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A generalised multiple shooting method 

by 

M.E. Kramer 

Abstract 

The usual multiple shooting method for solving BVP's is based on solving initial value 

problems on suitable subintervals. Generally these IVP's will be ill-conditioned. 

Consequently the convergence domain of the Newton iteration on the shooting vector can 

become quite small and unequilibriatedly shaped. 

The new approach presented in this paper is the use of well-conditioned BVP's on the local 

intervals with linear boundary conditions. This is likely to enlarge the convergence domain. 

A complication is, however, that the local problems cannot be solved with an initial value 

integrator. We have chosen to use a one-step fmite difference scheme to approximate the 

solution of the local BVP's. It will be shown that alternate application of Newton's method to 

the 'shooting' vectors and the finite difference approximation of the solution converges 

locally super-linear (order approx. 1.4) if the finite difference grid is sufficiently fine. 

An advantage of this method over finite differences on the entire interval is that less memory 

space and flops are required at each iteration step and that it is suited for parallel processing. 
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§ I Introduction 

In this paper we will focus on solving a well-conditioned non-linear differential equa

tion with two-point boundary conditions. Let the smooth functions h : IR x IRn 
-+ IRn and g : IRn 

x IRn -; IRn induce the BVP 

{ 
~ = h(x,y(x» 

g(y(a),y(b» = 0 
with yeC1([a,b]-;(Rn). 

1.1 Assumption 

(1.la) 

(LIb) 

The BVP (1.1) has at least one solution y*(x) at which it is well-conditioned (see A.3). 

-
In the sequel we will only consider solutions of the type mentioned in assumption 1.1. 

A generalisation of multiple shooting can be descibed as follows. 

- Divide the interval [a,b] into subintervals [Xk,Xk+t1 with a = Xl S X2 S ... S xN+ 1 = band 

define a BVP with linear boundary conditions on each subinterval. 

{ y = h(x,y(x» Xk S X S Xk+l 
AkY(Xk) + BkY(Xk+l) = Sk 

(1.2a) 
(1.2b) 

where skelRn and Ak,BkelRnxn, Let Yk(X;S) denote the solution of (1.2) on [Xk,Xk+l]. 

- Define the function f(s), containing the continuity condition of the solution of (1.1) 

and the boundary conditions by 

f(s) := 

'th . ( T T T)T W1 S.= SI ,S2 , • , ,sN . 

YN-l(~;s) - YN(xN;s) 

g(Yl (Xl;S)'YN(~+ I;s» 

- Find the zero of f(s) by applying Newton's method to f. 

(1.3) 

Usually in the multiple shooting method one defines initial value problems on subintervals of 

[a,b], i.e. Ale = I and Bk = 0 for all k. However, if the linearization of the BVP at y*(x) 

contains any growing modes, these IVP's cannot be well-conditioned (cf. [AsMaRu] 

Th. 3.106). In section 2 we will show that consequently the convergence domain for f(s) as 

stated in the Newton-Kantorovich theorem can become very small. Furthermore it will be 
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shown that this area is considerably larger if well-conditioned BVP's are defined on the 

subintervals. 

§1 

This generalized fonn of multiple shooting that uses well-conditioned BVP's on the sub

intervals will be called unbiased multiple shooting. This method is somewhat more compli

cated. because the local solutions Yk(X;S) can no longer be computed by an initial value 

integrator. In this paper we use a one-step finite difference method to obtain an estimate for 

Yk(X;S}. 

Using the unbiased multiple shooting method in combination with finite differences on the 

subintervals is in some respect preferable to using a fmite difference method on the entire 

interval [a,b]. 

lOne Newton iteration requires less flops, for one has to solve 

1 system of order nN + N systems of order n· I ilk I for unbiased multiple shooting 

1 sytem of order N· n· I ilk I for a finite difference method 

.2 The finite difference method requires approximately N-times more memory space, 

than unbiased multiple shooting. 

The algorithm considered in this paper contains two iterative processes. 

1 the "outer" iteration of the Newton method on f(s) = 0 generating a sequence { sj }. 

2 the "inner" iteration on the finite difference scheme to approximate Yk{X;S~. 

Let ilk be the finite difference mesh of [Xk.Xk+l] and y~ the vector containing the 

concatenation of the vectors approximating the solution Yk(X;S) at the meshpoints. 

In section 3 it will be proven that, if for allIS; k S; N 

1 the matrices Ak and Bk are such that the BVP (1.2) is well-conditioned 

.2 the initial estimates for (y~)o and sO are sufficiently good 

J the mesh ilk is sufficiently fme 

the following algorithm converges super-linear (order approx. 1.4) 

for j:=l to co 

do begin 

end; 

S j := s.i-1 - [~(Yx}.H) rl
. f«yx).i-1) i.e. the evaluation of ~ and f respectively at 

the discrete approximation (y~)j-l to Yk(X;sj-l) , k = I, .. ,N ; 

for k := 1 to N do (y~)j is formed by applying one Newton iteration to the finite 

difference discretization of (1.2) at (y~)j-1. 
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Finally we have to address to the choice of Ak and Bk. In most cases Ak = Bk = I will yield a 

well-conditioned BVP (1.2). Some more work on this part has still to be done. 



§2 Comparison of the Newton-Kantorovich convergence domain 

Both for ordinary and unbiased multiple shooting a zero of the non-linear function f(s) 

(see (1.3» describing the continuity of the solution and the global boundary conditions has to 

be found. In this section it will be shown that the convergence domain mentioned in the 

Newton-Kantorovich theorem is considerably larger for the unbiased multiple shooting 

method. This is due to the equilibration of the Iacobian resulting from using 

well-conditioned BVP's on the subintelVals instead of initial value problems. 

2.1 Newton-Kantorovich theorem (see [RhOr] p.421) 

Let P : D c IRn ..,lRn be Frechet-differentiable on a convex set D1• Assume that 

1 'ix,yeD
l 

: II F'(x) -F'(y) II s y II x-y II 
and that there is a Xo e Dl such that 

2 II P' (xa)-l II s (3 

J II F'(xa}-I·P(xO) II Sl1 

and (l := (3111 < !. Define 

t* = «(3y)-l[l-.JI=Tci]. tU = «(3y)-l[l+.Jl-2(i] 

and assume finally that B(xa.t*) c D1* Then the iterates xk generated by 

Xk+l = Xk - F'(x0-1F(x0 k = 0,1,2, .. 

are well-defined, remain in B(xa.t*) and converge to a solution x* of F(x) = 0, which is 

unique in B(xa,tU
) () D 1• -

Consider the BVP (1.1) and let y*(x) be a solution at which it is well-conditioned. Let the 

intelVal [a,b] be divided into subintelVals [Xk,Xk+l] with a = xl < X2 < ... < x
N
+1 = b. 

2.2 Notational convention 

Define the operators 

Jl K: Cl([a,b]-rlRn) .., C([a,b]-rlRn) by Ky := y - h(x,y(x» (2.1) 

the non-linear differential equation. 

12 'i liliN Kk : Cl([Xk,Xk+1]-rlRn) .., C{[Xk,Xk+tJ-rlRn) by KkY := y - h(x,y(x» (2.2) 

the restriction of K to [Xk.Xk+U 

~ 'i liliN Bk : C([Xk,Xk+l]-rlR
n

) ..,lRn 
by BkY := AkY(Xk) + BkY(Xk+l) (2.3) 

the boundary conditions on [Xk,Xk+l]. 
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C2.8) 

the linearization of the boundary conditions. 

i Let s· be the solution of fCs) = 0 with Vk V e [ ] : y*Cx) = YkCX;S*) 
x Xk'Xk+l 

j Let l denote a linear diffential equation on [a,b] and B a set of linear boundary conditions 

-

on [a,b]. Then the conditioning constant, 1C, of (1,8) is defined by : 

K := max( max II yet) II, max II G(X,t) II ) (2.9) 
as; ts;b as;x , tS;b 

with yet) the fundamental solution of l with BY = I and G(x,t) the Green's function of 

the linear BVP (£,8). 

To guarantee the well-conditioning of the BVP (1.1) at y*(x), some smoothness of the 

functions g and h has to be assumed. 

2.3 Assumption 

The function g : IRnxIRn 
-+ IRn is two times continuously differentiable with respect to both 

variables and the function h : IRxIRn 
-+ IRn is two times continuously differentiable with respect 

to its second variable. There is an open set Dyc C([a,b]-+lRn) with y*(x) eDy such that there is 

a moderate upperbound Cgh on all first and second derivatives of h(x,y) and g(u,v) at any 

function yeDy• 

-
We will now investigate the constants appearing in the Newton-Kantorovich theorem. 



1 The Lipschitz constant of J(s) 

The Jacobian J(s) of f(s} has the form 

Y1 (X2) -Y2(X2) 
Y2(X3) -Y3(X3) 

J(s} = 

-7-

BaY1(Xl} 

YN- 1 (xN) -YN(xN} 

BbYN(xN+1} 

because Y k(X;S} = dYkJ~;S) 

For notational convenience we have dropped the s in Y k(X;S) , BaCs) and Bb(s}. 

2.4 Property 

Let Ds be the neighbourhood of s'" such that { y(x;s) I seDs} cOy and 

V D : Y k(X;S} exists (Le. (2.6) has a f.s. Y with Bk Y non-singular) 
se s 

Then 

V's,aeD
s

: II J(s} - J(O') II ~ C· (b-a)· 1(3,11 s-a II 
for some constant C of moderate size and 

1( = sup { conditioning constant of (Ck(t),Bk) I lSIc:;;N and t = ts + (1-t)O', te[O,l] } 

-
fnlQf 

From (2.10) we see that it is sufficient to estimate 

1 II Y k(X;S) - Y k(x;a) II 
2 It Ba(s)Y l(Xl;S) - BaCO'}Y l(Xl;O'} II 
3 II Bb(s)YN(xN+1;s) - Bb(a}YN(xN+1;0') II 

in terms of II s-a II. 

§2 

(2.10) 

1 Because Y k(X;S) and Y k(x;a} are fundamental solutions to different ODE's, Theorem A.6 

can be applied to them. So, BkYk(X;S} = BkYk(X;O') = I, implies that 

Y k(X;<Y) - Y k(x;S) + at G(X,I)' ( L'<~ o)-L.(I;s) ). Y .(1; 0) dl 

and It Y k(X;S) - Y k(x;a) II ~ 1(2. (b-a)· max II Lk(t;s) - Lk(t;O') II 
t 

The differences in Lk(x;s} can be estimated by 

II Lk(x;s} - Lk(X;O') II = II dhJX;Y) I - dh~X;Y) I II 
Y Y=Yk(X;S) Y Y=Yk(X;O') 
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~ sup { II a2~~,y) I II I te[O,l] }. II Yk(X;S) - Yk(X;G) II 
y=tyk(X;S)+( l-t)Yk(X;cr) 

~ Cgh,sup { 11 OYk(X;t)j II I te[O,l] }. II S-G II 
dt t=ts+(l-t)G 

.2 II Ba(s)Y l(Xl;S) - Ba(G)Y l(Xl;G) II 
~ II Ba(s)-Ba(G) 11·11 Y1(Xl;S) II + II Ba(G) II-II Yl(Xl;S)- Y1(Xl;cr) II 

og(u;yN(xN+ 1 ;s» ag(u;YN(~+ I ;G» I 
~ 1(-11 du - du \I 

U=Yl(Xt;S) U=Yl(Xl;S) 
og(u;yN(xN+1;cr» og(u;yN(xN+l;cr» 

+ 1(-11 - II 
du U=Yl(X1; s) du U=Yl(Xl;G) 

+ II Ba(G) II-II Y1(Xt;S) - Yt(Xt;G) II 

~ 1(. Cgh 'lI yN(xN+ 1 ;s) - yN(xN+ I ;G) II + 1(. Cgh-II Yl(Xt;S) - Yt(Xt;cr) II 

+ Cgh \I Y1(Xl;S) - Y1(Xl;G) II 
~ 2'1(2,Cgh 'll s-cr II + Cgh · 1(2. (b-a)· Cgh'1(' II S-G II 
~ Cgh .1(2. (2+(b-a) . Cgh .1() . II S-G II 

3 For II Bb(s)YN(xN+l;s) - Bb(cr)YN(XN+1;G) II the same upperbound can be derived. 

This yields 

-

II J(8) - J(G) II ~ max (max II Y k(Xk+l;S) - Y k(Xk+l;cr) II + II Y k+l(Xk+l;S) - Y k+l(Xk+l;G) II , 
k 

1\ Bis)Yt(Xt;s) - Ba<cr)Y1(Xl;cr) II + II Bb(S)YN(XN+1;s) - Bb(G)YN(XN+I;G) 1\ ) 

~ C· 1C3. II S-G 11 for some constant C of moderate size. 

In order to determine the Lipschitz constant of the Jacobian of f(s) we need an estimate of 

the conditioning constant of the linearized BVP's (Ck(S).Btc) for s in the vicinity of s*, 

If the differential equation (A'k,B0 is well-conditioned at its solution Yk(X;S*) , then small 

changes in s induce only small changes in Yk(X;S). Consequently the linearization Lk[Yk(X;S)] 

is only slightly perturbed and the conditioning constant of (Ck(S),B0 will not increase 

considerably, So the Lipschitz constant of the Jacobian for the unbiased multiple shooting 

method will be of moderate size on a reasonably sized neighbourhood of s·, 

If on the other hand, IVP's are defined on the subintervals and its f.s, Y k(X;S·) is dichotomic 

with constants (K,A.,Il) (see A.I), then 1( ~ II Yk(Xk+l;S*) II ~ K-1ell(Xk+l-Xk), i.e. the IVP 

becomes more ill-conditioned, if Il(Xk+l-x0 increases. So small changes in some directions 

of s induce major changes in Yk(X;S) and thus in Lk(S), Consequently the conditioning 

constants of the neighboring problems are difficult to estimate. But the Lipschitz constant 
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will be at least C· (b-a) . K-3 . e3Jl(Xk+1-Xk) and it is difficult to estimate the size of this 

Lipschitz area. 

2 The inverse of J(sl 

The inverse of the Jacobian J(s) can be written in tenns of Green's functions. 

Let sellfN be such that Y k(X;S) is non-singular for all k, 1 ~ k ~ N. 

Subdivide J-1(S) into N2 blocks Itj elRnxn and drop the argument s. Then Jkj satisfies 

V 1 ~ j ~ N • 1 S k ~ N-l Y k(Xk+l)Jkj - Y k+l(Xk+l)1t+h j = Okj 1 

§2 

This shows that Jkj' 1 S k S Nand 1 ~ j S N-l, is the Green's function of the difference 

equation 

{ 
Yk+l(Xk+l) zk+l = Yk(Xk+l) zk 
BaYl(Xl)Zl + BbY N(xN+1)zN = 0 

1 ~ k ~ N-l (2.11) 

and that JkN equals the fundamental solution of (2.11) with boundary condition equal to the 

unit-matrix. Unfortunately the conditioning constant of (2.11) is not known. But Gkj can also 

be expressed in tenns of the Green's function of the differential equation 

{ y = Lk(x;s)·y ifxe[xk,xk+l] (2.12) 
B a(s)y(a) + Bb(s)y(b) = ~ 

whose conditioning constant is supposed to be of moderate size on a neighbourhood of s*. 

2.5 Lemma 

Let F(x), xe[a,b] be the fundamental solution of (2.12) satisfying BaF(a) + B~(b) = I. Let 

G(x,t) denote the Green's function of (2.12). Then 

J . - { AkG(Xk,X j+l) + BkG(Xk+hX j+v - Ok}3k 
kJ - AkF(x0 + BkF(Xk+l) 

-
fmQf 

ifj ¢N 
ifj = N (2.13) 

Let 1 ~ k ~ N . On the interval [Xk,Xk+l] both F(x) and Y k{X) are fundamental solutions of 

z = Lk(X)Z 

So there is a non-singular matrix Xk with F{x) = Y k(X)' Xk all xe [Xk,Xk+l]' And 

Xk = Bk Y k . Xk = BkF = AkF{Xk) + BkF{Xk+l) 
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The difference equation for hj can be rewritten into 

Y k+l(xk+l) Ik+h j = Y k(Xk+l) Ikj - Okj I 1 :s: k :s: N-l 

¢::} F(Xk+I)' xill h+b j = F(Xk+l)' X k -1 Ikj - Okj I 

¢::} Xi!1 h+ltj = Xk-I Ikj - Okj p-l(Xk+l) 

Let { Gkj } denote the Green's function of the difference equation 

{ 
Xill Zk+l = XiIzk + qk 1 :s: k:S: N-l 
B aY 1(Xt)Zl + BbYN(xN+1) = ~ 

Then Ik' = { -Gkj p-1(Xj+l) ~:f;N 
J X k J=N 

{ 

XkB a Y 1 (X 1) XI XJl-l(X}l.l)-1 

and Gkj = -XkBbYN(xN+l)~X}l.l(X}l.l)-1 

_ { (AkF(x0 + BkF(Xk+l»BaF(x 1) 
- -(AkF(x0 + BkF(Xk+l»B~(XN+l) 

This finally yields 

I . - { AkG(Xk,X j+l) + BkG(Xk+hX j+l) - Ok;Bk 
kJ - AkF(Xk) + BkF(Xk+l) 

-
2.6 Theorem 

If II II denotes a Holder-norm, then 

k > j 
k < . -J 

k> j 
k < . -J 

j:f;N 
j=N 

Vs : II J-l(S) II:S: N'K.m~(IIAkll+2·IIBkll), with 1C the conditioning constant of (2.12) 

-
ftQQf 

Let yelRnN and 1 :s: k:S: N. Then 

II (I-lY)k II = II ~GkjYj II 
J 

= II ~AkG(XbXj+l)Yj + AkF(x0YN + ~BkG(Xk+l,Xj+l)Yj + BkF(Xk+l)YN - BkYk II 
J J 

N-l 
+ IIBkll· [IIF(xk+1)II'!lYNII + max II G(Xk+ht ) II j~II1Y jll + IIYkll ] 

N 

:s: (IiAkll+2I1Bk ll>'1C' .LIIYjll 
J=1 



-11-

Let 1111 denote the p-Holder nonn, then 

-

N 1 N N 1 

II J-ly II = ( L II (J-lY)k IIP)P S ( L«IIAkll+2 1IBkll)· t:/ .L 1\ y j liP )P 
k=l k=l pI 

S N· K> max(IIAkll+2I1Bkli)'lIyll 
k 

The above theorem shows that II J-l(s) lise· N· 1<: , with 1<: the conditioning constant of the 

BVP (2.12). For s close to s* this is almost equal to the conditioning constant for s*, i.e. the 

conditioning constant of the original BVP (1.1). The bound on J-l is not influenced by the 

choice of the boundary conditions on the subintervals, but only by the amount of 

subintervals. 

3 The nonn of J-l(s)f(s) 

The nonn of J-l(S) has already been estimated in the previous part. 

If the BVP's on the subintervals are well-conditioned, then small changes in s* wil induce 

only small changes in y(x;s*) and in f(s). So the set ( s I II f(s) II < E } will be reasonably 

sized, E > O. If. however, ill-conditioned IVP's are defined on the subintervals. small 

changes in s* can cause major changes in y(x;s) and thus in f(s). So the sets {s I IIf(s)II < E } 

are considerably smaller in this case and may vary strongly in different directions. 

Conclusion 

The use of initial value problems on the subintervals may influence the size of the 

Newton-Kantorovich convergence domain negatively in two ways 

- the Lipschitz constant of J(s) is larger; presumably on a smaller domain. 

- the value of f(s) increases more rapidly when s moves away from s*. 



§3 Convergence of the unbiased multiple shooting method 

In the previous section it was shown that the unbiased multiple shooting method with its 

well-conditioned BVP's on the subintervals may have a much larger Newton-Kantorovich 

convergence domain than ordinary multiple shooting. However, this was shown under the 

assumption that the exact solutions to the local BVP's were available on request. Here we 

will investigate the situation in case the local solutions are estimated by a one-step finite dif

ference scheme. We will show that the algorithm described in section 1 converges super

linear if the grids for the fmite differences are sufficiently small. 

Recall that we were trying to solve the non-linear two point BVP 

{
Y=h(X,y(x» aSxSb 
g(y(a),y(b» = 0 (1.1) 

Consider a subinterval [Xk,Xk+i1 and let nk : Xk = ~~ < ~~ < ... < ~~+ 1 = Xk+l be a mesh on 

it. For simplicity we assume that M is independent of k. 

In this section the superscript k denotes the number of the subinterval and the subscript m 

denotes the position within the subinterval. 

3.1 Notational convention 

y~ elRn denotes an approximation of a solution of a differential equation at ~~ 

y~ 
k IRn(M+I) . .. th I' th y = e 1S an approxlmanon to at same so unon at e 

k 
YM+l 

mesh points ~~, 1 S m S M+l 

Y = [~ 1 e IIn(Mt l)N is an approximation to thaI solution al all mesh poinls and with 

two values at Xb 2 S k S N, viz. y~ I and y~. 

Define the discretisation of the differential equation at [Xk,Xk+l] by 
~ : IRn(M+ 1) -; IRnM 

and (~yk)m = (~)-l(Y~l - y~) - Cl>{y~'Y~+l;~'~) (3.1) 

, here Cl> denotes a one-step discretisation scheme, e.g. a higher order Runge-Kutta 

scheme 

Let yk(s) denote the discrete solution of { ~~ ~ ~ (3.2) 

-12-
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Furthennore 4 is the linearisation of A1i at a vector yk : 

4: IRn(M+l) -. C(lRn(M+l) -.lRnM ) and 

with 

§3 

(3.3) 

Sk := _fhk)-lI - get> (u y 1 J:k hk) I 
m ""m U' m+ ,~, m U=Ym (3.4a) 

and Rk:= fhk)-lI_get>(y v~ hk)\ 
m ""m V m·· m'''m v=ym+l 

(3.4b) 

Let { Y! 1m denote the fundamental solution of the linearized difference equation: 

{ 
4[ yk]{yk} = 0 
Bk{yk} = I (3.5) 

-

Cn[y] is the linearisation of the global difference equation: 

Cn : IRn(M+l)N -. C(lRn(MN+l) -.lRnMN) and for any welRn(MN+l) 

Sl RI 

Cn[y]·w = 

Sl'Rl 
M M 

S1 R1 
. S2 R2 

M M 

h is the maximum step size, i.e. h = max h! 
k m 

'w 

Nonnally the finite difference method with Newton iteration for the BVP 

A1iy = 0 with BkY = sk 

given an initial guess (yk)O, reads 

for j := 0 to 00 do 

(3.6) 

solve [ 4 [(yk) j] 1 w = - [ A1i(~k)j 1 and (yk)j+l:= (yk)j + w for 1 ~ k ~ N 
At 0 .. 0 Bk Btc(yk) J- Sk 

Here the situation is somewhat different. The boundary value s is not known at the start of 

the iteration. So we have the following situation 

Given an initial 'solution' (yk)O and a sequence { sj } of vectors 

for j:=O to 00 do 
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solve [ 4[(yk) j] 1 w = - [ ~(yk)j 1 and (yk).i+l:= (yk)j + W for I ~ k ~ N 
Ak 0 .. 0 Bk Bt(yk)i- si+1 

i.e. at every step of the algorithm we want to approximate the solution of 

~y = 0 and ~:= stl 

by applying a Newton iteration to it with y j as an initial guess. 

Notice that Bk(yk).i+l = Bk(yk)j + Bkw = Bk(yk)j - Bk(yk)j + stl = si+1 , i.e. if j ~ I then (yk)j 

satisfies the local boundary conditions. If the sequence { sj } converges, taking yj as an ini

tial guess for y.i+1 might do rather well. 

In the previous section we considered the sequence { sj } to result from Newton iteration on 

a function depending on the continuous differential equations at the subintervals. In this 

setting with only discrete approximations to the solution known, it is more natural to consider 

the continuity requirements and boundary conditions on the discretized problem. Define f,.;(s) 
by 

f,.;(s) := N-l . N 
YM+l(s) - Yl(s) 

g(y }<s), y~ 1 (s» 

Let S,.; denote a zero of f,.;(s). The the Iacobian of f,.;(s) has the form 

Y l _y2 
M+l 1 

y~+l -Yl 

where { y: 1m is the f.s. of 4[yk(S)] with AtYf + BkY~l = I. 

(3.7) 

(3.8) 

Although f,.; and I,.; are functions of s, their formulas can be evaluated for any vector 

yelRn(M+ l)N for which (4[yk].B0 is well-defined. These evalutions at an appropriate vector y 

will be denoted by f,.;(y) and I,.;(Y). 

The algorithm for unbiased multiple shooting now reads 

- given an initial guess sO and (y)o 

for j := 0 to co do 

s.i+1 := sj - J,.;«y)j)-l . f,.;«y)J) ; 

for k := 1 to N do 

(Alg.3.1) 
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In this section the local convergence of this algorithm will be shown, i.e. 

If " sO_s,.; " and II (y)o - y(s,.;) " are sufficiently small, then both II sj - s,.; II and 

II (y)j - y(sj) II tend to zero. 

Of course this can only be established if the BVP and the finite difference method satisfy 

some neatness conditions. 

3.2 Asstu;Dption 

There are constants ho.r sans rf: such that if the meshsize of all Ilk is smaller than ho and 

S5:= B(s,.;.rJ , Sy:= ( y elRn>< NM+l) I 3
seSs 

: ye B(y(s);ry) } and 

S~ := ( yelRnX(N+ 1) 1 3
seSs 

: yke B(yk(s);ry) } , then there is a constant 1( of moderate size 

such that 

1 'Vk : The discretisation ~~ of )! at [Xk,Xk+l] is consistent of order p and stable. And S~ is 

contained in its stability region and the stability constant is bounded by 1(. 

§3 

2 'V ye Sy: The linearisation of the discrete BVP at y, (In[y],8>, is consistent of order p and 

stable with stability constant less or equal to 1(. 

3 'Vk 'VykeS~ : The local difference equation (4[yk],Bk) is consistent and stable, with 

stability constant less or e~ to 1(. 

~ 3C 'Vk m 'VyeS : II W-<U,y~+l,~,h!) I II S CeI> 
eI>' y u=y~ 

and II ~~ (y~,v,~~,h!) I II S CeI> 
u=y~+l 

-
The conditions 2-5 also occur in Assumption 5.51 in [AsMaRu]. 

3.3 Property 

1 The stability of ~ implies that 'V . II y~(s) - y~(cr) II S 1( II s-cr II s,creSs . 

2 In [AsMaRu] Th.5.52 it is shown that under the conditions mentioned in Assumption 3.1 

3C ' 'Vk 'VyeSk : II [ 4[yk] ]-1 II SCi 
1 Y Ak O .. 0 Bk 

3 'Vk,m : If h! < CeI>-l, then ~ is invertible and II (R~)-1 II S h~(1_h!CeI>tl , 

for ~ = ~)-11 - ~~(ym,V'~m.h~) I and the second term is bounded by Ct. 
v=ym+l 

-
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Let y be a vector obtained from application of algorithm 3.1 . The error in y as an 

approximation for the solution y(x;s"') of BVP (1.1) can be bounded in terms of the 

discretisation error of A'n and the error in the Newton approximations of Sn and y~(Sx). 

3.4 Theorem 

Let seS s and yeSy ( see Ass.3.2 ) , where yk is an approximation to yk(s), the exact solution 

to the difference equation Ai with Bk)'k = Sk . Then 

Vk,m: II y~ - y(;~;s"') II S II y~ - y~(s) II + lClls-SxIi + ChP , 

with C a constant of moderate size. 

-
Proof 

(3.9) 

Let 1 S k S Nand 1 S m S M+ 1. Recall that Yk(X;S) denotes the ontinuous solution of the 

BVP Aicy = 0 with Bky = sk' Then 

II y~ - y(;~;s"') II S II y~ - y~(s) II + II y~(s) - y~(Sx) II 

+ II y~(Sx) - Yk(~;Sx) II + II Yk(~;Sx) - Yk(;~;S"') II 
S II y~ - y~(s) II + lC IIs-sxll + ChP + lCIISx-s*1I 

An estimate of II Sx-s"'ll is needed. To this end we estimate f(sn) (the continuous version). 

II Yk(Xk+l;Sn) - Yk+l(Xk+l;Sx) II 

and 

S II Yk(Xk+l;Sx) - Y~ 1 (Sx) II +11 Y~+ 1 (Sx) - yf+l(sn) II + II yf+l(sx) - Yk+l(Xk+l;Sx) II 
S ChP + 0 + ChP 

II g(Yl(X1;Sx)'YN(xN+1;Sx» II = II g(Yl(Xl;Sn),YN(xN+1;Sx» - g(YI(Sx)'Y~+l(Sx» II 
S Cgh ( II Yl(Xl;Sx) - yl(Sx) II + II yN(xN+1;Sx) - y!rl(Sx) II ) 

S Cgh ·2ChP 

SO II f(Sx) II S 2ChP,max(1,Cgh) 

Because f(s"')=O and J(s"') is non-singular the inverse funtion theorem states that on some 

neighbourhood D of zero 

3Crinv Vf(s)eD : II s - s'" II S Cfinv II f(s) - f(s"') II S Crinv II f(s) II 
For sufficiently small h this yields 

II s* - Sx II S Cfinv· 2CCgh,h2 

-
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The above theorem shows that the error in y~ as an approximation for Yk(;~;S*) depends on 

the truncation error if Algorithm 1.3. converges, in the sense that both II sj - Sn II and II (y)J

y(sj) II tend to zero. To proof the convergence of the algorithm, some estimates of the 

Jacobian In(s) are required. 

3.5 Lemma 

1 3C ' V S II In(y) II ~ Cj 
J ye y 

l 3L V S II In(y) - In(z) II ~ Lj II y-z II 
j y,ze y 

If II II is a HOlder norm, then 

3 3Cjilv VyeS
y 

II In(y)-l 11 ~ Cjilv 

A 3Ljilv Vy,zeS
y 

II In(y)-l- In(z)-l II ~ Ljilv 11 y-z II 

-
!Em 
Let y,z e Sy' 

1 Because K is a bound on the norm of the fundamental solution { y~ } of the difference 

equation (4[yk),8k), the Jacobian of fn(s) given by (3.8) can be bounded by 

II In(y) II ~ max ( 2K, max (II At II + II Bk II » 
t 

l Let { y~ } and { ~ } be the fundamental solutions of (4[yk],B0 and (4[zk],80 resp .. 

Then [ 4[yk] 1 yk - [ 4[zk] ] Zk = 0 
Ak O •• 0 Bk Ak O •• 0 Bk 

=} [ 4[yk] ] (yLZk) + ([ 4[yk] ]- [ 4[zk] l) Zk = 0 
Ak O •• 0 Bk Ak O •• 0 Bt Ak O .. 0 Bk 

=} II yk - Zk II ~ II [ 4[yk] ]-1 II . "4[yk] - 4[zk) II . II Zk II 
Ak O .. 0 Bk 

~ Cr Ll' K·II yk - zk II 

3 Let { Fk} be the fundamental solution of l[y] with Ba(Y) PI + Bb(Y) PNM+1 = I and let 

{ Gkj } denote its Green's function. Subdivide In(y)-l into N2 blocks of size nxn. Analoguous 

to Th.2.6 it can be proven that 

-I {AkG(k_l)M+l J.J\{ + BkGkM+1 'Jl~ - Okj Bk if j :¢: N 
[In(y)]k' = ' J . . 

J AkF(k-l)M+l + BkFkM+l If J = N 

and that consequently II In(y)-I II ~ 2 N K max ( II Ak II + II Bk II ) in any Holder-norm. 
k 
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.4 Analoguous to the continuous case proven in Th.A. 7 it can be shown that 

'v'ij : GiJ{y) - Gij(z) = Yk[(Ba(z) - Biy»Glj(Z) + (Bb(Z) - Bb(y»GNM+1,/z)] 

+ Gij(Y)' (I-R!(Y)R!(z)-l) 

N M 

+ 21 d~ Gi ,(c-l)M+d(Y) (Sa(Y) - Ra(y)Ra(z)-lS~(z» G(c-l)M+diz) 

where k and m are obtained fromj = (k-l)M + m and 1 :::; m S; M. 

So 

II GiJY) - GiJZ} II:::; lC2 ( II (Biz) - BiY» II + II (Bb(Z) - Bb(y» II ) 
+ lC'max 1\ I-R!(Y)R!(z)-l II + NM·lC2 ·max II S!(y) - R!(y)R!(z)-lS~(z} II 

k,m k ,m 

Because 4[yk] is Lipschitz continuous with respect to yk on S~, so are R!(Y) and S!(y). 

Say with constant L h• Then 

II I-R!(Y)R!(z)-l II = II (R!(Y) - R!(z) ) R!(z)-l II S; (h~tl(1_h!C)-1 Lh II y-z II 
and II S~(y) - R!(Y)R!(z)-lS~(z) II 

So 

:::; II [I-R!(Y)R!(z}-l] S~(y) II + II R!(Y}R!(z)-l [ S~(y) - S~(z)] II 

:::;C II y-z II 

-1 . -1 II [J1t(Y}]kj - [J1t(Z}]kj II S; lC2 ( 2Cgh II y-z II + NMh C II y-z II ). 
And NMh 1':11 N(Xk+l - Xk) ... (b-a). this is the interval length. 

-
To show convergence of Algorithm 3.1 it is necessary to estimate the errors II sj - Sx II and 

II y!(s:i) - (y~)j II . The next theorem shows that the alternate character of the algorithm 

disturbes the quadratic convergence of sand y. As it turns out the approximate solutions 

{ (y}j } converges quadratically in II ay II + II as II. And moreover the quadratic convergence 

of s is contaminated with a linear term in II oy II. Considering the combined convergence of 

sj and (y)j shows that the process is super-linear convergent. 

Notational convention: II y - z II = max II y! - z! II ,y.zelRn(M+l}N. 
k m 

3.6Theorem 
If sieSs and (y)ieB(y(sj);ry), 1 S; k:::; N. and sirl and (y)irl are obtained from application of 

algorithm (Alg.3.1) then 
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II sj+l- Sn II S C jinv ' Lr II sj - Sn 112 

+ II y(SJ) - (y)J II· (Ljinv,Cr II SJ- Sn II + Cjinv· max(2,Cgh» 

§3 

(3.10) 

II Y(Sj+l) - (y)j+l II (3.11) 

S 2KLl [(1+K,Cjinv 'max(2,Cgh»'1I y(s~ - yj II + max(2,Cg0,Cjinv'K2'1I sJ- Sn 11]2 

~ 
II Sj+l- Sn II = 

and 

-

= II SJ - Sn - In(y(si»-l fn(y(sj» + In(y(sj))-1 fn(Y(s~) - In«y)j)-l fn(Y~ II 

S II Jii1(sj)[fn(Sn) - fn(sj) + In(S~(sj - Sn)] II 
+ II In(Y(S~)-l - In((y)j)-l II-II fn(Y(s~) II + II In((y)jt1 11·11 fn(Y(s~) - fn«y)j) II 

S C jinv -L r II sj - Sn 112 + L jinv -II y(sj) - (y)j 11·11 fn(s~ - fn(Sn) II 
+ C jinv ·max(2,Cgh)·1I y(S~ - (y)j II 

S Cjinv·Lr IIs.i..SnIl2 + \I y(sj) - (y)j II (Ljinv,Cf IIsj - Snll + Cjinv'maX(2,Cgh» 

II (yk)j+l_ yk(Sj+l) II S II (yk)J - yk(Sj+l) - [ 4[yk] ]-1. [ Ai~Yk)j.]1I 
Ak O .. 0 Bk 8t(yk)J - sri 

S II [ 4[yk] ] «yk).i..yk(sj+l» - [ Ai~yk)j.] + [ Ai~yk) j+l. ]11' 
Ak O •. 0 Bk Bk(yk)J - sri 8t(yk)J+l - srl 

S 2KL} 11 (yk)j - yk(sj+l) 1\2 

S 2KLI ( II (yk)J - yk(SJ) II + II yk(s~ - yk(sj+l) II )2 

S { stability of Ai } 

2KL} ( 11 (yk)j - yk(sj) II + K·II sJ - SJ+l II )2 

S { algorithm for sj+l } 

2KL} ( II (yk)j - yk(sJ) II + K·II Jnl«y)~fn«Y)~ II )2 

·11 [ 4[yk] ]-1 11 
Ak O .. 0 Bk 

S 2KL} ( II (yk)J - yk(sJ) II + K·CJinv'(lIfn«Y)~ - fn(y(s~)11 + II fn(Y(s~) - fn(y(Sn» 11»2 

S 2KL} ( (1+ K' Cjinv'max(2,Cgh»'1\ (y)j - y(sj) II + K2. Cjinv -max(2,Cgh)'1I sJ - Sn II )2 
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From the upperbounds derived above one can see that y j converges quadratically to y(s.i) if 

during the whole process sj remains in B(Sn,r s> and converges to Sft . It is not straightforward 

however that this condition is satisfied for sufficiently small so, because the quadratic 

convergence of sj is disturbed by a linear term. This problem can be overcome by 

substituting the acquired upperbound for II yj - y(sj) II into the bound on II sj - Sn II : 
II si+l- Sx II S; Cll! sj - Sx 112 

+ C2«1+K,C4)·1I y.H - y(sj-l) 11 + K2. C4·11 sj - Sn 11 )2. (C311 sj - Sx II + C4) 

Now define the function F: JR2xJR2 -+ 1R2 by 

F( [ <pj-l] [<Pj-2]).= [C2«1+C4 K)<p j-l + C4 K
2
0j_l) 2 1 (3.12) 

O"j 'O"j-I . C10"1 + C2«(1+C4K)</>j-l +C4K20j-l)2,(C30"J+C4) 

Then with </>-1 = 0, </>0 = II (y)o - y(so) II • O"j = II sj - Sn II • j=O,1 and 

(&~l] =F«( &t1 J.( &~iJ) j ~ 1, 

</>j and OJ will be upperbounds for II (y)j - y(sj) 1\ and II sj - Sn II respectively, if sj and yj 

stay in the area where the estimates (3.10) and (3.11) hold. Now the upperbound for the 

errors in s and y are considered to be formed by a two-step successive substitution process. 

In the appendix some theory about such a process is derived. 

3.7 Theorem 

13r>0 3C<1 Vx,yeJR2 : x,yeB(Q,r)::} II F(x,y) II S; C II x-y II 
2 Let sO,sleB(sft,min(rs>r» and let yOeB(y(sO);min(ry,r» . Then 

Vj : s.leB(Sn,nlln(rs,r» and y.leB(y(s.i),min(ry,r» 

and the vector sequence [&r ] converges locally, super-linear to zero. The order of 

convergence is almost 1,4 . 

-
Proof 

1 Because F(QJD = .0 and both partial derivatives of F at n are zero, F will have a contraction 

area around A = .0. 
2 This follows immediately from Th A.8 (see appendix). 

-
From the theory presented in this paper it follows that the generalized form of multiple 

shooting, that involves well-conditioned linear boundary conditions on the subintervals may 
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have a larger convergence area than ordinary multiple shooting, if the local BVP's can be 

solved exactly. 

In practice a one-step finite difference method is used for solving the local BVP's. An 

algorithm that alternately makes a Newton update for the shooting vector s and the finite 

difference approximation y~ converges super-linear provided 

- the initial guesses for s and y are sufficiently good 

- the fmite difference grid is sufficiently fine. 

Although the method has not yet been implemented, we expect that it will not require much 

less execution time or memory space, then ordinary multiple shooting. But that its merit will 

be an enlarged convergence area. This is especially important if the convergence area is 

extremely small for ordinary multiple shooting or a proper initial guess cannot be obtained. 

This paper presents a fIrst draft of the generalized multiple shooting method. Issues that are 

to be investigated are 

- the choice of the local boundary conditions 

- mesh choice for both the finite differences and the 'shooting' intervals 

- a posteriori error bounds and stop criteria 

- experimental comparison of the convergence rate and -area for 

- normal multiple shooting 

- unbiased multiple shooting 

- finite differences on the entire interval 

- the influence of more finite difference updates per Newton iteration on the 'shooting' 

vectors. 



Appendix 

A.I Definition 

Consider the linear differential equation 

y = A(x)·y xe[a,b] (A.I) 

Its fundamental solution (f.s.) Y(x) is dichotomic. if there is an orthogonal projection P and 

constants K,A,J,l ~ 0, with K of moderate size, such that 
V II y(x)py-l(t) II < Ke -A(X-t) 
a~t~xSb - (A.2a) 

Va ~ x S t S b : II y(x)(I-P)y-l(t) II S Ke -J,l(t-x) (A.2b) 

The f.s. is called dichotomic with projection P and constants (K,A,J.l). 

If A and J.l are both positive the fundamental solution is called exponentially dichotomic. 

-
A.2 CoroUaty 

If the f.s. Y(x) of (A.I) is dichotomic with projection P and constants (K,A,J,l), then 
~ -A(t-X) II j: II V~elRn Va ~ x S t ~ b : II Y(t)P~ II S Ke Y(x)P~ 

and II Y(x)(I-P)~ II S Ke-J,l(t-x) II Y(t)(I-P)~ II 

-
A.3 Definition 

Jl The linear BVP 

y = A(x) y + q(x) 

BaY(a) + Bby(b) = ~ 

(A.3a) 

(A.3b) 

is well-conditioned. if for every smooth function q(x) and every vector ~ there is a unique 

solution yq~(x) and there is a constant 1C of moderate size such that 

V q(x) V ~ : m~ II yq~(x) II ~ 1C ( II ~ II + II q II ) 

.h The non-linear BVP 

y = h(x,y(x» 

g(y(a),y(b» = 0 
is well-conditoned at the solution y*(x), if there is a r > 0 such that for all yeB(y*(x),r) 

the problem linearized at y(x) is well-conditioned. 

-

-22-
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The fundamental solutions of two linear differential equations can be related to each other in 

several ways. Here two possibilities will be shown. 

Consider two linear BVP's 

{ y = A(x)y a S x S b (A.4) 
By= P 

{ z = A(x)z 
:Bz = P (A.S) 

with Band:B linear boundary conditions on [a.b] and both A(x) and A(x) Riemann-integrable. 

A.4 Definition 

Suppose Y(x) is a dichtomic fundamental solution of (A.4) with projection P . Define the 

operator 1': C([a,b] -+ [Rnxn) .., C([a,b] .., [Rnxn) by 

-

'If (I) : (1' (I)(x) := aIx Y(x)Py-l(t) -(A(t) - A(t»· (I)(t) dt 

b 
- xI Y(x)(I_P)y-l(t). (A(t) - A(t» . (I)(t) dt (A.6) 

A.STheorem 

The operator 1'is linear and bounded with 111' II S C -II A-A II for some moderate constant 

C. And for every fundamental solution Z(x) of (A.S) there is a matrix Xl such that 

'lfxe[a,b] : (1-1)Z(x) = Y(x)X1 (A.7) 

The matrix X 1 is determined by 

BY. Xl = HZ - B(1'Z) (A.8) 

if BY is non-singular. 

-
~see [KrMa] Th. 4.7 

The fundamental solutions of different ODE's can also be related to one another by the 

Green's function 

A.6Lemma 

Let Y(x) be a f.s. of (A.4) and let G(x,t) be the Green's function of (A.4). Then for every f.s.' 

Z(x) of (A.S) there is a matrix Xl such that 
b 

Z(x) = Y(x)X1 + aI G(x,t)(A(t)-A(t»Z(t)dt 

Where Xl has to satisfy HZ = BY. Xl' 

-
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Another feature used, is the relationship between the Green's functions of the differential 

equations (A.4) and (A.S). 

A:Z Theorem 

Let Y(x) be the fundamental solution of (A.4) with BY = 1. Furthennore let G(x,t) and O(x,t) 

denote the Green's function of the BVP's (A.4) and (A.S) resp .. Then 
b 

Va:5 x t Sb : O(x,t) = G(x,t) + Y(x)BO(· ,t) - I G(x,s), (A(s)-A(s»· O(s,t) ds (A. II) 
, a 

b 
and II O(x,t) - G(x,t) II S KK' ( II 'B - B II + aI II A(t) - A(t) II dt) 

-
Proof 
-- b b 
Let feC([a,b]). Define y(x) := aI G(x,t) f(t) dt and y := aI O(x,t) f(t) dt. 

Then y(x) = A(x)·y(x) + f(x) and By = O. So 
d ,.., --., ~ ,.., 
ax[ y(x) - y(x)] = A(x)·(y(x)-y(x» + (A(x)-A(x»y(x) 

and y(x) - y(x) = Y(x)c + at G(x,u)· (A(u)-A(u»· y(u) du . 

The vector c is determined by the boundary value: c = (BY)c = B(y-y) = BY. 
Combining this result with (*) and the definitions of y(x) and y(x) yields 

at C(x,I) [(I) dl = Jb G(x,t) [(I) dl + Y(x) at BO(· ,1) f(I) dl 

b b 
+ aI aI G(x,s)·(A(s)-A(s»·O(s,t) f(t) dt ds 

holds for all functions feC([a,b]). This results in 
b 

O(x,t) = G(x,t) + Y(x}· EO( . ,t) + aI G(x.s)· (A(s)-A(s»· O(s,t) ds 

Because EO( . ,t) = (B -11)0( . ,t) + m( . ,t) = (B - ~O( . ,t) this gives 
b 

_ II G(x,t) - O(x,t) II S KK'II B - 'B II + KKaI II A(t) - A(t) II dt 

(*) 

In the process presented in this paper a two-step successive substitution process occurs. For 

this the following convergence properties can be derived. 

A.8 Theorem 

Consider the two step process of successive substitution 

Xk+l = F(Xk,Xk-l) k ;?! 1 

with initial values Xo and Xl-
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A Suppose there is a vector ~ with F(~,~) = ~ and 

3r>0 3K J,K2 'iXbX2'YhY2EB(~,r) 
II F(XbYl) - F(X2,Y2) II S; KI I! XI-X2 II + K2 II YI-Y2 II and K:= Kl + K2 < 1 

Then for all Xo'Xl e B(~,r) the sequence { Xk } remains in B(~,r) and converges to ~ with 

II Xk - ~ II S; Kk d iv 2 r 

.h If additionally ~~,~) = ~~,~) = 0 and F is twice differentiable on B(~,r) , then 

3c>o'ik : II Xk+l - ~ II S; C· ( II Xk - ~ II + I! Xk-l - ~ II )2 

and the order of convergence is almost 1.4 . 

-
Proof 

A Proof by induction to (k div 2). Initial step. 

II x2 - ~ I! = II F(XhXo) - F(~,~) II 
S; KI II Xl - ~ II + K2 II Xo - ~ II S; (Kl + K2)·r = Kr 

and 11 X3 - ~ II = II F(X2,Xl) - F(~,~) II 
S; Kl II Xl - ~ II + Kl II Xl - ~ II S; (K1 + K2 )·max(Kr,r) S; Kr 

Induction step. 

II Xk+l - ~ II S; Kl II Xk - ~ II + K2 II Xk-l - ~ II 
S; KI Kk div 2 r + K2 K( k-l) div 2 r 

S K K( k d iv 2) -1 r 

.b Now suppose that ~~,~) = ~~,~) = 0 and that F is twice differentiable on B(~,r). Then 

II Xk+r ~ \I = II F(Xk,xk-l) - F(~,~) II 
= II F(Xk,Xk-l) - F(~,Xk-l) + F(~,Xk-l) - F(~,~) II aF 
= II F(Xk,Xk-l) - F(~,Xk-l) - ~~,xk-l)' (Xk-~) 

+ ~~,Xk-1)' (Xk-~) - ~~,~). (Xk-~) + F(~,Xk-l) - F(~,~) - ~~,~) . (Xk-l-~) II 
()2F 

S sup II ~txk +(l-t)~,Xk+l) II . II Xk - ~ 112 
O<t<1 

a2F 
+ sup I! cfu#~,tXk-l +(1-t)~) II . II Xk - ~ II-I! Xk+l - ~ II 

O<t<1 
()2F 

+ sup II a-#~.tXk-l +(1-t)~) II . II Xk-l - ~ 112 
O<t<1 

S C ( II Xk - ~ II + II Xk+l - ~ II )2 

where C is a upperbound for the second-order partial derivatives of F on B(~,r). 

Let dk satisfy 

dk+1 = ( dk + dk-1 )2 , k ~ 1, 

dk=C·11 Xk-~ II fork=O,l, 

then dk is an upperbound for C·II Xk - ~ II , kelN. 
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Let a be such that dk+19 = dk , then 
9 2 3 4 

dk+l = ( dlc+19 + dlc9 )2 = ( dk+19 + (dk+19) )2 = dk+19 + 2dk+19 + dk+19 

::} In(d ... 1)' [ 64 + In(2dk+~) a3 + a2 - 1 ] = 0 
... + In(dlc+1 

and with 1 i m l~@f = i ' a satisfies approximately 
d~O 

64 + ~3 + a2 - 1 = 0 so a =0 0.73 , a-I =0 1.4 

This shows that dk+1 "" (dk)1.4 

-
A.9 Theorem ( perturbed two-step SUCSUB ) 

Consider the perturbed two step succesive substitution process 

Xk+1 = F(Xk.Xk-l) + Ok+1 k ~ 1 

If the conditions of theorem A.8 hold and Vk : II Ok II < (l-K)r and II Ok+l II s II Ok II 
then 

k d · 2 k dj.,v 2 k d' 2 . 
Vk : II Xk - ~ II :s; K J!I r + .L K PI - J £j 

J=l 

where £k := max ( II ~k II , II ~k+1 II ) 
If additionally 

-
:fmQf 
Initial step 

II X2 - ~ " S K max(1I Xo - ~ 11.11 Xl - ~ II) + II~II S K max(r,r) + £1 

II X3 - ~ \I S K max(1I X2 - ~ 11,11 Xl - ~ II) + 1I~11 S K max(Kr+£l>r) + £1 S Kr + £1 

Induction step 

If k = 21 , 1 > 1 then 

II Xk - ~ II S K max ( II xk-l- ~ II , II xk-2 - ~ II ) + II Ok II 
1-1 k-l 

~ K max ( K 1-1 r + L K 1-;-1 £. , K 14 r + L K 1-;-1 £. ) + £ 1 
j=l J j=l J 

SKlr+ ± KH£. 
j=l J 

If k = 21 + 1 , I > 1 then 

II xk - ~ II S K max ( II xk-l- ~ II , II xk-2 - ~ II ) + 1\ Ok 1\ 

:s; K max ( K 1 r + i K I-j £. , K 14 r + l~ K 1-j-1 £. ) + £ 1 
j=l J j=l J 

I-I 
S { 11 := KH r + L KI-j-l £. } 

j=l J 

Kmax(K11+£l,11)+£k S Kl1+£k SKlr+.i Kl-kj 
J=l 
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because 

TJ - KTJ - £1 = (K 1-1 - KI)r + If (Kl-j-l- KH)e· - £1 
j=l J 

~ K1-1(1-K)r + £1(1-K) Ir Kj - el 
j=O 

> Kl-1el + £ 1(1-Kl-L 1) = 0 

Next suppose that 3L> 1 "'k : II ek+l II ~ L II ek II . 

Now 

ifK<L 

ifK=L 

ifK>L 

-+ 0 if k -+ co, 

-
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