMINAL ERRROR IN SPLSI : IERROR = ',14,1)

END
C

C

C

SUBROUTINE OUTSOL(COND,AF,KP,X,N,NRI,NREc)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N,NRI)

WRITE(IO,200) COND,AF,KP
WRITE(IO, 100)
DO 1100 I = 1 , NREC
11=1-1

98

Nl =1 -NREC
SI = 1.00 + 2.00 ** 11
S2=2.00

SPLSl

S3 = -1.00 - 2.00 ** Nl
WRITEOO,110) I,X(1,I),SI,SI-X(1,I)
WRITEOO,120) X(2,I),S2,s2-X(2,I)
WRITE(lO,120) X(3,I),S3,S3-X(3,1)

1100 CONTINUE
C
100 FORMATC 'J,' 1',7X,'XAPPROX',l1X;XEXACT',14X,'ERROR'J)
110 FORMATC ',I2,3X,3(D16.9,3X»
120 FORMAT(, ',5X,3(D16.9,3X»
200 FORMAT(' 'J,' CONDmONNUMBER = ',DI2.5J,

1 'AMPLIFICATIONFACTOR= ',o12.5J)
RETURN
END

CONDmON NUMBER = .100380+01
AMPLIFICATION FACTOR = .315910+01

1 XAPPROX X EXACT ERROR

1 .2000000000+01 .2000000000+01 -.888178420D-15
.2000000000+01 .2000000000+01 .0000000000+00

-.1000976560+01 -.1000976560+01 .222044605D-15
2 .1500000000+01 .1500000000+01 .222044605D-15

.2000000000+01 .2000000000+01 -.1332267630.14
-.100195313D+Ol -.1001953130+01 -.44408921OD-15

3 .1250000000+01 .1250000000+01 -.222044605D-15
.2000000000+01 .2000000000+01 .2220446050.15

-.1003906250+01 -.1003906250+01 -.444089210D-15
4 .1125000000+01 .1125000000+01 -.133226763D-14

.2000000000+01 .2000000000+01 .6661338150.15
-.1007812500+01 -.1007812500+01 .222044605D-15

5 .1062500000+01 .1062500000+01 -.6661338150.15
.2000000000+01 .2000000000+01 .444089210D-15

-.1015625000+01 -.1015625000+01 .222044605D-15
6 .1031250000+01 .1031250000+01 -.2220446050.15

.2000000000+01 .2000000000+01 -.444089210D-15
-.1031250000+01 -.1031250000+01 -.2220446050.15

7 .1015625000+01 .1015625000+01 .0000000000+00

99

CR. IX,ll

SPLSI CH. IX,ll

.2000000000+01 .2000000000+01 -.4440892100-15
-.1062500000+01 -.1062500000+01 -.2220446050-15

8 .1007812500+01 .1007812500+01 -.1776356840-14
.2000000000+01 .2000000000+01 .2220446050-15

-.1125000000+01 -.1125000000+01 .1554312230-14
9 .1003906250+01 .1003906250+01 -.1332267630-14

.2000000000+01 .2000000000+01 .8881784200-15
-.1250000000+01 -.1250000000+01 .1332267630-14

10 .1001953120+01 .1001953130+01 .6661338150-15
.2000000000+01 .2000000000+01 .0000000000+00

-.1500000000+01 -.1500000000+01 .2220446050-15
11 .1000976560+01 .1000976560+01 .8881784200-15

.2000000000+01 .2000000000+01 -.4440892100-15
-.2000000000+01 -.2000000000+01 .0000000000+00

100

12. Subroutine SPLS2

SPECIFICATION
********* ****

SUBROUTINE SPLS2(N, IHOM. A. B, G, NRI, U, MI, KMI, BCV, NREC. X, Q,
1 U. V, NUt PIn. D. KP, BPS. CONDo AF. W, LW, IW, UW. IERROR}

C INTEGER N. IHOM. NRI. U(KMI}. NREC(KMl}. NU, KP(KMl}.
C 1 LW,IW(LIW),LIW,IERROR

C DOUBLE PRECISION A(N.N,NRI}, B(N.N,NRI}, G(N,NRI}, MI(N.N,KMI}.

C 1 BCV(N}. X(N,NRI). Q(N.N,NRI}. U(NU.NRI). V(NU,NRI}.
C 2 PIn(NU,NRI}, D(N,NRI}. BPS, CONDo AF. W(LW)

****"''''''' ... ''''''''' "''''***
Purpose
*********"'*"'''''''*'''

SPLS2 solves the discrete two-point BVP:

withBC:

~ Mjxi. =b
J~ J

where Ai. Bi+1> Mj are NxN matrices. Xi. gi+l and b are N-vectors and
1 = i 1 < i 2 < ... < i" = m .
The subindices ij are the so called. "switching points"

* **** ... ***"'****
Parameters
*** ... **** ... ***"'***

N INTEGER, the order of the system.
Unchanged. on exit.

IHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous.
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

101

SPLS2

A DOUBLE PRECISION array of dimension (N, N, NRI).

On entry A(. , . , i) must con taint the matrix Ai, i = 1, ... , m -I,
Unchanged on exit

B DOUBLE PRECISION array of dimension (N, N, NRI).
On entry B(. , . , i) must contain the matrix Bi. i = 2, ... , m.

CH. IX,12

On exit: if in the call to SPLS2 the same array is used for B and Q, B will contain
the Qs; otherwise B is unchanged.

G DOUBLE PRECISION array of dimension (N, NRI).
If mOM = 0, the array G has no real use and the user is recommended to use the
same array for the X and the G.
If mOM = I, then on entry G(. , i) must contain the vector gi. i = 2, ... , m.
On exit: if in the call to SPLS2 the same array is used for the G and D, the G will
contain the values for the D; otherwise the G is unchanged.

NRI INTEGER.
NRI is one of the dimension of A, B, G, X, Q, U, V, PHI and D. NRI ~ m + 1.
Unchanged on exit.

11 INTEGER array of dimension (KMI).
On entry U(j), j = 1, ... , k must containt the subindex ij of the Xii in the

multipoint BC.
Unchanged on exit.

MI DOUBLE PRECISION array of dimension (N, N, KMI).
On entry: MI(.•.• j), j = 1, ... , k must contain the matrix Mj of the multipoint

BC.
Unchanged on exit.

KMI INTEGER.
KMI is one of the dimension of II, MI, NREC and KP.
On entry KMI must have the value of k. i.e. the total number of the BC matrices
Mj.
Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector b .
Unchanged on exit.

NREC INTEGER array of dimension (KMI).
On entry NREC(1) must contain the total number of the Xi of the recursion, Le.
NREC(1) =m.
On exit: NREC(l) is unchanged.

For j = 2, ... , KMI: if NREC(j) < 0 then no change of dichotomy is detected in the
recursion between the "switching points" IJ(j-l) and 11(j+l). IfNREC(j) > 0 then
a change of dichotomy is detected at IJ(j) and NREC(j) = U(j)-IJ(i)+l, where i <j,

102

SPLS2 CH.IX,12

NREC(i) > 0, NREC(1) < 0, i < I < j, i.e. U(i) is the previous "switching point"
where a change of dichtomy was detected.

X DOUBLE PRECISION array of dimension (N, NRI).
On exit X(i,k) , i = 1, ... , N contains the solution Xk, k= I, ... , NREC(I).

Q DOUBLE PRECISION array of dimension (N, N, NRl).
On exit Q(iJ,k) i = 1,2 •... , N, j = 1,2, ... , N contains the N columns of the
orthogonal transfonnation matrix Qk, k = 1, ... , NREC(I).

U DOUBLE PRECISION array of dimension (NU, NRI).
On exit U(i,k) i = 1 •... , NU contains the relevant elements of the upper triangular
matrix Uk. k = 2, ... , NREC(1), of the transfonned upper triangular recursion.
The elements are stored column wise, the jth column of Uk is stored in U(nj + I, k),

U(nj + 2, k) , ... , U(nj + j, k) where nj = (j -1) '" j /2.

V DOUBLE PRECISION array of dimension (NU. NRI).
On eit V(i.k) i = 1, ... , NU contains the relevant elements of the upper triangular
matrix Vk. k = 1, ...• NREC(I), of the transfonned upper triangular recursion.

The elements are stored in the same way as the Uk.

NU INTEGER.
NU is one of the dimensions of U, V and PHI.
NU must be at least equal to N '" (N + 1) /2.
Unchanged on exit.

PHI DOUBLE PRECISION array of dimension (NU, NRI).
On exit PHI contains a fundamental solution of the transfonned upper triangular
recursion. The fundamental solution is upper triangular and is stored in the same
way as the Uk.

D DOUBLE PRECISION array of dimension (N, NTI).
If IHOM = ° the array D has no real use and the user is recommended to use the
same array for the X and the D.
If IHOM = 1 : on exit D(i,k) i = 1" ... , N contains the inhomogeneous tenn dk, k
= 2, ... , NREC(l). of the transfonned recursion.
It is possible to use the same array for the G and D in the call to SPLS2. If this is
the case, this array will contain the values of the D on exit.

KP INTEGER.
On exit KP contains the global k-partition of the transfonned upper triangular
recursion.

EPS DOUBLE PRECISION.
On entry BPS must contain the machine constant BPS (see Remark 1.1).

103

SPLS2

Unchanged on exit.

COND DOUBLE PRECISION.
On exit COND contains an estimate of the condition number.

AF DOUBLE PRECISION.
On exit AF contains an estimate of the amplification factor.

W DOUBLE PRECISION array of dimension (L W).
Used as work space.

LW INTEGER
L W is the dimension of W.
LW~3 *N +2 * N* N.
Unchanged on exit.

IW INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension ofIW. LIW ~ 4 * N + (N + 1) * KMI.
Unchanged on exit.

!ERROR INTEGER
Error indicator; if IERROR = 0 then there are no errors detected.
See § 14 for the other errors.

"'" Auxiliary Routines

CH.IX,12

This routine calls the BOUNDPAK library routines AMTES, APLB, CAMPF, CFUNRC,
COPMAT, COPVEC, CPSRC. CROUT, CUVRC, FQUS, GKPMP, GTUVRC, INPRO,
INTCH, LUDEC, MATVC. QEVAK, QEVAL, QUDEC. 5MBVP, SOLDE, SOLUPP,
SORTD, SORTDO, TAMVC, TUVRC. UPUP, UPVECP.

Remarks

"'''''''* *"'** * "''''** * "''''

SPLS2 is written by G. W.M. Staarink and RM.M. Mattheij.
Last update: november 1991.

104

Method

See chapter VllI.

Example of the use of SPLS2

Consider the recursion:

SPLS2

Ai Xi + Bi+lXi+l = gi+l i = 1, ... ,10.
and a multipoint boundary condition: M tXt +M2X6 + M3Xn = b.
where

[~h 2 2] [~h 2 11.1]
Ai = -111.1 0 2 ,i = 1. ... ,5, Ai = - tlh 0 11.1 • i = 6, ... , 10,

2 1 2 2 1 11.1

[
-1 Wi! 1]

Bi = -i It ~ · i = 2, ... ,11 •

gi = (211.1 ,-811.1 • l1)T ,i = 2, ... ,6,
gi = (4, -7 , 121h)T ,i = 7, ... ,11 ,

[0 0 0] [0 0 0] [0 1 0] Mt = 000 , M2= 0 0 1 ,M3= 0 0 0 . 100 000 000
b = (2. -1 , 1)T .

The solution of this problem is: Xi = (I , 2 ,-1)T.

In the next program the solution is computed and compared to the exact solution.

CH.IX,12

This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

105

C

C

SPLS2

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(3,3,12),B(3,3,12),G(3, 12),BMI(3,3.3),BCV (3),

1 X(3,1 2),U(6,12),V(6, 12),PHI(6,12),W(126)
INTEGER D(3),NREC(3),KP(3),IW(24)

N=3
IHOM= 1

NU=6
NRI= 12
KMI=3
LW= 126
LIW=24
CALL EPSMAC(EPS)
NREC(I} = 11
D(1)= 1
11(2) = 6
D(3) = NREC(1)

C SETTINO OF THE RECURSION AND BC
C

DO 1100 I = 1 , 10
11=1+1
A(1,I,I) = -0.500
A(2, 1 ,I) = -1.500
A(3, 1 ,I) = 2.000
A(1,2,1) = 2.000
A(2,2,I) = 0.000
A{3,2,I) = 1.000
IF (I.LT.U(2» THEN

A(1,3,I) = 2.000
A(2,3,I) = 2.000
A(3,3.I) = 2.000
G(l,I1) = 2.500
G(2.Il) = -8.SDO
0(3,11) = 11.000

ELSE
A(1,3.I) = 0.500
A(2.3.1) = 0.500
A(3.3,1) = 0.500
0(1,11) = 4.000
0(2,11) = -7.000
0(3,11) = 12.500

ENDIF
B(1,1,n) = -1.000
B(2,1,11) = -5.000
B(3,1,11) = 8.000

106

CH. IX,12

B{1,2,Il) = 1.5DO
B(2,2,11) = 0.500
B(3,2,11) = 1.000
B(1,3,11) = 1.000
B(2,3,11) = 1.000
B(3,3,11) = 1.000

1100 CONTINUE
DO 1200L = 1 , KMI
DO 1200 I = 1 , N
DO 1200 J = 1 , N

BMI(I,J,L) = 0.00
1200 CONTINUE

C

BMI(3,I,I) = 1.00
BM[(2,3,2) = 1.00
BMI(l,2,3) = 1.00
BCV(1) = 2.DO
BCV(2) =-1.00
BCV(3) = 1.DO
IERROR=O

C CALL TO SPLS2
C

SPLS2 CH.IX,12

CALL SPLS2(N,IHOM,A,B,G,NRI,U,BMI,KMI,BCV,NREC,X,B,U,V,NU,PHI,
1 G,KP,EPS,COND,AF,W;L W ,IW ;LIW ,IERROR)

IF «(IERR0R.NE.0).AND.(IERROR.NE.710» GOTO 3000
CALL OUTSOL(IJ,COND.AF,KP,X,N,NRI,NREC(l»
STOP

3000 WRITE(*,IOO) IERROR
STOP

100 FORMAT(, TERMINAL ERRROR IN SPLS2 : IERROR = ',I4,/)
END

c

C

C

SUBROUTINE OUTSOL(lJ,COND,AF .KP,X,N,NRI,NREC)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N,NRI)
INTEGER IJ(3),KP(3)

WRITE(*,190) (11(1),[=1,3)

WRITE(* ,200) COND,AF,(KP(J),J=1.2)
El = 1.00
E2 = 2.00
E3 = -1.00
WRITE(*,loo)

DO 1100 I = 1 , NREC
11=1-1

107

SPLS2

WRITE(*,110) I,X(1,I).El,EI-X(1,I)
WRITE(*,120) X(2,I),E2,E2-X(2,1)
WRITE("',120) X(3,1).E3,E3-X(3.I)

1100 CONTINUE
C
100 FORMATC ' J,' l' ,7X,'X APPROX' ,11X:X EXACf' ,14X:ERROR' J)
110 FORMAT(' ',I2,3X,3(D16.9,3X»
120 FORMATe ',5X,3(D16.9,3X»
190 FORMATC "SWITCHING POINTS" lJ = ',3(I2,3X»
200 FORMATC 'J,' CONDITION NUMBER = ',012.5J,

1 ' AMPLIFICATION FACfOR = ',012.SJ,
2 'K-PARTITIONINGS = ',2(I2,2X)J)

300 FORMAT(, ')
310 FORMAT(' 0(' ,12, ') = ',3(D16.9,3X»

RETURN
END

"SWITCHING POINTS" U = 1 6 11

CONDmON NUMBER = .123050+01
AMPLIFICATIONFACfOR = .494030+01
K-PARTITIONINGS = 2 1

I XAPPROX X EXACf

1 .1000000000+01 .1000000000+01
.2000000000+01 .2000000000+01

-.1000000000+01 -.1000000000+01
2 .1000000000+01 .1000000000+01

.2000000000+01 .2000000000+01
-.1000000000+01 -.1000000000+01

3 .1000000000+01 .1000000000+01
.2000000000+01 .2000000000+01

-.1000000000+01 -.1000000000+01
4 .1000000000+01 .1000000000+01

.2000000000+01 .2000000000+01
-.1000000000+01 -.1000000000+01

5 .1000000000+01 .1000000000+01
.2000000000+01 .2000000000+01

-.1000000000+01 -.1000000000+0 1
6 .1000000000+01 .1000000000+01

108

ERROR

.0000000000+00

.0000000000+00
-.9992007220-15
.5551115120-15
.0000000000+00
.8881784200-15

-.6661338150-15
.2220446050-15

-.1110223020-14
.0000000000+00
J 110223020-14

.0000000000+00
-.2220446050-15
.2220446050-15

-.5551115120-15
.0000000000+00

CH.IX.12

SPLS2 CH.IX,12

.2000000001>+01 .2000000001>+01 .0000000000+00
-.1000000001>+01 -.1000000001>+01 -.2220446050-15

7 .1000000001>+01 .1000000001>+01 -.4440892100-15
.2000000001>+01 .2000000001>+01 .1110223020-14

-.1 000000000+01 -.1000000001>+01 -.1110223020-14
8 .1000000001>+01 .1000000001>+01 .2220446050.15

.2000000001>+01 .2000000001>+01 .2220446050.15
-.1000000001>+01 -.1000000001>+01 -.1221245330.14

9 .1000000000+01 .1000000001>+01 .2220446050-15
.2000000000+01 .2000000000+01 .2220446050-15

-.1000000001>+01 -.1000000001>+01 .4440892100-15
10 .1000000000+01 .1000000001>+01 -.2220446050-15

.2000000001>+01 .2000000000+01 .1332267630-14
-.1000000001>+01 -.1000000001>+01 -.8881784200-15

11 .1000000000+01 .1000000001>+01 -.2220446050-15
.2000000001>+01 .2000000001>+01 .2220446050-15

-.1000000001>+01 -.1000000001>+01 -.8881784200.15

109

13. Subroutine SPLS3

"''' ...
SPECIFICATION

"'''''''''' .. ''' .. '''''' ... '''''' ... '''
SUBROUTINE SPLSl(N, mOM, A, B, C, G, L, NREC, MI, MN, MZ, BCV,

1 NPL, BPS. X, NX, Z, CONDo AF. W. LW. IW, LIW. IERROR)
C INTEGER N, IHOM, L, NREC, NPL, NX. LW, IW(LIW), LIW, IERROR
C OOUBLE PRECISION A(N,N,NREC), B(N,N,NREC). C(N,L,NREc), G(N,NREC).
C 1 Ml(NPL,N). MN(NPL,N), MZ(N,L), BCV(NPL), BPS,

C 2 X(N,NX), Z(L), COND, AF. W(LW)

............ "''''''''''''' ... '''''' ... '''
Purpose
...... "'**"'''''''''''''''''''

SPLS3 solves the discrete two-point BVP WITH PARAMETERS:

Aj xj+Bj Xi+l +Cj z =gj • i = 1 •...• NREC.

withBC:

where Ai. Bj+l are NxN matrices, Cj an NxL matrix, gj an N-vector, Mlo MNREC are
(N+L)xN matrices, Mz an (N+L) xL matrix and b an (N+L)-vector.
The vector z contains the L parameters.

*"' ... * ... "'''''''''' ... *****'''
Parameters
"''''* ... *'''*'''**

N INTEGER, the order of the system.
Unchanged on exit.

IHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous.
IHOM = 1 : the system is inhomogeneous.
Unchanged on exiL

A DOUBLE PRECISION array of dimension (N, N, NREC).
On entry A(. , .• i) must contain the matrix Aj • i = I, ... , NREC.

111

SPLS3

Unchanged on exit.

B DOUBLE PRECISION array of dimension (N, N, NREC).
On entry B(. , . , i) must contain the matrix Bj, i = 1, ...• NREC.
Unchanged on exit.

C DOUBLE PRECISION array of dimension (N. L. NREC).
On entry C(.•. , i) must contain the matrix Cj. i = 1, ... , NREC.
Unchanged on exit.

G DOUBLE PRECISION array of dimension (N, NREC).

CH. IX,13

If mOM = 0, the array G has no real use and the user is recommended to use the
same array for the X and the G.
If mOM = 1, then on entry G(. , i) must contain the vector gi, i = 1, ... , NREC.
Unchanged on exit.

L INTEGER, the number of parameters.
Unchanged on exit.

NREC INTEGER.
NREC is one of the dimension of A, B, C and G. On entry NREC must contain the
total number of recursions.
Unchanged on exit.

Ml,MN DOUBLE PRECISION arrays of dimension (NPL, N).
On entry : Ml must contain the matrix M 1 and MN must contain the matrix
MNREC of the BC;
MIXl +MNRECXNREC+l +Mz z =b.
Unchanged on exit.

MZ DOUBLE PRECISION array of dimension (NPL, L).
On entry MZ must contain the matrix Mz of the BC.
Unchanged on exit.

BCV DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector b .
Unchanged on exit.

NPL INTEGER.
NPL is one of the dimension of M1. MN, MZ and BCV. On entry NPL must be
equaltoN+L!
Unchanged on exit.

EPS DOUBLE PRECISION.
On entry EPS must contain the machine constant EPS (see Remark 1.1).

112

SPLS3 CH.IX.13

Unchanged on exit.

X DOUBLE PRECISION array of dimension (N, NX).
On exit X(i,k) , i = 1, ... , N contains the solution x", k=l, ...• NREC + 1.

NX INTEGER.
NX is one of the dimension of X. On entry NX ~ NREC + 1.
Unchanged on exit.

Z DOUBLE PRECISION array of dimension (L)
On exit Z(i), i = I, ... , L contains the solution for the parameters.

COND DOUBLE PRECISION.
On exit COND contains an estimate of the condition number.

AF DOUBLE PRECISION.
On exit AF contains an estimate of the amplification factor.

W DOUBLE PRECISION array of dimension (L W).
Used as work space.

LW INTEGER
L W is the dimension of W.
If IHOM = 0 : LW~NPL*NPL*(7*NREC/2 + 11)+ NPL*(5*NREC/2+ 8) + 1.
IfIHOM= 1 : LW~NPL*NPL*(7*NREC/2 + 11)+ NPL*(7*NREC/2 + 10) + 1.
Unchanged on exit.

IW INTEGER array of dimension (LIW)

Used as work space.

LIW INTEGER
LIW is the dimension of IW. LIW ~ 4 * NPL.
Unchanged on exit.

IERROR INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See § 14 for the other errors.

Auxiliary Routines

This routine calls the BOUNDPAK library routines AMlES, APLB, BCMAV, CAMPF.
CAPARC.CFUNRC,COPMAT,COPVEC.CONDW,CPSRC, CROUT,CUVRC,FQUS,
GTUVRC,INPRO, INTCH, LUDEC, MATVC, QEVAK. QEV AL. QUDEC, SBVP, SOLDE,
SOLUPP,SORTD, SORTDO, SPLSl, TAMVC, TUVRC. UPUP, UPVECP.

113

Remarks

SPLS3

SPLS3 is written by G.W.M. Staarink and RM;M. Mattbeij.
Last update: november 1991.

Method

See chapter VIII.

******** ... * **
Example of the use of SPLS 1
************** ... *

Consider the recursion:

Ai Xi + Bi+1 xt+1 + Ci Z =gi+l i = 1, ... ,10.
and a boundary condition:

MIXt +M2Xn +Mz z =b ,
where

Ai = [~ ::~]. Ci = [:].1 = 1 10.

[1 -1] [1 -1] Bi= 1 5 ,i=1, ... ,5,Bi= 1 3 ,i=6 ,10,

gi=(15lh,5ih)T ,i=I, ... ,5, gj=(l5lh,71h)T.i=6, ... , 10,

The solution of this problem is: Xi = (2 , _1)T. z = I1h.

In the next program the solution is computed and compared to the exact solution.

CH. IX,13

This program has been run on a OLlVETfI M24 personal computer (see Remark 1.2).

114

SPLS3

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(2,2, 1 0),B(2,2, 1 O),C(2, 1,1 0),G(2, 1 O),BM 1 (3,2),

1 BMN(3,2),BMZ(3,1),BCV(3),X(2,11),Z(1),W(550)
INTEGER IW(l2)

C
C SETTING OF THE PARAMETERS
C

C

N=2
L=l
NPL=3
IHOM= 1
NX=l1
NREC = 10
LW=550
LIW= 12
CALL EPSMAC(EPS)

C SETTING OF THE RECURSION AND BC
C

DO 11001= 1,10
A(l,l,I) = 3.00
A(l,2,1) = -5.00
A(2,1,1) = 3.00
A(2,2,1) = -1.00
C(l,l,I) = 1.00
C(2,1,I) = 1.00

1100 CONTINUE
DO 1200 I = t , 5
B(l,t,I) = 1.00
B(1,2,I) = -1.00
B(2, 1 ,I) = 1.00
B(2,2,I) = 5.00
G(1,I) = 15.500
G(2,I) = 5.500

1200 CONTINUE
DO 1300 I = 6 , 10

B(1, t ,I) = 1.00
B(1,2,I) = -1.00
B(2, t ,I) = 1.00
B(2,2,I) = 3.00
G(l,l) = 15.500
G(2,1) = 7.500

1300 CONTINUE
BM1(1,1) = 0.00

115

CR. IX, 13

BMl(2.1) = 1.00
BMl(3,1) = 0.00
BMl(1,2) = 0.00
BMl(2,2) = 0.00
BMl(3,2) = 1.00
BMN(1,l) = 1.00
BMN(2,1) = 0.00
BMN(3.1) = 0.00
BMN(1,2) = 0.00
BMN(2,2) = 1.00
BMN(3,2) = 0.00
BMZ(l,l) = 1.00
BMZ(2,1) = 0.00
BMZ(3,l) = 1.00
BCY(1) = 3.500
BCY(2) = 1.000
BCY(3) = 0.500

SPLS3 CH.IX,13

CALL SPLS3(N,IHOM,A,B,C.G,L,NREC,BMl,BMN.BMZ,BCY,NPL,EPS,
1 X,NX,Z,COND.AF,W ,LW,IW ,LIW,IERROR)

IF «(lERROR.NE.0).AND.(lERR0R.NE.71O» GOTO 3000
C
C WRITING OF THE SOLUTION
C

CALL OUTSOL(COND,AF,X,N,NX,NREC,Z,L)
STOP

3000 WRITE(· ,100) IERROR
STOP

100 FORMAT(, TERMINAL ERRROR IN SPLS3 : IERROR = ',I4J)
END

C

C

SUBROUTINE OUTSOL(COND,AF,X,N,NX,NREC,Z,L)

IMPLICIT DOUBLE PREOSION (A-H,O-Z)
DIMENSION X(N,NX),Z(L)

WRITE('" ,200) COND,AF
El = 1.500
E2=2.00
E3 = -1.00
WRITE(·,210)
DO 11ooJ= l,L

WRITE("',220) Z(J),El,E1-Z(J)
1100 CONTINUE

WRITE('" ,300)
WRITE("',loo)
DO 12001= l,NREC+l

WRITE(*,llO) I,X(1,I),E2.E2-X(1,I)

116

SPLS3

WRITE(*,120) X(2,I),E3.E3-X(2,I)
1200 CONTINUE
C
100 FORMATC' '.1,' r ,7X,'X APPROX' ,1lX:X EXACT' ,14X,'ERROR' J)
110 FORMAT(, ',I2,3X,3(DI6.9,3X)
120 FORMAT(, ',5X.3(D16.9,3X»
200 FORMAT(' ',/,' CONDITION NUMBER = ',DI2.5J,

1 'AMPLIFACATIONFACTOR = ',DI2.5'/J)
210 FORMAT(, ',4X,'ZAPPROX',llX,'ZEXACT',14X,'ERROR'J)
220 FORMAT(, ',3(D16.9,3X»
300 FORMA T(' ')
310 FORMATC D(' ,12,') = ',3(D16.9,3X)

RETURN
END

CONDmONNUMBER = .188830+01
AMPLIFACATIONFACTOR = .110000+02

Z APPROX Z EXACT ERROR

.1500000000+01 .1500000000+01 -.399680289D-14

I XAPPROX X EXACT ERROR

1 .2000000000+01 .2000000000+01 -.133226763D-14
-.1000000000+01 -.1000000000+01 -.166533454D-14

2 .2000000000+01 .2000000000+01 . 133226763D-14
-.1000000000+01 -.1000000000+01 .111022302D-14

3 .2000000000+01 .2000000000+01 .4440892100-15
-.1000000000+01 -.I00000000D+Ol -.222044605D-15

4 .2000000000+01 .2000000000+01 .44408921OD-15
-.1000000000+01 -.1000000000+01 .0000000000+00

5 .2000000000+01 .2000000000+01 .4440892100-15
-.1000000000+01 -.1000000000+01 .444089210D-15

6 .200000000D+Ol .2000000000+01 .4440892lOD-15
-.1000000000+0 1 -.1000000000+01 .444089210D-15

7 .2000000000+01 .2000000000+01 -.177635684D-14
-.1000000000+01 -.1000000000+01 .0000000000+00

8 .2000000000+01 .200000000D+01 -.4440892IOD-15
-.1000000000+01 -.1000000000+01 .111022302D-14

117

CH.IX,13

SPLS3 CH.IX,13

9 .2000000000+01 .2000000000+0 1 -.888178420D-15
-.1000000000+01 -.1000000000+01 .222044605D-15

10 .2000000000+01 .2000000000+01 .2220446050-15
-.1000000000+01 -.I00000000D+Ol -.111022302D-15

11 .2000000000+01 .2000000000+01 -.1776356840-14
-.1000000000+01 -.1000000000+01 .8881784200-15

118

14. Error messages

When an error is detected by one of the routines of BOUNDPAK,a tenninal or warning error
message with an error number IERROR is given. Three grouPS of error numbers can be
distinguished:

i) 100 ~ IERROR < 200
These errors are INPUT errors and are detected before the actual computation starts.
They are TERMINAL errors and occur when one or more parameters in the actual call
to a BOUNDPAK routine have a wrong value.

ii) 200 ~ IERROR < 300
These errors are detected during the computation of the upper triangular recursion.
Some are WARNING errors, but most are TERMINAL errors.

iii) 300 S IERROR < 400
These errors are detected during the computation of the solution of the linear multiple
shooting system. These errors indicate that there is something wrong with your
problem. Some are WARNING errors, others are TERMINAL errors.

Remark 14.1

BOUNDPAK contains a lot of subroutines. In most computer systems BOUNDPAK will be
available via a BOUNDPAK library, which contains the object code of the subroutines.
Therefore the most common way to use subroutines from BOUNDPAK is to write a program,
in which calls are made to subroutines from BOUNDPAK, compile it and then link it with the
BOUNDPAK library to obtain an execution code. The advantage is evident; instead compiling
the program together with the BOUNDPAK package, only the program has to be compiled.
However there is a disadvantage, namely, some programming errors are not detected, which
would have been detected if the program together with the BOUNDPAK package was
compiled as one large program. These undetected programming errors may cause an error

,.. nr}issage when the program is run. Therefore, if an error message occurs and according to your
program it should not occur, check for the following mistakes in your program:

- Wrong number of parameters in a call to a subroutine.

'/- - Parameters not in the right POSi~tion in a call to a subroutine.

- Wrong type of parameter, e.g. integer parameter declared as real or real parameter
declared as integer, etc.

- External subroutine not declared as external.

119

14.1 Errors detected by the subroutines:

INPUT errors.

100 N< 1
TERMINAL ERROR.

101 mOM ¢ 0 and !HOM ¢ 1
TERMINAL ERROR

102 A=B or NRTI < O.
TERMINAL ERROR

ERRORS

103 Either ER(l) or ER(2) or ER(3) is negative.
TERMINAL ERROR.

104 Value ofNTItoo small
TERMINAL ERROR

1 05 Value of NU is too small.
TERMINAL ERROR.

106 Either the value of L W or LIW is too small.
TERMINAL ERROR

107 Either KSP < 1 or KSP ~ Nor NQD < KSP.
TERMINAL ERROR.

108 IHOM = 0 and BCV = 0, so the solution will be zero.
TERMINAL ERROR

109 Either A < B and C S; B or A > B and C ~ B.
TERMINAL ERROR.

CH.IX,14

110 Subroutine is called with IEXT = 1, but the given value for C is wrong. It should be
greater (less) than the actual used value for y in the previous call to the subroutine
(stored in TI(KEXT» if A is less (greater) than B.
TERMINAL ERROR.

111 Value of NSP is too small.
TERMINAL ERROR.

112 NRTI(l) < O.
TERMINAL ERROR.

120

ERRORS CH. IX,14

113 1< 1.
TERMINAL ERROR.

114 NPL*N+L.
TERMINAL ERROR.

115 IHOM(i) * 0 and IHOMCi) * 1 for i=l, ... , NSP-l.

120 The routine was called with NRTI = 1. but the given output points in the array TI are
not in strict monotone order.
TERMINAL ERROR.

121 The routine was called with NRTI = 1, but the first given output-point or the last
output-point is not equal to A or B.
TERMINAL ERROR.

122 The switching points are not given in strict monotone order.
TERMINAL ERROR.

123 The routine was called with NRTI(1) = 1 • but the given output points in the array TI
do not include all switching points.
TERMINAL ERROR.

Errors detected during computation.

200 This indicates that there is a minor shooting interval on which the incremental growth
is greater than the AMP. The cause of this error lies in the used method for
computing the fundamental solution.
WARNING ERROR.

201 This indicates that there is a minor shooting interval on which II Mj (i) II is greater than

max(ER(I) • ER(2» I ER(3). i.e. TOL I EPS.
WARNING ERROR.

213 This indicates that the relative tolerance was too small. The subroutine has changed it
into a suitable value.
WARNING ERROR.

215 This indicates that during integration the particular solution or a homogeneous
solution has vanished, making a pure relative error test impossible. Must use non-zero
absolute tolerance to continue.
TERMINAL ERROR.

216 This indicates that during integration the requested accuracy could not be achieved.
User must increase error tolerance.
TERMINAL ERROR.

121

ERRORS CH.IX,14

218 This indicates that the input parameter N ~ 0, or that either the relative tolerance or
the absolute tolerance is negative.
TERMINAL ERROR.

222 This indicates that the increment of a fundamental solution has become greater than
the allowed incremental factor ALI, so a new output point has to be inserted. However
the current value of NTI is too small to insert a new output point. Output value is an
estimate for NTI, taking into account possible not yet detected new output points,
which have to be inserted when the increment of a fundamental solution becomes
greater than ALI.
When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions.
TERMINAL ERROR

223 This indicates that the value of NTI is too small to compute the next necessary
upertrlangular matrix in the extension interval. Increase the value of NTI.
When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions.
TERMINAL ERROR.

224 This indicates that to avoid unnecessary overflow a new point has to be inserted, but
the current value of NTI is too smal to insert new points. Output value is an estimate
for NTI, taking into account possible not yet detected new points, which has to be
inserted to avoid unnecessary overflow.
When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions.
TERMINAL ERROR

225 This indicates that a switching point is detected and has to be inserted in the output
points. However, the current value of NTI is too small to insert a new output point.
Output value is an estimate for NTI, taking into account the possible number of
switching points, which are not detected at this stage.
When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions.
TERMINAL ERROR.

226 This indicates that II M(i)1I has become greater then max(ER(1) , ER(2» I ER(3)
(TOL I EPS) and a new output point has to be inserted. However the current value of
NTI is too small to insert a new output point. Output value is an estimate for NTI,
taking into account possible not yet dectected new output points, which have to be
inserted if II M{OIl becomes greater than TOL/EPS.
When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions.
TERMINAL ERROR.

122

ERRORS CH. IX.14

250 This indicates that it was not possible to compute an SVD within 30 iterations.
TERMINAL ERROR.

300 This indicates that the global error is probably larger than the error tolerance due to
instabilities in the system. Most likely the problem is ill-conditioned. Output value is
the estimated amplification factor.
WARNING ERROR.

305 This indicates that the global error is probably larger than the error tolerance due to
instabilities in the discrete multipoint BVP. derived from the side conditions and BC.
Most likely the problem is ill-conditioned. Output value is an estimate for the
amplification factor.
WARNING ERROR.

310 This indicates that one of the Uk is singular.
TERMINAL ERROR.

315 This indicates that the discrete multipoint BVP, derived from the side conditions and
BC is singular.
TERMINAL ERROR.

320 This indicates that the problem is probably too ill-conditioned with respect to the BC.
TERMINAL ERROR.

325 This indicates that the problem is probably too ill-conditioned with respect to the BC.
TERMINAL ERROR.

330 The computed value for Ymax is larger than the given maximum value for y in C.
Output value is the estimated value for y. The given value for Ymax is used for further
computations.
WARNING ERROR

331 The computed number of unbounded growing modes on the interval [ex. ~] differs
from the computed number of growing modes on the interval [a.. y]. This might be
caused by a very slowly increasing mode, or the problem is not dichotomic.
WARNING ERROR.

335 The number of exponentially growing modes is not the same as the number of
unbounded modes. Probably the problem has non exponentially growing modes. It is
also possible that the problem is not dichotomic. so check the value of ER(5).
WARNING ERROR.

340 This indicates that the BC is inconsistent with respect to the BC-vector. If also error
335 has occurred. then most probably both erros occured for the same reason.
Otherwise. most probably the used value for B has been too small, so a larger value
for B will solve this problem.

123

ERRORS CH.IX,14

WARNING ERROR.

345 This indicates that the problem is ill-conditioned. A basis for a meaningful manifold
will be computed.
WARNING ERROR.

350 This indicates that p(EIG(1» * p(EIG(2» ~ O. Output values are the p(EIG(1» and
p(EIG(2».
TERMINAL ERROR.

355 This indicates that no eigenvalue was found in the given interval. Output values are
the boundary points of the given interval.
TERMINAL ERROR.

Errors of the special linear solvers.

600 N<1.
TERMINAL ERROR.

601 mOM *' 0 and IHOM *' 1.
TERMINAL ERROR.

602 NREC<2.
TERMINAL ERROR.

603 Value ofNRI is too small.
TERMINAL ERROR.

605 Value of NU is too small.
TERMINAL ERROR.

606 Either the value of L W or LIW is too small.
TERMINAL ERROR.

611 KMI<2.
TERMINAL ERROR.

612 NREC(l) < 3.
TERMINAL ERROR.

613 L<1.
TERMINAL ERROR.

614 Either NREC < 2 or NX < NREC + 1 or NPL *' N + L.
TERMINAL ERROR.

124

ERRORS CH. IX,14

621 Either IJ(I) * 1 or IJ(KMI) '* NREC(1).
TERMINAL ERROR.

622 The switching points are not given in strict monotonic order.
TERMINAL ERROR.

700 This indicates that the global error is probably larger than 1 / EPS, due to instabilities
in the system. Most likely the problem is ill-conditioned. Output value is the
estimated amplification factor.
WARNING ERROR.

710 This indicates that one of the Ai or Bj is singular in such a way that the linear system
is singular.
TERMINAL ERROR.

720 This indicates that the problem is probably too ill-conditioned with respect to the BC.
TERMINAL ERROR.

125

15. Names of subroutines in BOUNDPAK.

In the next table aU the names of the BOUNDPAK subroutines are given.

AMTES ANORMI APLB
BCMAV
CAMPF CAPARC CCI CDI
CFUNRC CHDIAU CKLREC CKPSW CNRHS
CONDW COPMAT COPVEC CPABC CPARC
CPRDIA CPSRC CQIZI CRHOL CROUT
CSPABV CTIMI CTIPL CUVRC CWISB
DEFINC DETSWP DUR DURIN DURPA
EPSMAC
FC2BVP FCBVP FCEBVP FCIBVP FCPBVP
FQUS FUNPAR FUNRC
GKPMP GKPPA GOPBC GTUR GTURI
GTUVRC
INPRO INTCH
KPCH
LUDEC
MATUP MATVC MTSDD MTSE MTSI
MTSMP MTSP MTSS MUTSDD MUTSEI
MUTSGE MUTSIN MUTSMI MUTSMP MUTSPA
MUTSPS MUTSSE
PSR
QEVAK QEVAL QUDEC
RKFIS RKFSM
SBVP 5MBVP SOLDE SOLUPP SORTO
SORTDO SPARC SPLSI SPLS2 SPLS3
SSDBVP SVD
TAMVC TUR TUVRC
UPUP UPVECP UQDEC

127

	Voorblad
	CONTENTS
	PART ONE
	PREFACE
	CHAPTER I
	CHAPTER II
	CHAPTER III
	CHAPTER IV
	CHAPTER V
	CHAPTER VI
	CHAPTER VII
	CHAPTER VIII

	PART TWO
	CONTENTS
	CHAPTER IX

