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Infinite volume limits of high-dimensional

sandpile models

Antal A. Járai ∗

Frank Redig †

August 5, 2004

Abstract: We study the Abelian sandpile model on Z
d. In d ≥ 5 we prove existence of

the infinite volume addition operator, almost surely w.r.t the infinite volume limit µ of

the uniform measures on recurrent configurations. We prove the existence of a Markov

process with stationary measure µ, and study ergodic properties of this process. The

main techniques we use are a connection between the statistics of waves and uniform

two-component spanning trees and results on the uniform spanning tree measure on

Z
d.

Key-words: Abelian sandpile model, wave, addition operator, two-component
spanning tree, loop-erased random walk, tail triviality.

1 Introduction

The Abelian sandpile model (ASM), introduced originally in [2] has been studied
extensively in the physics literature, mainly because of its remarkable “self-organized”
critical state. Many exact results were obtained by Dhar using the group structure
of the addition operators acting on recurrent configurations introduced in [4], see e.g.
[5] for a review. The relation between recurrent configurations and spanning trees,
originally introduced by [17] has been used by Priezzhev to compute the stationary
height probabilities of the two-dimensional model in the thermodynamic limit [20].
Later on, Ivashkevich, Ktitarev and Priezzhev introduced the concept of “waves”
to study the avalanche statistics, and made a connection between two-component
spanning trees and waves [8, 9]. In [21] this connection was used to argue that the
critical dimension of the ASM is d = 4.

From the mathematical point of view, one is interested in the thermodynamic
limit, both for the stationary measures and for the dynamics. Recently, in [1] the
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connection between recurrent configurations and spanning trees, combined with re-
sults of Pemantle [19] on existence and uniqueness of the uniform spanning forest
measure on Z

d has led to the result that the uniform measures µV on recurrent con-
figurations in finite volume have a unique thermodynamic (weak) limit µ. In [14]
this was proved for an infinite tree, and a Markov process generated by Poissonian
additions to recurrent configurations was constructed. A natural continuation of [1]
is therefore to study the dynamics defined on µ-typical configurations. The first ques-
tion here is to study the addition operator. We first prove that in d ≥ 3 the addition
operator ax can be defined on µ-typical configurations. This turns out to be a rather
simple consequence of the transience of the simple random walk. However, in order to
construct a stationary process with the infinite volume addition operators, it is crucial
that the measure µ is invariant under ax. We prove that this is the case if avalanches
are µ-a.s. finite. In order to obtain a.s. finiteness of avalanches, we prove that the
statistics of waves has a bounded density with respect to the uniform two-component
spanning tree. The final step is to show that one component of the uniform two-
component spanning tree is a.s. finite in the infinite volume limit when d > 4. This
is proved using Wilson’s algorithm combined with a coupling of the two-component
spanning tree with the (usual) uniform spanning tree.

Given existence of ax, and stationarity of µ under its action, we can apply the
formalism developed in [14] to construct a stationary process which is informally
described as follows. Starting from a µ-typical configuration η, at each site x ∈ Z

d

grains are added on the event times of a Poisson process Nx
t with mean ϕ(x), where

ϕ(x) satisfies the condition

∑

x

ϕ(x)G(0, x) <∞,

with G the Green function. The condition ensures that the number of topplings has
finite expectation at any time t > 0. In this paper we further study the ergodic
properties of this process. We show that tail triviality of the measure µ implies
ergodicity of the process. We prove that µ has trivial tail in any dimension d ≥ 2.
For 2 ≤ d ≤ 4 this is a rather straightforward consequence of the fact that the
height-configuration is a (non-local) coding of the edge configuration of the uniform
spanning tree, i.e., from the spanning tree in infinite volume one can reconstruct the
infinite height configuration almost surely. This is not the case in d > 4 where we
need a separate argument.

Our paper is organized as follows. We start with notations and definitions, re-
calling some basic facts about the ASM. In sections 3 and 4 we prove existence of
the addition operator ax and invariance of the measure µ. In section 5 we prove
existence of inverse addition operators. In section 6 we make the precise link be-
tween avalanches and waves, in section 7 we prove that waves are finite if the uniform
two-component spanning tree has a.s. a finite component. In section 8 we prove the
required a.s. finiteness of the component of the origin in dimensions d ≥ 5. In sec-
tions 9 and 10 we discuss tail triviality of the stationary measure, and correspondingly,
ergodicity of the stationary process.
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2 Notations, definitions

We consider the Abelian sandpile model, as introduced by Bak, Tang and Wiesenfeld
and generalized by Dhar. In this model one starts from a toppling matrix ∆xy, indexed
by sites in Z

d. In this paper ∆ will always be the adjacency matrix (or minus the
discrete lattice Laplacian):

∆xy =





2d if x = y,

−1 if |x− y| = 1,

0 otherwise.

A height configuration is a map η : Z
d → N, and a stable height configuration is such

that η(x) ≤ ∆xx for all x ∈ Z
d. A site where η(x) > ∆xx is called an unstable site.

All stable configurations are collected in the set Ω. We endow Ω with the product
topology. For V ⊆ Z

d, ΩV denotes the stable configurations η : V → N. If η ∈ Ω and
W ⊆ Z

d, then ηW denotes the restriction of η to the subset W . We also use ηW for
the restriction of η ∈ ΩV to a subset W ⊆ V . The matrix ∆V is the finite volume
analogon of ∆, indexed now by the sites in V .

A toppling of a site x in volume V is defined on configurations η : V → N:

Tx(η)(y) = η(y)− (∆V )xy (2.1)

A toppling is called legal if the site is unstable, otherwise it is called illegal. The sta-
bilization of an unstable configuration is defined to be the stable result of a sequence
of legal topplings, i.e.,

S(η) = Txn ◦ Txn−1 ◦ . . . ◦ Tx1(η), (2.2)

where all topplings are legal and such that S(η) is stable. That S(η) is well-defined
follows from [4, 18], see also [6]. If η is stable, then, by definition S(η) = η. The
addition operator is define by

axη = S(η + δx) (2.3)

As long as we are in finite volume, ax is well-defined and axay = ayax (Abelianness).

The dynamics of the finite volume ASM is described as follows: at each discrete
time step choose at random a site according to a probability measure p(x) > 0, x ∈ V ,
and apply ax to the configuration. After time n the configuration is

∏n

i=1 aX1 . . . aXnη
where X1, . . . , Xn is an i.i.d. sample of p. This gives a Markov chain with transition
operator

Pf(η) =
∑

x

p(x)f(axη) (2.4)

Given a function F (V ) defined for all sufficiently large finite volumes in Z
d, and

taking values in a metric space with metric ρ, we say that limV F (V ) = a, if for all
ε > 0 there exists W , such that ρ(F (V ), a) < ε whenever V ⊇ W . For a probability
measure ν on Ω, Eν will denote expectation with respect to ν. The boundary of V
is defined by ∂V = {y ∈ V : y has a neighbour in V c}, while its exterior boundary is
∂eV = {y ∈ V c : y has a neighbour in V }.
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2.1 Recurrent configurations

A stable configuration η ∈ ΩV is called recurrent (∈ RV ) if it is recurrent in the
Markov chain, or equivalently, if for any x there exists n = nx such that an

xη = η.
The addition operators restricted to the recurrent configurations form an Abelian
group and from that fact one easily concludes that the uniform measure µV on RV

is the unique invariant measure of the Markov chain. One can compute the number
of recurrent configurations:

|RV | = det(∆V ), (2.5)

see [4]. Another important identity of [4] is the following. Denote by NV (x, y, η) the
number of legal topplings at y needed to obtain axη from η+δx. Then the expectation
satisfies

EµV
(NV (x, y, η)) = GV (x, y) = (∆V )−1

xy . (2.6)

From this and the Markov inequality, one also obtains GV (x, y) as an estimate of the
µV -probability that a site y has to be toppled if one adds at x. We also note that
for our specific choice of ∆, GV is (2d)−1 times the Green function of simple random
walk in V killed upon exiting V .

Recurrent configurations are characterized by the so-called burning algorithm [4].
A configuration η is recurrent if and only if it does not contain a so-called forbidden
sub-configuration, that is, a subset W ⊆ V such that for all x ∈W :

η(x) ≤ −
∑

y∈W\{x}

∆xy. (2.7)

From this explicit characterization, one easily infers a consistency property: if
η ∈ RV and W ⊆ V then ηW ∈ RW . From that one naturally defines “recurrent
configurations in infinite volume”, as those configurations in Ω such that for all V ⊆
Z

d, ηV ∈ RV . This set is denoted by R.

2.2 Infinite volume: basic questions and results

In studying infinite volume limits of the ASM, the following questions are addressed.
In this (non-exhaustive) list, any question can be asked only after a positive answer
to all previous questions.

1. Do the measures µV weakly converge to a measure µ? Does µ concentrate on
the set R?

2. Is the addition operator ax defined on µ-a.e. configuration η ∈ R, and does it
leave µ invariant? Does Abelianness still hold in infinite volume?

3. Can one define a natural Markov process on R with stationary distribution µ?

4. Has the stationary Markov process of question 3 good ergodic properties?

4



Question 1 is easily solved in d = 1, but unhappily, µ is trivial, concentrating on
the single configuration that is identically 2. Hence no further questions on our list are
relevant in that case. See [16] for a result on convergence to equilibrium in this case.
For an infinite regular tree, the first three questions have been answered affirmatively
and the fourth question remained open [14]. In dissipative models (∆xx > 2d), all
four questions are affirmatively answered when ∆xx is sufficiently large [15].

For Z
d, question 1 is positively answered in any dimension d ≥ 2, using a corre-

spondence between spanning trees and recurrent configurations and properties of the
uniform spanning forest on Z

d [1]. The limiting measure µ is translation invariant.
The proof of convergence in [1] in the case d > 4 is restricted to regular volumes,
such as a sequence of cubes centered at the origin. In the appendix, we outline how
to prove convergence along an arbitrary sequence of volumes using the result of [11].

In this paper we study questions 2,3 and 4 for Z
d, d ≥ 5, and all questions are

affirmatively answered.

The main problem is to prove that avalanches are a.s. finite. This is done by a
decomposition of avalanches into a sequence of waves (cf. [9, 10]), and studying the
a.s. finiteness of the waves. The latter can be achieved by a two-component spanning
tree representation of waves, as introduced in [9, 10]. We then study the uniform two-
component spanning tree in infinite volume and prove that the component containing
the origin is a.s. finite. This turns out to be sufficient to ensure finiteness of waves.

3 Existence of the addition operator

In this section we show convergence of the finite volume addition operators to an
infinite volume addition operator when d > 2. This is actually very easy, but in
order to make appropriate use of this infinite volume addition operator, we need to
establish that µ is invariant under its action, and for the latter we need to show that
avalanches are finite µ-a.s.

Given η ∈ Ω, call NV (x, y, η) the number of topplings caused at y by addition
at x in η, where we apply the finite (V )-volume rule, that is, grains falling out of V
disappear. More precisely, let ax,V denote the addition operator acting on ΩV , and
for η ∈ Ω define

ax,V η = (ax,V ηV )ηV c . (3.1)

Then
η + δx − ∆VNV (x, ·, η) = ax,V η, (3.2)

where ∆V (x, y) = ∆(x, y)I[x ∈ V ]I[y ∈ V ] is the toppling matrix restricted to V .
We start with the following simple lemma:

Lemma 3.3. NV (x, y, η) is a non-decreasing function of V and depends only on η
through ηV .

Proof. Let V ⊆W . Suppose we add a grain at x in configuration η. We perform top-
plings inside V until inside V the configuration is stable. The result of this procedure

5



is a configuration (ax,V ηV )ξV c Possibly ξV c∩W is not stable, in that case we perform
all the necessary topplings still needed to stabilize (ax,V ηV )ξV c∩W inside W . This can
only cause (possibly) extra topplings at any site y inside V .

From Lemma 3.3 and by monotone convergence:

Eµ(sup
V

NV (x, y, η)) = lim
V

Eµ(NV (x, y, η)). (3.4)

By weak convergence of µV to µ:

lim
V

Eµ(NV (x, y, η)) = lim
V

lim
W⊃V

EµW
(NV (x, y, η))

≤ lim
V

lim
W⊃V

EµW
(NW (x, y, η))

= lim
W
GW (x, y) = G(x, y). (3.5)

In the last step we used that d > 2, otherwise GW (x, y) diverges as W ↑ Z
d. This

proves that for all x, y ∈ Z
d, µ-a.s. N(x, y, η) = supV NV (x, y, η) is finite and hence

µ
(
∀x, y ∈ Z

d : N(x, y, η) <∞
)

= 1 (3.6)

Therefore, on the event in (3.6), we can define

axη = η + δx − ∆N(x, ·, η). (3.7)

It is easy to see that axη is stable, using that axη(y) is already determined by the
number of topplings at y and its neighbours. We also get

axη = lim
V
ax,V η, µ-a.s., (3.8)

where ax,V is defined in (3.1).

Note that with this definition, there can be infinite avalanches. However, if the
volume increases, it cannot happen that the number of topplings at a fixed site
diverges, and that is the only problem for defining ax (a problem which could arise in
d = 2). More precisely, an infinite avalanche that leaves eventually every finite region
does not pose a problem for defining the addition operator. However, as we will see
later on, infinite avalanches do cause problems in defining a stationary process. To
define ax we only need d > 2, however to exclude infinite avalanches our method will
require d > 4.

It is obvious that ax is well behaved with respect to translations, i.e.,

ax = θx ◦ a0 ◦ θ−x (3.9)

where θx is the shift on configurations: θxη(y) = η(y + x).

Integrating (3.7) over µ we easily obtain the following infinite volume analogue of
Dhar’s formula [4].

6



Proposition 3.10. If µ is invariant under ax, then

Eµ(N(x, y, η)) = G(x, y) (3.11)

At this point we cannot compose different ax. Although ax is well-defined a.s., it
is not obvious that ay can be applied on axη.

Proposition 3.12. If µ is invariant under the action of a0, then µ is also invariant
under the action of ax for all x, and there exists a µ-measure one set Ω′, such that
for any η ∈ Ω′, and every x1, . . . , xn ∈ Z

d,

axn ◦ axn−1 ◦ . . . ax0η

is well-defined.

Proof. If µ is invariant under a0, then by translation invariance of µ, and by (3.9), it
is invariant under all ax. Define Ω0 to be the set of those η where axη is well-defined
for all x ∈ Z

d. For n ≥ 1, define inductively the sets

Ωn = Ωn−1 ∩
⋂

x∈Zd

a−1
x (Ωn−1),

where a−1
x here denotes inverse image (not to be confused with the inverse operator

defined later). Since the ax are measure preserving, it follows by induction that
µ(Ωn) = 1 for all n, and that compositions of length n + 1 are well-defined on Ωn.
Therefore, Ω′ = ∩n≥0Ωn satisfies the properties stated.

The following proposition shows that if “avalanches are finite” (see later for the
precise definition of avalanches) then Abelianness holds in infinite volume.

Proposition 3.13. Assume that µ is invariant under a0. Further assume that there
exists a measure one set Ω′ such that for any η ∈ Ω′ and any x ∈ Z

d, axη is well-
defined and there exists Vx(η) such that for all W ⊇ Vx(η)

axη = ax,Wη. (3.14)

Then the set Ω′ can be chosen such that axη ∈ Ω′ for all η ∈ Ω′ and all x ∈ Z
d.

Moreover,

ax(ayη) = ay(axη) (3.15)

Proof. It is straightforward that the set Ω′ can be chosen such that axη ∈ Ω′ for all
x ∈ Z

d. For η ∈ Ω′ and for W ⊃ Vy(η) ∪ Vx(ayη) ∪ Vx(η) ∪ Vy(axη),

ax(ayη) = ax,W (ay,Wη) = ay,W (ax,Wη) = ay(axη). (3.16)

7



4 Invariance of µ under ax

In order to define the addition operator, all we needed was the convergence of the
finite volume Green function to infinite volume Green function. However, in the
construction of a stationary process, it is essential that the candidate stationary
measure (which in this case is the infinite volume limit of the uniform measures on
recurrent configurations) is invariant under the action of ax.

The following proposition shows that µ is indeed invariant, if there are no infinite
avalanches µ-a.s. We define the avalanche cluster caused by addition at x to be the
set

Cx(η) = {y ∈ Z
d : N(x, y, η) > 0} (4.1)

We say that the avalanche at x is finite in η if Cx(η) is a finite set. We say that µ has
the finite avalanche property, if for all x ∈ Z

d, µ(|Cx| <∞) = 1.

Proposition 4.2. If µ has the finite avalanche property then for any local function
f and for any x ∈ Z

d, ∫
f(axη)dµ =

∫
f(η)dµ. (4.3)

Proof. We have

∫
f(axη)dµ =

∫
f(ax,V η)dµ+ ǫ1(V, f)

=

∫
f(ax,V η)dµW + ǫ1(V, f) + ǫ2(V,W, f)

=

∫
f(ax,Wη)dµW + ǫ1(V, f) + ǫ2(V,W, f) + ǫ3(V,W, f)

Here ǫ1 and ǫ2 can be made arbitrarily small by (3.8) and by weak convergence. We
also have

|ǫ3(V,W, f)| ≤ 2‖f‖∞µW (ax,Wf 6= ax,V f).

Next, by invariance of µW under the action of ax,W ,

∫
f(ax,Wη)dµW =

∫
fdµW =

∫
fdµ+ ǫ4(W, f). (4.4)

Here, by weak convergence, ǫ4 can be made arbitrarily small. Therefore, combining
the estimates, we conclude

∣∣∣∣
∫
f(axη)dµ−

∫
f(η)dµ

∣∣∣∣ ≤ C lim sup
V

lim sup
W⊃V

µW (ax,Wf 6= ax,V f). (4.5)

Define the avalanche cluster in volume W by

Cx,W (η) = {y ∈W : NW (x, y, η) > 0}, η ∈ RW .

8



LetDf denote the dependence set of the local function f . On the event Cx,W (η)∩∂V =
∅ we have ax,V η = ax,Wη. Hence, provided Df ⊆ V , we have

µW (ax,Wf 6= ax,V f) ≤ µW (Cx,W ∩ ∂V 6= ∅).

The event on the right hand side is a cylinder event (only depends on heights in
V ). Therefore, the right hand side approaches µ(Cx ∩ ∂V 6= ∅), as W ↑ Z

d. By the
assumptions of the proposition,

lim
V
µ(Cx ∩ ∂V 6= ∅) = µ(|Cx| = ∞) = 0,

which completes the proof.

5 Inverse addition operators

In this section we prove that ax has an inverse defined µ-a.s., provided µ has the finite
avalanche property. Recall that if there are no infinite avalanches, then for µ-a.e. η
and every x ∈ Z

d, there exists a finite set Vx(η) such that axη = ax,Vx(η)η. Define

a−1
x,V η = (a−1

x,V ηV )ηV c

This is well-defined since ηV ∈ RV .

Lemma 5.1. Suppose that µ has the finite avalanche property.

1. For µ almost every η there exists V0 = V0(η) such that a−1
x,V η = a−1

x,V0
(η) for all

V ⊇ V0.

2. If we define a−1
x η = a−1

x,V0(η)(η), then µ-a.s. a−1
x (axη) = ax(a

−1
x η) = η.

3. As operators in L2(µ), a∗x = a−1
x , i.e., the ax are unitary operators.

Proof. We will prove that

lim
V0

µ
(
∃V ⊇ V0 : a−1

x,V (η) 6= a−1
x,V0

(η)
)

= 0, (5.2)

what is sufficient for the first statement, by monotonicity in V0 of the event in (5.2).
Write

µ
(
∃V ⊇ V0 : a−1

x,V (η) 6= a−1
x,V0

(η)
)

= µ
(
∃V ⊇ V0 : a−1

x,V (axη) 6= a−1
x,V0

(axη)
)

= µ
(
∃V ⊇ V0 : a−1

x,V (axη) 6= a−1
x,V0

(axη) and ∀V ⊇ V0 : ax,V (η) = ax,V0(η)
)

+ ǫV0

= ǫV0 .

(5.3)
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Here we used the invariance of µ under ax in the first step. The last step follows
because if axη = ax,V η = ax,V0η, then

a−1
x,V (axη) = a−1

x,V (ax,V η) = η = a−1
x,V0

(ax,V0η) = a−1
x,V0

(axη). (5.4)

Next, for ǫV0 we have

ǫV0 ≤ µ (∃V ⊇ V0 : ax,V η 6= ax,V0η) (5.5)

which converges to zero as V0 ↑ Z
d, by the finite avalanche property. This proves the

first statement of the lemma. To prove the second statement first remark that by the
definitions of ax and a−1

x , for µ almost every η there exists a (sufficiently large) V ,
such that

ax(a
−1
x η) = ax,V (a−1

x,V η) = η = a−1
x,V (ax,V η) = a−1

x (axη). (5.6)

The last statement of the Lemma is an obvious consequence of the first two.

The above lemma proves that as operators on L2(µ), the ax generate a unitary
group, which we denote by G.

6 Waves and avalanches

The goal of Sections 6, 7 and 8 is to prove the following theorem.

Theorem 6.1. Suppose d > 4. Then µ(|Cx| <∞) = 1 for all x ∈ Z
d.

Remark 6.2. The assumption d > 4 can be replaced by the condition that d ≥ 3 and
the conclusion of Proposition 7.11 (ii) holds.

In order to prove that avalanches are almost surely finite, we decompose avalanches
into waves. We prove that almost surely, there is a finite number of waves, and that
all waves are almost surely finite. Without loss of generality, we assume that x = 0
(the origin), and we drop indices referring to x from our notation.

We first recall the definition of a wave, cf. [9, 10]. Consider a finite volume W ,
and add a grain at site 0 in a stable configuration. If the site becomes unstable, then
topple it once and topple all other unstable sites except 0. It is easy to see that in
this procedure a site can topple at most once. The toppled sites form what is called
the first wave. Next, if 0 has to be toppled again, we start another wave, and so on
until 0 is stable.

We define αW (η) to be the number of waves caused by addition at 0 in the volume
W . By definition, αW is the number of topplings at 0 in W , caused by addition at 0,
that is αW (η) = NW (0, 0, η). For fixed W , let CW (η) denote the avalanche cluster in
volume W . We decompose CW as

CW (η) =

αW (η)⋃

i=1

Ξi
W (η), (6.3)

10



where Ξi
W (η) is the i-th wave in W caused by addition at 0.

We can define waves in infinite volume as we defined the toppling numbers and
avalanches in Section 3, by monotonicity in the volume. More precisely, the defintion
is as follows. By the arguments of section 3, Ξ1

W is a non-decreasing function of
W , and therefore we can define Ξ1 = ∪W Ξ1

W = limW Ξ1
W . If 0 is unstable after

the first wave (now considered in infinite volume), we condsider the second wave

Ξ̃2
W with the finite volume rule. Again we have a nondecreasing family, and we set

Ξ2 = ∪W Ξ̃2
W = limW Ξ̃2

W . Note that if |Ξ1| < ∞, we have Ξ̃2
W = Ξ2

W for all large

W , and consequently, Ξ2 = limW Ξ2
W . We similarly define Ξ̃i

W as the result of the
i-th wave with the finite volume rule after the first i− 1 waves have been carried out
in infinite volume. We let Ξi = ∪W Ξ̃i

W = limW Ξ̃i
W . Again, under the assumption

|Ξj| < ∞, 1 ≤ j < i, we also have Ξi = limW Ξi
W . For convenience, we define Ξi

W or
Ξi as the empty set, whenever such waves do not exist.

The easy part in proving finiteness of avalanches is to show that the number of
waves is finite. Since αW (η) is non-decreasing in W , it has a pointwise limit α(η),
and as before,

Eµ(α) ≤ G(0, 0) <∞. (6.4)

This implies α <∞ µ-a.s.

In order to prove that C(η) is finite µ-a.s., we show, by induction on i, that all
sets Ξi(η) are finite µ-a.s. We base the proof on the following proposition, proved in
Sections 7 and 8.

Proposition 6.5. Let d > 4. For i ≥ 1 we have

lim
V

lim sup
W⊃V

µW (Ξi
W 6⊆ V ) = 0. (6.6)

Noting that {Ξ1 ⊆ V } is a local event, Proposition 6.5 with i = 1 implies that
µ(|Ξ1| <∞) = 1. Assume now that µ(|Ξj| <∞) = 1, 1 ≤ j < i. Then

µ(Ξi 6⊆ V ) ≤ µ(Ξi 6⊆ V, Ξj ⊆ V ′, 1 ≤ j < i) + µ(Ξj 6⊆ V ′ for some 1 ≤ j < i). (6.7)

By the induction hypothesis, the second term on the right hand side can be made
arbitrarily small by choosing V ′ large. For fixed V ′, the event in the first term is a
local event (only depends on sites in V ′ ∪ ∂eV

′, if V ′ ⊇ V ). Therefore, the first term
in (6.7) equals

lim
W
µW (Ξi

W 6⊆ V, Ξj
W ⊆ V ′, 1 ≤ j < i) ≤ lim sup

W

µW (Ξi
W 6⊆ V ). (6.8)

Here the right hand side goes to 0 as V ր Z
d, by Proposition 6.5, proving that

µ(|Ξi| <∞) = 1. Finiteness of all waves proved, we can pass to the limit in (6.3) and
obtain the decomposition

C(η) =

α(η)⋃

i=1

Ξi(η). (6.9)

It follows that µ(|C| < ∞) = 1, which completes the proof of Theorem 6.1 assuming
Proposition 6.5.
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7 Finiteness of waves

In this section we prove Proposition 6.5 showing that waves are finite, assuming
Proposition 7.11 below. The proof of Proposition 7.11 is completed in Section 8. To
prove that waves are finite, we use their representation as two-component spanning
trees [8, 9], which we now describe. Consider a configuration ηW ∈ RW with η0 =
2d, and suppose we add a particle at 0. Consider the first wave, which is entirely
determined by the recurrent configuration ηW\{0}. The result of the first wave on
W \ {0} is given by

S1
W (η) =

(∏

j∼0

aj,W\{0}

)
ηW\{0}. (7.1)

Next we associate to any ηW\{0} ∈ RW\{0} a tree TW (ηW\{0}), that will represent a
wave starting at 0. For the definition, we use Majumdar and Dhar’s tree construction
[17].

Denote by Ŵ the graph obtained from Z
d by identifying all sites in Z

d \ (W \ {0})
to a single site δW (removing loops). By [17], there is a one-to-one map between

recurrent configurations ηW\{0} and spanning trees of Ŵ . The correspondence is
given by following the spread of an avalanche started at δW . Initially, each neighbour
of δW receives a number of grains equal to the number of edges connecting it to
δW , which results in every site toppling exactly once. The spanning tree records the
sequence in which topplings have occurred. There is some flexibility in how to carry
out the topplings (and hence in the correspondence with spanning trees), and here
we make a specific choice in accordance with [9]. Namely, we first transfer grains
from δW only to the neighbours of 0, and carry out all possible topplings. We call
this the first phase. The set of sites that topple in the first phase is precisely a wave
started at 0. Now transfer grains from δW to the boundary sites of W , which will
cause topplings at all sites that were not in the wave; this is the second phase.

The two phases can alternatively be described via the burning algorithm of Dhar
[4], which in the above context looks as follows. For convenience, let W̃ denote the

graph obtained by identifying all sites in Z
d \W to a single site δW . That is, Ŵ can

be obtained from W̃ by identifying 0 and δW . We start with all sites of W̃ declared
unburnt. At step 0 we burn 0 (the origin). At step t, we

burn all sites y for which ηy > number of unburnt neighbours of y. (7.2)

The process stops at some step T = T (ηW\{0}). The sites that burn up to time T
is precisely the sites toppling in the first phase. We continue by burning δW in step
T + 1, and then repeating (7.2) as long as there are unburnt sites.

Following Majumdar and Dhar’s construction [17], we assign to each y ∈W \ {0}
burnt at time t a unique neighbour y′ (called the parent of y) burnt at time t − 1.

This defines a spanning subgraph of W̃ with two tree components, having roots 0 and
δW . Identifying 0 and δW yields a spanning tree of Ŵ , also representing ηW\{0}. We
denote by TW (ηW\{0}) the component with root 0 (the origin). With slight abuse of
language, we refer to the two-component graph as a two-component spanning tree.
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We can generalize the above construction to further waves as follows. For k ≥ 2,
define

Sk
W (η) =

(∏

j∼0

aj,W\{0}

)k

ηW\{0}. (7.3)

If there exists a k-th wave, then its result on W \ {0} is given by (7.3). Applying
the above constructions to Sk−1

W (η), we obtain that the k-th wave (if there is one) is
represented by TW (Sk−1

W (η)).

We will prove that TW has a weak limit T , which is almost surely finite. But first
let us show that this is actually sufficient for finiteness of all waves.

Consider the first wave, and let W ⊃ V . By construction, Ξ1
W (η) is precisely the

vertex set of TW (ηW\{0}), hence

µW (ΞW (1, η) 6⊆ V ) = µW (TW (ηW\{0}) 6⊆ V ). (7.4)

Here the right hand side is determined by the distribution of ηW\{0} under µW . This
is different from the law of ηW\{0} under µW\{0}, which is simply the uniform measure
on RW\{0}. It is latter that we can get information about using the correspondence
to spanning trees. Indeed, under µW\{0}, the spanning tree corresponding to ηW\{0}

is uniformy distributed on the set of spanning trees of Ŵ . In order to translate our
results back to µW , we show that the former distribution has a bounded density with
respect to the latter. This will be a consequence of the following lemma.

Lemma 7.5. There is a constant C(d) > 0 such that for all d ≥ 3

sup
V ⊆Zd

|RV \{0}|

|RV |
≤ C(d) (7.6)

Proof. By Dhar’s formula (2.5),

|RV \{0}| = det(∆V \{0}) = det(∆′
V )

where ∆′
V denotes the matrix indexed by sites y ∈ V and defined by (∆′

V )yz =
(∆V \{0})yz for y, z ∈ V \ {0}, and (∆′

V )0z = (∆′
V )z0 = δ0z . Clearly,

∆V + P = ∆′
V

where P is a matrix which has only non-zero entries Pyz for y, z ∈ N = {u : |u| ≤ 1}.
Moreover, maxy,z∈V P (0, y) ≤ 2d− 1. Hence

|RV \{0}|

|RV |
=

det(∆V + P )

det(∆V )
= det(I +GV P ),

where GV = (∆V )−1. Here (GV P )yz = 0 unless z ∈ N . Therefore

det(I +GV P ) = det(I +GV P )u∈N,v∈N (7.7)

By transience of the simple random walk in d ≥ 3, we have supV supy,z GV (y, z) ≤
G(0, 0) <∞, and therefore the determinant of the finite matrix (I +GV P )u∈N,v∈N in
(7.7) is bounded by a constant depending on d.
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We note that an alternative proof of Lemma 7.5 can be given based on the following
idea. Consider the graph W̄ obtained by adding an extra edge e between 0 and δW
in W̃ . Then the ratio in (7.6) can be expressed in terms of the probability that a
uniformly chosen spanning tree of W̄ contains e. By standard spanning tree results
[3, Theorem 4.1], the latter is the same as the probability that a random walk in W̄
started at 0 first hits δ through e.

We continue with the bounded density argument. For any configuration σW\{0} ∈
RW\{0} we have

µW (ηW\{0} = σW\{0}) =
1

|RW |

∣∣{k ∈ {1, . . . , 2d} : (k)0(σ)W\{0} ∈ RW

∣∣ . (7.8)

Therefore,
µW (ηW\{0} = σW\{0})

µW\{0}(ηW\{0} = σW\{0})
≤

|RW\{0}|

|RW |
2d ≤ C, (7.9)

where, by (7.6), C > 0 does not depend on σ or on W . From this estimate, it follows
that

µW (TW (ηW\{0}) 6⊆ V )

µW\{0}(TW (ηW\{0}) 6⊆ V )
≤ C. (7.10)

For a more convenient notation, we let ν
(0)
W denote the probability measure assign-

ing equal mass to each spanning tree of Ŵ , or alternatively, to each two-component
spanning trees of W̃ . We can view ν

(0)
W as a measure on {0, 1}E

d

in a natural way,

where E
d is the set of edges of Z

d. By the Majumdar-Dhar correspondence [17], ν
(0)
W

corresponds with the measure µW\{0}, and the law of TW under µW\{0} is that of

the component of 0 under ν
(0)
W . We keep the notation TW when referring to ν

(0)
W . In

Section 8 we prove the following Proposition.

Proposition 7.11. (i) For any d ≥ 1, the limit limW ν
(0)
W = ν(0) exists.

(ii) Assume d > 4. The component T of 0 under ν(0) satisfies ν(0)(|T | <∞) = 1.

By Proposition 7.11 (i), we have

lim
W⊃V

µW\{0}(TW (ηW\{0}) 6⊆ V ) = lim
W⊃V

ν
(0)
W (TW 6⊆ V ) = ν(0)(T 6⊆ V ). (7.12)

By Proposition 7.11 (ii), the right hand side of (7.12) goes to zero as V ր Z
d, and

together with (7.10) and (7.4), we obtain the i = 1 case of (6.6).

Finiteness of the other waves follows similarly. For k ≥ 2 we have

µW (Ξk
W (η) 6⊆ V ) ≤ µW (TW (Sk−1

W η) 6⊆ V )

≤ CµW\{0}(TW (Sk−1
W η) 6⊆ V )

= CµW\{0}(TW (η) 6⊆ V ),

(7.13)

where the last step follows by invariance of µW\{0} under
∏

j∼0 aj . We have already
seen that the right hand side of (7.13) goes to zero, which completes the proof of
Proposition 6.5 assuming Proposition 7.11.
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8 Finiteness of two-component spanning trees

In this Section we complete the arguments for finiteness of avalanches by proving
Proposition 7.11, which amounts to showing that the weak limit of TW is almost
surely finite.

Let νW denote the probability measure assigning equal weight to each spanning
tree of W̃ . νW is known as the uniform spanning tree measure in W with wired
boundary conditions [3].

8.1 Wilson’s algorithm

We use the algorithm below, due to Wilson [23], to analyze random samples from ν
(0)
W

and νW .

Let G be a finite connected graph. By simple random walk on G we mean the
random walk which at each step jumps to a random neighbour, chosen uniformly. For
a path ω = [ω1, . . . , ωm] on G, define LE(ω) as the path obtained by erasing loops
chronologically from ω. We call LE(ω) the loop-erasure of ω. Pick a vertex r ∈ G,

called the root. Enumerate the vertices of G as x1, . . . , xk. Let (S
(i)
n )n≥1, 1 ≤ i ≤ k

be independent simple random walks started at x1, . . . , xk, respectively. Let

T (1) = min{n ≥ 0 : S(1)
n = r},

and set

γ(1) = LE(S(1)[0, T (1)]).

Now recursively define T (i), γ(i), i = 2, . . . , k as follows. Let

T (i) = min{n ≥ 0 : S(i)
n ∈ ∪1≤j<iγ

(j)},

and

γ(i) = LE(S(i)[0, T (i)]).

(If xi ∈ ∪1≤j<iγ
(j), then γ(i) is the single point xi.) Let T = ∪1≤i≤kγ

(i). Then T is a
spanning tree of G and is uniformly distributed [23].

Applying the algorithm with G = W̃ and root δW gives a sample from νW . Sim-
ilarly, applying the method with G = Ŵ and root δW we get a sample from ν

(0)
W .

In the latter case, we can imagine the construction happening in W̃ , where 0 is also
considered part of the boundary. In other words, the two-component spanning tree
is built from loop-erased random walks in W̃ who attach either to a piece at 0, or to
a piece at the boundary.

One can extend the algorithm to the case where G is an infinite graph, on which
simple random walk is transient [3]. In this case, one chooses the root to be at infinity,
and note that loop-erasure makes sense for paths that visit each site finitely many
times.
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8.2 The weak limit

Denote the two-component spanning tree in W by FW . We denote by TW the wired
uniform spanning tree in W̃ . We regard δW as the root of TW . If x is closer to the
root than y (in graph distance) then we say that y is a descendant of x, and x is an
ancestor of y. For a set B ⊆ W we write desc(B;TW ) for the set of descendants of
vertices in B. We sometimes think of the edges of TW being directed towards the
root. We write VN = [−N,N ]d ∩ Z

d.

It is well-known that TW has a weak limit T as W ↑ Z
d, called the (wired) uniform

spanning forest (USF) on Z
d [19, 3]. We denote its law by ν. When d ≥ 3, the USF

can be constructed directly by Wilson’s method in Z
d, rooted at infinity [3, Theorem

5.1].

Similarly, FW has a weak limit F . To see this, let Wn be an increasing sequence
of finite volumes exhausting Z

d. If B is a finite set of edges, [3, Corollary 4.3] implies

that ν
(0)
Wn

(B ⊆ FWn) is increasing in n. This is sufficient to imply the existence of a

limit ν(0) independent of the sequence Wn, and the limit is uniquely determined by
the conditions

ν(0)(B ⊆ F ) = lim
n→∞

ν
(0)
Wn

(B ⊆ FWn),

as B varies over finite edge-sets (see the discussion in [3, Section 5]). This proves
part (i) of Proposition 7.11. When d ≥ 3, the configuration under ν(0) can again be
constructed by Wilson’s method directly, by [3, Theorem 5.1]. Since 0 is part of the
boundary, the simple random walks in this construction are either killed when they
hit the component growing at 0, or they escape to infinity.

8.3 Finiteness of T

For part (ii) of Proposition 7.11, we prove

lim
N→∞

ν(0)(T0 ⊆ VN ) = 1. (8.1)

The proof of (8.1) is based on a coupling of ν(0) and ν that arises from applying
Wilson’s algorithm with the same random walks in the two cases and with a suitable
common enumeration of sites.

Let 1 ≤M < N . We define the event

G(M,N) = {desc(VM ;T ) ⊆ VN}.

In other words, G(M,N) is the event that there exists a connected set VM ⊆ D ⊆ VN ,
such that there is no directed edge of T from Z

d \D to D. By [3, Theorem 10.1], each
component of the USF has one end, meaning that there are no two disjoint infinite
paths within any component. This implies that for any M ≥ 1,

lim
N→∞

ν(G(M,N)) = 1. (8.2)
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We enumerate the sites in the following way. Let x1, . . . , xl be an enumeration of
the sites of ∂VN . We let xl+1, xl+2, . . . list the rest of the sites arbitrarily. As before,

(S
(i)
n )n≥1 denotes the random walk started at xi, common to both constructions.

Let T (i) and T̂ (i) be the hitting times in the construction of T and F , respectively.
Let γ(i) and γ̂(i) denote the corresponding families of loop-erased paths in the two
constructions. The two families are determined by the same random walks, and we
denote by Pr the probability law that governs both of them.

Consider the construction of T , and condition on G(M,N). In terms of the paths
γ(i), the conditioning can be written as

G(M,N) =
{(

∪l
i=1γ

(i)
)
∩ VM = ∅

}
.

The right hand side is in fact an implicit condition on the random walks S(i). We
claim that if we further condition on the paths γ(i), 1 ≤ i ≤ l, then we have

Pr
(
γ̂(i) 6= γ(i) for some 1 ≤ i ≤ l

∣∣ γ(i), 1 ≤ i ≤ l
)
≤

C

Md−4
, (8.3)

for some constant C, uniformly in the γ(i). Equivalently, we show

Pr
(
S(i)

n = 0 for some 0 ≤ n ≤ T (i), 1 ≤ i ≤ l
∣∣ γ(i), 1 ≤ i ≤ l

)
≤

C

Md−4
. (8.4)

To see that (8.3) and (8.4) are indeed equivalent, note that if S(i)[0, T (i)] does not

hit 0 for 1 ≤ i ≤ l, then we have T̂ (i) = T (i) and γ̂(i) = γ(i) for 1 ≤ i ≤ l. On the
other hand, if j is the smallest index such that S(j)[0, T (j)] hits 0, then T̂ (j) < T (j)

and γ̂(j) 6= γ(j).

In order to show (8.4), we first fix 1 ≤ j ≤ l and prove a bound on

Pr
(
S(j)

n = 0 for some 0 ≤ n ≤ T (j)
∣∣ γ(i), 1 ≤ i ≤ l

)
. (8.5)

By the definition of the γ(i), the expression in (8.5) in fact equals

Pr
(
S(j)

n = 0 for some 0 ≤ n ≤ T (j)
∣∣ γ(i), 1 ≤ i ≤ j

)
. (8.6)

We analyze (8.6) using a description of the conditional distribution of a random
walk given its loop-erasure (see [13]). This requires a few definitions. For D ⊆ Z

d

and y, z ∈ D ∪ ∂D, let P(D, y, z) denote the collection of all paths η = [η0, . . . , ηs]
such that η0 = y, ηs = z and η[0, s) ⊆ D. For y, z ∈ D ∪ ∂D let GD(y, z) be the
Green function for simple random walk started at y and killed at its first exit time
TD from D. We have

GD(y, z) = E
y

∑

0≤n≤TD

I[Sn = z] =
∑

η∈P(D,y,z)

(2d)−|η|.

In the last expression, |η| denotes the number of steps in the path η. We also define
the escape probability

EsD(y, B) = P
y(S(n) 6∈ B, 1 ≤ n < TD).
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Let A ⊆ Z
d, x ∈ Z

d and let γ = [γ0, . . . , γm] be a self-avoiding path with γ0 = x
and γ[0, m) ⊆ A. Let S[0,∞) denote simple random walk started at x. Let LEm

denote the operation of creating the first m steps of the loop-erased path, defined
when there are at least m steps in the loop-erasure. It is simple to deduce that for
any m-step self-avoiding path γ,

Pr(LEm(S[0, TA]) = γ) = (2d)−|γ|




|γ|∏

p=0

GA\γ[0,p−1](γp, γp)


 EsA(γm, γ[0, m]). (8.7)

To see this, observe that one can decompose the random walk path starting at x and
ending in Ac into its loop erasure γ, a family of loops ηp ∈ P(A \ γ[0, p− 1], γp, γp),
and the portion from the endpoint of γ to Ac (if any). Summing over the possible
loops attached at every vertex γp, 0 ≤ p ≤ |γ| gives (8.7).

A small modification of (8.7) gives an expression for the probability that the loop
at γp visits 0, when the loop-erasure is γ. Define

G̃D(y, z) =
∑

η∈P(D,y,z)
η visits 0

(2d)−|η|.

Then

Pr(LEm(S[0, TA]) = γ and the loop at γp visits 0)

= (2d)−|γ|G̃A\γ[0,p−1](γp, γp)

[
∏

q 6=p

GA\γ[0,q−1](γq, γq)

]
EsA(γm, γ[0, m]).

(8.8)

Let Tγ denote the last time that S(n) visits γm−1. Then equations (8.7) and (8.8)
imply

Pr(S[0, Tγ] visits 0 |LEm(S[0, TA]) = γ) ≤
m−1∑

p=0

G̃A\γ[0,p−1](γp, γp)

GA\γ[0,p−1](γp, γp)
. (8.9)

We analyze the right hand side of (8.9) further. First note that GD(y, y) ≥ 1, due to
the contribution of the 0-step walk. We also have

G̃D(y, y) =
∑

η1∈P(D,y,0)

(2d)−|η1|
∑

η2∈P(D,0,y)
η2 does not return to 0

(2d)−|η2|

≤
∑

η1∈P(D,y,0)

(2d)−|η1|
∑

η2∈P(D,0,y)

(2d)−|η2|

= G(y, 0;D)G(0, y;D) ≤ G(y)2,

where G(y) is the Green function in Z
d. This yields

Pr(S[0, Tγ] visits 0 |LEm(S[0, TA]) = γ) ≤

m−1∑

p=0

G(γp)
2. (8.10)
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From this we obtain

Pr(S[0, TA] visits 0 |LE(S[0, TA]) = γ) ≤
∑

0≤p<|γ|

G(γp)
2 (8.11)

for any finite or infinite self-avoiding path γ. When γ is finite, this follows from the
case γm ∈ A, when TA = Tγ + 1, and when γ is infinite, we let m → ∞. Applying
(8.11) with A = Z

d \ ∪1≤i<jγ
(i), the expression in (8.6) is less than

∑

y∈γ̄(i)

G(y)2, (8.12)

where γ̄ denotes the vertices of the path γ, excluding the last one, if γ(i) is finite.
Summing this over 1 ≤ i ≤ l, and using that the γ̄(i) are disjoint and γ(i) ∩ VM = ∅,
we obtain that the left hand side of (8.4) is less than

l∑

i=1

∑

y∈γ̄(i)

G(y)2 ≤
∑

y∈Zd\VM

G(y)2. (8.13)

Using d > 4 and the well-known fact G(y) ≤ C|y|d−2 [12, Theorem 1.5.4], we obtain
the claim in (8.4).

Now we can complete the proof of Proposition 7.11 (ii). Observe that on the event

G(M,N) ∩ {γ̂(i) = γ(i), 1 ≤ i ≤ l}

we have T0 ⊆ VN . Therefore, by (8.3),

Pr
(
T0 ⊆ VN

∣∣G(M,N)
)
≥ 1 −

C

Md−4
. (8.14)

Choosing M large and then N large, (8.2) and (8.14) imply (8.1) and completes the
proof.

9 Tail triviality of µ

In Section 10 we are going to need the d > 4 part of the following theorem.

Theorem 9.1. The measure µ is tail trivial for any d ≥ 2.

Proof. [Case 2 ≤ d ≤ 4] The proof is based on the fact that the uniform spanning
forest measure ν is tail trivial [3, Theorem 8.3]. Let X ⊆ {0, 1}Ed

denote the set of
spanning trees of Z

d with one end. Recall the uniform spanning forest measure ν
from Section 8. It was shown by Pemantle [19] that when 2 ≤ d ≤ 4, the measure ν
is concentrated on X .

It is shown in [1] that there is a mapping ψ : X → Ω such that µ is the image of
ν under ψ. Moreover, ψ has the following property. Let Tx = Tx(ω) denote the tree
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consisting of all ancestors of x and its 2d neighbours in ω. In other words, Tx is the
union of the paths leading from x and its neighbours to infinity. It follows from the
results in [1] that ηx = (ψ(ω))x is a function of Tx alone.

Assume that f(η) is a bounded tail measurable function. Then for any n, f is
a function of {ηx : ‖x‖∞ ≥ n} only. This means that f(η) = f(ψ(ω)) = g(ω) is a
function of the family {Tx(ω) : ‖x‖∞ ≥ n}. Let Fk = σ(ωe : e ∩ [−k, k]d = ∅). For
1 ≤ k < n consider the event

En,k =
⋂

x:‖x‖∞≥n

{Tx ∩ [−k, k]d = ∅}.

Observe that En,k ∈ Fk, and gI[En,k] is Fk-measurable. Using that ω has a single
end ν-a.s., it is not hard to check that for any k ≥ 1

lim
n→∞

ν(En,k) = 1.

Letting n → ∞, this implies that there is an Fk-measurable function ĝk, such that
g = ĝk ν-a.s. Since this holds for any k ≥ 1, tail triviality of ν implies that g is
constant ν-a.s. Letting c denote the constant, this imples

µ(f(η) = c) = ν(f(ψ(ω)) = c) = 1,

which completes the proof in the case 2 ≤ d ≤ 4.

[Case d > 4] The above simple proof does not work when d > 4, due to the
fact that there is no coding of the sandpile configuration in terms of the USF in
infinite volume. Nevertheless, it turns out that a coding is possible by adding extra
randomness to the USF, namely, a random ordering of its components. Due to the
presence of this random ordering, however, we have not been able to deduce tail
triviality of µ directly from tail triviality of ν.

We start by recalling results from [1]. Let X denote the set of spanning forests
of Z

d with infinitely many components, where each component is infinite and has a
single end. The USF measure ν is concentrated on X [3]. Given x ∈ Z

d and ω ∈ X ,

let T
(1)
x (ω), . . . , T

(k)
x (ω) denote the trees consisting of all ancestors of x and its 2d

neighbours in ω. Here k = kx(ω) ≥ 1. Each T
(i)
x is a union of infinite paths starting

at x or a neighbour of x, and has a unique vertex v
(i)
x that is the first point common

to all paths.. Let F
(i)
x (ω) denote the tree consisting of all descendants of v

(i)
x in ω.

Let F denote the collection of finite rooted trees in Z
d. Let Σl denote the set of

permutations of the symbols {1, . . . , l}.

It follows from the proofs of Lemma 3 and Theorem 1 in [1] that the sandpile height

at x is a function of {F
(i)
x (ω), v

(i)
x (ω)}k

i=1 and a random σx ∈ Σk, in the following sense.
There are functions ψl : F l × Σl, l = 1, 2, . . . such that if σx is a uniform random
element of Σk, given ω, then

ηx = ψkx((F
(1)
x , v(1)

x ), . . . , (F (k)
x , v(k)

x ), σx) (9.2)
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has the distribution of the height variable at x under µ. Here it is convenient to
think of σx as a random ordering of those components of ω that contain at least one
neighbour of x. Then one can also view ηx as a function of {T

(i)
x }k

i=1 and σx.

Next we turn to a description of the joint distribution of {ηx}x∈A0 for A0 ⊆ Z
d

finite. Let A denote the set of those site that are either in A0 or have a neighbour
in A0. Let C(1), . . . , C(K) denote the components of the USF intersecting A, with
K = KA(ω). Each C(i) contains a unique vertex v

(i)
A where the paths from A∩ C(i) to

infinity first meet. Let F
(i)
A denote the tree consisting of all descendants of v

(i)
A . Each

rooted tree (F
(j)
x , v

(j)
x ), x ∈ A0, 1 ≤ j ≤ kx is a subtree of some F

(i)
A , 1 ≤ i ≤ K and

the former are determined by the latter. Let σA ∈ ΣK be uniformly distributed, given
ω. For each x ∈ A0, σA induces a permutation in Σkx , by restriction. It follows from

the results in [1] that the height configuration in A0 is a function of {(F
(i)
A , v

(i)
A )}K

i=1

and σK . Moreover, the joint distribution of {σx}x∈A0 is the one induced by σA.

From the above we obtain the following description of µ in terms of the USF
and a random ordering of its components. Let ω ∈ X be distributed according to
ν. Given ω, we define a random partial ordering ≺ω on Z

d in the following way.
Let C(1), C(2), . . . be an enumeration of the components of ω, and let U1, U2, . . . be
i.i.d. random variables, given ω, having the uniform distribution on [0, 1]. Define
the random partial order ≺ω depending on ω and {Ui}i≥1 by letting x ≺ω y if and
only if x ∈ C(i), y ∈ C(j) and Ui < Uj . Even though ≺ω is defined for sites, it is
simply an ordering of the components of ω. The distribution of ≺ is in fact uniquely
characterized by the property that it induces the uniform permutation on any finite
set of components, and one could define it by this property, without reference to
the U ’s. This in turn shows that the distribution is independent of the ordering
C(1), C(2), . . . initially chosen.

Let Q = {0, 1}Z
d×Z

d

denote the space of binary relations (where for q ∈ Q we
interpret q(x, y) = 1 as x ≺ y, and q(x, y) = 0 otherwise). We denote the joint
law of (ω,≺) on X × Q by ν̃. From the couple (ω,≺), we can recover the random

permutations σx as follows. If v
(1)
x , . . . , v

(k)
x are as defined earlier, then

(σx(1), . . . , σx(k)) = (j1, . . . , jk)

if and only if

v(j1)
x ≺ω · · · ≺ω v

(jk)
x .

The sandpile height configuration is a function of the couple (ω,≺ω). Using the above
σx in (9.2) gives {ηx}x∈Zd with distribution µ. In other words, there is a ν̃-a.s. defined
function ψ : X ×Q → Ω such that µ is the image of ν̃ under ψ.

Before we start the argument proper, we need to recall some further terminology
from [1]. Given finite rooted trees (F̄ , v̄) = (Fi, vi)

K
i=1 and a finite set of sites A, define

the events

D(v̄) = {v1, . . . , vK are in distinct components of ω},

B(F̄ , v̄) = D(v̄) ∩ {F
(i)
A = Fi, v

(i)
A = vi for 1 ≤ i ≤ K},
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For Λ ⊆ Z
d finite we also define

DΛ(v̄) = {v1, . . . , vK are in distinct components of ωΛ},

BΛ(F̄ , v̄) = DΛ(v̄) ∩ {F
(i)
A = Fi, v

(i)
A = vi for 1 ≤ i ≤ K},

where ωΛ is the wired UST in Λ.

Recall that tail triviality is equivalent to the following [7, page 120]. For any
cylinder event E ′ and ε > 0 there exists n such that (with Vn = [−n, n]d ∩ Z

d) for
any event R′ ∈ FV c

n
we have

|µ(E ′ ∩R′) − µ(E ′)µ(R′)| ≤ ε. (9.3)

Fix E ′ and ε, and for the moment also fix n and R′. Let E = ψ−1(E ′) and
R = ψ−1(R′). Let A0 denote the set of sites on which E ′ depends, and let A be the
set of sites that are either in A0 or have a neighbour in A0.

We first have a closer look at the event E. We define

S(F̄ , v̄, σ) = B(F̄ , v̄) ∩ {vσ(1) ≺ · · · ≺ vσ(K)},

GE = {(F̄ , v̄, σ) : S(F̄ , v̄, σ) ⊆ E},

GE(r) = {(F̄ , v̄, σ) ∈ GE : Fi ⊆ Vr for 1 ≤ i ≤ K}.

Here E is a disjoint union of the events S(F̄ , v̄, σ) over (F̄ , v̄, σ) ∈ GE . By the
definition of ≺ we have

µ(E ′) = ν̃(E) =
∑

(F̄ ,v̄,σ)∈GE

1

K!
ν(B(F̄ , v̄)).

We also define an analogue of S in a finite volume Λ. Assume that the relation ≺∂ is
prescribed on the exterior boundary of Λ. For any realization of the wired UST ωΛ

there is a unique extension of ≺∂ into Λ, denoted ≺Λ, where x ≺Λ y if and only if they
are connected (in ωΛ) to boundary vertices w(x) and w(y) satisfying w(x) ≺∂ w(y).
Using this extension, we define

SΛ(F̄ , v̄, σ) = BΛ(F̄ , v̄) ∩ {vσ(1) ≺Λ · · · ≺Λ vσ(K)}.

We let ν̃Λ,≺∂
denote the law of (ωΛ,≺Λ) with boundary condition ≺∂.

Introduce
G = G(r) = {F

(i)
A ⊆ Vr for 1 ≤ i ≤ K},

where we asume that A0 ⊆ Vr ⊆ Vn. Now E ∩ G is a disjoint union of the events
S(F̄ , v̄, σ) over (F̄ , v̄, σ) ∈ GE(r). Since A0 is fixed, we can choose r large enough so
that ν(G(r)c) ≤ ε.

Turning to R, we define

H = Hn =
⋃

x∈V c
n

kx⋃

i=1

vertex set of T (i)
x

D = Dn = Z
d \ Hn.
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The occurrence of R is determined by the collection of edges joining vertices in H
together with the restriction of ≺ to H. We also introduce for r < m < n and
Vm ⊆ Λ ⊆ Vn the events

FΛ = {Dn = Λ} and F = F (n,m) = ∪ΛFΛ = {Hn ∩ Vm = ∅}.

In other words, F is the event that the portion of ω determining the sandpile config-
uration in V c

n does not intersect Vm. The value of m will be chosen later. It is easy
to see that for fixed m one can choose n large enough, so that ν(F c) ≤ ε. This is
because F (n,m) is monotone increasing in n, and ∩∞

n=m+1F (n,m)c = ∅, since each
component of the USF has a single end.

In addition to G and F we need a third auxillary event. Let

J = {∀x, y ∈ Vr : if x↔ y then they are connected inside Vm},

where x↔ y means that x and y are in the same component of the USF. Using again
that each component of ω has one end, for large enough m we have ν(Jc) ≤ εε1,
where we have set ε1 = ε1(r) = ε/|GE(r)|. Define the event

J0 = F ∩
{
ν
(
Jc

∣∣ωHn

)
≤ ε1

}
,

where ωHn denotes the configuration on the set of edges touching Hn. By Markov’s
inequality,

ν(Jc
0) ≤ ν(F c) + ν

(
F ∩

{
ν
(
Jc

∣∣ωHn

)
≥ ε1

})
≤ ε+

ν(Jc)

ε1
≤ 2ε.

Choosing r large enough, m large enough and n large enough, we have

|µ(E ′ ∩R′) − ν̃(E ∩G ∩R ∩ J0))| ≤ 4ε. (9.4)

Recall that we regard the edges of ω being directed towards infinity. By the
definition of H, there are no directed edges from H to D. Therefore, given the
restriction of ω to H, the conditional law of ω in D is that of the wired uniform
spanning tree in D (denoted νD). One can see this by using Wilson’s method rooted
at inifnity to first generate the configuration on H, and then the configuration in D.

Note that the event FΛ only depends on the portion of ω outside Λ. We want
to rewrite the second term on the left hand side of (9.4) by conditioning on FΛ,
the portion of ω outside Λ, and the restriction of ≺ to Z

d \ Λ. By the previous
paragraph, the conditional distribution of (ω,≺) inside Λ is given by ν̃Λ,≺∂

, where ≺∂

is determined by the conditioning.

The above implies

ν̃(E ∩G ∩R ∩ J0) =
∑

Vm⊆Λ⊆Vn

∫

R∩J0∩FΛ

ν̃Λ,≺∂
(E ∩G) dν̃. (9.5)
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Next we further analyze

ν̃Λ,≺∂
(E ∩G) =

∑

(F̄ ,v̄,σ)∈GE(r)

ν̃Λ,≺∂
(SΛ(F̄ , v̄, σ)). (9.6)

Our aim is to show that the summand in (9.6) is close to ν(B(F̄ , v̄))/K!, uniformly in
Λ and the boundary condition, if m is large enough. For this we turn to a description
of the event BΛ(F̄ , v̄) in terms of Wilson’s algorithm. This part of the proof is similar
to the proof of Lemma 3 in [1], however it does not seem possible to use that result
directly.

Fix (Fi, vi)
K
i=1 and σ ∈ ΣK . Enumerate the vertices in ∪K

i=1Fi, starting with
v1, . . . , vK and followed by the rest of the vertices y1, y2, . . . in an arbitrary order. We
apply Wilson’s method with root at the wired vertex of Λ, and the above enumeration.
Let S(i), i = 1, . . . , K be independent simple random walks started at vi. Let γ

(i)
Λ

denote the loop-erasure of S(i) up to its first exit time from Λ. We define an event CΛ

whose occurrence is equivalent to the occurrence of BΛ(F̄ , v̄), by Wilson’s method.
Since the event DΛ(v̄) has to occur, we require that for i = 1, . . . , K, S(i) upto its first

exit time be disjoint from ∪1≤j<iγ
(i)
Λ . In addition, the fact that BΛ(F̄ , v̄) has to occur,

gives conditions on the paths starting at y1, y2, . . . , namely, these paths have to realize
the events (F

(i)
A , v

(i)
A ) = (Fi, vi), given the paths {γ

(i)
Λ }K

i=1. These implicit conditions
define CΛ. We write Pr for probabilities associated with random walk events, and we
couple the constructions in different volumes by using the same infinite random walks
S(i). Analogously we define the Λ = Z

d version, C, which corresponds to B(F̄ , v̄).

Let W
(i)
Λ denote the vertex where S(i) exits Λ. Then we have

ν̃Λ,≺∂
(SΛ(F̄ , v̄, σ)) = Pr(CΛ, W

(σ(1))
Λ ≺ · · · ≺ W

(σ(K))
Λ ). (9.7)

For r < l < m we consider the event CVl
, and write Cl for short. It is not hard to see

that limΛ I[CΛ] = I[C], Pr-a.s., which implies that for l large enough, Pr(Cl△C) ≤
ε1.. The difference between the right hand side of (9.7) and

Pr(Cl, W
(σ(1))
Λ ≺ · · · ≺W

(σ(K))
Λ ) (9.8)

is at most 2ε1. Recall that Λ ⊇ Vm, and m > l. By conditioning on the first exit
points from Vl, (9.8) can be written as

Pr(Cl) Pr
(
W

(σ(1))
Λ ≺ · · · ≺W

(σ(K))
Λ

∣∣W (1)
l , . . . ,W

(K)
l

)
. (9.9)

The first factor here differs from Pr(C) = ν(B(F̄ , v̄)) by at most ε1. If m is large
with respect to l, the value of the second factor is essentially independent of σ. This
is because by a standard coupling argument, the distributions of W

(i)
Λ and W

(j)
Λ given

W
(i)
l and W

(j)
l (respectively), can be made arbitrarily close in total variation distance.

This implies that the difference between (9.9) and

Pr(C) Pr
(
W

(1)
Λ ≺ · · · ≺ W

(K)
Λ

∣∣W (1)
l , . . . ,W

(K)
l

)
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is at most ε1, if m is large enough, uniformly in Λ.

Observe that if W
(i)
Λ ↔ W

(j)
Λ for some 1 ≤ i < j ≤ K, then the event Jc occurs.

Since the integration in (9.5) is over a subset of J0, we have

Pr
(
CΛ, W

(i)
Λ ↔W

(j)
Λ for some 1 ≤ i < j ≤ K

)
≤ ν̃Λ,≺∂

(Jc) ≤ ε1. (9.10)

It follows that for some universal constant C, if m is large enough
∣∣Pr

(
CΛ, W

(σ(1))
Λ ≺ · · · ≺W

(σ(K))
Λ

)
− Pr(C)/K!

∣∣ ≤ Cε1.

Now an application of (9.7) and (9.6) implies

|ν̃Λ,≺∂
(E ∩G) − ν̃(E ∩G)| ≤ Cε,

uniformly in Λ. Therefore, the difference between the right hand side of (9.5) and

ν̃(E ∩G)
∑

Vm⊆Λ⊆Vn

ν̃(R ∩ J0 ∩ FΛ) = ν̃(E ∩G)ν̃(R ∩ J0)

is at most Cε.

Using the choice of r and the choice of n again, we get

|µ(E ′ ∩ R′) − µ(E ′)µ(R′)| ≤ Cε,

proving the claim in the case d > 4.

10 Ergodicity of the stationary process

Arrived at this point, we can apply the results in [14], and we obtain the following.

Theorem 10.1. Let ϕ : Z
d → (0,∞) be an addition rate such that

∑

x

ϕ(x)G(0, x) <∞. (10.2)

Then the following hold.

1. The closure of the operator on L2(µ) defined on local functions by

Lϕf =
∑

x

ϕ(x)(ax − I)f (10.3)

is the generator of a stationary Markov process {ηt : t ≥ 0}.

2. If ϕ satisfies (10.2), then let Nϕ
t (x) denote Poisson processes with rate ϕ(x)

that are independent (for different x). The limit

ηt = lim
V ↑Zd

[
∏

x∈V

aN
ϕ
t (x)

x

]
η (10.4)

exists a.s. with respect to the product of the Poisson process measures on Nϕ
t

with the stationary measure µ on the η ∈ Ω. Moreover, ηt is a cadlag version
of the process with generator Lϕ.
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Let {ηt : t ≥ 0} be the stationary process with generator Lϕ =
∑

x ϕ(x)(ax − I).
We recall that a process is called ergodic if every (time-)shift invariant measurable
set has measure zero or one. For a Markov process, this is equivalent to the following:
if Stf = f for all t > 0, then f is constant µ-a.s. This in turn is equivalent to the
statement that Lf = 0 implies f is constant µ-a.s. The tail σ-field on Ω is defined as
usual:

F∞ =
⋂

n∈N

σ{η(x) : |x| ≥ n} (10.5)

A function f is tail measurable if its value does not change by changing the configu-
ration in a finite number of sites, i.e., if

f(η) = f(ξV ηV c)

for every ξ and V ⊆ Z
d finite.

Theorem 10.6. The stationary process of Theorem 10.1 is mixing.

Proof. Recall that G denotes the group generated by the unitary operators ax on
L2(µ). Consider the following statements.

1. The process {ηt : t ≥ 0} is ergodic.

2. The process {ηt : t ≥ 0} is mixing.

3. Any G-invariant function is µ-a.s. constant.

4. µ is tail trivial.

Then we have the following implications: 1, 2 and 3 are equivalent and 4 implies 3.
This will complete the proof, because 4 holds by Theorem 9.1.

It is easy to see that on L2(µ),

L∗ =
∑

x

ϕ(x)(a−1
x − I). (10.7)

Hence L and L∗ commute, i.e., L is a normal operator. The equivalence of 1 and 2
then follows immediately, see [22]. To see the equivalence of 1 and 3: suppose Lf = 0,
then, using invariance of µ under ax

〈Lf |f〉 = −
1

2

∑

x

ϕ(x)

∫
(axf − f)2dµ = 0. (10.8)

Similarly, Lf = 0 implies L∗f = 0, hence

〈L∗f |f〉 = −
1

2

∑

x

ϕ(x)

∫
(a−1

x f − f)2dµ = 0, (10.9)

which shows the invariance of f under ax and a−1
x , and thus under the action of G.

Finally, to prove the implication 4 ⇒ 3, we will show that a function invariant under
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the action of G is tail measurable. Suppose f : R → R, and f(axη) = f(η) = f(a−1
x η)

for all x. If η and ζ are elements of R and differ in a finite number of coordinates,
then

ζ =
∏

x

aζ(x)−η(x)
x η (10.10)

and hence f(η) = f(ζ). This proves that f is tail measurable.

A Appendix

In this section we indicate how to extend the argument of [1] in the case d > 4 and
prove limΛ µΛ = µ. This boils down to showing that (18) and (19) in [1] (referred to
as (18)[1], etc. below) hold with the limit taken through arbitrary volumes. Most of
the argument in [1] has been carried out for general volumes, and we only mention
the differences. We use the notation introduced in Section 9.

We start with the extension of (18)[1]. Let x, y ∈ Z
d be fixed, and let S(1) and S(2)

be independent simple random walks starting at x and y, respectively. Let T
(1)
Λ and

T
(2)
Λ be the first exit times from Λ for these random walks. The required extension of

(18)[1] follows from an extension of (27)[1], which in turn follows from the statement

lim
δ→0

lim sup
Λ

Pr
(
1 − δ ≤

T
(1)
Λ

T
(2)
Λ

≤ 1 + δ
)

= 0. (A.1)

Statement (A.1) is proved in [11].

For the extension of (19)[1], we recall from Section 9 the events BΛ(F̄ , v̄) and
B(F̄ , v̄) defined for a collection (Fi, vi)

K
i=1. Let S(i), i = 1, . . . , K be independent

random walks started at vi, respectively. Let T
(i)
Λ be the exit time of S(i) from Λ.

Also recall the random walk events CΛ and C, and that Cm and T
(i)
m are short for CΛ

and T
(i)
Λ when Λ = [−m,m]d ∩Z

d. By the arguments in [1], the required extension of
(19)[1] follows, once we show an extension of (32)[1], namely that for any permutation
σ ∈ ΣK

lim
m→∞

lim
Λ

Pr
(
Cm, T

σ(1)
Λ < · · · < T

σ(K)
Λ

)
= Pr(C)

1

K!
. (A.2)

Observe that Cm and the collection T̃
(i)
Λ,m = T

(i)
Λ − T

(i)
m , i = 1, . . . , K are conditionally

independent, given {S(i)(T
(i)
m )}K

i=1. Therefore, using (A.1), the left hand side of (A.2)
equals

lim
m→∞

lim
Λ

Pr(Cm) Pr
(
T̃

σ(1)
Λ,m < · · · < T̃

σ(K)
Λ,m

)
. (A.3)

By a standard coupling argument, the second probability approaches 1/K! for any
fixed m, and hence the limit in (A.3) equals P (C)/K!. This completes the proof of
the required extension of (19)[1].
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