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Consider the set V% of all n-tuples x = (x4, .., x,,} with x,€ {0, 1,2}. We are inter-
ested in o, the minimal size of a subset W of V], such that for any element x & V73
there exists at least one element y € W at a Hamming distance d4(x, y)<1. ¢, can
also be considered as the minimal number of forecasts in a football pool of n
matches, such that at least one forecast has at least n — 1 correct results. In this note
we present new upper bounds on ¢y, 6, and cg: 73, 186, and 486, respectively. The
bounds have been obtained by an approximation algorithm based on simulated
annealing. A closer analysis of the result for the 8-matches problem has led to a
simple way to construct a large number of subsets W of ¥'§, each consisting of 486
8-tuples and each having the aforementioned property. © 1989 Academic Press, Inc.
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1. INTRODUCTION

Let V% denote the set of all n-tuples x=(x,, .., x,) with x,eZ,=
{0, ..,k—1}. The Hamming distance dy(x,y) between two n-tuples
x,ye V7% is defined as the number of positions in which the two n-tuples
differ. For all xe V7, the rook domain of x, B(x), is defined as

B(x)={yeVildu(x,y)<1}. (1)

A subset W of V7 is called a covering by rook domains if

r= U B(x) (2)

xeW

We are interested in upper bounds on the number of n-tuples in a minimal
covering of V7%, denoted by a(n, k). In this note we only consider the case
k=3, which is known as the football pool problem (Kamps and Van Lint,
[4]), and write ¢, instead of a(n, 3).

In [87, the problem is considered as an optimization problem and a
simulated-annealing-based algorithm [57] is used to find approximate solu-
tions to it. More specifically, for a fixed number p, the algorithm generates
subsets W of V% consisting of p n-tuples, while trying to minimize the
amount of uncovered n-tuples, ie., the size of the set Vi\U,cw B(x). If a
subset W is found for which Vi\{J, . B(X) is empty, i.e., if a covering by
rook domains consisting of p n-tuples is found, then clearly p is an upper
bound on o,. In that case, p is decreased by 1 and the algorithm is
executed again. Execution of the algorithm is terminated when p is such
that the algorithm is not able to find a subset W for which Vi\U,cw B(x)
is empty. Clearly then, p+ 1 is an upper bound on o,,.

The optimization technique employed, simulated annealing, is a ran-
domization version of the well-known iferative improvement approach to
combinatorial optimization problems. A detailed description of the
application of simulated annealing to the football pool problem can be
found in (Wille, [8]); for a review of the theory and other applications
of simulated annealing the reader is referred to Van Laarhoven and
Aarts, [6].

2. THE 6- AND 7-MATCHES PROBLEMS

By using the same algorithm as in [8], but with slower “cooling” (1000
iterations per temperature step, y = 0.995), we were able to find a covering
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of ¥$ by 73 rook domains—a slight improvement on the upper bound of
74 reported in [87]. The positions of the 73 6-tuples are shown in Fig. 1.

A large number of calculations with various cooling rates was performed
in an attempt to find a covering with 72 rooks. However, no such structure
could be found, in spite of a good deal of computational effort. The best
results, obtained on several occasions, leave two 6-tuples uncovered. Such
results were found 10 out of 10 times with 100,000 iterations per tem-
perature step, 47=0.01 and linear cooling scheme. Thus, at least from a
computational point of view, there is strong evidence that o5 ="73.

An even slower cooling rate (10,000 iterations per temperature step,
AT =0.01, linear cooling scheme) was necessary to find a covering of V] by
186 rook domains. This result was found by executing the algorithm 50
times; in two cases the final covering consisted of 186 rook domains. Both
coverings are displayed in Fig. 2. The bound of 186 is a significantly
sharper upper bound on o, than the best result published so far, which is
2.16 [2], though in 1958 a group in Finland constructed an apparently
unpublished covering proving that ¢, <189 {71
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Fig. 1. A covering of ¥$ by 73 6é-tuples. The positions of the 6-tuples are indicated by
€rosses.
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F1g. 2. Two coverings of V5 by 186 7-tuples. The positions of the 7-tuples are indicated
by crosses.
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3. THE 8-MATCHES PROBLEM

Since the computation time taken by our algorithm quickly increases
with growing problem size (each of the 50 runs for the 7-matches problem,
for instance, took approximately 2 h of CPU time on a VAX 11/785 com-
puter), we adopt a different (and computationally more efficient) approach
to find coverings of larger problems than the ones considered so far. Our
approach is based on a result due to Blokhuis and Lam [2]. In order to
state this result, we need the following definition. Let 4 be an r x n matrix
with entries from Z,. A subset S of V7 is called a covering using A if

L={s+cx‘ai|seS,oceZk,1<i<n}, (3)

where a, denotes the ith column vector of the matrix 4. Note that if r=n
and A is the identity matrix, then S is a covering by rook domains.

If A=(I; M), where I is the rxr identity matrix and M an rx (n—r)
matrix with entries from Z,, then Blokhuis and Lam prove that
W={weV}|Awe S} is a covering of V'; by rook domains if S is a cover-
ing of V) using 4. Furthermore, they prove that [W|=|S| k""" The
restriction on the form of the matrix 4 is not used in the proof that W is
a covering by rook domains, so that this result also holds for an arbitrary
matrix 4. In that case, however, the number of n-tuples in W is not
necessarily given by [S]-k” "

We use the result of Blokhuis and Lam to approximate o,. Conse-
quently, we put k=3 and try to find an r xn matrix 4 and a subset S of

% such that S is a covering of V% using 4. We formulate the latter
problem again as an optimization problem; ie., for a given value p and a
choice of r we try to find a subset S of V' consisting of p r-tuples and an
rxn matrix A such that the size of the set

"\{s+a-a;|seS, aeZ;, 1<i<n} (4)

is minimal. Again, we use simulated annealing to solve this problem—a
move in this case is either the replacement of a randomly chosen tuple in
S by a randomly chosen tuple not in S or the replacement of a randomly
chosen column of 4 by a column not yet in A4. If the algorithm finds a
subset S and a matrix 4 for which (3) is satisfied, p is decreased by 1 and
the algorithm is executed again. Execution of the algorithm is terminated
when p is such that the algorithm does not find a subset S and a matrix
A for which the set in (4) is empty.

If S, is the smallest covering of V% found throughout execution of
the algorithm (using a matrix A,,), then W is constructed through
W= {We V| AninW € Smin }- Clearly then, |W| is an upper bound on ¢,.

By applying the cooling schedule described in Aarts and Van Laarhoven,
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[17], using 225 iterations per temperature step and a distance parameter
5 =0.01, we were able to find a covering

S=1{(22,22),(21,21),(20,1,1),(0,2,1,1),(2,0,1,2),(1, 1, 2, 2)}
(5)
of V% using the 4 x 8 matrix
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FiG. 3. A covering of V'§ by 486 8-tuples. The positions of the 8-tuples are indicated by
crosses.
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This result was found in 705s of CPU time on a VAX 11/785 computer;
in this case r =4 and p=6.

Constructing W through W= {we V}|Awe S}, with S and 4 given by
(5) and (6), respectively, yields a covering of V$ by 486 rook domains
(since the matrix 4 has maximum rank, the size of W can also be found
by applying the result of Blokhuis and Lam: |7} =[S] -k"~"=6"- 34 =486).
This is again a significantly sharper upper bound than the best result pub-
lished so far, which is 567 (Fernandes and Rechtschaffen, [3]), although
the Finnish group mentioned before also constructed a covering with 546
8-tuples [7]. The positions of the 8-tuples in ¥ are shown in Fig. 3.

4, DISCUSSION

At first glance the result presented in Section 3 does not seem to have
any structure. However, a closer analysis of this result led us to a simple
way to construct a large number of coverings of V5, each consisting of 486
8-tuples. In order to describe this construction, we need the following
definitions.

For xe V3, we define the set D(x) as

Dx)E {yeVily=x+a-a,04eZ;,2eV3}. 0

Thus, an element of D(x) is obtained by adding to x a multiple of a vector
for which the non-zero coordinates are all 1.

Two tuples x and y in V3 are said to form a pair if they are the same
in one coordinate position and if y,—x,=1 for the other two values of i.
Finally, two pairs (x, y;) and (X,, ¥,) are related if x, and y, are not in
the union of D(x,) and D(y,) (or, equivalently, if x; and y, are not in the
union of D(x,) and D(y,)).

It is now easy to check that for a pair (x,,¥,), the set
VIN(D(x0) U D(y,)) is the union of two related pairs (x;, y,) and (x5, ¥,):
without loss of generality we may put x,= (0,0, 0) and y,=(0, 1, 1), and
then find that V3\(D(x,)u D(¥,)) is the union of the pairs (x;,y,)=
((1,2,0), (2,2, 1)) and (x,,¥,)=((1,0,2), (2, 1, 2)).

As a consequence of this property, we can write

V3:D(X0)UD(yO)U {Xl’ YI}U {XZ’ yz}’ (8)
V3:{X0>YO}UD(X1)UD(Y1)U{Xza Y2}, 9)
Vi= {XO:YO}U {XIaY1}UD(X2)UD(Y2)- (10)

The following theorem is an immediate consequence of the aforementioned
property of a pair and the choice of S and 4.
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THEOREM 1. If Sc V3 is given by

S={(xs 1), (y» )]i=0,1,2}, (11)

where (X, Yo) is an arbitrary pair in V3 and the pairs (X;,y:) and (X3, ¥2)
are given by V3\(D(x,) U D(y,)), and

A= M), (12)

where

(13)

<

I
S = O
(=R =
oD = =
O = =

then S covers V3 using A.

Proof. We divide the set 4 into three disjoint subsets, Uy, Uy, and Us,
respectively, where

U={(x,i)|xeV3}, =012 (14)

Consider an arbitrary element (x,0) of U,. According to (8), either
X=X,+0-avx=y,+a-a for some aeZ; and ae 3\(0,0,0) or
X € {X;, Y1, X;, Y2 }. In the first case, we can write

(x,0) = (x0, 0) + - (a,0) v (x,0)=(¥0, 0) +2- (2, 0), (15)

where (a, 0) is a column of 4, since a€ V2\(0, 0, 0). In the second case, we
use the fourth column of 4 to write

(Xa 0)=(Xi: l)+(3_l) (09 0’ 0: 1) v (X, 0)= (yis l)+ (3_1) (09 05 09 1)9
(16)

for some ie {1,2}. The same line of reasoning can be applied to the sets
U, and U,.

An immediate consequence of the results of Blokhuis and Lam and
Theorem 1 is that for an arbitrary pair (xo,¥o) in V3, the set
W={weVi|Awe S}, with S and 4 given by (11) and (12), respectively,
yields a covering of V3§ by 486 rook domains.

One might be tempted to try to show by a straightforward generalization
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that 0 <8-3% The idea would be to find 8 3-tuples X, Yo, X1, ¥15 Z1, X2,
y,, and z,, such that

Vi=D'(xe) v D'(¥o) L To, (17)
Vi=D'(x))uD'(y)uD'(z)u Ty, (18)
VB'_—D,(Xz)UD'(h)UD/(Zz)U 75, (19)

where To< {Xy, Y1, 215 X2, Y2, 22, T, < {Xg, Yo, X2, Y2, 2}, and T,
{XO» Yos X1, ylazl}a and

D’(x)d=ef{er%[y=x+o¢-ai,cer3,ieZG}, (20)

the vectors a,, .., a5 being six vectors to be chosen from V'3 (including
(0,0, 0)). However, as the reader can verify, it is not possible to write Vs
in the form of (17).
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