

Formalizing process algebraic verifications in the calculus of
constructions
Citation for published version (APA):
Bezem, M. A., Bol, R. N., & Groote, J. F. (1995). Formalizing process algebraic verifications in the calculus of
constructions. (Computing science reports; Vol. 9502). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/52bd5fad-1231-4713-8986-40223cd5ef9e

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology

Department of Mathematics and Computing Science

Fonnalizing Process Algebraic Verifications
in the Calculus of Constructions

by

M. Bezem, R. Bol and J.F. Groote
95/02

editors: prof.dr. J.C.M. Baeten
prof.dr. M. Rem

Computing Science Report 95/02
Eindhoven, January 1995

Formalizing Process Algebraic Verifications
in the Calculus of Constructions

Marc Bezern
Jan Friso Groote

Department of Philosophy
Utrecht University

Heidelberglaan 8
NL-3584 CS Utrecht

The Netherlands
Email: {Marc.Bezem.JanFriso.Groote}@phil.ruu.nl

Abstract

Roland Bol'

Department of Computer Systems

Uppsala University

P.O.Box 325
S-751 05 U ppsala

Sweden

Email: rolandb@docs.uu.se

This paper reports on the first steps towards the formal verification of correctness proofs
of real-life protocols in process algebra. We show that proofs can be verified, and partly
constructed, by a general purpose proof checker. The process algebra we use is peRL, ACP"
augmented with data, which is small enough to make the verification feasible, and at the same
time expressive enough for the specification of real-life protocols. The proof checker we use is
Coq, which is based on the Calculus of Constructions, an extension of simply typed lambda
calculus. The focus is on the translation of the proof theory of !,CRL and !,CRL-specifications
to Coq. As a case study, we verified the Alternating Bit Protocol.

Keywords: formal verification, process algebra, ACP, !,CRL, Coq
Calculus of Constructions, Alternating Bit Protocol.

1 Introduction

This paper reports on the first steps towards the formal verification of correctness proofs of real­
life protocols in process algebra. We show that proofs can be verified, and partly constructed, by
a general purpose proof checker. The focus is on the translation of process algebra (specifications
and proof theory) to the language of the proof checker. As a case study, we verified the Alternating
Bit Protocol (ABP) [BSW69J. We chose this protocol, not because there was any doubt about its
correctness, but because it is small, well-known, and numerous correctness proofs are available in
the literature [BW90, BK86b, BG93, Dro94, Kam93J.

The process algebra we use is based on the Algebra of Communicating Processes (ACP) of
Bergstra and Klop [BK86aJ. More precisely, we use I,CRL, ACpT augmented with data [GP94b,
GP94a], which is small enough to make the verification feasible, and at the same time expressive
enough for the specification of real-life prptocols. The proof checker we use is Coq [DFH+93],
which is based on the Calculus of Constructions, an extension of simply typed lambda calculus.

"'While carrying out this research, t.his aut.hor was employed by Eindhoven University of Technology, P.O.Box
513, NL-5600 MB Eindhoven, The Net.herlands.

1

The word 'verification' usually refers to a mathematical proof in a combination of natural
language and formal or informal mathematical notation. Consider for example the correctness
proof of the ABP given in Sections 4.7 and 5.7 of [BW90). It consists of a series of steps so small
that the reader is convinced of the correctness of each step. Indeed, the proof in [BW90) is more
detailed than most other verifications, because the intended reader is an undergraduate student.

For centuries, this form of verification was the best there was. But, as both the writer and the
reader of the proof are human, what guarantee does it give that a proof is indeed correct? After
all, to err is human. In some cases, especially now that computer programs and protocols are
being incorporated in vital control systems, there is so much at stake that such a verification of a
program is simply not enough. Especially in concurrent systems, where the number of situations
can be exponential in the number of components, it is not at all unlikely that an unfortunate
conjunction of circumstances is overseen during its design, testing, and verification-by-hand.

Recently it has become possible to let a computer program take over the role of the reader,
or even that of the writer of proofs. In the first case such a program is called a proof checker, in
the second case a theorem prover. The Coq-system, on which we focus in this paper, is a proof
checker equipped with very limited theorem proving capabilities.

In contrast to a 'classical' verification, a formal verification is a proofformulated completely in
a formal language; each step in it consists of the application of a formal proof rule. Theoretically,
a formal verification could be done completely by hand, but on the basis of our experience (e.g.
[Kam93)) we claim that, for real-life protocols, it can only be done using a computer. Such a
verification is, by the nature of computers, a formal verification. To stress these observations,
and also because a great deal of human input is still needed, we avoid the phrase 'automatic
verification' .

If a proof checker is convinced of the correctness of a proof, should we be convinced too?
One can never hope to achieve absolutely guaranteed correctness. But we claim that formal
verification can provide a significant increase in the level of confidence in a protocol. In order to
support this claim, we investigate which errors remain possible. We see the following types.

1. Errors of the computer system (hardware, operating system etc.). These are relatively rare,
and moreover usually result in error messages and/or sudden termination of the program,
rather than in an erroneous proof being accepted by the proof checker.

2. Errors in the underlying theory of the proof checker. This theory should be stable and
well-understood. For Coq, it is simply typed lambda calculus [Bar92, CH88).

3. Programming errors in the proof checker. Indeed, the correctness of the proof checker must
be checked thoroughly. As the program is much smaller (and more modular) than the proofs
we intend to verify, the level of confidence in large proofs is definitely raised, even if it is
still not 100%.

4. Errors in the 'context' of the proof: the definitions and axioms on which the proof is based.
In this case the proof is correct, but it does not prove what we think it does. For example,
the application of the proof rule CFAR of JLCRL can be hard to justify.

5. Errors in the theorem that one proves, or in our case in the formalization of the protocol
under consideration. Again, the proof in itself is correct. This error is more likely to occur
than the previous one, because the base theory remains fixed, whereas we prove a different
theorem each time.

2

6. In order to use a proof checker, we must translate the base theory and the theorem under
consideration to the language of the proof checker. This translation can introduce errors.

The probability of the first three classes of errors can be reduced by verifying the same protocol
on various different proof checkers (and platforms). The fourth and fifth class are orthogonal to
the use of a proof checker. In this paper we concentrate on the last class of errors: errors in the
translation. Special care must be taken when this translation deviates from the theory 'because it
is convenient in this particular proof checker'. Such errors can remain undiscovered much easier
than the others, as the translation of a particular specification is used less often, and by less
people, than the computer, the proof che~ker and the translation of the base theory.

These considerations indicate that the focus of the sceptical reader must shift from proofs to
axioms: a proof is the most likely place to find an error in an ordinary verification, but the proofs
of a formal verification are most probably correct; for the axioms there is no such guarantee.

We hope that we have achieved a correct translation of JLCRL to Coq, but the translation of
a JLCRL-specification into Coq is still done by hand. We choose to stay as close as possible to
the definitions of JLCRL and the ABP, even when this makes the proof somewhat clumsy. When
we deviate from the original definitions, we do so explicitly and with motivation. If possible, we
prove formally that the deviation is correct.

Formal verification is not limited to algebraic verification of protocols. In principle, it can
be used for any formalism [Cou93], for example I/O-automata [LMWF94, HSV94] and temporal
logic [MP82, OL82, Ho09l]. However, these formalisms are based on exploring the complete state
space of a protocol; therefore suffer from the state explosion problem. For a toy protocol like
the ABP this is not a problem; in fact, the protocol is so small that the simplest way to verify
the program algebraically also enumerates the states. However, recent experience shows that the
algebraic method discussed in this paper can handle larger protocols as well [BG94a, KS93, GP93].

In the next section, we give an overview of JLCRL and the ABP. Then we formalize the ABP
in JLCRL and sketch roughly the proof of its correctness. An introduction to Coq concludes this
section. Section 3 is the core of the paper: it discusses how IICRL was translated to Coq, and
which problems arose. It also shows how the IICRL-specification of a protocol is translated into
Coq, taking the ABP as an example. Section 4 describes in detail how a statement reflecting the
correctness of the ABP can be proved fro~ the axioms introduced in Section 3. The prooffollows
the sketch given in Section 2.3. The research on the topic of this paper is only just beginning;
therefore we conclude the paper with a list of directions for future research.

2 Preliminaries

2.1 JLeRL

JLCRL is a specification formalism, combining the process algebra ACpT [BW90] with data. We
give a brief and informal introduction here; for a complete description of its syntax and semantics
we refer to [GP94bJ, for its proof theory to [GP94a].

2.1.1 Syntax and Semantics

An algebra is usually a set, together with a number of operations on that set, in principle axiom­
atized by an equational theory. ACpT complies with this tradition. The set is a set of processes
and the operations are

3

• constants (called atomic actions, the set of atomic actions Act is a parameter of ACpT that
is often left implicit),

• the constants 0 (deadlock) and T (silent action),

• the unary operators fh (encapsulation) and TL (abstraction or hiding), where L is a set of
atomic actions,

• the binary operators +, ., II, I, and ll, being alternative and sequential composition, merge,
communication merge, and left merge. By convention, . binds strongest and + weakest.

We refer to [BW90] for an explanation of these operators. The operator I is an extension of
another parameter of ACpT, the communication function,. This is a partial function which, given
two atomic actions, returns an atomic action: their communication. , must be associative and
commutative. In this paper we assume handshaking, which means that no more than two processes
can engage in a single communication. Technically, it means that ,(,(a, b), c) is undefined for all
actions a, b, c.

Data is specified in IICRL by the declaration of sorts (types), functions (including constants)
with their types and possibly rewrite rules (stating equalities between dataterms). The corre­
sponding sections in a pCRL-specification are marked by the keywords sort, runc and rew. The
sort BooI containing the constants T and F is part of every pCRL-specification. Sorts may not
be empty.

pCRL combines ACpT with data through the following mechanisms.

• An atomic action is composed of an action name and (zero or more) parameters; these
parameters are dataterms. The section containing the declaration of action names (marked
by the keyword act) also specifies the sorts of their parameters (overloading of action names
is allowed).

• Communication is defined on action names (in a section marked cOlTIrn). Two actions only
communicate if their parameters are the same (w.r.t. the rewrite rules); the resulting action
has the same parameters. Communication is used for both synchronization and transferring
data in this way.

• The conditional operator x <I b!> y takes processes x and y and a boolean b; it behaves as x
if b = T and as y if b = F.

• The sum operator L:d,D x denotes the (possibly infinite) alternative composition of the
processes <1(x) for substitutions <1 substituting an element of the sort D for d in x.

• Processes can be defined by (recursive) process specifications (keyword proc). Parameters
are allowed in these definitions.

The conditional operator has a boolean as its middle argument. This is why the sort Bool
is part of every IICRL-specification. The symbol '=' occurs in pCRL-specifications in rewrite
rules, communication declarations, and process specifications. It is not a polymorphic function
D --+ D --+ Bool, thus it cannot be used for forming the middle argument of a conditional
operator.! Moreover, it is not entirely trivial to define such a function eqD : D -+ D --+ Bool
satisfying eqD(d, e) = T iff d = e. The following specification (by Jan Bergstra) does the trick.

1 It is not without reason that an equation between pmcesses cannot occur as the middle argument of a conditional
operator: the guarded recursive process definition P = (a <3 P = J 1> 0) would lead to a = o.

4

Example 2.1

sort Bool D
fune T, F: -+ Bool

eqD : D -+ D -+ Bool
ifD : Bool -+ D -+ D -+ D

var d,e: D
rew eqD(d,d) = T

ifv(T, d, e) = d
ifv(F, d, e) = e
ifD(eqD(d,e),d,e) = e

Claim 2.2 The equations in the previous example enforce

1. eqD(d, e) = T t-t d = e,

2. eqD(d, e) = F t-t d -# e.

Proof of Claim 2.2.
(Via the semantics of I'CRL. A proof via the formal proof theory is given in the next section.)

1,-+) d= ifD(T, d, e) = ifD(eqD(d,e),d,e)=e.

1,+-) eqD(d,e) = eqD(d,d) = T.

2,t-t) From 1, as the intended models are boolean preserving [GP94b], that is, T -# F and for all
booleans b: b = T V b = F, thus in particular eqD(d, e) -# T -+ eqD(d, e) = F. 0

2.1.2 Proof Theory

The proof theory of I,CRL is given in [GP94a) in a 'natural deduction' format. The formulae
deduced ('I'CRL property formulae') are mostly equations, and logical combinations of those.
The axioms and rules can be divided into four parts: data, ACPT, process constructs relating
processes with data and logical connectives. Some of these depend on the I'CRL-specification
under consideration, most notably its declarations of rewrite rules and process definitions.

For data, we have the axioms and rules listed in Table 1. I'CRL has no explicit quantification;
the rule SUB enforces that each variable is implicitly universally quantified. Its application is
only allowed when x does not occur in any hypothesis needed for deriving </1. For the precise
definitions of substitutions and induction rules we refer to [GP94aj. An induction rule for a sort
is based on a set of constructors for that sort. Which functions form a constructor set of a sort
is not part of the I'CRL-specification (but see [GW94]). Given a I'CRL-specification, one can
prove that a certain set is a constructor set only on the metalevel, using structural induction on
closed terms. The axiom B1 is another reason for incorporating the booleans in every I'CRL­
specification: without this axiom one can never prove the inequality of two terms (the premiss of
the rule CF2' in Table 3 below).

For the logical connectives, I,CRL has a large number of inference rules. For those, we refer to
[GP94a) (see also the proof below), except that we mention the rule RAA (reductio ad absurdum),
stating that if falsum (1.) is derivable from ,</1, then </1 can be derived. As usual ,</1 abbreviates
</1 -+1., thus negation and implication behave classically. It turns out that in proofs we do not
need the assumption ,</1 allowed by RAA. In other words, we need only the ex-falso rule.

5

REFL t = t reflexivity,
FACT t=u if t = u is a rewrite rule,

REPL
¢[t/x] t = u

replace t by u,
¢[u/x]

SUB
¢

substitute t for x,
¢[t/x]

IND ind uction rules for sorts,
Bl ~(T=F)

B2 b=TVb=F b is a boolean variable.

Table 1: The axioms and rules for data.

Proof of Claim 2.2.
We can now prove Claim 2.2 formally in the proof theory of I,CRL. For reasons of space, we do
not write the names of derivation rules to the left of the line, but below it (above it for rules
without premises). --+1, [n] denotes the rule for the introduction of an implication, where n is a
pointer to the cancelled hypothesis(-es). --+E denotes implication elimination, Le., modus ponens.
¢ V t/J is introduced in jLCRL as an abbreviation of ~¢ --+ t/J.

1,--+) FACT (1)
"-'--;--;--,----,=-

if(eq(d,e),d,e) = e eq(d,e)= T FACT
-'-;.,-;;0;--;--.--,

REPL if(T,d,e)=e if(T,d,e)=d
REPL d - e

--+1, (1] eq(d, e) = T -+ d = e

1,+-) FACT (1)
eq(d, d) - T -'-d;-=-e-

REPL eq(d, e) - T
--+1, [1] d = e -+ eq(d, e) = T

2,--+) FACT (2)
"-f---

eq(d,d)=T d=e (1)
eq(d,e)=F REPL eq(d,e)=T Bl

REPL ~T= F

--+E 1.
--+ I, [2]

--+1, [1] eq(d,e) - F-+~d - e

6

2,t-) (2)
"'--'-~------=--eq(d, e) = T

1, --+
eq(d, e) - T --+ d = e (1) B2

--+E d-e ~d= e

--+E
--+ I, [2] ~eq(d, e) = T

SUB eq(d, e) - Tv
eq(d, e) = F

--+E eq(d, e) - F
--+1, [I] ~d= e--+ eq(d,e) = F

Proofs are usually not given in such detail, for obvious reasons. For the same reasons, it is
preferable that such details need not be provided to the proof checker explicitly. 0

Al x+y=y+x CMI xlly=xlly+yllx+x Iy
A2 x + (y + z) = (x + y) + z CM2 alLx=a·x
A3 x+x=x CM3 a . x lLy = a . (xlly)
A4 (x + y) . z = X· Z + y. z CM4 (x + Y)lLz = xlLz + YlLz
A5 (x· y) . z = x . (y . z) CM5 a· x I b = (a I b) . x
A6 x+J=x CM6 a lb· x = (a I b) . x
A7 J·x = J CM7 a· x lb· y = (a I b) . (xlly)

CM8 (x + y) I z = x I z + y I z
TI x·r = x CM9 x I (y + z) = x I y + x I z

Dl lh(a) = a if a rf. L TIl n(a) = a if a rf. L
D2 8L(a) = J if a E L TI2 n(a) = r if a E L
D3 8L(x + y) = 8L(x) + 8L(y) TI3 n(x + y) = rL(x) + rL(y)
D4 8L(X· y) = 8L(x) ·8L(y) TI4 n(x . y) = rL(x) . rL(y)

SCI (xlLylllz = xll(y II z) DCI J I x = J
SC2 xllJ=x·J TCI r I x = J
SC3 xly=ylx Handshaking x I (y I z) = J
SC4 (x I y) I z = x I (y I z)
SC5 x I (ylLz) = (x I Ylllz

Table 2: The axioms of ACpT in JLCRL. a, bE Act U {J, r}.

For processes, I,CRL inherited the axioms AI-A7, CMI-CM9, DI-D4, TI (called BI in
[BW90]) and TIl-TI4 from ACpT, listed in Table 2 (CM6 is derivable). All closed instances
without process variables of the axioms SCI-SC5, DCI, TC1, and Handshaking are derivable.
SC3 and SC4 directly reflect the properties of the communication function 'Y (corresponding
axioms for II are mentioned also in [BW90], but these are derivable). The handshaking assumption
similarly results in the axiom Handshaking. SC4, CM5, CM6, and CM9 are derivable.

The axioms for the communication merge are more complicated than those of ACpT, because
of the presence of data. The presentation here differs slightly from [GP94a], where actions without
parameters are treated as a special case. See also Section 3. The axioms for the conditional and

7

CFl a(t" ... , tm) I b(t l , ... ,tm) = e(tl, ... , tm) if,(a,b) = e, m <: 0,
CF2 a(tl,··.,tm) I b(t;, ... ,t:") = & if ,(a, b) is undefined,

in particular, if a or b is & or r,

CF2'
,(ti = t:J

1::; i::; m,
a(tl, ... ,tm) I b(t;, ... ,t:") - &

CF2" a(tl, ... ,tm) I b(t;, ... ,t:",)=& if a and b have different sorts,
in particular, if m # m'.

CONDl x<JTf>y=x
COND2 x<JFf>Y=y

SUMl Ld,DP=P if d not free in P,
SUM2 Ld,DP = Le'D(p[e!dJ) if e not free in P,
SUM3 LWP = (Ld,DP) + P
SUM4 Ld,D (PI + P2) = Ld,D PI + Ld,D P2
SUM5 Ld,D (PI . P2) = Ld,D PI . P2 if d not free in P2,
SUM6 Ld,D (pdLp2) = Ld,D PI LLp2 if d not free in P2,
SUM7 LW(PI I P2) = Ld,D PI I P2 if d not free in P2,
SUMS Ld,D ih(p) = 8L (Ld,DP)
SUM9 Ld,D rL(p) = rL(Ld,D p)

SUMll PI = P2 if d not free in the assumptions

Ld,D PI = Ld,D P2 of the proof of PI = P2.

Table 3: Axioms relating processes and data. a, b, c E Act u {8, r}.

sum operators are mostly obvious. For SUM8 and SUM9, recall that encapsulation and hiding
are carried out at the level of action names. In [GP94a], SUMlO states that renaming distributes
over summation; we have omitted renaming here.

The rules REFL, REPL, and SUB also apply to processes. The counterpart of FACT is
called REC: P = q if P = q is a process equation. Finally, there are some more complicated
inference rules inherited from ACpT

: RDP, RSP, and fair abstraction. These rules refer to the
(recursive) specifications of processes. RDP, the Recursive Definition Principle, states that such a
specification has at least one solution. RSP, the Recursive Specification Principle, states that two
processes are equal, if they are both solutions of the same guarded recursive specification. The
Cluster Fair Abstraction Rule CFAR [BW90] can be paraphrased informally as: 'Any process
will eventually leave a r-cluster'. The details are discussed in Sections 3.5, 3.6, and 3.7.

2.2 The Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a communication protocol providing reliable transmission
of data through an unreliable (two-way) channel. It consists of four components: a sender S,
a receiver R, a channel J(from S to R and a channel L from R to S. These components are
connected according to Figure 1.

8

J(

2

1 4

5
L

Figure 1: Alternating Bit Protocol.

The numbered connection lines in Figure 1 represent gates, through which the components
can communicate. The sender S reads data from the input at gate 1, sends frames consisting of a
bit and a datum into the channel K at gate 2 and receives acknowledgement bits from channel L
at gate 6. These actions are represented by, respectively, rl(d), s2(n, d) and r6(n). The receiver
R receives frames from channel K at gate 3, writes data to the output at gate 4 and acknowledges
receipts by sending bits into the channel L at gate 5. These actions are represented by r3(n, d),
s4(d) and ss(n), respectively. All these rls actions have their sir counterpart in the component
with which the gate in question is shared. Communication is synchronous, i.e., only occurs when
complementary rls actions are executed simultaneously at the same gate. The resulting action
is denoted by c, i.e., 'Y(Sj, rj) = Cj for j = 2,3,5,6. The channels may corrupt data, but if they
do so they are assumed to do this explicitly by sending an error message: S3(.1.) for J(and S6(.1.)
for L. Moreover, the channels are assumed not to corrupt data ad infinitum (in that case it is
obviously impossible to ensure reliable transmission). This fairness assumption justifies the use
of the proof rule CFAR later on.

The ABP roughly works as follows: S reads a datum d from the input and starts sending
frames (eo, d) via K to R. Once R receives a frame (eo, d) it writes d to the output and starts
acknowledging the receipt of frame (eo, d) by sending bits eo via L to S. During this period
occasional incoming frames (eo, ...) are ignored by R. Process S only stops sending frames (eo, d)
once an acknowledging bit eo is received, and then reads a new datum d' from the input and
starts sending frames (€l, d') to R. During this period occasional incoming acknowledgements eo
are ignored by S. Process R only stops acknowledging with bit eo after a frame (€J, d') is received,
then writes d' to the output and starts acknowledging the receipt of frame (el, d') by sending bits
€l to S, and so on. It should be clear that the alternating bit is essential to distinguish new frames
from old ones (note that it is not excluded that d' = d) and to distinguish the acknowledgement
of a new frame from that of an old one.

The question arises: is the ABP correct? This question can only be answered after having
specified a correctness criterion: the ABP should behave externally like a buffer. This raises
several other questions: what is 'the ABP', what is 'a buffer' and what is 'behave externally'?
These questions should be answered by giving formal specifications, instead of e.g. the rough
description of the ABP above.

9

2.3 Specification and verification of the ABP in jlCRL

We now present a formalization of the ABP in /LCRL. It follows closely the definition of the ABP in
[BW90], except that now data is treated more formally (which also involved some renamings). We
make no difference between a bit and a boolean. Therefore we have no separate sort bit, but use
Bool instead. The sort booLErr (Fmme_En') is the disjoint sum of the sort Bool (D X Bool) and
a singleton sort containing an error element, with an injection ibool:Bool-+booLErr(iFrame:D X

Bool-+Frame_Err). We assume D to be a given, nonempty sort; we do not specify its elements.
The correctness of the ABP follows from the derivability in I,CRL of ABP = Buffer.

sort Bool booLErr Frame_Err

rune T,F
neg
ibool
errorbit
iFrame

: Bool
: Bool

: D X Bool
errorframe:

var bl , b2 : Bool
dJ,d2 : D

-+ Bool
-+ Bool
-+ booLErr
-+ booLErr
-+ Frame_Err
-+ Frame_Err

rew eqs and ifs for all sorts, see Example 2.1
neg(b l) = eqBool(b l , F)
eqbooLE" (ibool(bJ), ibool(b2)) = eqBool(b

"
b2)

eqb"LErr(ibool(b,), errorbit) = F
eqFram,_Err(iFrame(d

"
b,), iFrame(d l , b2)) = ifBool (eqBool(bJ, b2), eqD(dJ, d2), F)

eqFrame_Err(iFmme(d11 bd, errorfrmne} = F

act r,,84 : D
r2, 82, C2 : D X Bool
r3, S3, C3 : Frame_Err
r5, 85, C5 : Bool
r6, 86, C6 : booLErr ,

comm 1'2 I 82 = C2

r3\ 83 = C3

r5 \ 85 = C5

r6\ 86 = C6

proe Buffer= Ld,D h (d) . 84 (d)) . Buffer

ABP = T{c"c"c, ,C6,;} (O{r"s,,r,,s,,r,,,, ,r6,s6) (Sd \I Rc \I J(\\ L))

J(= Lj,DXBool(r2(f)· (i· s3(iFrame(f)) + i· 83(error frame))) .J(
L = Lb,Bool (r5(b) . (i· 86(ibool(b)) + i· ss(errorbit))) ·L

Sd = Sb(T) . Sb(F) . Sd
Rc = Rb(F) . Rb(T) . Rc

Sb(b: Bool) = Ld,D 1'1 (d)· Sf(d, b)
Sf(d: D, b: Bool) = s2(d, b)· Tf(d, b)
Tf(d: D, b: Bool) = (r6{ibool(neg(b))) + "6(e"l'Orbit)) . Sf(d, b) + "6(ibool(b))

10

Rb(b: Bool) = (Ld,D r3(iFrame(d, b)) + r3(error frame)) . 8s(b) . Rb(b) +
Ld,D r3(iFrame(d, neg(b)))· 84 (d)

We now outline the correctness proof of the ABP as formalized in Section 4. For additional de­
tails we refer to Sections 4.7 and 5.7 of[BW90). We use H to abbreviate {r2, 82, r3, 83, rs, 8S, r6, 86}

and I to abbreviate {C2, C3, Cs, C6, i}.
In order to exploit the symmetry in the protocol, we abstract from the state of the alternating

bit in the sender and the receiver. That is, we define

Sd(b: Bool) = Sb(b)· Sb(neg(b)) . Sd(b)
Rc(b: Bool) = Rb(neg(b)) . Rb(b) . Rc(b)

It is obvious, and easy to prove by RSP, that Sd = Sd(T) and Rc = Rc(T). We also need the
equally obvious equations Sd(b) = Sb(b)· Sd(neg(b)) and Rc(b) = Rb(neg(b))· Rc(neg(b)).

We introduce some more auxiliary definitions. The aim of these is to give a linear description
of the protocol before hiding. That is, the equations are of the form XO = LaO' yo, where L
denotes a mixture of alternative compositions and summations, X and Yare process variables
and a an action. If we fill in all parameters of X, we obtain a state of the protocol, and the
equation then gives all possible actions with their resulting states. This linearization is depicted
in Figure 22 of [BW90]; Figure 3 and 4 constitute the same figure somewhat simplified.

In these definitions, we use the syntax (X I E) from [BW90) to denote the process defined by
the process variable X in the recursive specification E. The advantage of this notation over pCRL
is that we can distinguish various (sub)systems of equations. This is particularly useful when it
comes to applying RSP and CFAR formally on systems of equations, as is done in Section 4.3,
respectively 4.5.

ABP_nohide(b) = BH(Sd(b) II Rc(b) II [(II L)
First(d,b) = r,(d). (X, I E,(d,b)
Exitl(d, b) = c3(iFmme(d, b)) . 84(d) . (X, I E2(d, b)

Exit2(b) = c6(iboo/(b)). ABP_nohide(neg(b))

t. t.
E,(d,b) = { X,= c2(d, b)· X 2 E2(d, b) = {

X2= i . Exitl (d, b) + i . X 3
X3= c3(errorfmme)· X 4
X4= cs(neg(b))· Xs
Xs= i·X6 +i,X7
X6= C6(errorbit) . X,
X7= c6(ibool(neg(b))). XI }

X , = cs(b) . X 2
X 2 = i· Exit2(b) + i· X3
X3= C6(errorbit) . X 4
X 4 = c2(d,b) ·Xs
Xs= i·X6 +i,X7
X6= C3 (errorframe) . X I
X7= c3(iFrame(d,b)) ,XI

The mayor task of the verification is to prove the following lemma.

Lemma 2.3 ABP_nohide(b) = Ld,D First(d, b).

}

Proof: By numerous applications of the axioms, we can infer the possible first actions of
ABP_nohide(b) and their resulting states. It turns out that

ABP_nohide(b) = Lh (d) . BH(Sf(d, b) . Sb(neg(b)) . Sd(b) II Rc(b) II J(II L)).
d,D

11

Unfolding the definition of First in the lemma, and stripping the first action on both sides, we
arrive at the proof obligation

8H(Sf(d, b) . Sb(neg(b)) . Sd(b) II Rc(b) II J(II L) = (XI I EI (d, b).

The lefthandside of this equation describes the next state of the protocol. We continue by
determining the possible first actions of this next state, and the state after that, and so on. After
lots of steps, we derive

8H(Sf(d, b)· Sb(neg(b)) . Sd(b) II Rc(b) II J(II L) =
c2(d, b)· (i. SomeState +

i . C3(errorframe) 8H (Sf(d, b) . Sb(neg(b)) . Sd(b) II Rc(b) II J(II L)),

where SomeState is some term of the form 8H(SenderStateIiReceiverStateIiKStateIiLState). The
righthandside of this equation corresponds to the structure of E\, therefore we can conclude by
RSP that the aforementioned proof obligation follows from SomeState = Exit} (d, b). Extracting
first actions twice more, and unfolding the definition of Exit1, we arrive at the proof obligation
SomeState' = (XI I E2(d, b). This one is tackled again by RSP, and results in SomeState" =
Exit2(b). Finally, we extract the first action C6(ibool(b)) of SomeState", and arrive at

8H(Sb(neg(b)). Sd(b)IIRb(b). Rc(b)IIKIIL) = ABP_nohide(neg(b)).

This equation follows immediately from our observations upon the introduction of Sd(b) and
Rc(b). 0

Theorem 2.4 ABP = Buffer.

Proof: By unfolding First, axiom T14, applying CFAR on the clusters EI and E2, and axiom
TI, we derive

T[(First(d,b)) = '·1 (d) . s4(d)· T[(ABP_nohide(neg(b))).

Combined with Lemma 2.3, we conclude

T[(ABP_nohide(b)) = (2)I(d). s4(d))· n(ABP_nohide(neg(b))).
d,D

It is now straightforward to show that ABP, being T[(ABP_nohide(T)), and Buffer both satisfy
the equation

X = (2: rl(d) . s4(d)) . (2: rl(e) . s4(e)) . x.
d:D e:D

So, a final application of RSP concludes the proof. o

2.4 The Coq Proof Checker

For a complete overview of the Coq proof checker, we refer to [DFH+93J. It is based on the Cal­
culus of Constructions, an extension of simply typed lambda calculus, but a deep understanding
of that formalism, in particular of the identification of propositions and types, is not necessary for
understanding the use we make of Coq (propositions are of type Prop and types of type Set). One
can declare types, and state the existence of (constructor) functions with their types, including

12

constants. One can express quantification and higher order logic. The implication and negation
behave constructively.

The Calculus of Constructions extends simply typed lambda calculus by inductive definitions
of sorts and propositions. A sort is defined inductively by listing its constructors. Such a definition
of an Inductive Set yields an induction principle and a Match-function, which enables the
definition of (primitive recursive) functions by induction on the constructors. Together, they
imply that every term of that sort is equal to a constructor term, and that all constructor terms
are different. For example, the sort Bool can be translated to Coq as

Inductive Set boo 1 = true: boo 1 I false: bool.

Equality in Coq is a ternary polymorphic function <_> _ =_ (see below). It has a so-called depen­
dent type: (D:Set)D->D->Prop. That is, for each D, <D>_=_ is a function of type D->D->Prop. A
simpler example of a dependent type is the type of the function [D: Set] [d: D] d, the polymorphic
identity function (square brackets denote lambda-abstraction in Coq). Its type is (D:Set)D->D.
In fact, the notation P->Q is an abbreviation of (x:P)Q when x does not occur in Q.

From the above inductive definition of bool, one can prove - «bool>true=false) (true and
false are not equal) and (b :bool) <bool>b=true \I <bool>b=false (for all b of type bool,
b is either true or false). These statements correspond to the axioms B1 and B2 in IlCRL. A
disadvantage of inductively defined sorts is that the axioms that come with them remain hidden.
This can result in a seemingly reasonable specification which is nevertheless incorrect, perhaps
even inconsistent. For this reason and others, explained later, we shall not use this translation.
It would certainly not be a good idea to define processes inductively, as there is no assumption
in the semantics of IlCRL that all processes can be built from the given actions and operators.

By the propositions-as-types paradigm, propositions can also be defined inductively. An
inductively defined type is the least set that is closed under the constructors (such that all
constructor terms differ); an inductively defined proposition is the least proposition that is closed
under the rules given for it. Rather than giving a formal definition, we give an example.

Example 2.5 We consider the transitive closure function, which, given a relation R on D x D,
returns the transitive closure of R. The relation R is represented in Coq by its characteristic
function of type D->D->Prop. ([R: D->D->!'rop] x denotes)"R.x)

Inductive Definition TC [R:D->D->Prop]
Base : (x,y :D) (R x y) ->
Trans: (x,y,z:D) (R x y) -> (TC R Y z)

: D->D->Prop =
(TC R x y) I

-> (TC R x z).

This definition says that TC(R) is the least relation closed under the above rules; therefore
an elimination principle comes with this definition: in order to prove a proposition P(x, y) under
the assumption TC(R)(x, y), it is sufficient to prove

R(x, y) -t P(x, y) and R(x, y) 1\ TC(R)(y, z) 1\ P(y, z) -t P(x, z).

This seems somewhat stronger than the usual induction scheme without the conjunct TC(R)(y, z),
but it is actually equivalent.

Also basic notions in Coq, such as truth, falsity, and equality, are inductively defined.

13

Inductive Definition True Prop = I: True.
Inductive Definition False Prop =
Syntax eq "< > = " - - -
Inductive Definition eq [A:Set;x:A] A->Prop = refl_equal: <A>x=x.

I is by definition the proof of the nullary relation True; the elimination principle for True is a
tautology. False is the empty nullary relation; with this definition comes the axiom False_ind:
(P:Prop)False->P, the ex-falso rule, which reflects the minimality property (or the elimination
principle) for False. Finally, equality on a set A is defined through the statement 'for x:A, the
unary relation "being equal to x" contains only x'. This definition gives the induction princi­
ple (A:Set)(x:A)(P:A->Prop)(P x)->(a:A) «A>x=a)->(P a). Thus the effect of eliminating2

<A>b=a is that (usually all) occurences of a are replaced by b. Equations can be used as term
rewrite rules from right to left in this way.3 Conjunction and disjunction are also inductively
defined. Eliminating a conjunctive hypothesis A/\B yields two hypotheses A and B; eliminating
A \lB yields two new proof obligations, one with hypothesis A and one with B.

A proof in Coq starts from the statement that one wants to prove, which is then transformed
by applying tactics. A tactic replaces a proof obligation by zero or more new ones. A proof
obligation consists of two parts: the goal (initially the statement that one wants to prove) and
the context, a set of declarations of variables and premisss that can be used in the prooF. A
proof is completed if there are no more proof obligations. Some typical tactics are:

Intro moves a universal quantifier or the premiss of an implication from the goal to
the context.

Apply H applies resolution on the goal and H, a hypothesis from the context, global
axiom, or theorem. If H is an implication, each premiss yields a new proof
obligation.

Elim H For a declaration H: 0, where D is an inductive set, this amounts to structural
induction. For a hypothesis H:P, where the main predicate of p is inductively
defined, it applies the elimination principle.

Contradiction looks for a hypothesis False.

Assumption looks for a hypothesis equal to the current goal.

Exact H succeeds if the goal is exactly the hypothesis, axiom, or theorem H.

Unfold name unfolds the definition of name.

Pattern position allows the selection of red exes for term rewriting.

Auto

Idtac

tries to complete the proof by applying hypotheses and designated theorems.

does not change the proof obligation (sometimes useful in complicated tactics).

2By eliminating H, we mean applying the induct.ion principle for the main constructor of H.
3The fact that some of our axioms are written 'backwards' is a relic of a Coq version that could only rewrite in

this direction. The current version has also a tactic Rewrite for rewriting from left to right.
4 According to the propositions-as-types paradigm, there is no fundamental distinction between a declaration

d: D with D: Set and a hypothesis H: P with P: Prop.

14

Complicated tactics can be constructed from the basic ones. They can succeed, fail, or run
out of space. A basic tactic fails if it is not applicable.

tactic, ; tactic2 applies tactic, and then tactic2 on all proof obligations
generated by tactic,.

tactico ; [tactici I ... I tacticn] applies tqctico and then tactic, , ... ,tacticn on the n proof
obligations generated by tactic,.

tactic, Orelse tactic2 tries to apply tactic" if that fails it applies tactic2.

Try tactic, tries to apply tactic!, but it does not fail even if tactic! does.

Repeat tactic! repeats tactic! until that fails. This tactic never fails.

Auto never fails: if it cannot complete the proof, it leaves the goal unchanged. Auto;Exact I
gives a version of Auto that can fail. (Exact I cannot be applicable after Auto, because Auto
tries it.)

3 The Thanslation of jlCRL into Coq

In this section, we discuss and motivate how we translate JLCRL into Coq. We also show how a
JLCRL-specification should be translated, using the ABP as an example.

3.1 JLCRL versus Coq

JLCRL and its proof theory share a significant number of concepts with Coq; we name (data}types,
equality, implication, axioms, and derivability. The most formal way to proceed is to ignore these
similarities, and to encode each JLCRL-concept in Coq. That is, to define a sort muCRLJ'rop of
JLCRL property formulae and to encode JLCRL-derivability inductively as the least relation Dv
muCRLJ'rop->Prop that contains all axioms and is closed under all inference rules of JLCRL:

Inductive Definition Dv : muCRL_Prop->Prop =

REFL: (D: sorts) (has_sort t D) -> (Dv (equal D t t)) I

REPL: (Phi :muCRL_Prop) (D: sorts)
(Dv (subst D t x Phi)) ->
(Dv (equal D t u)) -> (Dv (subst Dux Phi)) I

Ai: (p,q:proc) (Dv (equal proc (alt P q) (alt q p))) I

ArrowI: (Phi,Psi:muCRL_Prop)
«Dv Phi) -> (Dv Psi)) -> (Dv (implies Phi Psi)) I

In this example, equal encodes the equality predicate of JLCRL, subst encodes substitution,
sorts the declaration of sorts, has_sort the declaration of variables, al t the + on processes,
implies implication between pCRL property formulae, and so on.

Translating I,CRL to Coq in this way is possible, but cumbersome: it gives rise to unreadable
Coq texts and makes it impossible to automate the bulk of the proof (in the current version

15

5.8.3 of Coq). Namely, proofs in process algebra typically use a subset of the axioms (and
derived equations) as a term rewriting system, computing normal forms for process terms (modulo
associativity and commutativity of +). Hand-written, such a part of the proof appears as term =
term = ... = term; formally each step is an application of REPL. In the above translation,
the intermediate terms cannot be found by Coq; the user must provide them. This makes it
effectively impossible to find even the most trivial proof automatically. In other words, with this
translation we cannot hope to achieve a granularity of Coq proofs that comes anywhere near the
granularity of hand-written proofs. Consequently, this approach is not (yet) scalable to real-life
protocols.

Therefore we take another approach: rather than encoding !,CRL in Coq, we embed !,CRL in
Coq, that is, we map !'CRL-concepts to the 'same' concepts in Coq as much as possible. Such a
translation renders Coq texts that are relatively easy to read, and intuitive proofs. The obvious
problem with this approach is of course its soundness (and completeness). However, the soundness
of the encoding approach is also not immediate, as it is not even proved yet that Coq is consistent
[CP90, PM93], i.e., False might be derivable. In fact, the problem lies in the inductive sets and
definitions, on which the encoding relies much more than our embedding approach. Clearly, any
such soundness result lies beyond the scope of process algebra as long as this consistency of Coq
is not proved.

So the axioms of I,CRL are translated to axioms in Coq; inference rules (e.g. SUMll) become
implications (see Section 3.4 for the details). Also the rewrite rules of a !,CRL-specification are
translated to axioms, which is justified by FACT. Is the consistency of Coq in the empty state
already unproven, adding axioms makes it even harder to prove consistency. One might therefore
argue that a better way to proceed would be to define the proposition muCRL as the conjunction
of its axioms and rules (which can be done conveniently by an inductive definition), and to use
that as a premise to all lemmas and theorems. We feel that this approach does not add any
confidence in the results: the question remains if this proposition muCRL entails False in Coq.
From a practical point of view, the approach makes proofs much harder to read because the
names of the axioms are lost.

There are some obvious mismatches between Coq and I,CRL to take care of. The most obvious
mismatch occurs between the classical implication of !,CRL and the constructive implication of
Coq. In this case the rules of I,CRL are stronger than those of Coq, so soundness is not at stake.
We could have added the axiom (P:Prop)--P->P, but it turned out that we did not need it.

Another potential source of problems is equality. The equality <_> _ = _ of Coq has the Leibniz
property, i.e., two terms are equal if and only if they can be substituted for each other in every
context of type Prop. This is a strong requirement, as these contexts are built from the expressive
language of Coq. Whether = in I,CRL can be interpreted conservatively as Leibniz equality in
Coq is a subject for specialized stu'dy.

Finally, !,CRL has no explicit quantification, but instead the substitution rule. This rules
entails that all variables are implicitly universally quantified. These quantifiers are made explicit
in our translation. Yet not all variables inl,CRL are bound in this way: the sum operator Ld'D(X)
binds the variable d of datatype D in x. We translate this binding to lambda abstraction, see
Section 3.4 for the details.

3.2 Data

A significant part of the proof theory of I,CRL can be translated to Coq independently of a
particular !'CRL-specification. Only the set of action names, the communication function /, and

16

the set of sorts parameterize this translation. The two sets are finite; therefore we define them
as Inductive Sets, simply enumerating the members. These are the only Inductive Sets we
use. From these definitions it is easy to prove that all actions, respectively sorts, are different (we
need inequality of sorts to verify the side-condition of axiom CF2").

For simplicity, we allow actions to have precisely one data argument. For actions that have
more than one parameter in the specification, pairing can be used. Actions without parameter
get the dummy argument i, which·is the only element of the trivial sort one. Thus for the ABP
we must declare Frame = D x Bool and one as sorts. Why the sort nat of naturals is needed is
explained in Section 3.7.

Inductive Set types = onetype:types
Dtype:types I Frametype:types

booltype:types
bool_Errtype:types

nattype:types I
Frame_Errtype:types.

In fact, this declaration gives us sort names. The sorts themselves are created through the
declaration of a function type: types->Set. (The declarations regarding one, bool, and nat
are part of the translation of I,CRL, the others are part of the translation of the ABP.)

Parameter type: types->Set.

Definition one = (type onetype). Definition D = (type Dtype).
Definition boo 1 = (type booltype). Definition Frame = (type Frametype).
Definition nat = (type nattype). Definition boo I_Err = (type bool_Errtype).

pefinition Frame_Err = (type Frame_Errtype).

A consequence of this approach is that we cannot define these sorts inductively. Thus we
must declare the constructors and induction principles for these sorts explicitly. We can also not
use the Match-function, therefore we must axiomatize the functions zero and pred, which allow
us to prove that naturals of the form sn(o) differ for different n. 5

Parameter i one.
Parameter true,false bool.
Parameter 0 nat.
Parameter S nat->nat.

Axiom 11 (j :one) <one> j=i.
Axiom B1 -<bool>true=false.
Axiom B2 (b:bool) <bool>b=true \/ <bool>b=false.
Axiom nat_ind: (P:nat->Prop) (n:nat) (P O)->«y:nat)(P y)->(P

Parameter zero nat->bool.
Parameter pred nat->nat.

Axiom zaroD:
Axiom zeroS: (n:nat)
Axiom predO:
Axiom predS: (n:nat)

<bool>(zero 0)=true.
<bool>(zero (S n))=false.
<nat> (pred 0)=0.
<nat> (pred (S n))=n.

(S y)))->(P n).

5 Alternatively, we CQuld postulat.e a bijection bet.ween the sort nat as defined here and inductively defined
naturals. Section 4.5 might be simplified by the resulting ability to use the Match-function.

17

As we noted, pCRL has two equalities: the 'built-in' = for both data (rew) and processes
(proc), and the user-defined eqD : D ~ D ~ Bool for each sort D. We chose not to translate
eqD into Coq by literally translating the rewrite rules of Example 2.1, but by defining it by its
intended meaning, namely part 1 of Claim 2.2.

Axiom def_eql: (T:types)(d,e:(type T)) <bool>(eql T d e)=true<->«type T»d=e.

It remains to translate the ABP-specific function declarations and rewrite rules, including
those needed because of the introduction of type Frame (which also allows a more intuitive formu­
lation of the axiom same_err ...frame). Note that the defining equation of neg in the specification
is simple enough to translate it to a Definition in Coq, whereas the remaining functions are
declared and their defining equations turned into axioms. For constructors (here pair, iFrame,
errorframe, ibool, and errorbit) and projections (data_of and bit_of) this appears to be
the only way. (A Variable declaration is local within a Section; it is translated to a universal
quantification outside.)

Section ABP_DATA.
Variable b,c:bool.
Variable d :D.
Variable f,g:Frame.

Parameter pair
Parameter data_of
Parameter bit_of

:D->bool ->Frame.
Frame->D.
Frame->bool.

Axiom pair_inj: <bool>(eql Frametype f (pair (data_of f) (bit_of f)))=true.
Axiom bit_inj : <bool>(eql booltype b (bit_of (pair db))) =true.
Axiom data_inj: <bool>(eql Dtype d (data_of (pair db))) =true.

Definition neg = [b:bool] (eql booltype b false).

Parameter iFrame
Parameter errorframe
Parameter ibool
Parameter errorbit

Axiom find_errorbit
Axiom same_err_frame

Axiom find_errorfrarne:
End ABP_DATA.

Frame->Frame_Err.
Frame_Err.

boo I ->bool_Err.
bool_Err.

<bool>(eql booltype
(eql bool_Errtype

<bool>(eql bool_Errtype
<bool>(eql Frametype

(eql Frame_Errtype
<bool>(eql Frame_Errtype

3.3 Actions and Communication

b c)=
(ibool b) (ibool c)) .
(ibool b) errorbit)=false.

f g)=
(iFrame f) (iFrame g)).
(iFrame f) errorframe)=false.

Actions in peRL are declared with their respective sorts, but overloading of action names is
allowed: one may declare an action r with sort D and another action r with a different sort E. In

18

the translation into Coq, actions are declared without their sorts (in other words: action names
are declared). Thus there can be actions in the translation that are not present in the original
specification. As these actions will not occur in the processes, this mismatch is harmless.

The comm section of a IICRL specification, defining the communication function, of ACPT,
is translated to the function gamma in COq. Recall that communication in pCRL is defined on
action names only, that is, if two actions (of different sort) have the same name, then they must
communicate in the same way. This facilitates a correct translation into Coq: gamma is specified
only for the action name r, not for 'r:D'and 'r:E' separately. It is not easy to specify partial
functions in Coq, therefore when ,(a, b) is undefined, its translation (gamma a b) returns the
special action name delta. The process T in pCRL behaves similarly to an atomic action, so a
second special action name tau is introduced.

When we consider the actions of the ABP, the actions r1 and S4 stand out, as there are no
communicating SI and r4 actions. Therefore we renamed them to ain (input action) and aout
(output action). We can now drop the indices of the remaining r, s, and c actions, as their sorts
differ. The only communcation is now ,(r, s) = ,(s, r) = c. Finally we renamed ito int, because
i is already used as the inhabitant of one. Thus we have the following definitions.

Inductive Set act =
ain:act I aout:act I int:act I r:act s:act I c:act I delta:act I tau:act.

Definition gamma = [e,f:act] «act>Match e with
delta delta delta
«act>Match f with delta delta delta delta c delta delta delta)
«act>Match f with delta delta delta c
delta delta delta).

delta delta delta delta)

This definition of gamma is by case analysis. First, if e is ain, aout, int, c, delta, or tau,
then (gamma e f) is delta. Second, if e is r or s, then (gamma e f) is delta unless f is s
respectively r.

gamma must have certain properties, which are stated as five proof obligations (goals) in Coq.
We must prove these goals in order to show that gamma satisfies the desired properties. Some of
these properties are used as lemmas in the correctness proof of the ABP as well. The first two
properties are that delta and tau do not communicate. The third is that the communication of
two actions is not T (allowing this would complicate defining guardedness, see Section 3.6. The
fourth is that gamma is commutative, as is required in [BW90]. It is also required there that gamma
is associative, but we assumed handshaking, the fifth property, which is stronger.

Goal (a :act) <act>(gamma delta a)=delta.
Goal (a :act) <act>(gamma tau a)=delta.
Goal (a,b :act)-<act>(gamma a b)=tau.
Goal (a,b :act) <act>(gamma a b)=(gamma b a).
Goal (a,b,c:act) <act>(gamma a (gamma b c»=delta.

The text of the proofs of these goals does not depend on gamma: it is always a straightforward
case analysis (thanks to the fact that actions are defined inductively, and gamma is defined by the
Match-function.

19

3.4 Processes and Axioms

The distinction between the action a and the process a is not always obvious in process algebra.
In the current setting, it is obvious that a process is formed from an action name, its sort, and
an element of that sort. However, there is only one process 6 and one process T. Thus we declare

Parameter proc
Parameter ia

Definition Delta
Definition Tau

Axiom Delta_Data
Axiom Tau_Data

Set.
(T:types) act->(type T)->proc.

= (ia onetype delta i).
= (ia onetype tau i).

(T:types)(t:(type T)) <proc>Delta=(ia T delta t).
(T:types)(t:(type T)) <proc>Tau =(ia T tau t).

It remains to model sets of actions (for hiding and encapsulation), before we declare the
operators on processes. Similar to the relation R in Example 2.5, we model this set by its
characteristic function act->Prop6. A small complication is that we have added delta and tau
to the set of actions, and that these cannot be encapsulated, nor hidden. This we define the
function goodset, which, given a set of actions, returns the same set without delta and tau.

= act->Prop. Definition ehset
Definition goodset ehset->ehset = [L:ehset]

[a:act] (-«act>a=delta))/\(-«act>a=tau))/\(L a).

Parameter alt,seq,mer,Lmer,cornrn
Parameter cond
Parameter sum
Parameter enc,hide

proc->proc->proc.
proc->bool->proc->proc.

(T:types) «type T)->proc)->proc.
ehset->proc->proc.

Note the type of the sum operator. Ld'T(x) is translated to (sum T Cd: (type T)]x), thus
sum has the polymorphic type (T:types) «type T)->proc)->proc. The axiom SUM2 of pCRL
is now recognised as a-conversion, and can therefore be omitted in the translation. The freeness
requirements of the variables in the other SUM-axioms are verified automatically: if they are not
satisfied, then an unbound variable would occur. The premiss of SUMll refers to the equality of
two processes with a free variable d: D; it is translated to Vd ED: PI (d) = p2(d).

Most of the axioms of I,CRL translate directly into Coq, as they are simply equations between
processes; variables are universally quantified. For example, Al translates to

Axiom Al:(x,y:proc)<proc>(alt x y)=(alt y x).

6Sellink [Sel93] suggests to represent the sets for hiding and encapsulation as lists. This turns out to be
unnecessary cumbersome, but raises an interesting question. Suppose that we have sets as a sort in the specification
of the protocol. Then the jJCRL-specification contains an algebraic specification of sets based on lists, such as the
one given by Groote and Van Wamel [GW94] (a function D --+ Bool can be declared in IJCRL, but not used
as a sort). Is it allowed in this case to use the characteristic function representation, or should we translate the
algebraic list-based specification dutifully into Coq? The latter is more formal, but further away from the informal
specification, which requires sets. Notice that this problem does not occur for the sets of actions for encapsulation
and hiding, as these sets are not sorts, but built-in sYllt.actic objects in I,CRL.

20

The derivable axioms SC4, CM5, CM6, and CM9 are not translated to axioms, but to lemmas.
Some axioms have side-conditions, most notably the CF-axioms, D1, D2, Til and TI2. The
CF-axioms have been simplified in comparison with Table 3.

Axiom CF1

Axiom CF2

<proc> (eond (ia T (gamma a b) t) (eql T t t') Delta)=
(eomm (ia Tat) (ia T b t')).

-<types>T=U -> <proe> Delta=(eomm (ia Tat) (ia U b u)).

CF1 covers not only the case of actual communication (CF1 in Table 3), but also the case
where communication fails because the actions do not communicate or the data is not the same
(CF2 and CF2'). Claim 2.2 or the axiom deLeql justifies this formulation, which effectively
replaces the premiss ~(ti = t:J of CF2' by eqT(ti, t:J = F. The only remaining case is that of
CF2": actions with different sorts (and hence incomparable data), which IS covered by CF2.

Apart from the axioms listed, there are many 'derived axioms' or lemmas. These are discussed
in Section 4.1.

3.5 Recursive Specifications and RDP

Informally, RDP states that a recursive specification has at least one solution. Thus we need to
translate what is a recursive specification, and what is a solution of it. First, we consider the
case of a single recursive equation. Such an equation, written as X(d) = G(X, d), can be seen as
the definition of the process operator G of type (D->proe) ->D->proe. (This is a generalization
of the linear process operators of [BG94b), where G must be in a particular normal form.) A
solution of the recursive equation is then a fixed point of G, and has type D->proe.

In the general case, we have a set of process variables ProeVar and a function Typ from ProeVar
to types giving their associated sorts (similar to actions, we let process variables have exactly one
data parameter). A solution of a system of recursive equations is now a function that interprets
each process variable as a function from its data parameter to a process, thus the type of a
solution (in fact, of any such interpretation) is Inttype = (X :ProeVar) (type (Typ X))->proe.
The system of recursive equations DefEq itself is then a process operator Inttype-> Inttype
(similar to G above). The solution is its fixed point.

For example, the system {X = a' Y(T), Y(b: BooI) = X + a· Y(not(b))} is defined as
follows (note that DefEq needs the old interpretation of process variables iPV to interpret the
occurrence of a process variable in the body of an equation as a process).

Inductive Definition ProcVar = X:ProcVar I Y:ProcVar.
Definition Typ = [P:ProcVar] «types>Match p with (0 X 0) onetype

(0 Y *) booltype).
Definition DefEq = [iPV:Inttype] [P:ProcVar]

«[P:ProcVar](type (Typ P))->proc>Match P with
(0 X *) [j:one](seq (ia onetype a i)

(iPV Y true))
(0 Y 0) [b :bool] (alt (iPV X i)

(seq (ia onetype a i)
(iPV Y (neg b))))).

RDP states that a system of recursive equations has a solution, Le., that a process operator
has a fixed point. Thus we declare the solution function Sol: (Inttype->Inttype)->Inttype

21

giving a solution for each system of equations (think of it as the ,,-operator). That (Sol DefEq)
is indeed a sol u tion for DefEq is stated in axiom RDP.

Section RDP.
Variable ProcVar Set.
Variable
Local
Variable

Typ
Inttype =
DefEq

ProcVar->types.
(X:ProcVar)(type (Typ X»->proc.
Inttype->Inttype.

Parameter Sol
Axiom RDP

(Inttype->Inttype)->Inttype.
<Inttype>(Sol DefEq)=(DefEq (Sol DefEq».

End RDP.

We can now translate the proc section of the definition of the ABP. As we did earlier in
Section 2.3, we add structure to the "CRL-specification by distinguishing four (sub)systems of
equations.

1. The buffer, containing only the equation for Buffer,

2. the sender, containing the equations for Sb, Sf, and Tf,

3. the receiver, containing only the equation for Rb, and

4. the equations for Sd, Rc, K, and L.

The equations for ABP_nohide and ABP are not recursive. Therefore we translated them to
Definitions.

(0 Buffer 0)
Inductive Set PVBuf
Definition TypBuf
Definition BufEq

Definition Buffer

Section ABPdef.
(0 The Sender 0)

=
=
=

=

Buf : PVBuf.
[X:PVBuf]onetype.
[iPV:PVBuf->one->proc] [X:PVBuf] [j:one]
(sum Dtype [d:D] (seq (ia Dtype ain d)

(seq (ia Dtype aout d)
(iPV Buf i) ») .

(Sol PVBuf TypBuf BufEq Buf i).

Inductive Set SendSubState = Sb:SendSubState I Sf:SendSubState I Tf:SendSubState.

Definition SSSTyp = [X:SendSubState] «types>Match X with booltype
Frametype
Frametype).

Definition SSSDef = [iPV:(X:SendSubState)(type (SSSTyp X»->proc]
[X: SendSubState]

«[X:SendSubState](type (SSSTyp X»->proc>Match X with
(oSb 0) [b:bool] (sum Dtype [d:D](seq (ia Dtype ain d) (iPV Sf (pair db»»

22

(*Sf *)[f:Frame] (seq (ia Frametype s f) (iPV Tf f))
(*Tf *)[f:Frame] (alt (seq (alt (ia bool_Errtype r errorbit)

(* The Receiver *)

(ia bool_Errtype r (ibool (neg (bit_of f)))))
(iPV Sf f))

(ia bool_Errtype r (ibool (bit_of f))))).

Inductive Set RecSubState = Rb:RecSubState.
Definition RSSTyp = [X:RecSubState]booltype.

Definition RSSDef = [iPV:RecSubState->bool->proc] [X:RecSubState]
(*Rb *)[b:bool] (alt (seq (alt (ia Frame_Errtype r errorframe)

(sum Dtype [doD]

(* The ABP *)

(ia Frame_Errtype r (iFrame (pair db)))))
(seq (ia booltype s b) (iPV Rb b)))

(sum Otype [d: 0]
(seq (ia Frame_Errtype r (iFrame (pair d (neg b))))

(seq (ia Dtype aout d) (ia booltype s (neg b)))))).

Inductive Set Components = Sd : Components I Rc Components I
CK : Components I CL Components.

Definition CompTyp = [X:Components]onetype.

Variable phase: bool.

Definition CompDef = [iPV:Components->one->proc] [X: Components]
«one->proc>Match X with
(*Sd *)[j:one] (seq (Sol SendSubState SSSTyp SSSDef Sb phase)

(seq (Sol SendSubState SSSTyp SSSDef Sb (neg phase))
(iPV Sd i)))

(*Rc *)[j:one] (seq (Sol RecSubState RSSTyp RSSDef Rb (neg phase))
(seq (Sol RecSubState RSSTyp RSSOef Rb phase)

(iPV Rc i)))
(*CK *) [j : one] (sum Frametype [f: Frame]

(seq (ia Frametype r f)
(alt (seq (ia onetype int i)

(seq Cia Frame_Errtype s (iFrame f))
(iPV CK i)))

(seq (ia onetype int i)
(seq (ia Frame_Errtype s errorframe)

(iPV CK i))))))
(*CL *)[j:one] (sum booltype [b:bool]

(seq (ia booltype r b)
(alt (seq (ia onetype int i)

(seq (ia bool_Errtype s (ibool b))
(iPV CL i)))

(seq (ia onetype int i)
(seq (ia bool_Errtype s errorbit)

23

(iPV CL i))))))).

Definition Eneaps = [a:aet] «Prop>Mateh a with False False False True
True False False False).

Definition ABP_nohide = (ene Eneaps
(mer (Sol Components CompTyp CompDef Sd i)
(mer (Sol Components CompTyp CompDef Re i)
(mer (Sol Components CompTyp CompDef CK i)

(Sol Components CompTyp CompDef CL i))))

Definition Hiding = [a:aet] «Prop>Mateh a with False False True False
False True False False).

Definition ABP = (hide Hiding ABP_nohide).
End ABPdef.

) .

The role of the boolean phase in the equations for Sd and Re deserves some explanation.
Clearly, these equations resemble the equations for Sd(b: Bool) and Re(b: Bool), with phase in
the role of b, more than the parameterless equations for Sd and Re. However, the type of Sd and
Re is not bool, but one. Thus phase is not the formal translation of the formal parameter b. In
fact, we have here the translation of the equation Sdb = Sb(b)· Sb(neg(b))· Sdb• In this equation,
b is an informal parameter in the process algebraic sense; the equation can be seen as shorthand
for the two equations SdT = Sb(T) . Sb(neg(T)) . SdT and SdF = Sb(F) . Sb(neg(F)) . SdF .

ABP -.nohide and ABP inherit the parameter phase.

3.6 RSP

RSP states that guarded systems of equations have unique solutions. So we must define guard­
edness in Coq. A single recursive equation is guarded if we can determine for all n the first
n visible actions of its solution by repeatedly unfolding the equation. For example, if we have
X(b: Bool) = (T<l b I> a) . X(not(b)), then X(T) = T' X(F) = T' a· X(T), so we can determine
the first visible action (a) of X(T) by unfolding the equation twice. Further applications of the
equation give us further visible actions: the equation is guarded.

In contrast, if we have Y = a'T{a}(Y), then this equation gives us the first visible action, but a
second unfolding yields Y = a'T{a}(a'T{a}(Y) = a'T'T{a}ha}(Y)) = a'T{a}(Y). Clearly, further
unfoldings do not yield further visible actions for Y, so this equation is unguarded. Indeed, both
a and a . {j are solutions for this equation, thus RSP should not be applicable. In view of this
second example, we will simply consider every recursive equation in which the hiding operator7

occurs as unguarded (unless of course we can remove the hiding operator by rewriting the system
using the axioms).

Now we return to the first example. We note that when we unfold X(T), we obtain X(F)
without a visible action (guard) in front. We say that X(T) depends unguarded on X(F). On
the other hand, unfolding X(F) yields X(T) only behind a guard, so X(F) does not depend
unguarded on X (T). We can have the same notion in a system of equations: if we replace X (T)
by Y and X(F) by Z then we obtain the system {Z = T' Y, Y = a· Z} in which Z depends
unguarded on Y, but Y does not depend unguarded on Z.

7 Allowing ,,(a,b) = T would give similar problems for II, I and ll, consider e.g. Z = a· (b I Z).

24

We conclude that 'depends unguarded on' is a binary relation R on pairs of the form (X, e),
where X is a process variable and e is data of the correct type for X. R must be well-founded for
the system to be guarded.8 Rather than writing an axiomatization that tries to compute R, we
let the user provide R. Then we check that R is well-founded (see also [BG94c]) and that for all
process variables X and data e of the type for X, the body of the equation for X(e) is safe w.r.t.
X, e, and R, that is, if Y (I) occurs in this body, either it occurs behind a guard, or R(X, e, Y, f)
holds. What follows is the translation of this into Coq; the details are explained thereafter.

Section Safe_RSP.
Variable ProcVar
Variable Typ
Local typ
Local Inttype
Local RT

Section Safe.

=
=
=

Set.
ProcVar -> types.
[X:ProcVar](type (Typ X)).
(X:ProcVar) (typ X)->proc.
(X:ProcVar)(typ X)->(Y:ProcVar) (typ Y)->Prop.

Variable iPV Inttype.
Variable X ProcVar.
Variable e (typ X).
Local TF = [X:ProcVar] [e:(typ X)] [Y:ProcVar] [f:(typ Y)]True.

Inductive Definition Safe : RT->proc->Prop =
SO: (R:RT) (Y:ProcVar) (f: (typ y)) (R X e Y f) -> (Safe R (iPV Y f))1
Sl:(R:RT)(T:types)(t:(type T))(a:act) (Safe R (ia T a t))1
S2:(R:RT)(T:types)(t:(type T))(a:act)(y:proc)

-«act>a=tau) -> (Safe TF y) -> (Safe R
S3:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) ->
S4:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) ->
S5:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) ->
S6:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) ->
S7:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) ->
S8:(R:RT)(T:types)(p:(type T)->proc) «d: (type T))

(seq (ia T a
(Safe R (seq
(Safe R (alt
(Safe R (mer
(Safe R (Lmer
(Safe R (comm

t) y))1
x y))1
x y)) I
x y))1
x y))1
x y))1

(Safe R (p d))) -> (Safe R (sum T p))1
S9:(R:RT)(x:proc)(L:ehset)
S10:(ProcVar:Set)

(Typ:ProcVar->types)
(DefEq:«X:ProcVar)(type

«X:ProcVar) (type
(X:ProcVar)
(d:(type (Typ X)))

End Safe.

(Safe R x) -> (Safe R (enc L x))1

(Typ X))->proc)->
(Typ X))->proc))

(Safe TF (Sol ProcVar Typ DefEq X d)).

The definition of Safe is given inductively, but this is not essential: we could just as well list
SO-S10 as axioms, since we are never interested in proving unsafety. (Only when proving the
equivalence between different phrasings of the definition of safety, we used the inductive part.)
SO states that Y(I) can occur unguarded in the defining equation of X(e), provided R(X, e, Y, f)

8 Apart from cyclic ones, this also excludes unfounded specifications like X(n : nat) = X(S(n».

25

holds. S2 states that all process variables may occur after a guard; the effect is obtained by
replacing R by TF, which is always true.

S10 states that the system may refer to another system of equations, but only behind a guard.
The need for a guard occurs because the process variables of the current system can also occur
in the new one (technically: the function DefEq of this new system can depend on the iPV of the
current one). For example, following the notation of [BW90j, we allow E = {X = a· (Y I Fx)},
with Fx = {Y = X + b . Y}. Notice that in I'CRL we cannot distinguish this from the system
{X = a· Y, Y = X + b· Y}, but that we need the distinction to modularize proofs.

Finally, we can state the axiom RSP. Given are an interpretation of process variables iPV, the
system of equations DefEq and the relation R. The system is guarded if R is well-founded and all
bodies are safe (for no X and d, there is an infinite descending chain from X and d), and the body
of the equation for X and d is safe). If the system is guarded and iPV is indeed a solution9 , then
iPV equals the canonical solution (Sol ProcVar Typ Defeq) of the system.

Section RSP.
Variable iPV
Variable DefEq
Variable R

Inttype.
Inttype->Inttype.
RT.

Inductive Definition WF : (X:ProcVar) (typ X)->Prop =
WF1: (X:ProcVar)(d:(typ X))

«Y:ProcVar)(e:(typ Y))(R X d Y e)->(WF Y e))
-> (WF X d).

Definition Guarded = (X:ProcVar)(d:(typ X)) (iPV:Inttype)
(WF X d) /\ (Safe iPV X d R (DefEq iPV X d)).

Axiom RSP:
Guarded ->
«X:ProcVar)(d:(typ X))<proc> (iPV X d) = (DefEq iPV X d)) ->
<Inttype> iPV = (Sol ProcVar Typ DefEq).
End RSP.
End Safe_RSP.

3.7 Fair Abstraction

As we noted before, the ABP can function correctly only if the channels do not corrupt data ad
infinitum. This assumption was translated into process algebra in various ways, most notably in
the form of fair abstraction rules. For an overview we refer to Section 5.6 of [BW90j. We chose
to translate CFARb into Coq (Cluster Fair Abstraction Rule for branching bisimulation, we omit
the superscript b further on). Informally, a cluster is a (maximal) set of states of a process such
that each state in it can reach each other in it by taking only hidden steps. CFAR deals with all
possible clusters, as opposed to KFARn , which only deals with cycles of n states lO •

9We must put this premiss as «X:ProcVar)(d: (typ X»<proc>{iPV X d)=(DefEq iPV X d», rather than
<Inttype>iPV=(DefEq iPV), because the latter equality does not follow from the former in Coq.

10 As the structure of c and i actions in t.he ABP turns out not to be a cycle, we need CFAR in our proof.
Alternatively, we could hide the c actions first. Then applying Tl yields a cycle of i actions of length 2. Hiding
the i actions and apply~ng KFAR21 yields the desired result, provided that we add the axiom T/(TJ(X» = TJUJ(X).

26

We have adapted CFAR to the presence of data as follows. Instead of a single cluster, we like
to collaps a number of clusters at the same time. For example, if we have a process definition

X(n : nat) = b(n) + i· (X(n + 9) <J (n mod 10) = 0 I> X(n - 1)),

then we want to infer

for all n: nat: T· T{q(X(n)) = T· (b(1O (ndivl0)) + ... + b(1O (ndiv1O) + 9)).

b(O). J::l).
Xo • 0Y-

~.~.~.~i~
Xg X8 X7 6 Xs

b(9) b(8) b(7) b(6) b(5)

b(IO) b(ll) b(12) b(13) b(14)

~b(15)

Figure 2: Collapsing two clusters.

There are infinitely many clusters, therefore we cannot collaps each cluster separately. One
way to proceed would be to fix a k : nat and to define

Then we prove by CFAR

for all m : [0 .. 9]: T· T{ij (Yk (m)) = T· (b(k) + ... + b(k + 9)).

Finally we prove by RSP X (n) = Yn div 1O(n mod 10). We cannot formalize this approach in /lCRL,
because there k should be a formal parameter ofY, leaving us with many clusters again. However,
our translation of recursive specifications into Coq does not prevent parameterized specifications
such as the one of Yk: we can encode this approach in Coq, albeit clumsily (we must add a new
datatype with ten elements and a function interpreting them as 0 .. 9).

27

Therefore we chose a formulation of CFAR that collapses multiple clusters explicitly. First
we number the different clusters. Then we number the different pairs (X, d) within each cluster,
where X is a process variable and d a data parameter of the type of X. That is, we assume
having the following functions.

• cluster(X, d) gives the number of the cluster to which the pair (X, d) belongs.

• element(X,d) gives the order number of (X,d) within its cluster.

• process(n,m) (n,m E nat) returns X(d) such that cluster(X,d) = nand element(X,d) =
m. It returns fJ if n 2': the number of clusters or m 2': the number of processes in the cluster.

• Exit(n, m) (n, mE nat) returns the exit process of the mth item in the nth cluster. Again
it is fJ if n or m are too large.

• a(X, d, m) is the action (including data) that leads from X(d) to the mth item in the cluster
of X(d). It is fJ if there is no such action.

In our translation into Coq, the user must provide these functions for each application of CFAR,
and show that they have the following properties (let L be the set of actions going to be hidden).

1. For all X and d: X(d) = process(cluster(X, d), element(X, d)).

2. For all nand m: if for no X and d: (n, m) = (ciuster(X, d), element(X, d)),
then EXit(n,m) = p"ocess(n,m) = fJ.

3. The system of equations can be written in the form

X (d) = L a(X, d, m) . process(cluster(X, d), m) + Exit (cluster(X, d), element(X, d)).
m:nai

4. Each a(X,d,m) is either fJ, r, or its action name is in £.11

5. All clusters are connected: we can step from X(d) to Y(e) iff a(X, d, element(Y, e)) # fJ; a
cluster is connected if for aU X(d) and Y(e) in it, we can go from X(d) to Y(e) in one or
more steps.

6. The system is guarded.

Given definitions satisfying these properties, CFAR concludes for all X and d:

r . rL(X (d)) = r . rL(L Exit (cluster(X, d), m)).
m:nat

In our example, we could use the following functions.

cluster(X, n)
element (X, n)
process(k, m)
Exit(k, m)
a(X,n,m)

= ndivlO
=nmodlO
=X(lOk+m)ifm$9,
= b(lOk+m) ifm $ 9,
= i ifm= (n-l)modlO,

fJ otherwise
fJ otherwise
fJ otherwise.

11 Here we see a summation over the natural numbers. Since we have only summation over sorts, we need nat as
a built-in sort.

28

We now provide the representation of CFAR in Coq. Notice that process needs an inter­
pretation of process variables, and that the definition of a(X, d, m) is split in three parts: sort,
action name, and data.

Section CFAR.
Variable ProcVar
Variable Typ
Local typ
Local Inttype
Variable DefEq
Variable R
Variable L
Variable cluster
Variable element
Variable process
Variable Exit
Variable D'

=
=

Set.
ProcVar -> types.
[X:ProcVar] (type (Typ X)).
(X:ProcVar) (typ X)->proc.
Inttype->Inttype.
(X:ProcVar) (typ X)->(Y:ProcVar) (typ Y)->Prop.
ehset.
(X:ProcVar) (typ X) -> nat.
(X:ProcVar)(typ X) -> nat.
Inttype -> nat -> nat -> proc.
nat -> nat -> proc.
(X:ProcVar) (typ X) -> nat -> types.

Variable a (X:ProcVar) (typ X) -> nat -> act.
(X:ProcVar)(d:(typ X))(n:nat) (type (D' X d n)). Variable d'

Definition Checklnside = (X:ProcVar)(d:(typ X)) (iPV:lnttype)
(*1*) <proc>(process iPV (cluster X d) (element X d)) = (iPV X d).

Definition CheckOutside = (n,m:nat)(iPV:lnttype)
(*2*) «X:ProcVar)(d:(typ X)) -«nat>n=(cluster X d) /\

<nat>m=(element X d)))->
<proc>(process iPV n m)=Delta /\ <proc>(Exit n m)=Delta.

Definition CheckDef = (X:ProcVar)(d:(typ X)) (iPV:lnttype)
(*3*) <proc>(DefEq iPV X d)=

(alt (sum nattype [n:nat](seq (ia (D' X d n) (a X d n) (d' X d n))
(process iPV (cluster X d) n)))

(Exit (cluster X d) (element X d))).

Definition Checka = (X:ProcVar) (d:(typ X))(n:nat)
(*4*) <act>(a X d n)=delta \/ <act>(a X d n)=tau \/ (goodset L (a X d n)).

Inductive Definition Conn: (X,Y:ProcVar) (typ X)->(typ Y)->Prop
= connl: (X,Y:ProcVar)(d:(typ X))(e:(typ V))

-<act>(a X d (element Y e))=delta -> (Conn X Y d e)
connt: (Z:ProcVar)(f:(typ Z))

(X,Y:ProcVar) (d: (typ X))(e:(typ V))
(Conn X Z d f) -> (Conn Z Y f e) -> (Conn X Y de).

Definition CheckConn = (X,Y:ProcVar)(d:(typ X))(e:(typ V))
(*5*) <nat>(cluster X d)=(cluster Y e) -> (Conn X Y de).

29

Axiom CFAR: (X:ProcVar)(d:(typ X))

Checklnside -> CheckOuts ide -> CheckDef -> Checka -> CheckConn ->
(*6*) (Guarded ProcVar Typ DefEq R) ->

<proc>(seq Tau (hide L (Sol ProcVar Typ DefEq X d)))=
(seq Tau (hide L (sum nattype [n:nat](Exit (cluster X d) n)))).

End CFAR.

How we use this formulation of CFAR in proving the correctness of the ABP is outlined in
Section 4.5.

4 Proving the Correctness of the ABP in Coq

This section discusses in detail the correctness proof of the ABP in Coq. Significant parts of it be­
come more clear by running Coq (version 5.8.3, which can be obtained by ftpfrom nuri. inria .fr
= 128.93.1. 26) on the complete verification, which can be obtained from the authors. The
structure of this section is as follows. Section 4.1 discusses the beginning of a library of standard
lemmas: lemmas that we feel are not specific for the verification of the ABP. Section 4.2 gives
a few basic lemmas about data and actions in the ABP. Section 4.3 corresponds to the defini­
tions preceeding Lemma 2.3, and contains preparations for the applications of RSP in its proof.
Section 4.4 discusses how we extract the first possible action(s) from a state of the protocol, as
is done repeatedly in the proof of 2.3. Section 4.5 discusses the application of CFAR, which
corresponds to the first line of the proof of Theorem 2.4. Finally, Section 4.6 corresponds to the
remainder of the proof of Theorem 2.4.

4.1 A Library of Lemmas

Although the axioms and rules are the most important part of the translation of pCRL into Coq,
it would be incomplete without a library of lemmas that are useful regardless of the protocol
being verified. The current library is listed in Tables 4, 5, and 6; this library will grow further
when more protocols are verified. We distinguish the following parts of our library.

negfalse neg (F) = T refLeql eqv(t, t) = T
negtrue neg(T) = F sym_eql eqv(t, u) = eqv(u, t)
negneg neg(neg(b)) = b make_equal t=u-t eqv(t, u) = T
noLeqUrue_false eqnool (F, T) = F make..eql t f= u -t eqv(t, u) = F
noLeqLbJlegb eqBool(b, neg(b)) = F make_uneql eqv(t, u) = F -t t f= u

0_5 5(n) f= 0 not..goodset a rJ L -t a rJ goodset(L)
unequal.B nf=m-t 5(n) f= 5(m) comm...action 3c: a(t) I a'(u) = c(t)

,
bE Bool, D a sort, t, u E D, m, n E nat, a, a, c E Act u {fJ, T}

Table 4: Booleans, equa.lity, naturals and actions.

30

• Lemmas about standard data: the sorts nat and Bool, and equality. These lemmas are
typically trivial, requiring only a few lines of proof. Nevertheless they are necessary to
automate parts of the further proof. See Table 4.

• A few short lemmas about actions. See Table 4.

• Derived axioms. For example symmetric versions of axioms, like A6': 8 + x = x. A large
number of lemmas about theTonditional operator can also be derived by a case analysis on
the condition being true or fals~. See Table 5. Proofs are still only a few lines. SUMmand
occurs as Lemma 4.3.2 in [GP94a). EXP_booLSUM is an instance of the final remark of the
same lemma.

• Expansions of the merge, which are a special kind of derived axioms. They are used to
determine the first actions of a process defined as the parallel composition of several com­
ponents. For all n, EXPn is the instantion of the expansion theorem ([BW90), Theorem
4.3.5)

XIJl .. ·llxn = L;=l n Xi II (XIII· . ·llx;-IIIX;+1J1 .. . Jlx n) +
L;=l n Lj=;+1 ... n (x;IXj) 11 (XIJl ... Jlx;-IIIX;+1II·· ·IIXj-IJlXj+1J1 .. ·llxn).

Note that the summations are actually shorthand for a sequence of alternative compositions.
The expansion theorem cannot conveniently be translated in its full generality, Le., with
the number of components n as a parameter. Thus each version must be proved separately,
with larger proofs for larger values of n. Another disadvantage is that an expansion makes
many copies of the constituing components Xl ... X n . A different proof technique avoiding
both disadvantages is being developed by Van de Pol [PS93j.

• Axioms restated as rules. The axioms as they are support simplification 'inside out': for
provingy·x = 8, we first rewriteyto8and then apply A7: 8·x = 8. Often (see Section 4.4)
we would like the opposite: first apply RuleA7: y = 6 ---+ y. x = 6 and then proceed proving
the premiss y = 8. Proving these rules is of course trivial. See Table 6.

4.2 Data and Actions in the ABP

We proved the following lemmas about the data in the ABP.

Section ABP_data.
Variable b,c:bool.
Variable d,e:D.
Variable f :Frame.

Lemma pair_inj_equal:
Lemma bit_inj_equal:
Lemma data_inj_equal:

<Frame>f=(pair (data_of f) (bit_of f)).
<bool>b=(bit_of (pair db)).

<D>d=(data_of (pair db)).

Lemma differ_frame: <bool>(eql Dtype d e)=false \/
<bool>(eql booltype b c)=false ->
<bool>(eql Frametype (pair d b) (pair e c))=false.

Lemma same_bool: <bool>(eql Frametype (pair d b) (pair e b))=(eql Dtype de).
Lemma nack: <bool>(eql Frametype f (pair d (neg (bit_of f))))=false.

31

SC6 xlly = yllx A6' 6 +x = x
DLDeita 8L(6) = 6
TILDelta n(6) = 6

SC7 (xlly)IIZ) = XII(yIlZ)
DC2 x 16 = 6

CM2' 6lLx = 6 Handshaking' (x 1 y) 1 z = 6

SUM7' Le:E(x 1 y) = xl Le:E y
SUM7" Ld:D Le:E(X 1 y) = Ld:D X 1 L.:E y

DLCSS Ld:DLe:E8L((x. 1 y)lLz)
= 8L((Ld:D xl Le:E ylllz)

SUMmand Ld:D X = x[d' jd] + Ld:D(6 <I eqv(d, d') I> x)
EXP_booLSUM x [bjc) + x[neg(b)jc) = Lc:Bool x

if e not free in x
if e not free in x
and d not free in y
if e not free in x and z
and d not free in y and z

EXP3 xll(yllz) = xll(yllz) + yll(xllz) + zlL(xlly) + (y 1 z)lLx + (x 1 y)lLz + (x 1 z)lLy

EXP4 xll(yll(zllu)) = xll(yll(zllu)) + yll(xll(zllu)) + zlL(xll(yllu)) + ulL(xll(yllz))

COND3
COND4
COND5
COND5'
COND6
COND6'
COND7
COND7'
COND8
COND8'
COND9
COND9'
COND9"
CONDlD
CONDll

+(z 1 u)lL(xlly) + (y 1 z)lL(xllu) + (y 1 u)lL(xllz)
+(x 1 y) lL(zllu) + (x 1 zlll(Yllu) + (x 1 ulll(Yllz)

x=x<lbl>x
x <I b!> Y = Y <J neg(b) !> x
(x 0 z) <I b I> (y 0 z) = (x <I b I> y) 0 z
(x 0 y) <I b I> (x 0 z) = x 0 (y <I b I> z)
(x <I b I> z) + (y <I b !> z) = (x + y) <I b I> z
(z<lbl>x)+(z<lbI>Y) =z<lbl>(x+y)
b = c -t x <I b I> Z = x <I b I> (y <I c I> z)
b = c-t y<lbl>x= (y<lcl>z) <lbl>x
b = neg (c) -t x <lbl> y = x <lbl> (y <I Cl> z)
b= neg (c) -t z<Jbl>x = (y<lcl>z) <lbl>x
Ld:v(X <J b!> y) = (Ld:D x) <I b I> Y if d not free in y
Ld:D (x <J b I> y) = x <J b !> (Ld:D y) if d not free in x
Ld:v(x<lbl>y) = (Ld:Dx) <lbl> (Ld:DY)
8L(x) <lbI>8L(y) = ih(x<Jbl>y)
rL(x) <I b I> rL(y) = rL(x <I b I> y)

b, c E Bool, D and E sorts, d, d' ED, e E E, 0 any blllary process operator.

Table 5: Derived axioms.

32

Split..alt
RuleA3
RuleA6
RuleA6'
RuleA7
ID_enc
RuleD l..delta
RuleTILdelta
RuleCM2'
RuleSUMl

RuleSUMrep

z=x-+ w=y-+ z+w=x+y
z=x-+ Z=Y-+ z=y+x
o=x-+ Z=Y-+ z=y+x
o=x-+ Z=Y-+ z=x+y

o=x-+ o=x·y
x = y -+ (h(x) = lh(y)
o=x-+ o=8L(x)
o=x-+ o=rL(x)
o=x-+ o=xlLy
x=y-+ X=Ld,VY

x <l eqv(d, d') t> 0 = Y

X - Ld,V Y

RuleCONDl T = b -+ x = x <l b t> Y
RuieCOND2 F = b -+ Y = x <l b t> Y
SpliLCOND (eqv(d, d') = T -+ x = y) -+

if d not free in x

if d not free in x and the assump­
tions of the proof of the premiss

Z = W -+ x <l eqv(d, d') t> Z = Y <l eqv(d, d~ t> w

bE Bool, D a sort, d, d' E D.

Table 6: Rules.

Lemma ack: <bool>(eql Frametype f (pair d (bit_of f)))
=(eql Dtype (data_of f) d).

Definition Differtypes = [T,U:types] «Prop>Match T with
«Prop>Match U with False True True True True True True)
«Prop>Match U with True False True True True True True)
«Prop>Match U with True True False True True True True)
«Prop>Match U with True True True False True True True)
«Prop>Match U with True True True True False True True)
«Prop>Match U with True True True True True False True)
«Prop>Match U with True True True True True True False)).

Lemma differtypes: (T,U:types) (Differtypes T U)->-<types>T=U.

The aim of these lemmas is the following. After applying EXP4, we obtain terms containing
the communication merge. After some more rewriting (see Section 4.4), we can rewrite with CFl
or CF2. The result of CFl is a conditional, the condition being (eql T t t'). With the above
lemmas, we built a tactical that rewrites this condition to true (by same_boo I and ack) or false
(by differ..frame and nack). The first three lemmas are used to put the data in a form matching
the left sides of the other four. For rewriting with CF2, the premiss -<types>T=U must be proved.
As we have enumerated the datatypes by an Inductive Set, this can be done automatically by
applying differtypes: when T and U are filled in, (Differtypes T U) beta-reduces to True (or

33

to False, but then CFl should be applied instead).
Apart from the lemmas mentioned in Section 3.3, which establish the necessary properties of

gamma, we proved the following lemmas about actions. The aim of the first three lemmas is to
prove that certain actions are not tau (for guardedness, see 52) and not delta (for connectedness
of a cluster, see connl). The last two lemmas state that the encapsulation and hiding sets are
'good' in the sense that they do not contain tau and delta.

Section ASP_actions.
Variable a,b:act.

Lemma not_tau_action:
«Prop>Match a with True True True True True True True False)->-«act>tau=a).

Lemma not_delta_action:
«Prop>Match a with True True True True True True False True)->-«act>delta=a).

Lemma not_action_action:
-«act>b=a)->-«act>a=b).

Lemma goodHiding: (Hiding a)->(goodset Hiding a).
Lemma goodEncaps: (Encaps a)->(goodset Encaps a).
End ASP_actions.

4.3 Auxiliary Definitions and RSP

In this section, we translate the definitions preceeding Lemma 2.3 into Coq. Then we add two
more definitions necessary for the application of RSP. Finally, we show how RSP is applied by a
typical exam pie.

In Section 2.3, we defined the 'inner loops' E1 and E2 of the ABP: the loops that occur when
a message is corrupted in a channel. The following definitions represent the common structure
of E1 and E2, depicted in Figure 3. They are parameterized by the data sent (dl, ... ,d5), the
types of this data, and the exit process P. In this way, we need to apply CFAR only once, on this
common structure, instead of twice.

Section CFARLoop.
Variable Ti,T2,T3,T4
Variable dl
Variable d2
Variable d3
Variable d4,d5
Variable P

types.
(type Ti).
(type T2).
(type T3).
(type T4).
proc.

Inductive Set PVLoop = Xl : PVLoop I X2 : PVLoop X3 PVLoop I X4 PVLoop
X5 : PVLoop I X6 : PVLoop X7 PVLoop.

Definition TypLoop = [X:PVLoop]onetype.
Definition RLoop = [X:PVLoop] [d:one] [Y:PVLoop] [e:one]False.
Definition DefEqLoop = [iPV:PVLoop->one->proc] [X:PVLoop] [d:one]
«proc>Match X with

(*Xl*) (seq (ia Tl c dl) (iPV X2 i»
(*X2*) (alt (seq (ia onetype int i) P)

34

(seq (ia onetype int i) (iPV X3 i»)
(*X3*) (seq (ia T2 c d2) (iPV X4 i»
(*X4*) (seq (ia T3 c d3) (iPV X5 i»
(*X5*) (alt (seq (ia onetype int i) (iPV X6 i»

(seq (ia onetype int i) (iPV X7 i»)
(*X6*) (seq (ia T4 c d4) (iPV Xl i»
(H7*) (seq (ia T4 c d5) (iPV Xl i») .

End CFARLoop.

int

X5

c(d4:T4) int

c(dl:T1) c(d3:T3)

c(d2:T2) X4

int
Loop

P

Figure 3: The generic inner loop.

Next, we use the above definition to define the first half of the main loop of the ABP, exactly
as in Section 2.3, see Figure 4; the second half is treated by symmetry.

Section StepDefs.
Variable b:bool.
Variable d:D.

Definition Exit2 = (seq (ia bool_Errtype c (ibool b» (ABP_nohide (neg b»).

Definition DefEqLoop2 =
(DefEqLoop booltype bool_Errtype Frarnetype Frarne_Errtype

b errorbit (pair d b) errorfrarne (iFrarne (pair db»
EXit2).

35

Definition Exiti =

(seq (ia Frame_Errtype c (iFrame (pair db)))
(seq (ia Dtype aout d)

(Sol PVLoop TypLoop DefEqLoop2 Xi i))).

Definition DefEqLoopi =
(DefEqLoop Frametype Frame_Errtype booltype bool_Errtype

(pair d b) errorframe (neg b) errorbit (ibool (neg b))
Exiti) .

Definition First = (seq (ia Dtype ain d) (Sol PVLoop TypLoop DefEqLoopi Xi i)).

According to the proof sketch of Lemma 2.3, we must apply RSP to show that (Sol PVLoop
TypLoop DefEqLoopi Xi i) (that is, (XII El)(d, b)) is equal to the encapsulated merge of the
four components in certain states. But our formulation of RSP does not conclude the equality of
two processes, but of two solution functions for a system of equations. Thus we need a function
which returns this encapsulated merge for Xi, and (Sol PVLoop TypLoop DefEqLoopi xk i)
for Xk, 2 :0:; k :0:; 7. Similarly for DefEqLoop2.

Definition DefEqLoopi' = [iPV:PVLoop->one->proc] [X:PVLoop] [j:one]
«proc>Match X with
(*Xi*) (enc Encaps

(mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair db))
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b))

(Sol Components CompTyp (CompDef b) Sd i)))
(mer (Sol Components CompTyp (CompDef b) Rc i)
(mer (Sol Components CompTyp (CompDef b) CK i)

(Sol Components CompTyp (CompDe! b) CL i)))))
(*X2*) (DefEqLoopi iPV X2 i)

(DefEqLoopi iPV X7 i)).

Definition DefEqLoop2' = [iPV:PVLoop->one->proc][X:PVLoop][j:one]
«proc>Match X with
(*Xi*) (enc Encaps

(mer (seq (Sol SendSubState SSSTyp SSSDef Tf (pair db))
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b))

(Sol Components CompTyp (CompDef b) Sd i)))
(mer (seq (ia booltype s b)

(seq (Sol RecSubState RSSTyp RSSDef Rb b)
(Sol Components CompTyp (CompDef b) Rc i)))

(mer (Sol Components CompTyp (CompDef b) CK i)
(Sol Components CompTyp (CompDef b) CL i)))))

(*X2*) (DefEqLoop2 iPV X2:i)

(*X7*)
End StepDefs.

(DefEqLoop2 iPV X7 i)).

36

ABP..nohide(b)

ain(d) Loop2(e,neg(b))

neg (b)

Loop1(d,b)
Loopl(e,neg(b))

Exit1(d,b)

c«d,b»

ABP..nohide(neg(b))

Loop2(d,b)

er

Figure 4: Putting the loop definitions in place.

37

As an example, we consider the application of RSP in the first inner loop, starting from

<proc>(Sol PVLoop TypLoop (OefEqLoopl b d) Xl i)
=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSOef Sf (pair db))

(seq (Sol SendSubState SSSTyp SSSOef Sb (neg b))
(Sol Components CompTyp (CompOef' b) Sd i)))

(mer (Sol Components CompTyp (CompOef' b) Rc i)
(mer (Sol Components CompTyp (CompOef' b) CK i)

(Sol Components CompTyp (CompOef' b) CL i)))))
============================

b bool
d : 0

Our first step is Elim (RSP PVLoop TypLoop (Sol PVLoop TypLoop (OefEqLoopl' b d))
(OefEqLoopl b d) RLoop). This instance of RSP says:

(b:bool) (d:O) (X:PVLoop) (dO:(type (TypLoop X)))
(Guarded PVLoop TypLoop (OefEqLoopl b d) RLoop)->
((XO:PVLoop) (dl:(type (TypLoop XO)))

«proc>(Sol PVLoop TypLoop (OefEqLoopl' b d) xo dl)
=(OefEqLoopl b d (Sol PVLoop TypLoop (OefEqLoopl' b d)) xo dl))) ->

«proc>(Sol PVLoop TypLoop (OefEqLoopl' b d) X dO)
=(Sol PVLoop TypLoop (OefEqLoopl b d) X dO))

Thus the effect is that two subgoals are added, and OefEqLoopl is replaced by OefEqLoopl' in
the first subgoal. This goal is now solved by Rewrite (ROP PVLoop); Unfold OefEqLoopl';
Apply refLequal. That is, we prove that the definition of the process variable Xl in the loop
OefEqLoopl' is exactly the desired encapsulated merge.

The second su bgoal is that the loop is guarded. This is proved by

Unfold Guarded;
Induction X;
Split;[Apply WF1; Intros; Contradiction

I Unfold OefEqLoopl; Unfold OefEqLoop; Unfold Exitl; Auto 10].

That is, we unfold the definition of guarded, and then continue by a case distinction on X :PVLoop.
Thus we perform the remaining tactic seven times: for Xl to X7. Guardedness is defined as
the conjunction of well-founded ness and safeness. As the relation RLoop is always False, well­
foundedness is easily proved. Safeness is proved automatically after unfolding some definitions.
Typically, Coq finds the tactical

Apply S2;
[Apply not_action_action; Apply not_tau_action; Exact I I Apply SO; Exact I].

but the cases for X2 and X5 are a little harder because they have two exits. For X2, Coq finds

Apply S4; [Apply S3; [Apply Sl I
Apply S3; [Apply Sl I

Apply S2; [Apply not_act ion_action;

38

Apply not_tau_action; Exact I
Apply S10]]] I

Apply S2; [Apply not_action_action; Apply not_tau_action; Exact I
Apply SO; Exact I]]

After rewriting by RDP once, the third subgoal is

(X:PVLoop) (j:(type (TypLoop X)))
«proc>(DefEqLoopl' b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j)

=(DefEqLoopl b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j))

This is proved again by case distinction. For X2 to X7 it is trivial, because DefEqLoopl and
DefEqLoopl' coincide. For Xl, we unfold some definitions and obtain

<proc>(seq (ia Frametype c (pair db))
(Sol PVLoop TypLoop (DefEqLoopl' b d) X2 i))

=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair db))
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b))

(Sol Components CompTyp (CompDef b) Sd i)))
(mer (Sol Components CompTyp (CompDef b) Rc i)

(mer (Sol Components CompTyp (CompDef b) CK i)
(Sol Components CompTyp (CompDef b) CL i)))))

This goal is almost the same as our starting point. The fact that in the lefthandside Xl is
unfolded to c·X2 is not important. The iI:,portant change is that we have DefEqLoopl' on the
lefthandside: after unfolding X2 to j. Exit! + j·X3, X3 to c·X4, and so on, we do not return to Xl
but to the encapsulated merge that is currently the righthandside. This means that we can prove
the goal by linearizing the righthandside several times. This is the topic of the next section.

4.4 Linearization

This section corresponds to Lemma 2.3. We outline how we prove in Coq

(b:bool)<proc>(ABP_nohide b)=(surn Dtype (First b)).

As we noted in the proof of Lemma 2.3, the bulk of the verification consists of proving
this lemma. We must linearize (determine the possible first actions of) a process of the form
oH(SenderState II ReceiverState II J(State II LState) for all 18 states in the first half of the ABP.
This is by far the most time and space consuming part of the proof. In this section, we discuss in
detail the tactical that performs this task without any user guidance. The tactical is specialized
for the ABP, and will have to be adapted for other protocols.

It is clear that future research must concentrate on improving the linearization technique, in
order to verify larger protocols. It must become much more efficient, and (almost) completely
independent of the protocol. This seems ambitious at first, but for effective pCRL-specifications
[GP94b], all that is needed is an efficient encoding of term-rewriting in Coq. On the other hand, it
must be investigated whether proof checkers based on term-rewriting are capable of also handling
the other parts of the verification. If so, they might be better candidates than Coq for formal
protocol verification. We now return to our current linearization tactical.

39

The possible first actions of a state of the ABP are determined by the possible first actions
of the substates of the four constituing components. It turns out that the term describing such
a substate can have four syntactical forms: (Sol Components ...), (seq (Sol SendSubState
...) x), (seq (Sol RecSubState ...) x) and (seq action x).

Expanding the merge yields the alternative composition of four terms (Lmer Substatel Sub­
states) and six terms (Lmer (comm Substatel Substate2) Substates). Our first step is to apply
RDP on Substatel and Substate2 unless they are in the fourth syntactical form. That is, we re­
place a process variable (Sol ...) by its definition (OefEq (Sol ... » only if it plays a role in
determining the first possible actions. Then we unfold OefEq. OefEq occurs also as an argument
of Sol, and that occurrence should not be unfolded. Therefore we replace it by a renamed copy
OefEq' before (respectively during) this tactical.

For example, Unfold_Lmer _comm_Soll is the lemma

(ProcVar:Set) (Typ:ProcVar->types)
(OefEq,OefEq' : «X:ProcVar) (type (Typ X»->proc)->

(X:ProcVar)(type (Typ X»->proc)
(X:ProcVar) (d:(type (Typ X») (x,z:proc)

««(XO:ProcVar)(type (Typ XO»->proc)->
(XO:ProcVar)(type (Typ XO»->proc) >OefEq=OefEq')->

«proc>(Lmer (comm (Sol ProcVar Typ OefEq' X d) z) x)
=(Lmer (comm (OefEq (Sol ProcVar Typ OefEq') X d) z) x»

The first part of the linearization tactical is the following.

Elim EXP4;
Repeat

(Rewrite (Unfold_Lmer_Sol Components CompTyp (CompOef b) (CompOef' b»;
[IdtaclApply refl_equal]);

Repeat
(Rewrite (Unfold_Lmer_comm_Soll Components CompTyp (CompDef b) (CompDef' b»;
[Idtac I Apply refl_equal]);·

Repeat
(Rewrite (Unfold_Lmer_comm_So12 Components CompTyp (CompOef b) (CompOef' b»;

[IdtaclApply refl_equal]);
Unfold CompOef;
Try (Replace SSSOef with SSSDef'; [IdtaclApply refl_equal]);
Try (Replace RSSOef with RSSDef' ; [IdtaclApply refl_equal]);
Repeat (Rewrite (Unfold_Lmer_seq_Sol SendSubState SSSTyp SSSOef SSSOef');

[IdtaclApply refl_equal]);
Repeat (Rewrite (Unfold_Lmer_seq_Sol RecSubState RSSTyp RSSDef RSSDef');

[IdtaclApply refl_equal]);
Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll SendSubState SSSTyp SSSOef SSSOef');

[IdtaclApply refl_equal]);
Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll RecSubState RSSTyp RSSDef RSSOef');

[IdtaclApply refl_equal]);
Repeat (Rewrite (Unfold_Lmer_comm_seq_So12 SendSubState SSSTyp SSSDef SSSDef');

[IdtaclApply refl_equal]);
Repeat (Rewrite (Unfold_Lmer_comm_seq_So12 RecSubState RSSTyp RSSOef RSSOef');

40

[IdtaclApply refl_equal]);
Unfold SSSDef RSSDef;

We are now faced with terms having the following structure (in the worst case).

(enc H (alt (Lmer (comm (alt (seq (alt (action)
(sum T [t:(type T)]action»

(... unimportant ... »
(sum T [t:(type T)](seq action x»)

(. .. similar ... »
(... unimportant ... »

(... similar ... »)

We continue by bringing out the al ts, and then by bringing out the sums. We use several
distributivity axioms, and need only the special lemma DLCSS (see Table 5). We need this lemma
because we cannot rewrite terms that occur inside a sum, for these terms do not denote processes,
but functions of type (type T)->proc. We cannot conclude in Coq that two such functions f
and g are equal, even if (t: (type T»<proc>(f t)=(g t).

Repeat Elim A4; (* over seq *)
Repeat Elim GMS; (* left over camm *)
Repeat Elim GM9; (* right over comm *)
Repeat Elim GM4; (* over Lmer *)
Repeat Elim D3; (* over enc *)
Repeat Elim A2; (* over alt *)

Repeat Rewrite SUMS; (* over seq *)
Repeat Elim DLGSS; (* two over comm. Lmer, and enc *)
Repeat Rewrite SUM7; (* left over comm *)
Repeat Elim SUM7'; (* right over comm *)
Repeat Rewrite SUM6; (* one over Lmer *)
Repeat Rewrite SUM9; (* one over enc *)

Now we have a long list of alternatives. Most of these will turn out to be equal to Delta.
Therefore we continue by trying to .rewrite each alternative to Del tao We cannot rewrite the term
as a whole, because we cannot rewrite inside sums. This is the main reason for using 'axioms
restated as rules'. The tactical has the following structure.

Repeat (
Repeat ((Apply RuleA6' Orelse Apply True_ind);

[tactical for rewriting one alternative to Delta I Try Exact I]);
Apply Split_alt Orelse Apply RuleA6);

tactical for an alternative that is not Delta

This tactical is applied on a goal of the form <proc>target=alternatives. target is the
linearized form (which we do not compute, but is defined beforehand, as in Lemma 2.3), which
consists of one or two alternatives. alternatives is the long list. We can pick the first alterna­
tive off the list by applying RuleA6': «proc>Delta=x) -> «proc>z=y) -> «proc>z=(alt

41

x y)). The first subgoal is now attempted; the second one is treated in the next iteration. The
application of RuleA6' fails when we have only one alternative left. In that case, we do not need
to do anything, except that the remaining tactical expects two subgoals. Thus in that case we
apply True_ind: (P:Prop)P->True->P. In this case the second subgoal True is solved by Try
Exact I, which has otherwise no effect.

If the tactical for rewriting one alternative to Delta fails, then the inner loop terminates: this
alternative is not Delta, but (one of) the alternative(s) in target. If the target contains more than
one alternative, then we apply Spli t..al t: «proc>z=x) -> «proc>w=y) -> «proc> (al t z
w)=(alt x y)). We must ensure before starting the linearization that we encounter the alter­
natives from the list in the correct order. If the target is (reduced to) one alternative, then we
apply RuleA6: «proc>Del ta=x) -> «proc>z=y) -> «proc>z= (al t y x)).

Next we consider the tactical for rewriting an alternative to Delta. First, we remove the
sums, which are already on top. Then we take the first actions of both sides (which are by now
sequences of actions) and make them into a communication (comrn action action), which we
try to prove equal to Delta. (Recall that the tacticals Try ... and Repeat ... never fail: if we
have an alternative without communication, nothing happens.) It can be Delta for three reasons:
the actions have different types, the actions do not communicate (their gamma is delta), or the
data are incompatible. Finally, we push the Delta outward. Recall that Auto;Exact I serves as
the version of Auto that can fail.

Repeat (Apply RuleSUM1;Intro); (* remove sums *)

Repeat Elim AS; (* over seq *)
Repeat Elim CM7; (* two over comrn *)
Repeat Elim CM6; (* right over comrn *)
Repeat Elim CMS; (* left over comrn *)

Try (Replace (bit_of (pair d b)) with b;
[IdtaclApply (make_eql booltype);Apply bit_inj]);

(Elim CF2;[IdtacIAuto;Exact I]) (* types *)
Orelse Try (Elim CF1;Unfold gamma;

(Elim Delta_Oata;Elim COND3) (* actions *)
Orelse (* data *)
(tactical for incompatible data Orelse

(Elim sym_eql; tactical for incompatible data));Elim CON02);

Try Elim A7;
Try Elim CM2' ;
Try Elim CM2;
Try Elim CM3;
Try Elim 04;
Try Rewrite 02;
Auto;Exact I

In this, the tactical for incompatible data reads

42

Rewrite differ_frame;
[IdtacIRight;Apply not_eql_b_negb))

Orelse Rewrite find_errorframe
Orelse (Try Elim same_err_bit;Rewrite not_eql_b_negb)
Orelse Rewrite find_errorbit
Orelse Rewrite not_eql_b_negb

This concludes the tactical for rewriting an alternative to Delta. We continue by linearizing
further the remaining alternatives. First, we remove the summation, if any. If the target is a
summation too, then it is of the same type, and we must apply SUMll. Otherwise, we have a
goal of the form e(t) . P = L:d,v 8H((S(t) I (r(d) . Q(d)))[l ...) (omitting other components and
actions). That is, one component sends data t of type D, while another component is willing to
receive any item of type D. In this case, we must apply RuleSUMrep, except if D is Bool, in
which case we apply EXP _bool..5UM.

(Apply (SUMll Dtype);
(Apply (RuleSUMrep Frametype (pair
(Apply (RuleSUMrep Dtype d);
Try Elim (EXP_bool_SUM b);

Intro d
d b));Intro NewVar

Intro NewVar

) Orelse
) Orelse
) Orelse

What follows is similar to the tactical rewriting a communication to Delta, except that we
now expect matching types, communicating actions, and compatible data (except for booleans:
due to the use of EXP _bool..5UM).

Try (Replace (bit_of (pair d b)) with b;
[IdtaclApply (make_eql booltype);Apply bit_inj));

Repeat Elim AS;
Repeat Elim CM7;
Try (
Elim CF1;Unfold gamma;
((* If EXP_bool_SUM is used, we have two communications; one succeeds, *)

Elim CF1;Unfold gamma;Rewrite refl_eql;Elim COND1;
(* and one is Delta. *)

(Rewrite not_eql_b_negb Orelse (Rewrite sym_eql;Rewrite not_eql_b_negb));
Elim COND2;Elim A7;Elim CM2' ;Elim Dl_Delta;

(* The Delta goes. *)
(Elim A6 Orelse Elim A6'))

Orelse
(Rewrite refl_eql;Elim CDND1)

Drelse ...

If RuleSUMrep is used as mentioned above, it changes the proof obligation to (e(t) . P) <l

eqv(t, d) I> 6 = 8H((S(t) I (r(d) . Q(d))) [...). CFl replaces the communication by a second
conditional, with the same condition (after simplification and modulo symmetry). This second
conditional is taken outside, and then cancelled against the one on the lefthandside by the rule
Split-CONDo This rule gives two subgoals. One is e(t) . P = 8H((e(t) . Q(d)) ll ...) given the
hypothesis eqv(d, t), the other is 6 = 8H((6. Q(d)) ll ...). The hypothesis in the first is necessary
for replacing Q(d) by Q(t). (The tactic Clear removes the hypothesis and the new variable d
from the context, in order to avoid name clashes when the tactical is applied again.)

43

Orelse ...
(Unfold Delta;
Elim (COND5 seq);
Elim (COND5 Lmer);
Elim COND10;
Try Elim same_err_frame;
Try Elim same_err_bit;
Try Rewrite negneg;
Try Rewrite same_bool;
Apply Split_COND Orelse (Elim sym_eql;Apply Split_COND);
[Intro H;

(Replace NewVar with (pair db); [Idtac!Apply (make_eql Frametype);Auto])
Orelse (Replace NewVar with d; [Idtac!Apply (make_eql Dtype);Auto]);
Clear H NewVar

! Elim A7;Elim CM2';Elim Dl_Delta;Apply refl_equal]));

Finally, we can get the first action on top by taking it outside the left-merge (which returns to
a merge) and the encapsulation. We remove the first actions on both sides by an instance of the
trivial rule Lequal, namely (f :proc->proc) (x ,y :proc) «proc>x=y)->(<proc>(f x)=(f y)),
where f is (seq action). SC7 restores the expected association of the merges.

Try Elim CM3;
Try Elim D4;
Try (Rewrite Dl;[Idtac!Auto]);
Repeat Apply (f_equal proc proc);
Repeat Elim SC7.

4.5 Applying CFAR

We apply CFAR on the general loop depicted in Figure 3, and assume declarations of Tl, ... ,T4
and dl, ... ,d5 accordingly. This loop consists of one cluster of seven elements, Xl, ... , X7, all of
type one. Thus we must define the following functions.

clttster(Xn, i) =0
element(Xn, i) =n-1
process(k, m) = X(m+ 1) if k = 0 and m < 7, J otherwise
Exit(k, m) = i·P if k = 0 and m = 1, J otherwise
a(Xl, i, m) = c(dJ) if m = 1, J otherwise
a(X2, i, m) = I if m = 2, J otherwise
a(X3, i, m) = c(d2) if m = 3, J otherwise
a(X4, i, m) = c(d3) if m = 4, J otherwise
a(X5, i, m) = I if m = 5 or m = 6, J otherwise
a(X6, i, m) = c(d4) if m = 0, J otherwise
a(X7, i, m) = c(ds) if m = 0, J otherwise.

In Coq, we define element through the Match-function. We cannot do that for process and
Exit, because nat is not inductively defined. The problem is circumvented by making extensive
use of the conditional construct. For example, Exit is defined as

>. k, m: nat (i. P <l eqnat(n, 1) I> J) <l eqnat(k, 0) I> J.

44

The definition of process contains eight conditionals!
As we noted in Section 3.7, the function a must be split in three parts in Coq: sort, action

name, and data. Because <proc>(ia D delta d)=Delta for all sorts D and data d, we can define
sort and data independent of m:

Definition D' = [X:PVLoop][j:one][m:nat]
«types>Match X with Tl onetype T2 T3 onetype T4 T4).

Definition d' = [X:PVLoop] [j:one] [m:nat]
«[X:PVLoop] (type (D' X j m))>Match X with dl i d2 d3 i d4 d5).

In contrast, the function a giving the action name depends on both the process variable and
m. Here it is really a problem that nat is not inductively defined. If it were, we could define a
by two nested Matches. As it is, we found no other way than writing an axiom am for each m
(0:::; m < 7) and one axiom a7 for m ~ 7.

Parameter a : PVLoop->one->nat->act.

Axiom aD: (X:PVLoop)
<act>«act>Match X with delta delta delta delta delta c c)=(a Xi 0).
Axiom al: (X:PVLoop)
<act>«act>Match X with c delta delta delta delta delta delta)=(a X i (S 0)).

Axiom a7: (n:nat)(X:PVLoop) <act>delta=(a X i (S (S (S (S (S (S (S n)))))))).

Our aim is to prove the following goal.

((iPV:PVLoop->one->proc)(X:PVLoop)(d:one)
(Safe PVLoop TypLoop iPV X d [X:PVLoop] [e:one] [Y:PVLoop] [f:one]True P))->

<proc>(seq Tau (hide Hiding
(Sol PVLoop TypLoop

(DefEqLoop Tl T2 T3 T4 dl d2 d3 d4 d5 P) Xl i)))
=(seq Tau (hide Hiding P)).

The assumption that P is safe is necessary for proving that the cluster is guarded. It will be
trivial to verify it for Exitl and Exit2 later.

Before we can apply CFAR, we must bring the exit process in the correct form, that is, we
must prove T' TJ(P) = T • TI(Ln:nat Exit (0, n)). This is rather easy: because there is only one
exit i· P for n = 1, we can apply SUMmand with d' = 1 and manipulate the conditionals to prove
that the remaining sum is O. Then we take the hiding inside to hide the action i.

We can now apply CFAR:

Apply (CFAR PVLoop TypLoop (DefEqLoop Tl T2 T3 T4 dl d2 d3 d4 d5 P) RLoop
Hiding cluster el'ement process Exit D' ad' Xl i).

The prerequisites Checklnside and Checkoutside are relatively easy to verify, although the
large number of conditionals in process makes the proofs somewhat cumbersome. Verifying
CheckDef is eVtn more cumbersome: for each i, we must simplify Ln:nat a(Xi, i, n) . process(O, n).
For most values of n, a(Xi, i, n) is Ii. We use SUMmand to isolate the useful valuers) of n, and
rewrite the remaining sum to o. Instead of induction on n, we apply the lemma

45

(n:nat)<nat>n=O \/
<nat>n=(S 0) \/
... \/
<nat>n=(S (S (S (S (S (S 0)))))) \/
<nat>Ex([m:nat] <nat>n=(S (S (S (S (S (S (S m)))))))).

The same lemma is used in proving Checka, which is otherwise trivial. CheckConn states that
each state must be reachable from each other state within the cluster. In order to avoid double
induction, we apply transitivity first, and prove that each state is reachable from Xl, and vice
versa. This part of the proof is implemented by 'walking forward' through the loop. Finally,
proving guardedness was already discussed in Section 4.3.

In the ABP, we need CFAR only once, and on a loop of only seven states. We conclude that
the current definitions are good enough in this situation. But it is clear that for larger loops, and
for protocols that require multiple applications of CFAR, more sophisticated proof techniques are
necessary, in particular for CheckDef and CheckConn. Improved techniques for linearization will
probably apply to CheckDef also .. For CheckConn, an existing efficient algorithm for checking
that a graph is strongly connected must be translated to Coq. Here we see a reversal of the
programs-as-proofs paradigm: instead of extracting a program from a proof, we want to translate
an existing program (and its verification) to a proof generator.

4.6 Completing the proof

We define the process BufferTllice as the process that satisfies the final equation in the proof of
Theorem 2.4, namely the defining equation of a buffer unfolded twice.

Definition BufferTllice =
(Sol PVBuf TypBuf [V:PVBuf->one->proc] (BufEq (BufEq V)) Buf i).

We prove that this equation is guarded (trivial) and then by RSP that <proc>BufferTllice =
Buffer. Finally, we prove <proc>Buffer = (ABP true) by replacing Buffer by BufferTllice,
(ABP true) by (hide Hiding (sum Dtype (First true))) and applying RSP again. The goal
is now

<proc>(hide Hiding
(sum Dtype [d:D] (seq (ia Dtype ain d)

(Sol PVLoop TypLoop (DefEqLoopl true d) Xl i))))
=(sum Dtype [d:D] (seq (ia Dtype ain d)

(seq (ia Dtype aout d)
(sum Dtype [dO:D](seq (ia Dtype ain dO)

(seq (ia Dtype aout dO)
(hide Hiding

(sum Dtype (First true)))))))))

We continue by moving the hiding inside the sum and removing the summation on both sides.
Then we add a tau-action after the ain-action (using TAU1). Then we move the hiding further,
inside these actions. Now we can apply the instance of CFAR discussed in the previous section
on the first loop. Again we add a tau-action, this time after the aout-action, move the hiding
further, and apply CFAR on the second loop. Stripping the ain- and aout-actions on both sides,
we arrive at the goal

46

<proc>(hide Hiding (ABP_nohide (neg true)))
=(sum Dtype [d:D](seq (ia Dtype ain d)

(seq (ia Dtype aout d)
(hide Hiding (sum Dtype (First true))))))

Now we replace (ABP ..nohide (neg true)) by (sum Dtype (First (neg true))), and re­
peat the proof steps of the previous paragraph. The resulting goal is

<proc>(hide Hiding (ABP_nohide (neg (neg true))))
=(hide Hiding (sum Dtype (First true)))

Replacing (neg (neg true)) by true and then (ABP..nohide true) by (sum Dtype (First
true)) concludes the proof.

5 Future Work

A number of directions for future research are immediately obvious:

• Improving the proof theory of pCRL, see e.g. [BG94b].

• Improving the proof techniques of this paper, in particular linearization and the verification
of the premisses of CFAR.

• Proving the soundness of the translation w.r.t. pCRL. This is a moving target, as changes
to Coq are still made, and changes to IICRL are proposed, e.g. in [GW94]. Moreover, it
requires the concistency of Coq, a result which is outside the scope of process algebra.

• Verification of other protocols, probably developing new proof techniques at the same time,
see e.g. [BG94a, KS93, GP93].

• Extending pCRL with (discrete) real time [BB92] and translating the resulting formalism
to Coq in order to verify timed protocols [KP93, Klu91].

• Investigate if other proof checkers, or perhaps even theorem provers, are more suitable than
Coq for the verification of protocols. It appea.rs that the proofs consist for a significant part
of term rewriting, which is not easy to do in Coq.

Acknowledgments
We thank Jaco van de Pol, Jan Springintveld, Alex Sellink, Erik Poll, Jos Baeten, and Jan
Bergstra for some valuable discussions.

References

[Bar92]

[BB92]

H.P. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 117-309.
Oxford University Press, 1992.

J .C.M. Baeten and J .A. Bergstra.. Discrete time process algebra. In W.R. Cleaveland,
editor, Proceedings Concur'92, LNCS 630, pages 401-420. Springer Verlag, 1992.

47

[BG93] M. Bezem and J.F. Groote. A formal verification of the alternation bit protocol in the
calculus of constructions. Technical Report 88, Logic Group Preprint Series, Utrecht
University, March 1993.

[BG94a] M. Bezem and J .F. Groote. A correctness proof of a one-bit sliding window protocol
in I,CRL. The Computer Journal, 37(4):289-307, 1994.

[BG94b] M. Bezem and J.F. Groote. Invariants in process algebra with data. In B. Jonsson
and J. Parrow, editors, Proceedings Concur'g4, LNCS 836, pages 401-416. Springer
Verlag, 1994.

[BG94c] M. Bezem and J.F. Groote. Proving a graph well founded using resolution. Technical
Report 113, Logic Group Preprint Series, Utrecht University, May 1994.

[BK86a] J.A. Bergstra and J.W. IGop. Process algebra: specification and verification in
bisimulation semantics. In M. Hazewinkel, J.K. Lenstra, and L.G.L.T. Meertens,
editors, Mathematics and Computer Science II, CWI Monograph 4, pages 61-94.
North-Holland, Amsterdam, 1986.

[BK86b] J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol by means of
process algebra. In W. Bibel and K.P Jantke, editors, Math. Methods of Spec. and
Synthesis of Software Systems 1985, LNCS 215, pages 9-23. Springer Verlag, 1986.

[BSW69] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM, 12:260-261,1969. ,

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and Control,
76:95-120, 1988.

[Cou93] C. Courcou betis, editor. Proceedings of the 5th International Conference on Computer
Aided Verification, Elounda, Greece, June/July 1993. Springer-Verlag, 1993.

[CP90] T. Coquand and C. Paulin. Inductively Defined Types. In P. Martin-Lof and
G. Mints, editors, COLOG-88, LNCS 417, pages 50-66. Springer-Verlag, 1990.

[DFH+93] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring,
and B. Werner. The Coq Proof Assistant User's Guide, version 5.8. Technical report,
INRIA-Rocquencourt and CNRS - ENS Lyon, 1993.

[Dro94] N.J. Drost. Process Theory and Equation Solving. PhD thesis, University of Amster­
dam, February 1994. (Section 2.5.1).

[GP93] J.F. Groote and J. van de Pol. A bounded retransmission protocol for large data
packets. Technical Report 100, Logic Group Preprint Series, Utrecht University,
October 1993.

[GP94a] J.F. Groote and A. Ponse. Proof theory for pCRL. A language for processes with
data. In S. Brlek, editor, BMW-94, Methodes matMmatiques pour la synthese des
systemes informatiques. 62" Congres du 16-20 mai 1994 de l'Association Canadienne­
Fran~aise pour I'Avancement de Sciences. UQAM, Montreal, Quebec, Canada, 1994.

48

[GP94b]

[GW94]

[Hoo91]

[HSV94]

[Kam93]

[Klu91]

[KP93]

[KS93]

J.F. Groote and A. Ponse. The syntax and semantics of JLCRL. In A. Ponse, C. Ver­
hoef, and S.F.M van Vlijmen, editors, Algebra of Communicating Processes (Proceed­
ings ACP'g4), pages 26-62, 1994.

J.F. Groote and J.J. van Wamel. Algebraic data types and induction in JLCRL.
Technical Report P9409, University of Amsterdam, April 1994.

J. Hooman. Specification and Compositional Verification of Real- Time Systems,
LNCS 558. PhD thesis, Eindhoven University of Technology, 1991.

L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link proto­
col. In Proceedings Workshop Esprit BRA Types for Proofs and Programs, Nijmegen,
The Netherlands, May 1993. Springer-Verlag, 1994. To appear in LNCS series.

G. Kamsteeg. A formal verification of the Alternating Bit Protocol in JLCRL. Tech­
nical Report 93-37, Dept. of Compo Sci., Leiden University, Netherlands, 1993.

A.S. Klusener. Abstraction in real time process algebra. In J.W. de Bakker, C. Huiz­
ing, W.P. de Roever, and G. Rozenberg, editors, Proceedings of the REX workshop
"Real-Time: Theory in Practice", LNCS 600. Springer-Verlag, 1991.

M. Kaart and I. Polak. Het alternating bit protocol met time-out in discrete tijd.
Technical Report P9323, Programming Research Group, University of Amsterdam,
September 1993. (in Dutch).

H. Korver and J. Springintveld. A computer-checked verification of Milner's Sched­
uler. Technical Report 101, Logic Group Preprint Series, Utrecht University, Novem­
ber 1993.

[LMWF94] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan
Kaufmann Publishers, 1994.

[MP82]

[OL82]

[PM93]

[PS93]

[SeI93]

z. Manna and A. Pnueli. Verification of concurrent programs, a temporal proof
system. In Foundations of Computer Science IV, Distributed Systems: Part 2 Math­
ematical Centre Tracts 159, pages 163-255, 1982.

S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM
Transactions on Programming Languages and Systems, 4(3):455-495, 1982.

C. Paulin-Mohring. Inductive definitions in the system Coq. In Typed Lambda Calculi
and Applications, LNCS 664, pages 328-345, 1993.

J. van de Pol and M.P.A. Sellink. Personal communication, 1993.

M.P.A. Sellink. Verifying process algebra proofs in type theory. Technical Report 87,
Logic Group Preprint Series, Utrecht University, March 1993.

49

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J .M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... " t p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. V oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transfonning Functional Database Schemes to Relational
Representations. p. 21.

Transfonnational Query Solving. p. 35.

Some categorical propenies for a model for second order
lambda calculus with subtyping. p. 21.

Knowledge Base Systems. a Fonnal Model. p. 21.

Assertional Data Reification Proofs: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented ApproaCh. p.
26.

Z and high level Petri nets. p. 16.

Fonnal !)emantics for BRM with examples. p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypertext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compositional proof system for dynamic proces
creation,' p. 24.

Correctness of Acceptor Schemes for Regular Languages.
p. 31.

An Algebra for Process Creation. p. 29.

Some algorithms to decide the equivalence of recursive
types. p. 26.

Techniques for designing efficient parallel programs. p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect. p. 23.

Specifying fault tolerant programs in deontic logic.
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92104 J.P.H.W. v .d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J .A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R. C. B ackhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pAS.

The fine-structure of lambda calculus, p. 11 O.

On stepwise explicit substitution, p. 30.

Calculating the WarshalllF10yd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.K1ein

92/24 M.Codish
D.Dams
Eyal Yardeni

92(25 E.Poll

92/26 T.H.W.Beelen
W.I.I.Stut
P.A.C. Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
I.H.M. Korst
P.I. Zwietering

93/05 I.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVlE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bo1

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Vemoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program­
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct­
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A CompoSitional Proof Theory for Fault Tolerant Real­
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctoess of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILIAS, a sequential language for parallel matrix
computations, p. 20.

93/34 J.C.M. Baeten and
J .A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

93/37 J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. NUijten
E.H.L. Aarts
D.A.A. van Etp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
GJ. Houben
Y. Komatzky

93/48 R. Gerth

94/01 P. America
M. van der Karnmen
R.P. Nedetpelt
O.S. van Roosmalen
H.C.M. de Swart

Real Time Process Algebra witb lnfinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension tbeorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in P(f Nets,
p.23.

A taxomomy of finite automata construction algoritbms,
p.87.

A taxonomy of finite automata minimization algoritbms,
p.23.

A precise clock synchronization protocol,p.

Treewidtb and Patwidtb of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in tbe "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J .A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T.Kunz
J. Black
M. Coffin
D. Taylor

94/fYl K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J.A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersobn

94/12 T. Kloks
D. Kratsch
H. Miiller

94/13 R. Seljee

94/14 W. Peremans

94/15 R.J.M. Vaessens
E.H.L. Aarts
J.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpeit

94/19 B.W. Watson

Canonical typing and IT-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple­
keyword pattern matching algorithms, p. 46.

94/20 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

Beyond j3-Reduction in Church's A.~, p. 22.

An introduction to the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi­
ons.

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Charts, p.
43.

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. Kloks

94/26 R.R. Roogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Vethoeven

94/29 J. Rooman

94/30 J.C.M. Baeten
J.A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
R.E. Watson

94/32 J.1. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'v'CTL *, 3CTL * and CTL *, p. 28.

K,)-free and W,-free graphs, p. 10.

On the foundations of functional programming: a
programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and n-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect; p. 30.

Point-free substitution, p. 10.

94/39 A. Blokhuis
T. Kloks

94/40 D. Alsteio

94/41 T. Kloks
D. Kratsch

94/42 J. Engelfriet
1.1. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma 1. Davies
R. Gerth S. Graf
W. Janssen B. Jonsson
S. Katz G. Lowe
M. Poel A. Pnueli
C.Rump J. Zwiers

94/45 G.1. Houben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 1.C.M. Baeten
J.A. Bergstra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Miiller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 J.J. Lukkien

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice M.
Theory: An lllustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratie­
ve Logistiek", p. 43.

The A-cube with classes of terms modulo conversion,
p. 16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listiog simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a Small Communication Library,
p. 16.

	Abstract
	1. Introduction
	2. Preliminaries
	2.1 mu-CRL
	2.1.1. Syntax and Semantics
	2.1.2 Proof Theory
	2.2 The Alternating Bit Protocol
	2.3 Specification and verification of the ABP in mu-CRL
	2.4 The Coq Proof Checker
	3. The Translation of mu-CRL into Coq
	3.1 mu-CRL versus Coq
	3.2 Data
	3.3 Actions and Communication
	3.4 Processes and Axioms
	3.5 Recursive Specifications and RDP
	3.6 RSP
	3.7 Fair Abstraction
	4. Proving the Correctness of the ABP in Coq
	4.1 A Library of Lemmas
	4.2 Data and Actionsn in the ABP
	4.3 Auxiliary Definitions and RSP
	4.4 Linearization
	4.5 Applying CFAR
	4.6 Completing the proof
	5. Future Work
	References

