

A parallel local search algorithm for the travelling salesman
problem
Citation for published version (APA):
van de Sluis, E. (1991). A parallel local search algorithm for the travelling salesman problem. (Computing
science notes; Vol. 9112). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/dd8271d7-1fef-4450-a48a-61fd9a040f9d

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Parallel Local Search Algorithm for the
Travelling Salesman Problem

py

Edwin van der Sluis

Computing Science Note 91/12
Eindhoven, July 195'1

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

A Parallel Local Search Algorithm for the
Travelling Salesman Problem

Edwin van de Sluis
Dept. of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

A parallel local search algorithm for the Travelling Salesman Problem is presented.
A TSP solution is distributed over an array of processors such, that transitions can
be carried out in parallel, while communication is reduced to a minimum. Simulated
annealing is used as optimization technique. It is shown that the algorithm satisfies
the asymptotic convergence conditions. Performance figures for three TSP instances
show a linear speed-up, at the cost of a small decrease in the quality of the final
solutions.

1

1 Introduction

In the N-city Travelling Salesman Problem, or TSP, we are given a number of cities
0, ... ,N -1 and for each pair of cities i,j a distance D(i,j). Our goal is to find a tour
T(i : 0 ~ i < N) that visits each city exactly once and that minimizes:

(L: i : 0 ~ i < N : D(T(i), T(i +1») + D(T(N - 1), T(O».

Here T(i) denotes the i'h city being visited. We wiII concentrate on the symmetric TSP in
this paper, where the distances satisfy D(i,j) = D(j, i) for 0 ~ i,j < N.

The TSP can be considered as the prototypical NP-hard problem, so polynomial-time
algorithms for finding optimal solutions are unlikely to exist. Therefore, much effort has
gone into the design of efficient approximation algorithms, that attempt only to find near­
optimal solutions.

The best approximation algorithms for the TSP have been based on a general technique
known as local seal·ch. In order to derive a local search algorithm for a combinatorial
optimization problem, one defines a neighbourhood structure that specifies for each solution
a set of solutions that can be obtained by applying some pre-defined transition mechanism.
Given this a neighbourhood structure, a local search algorithm operates as follows. We
start off with a given initial solution, which is typically chosen randomly. Next we search
the neighbourhood structure of the curren t solution to find a better solution (a solution of
lower cost). If such a solution is found, we replace the current solution by this solution. If
such a solution does not exist the algorithm terminates with the current solution, which is
identified as locally optimal.

The most famous local search algorithms for the TSP are the '2-opt', the '3-opt', and the
'Lin-Kernighan' algorithms [Lin65, Lin73]. The corresponding neighbourhood structures
are as follows (cf. (Joh90]):

2-0pt Two tours are neighbours if one can be obtained from the other by replacing two
edges by two other edges such that again a tour is obtained.

3-0pt Two tours are neighbours if one can be obtained from the other by replacing three
edges by three other edges such that again a tour is obtained.

Lin-Kernighan Two tours are neighbours if one can be obtained from the other by per­
forming a sequence of edge changes, going to arbitrary depth, with the exponential
explosion of the neighbourhood controlled by a complex greedy criterion. See [Lin73]
for details.

In [Joh90] Johnson surveys the state of the art with respect to the TSP, with emphasis
on the performance of the three local search algorithms mentioned above, and two "new"
competitors: simulated annealing and genetic algorithms. These approaches can be consid­
ered as variants on local search. With simulated annealing [Kir83, Laa87] we occasionally

2

replace the current solution by a wors~ solution, thus allowing us to escape from local op­
tima. With the genetic approach [MiihSS] we perform some fixed number of independent
runs (possibly in parallel) with some traditional local search algorithm, and then derive
new starting solutions by "mating" the solutions found.

The experiments of Johnson show that the local search algorithms give high-quality
solutions, with the 3-opt and Lin-Kernighan algorithms as the champions. A drawback is
that to require these high-quality solutions, often large computation times are required,
especially when simulated annealing is used.

One way to obtain a substantial decrease in computation time is to parallelize the local
search algorithms. In this paper we present such a parallel algorithm. We use simulated
annealing as local search algorithm and the 2-opt as neighbourhood structure. It is well­
known that the transition mechanism that underlies this neighbourhood structure (the
2-change) can be applied locally to tours (see e.g. [Lin73]).

We begin this paper with a description of the simulated annealing algorithm and our
approach to its parallelization. Next we describe how the 2-change transition mechanism
can be parallelized to support this approach. In Section 4 we show that the resulting
algorithm satisfies the so-called asymptotic convergence conditions. This means that our
simulated annealing algorithm converges asymptotically to the set of optimal tours, for
any TSP instance. Readers that are only interested in (parallel) local search can skip this
section. We implemented the algorithm on a network of 50 (TSOO) transputers. Compu­
tational results of our experiments on three TSP instances are given in Section 5. These
results are discussed, and we end this paper with some conclusions and ideas for further
research. .

2 Parallelization of simulated annealing

At a first glance, the general simulated annealing algorithm does not seem to have any
'parallel features'. Basically, the algorithm works as follows. Suppose we have a starting
solution to the optimization problem we are interested in. Then simulated annealing
operates by continuously attempting to replace this solution by a new one. This new
solution is generated from the current one by applying a predefined transition mechanism.
A transition is accepted with a certain probability which depends on two factors: the
cost difference between the two solutions, and the current value of a control parameter
(traditionally called the temperature). The control parameter is decreased after a number
of transitions.

When designing a parallel annealing algorithm, we distinguish two general strate­
gies [AarS9]: single-t-rial parallelism and multiple-trial parallelism. In single-trial paral­
lelism, we divide the work involved in evaluating a single trial (transition) over a number
of processors, while in multiple-trial parallelism, different trials are evaluated in parallel.

Within the class of multiple-trial parallel annealing algorithms, two subclasses are dis­
tinguished: geneml algorithms and tailored algorithms. We can either decide to design
a generally applicable parallel algorithm, 01' decide to design a parallel algorithm that is

3

tailored to a certain problem. Our goal is a tailored annealing algorithm for the TSP, with
multiple- trial parallelism.

To derive such an algorithm, let us have a closer look at the general annealing algorithm.
We see that the algorithm consists of four major steps (ef. [Aar89]):

1. propose a new solution by applying the transition mechanism,

2. calculate the cost difference between the old and the new solution,

3. decide (probabilistically) whether the new solution will be accepted, and

4. if the transition is accepted, substitute the old solution by the new one.

Suppose now that we can distribute a solution over the network such, that each processor
can perform all steps in parallel, i.e., without communication with any of its neighbouring
processors. Then we see that each processor can execute the annealing algorithm locally.
However, two important aspects have to be considered before we can think about an
implementation .

• The solution distribution has to be such that a large variety of transitions can be
proposed locally. To apply simulated annealing successfully, we need such a large
variety, otherwise we cannot expect annealing to find near-optimal solutions .

• The communication between the processors. If no communication takes place, each
processor will obtain a near-optimal subsolution, which will typically not imply that
a good global solution is found. Therefore, processors have to communicate parts of
the solution to avoid this.

We see that our approach to parallelization amounts to a parallelization of the neighbour­
hood structure. We like to stress that our restriction here to simulated annealing is not
essential, and that our approach can be used for other local search algorithms.

In the next section we show how the 2-opt neighbourhood structure of the TSP can be
parallelized. From the discussion above we conclude that such a parallelization consists
of (1) a distribution of a tour such, that a powerful transition mechanism can be applied
locally by processors, and (2) a communication procedure to exchange parts of a tour.

3 Parallelization of the 2-opt neighbourhood struc­
ture

As explained earlier, a solution to a TSP instance is a tour; a closed walk that visits each
city exactly once. Let N be the number of cities, T a tour, and let T(j) denote the j-th
city being visited. Furthermore, let P be the number of processors and assume that N is
such that N = 2k . P, for some k 2': 1. We assume that the P processors are configured in
an array, i.e., a processor p, 0 < p < P - 1, has two neighbours; processors p -1 and p+ 1.

4

We first give the initial distribution of a tour T. Each processor p is given two parts of
T, denoted by T.partOp and T.partl p • Initially, each part consists of k consecutive cities,
as follows:

Vp : 0 :S p < P: Vi: 0 :S i < k: T.partOp(i) = T(p . k + i) A

T.partlp(i) = T(N - 1 - (p. k + i))

In Figure 1, we give an example of this distribution over an array network of P = 4
processors, and with N = 32 cities (so, k = 4). For example, processor 1 obtains parts
T(4 :S i < 8) and T(24 :S i < 28) of the global tour T.

~~'"'~ ~ ~ ~ ~

lo-o-o-o
~ ~ ~ ~ ~ ~ ~ :1 ~ ~~-o ~ ~ ~ ~

~ ~ ~ ~

o 2 3

Figure 1: Initial distribution for N = 32, P = 4

A powerful transition mechanism for the TSP is the so-called 2-change. It is often used
in combination with the annealing algorithm (see for instance [Laa87]). Informally, a 2-
change transition on a tour T can be described as the exchange of two existing connections
in T (each between two cities) by two that are not part of T. This of course under the
restriction that T remains a tour.

The main advantage of our tour distribution and the 2-change mechanism is that if
we combine them, each processor can perform local 2-change transitions, without any
communication to exchange cities or calculate cost differences.

To make this more clear, we show in Figure 2 a number of possible 2-change transitions
on our initial tour of Figure l.

Note that in the above example, we can extend the network to eight processors, thereby
decreasing the number of cities per processor to four. As is shown in Figure 3, now eight
processors can perform a 2-change transition. However, this transition is the only 2-change
possible, since we prohibit communication when performing 2-changes.

We may conclude from this, that for larger values of P more communication has to
take place. This brings us automatically to the discussion of the communication behaviour
of our algorithm. We decided to perform a so-called rotate operation after a fixed number
of proposed transitions. The rotate procedure can be specified as follows:

{pre: T = T'}

5

I~ II ~ II ~ II =nl
Figure 2: Four possible 2-change transitions

o 2 4 7

Figure 3: Possible 2-changes when P = 8

Rotate(T)

{post: Vi : 0 ::; i < N : T(i) = T'(i-I)}

Here T and T' denote tours and subtraction is modulo N. As an example, we show
in Figure 4, which cities of the tour give!) by Figure 2 are communicated between the
processors. These cities are depicted as black dots.

I~ II ~ II ~ II :nl
Figure 4: An example of a rotate operation

We end this section by giving the simplified program for an arbitrary processor p in
the network. Remember that each processor has two parts of the global tour T, which are
denoted by T.padO and T.partl, which both consist of k cities. The program consists of
threenested loops. The value of the control parameter c is decreased after a total number
of L (global) transitions have been proposed. A rotation takes place after every 2k (local)
transitions. The program below is given in a Pascal-like notation.

Initialize(T.partO, T.partl, c, L) ;

6

.•

while c > minc do
begin
1 := 0
while 1 < (LIP) I 2k do

begin
i := 0
while i < 2k do

begin
ProposeTransition(T.partO, T.part1, dC)
if Accept (dC, c)

then AcceptTransition(T.partO, T.part1, dC)
i := i + 1

end ;
Rotate(T.partO, T.part1)
1 := 1 + 1

end ;
Decrease (c)

end

4 Asymptotic convergence

It is well-known that under certain conditions the simulated annealing algorithm converges
asymptotically to the set of optimal solutions (see e.g., [Laa87]) .

In practice, the only condition that has to satisfied is the connectivity of the neigh­
bourhood structure, i.e., that it is possible, for every two solutions i and j to construct
a finite sequence of transitions that transforms i into j. For the application of the se­
quential annealing algorithm to the TSP, this property is proved by several authors (see
e.g., [Aar89]).

In this section, we show that our parallel annealing algorithm satisfies the convergence
condition by showing that it is possible, for every two tours T and T', to construct a finite
sequence of transitions and rotations from T to T'.

Before we show that the convergence property is satisfied, we first give a more formal
description of the 2-change transition mechanism that we described in the previous section.

Recall from Section 3 that each processor is given two parts of the global tour T, which
are called T.pm·tO and T.partl. In general, the parts consist of kO and kl consecutive cities
respectively, where kO, kl 2: 2 and kO + kl = 2k.

A 2-change transition by an arbitrary processor on its T.partO and T.partl is now
defined by the following functional specification:

7

{pre; T.partO = T.pO/\
T.partl = T.pI/\
o < iO < kO /\ 0 < il < kI}

2_change(T.partO, T.partl, iO, il)

{post: T.partO(O::; i < iO) = T.pO(O ::; i < iO)/\
T.pa1·tO(iO ::; i < iO + (kI - il» = T.pI(iI ::; i < kI)/\
T.partI(O ::; i < iI) = T.pI(O ::; i < iI)/\
T.partI(il ::; i < il + (kO - iO» = T.pO(iO ::; i < kO)}

Note that application of a 2-change changes the lengths of parts T.partO and T.partl to
iO + (kI- iI) and il + (kO - iO) respectively. Note also that the sum of the lenghts remains
2k.

Now, consider processor P -1, which is the last one in the array of processors. For this
processor, city T.pm·tI(kI - 1) is the immediate successor of city T.partO(kO - 1) in the
global tour. Then from the above specification of the 2-change, we see that application of

2_change(T.partO, T.partl, kO - 1, kI -1)

performed by processor P -1 has the effect that cities T.partO(kO -1) and T.partI(kI-I)
are swapped in the global tour.

Now, we give a procedure that transforms an aribitrary tour T into another tour T'.
This procedure has the following invariant 10:

10: {T(O ::; i < n) = T'(O ::; i < n)}

Invariant 10 states that the first n elements of T and T' are equal. Then we know that
there exists some s, n ::; s < N such that T(s) = T(n). This is stated as a loop invariant
I1 for the inner loop. This inner loop 'bubbles' city T(s) to its right position, by rotating
T and by swapping T(s -1) and T(s). This swapping is performed by processor P -1, as
described above. This process is repeated until all cities of T are in their right position.

n ;= ° ;
{IO}

while n < N do
begin

{I1: T(s) = T'(n) for n <= s < N}
while s > n do

begin
while (T.part1(k1 - 1) of Processor P-1) <> T(s) do

Rotate(T) ;
Processor P-1: 2-change(T.partO, T.part1, kO - 1, k1 - 1)
{post: T(s-1) = T'(n)}

s

end

s:=s-l;
{Ii}

end;
{Ii and 5 = n => T(n) = T'(n)}
n := n + 1

{IO}

{IO and n = N => T = T'}

So, the above procedure guarantees that it is possible to construct a finite sequence of
transitions and rotations leading from an arbitrary tour to another. As explained earlier,
this condition satisfies asymptotic convergence of the annealing algorithm.

5 Computational results

In this section, we give some results of an implementation of the algorithm we described
in the previous sections. We implemented the algorithm in the occam-2 language, and
executed in on an array of T800 transputers. We had a total of 50 transputers at our
disposal.

In the tables below, we give some computational results for TSP instances of 48, 120,
and 532 cities respectively. They are called GR048, GR0120, and GR0532 after their
inventor, who proved that the optimal solutions to these problems are 5046, 6942, and
27,686 respectively [Gra77].

In the tables, the final solution cost average (C finall is computed from five runs of the
algorithm. The average deviation from the global minimum is given by ~%. The average
execution time, which includes communication, is given in seconds by ~t.

I piC /ina I I ~ % I 6.t
11 [Laa88] I 5094.8 I 0.97 I 93.8

1 5098.8 1.05 39.60
2 .5102.2 1.11 19.02
3 5086.4 0.80 12.86
4 5086.2 0.80 10.02
6 5150.6 2.07 7.20
8 5132.2 1.71 5.84
12 5266.0 4.36 4.92

Table 1: Computational results for GR048

In Tables 1 and 2 we have added some results from [Laa8S] of a sequential annealing
implementation. These results were obtained by running the annealing algorithm on a

9

VAX 11/785 computer.

I p I Gfinal I ~% I ~t I
11 [LaaS8]I 7057.2 11.66 11369.4 I

1 7014.6 1.05 958.4
5 7052.2 1.59 131.4

10 7070.4 1.85 65.8
15 7064.4 1.76 46.3
20 7101.2 2.30 36.7
30 7285.6 4.95 30.5

Table 2: Computational results for GR0120

The results in Table 1 and 2 are given for values for P such that PIN. For the results
in Table 3 this not the case. With a small modification, we could run our program for
other values for P, as can be seen from Table 3. This enabled us to use the full strength
of our transputer network, which means that we could take P = 50.

I pic final I ~ %! ~t
10 28346.3 2.39 5348.8
20 28112.0 1.54 2392.1
30 28237.0 1.99 1549.8
40 28342.2 2.37 1154.5
50 28300.1 2.22 930.1

Table 3: Computational results for GR0532

For GR0532 no (sequential) annealing results are known to us. With his genetic algo­
rithm, Muhlenbein reports a solution of length 27,702 in under three hours on a network
of 64 transputers [Miih88]. This is less than 0.06% above optimal, and better than the best
tour that Johnson finds in 20,000 independent runs of Lin-Kernighan (27,705), which took
ronghly 530 hours of Sequent processor time [Joh90]. We see that our algorithm cannot
compete with these tailored heuristic algorithms with respect to the quality solution. This
is, however, a well-known property of simulated annealing (cf. [Laa87, Laa88]).

6 Discussion

From the tables of the previous section we conclude that we obtained a speed-up that
is more than linear. This can be expla.ined as follows. Remember that each processor

10

has 2k cities at its disposal. This means, that the acceptance of a 2-change transition by a
processor takes O(k) time. So, while the communication overhead increases with increasing
P, the time to accept transitions actually decreases. In sequential implementations, tours
are usually implemented as arrays. Hence, performing a 2-change (reversing a subpath)
takes time proportional to the length of the tour. Our approach confirms the conclusion
of Johnson that alternative representations might be cost-effective [Joh90].

Aonther conclusion is that communication overhead is too small to prohibit scalability
of the algorithm: even for If processors (the maximum) we have a linear speed-up.

With respect to the quality of final solutions, we conclude that the performance of the
algorithm decreases if we let the number processors approach the maximum. This is due
to the fact that for the maximum number of processors (P = 30 in our example), each
processor has only four cities at its disposal, which means that each processor can only
perform a single 2-change. Experiments on a larger transputer network will have to verify
this conclusion for the 532-city TSP instance.

7 Conclusions

We presented in this paper a parallel simulated annealing algorithm for the TSP. The algo­
rithm was shown to satisfy the asymptotic convergence conditions of simulated annealing.
The computational results on two large TSP instances show that near-optimal solutions
can be obtained with a substantial reduction in computation time. Our algorithm is scal­
able to a maximum of If processors, for an N-city TSP instance. From the computational
results we conclude that for P ::; lif, the quality of solutions is comparable with the quality
that is obtained by sequential annealing algorithms.

There are several topics for further research. First, our empirical study is rather lim­
ited: we investigated just three TSP instances. Tests on additional instances will have
to verify our conclusions. A second interesting topic is the parallelization of other local
search algorithms for the TSP (e.g., 3-opt and Lin-Kernighan), and their corresponding
neighbourhood structures. The parallelization of the 2-opt neighbourhood structure that
was presented in this paper can be used as a starting-point. An additional difficulty with
the traditional local search algorithms is that we want to prove that they terminate with
a locally optimal solution. In the parallel case this is far from trivial, and will require a
more thorough investigation of the effect of parallelization on neighbourhood structures.
Finally, we can investigate whether there a,r~ neighbourhood structures for other combina­
torial optimization problems that are so 'easy' to parallelize as the 2-opt for the TSP. If
so, simulated annealing can be used as local search algorithm, since one of the advantages
of annealing is that it is general applicable.

11

Acknow ledgements

I would like to thank Emile Aarts and Martin Rem for their support and valuable comments
on earlier versions of this paper.

References

[Aar89J

[Grii77J

[Joh90J

[Kir83J

[Laa87J

Emile Aarts and Jan Korst, Simulated Annealing and Boltzmann Machines,
John Wiley & Sons, 1989.

M. Gr6tschel, Polyedrische Charakterisierungen J(ombinatorischer Optimie­
TungspTobleme (in German), Hain, Meisenheim am Glan (1977).

David S. Johnson, Local Optimization and the Traveling Salesman Problem,
Proc. 17th Colloquium on Automata, Languages and Programming (ICALP
'90), Springer Verlag, LNCS 447, pp. 446-461.

S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, Optimization by Simulated
Annealing, Science 220(1983), pp. 671-680.

P.J.M. van Lam'hoven and E.H.L. Aarts, Simulated Annealing: Theory and
Applications, D. Reidel Publishing Company, Dordrecht, 1987.

[Laa88J P.J.M. van Laarhoven, Theoretical and Computational Aspects of Simulated An­
nerding, Ph.D. thesis, Erasmus University, Rotterdam, 1988.

[Lin65J S. Lin, Computer solutions of the traveling salesman problem, Bell Syst. Tech.
J. 44(1965), pp. 2245-2269.

[Lin73J S. Lin and B.W. Kernighan, A n Effective Heuristic Algorithm for the Traveling
Salesman P1'Oblem, Opel'. Res. 21(1973), pp. 498-516.

[Miih88J H. Miihlenbein, M. Gorges-Schlellter, and O. Kramer, Evolution algorithms in
combinatorial optimization, Parallel Computing 7(1988), pp. 65-85.

12

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T. Verhoeff

89{7 P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Resen

89/14 H.C.Haescn

89/15 J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its nonnal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise fonnal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gertb-B.Jonsson-A.Pnueli
M.Rced-J.Sifakis-J.Vytopil
P.Wolper

90/2 KM. van Hee
P.M.P. Rambags

90/3 R. Gertb

90/4 A Peeters

90/5 I.A Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n AJ.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
KM. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 KR. Apt
F.S. de Boer
E.R. Olderog

90/14 F.s. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real t;me systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p. 23.

On the asynchronous nature of communication in logic
languages: a fully ~J'stract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. KalOen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
I. v.d. Woude

91/11 R.C. Backhouse
P.I. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, ~. 14.

Implication. A survey of the different logical analyses
"if...,thcn ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Scgments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 31.

An Implementation h10del for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A notc on Extensionality, p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

	Abstract
	1. Introduction
	2. Parallelization of simulation annealing
	3. Parallelization of the 2-opt neighbourhood structure
	4. Asymptotic convergence
	5. Computational results
	6. Discussion
	7. Conslusions
	References

