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This paper reports on the first steps towards the formal verification of correctness proofs 
of real-life protocols in process algebra. We show that proofs can be verified, and partly 
constructed, by a general purpose proof checker. The process algebra we use is peRL, ACP" 
augmented with data, which is small enough to make the verification feasible, and at the same 
time expressive enough for the specification of real-life protocols. The proof checker we use is 
Coq, which is based on the Calculus of Constructions, an extension of simply typed lambda 
calculus. The focus is on the translation of the proof theory of !,CRL and !,CRL-specifications 
to Coq. As a case study, we verified the Alternating Bit Protocol. 
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1 Introduction 

This paper reports on the first steps towards the formal verification of correctness proofs of real­
life protocols in process algebra. We show that proofs can be verified, and partly constructed, by 
a general purpose proof checker. The focus is on the translation of process algebra (specifications 
and proof theory) to the language of the proof checker. As a case study, we verified the Alternating 
Bit Protocol (ABP) [BSW69J. We chose this protocol, not because there was any doubt about its 
correctness, but because it is small, well-known, and numerous correctness proofs are available in 
the literature [BW90, BK86b, BG93, Dro94, Kam93J. 

The process algebra we use is based on the Algebra of Communicating Processes (ACP) of 
Bergstra and Klop [BK86aJ. More precisely, we use I,CRL, ACpT augmented with data [GP94b, 
GP94a], which is small enough to make the verification feasible, and at the same time expressive 
enough for the specification of real-life prptocols. The proof checker we use is Coq [DFH+93], 
which is based on the Calculus of Constructions, an extension of simply typed lambda calculus. 

"'While carrying out this research, t.his aut.hor was employed by Eindhoven University of Technology, P.O.Box 
513, NL-5600 MB Eindhoven, The Net.herlands. 
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The word 'verification' usually refers to a mathematical proof in a combination of natural 
language and formal or informal mathematical notation. Consider for example the correctness 
proof of the ABP given in Sections 4.7 and 5.7 of [BW90). It consists of a series of steps so small 
that the reader is convinced of the correctness of each step. Indeed, the proof in [BW90) is more 
detailed than most other verifications, because the intended reader is an undergraduate student. 

For centuries, this form of verification was the best there was. But, as both the writer and the 
reader of the proof are human, what guarantee does it give that a proof is indeed correct? After 
all, to err is human. In some cases, especially now that computer programs and protocols are 
being incorporated in vital control systems, there is so much at stake that such a verification of a 
program is simply not enough. Especially in concurrent systems, where the number of situations 
can be exponential in the number of components, it is not at all unlikely that an unfortunate 
conjunction of circumstances is overseen during its design, testing, and verification-by-hand. 

Recently it has become possible to let a computer program take over the role of the reader, 
or even that of the writer of proofs. In the first case such a program is called a proof checker, in 
the second case a theorem prover. The Coq-system, on which we focus in this paper, is a proof 
checker equipped with very limited theorem proving capabilities. 

In contrast to a 'classical' verification, a formal verification is a proofformulated completely in 
a formal language; each step in it consists of the application of a formal proof rule. Theoretically, 
a formal verification could be done completely by hand, but on the basis of our experience (e.g. 
[Kam93)) we claim that, for real-life protocols, it can only be done using a computer. Such a 
verification is, by the nature of computers, a formal verification. To stress these observations, 
and also because a great deal of human input is still needed, we avoid the phrase 'automatic 
verification' . 

If a proof checker is convinced of the correctness of a proof, should we be convinced too? 
One can never hope to achieve absolutely guaranteed correctness. But we claim that formal 
verification can provide a significant increase in the level of confidence in a protocol. In order to 
support this claim, we investigate which errors remain possible. We see the following types. 

1. Errors of the computer system (hardware, operating system etc.). These are relatively rare, 
and moreover usually result in error messages and/or sudden termination of the program, 
rather than in an erroneous proof being accepted by the proof checker. 

2. Errors in the underlying theory of the proof checker. This theory should be stable and 
well-understood. For Coq, it is simply typed lambda calculus [Bar92, CH88). 

3. Programming errors in the proof checker. Indeed, the correctness of the proof checker must 
be checked thoroughly. As the program is much smaller (and more modular) than the proofs 
we intend to verify, the level of confidence in large proofs is definitely raised, even if it is 
still not 100%. 

4. Errors in the 'context' of the proof: the definitions and axioms on which the proof is based. 
In this case the proof is correct, but it does not prove what we think it does. For example, 
the application of the proof rule CFAR of JLCRL can be hard to justify. 

5. Errors in the theorem that one proves, or in our case in the formalization of the protocol 
under consideration. Again, the proof in itself is correct. This error is more likely to occur 
than the previous one, because the base theory remains fixed, whereas we prove a different 
theorem each time. 
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6. In order to use a proof checker, we must translate the base theory and the theorem under 
consideration to the language of the proof checker. This translation can introduce errors. 

The probability of the first three classes of errors can be reduced by verifying the same protocol 
on various different proof checkers (and platforms). The fourth and fifth class are orthogonal to 
the use of a proof checker. In this paper we concentrate on the last class of errors: errors in the 
translation. Special care must be taken when this translation deviates from the theory 'because it 
is convenient in this particular proof checker'. Such errors can remain undiscovered much easier 
than the others, as the translation of a particular specification is used less often, and by less 
people, than the computer, the proof che~ker and the translation of the base theory. 

These considerations indicate that the focus of the sceptical reader must shift from proofs to 
axioms: a proof is the most likely place to find an error in an ordinary verification, but the proofs 
of a formal verification are most probably correct; for the axioms there is no such guarantee. 

We hope that we have achieved a correct translation of JLCRL to Coq, but the translation of 
a JLCRL-specification into Coq is still done by hand. We choose to stay as close as possible to 
the definitions of JLCRL and the ABP, even when this makes the proof somewhat clumsy. When 
we deviate from the original definitions, we do so explicitly and with motivation. If possible, we 
prove formally that the deviation is correct. 

Formal verification is not limited to algebraic verification of protocols. In principle, it can 
be used for any formalism [Cou93], for example I/O-automata [LMWF94, HSV94] and temporal 
logic [MP82, OL82, Ho09l]. However, these formalisms are based on exploring the complete state 
space of a protocol; therefore suffer from the state explosion problem. For a toy protocol like 
the ABP this is not a problem; in fact, the protocol is so small that the simplest way to verify 
the program algebraically also enumerates the states. However, recent experience shows that the 
algebraic method discussed in this paper can handle larger protocols as well [BG94a, KS93, GP93]. 

In the next section, we give an overview of JLCRL and the ABP. Then we formalize the ABP 
in JLCRL and sketch roughly the proof of its correctness. An introduction to Coq concludes this 
section. Section 3 is the core of the paper: it discusses how IICRL was translated to Coq, and 
which problems arose. It also shows how the IICRL-specification of a protocol is translated into 
Coq, taking the ABP as an example. Section 4 describes in detail how a statement reflecting the 
correctness of the ABP can be proved fro~ the axioms introduced in Section 3. The prooffollows 
the sketch given in Section 2.3. The research on the topic of this paper is only just beginning; 
therefore we conclude the paper with a list of directions for future research. 

2 Preliminaries 

2.1 JLeRL 

JLCRL is a specification formalism, combining the process algebra ACpT [BW90] with data. We 
give a brief and informal introduction here; for a complete description of its syntax and semantics 
we refer to [GP94bJ, for its proof theory to [GP94a]. 

2.1.1 Syntax and Semantics 

An algebra is usually a set, together with a number of operations on that set, in principle axiom­
atized by an equational theory. ACpT complies with this tradition. The set is a set of processes 
and the operations are 
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• constants (called atomic actions, the set of atomic actions Act is a parameter of ACpT that 
is often left implicit), 

• the constants 0 (deadlock) and T (silent action), 

• the unary operators fh (encapsulation) and TL (abstraction or hiding), where L is a set of 
atomic actions, 

• the binary operators +, ., II, I, and ll, being alternative and sequential composition, merge, 
communication merge, and left merge. By convention, . binds strongest and + weakest. 

We refer to [BW90] for an explanation of these operators. The operator I is an extension of 
another parameter of ACpT, the communication function,. This is a partial function which, given 
two atomic actions, returns an atomic action: their communication. , must be associative and 
commutative. In this paper we assume handshaking, which means that no more than two processes 
can engage in a single communication. Technically, it means that ,(,(a, b), c) is undefined for all 
actions a, b, c. 

Data is specified in IICRL by the declaration of sorts (types), functions (including constants) 
with their types and possibly rewrite rules (stating equalities between dataterms). The corre­
sponding sections in a pCRL-specification are marked by the keywords sort, runc and rew. The 
sort BooI containing the constants T and F is part of every pCRL-specification. Sorts may not 
be empty. 

pCRL combines ACpT with data through the following mechanisms. 

• An atomic action is composed of an action name and (zero or more) parameters; these 
parameters are dataterms. The section containing the declaration of action names (marked 
by the keyword act) also specifies the sorts of their parameters (overloading of action names 
is allowed). 

• Communication is defined on action names (in a section marked cOlTIrn). Two actions only 
communicate if their parameters are the same (w.r.t. the rewrite rules); the resulting action 
has the same parameters. Communication is used for both synchronization and transferring 
data in this way. 

• The conditional operator x <I b!> y takes processes x and y and a boolean b; it behaves as x 
if b = T and as y if b = F. 

• The sum operator L:d,D x denotes the (possibly infinite) alternative composition of the 
processes <1(x) for substitutions <1 substituting an element of the sort D for d in x. 

• Processes can be defined by (recursive) process specifications (keyword proc). Parameters 
are allowed in these definitions. 

The conditional operator has a boolean as its middle argument. This is why the sort Bool 
is part of every IICRL-specification. The symbol '=' occurs in pCRL-specifications in rewrite 
rules, communication declarations, and process specifications. It is not a polymorphic function 
D --+ D --+ Bool, thus it cannot be used for forming the middle argument of a conditional 
operator.! Moreover, it is not entirely trivial to define such a function eqD : D -+ D --+ Bool 
satisfying eqD(d, e) = T iff d = e. The following specification (by Jan Bergstra) does the trick. 

1 It is not without reason that an equation between pmcesses cannot occur as the middle argument of a conditional 
operator: the guarded recursive process definition P = (a <3 P = J 1> 0) would lead to a = o. 
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Example 2.1 

sort Bool D 
fune T, F: -+ Bool 

eqD : D -+ D -+ Bool 
ifD : Bool -+ D -+ D -+ D 

var d,e: D 
rew eqD(d,d) = T 

ifv(T, d, e) = d 
ifv(F, d, e) = e 
ifD(eqD(d,e),d,e) = e 

Claim 2.2 The equations in the previous example enforce 

1. eqD(d, e) = T t-t d = e, 

2. eqD(d, e) = F t-t d -# e. 

Proof of Claim 2.2. 
(Via the semantics of I'CRL. A proof via the formal proof theory is given in the next section.) 

1,-+) d= ifD(T, d, e) = ifD(eqD(d,e),d,e)=e. 

1,+-) eqD(d,e) = eqD(d,d) = T. 

2,t-t) From 1, as the intended models are boolean preserving [GP94b], that is, T -# F and for all 
booleans b: b = T V b = F, thus in particular eqD(d, e) -# T -+ eqD(d, e) = F. 0 

2.1.2 Proof Theory 

The proof theory of I,CRL is given in [GP94a) in a 'natural deduction' format. The formulae 
deduced ('I'CRL property formulae') are mostly equations, and logical combinations of those. 
The axioms and rules can be divided into four parts: data, ACPT, process constructs relating 
processes with data and logical connectives. Some of these depend on the I'CRL-specification 
under consideration, most notably its declarations of rewrite rules and process definitions. 

For data, we have the axioms and rules listed in Table 1. I'CRL has no explicit quantification; 
the rule SUB enforces that each variable is implicitly universally quantified. Its application is 
only allowed when x does not occur in any hypothesis needed for deriving </1. For the precise 
definitions of substitutions and induction rules we refer to [GP94aj. An induction rule for a sort 
is based on a set of constructors for that sort. Which functions form a constructor set of a sort 
is not part of the I'CRL-specification (but see [GW94]). Given a I'CRL-specification, one can 
prove that a certain set is a constructor set only on the metalevel, using structural induction on 
closed terms. The axiom B1 is another reason for incorporating the booleans in every I'CRL­
specification: without this axiom one can never prove the inequality of two terms (the premiss of 
the rule CF2' in Table 3 below). 

For the logical connectives, I,CRL has a large number of inference rules. For those, we refer to 
[GP94a) (see also the proof below), except that we mention the rule RAA (reductio ad absurdum), 
stating that if falsum (1.) is derivable from ,</1, then </1 can be derived. As usual ,</1 abbreviates 
</1 -+1., thus negation and implication behave classically. It turns out that in proofs we do not 
need the assumption ,</1 allowed by RAA. In other words, we need only the ex-falso rule. 
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REFL t = t reflexivity, 
FACT t=u if t = u is a rewrite rule, 

REPL 
¢[t/x] t = u 

replace t by u, 
¢[u/x] 

SUB 
¢ 

substitute t for x, 
¢[t/x] 

IND ind uction rules for sorts, 
Bl ~(T=F) 

B2 b=TVb=F b is a boolean variable. 

Table 1: The axioms and rules for data. 

Proof of Claim 2.2. 
We can now prove Claim 2.2 formally in the proof theory of I,CRL. For reasons of space, we do 
not write the names of derivation rules to the left of the line, but below it (above it for rules 
without premises). --+1, [n] denotes the rule for the introduction of an implication, where n is a 
pointer to the cancelled hypothesis(-es). --+E denotes implication elimination, Le., modus ponens. 
¢ V t/J is introduced in jLCRL as an abbreviation of ~¢ --+ t/J. 

1,--+) FACT (1) 
"-'--;--;--,----,=-

if(eq(d,e),d,e) = e eq(d,e)= T FACT 
-'-;.,-;;0;--;--.--, 

REPL if(T,d,e)=e if(T,d,e)=d 
REPL d - e 

--+1, (1] eq(d, e) = T -+ d = e 

1,+-) FACT (1) 
eq(d, d) - T -'-d;-=-e-

REPL eq(d, e) - T 
--+1, [1] d = e -+ eq(d, e) = T 

2,--+) FACT (2) 
"-f---

eq(d,d)=T d=e (1) 
eq(d,e)=F REPL eq(d,e)=T Bl 

REPL ~T= F 

--+E 1. 
--+ I, [2] 

--+1, [1] eq(d,e) - F-+~d - e 
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2,t-) (2) 
"'--'-~------=--eq(d, e) = T 

1, --+ 
eq(d, e) - T --+ d = e (1) B2 

--+E d-e ~d= e 

--+E 
--+ I, [2] ~eq(d, e) = T 

SUB eq(d, e) - Tv 
eq(d, e) = F 

--+E eq(d, e) - F 
--+1, [I] ~d= e--+ eq(d,e) = F 

Proofs are usually not given in such detail, for obvious reasons. For the same reasons, it is 
preferable that such details need not be provided to the proof checker explicitly. 0 

Al x+y=y+x CMI xlly=xlly+yllx+x Iy 
A2 x + (y + z) = (x + y) + z CM2 alLx=a·x 
A3 x+x=x CM3 a . x lLy = a . (xlly) 
A4 (x + y) . z = X· Z + y. z CM4 (x + Y)lLz = xlLz + YlLz 
A5 (x· y) . z = x . (y . z) CM5 a· x I b = (a I b) . x 
A6 x+J=x CM6 a lb· x = (a I b) . x 
A7 J·x = J CM7 a· x lb· y = (a I b) . (xlly) 

CM8 (x + y) I z = x I z + y I z 
TI x·r = x CM9 x I (y + z) = x I y + x I z 

Dl lh(a) = a if a rf. L TIl n(a) = a if a rf. L 
D2 8L(a) = J if a E L TI2 n(a) = r if a E L 
D3 8L(x + y) = 8L(x) + 8L(y) TI3 n(x + y) = rL(x) + rL(y) 
D4 8L(X· y) = 8L(x) ·8L(y) TI4 n(x . y) = rL(x) . rL(y) 

SCI (xlLylllz = xll(y II z) DCI J I x = J 
SC2 xllJ=x·J TCI r I x = J 
SC3 xly=ylx Handshaking x I (y I z) = J 
SC4 (x I y) I z = x I (y I z) 
SC5 x I (ylLz) = (x I Ylllz 

Table 2: The axioms of ACpT in JLCRL. a, bE Act U {J, r}. 

For processes, I,CRL inherited the axioms AI-A7, CMI-CM9, DI-D4, TI (called BI in 
[BW90]) and TIl-TI4 from ACpT, listed in Table 2 (CM6 is derivable). All closed instances 
without process variables of the axioms SCI-SC5, DCI, TC1, and Handshaking are derivable. 
SC3 and SC4 directly reflect the properties of the communication function 'Y (corresponding 
axioms for II are mentioned also in [BW90], but these are derivable). The handshaking assumption 
similarly results in the axiom Handshaking. SC4, CM5, CM6, and CM9 are derivable. 

The axioms for the communication merge are more complicated than those of ACpT, because 
of the presence of data. The presentation here differs slightly from [GP94a], where actions without 
parameters are treated as a special case. See also Section 3. The axioms for the conditional and 
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CFl a(t" ... , tm ) I b(t l , ... ,tm) = e(tl, ... , tm ) if,(a,b) = e, m <: 0, 
CF2 a(tl,··.,tm ) I b(t;, ... ,t:") = & if ,(a, b) is undefined, 

in particular, if a or b is & or r, 

CF2' 
,(ti = t:J 

1::; i::; m, 
a(tl, ... ,tm ) I b(t;, ... ,t:") - & 

CF2" a(tl, ... ,tm ) I b(t;, ... ,t:",)=& if a and b have different sorts, 
in particular, if m # m'. 

CONDl x<JTf>y=x 
COND2 x<JFf>Y=y 

SUMl Ld,DP=P if d not free in P, 
SUM2 Ld,DP = Le'D(p[e!dJ) if e not free in P, 
SUM3 LWP = (Ld,DP) + P 
SUM4 Ld,D (PI + P2) = Ld,D PI + Ld,D P2 
SUM5 Ld,D (PI . P2) = Ld,D PI . P2 if d not free in P2, 
SUM6 Ld,D (pdLp2) = Ld,D PI LLp2 if d not free in P2, 
SUM7 LW(PI I P2) = Ld,D PI I P2 if d not free in P2, 
SUMS Ld,D ih(p) = 8L (Ld,DP) 
SUM9 Ld,D rL(p) = rL(Ld,D p) 

SUMll PI = P2 if d not free in the assumptions 

Ld,D PI = Ld,D P2 of the proof of PI = P2. 

Table 3: Axioms relating processes and data. a, b, c E Act u {8, r}. 

sum operators are mostly obvious. For SUM8 and SUM9, recall that encapsulation and hiding 
are carried out at the level of action names. In [GP94a], SUMlO states that renaming distributes 
over summation; we have omitted renaming here. 

The rules REFL, REPL, and SUB also apply to processes. The counterpart of FACT is 
called REC: P = q if P = q is a process equation. Finally, there are some more complicated 
inference rules inherited from ACpT

: RDP, RSP, and fair abstraction. These rules refer to the 
(recursive) specifications of processes. RDP, the Recursive Definition Principle, states that such a 
specification has at least one solution. RSP, the Recursive Specification Principle, states that two 
processes are equal, if they are both solutions of the same guarded recursive specification. The 
Cluster Fair Abstraction Rule CFAR [BW90] can be paraphrased informally as: 'Any process 
will eventually leave a r-cluster'. The details are discussed in Sections 3.5, 3.6, and 3.7. 

2.2 The Alternating Bit Protocol 

The Alternating Bit Protocol (ABP) is a communication protocol providing reliable transmission 
of data through an unreliable (two-way) channel. It consists of four components: a sender S, 
a receiver R, a channel J( from S to R and a channel L from R to S. These components are 
connected according to Figure 1. 
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1 4 

5 
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Figure 1: Alternating Bit Protocol. 

The numbered connection lines in Figure 1 represent gates, through which the components 
can communicate. The sender S reads data from the input at gate 1, sends frames consisting of a 
bit and a datum into the channel K at gate 2 and receives acknowledgement bits from channel L 
at gate 6. These actions are represented by, respectively, rl(d), s2(n, d) and r6(n). The receiver 
R receives frames from channel K at gate 3, writes data to the output at gate 4 and acknowledges 
receipts by sending bits into the channel L at gate 5. These actions are represented by r3( n, d), 
s4(d) and ss(n), respectively. All these rls actions have their sir counterpart in the component 
with which the gate in question is shared. Communication is synchronous, i.e., only occurs when 
complementary rls actions are executed simultaneously at the same gate. The resulting action 
is denoted by c, i.e., 'Y(Sj, rj) = Cj for j = 2,3,5,6. The channels may corrupt data, but if they 
do so they are assumed to do this explicitly by sending an error message: S3(.1.) for J( and S6(.1.) 
for L. Moreover, the channels are assumed not to corrupt data ad infinitum (in that case it is 
obviously impossible to ensure reliable transmission). This fairness assumption justifies the use 
of the proof rule CFAR later on. 

The ABP roughly works as follows: S reads a datum d from the input and starts sending 
frames (eo, d) via K to R. Once R receives a frame (eo, d) it writes d to the output and starts 
acknowledging the receipt of frame (eo, d) by sending bits eo via L to S. During this period 
occasional incoming frames (eo, ... ) are ignored by R. Process S only stops sending frames (eo, d) 
once an acknowledging bit eo is received, and then reads a new datum d' from the input and 
starts sending frames (€l, d') to R. During this period occasional incoming acknowledgements eo 
are ignored by S. Process R only stops acknowledging with bit eo after a frame (€J, d') is received, 
then writes d' to the output and starts acknowledging the receipt of frame (el, d') by sending bits 
€l to S, and so on. It should be clear that the alternating bit is essential to distinguish new frames 
from old ones (note that it is not excluded that d' = d) and to distinguish the acknowledgement 
of a new frame from that of an old one. 

The question arises: is the ABP correct? This question can only be answered after having 
specified a correctness criterion: the ABP should behave externally like a buffer. This raises 
several other questions: what is 'the ABP', what is 'a buffer' and what is 'behave externally'? 
These questions should be answered by giving formal specifications, instead of e.g. the rough 
description of the ABP above. 
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2.3 Specification and verification of the ABP in jlCRL 

We now present a formalization of the ABP in /LCRL. It follows closely the definition of the ABP in 
[BW90], except that now data is treated more formally (which also involved some renamings). We 
make no difference between a bit and a boolean. Therefore we have no separate sort bit, but use 
Bool instead. The sort booLErr (Fmme_En') is the disjoint sum of the sort Bool (D X Bool) and 
a singleton sort containing an error element, with an injection ibool:Bool-+booLErr(iFrame:D X 

Bool-+Frame_Err). We assume D to be a given, nonempty sort; we do not specify its elements. 
The correctness of the ABP follows from the derivability in I,CRL of ABP = Buffer. 

sort Bool booLErr Frame_Err 

rune T,F 
neg 
ibool 
errorbit 
iFrame 

: Bool 
: Bool 

: D X Bool 
errorframe: 

var bl , b2 : Bool 
dJ,d2 : D 

-+ Bool 
-+ Bool 
-+ booLErr 
-+ booLErr 
-+ Frame_Err 
-+ Frame_Err 

rew eqs and ifs for all sorts, see Example 2.1 
neg(b l ) = eqBool(b l , F) 
eqbooLE" (ibool(bJ), ibool(b2)) = eqBool(b

" 
b2) 

eqb"LErr(ibool(b, ), errorbit) = F 
eqFram,_Err(iFrame(d

" 
b,), iFrame(d l , b2)) = ifBool (eqBool(bJ, b2), eqD(dJ, d2), F) 

eqFrame_Err(iFmme(d11 bd, errorfrmne} = F 

act r,,84 : D 
r2, 82, C2 : D X Bool 
r3, S3, C3 : Frame_Err 
r5, 85, C5 : Bool 
r6, 86, C6 : booLErr , 

comm 1'2 I 82 = C2 

r3\ 83 = C3 

r5 \ 85 = C5 

r6\ 86 = C6 

proe Buffer= Ld,D h (d) . 84 (d)) . Buffer 

ABP = T{c"c"c, ,C6,;} (O{r"s,,r,,s,,r,,,, ,r6,s6) (Sd \I Rc \I J( \\ L)) 

J(= Lj,DXBool(r2(f)· (i· s3(iFrame(f)) + i· 83(error frame))) .J( 
L = Lb,Bool (r5(b) . (i· 86(ibool(b)) + i· ss(errorbit))) ·L 

Sd = Sb(T) . Sb(F) . Sd 
Rc = Rb(F) . Rb(T) . Rc 

Sb(b: Bool) = Ld,D 1'1 (d)· Sf(d, b) 
Sf(d: D, b: Bool) = s2(d, b)· Tf(d, b) 
Tf(d: D, b: Bool) = (r6{ibool(neg(b))) + "6(e"l'Orbit)) . Sf(d, b) + "6(ibool(b)) 
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Rb(b: Bool) = (Ld,D r3(iFrame(d, b)) + r3(error frame)) . 8s(b) . Rb(b) + 
Ld,D r3(iFrame(d, neg(b)))· 84 (d) 

We now outline the correctness proof of the ABP as formalized in Section 4. For additional de­
tails we refer to Sections 4.7 and 5.7 of[BW90). We use H to abbreviate {r2, 82, r3, 83, rs, 8S, r6, 86} 

and I to abbreviate {C2, C3, Cs, C6, i}. 
In order to exploit the symmetry in the protocol, we abstract from the state of the alternating 

bit in the sender and the receiver. That is, we define 

Sd(b: Bool) = Sb(b)· Sb(neg(b)) . Sd(b) 
Rc(b: Bool) = Rb(neg(b)) . Rb(b) . Rc(b) 

It is obvious, and easy to prove by RSP, that Sd = Sd(T) and Rc = Rc(T). We also need the 
equally obvious equations Sd(b) = Sb(b)· Sd(neg(b)) and Rc(b) = Rb(neg(b))· Rc(neg(b)). 

We introduce some more auxiliary definitions. The aim of these is to give a linear description 
of the protocol before hiding. That is, the equations are of the form XO = LaO' yo, where L 
denotes a mixture of alternative compositions and summations, X and Yare process variables 
and a an action. If we fill in all parameters of X, we obtain a state of the protocol, and the 
equation then gives all possible actions with their resulting states. This linearization is depicted 
in Figure 22 of [BW90]; Figure 3 and 4 constitute the same figure somewhat simplified. 

In these definitions, we use the syntax (X I E) from [BW90) to denote the process defined by 
the process variable X in the recursive specification E. The advantage of this notation over pCRL 
is that we can distinguish various (sub)systems of equations. This is particularly useful when it 
comes to applying RSP and CFAR formally on systems of equations, as is done in Section 4.3, 
respectively 4.5. 

ABP_nohide(b) = BH(Sd(b) II Rc(b) II [( II L) 
First(d,b) = r,(d). (X, I E,(d,b) 
Exitl(d, b) = c3(iFmme(d, b)) . 84(d) . (X, I E2(d, b) 

Exit2(b) = c6(iboo/(b)). ABP_nohide(neg(b)) 

t. t. 
E,(d,b) = { X,= c2(d, b)· X 2 E2(d, b) = { 

X2= i . Exitl (d, b) + i . X 3 
X3= c3(errorfmme)· X 4 
X4= cs(neg(b))· Xs 
Xs= i·X6 +i,X7 
X6= C6( errorbit) . X, 
X7= c6(ibool(neg(b))). XI } 

X , = cs(b) . X 2 
X 2 = i· Exit2(b) + i· X3 
X3= C6( errorbit) . X 4 
X 4 = c2(d,b) ·Xs 
Xs= i·X6 +i,X7 
X6= C3 ( errorframe) . X I 
X7= c3(iFrame(d,b)) ,XI 

The mayor task of the verification is to prove the following lemma. 

Lemma 2.3 ABP_nohide(b) = Ld,D First(d, b). 

} 

Proof: By numerous applications of the axioms, we can infer the possible first actions of 
ABP_nohide(b) and their resulting states. It turns out that 

ABP_nohide(b) = Lh (d) . BH(Sf(d, b) . Sb( neg(b)) . Sd(b) II Rc(b) II J( II L)). 
d,D 

11 



Unfolding the definition of First in the lemma, and stripping the first action on both sides, we 
arrive at the proof obligation 

8H(Sf(d, b) . Sb(neg(b)) . Sd(b) II Rc(b) II J( II L) = (XI I EI (d, b). 

The lefthandside of this equation describes the next state of the protocol. We continue by 
determining the possible first actions of this next state, and the state after that, and so on. After 
lots of steps, we derive 

8H(Sf(d, b)· Sb(neg(b)) . Sd(b) II Rc(b) II J( II L) = 
c2(d, b)· (i. SomeState + 

i . C3( errorframe) ..... 8H (Sf( d, b) . Sb( neg(b)) . Sd(b) II Rc(b) II J( II L)), 

where SomeState is some term of the form 8H(SenderStateIiReceiverStateIiKStateIiLState). The 
righthandside of this equation corresponds to the structure of E\, therefore we can conclude by 
RSP that the aforementioned proof obligation follows from SomeState = Exit} (d, b). Extracting 
first actions twice more, and unfolding the definition of Exit1, we arrive at the proof obligation 
SomeState' = (XI I E2(d, b). This one is tackled again by RSP, and results in SomeState" = 
Exit2(b). Finally, we extract the first action C6( ibool(b)) of SomeState", and arrive at 

8H(Sb(neg(b)). Sd(b)IIRb(b). Rc(b)IIKIIL) = ABP_nohide(neg(b)). 

This equation follows immediately from our observations upon the introduction of Sd(b) and 
Rc(b). 0 

Theorem 2.4 ABP = Buffer. 

Proof: By unfolding First, axiom T14, applying CFAR on the clusters EI and E2, and axiom 
TI, we derive 

T[(First(d,b)) = '·1 (d) . s4(d)· T[(ABP_nohide(neg(b))). 

Combined with Lemma 2.3, we conclude 

T[(ABP_nohide(b)) = (2)I(d). s4(d))· n(ABP_nohide(neg(b))). 
d,D 

It is now straightforward to show that ABP, being T[(ABP_nohide(T)), and Buffer both satisfy 
the equation 

X = (2: rl(d) . s4(d)) . (2: rl(e) . s4(e)) . x. 
d:D e:D 

So, a final application of RSP concludes the proof. o 

2.4 The Coq Proof Checker 

For a complete overview of the Coq proof checker, we refer to [DFH+93J. It is based on the Cal­
culus of Constructions, an extension of simply typed lambda calculus, but a deep understanding 
of that formalism, in particular of the identification of propositions and types, is not necessary for 
understanding the use we make of Coq (propositions are of type Prop and types of type Set). One 
can declare types, and state the existence of (constructor) functions with their types, including 
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constants. One can express quantification and higher order logic. The implication and negation 
behave constructively. 

The Calculus of Constructions extends simply typed lambda calculus by inductive definitions 
of sorts and propositions. A sort is defined inductively by listing its constructors. Such a definition 
of an Inductive Set yields an induction principle and a Match-function, which enables the 
definition of (primitive recursive) functions by induction on the constructors. Together, they 
imply that every term of that sort is equal to a constructor term, and that all constructor terms 
are different. For example, the sort Bool can be translated to Coq as 

Inductive Set boo 1 = true: boo 1 I false: bool. 

Equality in Coq is a ternary polymorphic function <_> _ =_ (see below). It has a so-called depen­
dent type: (D:Set)D->D->Prop. That is, for each D, <D>_=_ is a function of type D->D->Prop. A 
simpler example of a dependent type is the type of the function [D: Set] [d: D] d, the polymorphic 
identity function (square brackets denote lambda-abstraction in Coq). Its type is (D:Set)D->D. 
In fact, the notation P->Q is an abbreviation of (x:P)Q when x does not occur in Q. 

From the above inductive definition of bool, one can prove - «bool>true=false) (true and 
false are not equal) and (b :bool) <bool>b=true \I <bool>b=false (for all b of type bool, 
b is either true or false). These statements correspond to the axioms B1 and B2 in IlCRL. A 
disadvantage of inductively defined sorts is that the axioms that come with them remain hidden. 
This can result in a seemingly reasonable specification which is nevertheless incorrect, perhaps 
even inconsistent. For this reason and others, explained later, we shall not use this translation. 
It would certainly not be a good idea to define processes inductively, as there is no assumption 
in the semantics of IlCRL that all processes can be built from the given actions and operators. 

By the propositions-as-types paradigm, propositions can also be defined inductively. An 
inductively defined type is the least set that is closed under the constructors (such that all 
constructor terms differ); an inductively defined proposition is the least proposition that is closed 
under the rules given for it. Rather than giving a formal definition, we give an example. 

Example 2.5 We consider the transitive closure function, which, given a relation R on D x D, 
returns the transitive closure of R. The relation R is represented in Coq by its characteristic 
function of type D->D->Prop. ([R: D->D->!'rop] x denotes )"R.x) 

Inductive Definition TC [R:D->D->Prop] 
Base : (x,y :D) (R x y) -> 
Trans: (x,y,z:D) (R x y) -> (TC R Y z) 

: D->D->Prop = 
(TC R x y) I 

-> (TC R x z). 

This definition says that TC(R) is the least relation closed under the above rules; therefore 
an elimination principle comes with this definition: in order to prove a proposition P(x, y) under 
the assumption TC(R)(x, y), it is sufficient to prove 

R(x, y) -t P(x, y) and R(x, y) 1\ TC(R)(y, z) 1\ P(y, z) -t P(x, z). 

This seems somewhat stronger than the usual induction scheme without the conjunct TC(R)(y, z), 
but it is actually equivalent. 

Also basic notions in Coq, such as truth, falsity, and equality, are inductively defined. 
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Inductive Definition True Prop = I: True. 
Inductive Definition False Prop = 
Syntax eq "< > = " - - -
Inductive Definition eq [A:Set;x:A] A->Prop = refl_equal: <A>x=x. 

I is by definition the proof of the nullary relation True; the elimination principle for True is a 
tautology. False is the empty nullary relation; with this definition comes the axiom False_ind: 
(P:Prop)False->P, the ex-falso rule, which reflects the minimality property (or the elimination 
principle) for False. Finally, equality on a set A is defined through the statement 'for x:A, the 
unary relation "being equal to x" contains only x'. This definition gives the induction princi­
ple (A:Set)(x:A)(P:A->Prop)(P x)->(a:A) «A>x=a)->(P a). Thus the effect of eliminating2 

<A>b=a is that (usually all) occurences of a are replaced by b. Equations can be used as term 
rewrite rules from right to left in this way.3 Conjunction and disjunction are also inductively 
defined. Eliminating a conjunctive hypothesis A/\B yields two hypotheses A and B; eliminating 
A \lB yields two new proof obligations, one with hypothesis A and one with B. 

A proof in Coq starts from the statement that one wants to prove, which is then transformed 
by applying tactics. A tactic replaces a proof obligation by zero or more new ones. A proof 
obligation consists of two parts: the goal (initially the statement that one wants to prove) and 
the context, a set of declarations of variables and premisss that can be used in the prooF. A 
proof is completed if there are no more proof obligations. Some typical tactics are: 

Intro moves a universal quantifier or the premiss of an implication from the goal to 
the context. 

Apply H applies resolution on the goal and H, a hypothesis from the context, global 
axiom, or theorem. If H is an implication, each premiss yields a new proof 
obligation. 

Elim H For a declaration H: 0, where D is an inductive set, this amounts to structural 
induction. For a hypothesis H:P, where the main predicate of p is inductively 
defined, it applies the elimination principle. 

Contradiction looks for a hypothesis False. 

Assumption looks for a hypothesis equal to the current goal. 

Exact H succeeds if the goal is exactly the hypothesis, axiom, or theorem H. 

Unfold name unfolds the definition of name. 

Pattern position allows the selection of red exes for term rewriting. 

Auto 

Idtac 

tries to complete the proof by applying hypotheses and designated theorems. 

does not change the proof obligation (sometimes useful in complicated tactics). 

2By eliminating H, we mean applying the induct.ion principle for the main constructor of H. 
3The fact that some of our axioms are written 'backwards' is a relic of a Coq version that could only rewrite in 

this direction. The current version has also a tactic Rewrite for rewriting from left to right. 
4 According to the propositions-as-types paradigm, there is no fundamental distinction between a declaration 

d: D with D: Set and a hypothesis H: P with P: Prop. 
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Complicated tactics can be constructed from the basic ones. They can succeed, fail, or run 
out of space. A basic tactic fails if it is not applicable. 

tactic, ; tactic2 applies tactic, and then tactic2 on all proof obligations 
generated by tactic,. 

tactico ; [tactici I ... I tacticn ] applies tqctico and then tactic, , ... ,tacticn on the n proof 
obligations generated by tactic,. 

tactic, Orelse tactic2 tries to apply tactic" if that fails it applies tactic2. 

Try tactic, tries to apply tactic!, but it does not fail even if tactic! does. 

Repeat tactic! repeats tactic! until that fails. This tactic never fails. 

Auto never fails: if it cannot complete the proof, it leaves the goal unchanged. Auto;Exact I 
gives a version of Auto that can fail. (Exact I cannot be applicable after Auto, because Auto 
tries it.) 

3 The Thanslation of jlCRL into Coq 

In this section, we discuss and motivate how we translate JLCRL into Coq. We also show how a 
JLCRL-specification should be translated, using the ABP as an example. 

3.1 JLCRL versus Coq 

JLCRL and its proof theory share a significant number of concepts with Coq; we name (data}types, 
equality, implication, axioms, and derivability. The most formal way to proceed is to ignore these 
similarities, and to encode each JLCRL-concept in Coq. That is, to define a sort muCRLJ'rop of 
JLCRL property formulae and to encode JLCRL-derivability inductively as the least relation Dv 
muCRLJ'rop->Prop that contains all axioms and is closed under all inference rules of JLCRL: 

Inductive Definition Dv : muCRL_Prop->Prop = 

REFL: (D: sorts) (has_sort t D) -> (Dv (equal D t t)) I 

REPL: (Phi :muCRL_Prop) (D: sorts) 
(Dv (subst D t x Phi)) -> 
(Dv (equal D t u)) -> (Dv (subst Dux Phi)) I 

Ai: (p,q:proc) (Dv (equal proc (alt P q) (alt q p))) I 

ArrowI: (Phi,Psi:muCRL_Prop) 
«Dv Phi) -> (Dv Psi)) -> (Dv (implies Phi Psi)) I 

In this example, equal encodes the equality predicate of JLCRL, subst encodes substitution, 
sorts the declaration of sorts, has_sort the declaration of variables, al t the + on processes, 
implies implication between pCRL property formulae, and so on. 

Translating I,CRL to Coq in this way is possible, but cumbersome: it gives rise to unreadable 
Coq texts and makes it impossible to automate the bulk of the proof (in the current version 
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5.8.3 of Coq). Namely, proofs in process algebra typically use a subset of the axioms (and 
derived equations) as a term rewriting system, computing normal forms for process terms (modulo 
associativity and commutativity of +). Hand-written, such a part of the proof appears as term = 
term = ... = term; formally each step is an application of REPL. In the above translation, 
the intermediate terms cannot be found by Coq; the user must provide them. This makes it 
effectively impossible to find even the most trivial proof automatically. In other words, with this 
translation we cannot hope to achieve a granularity of Coq proofs that comes anywhere near the 
granularity of hand-written proofs. Consequently, this approach is not (yet) scalable to real-life 
protocols. 

Therefore we take another approach: rather than encoding !,CRL in Coq, we embed !,CRL in 
Coq, that is, we map !'CRL-concepts to the 'same' concepts in Coq as much as possible. Such a 
translation renders Coq texts that are relatively easy to read, and intuitive proofs. The obvious 
problem with this approach is of course its soundness (and completeness). However, the soundness 
of the encoding approach is also not immediate, as it is not even proved yet that Coq is consistent 
[CP90, PM93], i.e., False might be derivable. In fact, the problem lies in the inductive sets and 
definitions, on which the encoding relies much more than our embedding approach. Clearly, any 
such soundness result lies beyond the scope of process algebra as long as this consistency of Coq 
is not proved. 

So the axioms of I,CRL are translated to axioms in Coq; inference rules (e.g. SUMll) become 
implications (see Section 3.4 for the details). Also the rewrite rules of a !,CRL-specification are 
translated to axioms, which is justified by FACT. Is the consistency of Coq in the empty state 
already unproven, adding axioms makes it even harder to prove consistency. One might therefore 
argue that a better way to proceed would be to define the proposition muCRL as the conjunction 
of its axioms and rules (which can be done conveniently by an inductive definition), and to use 
that as a premise to all lemmas and theorems. We feel that this approach does not add any 
confidence in the results: the question remains if this proposition muCRL entails False in Coq. 
From a practical point of view, the approach makes proofs much harder to read because the 
names of the axioms are lost. 

There are some obvious mismatches between Coq and I,CRL to take care of. The most obvious 
mismatch occurs between the classical implication of !,CRL and the constructive implication of 
Coq. In this case the rules of I,CRL are stronger than those of Coq, so soundness is not at stake. 
We could have added the axiom (P:Prop)--P->P, but it turned out that we did not need it. 

Another potential source of problems is equality. The equality <_> _ = _ of Coq has the Leibniz 
property, i.e., two terms are equal if and only if they can be substituted for each other in every 
context of type Prop. This is a strong requirement, as these contexts are built from the expressive 
language of Coq. Whether = in I,CRL can be interpreted conservatively as Leibniz equality in 
Coq is a subject for specialized stu'dy. 

Finally, !,CRL has no explicit quantification, but instead the substitution rule. This rules 
entails that all variables are implicitly universally quantified. These quantifiers are made explicit 
in our translation. Yet not all variables inl,CRL are bound in this way: the sum operator Ld'D(X) 
binds the variable d of datatype D in x. We translate this binding to lambda abstraction, see 
Section 3.4 for the details. 

3.2 Data 

A significant part of the proof theory of I,CRL can be translated to Coq independently of a 
particular !'CRL-specification. Only the set of action names, the communication function /, and 
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the set of sorts parameterize this translation. The two sets are finite; therefore we define them 
as Inductive Sets, simply enumerating the members. These are the only Inductive Sets we 
use. From these definitions it is easy to prove that all actions, respectively sorts, are different (we 
need inequality of sorts to verify the side-condition of axiom CF2"). 

For simplicity, we allow actions to have precisely one data argument. For actions that have 
more than one parameter in the specification, pairing can be used. Actions without parameter 
get the dummy argument i, which·is the only element of the trivial sort one. Thus for the ABP 
we must declare Frame = D x Bool and one as sorts. Why the sort nat of naturals is needed is 
explained in Section 3.7. 

Inductive Set types = onetype:types 
Dtype:types I Frametype:types 

booltype:types 
bool_Errtype:types 

nattype:types I 
Frame_Errtype:types. 

In fact, this declaration gives us sort names. The sorts themselves are created through the 
declaration of a function type: types->Set. (The declarations regarding one, bool, and nat 
are part of the translation of I,CRL, the others are part of the translation of the ABP.) 

Parameter type: types->Set. 

Definition one = (type onetype). Definition D = (type Dtype). 
Definition boo 1 = (type booltype). Definition Frame = (type Frametype). 
Definition nat = (type nattype). Definition boo I_Err = (type bool_Errtype). 

pefinition Frame_Err = (type Frame_Errtype). 

A consequence of this approach is that we cannot define these sorts inductively. Thus we 
must declare the constructors and induction principles for these sorts explicitly. We can also not 
use the Match-function, therefore we must axiomatize the functions zero and pred, which allow 
us to prove that naturals of the form sn(o) differ for different n. 5 

Parameter i one. 
Parameter true,false bool. 
Parameter 0 nat. 
Parameter S nat->nat. 

Axiom 11 (j :one) <one> j=i. 
Axiom B1 -<bool>true=false. 
Axiom B2 (b:bool) <bool>b=true \/ <bool>b=false. 
Axiom nat_ind: (P:nat->Prop) (n:nat) (P O)->«y:nat)(P y)->(P 

Parameter zero nat->bool. 
Parameter pred nat->nat. 

Axiom zaroD: 
Axiom zeroS: (n:nat) 
Axiom predO: 
Axiom predS: (n:nat) 

<bool>(zero 0 )=true. 
<bool>(zero (S n))=false. 
<nat> (pred 0 )=0. 
<nat> (pred (S n))=n. 

(S y)))->(P n). 

5 Alternatively, we CQuld postulat.e a bijection bet.ween the sort nat as defined here and inductively defined 
naturals. Section 4.5 might be simplified by the resulting ability to use the Match-function. 
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As we noted, pCRL has two equalities: the 'built-in' = for both data (rew) and processes 
(proc), and the user-defined eqD : D ~ D ~ Bool for each sort D. We chose not to translate 
eqD into Coq by literally translating the rewrite rules of Example 2.1, but by defining it by its 
intended meaning, namely part 1 of Claim 2.2. 

Axiom def_eql: (T:types)(d,e:(type T)) <bool>(eql T d e)=true<->«type T»d=e. 

It remains to translate the ABP-specific function declarations and rewrite rules, including 
those needed because of the introduction of type Frame (which also allows a more intuitive formu­
lation of the axiom same_err ...frame). Note that the defining equation of neg in the specification 
is simple enough to translate it to a Definition in Coq, whereas the remaining functions are 
declared and their defining equations turned into axioms. For constructors (here pair, iFrame, 
errorframe, ibool, and errorbit) and projections (data_of and bit_of) this appears to be 
the only way. (A Variable declaration is local within a Section; it is translated to a universal 
quantification outside.) 

Section ABP_DATA. 
Variable b,c:bool. 
Variable d :D. 
Variable f,g:Frame. 

Parameter pair 
Parameter data_of 
Parameter bit_of 

:D->bool ->Frame. 
Frame->D. 
Frame->bool. 

Axiom pair_inj: <bool>(eql Frametype f (pair (data_of f) (bit_of f)))=true. 
Axiom bit_inj : <bool>(eql booltype b (bit_of (pair db))) =true. 
Axiom data_inj: <bool>(eql Dtype d (data_of (pair db))) =true. 

Definition neg = [b:bool] (eql booltype b false). 

Parameter iFrame 
Parameter errorframe 
Parameter ibool 
Parameter errorbit 

Axiom find_errorbit 
Axiom same_err_frame 

Axiom find_errorfrarne: 
End ABP_DATA. 

Frame->Frame_Err. 
Frame_Err. 

boo I ->bool_Err. 
bool_Err. 

<bool>(eql booltype 
(eql bool_Errtype 

<bool>(eql bool_Errtype 
<bool>(eql Frametype 

(eql Frame_Errtype 
<bool>(eql Frame_Errtype 

3.3 Actions and Communication 

b c )= 
(ibool b) (ibool c)) . 
(ibool b) errorbit )=false. 

f g )= 
(iFrame f) (iFrame g)). 
(iFrame f) errorframe)=false. 

Actions in peRL are declared with their respective sorts, but overloading of action names is 
allowed: one may declare an action r with sort D and another action r with a different sort E. In 

18 



the translation into Coq, actions are declared without their sorts (in other words: action names 
are declared). Thus there can be actions in the translation that are not present in the original 
specification. As these actions will not occur in the processes, this mismatch is harmless. 

The comm section of a IICRL specification, defining the communication function, of ACPT, 
is translated to the function gamma in COq. Recall that communication in pCRL is defined on 
action names only, that is, if two actions (of different sort) have the same name, then they must 
communicate in the same way. This facilitates a correct translation into Coq: gamma is specified 
only for the action name r, not for 'r:D'and 'r:E' separately. It is not easy to specify partial 
functions in Coq, therefore when ,(a, b) is undefined, its translation (gamma a b) returns the 
special action name delta. The process T in pCRL behaves similarly to an atomic action, so a 
second special action name tau is introduced. 

When we consider the actions of the ABP, the actions r1 and S4 stand out, as there are no 
communicating SI and r4 actions. Therefore we renamed them to ain (input action) and aout 
(output action). We can now drop the indices of the remaining r, s, and c actions, as their sorts 
differ. The only communcation is now ,(r, s) = ,(s, r) = c. Finally we renamed ito int, because 
i is already used as the inhabitant of one. Thus we have the following definitions. 

Inductive Set act = 
ain:act I aout:act I int:act I r:act s:act I c:act I delta:act I tau:act. 

Definition gamma = [e,f:act] «act>Match e with 
delta delta delta 
«act>Match f with delta delta delta delta c delta delta delta) 
«act>Match f with delta delta delta c 
delta delta delta). 

delta delta delta delta) 

This definition of gamma is by case analysis. First, if e is ain, aout, int, c, delta, or tau, 
then (gamma e f) is delta. Second, if e is r or s, then (gamma e f) is delta unless f is s 
respectively r. 

gamma must have certain properties, which are stated as five proof obligations (goals) in Coq. 
We must prove these goals in order to show that gamma satisfies the desired properties. Some of 
these properties are used as lemmas in the correctness proof of the ABP as well. The first two 
properties are that delta and tau do not communicate. The third is that the communication of 
two actions is not T (allowing this would complicate defining guardedness, see Section 3.6. The 
fourth is that gamma is commutative, as is required in [BW90]. It is also required there that gamma 
is associative, but we assumed handshaking, the fifth property, which is stronger. 

Goal (a :act) <act>(gamma delta a )=delta. 
Goal (a :act) <act>(gamma tau a )=delta. 
Goal (a,b :act)-<act>(gamma a b )=tau. 
Goal (a,b :act) <act>(gamma a b )=(gamma b a). 
Goal (a,b,c:act) <act>(gamma a (gamma b c»=delta. 

The text of the proofs of these goals does not depend on gamma: it is always a straightforward 
case analysis (thanks to the fact that actions are defined inductively, and gamma is defined by the 
Match-function. 
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3.4 Processes and Axioms 

The distinction between the action a and the process a is not always obvious in process algebra. 
In the current setting, it is obvious that a process is formed from an action name, its sort, and 
an element of that sort. However, there is only one process 6 and one process T. Thus we declare 

Parameter proc 
Parameter ia 

Definition Delta 
Definition Tau 

Axiom Delta_Data 
Axiom Tau_Data 

Set. 
(T:types) act->(type T)->proc. 

= (ia onetype delta i). 
= (ia onetype tau i). 

(T:types)(t:(type T)) <proc>Delta=(ia T delta t). 
(T:types)(t:(type T)) <proc>Tau =(ia T tau t). 

It remains to model sets of actions (for hiding and encapsulation), before we declare the 
operators on processes. Similar to the relation R in Example 2.5, we model this set by its 
characteristic function act->Prop6. A small complication is that we have added delta and tau 
to the set of actions, and that these cannot be encapsulated, nor hidden. This we define the 
function goodset, which, given a set of actions, returns the same set without delta and tau. 

= act->Prop. Definition ehset 
Definition goodset ehset->ehset = [L:ehset] 

[a:act] (-«act>a=delta))/\(-«act>a=tau))/\(L a). 

Parameter alt,seq,mer,Lmer,cornrn 
Parameter cond 
Parameter sum 
Parameter enc,hide 

proc->proc->proc. 
proc->bool->proc->proc. 

(T:types) «type T)->proc)->proc. 
ehset->proc->proc. 

Note the type of the sum operator. Ld'T(x) is translated to (sum T Cd: (type T)]x), thus 
sum has the polymorphic type (T:types) «type T)->proc)->proc. The axiom SUM2 of pCRL 
is now recognised as a-conversion, and can therefore be omitted in the translation. The freeness 
requirements of the variables in the other SUM-axioms are verified automatically: if they are not 
satisfied, then an unbound variable would occur. The premiss of SUMll refers to the equality of 
two processes with a free variable d: D; it is translated to Vd ED: PI (d) = p2(d). 

Most of the axioms of I,CRL translate directly into Coq, as they are simply equations between 
processes; variables are universally quantified. For example, Al translates to 

Axiom Al:(x,y:proc)<proc>(alt x y)=(alt y x). 

6Sellink [Sel93] suggests to represent the sets for hiding and encapsulation as lists. This turns out to be 
unnecessary cumbersome, but raises an interesting question. Suppose that we have sets as a sort in the specification 
of the protocol. Then the jJCRL-specification contains an algebraic specification of sets based on lists, such as the 
one given by Groote and Van Wamel [GW94] (a function D --+ Bool can be declared in IJCRL, but not used 
as a sort). Is it allowed in this case to use the characteristic function representation, or should we translate the 
algebraic list-based specification dutifully into Coq? The latter is more formal, but further away from the informal 
specification, which requires sets. Notice that this problem does not occur for the sets of actions for encapsulation 
and hiding, as these sets are not sorts, but built-in sYllt.actic objects in I,CRL. 
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The derivable axioms SC4, CM5, CM6, and CM9 are not translated to axioms, but to lemmas. 
Some axioms have side-conditions, most notably the CF-axioms, D1, D2, Til and TI2. The 
CF-axioms have been simplified in comparison with Table 3. 

Axiom CF1 

Axiom CF2 

<proc> (eond (ia T (gamma a b) t) (eql T t t') Delta)= 
(eomm (ia Tat) (ia T b t')). 

-<types>T=U -> <proe> Delta=(eomm (ia Tat) (ia U b u )). 

CF1 covers not only the case of actual communication (CF1 in Table 3), but also the case 
where communication fails because the actions do not communicate or the data is not the same 
(CF2 and CF2'). Claim 2.2 or the axiom deLeql justifies this formulation, which effectively 
replaces the premiss ~(ti = t:J of CF2' by eqT(ti, t:J = F. The only remaining case is that of 
CF2": actions with different sorts (and hence incomparable data), which IS covered by CF2. 

Apart from the axioms listed, there are many 'derived axioms' or lemmas. These are discussed 
in Section 4.1. 

3.5 Recursive Specifications and RDP 

Informally, RDP states that a recursive specification has at least one solution. Thus we need to 
translate what is a recursive specification, and what is a solution of it. First, we consider the 
case of a single recursive equation. Such an equation, written as X(d) = G(X, d), can be seen as 
the definition of the process operator G of type (D->proe) ->D->proe. (This is a generalization 
of the linear process operators of [BG94b), where G must be in a particular normal form.) A 
solution of the recursive equation is then a fixed point of G, and has type D->proe. 

In the general case, we have a set of process variables ProeVar and a function Typ from ProeVar 
to types giving their associated sorts (similar to actions, we let process variables have exactly one 
data parameter). A solution of a system of recursive equations is now a function that interprets 
each process variable as a function from its data parameter to a process, thus the type of a 
solution (in fact, of any such interpretation) is Inttype = (X :ProeVar) (type (Typ X) )->proe. 
The system of recursive equations DefEq itself is then a process operator Inttype-> Inttype 
(similar to G above). The solution is its fixed point. 

For example, the system {X = a' Y(T), Y(b: BooI) = X + a· Y(not(b))} is defined as 
follows (note that DefEq needs the old interpretation of process variables iPV to interpret the 
occurrence of a process variable in the body of an equation as a process). 

Inductive Definition ProcVar = X:ProcVar I Y:ProcVar. 
Definition Typ = [P:ProcVar] «types>Match p with (0 X 0) onetype 

(0 Y *) booltype). 
Definition DefEq = [iPV:Inttype] [P:ProcVar] 

«[P:ProcVar](type (Typ P))->proc>Match P with 
(0 X *) [j:one ](seq (ia onetype a i) 

(iPV Y true) ) 
(0 Y 0) [b :bool] (alt (iPV X i) 

(seq (ia onetype a i) 
(iPV Y (neg b)) ))). 

RDP states that a system of recursive equations has a solution, Le., that a process operator 
has a fixed point. Thus we declare the solution function Sol: (Inttype->Inttype)->Inttype 
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giving a solution for each system of equations (think of it as the ,,-operator). That (Sol DefEq) 
is indeed a sol u tion for DefEq is stated in axiom RDP. 

Section RDP. 
Variable ProcVar Set. 
Variable 
Local 
Variable 

Typ 
Inttype = 
DefEq 

ProcVar->types. 
(X:ProcVar)(type (Typ X»->proc. 
Inttype->Inttype. 

Parameter Sol 
Axiom RDP 

(Inttype->Inttype)->Inttype. 
<Inttype>(Sol DefEq)=(DefEq (Sol DefEq». 

End RDP. 

We can now translate the proc section of the definition of the ABP. As we did earlier in 
Section 2.3, we add structure to the "CRL-specification by distinguishing four (sub)systems of 
equations. 

1. The buffer, containing only the equation for Buffer, 

2. the sender, containing the equations for Sb, Sf, and Tf, 

3. the receiver, containing only the equation for Rb, and 

4. the equations for Sd, Rc, K, and L. 

The equations for ABP_nohide and ABP are not recursive. Therefore we translated them to 
Definitions. 

(0 Buffer 0) 
Inductive Set PVBuf 
Definition TypBuf 
Definition BufEq 

Definition Buffer 

Section ABPdef. 
(0 The Sender 0) 

= 
= 
= 

= 

Buf : PVBuf. 
[X:PVBuf]onetype. 
[iPV:PVBuf->one->proc] [X:PVBuf] [j:one] 
(sum Dtype [d:D] (seq (ia Dtype ain d) 

(seq (ia Dtype aout d) 
(iPV Buf i) ») . 

(Sol PVBuf TypBuf BufEq Buf i). 

Inductive Set SendSubState = Sb:SendSubState I Sf:SendSubState I Tf:SendSubState. 

Definition SSSTyp = [X:SendSubState] «types>Match X with booltype 
Frametype 
Frametype). 

Definition SSSDef = [iPV:(X:SendSubState)(type (SSSTyp X»->proc] 
[X: SendSubState] 

«[X:SendSubState](type (SSSTyp X»->proc>Match X with 
(oSb 0) [b:bool] (sum Dtype [d:D](seq (ia Dtype ain d) (iPV Sf (pair db»» 
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(*Sf *)[f:Frame] (seq (ia Frametype s f) (iPV Tf f)) 
(*Tf *)[f:Frame] (alt (seq (alt (ia bool_Errtype r errorbit) 

(* The Receiver *) 

(ia bool_Errtype r (ibool (neg (bit_of f))))) 
(iPV Sf f)) 

(ia bool_Errtype r (ibool (bit_of f))))). 

Inductive Set RecSubState = Rb:RecSubState. 
Definition RSSTyp = [X:RecSubState]booltype. 

Definition RSSDef = [iPV:RecSubState->bool->proc] [X:RecSubState] 
(*Rb *)[b:bool] (alt (seq (alt (ia Frame_Errtype r errorframe) 

(sum Dtype [doD] 

(* The ABP *) 

(ia Frame_Errtype r (iFrame (pair db))))) 
(seq (ia booltype s b) (iPV Rb b))) 

(sum Otype [d: 0] 
(seq (ia Frame_Errtype r (iFrame (pair d (neg b)))) 

(seq (ia Dtype aout d) (ia booltype s (neg b)))))). 

Inductive Set Components = Sd : Components I Rc Components I 
CK : Components I CL Components. 

Definition CompTyp = [X:Components]onetype. 

Variable phase: bool. 

Definition CompDef = [iPV:Components->one->proc] [X: Components] 
«one->proc>Match X with 
(*Sd *)[j:one] (seq (Sol SendSubState SSSTyp SSSDef Sb phase) 

(seq (Sol SendSubState SSSTyp SSSDef Sb (neg phase)) 
(iPV Sd i))) 

(*Rc *)[j:one] (seq (Sol RecSubState RSSTyp RSSDef Rb (neg phase)) 
(seq (Sol RecSubState RSSTyp RSSOef Rb phase) 

(iPV Rc i))) 
(*CK *) [j : one] (sum Frametype [f: Frame] 

(seq (ia Frametype r f) 
(alt (seq (ia onetype int i) 

(seq Cia Frame_Errtype s (iFrame f)) 
(iPV CK i))) 

(seq (ia onetype int i) 
(seq (ia Frame_Errtype s errorframe) 

(iPV CK i)))))) 
(*CL *)[j:one] (sum booltype [b:bool] 

(seq (ia booltype r b) 
(alt (seq (ia onetype int i) 

(seq (ia bool_Errtype s (ibool b)) 
(iPV CL i))) 

(seq (ia onetype int i) 
(seq (ia bool_Errtype s errorbit) 
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(iPV CL i)))))) ). 

Definition Eneaps = [a:aet] «Prop>Mateh a with False False False True 
True False False False). 

Definition ABP_nohide = (ene Eneaps 
(mer (Sol Components CompTyp CompDef Sd i) 
(mer (Sol Components CompTyp CompDef Re i) 
(mer (Sol Components CompTyp CompDef CK i) 

(Sol Components CompTyp CompDef CL i) )) ) 

Definition Hiding = [a:aet] «Prop>Mateh a with False False True False 
False True False False). 

Definition ABP = (hide Hiding ABP_nohide). 
End ABPdef. 

) . 

The role of the boolean phase in the equations for Sd and Re deserves some explanation. 
Clearly, these equations resemble the equations for Sd(b: Bool) and Re(b: Bool), with phase in 
the role of b, more than the parameterless equations for Sd and Re. However, the type of Sd and 
Re is not bool, but one. Thus phase is not the formal translation of the formal parameter b. In 
fact, we have here the translation of the equation Sdb = Sb(b)· Sb(neg(b))· Sdb• In this equation, 
b is an informal parameter in the process algebraic sense; the equation can be seen as shorthand 
for the two equations SdT = Sb(T) . Sb(neg(T)) . SdT and SdF = Sb(F) . Sb(neg(F)) . SdF . 

ABP -.nohide and ABP inherit the parameter phase. 

3.6 RSP 

RSP states that guarded systems of equations have unique solutions. So we must define guard­
edness in Coq. A single recursive equation is guarded if we can determine for all n the first 
n visible actions of its solution by repeatedly unfolding the equation. For example, if we have 
X(b: Bool) = (T<l b I> a) . X(not(b)), then X(T) = T' X(F) = T' a· X(T), so we can determine 
the first visible action (a) of X(T) by unfolding the equation twice. Further applications of the 
equation give us further visible actions: the equation is guarded. 

In contrast, if we have Y = a'T{a}(Y), then this equation gives us the first visible action, but a 
second unfolding yields Y = a'T{a}(a'T{a}(Y) = a'T'T{a}ha}(Y)) = a'T{a}(Y). Clearly, further 
unfoldings do not yield further visible actions for Y, so this equation is unguarded. Indeed, both 
a and a . {j are solutions for this equation, thus RSP should not be applicable. In view of this 
second example, we will simply consider every recursive equation in which the hiding operator7 

occurs as unguarded (unless of course we can remove the hiding operator by rewriting the system 
using the axioms). 

Now we return to the first example. We note that when we unfold X(T), we obtain X(F) 
without a visible action (guard) in front. We say that X(T) depends unguarded on X(F). On 
the other hand, unfolding X(F) yields X(T) only behind a guard, so X(F) does not depend 
unguarded on X (T). We can have the same notion in a system of equations: if we replace X (T) 
by Y and X(F) by Z then we obtain the system {Z = T' Y, Y = a· Z} in which Z depends 
unguarded on Y, but Y does not depend unguarded on Z. 

7 Allowing ,,(a,b) = T would give similar problems for II, I and ll, consider e.g. Z = a· (b I Z). 
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We conclude that 'depends unguarded on' is a binary relation R on pairs of the form (X, e), 
where X is a process variable and e is data of the correct type for X. R must be well-founded for 
the system to be guarded.8 Rather than writing an axiomatization that tries to compute R, we 
let the user provide R. Then we check that R is well-founded (see also [BG94c]) and that for all 
process variables X and data e of the type for X, the body of the equation for X(e) is safe w.r.t. 
X, e, and R, that is, if Y (I) occurs in this body, either it occurs behind a guard, or R(X, e, Y, f) 
holds. What follows is the translation of this into Coq; the details are explained thereafter. 

Section Safe_RSP. 
Variable ProcVar 
Variable Typ 
Local typ 
Local Inttype 
Local RT 

Section Safe. 

= 
= 
= 

Set. 
ProcVar -> types. 
[X:ProcVar](type (Typ X)). 
(X:ProcVar) (typ X)->proc. 
(X:ProcVar)(typ X)->(Y:ProcVar) (typ Y)->Prop. 

Variable iPV Inttype. 
Variable X ProcVar. 
Variable e (typ X). 
Local TF = [X:ProcVar] [e:(typ X)] [Y:ProcVar] [f:(typ Y)]True. 

Inductive Definition Safe : RT->proc->Prop = 
SO: (R:RT) (Y:ProcVar) (f: (typ y)) (R X e Y f) -> (Safe R (iPV Y f) )1 
Sl:(R:RT)(T:types)(t:(type T))(a:act) (Safe R (ia T a t))1 
S2:(R:RT)(T:types)(t:(type T))(a:act)(y:proc) 

-«act>a=tau) -> (Safe TF y) -> (Safe R 
S3:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) -> 
S4:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) -> 
S5:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) -> 
S6:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) -> 
S7:(R:RT)(x,y:proc) (Safe R x) -> (Safe R y) -> 
S8:(R:RT)(T:types)(p:(type T)->proc) «d: (type T)) 

(seq (ia T a 
(Safe R (seq 
(Safe R (alt 
(Safe R (mer 
(Safe R (Lmer 
(Safe R (comm 

t) y))1 
x y))1 
x y)) I 
x y))1 
x y))1 
x y))1 

(Safe R (p d))) -> (Safe R (sum T p))1 
S9:(R:RT)(x:proc)(L:ehset) 
S10:(ProcVar:Set) 

(Typ:ProcVar->types) 
(DefEq:«X:ProcVar)(type 

«X:ProcVar) (type 
(X:ProcVar) 
(d:(type (Typ X))) 

End Safe. 

(Safe R x) -> (Safe R (enc L x))1 

(Typ X))->proc)-> 
(Typ X))->proc)) 

(Safe TF (Sol ProcVar Typ DefEq X d)). 

The definition of Safe is given inductively, but this is not essential: we could just as well list 
SO-S10 as axioms, since we are never interested in proving unsafety. (Only when proving the 
equivalence between different phrasings of the definition of safety, we used the inductive part.) 
SO states that Y(I) can occur unguarded in the defining equation of X(e), provided R(X, e, Y, f) 

8 Apart from cyclic ones, this also excludes unfounded specifications like X(n : nat) = X(S(n». 
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holds. S2 states that all process variables may occur after a guard; the effect is obtained by 
replacing R by TF, which is always true. 

S10 states that the system may refer to another system of equations, but only behind a guard. 
The need for a guard occurs because the process variables of the current system can also occur 
in the new one (technically: the function DefEq of this new system can depend on the iPV of the 
current one). For example, following the notation of [BW90j, we allow E = {X = a· (Y I Fx)}, 
with Fx = {Y = X + b . Y}. Notice that in I'CRL we cannot distinguish this from the system 
{X = a· Y, Y = X + b· Y}, but that we need the distinction to modularize proofs. 

Finally, we can state the axiom RSP. Given are an interpretation of process variables iPV, the 
system of equations DefEq and the relation R. The system is guarded if R is well-founded and all 
bodies are safe (for no X and d, there is an infinite descending chain from X and d), and the body 
of the equation for X and d is safe). If the system is guarded and iPV is indeed a solution9 , then 
iPV equals the canonical solution (Sol ProcVar Typ Defeq) of the system. 

Section RSP. 
Variable iPV 
Variable DefEq 
Variable R 

Inttype. 
Inttype->Inttype. 
RT. 

Inductive Definition WF : (X:ProcVar) (typ X)->Prop = 
WF1: (X:ProcVar)(d:(typ X)) 

«Y:ProcVar)(e:(typ Y))(R X d Y e)->(WF Y e)) 
-> (WF X d). 

Definition Guarded = (X:ProcVar)(d:(typ X)) (iPV:Inttype) 
(WF X d) /\ (Safe iPV X d R (DefEq iPV X d)). 

Axiom RSP: 
Guarded -> 
«X:ProcVar)(d:(typ X))<proc> (iPV X d) = (DefEq iPV X d)) -> 
<Inttype> iPV = (Sol ProcVar Typ DefEq). 
End RSP. 
End Safe_RSP. 

3.7 Fair Abstraction 

As we noted before, the ABP can function correctly only if the channels do not corrupt data ad 
infinitum. This assumption was translated into process algebra in various ways, most notably in 
the form of fair abstraction rules. For an overview we refer to Section 5.6 of [BW90j. We chose 
to translate CFARb into Coq (Cluster Fair Abstraction Rule for branching bisimulation, we omit 
the superscript b further on). Informally, a cluster is a (maximal) set of states of a process such 
that each state in it can reach each other in it by taking only hidden steps. CFAR deals with all 
possible clusters, as opposed to KFARn , which only deals with cycles of n states lO • 

9We must put this premiss as «X:ProcVar)(d: (typ X»<proc>{iPV X d)=(DefEq iPV X d», rather than 
<Inttype>iPV=(DefEq iPV), because the latter equality does not follow from the former in Coq. 

10 As the structure of c and i actions in t.he ABP turns out not to be a cycle, we need CFAR in our proof. 
Alternatively, we could hide the c actions first. Then applying Tl yields a cycle of i actions of length 2. Hiding 
the i actions and apply~ng KFAR21 yields the desired result, provided that we add the axiom T/(TJ(X» = TJUJ(X). 
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We have adapted CFAR to the presence of data as follows. Instead of a single cluster, we like 
to collaps a number of clusters at the same time. For example, if we have a process definition 

X(n : nat) = b(n) + i· (X(n + 9) <J (n mod 10) = 0 I> X(n - 1)), 

then we want to infer 

for all n: nat: T· T{q(X(n)) = T· (b(1O (ndivl0)) + ... + b(1O (ndiv1O) + 9)). 

b(O). J::l). 
Xo • 0Y-

~.~.~.~i~ 
Xg X8 X7 6 Xs 

b(9) b(8) b(7) b(6) b(5) 

b(IO) b(ll) b(12) b(13) b(14) 

~b(15) 

Figure 2: Collapsing two clusters. 

There are infinitely many clusters, therefore we cannot collaps each cluster separately. One 
way to proceed would be to fix a k : nat and to define 

Then we prove by CFAR 

for all m : [0 .. 9]: T· T{ij (Yk (m)) = T· (b(k) + ... + b(k + 9)). 

Finally we prove by RSP X (n) = Yn div 1O( n mod 10). We cannot formalize this approach in /lCRL, 
because there k should be a formal parameter ofY, leaving us with many clusters again. However, 
our translation of recursive specifications into Coq does not prevent parameterized specifications 
such as the one of Yk: we can encode this approach in Coq, albeit clumsily (we must add a new 
datatype with ten elements and a function interpreting them as 0 .. 9). 
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Therefore we chose a formulation of CFAR that collapses multiple clusters explicitly. First 
we number the different clusters. Then we number the different pairs (X, d) within each cluster, 
where X is a process variable and d a data parameter of the type of X. That is, we assume 
having the following functions. 

• cluster(X, d) gives the number of the cluster to which the pair (X, d) belongs. 

• element(X,d) gives the order number of (X,d) within its cluster. 

• process(n,m) (n,m E nat) returns X(d) such that cluster(X,d) = nand element(X,d) = 
m. It returns fJ if n 2': the number of clusters or m 2': the number of processes in the cluster. 

• Exit(n, m) (n, mE nat) returns the exit process of the mth item in the nth cluster. Again 
it is fJ if n or m are too large. 

• a(X, d, m) is the action (including data) that leads from X(d) to the mth item in the cluster 
of X(d). It is fJ if there is no such action. 

In our translation into Coq, the user must provide these functions for each application of CFAR, 
and show that they have the following properties (let L be the set of actions going to be hidden). 

1. For all X and d: X(d) = process(cluster(X, d), element(X, d)). 

2. For all nand m: if for no X and d: (n, m) = (ciuster(X, d), element(X, d)), 
then EXit(n,m) = p"ocess(n,m) = fJ. 

3. The system of equations can be written in the form 

X (d) = L a(X, d, m) . process(cluster(X, d), m) + Exit ( cluster(X, d), element(X, d)). 
m:nai 

4. Each a(X,d,m) is either fJ, r, or its action name is in £.11 

5. All clusters are connected: we can step from X(d) to Y(e) iff a(X, d, element(Y, e)) # fJ; a 
cluster is connected if for aU X(d) and Y(e) in it, we can go from X(d) to Y(e) in one or 
more steps. 

6. The system is guarded. 

Given definitions satisfying these properties, CFAR concludes for all X and d: 

r . rL(X (d)) = r . rL( L Exit (cluster(X, d), m)). 
m:nat 

In our example, we could use the following functions. 

cluster(X, n) 
element (X, n) 
process(k, m) 
Exit(k, m) 
a(X,n,m) 

= ndivlO 
=nmodlO 
=X(lOk+m)ifm$9, 
= b(lOk+m) ifm $ 9, 
= i ifm= (n-l)modlO, 

fJ otherwise 
fJ otherwise 
fJ otherwise. 

11 Here we see a summation over the natural numbers. Since we have only summation over sorts, we need nat as 
a built-in sort. 
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We now provide the representation of CFAR in Coq. Notice that process needs an inter­
pretation of process variables, and that the definition of a(X, d, m) is split in three parts: sort, 
action name, and data. 

Section CFAR. 
Variable ProcVar 
Variable Typ 
Local typ 
Local Inttype 
Variable DefEq 
Variable R 
Variable L 
Variable cluster 
Variable element 
Variable process 
Variable Exit 
Variable D' 

= 
= 

Set. 
ProcVar -> types. 
[X:ProcVar] (type (Typ X)). 
(X:ProcVar) (typ X)->proc. 
Inttype->Inttype. 
(X:ProcVar) (typ X)->(Y:ProcVar) (typ Y)->Prop. 
ehset. 
(X:ProcVar) (typ X) -> nat. 
(X:ProcVar)(typ X) -> nat. 
Inttype -> nat -> nat -> proc. 
nat -> nat -> proc. 
(X:ProcVar) (typ X) -> nat -> types. 

Variable a (X:ProcVar) (typ X) -> nat -> act. 
(X:ProcVar)(d:(typ X))(n:nat) (type (D' X d n)). Variable d' 

Definition Checklnside = (X:ProcVar)(d:(typ X)) (iPV:lnttype) 
(*1*) <proc>(process iPV (cluster X d) (element X d)) = (iPV X d). 

Definition CheckOutside = (n,m:nat)(iPV:lnttype) 
(*2*) «X:ProcVar)(d:(typ X)) -«nat>n=(cluster X d) /\ 

<nat>m=(element X d) ))-> 
<proc>(process iPV n m)=Delta /\ <proc>(Exit n m)=Delta. 

Definition CheckDef = (X:ProcVar)(d:(typ X)) (iPV:lnttype) 
(*3*) <proc>(DefEq iPV X d)= 

(alt (sum nattype [n:nat](seq (ia (D' X d n) (a X d n) (d' X d n)) 
(process iPV (cluster X d) n))) 

(Exit (cluster X d) (element X d))). 

Definition Checka = (X:ProcVar) (d:(typ X))(n:nat) 
(*4*) <act>(a X d n)=delta \/ <act>(a X d n)=tau \/ (goodset L (a X d n)). 

Inductive Definition Conn: (X,Y:ProcVar) (typ X)->(typ Y)->Prop 
= connl: (X,Y:ProcVar)(d:(typ X))(e:(typ V)) 

-<act>(a X d (element Y e))=delta -> (Conn X Y d e) 
connt: (Z:ProcVar)(f:(typ Z)) 

(X,Y:ProcVar) (d: (typ X))(e:(typ V)) 
(Conn X Z d f) -> (Conn Z Y f e) -> (Conn X Y de). 

Definition CheckConn = (X,Y:ProcVar)(d:(typ X))(e:(typ V)) 
(*5*) <nat>(cluster X d)=(cluster Y e) -> (Conn X Y de). 
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Axiom CFAR: (X:ProcVar)(d:(typ X)) 

Checklnside -> CheckOuts ide -> CheckDef -> Checka -> CheckConn -> 
(*6*) (Guarded ProcVar Typ DefEq R) -> 

<proc>(seq Tau (hide L (Sol ProcVar Typ DefEq X d)))= 
(seq Tau (hide L (sum nattype [n:nat](Exit (cluster X d) n)))). 

End CFAR. 

How we use this formulation of CFAR in proving the correctness of the ABP is outlined in 
Section 4.5. 

4 Proving the Correctness of the ABP in Coq 

This section discusses in detail the correctness proof of the ABP in Coq. Significant parts of it be­
come more clear by running Coq (version 5.8.3, which can be obtained by ftpfrom nuri. inria .fr 
= 128.93.1. 26) on the complete verification, which can be obtained from the authors. The 
structure of this section is as follows. Section 4.1 discusses the beginning of a library of standard 
lemmas: lemmas that we feel are not specific for the verification of the ABP. Section 4.2 gives 
a few basic lemmas about data and actions in the ABP. Section 4.3 corresponds to the defini­
tions preceeding Lemma 2.3, and contains preparations for the applications of RSP in its proof. 
Section 4.4 discusses how we extract the first possible action(s) from a state of the protocol, as 
is done repeatedly in the proof of 2.3. Section 4.5 discusses the application of CFAR, which 
corresponds to the first line of the proof of Theorem 2.4. Finally, Section 4.6 corresponds to the 
remainder of the proof of Theorem 2.4. 

4.1 A Library of Lemmas 

Although the axioms and rules are the most important part of the translation of pCRL into Coq, 
it would be incomplete without a library of lemmas that are useful regardless of the protocol 
being verified. The current library is listed in Tables 4, 5, and 6; this library will grow further 
when more protocols are verified. We distinguish the following parts of our library. 

negfalse neg (F) = T refLeql eqv(t, t) = T 
negtrue neg(T) = F sym_eql eqv(t, u) = eqv(u, t) 
negneg neg(neg(b)) = b make_equal t=u-t eqv(t, u) = T 
noLeqUrue_false eqnool (F, T) = F make..eql t f= u -t eqv(t, u) = F 
noLeqLbJlegb eqBool(b, neg(b)) = F make_uneql eqv(t, u) = F -t t f= u 

0_5 5(n) f= 0 not..goodset a rJ L -t a rJ goodset( L) 
unequal.B nf=m-t 5(n) f= 5(m) comm...action 3c: a(t) I a'(u) = c(t) 

, 
bE Bool, D a sort, t, u E D, m, n E nat, a, a, c E Act u {fJ, T} 

Table 4: Booleans, equa.lity, naturals and actions. 
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• Lemmas about standard data: the sorts nat and Bool, and equality. These lemmas are 
typically trivial, requiring only a few lines of proof. Nevertheless they are necessary to 
automate parts of the further proof. See Table 4. 

• A few short lemmas about actions. See Table 4. 

• Derived axioms. For example symmetric versions of axioms, like A6': 8 + x = x. A large 
number of lemmas about theTonditional operator can also be derived by a case analysis on 
the condition being true or fals~. See Table 5. Proofs are still only a few lines. SUMmand 
occurs as Lemma 4.3.2 in [GP94a). EXP_booLSUM is an instance of the final remark of the 
same lemma. 

• Expansions of the merge, which are a special kind of derived axioms. They are used to 
determine the first actions of a process defined as the parallel composition of several com­
ponents. For all n, EXPn is the instantion of the expansion theorem ([BW90), Theorem 
4.3.5) 

XIJl .. ·llxn = L;=l ..... n Xi II (XIII· . ·llx;-IIIX;+1J1 .. . Jlx n ) + 
L;=l ..... n Lj=;+1 ... n (x;IXj) 11 (XIJl ... Jlx;-IIIX;+1II·· ·IIXj-IJlXj+1J1 .. ·llxn ). 

Note that the summations are actually shorthand for a sequence of alternative compositions. 
The expansion theorem cannot conveniently be translated in its full generality, Le., with 
the number of components n as a parameter. Thus each version must be proved separately, 
with larger proofs for larger values of n. Another disadvantage is that an expansion makes 
many copies of the constituing components Xl ... X n . A different proof technique avoiding 
both disadvantages is being developed by Van de Pol [PS93j. 

• Axioms restated as rules. The axioms as they are support simplification 'inside out': for 
provingy·x = 8, we first rewriteyto8and then apply A7: 8·x = 8. Often (see Section 4.4) 
we would like the opposite: first apply RuleA7: y = 6 ---+ y. x = 6 and then proceed proving 
the premiss y = 8. Proving these rules is of course trivial. See Table 6. 

4.2 Data and Actions in the ABP 

We proved the following lemmas about the data in the ABP. 

Section ABP_data. 
Variable b,c:bool. 
Variable d,e:D. 
Variable f :Frame. 

Lemma pair_inj_equal: 
Lemma bit_inj_equal: 
Lemma data_inj_equal: 

<Frame>f=(pair (data_of f) (bit_of f)). 
<bool>b=(bit_of (pair db)). 

<D>d=(data_of (pair db)). 

Lemma differ_frame: <bool>(eql Dtype d e)=false \/ 
<bool>(eql booltype b c)=false -> 
<bool>(eql Frametype (pair d b) (pair e c))=false. 

Lemma same_bool: <bool>(eql Frametype (pair d b) (pair e b))=(eql Dtype de). 
Lemma nack: <bool>(eql Frametype f (pair d (neg (bit_of f))))=false. 
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SC6 xlly = yllx A6' 6 +x = x 
DLDeita 8L(6) = 6 
TILDelta n(6) = 6 

SC7 (xlly)IIZ) = XII(yIlZ) 
DC2 x 16 = 6 

CM2' 6lLx = 6 Handshaking' (x 1 y) 1 z = 6 

SUM7' Le:E(x 1 y) = xl Le:E y 
SUM7" Ld:D Le:E(X 1 y) = Ld:D X 1 L.:E y 

DLCSS Ld:DLe:E8L((x. 1 y)lLz) 
= 8L((Ld:D xl Le:E ylllz) 

SUMmand Ld:D X = x[d' jd] + Ld:D(6 <I eqv(d, d') I> x) 
EXP_booLSUM x [bjc) + x[neg(b)jc) = Lc:Bool x 

if e not free in x 
if e not free in x 
and d not free in y 
if e not free in x and z 
and d not free in y and z 

EXP3 xll(yllz) = xll(yllz) + yll(xllz) + zlL(xlly) + (y 1 z)lLx + (x 1 y)lLz + (x 1 z)lLy 

EXP4 xll(yll(zllu)) = xll(yll(zllu)) + yll(xll(zllu)) + zlL(xll(yllu)) + ulL(xll(yllz)) 

COND3 
COND4 
COND5 
COND5' 
COND6 
COND6' 
COND7 
COND7' 
COND8 
COND8' 
COND9 
COND9' 
COND9" 
CONDlD 
CONDll 

+(z 1 u)lL(xlly) + (y 1 z)lL(xllu) + (y 1 u)lL(xllz) 
+(x 1 y) lL(zllu) + (x 1 zlll(Yllu) + (x 1 ulll(Yllz) 

x=x<lbl>x 
x <I b!> Y = Y <J neg(b) !> x 
(x 0 z) <I b I> (y 0 z) = (x <I b I> y) 0 z 
(x 0 y) <I b I> (x 0 z) = x 0 (y <I b I> z) 
(x <I b I> z) + (y <I b !> z) = (x + y) <I b I> z 
(z<lbl>x)+(z<lbI>Y) =z<lbl>(x+y) 
b = c -t x <I b I> Z = x <I b I> (y <I c I> z) 
b = c-t y<lbl>x= (y<lcl>z) <lbl>x 
b = neg (c) -t x <lbl> y = x <lbl> (y <I Cl> z) 
b= neg (c) -t z<Jbl>x = (y<lcl>z) <lbl>x 
Ld:v(X <J b!> y) = (Ld:D x) <I b I> Y if d not free in y 
Ld:D (x <J b I> y) = x <J b !> (Ld:D y) if d not free in x 
Ld:v(x<lbl>y) = (Ld:Dx) <lbl> (Ld:DY) 
8L(x) <lbI>8L(y) = ih(x<Jbl>y) 
rL(x) <I b I> rL(y) = rL(x <I b I> y) 

b, c E Bool, D and E sorts, d, d' ED, e E E, 0 any blllary process operator. 

Table 5: Derived axioms. 
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Split..alt 
RuleA3 
RuleA6 
RuleA6' 
RuleA7 
ID_enc 
RuleD l..delta 
RuleTILdelta 
RuleCM2' 
RuleSUMl 

RuleSUMrep 

z=x-+ w=y-+ z+w=x+y 
z=x-+ Z=Y-+ z=y+x 
o=x-+ Z=Y-+ z=y+x 
o=x-+ Z=Y-+ z=x+y 

o=x-+ o=x·y 
x = y -+ (h(x) = lh(y) 
o=x-+ o=8L(x) 
o=x-+ o=rL(x) 
o=x-+ o=xlLy 
x=y-+ X=Ld,VY 

x <l eqv(d, d') t> 0 = Y 

X - Ld,V Y 

RuleCONDl T = b -+ x = x <l b t> Y 
RuieCOND2 F = b -+ Y = x <l b t> Y 
SpliLCOND (eqv(d, d') = T -+ x = y) -+ 

if d not free in x 

if d not free in x and the assump­
tions of the proof of the premiss 

Z = W -+ x <l eqv(d, d') t> Z = Y <l eqv(d, d~ t> w 

bE Bool, D a sort, d, d' E D. 

Table 6: Rules. 

Lemma ack: <bool>(eql Frametype f (pair d (bit_of f))) 
=(eql Dtype (data_of f) d). 

Definition Differtypes = [T,U:types] «Prop>Match T with 
«Prop>Match U with False True True True True True True) 
«Prop>Match U with True False True True True True True) 
«Prop>Match U with True True False True True True True) 
«Prop>Match U with True True True False True True True) 
«Prop>Match U with True True True True False True True) 
«Prop>Match U with True True True True True False True) 
«Prop>Match U with True True True True True True False)). 

Lemma differtypes: (T,U:types) (Differtypes T U)->-<types>T=U. 

The aim of these lemmas is the following. After applying EXP4, we obtain terms containing 
the communication merge. After some more rewriting (see Section 4.4), we can rewrite with CFl 
or CF2. The result of CFl is a conditional, the condition being (eql T t t'). With the above 
lemmas, we built a tactical that rewrites this condition to true (by same_boo I and ack) or false 
(by differ..frame and nack). The first three lemmas are used to put the data in a form matching 
the left sides of the other four. For rewriting with CF2, the premiss -<types>T=U must be proved. 
As we have enumerated the datatypes by an Inductive Set, this can be done automatically by 
applying differtypes: when T and U are filled in, (Differtypes T U) beta-reduces to True (or 
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to False, but then CFl should be applied instead). 
Apart from the lemmas mentioned in Section 3.3, which establish the necessary properties of 

gamma, we proved the following lemmas about actions. The aim of the first three lemmas is to 
prove that certain actions are not tau (for guardedness, see 52) and not delta (for connectedness 
of a cluster, see connl). The last two lemmas state that the encapsulation and hiding sets are 
'good' in the sense that they do not contain tau and delta. 

Section ASP_actions. 
Variable a,b:act. 

Lemma not_tau_action: 
«Prop>Match a with True True True True True True True False)->-«act>tau=a). 

Lemma not_delta_action: 
«Prop>Match a with True True True True True True False True)->-«act>delta=a). 

Lemma not_action_action: 
-«act>b=a)->-«act>a=b). 

Lemma goodHiding: (Hiding a)->(goodset Hiding a). 
Lemma goodEncaps: (Encaps a)->(goodset Encaps a). 
End ASP_actions. 

4.3 Auxiliary Definitions and RSP 

In this section, we translate the definitions preceeding Lemma 2.3 into Coq. Then we add two 
more definitions necessary for the application of RSP. Finally, we show how RSP is applied by a 
typical exam pie. 

In Section 2.3, we defined the 'inner loops' E1 and E2 of the ABP: the loops that occur when 
a message is corrupted in a channel. The following definitions represent the common structure 
of E1 and E2, depicted in Figure 3. They are parameterized by the data sent (dl, ... ,d5), the 
types of this data, and the exit process P. In this way, we need to apply CFAR only once, on this 
common structure, instead of twice. 

Section CFARLoop. 
Variable Ti,T2,T3,T4 
Variable dl 
Variable d2 
Variable d3 
Variable d4,d5 
Variable P 

types. 
(type Ti). 
(type T2). 
(type T3). 
(type T4). 
proc. 

Inductive Set PVLoop = Xl : PVLoop I X2 : PVLoop X3 PVLoop I X4 PVLoop 
X5 : PVLoop I X6 : PVLoop X7 PVLoop. 

Definition TypLoop = [X:PVLoop]onetype. 
Definition RLoop = [X:PVLoop] [d:one] [Y:PVLoop] [e:one]False. 
Definition DefEqLoop = [iPV:PVLoop->one->proc] [X:PVLoop] [d:one] 
«proc>Match X with 

(*Xl*) (seq (ia Tl c dl) (iPV X2 i» 
(*X2*) (alt (seq (ia onetype int i ) P) 
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(seq (ia onetype int i ) (iPV X3 i») 
(*X3*) (seq (ia T2 c d2) (iPV X4 i» 
(*X4*) (seq (ia T3 c d3) (iPV X5 i» 
(*X5*) (alt (seq (ia onetype int i ) (iPV X6 i» 

(seq (ia onetype int i ) (iPV X7 i») 
(*X6*) (seq (ia T4 c d4) (iPV Xl i» 
(H7*) (seq (ia T4 c d5) (iPV Xl i» ) . 

End CFARLoop. 

int 

X5 

c(d4:T4) int 

c(dl:T1) c(d3:T3) 

c(d2:T2) X4 

int 
Loop 

P 

Figure 3: The generic inner loop. 

Next, we use the above definition to define the first half of the main loop of the ABP, exactly 
as in Section 2.3, see Figure 4; the second half is treated by symmetry. 

Section StepDefs. 
Variable b:bool. 
Variable d:D. 

Definition Exit2 = (seq (ia bool_Errtype c (ibool b» (ABP_nohide (neg b»). 

Definition DefEqLoop2 = 
(DefEqLoop booltype bool_Errtype Frarnetype Frarne_Errtype 

b errorbit (pair d b) errorfrarne (iFrarne (pair db» 
EXit2). 
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Definition Exiti = 

(seq (ia Frame_Errtype c (iFrame (pair db))) 
(seq (ia Dtype aout d) 

(Sol PVLoop TypLoop DefEqLoop2 Xi i))). 

Definition DefEqLoopi = 
(DefEqLoop Frametype Frame_Errtype booltype bool_Errtype 

(pair d b) errorframe (neg b) errorbit (ibool (neg b)) 
Exiti) . 

Definition First = (seq (ia Dtype ain d) (Sol PVLoop TypLoop DefEqLoopi Xi i)). 

According to the proof sketch of Lemma 2.3, we must apply RSP to show that (Sol PVLoop 
TypLoop DefEqLoopi Xi i) (that is, (XII El)(d, b)) is equal to the encapsulated merge of the 
four components in certain states. But our formulation of RSP does not conclude the equality of 
two processes, but of two solution functions for a system of equations. Thus we need a function 
which returns this encapsulated merge for Xi, and (Sol PVLoop TypLoop DefEqLoopi xk i) 
for Xk, 2 :0:; k :0:; 7. Similarly for DefEqLoop2. 

Definition DefEqLoopi' = [iPV:PVLoop->one->proc] [X:PVLoop] [j:one] 
«proc>Match X with 
(*Xi*) (enc Encaps 

(mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair db)) 
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b)) 

(Sol Components CompTyp (CompDef b) Sd i))) 
(mer (Sol Components CompTyp (CompDef b) Rc i) 
(mer (Sol Components CompTyp (CompDef b) CK i) 

(Sol Components CompTyp (CompDe! b) CL i) ))) ) 
(*X2*) (DefEqLoopi iPV X2 i) 

(DefEqLoopi iPV X7 i) ). 

Definition DefEqLoop2' = [iPV:PVLoop->one->proc][X:PVLoop][j:one] 
«proc>Match X with 
(*Xi*) (enc Encaps 

(mer (seq (Sol SendSubState SSSTyp SSSDef Tf (pair db)) 
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b)) 

(Sol Components CompTyp (CompDef b) Sd i))) 
(mer (seq (ia booltype s b) 

(seq (Sol RecSubState RSSTyp RSSDef Rb b) 
(Sol Components CompTyp (CompDef b) Rc i))) 

(mer (Sol Components CompTyp (CompDef b) CK i) 
(Sol Components CompTyp (CompDef b) CL i) ))) ) 

(*X2*) (DefEqLoop2 iPV X2:i) 

(*X7*) 
End StepDefs. 

(DefEqLoop2 iPV X7 i) ). 
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ABP..nohide(b) 

ain(d) Loop2(e,neg(b)) 

neg (b) 

Loop1(d,b) 
Loopl(e,neg(b)) 

Exit1(d,b) 

c«d,b» 

ABP..nohide(neg(b)) 

Loop2(d,b) 

er 

Figure 4: Putting the loop definitions in place. 
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As an example, we consider the application of RSP in the first inner loop, starting from 

<proc>(Sol PVLoop TypLoop (OefEqLoopl b d) Xl i) 
=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSOef Sf (pair db)) 

(seq (Sol SendSubState SSSTyp SSSOef Sb (neg b)) 
(Sol Components CompTyp (CompOef' b) Sd i))) 

(mer (Sol Components CompTyp (CompOef' b) Rc i) 
(mer (Sol Components CompTyp (CompOef' b) CK i) 

(Sol Components CompTyp (CompOef' b) CL i))))) 
============================ 

b bool 
d : 0 

Our first step is Elim (RSP PVLoop TypLoop (Sol PVLoop TypLoop (OefEqLoopl' b d)) 
(OefEqLoopl b d) RLoop). This instance of RSP says: 

(b:bool) (d:O) (X:PVLoop) (dO:(type (TypLoop X))) 
(Guarded PVLoop TypLoop (OefEqLoopl b d) RLoop)-> 
( (XO:PVLoop) (dl:(type (TypLoop XO))) 

«proc>(Sol PVLoop TypLoop (OefEqLoopl' b d) xo dl) 
=(OefEqLoopl b d (Sol PVLoop TypLoop (OefEqLoopl' b d)) xo dl))) -> 

«proc>(Sol PVLoop TypLoop (OefEqLoopl' b d) X dO) 
=(Sol PVLoop TypLoop (OefEqLoopl b d) X dO)) 

Thus the effect is that two subgoals are added, and OefEqLoopl is replaced by OefEqLoopl' in 
the first subgoal. This goal is now solved by Rewrite (ROP PVLoop); Unfold OefEqLoopl'; 
Apply refLequal. That is, we prove that the definition of the process variable Xl in the loop 
OefEqLoopl' is exactly the desired encapsulated merge. 

The second su bgoal is that the loop is guarded. This is proved by 

Unfold Guarded; 
Induction X; 
Split;[ Apply WF1; Intros; Contradiction 

I Unfold OefEqLoopl; Unfold OefEqLoop; Unfold Exitl; Auto 10]. 

That is, we unfold the definition of guarded, and then continue by a case distinction on X :PVLoop. 
Thus we perform the remaining tactic seven times: for Xl to X7. Guardedness is defined as 
the conjunction of well-founded ness and safeness. As the relation RLoop is always False, well­
foundedness is easily proved. Safeness is proved automatically after unfolding some definitions. 
Typically, Coq finds the tactical 

Apply S2; 
[Apply not_action_action; Apply not_tau_action; Exact I I Apply SO; Exact I]. 

but the cases for X2 and X5 are a little harder because they have two exits. For X2, Coq finds 

Apply S4; [Apply S3; [Apply Sl I 
Apply S3; [Apply Sl I 

Apply S2; [Apply not_act ion_action; 
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Apply not_tau_action; Exact I 
Apply S10]]] I 

Apply S2; [Apply not_action_action; Apply not_tau_action; Exact I 
Apply SO; Exact I]] 

After rewriting by RDP once, the third subgoal is 

(X:PVLoop) (j:(type (TypLoop X))) 
«proc>(DefEqLoopl' b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j) 

=(DefEqLoopl b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j)) 

This is proved again by case distinction. For X2 to X7 it is trivial, because DefEqLoopl and 
DefEqLoopl' coincide. For Xl, we unfold some definitions and obtain 

<proc>(seq (ia Frametype c (pair db)) 
(Sol PVLoop TypLoop (DefEqLoopl' b d) X2 i)) 

=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair db)) 
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b)) 

(Sol Components CompTyp (CompDef b) Sd i))) 
(mer (Sol Components CompTyp (CompDef b) Rc i) 

(mer (Sol Components CompTyp (CompDef b) CK i) 
(Sol Components CompTyp (CompDef b) CL i))))) 

This goal is almost the same as our starting point. The fact that in the lefthandside Xl is 
unfolded to c·X2 is not important. The iI:,portant change is that we have DefEqLoopl' on the 
lefthandside: after unfolding X2 to j. Exit! + j·X3, X3 to c·X4, and so on, we do not return to Xl 
but to the encapsulated merge that is currently the righthandside. This means that we can prove 
the goal by linearizing the righthandside several times. This is the topic of the next section. 

4.4 Linearization 

This section corresponds to Lemma 2.3. We outline how we prove in Coq 

(b:bool)<proc>(ABP_nohide b)=(surn Dtype (First b)). 

As we noted in the proof of Lemma 2.3, the bulk of the verification consists of proving 
this lemma. We must linearize (determine the possible first actions of) a process of the form 
oH(SenderState II ReceiverState II J(State II LState) for all 18 states in the first half of the ABP. 
This is by far the most time and space consuming part of the proof. In this section, we discuss in 
detail the tactical that performs this task without any user guidance. The tactical is specialized 
for the ABP, and will have to be adapted for other protocols. 

It is clear that future research must concentrate on improving the linearization technique, in 
order to verify larger protocols. It must become much more efficient, and (almost) completely 
independent of the protocol. This seems ambitious at first, but for effective pCRL-specifications 
[GP94b], all that is needed is an efficient encoding of term-rewriting in Coq. On the other hand, it 
must be investigated whether proof checkers based on term-rewriting are capable of also handling 
the other parts of the verification. If so, they might be better candidates than Coq for formal 
protocol verification. We now return to our current linearization tactical. 
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The possible first actions of a state of the ABP are determined by the possible first actions 
of the substates of the four constituing components. It turns out that the term describing such 
a substate can have four syntactical forms: (Sol Components ... ), (seq (Sol SendSubState 
... ) x), (seq (Sol RecSubState ... ) x) and (seq action x). 

Expanding the merge yields the alternative composition of four terms (Lmer Substatel Sub­
states) and six terms (Lmer (comm Substatel Substate2) Substates). Our first step is to apply 
RDP on Substatel and Substate2 unless they are in the fourth syntactical form. That is, we re­
place a process variable (Sol ... ) by its definition (OefEq (Sol ... » only if it plays a role in 
determining the first possible actions. Then we unfold OefEq. OefEq occurs also as an argument 
of Sol, and that occurrence should not be unfolded. Therefore we replace it by a renamed copy 
OefEq' before (respectively during) this tactical. 

For example, Unfold_Lmer _comm_Soll is the lemma 

(ProcVar:Set) (Typ:ProcVar->types) 
(OefEq,OefEq' : «X:ProcVar) (type (Typ X»->proc)-> 

(X:ProcVar)(type (Typ X»->proc) 
(X:ProcVar) (d:(type (Typ X») (x,z:proc) 

««(XO:ProcVar)(type (Typ XO»->proc)-> 
(XO:ProcVar)(type (Typ XO»->proc) >OefEq=OefEq')-> 

«proc>(Lmer (comm (Sol ProcVar Typ OefEq' X d) z) x) 
=(Lmer (comm (OefEq (Sol ProcVar Typ OefEq') X d) z) x» 

The first part of the linearization tactical is the following. 

Elim EXP4; 
Repeat 

(Rewrite (Unfold_Lmer_Sol Components CompTyp (CompOef b) (CompOef' b»; 
[IdtaclApply refl_equal]); 

Repeat 
(Rewrite (Unfold_Lmer_comm_Soll Components CompTyp (CompDef b) (CompDef' b»; 
[Idtac I Apply refl_equal]);· 

Repeat 
(Rewrite (Unfold_Lmer_comm_So12 Components CompTyp (CompOef b) (CompOef' b»; 

[IdtaclApply refl_equal]); 
Unfold CompOef; 
Try (Replace SSSOef with SSSDef'; [IdtaclApply refl_equal]); 
Try (Replace RSSOef with RSSDef' ; [IdtaclApply refl_equal]); 
Repeat (Rewrite (Unfold_Lmer_seq_Sol SendSubState SSSTyp SSSOef SSSOef'); 

[IdtaclApply refl_equal]); 
Repeat (Rewrite (Unfold_Lmer_seq_Sol RecSubState RSSTyp RSSDef RSSDef'); 

[IdtaclApply refl_equal]); 
Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll SendSubState SSSTyp SSSOef SSSOef'); 

[IdtaclApply refl_equal]); 
Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll RecSubState RSSTyp RSSDef RSSOef'); 

[IdtaclApply refl_equal]); 
Repeat (Rewrite (Unfold_Lmer_comm_seq_So12 SendSubState SSSTyp SSSDef SSSDef'); 

[IdtaclApply refl_equal]); 
Repeat (Rewrite (Unfold_Lmer_comm_seq_So12 RecSubState RSSTyp RSSOef RSSOef'); 
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[IdtaclApply refl_equal]); 
Unfold SSSDef RSSDef; 

We are now faced with terms having the following structure (in the worst case). 

(enc H (alt (Lmer (comm (alt (seq (alt (action) 
(sum T [t:(type T)]action» 

( ... unimportant ... » 
(sum T [t:(type T)](seq action x») 

(. .. similar ... » 
( ... unimportant ... » 

( ... similar ... ») 

We continue by bringing out the al ts, and then by bringing out the sums. We use several 
distributivity axioms, and need only the special lemma DLCSS (see Table 5). We need this lemma 
because we cannot rewrite terms that occur inside a sum, for these terms do not denote processes, 
but functions of type (type T)->proc. We cannot conclude in Coq that two such functions f 
and g are equal, even if (t: (type T»<proc>(f t)=(g t). 

Repeat Elim A4; (* over seq *) 
Repeat Elim GMS; (* left over camm *) 
Repeat Elim GM9; (* right over comm *) 
Repeat Elim GM4; (* over Lmer *) 
Repeat Elim D3; (* over enc *) 
Repeat Elim A2; (* over alt *) 

Repeat Rewrite SUMS; (* over seq *) 
Repeat Elim DLGSS; (* two over comm. Lmer, and enc *) 
Repeat Rewrite SUM7; (* left over comm *) 
Repeat Elim SUM7'; (* right over comm *) 
Repeat Rewrite SUM6; (* one over Lmer *) 
Repeat Rewrite SUM9; (* one over enc *) 

Now we have a long list of alternatives. Most of these will turn out to be equal to Delta. 
Therefore we continue by trying to .rewrite each alternative to Del tao We cannot rewrite the term 
as a whole, because we cannot rewrite inside sums. This is the main reason for using 'axioms 
restated as rules'. The tactical has the following structure. 

Repeat ( 
Repeat ( (Apply RuleA6' Orelse Apply True_ind); 

[tactical for rewriting one alternative to Delta I Try Exact I]); 
Apply Split_alt Orelse Apply RuleA6); 

tactical for an alternative that is not Delta 

This tactical is applied on a goal of the form <proc>target=alternatives. target is the 
linearized form (which we do not compute, but is defined beforehand, as in Lemma 2.3), which 
consists of one or two alternatives. alternatives is the long list. We can pick the first alterna­
tive off the list by applying RuleA6': «proc>Delta=x) -> «proc>z=y) -> «proc>z=(alt 
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x y)). The first subgoal is now attempted; the second one is treated in the next iteration. The 
application of RuleA6' fails when we have only one alternative left. In that case, we do not need 
to do anything, except that the remaining tactical expects two subgoals. Thus in that case we 
apply True_ind: (P:Prop)P->True->P. In this case the second subgoal True is solved by Try 
Exact I, which has otherwise no effect. 

If the tactical for rewriting one alternative to Delta fails, then the inner loop terminates: this 
alternative is not Delta, but (one of) the alternative(s) in target. If the target contains more than 
one alternative, then we apply Spli t..al t: «proc>z=x) -> «proc>w=y) -> «proc> (al t z 
w)=(alt x y)). We must ensure before starting the linearization that we encounter the alter­
natives from the list in the correct order. If the target is (reduced to) one alternative, then we 
apply RuleA6: «proc>Del ta=x) -> «proc>z=y) -> «proc>z= (al t y x)). 

Next we consider the tactical for rewriting an alternative to Delta. First, we remove the 
sums, which are already on top. Then we take the first actions of both sides (which are by now 
sequences of actions) and make them into a communication (comrn action action), which we 
try to prove equal to Delta. (Recall that the tacticals Try ... and Repeat ... never fail: if we 
have an alternative without communication, nothing happens.) It can be Delta for three reasons: 
the actions have different types, the actions do not communicate (their gamma is delta), or the 
data are incompatible. Finally, we push the Delta outward. Recall that Auto;Exact I serves as 
the version of Auto that can fail. 

Repeat (Apply RuleSUM1;Intro); (* remove sums *) 

Repeat Elim AS; (* over seq *) 
Repeat Elim CM7; (* two over comrn *) 
Repeat Elim CM6; (* right over comrn *) 
Repeat Elim CMS; (* left over comrn *) 

Try (Replace (bit_of (pair d b)) with b; 
[IdtaclApply (make_eql booltype);Apply bit_inj]); 

(Elim CF2;[IdtacIAuto;Exact I]) (* types *) 
Orelse Try (Elim CF1;Unfold gamma; 

(Elim Delta_Oata;Elim COND3) (* actions *) 
Orelse (* data *) 
(tactical for incompatible data Orelse 

(Elim sym_eql; tactical for incompatible data));Elim CON02); 

Try Elim A7; 
Try Elim CM2' ; 
Try Elim CM2; 
Try Elim CM3; 
Try Elim 04; 
Try Rewrite 02; 
Auto;Exact I 

In this, the tactical for incompatible data reads 
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Rewrite differ_frame; 
[IdtacIRight;Apply not_eql_b_negb)) 

Orelse Rewrite find_errorframe 
Orelse (Try Elim same_err_bit;Rewrite not_eql_b_negb) 
Orelse Rewrite find_errorbit 
Orelse Rewrite not_eql_b_negb 

This concludes the tactical for rewriting an alternative to Delta. We continue by linearizing 
further the remaining alternatives. First, we remove the summation, if any. If the target is a 
summation too, then it is of the same type, and we must apply SUMll. Otherwise, we have a 
goal of the form e(t) . P = L:d,v 8H((S(t) I (r(d) . Q(d)))[l ... ) (omitting other components and 
actions). That is, one component sends data t of type D, while another component is willing to 
receive any item of type D. In this case, we must apply RuleSUMrep, except if D is Bool, in 
which case we apply EXP _bool..5UM. 

(Apply (SUMll Dtype); 
(Apply (RuleSUMrep Frametype (pair 
(Apply (RuleSUMrep Dtype d); 
Try Elim (EXP_bool_SUM b); 

Intro d 
d b));Intro NewVar 

Intro NewVar 

) Orelse 
) Orelse 
) Orelse 

What follows is similar to the tactical rewriting a communication to Delta, except that we 
now expect matching types, communicating actions, and compatible data (except for booleans: 
due to the use of EXP _bool..5UM). 

Try (Replace (bit_of (pair d b)) with b; 
[IdtaclApply (make_eql booltype);Apply bit_inj)); 

Repeat Elim AS; 
Repeat Elim CM7; 
Try ( 
Elim CF1;Unfold gamma; 
( (* If EXP_bool_SUM is used, we have two communications; one succeeds, *) 

Elim CF1;Unfold gamma;Rewrite refl_eql;Elim COND1; 
(* and one is Delta. *) 

(Rewrite not_eql_b_negb Orelse (Rewrite sym_eql;Rewrite not_eql_b_negb)); 
Elim COND2;Elim A7;Elim CM2' ;Elim Dl_Delta; 

(* The Delta goes. *) 
(Elim A6 Orelse Elim A6')) 

Orelse 
(Rewrite refl_eql;Elim CDND1) 

Drelse ... 

If RuleSUMrep is used as mentioned above, it changes the proof obligation to (e(t) . P) <l 

eqv(t, d) I> 6 = 8H((S(t) I (r(d) . Q(d))) [ ... ). CFl replaces the communication by a second 
conditional, with the same condition (after simplification and modulo symmetry). This second 
conditional is taken outside, and then cancelled against the one on the lefthandside by the rule 
Split-CONDo This rule gives two subgoals. One is e(t) . P = 8H((e(t) . Q(d)) ll ... ) given the 
hypothesis eqv(d, t), the other is 6 = 8H((6. Q(d)) ll ... ). The hypothesis in the first is necessary 
for replacing Q(d) by Q(t). (The tactic Clear removes the hypothesis and the new variable d 
from the context, in order to avoid name clashes when the tactical is applied again.) 
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Orelse ... 
(Unfold Delta; 
Elim (COND5 seq); 
Elim (COND5 Lmer); 
Elim COND10; 
Try Elim same_err_frame; 
Try Elim same_err_bit; 
Try Rewrite negneg; 
Try Rewrite same_bool; 
Apply Split_COND Orelse (Elim sym_eql;Apply Split_COND); 
[Intro H; 

(Replace NewVar with (pair db); [Idtac!Apply (make_eql Frametype);Auto]) 
Orelse (Replace NewVar with d; [Idtac!Apply (make_eql Dtype);Auto]); 
Clear H NewVar 

! Elim A7;Elim CM2';Elim Dl_Delta;Apply refl_equal])); 

Finally, we can get the first action on top by taking it outside the left-merge (which returns to 
a merge) and the encapsulation. We remove the first actions on both sides by an instance of the 
trivial rule Lequal, namely (f :proc->proc) (x ,y :proc) «proc>x=y)->( <proc>(f x)=(f y)), 
where f is (seq action). SC7 restores the expected association of the merges. 

Try Elim CM3; 
Try Elim D4; 
Try (Rewrite Dl;[Idtac!Auto]); 
Repeat Apply (f_equal proc proc); 
Repeat Elim SC7. 

4.5 Applying CFAR 

We apply CFAR on the general loop depicted in Figure 3, and assume declarations of Tl, ... ,T4 
and dl, ... ,d5 accordingly. This loop consists of one cluster of seven elements, Xl, ... , X7, all of 
type one. Thus we must define the following functions. 

clttster(Xn, i) =0 
element(Xn, i) =n-1 
process(k, m) = X(m+ 1) if k = 0 and m < 7, J otherwise 
Exit(k, m) = i·P if k = 0 and m = 1, J otherwise 
a(Xl, i, m) = c(dJ) if m = 1, J otherwise 
a(X2, i, m) = I if m = 2, J otherwise 
a(X3, i, m) = c(d2 ) if m = 3, J otherwise 
a(X4, i, m) = c(d3 ) if m = 4, J otherwise 
a(X5, i, m) = I if m = 5 or m = 6, J otherwise 
a(X6, i, m) = c(d4 ) if m = 0, J otherwise 
a(X7, i, m) = c(ds) if m = 0, J otherwise. 

In Coq, we define element through the Match-function. We cannot do that for process and 
Exit, because nat is not inductively defined. The problem is circumvented by making extensive 
use of the conditional construct. For example, Exit is defined as 

>. k, m: nat (i. P <l eqnat(n, 1) I> J) <l eqnat(k, 0) I> J. 
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The definition of process contains eight conditionals! 
As we noted in Section 3.7, the function a must be split in three parts in Coq: sort, action 

name, and data. Because <proc>(ia D delta d)=Delta for all sorts D and data d, we can define 
sort and data independent of m: 

Definition D' = [X:PVLoop][j:one][m:nat] 
«types>Match X with Tl onetype T2 T3 onetype T4 T4). 

Definition d' = [X:PVLoop] [j:one] [m:nat] 
«[X:PVLoop] (type (D' X j m))>Match X with dl i d2 d3 i d4 d5). 

In contrast, the function a giving the action name depends on both the process variable and 
m. Here it is really a problem that nat is not inductively defined. If it were, we could define a 
by two nested Matches. As it is, we found no other way than writing an axiom am for each m 
(0:::; m < 7) and one axiom a7 for m ~ 7. 

Parameter a : PVLoop->one->nat->act. 

Axiom aD: (X:PVLoop) 
<act>«act>Match X with delta delta delta delta delta c c)=(a Xi 0). 
Axiom al: (X:PVLoop) 
<act>«act>Match X with c delta delta delta delta delta delta)=(a X i (S 0)). 

Axiom a7: (n:nat)(X:PVLoop) <act>delta=(a X i (S (S (S (S (S (S (S n)))))))). 

Our aim is to prove the following goal. 

( (iPV:PVLoop->one->proc)(X:PVLoop)(d:one) 
(Safe PVLoop TypLoop iPV X d [X:PVLoop] [e:one] [Y:PVLoop] [f:one]True P))-> 

<proc>(seq Tau (hide Hiding 
(Sol PVLoop TypLoop 

(DefEqLoop Tl T2 T3 T4 dl d2 d3 d4 d5 P) Xl i))) 
=(seq Tau (hide Hiding P)). 

The assumption that P is safe is necessary for proving that the cluster is guarded. It will be 
trivial to verify it for Exitl and Exit2 later. 

Before we can apply CFAR, we must bring the exit process in the correct form, that is, we 
must prove T' TJ(P) = T • TI(Ln:nat Exit (0, n)). This is rather easy: because there is only one 
exit i· P for n = 1, we can apply SUMmand with d' = 1 and manipulate the conditionals to prove 
that the remaining sum is O. Then we take the hiding inside to hide the action i. 

We can now apply CFAR: 

Apply (CFAR PVLoop TypLoop (DefEqLoop Tl T2 T3 T4 dl d2 d3 d4 d5 P) RLoop 
Hiding cluster el'ement process Exit D' ad' Xl i). 

The prerequisites Checklnside and Checkoutside are relatively easy to verify, although the 
large number of conditionals in process makes the proofs somewhat cumbersome. Verifying 
CheckDef is eVtn more cumbersome: for each i, we must simplify Ln:nat a(Xi, i, n) . process(O, n). 
For most values of n, a(Xi, i, n) is Ii. We use SUMmand to isolate the useful valuers) of n, and 
rewrite the remaining sum to o. Instead of induction on n, we apply the lemma 
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(n:nat)<nat>n=O \/ 
<nat>n=(S 0) \/ 
... \/ 
<nat>n=(S (S (S (S (S (S 0)))))) \/ 
<nat>Ex([m:nat] <nat>n=(S (S (S (S (S (S (S m)))))))). 

The same lemma is used in proving Checka, which is otherwise trivial. CheckConn states that 
each state must be reachable from each other state within the cluster. In order to avoid double 
induction, we apply transitivity first, and prove that each state is reachable from Xl, and vice 
versa. This part of the proof is implemented by 'walking forward' through the loop. Finally, 
proving guardedness was already discussed in Section 4.3. 

In the ABP, we need CFAR only once, and on a loop of only seven states. We conclude that 
the current definitions are good enough in this situation. But it is clear that for larger loops, and 
for protocols that require multiple applications of CFAR, more sophisticated proof techniques are 
necessary, in particular for CheckDef and CheckConn. Improved techniques for linearization will 
probably apply to CheckDef also .. For CheckConn, an existing efficient algorithm for checking 
that a graph is strongly connected must be translated to Coq. Here we see a reversal of the 
programs-as-proofs paradigm: instead of extracting a program from a proof, we want to translate 
an existing program (and its verification) to a proof generator. 

4.6 Completing the proof 

We define the process BufferTllice as the process that satisfies the final equation in the proof of 
Theorem 2.4, namely the defining equation of a buffer unfolded twice. 

Definition BufferTllice = 
(Sol PVBuf TypBuf [V:PVBuf->one->proc] (BufEq (BufEq V)) Buf i). 

We prove that this equation is guarded (trivial) and then by RSP that <proc>BufferTllice = 
Buffer. Finally, we prove <proc>Buffer = (ABP true) by replacing Buffer by BufferTllice, 
(ABP true) by (hide Hiding (sum Dtype (First true))) and applying RSP again. The goal 
is now 

<proc>(hide Hiding 
(sum Dtype [d:D] (seq (ia Dtype ain d) 

(Sol PVLoop TypLoop (DefEqLoopl true d) Xl i)))) 
=(sum Dtype [d:D] (seq (ia Dtype ain d) 

(seq (ia Dtype aout d) 
(sum Dtype [dO:D](seq (ia Dtype ain dO) 

(seq (ia Dtype aout dO) 
(hide Hiding 

(sum Dtype (First true))))))))) 

We continue by moving the hiding inside the sum and removing the summation on both sides. 
Then we add a tau-action after the ain-action (using TAU1). Then we move the hiding further, 
inside these actions. Now we can apply the instance of CFAR discussed in the previous section 
on the first loop. Again we add a tau-action, this time after the aout-action, move the hiding 
further, and apply CFAR on the second loop. Stripping the ain- and aout-actions on both sides, 
we arrive at the goal 
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<proc>(hide Hiding (ABP_nohide (neg true))) 
=(sum Dtype [d:D](seq (ia Dtype ain d) 

(seq (ia Dtype aout d) 
(hide Hiding (sum Dtype (First true)))))) 

Now we replace (ABP ..nohide (neg true)) by (sum Dtype (First (neg true))), and re­
peat the proof steps of the previous paragraph. The resulting goal is 

<proc>(hide Hiding (ABP_nohide (neg (neg true)))) 
=(hide Hiding (sum Dtype (First true))) 

Replacing (neg (neg true)) by true and then (ABP..nohide true) by (sum Dtype (First 
true)) concludes the proof. 

5 Future Work 

A number of directions for future research are immediately obvious: 

• Improving the proof theory of pCRL, see e.g. [BG94b]. 

• Improving the proof techniques of this paper, in particular linearization and the verification 
of the premisses of CFAR. 

• Proving the soundness of the translation w.r.t. pCRL. This is a moving target, as changes 
to Coq are still made, and changes to IICRL are proposed, e.g. in [GW94]. Moreover, it 
requires the concistency of Coq, a result which is outside the scope of process algebra. 

• Verification of other protocols, probably developing new proof techniques at the same time, 
see e.g. [BG94a, KS93, GP93]. 

• Extending pCRL with (discrete) real time [BB92] and translating the resulting formalism 
to Coq in order to verify timed protocols [KP93, Klu91]. 

• Investigate if other proof checkers, or perhaps even theorem provers, are more suitable than 
Coq for the verification of protocols. It appea.rs that the proofs consist for a significant part 
of term rewriting, which is not easy to do in Coq. 
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