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Abstract

We prove Gaussian estimates for the kernel of the semigroup gener
ated by a second order operator A in divergence form with real, not
necessarily symmetric, second order coefficients on an open subset n
of Rd satisfying various boundary conditions. If the boundary an of
n is a null set, then A +wI has a bounded Hoo functional calculus and
has bounded imaginary powers if w is large enough.



1 Introduction

A large literature has recently arisen on Gaussian estimates for kernels of semigroups gen
erated by elliptic operators, including several books, see Davies [Dav89], Robinson [Rob91)
and Varopoulos-Saloff-Coste-Coulhon [VSC92]. The starting point was a paper of Aronson
[Aro67] for real non-symmetric elliptic operators on R d with measurable coefficients, which
used Moser's parabolic Harnack inequality [Mos64]. New impetus to the subject came from
Davies [Dav87), who introduced a perturbation method together with logarithmic Sobolev
inequalities to deduce Gaussian upper bounds with optimal constants for symmetric pure
second order operators with Loo coefficients and Dirichlet boundary conditions or, if the
region has the extension property, with Neumann boundary condition. (See for a coher
ent description [Dav89).) A new type of proof for Gaussian bounds for real symmetric
pure second order operators with measurable coefficients has been introduced by Fabes
and Stroock [FS86] using a Nash inequality. This inequality, together with a parametrix
argument, has subsequently been used to derive Gaussian bounds for m-th order strongly
elliptic or subelliptic operators on Lie groups of which the m-th order coefficients are m
times differentiable and the lower order coefficients merely measurable. (See [ER93).)

In this paper, we consider second order elliptic operators of the form

d d d
Au=- L DjaijDiu+LbiDiU-LDi(CiU)+eoU

i,j=l i=l i=l

with real, not necessarily symmetric coefficients aij E Loo(O) satisfying a uniform ellipticity
condition, and lower order coefficients bi, Ci E W1,00(0) and eo E Loo(O) real or complex.
We study realizations A of A in L 2 (0) obtained by quadratic form methods. They corre
spond to various boundary conditions, for example, Dirichlet, Neumann, mixed, or Robin
boundary conditions. Our main results show that, in each of these cases, A generates a
semigroup S = (e-tA)t>o given by a kernel (I<t)t>o which satisfies a Gaussian estimate

lI<t(x;y)l::; cCd/2e-blx-yI2t-lewt (x,y)-a.e.

for all t > O. We establish this by two different methods.
The first method (Section 3) works for Dirichlet boundary conditions and once differ

entiable second order coefficients. The proof is very short and elementary and relies on the
Beuding-Deny criterion for forms in a non-symmetric version recently given by Ouhabaz
[Ouh92a), [Ouh92b]. Besides its simplicity, one advantage of the method is that complex
lower order coefficients are allowed. This approach is, however, restricted to Dirichlet
boundary conditions.

The second method (Section 4) is based on an iteration process of Fabes-Stroock [FS86),
which is also used in Robinson [Rob91] for second order real symmetric operators on Lie
groups with constant coefficients. The advantage of this more elaborate method is that
we no longer need to assume the once differentiability of the second order coefficients.
Moreover, it works for all boundary conditions considered here. On the other hand the
lower order coefficients have to be real.

Gaussian estimates have various interesting consequences. In Section 5 we show that
for each of the considered boundary conditions one obtains a holomorphic semigroup on all
the Lp-spaces with 1 ::; p ::; 00 with the same sector as in L2(0). Moreover, using recent
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results of Duong-Robinson [DR95] we show that, for all boundary conditions considered
here, the operator A +wI has a bounded HooCE(v)) functional calculus on Lp(fl) for each
P E (1,00) and large w, where v > 0 is such that E(v) contains the numerical range of
the matrix (aij(x)) for a.e. x E fl. In particular, the fractional powers (A + wI)iS are
bounded, which is of interest in view of the regularity theorem of Dore-Venni [DV87] (see
also [PS93], [Prii93]). In this context it is interesting to determine the range of w for which
this is true. It turns out that w > Wo is allowed where Wo is such that IISz1l2-+2 :::; ewolzl for
all z E C with largzl:::; 7r/2- v.

2 Preliminaries

In this section we fix some notations and give some basic results on semigroups and Sobolev
spaces as they are needed throughout this paper.

Let 0 C R d be an open set and let 1 :$ PI < P2 :$ 00. A family of operators T(p) E
£(Lp(0) ), PI :$ P :$ P2, is called consistent if

T(p)c.p = T(q)c.p

for all P, q E [PI, P2] and c.p E Lp(fl) n Lq(O). Similarly we refer to a consistent family
of semigroups (S!p»)t>o on Lp(fl), PI :$ P :$ P2, if for every fixed t > 0 the family S!p),
PI :$ P :$ P2, is consistent. We shall briefly say that S is consistent on Lp, PI :::; P :::; P2 and
drop the suffix P in S(p).

Let 1 :$ PI :$ 2 :$ P2 :$ 00. Let S be a Co-semigroup on L2(0). We say that S
interpolates on Lp(fl), PI :::; P :$ P2, if there exists a consistent family of semigroups

(S!p»)t>o on Lp, PI :::; P :$ P2, such that S(p) is strongly continuous if P E [PI, P2], P =f:. 00,

and in the case P2 = 00, S(oo) is weakly* continuous, and, moreover, St = S!2) for all t > O.
In that case, there exist M ~ 1 and w E R such that

uniformly for all P E [PI, P2] and t > O. In order to show that a given semigroup S on
L2 interpolates, frequently the strong continuity in the endpoints PI, P2 is not a trivial
problem. In the following lemma we give some sufficient conditions.

Lemma 2.1 Let S be a Co-semigroup on L2(fl) satisfying St(LI n L2) c LI for all t > 0
and

(1)

uniformly for all t E (0,1] and all c.p E LI n L2. (We use 1Ic.pllp to denote the norm of c.p
in Lp(fl).) Then S interpolates on Lp(O), 1 :$ P :$ 2, if one of the following conditions is
satisfied.

I. M = 1.

II. 0 has finite measure.

III. St ~ 0 for all t > O.

IV. There exists wE R such that IIStc.plh :$ ewtllc.plh for all c.p E LI n L2 and t > O.
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v. There exist c> 0, open 0' C Rd with 0 C 0' and an interpolating semigroup T on
Lp(O'), 1 ~ p ~ 2, such that ISt'Pl ~ cTtl'Pl for all t E (0,1] and'P E Ll(O) n L2(0).

Proof. It is clear that one obtains consistent semigroups (S~p»)t>o on Lp, 1 ~ p ~ 2 and
it follows from the interpolation inequality [Bre83] p. 57 that S(p) is strongly continuous
for p > 1. The strong continuity of S(l) demands further arguments and is proved in
Voigt [Voi92] (see also Davies [Dav89] pp. 22-23) if one of the first four above conditions
is satisfied.

The sufficiency of Condition V can be proved as follows: Let p E [1,2) and 'P E Lp(O) n
L2(0). We identify a function on 0 with the function on 0' by extending it by 0 on 0'\0.
Moreover, let tll t2 , ... E (0,1] and suppose that limtn = O. Then limStn'P = 'P in L2(0),
so there exists a subsequence such that limk....oo Stn" 'P = 'P a.e.. Since limk....oo Ttn" I'PI = I'PI
in Lp(O'), there exist a subsubsequence (which we can assume to be the subsequence) and
a'l/J E Lp(O') such that Ttn" I'PI ~ 'l/J a.e. for all kEN. Then IStn"'PI ~ cTtn" I'PI ~ c'l/J a.e.
for all kEN. Therefore, limk....oo Stn" c.p = c.p in Lp ( 0) by an application of the Lebesgue
dominated convergence theorem, and S is continuous on Lp(O). 0

Similarly, if St(L2 n Loo ) C Loo and

uniformly for all t E (0,1] and 'P E L2 n Loo , then the semigroup interpolates on Lp if one
of the Conditions I - V of Lemma 2.1 is satisfied (with L 1 replaced by L oo ). Note that in
that case S* satisfies (1) and one can define S(oo) by S~oo) = (S;(l»)*.

An operator T on Lp is called positive, notation T ~ 0, if T'P ~ 0 a.e. for all 'P E Lp
with 'P ~ 0 a.e.. We call T Loo-contractive if IITc.plloo ~ II'Plioo for all 'P E Lp n Loo •

Thus, if S is a Co-semigroup on L2(0) and St and S; are Loo-contractive for all t > 0,
then S interpolates on Lp(O), 1 ~ p ~ 00. Finally, a semigroup S on L2 is called quasi
contractive on Loo if there exists an w E R such that IISt'Plioo ~ ewtll'Plioo for all 'P E
L2 n Loo and t > O.

Next we give some results on Sobolev spaces. As before, 0 denotes an open set in
Rd. For p E [1,00] let Wl,p(O) = {u E Lp(O) : DiU E Lp(O) for all i E {I, ... , d}}.
Here DiU = 8u/8xi is the distributional derivative in 1"(0). If p = 2, then the space
Hl(O) = Wl,2(0) is a Hilbert space for the norm

d

IIull~fl(n) = L: IIDiuII~ + IIull~
i=l

Here and in Section 4 we consider real spaces. In Sections 3 and 5 the spaces are complex
and the notation and field will be clear from the context.

The following results follow from [GT83] p. 152.

Lemma 2.2 Let U E Hl(O). Then u+ = UV 0 E Hl(O) and

Diu+ = l[u>ojDiu a.e.

for all i E {1, ... ,d}. As a consequence, u- = (-u)+ E Hl(O) and lui = u++u- E Hl(O)
and

(2)
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where

(sgn u)(x) = { ~
-1

ifu(x»O ,

ifu(x) = 0 ,

ifu(x) <0

Moreover, one has

for all i E {I, ... ,d}.

Dju = 0 a.e .. on the set {x : u(x) = O} (3)

We note some further consequences. Set L2(n)+ - {u E L2(n) : u ~ 0 a.e.} and
H 1(n)+ = H 1(n) n L2(n)+.

Lemma 2.3

I. Ifv E Hl(n), then the mappings u t-+ u/\v and u t-+ uVv, and in particularu t-+ u+,
u t-+ u- and u t-+ lui from H 1 (n) into HI(n) are continuous.

II. If u E HI(n), then IlluIIlHl(fl) = lIuIIHl(fl)'
III. If 0 ~ u E HI(n), then u /\ 1 E HI(O) and the mapping u t-+ u /\ 1 is continuous on

HI(Oh·

IV. Ifu E HJ(n), then u+,u-, lui, lul/\ 1 E HJ(n).

Proof. Since u V v = u + (v - u)+ and u /\ v = -(( -u) V (-v)), it suffices to show that
u t-+ u+ is continuous. Let u, Ut, U2, ... E HI(n) and suppose that lim Un = u in HI(n).
It suffices to show that every subsequence of (u~) has a subsubsequence which converges
to u+. Therefore, we can assume that lim Un = u a.e., limDjun = DiU a.e. and, moreover,
lunl ~ f and IDjunl ~ f for some f E L2(n), uniformly for all n E Nand i E {I, ... ,d}.
Then lim Dju~ = lim I[un>o]Djun = l[u>o]Dju = Dju+ a.e. in virtue of (3). Now Statement
I follows from the Lebesgue dominated convergence theorem.

Statement II follows from (2) and (3).
It follows from [GT83] p. 152 that u /\ 1 = u + (1 - u)+ E HI~c(n) and

Di(u /\ 1) = Di(u +(1 - u)+) = l[u<I]Dju E L2(n) .

Therefore, u /\ 1 E H 1 (n) whenever 0 ~ u E HI(n). It follows from (2) that Dju = 0 a.e.
on [u = 1]. So the proof of continuity is as in Statement I.

Next we prove Statement IV. Let u E HJ(n) and Ut, U2, ... E C;,(n) be such that
lim Un = u in H 1(n). Let et, e2, . .. E C;'(Rd ) be a regularizing sequence. Fix n E N.
Then em * u~ E C;,(n) for m sufficiently large and limm em * u~ = u~ in HI(n) .. Hence
u~ E HJ(n) and u+ = limn u~ E HJ(n). The proof for lul/\ 1 is similar. 0

Remark 2.4

I. The assertions of Lemma 2.3 remain valid if HI(n) is replaced by WI,p(n) with
p E [1,00].

II. It should be noted that HI(O) is not a Banach lattice. In fact, the intervals [0, u] =
{v E HI (n) : 0 ~ v ~ u} are not norm bounded, in general.
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III. If Hl(o.) is the complex space, then one has

Dilul = Re(sgn u DiU)

for all u E H1(o.) (d. [Nag86] B-II, Lemma 2.4 and C-II.2 p. 251). In particular, one
has

(4)

In general, however, the inequality in (4) is strict. An example is 0. = (0,1) and
u(x) = ei:r:. Then II lui IIH1(o) = 1 but lI u IlHl(o) = ..;2.

Next we introduce the following space:

H1(o.) = {ulo : u E Hl(Rd)} Hl(O) , (5)

which will be useful in the context of Neumann boundary conditions. Note that H1(o.) is
a closed subspace of H1(o.) which contains HJ(o.). If 0. has the extension property (e.g. if
the boundary of 0. is Lipschitz) then H1(o.) = H1(o.) but, in general, the two spaces are
different. Since C~(Rd) is dense in H1(Rd), it follows that

(6)

Lemma 2.5

I. If u E Hl(o.), then lui, u+, u-, lui A 1 E Hl(o.).

II. If u E H1(o.) and v E W1,oo(Rd), then vlo . u E Hl(o.)

III. Let u E L2(o.). Then u E H1(o.) if, and only if, there exist Vb"" Vd E L2(o.) and
'PI, 'P2, ... E C~(Rd) such that lim'Pnlo = u in L2(o.) and lim Di'Pnlo = Vi in L2(o.)
for all i E {I, ... , d}. In that case DiU = Vi.

IV. If u E H1(o.) n Loo(o.) and PEN, then uP E H1(o.) and Di(uP) = pup
-
1DiU for all

i E {I, ... ,d}.

Proof. Let u E H1(o.). There exists a sequence Ul, U2, ... E C~(Rd) such that unlo -+ u
in Hl(o.). Then lunl E Hl(Rd) and lim lunlol = lui in H1(o.) by Lemma 2.3. Therefore,
lui E H1(o.). Similarly one obtains that u+, u-, lui A 1 E H1(o.). This proves Statement 1.

Next let UE H1(o.) and V E Wl,oo(Rd) . Since V E Loo(Rd) one has lim(vun)lo = vlou
in L2(o.) and since DiV E Loo(Rd) one similarly has limDi((vun)lo) = limDivlo . unlo +
vloDiunlo = Divlo . u + vloDiu = Di(vlo . u) in L2(o.). Because (vun)lo E H1(Rd) for all
n E N it follows that vlo . U E H1(o.).

The proof of Statement III follows immediately from (6).
Finally, if u E Hl(o.) n Loo(o.) and pEN. Set c = lIulloo. Let Ul, U2, ... E C~(Rd) be

such that limunlo = u in H1(o.). Replacing Un by ((un Vc)A(-c))*en, with en E C~(Rd)

suitable, if necessary, we can assume that Ilunll oo ::; c. Taking subsequences, we can assume
that limunlo = u a.e., limDiunlo = DiU a.e., Iunlol ::; f a.e. and IDiunlol ::; f a.e. for
all n E Nand i E {I, ... , d}, for some f E L2(o.). Then u~ E C~(Rd), lim u~lo = uP
a.e. and lu~lol ::; cp

-
1f a.e.. Therefore lim u~lo = uP in L 2(o.) by the Lebesgue dominated
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convergence theorem. Moreover, lim DiU~ In = limpu~-llnDiUnIn = pup- l DiU a.e. and
IDiU~lnl ~ pcP-If a.e. for all n E Nand i E {l, ... ,d}. Hence limDiu~ln = pup-1Diu in
L 2(n) by a second application of the dominated convergence theorem. Now it follows from
Statement III that uP E H1(n) and Di(uP) = pup- l DiU for all i E {I, ... , d}. 0

The reason why HI (n2Js a suitable space for our purposes is that certain properties of
HI(Rd ) are inherited by HI(n). We will use the following inequality of Nash.

Lemma 2.6 There exists a CN > 0 such that

(7)

Proof. There exists a constant CN > 0 such that

(8)

for all <P E HI(Rd
). (See [Rob91] p. 169 for a short proof.) In order to prove (7) we

can assume that <P E HI(n) is positive. (Otherwise we replace <P by 1<p1 observing that
111<pIIlHl(n) ~ II<pIlHl(n).) Let <Pt,<P2, ... E HI(Rd

) be such that lim<pnln = <p in HI(n) and
a.e.. Replacing <Pn by <p~, we can assume that <pn ~ O. Then lim(<pn /\ <p) = <P in H1(n)
by Lemma 2.5 and in L1(n) by the Lebesgue dominated convergence theorem. Now we
obtain (7) for <P from (8) for <pn and taking limits. 0

Remark. Note that the Nash inequality does not hold in HI(n) for general n.

We frequently use the following proposition on semigroups associated with continuous
coercive forms.

Proposition 2.7 Let V,1i be Hilbert spaces, V dense and continuously embedded in 1i
and a: V x V -+ C a continuous sesquilinear form. Suppose the form a is coercive, i.e.,
there exist w E Rand J.L > 0 such that

Re a(u, u) + wllull~ ~ J.Lllull~

for all u E V. Define the operator A associated with the form a by

D(A) = {u E V: :3vE1NcpEv[a(u,<p) = (v, <P)-rtl}

and Au = v for all u E D(A) ifa(u,<p) = (v,<p).,.t for all <P E V. Then A generates a
holomorphic semigroup S = (e-tA)t>o on 1i.

Proof. See [DL87b] Chapter XVII p. 450, or [Tan79] Theorem 3.6.1. o
In the last part of this preliminary section, we put together some basic properties of

traces. For that we assume that n is a bounded open subset of R d with Lipschitz boundary
r = an. Note that this implies that Hl(n) = H 1(n) and, even more, n has the extension
property, i.e. for all u E H1(n) there exists a v E Hl(Rd ) such that vln = u.
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There exists a unique linear bounded operator B: Hl(O) ~ L2(r) such that Bu = ulr
for all u E Hl(O)nC(O). Here r is considered as a measure space with the surface measure.
The operator B is called the trace operator and Bu the trace of u. (See Adams [Ada75]
or Alt [Alt85] p. 168 for trace properties.) The operator B is a lattice homomorphism, Le.,

and in particular

B(u V v) = (Bu) V (Bv) , B(u A v) = (Bu) A (Bv) (9)

B(u+) = (Bu)+ , B(u AI) = (Bu) Al (10)

for all u, v E Hl(O). In fact (9) and (10) are trivially valid for ulo with u E C~(Rd). Since
the lattice operations are continuous in H1(O) and L2(r), the claim follows by taking
limits. Note that HJ(O) = {u E H1(O) : Bu = O}.

3 Dirichlet boundary conditions

Given an elliptic operator arising from a form with Dirichlet boundary conditions, then we
show in this section that the corresponding semigroup has a kernel which satisfies Gaussian
bounds, provided the second order coefficients are once differentiable. Since we do not
assume that the lower order coefficients are real, all spaces are complex in this section. The
method we use here consists in proving uniform Loo-estimates for the semigroup perturbed
by the Davies' method. This is done via a criterion of quasi Loo-contractivity for non
symmetric forms due to Ouhabaz. Then the Gaussian estimates follow easily from the
Nash inequality. The main theorem of this section is the following.

Theorem 3.1 Let neRd open, let aij E W1,OO(O) be real functions for all i,i E
{l, ... ,d} and let bi,ci E W1,OO(O) (complex) for all i E {l, ... ,d}. Let CO E Loo(O).
Consider the form a: HHO) X HHO) ~ C defined by

Suppose there exists a p .> 0 such that

d

E aij(x)~i~j 2: plel2

i,j=l

for all ~ E Rd, for a.e. x E O. Let A be the operator associated with the continuous coercive
form a and S = (e-tA)t>o the semigroup generated by A (see Proposition 2.7). Then S
interpolates on Lp , 1 ~ p ~ 00 and there exists b, C > 0, w E Rand I<t E Loo(O x 0) such
that

and

(St<P)(x) = kI<t(x;y)<p(Y)dY x-a.e.

for all t > 0 and <p E L2 (O).
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The proof relies on the Davies perturbation method to obtain Gaussian upper bounds.
In order to be complete we describe briefly this method. For K E Loo(O x 0) define the
integral operator TK E £(L1(0), Loo(O)) by

(TKCP)(x) = in K(x; y) cp(y) dy . (11)

Then it is well known that K 1-+ TKis an isometric isomorphism from Loo(O x 0) onto
£(L1(0), Loo(O)). (See, e.g. [ABu94] Theorem 1.3 for a short proof.) In particular, if
T E £(L2(0)) is such that

IITIIt--+oo = sup{IITcplioo : cp E L 1 n L 2 } < 00

then there exists a K E Loo(O x 0) such that (11) holds x-a.e. for all cp E L 1 n L 2•

Next, let

w = {'l/J E Cr(Rd
) : 'l/J is real and IIDi'l/Jlloo ::::; 1, IIDiDj'l/Jlloo ::::; 1 for all i,j E {I, ... d}}

Then clearly d(x; y) = sup{'l/J(x) - 'l/J(y) : 'l/J E W} defines a distance on Rd. This distance
is equivalent to the Euclidean metric.

Lemma 3.2 There exists an a > 0 such that

for all x, y E Rd.

(12)

Proof. See [Rob91] pp. 200-202. o
Now let S be a semigroup on L 2 (0), where 0 is an open subset of Rd. For pER and

'l/J E W we define the perturbed semigroup SP on L2 by Sf = UpStU;\ where (Upcp)(x) =
e-P1/J(x)cp(x). Here we deliberately omit the dependence of SP and Up on 'l/J in our notation.

Gaussian upper estimates for the kernel of S can be obtained from ultracontactivity
of SP, uniformly in p and 'l/J. The following useful device is due to Davies [Dav89]. We
include a proof for the convenience of the reader, since only variations of the criterion
are explicitly given in the literature, d. [Rob91] Chapter III p. 189 ff. and the proof of
Proposition IV.2.2, or [Dav89] Section 3.2.

Proposition 3.3 Let S be a semigroup on L2(0) and c, WI E R. Then the following are
equivalent.

I. There exists a constant W2 > 0 such that

IISflh.....oo ::::; crd/2eWIHw2p2t (13)

uniformly for all pER, t > 0 and 'l/J E ltV.

II. There exists a constant b > 0 such that the operators St have a kernel Kt E Loo(OxO)
which verifies

(14)

for all t > O.
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Moreover, if one of the two conditions is valid then S interpolates on Lp(f!), 1 :5 p :5 00
and there exists a constant CI > 0, depending only on the constants band C in (14) such
that IIStllp.....p :5 clewlt uniformly for all t > a and p E [1,00].

Proof. "I*II". Taking p = 0 we see that St has a kernel Kt E Loo(f! x f!). Then for
each p and t the operator Sf has a kernel Kf, given by

Kf(x; y) = e-p(tb(x)-tb(y)) Kt(x; y) (x, y)-a.e..

Then (13) implies that for all t > 0, pER and tP E W one has

IKt(x; y)1 :5 cCd/2eWlt+W2p2teP(tb(x)-1/J(y)) (x, y)-a.e..

Replacing p by -pone deduces that

IKt(x; y)1 :5 cCd/2ewlt+W2p2te-pltb(x)-tb(y)l (x, y)-a.e..

Next, Lemma 3.4 below implies that

IKt(x; y)1 :5 cCd/2eWlt+W2p2te-pd(x;y) (x, y)-a.e.

for each t > °and pER. For fixed t > a and x, y E f! the minimum over p of the right
hand side is attained in p = (2W2ttld(x; y). Thus, applying Lemma 3.4 again we obtain

IKt(x; y)1 :5 et-d/2e-(4w2t)-ld(x;y)2 eWlt (x, y)-a.e..

Now (14) follows from Lemma 3.2 with b = (4w2)-la2.
"II=}I". Let a be as in Lemma 3.2. Then

IISfl12.....oo = sup IISfeplloo = sup esssup 11 Kf(x;y)ep(y)dyl
1I'1'lh$1 11'I'lh$1 xEO 0

= esssupesssupIKf(X iy)l:5 esssup/Kt(x;y)lelplltb(x)-tb(y)1
xEO yEO x,yEO

:5 sup et-d/2e-blx-yI2t-l+a-llpllx-ylewlt :5 cCd/2eW2p2tewlt
x,yEO

with W2 = (4a2b)-I.
Finally, suppose II is valid. Let T be the semigroup on L 2(Rd ) generated by the operator

- ",£1=1 82/8x~. Then T interpolates on Lp(Rd ), 1 :5 p :5 00 and T has the Gaussian kernel
Kt>.. Then

IKt(x; y)\ :5 c(7l"b-l)d/2ewltK~b)_lt(X; y) a.e.-(x, y) E f! x 0

for all t > O. Therefore, IStepl :5 c(7l"b-1 )d/2ew1tT(4b)_ltlepl for all ep E L1(O) n L2(f!) and
t > O. So by Lemma 2.1.V it follows that S interpolates on Lp(f!), 1 S p S 2. By duality,
S interpolates on Lp(O), 2 S p:5 00. Moreover, IIStllp-p S c(7l"b-1 )d/2ew1t for all t > 0 and
p E [1,00]. 0

In the previous proposition we needed the following result on infima, which can be
stated in a more general context.
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Lemma 3.4 Let Y be a a-compact topological space and let F C C(Y). Let fo E C(Y)
and assume that fo(x) = infjEF f(x) for all x E Y. Then there exist fll 12, ... E F such
that fo(x) = infnEN fn(x) for all x E Y. In particular, if(Y,E,p) is a measure space and
h: Y --t R is a measurable function such that h ~ f p-a.e. for all f E F then h ~ fo p-a.e..

Proof. First we can assume that Y is compact. Secondly, replacing F by F - fo we can
(and do) assume that fo = O. Let mEN. For all x E Y there exists an fx,m E F such that
fx,m(x) < m-1 and hence fx,m < m-1 on an open neighbourhood Ux,m of x. By compactness
we find Xm,ll ... ,Xm,nm E Y such that Y = Uj::'lUXm,j,m' Then infjfxm,j,m(x) < m-1

for all x E Y. Now the set Fo = {xm,j : mEN, j E {I, ... , nm}} is countable and
inf jEFo f(x) = 0 for all x E Y. 0

In view of Proposition 3.3, we have to show (13) in order to prove Theorem 3.1. This
will be done in two steps. At first we show Loo-contractivity with help of the following
criterion.

Proposition 3.5 Denote by S = (e- tA )t>o the semigroup on L2(0) generated by the op
erator A of Theorem 3.1. Assume that

d d d

Re (.~ aij DiU Dju +?=(bi - Ci) Diuu + (eo +?= DiCi) lu l2) ~ 0 a.e. (15)
1,)=1 1=1 1=1

for all u E HJ(O). Then S is Loo-contractive. In particular, S interpolates on Lp , 2 ~ p ~
00.

Proof. Using integration by parts we obtain
d d d

a(u,v)= L: {aijDiuDjv+L: {(bi-Ci)Diuv+ {(Co+L:DiCi)UV
i,j=1 1n i=l 10. 10. i=l

for all u, v E HJ(O). Moreover, (1/\ lui) sgn u E HJ(O) for all u E HJ(O). Therefore, the
Loo-contractivity follows from [Ouh92b] Theorem 4.2(3). The last statement follows from
Lemma 2.1.1. 0

Lemma 3.6 Let 'l/J E W be fixed and pER. Denote by S = (e-tA )t>o the semigroup on
L2(0) generated by the operator A of Theorem 3.1. Then the generator AP of the perturbed
semigroup SP is associated with the form aP on HJ(O) x HJ(O) given by

d d d

aP( u, v) = L: {aij DiU Djv +L: {bf DiU V +L: {cf u Div + { Cb u v ,
i,j=l 10. i=l 10. i=l 10. 1n

where
d

bf = bi - pL: aij 'l/Jj ,
j=l

d

cf = Ci +p L: aki 'l/Jk ,
k=l

d d d

Cb = eo - p2 L: aij 'l/Ji 'l/Jj + p L: bi 'l/Ji - pL: Ci 'l/Ji
i,j=l i=l i=l

and'l/Ji = Di'l/J for all i E {I, ... ,d}.

10



Proof. Note that AP = UpAU;1. Furthermore, one has eP'I/J HJ(O,) - HJ(O,) and
UpDiU;1 = Di + p'l/Ji. Therefore,

d

a(U;1 u, Upv) = I:: 1aij (Di + P'l/Ji)u (Dj - p'l/;j)V
i,j=1 (1

d d

+ L:1bi (Di + p'l/;i)U V + L:1Ci U(Di - p'l/;i)V +1Co UV
i=1 (1 i=1 (1 (1

for all u, v E HJ(O,). This proves the lemma. o
The second statement in the following lemma shows again the well known fact that the

form a is coercive, which we have used already. For the sequel we need a uniform coercivity
estimate for the form aP•

Lemma 3.7 Denote by S = (e-tA)t>o the semigroup on L2(o') generated by the operator
A of Theorem 3.1.

I. There exists an w > a such that

uniformly for all pER, 'l/; E W, t > 0 and cp E L2 n L oo • The constant w depends

only on f.1, lI aijllwl,oo, IIbi ll oo, Ilcillwl,oo and IIColloo.
II. There exists an w > 0 such that

uniformly for all pER, 'l/; E W, t > a and U E HJ(O,). The constant w depends

only on f.1, lI a ijlloo, II bi 1100, Ilcilioo and IlColloo.

Proof. We show that there exists an w E R such that

d d d

Re (.~ aij Diu Dju + ?=(bf - cD DiU U + (cg + ?= DicD luI2+ w(1 + p2)luI2)
t,3=1 t=1 t=1

d

~ 2-1f.1 L: IDiuI 2 a.e. (16)
i=1

for all u E HJ(o'), pER and 'l/; E W. Here bf, cf and cg are as in Lemma 3.6. Let

The first term in (16) can be estimated by

d d

Re L: aij DiU Dju ~ f.1 L: IDiul~ a.e. ,
i,j=1 i=1

11



for all u E HJ(!l). The second term can be majorated in the following manner,

1Re t,(Y;' -cfHD;u) "I :s t, Ib; - Ci IID;ullul + Ipll t, t.(a/ri +a;.) .p. (D;u) "I
d d d

~ 2M L: IDiullul +2dMlpi L: IDiullul = 2M(d + Ipl) L: IDiullul
i=l i=l i=l

d

~ 2M(d + Ipl)e L: IDiul2+ (2etldM(d + Ipl)Iul 2

i=l
d

~ 2-1It L: IDiul2+4d3 M2It-I (1 + p2) lul2 a.e. ,
i=l

where we have chosen e = (4M(d + Ipln-llt and used the inequality xy ~ 8x2 + (48)-ly2.
Finally, we majorate the coefficient in the third term in the following manner,

d

IRe(cg +L:DiCnl
i=l

d d

~ M +d2M p2 +dMlpl +dMlpl +It; (DiCi +P(;((Diaki) 'l/Jk +aki Di'l/Jk))

~ 2d2M(l + p2) + M(d +2d2 1pl) .

Here we have used the differentability of the second order coefficients. Note that in case
p = 0 these terms vanish. Hence, for all pER

d

IRe(cg +L: Dicn I~ 4d2M(1 + p2) a.e. ,
i=l

for all pER. Therefore, (16) holds if w = 4d3M 2It-I +4d2M. Now Statement I follows
from Proposition 3.5.

Similarly one can estimate

d d d )
Re (.~ aij DiU Dju +?: bf DiU U +?: cf UDiU + c~lul2 +w(l + p2)lul2

t,3=1 t=l t=l
d

~ 2-1 It L: ID iU l
2 a.e.

i=l
if w = 4~MJIt-I +2d2Mo and

Integrating this inequality one obtains

d

ReaP(u, u) +w(l + p2)lIull~ ~ 2-1 It L: IIDiull~
i=l

for all u E HJ(!l). Hence

ReaP(u, u) + (w +2-l lt)(1 + p2)lIull~ ~ 2-lltllulltJ(o)

12



Replacing w by w + 2-1 JL proves Statement II. D

We now know that the perturbed semigroup is quasi-contractive on L oo and hence by
duality one has a bound on £(L1 ). Next we convert the L2-ellipticity estimate and the
£(Lt}-bound in a £(Ll,L2 )-bound for S (d. [Rob91] Step 2 of the proof of Proposition
III.4.2, or [Dav89], Theorem 2.4.6). For our purposes, it is important to obtain independent
constants.

Proposition 3.8 Let a be a continuous form with domain D(a) = V, with V a Hilbert
space which is continuous embedded in L2(X), where (X, E, m) is a (j-finite measure space.
Assume there exists a constant JL > 0 such that Rea(ep,ep) ~ JLllepll~ for all ep E V. Let S
be the semigroup on L2 generated by the operator associated with the form a. Suppose that
S interpolates on Lp , 1 5 p 5 2. Assume there exists a C1 > 0 such that IISt1l1.....15 C1 for
all t > O. Further, let CN, n > 0 and suppose that the Nash inequality

Ilepll~+4/n 5 cNllepll~llepI11/n

is valid for all ep E L1n V. Then there exists a constant c > 0, depending continuously on
JL, Cl, CN and n and which is otherwise independent of a, such that

uniformly for all t > O.

Proof. Let ep E L 1(0) n L2(0). Then

d liS 112 ( II 112 21-' IIStepll~+4/n
dt

tep 2 = -2Rea Step,Step) 5 -2JL Step v 5 -- 4/n
CN II Step II1

< _ 2JL (IiStepIIDl+2/n

- CN c1/n Ilepll1/n

Therefore,

and by integration

Now the theorem follows if one takes c = (4JLt n/4(ncN )n/4C1 .

We continue the proof of Theorem 3.1.

D

Corollary 3.9 Denote by S = (e-tA)t>o the semigroup on L2(0) generated by the operator
A of Theorem 3.1. Then there exist c, w > 0 such that

IISfIl1.....00 ~ et-d/2ew(1+p2)t

uniformly for all t > 0, pER and 'ljJ E W.

13



Proof. Since the form-adjoint of a is of the same form as the form a it follows from
Lemma 3.7 that there exist J.t, w > 0 such that Re aP('P, e.p) +w(l + p2) 1Ie.p1l~ ;::: J.tlle.pllk t and
IISfe-w(l+p2)tlh_1 ~ 1 uniformly for all pER, 'l/J E W and t > o. Here aP is as in Lemma
3.6. Moreover, by the Nash inequality (Lemma 2.6) there exists a CN > 0 such that

for all e.p E L 1(f!) n HJ(f!). Then by Proposition 3.8 there exists a c > 0 such that
IISfe-w(l+p2)tlh_2 ~ et-d/ 4 uniformly for all pER, 'l/J E Wand t > O. So

(17)

But by duality it then follows that

IISfl12-00 ~ et-d/ 4e w(l+p
2
)t ,

possibly by enlarging c and w. Then

IISPII < liSP II liSP II < 2d/2c2rd/2ew(l+p2)tt 1-+00 _ t/2 1-2 t/2 2-00 -

uniformly for all t > 0, pER and 'l/J E W. D

Now Theorem 3.1 has been proved completely by an application of Proposition 3.3.
D

Remark 3.10

I. A version of Theorem 3.1 with somewhat complementary assumptions has been
obtained by [ER93] for f! = Rd: if aij E W2,00(Rd ) are complex coefficients and
satisfy

d

Re L: aij(x)ei ej ;::: J.tlel 2

i,j=1

for all eE R d , for a.e. x E R d , with J.t > 0, and bi , Ci, Co E L oo then the assertions in
Theorem 3.1 are valid.

II. If the coefficients aij in Theorem 3.1 are real and symmetric and bi = Ci = 0, then
one can deduce Theorem 3.1 for f! from the corresponding theorem for Rd since the
semigroup on Lp(f!) is dominated by the corresponding semigroup on Lp(Rd ) (see
[ABa93] Examples 4.9 and 5.6 and Theorem 6.2).

4 General boundary conditions

In this section we consider second order operators in divergence form with real, L oo , non
symmetric second order coefficients. Moreover, we drop the assumption that the operator
satisfies Dirichlet boundary conditions. Since here all coefficients are supposed to be real
we will only work over the real field in this section. So all spaces are real spaces. In
general there are no Gaussian bounds for an elliptic operator defined on an open subset
f! C Rd with Neumann boundary conditions, even if the operator has constant coefficients.
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An example is the Laplacian A on 0 = U~=1(2-(n+l),2-n) C [0,1] CR. Then 1(2n+1,2-n)
is an eigenvector of A with eigenvalue 0 for all n EN. Therefore, St has an eigenvalue
with infinite multiplicity and St is not compact for any t > O. But the existence of a
kernel for St with Gaussian bounds on the pre-compact set 0 x 0 C [0,1] x [0,1] implies
that St is a Hilbert-Schmidt operator and therefore compact. There are also examples of
bounded connected domains 0 where St is not compact on L2(0), see Hempel-Seco-Simon
[HSS91] for a systematic study of spectral properties of these kind of operators. Thus, in
order to establish Gaussian estimates for the kernel one needs some kind of regularity of
o or of the domain on which the sectorial form is defined. When the form domain equals
HJ(O) there is never a problem, but in case the form domain equals H1(0) one frequently
demands in the literature the condition that 0 has the extension property, i.e., for all
U E H1(0) there exists a v E H1(Rd) such that vlo = u. For example, if the boundary
of 0 is Lipschitz continuous then 0 has the extension property. We use another way to
avoid these difficulties and consider in this section "good Neumann boundary conditions"
by considering as form domain the closed subspace

of Hl(O) instead of Hl(O) (see Section 2).

Now let A be the (formal) elliptic operator

d d d

Au = - L D j aii DiU +L bi DiU - L Di(ci u) +CoU
i,j=l i=l i=l

(18)

with real coefficients. For the coefficients we suppose that aij E £00(0) (i,j E {I, ... , d}),
bi,Ci E W1,oo(0) (i E {1, ... ,d}) and Co E £00(0) are real valued functions such that

d

L aij(X) ei ei ~ lilel2

i,i=l
(19)

for all eE R d
, for a.e. x E 0, where Ii > 0 is a fixed constant. We emphasize that the

coefficients aij need not be symmetric. We consider realizations of A in £2(0) with various
boundary conditions. They will be defined by a form domain V satisfying the following
hypotheses:

V is a closed subspace of H1(0) ,

HJ(O) C V ,

v E V implies lvi, IvlA 1 E V ,

v E V, U E H1(0), lui ~ v implies U E V

(20)

(21)

(22)

(23)

Assumption (23) means that V is an ideal in H1(0). Furthermore, we assume that the
first order coefficients satisfy

i E {I, ... , d} and v E V implies bi v, Ci v E HJ(O)

15
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Now we consider the form a: V x V -+ R given by

Then a is clearly continuous and coercive, i.e., there exists an w E R such that

a(u, u) +wllull~ ~ 2-11t1Iull~

for all u E V. Let A be the operator on L2(0) associated with the form a on V. It
follows from Proposition 2.7 that the complexification of the operator A associated with
the complexified form a generates a holomorphic semigroup S on L 2(0). Recall that we
assume throughout this section that the spaces are real.

If V = HJ(O) we say that A is the realization of A in L 2(0) with Dirichlet boundary
conditions. In that case (24) is satisfied whenever bi , Ci E Wl,oo(O).

If V = H1(0) we say that A is the realization of A in L 2(n) with good Neumann
boundary conditions. In that case (24) is satisfied whenever bi1 Ci E W~,OO(n). If n is
bounded, then bi , Ci E HJ (0) is a necessarily condition for (24), since 1 E V.

Example 4.1 If aij = bij, V = H1(0) with 0 regular, then one obtains the Neumann
Laplacian with Neumann boundary conditions (d. Example 4.8).

Example 4.2 In general the boundary conditions depend on the coefficients. As an ex
ample we consider a concrete non-symmetric case. Let 0 = {rei", : r E [0,1), () E R} be
the open disk in R 2 and let V = Hl(n) = Hl(n). Consider the pure second order operator

with constant coefficients (aij) = (_ ~ ~). Then one can easily see by Green's formula

that Au = -~u for all u E D(A), and for u E C2(R2) one has

u E D(A) ¢:} U r = u'" on an .
Similarly, if we choose 0 = (0,1) x (0,1) and the same matrix for the coefficients then

U x = uy

on (0,1) x {o} U (0,1) x {1}

on {o} x (0,1) U {o} x (0,1)

Example 4.3 We may also consider what we call pseudo Dirichlet boundary condi
tions by choosing

V = Hci(O) = {ulo : u E H1(Rd
), u =°a.e. on nC

} •

One has always Hci(O) C HJ(n). The spaces are equal if n is of class CJ, but they are
different in general (see [ABa92], [ABa93]). It is clear that HJ(O) satisfies assumptions
(20), (21) and (22). We show the ideal property (23). Let ulo E HJ(n), where u E Hl(Rd

),

U = °a.e. on nco Let v E H1(0), Ivl ~ U. There exist WI, W2, ••• E Hl(Rd
) such that
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limwnln = v in Hl(n) and a.e. on n. Let Vn = (wnl\u)V(-u). Then Vn E Hl(Rd
), Vn = 0

a.e. on nc and lim V n = v in L 2(Rd ), where

v= {V(X) ifxEn ,
o ifxf/.n.

It follows from (3) that Divn = 0 a.e. on nco Therefore, fRd IDivn - Divml2 = fn IDivn 
DiVm 1

2
• Hence VI, V2, . .. is a Cauchy sequence in Hl(Rd

). This shows that v= lim Vn E
Hl(Rd).

Finally one may consider mixed boundary conditions in the following way.

Example 4.4 Let r1 c an be a closed set and

v = -:-"{u--:"In-:-u-E-C=O-go-(=R""""'d"""'\r=-l"""")"'-}'HI (n)

.,..-..------=---;-;:;:::--;;-=-~W,l ,00 (n)
Let r 2 c an be closed such that r 1ur2 = an and bi,Ci E {<pIn: <P E cgo(Rd\r2 )} •

Then (20) - (24) is satisfied.

Proof. The domain V clearly satisfies (20) and (21). Let u E V. Then there exist
UI,U2, E C~(Rd\rl) such that limun = u in H1(O). Then limu~ = u+ in Hl(O). Let
eI, e2, E C~(Rd) be a regularizing sequence. Fix n E N. Then for sufficiently large m
one has em * u~ E C~(Rd\rd and limm em * u~ = u~ in Hl(Rd). Therefore, u+ E V.
It follows that lui = u+ V u- E V. Using the regularizing sequence again one proves in a
similar way that u 1\ 1 E V whenever 0 :::; u E V. This proves condition (22).

Next we prove the ideal condition (23). Let v E V, u E H1(O) and suppose that
lui:::; v. There exist VI, V2, ... E C~(Rd\rl)' UI, U2 E ... E C~(Rd) and f E L2(n) such
that lim vnln = v in Hl(n), lim unln = u in H1(O), lim vnln = v a.e., limDivnln = DiV
a.e., limunln = u a.e., limDiunln = DiU a.e., and, Ivnl :::; f a.e., IDivnl :::; f a.e., lunl :::; f
a.e. and IDiunl :::; f a.e. on 0 for all n E Nand i E {I, ... , d}. Then lim u~ln = u+ in
H1(n) and lim(u~ I\vn)ln = u+ I\v = u+ in H1(O). For all n E N one has em*(u~ I\vn) E
C~(Rd\rd for large m and lirnm em*(u~ I\vn) = u~ I\vn in Hl(Rd). So u+ E V. Similarly
u- E V and therefore u = u+ - u- E V.

,..-..------=---=::-;-:--=-':'"7""WI ,oo (n)
Finally, let bE {<pIn: <P E cgo(Rd\r2)} and u E V. We show that bu E HJ(O).

There exists bI, b2, ... E C~(Rd\r2) and UI, U2, ... E C~(Rd\rd such that limbnln = b
in Wl,oo(O) and lim unln = u in H1(O). Then (bnun)ln E C~(O) and lim(bnun)ln = bu in
H1(n). This shows condition (24). D

Theorem 4.5 Let V satisfy (20) - (23). Let A be the operator associated with the form a
given by (25) with domain V and real coefficients aij E Loo(O), bi, Ci E Wl,oo(n) and Co E
Loo(n) satisfying the ellipticity condition (19) and the condition (24). Then A generates a
positive semigroup (e- tA )t>o which interpolates on Lp ( n), 1 :::; p :::; 00, and which is given
by a kernel /{ for which /(t E Loo(O x 0) for all t > 0 satisfying

(x,y)-a.e.

for some constants b, C > 0 and w E R, uniformly for all t > O.
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In the proof of Theorem 4.5 we will again use Davies' perturbation method and prove
ultracontractivity of SP uniformly for all real tP E Cb'(Rd

) with I/D i tPI/1 =:; 1. In case of
(good) Neumann boundary conditions the method of Section 3 is, however, not applicable
since (Sf e-wt)t>o is not Loo-contractive for any w E R, in general, even for the Laplacian
as the following example shows.

- 1Example 4.6 Let !1 = (0,1) C R, V = H1(!1) = H1(!1) and a(u,v) = fo u'v'. Let p = 1
and tP E Cb'(R) be such that tP(x) = x for all x E [-1,2]. Then SP is associated with the
form

aP(u,v) = 11
(u'+u)(v'-v) .

Let w E R and suppose that IISfe-wtlloo~oo ~ 1 for all t > O. Then e-wtSfl ~ 1 for all
t > 0 in Loo (!1). Denote by AP the generator of SP. Since 1 E D(AP) it follows that

(AP +wI)1 = lim (I - e-
wt

Sf)1 > 0
t!O t -

Hence by density of D(A)+ in H1(!1)+ one deduces that

aP(I,u)+w(l,u)L2 ~O

for all u E H1(!1)+. Next for n E N set un(x) = (1 - x)n. Then Un E H1(O)+ and

o~ aP(I, un) +w(1, Un)L2 = l\u~ - Un) +W11

Un

11 w-l
= un(l) - un(O) + (w - 1) Un = -1 +--

o n+l

This gives a contractions if one chooses n sufficiently large.
This example has been considered before by Ouhabaz [Ouh92b] Remark 4.3(b) in a

different context. 0

The method of proving ultracontractivity we use in this section is based on the following
proposition (d. [Rob91] Chapter IV pp. 262-264). Again, it is important for us to obtain
constants which do not depend explicitly on the coefficients of the operator.

Proposition 4.7 Let S be a real continuous semigroup on L2(X) whose complexification
is a holomorphic semigroup, where (X, E, m) is a a-finite measure space. Assume that S
is consistent on Lp(X), 2 ~ p =:; 00. Let C1'/J, > 0 and V be a Hilbert space which is
continuously embedded in L2. Suppose that (Step)P E V, t H I/Stepl/~: is differentiable and

~ IIStepl/~: ~ -Jll/(Step)PI/~ + C1p21/(Step)Pll~

for all t > 0, all real ep E L2 n Loo and p E 2N. Let CN, n > 0 and suppose that the Nash
inequality

I/epll~+4/n ~ cNllepll~I/epl/~/n

is valid for all ep E L1n V. Moreover, let M ~ 1 and w ~ 0 be such that
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for all t > O. Then there exists a C2 > 0, depending only on CN and n, such that

IISt1l2....oo ~ C2 M/-l-n/4rn/4ewtetcl/2

for all t > O.

Proof. Let cp E L1nV. Set CPt = StCP for all t > O. If CPta = 0 for some to > 0, then CPt = 0
for all t > to and by holomorphy of S it follows that CPt = 0 for all t > 0 and hence cP = o.
So we may assume that CPt =j:. 0 for all t > O. Then it follows from the Nash inequality that

d II PI12+4/n
II 11 2P < /-l CPt 2 211 PI1 2

dt CPt 2p - -- II P114/n +C1P CPt 2CN CPt 1

II 11
2P+4P/n

/-l CPt 2p +C 21111'J 112P
II 11

4P/n 1P rt 2p
CN CPt p

Therefore,

and

~ (lIcptI12pe-2-1CIPt) -4p/n ~ 2/-l(CN nt 1(lIcptllpe-2-1ctpt) -4p/n

Since limp....oo P(1 - (1 - p-2 )P-1) = 1there exists au> 0 such that

for all p ~ 2. Next define
!2(t) = M ewt llcpll2

and by induction for all p E {2 r
: r E N} define

!2p(t) = (C3/-ltn/(4P)e2-1ctt/ppn/(2P)!p(t) ,

where C3 = 2u(CNn )-1.
Note that !p is an increasing function. We shall prove by induction that

(26)

(27)

for all p E {2 r
: r E N} and t > O.

Clearly (27) is valid if p = 2. Let p E {2r : r E N} and suppose that (27) is valid for
all t > O. Then it follows by integration from (26) that

(lIcptIl2pe-2-1cIpt) -4p/n

~ 2/-l(cNn)-li
t

(s-2-1n(2-1_p-l)!p(s)e-2-1clPS)-4P/n ds

~ 2/-l(cNn)-1 !p(t)-4p/n it sp-2e2ctp2s/n ds
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it 2
~ 2p,(CNn)-1 fp(tt 4P/n Sp-2 e2q p sin ds

(1-p-2 )t

~ 2p,(cNntle2Clp2(1-p-2)t/n f p(tt 4P/n r Sp-2 ds
J{1_p-2)t

= 2p,(cNn)-le2Clp2(1-p-2)t/n fp(tt 4P/n(p(p _1))-ltP- 1p(1 _ (1 _ p-2)P-l)

~ 2p, u(cNntle2clp2{1_p-2)t/n p-2 t p- 1fp(tt 4p/n

for all t > O. Therefore,

IleptIl2pe-2-1qpt ~ (C3 p,)-n/(4P)e-2-1qp(1-p-2)tpn/(2P)r2-1n(2-1_(2P)-1) fp(t)

and

Ileptll2p ~ (C3 p,tn/(4P)e2-1clt/P pn/(2p) r 2- 1n(2-1-(2p)-1) fp(t) = r 2- 1n(2-1-(2P)-1) f2p(t)

It follows from the definition of fp that

00

~ c;n/4M( II 22-k-lnk)p,-n/4e2-1qtewtllepI12
k=l

for all r E N. Hence by (27),

IIStepll2r ~ C2 M p,-n/4rn/4t2-r-lne2-1cltewtllepIl2 ,

h -n/4 TI 2-k - 1 k hwere C2 = C3 ~l 2 n • T us

IISteplloo ~ lim sup IIStepl12r ~ c2Mp,-n/4rn/4e2-1cltewtllepI12
r-oo

and the proposition has been proved. o
Proof of Theorem 4.5 It follows from Lemma 3.7.11 and Proposition 2.7 that the com
plexification of the operator A associated with the complexified form a generates a holo
morphic semigroup S = (e-tA)t>o on L2(0). Note that the proof of Lemma 3.7.11 is valid
for aij E Loo(O) and U E H1(0). Recall that we assume throughout this section that the
spaces are real.

First we show that S is positive. Let ep E V. Since Diep+ = l[cp>ojDiep and Diep- =
-l[cp<ojDiep one has a(ep+,ep-) = O. It then follows from [Ouh92b] Theorem 2.4 (which is
also valid in case of real spaces) that S is positive.

Secondly we show that there exists a constant w E R such that

(28)

for all ep E L2(0) n Loo(O) and t > O. Since the proof is very similar to a proof in Section
3 we discuss the critical steps. We wish to apply the proof of Lemma 3.7.1 in case p = O.
In that case we do not need the differentiability of the second order coefficients. Secondly,
we used intergration by parts in the proof of Proposition 3.5. But by assumption (24) one
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has (CiU) E HJ(O) for all U E V and i E {I, ... , d}. Hence J CiU Div = - J Di(CiU) v =
- J(DiCi) Uv- J Ci (DiU) v for all u, v E V. Thirdly, one needs to verify that Theorem 4.2(3)
(or Theorem 2.7) in [Ouh92b] is also valid for real spaces and that (1/\ luI) sgn U E V for
all U E V. But (1/\ lul)sgnu = u - (u -1)+ + (-u -1)+ E V for all u E V. Therefore,
the semigroup S is quasi-contractive on Loo .

Thirdly, replacing A by A*, S by S*, a(u, v) by a*(u, v) =a(v, u) one obtains by duality
the L1- bound

IIStlp11t ~ ewtlllpiit (29)

for some w > 0, uniformly for all t > 0 and lp E L 1 n L 2• It follows from (28), (29) and
Lemma 2.1.1 that S interpolates on Lp(O), 1 ~ p ~ 00.

Fourthly, let .,p E W (see Section 3), pER and define Uplp = e-PVJlp as before. We show
that Uplp E V for alllp E V and pER. It follows from Lemma 2.5.II that e-PVJlp E H1(0)
because lp EVe H 1(0). Since le-PVJlpl ~ cllpl it follows from the ideal assumption (23)
that Uplp = e-PVJlp E V. Now define the form aP:V x V ---+ R by

d

aP(u, v) = E 1aij (Di + p.,pi)U (Dj - p.,pj)V
i,j=l n

d d

+E1bi (Di + p.,pi)UV +E1Ci U(Di - p.,pi)V +1Couv
i=l n i=l n n

and let AP be the operator associated with the form aP. Then aP(u, v) = a(U;lu, Upv)
for all u, v E V, so AP = UpAU;l. Hence Sf = UpStU;l for all t > 0, where SP is the
holomorphic semigroup generated by AP. It then follows as in the proof of Lemma 3.7.II
that there exists an w > 0 such that aP(ep,ep) +w(l +p2)lIepll~ 2:: 0 for all ep E V. Note that
the second order coefficients aij need not be differentiable in Lemma 3.7.II. Hence

for all t > O.
Fifthly one has (Sfep)P E V whenever t > 0, ep E V n Loo(O) and p E 2N. In fact, let

f = Sfep. Then f EVe H1(0) and therefore f E H1(0) n Loo(O). By Lemma 2.5.IV we
have jP E H1(0). But IPI ~ IIfll~llfl = clfl. Therefore, it follows again from the ideal
assumption (23) that jP E V.

Sixthly, let ep E V n Loo and p E 2N. We show that t f-+ IISfepll~: is differentiable on
(0,00) and that

(30)

where we set ept = Sfep. Note that ep~ = -!tlpt = -APept exists in L2(0) since SP is
holomorphic and that ept E L2n Loo . Let t > O. Then

Ih-1(lIept+hll~:- lIeptll~:) - 2pJep~p-1ep~1

= IJh-1(ep~~h - ep~P) - 2p Jep~p-1ep~1

= If h-1(ept+h - ept)(ep~~h1 + ep~~h2ept +.,. + ept+hep~P-2 +ep~P-1) - 2pJep;p-1ep~1
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= IJ(h-1(ept+h - ept) - ep~)(ep~~h1 + ep~~h2ept + ... + ept+hep~p-2 + ep~P-1)

+Jep~ ( ep~~h1 - ep~P-1) + (ep~~h2ept _ ep~P-1) +...

...+ (ept+hep~P-2 _ 'P;P-1) + ('P~P-1 _ 'P;P-1))I
< Ilh-1( ) 'II II( 2p-1 2p-2 2p-2 2P- 111_ 'Pt+h - 'Pt - 'Pt 2 'Pt+h + 'Pt+h 'Pt +... + 'Pt+h'Pt + 'Pt 2

+ IJ'P~('Pt+h - 'Pt)gt,hI
~ cllh-1('Pt+h - ept) - 'P~1I2 + IIgt,hllooll'P~11211'Pt+h - 'Pt1l2 ,

which tends to 0 if h tends to O. Here gt,h is an element of Loo(n) which is uniformly
bounded for small h by the estimates (28). (Note that t, p and tP are fixed.)

Seventhly, we show that there exists a constant c > 0 such that

d d
dt IISfepll~~ ~ _2-1Jt ?: IIDieptll~ + c(1 + p2)p211'Pfll~

~=1

uniformly for all t > 0, pER, tP E W, 'P E V n Loo(n) and p E 2N. By (30) we have

~ IISf'PII~~ = -2P.t (aiADi +PtPi)'Pt, (Dj - PtPj)'P~P-1)
1,)=1

d d

- 2p I)bi(Di + PtPi)ept, ep~p-1) - 2pI)Ci 'Pt , (Di - PtPi)ep~p-1) - 2pJCo'P~P
i=l i=l
d

= -2p L (aijDi'Pt, Djep~P-1) + 72 + 73 + 74 ,

i,j=l

where 72 is the sum of terms of the form pp(kiDi'Pt,ep~P-1), 73 is the sum of terms of the
form pp(k:'Pt, Di'P~P-1), and 74 is a term of the form p«ko + k~p + kgp2)'Pt, 'P;P-1), with
ko, k~, kg, ki, k: E Loo(n) functions of which the Loo-norm is bounded uniformly in tP E W,
and is independent of p, p, ep and t. We estimate the first term.

d d

-2p L (aijDi'Pt, Dj'P~P-1) = -2p(2p - 1) L (aijDi'Pt, 'P~P-2Dj'Pt)
i,j=l i,j=l

d

= -2p(2p - 1) E (aijepf-1 Diept, epf-1 Djept)
i,j=l

d

= -2p-1(2p -1) L (aijDi'Pf, Dj'Pf)
i,j=l

d

~ -2p-1(2p - I)Jl E IIDi'Pfll~
i=l

d

~ -2Jl L IIDi'Pfll~
i=l

The second term can be estimated by

d d

1721 ~ Ipp ~(kiDi'Pt, 'P~P-1) I= Ipll ~(ki Diepf, 'PnI
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d d

~ c21pl L: II DiCf'f 112 II Cf'f1l2 ~ c; L: IIDiCf'fll~ + (4c;)-lc;dp211Cf'fll~
~1 ~1

for all c; > 0. The third term can be estimated by

d d IIT31 = Ipp~(k:Cf'hDiCf'~P-1)1 = Ip(2P-l)P~(k:Cf't'Cf'~P-2DiCf't)

d d

= 1(2p - l)p ~(k:Cf'f,DiCf'nl ~ c3plpl ~ IIDiCf'fIl211Cf'fIl2

d

~ c; L IIDiCf'fll~ + (4c;t1c~dp2p211Cf'fll~
i=l

The fourth term is trivial:

The constants C2, C3 and C4 are independent of p, p, t/J E W, Cf' and t. Choosing c; appropriate
one obtains that

for some constant c' > 0, independent of p, p, t/J E W, Cf' and t.
Recall that one has the estimate II Sf 112--+2 ~ ew'(l+p2)t for some w' > 0, uniformly for all

t > 0, pER and t/J E W. Now one can apply Proposition 4.7 and deduce that

(31)

for a constant c > 0, independent of p, t/J and t and w = w' + (c' + J.L) /2. Since the adjoint
of SP is of the same form we obtain by duality

IISflh--+2 ~ et-d/ 4ew(1+p
2

)t

possibly by enlarging c and w. Hence

IISflh--+oo ~ 2d/2c2rd/2ew(l+p2)t

for all t > °and pER. Now the theorem follows from Proposition 3.3.

Remark.

o

I. One would expect to obtain the results of Theorem 4.5 also for coefficients bi , Ci E Loo •

The main point in the above argument is to prove that S operates consistently on L1

and Loo • This could be proved if the D i are small perturbations of A. However, this
is not true in general. In fact, even the domain of the Dirichlet Laplacian on Lp(O)
is not contained in W 1,P(O) for p sufficiently large, if 0 is not regular, in general
(see [Gri85]). This also shows that in general there are no Gaussian type bounds for
the derivatives of the kernel if the domain is not regular (even if the coefficients are
constant).
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II. In general the theorem is false if all coefficients are complex. A counter example
on a subset of Rd has been presented by Maz'ya-Nazarov-Plamenevskii [MNP85]
and on R d by Auscher-Tchamitchian [AT94] in case d ~ 5. Semigroups generated
by complex operators on R 1 and R 2 have Gaussian kernel bounds by Auscher
McIntosh-Tchamitchian [AMT94].

Finally we consider the realization of A (see (18)) with Robin boundary conditions.
For this we assume that 0 is a bounded open set in Rd with Lipschitz boundary r =ao
and we let f3 E Loo(r) be a positive function. We still assume the conditions (20) - (23) on
the form domain V and the condition (24) on the coefficients. By a we continue to denote
the form (25) defined on V. Let b: V x V ~ R be defined by

b(u, v) = t f3(x)(Bu)(x)(Bv)(x) d;(x) ,

where B: Hl(O) ~ L2 (r) denotes the trace operator (see Section 2). Then b is a continuous
bilinear form on V. Set

q=a+b.

Then q is a continuous bilinear form on V which is coercive. Let A be the operator
associated with the form q. We call A the realization of A with Robin boundary condi
tions. Note that Robin boundary conditions coincide with Dirichlet boundary conditions
if V = HJ(O) and with (good) Neumann boundary conditions if V = H1(0) and f3 = o.

Example 4.8 Let aij = 8i j, bi = Ci = 0, Co = 0 and V = H1(f!). Assume that u E
D(A) n C2(f!). Then

auan = -f3u on r . (32)

Conversely, if u E C2(f!) is such that (32) holds then u E D(A). This follows by applying
Green's formula. We call A the Laplacian with Robin boundary conditions.

Theorem 4.9 Let A be the realization of A with Robin boundary conditions. Then A
generates a semigroup S = (e-tA)t>o on L2(0) which interpolates on Lp(O), 1 ::; p ::; 00.

The semigroup S is positive and is given by a kernel J{. Moreover, there exist b, c > 0 and
w E R such that

(x, y)-a.e.

uniformly for all t > o.

Proof. First we show that S is positive. Let u E V. By [Ouh92b] Theorem 2.4 we
have to show that q(u+,u-)::; O. Since a(u+,u-) = 0 (see the proof of Theorem 4.5) and
Bu+ = (Bu)+ and Bu- = (Bu)- (by (10)), we have

b(u+,u-) = tf3(x)(Bu)+(x)(But(x)d;(x) = 0

Thus q(u+ , u-) ::; O.
Secondly, it follows from Proposition 2.7 that A generates a semigroup on L2(0).
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Thirdly, we show that S interpolates on Lp (!1), 1 ~ p S 00. By the properties (10) of
the trace operator we have B((lul- 1)+ sgn u) = B(u -1)+ - B(-u -1)+ = (Bu -1)+ 
(-(Bu) -1)+ for all u E Hl(!1). Therefore,

b(u, (Iul- 1)+ sgn u) =J{3 (Bu) ((Bu - 1)+ - (-(Bu) - 1)+) d-y ~ 0

Now one argues as in the proof of Theorem 4.5 and deduces that S generates a quasi
contraction semigroup on L oo and by duality it interpolates.

Finally, let Sf = UpStU;l where pER and 'l/J E W. Then the associated form is given
by

qP(u, v) = q(U;lU, Upv) = aP(u, v) +b(u, v)

since b(U;lU,UpV) = b(u,v). Then the proof of Theorem 4.5 carries over to the present
case. 0

Remark.

I. An alternative proof of Theorem 4.9 using the results of Theorem 4.5 can be given
by domination. Denote by A(a) the operator associated by the form a and s(a) =
(e-tA(a) )t>o the semigroup generated by A (a). Then Sand s(a) are positive semigroups
and q(u,v) ~ a(u,v) for all u,v E V+. So it follows from [Ouh93] Proposition 3.2
and Theorem 3.7 that S is dominated by s(a), i.e., IStepl ~ SJa)lepl for all ep E L 2(!1).
Then K t S K1a

) and Gaussian estimates follow.

II. Similarly, one could prove Theorem 4.5 first for good Neumann boundary conditions
(i.e. V = Hl(!1)) and then deduce the Gaussian estimates for the general V by
domination. However, this requires bi, Ci to be elements of HJ(!1) which is stronger
than our assumption (24).

5 Applications

In this section we give two kinds of applications of the previous results. They concern the
holomorphy of the semigroup in Lp and the bounded Hoo functional calculus.

If T is a holomorphic semigroup on L2 (!1) which interpolates on Lp (!1), 1 ~ P S 00,

then it follows from Stein's interpolation theorem that T is also holomorphic on Lp , 1 <
P < 00, but it may not be holomorphic on L1• For elliptic operators with boundary
conditions holomorphy in L 1 has first been proved by Amann [Ama83] for regular bounded
domains and later for Dirichlet boundary conditions and no regularity assumptions on
the domain in [ABa93] and [ABa92]. More recently Ouhabaz ([Ouh92a] and [Ouh95])
used Gaussian estimates and a Phragmen-Lindelof argument (d. [Dav89], Theorem 3.4.8)
to show holomorphy for symmetric operators (see also [Dav93] Lemma 2). Here we prove
holomorphyon Lp (!1), 1 ~ P ~ 00 on a sector where IISz1l2-+2 ~ ew1zl by a direct short proof
avoiding the Phragmen-Lindelof theorem (see Theorem 5.2). In order to obtain a possibly
larger sector, however, we adapt the Phragmen-Lindelof argument to the non-symmetric
case (see Theorem 5.3).
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Adopt the notation and assumptions of Theorems 3.1, 4.5 or 4.9. In case of Theorems
4.5 and 4.9 we complexify the form domain V and the form a. Set

d

Oa = 1r/2 - inf{O > 0: L aij(X)eiej E L:(O) for all eE Cd, for a.e. x E O}
i,j=1

Note that Oa = 1r/2 if the aij are symmetric, i.e., aij(x) = aji(x) for a.e. x E 0 and all
i, j E {1, ... ,d}.

It is a standard exercise to show that the semigroup S = (e-tA )t>o generated by the
operator A associated with the form is a holomorphic semigroup on L2 , with a holomorphy
sector which contains at least L:(Oa). In fact one has the following.

Lemma 5.1 Adopt the notation and assumptions of Theorems 3.1, 4.5 or 4.9. Then for
all pER the operator AP generates a holomorphic semigroup SP on L 2(0), holomorphic
in the sector L:(Oa). Moreover, for all 0 E (O,Oa) there exists an wE R, depending only on

0, /1, Ilaijlloo, Ilbill oo, Ilcilioo and Ilcolloo, such that

IIS:1I2->2 ~ ew(I+p
2
)lzl

for all z E L:(O), pER and'ljJ E W.

Proof. Let 0 E (0, Oa). There exists v > 0 such that Re Ef,j=l eiOtaij(x) ei ej ~. vlel2
uniformly for all Q' E [-0, OJ, eE Cd and a.e. x E O. Then one can argue as in the proof
of Lemma 3.7 and deduce that

d d d

Re e
iOtC~ aij Diu Dju +?= bf Diu U +?= cf U DiU + cglul 2

) +w(1 +p2)lul2
1,3=1 1=1 1=1

d

~ 2-1
V L IDi uI2 a.e.

i=1

uniformly for all Q' E [-0,0], U E V, pER and 'ljJ E W if one chooses w = 4d3 MJV-I +
2d2Mo and where

as before. Again integrating this inequality gives

d

Re(eiOtaP(u, u)) +w(1 + p2)lIull~ ~ 2-1 /1 L IIDiull~
i=1

Hence SP is holomorphic on L:(0) and

uniformly for all Z E L:(O), pER and 'ljJ E W. o
We next show the remarkable fact that S is even holomorphic on any Lp , 1 ~ p S 00,

with a holomorphy sector which contains at l~ast L:(Oa).
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Remark. Here a holomorphic semigroup S on L oo of angle 0 E (0, 1r/2] is by definition
a holomorphic mapping S: E(O) -+ £(Loo ) such that SZ+ZI = SZSZI for all z, z' E E(O) and

lim (Sz'P, t/J) = ('P, t/J)z-->ozEE(6-e)

for all 'P E Loo , t/J E L1 and e E (0,0).

Theorem 5.2 Adopt the notation and assumptions of Theorems 3.1, 4.5 or 4.9. Then
the semigroup S generated by the operator A is holomorphic on any L p , 1 :5 p :5 00,

with a holomorphy sector which contains at least E(Oa)' Moreover, Sz has a kernel K z E
Loo(n x n) for all z E E(Oa) and for all 0 E (O,Oa) there exist b, c > 0 and w > 0 such that

IKz(x; y) 1 :5 c(Re ztd/2e-blx-1I12Izl-1 ew1zl (x, y)-a.e.

uniformly for all z E E(0).

Proof. Let 0 E (O,Oa)' Choose 01 E (O,Oa)' There exists a h > 0 such that ht+is E E(OI)
for all t + is E E(O). By Lemma 5.1 there exists WI > 0 such that

IIS:112-->2 :5 eW1 (l+p2)lzl

uniformly for all pER, t/J E Wand z E E((1 ), By (17), (31) and duality there exist
c, W2 > 0 such that

IISflll-->2 :5 et-d/ 4e W2 (l+p2)t , IISfI12-->00:5 crd/ 4e W2 (l+p2)t

uniformly for all PER, t/J E Wand t > O. Now let z = t + is E E(O). Then

IIS:lh-->oo :5 II S(I-s)t/2111-->21I S:t+is 112-->211 S(I-s)t/2112-->00

:5 (c((l _ h)tj2td/4eW2(l+p2)(I-S)t/2) 2 e W1 (I+p2)ISt+is l

:5 c'rd/2ewl(l+p2)lzl

for some c',w' > 0, independent of z and uniformly for all pER and t/J E W. Now the
complex Gaussian bounds follow as in Proposition 3.3.

Moreover, by Proposition 3.3 there also exists a Cl > 0 such that II Steia IIp-->p :5 Cl ew't ,

uniformly for all t > 0 and a E [-0,0]. The holomorphy now follows from Kato [Kat84],
Theorem IX.1.23. 0

The above short proof for the complex Gaussian bounds works well for elliptic dif
ferentialoperators. More generally, any holomorphic semigroup on L 2(n) with real time
Gaussian bounds is holomorphic on Lp(n), 1 :5 p :5 00, with the same sector as in L2•

This is proved in the next theorem. It was known before for symmetric semigroups (see
Ouhabaz [Ouh92a] and [Ouh95]).

Theorem 5.3 Let S be a holomorphic semigroup on L 2(n), where n is an open subset of
Rd. Suppose S is holomorphic in the sector E(( 0 ), where 00 :5 1r/2 and suppose that St
(t> 0) has a kernel K t which satisfies Gaussian bounds

IKt(x; y)1 :5 crd/2e-blx-1I12t-l ewt (x, y)-a.e.
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for some b, c > °and W E R, uniformly for all t > 0. Then 8 interpolates on Lp1

1 ~ p ~ 00 and 8 is a holomorphic semigroup on Lp , 1 ~ p ~ 00, with holomorphy sector
~(Oo). Moreover, for all Z E ~(Oo) the operator 8z has a kernel /(z E Loo(O x 0) and for
all 0 E (0,00) there are b, C >°and w E R such that

I/(z(x; y)1 ~ clzl-d/2e-blx-yI2Izl-1 ew1zl (x, y)-a.e.

uniformly for all Z E ~(O).

(33)

Proof. It follows from Proposition 3.3 that the Gaussian bounds imply that 8 interpolates
on Lp , 1 ~ p ~ 00. Moreover, one has bounds 118t lh--+2 ~ Clrd/4ewlt and 118t ll 2--+oo ~

c2t-d/4ew2t, together with the bounds 118z11 2--+2 ~ Moewelzl for all z E ~(O), if 0 E (0,00)'
Then one deduces as in the proof of Theorem 5.2 that 118z11 1--+oo ~ ca(Rez)-d/2ew3IZ 1 for
all z E ~(O). Next one derives from [ABu94] Theorem 3.1 that there exists a measurable
function /(: ~(O) x 0 x 0 ---+ C such that z f-+ /((z, x, y) is analytic from ~(O) ---+ C for all
(x, y) E 0 x 0 and Ie is the kernel of 8z, where /(z(x; y) = /((z, x, y). By replacing 8z by
e-w4z 8z we may assume that Wo,Wa < O. Now one can argue as in Davies [Dav89] Theorem
3.4.8 to deduce that /(z has the complex Gaussian bounds (33) by an application of the
Phragmen-Lindelof theorem. Finally it can be proved as in the proof of Theorem 5.2 that
8 is a holomorphic semigroup on Lp , holomorphic on a sector which contains ~(Oo). D

Remark. By a similar argument one proves that if 8 is holomorphic on Lp in a sector
~(Op) then the semigroup on L2 is holomorphic on a sector which contains ~(Op). Therefore,
the maximal holomorphy sector is independent of p, 1 ~ p ~ 00.

Now consider again the semigroup 8 generated by an elliptic operator under the as
sumptions of Theorems 3.1,4.5 or 4.9. We have proved that 8 is a holomorphic semigroup
and has complex Gaussian kernel estimates

(34)

uniformly on each closed sector

t(fn = {z E C : z =f. 0, 1arg zl ~ O}

for all 0 E [O,Oa)' If the bounds (34) are valid, then

118z11 2--+2 ~ Mew1zl (35)

where M depends on band c, but with the same W as in (34). For applications to Hoo

functional calculus given below, it is important to have a good control over the W in (34).
In general, if (35) is valid for some W then there are no kernel bounds (34) with the same
w. An example is minus the Laplace operator -~ on a bounded regular open set 0 with
Neumann boundary conditions and 0 = O. Then the constant function 1 is in the domain
of -~ and -~1 = O. Therefore, 8t 1 = 1 on L2(0). Gaussian kernel bounds with W ~ 0,
however, imply that limt--+oo 8t 1 = 0, which is impossible.

We have shown in Lemma 5.1 that there are always bounds (35) with M = 1. We next
establish that there are complex kernel bounds with a slightly larger w than the w in (35)
in case M = 1.
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Theorem 5.4 Adopt the notation and assumptions of Theorems 3.1, 4.5 or 4.9. Let °E
[O,Oa) and let Wo E R be such that

115z11 2-+2 ::; ewolzl

for all z E E(O) = {z E c: z -:I 0, largzl ::; O}. Then for all w > Wo there exist b,c > 0
such that

lI<z(x j y)1 ::; clzl-d/2e-blx-yI2Izl-1 ew1zl (x, y)-a.e.

uniformly for all z E E(0).

Proof. We have to give a better estimate for Lemma 5.1. There exists v > 0 such that
ReEt,j=leiOlaij(x)eiej ~ vlel2 uniformly for all a E [-0,0], eE Cd and a.e. x E O. It
follows from the Lumer-Phillips theorem that

Re eiOla(cp, cp) +wo(cp, cp) ~ 0

for all cp E V. Let w > Wo and 8 E (0,1]. Note that ReeiCl JrfJ(x) (Bcp)(x) (Bcp)(x)d,(x) ~
oin case of Robin boundary conditions, since fJ ~ O. Then

Re eiClaP( cp, cp) +w(cp, cp) = (1 - 8) (Re eiCla(cp, cp) +wo(cp, cp)) + 8 Re eiOla(cp, cp)

+ ReeiClbp(cp,cp) + (w - (1- 8)wo)lIcpll~

~ 8Re eiOla(cp, cp) + ReeiClbp(cp,cp) + (w - (1- 8)wo)IIcpll~ ,

where
d d d

bp(cp,cp) = -p.~ J eiOlaij(DiCP)'l/JjCP+P.L J eiClaij'l/JiCPDjcp_p2.~ J eiClaij'l/Jicp'l/JjCP
.,3=1 t,3=1 .,3=1

d d

+p~J eiClbi'l/JiCPCP-P~J eiClcicp'l/JiCP
t=1 .=1

Now

d d d

8 Re eiCla(cp, cp) ~ 8v~ IIDiCPIl~ - 81~ J bi DiCP cpl- 81~ J Ci cp Dicpl- 8 J leollcpl2

d d

~ 8v L IIDiCPII~ - 28TJ L IIDiCPII~ - 8(2TJ)-ldMgllcpll~ - 8Mollcpll2
i=1 i=1

d

~ 2-1811 L IIDiCPll~ - c811cpll~
i=1

for some c > 0, independent of 8 and an appropriate choice of TJ. Here Mo is as in the
proof of Lemma 5.1. As in the proof of Lemma 3.7 one proves that there exists ad> 0
such that

d

Ibp(cp,cp)1 ::; c; L IIDiCPIl~ + c'((1 +C;-I)p2 + Ipl)lIcpll~
i=1

d

::; c; L IIDiCPIl~ + c'((1 +e-1 )p2 +8 + (48tlp2)lIepll~
i=1
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for all e > O. Combining these estimates one obtains

d

ReeiaaP(cp, cp) + w(cp, cp) ~ (2- 1c5v - c) L IIDiCPIl~ + (w - (1 - c5)wo - cc5 - c'c5)lIcpll~
i=1

- (c'(l +£-1) + (4htlc')p2I1cpll~

Since li~-+ow - (1 - h)wo - c8 - c'8 = w - Wo > 0 there exists h > 0 such that w - (1 
h)wo - ch - c'8 > O. Next take e = 2-1bv. Then

for some WI > 0, uniformly for all a E [-0,0] and pER. Therefore,

IIS:112-+2 ~ ewlzleWlp21z1

uniformly for all Z E I:(0) and pER.
By Theorem 5.2 there exist b, c > 0 and W2 E R such

lI<z(X; y)1 ~ clzl-d/2e-blx-yI2Izl-1 eW21z1 (x, y)-a.e.

uniformly for all Z E I:(O). Let a> 0 be as in Lemma 3.2. Then

IIS:II~-+oo = sup IIS:cpll~ = sup esssupi f I<:(XiY)CP(y)dyI2
IIrpll29 IIrpl129 xEn In

= esssup f 1I<:(Xiy)12dy ~ esssup f lI<z(xiy)elpllrP(x)-rP(y)112dy
xEn In xEn I n

~ esssup f lI<z(x; y)ea-llpllx-yI12 dy
xEn In

~ sup f (clzl-d/2e-blx-yI2Izl-1 +a-llpI/x-yleW2Izl) 2dy
xEn In

~ JRd (clzl-d/2e-blyI2Izl-1+a-llpllyleW2Izl) 2dy

= (c'lzl-d/4eW3P2IzleW2lzl) 2

for some c', w3 > 0, uniformly for all Z E I:(0) and pER. SO

IIS:112-+00 ~ c'lzl-d/4eW3p2IzleW2Izl

and by duality
IIS:IIt-+2 ~ c'lzl-d/4eW3p2IzleW2lzl

possibly by enlarging c' and W2 and W3. Then for all £ > 0 one establishes

IIS:IIt-+oo ~ II S:z 11t-+21I S(I-2e)z 112-+2 II S:z 112-+00

~ (c' (£lzl)-d/4eew3P2Izl eew2lzl) 2e(I-2e)wlzle(I-2e)wlp2
Izl

= (C')2e-d/2Iz l-d/ 2e(w+e(2w2-2w»)Izl e(2ew3+(1-2e)wl )p
2 lzl
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(36)

uniformly for all pER. Since w > Wo and c > 0 are arbitrary, the theorem follows by a
minimalization over p and 'I/J E W as in the proof of Proposition 3.3. 0

Next we show that the operator A + wI has a bounded Hoo-functional calculus in
Lp , 1 ~ p ~ 00. Frequently it is easy to establish a bounded Hoo-functional calculus in
L2 ; for example, m-accretativity is a sufficient condition. Recently, Duong and Robinson
[DR95] proved the remarkable fact that this functional calculus can be carried over to Lp ,

1 < p < 00, whenever a complex Gaussian estimate is valid. Their result can be applied
directly to 0 = Rd. In the following theorem we show how to extend it to fairly general
open subsets of R d by a simple direct sum argument. Concerning the definition and basic
facts on Hoo-functional calculus we refer to [DR95] and the references given there.

Theorem 5.5 Let 0 C R d be open such that ao is a null set. Let S = (e-tA)t>o be a
holomorphic semigroup on L 2(0) with generator A. Suppose that S is holomorphic in the
sector I;(B), where B E (0, 1r /2). Assume that

(a) A is accretive in L 2(0),

(b) Sz is given by a kernel J(z E Loo(O x 0) satisfying

IIC(x; y) I~ c\zl-d/2e-blx-yI2Izl-1 (x, y)-a.e.

uniformly for all Z E I;(B) and some b, c > o.

Then S interpolates on Lp(O), 1 ~ p ~ 00 and A has a bounded Hoo(I;(v))-functional
calculus for all v > 1r /2 - B in Lp(O) for all p E (1, (0). Moreover, f(A) is of weak type
(1,1) for each f E Hoo(I;(v)). Here A denotes the generator of S in Lp(O).

Remark.

I. Condition (a) implies that

(a') A has a bounded Hoo(I;(v))-functional calculus on L2(0) for some v > 1r/2-0.

Theorem 5.5 remains valid if one replaces (a) by the more general condition (a').

II. A special case of Theorem 5.5 had been obtained by Hieber [Hie94] who applied
it to a purely second order symmetric elliptic operator on a bounded domain with
Lipschitz boundary.

Proof. It follows from (36) and Theorem 5.3 that S interpolates in Lp(O), 1 ~ p ~ 00

and that Sis holomorphic on the sector I;(B) on L p. Moreover, S is bounded on I;(O) in
£(Lp ) by Proposition 3.3. Now, if 0 = R d , the assertion follows from [DR95] Theorem 3.1.

The general case can be reduced to the case where the domain is R d in the following
way. Let nl = Rd\O and let Al = - '£,1=1 a2/ax~ with Dirichlet boundary conditions on
L2(0t}. Since an is a null set one has L2(Rd) = L2(0) E!7 L2(0t}, where the decomposition
is given by f = flo. + f1n1. Let A = A E!7 AI. Then A satisfies the hypotheses of the
theorem on L 2(Rd

) and consequently, A has a bounded Hoo(I;(v))-functional calculus on
Lp(Rd

) for p E (1, (0) whenever v > 1r/2 - B. Then A has the same property.
Similarly the (1, I)-estimate follows from [DR95] Theorem 3.1. 0
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In virtue of Theorem 5.3 one obtains a bounded Hoo-functional calculus for A +wI for
some w if one has merely real time Gaussian bounds. More precisely, assume that an is a
null set and assume that the hypotheses of Theorem 5.3 are satisfied. Denote the generator
of Sin Lp(n) by A. Then for all v > 7r /2 - () there exists an w E R such that the operator
A +wI has a bounded Hoo(I:(v))-functional calculus on Lp(n), 1 < p < 00. Of course, if
A+woI has a bounded Hoo(I:(v))-functional calculus then the same is true for A+wI for
all w > woo For the elliptic operators obtained here, Theorem 5.4 allows us to consider the
result for small w.

Theorem 5.6 Adopt the notation and assumptions of Theorems 3.1,4.5 or4.9. Moreover,
suppose that an is a null set in Rd. Let v > 7r/2 - ()a, v < 7r/2 and Wo E R be such that

118z11 2....2 ~ ewolzl

for all z E E(7r/2 - v) = {z E c: z =J 0, largzl ~ 7r/2 - v}. Then for all w > Wo the
operator A+wI has a bounded Hoo(I:(v))-funetional calculus on Lp(n) for each p E (1,00).
Moreover, f(A +wI) is of weak type (1,1) for each f E Hoo('E(v)).

Proof. This is a direct consequence of Theorems 5.4 and 5.5. o
Remark. We had to suppose the very weak condition on n that an is a null set in R d

in order to apply the result of Duong and Robinson on Rd. We do not know whether this
condition can be omitted.

Corollary 5.7 Adopt the notation and assumptions of Theorems 3.1,4.5 or4.9. Moreover,
suppose that an is a null set in Rd. Let v > 7r/2 - ()a, v < 7r/2 and Wo E R be such that

118z 11 2....2 ~ ewolzl

for all z E E(7r/2 - v) = {z E c: z =J 0, largzl ~ 7r/2 - v}. Then for all w > Wo the
operator A +wI has bounded imaginary powers and there exists a c> 0 such that

uniformly for all s E Rand p E (1,00).

Proof. Apply Theorem 5.6 to the holomorphic function z f-+ zis. o
Note that the value of v in the previous theorem is less than 7r /2. This is important in

order to apply the Dore-Venni theorem [DV87] and its extensions (see [Prii93], Theorem
8.4, p. 218).

Example 5.8 Suppose the operator A is pure second order (not necessarily symmetric)
with L oo coefficients and Dirichlet boundary conditions. Moreover, suppose that n is
contained in a strip

{XERd:l<x·e<r}

for some 1< rand eE R d , e=J o. Then for all () E (0, ()a) there exists p,' > 0 such that

d

ReeiQa(cp,cp) ~ p,'L IIDicpll~
i=l
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(see [DL87a] p. 920). So

for all a E [-0,0] and r.p E HJ (0). Therefore, by the Poincare inequality, one deduces that

Reeiaa(r.p,r.p) ~ 2(r -l)-2JL'IIr.pIl~

118z 11
2

.....
2
~ e-(r-l)-2/l'lzl

for all z E E(0). As a result one obtains from Theorems 5.4, 5.6 and Corollary 5.7 that for
all 0 E (O,Oa.) there exist b, c > 0 and a negative w < 0 such that

lI<z(x;y)1 ~ c\zl-d/2e-blx-yI2Iz\-lewlzl (x,y)-a.e.

uniformly for all Z E E(O) and, if in addition ao is a null set, then A has a bounded
Hoo (E(1I))-functional calculus on Lp(O) for all p E (1,00) and 11 E (1r/2 - Oa.,1r/2). In
particular, there exists a c > 0, depending on 11, such that IIAis ll p-+p ~ cellisl for all s E R.

The next remark clarifies the nature of the angle Oa.'

Remark. Assume that bi = Ci = Co = 0 for all i E {I, ... , d}. Let A be any of the
operators considered in Theorems 3.1, 4.5 or 4.9. Then

IISz1l2.....2~ 1 for all z E E(Oa.)

by the proof of Lemma 5.1 for p = O. If 0 is bounded, V = H1 (O) and the coefficients
aij are constant, then E(Oa.) is the largest sector on which Sz is a contraction. In fact, by
the Lumer-Phillips theorem we have to show that ()a. is the smallest angle in (0, 1r/2) such
that the numerical range ()(A) of A is included in {z E C\{O} : Iarg zl ~ 1r/2 - Oet} U{OJ.
We will show the following identity

()(A) = R+O(B) = {z E C\{OJ : Iarg zl ~ 1r /2 - ()a.} U{OJ , (37)

where B = (aji) and O(B) is the numerical range of the matrix B. Obviously the second
equality is valid by definition of ()a, the convexity of the numerical range of B and the fact
that B is a real matrix. Let). E ()(B) and r ~ O. Let eE Cd be such that lei = 1 and
). = (Be, e). Let u E C~(Rd) and a E (0,00) be such that u(x) = aer6xl+...+r{dxd for all
x E 0 and lIulnll2 = 1. Then uln E Hl(n) and Diu = reiU on n for all i E {I, ... , d}.
Therefore,

a(u,u) = k(BVu, Vu) = k r2(Be,e) lul 2 = ..\r2

and R+O(B) C ()(A). Conversely, if u E H 1(n) with lIull2 = 1 then

a(u,u) = k(BVu, Vu) = k(Bv,v) IVul2 E {z E C\{O} : Iargzl ~ 1r/2 - Oet} U{OJ

since (Bv(x), v(x)) E {z E C\{OJ : Iarg zl ~ 1r /2 - Oa.} U {OJ for a.e. x E n, where

{

(Vu)(x) 'f (t"'7 )( )....t 0
v(x) = I(Vu)(x)1 1 vU X r ,

o if (Vu)(x) -I 0 .

Now (37) follows.
The equality (37) even implies that 8 cannot be holomorphic and quasi-contractive on

L2 on a sector strictly larger than E(Oa)'

We conclude by a consequence concerning the spectrum of the different realizations of
A in Lp(n).
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Theorem 5.9 (p-independence of the spectrum.) Adopt the notation and assumptions of
Theorems 3.1, 4.5 or 4.9, so A is the realization of the elliptic operator A in Lp(O) with
boundary conditions. Then the component Poo(A) of the resolvent set of A which contains
a left half-plane is independent of p, 1 ::::; p ::::; 00. Moreover, (>.1 +A)-l is a kernel operator
for all >. E Poo(A).

Proof. This follows immediately from [Are94] Theorem 4.2, the remark following Corol
lary 4.3 in [Are94] and the Gaussian estimates established here. 0
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