EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

BOUNDPAK : numerical software for linear boundary value
problems

Citation for published version (APA):
Mattheij, R. M. M., & Staarink, G. W. M. (1992). BOUNDPAK : numerical software for linear boundary value
problems. (EUT-Report; Vol. 92-WSK-01). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/09e38d29-2640-44dc-b234-debba447823f

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

BOUNDPAK

Numerical Software for Linear
Boundary Value Problems

Part One
by

R.M.M. Mattheij and G.W.M. Staarink

EUT Report 92-WSK-01
Eindhoven, February 1992

Department of Mathematics and Computing Science
Eindhoven University of Techinology

P.O. Box 513

5600 MB Eindhoven, The Netherlands

ISBN 9038600224

ISSN 0167-9708

Coden: TEUEDE

CONTENTS

PART ONE

PREFACE

CHAPTER1 Introduction

b
.

ODEs, BCs and BVPs
Notational conventions

General description of (multiple) shooting and decoupling
References

CHAPTER II Two-point BVYP

N

Introduction.
Global description of the algorithms

21 BVP with general BC

22 BVP with partially separated BC

2.3 BVP with (completely) separated BC

Special features of the methods

3.1 Numerical realization of the integration

32 Computing fundamental and particular solutions of recursions
33 Choosing Q@ and w;(z;)

34 Conditioning and stability

Computational aspects of the methods

4.1 The use of RKF45

42 The choice of shooting points

43 The computation of 01 and @ and the proper splitting
44 The computation of the stability constants

References

CHAPTER 11 BVP on infinite intervals

W

Introduction

Global description of the algorithm

Special featurcs

3.1 Errors introduced by finite choice of y
32 Conditioning

3.3 Problems with polynomially increasing modes
Computational aspects

10
10
13
15
16
16
16
17
18
22
22
22
23
25
27

29

29
30
31
31
32
32
34

4.1 Determination of vy and bounded solutions

4.2 Use of BC and determination of conditioning constants
43 Use of MUTSIN for problems with slowly increasing modes

References

CHAPTER IV Multipoint BVP and integral BVP

[,

Introduction
Global description of the algorithms

2.1 BVP with multipoint BC

22 BVPwithintegral BC
Special features of the methods

31 Computation of the ®; (i)

32 Choosing F1(o,0r;) and w;(0,t;)

3.3 Reduction of the system (2.9)

3.4 Special solution of the algebraic system (2.9)
3.5 Conditioning and stability

Computational aspects

4.1 The computation of Q1(i)

42 The computation of M; (i} and w;(i)

4.3 Determination of switching points o; for integral BC
44 Finding a globally correct partitioning

4.5 The computation of the stability constants
References

CHAPTER V BVP with parameters

.

w N

Introduction
Global description of the algorithm
Special features of the method

31 Computation of the ®;(i) and Y;(i)

32 ChOOSiﬂg Foloy,00), Zj {¢; ,tj) and Wi (o ,Ij)
3.3 Special solution of the linear system (2.11)
34 Conditioning and stability
Computational aspects

4.1 The computation of switching points

42 The computation of (i)

43 Finding a globally correct partitioning

44 The computation of 0 and k, of system (3.6)
45 The computation of the stability constants
References

i

- g N

37

37
40
40
42
43
43
44
45
45
48
49
49
50
50
51
52
52

55

55
57
59
59

AN A

66
66
67

CHAPTER VI ODE with discontinuous data

—

Introduction

Gilobal description of the algorithm

Special features of the method

3.1 Solution of the system (2.9)

32 Conditioning and stability
4. Computational aspects
4.1 Computation of the stability constants
42 Intemnal BC

w N

CHAPTER VII Eigenvalue problems

Introduction

Global description of the algorithm
Special fcatures: conditioning
Computational aspects

4.1 The use of ZEROIN

42 Accuracy of the result

4.2 The solution space
References

BN

CHAPTER VIII Special linear solvers

1. Introduction
2. General discrete BVPs
2.1 General discrete two-point BVPs
2.2 General discrete multipoint BVPs
23 General discrete two-point BVP with parameters

iii

69

69
71
72
73
75
76
76
77

79

79
80
81
82
82
82
82
83

85

85
85
85
86
87

PART TWO

CHAPTER IX
1. Introduction.
2. Subroutine MUTSGE
3. Subroutine MUTSPS
4, Subroutine MUTSSE
S. Subroutint MUTSIN
6. Subroutine MUTSMP
7. Subroutine MUTSMI
8. Subroutine MUTSPA
9, Subroutine MUTSDD
10. Subroutine MUTSEI
11. Subroutine SPLS1
12. Subroutine SPLS2
13. Subroutine SPLS3
14. Error messages
15.

Names of subroutines in BOUNDPAK

Documentation

iv

23
33
43
53
63
73
85
93
101
111
119
127

PREFACE

The work on the routines in this booklet started some years ago when a number of codes were
written to study BVP phenomena. Due to interest from other users we updated and diversified
these codes time and again. As a result their descriptions became more detailed. When we
realized that the specialisation 10 certain subclasses of BVPs was gradually producing an
entire family of problems oriented codes, the idea was born to collect their description,
supplemented with some mathematical analysis. From the foregoing it follows that the
present volume is not a course book; it rather contains mathematical backgrounds and
computational details of a number of algorithms for solving linear boundary value problems.
These algorithms are based on a special implementation of a multiple shooting approach
(although the name sequential shooting would be more appropriate). Their important common
feature is that they employ a special stable lincar algebra solver, based on a decoupling of the
multiple shooting recursion. These methods have been found 1o be at least as robust and
efficient as other (sparse) solvers. In fact for some special cases (like multipoint problems)
they are more efficient. Therefore we have devoted a separate chapter to these linear solvers,
describing routines that can be used in combination with other (discretization) methods as
well.

We are well aware of the fact that often problems are nonlinear rather than linear. However,
the mathematical descriptions and the codes treated in this book can be used almost directly in
a quasilinearization approach. On the other hand, for nonlinear BVPs a similar diverse range
of subproblems can be distinguished. The ideas given in the various chapters may be a source
of inspiration for implementing nonlinear counterparts.

We like to say a word about the philosophy of this package: Although it is often possible to
reformulate various classes of BVPs into a standard form (we give some hints how to achieve
this), such a formulation often leads to more costly computations than are necessary,
Moreover, as it will tum out, special problems have special characteristics: for instance,
dichotomy, that plays such a crucial role in any well-conditioned two-point BVP may lose its
meaning in a multipoint BVP. For certain applications one is often interested in the specific
problem characteristics (like estimates for the fundamental solution or the Green’s function).
Our package makes such information available. We also strongly believe in the idea that a
code should provide as much additional information as possible in order to enable the user to
give a meaningful diagnosis. At minor points therefore we have traded efficiency for
robustness. Consequently we make a distinction between various two-point boundary
conditions, between two-point and multipoint problems and between finite and infinite
intervals. Special attention is being paid to ODEs with parameters and BVPs with jump
conditions (where, incidentally, multiple shooting is a natural approach, requiring not even
continuity at a shooting point). Finally we also consider eigenvalue problems.

Eindhoven, RM M. Mattheij
February 1992 G.WM. Staarink

CHAPTER I

INTRODUCTION

1. ODEs, BCs and BVPs

In this chapter we give a brief overview of the various types of boundary value problems
which will be discussed later, We also include a general introduction to the solution methods
on which the algorithms in the next chapters are based.

Consider the following ordinary differential equation (ODE) :
(1.1) Lx0=LOx@O+r@) ,asr<P,

where L{¢) is an n X n-matrix function (assumed to be sufficiently smooth in our aplications)
and x(t), r (¢) n-vector functions. Sometimes we shall have to consider the Aomogeneous case
(r (¢)=0) separately.

The solution x(¢) is subject to a boundary condition (BC). In its most general form we have a
multipoint BC,

m+l
(1.2) ,);s M;x(o)=b,

where My, ..., My, are n Xn-matrices, b is an n-vector and oy, ..., 04 € [o,PB] are
ordered, such that e=0y <0 < <Oy =.

A problem (1.1), (1.2) is called a (linear) boundary value problem (BVP). Most often we have
m =1, i.e. atwo-point BC, which we usually shall write as

(1.3) Mox(c)+Mpx(B)=b .

In CHAPTER II we shall discuss methods for BVPs with two-point BC; as it will turn out,
situations where M, and/or Mp have some zero rows allow for a particular, more efficient,
treatment.

A somewhat different situation occurs when B=oo, For such BVPs on infinite intervals we
have to truncate the interval to a finite one in a deliberate way; moreover, the terminal

condition matrix My is often absent, thus leading to a "conditional” initial value problem. This
is discussed in CHAPTER 111,

CH.L1

For a genuine multipoint case (i.e. m 22) the BVP may have inherently different properties,

which calls for a special treatment. As a special limiting case of (1.2) we consider an integral
condition of the form

B
(1.4) iM(’c)x(’c)dtzb)

Multipoint and integral BC are considered in CHAPTER IV.
Sometimes the solution should obey certain relations which we may collectively indicate as

singular. A singularity in the ODE is usually treated by analytical means and so does not have
a special treatment here.

If we have at a certain point y
(1.5) x(W=x(y)+c,

where x(y*) and x(y") have to be understood as right and left limits, we obviously meet a
problem aty. Such side conditions (and more general ones) are dealt with in CHAPTER VL
For yet another type of problem we may let the ODE and/for the BC depend on some
parameters, which are either supplemented by sufficient additional BCs, or are to be chosen
such that the solution of the BVP is unique, apart from a multiplicative constant, to mention
the simplest case of an eigenvalue problem:

(1.6) %x(r)=£(z)x(r)+kx(t).

Here the BC (1.3) is assumed to be homogeneous, i.e. b =0; sec CHAPTER VIL
If

%)) %x(t):L(z)x(t)+K(t)?s.+ rt),

where K (¢) is an n X! -matrix function and A a fixed [-vector, we have a so called parameter
problem. For the | unknown parameters we need ! additional BCs. Such problems are
copsidered in CHAPTER V.

Several of the routines that are developed to solve the various BVPs are useful in their own
right. In particular this holds true for the linear algebra routines. We have adapted some of
them in such a way that they can be used to solve certain sparse systems. In CHAPTER VIII
we shall indicate more precisely which kind.

In the introduction of each chapter an explicit refcrence is being made to the appropriate
routines.

The documentation of these routines, in particular their parameter list, the table of error
messages and an example, to demonstrate their use, is given in CHAPTER IX.

CH.12

2. Notational conventions

For efficiency’s sake we briefly review here some conventions that will be used throughout the
book.

We shall frequently meet partitioned matrices. As we shall also meet recursions, we adopt the
convention that subscripts denote the iteration index, as in

2.1 X =A;x; +d; .

Superscripts exclusively refer to partitioning, as in
All 412
2.2) A= [AZI Azz} ,

where A1, A22 are assumed to be square blocks; trivially, when the order of A!! is given, the
sizes of the other blocks are determined. Corresponding to a matrix partitioning (2.2), we can
have a vector partitioning. Let A;}! be a k x k matrix (4; as in (2.2)) then in

2.3) X =\,

x;! is assumed to have & coordinates. This induces a consistent partitioning in the recursion
Q.10

(2.4a) i =AY X + AR X2+ 4,

(2.4b) x5 = A G + AR X2+ 42

For matrices we also usc the following partitioning
(2.52) A =[A1] A7],

to indicate a partitioning into columns and
A
(2.5b) A= [2 A} ,

1o indicate a partitioning into rows.

Because of their favourable numerical properties we use orthogonal matrices as much as
possible. Three important matrix factorizations are used throughout:

CH.12

(2.6 A=QU,

where @ is an orthogonal matrix and U is an upper triangular matrix (Gram-Schmidt or QU-
Jactorization cf. [2]);

@7 A=UQ,
where U is an upper triangular matrix and @ an orthogonal matrix (UQ-factorization }; and

(2.8) A=UZVT,

where U and V are orthogonal matrices and ¥ a diagonal matrix with semi-positive diagonal
elements (singular value decomposition , cf. [2]).

Regularly we shall use norms to measure matrices and vectors, i.c. ||A]| and||x|| for a matrix A
and a vector x, respectively. Usually one may use any norm for this, but sometimes we give
preference to the maximum norm (es-norm) as this is easy to compute, or to the Euclidean
norm (2-norm) because of its orthogonal invariance, i.e. for orthogonal Q4, O3,

2.9) 1214 Qall2=llAll2 | Q1x]2=]lx]l2.

3. General description of (multiple) shooting and decoupling

The algorithms that will be described in the subsequent chapters are all based on a special

implementation of two basic methods: multiple shooting and decoupling. We shall briefly
outline these methods here,

For the ODE (1.1) let a two-point BC
3B.YH Mox(@)+Mpx(B)=b,

be given (cf. (1.3)) (for multipoint BC the derivation is similar, though morc complicated, cf.
chapter IV).

Let F(t) be a fundamental solution of (1.1) (i.c. an n X n-matrix solution of the homogeneous
part of (1.1)) and w(¢) some particular solution of (1.1). Then because of the lincarity, we
may find the solution x(t) by superposition. That is: there exists some (unknown) vector ¢,

such that
(3.2) x(@)=F{)c +w().

This ¢ is (uniquely) determined by the BC (3.1), i.e.

CH.13

(3.3) [MoF(0)+MpFPB)lc =b—Mgw(o)-Mpw(P).

A natural way to determine F (¢) and w(¢) is stanting at t =0 (with an arbritary, or (preferably)
simple looking initial value) and using an initial value integrator. An algorithm based on this
principle is called single shooting. This method is notorious for giving bad results for
problems where, say, exp((B—o)max||L(z)||) is large. By applying a superposition idea
repeatedly on subsequent subintervals we obtain a multiple shooting method: Let [o, Bl be
divided into N—1 subintervals, say, [#;,tis1], i=1,...,N-1 (f;=a, ty=). On each
subinterval a fundamental solution F;(z) and a particular solution w;{t) is computed (often
w;(t;)=0), So for some vectors ¢; we have

(34 x@)=F;(t)c; +wi(t),i=1,... N.

Here we have added the solutions Fy(¢) and wy (¢) for esthetic reasons.

By requiring continuity at the shooting points t; (a condition that might be relaxed in certain
applications cf. chapter VI) we obtain a recurrence relation for the ¢; :

(3.5) Fi(tiv) ci +wi(tin) = Fra(tiv) Civ + wini(tiv1) .

Together with the relation obtained from the BC (3.1),viz.

(3.6) MoFitpcr+MpgFn(n) ey =b —Mqw (81) —Mpwn(tn) ,
this gives rise to N linear equations for the unknown ¢y, . .., cy.

Although multiple shooting seems to be more complicated than single shooting, the initial
value instability is exponentially reduced by the length of the (maximal) subinterval (i.e.
errors are expected to grow by not more than a factor c"p((f"““t"),e‘f}?x L@ on

n’iﬂ]
[t tia D

The discrete BVP (3.5), (3.6) leads to the following linear system:

Fi(ty) —Faty)

3.7 ' . c=f"
Fyaln) —FaGy)
MF (1)) MpFy(tn)
with c=1cl,..., k10, £=1fT...., f&1" and where

fi=winli) —wilti,), i=1l,..., N-1,
Sn=b-Mawi(t)) - Mpwn(tn).

The solution of this system can be obtained by using any gencral lincar algebraic solver.
However the sparsity of this system requires a special treatment for efficiency reasons.
Therefore we shall describe a method which solves such a discrete BVP by decoupling; we
shall do this for the formulation (3.5), (3.6): Let e.g. F;(t;)=1I and write A; =F;(t;+1), then

CH.13

(3.8a) Civi=Aic—f; ,i=l,...,N-1,
(3.8b) Micy+Mycen=fn.

Further,let T be an orthogonal matrix. Then compute recursively fori=1,..., N -1

A

(3.93) A; Z=Ai T; s
(3.9b) A =TiqUn ,

where T, is an orthogonal and U;,; an upper triangular matrix (i.c. (3.9b) is a QU-
decomposition). By defining

(3.10a) a =T ¢ ,i=l,...,N,
(3.10p) d =T fi ,i=l,...,N~1,
(3.10c) M; =M;T; ,i=1,N,

we obtain the decoupled recursion

(3.11) gin=Uma +d;,

where a; satisfies the BC

(3.12) Mia,+Myay=fn .

For well-conditioned problems, it can be shown that the solution space § (of the homogeneous
problem) is dichotomic , i.e. there exists a subspace Sy (of dimension £ say) of solutions that
do not increase significantly for decreasing t and a complementary subspace S (of dimension
n—k) of solutions that do not increase significantly for increasing t; in fact both subspaces
may contain exponentially growing modes and in particular the exponentially growing modes
(for increasing t) of the first subspace may cause instabilities for (single) shooting. Avoiding
technical details, it can be shown that the dichotomy has visible cffects on the decoupled
recursion matrices U;. Under fairly general conditions (dealing with the choice of T} the
k xk left upper blocks in the U; reflect the incremental growth of the modes € §; and the
(n —k)x{(n —k) right lower blocks the growth of modes ¢ §,. Onc may compare this idea
with probably more familiar results in power methods, where the A; are constant. The

algorithm (3.9) then is essentially equivalent to subspace iteration (a predecessor of the QR
algorithm without shifts). Partitioning U;, a; and d; as

Bi C; a;i dgl
(3.13) Ui = , ;

respectively, we can write

CH.13

(3.14a) a1 =Ena?+d3 ,
(3.14b) a1 =Bina'+Cinal+dl, .

Because of the said properties of E;, it should be expected that (3.14a) is a stable recursion,
i.c.if af is given no significant error growth in the a2 will be present. On the other hand,
(3.14b) will be stable given a value of ay (and assuming ad_,,...,af are known, so they
just add to the source term d;};). This combination of forward and backward sweeps in
appropriate dircctions is then used 10 stably compute both some fundamental solution of
(3.14) and some particular solution. These arc used in tum with a superposition principle in
(3.12), after which the ¢; essentially follow from (3.10a).

References
[1] U.M. Ascher, R M.M. Mattheij, R.D. Russell, Numerical Solutions of Boundary Value
Problems for ODE, Prentice-Hall, Englewood Cliffs, 1987.

2} G.H. Golub, C.F. van Loan, Matrix Computations, Johns Hopkins University Press,
- Baltimore, 1983,

(3] R.M.M. Mattheij, Stable computation of solutions of unstable initial value recursions,
BIT 22 (1982), 79-83.

14} R.M.M. Mattheij, G.W .M. Staarink, An efficient algorithm for solving general linear
two-point BVP, SIAM 1. Sci. Stat. Comput. 5 (1984), 745-763.

CHAPTER II

TWO-POINT BVP

1. Introduction

Consider the ODE

(L) Lx)=LOx)+r@), a<t<B
and the two-point BC

(1.2) Mgax(a)+Mpx(B)=b.

The algorithm combines multiple shooting with decoupling (cf. §1.3). In particular it
computes the fundamental solutions sequentially by choosing them such that

(1.3) Fi(tim)=Fintin)Uini=Qin1 Uisr

where (; .1 is an orthogonal and U; . an upper triangular matrix.
On the subinterval [¢; , ;41] we have

(1.4) x(y=F;(t)a; +w;(t).

Matching at the endpoints of the subintervals leads to

(1.5 Fi(tiv) ai +w; (i) = Fing(tin) @iy + Wini(tin)
which results into the recursion

(1.6) @41 = U a; + Qi) [witiz) —win(tis)] -
Denoting d;41 = Q;3) [Wi (ti41) — Wis1(ti+1)] we have

.n ain=Una; +diyy .

It is easy to see that

(1.8) x(@) =0 ai +wi(t;).

Now any solution {a; } of recursion (1.7) can be written as

CH.1L1

(1.9) a=®;c+z,
where {®; }¥; is a fundamental solution of (1.7), i.e.
(1.10) D) =Ui ®;

and {z; } X, a particular solution of (1.7).

The computation of {®; }X; and {z; } X, is employing the decoupling in (1.7), which in turn is
related to the dichotomy for a well-conditioned problem. Using (®; }, and {z} Y, we can
compute ¢ from (cf.(1.2))

(111 My Q19 +MpOn Oy 1c =b ~Mgwi(t1) - Mpwy (i)
-MuQy1z1-MpQOy2n.

Then x(¢;) follows from (1.9) and (1.8).

Remark 1.12

If the matrix [M 4 Q; @y + Mg Oy Dy] is ill-conditioned, computing ¢ from (1.11) may result
in an inaccurate computation of the x (¢;). The routines compute a condition number CN which
indicates whether this matrix is ill-conditioned or not (cf.(3.12)). Another problem is that
errors might be propagated in an unstable way when the recursion (1.7) is used (although this
should not be any problem in a well-conditioned case). The routines compute an estimate of

the amplification of errors, which we call the amplification factor (in fact another condition
number). '

Quite often the matrices M o , Mg have more structure. In particular M, or Mg may have some
systematically zero rows. This will be referred to as partially separated BC. If both M o and

Mg have zero rows (but for different row indices) and such that there total number equals #,
the BC is referred 10 as (completely) separated.

The methods discussed in this chapter are implemented in the routines MUTSGE (for general
BC), MUTSPS (for partially separated BC), MUTSSE (for separated BC).

2. Global description of the algorithms
In this section we shall give an outline of the various algorithms for the various types of two-

point BC,

2.1 BVPs with general BC

Consider the ODE (1.1) and the general two-point BC

10

CH. 11,2

2.0 Mox(0)+Mpx(B)=b .
Any solution of the ODE (1.1) can be written as
2.2) x()=F(t)ec +wlt) ,

where F (¢) is a fundamental solution of the homogeneous part of (1.1}, i.e.
@3 Lro=LoFo,

w () a particular solution of (1.1) and ¢ a constant n-vector.
After substituting (2.2) in (2.1) determine ¢ from

2.4) [MaF () +MpF@B)lc=b-Mqw(o)-Mpw(p).

So the solution x of (1.1) and (2.1) may be computed by superposition as follows:
(2.5a) find a particular solution w (¢) of the ODE (1.1),

(2.5b) find a fundamental solution F (1) of the ODE (2.3),

(2.5¢) find the n -vector ¢ from cquation (2.4).

This method is mathematically equivalent to what would have been found by single shooting .
However, in many interesting problems, the homogeneous part of the ODE (1.1) has fast
growing modes, which makes e.g. the computation of the fundamental solution F(t) an
unstable affair, cf. the remarks about dichotomy made in §1.1,3. To reduce this instability, the
interval [o,B] is divided into subintervals [¢; 5,441, i =1,2,..., N-1, say; then on each
subinterval a particular solution w;{¢) and a fundamental solution F;{¢) is computed. This is
called multiple shooting . Now, any solution of (1.1) on the subinterval can be written as

(2.6) x(t)=F(t)a +wi(t) ,i=1,...,N.

There are several possibilities for choosing the fundamental solution F;(¢),i=1,2,...,N.
For the methods discussed here the F;(¢) are chosen such that

@n Fitir)=FiniDUin=0in Ui, i=1,...,N-1,
where ;41 is an orthogonal matrix and U;,; an upper triangular matrix. By letting Uy =1, we
may include the case i =0, if we choose F(t{)=0, some orthogonal matrix.

By matching the relations (2.6) at the points #;,,4,i =1, ..., N —1, we then obtain

2.8) x(tis1) = Fi(tia) it + win(tis1) = Qi Ui ai + wi (ti41).

If we denote

11

CH. 112

2.9) dis1 = Q3 [wiltin) —win ()],

we thus obtain the following upper triangular recursion:
(2.10) aiq=Una +diyy ,i=12,...,N-1,
By our choice of the F; we immediately sec that

.11 ai =07 (x () - wi(t;)).

Now let {®;} X, be a fundamental solution of (2.10),i.e.
(2.12) Qy=Uin®,i=12,...,N-1

and let {z;)}, be some particular solution of (2.10). Then there should exist some vector ¢
such that

(2.13) a=®c+z,i=12,...,N.

From (2.11) and (2.13) we therefore obtain the relation

(2.14) x(t)=wit)+ Qi (zi +®;c), i=12,...,N.

After substituting x (1) = x (0)) and x(zy) = x(B) in the BC (2.1) we thus find:

2.15) [MaQ1 @ +MpOn Oy Jc =b —Mawi(c) ~ Mpwn (B)
-MyQ121—-MpQOn 2.

The vector ¢ which follows from (2.15) gives us the desired solution values x (¢;) via (2.14).

Remark 2.16

In the case that the ODE (2.1) is homogeneous, i.e. r(¢)=0,t € [o,p], there is no particular
solution to be computed. Then (2.6), (2.8), (2.10), (2.11), (2.14) and (2.15) are to be replaced
by:

.6y x)y=F;@®)a; ,

2.8y x(tiD)=Fialtidaan=0inlUina ,

(2.10y ai=Uina; ,

.11y a; =Q7 ' x ()

214y x(t)=0;®;c ,

12

CH. 112

.15y (MaQ1D1+MpaOn Py Ic=b ,

respectively (for relevant indices £).

2.2 BVPs with partially separated BC

If we have a partially separated BC, i.c. where in (2.1) the matrix M, and/or Mg have a few
zero tows, this fact can be utilized to reduce the computational labour, in that a smaller

number of basis solutions has 1o be computed. For our discussion the following typical BC is
to be considered:

(2.17a) IM o x (o) +]MBX(B) =bl,
(2.17b) M o x (0= b2 .
Here Mo and Mg are k; X n-matrices, 2M o is an (1 —k) X n-matrix and b! and b? are k-

vector and (n—k)-vector, respectively; i.c. only Mg has systematically zeros, viz. in its last
(n—ks) rows.

Remark 2.18

If M4 happens to have a number of zero rows instead of Mg, the arguments below are
essentially the same.

The reduction in computing F;(r) consists of the fact that we only compute its first kg
columns, viz. (F;}(¢)), by requiring that

(2.19a) MG FL{o)=0 .

The particular solution w,{¢) is then chosen such that it satisfies the decoupled initial value
part, i.c.

(2.19b) Moawi(o)=b? .

Formally we thus see that the desired solution x shouid lie in a linear varicty
w1 ()@ span(F £(t)), where F£(t) is just some complementary part of the fundamental
solution F{ (¢). From (2.17) and (2.19) we see that span(w (¢))| span(F { (t)). Now we can
procced as in the general case, i.e. we can divide [o,B] into subintervals
[4.,01,i=12,.. ., N-1. On cach subinterval [#;,4,1] a parial fundamental solution
F;\(¢) and a particular solution w; (¢) is computed such that at the initial point of the interval:

13

CH. 11,2

span(Fi!(1;)) = span(F:Ly (1)),
(2.20) wi(t;) 1 span(FA(t:)),

wi(ti) € wiei(t;) D span(F;—1 ().
This then means that there exist k,-vectors g;}, such that for any i,
2.21) xO)=Flt)al +w;(t).

In our algorithm we choose F;!(z;) such that its columns are orthogonal. The analogue of (2.6)
reads therefore:

2.22) Fil(tin) =F& tie) Vi = Qi1 Vs,

where the n xk,-matrix ;! has orthogonal columns and V;,; is a k; Xks upper triangular
matrix. Now if we denote (cf. (2.9))

(2.23) dihy = Q3 [wi (i) = win(tiaD 1,
then we obtain the following reduced upper triangular recursion:
(2.24) aily =Vimal+dl, ,i=1,... ,N-1

Remark 2.25

Since we choose w;41(ti+1) orthogonal to span(F:L; (#;41)) = span(Q;}1), we see that we can
actually simplify (2.23) to

(2.26) dihy = @) wi(tis) -

Remark 2.27

wis1(ti41) is uniquely determined by the requirements (2.20). We apparently should project
w; (t;41) onto span(Q;};) and subtract this from w;{¢;,1). Hence we find

(2.28) Win1(tin)) = wiltin) - Qi @) wilting) -

The computation of the g;! from the BC is done in a similar way as in the preceding
subsection; we compute a fundamental solution {®}}Y; and a particular solution {z;!}¥,; of
(2.24). Since for some & -vector ¢! there must hold

(2.29) al=0cl+z!,

we obtain the desired solution from

14

CH.11,2

(2.30) x@)=wit)+ Ol + @l ety
After substituting x (¢1) = x (o) and x (zy) = x () in the BC (2.17a) we thus find ¢! from

Q231) [Ma01 ©!+ MO @Y Jc! =b' - Mowi(e) - Mpwn(B)
~Mo Q1 2} - MO 2

Remarks 2.32

(i) If the ODE is homogeneous we still have to compute solutions w;(¢) (but now of the
homogeneous ODE) such that (2.19b) is satisfied.

(ii) If the ODE is homogeneous and moreover b2 = 0, then we can skip the computation of w;
and put d; =0 for all i{. In such a case we have to replace (2.21), (2.24), (2.29), (2.30) and
(2.31) by

(2.21y x()=Ft)a' |

24y aly=Vina! ,

(2.29Y al=®}c! |

(2.30y x()=wi(t)+ Q1 dlc!

.31y (Mo Qf @+ MO D 1c!=b1 ,

respectively.

2.3 BVP with (completely) separated BC

If we have (completely) separated BC then 'M, = @ in (2.17) as well. So
(2.33a) Mgx(B)=b1,
(2.33b) M ox{(o)=5b2 ,

where 'Mp is a k; X n-matrix and 2M is an (n —k,) X n -matrix.

We can use a similar approach as in § 2.2. However (2.29) until (2.31) are not needed.
Indeed, as can be expected we have an explicit terminal value for the recursion 2249
compute the sequence {a¥, ..., af }. From (2.21) we derive

(2.34) x@)=0'al +wi(t;) .

After substitution in (2.33) we obtain

15

CH. 112
2.35 MaQnN aj =b' - MpwnB) .

Remark 2.36

The same remarks as 2.32 apply to the separated case, i.e. if the problem is homogeneous and
b? =0, we skip the computation of the {w;(¢)} and {z;}.
Instead of (2.34) and (2.35) we then have

@34y x()=0!'a’ ,

2357 MpQdad=b! .

3. Special features of the methods

There are several aspects which make our routines different from other Multiple Shooting
strategies. In the following subsections we shall describe some of them. This may help to
understand the power and also the limitations of the method.

3.1 Numerical realization of the integration

Since the numerical integration accounts for the bulk of the computational labour, it is of
fairly great importance to have this computation done efficiently. A first gain can be achieved
quite simply. Realizing that the unstable solutions will inevitably dictate the stepsize if an
absolute tolerance is given (and won’t do for less if a relative tolerance is required), we need
to use the adaptive integration control only for one solution on each subinterval. The other
solutions are found at the thus determined grid. The grid is determined by the particular
solution w; (), or, if the problem is homogeneous, by the first column of F;(¢) (or F;}(2)). The
latter choice is induced by the wish to have points such that the most unstable solution is still
integrated correctly (i.e. up to the required tolerance). See also [7].

3.2 Computing fundamental and particular solutions of recursions

For solving a BVP with general BC or partially separated BC we have to compute a
fundamental solution and a particular solution of recursions (2.10) and (2.24), respectively. As
both recursions are of the same nature, we only discuss recursion (2.10).

The important idea behind the decoupling method of §2 is that in well-posed linear BVP, the
homogeneous solution space of (2.1) is dichotomic , i.e. is such that for some integer &,
("partitioning index") there exist a k,-dimensional subspace of increasing solutions and an
(n—k,)-dimensional subspace of non-increasing solutions. Using this property and starting
with a proper O (= F(t1)), we can compute a set of U; for which the first k, columns
represent the subspace of increasing solutions and the last (n—k,) columns the subspace of the
non-increasing solutions. In this way we have decoupled the increasing solutions and the

16

CH.11.3

non-increasing solutions. This decoupling enables us to compute a fundamental solution of
the upper triangular recursion (2.10) in a stable way as follows:
We partition matrices and vectors as

Y o 1
Gy U= {% g} , = [3;}

where B; is a k, Xk, -upper triangular matrix, E; an (n —k,)X (n —k,)-upper triangular matrix,
Ci ak, x(n —k,)-matrix, a;! a k,-vector and @ an (n — &,)-vector.
The recursion (2,10) can be rewritten as

(3.2a) af1 =Ema?+di ,
(3.2b) aly =Bina! +Cinaf +diy .

As the B; represent the increasing solutions, the absolute value of the diagonal elements of B;
can be expected to be greater than 1, making forward computation of (3.2b) unstable. The E;
represent the non-increasing solutions, so the absolute value of the diagonal elements of E;
can be expected to be less than or equal to 1, making forward computation of (3.2a) stable.
Hence the obvious strategy for computing a fundamental solution {®;}/, and a particular
solution {z; } ¥ of recursion (2.10) is to use (3.2a) in forward direction and (3.2b) in backward
direction. So for the particular solution {z; }¥; we have the BC

(3.3) 28 =0, z3=0 .

Then z2,i=23,...,N, using (3.2a) in forward direction, and z;!,i=N-1,N-2,...,1
using (3.2b) in backward direction, is computed.

For the fundamental solution we have the recursion

(3.4a) L =Ein®?

(3.4b) ®Li =B D + Ciyy D

and the BC

3.5 Ot=(D|1); Oy=(1| D).

Now {®2}X; is computed via (3.4a) and {®]}\y is then computed via (3.4b).

3.3 Choosing Q and w;(z;)

As in fact the matrix 0 gencrates the sequences of {Q;} and {U;} it is important to have a
proper choice for Q. Indeed as was shown in [4] the desired splitting of the solution space
into increasing and non-increasing solutions may not be achieved for general initial matrices
01, though in practice it is most likely that an arbitrary choice will do eventually.
Nevertheless for a good stability of the recursion some effort to obtain a good guess is worth

17

CH.I1L3

paying for. For general BC no information about k, nor the direction of the increasing
solutions is available, so we just take Qj=1. If, after a few normalizations, a disorder of
eigenvalues of the matrices U; becomes visible, we perform a permutation of the columns of
0 to hopefully restore an ordering in decreasing absolute magnitude. If needed this process is
repeated a finite number of times. In § 4.3 we retum to this.

If the BC are partially separated, one has to realize that k; and k, may be different (k; 2 k).
Hence, in general one should try to obtain an ordering of the diagonal elements of the V;, at
least to such an extent that the k, Xk, left upper part contains the eigenvalues which are in

absolute value greater than 1; of course this can only be found by guessing and correcting as
in the general case,

Finally, if the BC are completely separated we necessarily have that k; =k, (or at least a
reasonable choice of k,, if there is no exponential but only an ordinary dichotomy). For this,

however, we presuppose the problem to be well-conditioned, which will be explained in the
next subsection.

As far as the w; (1;) are concerned, we already remarked that they were in fact determined by
our desire to keep w;(t;) in the same linear variety as w; ;). Of course this only makes sense
in case the BC are (partially or completely) separated. If we use the strategy for general BC
we have a complete freedom again. We have chosen for the option w;(¢;) =0 because, in
general, this gives O (1) components of all solutions involved, notably the desired particular
one and the most unstable one. It was discussed in [7] that this was a sensible choice.

3.4 Conditioning and stability

The accuracy of the solution x (¢) of a BVP, using the method as described in § 2, depends on:

@) The accuracy by which the fundamental solution F;(#;) and the particular solution
w;(1;) are computed. (This accuray is determined by the user.)

(i) The accuracy by which the vector ¢ in equation (2.15) is computed.
(iii) The accuracy by which the fundamental solution {®;}Y; or {®}}N; and the
particular solution {z; }}¥; or {z;}}/¥; of the recursion (2.10) and (2.24), respectively,

is computed.

First we will discuss point (ii).
Since (2.15) resulted from the boundary conditions we have to investigate the effect of

perturbations in the BC on the computed solution. Suppose we have a BC with a perturbed
right-hand side, i.¢. instead of (2.1) we have

(3.6) My () +Mpgi(P)=b + b .

As x and X are both solutions of the ODE of the BVP, there exists a vector v such that

18

CH.I1,3

3D L) —-x(t)y=F(t)v,

where F (1) is a fundamental solution.

Subtracting (3.2) from (3.6) and using (3.7) we obtain:
(3.8 [MoF(0) +MgF(P) v =25b.

So we have

(3.9 f(t)-x(t)=F(t)[MaF(a)+MBF(B)]"‘ ob

and

(3.10) tg}%)llf(:)—x(t)ll s,g}%)uf‘(t)[MaF(a)+MaF(B)]“ll f8bl .

Therefore we define a condition number CN of a BVP as

(3.11) CN =!Iel}§?é)("F(t)[MaF(a)+MBF(ES)]'I .

(Notice that CN is independent of the fundamental solution F(¢), as for any other
fundamental solution G (¢), say, there is a constant matrix P suchthat G(¢)=F (t) P).
Asis shown in [B] if {®; } is defined as in (3.4), then an estimate of CN is given by

(3.12) x=|| [MaQ1®1+MpOy Oy 1] S2CN .

Basically the information to compute x is available (cf. (2.15)). Howecver when the BVP has

(partially) separated BC, only k,; (< n) columns of Q,, Oy, ®;, Oy are computed. The
separated BC can be written as

lMa lMa bl
(3.13) x(o) + xP)=
ZM %] b?

For the condition number CN we have

I l -1

Mo ! "My l
3.14 CN= F Fl(a)|F2 !
(3.14) max IF @) - (a)} (@)|+ . F(B){FZ(B) I

19

CH.113

IM oF (O MF I(B) "M (F 20+ MgF2B)| ™

- F N
mag, 17 @ 20 F (o) M F o) “

As CN is independent of F (t) and we have taken F (¢) such that 2M F (o) = &, it is easy to
see that if either [!M o F (&) + Mg F ()] or M ,F%(c0) is ill-conditioned also the BVP will
be ill-conditioned. Hence we compute

(3.15) xi=[("M Q1 O +'Mp O D4 T,

(3.16) K2 =| [2MQ£17:.

Although a large x; or a large x; indicates that the BVP is ill-conditioned, it is possible to

have an ill-conditioned BVP for which both «; and x; are of order one. For well-conditioned

BVP with separated BC it is necessary that F2(t) contains only non-growing modes (in case

of completely separated BC, all non-growing modes). To find out whether F2(o)) would result

in computing a growing solution, we recall that for the solution x (t) we had (cf. e.g. (2.29))
x@®)=Fi®Ocl+w(t) ,

and completing F !(t) to a fundamental solution F (t) = (F1(¢)| F%(t)) we thus see that

(3.17a) w)=FXt)c?+z(t),

where z(t) is a particular solution of the ODE of the BVP and c? an (n—k,)-vector.
Supposing that z (¢) is a smooth solution, a dominant mode in F2(¢) will influence the growth
of w(z), unless ¢2 = 0. However, by computing another particular solution v (¢) say, where
(3.17b) v(t)=FXt)el+w(t) , €2%0,

and thus

(3.18) w(t)-v(@)=Ft)e? ,

we have a way to find out whether F2(¢) contains dominant modes or not (see §4.4).
For BVP with a dichotomic solution space we have the recursion (cf. (3.2)):

(3.19a) at =Eia?+d3

(3.19b) a' =B3\ (&t —Cinal—-dly) . i=1,... ,N-1.

To investigate the stability of (3.19) we examine the effects of additive perturbations {p?}
and {p;'} of respectively (3.192) and (3.19b), i.e. supposc {d;'} and {4;?} satisfy

20

CH.1I3

(3208) 431 =Eind?+dkh +ph .

(320b) d'=B3\ (&4 ~Cind?-dlh)+pd.
Then for g4y =di1 —aity , g% =431 —a}y we have
(321a) gk =Eingl+ph gt=pt,
(321b) g'=B3l (gh —Cing®)+pt 5 gd=pN,

which results in

2% (T1E
(3.22a) & Igi[(jﬂl LE] w1,

Yo o Tr Foan21e e gyt 2
(3.22b) &' = §=[[Q"N(j=-4| +IIE,)P£ 1+ :3;1[(}:]“]131) 4y pif]

+ gtgglsjr‘pﬂ 1,

where Q,, 4 is a shorter notation for

! 14
6230 Qmg=- 5 (CT] B CCITEDI .

j=mi+l
where

-1 "M, ifgzp

M?Mq
(3.23b) Iile = | ifq<p’

+.+M, ifq2p

M
(3.23¢c) M= " . _
g' Y 1) ifg <p

If the permutations p;!, p# are of the same order, i.e.||p;}|| <8 ,||p|| < & for some 8, we have
62 a2l <t 51 1115,
620 sl <t CITEDD + (3 (jngj)“lﬂzN b

(BT B DIs.

One easily checks that a proper dichotomy implies reasonably bounded ||Qm || as well as

such bounds for ||T]TE;|| and [[(ITB;)'||. This then establishes the stability of the
computation of {®; }X; and {z; }}¥;.

21

CH.1II4A

4. Computational aspects of the methods

There are a number of aspects which have not been filled in yet. In this chapter we shall
therefore treat some particular implementations as they are realized in the various routines.

4.1 The use of RKF45

A very reliable and fairly inexpensive integrator is RKF45, written by L.F. Shampine and
H.A. Watts, 2 Runge Kutta Fehlberg routine which uses fifth order estimates combined with
fourth order approximations (cf. [1]). This routine is the working horse in our codes and as
long as the system is not stiff (in the sense that there is high activity of some modes) we have
found it to work very well indeed (cf. [8]). We have changed the original routines to make that
it only uses the combined fourth-fifth order integrator for the grid determining solution, see §
3.1. A special routine computes solutions on a given grid by the fifth order only. Another
special feature is that it terminates the calculations if five consecutive new points are found.
Then an orthogonalization of the solution is performed and a new cycle is started. This QU-
decomposition is carried out with elementary hermitians (Houscholder’s method, cf. [2]).
Rather than in the form (A Q; =) Qi+t Ui41 we obtain Q7 in factored form. It is obvious that
we only need to evaluate the first k; columns of Q;4; if we have (partially) separated BC. In
the next subsection we consider how this will work out in the global computations.

In the original routine RKF45 both a relative and an absolute tolerance has to be supplied.
Because of the fact that for general BVP on finite intervals one is mainly interested in absolute
accuracy and our strategy makes signifant growth per shooting interval unlikely anyway, we
recommend to set the relative tolerance sufficiently smaller than the absolute tolerance.

4.2 The choice of shooting points

The idea to have shooting intervals consisting of 5 steps only was induced by considerations
of optimal efficiency, cf. [8]. It is obvious that this strategy may give many more points for
output than is needed by the user. Therefore a special device takes care of assembling these so
called minor shooting intervals t0 major shooting intervals ; the latter are such that the initial
and terminal points coincide with user requested output points. Here another powerful feature
of the decoupling method is revealed. Because of the fact that the k-partitioning (k,)
coincides with the decoupling into increasing and decreasing modes, forward assembling of
increments on minor intervals is relatively stable. Such an assembly may be described as
follows:

Let #;; be the initial point of the j™ major shooting interval, i.e. 1, is the j™ output point.
Define

4.1 Wo=1 ;Go:=0.

Now compute fors=1,2,...,

22

CH.114

4.2 W = Uij+s Wt Gs = U£j+.v Gsa + di;»hs' .

If 5 is large enough, then W, describes the increment on the major interval [t;i,t,-jﬂ] and G,
the forcing term on that interval, so that

“4.3) aivs =W; ai, +G;

(of course s is only a local index for W, and G;).
Now we have five possible options for the (j+1)™ output point £;,, =1; 4

) choose s such that || W,|| < p, p prescribed;

(i) choose s such that | 1, —1;| = B2

(N the number of intervals);

(i) choose s such that 1; ,, equals the first next specified output point;

(iv) choose s such that either || W,|| < p, p prescribed or | £ 45 ~ 1| = ﬁﬁg-;

W) choose s such that either |W,|| <p,p prescribed or #;., equals the first next
specified output point.

Remark 4.4

Of course, it may be that these criteria above need shorter minor shooting intervals at the end
of the major shooting interval, This is taken care of by the routines.

Remark 4.5

Criterion (i) is of interest if one suspects the maximal incremental growth to be changing on
[o,B] and likes to monitor this so that the solution is equidistributed with respect to this.
However, one should realize that it may lead to (undesirably) large intervals if there are mildly
growing solutions only.

Criteria (ii) and (iii) may cause overflow problems if the given major shooting intervals are
too large. Therefore only criteria (i), (iv) and (v) are implemented, allowing a p which is

smaller than the square root of the largest positive real number that can be represented by the
used computer.

4.3 The computation of 0 and @ and the proper splitting
Suppose we find the diagonal of the matrix U, not to be ordered properly (to recall: we need

to have the diagonal elements appear more or less in non increasing absolute value). Then we
use a permutation matrix P, which permutes the columns of U5 according to the ordering of

23

CH. 114

the absolute value of these diagonal clements. Of course UoP is no longer upper triangular, so
we perform another QU-decomposition, i.e.

(4.6) Ua(old)P = R Uxnew).

The matrix Us{(new) replaces Uy(old), whilst @ 1(old) is replaced by

@7 Q1(new) = Q1(old) P
and 0 by
4.8) Qa(new) = Q(0ld)R .

If U, is still not found in order we repeat this procedure. In fact we do the same with the
assembled product U; U1 - - - U, on the first major shooting interval. On subsequent major
intervals this reordering is no longer feasible. One should realize that neat problems have to be
dichotomic (cf. [3]), i.e. after reaching the endpoint of the first major interval, we should have
a good idea of k,. Indeed the routines choose k, equal to the position of that diagonal
element of U; which is the smallest one (in absolute value) being larger than 1. Of cource this
only makes sense for an ordered diagonal. Although U, etc. are expected to be ordered in
general, there might be situations where this is not the case. Therefore a global check on the
increment on the whole interval [¢, B] is made. If the ordering is found not to be satisfactory,
a global reordering is performed using permutation matrices according to this. In fact this is
rather cheap as it only requires matrix-matrix multiplications plus one QU-decomposition at
cach output point. This process is moreover stable if the norm of the assembled matrices does
not outgrow TOL / EPS, where TOL is the absolute tolerance and EPS the machine constant.

If the BC are (partially) separated we have to determine a Qf such that 2M Q1 =@ (cf.
(2.19a)). This can be done conveniently as follows:
Compute elementary hermitians Py, . . ., P, such that

4.9) R=P, --P?2M},
is upper triangular. Now take Q¢ as the last k, columns of
4.10) Qi=Py- P,

(It is easily seen that this results in the desired matrix as

o))

Sometimes it is not clear beforehand whether rank(My) <n or rank(M p) <n . (Note that
when Mg has some zero rows, say n—k;, rank(Mp) may be smaller than k,.) In such a case we
may invoke the singular value decomposition (SVD) of these matrices to determine the

span(*M§) = span(Py - Py,

24

CH.114

numerical rank. So consider
4.11) Mo=UoZaVE . Mp=UpZgV§,

where Uy, Vo, Up, V3 are orthogonal matrices and X, Z diagonal matrices. Suppose Zq has
k;; non-zero diagonal clements and Zg has ko non-zero diagonal elements. If both
ks 1 = k2 = n we do not have scparated BC. If &2 < n we have

@12) UlMp=ZgVp= [zg@v } .
So multiplying (2.2) by U we obtain
@413) UFMyx(o)+UF Mpx(®)=UEb ,

which, denoting UF Mo =My, Uf Mg=Mg, UE b =b, can be writien as
(4.142) Mox(o)+Mpx(B)=b',
(4.14b) M g x(c)=b2.

This is of the form (2.17).
Of course it may be that k,; < k,, in which case it would be more profitable to regard the BVP
as a problem on [B,], instead of on [¢, B]. Therefore we compute both the SVD of M, and

of Mg and take the smallest of &y and k,, with the coresponding initial and terminal points
(.e.cither [a,Blor[B,al).

4.4 The computation of the stability constants

The actual solution of (2.15), (2.31) and (2.35) is donc using a Crout routine (LU-
decomposition). From this it follows that for general BC the quantity k in (3.12) can be
computed without much additional effort, using this LU-decompostion. As we remarked K is
at most a factor 2 amiss in comparison with the actual condition number (cf. (3.12)). If the
BC are (partially) separated we do not have all necessary information about the E; available.
It may be even so that x; and x3 (see (3.15) and (3.16)) are moderate since the ill-conditioning
is concealed by the particular solution w;. In order to detect this we also compute another
sequence of particular solutions {v; } such that

4.15) vit) =wi(t) + FE(to)e?,
e2=(n—k;)% (1,1,...)7 .

Then a K3 is computed as

25

CH. 114

4.16) ws=wrpmax (| wi)-vi(t)ll2) .

As an estimate for the condition number CN we now better take

.17 K=max (K, K3, K3) .

The user may find the k as an output parameter ER(4).

Of course it is possible that the matrices [M oQ 1) + MpOn®n], ['M Q1 ®f + MpONDF)

or "M Q¢ (cf. (2.5), (2.31), (2.35), respectively) happen to be numerically singular. In that
case a terminal error, IERROR = 320 is given.

Apart from this condition number another quantity is of importance. In fact we need to
compute the maximal value in norm of suitable Green’s functions (cf. [S]). This is an almost
impossible task and therefore we are satisfied with a somewhat heuristical estimate of them.
Note that in (3.24) the magnitude of the quantities || (T E;)| and || (T] B/ 1|l may be
blamed if the local errors are blown up significantly. Hence it makes sense to monitor the
diagonal elements of the product matrices E, - - - E, and B;! - - - B;! for arbritary p and ¢q

(p 2q), as they essentially reflect the growth of the basis solutions. Thinking of (3.24) we
therefore also compute

(4.18) A,2=mgx(mgx(l+§(g15fl))).

where Ef denotes the & -th diagonal element of E;,

419) apk)=max (1+ 5 (:l!B,“l”’)),

{=1+1 ¥

@200 a0 =max (fT1BEY, .. LT 1BE BRI,

@20 ey =max (JT1EF|..... [T 1EK] .| EF)),
4.22) Afl =max Capitk) +ar2tk)Xarsk)),
where Bf denotes the & -th diagonal element of B; .

As an estimate of the amplification factor A; (being a bound for the Green’s functions in tum)
we take

(4.23) Ap =max (A7 ,AP).

The user may find A¢ as an output parameter ER(5).

26

CH. 114

If Ay is such that the global rounding error is larger than the discretization error, a waming
error, IERROR = 300, is given.

Remark 4.24

If there are constant modes or very slowly growing modes or very slowly decreasing modes,
Ay will be of the order of the number of output points.

Remark 4.25

The computation of Ay depends on the number of output points. 1f the problem is dichotomic,
the influence of the number of output points on the estimate Ay is small. However, if there is
no dichotomy on the interval [o, B1, the choice of the output points determines whether Ay is
a good estimate for the amplification factor or not. If the problem is not dichotomic, it will be
locally dichotomic on subintervals [o,0p], [03,04],...,[0 B, say, with different
subspaces of growing modes and nongrowing modes on each subinterval. In order to detect
these changes of the dichotomy on [o,B] and to get a reasonable estimate Ay for the
amplification factor, the output points should be chosen such that, besides o and B, each
subinterval [o, 0], ..., [&a ,] contains at least one output point.

References
1] G.F. Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical
Computation, Prentice Hall, Englewood Cliffs, 1977.

2] G.H. Golub, C.F. van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 1983.

{31 F.R. de Hoog, R M.M. Mattheij, On dichotomy and well-conditioning in BVP, SIAM
J. Numer. Anal. 24 (1987), 89-105.

{4] R.M.M. Mattheij, Characterization of dominant and dominated solutions of linear
recursions, Numer. Math. 35 (1980), 421-442.

(51 R.M.M. Mattheij, Estimates for the errors in the solutions of linear boundary value
problems, due to perturbations, Computing 27 (1981), 299-318,

(61 R.M.M. Maittheij, The conditioning of linear boundary value problems, SIAM 1.
Numer. Anal. 19 (1982), 963-978.

71 R.MM. Mattheij, G.W.M. Staarink, On optimal shooting intervals, Math. Comp. 42
(1984), 25-40.

27

CH.114

(81 R.M.M. Mattheij, G.W.M. Staarink, An efficient algorithm for solving general linear
two-point BVP, SIAM 1. Sci. Stat. Comput. 5 (1984), 745-763.

[9] R.M.M. Mattheij, Decoupling and stability of BVP algorithms, SIAM Review 27
(1985), 1-44.

28

CHAPTER III

BVP ON INFINITE INTERVALS

1. Introduction

If for an ODE

.1 4y =LOx@+r @), ast <,
a BCis given

a2 Mox(0)+Mox(=)=b,

then it can be shown that x can be written as
(1.3) xM)=F2t)c2+w(t),

where w(t) is a bounded particular solution and F2(¢) is a matrix solution (F%t) an n Xky-
matrix say) of bounded homogeneous solutions (see [1]). Let us denote the complementary
part of the fundamental solution by F1(t). If F1(¢) consists of exponentially increasing modes
exclusively, then it is possible using the decoupling idea to effectively "remove” them doing
the backward sweep of the multiple shooting recursion. To this end it is assumed that the
particular interval [o,P] is specified where the output values are wanted. The shooting
process then continues over an interval [f§,y], where v is such that the modes in FY(t) have
grown sufficiently large to expect the backward sweep of the recursion algorithm, cf. §I1.3.2,
to damp their effect to (user specified) accuracy.

For some problems there may be some slower growing modes (like polynomially growing)
present. This requires a special technique, like extrapolation. The routine MUTSIN for solving
the BVP (1.1), (1.2), has therefore some special provisions for doing this efficiently.

Remark 1.4

Although the algorithm computes ¢2 from the (usually) singular system

(M F¥0o)+ M FXB)}c2=b (where b is derived from the BC in a least-squares sense) we
can still determine a quantity like the condition number. As a consequence often a diagnosis
can still be given if something goes wrong or when output variables should not be trusted.

29

CH.IIL,2

2. Global description of the algorithm

Consider the ODE
@1 - —%x(t)=L(t)x(t)+r(t), St <oo,

where L(¢) is an n X n -matrix and 7 (¢), x(¢) are n-vectors for all . Let the BC be given by

2.2) Mox(0)+Mx()=b.

If we assume that the solution space is dichotomic (cf. §11.3.2), then there exist integers &, and
ky (k,+kp =n) and a fundamental solution F (t), such that

2.3) F)y=[Ft)| FA(O1,

where F1(t) contains k, columns and F2(¢) k, columns such that F2(t) precisely represents
the bounded homogeneous solutions, Under suitable conditions, cf. [2], there exist at least one
bounded particular solution of (2.1), w (). Hence for some constant ky-vector c2 we find

2.4 x(@)=FXt)c2+w(t).
Upon substituting (2.4) in (2.2) we find
2.5) (Mo FUO) + M. FH o) |c2=b — Mqw(0) ~M . w ().

Note that in case F%(t), w(t) — 0,1 — oo, the condition above reduces to an initial value
condition (though rank deficient!). Because of the requirements on F 2(t) and w(t), the
problem (2.1), (2.2) is sometimes also called a conditionally stable initial value problem. The
main question therefore is how to find the non-increasing ("stable") manifold.

With some adaptations this can be done along the lines of the method described in chapter I1.
Suppose we like to have output values for x on the interval [a,8] within an accuracy TOL. Let

us assume that F! consists of exponentially increasing solutions only. Then there certainly
exists a point ¥, such that

I, @
(2.6) |FpP F@EyY >TOL!, where P = & ol

in other words, each of the increasing solutions has grown at least by TOL™. We then
proceed as follows: use a multiple shooting strategy as in §11.2.1, with at least o =11, B=1y
and y=ty as output points, resulting in an upper triangular recursion

@D G =Uina +dig, i=12,... ,N~1,

(cf. (11.2.11)), with

30

CH. L2

(2.8) x(t:)=Qi a;i +w;(t).

Then compute a particular solution {z; } of (2.7), satisfying

(2.9) 2 =0,2y=0

and a partial fundamental solution (\¥;} (‘¥; is n xkp), satisfying
(2.10) YE=1;¥Y=0,

Clearly for some kg, -vector c2 we have (within accuracy TOL!)

2.1 a; =%¥;c?+z.

From (2.8), (2.11) and (2.2) we thus derive the following relation for c%:

(2.12) IMoO 1 W1+ MOy ¥y lc2=b —Mowi(0) — M. wy (B)
~MyQ121-M.Qy zy.

The matrix appearing in (2.12) on the left is n Xk,. Therefore we solve this system in a

least-squares sense.

3. Special features

The previously outlined algorithm is implemented as MUTSIN. For the computation of the

multiple shooting recursion on the interval [o, y] the same strategy is used as in §11.3.1-11.3.3
for BVP with general BC.

3.1 Errors introduced by finite choice of ¥

In §2 we considered the case of exponentially increasing solutions in F1(¢). For our upper
triangular shooting recursion (2.7) this means that in

B; C;
@E; '

we may assume that | B;3}|| 2 x e =) for some negative A and (not large) positive x. That
means thaton [B,y]=[ty ,tx] we expect

3.1 U=

G2 U181 < xerrD

Since we do not know the bounded (and non increasing) solutions at #y exactly we choose

their component in span(F(1y)) to be zero, cf. (2.9) and (2.10). Hence we introduce a
truncation error T{N) cf. [2], which satisfies the homogeneous part of (I1.3.2b):

31

CH.TIL3

(3.3) T =B TN

Because of the boundedness of those solutions we have
333 [T =0,

whence,

336 T =0).

Hence if ¢e7~B) < TOL (TOL the required accuracy) this truncation error is not significant.

3.2 Conditioning

The system (2.5) is rank deficient, so the conditioning with respect to the BC (as was
introduced in §11.3.4) has to be redefined here. Since we virtually rule out the increasing
components we may define the subcondition numbers cf. (2] :

G4 CNp®) = max | FOU-P)[MuF @)+ M F®P].

where 1-P = | o I, and + denotes a pscudo-inverse. By making use of the approximate

{Q; ¥} instead of F2(t;), we can estimate CN, (B) by (cf. (I1.3.13))

(3.5) KB =[[MaQ1'¥1+ Mo QOu ¥ 1.

3.3 Problems with polynomially increasing modes

If there exist increasing modes that grow "slower" than an exponential function of ¢, the
construction in §3.1 to find a terminal point may result in exceedingly large values of y. Under
certain circumstances, however, we do not need to go that far.

In order to describe them, let F1(¢) be split further into

(3.6) Fl)y=[G'®)| G*N1,

where G%(¢) is an n x ky-matrix representing the polynomially increasing modes, Gl(¢) an
n Xk, -matrix representing the exponentially increasing modes. We now consider two (non
exclusive!) possibilities:

6} }}.gl L(t), !13_:3010 r(t) exists.

This means that both w(t) and G%(t) have asymptotically constant directions. If we partition
the truncation error T;™) in two components, viz.

32

CH.1IL3

™)l
37 ron | LT]
) ! (T2

where [T;™)]! has k, components, then it makes sense to try some asymptotic expansion for
[T 1, eg.

B8 T8 P=vo+vily @ +valty I+ -,
where o > 0 and vg, vy, -+ are independent of ty; obviously the user should provide the
model for this,

If we apply this idea we see that the point yis mainly determined by the exponential behaviour
of G1(t) (cf. (3.3b)). On the other hand, in order 1o employ (3.8), one should choose several
terminal conditions instead.

@i) :lﬂ w(t) exists.

This still allows fairly general ODE (in particular with a fundamental solution of which the

directions are not asymptotically constants). Because of boundedness of w(¢) we may try an
asymptotic expansion like

(3.9 XM =uotut P +ugt @4,

where @ and ug, 1, - - - are independent of t (we assume ¢ — o large enough); again the user
should provide the proper model. If we choose y large enough, so that exponentially
increasing modes have been damped out within TOL on [«,B], we can employ (3.9) in

combination with (2.8) (note that w;(z;)=0). Indeed, within TOL, we may write for the
actually found solution ¥

(3.10a)) =x@)+e(),
with

(3.100) £(t) =0 (Wic2+z;)
(B.10c) e@)=0;¥; ¢,

where ¥; is an n Xk, -matrix, representing the polynomially increasing modes and ¢ a
constant &,-vector, only depending on the choice of Y. Now one should realize that {¥; } can
be computed in much the same way as {\¥;}. The only difference is that we use a recursion
like (2.7) with B; as the incremental matrix instead and a partitioning such that the left upper
block is k.. From this we see that e (#;) is in fact completely determined by the unknown ¢; ¢
in tum can in principle be found together with the vectors ug,iy, - - - from monitoring £(z;)

for various values of #;. Note that we only need k, points ¢, to find ¢ in case x is a constant
Vector.

33

CH.III4

4. Computational aspects

The code MUTSIN is based on the computational framework as outlined in chapter IL Some
special aspects are considered below.

4.1 Determination of 'y and bounded solutions

In order to find a suitable value for y, MUTSIN keeps track of the diagonal elements of the B;
(cf. §4.3). In order to estimate a A as in (3.2) it takes

4.1 Ai=(Inm)/(B~a),

N
where m is the absolutely smallest diagonal element of];IB;. From this a value of y is

computed as

@2 y=p-1070L

Arriving at ¢ =y it is checked whether the increment is large enough indeed, and if necessary a
new (larger) y is computed, using an updated A. If the latter value of v is still insufficient to
give large enough increments, a warning error [IERROR = 335 occurs. It may happen that y as
defined by (4.2) is already quite large (due to a pessimistic choice of the partitioning
parameter k,). Therefore the user should provide a maximum value of Y, Ymax Say, If ¥
becomes larger than Ymax, Ymax 1S taken as the value for y and a warning error [IERROR = 330

occurs.
4.2 Use of BC and determination of conditioning constants

System (2.12} can be written as

43 [ManaI*f'x1+MmQM[®i\PMn[C°4=6,

where b =b - M a@121—M.Qy zy. To solve (4.3) a singular value decomposition (SVD)

is used, that is we determine orthogonal matrices U, V and a semi-positive diagonal matrix X,
such that

4.4 Mo 0 [D| V)1 1+ M. Oy [B| ¥y 1=U ZVT,

where Z=diag(oy,...,0,), with 612 206 20, 641 = - =0, =0, and [692] =Vy.

Then (4.3) can be rewritten as

34

CH. 114

@.5) Ty=UTb.

To have a meaningful solution of (4.5) it is necessary that the vector UTh = (&, ... ,E,)T
satisfies the conditions

(4.6) 6 =0 => & =0, i=l,...,n.

We call the problem inconsistent with respect to the BC if (4.6) is false. Numerically we
consider o; to be zero if the computed o; < TOL and hence we check whether

4.7 0; STOL => §; <TOL ,i=1,...,n
is true or false. If (4.7) is false a warning error IERROR = 340 is given. It is possible that

IERROR = 340 occurs after the waming error IERROR = 335. In that case IERROR = 335 is
likely to cause IERROR = 340 too.

If we write Z=diag(cy,...,0,0,...,0) (Igky), we can definc its pseudo-inverse as
Tt =diag(ofl,...,07L0,...,0) and hence solve (4.5) in a straightforward manner. For a
well-posed problem we should expect I=k;, so we have as an estimate for the condition

number:

4.8) x=[oy, 1

If [0k, "' > TOL! we should call the problem ill-conditioned (as TOL means numerically

zero) and a waming error IERROR = 345 is given. In such a case, and -more generally- if
G141, - . . , O, are smaller than or equal to TOL, we choose

4.9) x=07l,

unless [+1 = 1. Although clearly we cannot give a unique solution then, we can still give a
basis of 2 meaningful manifold, viz. those components that can be found from singular vectors
corresponding to Oy41, . . . ,Oy,. Let us write

(4.10) V?—[Vlf “']v&],

then these basis solutions are defined by

@“.11) (QiYivi . j=1+1,. .. k.

From the pseudo-inverse we get some bounded particular solution as well.
Clearly uniqueness requires more independent conditions in (2.2).

35

CH. 114

4.3 Use of MUTSIN for problems with slowly increasing modes

For problems without an exponential dichotomy MUTSIN may fail to compute a bounded
solution being accurate up to TOL. If the waming error IERROR = 335 occurs, there might
be some non-exponential growing modes. It is also possible that the problem is not
dichotomic (in which case ER(5) should be large). When there are non-exponentially growing
modes MUTSIN can still be used in combination with asymptotic expansions.

First consider case (i) of §3.3. One should then set IEXT equal to 1 and C equal to a desired
new vaiue of ¥. A new call to MUTSIN results in the computation of a new solution using the
new value of . This means that one can use approximate solutions for various Yy and hence
utilize asymptotics. Because of the variety of possible expansions the user should write
himself a program that calls MUTSIN and then uses Richardson extrapolation (for instance).
Obviously, denoting the approximate value of x (o) obtained from using ¥ as a terminal point
by x{v), it follows from an assumption like (3.8) that also x-{0) has an expansion in 7o

In case (ii) of §3.3 the fundamental solutions ‘f‘,- and ¥; are stored in the array PHIREC.
Then not only an approximate x.{c) is given but also the values of the non-exponentially
increasing solutions at the output points.

When applying the previous idea, onc should realize that all computations are exact within
O(TOL). This implies that under circumstances it is advisable to choose the parameter TOL
fairly small in order to have a vector for which Richardson extrapolation is still meaningful.
Also, the code is designed to choose vy as small as possible when slowly increasing modes
(that should not influence its choice !) are detected. If y happens 1o be equal 10 Yinax, the actual
found partitioning integer k, is based on the criterion that exponentially growing modes
should at least correspond to a A (cf. (4.1)) such that (4.2) is satisfied. Hence the value C - A
(=Ymax— @) should not be chosen too small compared to the interval length B — A (=f—a), the
latter being considered to be relevant for the problem as such.

References
1] RM.M. Mattheij, On the computation of solutions of BVP on infinite intervals, Math.
Comp. 48 (1987), 533-549,

[2] F.R. de Hoog, RMM. Mattheij, On non-invertible boundary value problems,
Numerical Boundary Value ODE's, (U. Ascher, R. Russell, eds.), Birkhduser (1985),
55-76.

36

CHAPTER 1V

MULTIPOINT BYP AND INTEGRAL BVP

1. Introduction

In this section we first describe the problem briefly.

Consider the ODE:
(1.1) -gzx(t)=L(t)x(t)+r(t), as<t <P,

where L (¢) is an n X n-matrix function and x(¢) and r(z) are n-vector functions. Let for x(¢)
the boundary condition (BC) be given:

(1.2) Myx(0) +M2x(0) + - - - + M1 x(@mi) =,

where My, ..., My, are (n X n)-matrices, b is an n-vector; the points oy, . . ., O, With
=0y <0 < < Oyqy =P, are the so called switching points.

A possible way to solve a multipoint BVP (1.1), (1.2) is to map the intervals [o; , o411,
i=1,...,m onto one and the same interval [0,1] say and solve for the solution on these
intervals simultanously. Denoting the solution at [oy , 041] by x; (¢) we thus have

a1y Lxe)=Lo)x) +r),
where x@)=[x7@),....x IO, r@)=1r],....r L))" and

Ly(t)
L=) ,
L (t)

(where L;(t) and r;(z) arc properly transformed from [o, 0411 = [0,1]). A coresponding
two-point BC is now given by

1.2y Mox(0)+M;x(1)=b

where b=[0"---,07,bT |7 and

37

CH.IV,1

My . M, My

For (1.1Y and (1.2)° one can use a routine of chapter II. Note however that this system has
order n Xm now! Hence we look for a cheaper solution.

Because of the linearity of (1.1) we may write the solution x (¢) as:
(1'3) x(t):F(aivt)ci +W(a“,f), o; <t Sai#—l:

where F(oy,t) is a fundamental solution on [o; , 04] and w(oy,t) a particular solution of
(1.1) on [o,041]. In principle we may identify F(oy,t) with F(ay,t) for i #j, thus
reducing (1.3) to the well known superposition of solutions. However, as was shown in [1] the
dichotomy character might be different on each subinterval: that is the dimension of the non
decreasing mode subspace may become smaller after such a point g;; this is called
polychotomy. Hence it makes sence to consider the F{o;,t) separately, at least
computationally, cf. [2]. Matching in the usual way gives us the relation for the ¢;. We obtain:

(1.4a) F (04 ,0441) € = F (041,04 41) Cia1 + W{0is1,041) — W (04,0 41)
and the BC

(1.4b) M F(01,00)c 1+ * +[Mgy F (O .0)+ M 41 F (O s0m) [Cm = b,

b =b-M W (04,00) = * =My (Cr ,0n) = Mo 41 (O SO 41)-

The method now uses multiple shooting on each interval {o;,0;41]. In this way we obtain a
discrete analogue of (1.4a) and (1.4b) which constitutes a linear system A of orderm Xn. The
conditioning of the problem can be measured by || A~1|| as well as by monitoring the growth

behaviour of the fundamental solutions. These quantities are actually accounted for by the
routine, see §4.

Remark 1.5.

If the dichotomy does not change on consecutive intervals [04,041], . - . , [0 4k ,Cirk+1] SaY,
the fundamental solutions F(o;,t)I=1,...,k can be identified with F(e;,t), the
particular solutions w(oy4,2) ,I=1,..., k with w(e;,t) and the ¢;7, I =1, ..., k with ¢;.
As a consequence (1.4a,b) change into

(1.62) F(04,0541) ¢j = F (0410 41) €41 + W0 41,041) — W (04, 041),

J=1...,i-land j=i+k+l,..., m,

38

CH.1V,1

(1.6b) F (04,04 +k+1)Ci = F (O k41,04 4k 41)Ci k41 + W (O 41,0 4k 41) = W (04,0 4 41)-

(1.6¢) EMsF(az.m)c: + [‘g"M:F(a;,amc,- +

+ M F(0y ,04) ¢t + My F (O Ons1) Cm = b

[=t+k+1

- iz ik 1
B=b -3 Mim(©00) - ZMiw(ei) = 3 Mwouo).
This gives a linear system of order (m —k)Xn.

If we consider the limit case where the number of switching points goes to infinity (and the
weight M; are scaled appropiately), we arrive at an integral condition

8
(1.n l[M(t)x(t)dt =b,

where M () is an nX»n matrix function and » an n-vector. This requires an extra
discretisation for casting the problem into a form compatible with multipoint BC. Another
way, though often more costly than the method we shall outline below, is to augment (1.1)

with —g{y(t) =M (t)x(t), (o) =0, so that we have an ODE

" x(@) _| L))
a.n %[y(t)} =[M(t)}x(t)+ [ro }

and a (two-point) BC

. @ D x(w) 2 1 |xP) b
cor (8950 [84]:8)-15)
Obviously, the ODE (1.1)" is of order 2n.

Finally, it is possible t0 have a combination of a multipoint (including two-point) and integral
BC. A mixed condition has the form (1.8a,b)

(1.82) ’"f; IM; x(a;) = b!

=
B
(1.8b) lZM(t)x(t)=b2,
where for some [<n, M, ..., "M,,,; are | xn matrices and 2M (¢) is an (n —-1)xn matrix

function.

39

CH.IV,1

Remark 1.9

Sometimes a BC describing e.g. discontinuities at certain points is confusingly called a
multipoint BC. However, as can be checked those discontinuities would increase the total

number of BC beyond n. If this is the case one should use the methods described in chapter
VL

The algorithm discussed in this chapter have been implemented in the routines MUTSMP for
BC of type (1.2) and MUTSMI for BC of type (1.7) or (1.8).

2. Global description of the algorithms

We shall consider the multipoint and integral case separately.

2.1 BVP with multipoint BC

As mentioned in § 1, multiple shooting is used on each interval [oy, 0441] to compute a
fundamental solution and a particular solution. Each interval [o , 045] is divided into say
N;-1 subintervals. To simplify the notation we shall use a local index j to describe them; i.e.
let the interval [0y ,0441] be split up into subintervals [¢j1,¢;], j=2,..., N;,fi=0; and
IN, = Qi1

Like in the algorithm described in [3] for two-point BVP, fundamental solutions F;(c; ,¢) and
particular solutions w; (0; , ¢) are computed such that:

2.1) Fi(oy i) =Fja(0 ,) Ujni() = Qi) Ujn (@), j =1, . .., Ni—1,

where the Q;41(i) are orthogonal and the Uj,1(i) upper triangular and w; (0; , #;)=0. (Here we
identify (0o , 0;) with F(0y , 04) and wi(ox; , ;) with w (o ,).

For the solution x{(¢) we have:

22 x()=Fj(oy,t)a; (i) +wioy , 1),

from which the following upper triangular recursion for the g; (i) is obtained:

2.3) aj“(z’) = Uj+1(i)aj(i)+dj+](i), J =1,..., Ni~1,
where
(2.4) djn1 () = Q731 G [wj(e , 1j41) ~ Wina(0i L 1) 1.

Now assume that {@;(i)}ﬁ;’l is a fundamental solution of (2.3) and {z;(i)}ﬁl a particular
solution, Then for some vector ¢; we should have:

40

CH.IV2

2.5) aj(i)=®;()c; +z;(i), j=1,...,N;.

By matching at the points ¢; we obtain a recursion for the {¢;} in the usual way. So for the
solution of the BVP at the switching points 04,0, . . . , O+t We have:

(2.6a) x(og)=wioy,0)+ @) 1)+ P] Li=1,...,m

and
(2.6b) x(0441) = W (0,041) + ON(D) [28, () + DD e 1, i=1,...,m .
Substituting (2.6) in the BC gives a BC for the sequence {c¢; } 2 (cf. (1.4b)) viz.

@7 MiQ (D11 c1+ - + [M Q 1((m)P1(m) + My s1 ON, (m)ON_(m) 1Cm = b,

B=b~ § Mi 016)21() ~ Mns1 On, (m) 2, (m)

- g M; w0 ,) ~ M1 WN,_(On o O s1)-
Denoting:
(2.8a) M; =M; 0,\()®1G) i=l,..., m-1,
Q280) My =My Q1(m)®i(m) + Myns1 On,(m) D (m)
(2.8¢) I =@y 3), i=1,...,m-1,
(2.8d) Qi =0 () O GHD Dy +Y), i=l,.,.m-1,
(2.8¢) gi = ON (D) [w (01, Oist) — Wi, (04 , 0in)] +

ON () Q1(+1) 24(i+1) -zn() , i=1,...,m~1.

we obtain the linear system:
(2.9a) Ac=q,

where

41

CH.IV.2

29) A= .
o e e
My My . Mpy Mo

e=[cl,..., cka,ei1, q=10q7,..., gh-1.6T I,

Remark 2.10

In the case the ODE (1.1) is homogeneous, i.e. r(t)=0,re[o,P], the computation of
particular solutions is skipped. Then (2.2), (2.3), (2.5), (2.6) have to be replaced by:

2.2y x () =Fi(0y . 441 a;(0) =Fja(,) aj (),
2.3y aj(0) =Ujn@)a; (),

2.5y a;(i)=P;@)c; . j=1,...,N;,

(2.6a)y x() =0 Pi)c; L i=1l,...,.m,

(260 x(Cm41) =On, (M) Dy (M) Cm ,

respectively,

Moreover, the vector b in (2.7) equals b and the vector q in (2.9a) becomes:
g=[0T,0",..., 07,7 T,

2.2 BVP with integral BC

When we have a BC like (1.7) the situation becomes more complicated in two ways: First,
there are no natural candidates for switching points and second we need to use a quadrature
formula to implement the integral conditiion practically.

By using a marching technique and orthogonalisation after a fairly small number of
gridpoints, cf. (2.1), we have a means to check the growth behaviour of the various modes.
When a change is noted at such a minor shooting point, we basically choose it as a switching
point (the refinement of this idea is discussed in §3.2).

A more complicated problem is to discretise the BC. Assuming we have a quadrature formula

of appropriate order (i.e. compatible with the integrator of the ODE), we determine
approximations

Ly .
211 IJ MQ@)Fi(o;,t)dt =M; (i)

42

CH.1V.2

Y

2.12) I‘M(t)wj(t)dt =v;(i)

1

In discrete form the BC then results in
m N._l . . . N 7
(2.13) 2_‘1; M;(@i)a;@)=b - Lj vji)=b,

(where we use the same notation for indices as in §2.1)
By substituting (2.5) in (2.13) we find the multipoint BC

m Ni—l . . ~ - m Ni—l N .
2.14) ‘; [;i Mj(:)d)j(z) jei=b=b —21 J; Mj(z)zj(z).
If we denote
. N~
(2.15) M; = 21 M;(E)®;),
Jﬂ

and I1;, Q;, ¢; as in (2.8¢,d,e), then we end up with a system like (2.9a,b) for the unknown
vector .

3. Special features of the methods

The actual computation of the solutions F (a;, 1) and w (¢4, 1) on each interval is basically the
same as described in [§11.3], i.e. the algorithm uses the adaptivity featre for the integration of
the particular mode only. It also uscs the decoupled form of the recursion (2.3) for the
computation of ®;(i) and z;(i). Below we summarize some more aspects.

3.1 Computation of the ®y(i)

As was shown in [1] a well conditioned muitipoint boundary value problem is dichotomic on
each interval [oy , 0541). However, we basically should reckon with a different partitioning
integer k, (cf. §11.3.2), indicating the dimension of the nondecreasing solution space, on each
such interval. If we denote this integer at the i** interval by k(i), then we know from [1] that
for well conditioned multipoint boundary value problems, (i) is a non-increasing set, i.c.
k(1)2k(2)2 - 2k(m). The fundamental solution {®;(i)}ﬁil ¢f.(2.3) on the i* interval is
then computed using the BC':

(3.1 QL) =D Inkiyl s AU =] D1,

where the superscript refers to an obvious local partitioning involving the integer & ().

43

CH.IV3

3.2 Choosing Fy(oy, o) and wy(cy . t))

Like in the two-point case there is, in general, no information available for choosing the
particular solution w; (o, ¢) in a special way. Hence w; (04, ;) =0 is a good one, simplifying
the formulae in (2.4)-(2.9) substantially. At ¢ =04 the algorithm initially chooses
01(1)=Fy(0y,03) =1 and checks the ordering of the diagonal clements of the first upper
triangular matrices U;(1), computed afier reaching the endpoint of a minor shooting interval.
If this ordering is found to be improper it performs a permutation of columns like in §11.3.3.
Arriving at t=q0; we have a complete freedom to choose F (0, 0t2). A very useful choice is:

(3.2) Fi(og,) =0n(1).

Indeed, if the dichotomy is invariant on { o, 03] we may proceed on | oz, 03] like we did on
the previous interval, thus computing an upper triangular recursion for the superposition
vectors a;(1) and @;(2) combined. By formally writing

(3.3) d_;(2) = a,-+N‘(1) s

we may the extend the recursion (2.3) fori =1 overthe indexrange j =1,..., Ny +Nz~1.
If On (1) is found not to be a good starting value on the interval [o, o3] (for similar reasons

as the identity might be an improper starting matrix on { ¢ , 0z J) a permutation of its columns
is carried out until some satisfactory ordering on the diagonal of the upper triangular matices
U;(2) has been found. Since for well conditioned multipoint BVP, {k(i)}[Z; is a non-
increasing set, a permutation is carried out on the first & () columns of Qy (1) only.

Since the number of minor shooting intervals may be fairly large (cf. §I1.4.2) assembling of
these into major shooting intervals causes an additional problem for integral BC.
By using the notation in §11.4.2 of W and G;, we scc that we may write

(3.4) aj(i)=W;a;(i)+G; ,

with Wy = U,(), Gy =da(i).
Hence forl < N;—1

3.5) g M,-(i)aj(i)=(§ Mj(i)Wj)al(,)-%gMj(i)Gj .

Whether I may be taken as large as N;—1 depends on max | M;@)W; . Indeed although W;
{
may be found in a relatively stable way, forming the (partial) sum Z‘ M;(i)W; will invoke

!
errors of the order of g | M)l || W; || EPS (where EPS is the machine constant). Since we

expect || M;(i)]| to be of a moderate size, the assembling to major shooting intervals should be
confined to cases where || W; || does not exceed the characteristic stability constant TOL / EPS
(TOL being the required accuracy).

44

CH.IV,3

3.3 Reduction of the system (2.9)

If the choice (3.2) is a proper one then we can identify ¢ and ¢ in (2.5). 50 the system (2.9a)
is of order (m — 1) X n only, being of the form:

(3.62) Ae=q

where
B T
11 €y
m; -Qq
(3.6b) A= .
nm-l ‘”Qm
By By . \ B,

&= [LCTsCl, ek q= [q"fn.qg,. gl BT T
and where we have denoted for short (L=N (+N-1) :
(3.60) I=d.(1); B=010:3)0:03).
(3.6d) By =M Q1(DIT(D) +M0n (DTN (1),
Bj=M;, j=3...,m,
(3.60) ¢1=00"'(DIw(03,08) —wr (01,05) 1+ Q' (D) C1(3) 214(3) — 22.(1) .

Hopefully it will be clear how further reductions can be carried out now. Such a further
reduction may arise either from an even longer interval [o, oy], [>3 where the dichotomy is
invariant or from an invariance on other consecutive intervals. In particular it may happen that
the order of the thus obtained matrix A is just i; in such a situation we virtually have reduced
the procedure to that of the two-point case.

Remark 3.7

Note that this reduction would make sense for integral BC as well (since assembling does not
increase the norms of the BC maitrices significantly), were it not that the sequential approach
(cf. (3.2)) would also cause the | W; || (cf. (3.4)) to grow.

3.4 Special solution of the algebraic system (2.9)

Instead of solving the system (2.9) (or its condensed variant (3.6)) by LU -decomposition, we
do the following: Rewrite the matrix A for simplicity as:

45

CH.IV3

51 Ry
Sy -R3
38 A= o
Sy-1 ~Ry
Ty T, . Ty T

q" =lql.q}..... qf1
At the i** switching point interval, let k(i) be the partitioning integer, i.e. there are k(i)
increasing solutions at that interval. From {1} we know that {k (i)} is a non-increasing set, i.e.
weexpect k(DZk@)z---2kN-D=kN).
In the recursion (cf. (2.9) and (3.7))
(3.9 Riacin=Sici—-qi,

we have

R R
(3.103) R;H = { éll lﬁ} s

where R;\} is a k (/) xk (/) matrix and the identity matrix / is of order n — k(i +1), and
1 &
B.10b) S = [g S‘zz} ,

where S; is a (n —k(i))x (n — k(i)) matrix and the identity matrix / is of order k ().
We now like to solve (3.9) plus BC again by superposition. Since we do not have a uniform

dichotomy on [o,B] we use a more refined fundamental solution {¥;}N; (cf. §3.1). By
assumption we let the partitioning depend on the index.

pil g2
3.11) ¥i=| o x|, PHoforderk().

(Ati =N we have the same partitioning as fori =N —1)
Ati =1 we define:

(3.12) Y| Y21 =1D] Luw].
and compute
(3.13a) YP=SP VY,

(For § 2, the right lower block of S, see (3.10)), where ¥4 has the same order as S 2 and
P

46

CH.1V,3

Now compute ¥22 as follows:

WP Ly 9

(3.13b) o \?%2 ,

if k(1) > k(2) and W2 = $#2 otherwise.
and from this ¥42 etc.. In general we have

(3.142) PR =52v2,

IeGyriv) 9
(.14b) PR = ‘g“‘ AL

if k@) > k(i+1) and W2 = W24 otherwise.
Ati=N we set
(3.15) (YA Y2 =Ly-n] D].

Then we have

i o it P

(316) q’,\?= @ ‘1’132 = @ \i‘,gz 3

where W}! is of order k(N —1), P2 k(N —=1)x(n —k (N ~1)) and ¥4? is of order n —k (N —1)
(the latier already being computed in the forward sweep). Next we have

(3.172) W, =RV +RIZEVE,

(3.17b) WAL =RV

And in general;

\}t‘}l \1;‘12 q;ill \y£12

(3.18) ¥ = @ Y2IT| o 92|

where P! is of order k(i) and P! is of order k(i — 1).
Then:

(3.192) W}y =RNW12 L R12P22

(3.19b) Wl =gl

Note that this scheme to compute {'¥; } is a generalisation of the dichotomic case dealt with in
chapter I1.

47

CH.IV3

Finally we compute a particular solution {p;}, which is done in a similar way as the
commputation of the fundamental solution. We start with

(320a) p¢=0, pd=0

(again the partioning here and below is local!). At each of the switching points where
k{i+1) < k(i) we add a sufficient number of zeros to obtain a larger second component vector,
sofori=1,...,N

(320b) P =SFpt-42;

(3.20c) P& = , k@ =k(+1),

%
12 e p ,
pA1 = Lf‘“} , ifk@)>k(+1),
i.e. the first k(i) — k(i +1) elements of p;%; are 0.

At the backward sweep we typically compute

. 1
(3.200) p.f-—{{;:é} = {g:z} ,

where g;! is a vector of order k(i —1).
(320e) pti =RMp}+ R+ gl

where ¢;1; represents the first k (i~1) elements of ¢;_;.
The solution {¢;} of (2.9) is then given by:

(3.2D =W v+p,

where the vector v can be found from:

(3.22) (ST 1lv=b-3%Tip;

=

3.8 Conditioning and stability

Since multipoint problems are essentially more complicated than two-point ones, the
algorithm outlined before and - as a consequence - also its stability analysis is more difficult.
As we already indicated, the homogeneous solution space is polychotomic , that is dichotomic
on each interval [,0;,;] and moreover such that non-decreasing basis solutions may
become non-increasing at one of the switching points at most. Since the algorithm is tuned to
monitor the particular dichotomy on each interval, it follows from arguments in § 11.3.2 that
the recursions are used in stable directions only (that is if we assume well-conditioning, so
polychotomy cf. [1]). The only remaining problem then is the conditioning of the system in

48

CH.IV3

(3.22), that is of the matrix W dcfined by

m "
2 W= M; ¥ .
(3.23)]2::1 i

One can show that in general, given m actually used switching points
(3.29) | W=t < (m+1)CN,

where for a multipoint BC
mtl
— . 311
(3.252) (N = may | Fii }; M;Fp)1,
or for an integral BC
i 1
(3:250) CN = max I F(t)[iM(t)F(z)dt I

with F(t) any fundamental solution. Note that (3.25) is a straightforward generalization of
(11.3.12) and is a measure for amplifications of perturbations in the BC. For stability with
respect to perturbations in the ODE as such we may monitor appropiate blocks of the upper
triangular matrices, just as in the two-point case, cf. chapter I1.

4. Computational aspects

The routine MUTSMP basically uses the same strategy for computing the upper triangular
recursion on the intervals [o;,0441], i=1,...,m as the routine MUTSGE for two-point BVP (see
chapter II). Only the choice of the 0;(i),i=2,...,m (lhat is the orthogonal value for
F(0;,04)) and the computation of the k-partitionings are different (see next section). The
computations of the {¢;}/2 is decribed in §3. Once knowing the ¢;, the computation of the
solution at the i** interval [; , ;4] is the same as in the two-point case (see chapter IT). The
routine MUTSMI computes a solution of a BVP with a mixed integral multipoint BC.

4.1 The computation of Q,(i)

On the first interval [o, 0] we do the same as in the two-point casc, i.e. Q1(1) =1 and if this
N

is not a satifactory choice, the columns of @ (1) are permuted such that diagonal(Ij! Ui(1))is
=

ordered. As a first choice for 01(i),i =2, ..., m wetake (see §3.2)

“.1 Q1) =0On,,(¢-1).

Since the dichotomic character of the solution space may change at each switching point, it
may be necessary to carry out a permutation of columns of Q;(1). Anticipating that the

49

CH.IV4

problem is well-conditioned (i.e. the partitioning parameters satisfy k(i - 1) 2 k(i)) no column
interchanges are necessary for the last n —k(i — 1) columns. So an initial choice of Q(i) is

N,
accepted if the first £(i —1) elements of diagonal([IUj(i)) are ordered; otherwise a
}:

permutation of the first £ (j — 1) columns of @ (i) is carried out. At this stage the partitioning
parameter k(i) is computed as the number of clements of the first k(i —1) elements of

N,
diagonal(]I Uj(i)) which are greater than 1 If no permutations are needed and k(i —1) =k (i)
J=

then the two succesive intervals [o;.q,0;] and [o; ,04;] are assembled (see §3.2).
However, it is possible that, due to discretization errors, the computed k(i) does not
correspond to the proper partitioning. Therefore, after the above described procedure,
globally correct partitioning parameters are determined.

4.2 The computation of My(i) and w(i)

One of the problems for integral BC is to obtain sufficiently accurate approximations for
M;(i) and w;(i) (cf. (2.11),(2.12)), that is such that their errors commensurate with errors
caused by discretizing the ODE. The simplest way to do this is to apply the same integration

formular for (2.11), (2.12) as used in RKF45: We apply RKF45 to the augmented particular
problems (cf. §2.1)

@ glien]-li e

with F;(0;,¢) = Q;(), Mj(o;, 1) = and

(4.3) & [::((: :))} = [1154((?)] w; (04, 1) + [rg)} '
withw; (o, ;) =0, v; (e, ¢;) = 0. One should note that this yields
(4.4) M) =M;(0,2j41)

4.5) vi(@)=v;(0o, 241) .

As for other routines in this package, the adaptivity is used when computing w;(0;;, t) only.

4.3 Determination of switching points o for integral BC

If we have integral BC (or a mixed integral multipoint BC) we do not know whether there are
switching points nor where they possibly are. In view of the delicate way we have to choose
the initial values of the fundamental solutions F (o), ¢f. §3.2, it is important to find a

balance between checking incremental growth and concluding that a switch in the dichotomy
patern has taken place.

50

CH.1IV4

We start off with the strategy as outlined in §3.2. An output point is certainly chosen if the
[

accumulated sidepoint condition matrix z M;(1), cf.(3.5), is found to be larger than or equal
jg

to TOL/EPS, or any time before, when user requested. Initially, the method finds a
partitioning & (1) at the first minor shooting point and basically updates this index at each new
(minor) shooting point; if necessary a permutation is carried out to obtain a correct ordering.
For a switching point oy, 1 <i <m+1, we have: there is a mode which is growing on
{oy,0;] and is decreasing on [o , o, 1. Using this property a minor shooting point ¢, say, is

!
considered to be a switching point a;, say, if there is a diagonal element of I'I: U; greater than
}:

2 and the same diagonal element of Uy, is less than 1. Here U; is the incremental matrix of
the fundamental solution on the minor shooting intcrval [¢;_y,¢;]. Because a constant mode
may result in a diagonal element alternative greater then 1 and less than 1, due to
discretization errors, only modes with an incremental growth greater than 2 on [0y, 0y | are
considered.

Anticipating polychotomy only the first k(i — 1) diagonal elements have to be checked and a
permutation on the next subinterval [a; , ;41] should be restricted to the first k(i) columns
only.

Note that there can be at most n switching point between o and Oy, 41-

4.4 Finding a globally correct partitioning

Although the algorithm tries to determine a correct partitioning parameter k(i) on each
interval [oy , 0411, its resolution of the growth behaviour of the various modes may be fairly
small (e.g. if 0;41—0y is small) and/or it may be misled by non growing- non decreasing
modes. Since a normal (that is a well-conditioned) situation implies the existence of a non
increasing sequence {k (i)}, we need a check on this and - if this ordering turn out not to be
monotonic - an update. This is done by the following procedure:

step 1. Compute on each interval [o; , 041, i =1,...,m, a partilioning parameler
N;

k(i), where k(i) is the number of elements of diagonM(qu(i)), which are
J=

greater than 1.

step 2: Determine the lowest index [, where k (/) > £ ({ —1). If no such index exists, goto
step 8.

step 3: Determine the lowest index j </, where £ (j) < k(]).

step 4: Determine the index p > {, where

kD) =k(d+D) =" =k(p)2k(p+1)
step 5: Compute a global partitioning parameter £ (1) say, for the interval [&; , 041 | by

checking the increments over [o »0p+1 | in an obvious way, taking into account
the various permutations at the switching points.

51

CH.IV4

step 6: The new updated sequence {k(i)}/2 is defined as

k@) i=1,...,j-Lp+l,....m
k(@) = |\max k@)D i=],...,1-1
k() i=l,...,p

step 7: Go back to step 2.
step 8: The current sequence {k (i)}/2; is correct.

With this procedure we get, at least theoretically, a good choice for the sequence of the k(i).
However, if the problem is not polychotomic also this procedure may not be satisfactory,
naturally, and a large amplification factor may result (as is to be expected of course).

4.5 The computation of stability constants

Since the algorithm computes fundamental solutions at (possibly "enlarged") switching
intervals, it does some bookkeeping of stability constants. The computations of the stability
constant CN (see §3.5) is a straightforward matter and its value can be found in ER4). If in

N
(3.22) the matrix [}:1 T; ¥;] is numerically singular a terminal error IERROR = 320 is given.
=

Concerning the "amplification factor”, which is an estimate for the Green’s functions, the
algorithm computes an estimate for this on each interval. Therefore the output value in ER(S)
is the maximum of such factors over the entire region. If the amplification factor is such the

the global rounding error is greater than the discretization crror, a waming error, IERROR =
300, is given.

Remark 4.4

If the partitioning is incorrect, we may expect at least ER(S) to be "large”. On the other hand,
due to the special way the algorithm trics to scek the appropiate partitionings, it should be
expected that a large vatue of ER(5) has to be attributed to the problem,

References

1] F.R. de Hoog, RM.M. Mattheij, An algorithm for solving multipoint boundary value
problems, Computing, 38 (1987) pp. 219-234.

[2] F.R. de Hoog, RM.M. Mattheij, On the conditioning of multipeint and integral
boundary value problems, SIAM J. Math. Anal. 20 (1989) pp. 200-214.

52

CH.1v4

(3] R.M.M. Mattheij, G.W.M. Staarink, An efficient algorithm for solving genereal linear
two-point BVP, SIAM J. Sci. Stat. Comp. 5 (1984), pp. 745-763.

53

CHAPTER V

BVP WITH PARAMETERS

1. Introduction

Some ODE contain one or more parameters which are 1o be determined along with the
solution. They can be described by the ODE

(1.1) —%x(t)=L(t)x(t)+C(t)z +r(t), ast<PB,

where L{t) is an n X n-matrix function, C (¢) an n x/-matrix function (¢ 2 1), x(¢) and r(¢)are
n-vector functions and z is a constant -vector, the vector of parameters. Note the lincarity in
x and z. (In the next chapter we shall consider ODE that contain products of x(¢) and scalar z,
so-called eigenvalue problems.) Since both x(t) and z are unknown, we need n +1 BC, which
we assume to be two-point BC of the following form:

by
(1.2a) (Mg Pa]{x(z“)} +{M3| PB][XEP)] = [bj =b,

where M o, Mg are (n +1)Xn-matrices, Py, Pg are (n +1)x!-matrices, b, is an n-vector and
B, is an [-vector. Since z is constant, the BC (1.2a) can also be written as

(1.2b) Max(o) +Mpx(B)+M,z=b,

where M, =P o+ Pg.

We can angment (1.1) with
(1.3) %z:@,
thus having an ODE of order n +1:;
dlx L) CHOx) r®)
o el fe)

The BVP (1.2a), (1.4) is actually a two-point BVP of order n +/, and can be solved using the
routines from chapter II. However, we rather like to preserve the lower-order form (1.1) and

55

CH.V,1

this requires some manipulations reminiscent of the multipoint case, chapter IV. In particular
the homogeneous problem may be skew polychotomic, i.e. have switching points where the
dichotomy splitting changes; here, however, the dimension of the subspace of non-decreasing
modes is increasing. As in the integral BC case these switching points are not known in
advance. Actually it can be shown that the parameter BVP is the adjoint of a suitable
integral/multipoint BVP, cf, [1].

In order to compute the solution of (1.1), (1.2), we apply a multiple shooting strategy as
before. Denoting the switching points as oy, . . . , Oy 41 (04 =@, 0,41 =), then the following
three types of solutions are computed on each subinterval [o; , 041 I

{ F (o, t), being a fundamental solution of (1.1);

i) Z{w, 1), being an n X/ -matrix function satisfying

15 L Z()=L®Z00)+CO);

(iii) a particular solution w{t;,¢) of (1.1) for z =0, i.e. satisfying

16 Lw(oi,t)=LEO)w (o) +r@).

It follows then that there exists a vector ¢; such that

amn x()=F(,1)c; +Z(0x,t)z +w(og,t) ,0 <t S0y .

Matching at the switching points yields the following relation for the ¢;:

(1.8) F(0iy1,0441) Cin1 =F (04 ,@is1) € +{Z(04 , Oig1) = Z{(0is1, Oigr)) 2
+ w04, 041) — W (it i)

and the BC

(1.9) M oF (01,00) €1 + MpF (O ,0ma1) € + [M 6Z (001,00) + MBZ (O . Omsty + M, | 2 =

=b~Mow(0y,0) —Mpw (O, , Opir).

The relations (1.8), (1.9) constitute a linear system for the unknowns ¢y, ..., ¢, and z; the
order of the matrix ism xn +1.

The algorithm discussed in this chapter has been implemented in the routine MUTSPA.

56

CH. V.2

2. Global description of the algorithm

As in the multipoint case, cf. §IV.2.1, we use multiple shooting with minor shooting points ¢;
on each interval [o , o;41]. (So again the index j is local). We start the intcgration at ¢ =0
with wi(oy, £1)=0, Fi(oy,t)=I and Z(o,t)=%. At the next (minor) shooting point #;4
(=1,..., N;—=1) we similarly choose w;.1(0t1,#;41) =0, Z;41(01, ;,1)=J and the initial value
for Fj+1(ct1, fj+1) via

2.1 Fi(ou,tj41) = F (o, 84 Ui (D = QD U;a(D)

where Qj,1(1) is orthogonal and U;,(1) is upper triangular.

When, for j > 1it is found that the growth of any of the various modes (as can be monitored

from the diagonal of the U;(1)) is changing from decreasing to increasing, a switching point
o is chosen and the marching is continucd, elc.

On a general interval [o; , ;41 | we have for suitable a;(i)

2.2) x()=F;j(0q,t)a;()+Z;j(oy, t)z +wi(oy,t),

which gives the following recursion for the a;(i):

2.3) @jn()=Ujn()a;(i)+ Cjnl)z +dju@) ,j=1,...,N;i~1,

where

(2.42) di1() = Q7 () [wj (04, 8j41) = Wy (0, tju)],

(2.4b) Cin(i) =073 D1 Zj(04, 1j41) ~ Zja(04 . 141)] -

Let {®;()} f‘;‘.l be a fundamental solution of (2.3), {Y;(i)} j\':l a particular matrix solution of
2.5) Yjn@)=Un@) Y; (i)+Cinl),

and {z; (i)} }\;1 a particular solution of (2.3) with z =0, then for some suitable vector ¢; we
have

(26) aj(i):(Dj(i)c,- +Yj(i)z +Zj(i) ,j=1, LN

The sequence of vectors now can be found by matching at the points ¢; and using the BC. We
find

(2.7a) 2(05) =w(0y,0) + Q1) [21 + Y1) z + Po() ¢ 1+ Zo(oy ,04) 2,

57

CH.V.2

2.7b) X (1) =wr (00 , 0 41) + ON () [2n (D) + YN (i) 2z + PN () Ci 1+ Zn (0 , 0u41) 2 .

So for the BC we find
(2.8) Byci+Bpcy +B,2 =5,
where

(2.92) By =My Q1(1) ®y(D),
(2.9v) Bp=MpQn,(m) DN, (m),
2.9¢0) B, =M o[Q (1Y 1(1+Z 1(04,0)] + Mp[On, (M)Yn,(m) + ZN, (0 Om+1)] + M,

(2.99) b =b — M ow1(01,04y = M oQ 1(1)z1(1) = MWy, (O Om+1) ~ MpON, (m)2y, (m).
By finally denoting fori =1,...,m~1,

(2.10a) ¥ =®p(),

(2.100) Qv =QF! () Q1+ By(i+1),

(2.10c) Di =QF} () Q1+ Y1+ - N (),

(2.10d) qi = 0N} (i) [W1(0441,041) — W, (04 ,041)] + ON (DQ 1 +1) 21 (i +1) — zv,(0)
we obtain the linear system

(2.11a) Ac=q,

where

¥, -Q, D,

(2.11b) A= . .
\ym—-l "'Qm Dy
B, Bg B,

cT =[C'{’- ey C};...l,cg,zr]' q'fth'(: e qg*l,b?]o

58

CH. V.2

Remark 2.12

If no switching point is detected, i.e. if m =1, the matrix A simplifies to an (n +I)* order
matrix

(2.11bY A=[By+Bp| B,]

Remark 2.13

If the ODE is homogeneous, i.e. r(t)=0,te[a,B], there is no need to compute the
particular solution of the ODE and the recursion. The expressions (2.3), (2.6), (2.7) and (2.9)
should then be simplified accordingly, cf. remark IV.2.10.

3. Special features of the method

Many special aspects that were described for the multipoint and integral BC case in chapter IV

also apply to the parameter problem considered in this chapter. They will be briefly indicated
below, along with some other ones.

3.1 Computation of the ®;(i) and Y;(i)
It can be shown that a well-conditioned parameter problem is skew polychotomic, with a
dichotomic structure of the fundamental solution on each interval [o , o;4; 1. The dimension

of the non-decreasing solution space at { a; , 0y, 1, say k (i), forms a non-decreasing sequence,

ie. k()SkQ2)<-:-<k(m). The fundamental solution (@G)}ﬁ.‘l is then found from (2.3)
using the BC

(3.1 QL) =D lnuiy] 5 PRLE) =[L)| D1.

The particular matrix solution {Y;(i)},-’i‘; is similarly computed using the decoupled form of
the recursion, cf. (2.5), and has the BC

(3.2) YEi) =D YN ()=9D.

Note that Y £ (i) is an (n —k (i)) x I -matrix and Yy, (i) a k(i) ! -matrix.
3.2 Choosing F (0; , o), Z; (o , t;) and w; (o , ;)

As before, the particular solution w;(0y, ;) is chosen such that wj(oy, ;) =0. Similarly, we
choose Z; (o, t;) = .

59

CH.V3

The computation of F (¢, t) is essentially the same as described in §1V.3.2. If a change of k-
partitioning is noticed (here such that the subspace of non-decreasing modes is increased,
rather than decreased as in the integral BC case) a new switching point ¢ is chosen. As initial
value for F (0, o) we take

(3.3) Fi(og,00)=0n(1).

If Oy (1) is found not to be a good starting value on the interval [o, ¢], ¢ suficiently large, a
permutation of the last n~k(1) columns of Qn (1) may be carried out to obtain a more

appropriate ordering of the diagonal of the U;(2); this is of course a strategy complementary
to the one outlined in §1V.3.2.

3.3 Special solution of the linear system (2.11)

The sparse system (2.11) is solved by a special tcchnique in order to save both memory and
computer time, Instead of (2.11) we rather consider the augmented system. Define

Then we have for the augmented system:

1 O
D; ¥;

- ©

» Riy= (0] —QEH}’BI:[Q[B&]’BM'—"[BZIBB]'

(3.4a) Ae=4,

where
.] . ..
$1 R, €y g1
(3.4b) A= .. ce=| . la=| . |.
Sm-1 Rm Cm-1 Gm-1
B, B, m 1;
L - -

This linear system has the same structure as the linear system (1.3.7) which resulted from the
discrete BVP (1.3.5),(1.3.6). In fact applying multiple shooting to the two-point BVP

]
z S O |z %]
(3.53) —éit—l:x}=[c(t) L(t) {x}"{r(l)}’ OLSISB,

z Z] bx
CEONE [x@] +Bn [x(ﬁ) = H ’

using the switching points a, ..., 0, as shooting points and starting on each subinterval
[0 , &4y] with a fundamental solution H (), where

CH. V3

L o
H®) =g g,

would lead to the linear system (3.4). Note that (3.5) is equivalent to (1.1), (1.2) and (1.4).
Although the §; and R;. in (3.4) have a special structure, we will solve (3.4) in a general way,
that is, we will consider the S; and R;41 to be full matrices. In this case system (3.4) is called a
general discrete two-point BVP, which can be writien as

(3.6) Si¢i +RinCini=Gin, i=1,...,m-1

For well-conditioned two-point BVP the solution space of the homogeneous problem is
dichotomic. In order to use the ideas outlined in chapter I for two-point BVP, we shall now
show how to transform S; and R;) appropriately for use in a forward-backward algorithm.

Let O, and T be orthogonal matrices such that

3.7 $101=~-T1Vy,
where V'; is upper triangular. Then let O be an orthogonal matrix such that
(3.8) Ti! Ry02=W,,

where W is upper triangular.
This process gives in general

3.9 $;0,=T;V;,
TR O =-Wiyy,

where T;, O; are orthogonal matrices and V;, W;,; are upper triangular matrices. Finally
define

(3.10) fin=T714; and ¢; =0;71¢;,
then we have the transformed system

(3.11a) Winein=Vie+fig, i=1,...,m-1,

and aBC
(3.11b) Bie;+B,en=b,

where B1=B,0, and B, =B, O,,.

61

CH. V3

If system (3.11) is well-conditioned, it is dichotomic, i.e. for some integer k, there exist a k-
dimensional subspace of increasing solutions and an (n —k,)-dimensional subspace of non-
increasing solutions. Moreover these two subspaces are disjoint. Using this property and
starting with a proper O, we can compute a set of V; and W;; for which the first k, columns
represent the subspace of increasing solutions and the last (n —k,) columns the subspace of
non-increasing solutions. Partitioning of the matrices and vectors results in

(3.122) W3R el =VRe2+f3,

(3.12b) Wl el +Wili el =Ville! + V22 + fily
which can also be written as

(3.132) e =WRA)Y [VPel+f2],

(B.13b) =iy W el + Wi ek ~Vile2-fFila),

where WY, V;1! are k, %k, -matrices, W3 , V2 are (n —k,) X (n —k,)-matrices, ¢!, f;}; are
kp-vectors and e, f %1 (n —k,)-vectors.

Forward computation of (3.12a) and backward computation of (3.12b) are stable. Hence the
obvious strategy for computing a fundamental solution {©;}/2, and a particular solution

{pi}™ of recursion (3.11) is 10 use (3.12a) in forward direction and (3.12b) in backward
direction. So for the particular solution {p; }/2; we have the BC

(3.14) pt=0,pi=0.

Then p?,i=2,3,...,m, using (3.13a), and pi! ,i =m~1,m-2,..., 1, using (3.13b), is
computed.

For the fundamental solution we have the recursion
(3.152) e, =WwH)yv2ez,

(3.15b) o) =) 1[wl) oL, + W13 83, - vi2e?]
and the BC

(3.16) er=[2|11;8).=11|2].

Now {02}/, is computed via (3.14a) and {©}} L., is then computed via (3.14b).
The solution of (3.11) can be written as

B.1D ¢ =0;a+p;, i=1,...,m,
for some (n +1)-vector a. Substituting (3.17) into (3.11b) we have
(3.18) [B16,+8,,0,1a=b-B1p1~Bpupm,

from which a can be computed. Then the ¢; can be computed via (3.17) and then the ¢; via
(3.10).

62

CH. V3

Remark 3.19

In order to compute a solution of (3.13) in a stable way, it is necessary that the W33 and the
V;1! are nonsingular. Moreover the diagonal elements of (W23)~'V22 and (V;!1)"'W;}} should
be less than or equal to 1.

Remark 3.20

It is not necessary that the W;}} and V2 are nonsingular, i.e. it is not necessary that all S; and
R;,; are nonsingular. If the dichotomy induces a splitting such that the V1! and W;3 are

nonsingular and [B,©; + B,,©,,] is nonsingular, we still have a solution for the general
discrete BVP (3.5)

3.4 Conditioning and stability

As a BVP with parameters can be written as a two-point BVP (3.5), it is obvious that we have
for the condition number CN ;

(321 CN =max|| H(¢) [B1H (o) + B, HB)| ,

where H(¢) is a fundamental solution of (3.5a). Moreover we have
(3.22) k:=|[B10,+B,0, 1"!| s2CN.

For stability we have to investigate the (growth of) solutions between two successive
switching points; this is essentially similar to investigating the recursion of the two-point
BVP, and recursions (3.11) or (3.13). For stability only the homogeneous part of a recursion is
of interest; for (3.13) the latter can be written as
(3.232) ek =WH) V22,
(3.23b) el =(VIY T IWH by = [Vi2-W13 WR) 1 V2]1e].
Denoting E;41 =W R)1V2, B3} =)Wl and

BACin =)y [Vi2 - W3 W) V] we have
(3242) ek =Eine?
(3.24b) e! =B\ el —Bi3) Civiel

This is similar to the recursion derived from a two-point BVP and therefore the same formula
can be used to compute the amplification factor, cf. §11.3.4.

63

CH. V3

Remark (3.25)

Note that the effect of accumulated errors as given in (I1.3.22) depends on B3} and B3} Cin
and not on B, itself. So even if W, is singular and therefore B, is not defined, B3} and
the quantity "B;3} C;.(" are still meaningful.

4. Computational aspects

The routine MUTSPA basically uscs the same strategy for computing the upper triangular
recursion on the intervals {o; 044], i =1,..., m, as the routine MUTSGE does for two-
point BVP (see chapter I). Only the choice of the Q(i),i=2,...,m (that is the
"orthogonalized" Fi(¢; ,o;)) and the computation of the k-partitionings are different. The
computation of the {¢;}/2 is decribed in §3. Once knowing the ¢;, the computation of the
solution at the i interval [oy , 0,5] is the same as in the two-point case (see chapter II). In
the next sections we discuss how to find the switching points, the choice of Q (i), how to find

a correct global partitioning and how to find a correct partitioning for the general discrete
two-point BVP (cf. system (3.11)).

4.1 The computation of switching points

A well-conditioned parameter problem is skew polychotomic, that is the dimension & (i), say,

of the non-decreasing solution space on [o; , ¢;4;] forms a non-decreasing sequence, i.e.

k(DSk@)<---sk(m).

For a switching point ¢, say, we potentially have a mode which is decreasing on [0y, o]

and increasing on [o; , 0,41]. Using this property a minor shooting point, # say, is considered

to be a switching point ¢;, say, if there is a diagonal element of III Uj; less than 0.5 and if the
7=

same diagonal element of Uy, is greater than 1. Here U; is the incremental matrix of the

fundamental solution on the minor shooting interval [¢, ¢;].

Because a more or less constant mode may result in a diagonal element fluctuating around 1,

only modes with an incremental growth less than 0.5 on [o, #] are considered.

Anticipating skew polychotomy, only the last n — k(i) diagonal elements have to be checked;
there are at most n switching points between o and o, 41, i.¢. m £ n+1.

4.2 The computation of J1()

On the first interval [oy, o] we do the same as in the two-point case, i.e. @1(1) =/ and if this

is not a satisfactory choice, the columns of Q (1) are permuted such that diagonal U,(1) is
ordered. As a first choice for Q1(i),i =2, ..., m, we take

.1 Q1) =0n, -1

This choice is satisfactory if the diagonal of the incremental matrix V(i) of the fundamental
solution on the first minor shooting interval on [@; , 0441] is ordered. Otherwise the columns

64

CH.V4

of Q@) are permuted such that the diagonal of |V,(i) is ordered. At this stage the
partitioning parameter k; is computed as the number of diagonal elements of | V(i) which are
greater than 1.

Although this stategy results in a set of actual switching points and an increasing sequence of
k -partitioning parameters k (i), it is possible that, due to discretization errors, the computed
k(i) does not correspond to the proper partitioning. Therefore, after the above described
procedure, globally correct partitioning parameters are determined.

4.3 Finding a globally correct partitioning

Although the algorithm tries to determine a correct partitioning parameter k(i) on each
interval { oy , 0441], its resolution of the growth behaviour of the various modes may be fairly
small (e.g. if o1 —0; is small) and/or it may be misled by non-growing non-decreasing
modes. Since a normal (that is a well-conditioned) situation implies the existence of a non-
decreasing sequence {k(i)}, we need a check on this and - if this ordering turns out not to be
monotonic - an update. This is done by the following procedure:

step 1: Compute on cach interval [oy,0441,i =1,...,m, a partitioning parameter
N,
k(i), where k(i) is the number of elements of diagonal(qU ;(i)), which are
}:
greater than 1.

step 2: Determine the highest index I, where £(I) > k(I +1). If no such index exists,
goto step 8.

step 3: Determine the highest index j > I, where k(j) < k({).

step 4: Determine the index p < {, where
kD=k(-D==k(p)2k(p-1).

step 5: Compute a global partitioning parameter £(!) say, for the interval [ap, 04] by
checking the increments over [o, ,0,,1] in an obvious way, taking into account
the various permutations at the switching points.

step 6: The new updated sequence {k (i)} /2, is defined as
k(i)A ,i=1)tt~yp_1,j+1,..,’m
k(i) = |max(k(@)k(l)) ,i=1+1,...,]
k() d=p,..,1

step 7. Go back to step 2.
step 8: The current sequence {k (i)} is correct.
With this procedure we get, at least theoretically, a good choice for the sequence of the k(i)

However, if the problem is not skew polychotomic also this procedure may not be
satisfactory, naturally, and a large amplification factor may result (as is to be expected of

65

CH. V4

course).

4.4 The computation of O and &, of system (3.6)

Generally there is no information for choosing Oy, so we start with 0 =/ and compute a V
and a W,. If the diagonal of W31 V; is not ordered, the columns of O are permuted such that
the diagonal of W51 V1 is ordered. The k-partitioning (kp) is defincd in a similar way as in the
two-point BVP case, i.e. &, is equal to the position of that diagonal clement of W3lv, which
is the smallest onc (in absolute value) being greater than 1. However, this &, may not be the

globally best one for the recursion. Therefore a global check of the increment ﬁ Wj-:)l V;is
}:

made. If the ordering of this product is not found o be satisfactory, a global reordering is
performed using permutation matrices according to this.

The question remains what to do when some of the W;,; or V; are singular, There still may be
a stable solution (see §3.4) if the singularity of W;,; occurs in the &, Xk, left upper block of
Wi (.e. WiAh) and if the singularity of V; occurs in the right (n —k,) X (n —k,) lower block
of V; (i.e. V;2%). Therefore each zero diagonal element of V; and W,y will be given the value
of the machine constant (i.¢. the value of ER(3)). If there is a proper dichotomy this will
result in a correct global partitioning. If there is no proper dichotomy this will result in either a
large amplification factor or either a numerically singular V;!! or W33 . In the latier case a
terminal error IERROR=315 is given.

4.5 The computation of the stability constants

Since the algorithm computes fundamental solutions at switching intervals, it does some
bookkeeping of stability constants. The computation of the condition number CN (see §3.5) is
a straightforward matter and its value can be found in ER(4).

Conceming the "amplification factor", which is an estimate for the Green’s functions, the
algorithm computes an estimate for this on each interval and also for system (3.11). The
largest of these values can be found in ER(5)

Remark 4.2

If the partitioning is incorrect, we may expect at least ER(5) to be "large”. On the other hand,
due to the special way the algorithm tries to seek the appropriate partitionings, it should be
expected that a large value of ER(S) has to be atiributed o the problem.

CH. V4

References

{11 RMM. Matheij, On boundary value problems for ODE with parameters,
EQUADIFF, Differential Equations (C.M. Dafermos ¢t al., eds.), Marcel Dekker
(1989), 481 - 489,

67

CHAPTER VI

ODE WITH DISCONTINUOQOUS DATA

1. Introduction

In the preceding chapters we descibed BVP for which the right-hand side of the ODE and the
solution were both continuous with respect to the independent variable. In this chapter we will
consider BVP for which the solution or the right-hand side of the ODE is discontinuous at
certain points.

Leta=04<02< ‘- <Opn4 = P be switching points. Consider the ODE

(1.1) —%x(r):L;(t)x(t)+r,~(z), G St<y,i=1,...,m,

where the L;{t) are bounded continuous n Xn-matrix functions and the r;(¢) are bounded
continuous n -vector functions.

For a solution x(¢) of (1.1) we define:

(1.2a) x {0y =lim x(o; —€) 5 x (o) =x(of),
(1.2b) x(of) :=1im x (o +€) 5 x(0m) =x(0m41) -

Although the ODE (1.1) is discontinuous at op, . .., 0,,, there are continuous solutions of
(1.1). For specifying a discontinuous solution of (1.1) at 0, . . . , &, we need side conditions
at o, . . ., Oy, which have the form

(1.3) Zix(@)+Zrx(o)=b;, i=2,...,m,

where Z;~, Z;* are n X n-matrices, b; an n-vector.
These side conditions are completed by a (multipoint) BC, i.e.

(1.4) '"g’ M x(e)=b,

where the M; are n X n-matrices and b is an n -vector.

69

CH. VL1

Two cases can be distinguished for the side conditions :

i) Jjump conditions at oy, like

(1.523) %) In-p x(o) = o In-p x (o) + ol S #20.
E.g. if both Z;~ and Z;* are nonsingular, we have a jump condition.

i) internal boundary conditions at ¢, like
Ip © _ o < . §i
(1.5b) {@ I””Pjix(ai)ulig In—p x(o) + ol 5 #0.

Jump conditions just make the solution discontinuous and are not genuine BC, whereas
internal BC in part determine the solution locally.

As in chapter IV, we compute fundamental solutions F (o, ¢) and particular solutions w (o;,)
consecutively on the intervals [o; , 041] and try to determine the vectors ¢; in

(1.6) x()=F(o,t)c; +w(og,t), 0 St <0y,

The major difference with both the two-point and the multipoint case is that we have to use
the side condition (1.3) at t =q;, j=2,...,m, instead of employing continuity there as
before. This gives fori =1,..., m~1,

(1.7 Zizsi Flog, a6 + Zi4 F (0, 0% civ =
=b; = Ziz1 w0y, 0i51) — Zi%y w(Oieg, 05 .

Together with the BC (cf. (1.4)),
AT S Mi F (04,0 ci + [Mp F Oy 05) + Myt F @, O 1 =
where

B=b ~ § Miw (@, 0) = Mpsi W (O O 1)

We have a linear system to be solved for the unknowncy, . .., Cpm.
The algorithm described below has been implemented as the routine MUTSDD.

70

CH. V12

2. Global description of the algorithm

The basic part of the algorithm essentially follows the ideas outlined in chapter IV, ie. it
determines minor shooting intcrvals and asscmbles them into major shooting intervals.
Boundary points of such a major shooting interval are either user requested output points or
switching points; in contrast to the regular multipoint case, however, no assembly across a
switching point is being made.

Let us use the terminology of §1V.2 again: On each interval [oy , ;41] orthogonal matrices
Q; (i) and upper triangular matrices U; (i) are computed. For the solution x(¢) we have

@1 x()=F;(o;, t)a;() +wj(ay,t).
This gives the following recursion
2.2) i () =Ujn@)a;Y+djuG), j=1,...,Ni—1.

Moreover, let {®;()}%" and {z;()} %" be a fundamental and particular solution of (2.2).
Then for some vector ¢; we have

(23) aj(i)-—*(bj(i)c;+z,-(i), j=1,...,N;.
At the switching points we have
(2.42) x(@H) =wiey,)+ Q@) [z1() + Py i], i=1....m,

(2.4b) x(07) =wy (0, 05) + On () [(@) + Oy ()ei], i=1,...,m.
Substituting (2.4) in (1.3), we obtain
2.5) Kici+Lipncia=q, i=1,...,m-1,

where

(2.62) Ki=Z51 NG DN,

2.6b) Ly =Zi Q1 +1) Dy +1),

(2.6¢) qi =bi —Zz1 [wn, (04, o) + On (D 2y, ()] ~

=Z% (Wi, o) + Qi + Dz G+ D]

Substituting in (1.4) we obtain

71

CH. V1,2

E]
>

27 i€

Il
<

i

where

(2.8a) M;=M; 0,()Y®1G), i=1,...,m-1,

S

(2.8b) My, =My Q1(m) ©1(m) + My sy O, (m) Oy, (m) ,

28) b=b ~}”f, M; Q1(i)21() ~ Mpmsy On_(m) 2y, (m) —

= 2 Miw (04,0 ~ My WN, (Otn , Oim+1) -

1=
This gives the linear system

(2.9a) Ac=q,

where
Ky L, cy g1
29 A= o, ce=| . |, q=
. . Igm-l l:m Cn—1 Qm:'l
My Mg - - M, M, Con b
i] L L

This system resembles the multipoint system obtained in (IV.2.9), but for a different form of
the blocks K;, L;.1, as compared to IT;, ;,, there. In general X;, L, are not upper triangular
and therefore we call systems like (2.9) a general discrete multipoint BVP. In the next section
we descibe how to solve these systems.

3. Special features of the methods

For most aspects we can refer to chapters II and IV. What is really different here is the
solution of the linear system (2.9).

72

CH. V13

3.1. Solution of the system (2.9)

There is no special structure for the K; and L;,; in system (2.9). Morcover some of the M;
may be singular. Therefore we will describe how to solve gencral discrete multipoint BVPs,
There is a strong similarity between discrete multipoint BVPs and continuous multipoint

BVPs. Therefore we can make use of the ideas of chapter IV.
Consider the recursion

(3.1a) BinXiq+Aixi=gn, i=1...,N-1,

and a multipoint BC
By S Mx =b
. }; J xlj - s

where A;, Bix1, M are n X n-matrices, x;, gi+1, b are n-vectors and
l=i1<iz< - <ims1=N.
Recursion (3.1a) can be split up into m subrecursions:

G2 BuOxa@+AO5O=gm®, j=1... . N1,
where AiiD=Ayjas BinD=Byj; %) =Xp4j15
giri)=gi+is Ni=iq—i+1.
A solution {x;(1)} }4; of (3.2) can be written as
(3.3) xiH)=Fj(Hha +w;),
where F;(1) is a fundamental solution of (3.2), w;(!) a particular solution of (3.2) and a; some
constant vector.
Forl=2,..., m,wehave x; = x1(I) = xy, (I —1), which gives the recursion for the g;:

(3.4a) Fil+D)apa=FyOa +wy () —wi(+1),

and a multipoint BC for the g;:
(GAb) 5 M F1()a; + My Py, () = b iM,- W1(j) = My Wy (m) .
= =

This system is similar to system (IV.1.4). The i; can be considered as the discrete version of
the switching poinis of chapter IV. Similar to continuous multipoint BVPs we have that, if
the problem is well-conditioned, the problem is polychotomic, which means that recursion
(3.1) is polychotomic, so the subrecursions (3.2) are dichotomic and for the so called k-
partitionings k (/) of the subrecursions we have

73

CH. VI3

(3.5 k(DY2k@)2 - 2k(m).

To compute a fundamental solution and a particular solution of the subrecursions (3.2), the
same method is used as in the case of discrete two-point BVPs (cf. §V.3.3). That is, the
recursions are transformed into appropriate upper triangular recursions and the fundamental
solutions and particular solutions are computed using the forward-backward algorithm.

Let (‘*¥; (1)) f;ﬁl be the fundamental solution and {p; (1)} }ﬁ; the particular solution of the upper

triangular recursion; let {O;(l)} f,’_il be the orthogonal transformation matrices. Then for some
¢; we have

(3.6) xi (1) =0;()[Yie +pi)].

As the problem is polychotomic, the O ;{{+1) are chosen such that

3.7 OW(I+1)=05\)P; ,I=1,...,m~1

where P; is a permutation matrix, which only permutes the first £ (/) columns of Oy, (!), where
k(1) is the k -partitioning of the I'* subrecursion (3.2) (cf. §1V.4.3).

Matching at the "switching points i;" and substituting (3.6) in the BC (3.1b), we obtain the
linear system for the ¢; :

33 Ac=gq
where
i 1
I -,
A= .. ,
.. e
My My M, M,

=[cl,....cha.ckl ¢ =[q],.... ¢}1.b"1,
andforl=1,...,m-1,
I, =¥n, (),

Qa1 = O (1) O (1+1) Py (I+1),
qr = O (1) 01(1+1) p(1+1) — py, (1),
M, =M, 0:()¥1(0),

Mp =M, O1(m)¥1(m) + My o1 Oy (m) ¥y _(m),

74

CH. V13

b=b- gM, O 1(1)p 1) = Mp41 O, (m) pn,_(m).

This system is similar to system (IV.2.9). The method for solving such systems is described in
§1V.3.4. Having the solution for the ¢;, (3.6) is used to find the solutions x; of (3.1).

3.2 Conditioning and stability

The condition number CN for BVP with discontinuous data is defined as follows: Let F () be
a fundamental solution of ODE (1.1) and let {G (i }}™ be a fundamental solution of recursion
{1.7a), i.e. of the recursion

(3.9) Zizn Foz) e +Z% F(oh)cin=0,i=1,...,m-1
Define the matrix solution H (¢) of ODE (1.1) as
3.10) H)=F@)G@), ofstsaon,i=1,...,m-1.

Then
m+l -
(3.11) CN = max | H(‘)[; M;H@HT .

If the ODE is polychotomic, we can choose the F (¢) such that z’er}%]“ F ()| <1.Forsuchan
F (t) we have

(3.12) CN < _max | G(i)[”’f: M;Fe)GHTY .
=

Conditioning of the discrete multipoint BVP (3.1) is similar to the conditioning of
(continuous) multipoints BVPs. Let { G (i) }}¥; be a fundamental solution of recursion (3.1a),
then the condition number CNp is defined as

613 CNo=, max GO M;GGHI.
..... 2

If the recursion (3.1) is polychotomic, the G (i) can be chosen such that || G(i)|] <1 and for
CNp we have

(3.19) CNp <] [: M;GGEHT.

75

CH. V13

Remark 3.15

The right-hand side of (3.12) is the condition number of the discrete multipoint BVP (1.7).
Therefore the estimate of the CNp of (1.7) is also an estimate for CN .

4. Computational aspects

The routine MUTSDD basically uses the same strategy for computing the upper triangular
recursion, the fundamental and particular solutions of the upper triangular recursion and the
k -partitioning on the intervals [o , 311, i =1, ..., m, as the routine MUTSGE uses for the
two-point BVP. As a first choice for the Qi(i) we use: Qi) =71, Q1+ =0n(),
i=1,...,m—-1

For the resulting discrete multipoint BVP, the routine MUTSDD basically uses the same
strategy for computing the upper triangular recursions of the subrecursions as is used for
discrete two-point BVP (see §V.3.3, §V.4.4). For the choice of the O (i) and the global k-

partitioning basically the same strategy is used as in the case of multipoint BVP (see §IV 4.1,
§IV.4.4).

4.1 The computation of the stability constants

As an estimate for the condition number CN of the problem, we take the estimate for the
condition number CNp of the discrete multipoint BVP. The algorithm for solving system
(3.8) delivers the matrix, from which the estimate is computed. If this matrix is singular a
terminal error IERROR=320 is given. The output value of ER(4) is the estimated value for
CN.

For eachinterval [0, 0531 =1, ..., m, an error amplification factor, which is an estimate
for the Green’s functions, is computed, The output value of ER(S) is the maximum of these
amplification factors.

For the discrete multipoint BVP an error amplification factor, being the estimate for the
discrete Green's functions, is computed for each subrecursion. The output value of ER(6) is
the maximum of these e¢rror amplification factors.

If the value of ER(S) or ER(6) is such that the global rounding crror is greater than the
discretization error, warning errors IERROR = 300 or IERROR = 305 are given.

Remark 4.1

If the partitioning on the intervals [&}, o731] is incorrect, we may expect at least ER(5) to be
"large". If the partitioning of the discrete multipoint BVP is incorrect, we may expect at least
ER(6) to be "large". However, due to the special way the algorithm trics to seek the
appropriate partitionings, large values for ER(5) or ER(6) have to be attributed to the problem.

76

CH. VI4

4.2 Internal BC

If there are internal BCs, then for some | either Z;3y or Z;%; is singular, and thercfore either
K; or L;4; is singular. In general, we may have singular matrices A; or B;,y in the discrete
multipoint BVP (3.1). If it is impossible to compute a fundamental and particular solution of
the subrecursions (3.2), because of a singular A; or B;,,, a terminal error IERROR = 315 is
given.

On the other hand, realizing that an internal BC at o73; should control only growing modes on
[0, 04311 and an internal BC at 0%y should control only decreasing modes on [04,052]
and the special way the algorithm tries to seek appropriate partitionings and fundamental
solutions, a terminal error [IERROR = 315 should be attributed to the problem.

77

CHAPTER VII

EIGENVALUE PROBLEMS

1. Introduction

Consider the ODE
(L.1) %x(x,%)zl,(t)x(t,?\,)+2,K(t)x(t,l) LoSt <P,

where K (t) is an n X n-matrix function. Let a homogeneous BC
(1.2) Max(0,A) +Mpx(B,A)=0

be given. Then (1.1), (1.2) is called an eigenvalue problem, where A is an eigenvalue and the
nontrivial solution x (¢,) an eigensolution. Formulated this way we obviously do not have
uniqueness of x (any multiple of x(¢,A) is also an eigensolution). By viewing both x and A as
unknowns it can be seen that (1.1) is in fact a nonlinear equation for the "solution” (xT,2)7,
despite the linearity in x. This makes it suitable for using a nonlinear BVP solver. We
augment (1.1) by the simple equation A =0 and (1.2) by fixing the solution x(z, A) somewhere
(thus making it unique). Here we shall use a method based on successively computing
approximations found from integrating (1.1) with a fixed (though recursively updated) A. Let
in the neighbourhood of the eigenvalue A,, F(t,A) be a fundamental solution of (1.1). Then
any solution x(z,A) can be writien as

(1.3) x(t,N)=F@,N)c@),

forc(Ad) e IR®,
Afier substitution of this in the BC (1.2) we should have for A, :

(1.4) R(A)c(A)=0,
where

(1.5) RAy=MyF(0,A)+MpF(B,}).

Apparently, for an cigenvalue A, we should have that R(}A,) is singular. By applying an
iterative rootfinding algorithm to the latter property we can employ the type of multiple
shooting approach of chapter II to (1.1), having only a nonlinear algebraic problem via R (A).
It should be realized that (1.1), (1.2) can constitute a very complicated problem, potentially :
the eigenvalue A, can be multiple. If this multiplicity is only algebraic, the method below is
certainly not necessarily reliable; if the multiplicity is geometric, then it may give results

79

CH VIL1

under special circumstances onty.

The algorithm decribed in this chapter is implemented in the routine MUTSEL

2. Global description of the algorithm

Our algorithm will be based on two ideas: in the first place a method to determine an
approximate solution manifold and in the second place a nonlinear scalar solver. Assume for a
given value A, F (z,) has been obtained using a multiple shooting approach with decoupling.
Rather than using a classical way of updating A, based on zeroing det(R (A)) (see (1.5)) we
shall use appropriate information from the singular value decomposition

2.1 RM=UMIZMVTM),

where U(A), V(A) are orthogonal matrices and Z(A) is a diagonal matrix with semi-positve
diagonal entries oy(A), . . ., 6, (L), where

22 oA zo(M) 2 - 20,(M)20.

Since the number of (numerical) nonzero singular values is equal to the (numerical) rank of
R (), it follows that (aiming initially at a rank (n —1) matrix R(A,)) it makes sense t0 use
G, (A) as a function of A that should be zeroed. Realizing that 6, (A) might be a complicated
function we use an interval method applied to

23) P =sgn (det(RA))) o, (V) .

The factor sgn(det(R (A))) is employed to make sure that p(A) switches sign at least once (in
the case of a single eigenvalue). Note that a lower and an upper bound for A, has to be
supplied. An advantage of an interval method is that the iteration can be stopped when
sufficient accuracy has been achieved, viz. by controlling the interval width via a tolerance
parameter.

Given a single eigenvalue A,, a solution x(z, A,) can be found directly using v, (A,), the last
column of V(A,), i.e.

24) x(t9)"e):=F(t’xe)vn(}"¢)-

For multiple eigenvalues the iteration function (2.3) cannot be guaranteed to work
satisfactorily. Moreover, if the numerical rank of the null-space of R (A,) is larger than oge,
say {, an eigensolution may be any linear combination of the solutions F (t,2.)v;(A,), with

j=n,n=1,..., n—~I+1, where v;(A,) denotes the singular vector in V (A,) corresponding to
Gj (Xe)

CHVIL2

Remark 2.5

For quite a few Sturm-Liouville problems the homogencous sysicm (1.1) does not have
strongly increasing or decreasing modes, but rather rapidly oscillating ones. Consequently,
although instability, caused by growth of certain modes, is not a likely problem, sufficient
accuracy may be a problem as this oscillation requires very many grid points.

3. Special features: conditioning

Usually an iteration is performed on det(R(A)). Although it is undeniably true that
det(R (A)) =0 whenever A is an eigenvalue of the problem, one should realize that det(R (A))
is the product of eigenvalues of the matrix R. If some of these arc very large (in magnitude)
or behave erratically in a neighbourhood of A., the iteration may be far from efficient, or even
lead to a numerically unsatisfactory result. On the other hand, it is not unrealistic to use the
sign of R(X) as a mean to determine on which side of the "zero” A, we are working. This fact,
combined with the robustness of a singular value decomposition (and in particular the
measure for singularity as indicated by the magnitude of 6, (), cf. [2]) make the iteration
function p(A) to be our favorite. Below we shall give a pertubation analysis.

Let the BC (1,1) be perturbed by small matrices M, 8Mp. Then we obtain a perturbed
matrix R (A,)+ 3R (A,), where

3.1 R+ SR = Mg+ SMQF (0, A)+(Mp+SMpF (B,).

Note that [R(X,) +SR(A,)] being singular in gencral means A.#A, and F(¢,5,)#F (1, A.).
However, given enough regularity with respect to A, we may say that

(3.2) SR (X.) = SMoF(a,N,) +SMpF (B,A,) .

Due to the normalisation of the fundamental solutions (as we computed them via the
algorithm of chapter II) it follows that

(3.3) I8RAN <l SM| +]| SMg| .

Moreover, from what we just said we may assume that R(X,) + SR (&,) = RA)+3RA,).
By ordering the singular values of the latter perturbed matrix in decreasing order (as for
R(A)) it fonow§ that they differ from the corresponding singular values of the unperturbed
R(.) by|| 8R(A.)|| at most. It can also be shown that the perturbation of v, (A,) (cf. (2.4)) in

the direction orthogonal to v is x% (given multiplicity 1). Hence, as a measure for
(-4

n—1
the condition number we shall use

3.4) K= [Cpq(re) I .

This is a meaningful estimalte of the "condition number"

81

CHVIL3

(3.5) CN =max| F(t,A) [RA)T

where [R (A) I* is the pseudo-inverse V(M) Z*Q) UT(A)

(Z*(A) =diagonal(c'(A), . . . ,6,-1(A),0).

Note that this "condition number” is a straightforward analogue of that defined in (2.3.12). If
the null-space of R (A.) is of rank larger than one, the condition number is apparently infinite
(or very large, if it concerns the numerical rank). However, for geometrical multiplicity
1,1>1, it was remarked in §2 that the potential eigenspace was of rank /. Hence the
condition number estimate should then read

(3.6) K=[0n ()T,

being an obvious upper bound for (3.5) with appropriately defined [R (A,) I*.

4. Computational aspects

The routine MUTSEI basically uses the strategy employed in MUTSGE. The extra feature is
the use of the nonlinear solver ZEROIN.

4.1 The use of ZEROIN

A reliable method for approximately determining the zero of a nonlinear function, for which
an interval is given where it has opposite signs at the endpoints, is usually based on the secant
method (or something alike) stabilized with bisection. A successful implementation of this
idea is the routine ZEROIN, cf. {1]. This routine is used to "solve” p(A) =0, cf. (2.3). Hence
the user should supply two (interval end-) points Ami, and Anyas, where he presumes that
PAmin) XPAmax) < 0. If, after evaluation of p(Amin) and p(Amax) the routine detects that this
assumption is violated, a terminal error is given, with the actual value of p being printed.

From this a better idea of suitable points Ay, and Ay, might be obtained in order to restart
the routine.

4.2 Accuracy of the result

Since the integrator is working with tolerances given in ER(1) and ER(2), one cannot expect -
in general - that the eigenvalue is obtained with significantly higher accuracy than ER(2).

4.3 The solution space

As decribed in §2 we may have an eigenspace of dimension > 1. In this case the algorithm
may fail. Our iteration function p(A) is implicitly assuming that det(R (A)) is changing sign at
A., which may no longer be true for (algebraic) multiplicity > 1. Nevertheless, given the
absolute tolerance ER(2), all singular values smaller or equal to this value are considered to be

82

CHVII4

zero. When this number tums out to be larger than 1, a more-dimensional space of basic
solutions is given, cf. the discussion in §3.4.2.

References

(1] J.CP. Bus, T.J. Dckker, Two efficient algorithms with guaranteed convergence for

finding a zero of a function, Mathematical Centre, report NW 13/74, Amsterdam
(1974).

[2] R.MM. Mattheij, FR. de Hoog, On non-invertible boundary value problems,

Numerical Boundary Value ODEs (U. Ascher, R. Russell, eds.), Birkhduser (1985),
55-76.

83

CHAPTER VIII

SPECIAL LINEAR SOLVERS

1. Introduction

Using multiple shooting techniques to compute approximate solutions of linear BVPs, results
into solving sparse linear systems, as decribed in the preceding chapters. These sparse linear

systems can be considered as general discrete BVPs. Three sparse linear systems can be
distinguished:

i) Linear systems resulting from two-point BVPs.
ii) Linear systems resulting from multipoint BVPs.
iii) Linear systems resulting from two-points BVPs with parameters.

For these three cases we have the routines SPLS1, SPLS2 and SPLS3, respectively.

2. General discrete BVPs

In this section we will descibe the three types of discrete BVPs.

2.1 General discrete two-point BVPs

Consider the sparse lincar system

.0 Ax=b,

where
Ay B, X g2
A= S x=| . |.b=] .
An.1 By XN-1 gn
Ml MN XN b

Here A;, B, are (full) n X n -matrices, M 1, My are n X n-matrices, x;, Zi+1, b are n-vectors.

85

CH. VIIi,2

Writing problem (2.1) in a recursive way, we have 10 consider the recursion
(2.2a) Aixi+BiaXxia=giua, i=1,...,N-1,

and aBC

(2.2b) Mixi+Myxy=b.

The method for solving this type of linear system is described in §V.3.3 and is implemented in
routine SPLS1.

2.2 General discrete multipoint BVPs

Consider the sparse linear system

2.3) Ax=b,
where
Ay B, X3)
A= L x=| . |.b=] .
Am—l Bm X1 Em
My .. . M, Xn b

Here A;, B;,; are (full) n X»n-matrices, My, ..., M,, arc n Xn-matrices, X;, g:+1, b are n-
vectors.

Writing problem (2.3) in a recursive way we have to consider the recursion
(2.43) Aixi +BiaXi=gn, i=1,...,m=1,

and a multipoint BC
£
(2.4b) }; M;x, =b,

wherel =iy <iz<- - <i=m,ie. M =0 il l #i;,j=1,..., k. (Here we have taken into
account that some of the M; are &.)

The i; can be considered as the discrete version of the switching points of the continuous
multipoint BVP.

The method for computing an approximate solution is decribed in §VL.3.1.
For discrete multipoint BVP we have the routine SPLS2,

86

CH. VII1,2

2.3 General discrete two-point BVP with parameters

Consider the sparse linear system

2.5) Ax=h
where
Ay B, D,y
A= .o .,
An-1 By Dy
M, My M,

X =0x1, ... oL 22T, b =(g], ..., gk.blb]l],

A;, B;y1 are (full) n x n-matrices, D; 4y are n x[-matrices, M |, My are (n+1)xn-matrices, M,
is an (n+{)x!-matrix, x;, g:+1, b, are n-vectors and z, b, are [-vectors.

Writing system (2.5) in a recursive way we have to consider the recursion
(2.6a) Aixi+Binxint+Dinz=gq, i=1,...,N-1,

and aBC
@.65) Myxi+Myay+M,z= {g;}

The I-vector z can be considered as a vector of / parameters. The method for compulting an
approximate solution of (2.5) is described in §V.3.3.
For discrete two-point BVPs with parameters we have the routine SPLS3.

87

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

BOUNDPAK

Numerical Software for Linear
Boundary Value Problems

Part Two
by

R.M.M. Mattheij and G.W.M. Staarink

EUT Report 92-WSK-01
Eindhoven, February 1992

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven, The Netherlands

ISBN 9038600224

ISSN 0167-9708

Coden: TEUEDE

CONTENTS

PART TWO
CHAPTER IX Documentation
1. Introduction.
2. Subroutine MUTSGE
3. Subroutine MUTSPS
4, Subroutine MUTSSE
5. Subroutint MUTSIN
6. Subroutine MUTSMP
7. Subrouting MUTSMI
8. Subroutine MUTSPA
9. Subroutine MUTSDD
10. Subroutine MUTSEI
11. Subroutinc SPLS1
12. Subroutine SPLS2
13. Subroutine SPLS3
14. Error messages
15. Names of subroutines in BOUNDPAK

23
33
43
53
63
73
85
93
101
111
119
127

CHAPTER IX

DOCUMENTATION

1. Introduction

BOUNDPAK is a package containing Fortran *77 subroutines for solving lincar BVP, using
the algorithms which arce described in the preceding chapters. There are nine subroutines for
various BVP of ODE and three subroutines for discrete BVP.

BOUNDPAK is designed for non-stiff problems and uses a multiple shooting technique to
compute an approximation of the solution of the BVP at given output points.

The important subroutines of BOUNDPAK for the various types of problems are:

MUTSGE for two-point BVP with general BC

MUTSPS for two-point BVP with partially separated BC
MUTSSE for two-point BVP with completely scparated BC
MUTSIN for two-point BVP with BC at infinity

MUTSMP for multipoint BVP

MUTSMI for BVP with an integral BC

MUTSPA for two point BVP with parameicrs

MUTSDD for BVP with discontinuous data

MUTSEI for eigenvalue problems

SPLS1 for discrete two-point BVP

SPLS2 for discrete multipoint BVP

SPLS3 for discrete two-point BVP with paramelers

In §2 - §13 the documentation of these subroutines is given, §14 contains the list of error
messages and §15 the names of all the subroutines in BOUNDPAK.

Remark 1.1

The subroutines require a value for the machine constant EPS. In general the machine epsilon
is a suitablc valuc for EPS.

However, in the case of a discrete BVP, the EPS is used to determine whether a matrix is
singular or not, by checking the diagonal clements of the upper triangular matrix, obtained
from the QU-decomposition or the UQ-decomposition. Duc to rounding errors, the machine
epsilon might be too small to detect a singular matrix, which will result in an improper
partitioning and a rather large amplification factor. In such cases a multiple of the machine
epsilon will be a more suitable value for EPS.

CH. IX,1

For the machine epsilon we have the subroutine EPSMAC:
SUBROUTINE EPSMAC(EPS)
DOUBLE PRECISION EPS

On cxit EPS contains the vatue of the machinc epsilon.

Remark 1.2

In the documentation of the subroutines an example of their use is given. The programs for
these examples have been run on an Olivetti M24 personal computcr, operating under MS-
DOS V2.11, using the Olivetti MS-Fortran V3.13 R1.0 compiler and the MS Object Linker
V2.01 (large).

2. Subroutine MUTSGE

e ale v e e sk s e s o ke o she e e e

SPECIFICATION

Sk she she sk s sk sfe e o s e e e obe e e

Q06

SUBROUTINE MUTSGE(FLIN, FINH, N, IHOM, A, B, MA, MB, BCV, ALL ER,
1 NRTIL, TI, NTIL, X, U, NU, Q, D, KPART, PHI, W, LW, IW, LIW, IERROR)

INTEGER N, IHOM, NRTI, NTI, NU, LW, IW(LIW), LIW, IERROR

DOUBLE PRECISION A, B, MA(N,N), MB(N,N), BCV(N), ALI, ER(5), TINTD,

1 X(N,NTI), UNUNTD), Q(N.N,NTI), D(N,NTI), PHI(NU,NTD), W(LW)
EXTERNAL FLIN, FINH

e o e afe e e ke e e 3k abe e ofe b obe o

Purpose

ke 2 e 2 ok e e she e e ke o o ok ke ok

MUTSGE solves the two-point BVP:

—%x(t)zL(!)x(t)—l-r(:) ,A<t<BorB<t<A,

with BC:

My x(A) + Mg x(B)=BCV

where M4 and My are the BC matrices and BCV the BC vector.

e 3 e s sl ok ok e afe o sk e o o ol

Parameters
e e o S 3o ok o o o ok e e e e e e

FLIN

FINH

SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L(¢) of the
differential equation for t = T and place the result in the array FL(N,N).

FLIN must be declared as EXTERNAL in the (sub)program from which MUTSGE
is called.

SUBROUTINE, supplicd by the user, with specification:

JHOM

AB

MA MB

BCV

MUTSGE CH.IX2

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N-is the order of the system. FINH must evaluate the vector r{¢) of the
differential equation for t = T and place the result.in FR(1), FR(2), . . ., FR(N).
FINH must be declared as EXTERNAL in the ¢(sub)program from:which MUTSGE
is called.

In the case that the system is homogeneous FINH is-a dummy and one can use
FLIN for FINH in the call to MUTSGE.

INTEGER, the order of the system.
Unchanged on exit.

INTEGER.

THOM indicates whether the system is homogeneous or inhomogeneous.
THOM = 0 : the system is homogeneous,

IHOM = 1 : the system is inhomogeneous.

Unchanged on exit.

DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N).

On entry : MA and MB must contain the matrices in the BC:
My x(A)+Mp x(B)=BCV.

Unchanged on exit.

DOUBLE PRECISION array of dimension (IN).
On entry BCV must contain the BC vector.
Unchanged on exit.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2*ALI, a new output point is inserted.

If ALI < 1 the defaults are:

IfNRTE= 0 : ALI := max(ER(1), ER(2)} / (2*ER(3)),

if NRTI # O : ALI = SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On exit ALLcontains the actually used incremental factor.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

NRTI

MUTSGE CH.IX,2

ER(1) := 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1)

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimate of the condition number of the BVP,

On exit ER(5) contains an estimate of the amplification factor.

INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
I)NRTI=0, the subroutine automatically determines the output points using the
allowed incremental factor ALL
2)NRTI=1, the output points are supplied by the user in the array TL
3)NRTI>1, the subroutine computes the (NRTI+1) output points TI(K) by:
Tik)=A+ k-1)*(B ~ A)/NRTI;
so TI(1) = A and TI(NRTI+1) =B .
Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

DOUBLE PRECISION array of dimension (NTT).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: A=TI(1)< - <TKK)=BorA=TI(1)> --- >TKk)=B

(k denotes the total number of required output points).

On exit: TI(i),i = 1,2,..., NRTI, contains the output points.

INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D,
PHI. When NOTI denotes the total number of output points then

NTI 2 max(5, NOTI + 1). If the routine was called with NRTI > 1 and ALI £ 1, the
total number of required output points is (the entry value of NRTI) + 1,

s0 NTI 2 max(5, NRTI + 2).

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NTI).
On exit X(i,k) , i=1,2, ..., N contains the solution of the BVP at the output point
Tik), k=1, ..., NRTIL

DOUBLE PRECISION array of dimension (NU, NTI).

On exit U(i,k) i=1,2, . . ., NU contains the relevant elements of the upper triangular
matrix Ug, k=2, ..., NRTIL The elements are stored column wise, the jth column
of Uy is stored in U(nj + 1,k), Unj + 2,k), ..., Umj+j, k), wherenj=(—1) *j
/2.

KPART

PHI

Lw

Iw

LIW

IERROR

MUTSGE CH.IX2

INTEGER.

NU is one of the dimensions of U and PHI
NU must be at least equal to N * (N+1)/ 2.
Unchanged on exit..

DOUBLE PRECISION array of dimension (N, N, NTI).
On exit QG,jk)i=12,...,N, j=12,..., N contains. the N. columns, of the
orthogonal matrix @, k=1,..., NRTIL

DOUBLE PRECISION array of dimension (N, NTI).
If THOM = 0O the array D has no real use and: the user is recommended. to use the
same array for the X and the D:

IfIHOM=1:enexitD{ik)i=12,..., N contains the inhomogeneous term dy,
k=1.2,..., NRTI, of the multiple shooting recursion.

INTEGER.
On exit KPART contains the global k-partition of the upper triangular matrices Uy.

DOUBLE PRECISION array of dimension (NU, NTI).

On exit PHI contains a fundamental solution of the multiple shooting recursion.
The fundamental solution. is upper triangular and is. stored in: the same way as the
Us.

DOUBLE PRECISION array of dimension (L'W).
Used as work space.

INTEGER

LW is the dimension of W.

If ITHOM=0: LW 2 8*N + 7*N*N ; if [HOM=1: LW 2 9*N + 7*N*N.
Unchanged on exit.

INTEGER array of dimension (LIW)
Used as work space.

INTEGER
LIW is the dimension of IW. LIW 24*N + 1.
Unchanged on exit.

INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See § 14 for the other errors.

MUTSGE CH.IX2

e she s sk e he e o o 3 3 afe o o e

Auxiliary Routines
e e 3 e sfe Siesie e ok de sk e ok kol

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAYV, CDI, CNRHS,
COPMAT, COPVEC, CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP, FC2BVP,
FQUS, FUNPAR, FUNRC, GTUR, INPRO, INTCH, KPCH, LUDEC, MATVC, PSR,
QEVAK, QEVAL, QUDEC, RKF1S, RKFSM, SBVP, SOLDE, SOLUPP, SORTD, TAMVC,
TUR, UPUP, UPVECP,

e sfe ke S o s s sk o s e o ol o e e

Remarks
ke sk e s ke ok e 3¢ e she dbe she ofe o 2o

MUTSGE is writien by G.W.M. Staarink and R. M M. Mattheij.
Last update: november 1991,

3be o e she o e e 2k ake e e e e e ok e

Method

e ok ok e 3¢ afe e o e she e sfe dhe e e e

See chapter 11

e vde s ok ke 3 sk ke she e ok ol oo e

Example of the use of MUTSGE

ke sk db ke o ek e ke dfe e e ofe ok ek
Consider the ordinary differential equation
L x()=L@)x(t)+r(t), 0S<6

and a boundary condition M gx (0) + My x (6) = C with

1-2cos(2t) O 1+ 2sin(2t)
L{t)= 0 2 0
-1 —2sin(2¢) 0 1+ 2cos(2t)

(-1 +2cos(2t) — 2sin(22))e’ 1+¢b
r{t)= —e! , C=|1+¢b
(1 -2cos(2t) — 2sin(t))e’ 1+e6

andMA =Mp =1,

The solution of this problem is: x(t)=(e’, e, e’).

MUTSGE CH. IX,2

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

naoon

oNoNe'

3

oo

Oonan

DOUBLE PRECISION A,B,MA(3,3),MB(3,3),BCV(3),ALLER(5),TI(12),
1 X(3,12),U(6,12),Q(3,3,12),D(3,12),PHIREC(6,12), W(50),
2 EXSOL,AE

INTEGER 1W(13)

EXTERNAL FLIN,FINH

SETTING OF THE INPUT PARAMETERS

N=3

IHOM =1
ALI=0

ER(1) = 1.D-11
ER(2)=1.D-6
CALL EPSMACER®3)
NRTI=10
NTI=12
NU=6

LW =90

LIW =13
A=0D0
B=6.D0

SETTING THE BC MATRICES MA AND MB

DO 1100I=1,N
DO1000J=1,N
MA(LJ) = 0.D0
MB(,J) = 0.D0
CONTINUE
MA(LD) = 1.D0
MB(,I)= 1.D0
CONTINUE

SETTING THE BC VECTOR BCV
BCV(1) = 1.D0 + DEXP(6.D0)
BCV(2) = BCV(1)

BCV(3) = BCV(1)

CALL MUTSGE

MUTSGE CH.IX.2

CALL MUTSGE(FLIN,FINH,N,IHOM,A ,B,MA MB,BCV,ALLER,NRTLTINTI,
1 X,UNU,Q.D,KPART,PHIREC,W,LW IW LIW.JERROR)

IF (QERROR NE.0). AND.(IERROR.NE.200).AND.(IERROR.NE.213). AND.
1 (IERROR.NE.300)) GOTO 5000

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND
WRITING OF THE SOLUTION AT THE OUTPUTPOINTS

oNeoNeNe]

WRITE(6,200)
WRITE(6,190) ER(4),ER(5)
WRITE(6,210)
WRITE(6,200)
DO 1500 K = 1, NRTI
EXSOL = DEXP(TI(K))
AE = EXSOL - X(1,K)
WRITE(6,220) K, TI(K),X(1,K),EXSOL,AE
DO1300I=2,N
AE = EXSOL - X(I,K)
WRITE(6,230) X(I,K),EXSOL,AE
1300 CONTINUE
1500 CONTINUE
STOP
5000 WRITE(6,300) IERROR
STOP

190 FORMAT(CONDITION NUMBER ='D10.3,/,
1 " AMPLIFICATION FACTOR = *,D10.3,)

200 FORMAT(’)

210 FORMAT(I°,6X,'T",8X,”APPROX. SOL.’,9X,"EXACT SOL.’,8X,
1 ’ABS.ERROR’)

220 FORMAT(*,13,3X,F7.4,3(3X,D16.9))

230 FORMAT(" ’,13X,3(3X,D16.9))

300 FORMAT(’ TERMINAL ERROR IN MUTSGE: IERROR = ’,I4)

END
C
SUBROUTINE FLIN(N,T,FL)
C
DOUBLE PRECISION T,FL(N,N)
DOUBLE PRECISION TLSI,CO
C
TI=2D0*T

SI = 2.D0 * DSIN(TT)
CO = 2.D0 * DCOS(TI)
FL(1,1) = 1.D0 - CO
FL(1,2) = 0.D0

MUTSGE

FL(1,3)=1.D0+ SI

FL(2,1)=0.D0
FL(2,2)=2.D0
FL(2,3)=0.D0
FL(3,1)=-1.D0+ SI
FL(3,2) = 0.DO
FL(3,3)=1.D0+ CO
C
RETURN
C END OF FLIN
END
C
SUBROUTINE FINH(N,T,FR)
C
DOUBLE PRECISION T,FR(N)
DOUBLE PRECISION TLSLCO
C
TI=2D0*T
SI =2.D0 * DSIN(TT)
CO =2.D0 * DCOS(TI)
TI = DEXP(T)
FR(1) = (-1.D0 + CO - SD*TI
FR(2)=-TI
FR(3) = (1.D0 - CO - SDH*T1
C
RETURN
C END OF FINH
END

CONDITION NUMBER = 0.133D+01

AMPLIFICATION FACTOR = 0.221D+01

I T APPROX. SOL. EXACT SOL.

1 0.0000 0.100000001D+01 0.100000000D+01
0.100000001D+01 0.100000000D+01
0.100000001D+01 0.100000000D+01

2 0.6000 0.182211882D+01 0.182211880D+01
0.182211882D+01 0.182211880D+01
0.182211880D+01 0.182211880D+01

3 1.2000 0.332011694D+01 0.332011692D+01
0.332011695D+01 0.332011692D+01
0.332011690D+01 0.332011692D+01

4 1.8000 0.604964745D+01 0.604964746D+01
0.604964752D+01 0.604964746D+01

10

ABS. ERROR

-0.120756514D-07
-0.149754604D-07
-0.130719151D-07
-0.230910355D-07
-0.186150286D-07

0.276479217D-08
-0.162950000D-07
-0.299702672D-07

0.253190855D-07

0.189447806D-07
-0.521154062D-07

CH.IX2

10

11

2.4000

3.0000

3.6000

4.2000

4.8000

5.4000

6.0000

0.604964743D+01
0.110231763D+02
0.110231764D+02
0.110231764D+02
0.200855369D+02
0.200855369D+02
0.200855369D+02
0.365982345D+02
0.365982345D+02
0.365982344D+02
0.666863311D+02
0.666863311D+02
0.666863310D+02
0.121510418D+03
0.121510418D+03
0.121510417D+03
0.221406416D+03
0.221406416D+03
0.221406416D+03
0.403428793D+03
0.403428793D+03
0.403428793D+03

MUTSGE

0.604964746D+01
0.110231764D+02
0.110231764D+02
0.110231764D+02
0.200855369D+02
0.200855369D+02
0.200855369D+02
0.365982344D+02
0.365982344D+02
0.365982344D+02
0.666863310D+02
0.666863310D+02
0.666863310D+02
0.121510418D+03
0.121510418D+03
0.121510418D+03
0.221406416D+03
0.221406416D+03
0.221406416D+03
0.403428793D+03
0.403428793D+03
0.403428793D+03

11

0.319208493D-07
0.450974791D-07
-0.360646266D-07
0.539664380D-08
0.716164905D-08
-0.169556351D-07
-0.136451952D-07
-0.159334164D-07
-0.192572500D-07
-0.500945774D-08
-0.193062100D-07
-0.313411270D-07
0.170771948D-07
0.102888684D-07
-0.503274649D-07
0.372506967D-07
0.489649175D-07
-0.360825183D-07
0.207052722D-07
0.120757022D-07
0.149755124D-07
0.130721105D-07

CH.IX.2

3. Subroutine MUTSPS

3¢ 24 ok 3k ke ke spe e e dfe s e el e dle

SPECIFICATION

e de sk she s sboke ok el ek ek

SUBROUTINE MUTSPS(FLIN, FINH, N, IHOM, KSP, A, B, MA, MB, BCV, AL,
1 ER,NRTI, TL, NTL X, U, NU, Q, NQD, ZI, D, KPART, PHL, W, LW,
2 IW,LIW, IERROR)

C INTEGER N, IHOM, KSP, NRTI, NTI, NU, NQD, LW, IW(LIW), LIW, [IERROR
C DOUBLE PRECISION A, B, MA(N,N), MB(N,N), BCV(N), ALI, ER(5), THNTD,
C 1 X(N,NTI), UNUNTD, Q(N,NQD,NTI), ZIINQD,NTI), D(NQD.NTD),

C 2 PHI(NU,NTI), W(LW)

C EXTERNAL FLIN, FINH

b 35 e bk e o b 8 306 e e e ok o oke e

Purpose

e ok o e sk b ok Sde e e sk de ok e e ke

MUTSPS solves the two-point BVP with partially separated BC:

—%—x(t)=l.(t)x(t)+r(:) , A<t<BorB<t<A,
with BC:

lMA x(A)+1MB x(B):BCV‘

M, x(A)+ Mg x(B) =BCV?

where My, 'Mp are KSPXN BC matrices, 2My, 2Mp are (N—KSP)xN BC matrices and
either 2M, =@ or 2Mp =@, BCV! an KSP BC vector and BCV2 an (N—-KSP) BC vector.
Moreover, if KSP equals N, MUTSPS checks whether the BC are partially separated or not. If
not MUTSGE is used to compute the solution, otherwise a KSP < N is determined and the BC
are transformed such that the last N — KSP rows of either M4 or M are zero.

e e 3¢ o e 2k e sk e o e e sk e e

Parameters
e ke 3 s s 2fe o sfe e sk ok ol ok ole e e

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L(¢) of the
differential equation for t = T and place the result in the array FL(N,N).

13

FINH

IHOM

KSP

AB

MAMB

MUTSPS CH.1X3

FLIN must be declared as EXTERNAL in the (sub)program from which MUTSPS
is called.

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r(¢) of the
differential equation for t = T and place the result in FR(1), FR(2), . . ., FR(N).

FINH must be declared as EXTERNAL in the (sub)program from which MUTSPS
is called.

In the case that the system is homogeneous FINH is a dummy and one can use
FLIN for FINH in the call to MUTSPS.

INTEGER, the order of the system.
Unchanged on exit.

INTEGER.

IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogencous,

IHOM =1 ; the system is inhomogeneous.

Unchanged on exit.

INTEGER

KSP denotes the k-separation, i.¢. the number of rows of 1M, and Mg

On entry:

if 0 < KSP < N the BC are partially separated and if on entry IERROR = 0, the last
N-KSP rows of Mp are supposed to be zero. If on entry IERROR = 1, the last
N-~KSP rows of M, are supposed to be zero.

If KSP = N, the routine checks whether the BC are partially separated or not. If not
MUTSGE is called to compute the solution, otherwise the BC are transformed
appropriately.

On exit KSP contains the used k-separation. (If KSP = N we have general BC).

DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N,N).
On entry : MA and MB must contain the matrices in the BC:
My x(A)+Mp x(B)=BCV, where

M, 1My
My = M, and Mp = 20, |-

14

BCV

ALI

ER

NRTI

MUTSPS CH.IX3

If on entry 0 < KSP < N and IERROR = 0, the last (N—KSP) rows of MB are
supposed to be zcro and if IERROR = 1 the last (N-KSP) rows of MA are
supposed to be zero.

On exit: if on entry KSP=N and the BC are found 1o be partially separated, MA and
MB will contain the transformed BC matrices, otherwise the MA and MB are
unchanged.

DOUBLE PRECISION array of dimension (N).

On entry BCV must contain the BC vector; BCV=(BCV, BCV)T.

On exit: if on entry KSP=N and the BC are found to be partially separated, BCV
will contain the transformed BC vector, otherwise BCV is unchanged.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2*ALI, a new output point is inseried.

If ALI £ 1 the defaults are:

If NRTI = 0 : ALI ;= max(ER(1), ER(2)) / 2*ER(3)),

if NRTI > 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On exit ALI contains the actually used incremental factor.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

ER(1) := 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimate of the condition number of the BVP.

On exit ER(S) contains an estimate of the amplification factor.

INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
1)NRTI=0, the subroutine automatically determines the output points using the
allowed incremental factor ALL
2)NRTI=1, the output points are supplied by the user in the array TI.
3)NRTI>1, the subroutine computes the (NRTI+1) output points TI(k) by:
Tk =A+(k-1)*(B —~ A)/NRTI;
so TI(1) = A and TINRTI+1) =B .
Depending on the allowed incremental factor ALI, more output points may be

inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

15

Tl

NTI

NU

NQD

VA

MUTSPS CH.IX3

DOUBLE PRECISION array of dimension (NTT).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: A=TI()<- - <TIK)=BorA=TI)>--->TIk)=B

(k denotes the total number of required output peints).

Onexit: TI(i),i = 1,2, ..., NRTI, contains the output points.

INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, Z1, D,
PHI.

Let NOTI be the total number of output points, then NTI 2 max(5, NOTI + 1). If
the routine was called with NRTI > 1 and ALI < 1, the total number of required
output points is (the entry value of NRTI) + 1, so NTI 2 max(5, NRTI + 2).
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NTT).

Onexit X(i,k),i=1,2,..., N contains the solution of the BVP at the output point
TI(k),k=1,..., NRTL

DOUBLE PRECISION array of dimension (NU, NTI).

On exit UGik) i = 1,2,..., NU contains the relevant elements of the upper
triangular matrix U,k =2,..., NRTL The elements are stored column wise, the
jth column of Uy is stored in U(nj + 1, k), Unj + 2, k), ..., U] + j, k), where nj
=(-D*j/2

INTEGER.
NU is one of the dimensions of U and PHI.

NU must be at least equal to KSP * (KSP+ 1) /2.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NQD, NTI).
Onexit QG,jk)i=1.2,...,N,j=12,..., KSP contains the N columns of the
orthogonal matrix @, k=1,..., NRTL

INTEGER

NQD is one of the dimension of Q, ZI, D. NQD 2 KSP.
Unchanged on exit.

DOUBLE PRECISION array of dimension (NQD, NTI) If the BC are partially
separated the array ZI is used for storing the particular solution z;,i=1, ..., NRTI
of the multiple shooting recursion. Otherwise the array ZI is not used,

DOUBLE PRECISION array of dimension (NQD, NTI).

Onexit D(ik)i=12,..., KSP contains the inhomogencous term dy!,
k=1,.2,..., NRTI, of the multiple shooting recursion.

16

KPART

PHI

LW

1w

Liw

IERROR

MUTSPS CH.IX3

INTEGER.
On exit KPART contains the global k-partition of the upper triangular matrices Ug.

DOUBLE PRECISION array of dimension (NU, NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.

The fundamental solution is upper triangular and is stored in the same way as the
Uy.

DOUBLE PRECISION array of dimension (LW).
Used as work space.

INTEGER
LW is the dimension of W, LW 2 10*N + 6*N*N + N*KSP.
Unchanged on exit.

INTEGER array of dimension (LIW)
Used as work space.

INTEGER
LIW is the dimension of IW. LIW 2 3*N + KSP + 2.
Unchanged on exit.

INTEGER

On entry IERROR is used as a type indicator for the BC.
If on entry 0 < KSP < N then

IERROR = 0 indicates that 2Mp =@,

IERROR = 1 indicates that 2M, =@.

On exit IERROR is an error indicator.

If IERROR = 0 then there are no errors detected.

See § 14 for the other errors.

3 sk 2k e e e o e e e o e o S e e

Auxiliary Routines
35 ok dhe e e He s 3k e e dfe e e sbe ke sk

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAYV, CDI, CNRHS,
COPMAT, COPVEC, CONDW, CQlzI, CROUT, CWISB, DEFINC, DUR, FCBVP,
FC2BVP, FQUS, FUNPAR, FUNRC, GOPBC, GTUR, INPRO, INTCH, KPCH, LUDEC,
MATVC, MUTSGE, MTSP, PSR, QEVAK, QEVAL, QUDEC, RKF1S, RKFSM, SBVP,
SOLDE, SOLUPP, SORTD, TAMVC, TUR, UPUP, UPVECP.

17

MUTSPS CH.IX,3

e 3k ok e e e ke S e e e e sk e ke ke

Remarks
sk s sk o st e ok ok e s sl vle e ke skook

MUTSPS is written by G.W .M. Staarink and R.M.M. Mattheij.
Last update: november 1991,

¥ she sk e s S e S oo e e ol e ok o ok

Method

s 2k 3 ke sk o o e ol e e sk ke e e ok

See chapter I1

e e 3 3 S s o o she ok S e e e s e

Example of the use of MUTSPS

She she e S 3 e ke S s s e Sfe she e e 3k
Consider the ordinary differential equation
gt—x(:)zL(t)x(t)+r(t) , 016

and a boundary condition Mox (0) + Myx(6) = C with

1-2cos(2t) 0 1+2s5in(2t) (~1 + 2cos (2t) — 2s5in (2t))e’
L{t)= 0 2 0 s, rit)= —e! .
=1-2sin(2t) 0 1+ 2cos(2t) (1 =2cos2t) - 2sin(t))e’
001 001 1+e%
My=010|, Mp=|010| and C =|1+e%|.
100 000 1

The solution of this problem is: x(t) =(e', e’, e).

In the next program the solution is computed and compared to the exact solution.
This program has been run on an Olivetti M24 personal computer (see Remark 1.2).

DOUBLE PRECISION A,B,MA(3,3),MB(3,3),BCV(3),ALLER(5),TI(15),
1 X(3,12),U(3,12),Q(3.2,12),Z1(2,12),D(2,12),PHI(3,12), W(90),

2 EXSOL,AE
INTEGER IW(13)
EXTERNAL FLIN,FINH
C
C SETTING OF THE INPUT PARAMETERS

18

RO NG

oNeNe!

SEeNe

MUTSPS CH.IX3

N=3

KSP=2
IERROR =0
IHOM =1
ALI=0

ER(D) =1.D-11
ER(2) = L.D-6
CALL EPSMAC(ER(3))
NRTI= 10
NTI= 12
NU=3

NQD =2

LW =90

LIW =13
A=0D0

B =6.D0

SETTING THE BC MATRICES MA AND MB

DO 10001=1,N
DO 1000J=1,N
MA(LY) = 0.D0
MB(,J) = 0.D0

CONTINUE

MA(1,3) = 1.D0
MA(2,2) = 1.D0
MA(3,1) = 1.D0
MB(1,3) = 1.DO
MB(2,2) = 1.D0

SETTING THE BC VECTOR BCV
BCV(1) = 1.DO + DEXP(6.D0)
BCV(2) =BCV(1)

BCV(3)=1D0

CALL MUTSPS

CALL MUTSPS(FLIN,FINH,N,IHOM,KSP,A,B,MA,MB,BCV,ALLER ,NRTLTI,
1 NTLX,UNU,QNQD,ZI,D,KPART,PHIL, W LW IW,LIW JERROR)

IF (IERROR.NE.0). AND.(JERROR.NE.200). AND.(IERROR.NE.213).AND.
1 (IERROR.NE.300)) GOTO 5000

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING
OF THE SOLUTION AT THE OUTPUTPOINTS

19

1300
1500

5000

160

200
210

220
230
300

MUTSPS

WRITE(*,200)
WRITE(*,190) ER(4),ER(5)
WRITE(* 210)
WRITE(*,200)
DO 1500K =1, NRTI
EXSOL = DEXP(TI(K))
AE = EXSOL - X(1,K)
WRITE(6,220) K,TI(K),X(1,K),EXSOL,AE
DO 13001=2,N
AE = EXSOL - X(I,K)
WRITE(*230) X(I,K),EXSOL,AE
CONTINUE
CONTINUE
STOP
WRITE(6,300) IERROR
STOP

FORMAT(’ CONDITION NUMBER ='D10.3/,
1 > AMPLIFICATION FACTOR = *,D10.3,))

FORMAT(*)

FORMAT(1°,6X,"T’,8X,”APPROX. SOL.” 9X,’EXACT SOL.’,8X,
1 "ABS. ERROR’)

FORMAT(*,I3,3X,F7.4,3(3X,D16.9))

FORMAT(",13X,3(3X,D16.9))

FORMAT(TERMINAL ERROR IN MUTSPS: I[ERROR = ’,14)

END
SUBROUTINE FLIN(N,T,FL)

DOUBLE PRECISION T,FL(N,N)
DOUBLE PRECISION TISI,CO

TI=2D0*T

SI =2.D0 * DSIN(TI)
CO = 2.D0 * DCOS(TI)
FL(1,1) = 1.D0 - CO
FL(1,2) = 0.D0
FL(1,3)= 1.D0 + SI
FL(2,1) = 0.D0
FL(2,2) = 2.D0
FL(2,3) = 0.D0
FL(3,1) = -1.D0 + SI
FL(3,2) = 0.D0
FL(3,3) = 1.D0 + CO

20

CH.IX3

MUTSPS

C
RETURN
C END OF FLIN
END
C
SUBROUTINE FINH(N,T,FR)
C
DOUBLE PRECISION T,FR(N)
DOUBLE PRECISION TI,SL,CO
C
TI=2.D0*T
SI = 2.D0 * DSIN(TI)
CO = 2.D0 * DCOS(TI)
TI = DEXP(T)
FR(1) = (-1.D0 + CO - SDH*TI
FR(2)=-TI
FR(3) = (1.D0 - CO - SD*TI
C
RETURN
C END OF FINH
END
CONDITION NUMBER = 0.100D+01

AMPLIFICATION FACTOR = 0.143D+01

T

0000

.6000

1.2000

1.8000

2.4000

3.0000

APPROX. SOL.

.100000000D+01
-.100000002D+01
.100000002D+01
.182211882D+01
.182211882D+01
.182211880D+01
.332011694D+01
.332011695D+01
.332011690D+01
.604964745D+01
.604964751D+01
.604964744D+01
.110231763D+02
110231764D+02
.110231764D+02
.200855369D+02
.200855369D+02
.200855369D+02

EXACT SOL.

.100000000D+01
.1000000C0D+01
.100000000D+01
.182211880D+01
.182211880D+01.
.182211880D+01
.332011692D+01
.332011692D+01
332011692D+01
.604964746D+01
.604964746D+01
.604964746D+01
.110231764D+02
.110231764D+02
.110231764D+02
.200855369D+02
.200855369D+02
200855369D+02

21

ABS. ERROR

.000000000D+00
-.171180516D-07
-.160840654D-07
-209659907D-07
-.176029289D-07

.955206580D-0%
-.145581911D-07
-.254962655D-07

.242195828D-07

.193012015D-07
-.430982885D-07

.283331465D-07

.540218572D-07
-.664868463D-07
-.180926403D-07
-.122056782D-07
-214101092D-07
-216627782D-07

CH.IX3

10

11

3.6000

4.2000

4.8000

5.4000

6.0000

.365982345D+02
.365982345D+02
.365982344D+02
666863311D+02
.666863311D+02
.666863310D+02
.121510418D+03
121510418D+03
.121510417D+03
.221406416D+03
.221406416D+03
.221406416D+03
.403428794D+03
.403428793D+03
403428793D+03

MUTSPS

.365982344D+02
.365982344D+02
.365982344D+02
.666863310D+02
.666863310D+02
.666863310D+02
121510418D+03
121510418D+03
.121510418D+03
.221406416D+03
.221406416D+03
221406416D+03
A403428793D+03
.403428793D+03
403428793D+03

22

-315469819D-07
-.196939780D-07
.107361586D-08
-.249469991D-07
-270732272D-07
.290659301D-07
.122443566D-07
-418312851D-07
.405908480D-07
.560881404D-07
-.633252739D-07
.228180852D-08
-755363772D-08
A71179977D-07
.160840727D-07

CH.IX3

4, Subroutine MUTSSE

b sk e 3¢ s e Sje e ook sk 2k ke ke ek

SPECIFICATION

s sk e ke o 3 ok ok e e she ol s e de

SUBROUTINE MUTSSE(FLIN, FINH, N, THOM, KSP, A, B, MA, BCV, ALL ER,
1 NRTI, TL, NTI, X, U, NU, Q, NQD, D, ZI, W, LW, IW, LIW, IERROR)
INTEGER N, IHOM, KSP, NRTI, NTI, NU, NQD, LW, IW(LIW), LIW, IERROR
DOUBLE PRECISION A, B, MA(N,N), BCV(N), ALL, ER(S), TI(NTI), X(N.NTD),
1 UNUNTD, QN,NQD NTI}, DINQD,NT), ZNQD,NTD, W({LW)
EXTERNAL FLIN, FINH

e Rt NP

he she e e e dbe e e o e e e e ke e ke

Purpose

e 3 ok e o o ok ok o oo e e sk ke
MUTSSE solves the two-point BVP with completely separated BC:

—g;-x(t)=£,(t)x(t)+r(t) L A<t<BorB<t<A,
with BC:

Mp x(B) = BCV!
My x(A) = BCV?

where 'Mp is a KSP xN BC matrix, 2M4 an (N—-KSP) xN BC matrix, BCV! an KSP BC
vector and BCV? an (N -KSP) BC vector.

sk e e e s ek ok sk s ok ok ko o

Parameters
3k e 3 3 ol ek s sk e ok e e ok ok ok

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L{¢) of the
differential equation for t = T and place the result in the array FL(N,N).

FLIN must be declared as EXTERNAL in the (sub)program from which MUTSSE
is called. :

23

FINH

IHOM

KSP

AB

MA

BCV

ALl

MUTSSE CH. IX 4

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r(t) of the
differcntial equation for t = T and place the result in FR(1), FR(2), . .., FR(N).

FINH must be declared as EXTERNAL in the (sub)program from which MUTSSE
is called.

In the case that the system is homogeneous FINH is a dummy and one can usc
FLIN for FINH in the call to MUTSSE.

INTEGER, the order of the system.
Unchanged on exit.

INTEGER.

THOM indicates whether the system is homogeneous or inhomogencous.
THOM = 0 : the system is homogeneous,

THOM = 1 : the system is inhomogencous.

Unchanged on exit.

INTEGER

KSP denotes the k-separation, i.e. the number of rows of 'Mp.
Onentry: 0 < KSP < N.
Unchanged on exit.

DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N,N).

MA is used to supply the boundary condition matrices 'Mp and M.

On entry the first KSP rows of MA must contain the matrix !Mp and the last
(N—-KSP) rows of MA must contain the matrix 2M

Unchanged on exit.

DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector; BCV=(BCV!, BCV2)T,
Unchanged on exit.

DOUBLE PRECISION.
On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a

homogeneous solution between two successive output points becomes greater than
2*ALIL a new output point is inserted.

24

ER

NRTI

TI

MUTSSE CH.IX4

If ALI £ 1 the defaults are:

If NRTI = 0 : ALI := max(ER(1), ER(2)) / (2*ER(3)),

if NRTI > 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On exit ALI contains the actually used incremental factor.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

ER(1) := 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant (EPS).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an ¢stimate of the condition number of the BVP.

On exit ER(S) contains an estimate of the amplification factor.

INTEGER.
On entry NRT1 is used to specify the required output points. There are three ways
to specify the required output points:
1) NRTI =0, the subroutine automatically determines the output points using the
allowed incremental factor ALL
2)NRTI=1, the output points are supplied by the user in the array T1.
3)NRTI>1, the subroutine computes the (NRTI+1) output points TI(k) by:
Tik)=A+k-1)*(B — A)/NRTI;
50 TI(1) = A and TINRTI+1) =B .
Depending on the allowed incremental factor ALIL, more output points may be

inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

DOUBLE PRECISION array of dimension (NTI).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: A=TI() < <TIk)=BorA=TI(1)>--->TIk)=B

(k denotes the total number of required output points).

Onexit: TI(A),i=1,2, ..., NRTI, contains the output points.

INTEGER.

NTT is the dimension of TI and one of the dimensions of the arrays X, U, Q, ZI, D,
PHI

Let NOTI be the total number of output points, then NTI = max(5, NOTI + 1). If
the routine was called with NRTI > 1 and ALI £ 1 the total number of required

output points is (the entry value of NRTI) + 1, so NTI 2 max(5, NRTI + 2).
Unchanged on exit.

25

NU

NQD

Zl

LW

w

LIW

MUTSSE CH.IX 4

DOUBLE PRECISION array of dimension (N, NTT).

Onexit X(i,k),i=1.2,..., N contains the solution of the BVP at the output point
Tik),k=1,..., NRTL

DOUBLE PRECISION array of dimension (NU,NTI).

On exit UGk} i = 1,2,..., NU contains the relevant elements of the upper
triangular matrix Uy, k =2, ..., NRTL The elements are stored column wise, the
jth column of Uy is stored in U(nj + 1, k), Unj + 2, k), ..., U(nj + i, k), where nj =
G-1U*j/2.

INTEGER.

NU is one of the dimensions of U and PHL

NU must be at least equal to KSP * (KSP+ 1) /2.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NQD, NT).

Onexit QG,jk)i=1.2,...,N,j=12,..., KSP contains the N columns of the
orthogonal matrix ¢, k=1,..., NRTL

INTEGER

NQD is one of the dimension of Q, ZI, D. NQD > KSP.
Unchanged on exit,

DOUBLE PRECISION array of dimension (NQD, NTD).
Onexit D(ik)i=1,2,..., KSP contains the inhomogencous term d,
k=12,..., NRTI, of the multiple shooting recursion.

DOUBLE PRECISION array of dimension (NQD, NTT)
The array ZI is used for storing the particular solution z;,i = 1,.. ., NRTI of the
multiple shooting recursion.

DOUBLE PRECISION array of dimension (LW).
Used as work space.

INTEGER
LW is the dimension of W. LW 2 10*N + 6*N*N 4+ N*KSP.
Unchanged on exit.

INTEGER array of dimension (LIW)
Used as work space.

INTEGER

LIW is the dimension of IW. LIW = 3*N + KSP + 2.
Unchanged on exit.

26

MUTSSE CH.IX 4

IERROR INTEGER
Error indicator.
If IERROR = 0 then there are no errors detected; integration from A to B.
If IERROR = 1 then there are no crrors detected; integration from B 1o A
See §14 for the other errors.

24 2k 3k sfe e 3o S e Sl e e e sfe ke e e

Auxiliary Routines
sk sk 36 S o ok sh ofe ok ok o skoskeokodke sk

This routine calls the BOUNDPAK library routines AMTES, APLB, CDI, CNRHS,
COPMAT, COPVEC, CONDW, CQIZI, CRQUT, CWISB, DEFINC, DUR, FCBVP,
FC2BVP, FQUS, FUNPAR, INPRO, INTCH, KPCH, LUDEC, MATVC, QEVAK, QEVAL,
QUDEC, RKF1S, RKFSM, SOLDE, SOLUPP, SORTD, TAMVC, UPUP, UPVECP.

ke ok 3 o sk s g sk ok sk s ok o sk e ok

Remarks

ok e 3 3¢ o o e e e e ofe b ofe vde ke ke

MUTSSE is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991,

she i e ok e e ke 2o e dfe e sfe e o ok ok

Mcthod

e e e sk e ok ok e e e o ke ok o ook

Sce chapter 11

e vk ok sk skesfe ke sk sde sk deodekeok

Example of the use of MUTSSE

s s 3k e s e ke S o e 3k dfe ok Sk sk
Consider the ordinary differential equation
%x(t) =L{Yx(t)+r(t), 051 <6

and a boundary condition M, x(0) + Mp x(6) = C with

1-2cos(2t) 0 1+ 2s5in(21) (—1+2cos (2t) ~ 25in (21))e!
L(t)= 0 2 0 , rit)= —e! i
~1=2sin(2t) 0 1+2cos(2r) (1=2cos(2t) - 2sin(t))e’
000 001 e®
MA=={}00, M3=110 and C=e6.
100 000 1

27

MUTSSE CH. IX4

The solution of this problem is: x(¢) = (e’, e/, e*)T.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a Olivetti M24 personal computer (see Remark 1.2).

DOUBLE PRECISION A,B,MA(3,3),BCV(3),ALLER(5),TI(15),
1 X(3,12),U(3,12),Q(3.2,12),D(2,12),Z1(2,12),W(S0),
2 EXSOL,AE

INTEGER IW(13)

EXTERNAL FLIN,FINH

SETTING OF THE INPUT PARAMETERS

OO0

N=3

KSp=2
IHOM =1
ALlI=0
ER(1)=1.D-11
ER(2)=1.D-6
CALL EPSMAC(ER(3))
NRTI= 10
NTIi=12
NU=3
NQD=2

LW =90

LIW =13
A=0.D0

B =6.D0

C SETTING THE BC MATRICES MA AND MB

DO 1000I=1,N
DO1000J=1,N
MA(,J)=0.D0
1000 CONTINUE
MA(1,3)=1.D0
MA(2,2) = L.DO
MAG,1) = 1.D0

SETTING THE BC VECTOR BCV

ONONP!

BCV(1) = DEXP(6.D0)
BCV(2) =BCV(1)
BCV(3)=1.D0

28

SHORONY

1300
1500

5000

200
210
220

230
300

MUTSSE

CALL MUTSSE

CH. 1X 4

CALL MUTSSE(FLIN,FINH,N, JHOM,KSP,A, B, MA BCV,ALLER NRTLTINTI,

1 X,U,NU,Q,NQD,D,ZI, W,LW,IW,LIW,IERROR)

IF (IERROR.GT.1).AND.(JERROR.NE.200).AND.(IERROR.NE 2 13).AND.

1 AERROR.NE.300)) GOTO 5000

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING

OF THE SOLUTION AT THE OUTPUTPOINTS

WRITE(*,200) ER(4),ER(5)
WRITE(*,210)
DO 1500 K =1, NRTI
EXSOL = DEXP(TI(K))
AE = EXSOL - X(1,K)
WRITE(6,220) K,TI(K),X(1,K),EXSOL.AE
DO 13001I=2,N
AE = EXSOL - X(1,K)
WRITE(*,230) X(I,LK),EXSOL,AE
CONTINUE
CONTINUE
STOP
WRITE(6,300) IERROR
STOP

FORMAT(CONDITION NUMBER =',D10.3,/,
1 > AMPLIFICATION FACTOR =’,D10.3,))

FORMAT(1°,6X,'T’,8X,"APPROX. SOL.",9X,’EXACT SOL.’,8X,
1 "ABS.ERROR’,))

FORMAT(’,13,3X,F7.4,3(3X,D16.9))

FORMAT(’ °,13X,3(3X,D16.9))

FORMAT(’ TERMINAL ERROR IN MUTSSE: IERROR = ’,14)

END

SUBROUTINE FLIN(N,T,FL)
DOUBLE PRECISION T,FL(N,N)
DOUBLE PRECISION T1,S1,CO
TI=2D0*T

SI = 2.D0 * DSIN(TT)

CO = 2.D0 * DCOS(TI)
FL(1,1) = 1.DO - CO

29

MUTSSE

FL(1,2) = 0.DO
FL(1,3)= 1.D0+ SI
FL(2,1) = 0.D0
FL(2,2) = 2.D0
FL(2,3) = 0.D0
FL(3,1)=-1.D0 + SI
FL(3,2) = 0.D0
FL(3,3) = 1.D0 + CO
C
RETURN
C END OF FLIN
END
C
SUBROUTINE FINH(N,T,FR)
C
C
DOUBLE PRECISION T,FR(N)
DOUBLE PRECISION TI,SI,CO
C
TI=2D0*T
S1=2.D0 * DSIN(TD
CO = 2.D0 * DCOS(TI)
TI = DEXP(T)
FR(1) = (-1.D0 + CO - SH*TI
FR(2)=-TI
FR(3) = (1.D0 - CO - SD*TI
C
RETURN
C END OF FINH
END
CONDITION NUMBER = 0.100D+01
AMPLIFICATION FACTOR = 0.226D+01
I T APPROX. SOL. EXACT SOL.

1 .0000 .100000000D+01 .100000000D+01
.999999880D+00 .100000000D+01
999999910D+00 .100000000D+01

2 6000 .182211866D+01 .182211880D+01
.182211875D+01 .182211880D+01
.182211887D+01 .182211880D+01

312000 .332011687D+01 .332011692D+01
332011688D+01 .332011692D+01
332011706D+01 .332011692D+01

30

ABS. ERROR

.000000000D+00
.119845530D-06
.898404952D-07
.144821880D-06
461684040D-07

-738497004D-07
.544821295D-07
.399801263D-07

-.136792865D-06

CH. IX4

10

11

1.8000

2.4000

3.0000

3.6000

4.2000

4.8000

5.4000

6.0000

.604564751D+01
.604964741D+01
.604564757D+01
.110231765D+02
.110231763D+02
.110231764D+02
.200855369D+02
.200855367D+02
.200855368D+02
.365982342D+02
.365982344D+02
.365982345D+02
.666863309D+02
.666863310D+02
666863312D+02
.121510418D+03
.121510417D+03
.121510418D+03
.221406416D+03
.221406416D+03
.221406416D+03
.403428793D+03
.403428793D+03
403428793D+03

MUTSSE

.604964746D+01
.604964746D+01
.604964746D+01
.110231764D+02
.110231764D+02
110231764D+02
.200855369D+02
.200855369D+02
.200855369D+02
.365982344D+02
.365982344D+02
.365982344D+02
.666863310D+02
.666863310D+02
666863310D+02
J121510418D+03
121510418D+03
.121510418D+03
221406416D+03
221406416D+03
221406416D+03
403428793D+03
403428793D+03
[403428793D+03

31

~425415418D-07
.534903659D-07
-.101300240D-06
-877975967D-07
.981698403D-07
-.626071639D-09
-.183782873D-07
.177060244D-06
.144276381D-06
.256026752D-06
.725795601D-07
-728410896D-07
.127783622D-06
.529505257D-07
-201877768D-06
-.316227045D-07
.580042609D-07
-.174474522D-06
-.123719332D-06
.101443163D-06
-.426184954D-07
.240764280D-07
.000000000D+00
.000000000D+00

CH.IX 4

5. Subroutine MUTSIN

e e b o e 3k e o sl sfeshe e e dle ke ok

SPECIFICATION
el dolooRdokok

SUBROUTINE MUTSIN(FLIN, FINH, N, IHOM, A, B, C, BMA, BMINF, BCV,
1 ALL ER, NRTI, TI, NT1, IEXT, X, NRSOL, U, NU, Q, D, KU, KE,
2 KEXT,KPART, PHI, W, LW, IW, LIW, IERROR)

C INTEGER N, IHOM, NRTI, NT1, IEXT, NRSOL, NU, KU, KE, KEXT, LW,
C 1 IW(LIW), LIW, IERROR

C DOUBLE PRECISION A, B, BMA(N,N}, BMINF(N,N), BCV(N), ALL ER(5),
Cc 1 TINTD, X(NNTLN), UNUNTL, QONLN,NTT), DIN,NTD),

C 2 PHI(NUNTD, WLW)

C EXTERNAL FLIN, FINH

e 3¢ e o Sk e e 3 she e Ol dfe e e dfe o

Purpose

ke s 3k 35 3§ o5 S e sk o dhe ok oo e e ok

MUTSIN solves the two-point BVP defined on an infinite interval:
-g—{x(t)zla(t)x(t)+r(t) , t>A,

with BC:
Mg x(A)+ M x(e2)=BCV

where M, and M. are the BC matrices and BCV the BC vector.
MUTSIN gives output on a subinterval [A, B], specified by the user.

sheadede e ok koo e e ook o e ok

Parameters
ke sfe 3 e e 3 3 dke e o ofe e afe e ok ke

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L(z) of the
differential equation for t = T and place the result in the array FL(N,N).

FLIN must be declared as EXTERNAL in the (sub)program from which MUTSIN
is called.

33

THOM

AB

BMA

BMINF

BCV

MUTSIN CH.IX,5

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r(¢) of the
differential equation for t = T and place the result in FR(1), FR(2), ..., FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSIN
is called.

In the case that the system is homogeneous FINH is a dummy and one can use
FLIN for FINH in the call to MUTSIN.

INTEGER, the order of the system.
Unchanged on exit.

INTEGER.

IHOM indicates whether the system is homogeneous or inhomogeneous.
THOM = 0 : the system is homogeneous,

THOM = 1 : the system is inhomogeneous.

Unchanged on exit.

DOUBLE PRECISION.

A,B denotes the interval [o,B] (see § NL2). If M.#D, B should be taken
sufficiently large. Unchanged on exit.

DOUBLE PRECISION.

‘When IEXT = 0 C must contain the value for Y. (see §111.4). The actually used
value for vy is stored in THKEXT),

When IEXT # 0, the routine computes an solution using the given value in C as the

new value for v, If TI(1) < TILKEXT) then C must be greater than TI(KEXT) and C
must be smaller than THKEXT) if T(KEXT) < TI(1).

Note that on subsequent call to MUTSIN with IEXT #0, the value of KE may
change.

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N).
On entry BMA must contain the BC matrix M, .
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N)
On entry BMINF must contain the BC matrix M ...
Unchanged on exit.

DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.

ER

NRTI

MUTSIN CH.IX,5

Unchanged on exit.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2*ALl, a new output point is inserted.

If ALI £ 1 the defaults are: |

If NRTI £ 0 : ALI ;= max(ER(1), ER(2)) / ER(3),

if NRTI > 0 : ALl := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On the extension interval [B, C 1, an allowed incremental factor equal to
SQRT(RMAX) is used.

On exit ALI contains the actually used incremental factor on the interval [A, B].

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

ER(1) ;= 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimation of the condition number of the BVP,

On exit ER(S) contains an estimated error amplification factor.

INTEGER,
On entry NRTI is used to specify the required output points on the interval [A,B].
There are three ways to specify the required output points:
I)NRTI<0, the subroutine automatically determines the output points using the
allowed incremental factor ALL
2)NRTI=1, the output points are supplied by the user in the array TL
3)NRTI> 1, the subroutine computes the (NRTI+1) output points TI(k) by:
TKk)=A+&k-1)*(B - A)/NRTI;
so TI(1)= A and TIINRTI+1)=B .
Depending on the allowed incremental factor ALI, more output points may be

inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points on the interval [A,B].

DOUBLE PRECISION array of dimension (NTI).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: A=TI(1)<-- - <TIk)=BorA=TI(1)>--->TIk) =B
(k denotes the total number of required output points).

On exit: TI(i),i = 1,2,. .., NRTI, contains the output points and TI(j),

35

IEXT

NRSOL

MUTSIN CH.IX.S

j=NRTI+ 1, ..., KEXT the points used on the interval [B, v 1.

INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D,
PHL

If k denotes the number of output points on the interval [A,B] and m denotes the
number of points used on the extension interval (B, y], then

NTI 2 max(5,k+ 1)+ m.

If the routine was called with NRTI> 1 and ALIS1thenk=NRTI+ landm 21,
as at least one point is needed on the extension interval, i.e. ¥, so

NTI 2 max(5, NRTI + 2) + 1.

If the incremental factor of a homogeneous solution on the interval

[B, v] becomes greater than SQRT(RMAX) an additional point is used on the
extension interval. In this case m > 1.

Unchanged on exit.

INTEGER.

IEXT is a flag concemning the extension interval. On the first call 1o MUTSIN,
IEXT must be zero. When the extension interval { B , C] is too small, a new call to
MUTSIN with IEXT = 1 and a new value for C results in the computation of a new
solution with the new value for C. In this case MUTSIN continues the integration
from the old value of C to the new value of C, so only the value for IEXT and C
may be changed between succesive calls.

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NTI, N).

On exit X(ik,1),1i= 1,2,..., N contains the solution of the BVP at the output
point TI(k), k = 1,..., NRTL. If there is no unique solution the base of the
manifold is given in X(i,kj),j=2,..., NRSOL.

INTEGER.

On exit NRSOL contains the information concerning the uniqueness of the
solution. If NRSOL = 1 the solution is unique, otherwise the solution of the
problem is a manifold for which the base is given in X(i,k,j),j=2, ..., NRSOL.

DOUBLE PRECISION array of dimension (NU, NTI).

On exit U@i,k) i = 1,2,..., NU contains the relevant elements of the upper
triangular matrix Uy, k =2, .., , KEXT. The elements are stored column wise, the
jth column of Uy is stored in U(nj + 1, k), U(nj + 2, k),...,U(nj + j, k), where nj =
G-D*j/2

INTEGER.
NU is one of the dimensions of U and PHI.
NU must be at least equal to N * (N+1) /2.

36

KEXT

KU

KPART

PHI

MUTSIN CH.IX,5

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, NTI).
On exit QG,jk)i=1.2,...,N,j=12,..., N contains the N columns of the
orthogonal matrix Q¢ , k=1, ..., KEXT.

DOUBLE PRECISION array of dimension (N, NTI).
If IHOM = O the array D has no real use and the user is recommended 1o use the
same array for the X and the D.

IfTHOM = 1:onexit D(i,k)i= 1,2, ..., N contains the inhomogeneous term dj,
k=172, ..., KEXT, of the multiple shooting recursion.

INTEGER.

KEXT denotes the total number of points used to compute the solution. If k denotes
the number of output points on the interval [A, B] and m the number of points
used on the extension interval [B, C], then KEXT =k + m,

On entry: if IEXT = 0, no value for KEXT is needed; if IEXT = 1, KEXT must
contain the exit value of the previous call to MUTSIN,

On exit: KEXT contains the value fork + m.

INTEGER.
On exit KU is the number of detected unbounded growing modes on the interval

[A, C]. Growing modes with an increment greater than 2 are considered 10 be
unbounded modes.

INTEGER.

On entry: when IEXT # 0, KE must contain the value from the previous call to
MUTSIN.

On exit: KE contains the detected number of exponentially growing modes on the
interval [B , C]. Growing modes are considered to be exponentially increasing
when there increment on the interval [B, C] is greater than

1/ max(ER(1), ER(2)).

INTEGER.
On exit KPART contains the global k-partition of the upper triangular matrices Uy.

DOUBLE PRECISION array of dimension (NU, NTT).

On exit PHI contains the (KE + 1)* till the N** columns of the fundamental
solution of the multiple shooting recursion. The fundamental solution is upper
triangular and is stored in the same way as the Uy.

DOUBLE PRECISION array of dimension (LW).
Used as work space.

37

MUTSIN CH. IX,)5

LW INTEGER
LW is the dimension of W.
If THOM = 0: LW 2 8*N + 7*N*N; if IHOM = 1: LW 2 9%N + 7*N*N,
Unchanged on exit,

Iw INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension of IW. LIW 2 4*N + 1.
Unchanged on exit.

IERROR INTEGER
Error indicator; if IERROR = 0 then there are no errors detected.
See §14 for the other errors.

e e o afe e ok sje 3k e o e e o e ok e

Auxiliary Routines
s e ok e e ook e e e e e e e ke ok

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAYV, CDI, CEVIN,
CNRHS, COPMAT, COPVEC, CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP,
FC2BVP, FQUS, FUNPAR, FUNRC, GTURI, INPRO, INTCH, KPCH, LUDEC, MATVC,
PSR, QEVAK, QEVAL, QUDEC, RKF1S, RKFSM, SBVP, SOLDE, SOLUPP, SORTD,
TAMVC, TUR, UPUP, UPVECP.

e e 2k e o ek dfe o she e 2k s o oo ofe

Remarks

34 sk e 2k ke oe s ke s e e oo o e e o

MUTSIN is written by G.W.M. Staarink and R M.M. Mattheij.
Last update: november 1991,

e 3k e she ok e sk e ofe o e she o e e 2

Method

3 ok i o sk e o e ok o ok sde S e s sle

See chapter I11.

3k 3k 3 Sk ok ok e e o e e e e oo sk

Example of the use of MUTSIN

sk Sk e e S e 3 s sk e ke s ke ok e ke

38

MUTSIN CH.IX)5

Consider the ordinary differential equation
2 2+04: -4-0.41¢
Gx@)= [o -0.4:}"(‘)" [041 }

and a boundary condition

1
i)

The solution of this problem is:
x@)=[1-exp(—0.2¢2),1+exp(—~0.2t2) |7 .

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

DOUBLE PRECISION A ,B,C,MA(2,2) MINF(2,2),BCV(2),AMP,ER(5).TI(13),
1 X(2,13,2),U(3,13),Q(2,2,13),D(2,13),PHIREC(3,13),
2 W(46),XEX.E,ERR

INTEGER IW(9)

EXTERNAL FLIN,FINH

SETTING OF THE INPUT PARAMETERS

ann

N=2

IHOM =1
A=0D0

B =10.D0
C=20.D0
ER(1) = 1.1D-12
ER(2) = 1.D-6
CALL EPSMAC(ER(3))
NRTI = 10
NTI=13
IEXT=0
NU=3

LW =46
LIW=9

SETTING THE BC MATRICES MA AND MINF AND THE BC VECTOR BCV

nOn

MA(1,1)=0.D0
MA(1,2)=0.D0

39

ooy

oRoNoNe!

noaa

1100

1200

MUTSIN CH.IX,S

MA(2,1)=0.D0
MAQ2,2)=1.D0
MINF(1,1) = 1.DO
MINF(1,2) = 0.D0
MINF(2,1) = 0.DO
MINF(2,2) = 0.D0
BCV(1)=1.D0
BCV(2) =2.D0

CALL TO MUTSIN

CALL MUTSIN(FLIN,FINH,N,IHOM,A,B,C MA MINF,BCV,AMP ER NRTLTINTI,
1 IEXT,X,NRSOL,UNU,QDKUKEKEXTKPART PHIREC,W LW,
2 IWLIWIERROR)
IF (IERROR.EQ.0).OR.((IERROR.GE.200). AND.(IERROR.LE 213)).0R.
1 (IERROR.EQ.300).0R.((IERROR.GE.330).AND.
2 (IERROR.LE.340))) THEN

PRINTING A, B ,THE ACTUAL USED VALUE FOR GAMMA, TOLERANCE,
CONDITION NUMBER AND AMPLIFICATION FACTOR.

WRITE(*,100) A,B,TKEXT),ER(2),ER{4),ER(S)

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND PRINTING
THE SOLUTION AT THE OUTPUT POINTS.

WRITE(*,110)
DO 1100 K =1, NRTI

E = DEXP(-0.2d0*TI(K)*TI(K))

XEX=1.D0-E

ERR = XEX - X(1,K,1)

WRITE(*,120) TI(K),X(1,K,1),XEX,ERR

XEX =1.D0 +E

ERR = XEX - X(2,K,1)

WRITE(*,130) X(2.K,1),XEX.ERR

CONTINUE
IF (NRSOL.GT.1) THEN

WRITE(*,140)

DO 1200 K = 1, NRTI
WRITE(*,150) TI(K),X(1,K,2)
WRITE(*,160) X(2,K,2)

CONTINUE
ENDIF
ENDIF NRSOL
ELSE
WRITE(*,300) [ERROR

40

MUTSIN CH.IX)5

ENDIF
C ENDIF IERROR

100 FORMAT(A ’,D12.5,2X,’B =’,D12.5,2X,’C =",D12.5,/,
1 'TOL =",D12.5,2X,” COND =’,D12.5,2X,’”AMPLI = ’,D12.5,/)

110 FORMAT(" *,3X,'T’ 9X,"X APPROX’,11X,’X EXACT’,11X,’ERROR"./)

120 FORMAT(*,F7.3,3(2X,D16.9))

130 FORMAT(*,7X,3(2X,D16.9))

140 FORMAT(SOLUTION IS OF THE FORM X + LAMBDA * PHI'/,” °,3X,'T",
1 12X,’PHI.))

150 FORMAT(*,F7.5,2X,D16.9)

160 FORMAT(*,9X,D16.9)

300 FORMAT(TERMINAL ERROR IN MUTSIN: IERROR = ’,I3)

STOP
END
SUBROUTINE FLIN(N,T,F)

DOUBLE PRECISION T,F(2,2)

F(1,1)=2.D0
F(1,2)=2D0+04D0* T
F2,1)=0.D0
F(2,2)=-04D0* T
RETURN

END

SUBROUTINE FINH(N,T,R)

DOUBLE PRECISION T,R(2)
R(1) =-04D0 * T - 4.D0
R2)= 04D0* T

RETURN
END

A= .00000D+00 B= .10000D+02 C= .16955D+02

TOL = .10000D-05 COND = .10000D+01 AMPLI= .19981D+01
T X APPROX XEXACT ERROR
000 .222044605D-15 .000000000D+00 -.222044605D-15

-200000000D+01 200000000D+01 .199840144D-14
1.000 .181269247D+00 .181269247D+00 -.569665703D-10

41

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

.181873075D+01
.550671036D+00
.144932896D+01
.834701112D+00
.116529885D+01
.959237798D+00
.104076220D+01
993262055D+00
.100673795D+01
.999253414D+00
.100074659D+01
999944546D+00
.100005545D+01
.999997223D+00
.100000276D+01
.999999785D+00
.100000009D+01
.999999089D+00
.100000000D+01

MUTSIN

.181873075D+01
.550671036D+00
.144932896D+01
.834701112D+00
.116529889D+01
.959237796D+00
.104076220D+01
.993262053D+00
.100673795D+01
.099253414D+00
.100074659D+01
999944548D+00
.100005545D+01
999997239D+00
.100000276D+01
.999999908D+00
.100000009D+01
999959998D+00
.100000000D+01

42

.569801983D-10
.189427252D-09
-.189325000D-09
-.691497193D-09
.692252700D-09
-.192215954D-08
.192774530D-08
-.160490565D-08
-.164617830D-08
-.210793272D-09
.515759879D-09
.216747531D-08
.859421423D-10
.166426903D-07
.793609622D-11
.123031966D-06
.434541292D-12
.509093262D-06
.139888101D-13

CH.IX.S

6. Subroutine MUTSMP

ke ke 3k ke e S sk ok ofe e e oo e e e e

SPECIFICATION

e s 26 o 24 3 e ke e o e e o e dfe ok

SUBROUTINE MUTSMP(FLIN, FINH, N, IHOM, TBP, NBP, BCM, BCV, ALlI,

1 ER,NRTY, TI, NTL X, U,NU, Q, D,
2 KPART, PHI, W, LW, IW, LIW, IERROR)
C INTEGER N, IHOM, NBP, NRTINBP), NTI, NU, KPART(NBP), LW, IW(LIW),
C 1 LIW, IERROR
C DOUBLE PRECISION TBP(NBP), BCM(NBP), BCV(N), ALI ER(5), TNTD),
C I X(N,NTI), UNUNTD), Q(N,N,NTT), D(N,NTD), PHI(NU,NTI), W(LW)
C EXTERNAL FLIN, FINH
e 3 ke N 3k e sk e sk o o e e sfe e e
Purpose
e o b o e ek k¢ e e e o o o o ok

MUTSMP solves the multipoint BVP:

-gt—x(t)=L(t)x(t)+r(t) y SO or o St<oy,
with BC:

Mix(o)+Myx(o)+ -+ My x(oy)=BCV, k>1,

where My, j=1,..., k are the BC matrices, BCV the BC vector and oy < -+ <0y Or
oy > - > oy the switching points.

s ke e b sk sfe ke e st e e e ke ok e ok

Parameters
e 2 3¢ S 3 e o sfe e e e ke e e dfe ke

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L(¢) of the
differential equation for t = T and place the result in the array FL(N,N).

FLIN must be declared as EXTERNAL in the (sub)program from which MUTSMP
is called.

43

FINH

IHOM

TBP

BCM

BCV

AL

MUTSMP CH. IX,6

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r(¢) of the
differential equation for t = T and place the result in FR(1), FR(2), . . ., FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSMP
is called.

In the case that the system is homogeneous FINH is a dummy and one can use
FLIN for FINH in the call t0 MUTSMP.

INTEGER, the order of the system,
Unchanged on exit.

INTEGER.

THOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous,

IHOM = 1 : the system is inhomogeneous.

Unchanged on exit.

DOUBLE PRECISION array of dimension (m), m 2 NBP.

On entry TBP must contain the switching points ., j =1, ..., NBP in monotone
order,ie. TBP(j) =0, j =1,..., NBP.
Unchanged on exit.

INTEGER. NBP is the number of switching points.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, m), m 2 NBP.
Onentry : BCM(., ., j) must contain the BC matrix M;, j =1, ..., NBP.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
Unchanged on exit.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2*ALL a new output point is inserted.

If ALI < 1 the defaults are:

If NRTI(1) = 0 : ALI ;= max(ER(1), ER(2)) / (2*ER(3)),

if NRTI(1) # 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represenied on the computer used.

ER

NRTI

Tl

MUTSMP CH.IX6

On exit ALI contains the actually used incremental factor.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

ER(1) := 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimate of the condition number of the BVP.

On exit ER(5) contains an estimate of the amplification factor.

INTEGER array of dimension (m), m 2 NBP

On entry NRTI is used to specify the required output points. There are three ways

to specify the required output points:

1) NRTI(1) = 0, the subroutine automatically determines the output points using the
allowed incremental factor ALL

2) NRTI(1) = 1, the output points are supplied by the user in the array TI,

3) NRTI(1) > 1,in this case the intervals [TBP(j—1, TBP(j) 1,j=2,..., NBP are
divided into NRTI(j) subintervals of equal length. The endpoints of
these intervals are the required output points.

Depending on the allowed incremental factor ALI, more output points may be

inserted in the cases 2 and 3.

On exit: NRTI(1) contains the total number of output points.

Forj=2,..., NBP: if NRTI(j) < O then no change of dichotomy is detected on the

succesive intervals [TBP(j—1) , TBP(j)] and [TBP(j) , TBP(j+1) 1.

If NRTI(j) > O then a change of dichotomy is dectected at TBP(j) and NRTI(j)

contains the number of output points on the interval [TBP(@) , TBP(j)], where

i <j, NRTIG) > 0, NRTI(k) < 0, i <k < j, i.e. TBP() is the previous point where a

change of dichotomy was detected.

DOUBLE PRECISION array of dimension (NTI).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: o =TH1) < --- <TIK) =0 or oy =THD > -+ > TIK) = o
(k denotes the total number of required output points). The output points must
include all switching points o;, j =1, ..., NBP.

On exit: TI(i),i=1,2, ..., NRTI(1), contains the output points.

INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D,
PHI. When m(j) denotes the number of output points on the interval

[TBP(G~1), TBP(j)],j=2,..., NBP, and m the number of output points on the
interval [TBP(1) , TBP(NBP)], i.e. m =m(2) + - - - +m(NBP)-NBP+2, then

45

PH1

MUTSMP CH.IX.,6

NTIZm + 1 + max(4-m(NBP), 0).

If the routine was called with NRTI(1)> 1 and ALI < 1 then

m = NRTI(2) + - - - + NRTI(NBP)+ 1, m(NBP)=NRTINBP)+1 ; s0
NTI 22 + NRTI(2) + - - - + NRTI{NBP) + max(3—NRTI(NBP), 0).
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NTI).

Onexit X(i,k),i=1,2,..., N contains the solution of the BVP at the output point
TIk), k=1, ..., NRTI(1).

DOUBLE PRECISION array of dimension (NU, NTI).

On exit UGk) i = 1,2,..., NU contains the relevant elements of the upper
triangular matrix U, k = 2, ..., NRTI(1) The elements are stored column wise,
the jth column of U, is stored in U(nj + 1, k), U(nj + 2, k), . . ., U(nj + j, k), where
nj={-1)*j/2.

INTEGER.

NU is one of the dimensions of U and PHI
NU must be at least equal to N * (N+1) /2.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, NTI).
Onexit Qijk)i=12,...,N,j=12,..., N contains the N columns of the
orthogonal matrix @, k=1, ..., NRTI(1).

DOUBLE PRECISION array of dimension (N,NTI).

If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D,

IfIHOM = 1 :onexit DG k) i=1,2,..., N contains the inhomogeneous term d;,
k=1,2,..., NRTI(1), of the multiple shooting recursion,

INTEGER array of dimension (m), m 2 NBP

On exit KPART(j) contains the giobal partitioning parameter on the interval

[TBP(i;) , TBPGj+1) 1, j= 1, ..., where the TBP(i;) are the points where a change
of dichotomy has been detected; i; <iz < - -+ and NRTI(;) > 0.

DOUBLE PRECISION array of dimension (NU, NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.

The fundamental solution is upper triangular and is stored in the same way as the
Ug.

DOUBLE PRECISION array of dimension (LW).
Used as work space.

46

MUTSMP CH. IX,6

LW INTEGER
LW is the dimension of W.
If ITHOM=0: LW 2 (8 + 2.5*NBP)*N + (7 + 1.5*NBP)*N*N.
If IHOM=1: LW 2 (9 + 2.5¥NBP)*N + (7 + 1.5*NBP)*N*N.
Unchanged on exit.

Iw INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER

LIW is the dimension of IW. LIW = (4 + NBP)*N + NBP + 2.
Unchanged on exit.

IERROR INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See §14 for the other errors.

ke e ke e S 3 sk e o e dfe e 3 e e e

Auxiliary Routines
Sk 3 25 o e dhe ke ok dbe o e shede vke o o

This routine calls the BOUNDPAK library routines AMTES, APLB, CDI, CNRHS,
COPMAT, COPVEC, CONDW, CROUT, CWISB, DEFINC, DUR, FCBVP, FC2BVP,
FQUS, FUNPAR, FUNRC, GKPMP, GTUR, INPRO, INTCH, KPCH, LUDEC, MATVC,

MTSMP, PSR, QEVAK, QEVAL, QUDEC, RKF1S, RKFSM, SMBVP, SOLDE, SOLUPP,
SORTD, TAMVC, TUR, UPUP, UPVECP.

34 3 ke e e ke e 3 e ke e sfe dfe s de ke

Remarks
She 3fc o sk sk Sk vl e dle afe e ok ok o e e

MUTSMP is written by G.W_M. Staarink and R.M.M. Mattheij.
Last update: november 1991.

3he sk 3 ke 3k she ke e e S e e S e e ok

Method

3§ e 3 3k e she ok e ok e s ke she sk dkeoke

See chapter IV,

47

MUTSMP CH.IX,6

3 e ke o e shesfe e o s le e ode sk s ok

Example of the use of MUTSMP
S e ke sk e s s e e s e she ook e sk

Consider the ordinary differential equation
%x(t):b(t)x(t)-kr(t) , —1< <1

and a boundary condition:

3 8fseoe[t o 3 2]ro-]).

where

—t+4a—(t +12)cos(2t) 1+(t +42)sin(2t)
Li)= -1+ +12)s5in2t) —~t+%+@ +%)cos2)

_|=3+cos(t)(cos(t)~sin(£)) (2t + 1))e
r@)= (=1 +sin(@®)(sin(ty —cos (1))t + 1))e* | -

The solution of this problem is: x(t)=(e™* ,e™). The ODE has fundamental solutions
growing like exp (—¢? and exp (¢), so there is a change of dichotomy at ¢ = 0.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

DOUBLE PRECISION TBP(3),BCM(2,2,3),BCV(3),ALLER(5),TI(10),
1 X(2,10),U(3,10),Q(2,2,10),D(2,10),PHIREC(3,10),W(79),
2 EXSOL,AE

INTEGER KPART(3),NRTI(3),IW(19)

EXTERNAL FLIN,FINH

SETTING OF THE INPUT PARAMETERS

[oReNe)

N=2

THOM =1
NBP=3
TBP(1) =-1.D0
TBP(2) = 0.D0
TBP(3) = 1.D0
ALI=0

ER(1) = 1.D-11

48

oo

1100

oNoN!

oNoNe!

oNeRoNe!

MUTSMP CH.IX6

ER(2) = 1.D-6

CALL EPSMAC(ER(3))
NRTI(1)=2

NRTI(2) =4
NRTI(3)=4

NTI= 10

NU=3

LW =79

LIW=19

SETTING THE BC MATRICES

DO 11001=1, NBP
DO 1100J=1,N
DO 1100L=1,N
BCM(J,L.I) = 0.D0
CONTINUE
BCM(1,1,1) = 1.D0
BCM(2,1,2) = 1.D0
BCM(2,2,3) = 1.D0

SETTING THE BC VECTOR BCV

BCV(1) = DEXP(1.D0)
BCV(2) = 1.D0 + DEXP(-1.D0)

CALL MUTSMP

CALL MUTSMP(FLIN,FINH,N,IHOM,TBP,NBP,BCM,BCV,ALLER ,NRTLTINTI,
1 X,U,NU,Q,D.KPART,PHIREC, W ,LW,IW LIW,IERROR)

IF (IERROR .NE.0).AND.(IERROR.NE.200). AND.(IERROR.NE.213).AND.
1(IERROR.NE.240)) GOTO 5000

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND
WRITING OF THE SOLUTION AT THE OUTPUTPOINTS

WRITE(6,200) (TBP(I),]=1,NBP)
WRITE(6,190) ER(4),ER(5)
WRITE(6,210)
DO 1500K = 1, NRTI(1)
EXSOL = DEXP(TI(K))
AE = EXSOL - X(1,K)
WRITE(6,220) K, TI(K),X(1,K),EXSOL,AE
DO 13001=2,N
AE = EXSOL - X(IK)
WRITE(6,230) X(IK),EXSOL,AE

49

1300
1500

5000

C
190

200
210

220
230
300

1

1

MUTSMP

CONTINUE
CONTINUE

STOP

WRITE(6,300) IERROR
STOP

FORMAT(’ CONDITION NUMBER =’,D10.3/,
* AMPLIFICATION FACTOR = *,D10.3,)

FORMAT(’ SWITCHING POINTS: *,3(F5.2,3X)./)

FORMAT(' 1°,6X.’T",8X,’APPROX. SOL.”,9X,"EXACT SOL.",8X,
’ABS. ERROR’,))

FORMAT(*,I3,3X F7.4,3(3X,D16.9))

FORMAT(*,13X,3(3X,D16.9))

FORMAT(’ TERMINAL ERROR IN MUTSMP: IERROR = ’,14)

END
SUBROUTINE FLIN(N,T,FL)

DOUBLE PRECISION T,FL(N,N)
DOUBLE PRECISION TLSIL,CO

Ti1=2D0*T

SI = (T+0.5DOY*DSIN(T1)
CO = (T+0.5D0)y*DCOS(T1)
TI=-T + 0.5D0
FL(1,1)=T1-CO
FL(1,2)=1.D0 + SI
FL(2,1)=-1.D0+ SI
FL(2,2)=TI+ CO

RETURN
END OF FLIN
END

SUBROUTINE FINH(N,T,FR)

DOUBLE PRECISION T,FR(N)
DOUBLE PRECISION TLET,SI,CO

SI = DSIN(T)

CO = DCOS(T)

TI = (CO - SI) * 2*T + 1.D0)
ET = DEXP(-T)

FR(1) = (-3.D0 + CO*TI) * ET
FR(2) = (-1.D0 - SI*TI) * ET

50

CH.IX.6

C
RETURN

C END OF FINH
END

MUTSMP

SWITCHING POINTS: -1.00 .00 1.00

CONDITION NUMBER
AMPLIFICATION FACTOR
I T APPROX. SOL.
1 -1.000 .271828183D+01
271828175D+01
2 =750 .211699998D+01
211699991D+01
3 -500 .164872118D+01
.164872114D+01
4 -250 .128402527D+01
.128402529D+01
5 000 .999999808D+00
999999891D+00
6 250 .778800571D+00
J778800694D+00
7 500 .606530374D+00
.606530718D+00
8 150 472366284D+00
472366790D+00
9 1.000 .367879306D+00
367879633D+00

= 0.613D+01
= 0.543D+01

EXACT SOL.

271828183D+01
.271828183D+01
.211700002D+01
.211700002D+01
.164872127D+01
.164872127D+01
.128402542D+01
.128402542D+01
.100000000D+01
.100000000D-+01
778800783D+00
178800783D+00
.606530660D+00
.606530660D+00
472366553D+00
472366553D+00
.367879441D+00
36787944 1D+00

51

ABS. ERROR

.000000000D+00
.735283456D-07
.392049313D-07
.108340283D-06
.933285536D-07
.128283102D-06
.150341578D-06
.127439107D-06
.191680895D-06
.109373630D-06
211765096D-06
.886011160D-07
.285309541D-06

-.580605503D-07
.268479161D-06

-.237313363D-06
.134962732D-06

-.191680895D-06

CH. IX,6

7. Subroutine MUTSMI

k¢ 3k ke 3k she e sk e e dfe o e e ke e e

SPECIFICATION

she o s o 2 e sk ok obe e ke sl e ke ook

SUBROUTINE MUTSMI(FLIN, FINH, FMT, N, THOM, A, B, NRTI, AL, TI,
1 NTI, ER, BCV, X, TSW, NSW, NRSW, U, NU, Q, D,
2 KP, PHI, BMI, W, LW, IW, LIW, IERROR)
INTEGER N, THOM, NRTI, NTI, NSW, NRSW, NU, KP(NSW), LW, IW(LIW),
1 LIW, [ERROR
DOUBLE PRECISION A, B, ALI, TI(NTI), ER(S), BCV(N), X(N.NTI),
1 TSW(NSW), UNU,NTI), Q(N,N,NTI), D(N,NTI),
2 BMI(N,N,NTI), PHINU,NTI), W(LW)
EXTERNAL FLIN, FINH, FMT

o000

e e 2k o 2l e e sk ok s e e s ofe o Sk

Purpose

e ke 24 ok S ok e 3 e ok ¢ e o e e ok

MUTSMI solves BVP with integral BC:

—g?x(t)=L(t)x(t)+r(t) , ASB,
with BC:

B
,[M(t)x(t)dt =BCV ,

where M (¢) is an N xN matrix function and BCV an N-vector.

ke e 2k e sk shedfe o e o e e e e ofe ke

Parameters
ke Sk sk e Sl she sk dle s ke e ke 9 sk ok sk

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L(z) of the

differential equation for t = T and place the result in the array FL(N,N).

FLIN must be declared as EXTERNAL in the (sub)program from which MUTSMI

is called.

53

FINH

FMT

IHOM

AB

NRTI

MUTSMI CH.IX,7

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T , FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r(t) of the
differential equation for t = T and place the result in FR(1), FR(2), .. ., FR(N).
FINH must be declared as EXTERNAL in the (sub)program frem which MUTSMI
is called.

In the case that the system is homogeneous FINH is a dummy and one can use
FLIN for FINH in the call to MUTSML

SUBROUTINE supplied by the user, with specification:

SUBROUTINE FMT(N, T, FM)
DOUBLE PRECISION T, FM(N,N)

where N is the order of the system. FMT must evaluate the matrix M (¢) of the
integral BC for t = T and place the result in the array FM(N,N).

FMT must be declared as EXTERNAL in the (sub)program from which MUTSMI
is called.

INTEGER, the order of the system.
Unchanged on exit.

INTEGER.

ITHOM indicates whether the system is homogeneous or inhomogeneous.
THOM = 0 : the system is homogeneous,

THOM = 1 : the system is inhomogeneous.

Unchanged on exit.

DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

INTEGER
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
1)NRTI=0, the subroutine automatically determines the output points using the
allowed incremental factor ALL
2)NRTI=1, the output points are supplied by the user in the array TI.
3)NRTI>1, the subroutines computes the (NRTI+1) output points TI(k) by:
Tk =A+k~1)*(B - A)/NRTI
so TI(1) = A and TIINRTI+1) = b,
More output points may be inserted in the cases 2 and 3, depending on the allowed
incremental factor ALIL. Also if a new switching point is detected or if
I IM (t)x(t)dt || becomes larger than ER(2) / ER(3), a new output point is
inserted.

54

ALI

TI

ER

BCV

MUTSMI CH.IX,7

On exit NRTI contains the total number of output points.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2*ALl a new output point is inserted. If ALI < 1 the defaults are:

If NRTI = 0 : ALI := max(ER(1), ER(2)) / 2*ER(3)),

if NRTI # 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On exit ALI contains the actually used incremental factor.

DOUBLE PRECISION array of dimension (NTI).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: A=TI(D<- -<TKk)=BorB=TI(1)> - ->Tlk)=B

(k denotes the total number of required output points).

Onexit: TI(k), k= 1,2, .. ., NRTI, contains the output points.

INTEGER.

NTI is the dimension of TT and one of the dimensions of the arrays X, U, Q, D,
BMI, PHI.

Let m be the total number of output points then NTI 2 max(5, m + 1).

If the routine was called with NRTI > 1 and ALI £ 1 the total number of required
output points is NRTI + 1, so NTI 2 max(5, NRTI + 2), if the required output
points include possible switching points, otherwise NTI 2 max(5, NRTI + 2) + k,
where k denotes the number of switching points between A and B (k € N).
Unchanged on exit.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

ER(1) := 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimate of the condition number of the BVP.

On exit ER(5) contains an estimate of the amplification factor.

DOUBLE PRECISION array of dimension (N).

On entry BCV must contain the BC vector.
Unchanged on exit.

55

TSW

NSW

NRSW

PHI

MUTSMI CH.IX,7

DOUBLE PRECISION array of dimension (N, NTI).

Onexit X(,%) ,i= 1,2, ..., N contains the solution of the BVP at the output point
TUk),k=1,..., NRTL

DOUBLE PRECISION array of dimension (m), m 2N + 2,

On exit TSW contains the NRSW detected switching points. Note that the
boundary points A and B are also switching points and that the maximum number
of switching points is N+ 2.

INTEGER. NSW denotes the number of possible switching points.
Onentry NSW2N + 2,
Unchanged on exit.

INTEGER.
On exit NRSW contains the number of detected switching points.

DOUBLE PRECISION array of dimension (NU, NTT).

On exit UGk) i = 1,2,..., NU contains the relevant elements of the upper
triangular matrix Uy, k=2, ..., NRTL The elements are stored column wise, the
jth column of U, is stored in U(nj + 1, k), U(nj + 2, k), ..., Umj + j, k), where nj =
G-D*j/2.

INTEGER.

NU is one of the dimensions of U and PHI.
NU must be at leastequal o N * (N + 1) /2.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, NTT).

On exit QG,jk)i=12,...,N,j=12,...,N contains the N columns of the
orthogonal matrix O, k=1, ..., NRTL

DOUBLE PRECISION array of dimension (N, NTI).

If ITHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.

IfTHOM =1 :onexit D,k)i= 1,2, ..., N contains the inhomogeneous term dy,
k=12, ..., NRTI, of the multiple shooting recursion.

INTEGER

On exit KP(j) contains the global partitioning parameter of the interval
[TSW(H ,TSWG+ 1) 1,j=1,..., NRSW-1.

DOUBLE PRECISION array of dimension (NU,NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.

The fundamental solution is upper triangular and is stored in the same way as the
U,.

56

BMI

LW

- IW

LIW

IERROR

MUTSMI CH. IX.7

DOUBLE PRECISION array of dimension (N,N,NTI).
On exit BMI(. , . , j) contains the BC matrix of the discretised iniegral BC at the
output point TI(j),j=1,..., NRTI-1.

DOUBLE PRECISION array of dimension (LW).
Used as work space.

INTEGER

LW is the dimension of W.
IEN<B8:LW215*N*N+21*N.
ITNZE:LW2Q@*N*N*N+11*N*N)/2+5*N.
Unchanged on exit.

INTEGER array of dimension (LIW)
Used as work space.

INTEGER
LIW is the dimension of IW. LIW 2 N*N + 6*N + NTI.
Unchanged on exit.

INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See §14 for the other errors.

ke s e she ok ok 3 ok e dbe e e e oke ke ok

Auxiliary Routines
e e ke o b o 3k ok 2 ok she s e ok e ke

This routine calls the BOUNDPAK library routines AMTES, ANORMI1, APLB, CDI,
CHDIAU, CKPSW ,CNRHS, COPMAT, COPVEC, CONDW, CPRDIA, CROUT, CWISB,

DEFINC,

DETSWP, DURIN, FCBVP, FCIBVP, FQUS, FUNPAR, FUNRC, GKPMP,

INPRO, INTCH, KPCH, LUDEC, MATVC, PSR, QEVAK, QEVAL, QUDEC, RKF1S,
RKFSM, SMBVP, SOLDE, SOLUPP, SORTD, TAMVC, UPUP, UPVECP.

3¢ sk she 3k 2 e ok e e e s e ke she ke sfe

Remarks

sk ok 2o S e e e ok e o e e de ok 3 3k

MUTSMI is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991

57

MUTSMI CH.IX,7

s e sk s 3 sheake sk e s ok e ok e ek

Method

35¢ ke ke s 3 e ok e o e e deode e vfe ke

See chapter IV,

o sk 3 3 s sk e e e s e sk el ke e

Example of the use of MUTSMI

3¢ 3¢ e e She e sk Sk 2 ok ol o e o e %
Consider the ordinary differential equation
LxO=LOx@)+r@) , 4154

and an integral boundary condition:

4
[M@)x@)dt =b,
=4

where

1.0 -e” 10 2sinh4
L(t)ntﬂ —2:} ’ r(t)z{(zt_l)e—iji M(‘)={0 1] , b =l:25inh4} .

The solution of this problem is: x(¢t)=[cosht,e "t]7.

The ODE has fundamental solutions growing like ~ ¢ ~* and ~ ¢*, so there is a change of
dichotomy at ¢t =0.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION TI(10),ER(5),X(2,10),BCV(2),TSW(4),Q(2,2,10),U(3,10),
1D(2,10),BM1(2,2,10),PHI(3,10),W(102)

INTEGER KP(4),IW(27)

EXTERNAL FLIN,FINH,FMT

SETTING OF THE INPUT PARAMETERS

oRONEP

N=2
NU=3
NTI=10
NSW =4
LW =102
LIW =27

58

oNeRe! oReNe]

NOan

1300

2000

200

210

220

230

240
300

MUTSMI CH.IX,7

JHOM =1

ER(1)= 1.1D-12

ER(2) = 1.D-6

CALL EPSMAC(ER(3))
A=-4D0

B=4.D0

ALI=0.D0

NRTI=8

SETTING THE BOUNDARY CONDITION VECTOR

BCV(1) = 2.D0 * DSINH(4.D0)
BCV(2) =BCV(1)

CALL TO MUTSMI

CALL MUTSMI(FLIN FINH,FMT N,JHOM,A B,NRTLALLTLNTLER ,BCV,X,
1 TSW,NSW NRSW,UNU,Q,D,KP,PHIL,BMI,W,LW,IW LIW IERROR)
IF (IERROR.NE.0) GOTO 2000

WRITING OF THE SWITCHING POINTS, THE CONDITION NUMBER AND
THE ERROR AMPLIFICATION ERROR.

WRITE(*,200) (TSW(I),I=1, NRSW)
WRITE(*,210) ER(4).ER(5)
WRITE(*,220)
DO 1300 1= 1, NRTI
E = DCOSH(TI(I))
AE=X(1])-E
WRITE(*,230) LTI(D),X(1,1),E,AE
E = DEXP(-TI(I))
AE=XQ2]D)-E
WRITE(*240) X(2,1),E,AE
CONTINUE
STOP
WRITE(*,300) IERROR
STOP

FORMAT(SWITCHING POINTS:",4(F10.6,4X)./)

FORMAT(CONDITION NUMBER =’D12.5/
1 * AMPLIFICATION FACTOR ="'D12.5,))

FORMAT(I',6X,'T’,8X,”APPROX. SOL.",7X,"EXACT SOL."’ ,9X,
1 ABS. ERROR’,))

FORMAT(*,13,3XF7.3,3(3X,D16.9))

FORMAT(*,13X,3(3X,D16.9))

FORMAT(TERMINAL ERROR IN MUTSMI: IERROR = ,14)

59

END

MUTSMI

SUBROUTINE FLIN(N,T,FL)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION FL(N,N)

FL(1,1)= 1.D0
FL(1,2) = 0.D0
FL(2,1) = 0.D0
FL(2,2) = -2.DO*T
RETURN

END

SUBROUTINE FINH(N,T,FR)

IMPLICIT DOUBLE PRECISION (A-H,0-7)

DIMENSION FR(N)

E = DEXP(-T)
FR()=-E

FR(2) = (2.DO*T - 1.DO) *E
RETURN

END

SUBROUTINE FMT(N,T,FM)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION FM(N,N)

FM(1,1)=1.D0
FM(1,2) =0.D0
FM(2,1) = 0.D0
FM{(2,2) = 1.D0
RETURN

END

SWITCHING POINTS: -4.000000

CONDITION NUMBER

AMPLIFICATION FACTOR

1 T APPROX. SOL.

1 -4.000 .273082328D+02
.545981500D+02

2 -3.000 .100676620D+02
.200855369D+02

3 2000 .376219572D+01

.000000 4.000000
= (.10003D+01
= 0.17067D+01
EXACT SOL. ABS. ERROR
273082328D+02 .328726202D-08
S545981500D+02 .535869304D-08
.100676620D+02 .891424357D-08
200855369D+02 .109678666D-07
.376219569D+01 241194678D-07

CH.1X,7

-1.000

1.000

2.000

3.000

4.000

.738905615D+01
.154308070D+01
.271828220D+01
.100000011D+01
.100000002D+01
.154308067D+01
.367879197D+00
376219570D+01
.135335178D+00
.100676620D+02

497870526D-01

.273082328D+02

.183156315D-01

MUTSMI

.738905610D+01
.154308063D+01
.271828183D+01
.100000000D+01
.100000000D+01
.154308063D+01
.367879441D+00
.376219569D+01
.135335283D+00
.100676620D+02

497870684D-01

273082328D+02

.183156389D-01

61

507391977D-07
.640715478D-07
.375098707D-06
.107381681D-06
.173592072D-07
.325343779D-07
-.243884238D-06
.123411108D-07
-.104949590D-06
.110139773D-07
-.157823572D-07
-.445510295D-10
-.743454046D-08

CH. IX,7

8. Subroutine MUTSPA

sk she b sk e o e she e dhe s e she e e e

SPECIFICATION

e e e she ook sfedke o e she e sl ofe ke

SUBROUTINE MUTSPA(FLIN, FINH, FCT, N, L, NPL, THOM, A, B, MA, MB, BCV,
1 ALIL ER, NRTL TI, NTI, X, Z, TSW, NSW, NRSW, U, NU, Q, D,
2 KPART, CI, PHI, YI, W, LW, IW, LIW, IERROR)

C INTEGER N, L, NLP, IHOM, NRTI, NTI, NU, NSW, NRSW, KPART(NSW), LW,

C IW(LIW), LIW, IERROR

C DOUBLE PRECISION A, B, MA(NPL NPL), MB(NPL ,NPL}), BCV(NPL), ALI, ER(5),
C 1 TINTI), X(N.NTI), Z(L), TSW(NSW), UINU,NTI), Q(N,N,NTI),

C 2 D(N,NTI), CKN,NTLL), PHI(NU,NTI), YI(N,NTLL), W({LW)

C EXTERNAL FLIN, FINH, FCT

e sfe ok ok 2 o sk e e e s e ke sfe e e

Purpose

3 e 24 ok 24 e sfe s ke o e e e e e ke

MUTSPA solves the two-point BVP with parameters:
gt—x(:)—_-;,(t)x(:)+c0)z +r(t), ASt<BorB<t<A,

with BC:

A by
[Ma] Pa] {"(z ’} +Mg| Py {"(f)} - [,,J,

where z is an L-vector containing the L parameters, M4 and Mp are NPL x N matrices, P4
and Pg are NPL XL matrices, B, an N-vector and B, an L-vector.

e stesfe e sfe skt s e e sk e e ke ke

Parameters
2§¢ 3 sk ok sk s sfe ok ok e she ol ok ske sk ok

FLIN SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the system. FLIN must evaluate the matrix L(z) of the
differential equation for t = T and place the result in the array FL(N,N).

63

FINH

FCT

IHOM

AB

MUTSPA CH.IX 8

FLIN must be declared as EXTERNAL in the (sub)program from which MUTSPA
is called.

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system. FINH must evaluate the vector r(t} of the
differential equation for t = T and place the result in FR(1), FR(2), ..., FR(N).
FINH must be declared as EXTERNAL in the (sub)program from which MUTSPA
is called.

In the case that the system is homogeneous FINH is a dummy and one can use
FLIN for FINH in the call to MUTSPA.

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FCT(N, L, T, FC)
DOUBLE PRECISION T, FC(N,L)

where N is the order of the system and L the number of parameters. FCT must
evaluate the NxL matrix C(¢) of the differential equation fort = T and place the
result in the array FC(N,L).

FCT must be declared as EXTERNAL in the (sub)program from which MUTSPA
is called.

INTEGER, the order of the system.
Unchanged on exit.

INTEGER, the number of parameters
Unchanged on exit.

INTEGER.

NPL is the dimension of the arrays MA, MB and BCV. NPL must have the value
N+L.

Unchanged on exit.

INTEGER.

THOM indicates whether the system is homogeneous or inhomogeneous.
THOM = 0 : the system is homogencous,

IHOM = 1 : the system is inhomogencous.

Unchanged on exit.

DOUBLE PRECISION, the two boundary points.
Unchanged on exit.

MA MB

BCV

ALl

ER

NRTI

MUTSPA CH.IX8

DOUBLE PRECISION array of dimension (NPL, NPL).

On entry : MA and MB must contain the BC matrices : [My | P4l and [Mg| Pg)
respectively.

Unchanged on exit.

- DOUBLE PRECISION array of dimension (NPL).

b
On entry BCV must contain the BC vector [b: } .
Unchanged on exit.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2*ALl, a new output point is inserted.

If ALI < 1 the defaults are:

If NRTI = 0 : ALI := max(ER(1), ER(2)) / (2*ER(3)),

if NRTI # 0 : ALI = SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On exit ALI contains the actually used incremental factor.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

ER(1) := 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimate of the condition number of the BVP.

On exit ER(S) contains an estimate of the amplification factor.

INTEGER.
On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:
I)NRTI=0, the subroutine automatically determines the output points using the
allowed incremental factor ALL
2)NRTI=1, the output points are supplied by the user in the array TL
3)NRTI>1, the subroutine computes the (NRTI+!1) output points TI(k) by:
TIk) = A +(k-1)*(B ~A)/NRTI;
s0 TI(1) = A and TINRTI+1)=B .
Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. Furthermore detected switching points are also
inserted. On exit NRTI contains the total number of output points.

65

Ti

TSW

NSW

NRSW

MUTSPA CH.IX8

DOUBLE PRECISION array of dimension (NTT).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: A=THD < - <TIkK)=BorA=TI(1)>-->TiKkK)=B

(k denotes the total number of required output points).

On exit: TI(1), i = 1,2,..., NRTI, contains the output points, including possible
switching points.

INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D, CI,
PHI, YI.

Let m be the total number of output points then NTI 2 max(5, m + 1).

If the routine was called with NRTI > 1 and ALI < 1 the total number of required
output points is NRTI + 1, so NTI 2 max(5, NRTI + 2), if the required output
points include possible switching points, otherwise NTI 2 max(5,NRTI+2) + k,
where k is the number of switching points between A and B (k < N).

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NTI).
Onexit X(i,k) ,i=12,..., N contains the solution of the BVP at the output point
TIK),k=1,..., NRTL

DOUBLE PRECISION array of dimension (L)
On exit the array Z contains the values of the L parameters.

DOUBLE PRECISION array of dimension (NSW)
On exit TSW contains the NRSW switching points:
A=TSW(),..., TSW(NRSW) = B.

INTEGER.

NSW is the dimension of array TSW and array KPART. NSW 2N+ 2!
Unchanged on exit

INTEGER.
On exit NRSW contains the total number of detected switching points.

DOUBLE PRECISION array of dimension (NU, NTI).

On exit UGi,k) i = 1,2,...,NU contains the relevant elements of the upper
triangular matrix Uy, k =2, ..., NRTIL. The e¢lements are stored column wise, the
jth column of Uy is stored in U(nj + 1, k), U(nj + 2, k), . . ., U(nj + j, k), where nj =
G-D*j/2

INTEGER.
NU is one of the dimensions of U and PHI.
NUmustbe at leastequal to N * (N + 1) /2.

KPART

CI

PHI

YI

Lw

w

LIW

MUTSPA CH.IX 8

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, NTI).
On exit QG,jk)i=12,...,N,j=12,..., N contains the N columns of the
orthogonal matrix Q¢ k=1,..., NRTL

DOUBLE PRECISION array of dimension (N, NTI).
If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.

IfIHOM = 1:onexit Dk)i= 1,2, ..., N contains the inhomogenecous term d,
k=1,2,..., NRTI, of the multiple shooting recursion.

INTEGER array of dimension (NSW)
On exit KPART(j) contains the global partitioning parameter of the interval
[TSW(@G), TSW(G+1) ,j=1,..., NRSW-1,

DOUBLE PRECISION array of dimension (N, NTL, L)
Onexit CIGjk)i=1,...,N,k=1,..., L contains the NxXL matrix C;,
i=2,...,NRTL

DOUBLE PRECISION array of dimension (NU, NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion

(V.2.3). The fundamental solution is upper triangular and is stored in the same way
as the U,.

DOUBLE PRECISION array of dimension (N, NTI, L),
On exit Y1 contains the particular matrix solution Y; of recursion (V.2.5). The
particular N XL matrix solution is stored in the same way as the C;.

DOUBLE PRECISION array of dimension (LW),
Used as work space.

INTEGER
LW is the dimension of W.

LW27*NRSW*NPL *(NPL+1)/2+4*NPL* (NPL + 1)
Unchanged on exit.

INTEGER array of dimension (1.IW)
Used as work space.

INTEGER

LIW is the dimension of IW, LIW 2 N*N + 8*N + 4*L + 2.
Unchanged on exit.

67

MUTSPA CH.IX8

IERROR INTEGER

Error indicator; if IERROR = () then there are no errors detected.
See §14 for the other errors.

Aok ok e ok deokeofe e sk e e skoke ek

Augxiliary Routines
ke 3 sk e sfe e ke el she sk e e ok e ke

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAV, CAMPF, C(l],
CDI, CFUNRC, CHDIAU, CKPSW, CNRHS, COPMAT, COPVEC, CONDW, CPRDIA,
CPSRC, CROUT, CUVRC, CGTURC, CWISB, DEFINC, DETSWP, DURPA, FCBVP,
FC2BVP, FQUS, FUNPAR, FUNRC, GKPPA, CPABC, CPARC, CSPABYV, INPRO,
INTCH, KPCH, LUDEC,MATVC, PSR, QEVAK, QEVAL, QUDEC, RKFIS, RKFSM,
SBVP, SOLDE, SOLUPP, SORTD, SPARC, SPLS1, TAMVC, UPUP, UPVECP.

3¢ e e sk e ek sk e ofe Sesfe s ke ok

Remarks
e e sk e dke e sk sk e sde she ke ke vk sk ok

MUTSPA is written by G.W .M. Staarink and R.M.M. Mattheij.
Last update: november 1991,

e sk e sk e s s e ok e e she ool ke ok

Method
She e e e e she ok she ol o e e sl e e e

See chapter V.

3 3k e 2 e 2he s e e e e o ok ol ok ol

Example of the use of MUTSPA

e 3 e ke sk s S oo e e sk e ke e e
Consider the ordinary differential equation with parameter z

%x(t)=L(t)x(:)+C(t)z +r(t), -551<5

z

and a boundary condition M m[x (-5)} +M 5{x (25)} =b, where

2 0 0 2
L(‘)%o zanh(t)}’ C(t)z[llcosh(t)} "(t)=l:(lmsinh(t))/cas}z(t)}’

00 -1 100
Mg={01 % |, Mp=|0 1 %
01 % 0 -1 %

68

MUTSPA

and b ={2,2cosh(5), 2sinh (5)17.
This problem has a switching point at t =0 and the solution is:
x()=(1-exp(2(t=5)), 1+exp(~t)) andz =-2.

In the next program the solution is computed and compared to the exact solution.

CH.IX8

This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION BCMA(3,3),BCMB(3,3),BCV(3),ER(5), TI(13), TSW(4),
1 X(2,13),Z(1),U(3,13),Q(2,2,13),D(2,13),PHI(3,13),CI(2,13,1),
2 YI(2,13,1),W(174)

INTEGER KP(4),IW(26)

EXTERNAL FLIN,FINH,FCT

SETTING OF THE INPUT PARAMETERS

ORONY!

N=2

L=1

NPL =3

NSW =4

IHOM =1
NTI=13
NU=3

LW =174

LIW =26
ER(1)=1.1D-12
ER(2) = 1.D-6
CALL EPSMAC(ER(3))
A=-5D0

B =5.D0
ALI=0D0
NRTI =10

SETTING THE BOUNDARY CONDITIONS

oNoRe!

BCMA(1,1) =0.D0
BCMA(1,2) =0.D0
BCMA(1,3) =-1.D0
BCMA(2,1) =0.D0
BCMA(2,2) = 1.D0
BCMA(2,3) =0.5D0
BCMA(3,1) =0.D0

69

oNeNe]

OO0

oEeNoNe:

1200

5000

100
105

MUTSPA CH.IX 8

BCMA(3,2) = 1.DO
BCMA(3,3) = -0.5D0
BCMB(1,1) = 1.D0
BCMB(1,2) = 0.D0
BCMB(1,3) = 0.D0
BCMB(2,1) = 0.D0
BCMB(2,2) = 1.D0
BCMB(2,3) = 0.5D0
BCMB(3,1) = 0.D0
BCMB(@3,2) =-1.D0
BCMB(3,3) = 0.5D0
BCV(1)=2.D0

BCV(2) = 2.D0 * DCOSH(5.D0)
BCV(3) = 2.D0 * DSINH(5.D0)

CALL MUTSPA

CALL MUTSPA(FLIN,FINH,FCT,N,L NPL.IHOM,A, ,B,BCMA BCMB,BCV,AMP.ER,
1 NRTLTLNTLX,Z,TSW NSW NRSW,UNU,Q,D,KP,CIPHLYLW,
2 LW, IW LIW, IERROR)

IF (IERROR.NE.0) GOTO 5000

PRINTING OF THE SWITCHING POINTS, CONDITION NUMBER AND
AMPLIFICATION FACTOR

WRITE(*,105) (TSW(J),J=1,NRSW)
WRITE(*,110) ER(4),ER(S)

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING OF
THE SOLUTION AT THE OUTPUTPOINTS

WRITE(*,*) " Z=",Z(1)
WRITE(*,120)
DO 12001 =1, NRTI
El = 1.D0 - DEXP(2.DO*(TI(1)-5.D0))
E2=El-X(1,)
WRITE(*,130) TI(D),.X(1,D),E1,E2
E1 = 1.D0 + DEXP(-TI(I))
E2=El- X2,))
WRITE(*,135) X(2,),E1,E2
CONTINUE
STOP
WRITE(*,100) [ERROR
STOP
FORMAT(’ TERMINAL ERROR IN MUTSPA: IERROR = *,14)
FORMAT(’ SWITCHING POINTS: * 4(F7.2,3X))

70

MUTSPA CH.IX.8

110 FORMAT(’ CONDITION NUMBER =',DI125,//,
1 > AMPLIFICATION FACTOR =’,D12.5,/)
120 FORMAT(*/,5X,'T*,5X,”APPROX.SOL.’,7X,’"EXACT SOL." 8X,
1 "ABS. ERROR",))
130 "FORMAT(’,F7.3,3(2X,D16.9))
135 FORMAT(*,7X,3(2X,D16.9))
END
SUBROUTINE FLIN(N,T,F)

DOUBLE PRECISION T,F(N,N),TI

F(1,1)=2.D0

F(1,2)=0.D0

F(2,1)=0.D0

F(2,2) = DTANH(T)
RETURN

END

SUBROUTINE FINH(N,T.,F)

DOUBLE PRECISION T,F(N)

F(1) =-2.D0

F(2) = (1.D0 - DSINH(T)) / DCOSH(T)
RETURN

END

SUBROUTINE FCT(N,L,T.F)

DOUBLE PRECISION T,F(N,L)
F(1,1)=0.D0
F(2,1) = 1.D0 / DCOSH(T)

RETURN
END

SWITCHING POINTS: -5.00 .00 5.00

CONDITION NUMBER = .10068D+01
AMPLIFICATION FACTOR = .20633D+01
Z= -1,99999998386800

T APPROX. SOL. EXACT SOL. ABS. ERROR

-5.000 .999999998D+00 .999999998D+00 .105471187D-13
149413159D+03 .149413159D+03 .806599587D-08
-4.000 .999999985D+00 .999999985D+00 .693889390D-13

71

-3.000

-2.000

-1.000

1.000

2.000

3.000

4.000

5.000

.555981495D+02
.999999887D+00
.210855365D+02
.999999168D+00
.838905589D+01
999993856D+00
371828175D+01
.999954600D+00
.199999998D+01
.999664537D+00
.136787944D+01
.997521244D+00
113533528D+01
.981684343D+00
.104978707D+01
.864664650D+00
.101831564D+01
.161319893D-07

.100673794D+01

MUTSPA

.555981500D+02
.999999887D+00
.210855369D+02
.999999168D+00
.838905610D+01
999993856D+00
.371828183D+01
.999954600D+00
.200000000D+01
.999664537D+00
.136787944D+01
.997521248D+00
.113533528D+01
.981684361D+00
.104978707D+01
.864664717D+00
.101831564D+01
.000000000D+00
.100673795D+01

72

.552555562D-06
.454525306D-12
.400276733D-06
.293742808D-11
.207147576D-06
.185887972D-10
.746298814D-07
.114339760D-09
.201335302D-07
.674805989D-09
.611146622D-08
.372963660D-08
.192635374D-08
.182738354D-07
.159673852D-08
.664215662D-07
.312881987D-08
-.161319893D-07
.806598388D-08

CH.IX,8

9, Subroutine MUTSDD

ke e s she e she e e ke e e shoake s ke e

SPECIFICATION

3¢ 2 3 e Sk s ke sk ok 3 sk dle e de e o

SUBROUTINE MUTSMP(FLIN, FINH, N, IHOM, TSP, NSP, BCM, BCV,ZM, 7P,

1 BI, ALL ER, NRTI, TI, NTL, X, U,NU, Q, D,
2 KPART, PHI, W, LW, IW, LIW, IERROR)
C INTEGER N, IHOM(NSP), NSP, NRTI(NSP), NTI, NU, KPART(NSP), LW, IW(LIW),
C 1 LIW, IERROR
C DOUBLE PRECISION TBP(NBP), BCM(NBP), BCV(N), ZM(N,N,NSP), ZP(N,N,NSP),
C 1 BI(N,NSP), ALL, ER(6), TI(NTI), X(NNTI), UNU,NTI),
c 2 Q(N.N,NTI), D(N,NTT), PHI(NU,NTI), W(LW)
C EXTERNAL FLIN, FINH
24 ok 35 ok e S e 24 2k she e dle e ok ek
Purpose
3k 3 vk 3 e e s de dfe o e ake dbe ske sk

MUTSDD solves the BVP with discontinuous data:
%x(:):L(z)x(:)w(z) G St<O,i=1,...,m,
with side conditions

Ziny x(@)+Z5 x(@f{) =biyy ,i=1,...,m-1,
and aBC

M x(af)=b
2; i {3V aas 3

where the L;(¢) are bounded continuous matrix functions,the r;(¢) are bounded continuous
vector functions, the Z7,, Z;%; are the side conditions matrices, the b;,; are the side
conditions vectors, the M; are the BC matrices, b the BC vector and ¢; < - -+ < Oy OF
oy > - > Oy the switching points.

e 2k ok ofe sk o e o ¢ e ok e e ke ke

Parameters
e o e e ofe sk o ofe e ok e ok e ke ke ke

73

FLIN

FINH

IHOM

TSP

NSP

BCM

MUTSDD CH.IX9

SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLIN(N, T, FL)
DOUBLE PRECISION T, FL(N,N)

where N is the order of the sysiem. FLIN must evaluate for t = T the corresponding
matrix L; (z) of the differential equation and place the result in the array FL{N,N).
FLIN must be declared as EXTERNAL in the (sub)program from which MUTSDD
is called. |

SUBROUTINE, supplied by the user, with specification:

SUBROUTINE FINH(N, T, FR)
DOUBLE PRECISION T, FR(N)

where N is the order of the system, FINH must evaluate for t = T the coresponding
vector r;(t) of the differential equation and place the result in FR(1), FR(2), ...,
FR(N).

FINH must be declared as EXTERNAL in the (sub)program from which MUTSDD
is called.

In the case that the system is homogeneous, i.¢. all the r; =0, FINH is a dummy and
one can use FLIN for FINH in the call to MUTSDD.

INTEGER, the order of the system.
Unchanged on exit.

INTEGER array of dimension (k}, k = NSP

IHOM(i) indicates whether the system is homogeneous or inhomogeneous on
[o;, 04041, i=1,..., NSP-1.

On entry:

THOM(i) = 0 : the system is homogeneous on { o; , 0441],

THOM() = 1 : the system is inhomogeneous on [¢f; , 044 -

On exit THOM(1), i=1,...,.NSP-1 is unchanged; ITHOM(NSP) = 0, if the whole
system is homogenecous, otherwise IHOM(NSP) = 1.

DOUBLE PRECISION array of dimension (k), k 2 NBP. On entry TSP must

contain the switching points ¢, j= 1, ..., NSP in monotone order, i.c.
TSP()=a;,j=1,..., NSP.
Unchanged on exit.

INTEGER. NSP is the number of switching points.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N,N k), k 2 NSP.

~Onentry : BCM(., ., j) must contain the BC matrix M;,j=1, ..., NSP.

74

BCV

BI

ER

NRTI

MUTSDD CH.IX9

During computation the array BCM will be overwritten.

DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
During computation the array BCV will be overwritten.

DOUBLE PRECISION array of dimension (N, N, k), k 2 NSP.
On entry ZM(. , . , j) must contain the side condition matrix Z;", j=2, ..., NSP-1.
During computation the array ZM will be overwritten.

DOUBLE PRECISION array of dimension (N, N, k), k 2 NSP.
Onentry ZP(. , . , j) must contain the side condition matrix Zj*,j=2,..., NSP-1.
During computation the array ZP will be overwritten.

DOUBLE PRECISION array of dimension (N, k), k 2 NSP.
On entry BI(. , j) must contain the side condition vector B;,j=2, ..., NSP-1.
During computation the array BI will be overwritten.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2 * ALI a new output point is inserted.

If ALI< 1 the defaults are:

If NRTI(1) = 0 : ALI := max(ER(1), ER(2)) / 2*ER(3)),

if NRTI(1) # 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On exit ALI contains the actually used incremental factor.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation. If the relative tolerance is smaller then 1.0 d-12 the subroutine will
change ER(1) into

ER(1) := 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimate of the condition number of the BVP.

On exit ER(5) contains an estimate of the amplification factor.

On exit ER(6) contains an estimate of the amplification factor of the discrete
multipoint BVP.

INTEGER array of dimension (k), k 2 NBP

On entry NRTI is used to specify the required output points. There are three ways
to specify the required output points:

75

TI

MUTSDD CH. IX9%

1) NRTI(1) = 0, the subroutine automatically determines the output points using the
allowed incremental factor ALL

2) NRTI(1) = 1, the output points are supplied by the user in the array TL

3) NRTI(1) > 1,in this case the interval [TBP(j—1) , TBP(j)],j =2, ..., NSP, are
divided into NRTI(j) subintervals of equal length. The endpoints of
these subintervals are the required output points.

Depending on the allowed incremental factor ALIL, more output points may be

inserted in the cases 2 and 3.

On exit: NRTI(1) contains the total number of output points.

Forj=2,..., NBP: if NRTI(j) < 0 then no change of dichotomy is detected on the

succesive intervals [TBP(j— 1), TBP(j)] and [TBP(j) , TBP(j+1)]. If NRTI() >0

then a change of dichotomy is dectected at TBP(j) and NRTI(j) contains the

number of output points on the interval [TBP(@) , TBP(j)], where i < §,

NRTI(G) » 0, NRTIk) < 0, i < k < j, i.e. TBP() is the previous point where a

change of dichotomy was detected.

DOUBLE PRECISION array of dimension (NTI).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: oy =TI < -- <THk) =0 or oy =T >- -+ > TIK) = o

(k denotes the total number of required output points). The output points must
include all switching points o, j =1, ..., NBP.

The routine split the switching points a;, j =2,..., NSP—1 into two output
points ¢ = o;(1-EPS) and o/ := a; (1 +EPS).

On exit: TIG),i=1,2, ..., NRTI(1), contains the output points.

INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D,
PHI. When m(j) denotes the number of output poinis on the interval
[TBP(j—-1),TBP(§) L, i=2,..., NBP, and m the number of output points on the
interval [TBP(1) , TBP(NBP)], i.e. m =m(2) + - - - + m(NBP), then

NTI2m + 1 + max(4 —-m(NBP),).

If the routine was called with NRTI(1) > 1 and ALI <1 then m(j) = NRTIG) + 1, j
=2,...,NBP,so

NTI 2 NBP + NRTI(2) + - - - + NRTI(NBP) + max(3 ~NRTI(NBP),0).

Unchanged on exit.

DOUBLE PRECISION array of dimension (N,NTI).

Onexit X(i,k),i=1.2, ..., N contains the solution of the BVP at the output point
Tik), k=1,..., NRTI(1).

DOUBLE PRECISION array of dimension (NU,NTI).

On exit UG , k) i = 1,2,..., NU contains the relevant elements of the upper
triangular matrix U, k = 2, ..., NRTI(1) The elements are stored column wise,
the jth column of U, is stored in U(nj + 1, k), U(nj + 2, k), ..., U(nj + j, k), where
nj={-1D*j/2.

76

NU

KPART

PHI

Lw

w

LIw

IERROR

MUTSDD CH. IX9

INTEGER.

NU is one of the dimensions of U and PHI.
NU must be at lcastequal to N * (N + 1) /2.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N,N,NTD).
OnexitQli,jk)i=12,...,N,j=12,..., N contains the N columns of the
orthogonal matrix Oy, k=1, ..., NRTI(1).

DOUBLE PRECISION array of dimension (N,NTI).

If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D.

IfIHOM = 1: onexit DG, k)i=1,2,..., N contains the inhomogeneous term d;,
k=12, ..., NRTI(1), of the muitiple shooting recursion.

INTEGER array of dimension (k), k 2 NBP

On exit KPART(j) contains the global partitioning parameter on the interval [
TBP(i;) , TBP(ij41)], j= 1, ..., where the TBP(i;) are the points where a change
of dichotomy has been detected; i < i < - - - and NRTI(;) > 0.

DOUBLE PRECISION array of dimension (NU,NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.

The fundamental solution is upper triangular and is stored in the same way as the
Uy.

DOUBLE PRECISION array of dimension (LW),
Used as work space.

INTEGER

LW is the dimension of W,
LW2N*(3*N*N+14*N+15)/2+NSP*N*(3*N+5)/2
Unchanged on exit.

INTEGER array of dimension (LIW)
Used as work space.

INTEGER

LIW is the dimension of IW. LIW 2 (4 + NBP)*N + 4 * NBP .
Unchanged on exit.

INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See §14 for the other errors.

71

MUTSDD CH.IX9

3o s e e e e ok e e e e Aok ok

Auxiliary Routines
ek s ok 3 She e o e e e e e ke ok ok

This routine calls the BOUNDPAK library routines AMTES, APLB, CAMPF, CDI,
CFUNRC, CKLREC, CNRHS, COPMAT, COPVEC, CONDW, CPSRC, CTIMI, CTIPL,
CROUT, CUVRC, CWISB, DEFINC, DUR, FCBVP, FC2BVP, FQUS, FUNPAR, FUNRC,
GKPMP, GTUR, GTUVRC, INPRO, INTCH, KPCH, LUDEC, MATVC, MTSDD, PSR,
QEVAK, QEVAL, QUDEC, RKF1S, RKFSM, SMBVP, SOLDE, SOLUPP, SORTD,
SORTDO, SPLS2, SSDBVP, TAMVC, TUR, TUVRC, UPUP, UPVECP, UQDEC.

3 2k e ok e el e e e ohe e dfe e ke ok

Remarks
sk 3 3k 3k vde e ofe sk sk ske dke e o i o ok

MUTSMP is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991,

e b 3k g ke ok sk 38 de s e de e e e Sle

Method

e sfe e oS sk e she e e She o sk ke e e

See chapter IV.

ke 3¢ s e sk 3k e s S e e dfe sk sk o o

Example of the use of MUTSDD

sk obe sk ok e e e sfe o e e o e e e ok

Consider the ordinary differential equation

-3<t«0,i=1
Lx)=L)x®+r(t) . <13 io2 -

a jump condition at ¢ =0
Zix(O)+ZF x(0Y)=b,

and a boundary condition:
Mix(-DN+Mx(OD+M3x(B)=b,

1Aa+ibcos(2ty 1-Y2sin2t) O —2442 —cos(2t) + sin(2¢)
Ly(t)y=| -1 -Yasin(2t) 1% -Y4cos(2t) O |, rit)=| —% +cos(2t)+sin(2t) |,
0 0 ~1 1
2+ 3cos(2t) 1-3sin2t) O ~ 14 - 3 (cos(2t) —sin(2t))
Ly(t)y=|~1-3sin(2t) %4 —3cos2t) 0|, rat)={| “%+3(cos(2t)+sin2t)) |,
0 0 -1 1

78

MUTSDD CH.IX9

Zy =I,Z% =~1, by=(1,-2,0),
000 000 100 1+sin(3)e3
My={000|, M3=1010|, M3={000], b= 2
001 000 000 1
The solution of this problem is:

x(t)=(1+cos(t)e? —sin(t)e! ,1—sin(t)e¥ ~cos(t)e! ,1),-3<t <0
x(@)=(1+sint)e~ , 1+cos(t)e™ ,1),05¢ <3,
For ¢ < 0 the ODE has fundamental solutions growing like exp (2t), exp(t) and exp(—t);
for t 2 0 the ODE has fundamental solutions growing like exp (2t) and ep(~t), so there is a
change of dichotomy at ¢ =Q.

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION TSP(3),BCM(3,3,3),BCV(3),ZM(3,3,3),ZP(3,3,3),BI(3,3),
1 ER(6),T1(13),X(3,13),U(6,13),Q(3,3,13),D(3,13),PHI(6,13),W(189)

INTEGER IHOM(3),KP(3),NRTI(3),IW(33)

EXTERNAL FLIN,FINH

SETTING OF THE INPUT PARAMETERS

oNoRe!

N=3

NSP=3
THOM(1) = 1
THOM(2) = 1
TSP(1) = -3.D0
TSP(2) = 0.D0
TSP(3) = 3.D0
ER(1) = 1.D-11
ER(2) = 1.D-6
CALL EPSMAC(ER(3))
ALI=0.D0
NTI = 13
NU=6

LW = 189
LIW =33
NRTI(1) = 2
NRTI(2) = 5
NRTI(3) = 5

SETTING THE BC MATRICES BCM, THE BC VECTOR BCV AND THE SIDE
CONDITION MATRICES ZM, ZP AND VECTOR BI.

Nnon

79

1100

1200

oHONe]

MUTSDD CH.IX9

DO 1200L = 1, NSP
DO 11001=1,N
DO 1100J=1,N

IF (LEQ.J) THEN
ZM(LLL) = 1.D0
ZP(IL)=-1.D0

ELSE
ZM(LJ,L) = 0.D0
ZP(1,J,L)=0.D0

ENDIF

BCM(LJ,L) = 0.D0

CONTINUE
BI(1,L) = 1.D0
BIQ2,L) = -2.D0
BI(3.L) = 0.D0

CONTINUE

BCM(3,3,1) = 1.D0

BCM(2,2,2) = 1.D0

BCM(1,1,3) = 1.D0

BCV(1) = 1.D0 + DSIN(TSP(3)) * DEXP(-TSP(3))

BCV(2) = 2.D0

BCV(@3) = 1.D0

CALL MUTSDD

CALL MUTSDD(FLIN,FINH,N,JHOM,TSP,NSP,BCM,BCV,ZM,ZP BI,ALLER,
1 NRTLTLNTLX,UNU,Q,DKP,PHL,W, LW, IW LIW, IERROR)
IF (IERROR.NE.0).AND.(IERROR.NE.200). AND.(IERROR.NE.213).AND.
1 (IERROR.NE.300)) THEN
WRITE(*,300) IERROR
STOP
ENDIF
CALL OUTPUT(N.ER,TL,X,NTLNRTILNSP)
STOP
300FORMAT(TERMINAL ERROR IN MUTSDD : IERROR = *,I3)
END

SUBROUTINE FLIN(N,T,FL)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION FL(N,N)

T2=2D0*T

C=DCOS(T2)/2.D0
S = DSIN(T2) / 2.D0

80

MUTSDD

IF (T.LT.0.D0) THEN
FL(1,1) = 1.5D0+ C
FL(1,2) = 1.D0- S
FL(1,3) = 0.D0
FL(2,1)=-1.D0-§
FL(2,2) = 1.5D0 - C
FL(2,3) = 0.D0
FL(3,1) = 0.D0
FL(3,2) = 0.D0
FL(3,3)=-1.D0

ELSE
FL(1,1) = 0.5D0 + 3.D0*C
FL(1,2) = 1.D0 - 3.D0*S
FL(1,3) = 0.D0
FL(2,1) = -1.D0 - 3.D0*S
FL(2,2) = 0.5D0 - 3.D0*C
FL(2,3) = 0.D0
FL(3,1) = 0.D0
FL(3,2) = 0.D0
FL(3,3) = -1.D0

ENDIF

RETURN

END OF FLIN

END

SUBROUTINE FINH(N,TFR)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION FR(N)

T2 = 2.DO*T

C=DCOS(T2)/2.D0

S =DSIN(T2)/2.D0

IF (T.LT.0.D0) THEN
FR(1)=-25D0-C+ S
FR(2) =-0.5D0+C + S
FR(3) = 1.DO

ELSE
FR(1) = -1.5D0 - 3.D0*(C - S)
FR(2) = 0.5D0 + 3.DO*(C + S)
FR(3)=1.D0

ENDIF

RETURN

END OF FINH

END

SUBROUTINE OUTPUT(NER, TLX,NTL,NRTLNSP)

81

CH.IX9

oNoNe!

on0nn

2100

200
245

250

260
270

MUTSDD CH.IX9

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION TI(NTT),X(N,NTI),ER(6)
INTEGER NRTI(NSP)

PRINTING OF THE CONDITION NUMBER AND THE AMPLIFICATION FACTOR.

WRITE(NOUT,200)
WRITE(NOUT,245) ER(4),ER(5),ER(6)
WRITE(NOUT,200)

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING
OF THE SOLUTION AT THE OUTPUTPOINTS

WRITEQNOUT,200)
WRITE(NOUT,250)
WRITE(NOUT,200)
DO 2100K = 1, NRTK(1)
C = DCOS(TI(K))
S = DSIN(TI(K))
E2T = DEXP(2.DO*TI(K))
ET = DEXP(TI(K))
EMT = DEXP(-TI(K))
IF (TI(K).LT.0.D0) THEN
EXSOL1 = 1.D0 + C*E2T - S*ET
EXSOL2 = 1.D0- S * E2T - C *ET
ELSE
EXSOL1 = 1.D0+ S * EMT
EXSOL2 = 1.D0 + C * EMT
ENDIF
AE = EXSOLI - X(1,K)
WRITE(NOUT,260) K, TI(K),X(1,K),EXSOL1,AE
AE = EXSOL2 - X(2,K)
WRITE(NOUT,270) X(2.K),EXSOL2,AE
EXSOL3 = 1.D0
AE = EXSOL3 - X(3,K)
WRITE(NOUT,270) X(3,K),EXSOL3,AE
CONTINUE
RETURN
FORMAT(’ ")
FORMAT(’ CONDITION NUMBER =,D10.3/,
* AMPLIFICATION FACTORS = *,D10.3,3X,D10.3)
FORMAT(’ 1°,6X,'T",8X,”’APPROX. SOL.’,9X,"EXACT SOL.’ 8X,
’ABS. ERROR”)
FORMAT(’ *,I3,3X,F7.4,3(3X,D16.9))
FORMAT(’ *,13X,3(3X,D16.9))
RETURN

82

END

CONDITION NUMBER
AMPLIFICATION FACTORS

1 T

1 -3.0000

2 -24000

3 -1.8000

4 -1.2000

9 1.2000

10 1.8000

11 2.4000

12 3.0000

APPROX. SOL.

.100457200D+01
.104963862D+01
.100000000D+01
.105520807D+01
.107245374D+01
.100000000D+01
.115476792D+01
.106416538D+01
.100000000D+01
.131359711D+01
.975412599D+00
.100000000D-+01
.155846863D+01
717113253D+00
.100000000D+01
.200000034D+01

.144075222D-15

.100000000D+01
.100000034D+01
.200000000D+01
.100000000D+01
.130988245D+01
.145295373D+01
.100000000D+01
.128072479D+01
.110914003D+01
.100000000D+01
.116097592D+01
.962443732D+00
.100000000D+01
.106127663D+01
.933105147D+00
.100000000D+01
.100702595D+01
.950711177D+00
.100000000D+01

MUTSDD

83

.101D+01
216D+01 200D+01

EXACT SOL. ABS.ERROR
.100457201D+01 .606644157D-08
.104963863D+01 .382206178D-08
.100000000D+01 .000000000D+00
.105520807D+01 .757860996D-08
.107245374D+01 .308154124D-08
.100000000D+01 .000000000D+00
.115476792D+01 .812305756D-08
.106416540D+01 .111951213D-07
.100000000D+01 .000000000D+00
131359713D+01 .238768358D-07
975412620D+00 .208038813D-07
.100000000D+01 .222044605D-15
.155846867D+01 .369013986D-07
J17113256D+00 .262743050D-08
.100000000D+01 .222044605D-15
.200000000D+01 -.339824049D-06

221020034D-14 206612512D-14
.100000000D+01 .111022302D-15
.100000000D+01 -.339824046D-06
.200000000D+01 -.111022302D-14
.100000000D+01 .111022302D-15
.130088236D+01 -.883196336D-07
.145295379D+01 .632408355D-07
.100000000D+01 .000000000D+00
.128072478D+01 -.757742802D-08
.110914006D+01 .288902136D-07
.100000000D+01 .444089210D-15
.116097593D+01 .604394401D-08
962443746D+00 .143329353D-07
.100000000D+01 .111022302D-15
106127664D+01 .711346293D-08
.933105151D+00 .400970723D-08
.100000000D+01 .111022302D-15
100702595D+01 .000000000D+00
950711176D+00 -.126165733D-08
.100000000D+01 .000000000D+00

CH.IX9

10. Subroutine MUTSEIL

she e s she e ofe ke e o eafe s e ol e o

SPECIFICATION
Rtk ook dolokodokok ok

SUBROUTINE MUTSEIFLINE, N, A, B, EIG, MA, MB, ALIL ER, NRTI, TI,

1 NTIL X, NRSOL, U, NU, Q, KPART, PHI, W, LW, IW, LIW, [ERROR)
INTEGER N, NRTI, NTI, NRSOL, NU, LW, IW(LIW), LIW, IERROR
DOUBLE PRECISION A, B, EIG(2), MANN,N), MB(N,N), AL, ER(5), TI(NTD),

1 X(N,NTLN), UNUNTI), QN,N)NTI), PHI(NUNTD), W(LW)
EXTERNAL FLIN

oEeNeoNe]

ke ke e e ook e e e e ofe dfe e e sk

Purpose
Sje e ke ok o e de e 3k o se e o e ok e

MUTSEI solves the eigenvalue problem:

-g{x(t,?«.)=£.(t,?s)x(t,k), A<t<BorB<i<A,
with BC;
My x(A,\)+Mg x(B,\)=0,

where A is the parameter, L(z,A) an Nx N matrix function, M4 and Mp are NxN matrices.

24 o e e e e ofe sk 3 o e A e o oo ok

Parameters
e ok s 2 e 2 v e 3k e o ke o e e ofc

FLINE SUBROUTINE, supplied by the user with specification:

SUBROUTINE FLINE(N, T, FL, ALAM)
DOUBLE PRECISION T, FL(N,N), ALAM

where N is the order of the system. FLINE must evaluate the matrix L (¢,) of the
differential equation for t = T, A = ALAM and place the result in the array
FL(N,N).

FLINE must be declared as EXTERNAL in the (sub)program from which
MUTSGE is called.

N INTEGER, the order of the system.
Unchanged on exit.

85

AB

EIG

MA MB

ER

NRTI

MUTSEI CH.IX,10

DOUBLE PRECISION, the two boundary points,
Unchanged on exit.

DOUBLE PRECISION array of dimension (2)

On entry EIG(1) and EIG(Z) must contain the endpoints of an interval in which the
required eigenvalue lies.

On exit EIG(1) and EIG(2) contains the endpoints of the interval in which an
eigenvalue is found, where | EIG(1) - EIG(2)| < ER(2) + EIG(1) * ER(1).

EIG(1) is taken as an approximate for the eigenvalue.

DOUBLE PRECISION array of dimension (N, N).

On entry : MA and MB must contain the matrices in the BC:
My x(A,\)+Mpx(B,\)=0.

Unchanged on exit.

DOUBLE PRECISION.

On entry ALI must contain the allowed incremental factor of the homogeneous
solutions between two successive output points. If the increment of a
homogeneous solution between two successive output points becomes greater than
2 * AL, anew output point is inserted.

If ALI < 1 the defaults are:

If NRTI = 0 : ALI := max(ER(1), ER(2)) / 2*ER(3)),

if NRTI # 0 : ALI := SQRT(RMAX), where RMAX is the largest positive real
number which can be represented on the computer used.

On exit ALI contains the actually used incremental factor.

DOUBLE PRECISION array of dimension (5).

On entry ER(1) must contain a relative tolerance for solving the differential
equation and computing the eigenvalue. If the relative tolerance is smaller then 1.0
d-12 the subroutine will change ER(1) into

ER(1) ;= 1.d-12 + 2 * ER(3).

On entry ER(2) must contain an absolute tolerance for solving the differential
equation and computing the eigenvalue.

On entry ER(3) must contain the machine constant EPS (see Remark 1.1).

On exit ER(2) and ER(3) are unchanged.

On exit ER(4) contains an estimate of the condition number of the BVP. If on exit
ER(4) = -1, then NRSOL = N,

On exit ER(S) contains an estimate of the amplification factor.

INTEGER.

On entry NRTI is used to specify the required output points. There are three ways

to specify the required output points:

1)NRTI=0, the subroutine automatically determines the output points using the
allowed incremental factor ALIL

86

NRSOL

MUTSEI CH. IX,10

2)NRTI =1, the output points are supplied by the user in the array T
3) NRTI>1, the subroutine computes the (NRTI+1) output points TI(k) by:
T =A+(k-1)*(B — A)/NRTI;
s0 TI(1)= A and TIINRTI+1)=B .
Depending on the allowed incremental factor ALI, more output points may be
inserted in the cases 2 and 3. On exit NRTI contains the total number of output
points.

DOUBLE PRECISION array of dimension (NTT).

On entry: if NRTI = 1, TI must contain the required output points in strict
monotone order: A=TI(1)< --- <TIk)=BorA=TK)> --- >Tik)=B

{(k denotes the total number of required output points).

Onexit: TI(D),i = 1,2, . .., NRTI, contains the output points.

INTEGER.

NTI is the dimension of TI and one of the dimensions of the arrays X, U, Q, D,
PHI. Let m be the total number of output points then NTI 2 max(5, m + 1).

If the routine was called with NRTI > 1 and ALI < 1 the total number of required
output points is NRTI + 1, so NTI 2 max(5, NRTI + 2).

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NTI, N),

Onexit X(ik1),i=12,...,N,1=1,..., NRSOL, contains the eigensolutions,
at the output points TI(k), k = 1,..., NRTI, corresponding with the computed
eigenvalue EIG(1).

INTEGER.
On exit NRSOL contains the number of independent eigensolutions.

DOUBLE PRECISION array of dimension (NU,NTI).

On exit UG,k) i = 1,2,..., NU contains the relevant elements of the upper
triangular matrix Ug, k = 2,..., NRTL The elements are stored column wise, the
jth column of Uy is stored in U(nj + 1, k), U(nj + 2, k), ..., Unj + j, k) where nj
=(-D*j/2

INTEGER.

NU is one of the dimensions of U and PHI.
NU must be at least equal to N * (N+1) /2.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, NTI).

On exit QG,jk)i=12,...,N,j= 12,..., N contains the N columns of the
orthogonal matrix Q,, k=1, ..., NRTL

87

MUTSEIL CH.IX,10

KPART INTEGER.
On exit KPART contains the global k-partition of the upper triangular matrices Uy.

PHI DOUBLE PRECISION array of dimension (NU, NTI).
On exit PHI contains a fundamental solution of the multiple shooting recursion.

The fundamental solution is upper triangular and is stored in the same way as the
Uy.

w DOUBLE PRECISION array of dimension (L W),
Used as work space.

LW INTEGER
LW is the dimension of W, LW 2 8*N + 7*N*N,
Unchanged on exit.

w INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension of IW. LIW 2 4*N,
Unchanged on exit.

IERROR INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See §14 for the other errors.

o4 e o e o e e o e e e sl e o e ok

Auxiliary Routines
e ke sk 3 e b s s e o e e o dbe e ok

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAYV, CDI, CNRHS,
COPMAT, COPVEC, CONDW, CRHOL, CROUT, CWISB, DEFINC, DUR, FCBVP,
FCEBVP, FQUS, FUNPAR, FUNRC, INPRO, INTCH, KPCH, LUDEC, MATVC, MTSE,
QEVAK, QEVAL, QUDEC, RKF1S, RKFSM, SOLDE, SOLUPP, SORTD, TAMVC, UPUP,
UPVECP.

e el sk ook sk e e sk s ke ske ek

Remarks

sheafe s e e s s sk sfe s e o o e e e

MUTSEI is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991,

88

MUTSEI

e sfe o e ok oo s e s ok ol e e s e o

Method

e b o sl o deske e db o e e sl o e ok

See chapter VII.

ok e ok sfe e ofe o b e o o e e e e ke

Example of the use of MUTSEI

e sbe b s e sheole o e ol sheofe o e e ok

Consider the ordinary differential equation

H‘f;x(t,l)z [_Ox (1)] x(t,A), 0sr<i

and a boundary condition x (0) =0 and x(1)=0.

CH.1IX,10

This problem has an eigenvalue A, =2 and an eigensolution x (¢, A,) = (i‘-“—g-‘-‘l ,cos(m))T.

In the next program this eigenvalue and eigensolution is computed, starting with an initial
interval foraA:[9,111.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

ioRoRe!

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION EIG(2),BMA(2,2),BMB(2,2),ER(5),TI(12),X(2,12,2),
U(3,12),Q(2,2,12),PHI(3,12), W(44)

INTEGER IW(8)
EXTERNAL FLINE

SET INPUT PARAMETERS

N=2

NU=3

NTI=12

NRTI =10

LW =44

LIW =8
A=0.D0

B =1.D0

AMP = 0.D0
ER(1) = 1.1D-12
ER(2) = 1.0D-6
CALL EPSMAC(ER(3))
DO 1100I=1,N

89

MUTSEI CH.IX,10

DO1100J=1,N
BMA(LJ) = 0.D0
BMB(LJ) = 0.D0
1100 CONTINUE
BMA(,1) = 1.D0
BMB(2,1) = 1.D0
EIG(1) = 9.D0
EIG(2) = 11.0D0

CALL MUTSEI

oNeNP]

CALL MUTSEI(FLINE,N,A B EIG,BMA,BMB,AMP,ER NRTLTILNTI,
1 X,NRSOL,U,NU,Q,KPART,PHI,W,LW,IW,LIW,JERROR)

IF (IERROR.NE.0).AND.(IERROR.NE.200). AND.(IERROR.NE.213).AND.
1 (IERROR.NE.300)) GOTO 5000

COMPUTATION OF THE ABSOLUTE ERROR IN THE SOLUTION AND WRITING
OF THE EIGENVALUE END EIGENSOLUTION

sNeNeoNe

WRITE(*,200) ER(4),ER(5)
PI = 4.D0 * DATAN(1.DO)
EXLAM = PI * PI
ERR = EXLAM - EIG(1)
WRITE(*,210) EXLAM,EIG(1),ERR
WRITE(*,220)
DO 1500 K = 1, NRTI
T =PI * TKK)
XEX = DSIN(T) / PI
ERR = XEX - X(1,K,1)
WRITE(*,230) K, TI(K).X(1,K,1),XEX,ERR
XEX = DCOS(T)
ERR = XEX - X(2.K,1)
WRITE(*,240) X(2.K,1),XEX,ERR
1500CONTINUE
STOP

200 FORMAT(CONDITION NUMBER ='DI125/,
1 " AMPLIFICATION FACTOR = ’,D12.5,/))

210 FORMAT(EXACT LAMBDA =",D20.13,/,” COMP. LAMBDA =",D20.13,/,
1 " ERROR =",D20.13,/)

220 FORMAT(*,/,9X,'T",6X,’APPROX. EIGENSOL.’3X,"EXACT EIGENSOL.’,
1 8X,’ERROR’.)) '

230 FORMAT(*,12,2X F8.5,3X,3(D16.9,3X))

240 FORMAT(*,15X,3(D16.9,3X))

300 FORMAT(’ TERMINAL ERROR IN MUTSEI: IERROR = ’,14)

STOP

MUTSEL CH.IX,10

5000 WRITE(*,300) IERROR
END
C
SUBROUTINE FLINE(N,T,FL,PARM)
C
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION FL(N,N)
C
FL(1,1) = 0.D0
FL(1,2) = 1.D0
FL(2,1) = -PARM
FL(2,2) = 0.D0
RETURN
END
CONDITION NUMBER = 70711D+00
AMPLIFICATIONFACTOR = .23117D+02
EXACTLAMBDA = .9869604401089D+01
COMP.LAMBDA = .9869604559034D+01
ERROR = -.1579442141519D-06
T APPROX. EIGENSOL. EXACT EIGENSOL. ERROR
1 .00000 -.222615390D-10 .000000000D+00 .222615390D-10
.100000000D+01 .100000000D+01 .000000000D+00
2 .10000 .983631646D-01 983631643D-01 -291091706D-09
951056520D+00 951056516D+00 -.394011335D-08
3 20000 .187097863D+00 .187097857D+00 -.595535582D-08
.809017027D+00 .809016994D+00 -327274168D-07
4 30000 257518123D+00 257518107D+00 -152225198D-07
587785293D+00 587785252D+00 -409873473D-07
5 40000 .302730718D+00 302730691D+00 -261617198D-07
:309017026D+00 .309016994D+00 -.313559396D-07
6 .50000 .318309923D+00 .318309886D+00 - 363406942D-07
289859515D-08 612574227D-16 -.289859508D-08
7 60000 .302730735D+00 302730691D+00 -.431250540D-07
-.309017037D+00 -309016994D+00 425759964D-07
8 70000 .257518145D+00 257518107D+00 -379209960D-07
-.587785342D+00 -587785252D+00 .892135977D-07
9 80000 .187097885D+00 .187097857D+00 -281338394D-07
-.809017123D+00 -.809016994D+00 .128821307D-06
10 90000 .983631789D-01 983631643D-01 -.146072169D-07
-951056673D+00 -.951056516D+00 .156757917D-06
11 100000 -.222615346D-10 .389976865D-16 222615736D-10

91

MUTSEI CH. IX,10

-.100000020D+01 -.100000000D+01 .199901559D-06

92

11, Subroutine SPLS1

e e dbe e e o she e o o oo ofe oe e e

SPECIFICATION

st ke S 3 s o she e o e ol o ool e e

SUBROUTINE SPLSI(N, [HOM, A, B, G, NRI, M1, MN, BCV, NREC, X, Q,

1 U,V,NU,PHI, D, KP, EPS, COND, AF, W, LW, IW, LIW, IERROR)
INTEGER N, IHOM, NRI, NREC, NU, KP, LW, IW(LIW), LIW, IERROR
DOUBLE PRECISION A(N,N,NRI), BON,N,NRI), GIN,NRI), M1(N,N),

1 MN(N.N), BCV(N), X(N,NRI), Q(N,N,NRI), U(NU,NRI),

2 V(NU,NRI), PHI(NU,NRI), D(N,NRD), EPS, COND, AF, W(LW)

s HeNeNe]

e sfe ke s ok sl ol e e e ok ok e ok

Purpose

dedte ke s sk ook s e e sle e e ol ok

SPLS1 solves the discrete two-point BVP:

Ai Xi+Bivi Xis1=8iv1 , i=1,..., NREC —-1.
with BC:
M xy + Mngec XnREC =BCV

where A;, Biy1, M1, Mygec are N XN matrices, x;, g;+1 and BCV are N-vectors.

e e e e e dbe ke sk ok o e e e o ofe e

Parameters
she o s ok sfe o o ol s e e e o ol ol e

N INTEGER, the order of the system,
Unchanged on exit.

IHOM INTEGER.
THOM indicates whether the system is homogeneous or inhomogeneous.
THOM =0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.

Unchanged on exit.

A DOUBLE PRECISION array of dimension (N, N, NRI).
Onentry A(., ., i) must containt the matrix A;,i=1,..., NREC-1,
Unchanged on exit.

B DOUBLE PRECISION array of dimension (N, N, NRI).

Onentry B(., ., i) must contain the matrix B;,i=2, ..., NREC,

93

M1,MN

BCV

NREC

SPLS1 CH.1X,11

On exit: if in the call to SPLS1 the same array is used for B and Q; B will contain
the Qs; otherwise B is unchanged.

DQUBLE PRECISION array of dimension (N, NRI).

If THOM = 0, the array G has no real use and the user is recommended to use the
same array for the X and the G.

If THOM = 1, then on entry G(. , i) must contain the vector g;,i=2, ..., NREC.
On exit: if in the call to SPLS1 the same array is used for the G and D, the G will
contain the values for the D; otherwise the G is unchanged.

INTEGER.
NRI is one of the dimension of A, B, G, X, Q, U, V, PHI and D. NRI:2 NREC + 1.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N).

On entry : M1 must contain the matrix M; and MN must contain the matrix
Mngec of the BC:

M xy+ Mppec xnpEc =BCV.,

Unchanged on exit.

DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector.
Unchanged on exit.

INTEGER.

On entry NREC must contain the total number of the x; of the recursion..
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NRI).
Onexit X(i,k),i=1,..., N contains the solution x3, k=1, ., . , NREC.

DOUBLE PRECISION array of dimension (N, N, NRI).
On exit QG jk)i=12,...,N,j=12,...,N contains the N columns of the
orthogonal transformation matrix @, , k=1, ..., NREC.

DOUBLE PRECISION array of dimension (NU, NRI).
Onexit UG k)i=1,..., NU contains the relevant elements of the upper triangular
matrix U, k = 2,..., NREC, of the transformed upper triangular recursion. The
elements are stored column wise, the jth column of Uy is stored in U(nj + 1, k),
Umj+2,k),..., Unj+j, k) wherenj=(G-1)*j/2.

DOUBLE PRECISION array of dimension (NU, NRI).

On eit V(i,k)i =1, ..., NU contains the relevant elements of the upper triangular
matrix Vi, k = 1,..., NREC, of the transformed upper triangular recursion. The
clements are stored in the same way as the Uy.

PHI

COND

Lw

Iw

LIW

SPLS1 CH.IX,11

INTEGER.

NU is one of the dimensions of U, V and PHI.
NU must be at leastequal toN* (N + 1) /2,
Unchanged on exit.

DOUBLE PRECISION array of dimension (NU, NRI).

On exit PHI contains a fundamental solution of the transformed upper triangular
recursion. The fundamental solution is upper triangular and is stored in the same
way as the Uy.

DOUBLE PRECISION array of dimension (N, NRI).
If ITHOM = O the array D has no real use and the user is recommended to use the
same array for the X and the D.

IfIHOM = 1:onexit D@i,k)i=1,, ..., Ncontains the inhomogeneous term dy,
k=2,..., NREC, of the transformed recursion.

It is possible to use the same array for the G and D in the call to SPLS1. If this is
the case, this array will contain the values of the D on exit.

INTEGER.

On exit KP contains the global k-partition of the transformed upper triangular
recursion.

DOUBLE PRECISION.

On entry EPS must contain the machine constant EPS (see Remark 1.1).
Unchanged on exit.

DOUBLE PRECISION.
On exit COND contains an estimate of the condition number,

DOUBLE PRECISION,
On exit AF contains an estimate of the amplification factor.

DOUBLE PRECISION array of dimension (LW).
Used as work space.

INTEGER

LW is the dimension of W.
LW23*N+2*N*N.
Unchanged on exit.

INTEGER array of dimension (LIW)
Used as work space.

INTEGER
LIW is the dimension of IW. LIW 24 * N,
Unchanged on exit.

95

SPLS1 CH.IX,11

IERROR INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See §14 for the other errors.

ke sl e e sk e ode sde she s e b ke 1k

Auxiliary Routines
st she s b o sheale s e e o sfe e o e ok

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAV, CAMPF,
CFUNRC, COPMAT, COPVEC, CONDW, CPSRC, CROUT, CUVRC, FQUS, GTUVRC,
INPRO, INTCH, LUDEC, MATVC, QEVAK, QEVAL, QUDEC, SBVP, SOLDE, SOLUPP,
SORTD, SORTDO, TAMVC, TUVRC, UPUP, UPVECP.

oo e abe sbe e e She e she ke e e sde 1 sde sk

Remarks
3¢ 2k 3be e ape e e o o ofe o o s o ok ok

SPLS1 is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991,

3esfe sk ok ek sk ool ool dk ok ook

Method

3 e ke ok sk e e e o sk she e she e ok ke

See chapter VIIL

o he ke s ol e 2 e o e

Example of the use of SPLS1

o2l e she s sl o e e o e s sl e e

Consider the recursion;

Aixi+Bigxin=gn, i=1...,10,
with BC:
Mxi+Muxu=»b,

where
1 -6 6 -2 7 -3
A;={-4 2 -10|, B;y=18 3 51,
-2 7 -12 4 16

gin=(-2,19,24)7

000 00
Mi={100], M;=|10
010 00

SPLS1 CH. iX,11

b=(=2,3+2710,2).

The solution of this problem is: x(i)=(1+21,2,-1-2i-11)T,

In the next program the solution is computed and compared to the exact solution.
This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

oNeo N

oNoNe]

1100

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION A(3,3,12),B(3,3,12),G(3,12),BM1(3,3),BMN(3,3),BCV(3),
X(3,12),U(6,12),V(6,12),PHI(6,12), W(27)

INTEGER IW(12),IB(12)

SETTING OF THE INPUT PARAMETERS

N=3

IHOM =1

NU=6

NRI= 12

LW =27

LIW =12

NREC =11

CALL EPSMAC(EPS)

SETTING OF THE RECURSION AND BC

DO 1100I=1,NREC-1
A(1,1LD) = 1.D0
A(1,2,D=-6.D0
A(1,3D) = 6.D0
AR,1L,)=-4D0
A22= 2.D0
A(2,3,]) = -10.D0
AG,1LD=-2D0
AGB2D= 7.D0
A3 =-12.D0
CONTINUE
DO 12001=2,NREC
B(1,1,H=-2.D0
B(1,2,) = 7.D0
B(1,3,) =-3.D0
B(2,1,) = 8.D0
B2,2)= 3.D0
B(2,3D)= 5.D0

97

1200

1300

oNeRe]

oHoNe!

3000

100

SPLS1

B(3,1,D = 4.D0
B(3.2.h = 1.D0
B@3,3.)= 6.D0
G(1.1)=-2.D0
G, =19.D0
G@3,1)=24D0
CONTINUE
DO1300I=1,N
DO 1300J=1,N
BM1())=0.D0
BMN(.,]) = 0.D0
CONTINUE
BM1(2,1) = 1.DO
BM1(3,2) = 1.D0
BMN(1,3)=1.D0
BMN(2,1) = 1.DO
BCV(1)=-2.D0
BCV(2) = 3.D0 + 2.D0 ** (-10)
BCV(3)= 2.D0
IERROR = 0

CALL TO SPLS1

CH.IX,11

CALL SPLS1(N,IJHOM,A,B,G,NRI,BM1,BMN,BCV NREC,X,B,U,V,NUPHIL G,

KP.EPS,COND,AF,W,LW,IW,LIW,IJERROR)
IF (IERROR.NE.0). AND.(IERROR.NE.710)) GOTO 3000

WRITING OF THE SOLUTION AND THE ABSOLUTE ERROR

CALL OUTSOL(COND,AF,KP,X N,NRI,NREC)

STOP

WRITE(*,100) IERROR
STOP

FORMAT(’ TERMINAL ERRROR IN SPLS1 : IERROR =", 4,))

END

SUBROUTINE OUTSOL(COND,AF,KP,X,N,NRI,NREC)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(N,NRI)

WRITE(I0,200) COND,AF KP

WRITE(10,100)

DO 1100I=1,NREC
n=1-1

98

SPLS1 CH.IX,11

N1=1- NREC
S1=1.D0+2.D0**I1
$2=2.D0
$3 =-1.D0 - 2.D0 ** N1
WRITE(0,110) L,X(1,1),51,81-X(1,1)
WRITE(IO,120) X(2,1),52,52-X(2.)
WRITE(IO,120) X(3,1),53.83-X(3.])
1100 CONTINUE

100 FORMAT(' *,/,” I"',7X,’X APPROX’,11X,’X EXACT’,14X,’ERROR".))
110 FORMAT(",12,3X,3(D16.9,3X))
120 FORMAT(’,5X,3(D16.9,3X))
200 FORMAT(',/,' CONDITION NUMBER =',DI12.5/,
1’ AMPLIFICATION FACTOR =’,D12.5,/)

RETURN
END
CONDITION NUMBER = .10038D+01
AMPLIFICATION FACTOR = .31591D+01
I X APPROX X EXACT ERROR

1 .200000000D+01 .200000000D+01 -.888178420D-15
.200000000D+01 .200000000D+01 .000000000D+00
-100097656D+01 -.100097656D+01 .222044605D-15

2 .150000000D+01 .150000000D+01 222044605D-15
.200000000D+01 .200000000D+01 -.133226763D-14
-.100195313D+01 -.100195313D+01 -.444089210D-15

3 .125000000D+01 .125000000D+01 -.222044605D-15
.200000000D+01 .200000000D+01 .222044605D-15
-.100390625D+01 -.100390625D+01 -.444089210D-15

4 .112500000D+01 .112500000D+01 -.133226763D-14
.200000000D+01 .200000000D+01 666133815D-15
-100781250D+01 -.100781250D+01 222044605D-15

5 .106250000D+01 .106250000D+01 -.666133815D-15
.200000000D+01 .200000000D-+01 444089210D-15
-.101562500D+01 -.101562500D+01 .222044605D-15
.103125000D+01 .103125000D+01 -.222044605D-15
.200000000D+01 .200000000D+01 -.444089210D-15
-.103125000D+01 -.103125000D+01 -.222044605D-15
7 .101562500D+01 .101562500D+01 .000000000D+00

(=]

99

10

11

.200000000D+01
-.106250000D+01
.100781250D+01
.200000000D+01
-.112500000D+01
.100390625D+01
.200000000D+01
-.125000000D+01
.100195312D+01
.200000000D+01
-.150000000D+01
.100097656D+01
.200000000D+01
-.200000000D+01

SPLS1

.200000000D+01
-.106250000D+01
.100781250D+01
.200000000D+01
-.112500000D+01
.100390625D+01
.200000000D+01
-.125000000D+01
.100195313D+01
.200000000D+01
-.150000000D+01
.100097656D+01
.200000000D+01
-.200000000D+01

100

-.444089210D-15
-.222044605D-15
-.177635684D-14
.222044605D-15
.155431223D-14
-.133226763D-14
.888178420D-15
.133226763D-14
666133815D-15
.000000000D+00
.222044605D-15
.888178420D-15
-.444089210D-15
.000000000D+00

CH. IX,11

12. Subroutine SPLS2

ke 3¢ e e e kel ok s s s e e e sl ke

SPECIFICATION

shesfe sheake skl ok ok o she ke s ofe e e

SUBROUTINE SPLS2(N, IHOM, A, B, G, NRI, IJ, MI, KMI, BCV,NREC, X, Q,
1 U, V,NU, PHL, D, KP, EPS, COND, AF, W, LW, IW, LIW, IERROR)

C INTEGER N, THOM, NRI, I[J{KMI), NREC(KMI), NU, KP(KMT)},

C 1 LW, IW(LIW), LIW, IERROR

c DOUBLE PRECISION A(N,N,NRI), B(N,N,NRI), G(N,NRI), MI(N.N.KMI),
C 1 BCV(N), X(N,NRI), Q(N,N,NRI), UINU,NRI), V(NUNRI),

C 2 PHI(NU.NRI), D(N,NRD), EPS, COND, AF, W(LW)

sesko e sk oo o e o ol s dfe e

Purpose

e afe e ofe ke e afe o e ol e s 3 e o o

SPLS2 solves the discrete two-point BVP:
A xitBinXis1=8iv1 » i=1,...,m-1

with BC:

f"ij,'j':b
"G

where A;, B4, M; are NxN matrices, x;, g;+1 and b are N-vectors and
l=i1<iz< - - <ip=m.
The subindices i; are the so called "switching points"

S sbe b s e ske ke s e s e sfe e sk ofe e

Parameters
abe dfc 3k ok she e ke sle afe sk ke o o 2 e e

N INTEGER, the order of the system.
Unchanged on exit.

JHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
IHOM = 0 : the system is homogeneous,
IHOM = 1 : the system is inhomogeneous.
Unchanged on exit.

101

NRI

)

Ml

KMI

BCV

NREC

SPLS2 CH. IX,12

DOUBLE PRECISION array of dimension (N, N, NRI).
Onentry A(.,.,i) must containt the matrix 4;,i=1,...,m~1,
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, NRI).

Onentry B(., ., i) must contain the matrix B;,i=2, ..., m.

On exit: if in the call to SPLS2 the same array is used for B and Q, B will contain
the Qs; otherwise B is unchanged.

DOUBLE PRECISION array of dimension (N, NRI).

If IHOM = 0, the array G has no real use and the user is recommended to use the
same array for the X and the G.

If IHOM = 1, then on entry G(.. , i) must contain the vector g;,i=2,..., m.

On exit: if in the call to SPLS2 the same array is used for the G and D, the G will
contain the values for the D; otherwise the G is unchanged.

INTEGER.

NRI is one of the dimension of A, B, G, X, Q,U, V,PHl and D. NRI2m + 1.
Unchanged on exit.

INTEGER array of dimension (KMI).

On entry 1(j), j = 1,...,k must containt the subindex i; of the x; in the
multipoint BC.

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, KMI).

Onentry : MI(.,.,j.j=1,..., k must contain the matrix M; of the multipoint
BC.
Unchanged on exit.

INTEGER.

KMI is one of the dimension of 1J, MI, NREC and KP.

On entry KMI must have the value of k, i.e. the total number of the BC matrices
M;.

Unchanged on exit.

DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector b.
Unchanged on exit.

INTEGER array of dimension (KMI).

On entry NREC(1) must contain the total number of the x; of the recursion, i.e.
NREC(y=m.

On exit: NREC(1) is unchanged.

Forj=2, ..., KML if NREC(j) < 0 then no change of dichotomy is detected in the
recursion between the "switching points" 1J(j— 1) and 1J(j+1). If NREC(j) > O then
a change of dichotomy is detected at 1J(j) and NREC(j) = J() - 1J(i)+1, where i < j,

102

PHI

EPS

SPLS2 ’ CH.IX,12

NREC(®) > 0, NREC() < 0, i <1 < j, i.e. 1I(i) is the previous "switching point"
where a change of dichtomy was detected.

DOUBLE PRECISION array of dimension (N, NRI).
Onexit X(i,k),i=1, ..., N contains the solution x;, k=1, . . . , NREC(1).

DOUBLE PRECISION array of dimension (N, N, NRI).
On exit QG,jkyi=12,...,N,j=12,..., N contains the N columns of the
orthogonal transformation matrix @, k=1, ..., NREC(1).

DOUBLE PRECISION array of dimension (NU, NRI).
OnexitUGi,k)i=1,..., NU contains the relevant elements of the upper triangular
matrix Ug, k = 2,..., NREC(1), of the transformed upper triangular recursion.
The elements are stored column wise, the jth column of Uy is stored in U(nj + 1, k),
Umj+2,k),..., Unj+j,kywherenj=(G-1)*j/2.

DOUBLE PRECISION array of dimension (NU, NRI).

Oneit V(i,k)i=1,..., NU contains the relevant elements of the upper triangular
matrix Vi, k = 1,..., NREC(1), of the transformed upper triangular recursion.
The elements are stored in the same way as the Ug.

INTEGER.

NU is one of the dimensions of U, V and PHL
NUmustbe at leastequaltoN* (N + 1) /2.
Unchanged on exit.

DOUBLE PRECISION array of dimension (NU, NRI).
On exit PHI contains a fundamental solution of the transformed upper triangular

recursion. The fundamental solution is upper triangular and is stored in the same
way as the Uy.

DOUBLE PRECISION array of dimension (N, NTI).

If IHOM = 0 the array D has no real use and the user is recommended to use the
same array for the X and the D,

IfIHOM =1 : onexit D(i,k) i = 1,,..., N contains the inhomogeneous term dy, k
=2, ..., NREC(1), of the transformed recursion.

It is possible to use the same array for the G and D in the call to SPLS2. If this is
the case, this array will contain the values of the D on exit.

INTEGER.

On exit KP contains the global k-partition of the transformed upper triangular
recursion.

DOUBLE PRECISION.
On entry EPS must contain the machine constant EPS (see Remark 1.1).

103

SPLS2 CH. IX,12

Unchanged on exit.

COND DOUBLE PRECISION.
On exit COND contains an estimate of the condition number.

AF DOUBLE PRECISION.
On exit AF contains an estimate of the amplification factor.

w DOUBLE PRECISION array of dimension (LW).
Used as work space.

LW INTEGER
LW is the dimension of W.
LW23*N+2*N*N,
Unchanged on exit.

w INTEGER array of dimension (LIW)
Used as work space.

LIW INTEGER
LIW is the dimension of IW.LIW 24 * N+ (N + 1) * KML
Unchanged on exit.

IERROR INTEGER
Error indicator; if IERROR = () then there are no errors detected.
See §14 for the other errors.

seslo e e e ke e e ool e e e e e

Auxiliary Routines
e e o e e e sfe s s s e e sk e aleoke

This routine calls the BOUNDPAK library routines AMTES, APLB, CAMPF, CFUNRC,
COPMAT, COPVEC, CPSRC, CROUT, CUVRC, FQUS, GKPMP, GTUVRC, INPRO,
INTCH, LUDEC, MATVC, QEVAK, QEVAL, QUDEC, SMBVP, SOLDE, SOLUPP,
SORTD, SORTDO, TAMVC, TUVRC, UPUP, UPVECP.

e e ok e 3k she ke e ke e e e e ke e ok

Remarks
e 35 B e e v ol e ol e e e ok ke e ok

SPLS2 is written by G.W.M. Staarink and R.M.M. Mattheij.
Last update: november 1991,

104

SPLS2

ohe 2fe ofe o 3Jc ofe ke e ke ok ole e e s e e
Method

e e 3¢ e e e o) Wk ok

See chapter VIIL

e afe ok e ¢ et s ok o sl ole s oe s e

Example of the use of SPLS2

she e ok sk ke s e ek ook ole e e sk ok

Consider the recursion;

Aix; +Biaxin=gn i=1,...,10
and a multipoint boundary condition: Mx; +Myxg+Max11=b,
where

4 22 g 2
Ai=|-1%02|,i=1,...,5, Ai=|-1%0%]|,i=6,...
2 12 2 1%
-1 141
Bi=|-5 ¥ 1|,i=2,...,11,
8 11

8=k, -84, 11) ,i=2,...,6,
gi=(4,-7,124)7 i=17...,11,

b=(2,-1,1),

The solution of this problem is: x; =(1,2,~1)7.

In the next program the solution is computed and compared to the exact solution.

" CH.IX,12

This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

105

OnNo

SPLS2

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION A(3,3,12),B(3,3,12),G(3,12),BMI(3,3,3),BCV(3),
X(3,12),U(6,12),V(6,12),PHI(6,12),W(126)

INTEGER 1J(3),NREC(3),KP(3),IW(24)

N=3

IHOM = 1
NU=6

NRI= 12
KMI=3

LW =126

LIW = 24
CALL EPSMAC(EPS)
NREC(1) = 11
U =1

Q) =6

1J(3) = NREC(1)

SETTING OF THE RECURSION AND BC

DO1100I=1,10
II=1+1
A(1,1,1)=-0.5D0
A(2,1.D=-1.5D0
AG,LD = 2.0D0
A(12Dh= 2.0D0
A2 = 0.0D0
A(G2D= 1.0D0
IF (L.LT.13(2)) THEN

A(1,3D = 2.0D0
AQ2J3.H)= 2.0D0
AG3.D= 2.0D0
G(1,11) = 2.5D0
G(2,11) = -8.5D0
G(3,11) = 11.0D0
ELSE
A(1,3,D) =0.5D0
A(2,3,)=0.5D0
AG3,D=0.5D0
G(1,11)= 4.0D0
G(2,11) = -7.0D0
G311 =12.5D0
ENDIF
B(1,1,11)=-1.0D0
B(2,1,11) =-5.0D0
B(@3,1,11) = 8.0D0

106

CH.IX.12

SPLS2 CH.IX,12

B(1,2,11) = 1.5D0
B(2,2.11) = 0.5D0
B(3,2,]1) = 1.0D0
B(1,3,11) = 1.0D0
B(2,3,11)= 1.0D0
B(3,3.11) = 1.0D0

1100 CONTINUE
DO 1200L =1, KMI
DO 1200I=1,N
DO 1200J=1,N
BMI(,J,L) = 0.D0

1200 CONTINUE
BMI(3,1,1) = 1.DO
BMI(2,3,2) = 1.D0
BMI(1,2,3) = 1.D0
BCV(1) =2.D0
BCV(2) =-1.D0
BCV(3) = 1.D0
IERROR = 0

CALL TO SPLS2

sNoNy!

CALL SPLS2(N,JHOM,A,B,G,NRLIJ,BMI,KMI,BCV,NREC,X,B,U,V,NU,PHI,
1 G,KP,EPS,COND,AF,W,LW,IW LIW,JERROR)
IF (IERROR.NE.0).AND.(IERROR.NE.710)) GOTO 3000
CALL OUTSOL(1J,COND,AF,KP,X,N,NRL,NREC(1))
STOP
3000 WRITE(*,100) IERROR
STOP
100 FORMAT(TERMINAL ERRROR IN SPLS2 : IERROR ="4,/)
END

SUBROUTINE OUTSOL(1J,COND,AF,KP,X,N,NRILNREC)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N,NRI)
INTEGER 1J(3),KP(3)

WRITE(*,190) (13(I),I=1,3)
WRITE(*,200) COND,AF,(KP(J),J=1,2)
El=1D0
E2=2.D0
E3=-1.D0
WRITE(*,100)
DO 11001=1,NREC
nN=1-1

107

SPLS2 CH. IX,12

WRITE(*,110) LX(1,D,E1,E1-X(L,])
WRITE(*,120) X(2,1),E2,E2-X(2.])
WRITE(*,120) X(3,D,E3,E3-X(3,])

1100 CONTINUE

100 FORMAT(*/,; T',7X,’X APPROX’,11X,"X EXACT",14X,’ERROR’,))
110 FORMAT(’ °,12,3X,3(D16.9,3X))
120 FORMAT(*,5X,3(D16.9,3X))
190 FORMAT("SWITCHING POINTS" 1I = *,3(12,3X))
200 FORMAT(*,/,’ CONDITION NUMBER =',D12.5/,
1 * AMPLIFICATION FACTOR = ’,D12.5/,
2 *K-PARTITIONINGS = ’,2(12,2X).)
300 FORMAT(*)
310 FORMAT(D(,I12,%) = ,3(D16.9,3X))
RETURN
END

"SWITCHINGPOINTS"II=1 6 11

CONDITION NUMBER = .12305D+01
AMPLIFICATION FACTOR = .49403D+01
K-PARTITIONINGS =2 1

I X APPROX XEXACT ERROR

1 .100000000D+01 .100000000D+01 .000000000D+00
.200000000D+01 .200000000D+01 .000000000D+00
-.100000000D+01 -.100000000D+01 -.999200722D-15

2 .100000000D+01 .100000000D+01 .555111512D-15
.200000000D+01 .200000000D+01 .000000000D+00
-.100000000D+01 -.100000000D+01 .888178420D-15

3 .100000000D+01 .100000000D+01 -.666133815D-15
.200000000D+01 .200000000D+01 .222044605D-15
-.100000000D+01 -.100000000D+01 -.111022302D-14

4 .100000000D+01 .100000000D+01 .000000000D+00
.200000000D+01 .200000000D+01 111022302D-14
-.100000000D+01 -.100000000D+01 .000000000D+00

5 .100000000D+01 .100000000D+01 -.222044605D-15
.200000000D+01 .200000000D+01 .222044605D-15
-.100000000D+01 -.100000000D+01 -.555111512D-15

6 .100000000D+01 .100000000D+01 .000000000D+00

108

i0

11

.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01

SPLS2

.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01
.100000000D+01
.200000000D+01
-.100000000D+01

109

.000000000D+00
-.222044605D-15
-.444089210D-15
.111022302D-14
-.111022302D-14
.222044605D-15
222044605D-15
-.122124533D-14
.222044605D-15
222044605D-15
444089210D-15
-.222044605D-15
.133226763D-14
-.888178420D-15
-.222044605D-15
.222044605D-15
-.888178420D-15

CH. IX,12

13. Subroutine SPLS3

ke e ol e e ok e 2 2 e e o e e o e

SPECIFICATION

S 3k ook s sk e e sk she sfe sk she e sfe e

SUBROUTINE SPLS1(N, IHOM, A, B, C, G, L, NREC, M1, MN, MZ, BCV,
1 NPL,EPS, X, NX,Z, COND, AF, W, LW, IW, LIW, IERROR)
INTEGER N, IHOM, L, NREC, NPL, NX, LW, IW(LIW), LIW, JERROR
DOUBLE PRECISION A(N,N,NREC), B(N.N,NREC), C(N.L,NREC), G(N,NREC),
1 MI(NPLN), MN(NPL,N), MZ(N,L), BCV(NPL), EPS,
2 X(N,NX), Z(L), COND, AF, W(LW)

sNoNoNe]

34 ok 3 2 ok e e o e o ae afe s o e ok

Purpose

ol o ok s sk obe ok e ok e obe e

SPLS3 solves the discrete two-point BVP WITH PARAMETERS:
Aixi+Bixin+Ciz=g , i=1,..., NREC.

with BC:
M1x1+Mpygec XnRec+t + Mz = b

where A;, B,y are NxN matrices, C; an NxL matrix, g; an N-vector, M, Myggc are
(N+L)x N matrices, M, an (N+L) XL matrix and & an (N+L)-vector.
The vector z contains the L parameters.

ek s sfe e o S e e s ale ae sl e e ke

Parameters
e e e e 3k 3 e e ke ok sl afe she ok s ke

N INTEGER, the order of the system.
Unchanged on exit.

IHOM INTEGER.
IHOM indicates whether the system is homogeneous or inhomogeneous.
THOM = 0 : the system is homogeneous,
THOM = 1 : the system is inhomogeneous.
Unchanged on exit.

A DOUBLE PRECISION array of dimension (N, N, NREC).
Onentry A(., ., i) must contain the matrix A;,i=1,..., NREC.

111

NREC

M1IMN

BCV

EPS

SPLS3 CH.IX,13

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, N, NREC).
Onentry B(., ., i) must contain the matrix B;,i=1,..., NREC.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, L, NREC).
On entry C(., ., i) must contain the matrix C;,i=1, ..., NREC.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NREC).
If ITHOM = 0, the array G has no real use and the user is recommended to use the
same array for the X and the G.

If IHOM = 1, then on entry G(., i) must contain the vector g;,i= 1, ..., NREC.
Unchanged on exit.

INTEGER, the number of parameters.
Unchanged on exit.

INTEGER.

NREC is one of the dimension of A, B, C and G. On entry NREC must contain the
total number of recursions.
Unchanged on exit.

DOUBLE PRECISION arrays of dimension (NPL, N).

On entry : M1 must contain the matrix M; and MN must contain the matrix
Mnrec of the BC:

Myxy+ Mngee XNpEC1 Y M 2= b,

Unchanged on exit.

DOUBLE PRECISION array of dimension (NPL, L).
On eniry MZ must contain the matrix M, of the BC.
Unchanged on exit.

DOUBLE PRECISION array of dimension (N).
On entry BCV must contain the BC vector b.
Unchanged on exit.

INTEGER.

NPL is one of the dimension of M1, MN, MZ and BCV. On entry NPL must be
equaltoN + L. !
Unchanged on exit.

DOUBLE PRECISION,
On entry EPS must contain the machine constant EPS (sec Remark 1.1).

112

COND

Lw

Iw

LIW

IERROR

SPLS3 CH.1X,13

Unchanged on exit.

DOUBLE PRECISION array of dimension (N, NX).
Onexit X(,k),i=1,..., N contains the solution x;, k=1, ..., NREC+ L

INTEGER.
NX is one of the dimension of X. On entry NX 2 NREC + 1,
Unchanged on exit.

DOUBLE PRECISION array of dimension (L)
Onexit Z(),i=1, ..., L contains the solution for the parameters.

DOUBLE PRECISION,
On exit COND contains an estimate of the condition number,

DOUBLE PRECISION.
On exit AF contains an estimate of the amplification factor.

DOUBLE PRECISION array of dimension (LW).
Used as work space.

INTEGER

LW is the dimension of W,

If JHOM = 0 : LW 2 NPL*NPL*(7*NREC/2 + 11) + NPL*(5*NREC/2 + 8) + 1.
If JTHOM = 1 : LW 2 NPL*NPL*(7*NREC/2 + 11) + NPL*(7*NREC/2 + 10) + 1,
Unchanged on exit.

INTEGER array of dimension (LIW)
Used as work space.

INTEGER
LIW is the dimension of IW. LIW 24 * NPL.
Unchanged on exit.

INTEGER

Error indicator; if IERROR = 0 then there are no errors detected.
See §14 for the other errors.

e e 2k sfe s she e e o e ok ofe e o e e

Auxiliary Routines
e she e o e dbe she o o sheofe s el e

This routine calls the BOUNDPAK library routines AMTES, APLB, BCMAV, CAMPF,
CAPARC, CFUNRC, COPMAT, COPVEC, CONDW, CPSRC, CROUT, CUVRC, FQUS,
GTUVRC, INPRO, INTCH, LUDEC, MATVC, QEVAK, QEVAL, QUDEC, SBVP, SOLDE,
SOLUFPP, SORTD, SORTDO, SPLS1, TAMVC, TUVRC, UPUP, UPVECP.

113

SPLS3

ok ofe sk sk ok sk sfe ofe o e o e ke e e ok

Remarks

b s e ke s e e e e 206 e S e de ok ke

SPLS3 is written by G.W.M. Staarink and R M:M. Mattheij,
Last update: november 1991,

s s e o e e e sfe o sl e e e ofe e ke

Method
sk ¢ ek ok ok o e dfe e e e e ke e sk

See chapter VIII.

sheale ok e s oo sl e s o sk e sl el

Example of the use of SPLS1

b 2he e sk sk Ao e s e e e ofe 2 o ke

Consider the recursion:

Aix; +Biuaxin+Ciz=gn i=1,..., 10
and a boundary condition :
Mxy+Moxy1+M,z=b,
where

A;': g:? s Ci={}]!i=1""’10'

B; = 15 .i:l,...,ﬁ,B,‘:{i 'él}’iz()““’]{),

L -

g =015% 5% ,i=1,...,5, g=(15%,T%4) ,i=6,...,10,

M=

OO

0
0], My= , M, =
1

[l ol
OO
[T o Y

b=(3%,1,%).
The solution of this problem is: x; =(2,~1), z =14.

In the next program the solution is computed and compared 1o the exact solution.

CH.IX,13

This program has been run on a OLIVETTI M24 personal computer (see Remark 1.2).

114

oNoNe!

1100

1200

1300

SPLS3

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(2,2,10),B(2,2,10),C(2,1,10),G(2,10),BM1(3,2),
1 BMN(@3.2),BMZ(3,1),BCV(3),X(2,11),Z(1),W(550)
INTEGER IW(12)

SETTING OF THE PARAMETERS

N=2

L=1

NPL =3

IHOM =1

NX=11

NREC = 10

LW =550

LIW =12

CALL EPSMAC(EPS)

SETTING OF THE RECURSION AND BC

DO 1100I=1,10
A(1,1,h= 3.D0
A(1,2,)=-5.D0
AQ2,1,D)= 3.D0
A2.2D)=-1.D0
C(1,1,)=1.D0
C2.1.D=1D0

CONTINUE

DO 12001I=1,5
B(1,1,D = 1.DO
B(1,2,) =-1.D0
B(2,1,) = 1.DO
B(2,2,) = 5.D0
G(1,1) = 15.5D0
G@2.I)= 5.5D0

CONTINUE

DO 13001=6, 10
B(1,1,D) = 1.DO
B(1,2,) =-1.D0
B2,1.) = 1.D0
B(2,2.) = 3.D0
G(1,1) = 15.5D0
G2 = 7.5D0

CONTINUE

BM1(1,1) =0.D0

115

CH.IX,13

SPLS3 CH.1X,13

BMI1(2,1) = 1.D0

BMI1(3,1) = 0.D0

BMI(1,2) = 0.D0

BM1(2,2) = 0.D0

BM1(3,2) = 1.D0

BMN(1,1) = 1.D0

BMN(2,1) = 0.D0

BMN(@3,1) = 0.D0

BMN(1,2) = 0.D0

BMN(2,2) = 1.D0

BMN(3,2) = 0.D0

BMZ(1,1) = 1.D0

BMZ(2,1) = 0.D0

BMZ(3,1) = 1.D0

BCV(1) =3.5D0

BCV(2) = 1.0D0

BCV(3) = 0.5D0

CALL SPLS3(N,JHOM,A B,C,G,L,NREC,BM1,BMN,BMZ,BCV,NPL,EPS,
1 X,NX,Z,COND,AF,W,LW,IW,LIW,IERROR)

TF (IERROR NE.0).AND.(IERROR.NE.710)) GOTO 3000

WRITING OF THE SOLUTION

oo

CALL OUTSOL(COND,AF,X,N,NX,NREC,Z,L)
STOP
3000 WRITE(*,100) IERROR
STOP
100 FORMAT(’' TERMINAL ERRROR IN SPLS3 : IERROR = ',J4,/)
END

SUBROUTINE OUTSOL(COND,AF,X,N,NX,NREC,Z,L)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N,NX),Z(L)

WRITE(*,200) COND,AF
El=1.5D0
E2 = 2.D0
E3=-1.D0
WRITE(*,210)
DO1100J=1,L
WRITE(*,220) Z(J),E1,E1-Z(J)
1100 CONTINUE
WRITE(*,300)
WRITE(*,100)
DO 12001 =1, NREC+1
WRITE(*,110) LX(1,1),E2,E2-X(1,1)

116

SPLS3 CH. IX,13

WRITE(*,120) X(2,),E3,E3-X(2,I)
1200 CONTINUE

100 FORMAT(*/,” I',7X,”X APPROX’,11X,’X EXACT’,14X,’ERROR")
110 FORMAT(*,12,3X,3(D16.9,3X))
120 FORMAT(' *,5X,3(D16.9,3X))
200 FORMAT(' ’,/,, CONDITION NUMBER =’D12.5/,
1 " AMPLIFACATION FACTOR =’,D12.5,/./)
210 FORMAT(’ *4X,'Z APPROX’,11X,’ZEXACT’,14X,’ERROR",))
220 FORMAT(*,3(D16.9,3X))
300 FORMAT(*)
310 FORMAT(D(.I12,") = *,3(D16.9,3X))

RETURN
END
CONDITION NUMBER = .18883D+01
AMPLIFACATION FACTOR = ,11000D+02
Z APPROX ZEXACT ERROR

.150000000D+01 .150000000D+01 -.399680289D-14

I X APPROX XEXACT ERROR

1 .200000000D+01 .200000000D+01 -.133226763D-14
-100000000D+01 -.100000000D+01 -.166533454D-14
200000000D+01 .200000000D+01 .133226763D-14

-.100000000D+01 -.100000000D+01 .111022302D-14
3 .200000000D+01 .200000000D+01 .444089210D-15
-.100000000D+01 -.100000000D+01 -.222044605D-135

4 .200000000D+01 .200000000D+01 .444089210D-15
-.100000000D+01 -.100000000D+01 .000000000D+00

5 .200000000D+01 .200000000D+01 .444089210D-15
-.100000000D+01 -.100000000D+01 444089210D-15

6 .200000000D+01 .200000000D+01 444089210D-15
-.100000000D+01 -.100000000D+01 .444089210D-15

7 .200000000D+01 .200000000D+01 -.177635684D-14
-.100000000D+01 -.100000000D+01 .000000000D+00

8§ .200000000D+01 .200000000D+01 -.444089210D-15
-.100000000D+01 -.100000000D+01 111022302D-14

o

117

10

it

.200000000D+01
-.100000000D+01
.200000000D+01
-.100000000D+01
.200000000D+01
-.100000000D+01

SPLS3

.200000000D+01
-.100000000D+01
.200000000D+01
-.100000000D+01
.200000000D+01
-.100000000D+01

118

-.888178420D-15
.222044605D-15
.222044605D-15

-111022302D-15

-.177635684D-14
.888178420D-15

CH. IX,13

14. Error messages

When an error is detected by one of the routines of BOUNDPAK,a terminal or warning error
message with an error number IERROR is given. Three groups of error numbers can be
distinguished:

i) 100 < IERROR < 200
These errors are INPUT errors and are detected before the actual computation starts.

They are TERMINAL errors and occur when one or more parameters in the actual call
to a BOUNDPAK routine have a wrong value.

ii) 200 < IERROR < 300

These errors are detected during the computation of the upper triangular recursion.
Some are WARNING errors, but most are TERMINAL errors.

iii) 300 < IERROR < 400
These errors are detected during the computation of the solution of the linear multiple
shooting system. These errors indicate that there is something wrong with your
problem. Some are WARNING errors, others are TERMINAL errors.

Remark 14.1

BOUNDPAK contains a lot of subroutines. In most computer systems BOUNDPAK will be
available via a BOUNDPAK library, which contains the object code of the subroutines.
Therefore the most common way to use subroutines from BOUNDPAK is to write a program,
in which calls are made to subroutines from BOUNDPAK, compile it and then link it with the
BOUNDPAK library to obtain an execution code. The advantage is evident; instead compiling
the program together with the BOUNDPAK package, only the program has to be compiled.
However there is a disadvantage, namely, some programming errors are not detected, which
would have been detected if the program together with the BOUNDPAK package was
compﬂed as one large program. These undetected programming errors may cause an error
méssage when the program is run. Therefore, if an error message occurs and according to your
program it should not occur, check for the following mistakes in your program:

- Wrong number of parameters in a call to a subroutine,
- Parameters not in the right posiftion in a call to a subroutine.

— Wrong type of parameter, e.g. integer parameter declared as real or real parameter
declared as integer, etc.

~ External subroutine not declared as external.

119

ERRORS

14.1 Errors detected by the subroutines:

INPUT errors.

100

101

102

103

104

105

106

107

108

109

110

111

112

N«1
TERMINAL ERROR.

THOM # 0 and IHOM = 1
TERMINAL ERROR

A=B or NRTI < 0.
TERMINAL ERROR

Either ER(1) or ER(2) or ER(3) is negative.
TERMINAL ERROR.

Value of NTI too small
TERMINAL ERROR

Value of NU is too small.
TERMINAL ERROR.

Either the value of LW or LIW is too small.
TERMINAL ERROR

Either KSP < 1 or KSP 2N or NQD < KSP.
TERMINAL ERROR.

IHOM = 0 and BCV = (), so the solution will be zero.

TERMINAL ERROR

EitherA<BandC<BorA>Band C2B.
TERMINAL ERROR.

CH.IX,14

Subroutine is called with IEXT = 1, but the given value for C is wrong. It should be
greater (less) than the actual used value for vy in the previous call to the subroutine

(stored in TKEXT)) if A is less (greater) than B.

TERMINAL ERROR.

Value of NSP is too small.
TERMINAL ERROR.

NRTK(1)< 0.
TERMINAL ERROR.

120

113

114

115

120

121

122

123

ERRORS CH.IX,14

1<1.
TERMINAL ERROR.

NPL # N+L.
TERMINAL ERROR.

THOM(i) # 0 and IHOM() 1 fori=1,..., NSP~—1.

The routine was called with NRTI = 1, but the given output points in the array TI are
not in strict monotone order.
TERMINAL ERROR.

The routine was called with NRTI = 1, but the first given output-point or the last
output-point is not equal to A or B.
TERMINAL ERROR.

The switching points are not given in strict monotone order.
TERMINAL ERROR.

The routine was called with NRTI(1) = 1, but the given output points in the array TI
do not include all switching points.
TERMINAL ERROR.

Errors detected during computation.

200

201

213

215

216

This indicates that there is a minor shooting interval on which the incremental growth
is greater than the AMP. The cause of this error lies in the used method for
computing the fundamental solution.

WARNING ERROR.

This indicates that there is a minor shooting interval on which || M;(i)|| is greater than
max(ER(1) , ER(2))/ ER(3), i.e. TOL /EPS.
WARNING ERROR.

This indicates that the relative tolerance was too small. The subroutine has changed it
into a suitable value.
WARNING ERROR.

This indicates that during integration the particular solution or a homogeneous
solution has vanished, making a pure relative error test impossible. Must use non-zero
absolute tolerance to continue.

TERMINAL ERROR.

This indicates that during integration the requested accuracy could not be achieved.
User must increase error tolerance.
TERMINAL ERROR.

121

218

222

223

224

225

226

ERRORS CH.IX,14

This indicates that the input parameter N < 0, or that either the relative tolerance or
the absolute tolerance is negative.
TERMINAL ERROR.

This indicates that the increment of a fundamental solution has become greater than
the allowed incremental factor ALIL, so a new output point has to be inserted. However
the current value of NTI is too small to insert a new output point. Qutput value is an
estimate for NTI, taking into account possible not yet detected new output points,
which have to be inserted when the increment of a fundamental solution becomes
greater than ALIL

When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions,

TERMINAL ERROR

This indicates that the value of NTI is too small to compute the next necessary
upertriangular matrix in the extension interval. Increase the value of NTL

When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions.

TERMINAL ERROR.

This indicates that to avoid unnecessary overflow a new point has to be inserted, but
the current value of NTI is too smal to insert new points. Output value is an estimate
for NTI, taking into account possible not yet detected new points, which has to be
inserted to avoid unnecessary overflow.

When changing the value of NTI, do not forget to change the arrays for which NT1 is
one of the dimensions.

TERMINAL ERROR

This indicates that a switching point is detected and has to be inserted in the output
points. However, the current value of NTI is too small to insert a new output point.
Output value is an estimate for NTI, taking into account the possible number of
switching points, which are not detected at this stage.

When changing the value of NTI, do not forget to change the arrays for which NTI is
one of the dimensions.

TERMINAL ERROR.

This indicates that || M (i)|| has become greater then max(ER(1) , ER(2)) / ER(3)
(TOL / EPS) and a new output point has to be inserted. However the current value of
NTI is too small to insert a new output point. Output value is an estimate for NTI,
taking into account possible not yet dectected new output points, which have to be
inserted if|| M (i)|| becomes greater than TOL / EPS.

When changing the value of NTI, do not forget to change the arrays for which NT1 is
one of the dimensions.
TERMINAL ERROR.

122

250

300

305

310

315

320

325

330

331

335

340

ERRORS CH.1X,14

This indicates that it was not possible to compute an SVD within 30 iterations.
TERMINAL ERROR.

This indicates that the global error is probably larger than the error tolerance due to
instabilities in the system. Most likely the problem is ill-conditioned. Output value is
the estimated amplification factor.

WARNING ERROR.

This indicates that the global error is probably larger than the error tolerance due to
instabilities in the discrete multipoint BVP, derived from the side conditions and BC.

Most likely the problem is ill-conditioned. Output value is an estimate for the
amplification factor.

WARNING ERROR.

This indicates that one of the U, is singular.
TERMINAL ERROR.

This indicates that the discrete multipoint BVP, derived from the side conditions and
BC is singular.
TERMINAL ERROR.

This indicates that the problem is probably too ill-conditioned with respect to the BC.
TERMINAL ERROR.

This indicates that the problem is probably too ill-conditioned with respect to the BC.
TERMINAL ERROR.

The computed value for Ymax is larger than the given maximum value for y in C.
Output value is the estimated value for y. The given value for Yna, is used for further
computations.

WARNING ERROR

The computed number of unbounded growing modes on the interval [o, B] differs
from the computed number of growing modes on the interval [o, y]. This might be

caused by a very slowly increasing mode, or the problem is not dichotomic.
WARNING ERROR.

The number of exponentially growing modes is not the same as the number of
unbounded modes. Probably the problem has non exponentially growing modes. It is

also possible that the problem is not dichotomic, so check the value of ER(5).
WARNING ERROR.

This indicates that the BC is inconsistent with respect to the BC-vector. If also error
335 has occurred, then most probably both erros occured for the same reason.

Otherwise, most probably the used value for B has been too small, so a larger value
for B will solve this problem.

123

345

350

355

ERRORS CH.IX,14

WARNING ERROR.

This indicates that the problem is ill-conditioned. A basis for a meaningful manifold
will be computed.
WARNING ERROR.

This indicates that p(EIG(1)) * p(EIG(2)) 2 0 . Output values are the p(EIG(1)) and
P(EIG(2)).
TERMINAL ERROR,

This indicates that no eigenvalue was found in the given interval. Output values are
the boundary points of the given interval,
TERMINAL ERROR.

Errors of the special linear solvers.

600

601

602

603

605

606

611

612

613

614

N<1.
TERMINAL ERROR.,

THOM %0 and IHOM # 1.
TERMINAL ERROR.

NREC <2.
TERMINAL ERROR.

Value of NRI is too small.
TERMINAL ERROR.

Value of NU is too small.
TERMINAL ERROR.

Either the value of LW or LIW is too small.
TERMINAL ERROR.

KMI<2.
TERMINAIL ERROR.

NREC(1) < 3.
TERMINAL ERROR.

L<l.
TERMINAL ERROR.

Either NREC<2 orNX<NREC+ 1or NPL#N + L.
TERMINAL ERROR.

124

621

622

700

710

720

ERRORS CH.I1X,14

Either 1J(1) # 1 or I}(KMI) # NREC(1).
TERMINAL ERROR.

The switching points are not given in strict monotonic order.
TERMINAL ERROR.

This indicates that the global error is probably larger than 1 / EPS, due to instabilities
in the system. Most likely the problem is ill-conditioned. Output value is the
estimated amplification factor.

WARNING ERROR.

This indicates that one of the A; or B; is singular in such a way that the linear system
is singular.
TERMINAL ERROR.

This indicates that the problem is probably too ill-conditioned with respect to the BC.
TERMINAL ERROR.

125

15. Names of subroutines in BOUNDPAK.

In the next table all the names of the BOUNDPAK subroutines are given.

AMTES ANORM1 APLB

BCMAV

CAMPF CAPARC ccl CDI
CFUNRC CHDIAU CKLREC CKPSW CNRHS
CONDW COPMAT COPVEC CPABC CPARC
CPRDIA CPSRC CQIZI CRHOL CROUT
CSPABV CTIMI CTIPL CUVRC CWISB
DEFINC DETSWP DUR DURIN DURPA
EPSMAC

FC2BVP FCBVP FCEBVP FCIBVP FCPBVP
FQUS FUNPAR FUNRC

GKPMP GKPPA GOPBC GTUR GTURI
GTUVRC

INPRO INTCH

KPCH

LUDEC

MATUP MATVC MTSDD MTSE MTSI
MTSMP MTSP MTSS MUTSDD MUTSEI
MUTSGE MUTSIN MUTSMI MUTSMP MUTSPA
MUTSPS MUTSSE

PSR

QEVAK QEVAL QUDEC

RKF1S RKFSM

SBVP SMBVP SOLDE SOLUPP SORTD
SORTDO SPARC SPLS1 SPLS2 SPLS3
SSDBVP SVD

TAMVC TUR TUVRC

UPUP UPVECP UQDEC

127

	Voorblad

	CONTENTS
	PART ONE

	PREFACE
	CHAPTER I
	CHAPTER II

	CHAPTER III
	CHAPTER IV
	CHAPTER V
	CHAPTER VI
	CHAPTER VII
	CHAPTER VIII

	PART TWO

	CONTENTS
	CHAPTER IX

