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ON A NONLINEAR ELLIPTIC-PARABOLIC PARTIAL
DIFFERENTIAL EQUATION SYSTEM IN A TWO-DIMENSIONAL

GROUNDWATER FLOW PROBLEM*

PH. CLI,MENTt, C. J. VAN DUIJNt, AND SHUANHU LIl

Abstract. In this paper a nonlinear elliptic-parabolic system which arises in a two-dimensional
groundwater flow problem is studied. Abstract results on evolution equations are employed to ob-
tain existence and uniqueness results. Regularity and stability properties of the solution are also
considered.

Key words, elliptic-parabolic system, analytic semigroups, semilinear and quasilinear evolution
equations
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1. Introduction. Let t E R2 be a bounded domain with smooth boundary. In
this paper we study the following nonlinear elliptic-parabolic system:

-Av Ou(E) v--O
in 12 x (0,
on O (0,

Otu + divF 0
(P) . P 0

o) u0(.)

in flx (0,
on Of x (0, oo),
in ft.

Here we have
F ’u D. grad u,

’-- curl v,
D (D),

where Dij(q, q2) are uniformly Lipschitz continuous functions on R2.
This system arises in the description of the movement of a fluid of variable den-

sity (u) through a porous medium under the influence of gravity and hydrodynamic
dispersion. In 2 we set up the model and we discuss the physical background.

In a slightly different form, Problem (E), (P) was studied by Su [16] using classical
partial differential equation (PDE) methods. In this paper we present an approach
in the spirit of abstract evolution equations in Banach spaces. This turns out to be
quite efficient because of the particular form of the problem.

We consider two cases of the model separately. In the first (approximate) case we
take Dij 5i (5i is the Kronecker symbol). Then the system can be considered as a
semilinear evolution equation. Clearly, there are many results on abstract semilinear
evolution equations, and these results can be well applied to partial differential equa-
tions of parabolic type; see, e.g., Friedman [7], Henry [9], Pazy [12], or von Wahl [19].
Here we choose one theorem from von Wahl [20], which fits precisely to the abstract
formulation of Problem (E), (P) with constant (D). By this theorem we obtain the
global existence of the solution in LP(Ft). This is done in 3. There we also study the
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regularity and asymptotic properties of the solution. We show that the solution is in
fact a classical solution of (E), (P), and u converges to the mean value in sup-norm
as t cx. A first draft of 3 was made by de Roo [13].

In 4, we study the full problem, i.e., D is nonconstant and velocity dependent.
Then the abstract formulation leads to a quasilinear evolution equation. The abstract
results on such equations are not as complete as the results on semilinear equations.
Moreover the application to partial differential equations is much harder. In this
paper we use the framework of quasilinear evolution equations due to Amann [2],
see also Sobolevskii [15]. As a result, we obtain local existence of weak solutions in
wl’p(f). As for this moment, we are not able to obtain global existence. Because
the coefficients Dij are not differentiable at the origin, see (2.13), we can not expect
to have classical solutions.

2. The physical background. Let gt (-L, L) x (0, H), with L, H > 0, denote
a rectangular region in the xl, x2 plane which is occupied by a homogeneous and
isotropic porous medium. This medium is characterized by a permeability , E (0, c)
and a porosity E (0, 1). It is saturated by an incompressible fluid. The fluid
is characterized by a constant viscosity # (0, c) and a variable density p (or a
specific weight "7 Pg, where g is the accelaration of gravity). Here the coordinate
system is chosen such that the gravity is pointing in the negative x2-direction. A
typical example of this situation arises in the flow of fresh and salt groundwater in
a two-dimensional vertical aquifer. In this application it is natural to assume that y
satisfies

(2.1) 0 < ")’f <_ ’(Xl, X2, t) _< ")’s /(Xl, X2, t) @ X (0, OO).

Here yf and "8 are constants, denoting the specific weight of the fresh and the salt
groundwater, respectively.

The basic equations for flow in a porous medium are the continuity equation

(2.2) div ’- 0 in

and the momentum balance equation (Darcy’s law), see, e.g., Bear [5],

(2.3) tt,+ grad p + 7’2 0 in t x (0, cx).

Here we denote by the vector ’ the specific discharge of the fluid and by the scalar
p the fluid pressure. Finally, ’2 denotes the unit vector in the positive x2-direction
(i.e., pointing upwards).

In this paper we are interested in describing the distribution of the specific weight
y in the domain f under the action of gravity and hydrodynamic dispersion, without
any other influence from outside. Therefore, we impose on the boundary 0t the
no-flow condition

(2.4) ’.
where g is the outward normal unit vector on Oft.

For a given specific weight distribution -),, (2.2)-(2.4) determine the discharge
field ’. To obtain a single equation for this relation we can use either the pressure
or, because of (2.2), the stream function. Here we use a formulation in terms of the
stream function. It satisfies

(ql, q2) curl ):-- (--02), 01),
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where 0i denotes the partial derivative with respect to the variable xi for i 1, 2.
Note that the operator curl in (2.5) acts on a scalar function. Therefore this definition
differs from the usual one. It is introduced here only for convenience.

Substituting (2.5) into Darcy’s law (2.3) and taking the curl in the usual sense

(i.e., curl 02ql Oq2) gives

(2.6)

Combining (2.4) and (2.5) implies that is constant on the boundary 0gt. Without
loss of generality, we take the boundary condition

(2.7) --0 on 0 (0, oc).

The boundary value problem (2.6), (2.7) gives the stream function and thus the
specific discharge, in terms of the specific weight 7. Conversely, the mass balance
equation for the fluid gives the density p (and thus the specific weight) in terms of
the fluid field ’. According to Bear [5], we have

0tp + div ff 0 in gt x (0, c),

where the flux F is given by

(2.9) F ’p- D. grad p.

In (2.9), D (Dij)2x2 is the hydrodynamic dispersion matrix with Dij R2 --+ R
given by

qiqj if (q, q2) 0,
(2.10) Dij(ql, q2)

(aT I0"1 CDmol)6ij + (aL --aT) 11
TCDmolbij if (ql, q2) 0.

Here O/L, aT, Dmol and - are positive constants: O/L is the longitudinal and aT is the
the transversal dispersion length (aT < aL), Dmol is the molecular diffusion coefficient
and the constant T describes the tortuosity of the porous medium. Further, I" denotes
the Euclidean norm on R2 and 6ij the Kronecker symbol.

In order to determine p (or 7) from (2.8) we have to specify boundary and initial
conditions. We consider the no-flux condition

(2.11) ft.
and initially

(2.12) p(., O)= Po(’) on gt.

Next we rescale the equations into a dimensionless form.
Setting

Xl :-- x/H,
x2 := x2/H,

t:=t-(%-7)/(H),

:= (. .)/(% .),

gt := (-L/H,L/H) (0, 1),
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we find for u, v the elliptic-parabolic system

-Av Ou(E) v--O
in flx (0, c),
on Of] x (0,

O,u + div/ 0
(P) /. 7= 0

(., o) o(.)

in x (0, o),
on Ot x (0,
on f.

Here we have

with

0’u D. grad u,
curl v,
(Dj)

-[ if (ql, q2) -O,
(2.13) Dj(ql, q2)

mSij if (ql, q2) O,

where a aT/H, b aL/H and m CDmolT/[(% --")’j,)H].
The dispersion matrix D satisfies the following.

PROPOSITION 2.1. Let D-- (Dij) be given by (2.13). Then
(i) D is uniformly positive definite on R2, i.e., there exists # > 0 such that

2

E Dij(ql, q2)ij >_ 112
i,j=l

V-- (1,2), (ql, q2) C R2;

(ii) Dij is uniformly Lipschitz continuous.

Proof. The proof of (i) is immediate. To prove (ii) we have to show that the
functions fij R2 --. R, defined by

xixj

0

if x 7 (0, 0),
if x (0, 0),

are uniformly Lipschitz continuous. A straightforward computation shows that there
exists a constant L > 0 such that

IVfij(x)l <_ L Vx e Ru\{0}

and

II()- f,(0)l < Ix- 01 Vx e R :.
This implies the Lipschitz continuity for fij and thus for Dj.

The purpose of this paper is to study the elliptic-parabolic system (E), (P). We
do this in two steps. First, in 3 we consider the case, where

a=b=O and m=l.
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This situation describes the mixing of fresh and salt groundwater with dominant
molecular diffusion. It implies Dij 6ij which means that the problem is of semilinear
type. In 4, we consider the full problem, where

0<a<b<oc and m>0.

In this case the mixing is due to mechanical dispersion and molecular diffusion. It
implies that D is velocity dependent which means that the problem is of quasilinear
type.

3. The semilinear case.

3.1. The abstract setting. In this section we consider the case where the dis-
persion matrix D is independent of the velocity ’. This can be achieved by setting
a b 0 in (2.13). For simplicity, we also set m 1, which implies that Dj .
Noting that ’- 0 on 0f, we arrive at the problem

-Av=Olu inf(0, cx),(E) 0 (0,

Otu- Au + grad u. curly 0
Ou(P’) - =0

0)

in f x (0, (x),
on Of x (0, cx),
in f.

Throughout this section we suppose that f is a bounded domain in R2 with smooth
boundary 0f.

In order to formulate problem (E), (P’) into an abstract form, we need to intro-
duce some operators and Banach spaces.

Throughout this paper all vector spaces are over R. If we use complex quantities
(for example, in connection with spectral theory), it is always understood that we
work with the natural complexifications (of spaces and operators). Thus by p(A), the
resolvent set of a linear operator with domain D(A) and range R(A), we mean always
the resolvent set of its complexifications.

Let p e (2, oc). By inverting (E) we obtain the operator (see the appendix)

Ep" D(Ep) WI’P()---. W2’p(f)N W’P(f),
given by

Then we define

Epv-- (-A)-101v.

for u E WI’P(fl). Furthermore, we define operator An by

D(Ap)= ue W2’p(fl) =O

Ap D(Ap) LP()
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with

Apu -An + u.

Observe that in the definition of An, due to the imbedding W2,p(f) "-. C1(), the
boundary condition Ou/O 0 is satisfied in the classical sense. By using the opera-
tors introduced above, Problem (E), (P’) can be formulated as

u’ + Apu + Mp(u) 0(CP) u(O) no.
for t e (0, ),

Here u denotes the derivative of u with respect to t.
It is known that -Ap generates an analytic semigroup on LP(). We shall show

that Mp is a locally Lipschitz perturbation (in an appropriate sense) of Ap. Then we
can apply abstract results for proving existence of solutions of (CP).

We recall the following results.
Let E := {A E C" Re >_ w} for w E R. Furthermore, let X be a Banach space

with norm I1" II, and let A be a given linear operator satisfying

(A1) A is densely defined and closed;
(A2) E0 C p(-A), where p(-A) is the resolvent set of-A;
(A3) There exists a constant M > 0, such that

M

The fractional powers As of A are well defined for 0 < a _< 1, and As is a closed linear
operator whose domain D(A) D D(A). In this section we denote by Xa the Banach
space obtained by endowing D(A) with the graph norm of As. Since 0 p(A), As
is invertible and the norm ofX is equivalent to Ilulla := IIAull for u e D(A). Also,
for 0 < fl < a <_ 1, X --. X with continuous imbedding.

Concerning the solvability of semilinear evolution equations of the form

u’ + Au + M(u) 0

with initial value u(0) , under the assumptions (A1)-(A3), we recall the following
result (see von Wahl [20]).

THEOREM 3.1. Let 0 <_ fl < a < 1, and let M Xa X satisfy M(O) 0 and

IIM(u) M(v)l <_ g(llull + Ilvll)[l[u vii a + Ilu vl[([lu[l + Ilvll + 1)1

for some continuous function g" R+ --. R+ and for all u, v Xa. For X, there
exists a T T() e (0, o] such that

(i) there is one and only one mapping u: [0, T) X fulfilling

u e C([0, T), X) N C((O, T), Xa),

and

sup lit-Au(t)ll < c
o(t(_T

for all 0 < T < T;
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(ii)

u(t) e-tA- e-(t-s)AM(u(s))ds

for t e (0,T);
(iii)

(0) ;

(iv) if T < o, then

lim Ilu()ll .
tTT

Moreover, on (O,T), u fulfills (3.1) in the sense that u e CI((O,T),X), u(t) e D(A)
for t e (0, T) and Au(.) e C((0, T), X).

About the solution obtained in Theorem 3.1 we also have the following (see Henry

PROPOSITION 3.2. Under the assumptions of Theorem 3.1, the solution u satisfies

’() e x
for t e (0, T) and for any / e (0, 1).

3.2. The existence results. It follows from Agmon [1] that Ap satisfies (A1)-
(A3). Moreover, we have the imbedding properties (see Henry [9]):

PROPOSITION 3.3. (i) D(A) - WI’p(t2) for a e (1/2, 1);
1)o(ii) D(A) - Wl,c(ft) for a e ( + ,

We use Theorem 3.1 to obtain the existence for (CP). In this application we
take X LP() with norm I[" [p, X (a e (0, 1)) the Banach space induced by the
operator Ap and Z 0 with . II ]" ]p.

PROPOSITION 3.4. Let a e (} + , 1). Then there exists a constant C 1 such
that

liMp(u) Mp(v)llp < C[llu- vllllullp + II- vllp(llvll + 1)1

for all u, v E D(A).
Proof. By the definition of Mp we have

(3.2) liMp(u) Mp(v)ll, Ilu vllp + Ilgrad (u v). curl Epull,
+ Ilgrad v. curl Ep(u v)lip.

From the Appendix and Proposition 3.3, we obtain:

(3.3) Ilcurl Epull, CIlllp

and

(3.4) IIEulll, < Cllull
for all u e D(A) and for some constant C > 1. Combining (3.2), (3.3), and (3.4),
the desired estimate follows.
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Combining Theorem 3.1 and Proposition 3.4, we obtain that, for every u0 E
LP(), there exists a solution u of (CP) on some interval [0, T).

According to Theorem 3.1 (iv), the global existence of the solution follows if we
can show that

limllu(t)llp < .
tTT

By the imbedding W2,p(f) "- Cl(), we can define u(x,t) u(t)(x) pointwise
on f x (0, T). Further, we have the following.

PROPOSITION 3.5. Let uo LP(D) and u be the corresponding solution of (CP)
on [0, T) in the sense of Theorem 3.1. Let J C2 (It, R+) be a convex function; then
we have

fa J(u(x, t))dx < fa J(u(x, s))dx

for any 0 < s <_ t < T.
Proof. Note that J(u) is well defined due to the imbedding W2,p() -, C1().
Multiplying the differential equation in (P) by J’(u) and integrating the result

over D gives

d
J(u)dx f J’(u)Audx+/ J’(u)gradu curl vdx

dt

for 0 < t < T. Using Green’s formula we know that

f f + <_ o

and

J’(u)grad u. curl v dx o J(u)
Ov

a --ds O,

where is the tangential unit vector along Off. Therefore,

d fa J(u)dx < O,
dt

which implies the required inequality, v1

COROLLARY 3.6. Let uo LP(f) with p (2, oc] and u be the solution of (CP)
on [0, T) in the sense of Theorem 3.1. For any q e [2, p] we have

(3.5) I[u(t) I1 I1o I1
for t e [0, T).

Proof. This estimate follows directly from Proposition 3.5 by taking J(s) --Islq
and from the fact that u C([0, T), X) for p < oo. We obtain the estimate (3.5) for
p q oc by using a limit argument. [:]

Using Theorem 3.1, Proposition 3.4, and Corollary 3.6, we obtain the following
existence result for (CP).

1 1) and uo LP(f). Then the initial value problemTHEOREM 3.7. Let a (1/2 + -,
(CP) has a unique global solution u(.), i.e.,

e c([0. ).x) c((0. o). x.).
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sup ][tAu(t)l[ < ,
0<t<t

u(t) e-tA’uo e-(t-s)A" M(u(s))ds

for t E (0, c), and

(o) o.

Moreover, u fulfills the equation u’ + Apu + Mp(u) 0 on (0, oc) in the sense that
U e CI((0, OO), X), u(t) e D(Ap) for t e (0, oc) and Avu e C((O, oc),Z).

3.3. Regularity and asymptotic properties. In the preceding section we ob-
tained the solution of the abstract problem (CP). Here we consider the original system
(S), (P’). Let u be the solution of (CP). Then we have

(t) e w,’(a), (t) E,u(t) e W:’(a) vt e (o, o).

By the imbedding W2’p(f) C1(), we can define u(x,t) u(t)(x) and v(x,t)
Epu(t)(x) for (x, t) e f (0, oc). The pair (u, v) satisfies the following

THEOREM 3.8. Let E (0, 1 p2_), 0f C2+ and suppose uo LP(). Let u,v
be defined as above. Then (u, v) is the unique classical solution of the system (E),
(P), which satisfies

(i) u(., t) e C2+(), Otu(., t) e Ce(), Vt e (0, );
(ii) u(x, .) e C+ (0,) Vx e ;
(iii) v(., t) C2+e(), Vt (0, ).
Pro@ (i) By the imbedding W2,p() C+e(), we have

(., t), (., t) e c’+() vt e (o,

Using Propositions 3.2 and 3.3, we also have

o(., t) e c() vt e (o, 0).

Let to (0, oc) be fixed. The regularity for u and v implies that

F(.) -grad u(., to)" curl v(., to) + u(., to) Otu(., to)

satisfies

F(. e C ()

Next, consider the problem

-Aw+w=F in
Ow- 0 on 0f.

By Gilbarg and Trudinger [8] this problem has a unique solution w e C2+(). A
standard argument gives w(.) u(., to), hence u(., to) e C2+().

(ii) This is a direct result of (i) and Ladyzenskaja et al. [10, Whm. 5.3].
(iii) The regularity for v is a direct result of the Dirichlet problem (E). [:]
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Remark. If the boundary 0t is smooth, then the solution is smooth in t x (0, cx).
This follows from Theorem 3.8 together with a bootstrapping argument.

Let (u, v) be the solution of (E), (P’), a straightforward computation shows

l Ju(,)d= 1 /0()d
for all t e (0, ). Here ]D] denotes the meure of D.

LEMMA 3.9. We have

lim ]u(-, t) ]]2 0.

Proof. Taking J(s) s2 in the proof of Propositon 3.5, we obtain

d
dllu(’,t) 11 -(11011 + II011).

We estimate the right-hand side by Poincar’s inequality. This gives

I1(., )- 11 K(llOull + IlOull)
for some constant K > 0. Therefore,

d 1
d I1(’, ) 11 -g Ilu(., ) 11,

which can be integrated to yield

(3.6) I1(’, ) 1 -/K I10(’) 11,
for allt > 0.

We now consider the ymptotic behavior of the solution in the sup-norm.
THEOREM 3.10. Let uo L() for any p (2, ]. Then

i Ilu(., ) 11 0.

Proof. We put

w {V e C(t)’3{tm}, s.t. lim tm CX and lim Ilu(.,tm) V(’)ll 0}
m---,c m--,cx

F {u(.,t)’te (0,)}.

From Corollary 3.6 and Theorem 3.8, it follows that F is a uniformly bounded and
equicontinuous subset in C(f). Therefore, w is nonempty. Next we show that w
contains only one single point. Let U E w. Then there exists a sequence {tin} with

lim tm
m-o

lim Ilu(’, t) U(’)II 0.
m--oo
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This implies

U(x)

as m --, cx, uniformly in x E t.
On the other hand, we obtain from Lemma 3.9 that

as m --. oc, for almost all x E 12. Thus

U(x) = Vx e ,
which completes the proof.

4. The quasilinear case.

4.1. The abstract setting. In this section we study Problem (E), (P). As in
3, we treat this system as an abstract evolution equation in a suitably chosen Banach
space. In this part we collect some results on quasilinear evolution equations.

Let E (E0, El) be a pair of Banach spaces with E1 continuously and densely
imbedded in E0. We denote by T/(E) the set of all A (E1,Eo) such that -A,
considered as a linear operator on E0, is the infinitesimal generator of a strongly con-
tinuous analytic semigroup on E0. For (0, 1), let Ee be the complex interpolation
space [E]e, and I1" I1 be the norm on Ee. (The notation here is different from the
previous section.)

Let T > 0 be fixed. We assume (Q) / e (0,1),V c EZ is open and A
Cl-(v, 7-/(/)), i.e., A is locally Lipschitz continuous.

Under these assumptions, we consider the following quasilinear Cauchy problem

/t(t) + A(u(t))u(t) O, 0 < t <_ T,(QCP)() u(O) uo,

where u0 E V.
Let T (0, T]; u is called a solution of (QCP)(o) on [0, T] if the following condi-

tions are satisfied:
(i) u e C([O,T],V) NC((O,T],E1) NCI((O,T],Eo),
(ii) /t(t) + A(u(t))u(t) 0, Vt e (0, T],
(iii) U(0) u0.
A solution u is maximal if there does not exist a solution of (QCP)(uo) which is

a proper extension of u. In this case the interval of existence is called the maximal
interval of existence.

The following fundamental theorem can be found in Amann [2] (see also Sobolevskii
[15]).

THEOREM 4.1. Suppose that 0 < < a < 1, and Uo V Ea V. Fur-
thermore, suppose that the assumption (Q) holds. Then there exists T > O, such that
(QCP)o has a unique solution u(.) on [0, T], satisfying u C([0, T], V). Moreover,
the maximal interval of existence is open in [0, T].

4.2. Local existence. Again we put the system into an abstract form.
Let gt c R2 be a bounded domain with smooth boundary OFt. For p

and r e (-cx, ), we denote by H(12) the so-called Lebesgue spaces (see Triebel [17]
or Bergh and Lbfstrbm [6]). In this section the norm on H(gt) is denoted by
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It should be observed that H() W’,P() for integer m. Moreover, we have the
interpolation property

(4.1) [H;,o (), H;, (a)]e H;, (a)

(1 e)IPo + el’, and s (1 0)so + 8slfor So, sl E R, po,pl c:_ (1, oo) with
Let ajk D.k o Q and a -Qj for j, k 1, 2 (see Appendix). Then problem

(E), (P) can be formulated as

o,, o((u)O, + (,),) o
(QCP) //ayk(u)Oku + aj(u)//Ju 0

u(., 0) u0

in x (0, T],
on 0 x (0, T],
in .

Here T > 0 and (//1,//2). Note that in this section the summation convention is
used and the indices run from 1 to 2.

We use Theorem 4.1 to obtain the existence result for Problem (QCP). In this
application we take

and

E0 (H},(a))’

E1 Hp(),

1. It should be observed thatwhere p (1, oo) and + r
(4.2) E0 [E0, E1]0 -+ LP()

for e [1/2, 1]; see Amann [4, Whm. 3.3].
Let M() C C()4 x C()2 be the subset whose elements m(.) (bjk(.), by(.))

are chosen such that (bjk(’))2x2 is uniformly positive definite on . Assume we set

(I, g) fn f(x)g(x)dx

for f LP(), g Lp’ (). With this notation we define

()(v, ) (o,o+)

for v e H,(), u e H}(), and m e ().
rthermore, given m (), we define the operator

A(m) E Eo

such that

(A(m)u, v} a(m)(v, u) Vv e H},(12).
Then we have the following generation theorem; see Amann [3] or Lunardi and Vespri
[111.

THEOREM 4.2.

[m --+ A(m)] e el-(](’), 1()).
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2For p E (2, oc) and r > , we have

(4.3) H;(f) - C(Ft),

Therefore, the coefficients ajk(u), aj(u) are defined pointwise on Ft for each u e H(ft).
Consequently,

:=

is well defined on f. For m we also have the following.
2 Then [uLEMMA 4.3. Let p (2, oc) and 1 > r > -.

is uniformly Lipschitz continuous.

Proof. From the appendix we have

(4.4) Qi e

We combine this with imbedding (4.3) and Proposition 2.1 to obtain

,(u) e ().

On the other hand, by Proposition 2.1, (4.3), and (4.4), there exists a constant C > 0
such that

and

for any u, v H(ft) and for j, k 1, 2. This completes the proof. U
Let us put A(u) := A(m(u)(.)) We are now in a position to prove the main

existence result.
1THEOREM 4.4. Let p (2, oc) and +- < < < 1. For every uo Ea, there

exists a T > 0 such that

/t(t) + A(u(t))u(t) O,
u(0) u0,

O<t<T,

has a unique solution u(.) on [0, T], i.e.,
(i) u e C([0, T], Ea) fq C((0, T], El) fq C1((0, T], E0),
(ii) /t(t) + A(u(t))u(t) O, /t e (0, T],
(iii) U(0) U0.
Proof. For fi 1/2 + e (0, 1) we have

E,

by the reiteration theorem (see Triebel [17] or Bergh and Lhfstrhm [6]). Using (4.2),
we have

E [LP(f), Hp(f)]r H(gt)

then 1 > r > 2 and H(ft) -, C(). Fromwith r e (0, 1). Finally, if 1 > fl > 1/2 + ,
Lemma 4.3 we know [u -- re(u)] is uniformly Lipschitz continuous from E to A4(t).
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On the other hand, it follows from Theorem 4.2 that

[m --, A(m)] e Cl-(Ad(f), H()).

Hence

[u --. A(u)] e CI-(E, 7-l(-)).

The conclusion then follows directly from Theorem 4.1. [:]

4.3. Some properties of the weak solution. Up to now we have obtained a
local solution for Problem (QCP) in Hp (ft)-sense. We now come back to the original
system.

1Let " > 0, u0 E E for some c E ( / , 1) and we suppose u C ((0, T], E0) fq

C((0, T],E1) is the weak solution mentioned in Theorem 4.4. By the appendix we
know that v(t) g o Ou(t) e H2p(gt). Using the imbedding Hp(f) C(), we can
define

and

t):=

pointwise on Ft (0, T]. Obviously, we have

Otu(x,t) it(t) e LP(2).

From Theorem 4.4 we know that problem (P) is satisfied in the following sense:

ddt fa u(x, t)f(x)dx /a (x, t)grad f(x)dx 0

for all f e Hp,(t) and t e (0, T]. Moreover, u(x, O)= uo.
As in the semilinear case we can prove the following.
THEOREM 4.5. Let (u, v) be the weak solution of (E), (P) as constructed above.

Then

for all t (0, T].
Proof. Using the facts

t) e c(a)

and

LP(a) -+ Lp’

we obtain immediately that f plulp-lsgn u e Hp,(t).
Substitution into (4.5) gives

Ilu(., t)IIg (u curl v D. grad u). p(p 1)lulp-2grad u dx
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Since the matrix D is positive definite,

-/(D. grad u) p(p 1)lulp-2grad udx <_ O.

On the other hand, by using the Green’s formula we have

curl v) p(p 1)lulp-2grad dx O.U

Therefore, the conclusion follows directly from (4.6).
Final remark. In this paper we assumed to be a bounded domain of R2 with

smooth boundary. On the other hand, the domain in the motivating problem is
a rectangle. For such a domain, the same existence results will hold. This is a
consequence of the fact that the generation theorems for the operators Ap in 3 and
A in 4.2, as well as the proposition in Appendix also hold for such a domain (Vespri

Appendix. Here we state some results on the Laplace operator with Dirichlet
boundary condition, which are related to problem (E).

Let /denote the trace operator. It is known that the operator -A with Dirichlet
boundary condition zero is invertible in LP(). We denote this inverse operator by

g :--

Further we introduce operator

Q (Q1, Q2) curl K 01.

Let H() be the Lebesgue spaces, with indices -x
The operator Q satisfies the following.
PROPOSITION. Let r E [0, 1] and 1 < p < oc. Then

for i 1,2.
Proof. Let f Lp(). We define

Fv fOlV dx

for v e W’P’(12). Clearly, f e (W’P’())’. By the representation theorem in Simader
[14, p. 91], we know that there exists u e W’P() such that

Fv fn grad u. grad v dx

for v e W’P’(). Moreover, there exists a constant C independent of u and f such
that

Therefore,

Ilulll,p cIIfllp.

Qi e ,(LP()).
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On the other hand, it is well known that

Q e (H(f)).
By the interpolation property,

[H;o H;,
for E [0, 1] and so, sl, s E R with s (1 -O)so + Osl; the conclusion follows.
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