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1
Introduction

Someone once said that “The only person getting his work done by
Friday was Robinson Crusoe”. Ideally, the planning of activities is

simple: one’s schedule comprises oceans of time, in which one need not
look any further than the next activity. In this primary world, finishing a
task ahead or behind of time does not influence one’s schedule, apart from
pushing subsequent duties to an earlier or rather future point in time, nor
does it have an impact on one’s environment. It goes without saying that
this does not accord with workaday reality. Insurance companies, tax offices,
banks, criminal investigation bureaus and administrative departments of
industrial organizations are not situated on desert islands. They are part
of a larger system, which they influence and which they are influenced by.
Moreover, the environment they interact with may pursue totally different
and conflicting objectives. Still, they are expected to reckon and comply
with wishes expressed and demands enforced by this environment, coping
with additional limiting conditions at the same time. In practice, this means
facing deadlines, dealing with unforeseen circumstances—e.g., unexpected
outcomes of affairs, delay of work, and the sudden arrival of even more
work—and commonly possessing insufficient resource capacity to serve all
jobs completely, or to grant every single request for service. Hence, both
time and capacity are precious. On-line decisions have to be taken on which
jobs to serve and which to leave unattended, and on how to employ the
available capacity, i.e., how much capacity to assign to the work-in-process
and which resources to assign new work to. This will depend on the pressure
of work on the one hand, and the benefit of carrying on with work-in-process
on the other.

1
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In this monograph, we focus on two essential on-line decisions that must be
taken in scant-capacity operating environments:

• admission (and subsequent allocation) or rejection of new work, and

• continuation or termination of work-in-process.

By setting up a mathematical framework, in which the construction of
queueing models that feature these decisions takes a prominent place, we
can study and characterize the structure of optimal control policies with
respect to these two decisions. This leads to a new class of decision models,
which fits naturally within the field of dynamic control of queues.

1.1 Motivation

The organization of work within organizations continues to become more
complex. This has given rise to the development of a general framework
for the (automated) control of business processes: workflow management
(WfMC [59, 60], Lawrence [38], Van der Aalst and Van Hee [3]). Stimulated
by the IT boom of the 90s, the use of workflow management systems
is now widespread across the service industry. These are sophisticated
information systems that are capable of regulating the division and execution
of work-in-process and future work. On the one hand, these systems
dispose of a precise description of each flow of work, which can easily be
translated to a stochastic network model. On the other hand, the current
generation of workflow management systems does not provide suitable or
sufficient functionality to satisfactorily account for the special characteristics
of workflow processes (Brouns [9]). An important shortcoming is the lack
of means for real-time quantitative decision support. Dynamic (resource)
control on the basis of the true status of work-in-process, the expected
supply of work and the available capacity is not possible, even if the required
information is available to the controller. There remains a clear need for
intelligent mechanisms and methodologies for workflow process control. In
this respect, it is important to study the application of quantitative analysis
techniques to the specific problems that can be identified in workflow
environments. In particular, in this thesis, we focus on a mathematical study
of the subtle relationship between the factors resource capacity, throughput
time and Quality of Service.
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1.2 Onset of a mathematical model formulation

The aim of this section is to bridge the gap between workflow problem
characteristics and the formulation of quantitative models for dynamic
workflow control.

1.2.1 Work execution

Business processes in the service industry are typically case-based: whenever
work arrives, in terms of or as a result of an order, a request or a compulsory
return, a case is opened. Every case induces one or more tasks to be
executed. Usually, the amount of work-in-process varies heavily over time,
and the moments at which work arrives are often so random that the arrival
process of work can be described as a Poisson process. Alternatively, one
could think of processes in which work typically arrives in large batches that
have to be processed before some given deadline. Furthermore, the nature
and extent of cases may differ greatly. The first will usually give rise to
classification of work. This means that new work is directly associated with
a specific type of case. For example, in crime investigation, many different
types of crime can be distinguished, such as grand theft, vandalism, drug
trafficking, assault, and murder. However, in general, the exact amount of
work contained in cases of the same type is typically unknown beforehand.
It is often unclear along which exact lines the investigation of a case has to
be carried out. This becomes clear gradually during the execution of the
process. Also the eventual outcome of a case is often unknown beforehand.
Apparently similar cases may have dissimilar outcomes, and there does not
exist a one-to-one correspondence between the development of a case and the
outcome of the case. For example, in crime investigation, a homicide might
be solved in a couple of months, might turn out to be in fact a case of suicide,
or might never be solved. As a result of these uncertainties, it is unclear
what total capacity engagement is required for a specific case. Different
outcomes of intervening (whether or not sudden) events and investigations
lead to different demands for capacity.

1.2.2 Deficient resource capacity

Service organizations are typically completely dependent on clients (or the
public) as regards the supply of work. In other words, the supply of
work cannot be controlled. Because of random arrivals, running out of
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work at times is theoretically possible. However, in practice, a far more
common phenomenon is a superfluous (and unavoidable) supply of work.
Despite a range of possible actions, such as the introduction of overtime,
temporary staff employment and multi-skilling of staff, the resource capacity
will commonly be insufficient to execute all (or even the majority of all)
tasks, let alone all cases. If we let ρ denote the gross workload, defined as
the ratio between—on the one hand—the required processing capacity if
all tasks involved with all arriving case-inducing work were to be executed,
and—on the other hand—the actual processing capacity, then we are in
principle interested in the situation that ρ > 1.

1.2.3 Throughput time

We define the throughput time of a case as the total time the case resides
in the system. It is crucial to have control over the throughput times of
cases, since work-in-process is directly related to cost. Consequently, the
available resources need to be managed efficiently and deployed with care.
In this thesis, throughput time will be associated with variable as well as
fixed costs. The first are represented by means of holding costs. In practice,
these can represent various types of ‘costs’. For example, in the world of
criminal justice, keeping a suspect in custody entails (literal) holding costs.
Another example can be found in service organizations, where the notion
of holding costs can be used to model a loss of goodwill, as experienced
by customers (vainly) awaiting response. Besides holding costs, a second
type of investment costs can commonly be identified. These are the fixed
costs associated with a number of more or less standard tasks that must
be carried out when it is decided that a new case is eligible for attention.
These tasks include, for example, preparing, opening and eventually closing
the case, and keeping case files. The respective costs are collectively termed
consideration costs in this thesis.

1.2.4 Quality of Service

Any restriction on the attention (i.e., amount of consideration time) a case
will receive—by limiting the capacity assigned to it—is inevitably negatively
correlated with the Quality of Service (QoS). This is a performance measure
that indicates the quality of the actual outcome of a case compared to the
most favourable outcome achievable for that case. For instance, a taxation
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office cannot expect to detect large-scale tax fraud without thoroughly
examining tax returns. On the other hand, sifting through a tax return
does not necessarily lead to the detection of fraud. This is an example of
the so-called absence of strict causal connections between capacity and value
added service. Furthermore, an increase in capacity with respect to some
particular case will inevitably go at the expense of fresh cases awaiting and
requiring attention.

Quality of Service is naturally associated with rewards. Whenever one of the
tasks belonging to a certain case is completed, a new or additional (finite)
reward is earned with respect to this case. A common assumption is that
the overall reward for a case is non-decreasing and concave, in the following
sense. Non-decreasing means that putting more work into a case does not
leave us with a lower overall reward for that case. Concavity means that we
have diminishing marginal returns, i.e., the longer we work on a case, the
less rewarding it becomes to continue.

1.2.5 On-line decision-making

Rejection of work is commonly undesirable, viz., it can lead to adverse
consequences such as negative publicity or an unintentional invitation to
misconduct. But to alleviate the workload, it will frequently be a sheer
necessity to reject new cases, hereby yielding the lowest possible (i.e.,
extremely poor) QoS for those cases, or to terminate running cases, either
already under consideration or waiting for attention.1 On a continuous
basis, decisions must be taken on the progress of cases, based on the current
amount of work-in-process and related costs on the one hand, and the QoS
and related revenues on the other. Each time the state of the process
changes—e.g., because of the arrival of new work or the completion of a
work item—new decisions need to be taken. In this decision-making process,
throughput time and QoS have to be weighed against each other. Under the

1Consider, as an illustration, the following extract from a Dutch news report of 2001.
« Voorburg, The Netherlands - Official sources assess the total number of offences
committed against citizens in 2000 at 4.7 million, of which 1.6 million were reported to the
police, which, on their part, recorded 1.3 million. Further figures show that approximately
one out of every seven (recorded) crimes was solved. The percentage of crimes that
are solved has been decreasing steadily over the years. In explanation, a spokesman of
the Netherlands Police Institute (NPI) states that investigations become more and more
complex, which makes its demands on capacity, and that there is an apparent shift to
violent crimes, which are reported more often. Almost half of these crimes are solved, but
the investigations are particularly labour-intensive, said the spokesman. »



6 Chapter 1

acute constraint that the available processing capacity will not be sufficient
to treat each case to the full extent, the aim is to find an optimal trade-off
(i.e., compromise) between the factors throughput time (and associated
costs) and QoS (and associated revenues). This leads to what we call partial
execution of work.

In this thesis, we provide an impetus to the modelling and analysis of
control problems that feature the opportunity to either accept or reject new
work (i.e., fresh cases) and to either continue or abort work-in-process (i.e.,
running cases) on a dynamic basis, such that partial execution of work is
allowed for. Any other model components—e.g., the number of resources,
their working speed, characteristics of the arrival process, characteristics
concerning the content of cases—are not eligible for control. Note that by
comparing different models, it will still be possible to evaluate the effect of
more or rather less resources, a lighter or rather heavier workload, and so
on, but this will not be further explored in this thesis.

Our goal is to contribute to the construction of a framework for on-line
decision-making in workflow environments with deficient resource capacity,
using modelling and analysis techniques from queueing theory and stochastic
decision theory. The formulation of a workflow process in terms of a queueing
system is fairly straightforward. However, to be able to formally analyse
such a system, we are forced to make some simplifications. In particular,
when analysing large systems, one encounters the problem that all parts
of the system interact with one another in a complex way. This usually
causes a serious impediment to a formal analysis. A common step to reduce
the complexity is to decompose the system into separate parts, and to
analyse each part separately. In this thesis, we will only consider so-called
single-station problems; see Section 1.3. As it turns out, the analysis of such
problems regularly proves to be already hard in itself.

Workflow problems encountered in practice are far more complicated than
those that can be represented by means of the models we consider in
this thesis, which are in the first place generic, i.e., they will be viewed
and analysed on a stand-alone (not necessarily workflow related) basis.
Nevertheless, our analysis forms an essential step towards more practical
extensions. We are convinced that a better mathematical understanding of
the structure of the optimal strategies for our simplified problems will be
very helpful in more complex situations where good heuristics for dealing
with deficient capacity are needed.
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1.3 Queueing terminology

Systems in which the arrival and execution of work suffer from variability, are
typically subject to queueing. Queueing theory was built on the foundations
of probability theory, and finds application in a wide range of areas, where it
is used to model and analyse real-life systems, such as production systems,
communication systems, transport systems and computer systems. Below,
we discuss briefly the basic concepts of queueing theory that are relevant in
the context of this thesis. For a thorough introduction to queueing theory,
we refer to Kleinrock [32], Cohen [15], and Takagi [54].

In general, a queueing model describes a situation where customers, or jobs,
are to be served by a limited set of resources, or servers. The service
requirements of a job comprise a number of tasks to be performed by one
or more of the servers. Jobs awaiting service reside in a queue, which has a
certain buffer capacity. Together with their joint buffer or their own private
buffers, the servers at a particular location form a station. A queueing
system may consist of one or more interconnected stations. In the latter
case, we speak of a queueing network. In a queueing network, jobs can visit
more than one queue and more than one server in succession after admission
to the system. However, in this thesis, we concentrate on single-station
queueing systems: any job will visit at most one queue.

The most basic queueing model is the single-server system shown in
Figure 1.1. Jobs arrive at the station, one at a time, according to some
arrival process (e.g., a Poisson process). Jobs may be of different types
(e.g., may have different priorities assigned to them) and the amount of
work jobs bring to the system may vary from job to job.

jobs
server

queue

buffer

Figure 1.1: Single-server queueing model
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The way the server allocates its capacity to the jobs in the system is
determined by the service discipline. The most natural service discipline
is FCFS (‘First Come First Served’), which means that jobs are served in
order of arrival. Many different service disciplines have been proposed and
studied in literature. The two that are most relevant in the light of this
thesis are FCFS and PR (‘Preemptive Resume’). Under the PR discipline,
the service of a job may be interrupted at any time in order to start serving
a job of higher priority that has just entered the system. The lower priority
job then joins the queue again, and its service may be resumed later.

1.4 Dynamic control of queues

The emphasis of queueing theory has originally been on performance
evaluation. For a given set of predefined system characteristics (and possibly
a set of parameter values), the behaviour and performance of the system
can be evaluated analytically. However, many problems in practice involve
systems in which certain characteristics are typically not fixed, and which
may be adjusted continuously in order to obtain better performance. By
introducing on-line decision features with respect to the way the system is
operated, we allow for dynamic stochastic control of the queueing system.
The operational procedures are described by a control policy, or strategy.
Such a policy consists of a set of control rules that assign a certain decision,
or action, to each state the system may find itself in. The focus is commonly
on the determination or characterization of optimal control policies, i.e.,
policies that yield optimal performance with respect to some objective
function, such as minimizing the sojourn times of jobs in the system, or
maximizing profit in case of operational costs and job rewards.

1.4.1 Individually versus socially optimal policies

In general, we distinguish between individually optimal policies and socially
optimal policies. Individually optimal policies consider the system from an
individual customer point of view. In this view, customers aim for personal
optimization. Socially optimal policies consider the system from an average
customer point of view. In this view, the aim is at optimization over all
customers collectively, which is usually in the best interest of the system
itself. In our models, we are solely interested in social optimization.



Introduction 9

To illustrate the basic concepts of dynamic control of queues, consider again
the single-server queueing system of Figure 1.1. Note that this system
automatically accepts and (eventually) serves any new job. Now suppose
that jobs arrive at the station according to a Poisson process with arrival
rate λ and that each job brings a reward r to the system and incurs holding
costs h for each unit of time it resides in the system. Service times are
exponential, and the service rate is fixed and equal to µ. We allow for
(dynamic) admission control of the system: jobs may be either accepted or
rejected upon arrival. Accepted jobs join the queue, whereas rejected jobs
are discarded from the system immediately. See Figure 1.2. This model
dates back to Naor [43]. The (social) objective is to find a policy that
maximizes the average long-run profit (reward minus cost) obtained by the
system.

accept

reject

µr

h
λ

Figure 1.2: Single-server queueing model with admission control

If we let j denote the number of jobs already in the system upon arrival
of a new job, then the individually optimal policy is to enter the system
if r > (j + 1)hµ−1 and to balk if r < (j + 1)hµ−1. If r = (j + 1)hµ−1,
then either decision is optimal. This already shows that, in general, optimal
policies need not be unique; hence the following remark.

����������	�
��

Whenever we use the phrase ‘the optimal policy’, we do not

suggest that there exists a unique optimal policy for the corresponding
model.

The individually optimal policy for Naor’s model has a threshold, or
switch-over structure: there is an integer m such that it is optimal to enter if
j ≤ m and to balk if j > m. It can be shown that the socially optimal policy
has a threshold structure as well, and its critical number—which clearly also
depends on the arrival rate—can be derived explicitly, although it requires
some calculation effort; see [43].
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1.4.2 Formalizing intuition

Intuitively, the threshold characterizations of the (individually and socially)
optimal policies in the example of Figure 1.2 are ‘obvious’. However,
intuition may be misleading. Some well-known examples are due to
Whitt [61], who considered a system with two or more parallel identical
servers, each with its own infinite capacity queue. He showed that from
a customer point of view, it can be optimal in certain circumstances to
take the counterintuitive decision of joining the longest queue. So, although
a good sense of intuition may be very helpful in the thought process,
we cannot rely on it. Assertions on (probable) properties of the model
and of the optimal policy for the model need to be substantiated, and
occasionally, counterintuitive results are found. In fact, we will come across
some counterintuitive results, or results that appear to be so at first sight,
at a couple of instances in this thesis.

In the remainder of this introduction, we give an outline of literature on
models for the dynamic control of queues, highlighting the types of control
that have been investigated in literature so far, and indicating which ones
are relevant in the light of our research. We only address models and types
of control concerning single-station queueing systems and the objective of
social optimization. The outline below is merely descriptive; the theory and
methodology behind the models will be discussed in Section 1.7.

1.5 Outline of literature on the dynamic control of queues

There is an extensive literature on the dynamic control of queues. The
early work of Crabill et al. [16] gives a review of research on the dynamic
control of queues in its pioneering stage, ranging from the late 60s to the
late 70s. A comprehensive overview of research on the dynamic control of
queues up to the beginning of the 90s is given by Stidham and Weber [53].
Both surveys provide an extensive list of references to literature devoted
to the analysis of specific queueing control models. Topics include optimal
admission control, optimal routing (or flow) control (which is equivalent to
optimal server allocation in case of a single-station system), optimal service
rate control, optimal control of the number of servers, and optimal control
of the service discipline (which includes optimal scheduling control in case
of a single-station system). These topics can be classified into two main
categories: the first two topics concern control of the arrival process, whereas



Introduction 11

the other three concern control of the service process. A survey specifically
oriented towards research on the latter is also given by Teghem [55]. Our
classification is somewhat different than the one presented in [16] and [55],
because we expressly consider the service discipline to be a service process
control tool too.

1.5.1 Scope of the models

In both [55] and [53], the emphasis is on the use of models based on Markov
decision theory (see Section 1.7) to examine the structure of optimal control
policies. Sometimes, an explicit form of the optimal policy in terms of
the system parameters can be distilled, e.g., the individually as well as the
socially optimal policy in the example of Figure 1.2. Often, however, such
an explicit characterization is far from straightforward, or even impossible
to give. In such a case, we are satisfied with structural results. In particular,
a characterization of the structure of the optimal policy would be of great
interest. Namely, if one can show that the optimal policy is determined
only by a (limited) set of critical states in the model, then the optimal
decision rules are of an intuitive and practical nature. Furthermore, the fact
that one can restrict oneself to a particular subset of states enables one to
compute the optimal decisions recursively, e.g., via the method of successive
approximations or via policy iteration.

1.5.2 Control of the arrival process

In order to keep control of the throughput time of jobs and the burdening
of resources, we can allow for control of the arrival process of jobs. Here,
we distinguish admission control and routing control. In admission control
problems, either the arrival rate of jobs may be modified dynamically or jobs
may be rejected upon arrival. The first will typically not be an option in our
models; cf. Section 1.2.5. The second, on the other hand, will be an option
in most of our models. Note that the basic example of Figure 1.2 featured
this kind of control. This particular model and several generalizations as
well as some other more complex admission control models are discussed
by Stidham [52]. These also include a number of routing control problems.
In single-station systems, routing control can be seen as a special kind of
admission control. It is concerned with the question which resource to assign
a newly arrived job to. This is often the main issue in models that feature a
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number of parallel servers, each having its own queue. For further treatment
of this topic, we refer to Chapter 2. There, a specific routing control problem
featuring parallel queues is considered.

1.5.3 Control of the service process

For a given or optimized arrival process, the system can be further optimized
by means of control of the service process. Here, we distinguish control of
the number of servers, control of the service rates, and control of the service
discipline.

If servers can be turned on or off, then we allow for control of the number of
servers. The corresponding models are commonly termed vacation models,
because in these models we can let servers ‘go on vacation’ for a certain
time. As already stressed, in this thesis, we concentrate on scant-capacity
models. The workload is typically very high, and a (temporary) removal of
servers from the process is basically out of the question. Therefore, this type
of control will not be considered any further. Similarly, we do not allow for
service rate control in our models either. Servers are expected to work at
their nominal speed. Nothing will be gained by working at a slower pace than
this nominal speed—on the contrary—and, in our models, ‘working faster’
will not correspond to actions such as overtime (cf. Section 1.2.2), but to
‘providing jobs with less attention than they require or request’. This is the
subject of Section 1.6. However, although we do not consider any models
with service rate control, we will use the concept of a variable service rate
to construct a (near-optimal) heuristic for a particular multi-server system
whose analysis turns out to be intractable. This is the subject of Chapter 5.

A type of control we do allow for in some models, is scheduling control.
Scheduling problems arise when one may decide in which order to process
jobs. In single-station systems, this is of interest when multiple types of jobs
can be identified. In this case, it may be clear that any specific order can be
established by choosing the service discipline appropriately. This gives rise
to so-called priority models. In these models, each job belongs to a certain
priority class of jobs. A newly arrived job will immediately overtake all jobs
belonging to lower priority classes that were already in the system, awaiting
service. Under the PR service discipline (cf. Section 1.3), a new job may also
immediately interrupt the service of a lower priority job being served at one
of the servers, if there is any, and take over its place at the server. The lower
priority job is placed in the queue again—where it must wait until its service
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can be resumed—or its service is terminated. A specific model studied by
various authors in literature, is the two-class preemptive priority queue.
See, e.g., the recent work of Groenevelt et al. [22]. This model concerns a
single server serving two customer classes with holding and switching costs.
The corresponding control problem involves the objective to switch between
classes in such a way that the sum of expected holding and switching costs is
minimized. In Chapter 6, we consider a similar model, but with a different
cost structure and additional types of control, namely admission as well as
termination control.

1.6 Termination control

An important characteristic of almost all optimal control problems studied
in literature, either with or without admission control, and including all
models covered by Section 1.5, is that admission is final, i.e., once new work
has been accepted for service, it must be processed by the system, and must
be processed to a finish, before it can be considered to be out of the system.
Models subject to clearing control count as an exception. These are models
in which at any time it may be decided to instantaneously remove all work
content from the system. See, e.g., page 149 of [55]. As stressed before, one
of the main problems in many (workflow) operating environments is the lack
of capacity to deal with all jobs and to treat all jobs to the full extent. It
must be decided which jobs to serve and when to stop. The types of control
studied in literature do not cover this type of decision. Clearing, i.e., either
removing the complete workload or keeping all work in the system, is far
too rigorous. Scant-capacity problems call for a more subtle control with
respect to the admission and disposal of jobs.

An initial effort to model the disposal of jobs was made by Xu and
Shanthikumar [63], who introduced a new approach for determining the
optimal admission control policy in a FCFS M|M|m ordered-entry queueing
system with nonidentical servers.2 The idea of this approach is to construct
a dual system: a preemptive LCFS (‘Last Come First Served’) M|M|m
ordered-entry system without admission control, but with expulsion control.
A system is subject to expulsion control if customers—which may not be
denied entry to the system—may be expelled from the system, with the
restriction that one can only expel customers—one after another—from

2Throughout this thesis, we use the classical notation of Kendall [31] to specify essential
system characteristics, which we supplement with new notation wherever convenient.
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the end of the queue. The authors show that the two systems induce the
same probabilistic behaviour for the departure process and the number of
customers in the system under any given policy. Hence, the optimal policy
in the original system agrees with its counterpart in the dual system.

Xu [64] employs the dual approach to determine the optimal admission and
routing control policy in a FCFS M|M|2 queueing system with nonidentical
servers. The corresponding dual system is subject to expulsion and
scheduling control. Using the dual approach, Righter [46] extends the results
of [64] to an M|M|2 queueing system with nonidentical servers and multiple
classes of customers, where preemption is allowed. Further extensions are
given to models with finite buffers and models with deadlines for customer
service completion.

In the aforementioned literature, expulsion control models are used as a tool
rather than a goal. Within the framework of workflow control, expulsion
control is too restrictive, since one may only expel a job from the end of the
queue and not, for example, the job currently in service. Apart from either
serving a job completely or not at all, there is no control of the service times
of the jobs in the system.

Johansen and Larsen [28] consider a FCFS single-server one-class workload
model in which a key feature of the control policy is its ability to let the
service time of a job depend on the actual number of jobs in the system,
and to remove jobs from the queue. Each job entering service is assigned
a service time in advance, which may not be altered during service. So,
service may not be aborted before the pre-assigned service time has elapsed
and service may not be extended either.

In this thesis, we introduce the concept of termination control, studying a
collection of workload models in which the service of a job may be aborted
before the job has received full service, and in which work may be removed
from the queue as well, at any point in time. This offers a more dynamic
service control policy than that of [28]. We will show that there exist
optimal threshold policies for both the decision to accept or reject a new
job and the decision to continue or abort the service of a job. In some
of the models, these results hold under certain regularity conditions, e.g.,
diminishing marginal returns; cf. Section 1.2.4.
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1.7 Methodology

In this section, we discuss the mathematical framework behind the models
discussed in Section 1.5 and the models we will consider in this thesis. We
then describe the main approach and techniques that will be used in the
analysis of these models. Here, our focus is exclusively on the methodology
itself. A discussion of computational issues and issues such as the existence
of optimal (stationary) policies is beyond our scope.

1.7.1 Markov decision theory

Many dynamic control problems can be formulated as a Markov Decision
Problem (MDP). The formulation of such models and the examination of
structural properties of such models (e.g., a characterization of the structure
of the optimal policy for the model) is the subject of Markov decision theory.
Bellman [6] is commonly credited as founder of Markov decision theory. Its
essential concepts were formulated in the 40s and 50s, within the framework
of sequential game theory. Howard [27] was the first to consider infinite
horizon MDPs with average cost criterion. He introduced the policy iteration
algorithm, which can be used to compute optimal policies for average cost
MDPs. For a fairly complete treatment of Markov decision theory, we refer
to Ross [48], Bertsekas [8], and Puterman [44].

The basic ingredients of an MDP are states, actions, transitions, rewards
and an objective function. At fixed and equidistant points in time, the
state, i ∈ S say, of the system is observed and an action a ∈ A(i) is chosen,
where A(i) is the set of all possible actions in state i, and S is the state space.
Action a in state i yields a direct reward—possibly in expectation—of r(i, a),
and causes the system to make a transition to state j with probability pij(a).
The (fixed) times between transitions are termed periods. Note that the next
state is drawn from a distribution that depends only on the current state
and the action chosen in that state, and not on previous actions and events.
This is the Markov property of the process. The models we consider in this
thesis will possess this property. We note that in many real-life situations,
it is not important how a certain state was reached, but that it was reached.
In fact, the ‘how’ is often unclear. Furthermore, our focus is on models
with complete state observation. This means that the state of the system is
available to the decision maker at any time.
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Given these basic ingredients, the basic question is how to choose the actions
on a dynamic basis such that the objective function reaches a maximum
value. We can distinguish between finite horizon and infinite horizon models,
and in both cases also between models with and models without discounting.
Under reasonable assumptions, and using standard techniques, finite horizon
results can be extended to the infinite horizon case.

1.7.2 Dynamic Programming

Using Dynamic Programming (DP), finite horizon MDPs can be solved
recursively in n, the number of periods ‘to go’. If we let Vn(i) denote the
maximum expected return for an n-stage problem starting in state i, and
denote by β the discount factor (where 0 < β ≤ 1), then

Vn+1(i) = max
a∈A(i)

[r(i, a) + β
∑

j∈S

pij(a)Vn(j)]. (1.1)

Equation (1.1) is a special type of Dynamic Programming Equation (DPE),
known as the optimality equation for the MDP. It is also referred to as the
Bellman equation in literature. Vn(·) is termed the value function.

If a control problem can be formulated in terms of a set of DPEs, then DP
can be used as a means to prove properties of the optimal control policy,
by induction on properties of Vn(·). This is particularly of interest if Vn(·)
cannot be explicitly solved for; cf. Section 1.5.1. This approach is known as
inductive Dynamic Programming; see, e.g., Hajek [23].

1.7.3 Uniformization

The MDP defined in Section 1.7.1 concerns a discrete-time model, i.e.,
decisions are taken and transitions occur at fixed and equidistant points in
time. However, many control problems involve systems which are typically
not observed at fixed and equidistant points in time, but continuously.
For example, in the admission control problem of Figure 1.2, the system
is observed at arrival times of jobs, which are generated according to a
continuous Poisson process. We concentrate on control problems in which
the times between decision epochs are exponential, and whose probabilistic
structure is a semi-Markov Decision Process. Characteristic of such a process
is that if action a is chosen in state i, then an immediate reward r(i, a)
is obtained and, in addition, a cost rate c(i, a) is imposed until the next
transition occurs.
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If, in addition, the expected times between decision epochs are uniformly
bounded, then by allowing transitions that do not result in a change of
state, we can obtain that the times between consecutive transitions are
exponential with a constant (i.e., state-independent) parameter. This
enables us to consider the system as a discrete-time model, and hence enables
a representation of the system by means of a set of DPEs. This discretization
technique, which is due to Lippman [40], and which was later formalized
by Serfozo [50], is termed uniformization. Note that after uniformization,
periods do not have a fixed length, but have the same length in expectation.

����������	�
���
Throughout this thesis, in the context of uniformized models,

the term ‘horizon’ (or ‘time horizon’) is used synonymously with ‘number of
periods’. Thus, in a finite horizon problem, the expected time span rather
than the real time span is considered fixed.

Uniformization also allows for the incorporation of discounting, which is
represented by means of a discount rate α ≥ 0 (instead of a discount factor
β). This means that a reward r received at time t has present value re−αt.
The (exponential) discount rate can be treated as the rate by which the
process vanishes. See, e.g., the exposition of inductive DP of Walrand [58].

1.7.4 Monotonicity

Inductive DP can be used as a means to obtain certain monotonicity
properties of the value function Vn(·) which hold for every finite number
of periods. Appropriately combined, these monotonicity properties imply
certain monotonicity properties of the optimal control policy, e.g., a
threshold structure. We now discuss briefly some relevant monotonicity
properties of the value function Vn(·). We distinguish between models with a
one-dimensional state space and models with a two-dimensional state space.

1.7.4.1 One-dimensional state space models

In continuous-time queueing models with dynamic control, the main (and
possibly only) component of the state is usually the number of jobs in the
system. Having introduced uniformization, Lippman [40] was the first to
use inductive DP to obtain a monotonic characterization of the optimal
policy for a specific continuous-time control problem. In fact, he considers



18 Chapter 1

three distinct models, which are all based on models that appeared earlier in
literature. In each model, the value function Vn(i) represents the maximum
expected n-period reward, starting from state i, where i denotes the number
of jobs in the system. Further, in each model, the intended monotonic
characterization of the optimal policy is obtained by proving, by means of
induction, that Vn(i) is concave in i, the number of jobs in the system.3 We
remind that a function f(x) defined on some domain in IN is concave if

f(x+ 1)− f(x) ≥ f(x+ 2)− f(x+ 1) (1.2)

for all x for which the four states appearing in the inequality exist. In
the models of Lippman, in words, concavity means that the value of an
additional job is non-increasing in the number of jobs. This monotonicity
property implies a monotonic characterization of the optimal policy in terms
of the number of jobs in the system.

For example, let us consider his third model, which concerns an M|M|c
queue with finite or infinite buffer capacity. The system features arrival
rate control: on a dynamic basis, the arrival rate may be chosen from some
closed subset A of [0, λ̄], where λ̄ <∞. A reward rλ is received when a job
arrives in a time interval in which the arrival rate is λ. In addition, there are
holding costs h(i) per unit of time when there are i jobs in the system. It is
assumed that h(i) is non-decreasing and convex, and that rλ is continuous
and non-increasing on A, with rλ̄ ≥ 0 and r0 <∞. Finally, denote by λn(i)
the optimal arrival rate when the current state is i and n periods remain.
By induction on n, Lippman shows that Vn(i) is concave in i for every n.
From the concavity of Vn(i), and the DPE for the control problem, it is
obtained that λn(i) is non-increasing in i. Put informally, this monotonic
characterization says that the more crowded the system becomes, the lower
the selected arrival rate will be.

1.7.4.2 Two-dimensional state space models

In control models in which the dimension of the state space is larger
than 1, concavity by itself will not be a sufficient condition to establish the
desired threshold results. However, in two-dimensional state space models,

3Probably in order to be consistent with the original models, Lippman actually
considers the control problem in the second and third model as a minimization problem,
and establishes convexity of the value function. Clearly, this is equivalent to establishing
concavity in the equivalent maximization problem.
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concavity can be complemented by submodularity (see Topkis [56]) to obtain
monotonicity properties of the optimal policy. A function f(x1, x2) defined
on some domain in IN× IN is said to be submodular if

f(x1, x2 + 1)− f(x1, x2) ≥ f(x1 + 1, x2 + 1)− f(x1 + 1, x2) (1.3)

for all x1, x2 for which the four states appearing in the inequality exist.

One of the first to apply inductive DP to a two-dimensional model was
Davis [17]. He considers a queueing system with two identical exponential
servers in parallel, each with its own queue, and independent and identically
distributed interarrival times. The system is controlled by means of
admission control: an arriving job may be either rejected, admitted to
queue 1, or admitted to queue 2, based on the state x = (x1, x2) at the
time of arrival, where xj is the number of jobs at queue j, including the
position at the server, j = 1, 2. Jobs admitted to the system generate a
reward r, which is received upon entrance, and there are non-decreasing
and convex holding costs hj(xj) per unit of time when there are xj jobs
at queue j, j = 1, 2. Defining Vn(x) as the maximum expected n-period
reward, starting from state x, Davis gives an inductive proof to show that
the value function satisfies the condition

Vn(x+ ej)− Vn(x) ≥ Vn(x+ ei + ej)− Vn(x+ ei) (1.4)

for i, j = 1, 2, where e1 := (1, 0) and e2 := (0, 1). Note that (1.4) comprises
submodularity (if i 6= j) and componentwise concavity (if i = j) of Vn(x).

To make an inductive proof work, two additional conditions are added to
condition (1.4), namely,

Vn(x+ e1 + e2)− Vn(x+ e2) ≥ Vn(x+ 2e1)− Vn(x+ e1), (1.5)

Vn(x+ e1 + e2)− Vn(x+ e1) ≥ Vn(x+ 2e2)− Vn(x+ e2). (1.6)

Combined, inequalities (1.5) and (1.6) state that Vn(x) is subconcave, after
the following definition, used by Ghoneim and Stidham [53]. A function
f(x1, x2) defined on some domain in IN× IN is said to be subconcave in x1 if

f(x1 + 1, x2 + 1)− f(x1, x2 + 1) ≥ f(x1 + 2, x2)− f(x1 + 1, x2) (1.7)

for all x1, x2 for which the four states appearing in the inequality exist, and
is said to be subconcave in x2 if

f(x1 + 1, x2 + 1)− f(x1 + 1, x2) ≥ f(x1, x2 + 2)− f(x1, x2 + 1) (1.8)
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for all x1, x2 for which the four states appearing in the inequality exist. If
f(x1, x2) is subconcave in both x1 and x2, then f(x1, x2) is called subconcave.

Together, inequalities (1.4), (1.5) and (1.6) imply that the optimal policy
has a threshold structure. In particular, the optimal policy is admission
monotonic as well as routing monotonic: (1.4) implies that if it is optimal
to reject in state x, then it is also optimal to reject in state x+ ej , j = 1, 2,
and (1.5) [(1.6)] implies that if admitting to queue 1 [queue 2] is preferable
to admitting to queue 2 [queue 1] in state x, then this remains the case in
state x+ e2 [x+ e1].

Since the late 70s, following the early work of Davis and the like, numerous
two-dimensional models have been studied in literature. However, attempts
to generalize structural results to higher than two dimensions have almost
always been unsuccessful, and usually fail. Some examples are given
by Stidham [53]. The question as of why higher-dimensional models
are generally intractable is not easily answered. However, it may be
clear that by increasing the number of state components, the number
of inequalities will increase rapidly, and additional (dimension-dependent)
monotonicity properties, beyond submodularity and subconcavity, will be
required to establish a monotonic characterization of the optimal policy
via inductive DP. This is an intriguing subject to explore. Some results
have been established by Koole [35], who studies higher-dimensional tandem
queues. However, in this thesis, we confine ourself to models that can be
formulated as (semi-)MDPs with a two-dimensional state space. As will be
demonstrated in Chapter 2, DP already faces limitations in two dimensions.

In our inductive proofs of particular monotonicity properties, such as
submodularity of the value function Vn(·), we will frequently make use of the
following universal lemma. Here, and in the remainder of this thesis, Vn(i; a)
is generally defined as the maximum expected n-period (α-discounted)
reward when the current state is i, and given authorized (but not necessarily
optimal) decision a in that state.

����������
��

Let sm ∈ S for m = 1, . . . , 4, and φ ∈ A(s1) and ψ ∈ A(s4).

Then

Vn(s1;φ)− Vn(s2) ≥ Vn(s3)− Vn(s4;ψ) (1.9)

implies

Vn(s1)− Vn(s2) ≥ Vn(s3)− Vn(s4). (1.10)
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Proof. Immediate from Vn(s1) ≥ Vn(s1;φ) and Vn(s4) ≥ Vn(s4;ψ) for all
φ, ψ.

2

We will use Lemma 1.1 in the following way. When distinguishing between
all possible combinations of optimal decisions in certain states s2 and s3,
we choose φ and ψ such that (1.9) holds. Then (1.10) holds as well. This
enables us to consider self-selected, appropriate decisions in states s1 and s4,
instead of decisions which are necessarily optimal.

Finally, in our inductive proofs, we will occasionally make use of sample path
arguments. For an exposition of the sample path approach, we refer to Liu
et al. [41], and El-Taha and Stidham [19]. Our sample path arguments rely
on the use of stochastic coupling of processes. Wherever such arguments
appear in this thesis, a separate proof based on inductive DP could most
probably have been given instead, yet a sample path approach seemed more
convenient or insightful to us.

1.8 Outline of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, we
consider two models that feature admission control, and in particular routing
control, but not yet termination control. More specifically, we consider two
closely related systems, both consisting of two parallel sub-systems to which
arriving jobs must be routed. There are dedicated and flexible arrivals, and
both systems are subject to blocking. Considering the objective to minimize
the total number of blocked jobs, we show for both systems that the optimal
routing control policy has a threshold structure. We also show that ‘Least
Loaded Routing’ is the optimal routing policy if the system is symmetrical.
The analysis conducted in Chapter 2 already demonstrates the capabilities as
well as some ‘incapabilities’ (i.e., limitations) of our inductive DP approach.

Subsequently, in Chapter 3, we extend the dynamic control structure to
include termination control. We introduce the notion of termination control
by means of studying an M|EN |1 one-class queueing model in which the
service of a job may be aborted before the job has received full service, and
in which jobs may be removed from the queue as well, at any point in time.
Under certain regularity conditions on the cost and reward structure, we
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derive various monotonicity properties of the value function and show that
there exist optimal threshold policies for both the decision to accept or reject
a new job and the decision to continue or abort the service of a job.

In Chapter 4, we discuss several extensions of the basic dynamic control
model considered in Chapter 3. These include batch arrivals, phase-type
arrivals, and a more general service process in which a job that completes its
current phase is automatically routed to some downstream phase, according
to a Markov feed-forward routing mechanism. By means of inductive DP,
we derive generalized monotonicity and threshold results for each of these
extensions. We also capture the structure of the optimal policy for a purely
discrete-time model in which the workload of a job is the sum of at most N
geometric service phases and in which the state of the system is observed at
deterministic decisions epochs.

In Chapter 5, we discuss a multi-server version of the M|EN |1 model studied
in Chapter 3. This multi-server extension proves to be analytically as well as
computationally intractable. Although some basic monotonicity properties
can be derived, our focus is mainly on numerical aspects surrounding this
M|EN |s queue and its optimal control policy. In particular, we present a
heuristic for the computation of the optimal policy for this multi-server
model. The heuristic is based on a closely related model, namely, a slightly
modified version of the single-server model studied in Chapter 3, whose
optimal policy is readily computed. We evaluate and refine the heuristic
by means of a numerical study. The results of this study indicate that our
heuristic yields near-optimal performance.

Thus far, we considered one-class models only. One-class models are suitable
in situations where, upon arrival, jobs are mutually indistinguishable. With
this, individual job characteristics such as the actual service requirements
and the outcome of a job may vary from job to job (cf. Section 1.2.1),
but such distinctions will only become clear during the service process. If,
on the other hand, new jobs can be classified into distinct classes of jobs,
based on characteristics that can already be recognized before any capacity
engagement (again, cf. Section 1.2.1), then one-class models cannot be used
to accurately represent the system, and multi-class models are called for.

In Chapter 6, we first consider a two-class Mλ1,λ2 |Mµ|1 preemptive priority
queue. The system has the same admission and termination control features
as the model studied in Chapter 3. This means that one has the option to
either accept or reject new type-1 or type-2 jobs, and, at any time, one has
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the option to remove any number of type-1 or type-2 jobs from the system.
We show that there exist optimal threshold policies for these two types of
decisions. Subsequently, under certain restrictions on the cost structure or
(admission) control structure, we extend our results to the multi-server case.

Each of the Chapters 2 through 6 concludes with a brief summary of the
results obtained, a discussion of some straightforward or rather improbable
extensions, as well as some suggestions for further research. In addition,
the thesis concludes with a separate chapter, in which we make some final
remarks and indicate some natural directions for further research. In this
chapter, we also discuss the relation between the models we studied in this
thesis and a general framework for the derivation of monotonicity properties
using inductive DP, as developed by Koole [34]. We give a brief overview of
this unified treatment, and indicate how our models fit into this framework.
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2
Two routing control problems

I n this chapter, which is based on Brouns [13], we consider two closely
related systems, both featuring two parallel sub-systems to which arriving

jobs must be routed. Both systems are subject to blocking. In particular, the
first system concerns two parallel exponential servers, each having its own
finite capacity queue. The second system concerns two parallel Erlang loss
(sub-)systems, i.e., each sub-system has its own set of parallel exponential
servers and there is no waiting room at any of the sub-systems or servers.
Both systems feature dedicated and flexible arrivals. Dedicated arrivals
automatically join a particular sub-system, whereas flexible arrivals may join
and be routed to either sub-system. Considering the objective to minimize
the total number of blocked jobs, we show for both systems that the optimal
routing control policy has a threshold structure. We also show that Least
Loaded Routing is the optimal routing policy if the system is symmetrical.

The analysis of the second model is less straightforward than that of the first
model, which—from an analytical point of view—serves mainly as a set-up
for the second model. In the light of the issue of deficient resource capacity,
the first model is of little practical interest, because it puts focus on a lack
of buffer capacity rather than service capacity. The second model originates
from literature on telecommunications network analysis and design (as will
be touched upon in the next section). However, its use can be expanded
to more general deficient-capacity environments. This will be illustrated
further on in this chapter. Before describing and analysing our models in
detail, we give an overview of literature on the routing of jobs to parallel
queues that is relevant in the context of our models.
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2.1 Literature on routing to parallel queues

There is a vast literature on the routing of jobs to parallel queues. We
refer to Hariharan et al. [24] for an extensive overview. The perhaps most
basic routing control problem in parallel queues is studied by Winston [62],
who considers a queueing system consisting of a finite number of identical
exponential servers in parallel, each having its own queue. Jobs arrive at
the system according to a Poisson process. Upon arrival of a job it must
be assigned to one of the queues. Under the assumption that jockeying
between queues is not permitted, it is shown that the shortest line discipline
is optimal in terms of maximizing throughput.

Hordijk and Koole [26] prove that the shortest line discipline maximizes
stochastically the number of jobs served at any time t when the queues have
finite buffers. The servers are assumed identical but the buffers may have
different capacities. Towsley et al. [57] also consider identical servers and
finite buffers with unequal capacities. They also allow for buffer space to be
available at the controller, which enables the controller to delay the routing
of a job to one of the parallel queues.

Koole et al. [37] show that the shortest line discipline is optimal with respect
to various cost functions. Their results cover systems with two parallel
queues with infinite or finite capacity, arrivals that are independent of the
state of the system but otherwise arbitrary, and ILR (‘Increasing Likelihood
Ratio’) service time distributions, including the exponential distribution.

Koole [36] studies the static assignment of jobs to parallel, exponential,
heterogeneous servers. There is no waiting room at any of these servers,
and blocked jobs are lost. The objective is to minimize the average number
of blocked jobs. In the case of dynamic assignment it is optimal to route to
the fastest available server; see Koole [33]. The static version of the problem
is formulated as a stochastic control problem with partial observation.
Numerical experiments are conducted and the structure of the optimal policy
is studied.

Johri [29] considers state-dependent service rates. Under certain regularity
conditions on these rates, the shortest line discipline minimizes stochastically
the number of jobs at any time t. Menich and Serfozo [42] allow the service
and arrival rates to be functions of all queue lengths. This includes the case
of a number of parallel service facilities, each having s identical exponential
servers. They do not allow for finite buffers.



Two routing control problems 27

Hajek [23] considers two interacting parallel stations with two servers at each
station and a fifth server that is shared by the two stations. Both stations
have an infinite capacity queue. There are three Poisson arrival streams:
two dedicated streams and one flexible stream. Jobs in the first dedicated
stream always join station 1 and jobs in the second dedicated stream always
join station 2. Jobs in the flexible stream may join either queue. So for each
arriving flexible job it must be decided to which queue it is routed.

By combining the models of [23] and [42], and by disallowing buffering,
we can obtain systems with a number of parallel M|M|s|s sub-systems and
dedicated as well as flexible arrivals. These are highly suitable for modelling
wireless networks; see Alanyali and Hajek [4]. Such a network consists of
a number of base stations and of users. The users require communication
channels, which are available at the base stations. A station may only serve
users that are within geographical range of the station. Users may be in
range of several stations and the resource allocation problem concerns the
question of station selection. If each location has finite capacity, i.e., a finite
number of channels, then a consumer is lost if upon its arrival all channels
of all stations in its neighbourhood are already in use. The goal of the
allocation policy is to minimize the fraction of lost consumers. The authors
provide a lower bound for the consumer loss probability under any allocation
policy. Structural properties of the optimal policy are not addressed.

For the specific case of two parallel stations with c1 and c2 channels,
respectively, and exp(µ)-distributed service times at any of the c1 + c2
channels, Van Leeuwaarden et al. [39] consider various optimal static routing
policies. They also consider dynamic routing, for which they discuss a
one-step policy improvement algorithm and its performance. They conclude
with a brief discussion of three open problems, the first and second of which
are of interest to us. In particular, their first open problem, although
intuitively clear, is to show that the optimal routing policy for the model,
termed Model II in the remainder of this chapter, is of a switch-over type,
i.e., has a threshold structure. We will prove this conjecture. However,
we will first establish the same threshold result for a closely related model,
termed Model I, and then extend this property to Model II.

Model I will be described in Section 2.2. In Section 2.3, we state and prove
our main results for this model. In Section 2.4, we shift our attention to
Model II. Its description is taken from [39]. In Section 2.5, the threshold
characterization obtained for Model I is extended to Model II.
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The second open problem posed in [39] is to show that Least Loaded Routing
is the optimal routing policy in the symmetrical case, i.e., in the case of
equal dedicated arrival rates and equal capacities. This property is readily
obtained as a corollary of the threshold characterization of the optimal policy
for the general model.

2.2 Model description Model I

We consider the queueing system depicted in Figure 2.1. The system features
two identical parallel servers. Service times are exp(µ)-distributed. The
servers have separate queues, with finite capacity. Station 1 is formed by
server 1 and its queue. Station 2 is formed by server 2 and its queue. The
maximum number of jobs at station 1 is c1 ≥ 1 and the maximum number
of jobs at station 2 is c2 ≥ 1. So the buffer sizes of stations 1 and 2 are c1−1
and c2−1, respectively. Note that we use the term ‘station’ to indicate either
of the two sub-systems the system consists of. Nonetheless, in conformity
with what has been said in Section 1.3, the system as a whole can still be
regarded as a single station, as jobs visit at most one of the two sub-systems.

λ1

λ2

c1

c2

ν

µ

µ

Figure 2.1: Queueing system corresponding to Model I

There are three arrival streams: two dedicated streams and one flexible
stream. Jobs in dedicated stream k (k = 1, 2) arrive according to a Poisson
process with rate λk and automatically join station k. Jobs in the flexible
stream arrive according to a Poisson process with rate ν and may join either
station. Upon arrival of a flexible job it must be decided to which of the
two stations it is routed. We assume that the decision maker has complete
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information, i.e., he knows the number of jobs at each of the two stations.
The structure of the system is that of a (semi-)Markovian decision process.
It can be described as follows.

States: The state of the system is described by the tuple (i, j), where i
(0 ≤ i ≤ c1) is the number of jobs at the first station and j (0 ≤ j ≤ c2) is
the number of jobs at the second station.

Events: We distinguish two possible events: (i) the arrival of a new job and
(ii) a service completion.

Decisions: If the event is an arrival and it concerns a flexible job, then it
has to be decided to which of the two stations the job is routed: decision ‘1’
if station 1, decision ‘2’ if station 2. If the event is an arrival and it concerns
a dedicated job from stream 1 (or stream 2), then decision ‘1’ (or decision
‘2’) is taken automatically. If the decision is such that the arriving job is
routed to a station that is loaded to capacity, then the job leaves the system
immediately. If the event is a service completion, then no decision has to be
taken.

Costs and rewards: If an arriving job is routed to a station that is loaded
to capacity, then blocking costs of 1 are incurred. Alternatively, one can say
that blocking yields a reward of −1. These are the only costs; there are no
holding costs for jobs residing in the system.

Criterion: The objective is to minimize the expected (blocking) costs (i.e.,
number of blocked jobs) over an n-period time horizon. Alternatively stated,
the objective is to maximize the expected reward over an n-period time
horizon.

Uniformization: Applying uniformization (see Section 1.7.3), we can
consider that transitions occur at the jump times of a Poisson process with
rate λ1 + λ2 + ν + 2µ. By scaling time, we take λ1 + λ2 + ν + 2µ = 1
without loss of generality. Then, with probability λk (k = 1, 2) a transition
concerns the arrival of a dedicated job from stream k, with probability ν it
concerns the arrival of a flexible job, with probability µ a service completion
at station 1 and with the same probability a service completion at station 2.
A service completion is either a real service completion or an artificial service
completion when the server idles because there are no jobs at the station.

Uniformization enables us to use inductive Dynamic Programming to prove
our results for any finite time horizon. Using a standard argument, these
results can then be extended to the infinite time horizon case for the criterion
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of average cost per unit of time. See, e.g., Denardo [18]. Note that since c1
and c2 are finite, the system is a finite state system.

2.2.1 Dynamic Programming formulation

We will now complete the model in terms of a mathematical formulation.
After that, we successively state and prove our main results.

Recapitulating, i and j denote the number of jobs at station 1 and 2,
respectively, and (i, j) is the state of the system, 0 ≤ i ≤ c1 and 0 ≤ j ≤ c2.
We will use the following notation:

• Vn(i, j) denotes the maximum expected n-period reward when the
current state is (i, j). State (i, j) may be the result of an arrival—where
the system is observed immediately after the new job has been routed
to one of the two stations—or a real or artificial service completion.

• Vn(i, j;π) denotes the maximum expected n-period reward when the
current state is (i, j), given that there is an arrival event at this point
in time and given that decision π is chosen with respect to the new
job; π = 1 if this job belongs to dedicated stream 1, π = 2 if the job
belongs to dedicated stream 2 and π ∈ {1, 2} if the job is a flexible
job. Let π∗ denote the optimal decision. Note that in the notation π∗

the dependence on i, j and n is suppressed.

Further, for any condition Φ, define 1[Φ] :=

{
1 if Φ,
0 else.

Then our model is defined by the following set of DPEs.

For n ≥ 0 and all 0 ≤ i ≤ c1 and 0 ≤ j ≤ c2:

V0(i, j) = 0

Vn+1(i, j) = λ1Vn(i, j; 1) + λ2Vn(i, j; 2) +

ν max{Vn(i, j; 1), Vn(i, j; 2)} +

µVn(max{i− 1, 0}, j) + µVn(i,max{j − 1, 0})

Vn(i, j; 1) = −1[i = c1] + Vn(min{i+ 1, c1}, j)

Vn(i, j; 2) = −1[j = c2] + Vn(i,min{j + 1, c2})
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The vertical line in front of the set of DPEs indicates that the

equalities represent programming equations, i.e., program code that can be
used to generate instances of the model that can be fed to an optimization
program. Throughout this thesis, we will make use of this notation whenever
we write down a set of DPEs or a single DPE.

2.3 Main results for Model I

We will prove the following theorem.

��� ��������������

{Characterization of the optimal routing policy}

For any remaining number of periods n, the optimal routing policy can be
characterized as follows. If it is optimal to route an arriving flexible job to
station 1 in state (i, j), then it is optimal as well to route it to station 1
in all states (i, j + k) with 0 < k ≤ c2 − j and in all states (i − k, j) with
0 < k ≤ i.

����������	������
Alternatively stated, Theorem 2.1 reads that if it is optimal

to route an arriving flexible job to station 2 in state (i, j), then it is optimal
as well to route it to station 2 in all states (i+ k, j) with 0 < k ≤ c1− i and
in all states (i, j − k) with 0 < k ≤ j.

In terms of a graphical representation, Theorem 2.1 states that the optimal
routing policy can be characterized by a switch-over curve in the shape of
a non-decreasing step-function, so that for every i there exists a threshold
j of i and for every j there exists a threshold i of j. The following example
provides such a graphical representation of the structure of a typical routing
policy.

�������� �!"�#����

Consider the following instance of our model: λ1 = 0.2,

λ2 = 0.1, ν = 0.2, µ = 0.25, c1 = 18 and c2 = 12. The average reward
optimal routing policy for this system is depicted below. We employed the
successive approximation algorithm to calculate the optimal policy. The
desired relative and absolute accuracy of 10−4 was reached after 1,034
iterations, and the optimal average blocking costs per unit of time are
approximately 0.0198.

For comparison, the optimal static policy (which has no state information
and which routes an arriving flexible job to station 1 with probability p
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and to station 2 with probability 1 − p) incurs average blocking costs of
approximately 0.0324 per unit of time. This minimal loss is obtained for
p ≈ 0.253.

j

i0 18

12

0

Figure 2.2: Optimal routing policy for Example 2.1

The white area covers states in which it is optimal to route an arriving
flexible job to station 1, whereas the shaded area covers states in which
it is optimal to route an arriving flexible job to station 2. Note that the
switch-over curve—the solid polyline in the figure—is indeed non-decreasing.

2.3.1 The line of proof

In order to establish Theorem 2.1, we will prove the following monotonicity
results, from which Theorem 2.1 will be obtained as a corollary.
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{Key Proposition}

For n ≥ 0,

Vn(i, j + 1)− Vn(i, j + 2) ≥ Vn(i+ 1, j)− Vn(i+ 1, j + 1), (2.1)

Vn(i+ 1, j)− Vn(i+ 1, j + 1) ≥ Vn(i, j)− Vn(i, j + 1), (2.2)

Vn(i+ 1, j)− Vn(i+ 2, j) ≥ Vn(i, j + 1)− Vn(i+ 1, j + 1), (2.3)

for all i, j for which the four states appearing in the respective inequality
exist (i.e., (2.1) holds for all 0 ≤ i < c1 and 0 ≤ j < c2 − 1, (2.2) for all
0 ≤ i < c1 and 0 ≤ j < c2, and (2.3) for all 0 ≤ i < c1 − 1 and 0 ≤ j < c2).
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Together, inequalities (2.1) and (2.3) state that our value function is
subconcave; cf. (1.7) and (1.8). Note that (2.1) and (2.3) correspond to
properties (c2) and (c1) of [23], respectively, in which Vn(·) is the minimum
expected cost, so in our maximization model the inequality signs are read the
other way around. Further, inequality (2.2) states that our value function
is submodular; cf. (1.3). Note that (2.2) corresponds to property (b) of [23],
although the latter is more general.

����������	�����.
Combining (2.1) with (2.2) for i = c1−1, and combining (2.3)

with (2.2) for j = c2 − 1, we obtain, for n ≥ 0,

Vn(c1, j + 1)− Vn(c1, j + 2) ≥ Vn(c1, j)− Vn(c1, j + 1), (2.4)

Vn(i+ 1, c2)− Vn(i+ 2, c2) ≥ Vn(i, c2)− Vn(i+ 1, c2), (2.5)

where (2.4) holds for all 0 ≤ j < c2 − 1 and (2.5) for all 0 ≤ i < c1 − 1.

2.3.2 Proof of the Key Proposition

The proof of the Key Proposition uses induction on the remaining number
of periods and runs as follows. Step 0: Observe that (2.1), (2.2) and (2.3)
hold for n = 0. Step 1: Assuming (2.1), (2.2) and (2.3) to hold for some
n ≥ 0, prove that (2.1), (2.2) and (2.3) hold for n+ 1 as well. Note that it
suffices to prove (2.1) and (2.2) for n+1. Namely, once these two inequalities
have been established, (2.3) follows by interchanging the names of the two
stations (i.e., station 1 is now termed station 2 and vice versa).

In Step 1 of the proof we will make use of Lemma 1.1. In addition, we
will need the following proposition, which contains inequalities of the form
Vn(·) ≤ 1 + Vn(·). The idea to use such inequalities is also found in [26].
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For n ≥ 0,

0 ≤ Vn(i, j)− Vn(i, j + 1) ≤ 1, 0 ≤ i ≤ c1, 0 ≤ j < c2, (2.6)

0 ≤ Vn(i, j)− Vn(i+ 1, j) ≤ 1, 0 ≤ i < c1, 0 ≤ j ≤ c2. (2.7)

Proof. We use coupling and a sample path argument (although an inductive
proof could also be given). We first consider the right-hand inequality
of (2.6). Consider two n-period instances of our model, instance I0 starting
in (i, j) and instance I1 starting in (i, j + 1). We couple all events and all
decisions. Instance I0 follows the optimal policy and instance I1 copies all
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decisions taken in I0. In particular, if I0 idles at station 2 because it has
run out of jobs at that station, then I1 takes its additional job into service.

Then the costs are the same for both instances as long as I0 does not route a
new job to station 2 in some state (k, c2− 1) for 0 ≤ k ≤ c1. If this does not
occur before time hits zero, then the difference in reward is 0. Now suppose
it does occur before time zero, at time T say. If, even earlier in time, at
time T ′ say, I1 completed service at station 2 while I0 was idling at that
station, then I0 and I1 became identical at T ′, and hence their difference in
reward is 0. Alternatively, assume I0 has not witnessed an artificial service
completion at station 2 before T . Then, at T , the job routed to station 2
in I0 is blocked in I1, incurring a reward of −1 for I1 and causing I0 and
I1 to become identical immediately afterwards. So the difference in reward
between I0 and I1 is 0− (−1) = 1.

The reasoning is almost the same for the left-hand inequality of (2.6). Again,
let instance I0 start in (i, j) and instance I1 in (i, j+1). But now let I1 follow
the optimal policy and let I0 copy all decisions taken in I1. In particular,
if I1 starts serving its additional job at station 2, then I0 idles at station 2.

Finally, (2.7) follows from (2.6) by interchanging the names of the two
stations.

2

We note that the left-hand inequalities of (2.6) and (2.7) correspond to
property (a) of [23]. We further note that one may easily verify that
from Proposition 2.2 the following intermediate result can be obtained; cf.
Remark 3 in [39].

/ ������!"!0���21�����

{The optimal routing policy is greedy}

For any n, the optimal routing policy will route an arriving flexible job to
station 1 if i < c1 and j = c2 and to station 2 if i = c1 and j < c2.

����������	����43
For Corollary 2.1 to hold, it is essential that all blocked jobs

incur the same costs, irrespective of which of the arrival streams they come
from. Namely, if these costs are heterogeneous, then blocking on purpose
may be beneficial in order to keep buffer space available for jobs from
another stream, which have higher blocking costs associated with them.
See Section 2.3.4 for a concise treatment of heterogeneous blocking costs.

We now return to the Key Proposition.
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Proof of the Key Proposition.

Step 0. Inequalities (2.1), (2.2) and (2.3) hold by definition for n = 0.

Induction hypothesis. Assume that for some n ≥ 0, (2.1) holds for all
0 ≤ i < c1 and 0 ≤ j < c2 − 1, (2.2) for all 0 ≤ i < c1 and 0 ≤ j < c2
and (2.3) for all 0 ≤ i < c1 − 1 and 0 ≤ j < c2. This will be our induction
hypothesis.

Step 1. Under the induction hypothesis, we show that (2.1) and (2.2) hold
for n+ 1 as well. Then (2.3) also holds for n+ 1.

In the derivation below, and throughout this thesis, we will make use of
the following notation, which we have adopted in part from the calculus of
logic. In deductions, arguments will be put between braces (“{” and “}”)
and will be written in sans serif typeface. If the induction hypothesis is used
as an argument, then we will either write down its full name, or use the
abbreviation “ih” to save space.

Further, to make compound arguments more comprehensible, we will make
use of special symbols to indicate individual terms. Symbols made up of
hollow dots enfolding black numbers (e.g., À) will be used for terms on
the left-hand side of an (in)equality, whereas solid black symbols enfolding
white numbers (e.g., Ê) will be used for terms on the right-hand side of the
(in)equality. In addition to this, we use the (standard) notation A ⇒ B
to indicate that some property A implies some property B, and A ≡ B to
indicate that A is equivalent to B.

We now return to Step 1 of our proof.
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Proof of (2.1). Let 0 ≤ i < c1 and 0 ≤ j < c2 − 1. Then,

Vn+1(i, j + 1)− Vn+1(i, j + 2)

= µ[Vn(max{i− 1, 0}, j + 1)− Vn(max{i− 1, 0}, j + 2)]À +

µ[Vn(i, j)− Vn(i, j + 1)]Á +

λ1[Vn(i, j + 1; 1)− Vn(i, j + 2; 1)]Â +

λ2[Vn(i, j + 1; 2)− Vn(i, j + 2; 2)]Ã +

ν[max{Vn(i, j + 1; 1), Vn(i, j + 1; 2)} −

max{Vn(i, j + 2; 1), Vn(i, j + 2; 2)}]Ä

≥ {ih; À ≥ Ê; Á ≥ Ë; Â ≥ Ì; Ã ≥ Í; Ä ≥ Î; see below}

µ[Vn(i, j)− Vn(i, j + 1)]Ê +

µ[Vn(i+ 1,max{j − 1, 0})− Vn(i+ 1, j)]Ë +

λ1[Vn(i+ 1, j; 1)− Vn(i+ 1, j + 1; 1)]Ì +

λ2[Vn(i+ 1, j; 2)− Vn(i+ 1, j + 1; 2)]Í +

ν[max{Vn(i+ 1, j; 1), Vn(i+ 1, j; 2)} −

max{Vn(i+ 1, j + 1; 1), Vn(i+ 1, j + 1; 2)}]Î

= Vn+1(i+ 1, j)− Vn+1(i+ 1, j + 1).

À ≥ Ê By (2.1) if i > 0, and by (2.1) and subsequently (2.2) if i = 0.

Á ≥ Ë By (2.1) if j > 0, and by (2.6) if j = 0.

Â ≥ Ì By executing decision 1 and subsequently by (2.1) if i < c1−1, and
by (2.4) if i = c1 − 1.

Ã ≥ Í By executing decision 2 and subsequently by (2.6) if j = c2 − 2,
and by (2.1) if j < c2 − 2.

Ä ≥ Î For Ä ≥ Î, we need to show that

Vn(i, j + 1;π∗)− Vn(i, j + 2;π∗) ≥ Vn(i+ 1, j;π∗)− Vn(i+ 1, j + 1;π∗).

(2.8)

The optimal decision π∗ =: d1 corresponding to Vn(i, j+2;π∗) is either 1 or
2. The same can be said about the optimal decision π∗ =: d2 corresponding
to Vn(i+1, j;π∗). There are at most four joint cases (d1, d2), namely: (1, 1),
(1, 2), (2, 1) and (2, 2). We will show that (2.8) holds for each case.
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Under (1, 1), we choose 1 in the other two states appearing in (2.8) as well.
Then the result follows by Â ≥ Ì and Lemma 1.1. Analogously, under (2, 2),
we choose 2 in the other two states as well, after which the result follows by
Ã ≥ Í and Lemma 1.1.

Thirdly, under (1, 2),

Vn(i, j + 1; 1)− Vn(i, j + 2; 1) = Vn(i+ 1, j + 1)− Vn(i+ 1, j + 2)

= Vn(i+ 1, j; 2)− Vn(i+ 1, j + 1; 2),

to which we subsequently apply Lemma 1.1.

Fourthly, under (2, 1),

Vn(i, j + 1; 2)− Vn(i, j + 2; 2)

= Vn(i, j + 2)− Vn(i,min{j + 3, c2}) + 1[j = c2 − 2]

≥ {induction hypothesis; (2.1) twice if j < c2 − 2 and i < c1 − 1;

(2.1), (2.4) if j < c2 − 2 and i = c1 − 1; (2.6) if j = c2 − 2}

Vn(min{i+ 2, c1}, j)− Vn(min{i+ 2, c1}, j + 1)

= Vn(i+ 1, j; 1)− Vn(i+ 1, j + 1; 1),

to which we subsequently apply Lemma 1.1.

This concludes our proof of (2.1) for n+ 1.
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Proof of (2.2). Let 0 ≤ i < c1 and 0 ≤ j < c2. Then,

Vn+1(i+ 1, j)− Vn+1(i+ 1, j + 1)

= µ[Vn(i, j)− Vn(i, j + 1)]À +

µ[Vn(i+ 1,max{j − 1, 0})− Vn(i+ 1, j)]Á +

λ1[Vn(i+ 1, j; 1)− Vn(i+ 1, j + 1; 1)]Â +

λ2[Vn(i+ 1, j; 2)− Vn(i+ 1, j + 1; 2)]Ã +

ν[max{Vn(i+ 1, j; 1), Vn(i+ 1, j; 2)} −

max{Vn(i+ 1, j + 1; 1), Vn(i+ 1, j + 1; 2)}]Ä

≥ {ih; À ≥ Ê; Á ≥ Ë; Â ≥ Ì; Ã ≥ Í; Ä ≥ Î; see below}

µ[Vn(max{i− 1, 0}, j)− Vn(max{i− 1, 0}, j + 1)]Ê +

µ[Vn(i,max{j − 1, 0})− Vn(i, j)]Ë +

λ1[Vn(i, j; 1)− Vn(i, j + 1; 1)]Ì +

λ2[Vn(i, j; 2)− Vn(i, j + 1; 2)]Í +

ν[max{Vn(i, j; 1), Vn(i, j; 2)} −

max{Vn(i, j + 1; 1), Vn(i, j + 1; 2)}]Î

= Vn+1(i, j)− Vn+1(i, j + 1).

À ≥ Ê By (2.2) if i > 0, and with equality if i = 0.

Á ≥ Ë By (2.2) if j > 0, and by Á = Ë = 0 if j = 0.

Â ≥ Ì By executing decision 1 and subsequently with equality if i = c1−1,
and by (2.2) if i < c1 − 1.

Ã ≥ Í By executing decision 2 and subsequently by (2.2) if j < c2 − 1,
and by Ã = Í = 1 if j = c2 − 1.

Ä ≥ Î Analogous to the proof of Ä ≥ Î for (2.1) for n+1, we distinguish
the cases (1, 1), (2, 2), (1, 2) and (2, 1) for the optimal decisions d1 and d2
corresponding to Vn(i+1, j+1;π∗) and Vn(i, j;π

∗), respectively. Again, the
first case can be dealt with by choosing 1 in the other two states as well,
and the second by choosing 2 in the other two states as well.



Two routing control problems 39

Thirdly, under (1, 2),

Vn(i+ 1, j; 2)− Vn(i+ 1, j + 1; 1)

= Vn(i+ 1, j + 1)− Vn(min{i+ 2, c1}, j + 1) + 1[i = c1 − 1]

≥ {induction hypothesis; (2.2), (2.3) if i < c1 − 1; (2.7) if i = c1 − 1}

Vn(i, j + 1)− Vn(i+ 1, j + 1)

= Vn(i, j; 2)− Vn(i, j + 1; 1),

to which we subsequently apply Lemma 1.1.

Fourthly, under (2, 1),

Vn(i+ 1, j; 2)− Vn(i+ 1, j + 1; 2)

= Vn(i+ 1, j + 1)− Vn(i+ 1,min{j + 2, c2}) + 1[j = c2 − 1]

≥ {induction hypothesis; (2.1), (2.2) if j < c2 − 1 and i < c1 − 1;

(2.4) if j < c2 − 1 and i = c1 − 1; (2.6) if j = c2 − 1}

Vn(i+ 1, j)− Vn(i+ 1, j + 1)

= Vn(i, j; 1)− Vn(i, j + 1; 1),

to which we subsequently apply Lemma 1.1.

This concludes our proof of (2.2) for n+ 1 and hence our proof of the Key
Proposition.

2

We now derive Theorem 2.1 from the Key Proposition by means of two
corollaries. Note that Corollary 2.3 is exactly Theorem 2.1.
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For n ≥ 0,

Vn(i, j; 2)− Vn(i, j + 1; 2) ≥ Vn(i, j; 1)− Vn(i, j + 1; 1),

0 ≤ i ≤ c1, 0 ≤ j < c2, (2.9)

Vn(i, j; 1)− Vn(i+ 1, j; 1) ≥ Vn(i, j; 2)− Vn(i+ 1, j; 2),

0 ≤ i < c1, 0 ≤ j ≤ c2. (2.10)

Proof. One may easily verify that (2.9) follows from (2.6) for 0 ≤ i ≤ c1
and j = c2 − 1, from (2.1) for 0 ≤ i < c1 and 0 ≤ j < c2 − 1, and from (2.4)
for i = c1 and 0 ≤ j < c2 − 1. Analogously, (2.10) follows from (2.7) for
i = c1 − 1 and 0 ≤ j ≤ c2, from (2.3) for 0 ≤ i < c1 − 1 and 0 ≤ j < c2, and
from (2.5) for 0 ≤ i < c1 − 1 and j = c2.

2
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Let n ≥ 0, 0 ≤ i ≤ c1 and 0 ≤ j ≤ c2. If it is optimal to

route an arriving flexible job to station 1 in state (i, j), then it is optimal to
route it to station 1 in state (i, j+1), provided j < c2, and in state (i−1, j),
provided i > 0.

Proof. Let n ≥ 0. It suffices to show that

Vn(i, j; 1) ≥ Vn(i, j; 2) =⇒ Vn(i, j + 1; 1) ≥ Vn(i, j + 1; 2),

0 ≤ i ≤ c1, 0 ≤ j < c2, (2.11)

Vn(i, j; 1) ≥ Vn(i, j; 2) =⇒ Vn(i− 1, j; 1) ≥ Vn(i− 1, j; 2),

0 < i ≤ c1, 0 ≤ j ≤ c2. (2.12)

It is easily verified that implications (2.11) and (2.12) are immediate from
inequalities (2.9) and (2.10), respectively.

2

From Corollary 2.3 we can also obtain the following result, which states that
in case of equal dedicated arrival rates and equal capacities, Least Loaded
Routing, i.e., routing to the station with the least number of jobs, is the
optimal routing policy. In Model I, this policy can also be referred to as the
shortest line discipline.
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{Optimality of Least Loaded Routing}

Assume λ1 = λ2 and c1 = c2 =: c. Then, for any n, Least Loaded Routing
is the optimal routing policy.

Proof. By symmetry it suffices to consider states (i, j) with 0 ≤ i ≤ j ≤ c.
Let n ≥ 0. Clearly, Vn(i, i; 1) = Vn(i, i; 2) by symmetry for any 0 ≤ i ≤ c.
Hence, by (2.11), we also have Vn(i, j; 1) ≥ Vn(i, j; 2) for 0 ≤ i ≤ j ≤ c, i.e.,
it is optimal to route to station 1 in (i, j).

2

2.3.3 Extension to heterogeneous service rates

In our model we considered homogeneous service rates, i.e., the service rates
at stations 1 and 2 are both equal to µ. Now assume the service rates are
heterogeneous and equal to µ1 and µ2, respectively, where µ1 6= µ2. Then,
by replacing each occurrence of µ in the DPEs and all proofs by µ1 or µ2
(depending on which of the two is applicable there), it is readily verified
that all results and proofs remain intact.
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An even more general extension would be to consider heterogeneous service
rates that also depend on the origin of jobs, i.e., when a job enters service, its
rate of service depends on which of the three arrival streams the job stems
from. However, assuming that the service order is not necessarily restricted
to FCFS, this implies essentially a four-dimensional state space, involving
states of the form (x1, y1, x2, y2), where xk is the number of dedicated jobs
at station k and yk is the number of flexible jobs at station k (k = 1, 2).
This will result in an intractable model as far as the derivation of threshold
properties is concerned. The situation is even worse in case of FCFS, because
then we also have to keep track of the order in which jobs arrive.

2.3.4 Heterogeneous blocking costs

In Remark 2.4, we noted that in case of heterogeneous blocking costs,
intentional blocking at some station (when it is loaded to capacity) may
be beneficial in order to keep buffer space available at the other station,
hence reducing the probability of blocking dedicated jobs at that other
station. Below, we discuss briefly three classes of routing policies that can be
associated with general blocking costs of b1 for jobs from dedicated stream 1,
b2 for jobs from dedicated stream 2 and b for jobs from the flexible stream.

Non-greedy routing Corollary 2.1 need no longer hold if intentional
blocking is permitted (as already noted in Remark 2.4). The threshold
structure described in Theorem 2.1 is lost as well, in general, as illustrated
by the following basic counterexample.

/ ��5�,6(6�������6���� �!"�7�*�8

For any model instance satisfying λ1 = λ2, c1 = c2,

and b2 > b1 > b = 0, the average reward optimal routing policy when there
are no jobs at station 1 is to route a flexible job to station 1 if j < c2, but
to station 2 (hence blocking it, at no cost) if j = c2.

Compulsory greedy routing Suppose that a flexible job may not be
routed to a station whose buffer is full if there is still buffer space available
at the other station. So, a flexible job may only be blocked if both stations
are loaded to capacity. Then the following counterexample shows that the
threshold structure described in Theorem 2.1 need not hold any more.
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Consider the following model instance: λ1 = 0.2,

λ2 = 0.35, ν = 0.15, µ = 0.15, c1 = 6, c2 = 10, b1 = 2, b2 = 0.5 and b = 0.1.
Computations reveal that the average reward optimal routing policy for
this system when there are no jobs at station 1 is to route a flexible job to
station 2 if j = 0, to station 1 if 1 ≤ j ≤ 8, and to station 2 again if j = 9,
violating Theorem 2.1. (Note that routing to station 1 is compulsory when
j = 10.)

Unrestricted routing and termination In the models discussed so far,
queued jobs had to be served. Now suppose that at any time we may decide
to discard queued jobs from the system. Blocking a job (whether on purpose
or not) and disposing of a job essentially both mean that the job is not going
to be served, or at least not to completion. Assuming that the costs of not
serving are the prime interest, and that blocking costs were introduced to
represent these, it will be reasonable to assume that disposing of a job can
be carried out at the tariff of blocking.

InModel I, this extended type of control implies that the state space becomes
four-dimensional (involving states of the form (x1, y1, x2, y2), similar to
the situation of stream-dependent service rates described in Section 2.3.3),
rendering the model intractable. A related—yet more basic—model with
multiple arrival streams and the option to remove queued jobs from the
system is considered and analysed in Chapter 6.

This completes our discussion of Model I.

2.4 Model description Model II

We now shift our attention to Model II. Consider the system depicted in
Figure 2.3. The system consists of two parallel Erlang loss stations. The
first has c1 ≥ 1 parallel servers and the second has c2 ≥ 1 parallel servers. All
c1 + c2 servers are identical, and service times are exp(µ)-distributed. Since
the stations are loss stations, there is no queueing. The maximum number
of jobs at station 1 is c1 and the maximum number of jobs at station 2 is c2,
as in Model I. Note that we use the term ‘station’ again to indicate either
of the two sub-systems the system is composed of.
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Figure 2.3: Queueing system corresponding to Model II

As inModel I, the arrival process is made up of three Poisson arrival streams:
two dedicated streams (characterized by arrival rates λ1 and λ2) and one
flexible stream (characterized by arrival rate ν). Upon arrival of a flexible
job it must be decided to which of the two stations it is routed. The decision
maker has complete information, i.e., he knows the number of jobs at each
of the two stations.

The structure of the system is that of a (semi-)Markovian decision process,
and its description is almost identical to that of Model I. We distinguish the
same states, events, decisions, rewards of −1 and assume the same criterion,
i.e., maximizing the expected reward over an n-period time horizon. The
only essential difference lies in the total service rate of a station, which is
µ · 1[i > 0] in Model I when there are i jobs present at that station, and
which now becomes iµ. Consequently, also the uniformization is slightly
different. We take λ1 + λ2 + ν + (c1 + c2)µ = 1 without loss of generality.
Then, with probability (i + j)µ there is a real service completion, whereas
with probability (c1 + c2− (i+ j))µ there is an artificial service completion.

����������	�����:
Although Model II is tailored to base station versus user

allocation problems in wireless networks (as discussed earlier in this chapter),
its use is by no means limited to it. To give just an impression of what
other areas of application one could think of, we mention engineering or
consultancy offices, where orders (jobs) have to be assigned to specialized
project teams (servers). Some orders are fairly general (flexible), whereas
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others are of a highly specialized nature (dedicated) and hence require the
attention of one particular team. A new order has to be considered a loss
if there is no suitable project team available at the time of request, since
running projects usually require a substantial amount of time and clients
will place their order elsewhere if it cannot be taken on in the direct future.
The objective of the office is to maximize the number of acquired projects.

2.4.1 Dynamic Programming formulation

The Dynamic Programming formulation for Model II is almost the same as
for Model I. We employ the same notation, i.e., the same value functions
Vn(i, j) and Vn(i, j;π), and we only need to modify the DPE for Vn+1(i, j).
Namely, under the convention that iµVn(i − 1, j) is zero for i = 0 and any
j, and jµVn(i, j − 1) is zero for j = 0 and any i, we have, for n ≥ 0 and all
0 ≤ i ≤ c1 and 0 ≤ j ≤ c2:

Vn+1(i, j) = λ1Vn(i, j; 1) + λ2Vn(i, j; 2) +

ν max{Vn(i, j; 1), Vn(i, j; 2)} +

iµVn(i− 1, j) + jµVn(i, j − 1) +

(c1 + c2 − (i+ j))µVn(i, j)

2.5 Main results for Model II

We claim that Theorem 2.1 and Propositions 2.1 and 2.2 (and thus
Corollaries 2.1, 2.2, 2.3 and 2.4) all remain intact. Consequently, the optimal
routing policy for Model II has a threshold structure (and Least Loaded
Routing is the optimal routing policy in the symmetrical case). Note that
it suffices to show that Propositions 2.1 and 2.2 remain valid.

$����� ���%'&)(*&+��,-����.
Proposition 2.2 holds for Model II as well. I.e., in words,

the expected difference in reward between some instance of Model II and
another instance starting with one job extra lies between 0 and 1.

Proof. It can easily be verified that Proposition 2.2 holds for Model II as
well. The proof is analogous to the proof given for Model I. For example,
consider the right-hand inequality of (2.6). Consider two n-period instances
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of Model II, instance I0 starting in (i, j) and instance I1 starting in (i, j+1).
We couple all events and all decisions, and also all servers. Instance I0
follows the optimal policy and instance I1 copies all decisions taken in I0.
Let S denote the server that is idle in I0 at time n and serving a job in I1
at time n.

Then the costs are the same for both instances as long as I0 does not route
a new job to server S. If this does not occur before time hits zero, then the
difference in reward is 0. Now suppose it does occur before time zero, at
time T say. If, even earlier in time, at time T ′ say, I0 witnessed an artificial
service completion at server S and, consequently, I1 completed service at
server S, then I0 and I1 became identical at T ′, and hence their difference in
reward is 0. Alternatively, assume I0 has not witnessed an artificial service
completion at server S before T . Then, at T , the job routed to server S
in I0 is blocked in I1, incurring a reward of −1 for I1 and causing I0 and
I1 to become identical immediately afterwards. So the difference in reward
between I0 and I1 is 0− (−1) = 1.

2
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The Key Proposition (i.e., Proposition 2.1) holds for

Model II as well. I.e., in words, the value function of Model II is submodular
and subconcave.

Proof. We follow the proof of the Key Proposition for Model I, i.e., we
perform the same steps and take the same induction hypothesis. Step 0 is
trivial. For Model I, for both (2.1) and (2.2), Step 1 of the proof consisted
of 5 parts, namely, establishing À ≥ Ê through Ä ≥ Î. One may easily
verify that the last three parts (Â ≥ Ì, Ã ≥ Í and Ä ≥ Î), i.e., the parts
concerning the three arrival processes, remain intact for Model II, since we
have the same induction hypothesis and the same DPEs at arrival times as
for Model I.

It remains to show that À+Á ≥ Ê+Ë for the terms À, Á, Ê and Ë

corresponding to (2.1) and (2.2) for n+1 for Model II. These are the terms
concerning the departure processes from stations 1 and 2. (Again, (2.3) will
follow from (2.1) by interchanging the names of the two stations.)
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We first consider (2.1). Let 0 ≤ i < c1 and 0 ≤ j < c2 − 1. Then,

À+Á = iµVn(i− 1, j + 1) + (j + 1)µVn(i, j) +

(c1 + c2 − (i+ j + 1))µVn(i, j + 1) − [iµVn(i− 1, j + 2) +

(j + 2)µVn(i, j + 1) + (c1 + c2 − (i+ j + 2))µVn(i, j + 2)]

= {rearrange terms}

iµ[Vn(i− 1, j + 1)− Vn(i− 1, j + 2)]À1 +

µ[Vn(i, j + 1)− Vn(i, j + 2)]À2 +

(c1 − (i+ 1))µ[Vn(i, j + 1)− Vn(i, j + 2)]À3 +

jµ[Vn(i, j)− Vn(i, j + 1)]Á1 +

µ[Vn(i, j)− Vn(i, j + 1)]Á2 +

µ[Vn(i, j + 1)− Vn(i, j + 1)]Á3 +

(c2 − (j + 2))µ[Vn(i, j + 1)− Vn(i, j + 2)]Á4

≥ {ih; À1 ≥ Ê1, À3 ≥ Ê3, Á1 ≥ Ë1, Á4 ≥ Ë4 by (2.1);

Á3 = Ë2 = 0; Á2 = Ê2; À2 ≥ Ë3 by (2.1)}

iµ[Vn(i, j)− Vn(i, j + 1)]Ê1 +

µ[Vn(i, j)− Vn(i, j + 1)]Ê2 +

(c1 − (i+ 1))µ[Vn(i+ 1, j)− Vn(i+ 1, j + 1)]Ê3 +

jµ[Vn(i+ 1, j − 1)− Vn(i+ 1, j)]Ë1 +

µ[Vn(i+ 1, j)− Vn(i+ 1, j)]Ë2 +

µ[Vn(i+ 1, j)− Vn(i+ 1, j + 1)]Ë3 +

(c2 − (j + 2))µ[Vn(i+ 1, j)− Vn(i+ 1, j + 1)]Ë4

= {rearrange terms}

(i+ 1)µVn(i, j) + jµVn(i+ 1, j − 1) +

(c1 + c2 − (i+ j + 1))µVn(i+ 1, j) − [(i+ 1)µVn(i, j + 1) +

(j + 1)µVn(i+ 1, j) + (c1 + c2 − (i+ j + 2))µVn(i+ 1, j + 1)]

= Ê+Ë.

����������	�����;
In the derivation above we have used explicitly that the

service rates of the servers at station 1 are equal to the service rates of
the servers at station 2.
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Next, consider (2.2). Let 0 ≤ i < c1 and 0 ≤ j < c2. Then,

À = iµ[Vn(i, j)− Vn(i, j + 1)]À1 +

µ[Vn(i, j)− Vn(i, j + 1)]À2 +

(c1 − (i+ 1))µ[Vn(i+ 1, j)− Vn(i+ 1, j + 1)]À3

≥ {induction hypothesis; À2 = Ê2; À1 ≥ Ê1, À3 ≥ Ê3 by (2.2)}

iµ[Vn(i− 1, j)− Vn(i− 1, j + 1)]Ê1 +

µ[Vn(i, j)− Vn(i, j + 1)]Ê2 +

(c1 − (i+ 1))µ[Vn(i, j)− Vn(i, j + 1)]Ê3

= Ê,

and

Á = jµ[Vn(i+ 1, j − 1)− Vn(i+ 1, j)]Á1 +

µ[Vn(i+ 1, j)− Vn(i+ 1, j)]Á2 +

(c2 − (j + 1))µ[Vn(i+ 1, j)− Vn(i+ 1, j + 1)]Á3

≥ {induction hypothesis; Á2 = Ë2 = 0; Á1 ≥ Ë1, Á3 ≥ Ë3 by (2.2)}

jµ[Vn(i, j − 1)− Vn(i, j)]Ë1 +

µ[Vn(i, j)− Vn(i, j)]Ë2 +

(c2 − (j + 1))µ[Vn(i, j)− Vn(i, j + 1)]Ë3

= Ë,

so À ≥ Ê and Á ≥ Ë, and thus À+Á ≥ Ê+Ë.

This concludes our proof of the Key Proposition for Model II.

2

2.5.1 Extension to heterogeneous service rates

In Section 2.3.3, we noted that all monotonicity results remain valid in
Model I if the two stations have heterogeneous (but stream-independent)
service rates. One may ask if this is also the case in Model II, i.e., when
each of the c1 servers at station 1 has service rate µ1 and each of the c2
servers at station 2 has service rate µ2, where µ1 6= µ2. As far as the
threshold characterization is concerned, this remains an open problem. Our
approach for (2.1) will not work directly; cf. Remark 2.6. In fact, (2.1) need
not even hold in case µ2 > µ1. See the following counterexample.
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Consider the following instance of Model II with

heterogeneous service rates: λ1 = λ2 = 0, ν = 5
17 , µ1 = 1

17 , µ2 = 3
17 and

c1 = c2 = 3. We have calculated the average reward optimal routing policy
for this instance. The desired relative and absolute accuracy of 10−5 was
reached after 116 iterations. We found

V116(2, 1)− V116(2, 2) = 0.094 < 0.097 = V116(3, 0)− V116(3, 1),

which violates inequality (2.1).

Despite the fact that (2.1) does not hold in general if µ2 > µ1, the
threshold structure of the optimal policy may still very well apply, because
Proposition 2.1 is not a necessary condition for Theorem 2.1. For example,
the optimal policy for the instance considered in Example 2.3 (clearly) is to
route to station 1 only if station 2 is loaded to capacity, so it is still of a
threshold type.

/ ��,*<=�*>�(?5����#�*�8

The threshold characterization of the optimal routing

policy as given by Theorem 2.1 still holds for Model II if µ1 6= µ2.

It is important to note that any proof of the conjecture must follow a different
approach than the general approach based on the notion of submodularity
and subconcavity employed in this thesis, because, in general, subconcavity
is lost when µ1 6= µ2 (as demonstrated by Counterexample 2.3).

2.6 Conclusions

We have studied two closely related dynamic control models, both
concerning queueing systems with two parallel sub-systems to which arriving
jobs must be routed. The models featured routing control, but not
yet termination control. For both models we have shown that the
optimal routing control policy has a threshold structure. In addition, we
have discussed two types of extensions, namely, heterogeneous blocking
costs and heterogeneous (station-dependent) service rates. We have
seen that, in general, the monotonicity and threshold results no longer
remain valid in case of heterogeneous blocking costs. In the first model,
the main monotonicity and threshold properties extend to the case of
station-dependent service rates. By means of a counterexample we have
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shown that in the second model, one of the main monotonicity properties
need no longer hold if the service rates are station-dependent, revealing that
the inductive DP approach already faces limitations in two dimensions.

A natural direction for further research would be to investigate the extension
of both models to more than two sub-systems. Note, however, that this will
essentially imply a higher-dimensional state space, i.e., m-dimensional in
case of m sub-systems, m > 2, and that monotonicity properties beyond
submodularity and subconcavity must be established to obtain a monotonic
characterization of the optimal policy via inductive DP; cf. Section 1.7.4.2.
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3
An M|EN |1 queue with

admission and termination control

I n this chapter, which is based on Brouns and Van der Wal [10], we
consider our first model incorporating both admission and termination

control in the decision structure. In particular, we study an M|EN |1 queue
with FCFS service order and two on-line decision features. One type of
decision concerns the arrivals: for each arrival we have to decide to either
accept or reject it. The other type, termed termination control, concerns the
decision to either continue the service of a job or to abort it. We will show
that under some regularity conditions on the cost and reward functions, both
the optimal admission control policy and the optimal termination control
policy have a threshold structure.

The chapter is organized as follows. In Section 3.1, we describe the model
in detail. Section 3.2 gives an overview of the results and the line of proof.
Section 3.3 gives the (lengthy) proofs for the finite horizon case. Section 3.4
discusses the extension to the infinite horizon. Section 3.5 contains some
counterexamples that illustrate the necessity of the regularity conditions
we imposed. Finally, in Section 3.6, we discuss briefly a slightly modified
version of the model, which is based on an alternative reward structure.

3.1 Model description

The basic model we study in this chapter is a single-server queueing system,
operating according to the FCFS discipline and possessing infinite buffer
capacity. New jobs arrive at the system according to a Poisson process with
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arrival rate λ ≥ 0. The workload of a job is Erlang distributed with N ≥ 1
phases. Each phase takes an exponential time with mean 1/µ. The system is
controlled in two ways: one has to decide to accept or reject new arrivals and
one has to decide to continue or abort the job in service. See also Figure 3.1.
We assume that the decision maker has complete information, i.e., he knows
the number of jobs present and the number of (exponential) phases already
completed for the job in service. The structure of the system is that of a
(semi-)Markovian decision process. It can be described as follows.

States: The state of the system is described by the tuple (i, k), where i is the
number of jobs in the system and k denotes the number of phases completed
for the job in service. If i = 0, then k is indefinite. To indicate this,
the empty system is denoted by (0, ·). We also use the intermediate state
(i, k, arr) immediately after an arrival. A newly arrived job is considered not
to be part of the system until after it has been accepted.

We will also say that a job being served ‘resides in node k’ if it has passed
through k service phases and, consequently, is in its (k + 1)th phase, where
0 ≤ k < N . After the completion of this (k + 1)th phase, the job moves on
from node k to node k + 1, provided the job is not aborted. The maximum
number of service phases is N .

Events: We distinguish two possible events: (i) the arrival of a new job and
(ii) the completion of a service phase.

Decisions: If the event is an arrival, then first the decision has to be taken
to accept or reject the newly arrived job. This changes the state (i, k, arr)
into (i+1, k) or (i, k). Next, it is decided to either continue or abort service
of the job in service. If the abort decision is taken, then the job is discarded
from the system and service cannot be resumed later. One may discard more
than one job at a time, so we allow for so-called multi-aborts. The reward
structure will be such that in case of an abort one always aborts the job in
service first; cf. Remark 3.3. If the event is a service phase completion, then
only the continue/(multi-)abort decision has to be taken.

Costs and rewards: At any time one may decide to abort the job in
service. The reward for a job depends on the number of service phases that
have been completed. The reward corresponding to the completion of k
phases is r(k), 0 ≤ k ≤ N , where k = 0 means the job has not (yet) passed
the first phase, possibly because it has not been taken into service at all.
Note that we have chosen a reward structure in which rewards are paid when
a job leaves the system and not when a job completes a phase.
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Apart from these rewards there are holding costs for the jobs residing in the
system, either waiting to be taken into service or being served. We assume
these costs are linear in the number of jobs, namely, ih ≥ 0 per unit of
time when there are i jobs present. (However, our results will also hold
in the more general case of non-decreasing, convex holding costs h(i) ≥ 0;
see Section 3.3.1.) In addition, each time a job is admitted to the system,
consideration costs c ≥ 0 are incurred. If an arriving job is not admitted,
then a (possibly negative) reward r(0) is earned. So, jobs that are terminated
before they have passed through the first service phase receive the same
reward r(0) as jobs that are rejected. See also Figure 3.1.
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Figure 3.1: M|EN |1 queue with admission and termination control

Discounting: We discount at a rate α ≥ 0, i.e., rewards and costs at time
t are to be multiplied by exp(−αt). We treat the discount rate α as the
rate by which the process vanishes. In other words, the process will live for
an exponential time with rate α, after which there will be no more arrivals,
service phase completions, rewards or costs.

Criterion: The objective is to maximize the expected (discounted) reward
over an n-period time horizon. We allow λ > µ/N , as well as λ = 0. In
the latter case, there is an initial number of jobs that await service, i.e., a
batch, without any future arrivals.

Uniformization: The system evolves at arrival times, at service phase
completion times, and eventually at the time the process vanishes. Applying
the uniformization method, we can consider that transitions occur at the
jump times of a Poisson process with rate λ + µ + α > 0. By scaling time,
we take λ + µ + α = 1 without loss of generality. Then, with probability
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λ ≥ 0 a transition concerns an arrival, with probability µ > 0 it concerns a
service phase completion and with probability α ≥ 0 the process vanishes.
A service phase completion is either a real service phase completion or an
artificial service phase completion if the server idles, e.g., because the system
is empty. If the system is indeed empty, then the state, which is (0, ·),
remains unaltered and we continue service by definition.

Uniformization enables us to use inductive DP to prove our results for
any finite time horizon. These results can then be extended to the infinite
time horizon case. This will be discussed in Section 3.4.

����������	�.���

For technical reasons and notational simplicity, we specify

that if a job has received maximum service and, as a consequence, has
reached final node N (so the system is in some state (i,N)), then both the
abort and the continue decision are allowed. Continuing implies that the
server idles deliberately in the next period. Continuing in (i,N) also leads to
artificial service phase completions. See Remark 3.2 for further comments.

We make the following important assumption; cf. Section 1.2.4.

@A56,�B?������,6("��!DCE%F%'5��� �(*&+��,G.*�8


{Structure of the reward function}
The reward function r(k) is non-decreasing and concave in k.

We note (once more) that ‘non-decreasing’ means that putting more work
into a job does not leave us with a lower overall reward for this job, and
that ‘concave’ means that the longer we work on a job the less rewarding it
becomes to continue. This implies that aborting the job in service in order
to continue with a job awaiting service can be interesting. All rewards are
assumed to be finite.

�������� �!"�#.���

Suppose the service phases represent independent checks

without precedence constraints; see also Example 4.1. For each case, it
may be decided dynamically how many of a maximum of N checks are
performed, where check k yields an expected reward of u(k). Then we can
achieve that Fundamental Assumption 3.1 holds by arranging the checks in
non-increasing order of u(k), and by taking r(k) =

∑k
j=1 u(j) for 0 ≤ k ≤ N .

����������	�.����
The assumption that the reward function is non-decreasing

is essentially an implication of the assumption that the reward function is
concave. If for some k we would have r(k + 1) < r(k) (and thus, because of
the concavity, r(k + l) < r(k) for all l > 0), then idling in k would always
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be better than working in k. Hence, the phases ‘over the top’ will never be
reached and can be deleted.

Additionally, one may show that aborting in N is always at least as
good as idling, provided αr(N) + h ≥ 0. This is surely the case if r(N) is
non-negative, but if r(N) < 0, then the discount rate α reduces the loss on
the job sitting in node N by a fraction α at the cost of h in one period. So,
for this particular job, postponing the abort by one period is rewarding if
(1 − α)r(N) − h > r(N). Therefore, the condition αr(N) + h ≥ 0 implies
that for the system as a whole, idling in N will never result in any gain. A
formal proof can be given via sample path arguments, but we omit it here.
����������	�.���.

The concavity of the reward function implies that in case of
an abort or a multi-abort, the job in service is always aborted first.

We will use this property immediately, but it is more convenient to postpone
the proof until Section 3.3. See Corollary 3.1.

3.1.1 Dynamic Programming formulation

In this section, we summarize and complete the model in terms of a
mathematical formulation. After that, we state and prove the main theorem,
which provides a characterization of the optimal admission/termination
control policy.

Recapitulating, let i denote the number of jobs in the system and k the
node the job under service resides in. Let (i, k) be the state of the system
for i ≥ 1 and 0 ≤ k ≤ N . If the system is empty, then the state is (0, ·).
Whenever (0, k) appears in an expression, (0, ·) can be substituted. We will
use the following notation:

• Vn(i, k) denotes the maximum expected n-period α-discounted reward
when the current state, just before the next decision to continue or
abort, is (i, k). Note that state (i, k) may be the result of a (real or
artificial) service phase completion, but also of an arrival immediately
after the accept/reject decision.

• Vn(i, k;π) denotes the maximum expected n-period α-discounted
reward when the current state, just before the next decision to continue
or abort, is (i, k), and given that decision π is chosen in that state,
where π ∈ {continue, abort}. Let π∗ denote the optimal decision, so
Vn(i, k) = Vn(i, k;π

∗). In the notation π∗ the dependence on i, k and n
is suppressed. Further, we use commas to separate state characteristics
and a semi-colon to separate the decision from the state.
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• Vn(i, k, arr) denotes the maximum expected n-period α-discounted
reward when the current state is (i, k), given that at this very point
in time an arrival event occurs.

• Vn(i, k, arr;π) denotes the maximum expected n-period α-discounted
reward when the current state is (i, k), given that at this very point
in time an arrival event occurs, and given that decision π is chosen
in that state, where π ∈ {accept, reject}. Again, let π∗ denote the
optimal decision, so Vn(i, k, arr) = Vn(i, k, arr;π

∗).

• Finally, when time hits zero, all jobs in the queue yield their initial
reward r(0), and the job in service, residing in node k, yields its current
cashable reward, which is r(k).

Then our model is defined by the following set of DPEs. To save space, we
will usually write ab for abort and co for continue in formal expressions
(and also ac for accept and rj for reject).

V0(0, ·) = 0

V0(i, k) = r(k) + (i− 1)r(0) i≥1, 0≤k≤N

For n ≥ 0:

Vn(0, ·, arr) =max{Vn(1, 0)− c, Vn(0, ·) + r(0)}

Vn(i, k, arr) =max{Vn(i+ 1, k)− c, Vn(i, k) + r(0)} i≥1, 0≤k≤N

For n ≥ 1:

Vn(0, ·) = Vn(0, · ; co)

Vn(0, · ; co) = λVn−1(0, ·, arr) + µVn−1(0, ·)

Vn(i, k) =max{Vn(i, k; co), Vn(i, k; ab)} i≥1, 0≤k≤N

Vn(i, k; co) = λVn−1(i, k, arr) + µVn−1(i, k + 1)− ih i≥1, 0≤k<N

Vn(i,N ; co) = λVn−1(i,N, arr) + µVn−1(i,N)− ih i≥1

Vn(i, k; ab) = r(k) + Vn(i− 1, 0) i≥1, 0≤k≤N
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3.2 Overview of the results

We will prove the following theorem.

��� ����������.���


{Characterization of the optimal admission/termination policy}
For any remaining number of periods n, the optimal admission/termination
policy can be characterized as follows:

1. If it is optimal to reject an arriving job in state (i, k), then it is optimal
as well to reject it in all states (j, l) with j > i, and in all states (i, l)
with l < k.

2. If it is optimal to abort the service of a job in state (i, k), then it is
optimal as well to abort service in all states (j, l) with j ≥ i and l ≥ k.

3. If c > 0 and if it is optimal to accept an arriving job in state (i, k),
then it is optimal as well to continue the service of a job in all states
(j, 0) with j ≤ i.

The result is intuitive but the proof becomes rather involved. A graphical
representation of the structure of typical admission and termination policies
is given below. The solid dots represent states in which jobs are rejected or
terminated, respectively, and the two solid polylines capture the respective
rejection and termination regions.

i i

k k 

i 0

-1N -1N
00

0 0

Figure 3.2: Characterization of the optimal admission (left-hand side) and
termination (right-hand side) policies
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We note that in the optimal admission policy either there is a unique
(threshold) node (i0, k0) where the polyline moves up one level, or the
polyline consists of a single horizontal line at some job level i0. The
occurrence of multiple threshold nodes or the polyline moving up more than
one level would contradict Part 1 of Theorem 3.1.

If c > 0, then in the optimal termination policy the termination region does
not cover nodes (i, 0), i ≤ i0 or i < i0, respectively. For all c ≥ 0, the
termination region is further determined by a non-increasing step-function
(switch-over curve) such that for all i there exists a threshold node k of i
and for all k there exists a threshold level i of k.

The following two examples show that indeed the polylines are as general as
stated. The vector r denotes the reward function, i.e., r = (r(0), . . . , r(N)).
Note that both examples comply with Fundamental Assumption 3.1.

�������� �!"�#.����
Consider the following instance of our model: λ = 1

2 , µ = 1
2 ,

α = 0, h = 1
2 , c = 30, N = 3 and r = (0, 25, 45, 60). The average reward

optimal admission/termination policy for this system is given below. The
hollow dots represent states in which we accept or continue, respectively.
Note that the polyline capturing the rejection region is a straight line.

k = 2 k = 0 k = 2k = 0

i = 2

i 0=

i = 12
i = 13

i = 8
i = 7

i = 1

i = 17
i = 18

Figure 3.3: Optimal admission (left-hand side) and termination (right-hand

side) policies for Example 3.2
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�������� �!"�#.���.
Consider the following instance of our model: λ = 1

6 , µ = 5
6 ,

α = 0, h = 5
3 , c = 10, N = 4 and r = (0, 25, 45, 60, 72). The average reward

optimal admission/termination policy for this system is given below. Note
that the polyline capturing the rejection region moves up one level at state
(4, 1).

0=k =k 3 0=k =k 3

=i 4

=i 0
=i 1

=i 9

Figure 3.4: Optimal admission (left-hand side) and termination (right-hand

side) policies for Example 3.3

����������	�.��43
Part 3 of Theorem 3.1 implies that if c > 0, then immediately

after the admission of a new job, at most one job is aborted. So in this case
there will only occur so-called single-aborts and no multi-aborts.

Further, if c = 0, then it is always optimal to accept an arriving job,
since it may be aborted at the same moment in time at no additional cost.

3.2.1 The line of proof

In order to establish Theorem 3.1, we will prove the following monotonicity
results, from which Theorem 3.1 will be obtained as a corollary.
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{Key Proposition}

Let r(k) be non-decreasing and concave in k. Then, for i ≥ 0,

Vn(i+1, l)− Vn(i, l) ≥ Vn(i+2, k)− Vn(i+1, k), (3.1)

Vn(i+1, k+1)− Vn(i, k+1) ≥ Vn(i+1, k)− Vn(i, k), (3.2)

Á (3.3)

Vn(i+1, l, arr)− Vn(i, l, arr) ≥ Vn(i+2, k, arr)− Vn(i+1, k, arr),

Vn(i+1, k+1, arr)− Vn(i, k+1, arr) ≥ Vn(i+1, k, arr)− Vn(i, k, arr),

Â (3.4)

Á (3.5)

Vn(i+1, l; co)− Vn(i, l; co) ≥ Vn(i+2, k; co)− Vn(i+1, k; co),

Vn(i+1, k+1; co)− Vn(i, k+1; co) ≥ Vn(i+1, k; co)− Vn(i, k; co),

Â (3.6)

where
- (3.1) and (3.3) hold for all n ≥ 0, 0 ≤ k ≤ N and 0 ≤ l ≤ N ,
- (3.2) and (3.4) hold for all n ≥ 0 and 0 ≤ k < N ,
- (3.5) holds for all n ≥ 1, 0 ≤ k ≤ N and 0 ≤ l ≤ N ,
- (3.6) holds for all n ≥ 1 and 0 ≤ k < N .

In words, inequality (3.1) states that the value of an additional job in state
(i + 1, k) does not surpass the value of an additional job in state (i, l) for
any k and l. By taking l = k, one can immediately see that the inequality
also states that our value function Vn(i, k) is concave in i for all n and k,
implying that the value of an extra job is non-increasing in i.

Analogously, inequality (3.2) states that the value of an additional job in
state (i, k) does not surpass the value of an additional job in state (i, k+1)
for k<N , i.e., the value of an extra job is non-decreasing in k. More general,
the inequality states that Vn(i, k) is submodular; cf. (1.3) and (2.2).

3.3 Proof of the Key Proposition

The proof of the Key Proposition uses induction on the remaining number
of periods and runs as follows.

Step 0: Verify the first two inequalities (3.1) and (3.2) for n = 0.
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Step 1: Assuming (3.1) and (3.2) to hold for some n ≥ 0, prove (3.3)
and (3.4) for n.

Step 2: Using this result, prove that (3.5) and (3.6) hold for n+ 1.

Step 3: Finally, prove that (3.1) and (3.2) also hold for n+ 1.

In the proof we will make use of Lemma 1.1, and of a proposition which
we will state and prove in Step 3 of the proof, where it is used. Note that
S = {(i, k), (i, k, arr) | i ≥ 0, 0 ≤ k ≤ N} in our M|EN |1 model.

Proof of the Key Proposition.

Step 0. We verify that (3.1) and (3.2) hold for n = 0.

First, let i = 0. Then, for 0 ≤ k ≤ N and 0 ≤ l ≤ N , using the monotonicity
of r(·),

V0(1, l)− V0(0, ·) = r(l) ≥ r(0) = V0(2, k)− V0(1, k)

and, for 0 ≤ k < N ,

V0(1, k + 1)− V0(0, ·) = r(k + 1) ≥ r(k) = V0(1, k)− V0(0, ·).

Next, let i ≥ 1. Then, for 0 ≤ k ≤ N and 0 ≤ l ≤ N ,

V0(i+ 1, l)− V0(i, l) = r(0) = V0(i+ 2, k)− V0(i+ 1, k)

and, for 0 ≤ k < N ,

V0(i+ 1, k + 1)− V0(i, k + 1) = r(0) = V0(i+ 1, k)− V0(i, k).

Thus, inequalities (3.1) and (3.2) hold for n = 0.

Induction hypothesis. Assume that for some n ≥ 0, inequality (3.1)
holds for all i ≥ 0, 0 ≤ k ≤ N and 0 ≤ l ≤ N , and (3.2) for all i ≥ 0 and
0 ≤ k < N . This will be our induction hypothesis.

Step 1. Under the induction hypothesis, we show that (3.3) and (3.4) hold
for n.

We will first prove (3.3). Let i ≥ 0, 0 ≤ k ≤ N and 0 ≤ l ≤ N .

The next decision, d1 say, prescribed by the (optimal) policy corresponding
to Vn(i, l, arr), is either to accept or to reject the new job. Clearly, this
also holds for the next decision, d2 say, prescribed by the (optimal) policy
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corresponding to Vn(i+2, k, arr). There are at most four joint cases (d1, d2).
We will show that inequality (3.3) holds for each case, irrespective of the
question whether that case will actually occur; cf. Remark 3.5.

The four cases can be presented as follows, where A indicates that accept
is optimal and R indicates that accept is not optimal:

AA : Vn(i, l, arr; ac) ≥ Vn(i, l, arr; rj) ∧
Vn(i+ 2, k, arr; ac) ≥ Vn(i+ 2, k, arr; rj),

AR : Vn(i, l, arr; ac) ≥ Vn(i, l, arr; rj) ∧
Vn(i+ 2, k, arr; ac) < Vn(i+ 2, k, arr; rj),

RA : Vn(i, l, arr; ac) < Vn(i, l, arr; rj) ∧
Vn(i+ 2, k, arr; ac) ≥ Vn(i+ 2, k, arr; rj),

RR : Vn(i, l, arr; ac) < Vn(i, l, arr; rj) ∧
Vn(i+ 2, k, arr; ac) < Vn(i+ 2, k, arr; rj).

Then,

- under AA,

Vn(i+ 1, l, arr; ac)− Vn(i, l, arr) = Vn(i+ 2, l)− c− [Vn(i+ 1, l)− c]

= Vn(i+ 2, l)− Vn(i+ 1, l)

≥ {induction hypothesis; (3.1)}

Vn(i+ 3, k)− Vn(i+ 2, k)

= Vn(i+ 3, k)− c− [Vn(i+ 2, k)− c]

= Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr; ac);

(3.7)

- under AR,

Vn(i+ 1, l, arr; rj)− Vn(i, l, arr) = Vn(i+ 1, l) + r(0)− [Vn(i+ 1, l)− c]

= r(0) + c

= Vn(i+ 2, k) + r(0)− [Vn(i+ 2, k)− c]

= Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr; ac);

(3.8)
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- under RA,

Vn(i+ 1, l, arr; rj)− Vn(i, l, arr) = Vn(i+ 1, l)− Vn(i, l)

≥ {induction hypothesis; (3.1) twice}

Vn(i+ 3, k)− Vn(i+ 2, k)

= Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr; ac);

(3.9)

- under RR,

Vn(i+ 1, l, arr; rj)− Vn(i, l, arr) = Vn(i+ 1, l)− Vn(i, l)

≥ {induction hypothesis; (3.1)}

Vn(i+ 2, k)− Vn(i+ 1, k)

= Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr; rj).

(3.10)

Finally, apply Lemma 1.1 to each of the relations (3.7) through (3.10) to
obtain (3.3). This ends our proof of (3.3).

We now shift our attention to (3.4). The proof resembles the one of (3.3).
Let i ≥ 0 and 0 ≤ k < N . Again, we distinguish four cases: AA, AR, RA,
and RR. For example, AR means that

Vn(i, k + 1, arr; ac) ≥ Vn(i, k + 1, arr; rj) ∧
Vn(i+ 1, k, arr; ac) < Vn(i+ 1, k, arr; rj).

Then,

- under AA,

Vn(i+ 1, k + 1, arr; ac)− Vn(i, k + 1, arr)

= Vn(i+ 2, k + 1)− Vn(i+ 1, k + 1)

≥ {induction hypothesis; (3.2)}

Vn(i+ 2, k)− Vn(i+ 1, k)

= Vn(i+ 1, k, arr)− Vn(i, k, arr; ac); (3.11)

- under AR,

Vn(i+ 1, k + 1, arr; rj)− Vn(i, k + 1, arr)

= Vn(i+ 1, k + 1) + r(0)− [Vn(i+ 1, k + 1)− c]

= Vn(i+ 1, k) + r(0)− [Vn(i+ 1, k)− c]

= Vn(i+ 1, k, arr)− Vn(i, k, arr; ac); (3.12)
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- under RA,

Vn(i+ 1, k + 1, arr; rj)− Vn(i, k + 1, arr)

= Vn(i+ 1, k + 1)− Vn(i, k + 1)

≥ {induction hypothesis; (3.1)}

Vn(i+ 2, k)− Vn(i+ 1, k)

= Vn(i+ 1, k, arr)− Vn(i, k, arr; ac); (3.13)

- under RR,

Vn(i+ 1, k + 1, arr; rj)− Vn(i, k + 1, arr)

= Vn(i+ 1, k + 1)− Vn(i, k + 1)

≥ {induction hypothesis; (3.2)}

Vn(i+ 1, k)− Vn(i, k)

= Vn(i+ 1, k, arr)− Vn(i, k, arr; rj). (3.14)

Finally, apply Lemma 1.1 to each of the relations (3.11) through (3.14) to
obtain (3.4). This ends our proof of (3.4).

����������	�.���:
Case RA in the proof of (3.3) constitutes a violation of the

Key Proposition, because under RA,

r(0) + c > {RA assumed}

Vn(i+ 1, l)− Vn(i, l)

≥ {induction hypothesis; (3.1) twice}

Vn(i+ 3, k)− Vn(i+ 2, k)

≥ {RA assumed}

r(0) + c,

which leads to a contradiction. Given the correctness of the Key Proposition,
this proves that case RA in the proof of (3.3) is an impossible joint case.

Step 2. Assuming (3.1) through (3.4), we show that (3.5) and (3.6) hold
for n + 1. For this purpose, we define m− := min{m,N} for all integers
m ≥ 0.
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Let i ≥ 0. Then, for 0 ≤ k ≤ N and 0 ≤ l ≤ N ,

Vn+1(i+ 1, l; co)− Vn+1(i, l; co)

= λ[Vn(i+ 1, l, arr)− Vn(i, l, arr)] +

µ[Vn(i+ 1, (l + 1)−)− Vn(i, (l + 1)−)] − h

≥ {induction hypothesis; (3.3); (3.1)}

λ[Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr)] +

µ[Vn(i+ 2, (k + 1)−)− Vn(i+ 1, (k + 1)−)] − h

= Vn+1(i+ 2, k; co)− Vn+1(i+ 1, k; co)

and, for 0 ≤ k < N ,

Vn+1(i+ 1, k + 1; co)− Vn+1(i, k + 1; co)

= λ[Vn(i+ 1, k + 1, arr)− Vn(i, k + 1, arr)] +

µ[Vn(i+ 1, (k + 2)−)− Vn(i, (k + 2)−)] − h

≥ {induction hypothesis; (3.4); (3.2)}

= λ[Vn(i+ 1, k, arr)− Vn(i, k, arr)] +

µ[Vn(i+ 1, k + 1)− Vn(i, k + 1)] − h

= Vn+1(i+ 1, k; co)− Vn+1(i, k; co).

Step 3. In order to perform the third step of our proof, we will need the
following proposition, which exploits the concavity of r(·).

$����� ���%'&)(*&+��,-.����
For all n ≥ 0, i ≥ 0 and 0 ≤ k < N ,

Vn(i, k + 1)− Vn(i, k)
Vn+1(i, k + 1; co)− Vn+1(i, k; co)
Vn(i, k + 1, arr)− Vn(i, k, arr)






≤ r(k + 1)− r(k). (3.15)

Proof. We could give an inductive proof that runs along the lines of the
proof of the Key Proposition, but we choose not to reproduce this proof
here.4 Instead, we will prove the proposition by means of coupling and
sample path arguments. We only consider the first inequality; the other two
can be treated in exactly the same way.

Consider two n-period process instances of our model, instance Ik+1 starting
in (i, k+1) and instance Ik starting in (i, k). We couple all events (all arrival

4An inductive proof will be given in the course of Chapter 4.
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and service phase completion events and, if applicable, the event that the
process vanishes) and all decisions (accept versus reject and continue

versus abort). To be precise, instance Ik+1 follows the optimal policy and
instance Ik copies all the actions taken in instance Ik+1. This is feasible,
because Ik+1 and Ik feature the same number of jobs in the system and the
same remaining number of periods.

Then both instances are always completely identical, except for the job in
service at the beginning, i.e., with n periods to go. This job will always
be one phase behind in instance Ik until the job is aborted. (There is one
exception: if in instance Ik+1 the job has reached node N and the job is not
aborted and there is an artificial service phase completion, then Ik becomes
identical to Ik+1.) If the job is never aborted because the system vanishes,
then the difference in reward between the two instances is zero. If, after m
service phase completions, the job is aborted (possibly at time n = 0), then
the difference in reward is r((k +m + 1)−) − r((k +m)−), which, because
r(·) is non-decreasing and concave, is at most r(k + 1)− r(k).

2

We can now prove the property mentioned in Remark 3.3, which we have
already been using.

/ ������!"!0���21�.���

If a job is aborted, then aborting the job in service is at

least as good as aborting a job from the queue.

Proof. Consider state (i+1, k) with n periods to go. Compare aborting the
job in service, which gives a maximal reward of r(k)+Vn(i, 0), to aborting a
job from the queue, which results in a maximal reward of r(0)+Vn(i, k). By
repeated application of (3.15) we have r(k) + Vn(i, 0)− r(0)− Vn(i, k) ≥ 0,
so aborting the job in service is at least as good as aborting a job from the
queue.

2

Now, assuming (3.1) through (3.6), we show that (3.2) and (3.1) hold for
n+ 1 as well. The proofs are similar to the ones of (3.3) and (3.4).

We first consider (3.2) and prove that this inequality holds for n + 1. Let
i ≥ 0 and 0 ≤ k < N .

The next decision, d1 say, prescribed by the (optimal) policy corresponding
to Vn+1(i, k + 1), is either to continue or to abort the job under service.
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Clearly, this also holds for the next decision, d2 say, prescribed by the
(optimal) policy corresponding to Vn+1(i + 1, k). There are at most four
joint cases (d1, d2). We will show that inequality (3.2) holds for each case.

The four cases can be presented as follows, where C indicates that continue
is optimal and A indicates that continue is not optimal:

CC : Vn+1(i, k + 1; co) ≥ Vn+1(i, k + 1; ab) ∧
Vn+1(i+ 1, k; co) ≥ Vn+1(i+ 1, k; ab),

CA : Vn+1(i, k + 1; co) ≥ Vn+1(i, k + 1; ab) ∧
Vn+1(i+ 1, k; co) < Vn+1(i+ 1, k; ab),

AC : Vn+1(i, k + 1; co) < Vn+1(i, k + 1; ab) ∧
Vn+1(i+ 1, k; co) ≥ Vn+1(i+ 1, k; ab),

AA : Vn+1(i, k + 1; co) < Vn+1(i, k + 1; ab) ∧
Vn+1(i+ 1, k; co) < Vn+1(i+ 1, k; ab).

The cases AC and AA vanish for i = 0, because abort is not an option in
state (0, ·).

Then,

- case CC follows, with continue chosen in (i+ 1, k + 1) and (i, k) as well,
using (3.6) and Lemma 1.1, immediately from the induction hypothesis;

- with respect to case CA, we need some extra notation: if the optimal
decision is to first abort j jobs and then to continue, then we denote this by
Aj and we write ab j for the not necessarily optimal copied decision; then,
for CAj+1,

Vn+1(i+ 1, k + 1; ab j+1)− Vn+1(i, k + 1)

= r(k + 1) + jr(0) + Vn+1(i− j, 0; co)− Vn+1(i, k + 1; co)

≥ {(3.15)}

r(k) + jr(0) + Vn+1(i− j, 0; co)− Vn+1(i, k; co)

= Vn+1(i+ 1, k; ab j+1)− Vn+1(i, k; co)

= Vn+1(i+ 1, k)− Vn+1(i, k; co); (3.16)

- under AjC,

Vn+1(i+ 1, k + 1; ab j)− Vn+1(i, k + 1)

= Vn+1(i+ 1− j, 0; co)− Vn+1(i− j, 0; co)

≥ {induction hypothesis; (3.5)}

Vn+1(i+ 1, k; co)− Vn+1(i, k; co)

= Vn+1(i+ 1, k)− Vn+1(i, k; co); (3.17)
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- under AA,

Vn+1(i+ 1, k + 1; ab)− Vn+1(i, k + 1)

= Vn+1(i, 0)− Vn+1(i− 1, 0)

= Vn+1(i+ 1, k)− Vn+1(i, k; ab). (3.18)

Finally, apply Lemma 1.1 to each of the relations (3.16), (3.17) and (3.18)
to obtain (3.2) for n+ 1. This ends our proof of (3.2) for n+ 1.

Next we prove that (3.1) holds for n+1. The proof resembles the one of (3.2)
for n+ 1. Let i ≥ 0, 0 ≤ k ≤ N and 0 ≤ l ≤ N . Again, we distinguish four
cases: CC, CA, AC, and AA. For example, AC means that

Vn+1(i, l; co) < Vn+1(i, l; ab) ∧ Vn+1(i+ 2, k; co) ≥ Vn+1(i+ 2, k; ab).

Again, the cases AC and AA vanish for i = 0 by definition.

Then,

- case CC follows, with continue chosen in (i + 1, l) and (i + 1, k) as well,
using (3.5) and Lemma 1.1, immediately from the induction hypothesis;

- under CA or AA,

Vn+1(i+ 1, l)− Vn+1(i, l)

≥ {induction hypothesis; (3.2) for n + 1}

Vn+1(i+ 1, 0)− Vn+1(i, 0)

= Vn+1(i+ 2, k; ab)− Vn+1(i+ 1, k; ab)

= Vn+1(i+ 2, k)− Vn+1(i+ 1, k; ab); (3.19)

- under AjC,

Vn+1(i+ 1, l; ab j)− Vn+1(i, l)

= Vn+1(i+ 1, l; ab j)− Vn+1(i, l; ab
j)

= Vn+1(i+ 1− j, 0; co)− Vn+1(i− j, 0; co)

≥ {induction hypothesis; (3.5)}

Vn+1(i+ 2, k; co)− Vn+1(i+ 1, k; co)

= Vn+1(i+ 2, k)− Vn+1(i+ 1, k; co). (3.20)

Finally, apply Lemma 1.1 to (3.19) and (3.20) to obtain (3.1) for n+1. This
ends our proof of (3.1) for n+ 1.

This concludes our proof of the Key Proposition.

2
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Concavity of r(·) is only required at one particular point in

the entire proof of the Key Proposition, namely, in the derivation of (3.16),
where (3.15) is used.

We now derive Theorem 3.1 from the Key Proposition by means of a number
of corollaries.

/ ������!"!0���21�.����
Let n ≥ 0, i ≥ 0 and 0 ≤ k ≤ N . If it is optimal to reject

an arriving job in state (i, k), then it is optimal to reject it in all states (j, l)
with j > i and 0 ≤ l ≤ N .

Proof. Let n ≥ 0, i ≥ 0 and 0 ≤ k ≤ N . It suffices to show that

Vn(i, k) + r(0) ≥ Vn(i+ 1, k)− c

implies

Vn(i+ 1, l) + r(0) ≥ Vn(i+ 2, l)− c

for all 0 ≤ l ≤ N . But this is immediate from (3.1).

2

/ ������!"!0���21�.���.
Let n ≥ 0, i ≥ 0 and 1 ≤ k ≤ N . If it is optimal to reject

an arriving job in state (i, k), then it is optimal to reject it in all states (i, l)
with 0 ≤ l < k.

Proof. Corollary 3.3 holds by definition for i = 0. Let n ≥ 0, i ≥ 1 and
1 ≤ k ≤ N . It suffices to show that

Vn(i, k) + r(0) ≥ Vn(i+ 1, k)− c

implies

Vn(i, k − 1) + r(0) ≥ Vn(i+ 1, k − 1)− c.

This is immediate from (3.2).

2

The combination of Corollaries 3.2 and 3.3 is exactly Part 1 of Theorem 3.1.

/ ������!"!0���21�.��43
Let n ≥ 1, i ≥ 1 and 0 ≤ k ≤ N . If it is optimal to abort

the service of a job in state (i, k), then it is optimal to abort it in all states
(j, l) with j ≥ i and k ≤ l ≤ N .
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Proof. Let n ≥ 1, i ≥ 1 and 0 ≤ k ≤ N . The proof consists of two parts.
Part 1: The combination of continue being optimal in (i, k + 1), i.e.,

Vn(i, k + 1; co) ≥ r(k + 1) + Vn(i− 1, 0),

and continue not being optimal in (i, k), i.e.,

Vn(i, k; co) < r(k) + Vn(i− 1, 0),

violates Proposition 3.2.

Part 2: The combination of abort being optimal in (i, k), i.e.,

Vn(i, k) = r(k) + Vn(i− 1, 0),

and abort not being optimal in (i+ 1, k), i.e.,

Vn(i+ 1, k) > r(k) + Vn(i, 0),

violates (3.1).

2

Corollary 3.4 is exactly Part 2 of Theorem 3.1.

/ ������!"!0���21�.���:
Let n ≥ 1, i ≥ 1 and 0 ≤ k ≤ N . If c > 0 and if it is

optimal to accept an arriving job in state (i, k), then it is optimal to continue
service in state (i, 0).

Proof. If it is optimal to accept an arriving job in state (i, k) then we have

Vn(i+ 1, k)− c ≥ Vn(i, k) + r(0).

But then by (3.1) also

Vn(i, 0)− Vn(i− 1, 0) ≥ Vn(i+ 1, k)− Vn(i, k) ≥ r(0) + c > r(0),

which implies that in state (i, 0), decision abort is not optimal and hence
continue is optimal.

2

Together, Corollaries 3.4 and 3.5 constitute Part 3 of Theorem 3.1.

Summarizing, Corollaries 3.2 through 3.5 constitute Theorem 3.1.
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3.3.1 Extension to convex holding costs

In our model we considered linear holding costs of ih ≥ 0 per unit of time
when there are i jobs in the system. It is straightforward to verify that all
results and proofs remain valid in the more general case of non-decreasing,
convex holding costs. To see this, let the holding costs be h(i) ≥ 0 per unit
of time when there are i jobs in the system, where h(0) = 0, and assume
that h(i) is convex. Note that this implies that h(i) is also non-decreasing.
Further, note that it suffices to consider Step 2 of the proof of the Key
Proposition, since this is the only place in any of the proofs and steps of the
proof of the Key Proposition where holding costs appear explicitly.

Step 2 of the proof of the Key Proposition consists of two parts. Let us
first consider the first part. In the derivation concerned, the contribution of
holding costs appearing on the left-hand side of the inequality now becomes
−[h(i + 1) − h(i)], whereas the contribution on the right-hand side of the
inequality becomes −[h(i + 2) − h(i + 1)]. Since h(·) is convex, we have
h(i+2)−h(i+1) ≥ h(i+1)−h(i), from which the desired result is immediate.

The second part is even more easily verified. Namely, in the derivation
concerned, the holding costs appearing on the left-hand side of the inequality
are identical to the holding costs appearing on the right-hand side of the
inequality, both contributions being equal to −[h(i+ 1)− h(i)].

3.4 Infinite time horizon

So far we only considered a finite time horizon, i.e., a finite number of
periods. For the most natural case h > 0, the extension of the threshold
structure of the optimal strategy for the infinite horizon model is fairly
standard.

First, we can argue that h > 0 implies that the system can be reduced to
a finite state system, because jobs will not be accepted if the number of
jobs in the system is large. To see this, consider a job that arrives when
there are already m jobs in the system. Suppose we accept it and that it
will (eventually) go into service. Recall that we treat the discount rate as
the probability that the system vanishes, so if the job goes into service, the
system has not yet vanished. Without loss of generality we can say that
we discard jobs from the queue in the order ‘latest arrivals discarded first’.
Then, if our job goes into service, all jobs in front of it must have gone
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into service as well. Hence it takes at least m periods before our job goes
into service, and hence its total holding costs are at least mh. Its reward is
at most r(N). This implies that its net contribution (on top of the initial
reward) is surely negative if m is larger than (r(N) − r(0))/h. From this
we conclude that the total number of jobs in the system will not be larger
than (r(N)−r(0))/h and that the system is essentially a finite state system.
Then the (standard) argument is as follows. For this finite state system there
are only finitely many stationary strategies. For each number of periods n
we get an optimal policy, fn say, with a threshold structure. Then there
must be a subsequence {fnl

} and a policy f∗ with fnl
= f∗ for all l. In

the discounted case this policy is optimal, because Vn(·) converges (so f ∗

satisfies the optimality equation). In the average reward case, i.e., α = 0,
we can use the fact that for all policies the resulting Markov chain has only
one recurrent class (state (0, ·) will always be reached) and is aperiodic.
Thus Vn(·) − ng∗, with g∗ the optimal average reward, converges for all
initial states (such that g∗ = lim supn→∞ n−1Vn(0, ·)). Thus f∗ (which we
know has the threshold structure) will be average reward optimal. See, e.g.,
Denardo [18].

More difficult are the many variants with h = 0. To demonstrate the
complexity we will only discuss the special case h = 0, c > 0 and α = 0.
Consider the following example with N = 1. Let −c + r(1) > r(0), so it
is interesting to accept and serve jobs. Further, let λ/µ > 1. I.e., there
is not enough capacity to accept and serve all jobs. Then any stationary
strategy that (on the average) accepts more than µ or less than µ jobs per
time unit cannot be optimal. If it accepts less than µ, then the server idles
whereas it could earn −c+ r(1)/µ per time unit. If it accepts more than µ
then it loses an amount of c for each job that cannot be served. Further, for
any stationary strategy that accepts exactly µ, in order to be optimal, the
probability that the server is idle must be 0. This would be possible only
if it accepts in each state (i, 0), because if the system rejects in state (i, 0),
all states (j, 0) with j ≤ i would be positive recurrent and state (0, ·) would
have positive probability. But this leads to a contradiction. The strategy
accepts exactly µ, but also accepts all jobs, so λ, whereas λ > µ. Hence no
optimal stationary strategy exists. We note, but do not prove, that optimal
history dependent strategies do exist and can be constructed based on the
idea that after each return to the idling state (0, ·), it will take longer before
the system will return to (0, ·) again. E.g., in the first ‘cycle’ accept all jobs
as long as i < 10, in the nth cycle accept all jobs as long as i < 10n.
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3.5 Counterexamples

It may be clear that Theorem 3.1 need not hold if the reward function r(k) is
not non-decreasing in k, i.e., strictly decreasing for at least one k. If r(k) is
indeed non-decreasing in k, but not concave, then, in general, Theorem 3.1
does not hold either. By means of the following two counterexamples, we
subsequently show that Part 2 and both parts of Part 1 need no longer hold.

/ ��5�,6(6�������6���� �!"�7.*�8

Consider the following instance of our model: µ=1

(so λ= 0 and α= 0), h = 0, N = 7 and r = (0, 4, 4, 10, 10, 15, 15, 19). So
there are no future arrivals and there are no holding costs for the jobs in the
system. Let the remaining number of periods be 3. We are interested in the
optimal policy in case the state is (i, 4), i ≥ 1, i.e., there is at least one job
in the system and the job under service resides in node 4.

Noting that since α = 0 and λ = 0, service phase completion events are the
only events that can occur, it is straightforward to check that for i = 1, 2, 3,
the (unique) optimal policies and corresponding (expected) rewards V3(i, 4)
are as follows.

first decision next decision final decision
i (at n = 3) (at n = 2) (at n = 1) V3(i, 4)

1 continue continue continue 19
2 abort continue continue 20
3 continue abort abort 23

From the second column of the table (displaying the decisions made at n = 3)
it can be concluded that Part 2 of Theorem 3.1 does not hold.

/ ��5�,6(6�������6���� �!"�7.*�9�
Consider the same data as in Counterexample 3.1.

Let c = 2. Then V3(1, 4, arr) = 19, with unique optimal first decision reject.
However, V3(2, 4, arr) = 21, with unique optimal first decision accept,
violating the first part of Part 1 of Theorem 3.1, and V3(1, 3, arr) = 18,
also with unique optimal first decision accept, violating the second part of
Part 1 of Theorem 3.1. Therefore, both parts of Part 1 of Theorem 3.1 do
not hold.



74 Chapter 3

3.6 Convex rewards

The basic model we considered in this chapter was based on diminishing
marginal returns, i.e., a non-decreasing but concave reward function.
Although diminishing marginal returns are a common assumption (see
Section 1.2.4), one could also imagine situations where the rewards typically
exhibit a convex instead of concave structure. Examples are processes
with a strong ‘nothing ventured, nothing gained’ nature, the most extreme
exponent being the situation that all intermediate rewards are zero, i.e.,
without loss of generality, r = (0, 0, . . . , 0, 1). In this case, for each job
separately, either all N service phases are processed and the corresponding
end reward of 1 is fetched, or the reward is 0, irrespective of how many
phases have been completed.

It is easy to show that if the reward function is convex instead of concave,
then Proposition 3.2 holds with a ‘≥’ instead of a ‘≤’ sign. It follows (cf.
Corollary 3.1) that jobs in the queue are always more eligible for termination
than the job in service, unless the latter has just completed its final phase.
So, under the weak assumption that αr(N) + h ≥ 0, a job in service will be
aborted only once it has received full service. In the infinite horizon case,
this implies that the concept of termination control disappears entirely. The
control problem will be a matter of admission control only. In our opinion,
from an analytical point of view, this renders the ‘mirror’ model with convex
rewards far less interesting than the original model with concave rewards.
(Note that in the finite horizon case, termination control in the ‘mirror’
model will be limited to aborting jobs from the queue when the service of
the job in service progresses slower than expected.) Therefore, we choose to
skip a formal analysis of this model.

3.7 Conclusions

We have considered a single-server queueing model with Poisson arrivals and
Erlang service times. For this M|EN |1 queue we have dealt with two decision
features. First, one has to decide upon arrival of a new job whether to accept
or reject it. Second, one can decide at any moment to terminate the service
of a job. The reward for a job for which k phases have been completed is r(k),
and we assumed that this reward function is non-decreasing and concave in
the number of phases completed. We have shown that the optimal strategy
for both types of decisions is characterized by threshold policies, namely,
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reject if the system is considered to be full and abort if there is enough work
waiting and if the job in service has already passed a sufficient number of
service phases. By means of two counterexamples, we have illustrated the
(general) need of the regularity conditions imposed on the reward function.
In addition, we have addressed the consequences of convex instead of concave
rewards.

The basic M|EN |1 termination control model discussed in this chapter gives
rise to many extensions to be investigated. Here, we distinguish the following
two types: (1) generalization of the arrival process, and (2) generalization of
the service process. The next chapter focuses exclusively on some specific
extensions of the M|EN |1 model. In particular, two natural extensions of the
first type and one important extension of the second type will be reviewed,
and generalized monotonicity and threshold results will be obtained for each
of these models.

One highly relevant exponent of the second type is the multi-server version
of our model. This model, which is analytically as well as computationally
intractable, will be treated in Chapter 5. We will review two heuristics
for the computation of the optimal policy for this multi-server model. One
is based on an extension of the M|EN |1 model which will be discussed in
Chapter 4. The other is based on a modified version of the M|EN |1 model in
which the speed of the server depends on the number of jobs in the system.
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4
Extensions of the M|EN |1 model

I n this chapter, we address several extensions of the basic M|EN |1
model described and analysed in the previous chapter. In particular,

we will consider two generalizations concerning the arrival process and one
important generalization concerning the service process. For each specific
model, generalized monotonicity and threshold results will be obtained by
means of (mostly small-scale) adjustments to the mathematical formulation
and analysis of the original M|EN |1 model.

In Section 4.1, we show that the results obtained in Chapter 3 extend to
the more general case of batch Poisson arrivals. In Section 4.2, we obtain
a similar result for Erlang arrivals. This result can be further extended
to general phase-type arrivals. Subsequently, in Section 4.3, we consider
the most drastic and important extension to be studied in this chapter.
It concerns the incorporation of a far more flexible Markov feed-forward
routing mechanism in the M|EN |1 model. The generalization of the results
obtained for the original model will be established under two limiting
regularity conditions, which replace Fundamental Assumption 3.1. The
necessity of these regularity conditions will be illustrated by means of some
counterexamples. Furthermore, as a spin-off, we capture the structure of the
optimal policy for a discrete-time model with deterministic decision epochs
and service times consisting of a sum of geometric phases. This is the subject
of Section 4.4. In this context, we also describe and analyse a special model
in which the reward for a job is either 0 or 1.

����������	H3?��

Wherever we use the term ‘original model’ in this chapter, we

refer to the basic M|EN |1 model studied in Chapter 3.

77
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4.1 Extension to batch Poisson arrivals

In the original model, we assumed a standard Poisson arrival process, i.e.,
jobs arrive one at a time, with mean (exponential) interarrival time 1/λ.
However, in practice, besides independent arrivals, it is often a common
phenomenon that service requests frequently arrive in batches. For example,
when some large-scale calamity has happened, insurance companies can
expect to receive a large number of simultaneous claims for damages.

In this section, we show that the results stated and proved in Sections 3.2
and 3.3 extend to the following MX |EN |1 version of the original model.
Consider the original model, but let jobs arrive in batches. Let B (⊂ IN\{0})
denote the set of all possible batch sizes. Batches of size b (i.e., batches
consisting of b separate jobs), where b ∈ B, arrive according to a Poisson
process with rate λb. Upon arrival of a batch, of size j say, we may decide
for each job separately whether we accept it or not. So, we may accept any
number of jobs between 0 and j, and reject the remainder of the batch.

We assume that each job admitted to the system incurs its own consideration
costs c, and that for each job not admitted to the system we immediately
receive the initial reward r(0). As a result of this assumption, jobs can
effectively be accepted or rejected on a one by one basis. Since jobs are
mutually indistinguishable upon arrival, the order in which the separate
jobs of a batch are considered is irrelevant. Note that we can obtain the
original model from the MX |EN |1 model by choosing B = {1}.

4.1.1 Dynamic Programming formulation

We can basically use the same state description as in the original model, i.e.,
(i, k) denotes the state of the system. Further, we take

∑

b∈B λb+µ+α = 1
without loss of generality. This is our uniformization. (Then, for every
b ∈ B, λb is the probability that the next transition is an arrival of a batch
of size b.) Next, for b ≥ 1, we introduce the following notation at arrival
times: Vn(i, k, arr, b) denotes the maximum expected n-period reward when
the current state is (i, k), given that at this moment a batch of size b arrives
at the system. In this notation, b is not necessarily an element of B.

We can then write down the following new DPEs at arrival times (where
n ≥ 0, b > 1, i ≥ 1 and 0 ≤ k ≤ N):



Extensions of the M|EN |1 model 79

Vn(0, ·, arr, 1) = max{Vn(1, 0)− c, Vn(0, ·) + r(0)}

Vn(i, k, arr, 1) = max{Vn(i+1, k)− c, Vn(i, k) + r(0)}

Vn(0, ·, arr, b) = max{Vn(1, 0, arr, b−1)− c, Vn(0, ·, arr, b−1) + r(0)}

Vn(i, k, arr, b) = max{Vn(i+1, k, arr, b−1)− c, Vn(i, k, arr, b−1) + r(0)}

Note that we have incorporated a recursion in the DPEs for Vn(i, k, arr, b),
similar to the recursion incorporated in the DPEs for Vn(i, k).

Finally, we have to adjust the DPEs for Vn(i, k; co), viz., all λVn−1(i, k, arr)
terms are to be replaced by

∑

b∈B λbVn−1(i, k, arr, b). For example, for n ≥ 1,
we obtain the following DPE in case the system is empty:

Vn(0, · ; co) =
∑

b∈B
λb Vn−1(0, ·, arr, b) + µVn−1(0, ·)

This completes our mathematical description of the MX |EN |1 model.

4.1.2 Main result and its proof

$����� ���%'&)(*&+��,I3?��

The threshold characterization given by Theorem 3.1

extends to the MX |EN |1 model.

Proof. Consider the Key Proposition for the original model. For b ≥ 1, we
replace inequalities (3.3) and (3.4) by

Vn(i+1, l, arr, b)− Vn(i, l, arr, b) ≥

Vn(i+2, k, arr, b)− Vn(i+1, k, arr, b), (4.1)

Vn(i+1, k+1, arr, b)− Vn(i, k+1, arr, b) ≥

Vn(i+1, k, arr, b)− Vn(i, k, arr, b). (4.2)

Thus, we obtain a new Key Proposition, consisting of (3.1) and (3.2), (4.1)
and (4.2), and (3.5) and (3.6). Its proof follows the lines of the proof of
the Key Proposition for the original model. Since the DPEs for Vn(i, k)
and Vn(i, k; ab) remain unaltered, and since we still have Fundamental
Assumption 3.1 (and thus Proposition 3.2), it suffices to verify Steps 1 and 2
of that proof.
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Let us first consider Step 1. For b = 1, we can follow the original derivations
for (3.3) and (3.4). Next, under the main induction hypothesis regarding the
induction on n, assume that (4.1) and (4.2) hold for some b ≥ 1. This is our
imbedded induction hypothesis. It is then straightforward to show that (4.1)
and (4.2) also hold for b+ 1. We distinguish the same cases and choose the
same decisions in order to apply Lemma 1.1, thereby obtaining inequalities
which hold on the basis of the imbedded induction hypothesis.

To illustrate this procedure, consider, e.g., (4.2), and in particular case RA.
Then (cf. (3.13)), we obtain, for b+ 1,

Vn(i+ 1, k + 1, arr, b+ 1; rj)− Vn(i, k + 1, arr, b+ 1)

= Vn(i+ 1, k + 1, arr, b)− Vn(i, k + 1, arr, b)

≥ {imbedded induction hypothesis; (4.1)}

Vn(i+ 2, k, arr, b)− Vn(i+ 1, k, arr, b)

= Vn(i+ 1, k, arr, b+ 1)− Vn(i, k, arr, b+ 1; ac),

to which we can apply Lemma 1.1. The derivations for the other three cases
(i.e., AA, AR and RR) and the four cases corresponding to inequality (4.1)
are analogous.

Next, consider Step 2. This step is readily verified. Namely, it suffices to
replace all λVn(i, k, arr) terms by the corresponding

∑

b∈B λbVn(i, k, arr, b)
terms, after which the desired result follows by the induction hypothesis in
combination with (4.1) in the part concerning (3.5), and with (4.2) in the
part concerning (3.6).

Finally, since arriving jobs may be accepted or rejected on a one by one basis,
Corollaries 3.2 through 3.5 can be obtained from the new Key Proposition
by means of the exact same proofs as given for the original model.

2

4.2 Extension to Erlang arrivals

In the previous section, we extended all monotonicity and threshold results
from the standard Poisson arrival process to a batch Poisson arrival process,
which allows for the modelling of more general arrival streams. However,
in practical situations, one particular disadvantage of the Poisson process
may be its relatively high coefficient of variation of the interarrival times of
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jobs (or batches of jobs). Namely, (batch) Poisson arrivals occur completely
random in time. We can obtain a more balanced arrival process by assuming,
for example, Erlang arrivals. These are much more equally spread out over
time than Poisson arrivals. In particular, we will consider Erlang-s arrivals,
which means that each interarrival time consists of s exponential phases,
each having mean duration 1/λ. The arrivals become more balanced as s
increases. For high values of s, the interarrival times of jobs will even become
near-constant. So, the degree of variability in the interarrival times can be
modelled by means of the model parameter s.

In this section, we show that the results stated and proved in Sections 3.2
and 3.3 extend to the Es|EN |1 version of the original model, which we have
loosely described above. For this purpose, we introduce additional state
variable a, which denotes the number of (exponential) arrival phases already
completed towards the next arrival. So, at any time, the remaining number
of arrival phases until the next arrival is s−a. We assume that this number
is available to the decision maker at any time.

The introduction of a leads to a three-dimensional state space, involving
states of the form (i, k, a). However, a is influenced by neither the decision
to accept or reject a new job nor the decision to continue or abort the service
of the job in service, and is therefore not subject to any control (as opposed
to the other two state variables). Consequently, from an analytical point
of view, the state space remains effectively two-dimensional. We will show
that the threshold characterization given by Part 2 of Theorem 3.1 extends
for fixed values of a. By means of a counterexample, we will demonstrate
that such a threshold characterization can, in general, not be given for fixed
i and k, and variable a. In other words, as it will turn out, the optimal
termination policy is monotonic in both i and k, but not in a.

4.2.1 Dynamic Programming formulation

First, we note that we can use the same uniformization as in the original
model. Next, for 0 ≤ a ≤ s, we introduce the following notation: Vn(i, k, a)
denotes the maximum expected n-period reward when there are i jobs in the
system, the job in service resides in node k, and a arrival phases have been
completed towards the next arrival. In particular, Vn(i, k, s) will replace the
value function Vn(i, k, arr) used in the original model. We then obtain the
following complete new set of DPEs (where 0 ≤ a < s, i ≥ 1 and 0 ≤ k ≤ N):
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V0(0, ·, a) = 0

V0(i, k, a) = r(k) + (i− 1)r(0)

For n ≥ 0:

Vn(0, ·, s) =max{Vn(1, 0, 0)− c, Vn(0, ·, 0) + r(0)}

Vn(i, k, s) =max{Vn(i+ 1, k, 0)− c, Vn(i, k, 0) + r(0)}

For n ≥ 1:

Vn(0, ·, a) = Vn(0, ·, a; co)

Vn(0, ·, a; co) = λVn−1(0, ·, a+ 1) + µVn−1(0, ·, a)

Vn(i, k, a) =max{Vn(i, k, a; co), Vn(i, k, a; ab)}

Vn(i, k, a; co) = λVn−1(i, k, a+ 1) + µVn−1(i, (k + 1)−, a)− ih

Vn(i, k, a; ab) = r(k) + Vn(i− 1, 0, a)

This completes our mathematical description of the Es|EN |1 model.

4.2.2 Main result and its proof
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The threshold characterization given by Theorem 3.1

extends to the Es|EN |1 model, where Part 2 holds for fixed a.

Proof. We can basically maintain the Key Proposition for the original
model, where (3.1), (3.2), (3.5) and (3.6) now hold for fixed a, and where
states of the form (i, k, arr) appearing in (3.3) and (3.4) are replaced by their
counterparts (i, k, s). For example, inequality (3.1) now reads as follows. For
all n ≥ 0, i ≥ 0, 0 ≤ k ≤ N , 0 ≤ l ≤ N and 0 ≤ a < s,

Vn(i+ 1, l, a)− Vn(i, l, a) ≥ Vn(i+ 2, k, a)− Vn(i+ 1, k, a).

The proof of the Key Proposition for the Es|EN |1 model and the subsequent
proofs of Corollaries 3.2 through 3.5 are analogous to the corresponding
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proofs given for the original model. The only DPEs that have changed with
respect to content are those for Vn(i, k; co). However, it is easily verified that
Step 2 of the proof of the Key Proposition does not change significantly. For
example, the derivation of inequality (3.5) becomes as follows. For i ≥ 0,
0 ≤ k ≤ N , 0 ≤ l ≤ N and 0 ≤ a < s,

Vn+1(i+ 1, l, a; co)− Vn+1(i, l, a; co)

= λ[Vn(i+ 1, l, a+ 1)− Vn(i, l, a+ 1)] +

µ[Vn(i+ 1, (l + 1)−, a)− Vn(i, (l + 1)−, a)] − h

≥ {induction hypothesis; (3.3) if a+ 1 = s; (3.1)}

λ[Vn(i+ 2, k, a+ 1)− Vn(i+ 1, k, a+ 1)] +

µ[Vn(i+ 2, (k + 1)−, a)− Vn(i+ 1, (k + 1)−, a)] − h

= Vn+1(i+ 2, k, a; co)− Vn+1(i+ 1, k, a; co).

It is readily seen that the derivation of inequality (3.6) is analogous.

2

4.2.3 Counterexample

By means of Theorem 4.2 we have shown that the optimal policy for the
Es|EN |1 model is monotonic in i and k. The following counterexample shows
that the optimal (termination) policy need not be monotonic in a.

/ ��5�,6(6�������6���� �!"�D36�8

Consider the following instance of our model: s=4,

λ = 4
7 , µ = 3

7 , h = 3
7 , c = 20, N = 6 and r = (0, 20, 36, 49, 59, 69, 75). Note

that the reward function satisfies Fundamental Assumption 3.1. For n = 50
and (i, k) = (2, 3), the (unique) optimal termination policy turns out to be
as follows, where ∆(a) := V50(2, 3, a; co)−V50(2, 3, a; ab) for 0 ≤ a < 4, and
V50(1, 0, a) = V50(2, 3, a; ab)− r(3) for 0 ≤ a < 4.

(i, k, a) optimal decision ∆(a) V50(1, 0, a)

(2, 3, 0) continue 0.412 189.019
(2, 3, 1) continue 0.004 189.574
(2, 3, 2) abort −0.176 189.630
(2, 3, 3) continue 0.002 189.373
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From these results we can conclude that the optimal termination policy is
not monotonic in a in state (2, 3, a), and neither is V50(·). At first sight, this
may seem counterintuitive, but it can be informally explained as follows.

The reason that continue is optimal in states (2, 3, 0) and (2, 3, 1) is
probably that abort will induce a significant probability that the system
soon runs out of jobs, and an empty system does not yield any reward. In
state (2, 3, 2), this probability of starvation is apparently not large enough,
since we expect a new job to arrive shortly, and thus we can very well
abort the job in service and start serving the queued job. In state (2, 3, 3),
the next arrival comes even sooner, but apparently too soon. It would be
more convenient if it would arrive a little bit later, because then, in case of
admittance in both situations, the holding costs for that job would be lower.
Since delay of arrivals is beyond our control, it is (in respect of holding costs)
apparently likely that the next new job will be rejected, and hence, because
we also want to avoid starvation, it is optimal to continue the service of the
job that is currently being served.

4.2.4 Phase-type arrivals

Our analysis of the extension to Erlang arrivals, and in particular Step 2
of the proof of the Key Proposition, reveals that the generalization of
the monotonicity and threshold results carries over to general phase-type
arrivals, characterized by arrival phase transition probabilities qaa′ , where
λqas is the probability of an arrival in the next period when the system is
currently in some state (i, k, a). Without loss of generality, the phase-type
arrival process is described by a Markov chain on the states 0 ≤ a ≤ s, with
starting state 0 after each arrival, and absorbing state s corresponding to
the next arrival. Then, the Es|EN |1 model and the more general PH|EN |1
model differ only with respect to the DPEs for Vn(i, k, a; co). For example,
for n ≥ 1, i ≥ 1, 0 ≤ k ≤ N and 0 ≤ a < s, we can write down the following
DPE for the PH|EN |1 model:

Vn(i, k, a; co) =
∑

0≤a′≤s

λ qaa′ Vn−1(i, k, a
′) + µVn−1(i, (k + 1)−, a)− ih

Consequently, we only need to verify Step 2 of the proof of the Key
Proposition, and it is readily seen that both derivations are analogous to
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the corresponding derivations for the Es|EN |1 model. For example, consider
the first derivation. Then, for i ≥ 0, 0 ≤ k ≤ N , 0 ≤ l ≤ N and 0 ≤ a < s,

Vn+1(i+ 1, l, a; co)− Vn+1(i, l, a; co)

= λ
∑

0≤a′≤s qaa′ [Vn(i+ 1, l, a′)− Vn(i, l, a
′)] +

µ[Vn(i+ 1, (l + 1)−, a)− Vn(i, (l + 1)−, a)] − h

≥ {induction hypothesis; (3.3) for a′ = s; (3.1)}

λ
∑

0≤a′≤s qaa′ [Vn(i+ 2, k, a′)− Vn(i+ 1, k, a′)] +

µ[Vn(i+ 2, (k + 1)−, a)− Vn(i+ 1, (k + 1)−, a)] − h

= Vn+1(i+ 2, k, a; co)− Vn+1(i+ 1, k, a; co).

4.3 Extension to Markov feed-forward routing

Characteristic of the service process in the original model is that the outcome
of each service phase is fixed, i.e., known in advance and equal for all jobs
that complete that phase. This means that, in principle, all jobs have
the same routing through the service process, and, consequently, have the
same eventual outcome. This is, however, not in accordance with most
practical situations, because often the outcome of a phase will be random;
see also Section 1.2.1. The original model does not account for this. In
this section, we study a more general routing mechanism, which allows for
so-called jumps. In this way, multiple routings can be modelled. Under two
assumptions concerning the reward function and the service phase transition
probabilities, we will show that the results obtained for the original model
still hold if jumps are allowed for. The two assumptions replace Fundamental
Assumption 3.1.

4.3.1 Description of the routing mechanism

In the original model, upon completion of some phase m < N , the job in
service enters phasem+1 deterministically. We generalize this deterministic
routing mechanism in the following way. A job that resides in node k and
that completes its current service phase, will subsequently jump (i.e., move
on) to node j with probability pkj , k ≤ j ≤ N , where

∑N
j=k pkj = 1. Upon

such a jump, all service phases associated with the nodes in between k and
j are automatically completed.
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This framework can act as a reasonable representation of a class of workflow
processes encountered in practice, where after each task completion,
depending on the outcome of the task, the case under consideration is
redirected to some downstream task. By specifying a sufficient number
of service phases (i.e., tasks), one can include as many alternative routings
and outcomes of jobs (i.e., cases) as one desires.

See Figure 4.1 for a graphical representation of this (Markov) routing
mechanism. Note that we only allow forward jumps, i.e., jobs will never
return to nodes they have already passed. So the routing mechanism has a
feed-forward structure. If pkk = 0 for all 0 ≤ k < N , then jobs will always
make jumps of size at least 1. If pkk > 0 for some 0 ≤ k < N , then upon
completion of corresponding service phase k + 1, with probability pkk this
service phase has to be redone. In practice, this could for example be the case
when it turns out that there have been technicalities or when new external
information has arrived. Both could request a repeated investigation.
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Figure 4.1: Markov feed-forward routing mechanism

4.3.2 New set of regularity assumptions

We replace Fundamental Assumption 3.1 by the following two important
assumptions.

@A56,�B?������,6("��!DCE%F%'5��� �(*&+��,J36�8


{Non-increasing expected direct rewards}
The expected direct reward function s(k) :=

∑N
j=k pkj [r(j) − r(k)] is

non-increasing in k.

For 0 ≤ k ≤ N , the expected direct reward s(k) is the expected one-period
increase in the overall reward for a job currently residing in node k, given
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the decision to continue service. Fundamental Assumption 4.1 replaces the
concavity part of Fundamental Assumption 3.1 and, in words, it reads that
the more service phases have been completed for a job, the less rewarding
it becomes to continue, from a one-period look-ahead point of view.

@A56,�B?������,6("��!DCE%F%'5��� �(*&+��,J36�9�
{No expected overtaking}

For all 0 ≤ k < N ,

∀M=k,...,N :
M∑

j=k

pkj ≥
M∑

j=k+1

pk+1,j .

Fundamental Assumption 4.2 says that from a statistical point of view, a
job residing in node k will not overtake a job residing in node k + 1. This
assumption is equivalent to the assumption that for all 0 ≤ k < N ,

∀M=k,...,N :
N∑

j=M+1

pkj ≤
N∑

j=M+1

pk+1,j .

����������	H3?���
Given that the job in service currently resides in node k, for

some 0 ≤ k < N , let discrete random variable Xk denote the node this
job will reside in during the next period, provided service is not aborted.
Then Fundamental Assumption 4.2 states that Xk ≤st Xk+1, i.e., Xk+1 is
stochastically larger than Xk.

����������	H3?��.
If jobs can only jump from node k to either k + 1 or k itself,

i.e., pk,k+1 = 1−pkk for all 0 ≤ k < N , then Fundamental Assumption 4.2 is
surely satisfied. This routing mechanism includes that of the original model.

In the remainder of this section, we will make extensive use of the following
lemma.

���������G3?��

Let Fundamental Assumption 4.2 be satisfied. Let ξ(j) be

a function which is defined on the points j = 0, 1, . . . , N and which is
non-increasing [non-decreasing] in j. Then

∑N
j=k pkj ξ(j) is non-increasing

[non-decreasing] in k, 0 ≤ k ≤ N .

Proof. Cf. Remark 4.2 and use for example Proposition 9.1.2 of Ross [49].

2
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In the discussion of the original model, we noted (see Remark 3.2) that
under the assumption that the reward function r(k) is concave, we may
assume without loss of generality that r(k) is also non-decreasing. In the
M|EN, jumps|1 model, this assumption can be obtained from Fundamental
Assumptions 4.1 and 4.2, and we will write it down as a corollary below. The
proof is more intricate than the short proof given for the original model. We
will make use of the following lemma, which uses the notation introduced in
Remark 4.2. More generally, given that the job in service currently resides in

node k, let discrete random variableX
(m)
k denote the node this job will reside

in m ≥ 1 periods from now, provided service is not aborted prematurely.

���������G3?���
If

∀0≤k<N : Xk ≤
st
Xk+1,

then

∀m≥1∀0≤k<N : X
(m)
k ≤

st
X

(m)
k+1.

Proof. For any M ≥0, m≥1 and starting node 0≤k≤N , define qm(k) by

qm(k) := IP(X
(m)
k > M). It remains to show that qm(k) is non-decreasing

in k for fixed M and m. We prove this by induction on m. It is immediate
from Fundamental Assumption 4.2 that q1(k) is non-increasing in k. Assume
that qm(k) is non-decreasing in k for some m≥1. This will be our induction
hypothesis. Then

qm+1(k) =
∑N

j=0 pkj IP
[

X
(m+1)
k > M

∣
∣
∣ Xk = j

]

=
∑N

j=0 pkj qm(j)

= {pkj = 0 for j < k}
∑N

j=k pkj qm(j).

By the induction hypothesis, qm(j) is non-decreasing in j. Therefore, by
Lemma 4.1,

∑N
j=k pkj qm(j) is non-decreasing in k, and hence qm+1(k) is

non-decreasing in k.

2
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The reward function r(k) is non-decreasing in k.

Proof. For 0 ≤ k ≤ N , the reward r(k) can be written as

r(k) = −s(k) +
∑N

j=k pkj r(j),

or, in matrix-vector notation, as

r = −s + P r,

where P is the transition matrix. Since, without loss of generality,
Fundamental Assumption 4.2 excludes pkk being 1 for some 0 ≤ k < N ,
the jumping process for the job in service is transient to node N . Therefore,
by iteration, we obtain

r = −
∞∑

m=0

P ms + r(N) e,

where e := (1, 1, . . . , 1
︸ ︷︷ ︸

N+1

). Hence, since (
∑∞

m=0 P
ms)(k) is non-increasing in

k by Fundamental Assumption 4.1 and Lemma 4.2, we obtain that r(k) is
non-decreasing in k.

2

4.3.3 Dynamic Programming formulation

We can adopt the DPEs for the original model, where, for all n ≥ 1, i ≥ 1
and 0 ≤ k ≤ N , the DPEs for Vn(i, k; co) are replaced by

Vn(i, k; co) = λVn−1(i, k, arr) + µ
∑N

j=k pkjVn−1(i, j)− ih

4.3.4 Main result and its proof

$����� ���%'&)(*&+��,I3?��.
Let Fundamental Assumption 3.1 be replaced by

Fundamental Assumptions 4.1 and 4.2. Then the threshold characterization
given by Theorem 3.1 extends to the M|EN, jumps|1 model.
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Proof. The proof follows the lines of the proof for the original model. The
Key Proposition and Proposition 3.2 remain unaltered. Since (only) the
DPEs for Vn(i, k, co) and the regularity conditions have changed, we have
to verify (and it suffices to verify) Step 2 of the proof of the Key Proposition
and the proof of Proposition 3.2. We will first prove Proposition 3.2 for
the M|EN, jumps|1 model, and then consider Step 2 of the proof of the Key
Proposition for the M|EN, jumps|1 model.

For convenience, we rewrite Proposition 3.2 as follows.

$����� ���%'&)(*&+��,I3?�43
For all i ≥ 0 and 0 ≤ k < N ,

Vn(i, k + 1)− Vn(i, k) ≤ r(k + 1)− r(k), (4.3)

Vn(i, k + 1, arr)− Vn(i, k, arr) ≤ r(k + 1)− r(k), (4.4)

Vn(i, k + 1; co)− Vn(i, k; co) ≤ r(k + 1)− r(k), (4.5)

where (4.3) and (4.4) hold for all n ≥ 0, and (4.5) holds for all n ≥ 1.

Proof. The proof uses induction on n, and is organized as follows.
Inequality (4.3) holds by definition for n = 0. Assuming that (4.3) holds for
some n ≥ 0, we prove that (4.4) holds for n (Step I ). Using this result, we
prove that (4.5) holds for n+1 (Step II ). Finally, we prove that (4.3) holds
for n+ 1 as well (Step III ).

Step I. Assume that (4.3) holds for some n ≥ 0. This will be our induction
hypothesis. Let i ≥ 0 and 0 ≤ k < N . The next decision prescribed by the
(optimal) policy corresponding to Vn(i, k + 1, arr), is either to accept or to
reject the new job.

Assume that accept is optimal. Then

Vn(i, k + 1, arr)− Vn(i, k, arr) = Vn(i, k + 1, arr; ac)− Vn(i, k, arr)

≤ Vn(i, k + 1, arr; ac)− Vn(i, k, arr; ac)

= Vn(i+ 1, k + 1)− c− [Vn(i+ 1, k)− c]

= Vn(i+ 1, k + 1)− Vn(i+ 1, k)

≤ {induction hypothesis}

r(k + 1)− r(k).
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Alternatively, assume that reject is optimal. Then

Vn(i, k + 1, arr)− Vn(i, k, arr) = Vn(i, k + 1, arr; rj)− Vn(i, k, arr)

≤ Vn(i, k + 1, arr; rj)− Vn(i, k, arr; rj)

= Vn(i, k + 1) + r(0)− [Vn(i, k) + r(0)]

= Vn(i, k + 1)− Vn(i, k)

≤ {induction hypothesis}

r(k + 1)− r(k).

Step II. Let i ≥ 0 and 0 ≤ k < N . Then

Vn+1(i, k + 1; co)− Vn+1(i, k; co) = λ[Vn(i, k + 1, arr)− Vn(i, k, arr)] +

µ[
∑N

j=k+1 pk+1,jVn(i, j) −
∑N

j=k pkjVn(i, j)]

≤ {induction hypothesis; (4.4)}

λ[r(k + 1)− r(k)] +

µ[
∑N

j=k+1 pk+1,jVn(i, j) −
∑N

j=k pkjVn(i, j)]. (4.6)

According to the induction hypothesis, Vn(i, j)− r(j) is non-increasing in j.
Therefore, by Lemma 4.1,

∑N
j=k pkj [Vn(i, j) − r(j)] is non-increasing in k.

Furthermore, Fundamental Assumption 4.1 states that
∑N

j=k pkj [r(j)−r(k)]
is non-increasing in k. Note that

N∑

j=k

pkj [Vn(i, j)− r(k)] =
N∑

j=k

pkj [Vn(i, j)− r(j)] +
N∑

j=k

pkj [r(j)− r(k)],

so
∑N

j=k pkj [Vn(i, j)− r(k)] is also non-increasing in k.

Therefore,

N∑

j=k+1

pk+1,j [Vn(i, j)− r(k + 1)] ≤

N∑

j=k

pkj [Vn(i, j)− r(k)],

i.e.,

N∑

j=k+1

pk+1,jVn(i, j)−
N∑

j=k

pkjVn(i, j) ≤ r(k + 1)− r(k). (4.7)
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Plugging (4.7) into (4.6), we obtain

Vn+1(i, k + 1; co)− Vn+1(i, k; co) ≤ (λ+ µ)[r(k + 1)− r(k)]

≤ {λ+ µ ≤ 1}

r(k + 1)− r(k).

Step III. Let i ≥ 0 and 0 ≤ k < N . The next decision prescribed by the
(optimal) policy corresponding to Vn+1(i, k + 1), is either to continue or to
abort the job under service, where continue is prescribed by definition for
i = 0.

Assume that continue is optimal. Then

Vn+1(i, k + 1)− Vn+1(i, k) = Vn+1(i, k + 1; co)− Vn+1(i, k)

≤ Vn+1(i, k + 1; co)− Vn+1(i, k; co)

≤ {induction hypothesis; (4.5)}

r(k + 1)− r(k).

Alternatively, assume that abort is optimal. Note that this implies i > 0.
Then

Vn+1(i, k + 1)− Vn+1(i, k) = Vn+1(i, k + 1; ab)− Vn+1(i, k)

≤ Vn+1(i, k + 1; ab)− Vn+1(i, k; ab)

= r(k + 1) + Vn+1(i− 1, 0; co) −

[r(k) + Vn+1(i− 1, 0; co)]

= r(k + 1)− r(k).

This concludes our proof of Proposition 4.4.

2

Next, we shift our attention to Step 2 of the proof of the Key Proposition for
the M|EN, jumps|1 model. As in the proof of Proposition 4.4, we will make
use of Lemma 4.1.
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Let i ≥ 0. Then, for 0 ≤ k ≤ N and 0 ≤ l ≤ N ,

Vn+1(i+ 1, l; co)− Vn+1(i, l; co)

= λ[Vn(i+ 1, l, arr)− Vn(i, l, arr)] +

µ
∑N

j=l plj [Vn(i+ 1, j)− Vn(i, j)]− h

≥ {induction hypothesis; (3.3); (3.1)}

λ[Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr)] +

µ
∑N

j=l plj [Vn(i+ 2, N)− Vn(i+ 1, N)]− h

= λ[Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr)] +

µ
∑N

j=k pkj [Vn(i+ 2, N)− Vn(i+ 1, N)]− h

≥ {induction hypothesis; (3.2)}

λ[Vn(i+ 2, k, arr)− Vn(i+ 1, k, arr)] +

µ
∑N

j=k pkj [Vn(i+ 2, j)− Vn(i+ 1, j)]− h

= Vn+1(i+ 2, k; co)− Vn+1(i+ 1, k; co)

and, for 0 ≤ k < N ,

Vn+1(i+ 1, k + 1; co)− Vn+1(i, k + 1; co)

= λ[Vn(i+ 1, k + 1, arr)− Vn(i, k + 1, arr)] +

µ
∑N

j=k+1 pk+1,j [Vn(i+ 1, j)− Vn(i, j)]− h

≥ {induction hypothesis; (3.4); (3.2);

Lemma 4.1 with ξ(j) = Vn(i+ 1, j)− Vn(i, j)

(non-decreasing in j)}

λ[Vn(i+ 1, k, arr)− Vn(i, k, arr)] +

µ
∑N

j=k pkj [Vn(i+ 1, j)− Vn(i, j)]− h

= Vn+1(i+ 1, k; co)− Vn+1(i, k; co).

2

4.3.5 Phase-dependent service rates

The original model features homogeneous service rates, i.e., the expected
amount of time required to complete service phase m (between 1 and N) is
constant in m. From a practical point of view, this is a highly restrictive
condition. However, the extension to heterogeneous, phase-dependent
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service rates is readily obtained as a special case of the M|EN, jumps|1 model.
Let the service rate corresponding to node k (i.e., service phase k+1) be µk
for 0 ≤ k < N . Then the model is captured by the M|EN, jumps|1 model by
taking µ = max

0≤k<N
µk, pk,k+1 = 1−pkk = µk

µ for 0 ≤ k < N , and pNN = 1.

Note that this special case surely satisfies Fundamental Assumption 4.2.

4.3.6 Counterexamples

It may be clear that the generalized threshold characterization need not
hold anymore if Fundamental Assumption 4.1 is violated. We can use the
same counterexamples as given in Section 3.5 to illustrate this, since the
original model is a special case of the M|EN, jumps|1 model. In addition,
the following two counterexamples demonstrate that violations of the other
regularity condition, i.e., Fundamental Assumption 4.2, also erode away the
generalized monotonicity results.

/ ��5�,6(6�������6���� �!"�D36�9�
Consider the following set of instances of our

model: µ = 1 (so λ = 0 and α = 0), h = 0, N = 5, r = (0, 0, 2, 2, 3, 4),
p01 = ζ, p03 = p12 = p25 = p34 = p45 = 1 − ζ and pkk = ζ for 1 ≤ k ≤ 4,
where ζ ∈ [0, 1). Then s = (1 − ζ)(2, 2, 2, 1, 1, 0), and hence Fundamental
Assumption 4.1 is satisfied, whereas Fundamental Assumption 4.2 is not.

Let ζ ↓ 0. Further, let i = 1 and n = 2, i.e., there is one job in the system
and we may serve this job for two periods of time at no cost. It is readily
verified that V2(1, 0) = V2(1, 0; co) = 3 and V2(1, 1) = V2(1, 1; co) = 4, so

V2(1, 1)− V2(1, 0) = V2(1, 1; co)− V2(1, 0; co) = 1 > 0 = r(1)− r(0),

which contradicts both (4.3) and (4.5). In fact, the whole concept of not
discarding jobs from the queue if the job in service is not aborted (as stated
by Corollary 3.1) is lost. For example, take i = 2 and h = 1.75. Then, for
n = 2, the optimal decision in state (2, 1) will be to discard the queued job
and to continue the service of the job currently in service, yielding a total
reward of 4 − 2(1.75) = 0.5. Aborting the job in service and serving the
queued job would yield a maximum total reward of only 0.25.

Furthermore, the following counterexample illustrates that a violation of
Fundamental Assumption 4.2 can also heavily affect the structure of the
optimal admission policy.
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Consider the following instance of our model: µ=1

(so λ = 0 and α = 0), h = 0, c = 8, N = 10, r(0) = 0, r(1) = 6, r(k) = k for
2 ≤ k ≤ 10, p01 =

9
10 , p02 =

1
10 , p1,10 = 1 and pk,k+1 = 1 for 2 ≤ k ≤ 9. Then

s(0) = 5.6, s(1) = 4 and s(k) = 1 for 2 ≤ k ≤ 9, and hence Fundamental
Assumption 4.1 is satisfied, whereas Fundamental Assumption 4.2 is not.

Let i = 1 and n = 8, and let there be an arrival event at this point in time
(which will be the only arrival, since λ = 0). It is straightforward to check
that

V8(1, 2, arr; ac) = 9.3 < 10 = V8(1, 2, arr; rj),

but

V8(1, 1, arr; ac) = 11.8 > 10 = V8(1, 1, arr; rj).

Thus, in state (1, 2) it is optimal to reject, whereas in state (1, 1) it is optimal
to accept. This contradicts Corollary 3.3. Furthermore, with a little more
effort, it can be verified that

V8(2, 1, arr; ac) = 21.17 > 19.8 = V8(2, 1, arr; rj),

so in state (2, 1) it is optimal to accept, which contradicts Corollary 3.2.

4.4 Translation to deterministic decision epochs

Both the feed-forward routing mechanism of the M|EN, jumps|1 model and
the two regularity conditions imposed on the reward structure and the
transition probabilities originate from Brouns and Van der Wal [11]. There,
we studied in isolation a discrete-time single-server batch queueing model
with controlled service times consisting of a sum of at most N geometric
phases. We will show that this batch model, which we term the X|GeomN |1
model in the remainder, is essentially a special case of the M|EN, jumps|1
model. Further, we will introduce and analyse a model in which the outcome
of a job is either ‘success’ or ‘no success’. This model has its origins in the
batch model. What is more, we will discuss briefly the incorporation of
an arrival process in the batch model, so that we can allow for a dynamic
supply of jobs, instead of just the one initial pile of work. First, however,
we give a brief motivation of our discussion of deterministic decision epochs.
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4.4.1 Motivation

The continuous-time models discussed and studied in this thesis exhibit
exponentially distributed decision epochs. However, in practice, it may
sometimes be desirable to consider deterministic instead of exponentially
distributed decision epochs. This is, for example, of interest when there
is a fixed and clear deadline after which no more jobs may be served.
Continuous-time models are unsuited for this type of situation, because, as
a consequence of uniformization, the total length of time is not fixed for the
finite horizon problem. Moreover, in practical situations involving human
decision-making and manual execution of cases, the state of the process
is typically observed and decisions are typically made periodically, i.e., at
fixed, equidistant points in time (e.g., every hour) rather than when an event
occurs. This system of periodic inspections calls for a somewhat different
model, which can, however, be obtained by means of a transformation of
its discretized continuous-time counterpart. In the remainder, to illustrate
the concept, we focus on the translation of the M|EN, jumps|1 model to
deterministic decision epochs.

4.4.2 The X|GeomN |1 model

Consider the following version of the M|EN, jumps|1 model with finite horizon
n, and no discounting. At the beginning of the process, we are confronted
with a single batch of jobs awaiting service. For the treatment of these
jobs we are allowed a fixed span of time, which consists of a fixed number
of periods n of equal duration, e.g., n hours, days, or weeks. There are no
future arrivals, or at least no arrivals before the end of the planning horizon.
At the beginning of each period, it has to be decided whether to continue
the service of the job currently in service or to abort service and commence
service of the next job. The rewards, costs and routing mechanism are as in
the M|EN, jumps|1 model. In particular, the probability that a job residing in
node k will jump to node j in the oncoming period is pkj . Hence, the time
required to complete service phase k + 1 is geometrically distributed with
parameter pkk. Note that if intermediate phases cannot be skipped (i.e., if
the routing mechanism is as in Chapter 3), then pkj can also be used to
represent the probability that a job which has already completed k service
phases will complete exactly j−k phases in the oncoming period, i.e., before
the next decision epoch.
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Now, the model we have just described is exactly the X|GeomN |1 model
studied in isolation in [11]. However, the threshold characterization of the
optimal termination policy derived there can also be obtained directly from
the M|EN, jumps|1 model by recognizing that the X|GeomN |1 model is a
special case of the M|EN, jumps|1 model. It is obtained simply by taking
λ = 0 and µ = 1.

4.4.3 Incorporation of an arrival process

The X|GeomN |1 model does not feature any arrivals. However, following our
discussion of the MX |EN |1 model in Section 4.1, the incorporation of arrivals
is fairly straightforward. The idea is as follows. During a period in between
two equidistant decision epochs, jobs arrive according to some arbitrary but
period-independent arrival process. The state of the system is observed at
the end of such a period only, and only then decisions are made as regards
the termination of any jobs and the admission of any newly arrived jobs.
So, during a period, arrivals accumulate, essentially to form a batch of jobs
seeking admittance. At the end of the period, the decision maker observes
this batch of jobs and, following the same principle as in the MX |EN |1
model, accepts or rejects these jobs on a one by one basis. This model,
which we term the DX |GeomN |1 model in the remainder of this section,
differs from the MX |EN |1 model in the sense that in the latter, when the
system is observed, there was either an arrival or a service phase completion,
but never both, whereas in the DX |GeomN |1 model, multiple arrivals and
multiple service phase completions may have taken place. Note that from a
decision maker point of view, these events all take place simultaneously.

In our model notation, discrete random variable X denotes the number of
arrivals during one period. We may write X ∈ B ∪ {0}, where B plays the
same role as in Section 4.1. Denote B ′ := B ∪ {0} and γb := IP(X = b) for
b ∈ B′. Note that once we have formulated the DX |GeomN |1 model, the
X|GeomN |1 model can be obtained from it by choosing B ′ = {0}.

We obtain the DX |GeomN |1 model from the X|GeomN |1 model as follows.
For all n ≥ 1, i ≥ 0 and 0 ≤ k ≤ N , replace the DPE for Vn(i, k; co) for the
X|GeomN |1 model by

Vn(i, k; co) =
∑N

j=k pkj
[
γ0Vn−1(i, j) +

∑

b∈B γbVn−1(i, j, arr, b)
]
− ih
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The value function Vn(i, j, arr, b) has been adopted from Section 4.1.1. Here,
it serves exactly the same purpose. I.e., batches can be ‘peeled off’, until
the last job of the batch has been considered. Subsequently, the decision
whether or not to abort the service of the job currently in service is taken.
This corresponds to the recursive scheme given in Section 4.1.1.

$����� ���%'&)(*&+��,I3?��:
Let Fundamental Assumptions 4.1 and 4.2 apply. The

optimal admission/termination policy for the DX |GeomN |1 model satisfies
Theorem 3.1.

Proof. The proof is virtually a combination of the proofs of Propositions 4.1
and 4.3. We adopt the Key Proposition for the MX |EN |1 model, and may
copy Step 1 of its proof from that model. It remains to verify Steps 2 and 3
of the proof. We follow the lines of the proof given for the M|EN, jumps|1
model. Note that with respect to Step 3, it suffices to verify Steps I and II of
the proof of Proposition 4.4, where, for all b ∈ B, inequality (4.4) is replaced
by

Vn(i, k + 1, arr, b)− Vn(i, k, arr, b) ≤ r(k + 1)− r(k).

First, consider Step I. If it is optimal in state (i, k, arr, b) to accept a ≤ b
jobs and reject the other b − a, then we choose to accept exactly a jobs in
state (i, k+1, arr, b) as well. Then the result is immediate from the induction
hypothesis.

Next, consider Step II. The proof is straightforward, and uses the fact that
the derivation that resulted in inequality (4.7) can also be applied if all
Vn(i, j) terms are replaced by Vn(i, j, arr, b) for any b ∈ B.

Finally, consider Step 2 of the proof of the Key Proposition. The proof
is analogous to the proof given for the M|EN, jumps|1 model. It uses the
induction hypothesis in combination with (3.1) and (4.1) for each b ∈ B,
and subsequently the induction hypothesis in combination with (4.2) for
each b ∈ B to obtain inequality (3.5) for all i ≥ 0, 0 ≤ k ≤ N and 0 ≤ l ≤ N .
Next, it uses the induction hypothesis in combination with (3.2), (4.2) for
each b ∈ B and Lemma 4.1 with ξ(j) = Vn(i + 1, j) − Vn(i, j) as well as
ξ(j) = Vn(i+ 1, j, arr, b)− Vn(i, j, arr, b) for each b ∈ B separately to obtain
inequality (3.6) for all i ≥ 0 and 0 ≤ k < N .

2
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4.4.4 A ‘Decreasing Success Rate’ model

The X|GeomN |1 and DX |GeomN |1 models can be used for the following
special purpose. Consider a finite time horizon. Assume jobs are served
either successfully (yielding a reward of 1) or unsuccessfully (yielding a
reward of 0). For any job, let discrete random variable U denote the number
of periods of time required until success. Define, for all k ≥ 1,

F (k) := IP(U ≤ k), pk := IP(U = k),

and

qk−1 := IP(U = k | U > k − 1) =
pk

1− F (k − 1)
=

pk

1−
∑k−1

j=1 pj
,

where
∑∞

k=1 pk = 1. The function qk represents the success rate. Assume
this success rate is non-increasing in k, i.e., the longer we work on a job,
the less likely it becomes and the more time it will take before we will
ultimately have success with respect to this job. This ‘Decreasing Success
Rate’ model—which we term the DSR model in the remainder of this
section—can be derived from the X|GeomN |1 (or DX |GeomN |1) model as
follows.5 First, instead of a maximum number of service phases N , we define
a node ‘∞’. Let r(k) = 0 for all finite k ≥ 0 and let r(∞) = 1. Further, let
pk,∞ = qk and pk,k+1 = 1 − qk for all finite k ≥ 0 and let p∞,∞ = 1. Note
that s(k) is non-increasing in k. Further, note that one may easily show
that it will be optimal to abort in node ∞.

Then, for n ≥ 1, i ≥ 1 and k ≥ 0, the new DPE for Vn(i, k; co) becomes

Vn(i, k; co) = qk
[
1 + γ0Vn−1(i−1, 0) +

∑

b∈B γbVn−1(i−1, 0, arr, b)
]
+

(1− qk)
[
γ0Vn−1(i, k+1) +

∑

b∈B γbVn−1(i, k+1, arr, b)
]
− ih

In the X|GeomN |1 (or DX |GeomN |1) model, we assumed a finite maximum
number of service phases. This is a restrictive assumption, because it implies
that, in principle, all jobs can be served successfully. It might take a very
long time for a specific job to reach success, but as long as the deadline is
sufficiently far away, the probability of success is strictly positive. This does
typically not accord with processes such as the examination of tax returns
at a taxation office, as considered in the following example.

5This model has also been addressed in [11], but the description there is fallacious.
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Consider a department of a taxation office in which a huge

pile of tax returns is searched for irregularities. There will always be tax
returns that contain irregularities pointing in the direction of fraud, and it
is one of the duties of the taxation office to detect these. However, on the
other side of the spectrum stands the respectable taxpayer, whose returns
are commonly ‘clean as a whistle’. No matter how much effort is put in the
examination of such a return, no anomalies will be found.

If an irregularity is detected, the return is sent to another department
for an in-depth investigation. The examination process consists of checks.
Checks incurring a high probability of finding an irregularity are carried out
first. Should these not uncover anything, then checks which are increasingly
less likely to result in the detection of an irregularity can be carried out,
until one is finally found, or until it is decided to give up the search and
start the examination of another tax return. The time required to perform
a check is deterministic and equal for all checks, and the decision whether
to continue or abort the investigation of a return is made after each check.
Assume each employee examining tax returns has his or her own pile of
returns, which is not shared with other employees. Then the examination
process at an individual employee’s desk can be captured by means of our
DSR model.

An important observation for our DSR model is that although it satisfies
Fundamental Assumption 4.1, it only satisfies Fundamental Assumption 4.2
if the success rate is constant. Nevertheless, one might think and conjecture
that the threshold characterization of the optimal admission/threshold
policy as given by Theorem 3.1 remains valid. However, with respect to
the optimal admission policy, this presumption can be fully discharged.
The following two counterexamples demonstrate that, in general, Part 1
of Theorem 3.1 does not apply at all to the DSR model.

/ ��5�,6(6�������6���� �!"�D36�L3
Consider the following instance of our model:

h = 0.1, c = 0.5975, q0 = 0.9, q1 = 0.3, q2 = 0.25 and qk = 0.11 for k ≥ 3.
Let n = 2 and let there be one incidental arrival to the system, and no future
arrivals. Then,

V2(1, 0, arr; ac) = V2(2, 0)− c = 0.9025 > 0.82 = V2(1, 0, arr; rj),

but

V2(1, 1, arr; ac) = V2(2, 1)− c =max{co : 0.9, ab : 0.82} − 0.5975

= 0.3025 < 0.305 = V2(1, 1, arr; rj).
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Hence, the presumption that “if it is optimal to reject an arriving job in
state (i, k+1), then it is optimal as well to reject it in state (i, k)” does not
hold, and, consequently, neither does inequality (3.2).

Note, by the way, that it is easily verified that the reverse implication does
not hold either, since, e.g.,

V2(1, 3, arr; ac) = 0.2225 > 0.0189 = V2(1, 3, arr; rj).

/ ��5�,6(6�������6���� �!"�D36�9:
Consider the same instance as in the previous

counterexample. Again, consider the situation of n = 2 and one incidental
arrival to the system, without any future arrivals. We already know from
Counterexample 4.4 that V2(1, 1, arr; ac) < V2(1, 1, arr; rj). However,

V2(2, 1, arr; ac) = V2(3, 1)− c

= V2(2, 0)− c = 0.9025 > 0.9 = V2(2, 1, arr; rj).

Hence, the presumption that “if it is optimal to reject an arriving job in
state (i, k), then it is optimal as well to reject it in state (i + 1, k)” does
not hold, and, consequently, neither does inequality (3.1). Because of its
counterintuitive nature, this is quite a remarkable observation.

����������	H3?�43
The sole fact that there is no longer a finite maximum number

of service phases is not responsible for the loss of structure of the optimal
admission policy. Namely, although we assumed that all rewards are finite
(cf. Section 3.1), we did not state explicitly that the maximum number of
service phases should be finite. We omit the details here, but one may verify
that the finite horizon results obtained for the M|EN, jumps|1, X|GeomN |1

and DX |GeomN |1 models extend to the situation of a countably infinite set
of nodes.

Next, let us consider Part 2 of Theorem 3.1, which characterizes the optimal
termination policy. Counterexample 4.5 has shown that inequality (3.1)
need not hold for the DSR model. Consequently, there is little hope of
being able to obtain the monotonicity of the optimal termination policy in
the number of jobs via our inductive DP approach, should it even hold. The
only threshold result we can show to hold, in general, is the monotonicity
of the optimal termination policy in the node the job in service resides in.
I.e., if it is optimal to abort in state (i, k), then it is optimal as well to abort
in state (i, k + 1). This result is a corollary of the following proposition; cf.
Proposition 4.4 with r(k + 1) = r(k) = 0.
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For all n ≥ 0, i ≥ 0 and k ≥ 0,

Vn(i, k + 1)− Vn(i, k) ≤ 0.

Proof. We confine ourself to a sketch of the proof. We first observe that
idling, if it were allowed, will never be more advantageous than continuing.
This can be shown by means of coupling and a sample path argument. The
same technique can then be used to establish Proposition 4.6. Consider
two n-period instances of our model, instance I0 starting in state (i, k) and
instance I1 starting in state (i, k+1). If it is optimal to abort in instance I1,
then the result is immediate. As long as it is optimal to continue service in
instance I1, let instance I0 copy the admission policy employed by instance
I1. In addition, instance I0 continues service as long as instance I1 continues
service, unless the job in service in instance I0 has already been served
successfully, in which case instance I0 idles. This idling policy is maintained
until instance I1 aborts service or until the job in service has been served
successfully, whichever comes first.

2

4.5 Conclusions

We have derived generalized monotonicity and threshold results for several
extensions of the M|EN |1 model. Among these extensions were batch
Poisson arrivals, as well as Erlang arrivals and the even more general case
of phase-type arrivals. We showed that the optimal admission/termination
policy remains monotonic in both the number of jobs in the system and
the number of phases completed for the job in service, but that the optimal
termination policy need not be monotonic in the arrival phase. The most
important extension, however, was the incorporation of a more general
feed-forward routing mechanism, a crucial part of which consisted of the
formulation of the two regularity conditions this routing mechanism had
to comply with in order to secure monotonicity of the value functions and
hence monotonicity of the optimal policy. We concluded with a discussion of
a discrete-time model with deterministic decision epochs and service times
consisting of a sum of geometric phases. For this model, a characterization
of the optimal policy was attained by means of combining the analysis of
the MX |EN |1 model with that of the M|EN, jumps|1 model.
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A natural direction for further research would be to investigate even more
general feed-forward routing mechanisms than that of the M|EN, jumps|1
model, namely, ones that allow for so-called tree-structured routings and
rewards. Such a routing mechanism is characterized by a reward tree, which
shows all possible sequences of phases, termed paths, that can be passed
through by a job entering service. See Figure 4.2 for an example of such
a reward tree. Note that without loss of generality no two branches of the
reward tree are interwoven.
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Figure 4.2: Tree-structured routing mechanism

Tree-structured routing mechanisms arise naturally in the following practical
situation. Assume jobs are of different types, but the type remains unknown
until the job has been fully investigated. For each job, the investigation
consists of a number of phases. The distribution of the duration of a phase
is independent of which type of job is served. Each time a phase is completed,
we gain more insight into what kind of job we are dealing with. When the
correct type has been discovered, a type-dependent reward is collected and
the job is terminated. This can be modelled by assigning type-dependent
rewards to the leafs of the tree, and a reward of 0 to all other nodes.
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For general reward trees, one may attempt to formulate a set of monotonicity
properties and investigate what regularity conditions on the rewards and the
transition probabilities are required to assure these properties. In addition,
one may investigate under what conditions a reward tree is collapsable. A
reward tree is said to be collapsable if there is a one-to-one correspondence
between its routing mechanism and some feed-forward routing mechanism
that has the form of the routing mechanism of the M|EN, jumps|1 model and
that satisfies Fundamental Assumptions 4.1 and 4.2.



5
A multi-server extension of the

M|EN |1 model — Computational issues

and a near-optimal heuristic

Administrative processes are seldom the responsibility of one sole
employee. Far more commonly, departments and offices have several

resources at their disposal and these resources share the complete workload
the department or office is faced with. However, usually due to financial
restrictions, it is rarely the case that the total resource capacity is sizeable
enough to be capable of executing all work offered to the system. The lack
of sufficient resource capacity, or alternatively stated, the superfluous supply
of work, calls for intelligent decision support. In the single-server decision
models we considered so far, this support consists of a control policy that
prescribes at each moment in time whether to continue or abort the service
of the job that is currently being served and whether to accept or reject any
new jobs. Many multi-resource environments can reasonably be modelled
by a set of single-server stations, where the separate servers are assumed
to follow a policy which does not depend on actions taken by other servers.
See, e.g., Example 4.1. The main advantage of such a system is its relatively
low computational complexity, but the control will not be very advanced.

We can obtain a more sophisticated control by letting the resources act as a
pool. This means that work is not allocated to specific resources in advance,
but rather shared by the resources on a dynamic basis. If their joint capacity
is insufficient to do all work offered to the system, then on-line decisions must
be made as to when to accept an arriving job, when to abort jobs, and which

105
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jobs to abort. These decisions will depend on the number of jobs already in
the system and the progress of the respective servers as regards the service
process. In this chapter, we will discuss this multi-server model, which is
an extension of the M|EN |1 model studied in Chapter 3. In particular, we
will present a heuristic for the computation of a near-optimal policy for
this multi-server model. The heuristic is based on a closely related model,
namely, a slightly modified version of the M|EN |1 model, whose optimal
policy is readily computed. We will evaluate and refine the heuristic by
means of a numerical study.

Section 5.1 provides a detailed model description. In Section 5.2, we delimit
the action space of the multi-server model. In particular, we show that the
action space is essentially the same as in the single-server model, i.e., equal
to {0, 1, 2, . . . , i}, where i is the number of jobs in the system. Next, in
Section 5.3, we obtain some monotonicity results which apply specifically to
the multi-server model. We show that, in general, the monotone structure
of the optimal policy for the single-server model is not fully preserved if the
model is extended to more than one server. This loss of structure is one of
the reasons why the multi-server extension is analytically intractable.

In Section 5.4, we touch on important computational issues surrounding the
multi-server model and its optimal control policy, and we advocate the need
for a heuristic for this model. Section 5.5 discusses a model that is closely
related to the multi-server model and which can be used as a basis for a
natural heuristic. The heuristic itself is described and refined in Section 5.6.
A part of the construction of the heuristic evolved from a numerical study.
We present the results of this study in Section 5.7. These results indicate
that the heuristic yields near-optimal performance for systems with a modest
number of servers. Finally, in Section 5.8, using simulation, we assess the
performance of the heuristic for larger systems, by comparing it to another
natural heuristic.

5.1 Model description

We consider the following natural multi-server extension of the M|EN |1
model studied in Chapter 3. Depart from the M|EN |1 model, but let the
system consist of s mutually indistinguishable servers in parallel, instead of
only a single server. The system has a joint buffer, which is infinitely large,
and the servers operate according to the FCFS discipline. Each job arriving
at or residing in the system is served by at most one server. The system
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features the same events, costs and rewards, and admission and termination
control as the M|EN |1 model, including Fundamental Assumption 3.1. So, in
principle, the service requirements of a job comprise N exponential phases,
but at any time it may be decided to abort the service of a job, which yields
some reward r(k) that depends on the number of phases k that have been
completed for the job. The marginal returns are positive, but diminishing
in k. See Figure 5.1 for a graphical representation of the queueing system
captured by this M|EN |s model.

-1)(N
)N(

1 2 3
(0) (1) (2)r rr

r
N

r

-1)(N
)N(

1 2 3
(0) (1) (2)r rr

r
N

r

-1)(N
)N(

1 2 3
(0) (1) (2)r r

r
N

rr

(0)r

Figure 5.1: M|EN |s queue with admission and termination control

Using uniformization, we can consider that events occur at the jump times
of a Poisson process with rate λ + sµ + α, where λ ≥ 0, µ > 0 and α ≥ 0.
By scaling time, we take λ + sµ + α = 1 without loss of generality. Then,
a transition concerns a service phase completion with probability sµ, and a
service phase completion at some specific server with probability µ.

5.1.1 State description

The state of the system can be fully described by the tuple (i, s), where
i is the number of jobs in the system and s := (s0, . . . , sN ), where sk is
the number of servers that have completed k phases for the job they are
currently processing, 0 ≤ k ≤ N . See also Figure 5.1. Vector s is termed
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the server state vector. Since servers are indistinguishable, we do not need a
full state description as regards which exact server is in which phase. Only
the total number of servers that are currently in that phase is relevant. This
already cuts down the total number of states considerably. If there is some
upper bound on the number of jobs in the system, imax say, then the total

number of states drops already from O ((N + 1)s · imax) to O
((

N+s
N

)
· imax

)

.

If h > 0, then such an imax is readily determined.

Note that
∑N

k=0 sk =min{i, s}. This is the number of busy servers, denoted
by state variable sB. At any time, the number of idle servers is sI := s−sB,
and the number of queued jobs is iQ := i− sB.

5.1.2 Dynamic Programming formulation

We adopt the value functions Vn(·) and Vn(·, arr) of the M|EN |1 model and
adapt them to the new state description, e.g., Vn(i, s) denotes the maximum
expected n-period α-discounted reward when the current state is (i, s). For
0 ≤ k ≤ N , define ek := (0, 0, . . . , 0

︸ ︷︷ ︸

k

, 1, 0, . . . , 0
︸ ︷︷ ︸

N+1−k

). Then, in any state (i, s), a

decision π ∈ {a | a ≤ s + iQ · e0} is to be taken as regards the termination
of any jobs. In this notation, a := (a0, . . . , aN ), where, for 0 < k ≤ N , ak
is the number of servers that have completed k phases for the job they are
currently processing and that now abort the service of that job. Note that a0
is a special case. This is the number of servers that have not yet completed
any phases for the job they are currently processing and that now abort
the service of that job, plus the number of queued jobs being terminated.
By definition, the termination of a queued job is indistinguishable from the
termination of a job which is in its first service phase. Therefore, there is no
reason to discriminate between these two types of jobs when deciding which
jobs to abort.

Further, in any state (i, s, arr), first a decision π ∈ {accept, reject} is to
be taken as regards the arrival. Subsequently, it is decided which jobs to
abort, according to some decision vector a, as described above.

Define a :=
∑N

k=0 ak and let 1[·] be the indicator function, as defined earlier
in Section 2.2.1. Then our model is defined by the following set of DPEs,
where, analogous to Chapter 3, we use the notation Vn(i, s; co) to denote
Vn(i, s), given that decision continue is chosen in state (i, s).
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For n ≥ 1, i ≥ 0 and all s such that
∑N

k=0 sk =min{i, s}:

V0(i, s) =
N∑

k=0

skr(k) + (i− sB)r(0)

Vn(i, s) = max
a≤s+iQe0

[Vn(i− a, s− a+ e0 ·min{a, iQ}; co) +
N∑

k=0

akr(k)]

where

Vn(i, s; co) = λVn−1(i, s, arr) +
N−1∑

k=0

skµVn−1(i, s− ek + ek+1) +

(s−
N−1∑

k=0

sk)µVn−1(i, s) − ih

and

Vn−1(i, s, arr) = max{Vn−1(i+ 1, s+ e0 · 1[i < s])− c,

Vn−1(i, s) + r(0)}

The first element of the new server state vector s − a + e0 ·min{a, iQ} in
the DPE for Vn(i, s) was obtained as follows. We may write a0 = aS,0 + aQ,
where the S refers to jobs that were in service, and the Q refers to jobs that
were in the queue. Then, immediately after the collective abort operation, in
principle,

∑N
k=1 ak+aS,0 jobs from the queue may enter service. However, if

the remaining number of jobs in the queue, which is iQ−aQ, is less than that,
then only those remaining jobs can enter service. Hence, the new number
of jobs in node 0 will become s0 − aS,0 +min{

∑N
k=1 ak + aS,0, iQ − aQ},

which is readily seen to be equal to s0 − a0 +min{a, iQ}.

5.2 Cutting down on the action space

The state and action spaces of the M|EN |s model are large. In fact, there
are (s0 + iQ + 1)

∏N
k=1(sk + 1) decision vectors a that satisfy a ≤ s+ iQe0.

However, we will show that many actions are surely sub-optimal and can
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therefore be omitted from the model. In particular, the following proposition
states that when deciding which jobs to abort, it is optimal to start at the
rear of s, i.e., at those servers that have completed the most phases with
respect to the job they are currently serving.

$����� ���%'&)(*&+��,-:���

For any decision vector a ≤ s+ iQe0, there is a decision

vector a′ ≤ s + iQe0 with
∑N

l=0 al =
∑N

l=0 a
′
l that satisfies the condition

a′k−1 > 0⇒ a′k = sk for 0 < k ≤ N and that is at least as profitable as a.

From a numerical point of view, the important implication of Proposition 5.1
is that for any given state, the size of the action space can essentially be
reduced from (s0+ iQ+1)

∏N
k=1(sk+1) to just i+1. For example, if N = 6,

s = 10, s = (1, 1, 2, 3, 1, 2, 0) and iQ = 0, then we only need to consider 11
actions instead of the original 288.

In order to prove Proposition 5.1 it suffices to establish the following result.
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Let i ≥ 2 and let s be such that at least one job, J1 say,

is in some node k and at least one job, J2 say, is in some subsequent node
l > k. The decision to abort the service of J2 and continue the service of
J1 is at least as profitable as the decision to abort the service of J1 and
continue the service of J2.

In other words, Proposition 5.2 states that if it is optimal for a server whose
job is in node k to abort service, then this decision is optimal as well for a
server whose job is in a subsequent node l > k.

Proof. Let the current number of jobs be i ≥ 2. For m ≥ 0, let m− be
defined as in Chapter 3, i.e., equal to min{m,N}. Consider an n-period
process instance I0 of our model. Let I0 be such that at least one server is
serving a job in node k and at least one server is serving a job in node l > k.

Next, we introduce process instances I1 and I2. Let I1 denote I0, given
initial feasible action a′ := (a0, a1, . . . , ak, . . . , al, . . . , aN ), where ak > 0 and
al < sl. Let I2 denote I0, given initial action a′′ := a′ − ek + el. Using a
sample path argument, we show that I2 yields at least the same reward as
I1.

First, note that the initial actions a′ and a′′ yield direct rewards of
∑N

j=0 ajr(j) and
∑N

j=0 ajr(j) + r(l)− r(k), respectively. Furthermore, after
its initial action a′, instance I1 makes a transition to state (i−a, s) for some
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s, whereas instance I2 makes a transition to state (i − a, s + ek − el) after
its initial action a′′. It remains to show that

Vn(i− a, s) +
N∑

j=0

ajr(j) ≤ Vn(i− a, s+ ek − el) +
N∑

j=0

ajr(j) + r(l)− r(k),

i.e.,

Vn(i− a, s)− Vn(i− a, s+ ek − el) ≤ r(l)− r(k). (5.1)

Given the new states of I1 and I2, we couple all events (all arrival and service
phase completion events and, finally, the event that the process ends) and all
decisions at arrival and service phase completion times. To be precise, once
both processes have carried through their respective initial action, instance
I2 copies the optimal decisions taken in instance I1. This is feasible, because
I1 and I2 feature the same number of jobs in the system and the same
remaining number of periods. Since servers are indistinguishable, we may
assume without loss of generality that immediately after the initial action,
one particular server, denoted S, is serving a job in node k in I2 and a job
in node l in I1. The distribution of the other s − 1 servers over the N + 1
nodes is the same for I1 and I2. Let Ω denote the set of these s− 1 servers.

Then, for both processes, the costs of continuing service are identical, and
so are the costs and rewards resulting from the admission and rejection,
respectively, of new jobs. Any server from Ω that aborts service also yields
the same direct reward in both processes, and this clearly also holds for the
termination of any queued jobs.

Assume that server S aborts service at some point in time, possibly because
time hits zero. (The alternative is that the system already vanished before
then, in which case the difference in reward between the two instances is
zero, which is at most r(l) − r(k).) With respect to server S this leaves us
with direct job rewards r((m+ l−k)−) and r(m) for I1 and I2, respectively,
for some k ≤ m ≤ N . Since r(j) is concave in j,

r((m+ l − k)−)− r(m) ≤ r(l)− r(k). (5.2)

In addition, after this abort operation, both processes become and remain
identical. Together with (5.2), this assures that inequality (5.1) is satisfied.

2
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Consequently, from now on we only have to consider decision vectors a that
satisfy the condition ak−1 > 0⇒ ak = sk for 0 < k ≤ N .

Let (i, s−a) denote the state immediately after the decision to abort a jobs in
state (i, s), where 0 ≤ a ≤ i. Note that s−(a+b) = (s−a)−b for 0 ≤ a+ b ≤ i.
Using Proposition 5.1, one may verify that

s−a = s−
N∑

k=0

ek ·min






(s+ iQe0)k ,



a−
N∑

j=k+1

sj





+



+ e0 ·min{a, iQ},

where

x+ :=

{
x if x ≥ 0,
0 else.

Similarly, we introduce the notation ra(s), which denotes the total direct
reward corresponding to decision a in state (i, s), where 0 ≤ a ≤ i. Note
that ra+b(s) = ra(s) + rb(s−a) for 0 ≤ a+ b ≤ i. One may verify that

ra(s) =
N∑

k=0

min






(s+ iQe0)k ,



a−
N∑

j=k+1

sj





+



· r(k).

Now, we can replace the original DPE for Vn(i, s) by

Vn(i, s) = max
a≤i

Vn(i− a, s
−a; co) + ra(s)

5.3 Properties of the optimal policy

In this section, under two natural regularity conditions, we derive two basic
properties of the optimal admission/termination policy for the multi-server
model. Further, we touch upon the complexity of the model by showing
that, in general, the model does not feature monotonicity in the server state
vector s. Finally, we discuss briefly the phenomenon that it can be optimal
to abort more than one job at a time in the infinite horizon case.
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5.3.1 Non-termination for i ≤ s

We show that under the following condition on the costs and rewards, it will
surely be optimal not to abort any jobs as long as the queue is empty and
none of the jobs in the system has received full service. This applies to both
the finite horizon problem and the infinite horizon problem with either the
average reward criterion or the criterion of total discounted reward.

CE%F%=56�� �(?&M��,H:���

Let

µ[r(N)− r(N − 1)] ≥ h+ αr(N).
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If n ≥ 1, 1 ≤ i ≤ s and s is such that sN = 0, then it is

optimal not to abort any jobs in state (i, s).

Proof. Let n ≥ 1, 1 ≤ i ≤ s and let s be such that sN = 0. We show that
serving some job for one period and then aborting it gives a non-negative
additional reward, as compared to aborting the job right now. Consider
some job in service, J say, and suppose it currently resides in node k.
Termination of the service of job J yields a direct reward of r(k). Further,
in the oncoming period, the holding costs incurred by the system will be
jh, for some j < i. Alternatively, if the service of job J is continued, then
the holding costs will be (j+1)h in the oncoming period. After this period,
we abort the service of job J after all. With probability µ, job J has
completed its current service phase, and now resides in node k + 1. With
probability α, the process has vanished. With probability 1 − µ − α, job
J remains in node k. This means that the expected reward for job J is
µr(k+1)+(1−µ−α)r(k). Hence, the expected difference in reward between
the decision to serve job J for exactly one more period and the decision to
abort it right away is equal to

µr(k + 1) + (1− µ− α)r(k)− (j + 1)h − [r(k)− jh],

which is at least zero, because of Assumption 5.1 and the assumption that
r(·) is non-decreasing and concave.

2
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If Assumption 5.1 is not satisfied, then we may remove a

sufficient number of service phases from the initial workload of a job, from
back to front, starting with phase N , until the condition is met. These are
service phases that will never be reached by a job. Hence, the condition can
be assumed to hold without loss of generality.
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If there is no discounting, i.e., α = 0, then Assumption 5.1

and Fundamental Assumption 3.1 imply that for all 0 ≤ k < l ≤ N ,

r(l)− r(k) ≥ (l − k)µ−1h. (5.3)

5.3.2 Admission for i < s

We show that under the following condition on the costs and rewards, it
will surely be optimal in the infinite horizon problem with average reward
criterion to accept arriving jobs as long as there is at least one idle server.

CE%F%=56�� �(?&M��,H:����
Let

r(N)− r(0) ≥ Nµ−1h+ c.
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It is optimal in the infinite horizon problem with average

reward criterion to accept a new job as long as i < s.

Proof. Without loss of generality, denote the servers by 1, 2, . . . , s and
always send an accepted job to the idle server with the lowest index. Now,
suppose there is an arrival to the system at some point T0 in time and
suppose there are s − 1 servers busy at time T0. Let strategy π reject the
new job and let strategy π′ accept it. We couple all events and decisions
with respect to servers 1 to s−1, where π′ copies the actions taken by π. As
far as server s is concerned, let π′ continue service until either (i) π aborts
a job (which arrived and was directed to server s at some time T1 > T0)
at server s, or (ii) all N service phases have been completed. Let I(π) and
I(π′) denote the processes governed by π and π′, respectively.

If π never directs a job to server s in the future (hence, T1 does not exist),
then the expected reward earned by π′ with respect to server s before I(π)
and I(π′) become identical is r(N) − Nµ−1h − c. For π, there is only
the initial reward r(0) for rejecting at time T0. It is then immediate from
Assumption 5.2 that π′ is at least as profitable as π.

Alternatively, assume that T1 exists. With respect to the execution of π′,
and for t ≥ T1, we pretend the state (i.e., the number of completed service
phases) of server s at time t to be the one at time t− (T1 − T0). Next, with
respect to server s, we couple the state of the service process in I(π) at
time t to the state of the service process in I(π′) at time t− (T1−T0). So π

′

can copy π and take exactly the same actions, apart from the initial action
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at time T1, which is to reject the new job. The moment π aborts the job at
server s, at time T2 say, strategy π

′ does the same. If we discard for the time
being the initial rewards r(0) for rejecting jobs, then, as far as server s is
concerned, (i) the reward earned by π during the time interval [T1, T2] equals
the reward earned by π′ during [T0, T0+T2−T1], (ii) the reward earned by π
during the time interval [T0, T1) is zero, and (iii) the expected reward earned
by π′ during (T0+T2−T1, T2] is at least zero by (5.3). Hence, noting that π
and π′ reject the same number of jobs during [T0, T2], the expected reward
earned by π′ in the time interval [T0, T2] is at least as high as the expected
reward earned by π during that interval. Since the two processes become
identical at time T2, it follows that π

′ is at least as profitable as π from T0
onward.

2

5.3.3 Monotonicity and loss of monotonicity for i ≥ s

We show that, in general, the monotone structure of the optimal policy for
the single-server model does not extend in full to the multi-server model.
For this purpose, we first give two preliminary definitions.

First, for each state (i, s) with i ≥ s, there is a unique position k, 0 ≤ k ≤ N ,
such that sk > 0 and sl = 0 for k < l ≤ N . Denote this unique position by
`(s), where the symbol ` stands for ‘last’.

Second, for two server state vectors s and t, we say that t º s if

t =

N−1∑

k=0

(
s− σkek + σkek+1

)

for some σ0, . . . , σN−1 ≥ 0 such that tk ≥ 0 for all 0 ≤ k < N . For example,
(2, 1, 1, 0) ¹ (0, 3, 1, 0) ¹ (0, 1, 2, 1) in some model with s = 4 and N = 3.

For the single-server model, we obtained the following result: if it is optimal
to abort the service of a job in state (i, k), then it is optimal as well to
abort service in all states (i, l) with l ≥ k. One could conjecture that in
the multi-server model the following generalization holds: for i ≥ s, if it is
optimal to abort at least one job in state (i + 1, s), then it is optimal as
well to abort at least one job in all states (i + 1, t) with t º s. However,
the following two counterexamples show that in general this is not true in
neither the finite horizon case nor the infinite horizon case with average
reward criterion.
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Consider the following two-server instance of our

model: µ = 1
2 (so λ = α = 0), h = 5, N = 4 and r(k) = 25k for 0 ≤ k ≤ 4.

Let s := (2, 0, 0, 0, 0) and t := (0, 0, 0, 2, 0). Note that t º s.

Then,

V3(3, s) = max
a≤3

V3(3− a, s
−a; co) + ra(s)

= max{0 : 40, 1 : 45, 2 : 22 1
2 , 3 : 0} = 45,

so a = 1 is optimal, i.e., it is optimal to abort exactly 1 job in state (3, s) if
the remaining number of periods is 3.

However,

V3(3, t) = max
a≤3

V3(3− a, t
−a; co) + ra(t)

= max{0 : 186 1
4 , 1 : 1855

8 , 2 : 1721
2 , 3 : 150} = 186 1

4 ,

so a = 0 is optimal, i.e., it is optimal not to abort any jobs in state (3, t) if
the remaining number of periods is 3.

The reasoning behind this phenomenon lies in the trade-off between holding
costs on the one hand and the desire to prevent undesirable idle time on the
other. Apparently, in state (i, t), the reduction in holding costs resulting
from the termination of one of the two jobs in service is outweighed by the
probability of having to witness idle time at one of the servers. In state
(i, s), this is apparently the other way around.

/ ��5�,6(6�������6���� �!"�7:*�9�
Consider the following two-server instance of our

model: λ = 1
21 , µ = 10

21 , h = 40
21 , c = 0, N = 4 and r(k) = 25k for 0 ≤ k ≤ 4.

Let s = (1, 0, 1, 0, 0) and t = (0, 1, 0, 1, 0), so t º s. Consider the infinite
horizon average reward criterion. Computations reveal that both (10, s) and
(10, t) are recurrent states and that it is optimal to abort in state (10, s),
but to continue service in state (10, t).

The monotonicity result for the single-server model leans on the fact that
in the single-server model an abort operation in state (i, k) and an abort
operation in state (i, l) lead to the same state, namely (i− 1, 0). In general,
this property is lost in the multi-server model. E.g., if we consider s and t
with t º s and t 6= s, then in general, (i− 1, s−1) does not equal (i− 1, t−1).
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There is exactly one case in which these two states are indeed identical,
namely if `(s) < N and t = s − e`(s) + e`(s)+1. The following proposition
states that in this specific case we have the same monotonicity as in the
single-server model.
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Let i ≥ s, `(s) < N and t = s − e`(s) + e`(s)+1, so

(i − 1, s−1) = (i − 1, t−1). If it is optimal to abort at least one job in state
(i+1, s), then it is optimal as well to abort at least one job in state (i+1, t).

Proof. Suppose it is optimal to abort at least one job in (i + 1, s) and
suppose it is strictly optimal not to abort any jobs in (i + 1, t). Then
Vn(i, s

−1)+r1(s) = Vn(i+1, s) and Vn(i, t
−1)+r1(t) < Vn(i+1, t). Together

with (i, s−1) = (i, t−1), r1(s) = r(`(s)) and r1(t) = r(`(s) + 1), this yields
Vn(i, t)− Vn(i, s) > r(`(s) + 1)− r(`(s)), contradicting (5.1).

2

5.3.4 Multiple aborts in the infinite horizon case

One might surmise that in the infinite horizon case, it will be optimal to
abort at most one job at a time in recurrent states. However, the following
counterexample invalidates this assertion.

/ ��5�,6(6�������6���� �!"�7:*�9.
Consider the following three-server instance of our

model: λ = 1
3 , µ = 2

9 , h = 4
9 , c = 10, N = 4 and r = (0, 25, 45, 60, 72).

Let s = (1, 0, 0, 2, 0). In state (4, s, arr), which is recurrent and which can
be reached via, e.g., state (3, s) and two consecutive arrivals before a service
phase completion, it is optimal to first accept the new job, which causes the
system to enter state (5, s), and then to abort two jobs.

Counterexample 5.3 observes the system at an arrival time. Just before the
corresponding arrival, there are 4 jobs in the system and this number drops
to 3 immediately after the abort operation. Hence, the ‘net decrease’ is 1
and one might conjecture that, in general, the net decrease will never be
larger than 1. However, a net decrease of more than one job can also be
accomplished. This is illustrated by the following counterexample.

/ ��5�,6(6�������6���� �!"�7:*�L3
Consider the instance of Counterexample 5.3, but

let there be 6 servers instead of 3. Adjusting the uniformization accordingly,
we obtain λ = 1

5 and µ = 2
15 . Further, let h = 4

15 .
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Let s = (3, 0, 0, 3, 0). In state (9, s, arr), which is recurrent and which can be
reached via, e.g., state (6, s) and four consecutive arrivals before a service
phase completion, it is optimal to first accept the new job, which causes the
system to enter state (10, s), and then to abort three jobs. Note that the
new state will be (7, s−3), where s−3 = (6, 0, 0, 0, 0).

Counterexamples 5.3 and 5.4 have demonstrated that it can be optimal to
trade a number of jobs which have some joint remaining workload for a fresh
job which has a higher (remaining) workload. In retrospect, this is a natural
observation.

The above observation applies specifically to arrival times of jobs. It does not
say anything about service phase completion times. We make the following
conjecture.

/ ��,*<=�*>�(?5����#:*�8

In the infinite horizon case, it will be optimal in recurrent

states to abort at most one job at service phase completion times.

5.4 Optimal control versus heuristics

In this section, we indicate and illustrate the need for a good heuristic for
multi-server workload models with controlled service times. Subsequently,
we describe our heuristic and study its performance.

In theory, since we have derived a complete set of DPEs for our multi-server
model, we can compute the optimal control policy for any instance. However,
besides analytic intractability, the model suffers severely from computational
intractability. This is not caused by the action space, which has been cut
down in Section 5.2, but by the huge state space. The optimal control policy
for the multi-server model is state-dependent. As argued in Section 5.1.1,
we can assume that the number of states is of the order

(
N+s
N

)
· imax, where

imax is some upper bound on the number of jobs in the system. This means
that the number of states in an instance with N = 8 service phases, s = 15
servers and at most imax = 20 jobs in the system will be of the order 107.
For N = 15, s = 20 and imax = 30, this will be a staggering 1011.

Consequently, the amount of physical space required to store a complete
multi-server instance grows extremely rapidly as either N or s increases.
For example, consider an instance with N = 6, s = 6 and imax = 12. We
needed 20MB of disk space to store all model data. The program we use to
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do all the numerical work cannot handle an input file of such size.6 Even
if we were to use a more efficient method of encoding and decoding, then
the storage limit would also be reached very soon. For example, using our
encoding scheme, an instance with N = 6, s = 10 and imax = 20, which is
still relatively small, would already require over 300MB of model data. This
phenomenon—memory exhaustion due to high dimensionality of the state
space—is known as the curse of dimensionality; see Bellman [7].

In addition, time will become a constraint. Our optimization program
processes input files of up to about 10MB and for such file sizes it already
takes several minutes to read the model data and compute the optimal
policy. Computation times will be much longer if we use a program that
does not first read all model data, but that generates specific data whenever
it is needed.

Moreover, assuming the optimal policy can actually be computed, another
problem arises. The output of the optimization program will consist of an
exhaustive list of states and accompanying actions, which will be extremely
hard to read. This is even worsened by the fact that, in general, the optimal
policy does not feature a threshold structure in the server state vector, as
illustrated in Section 5.3.3.

Finally, the optimal policy assumes that one has full knowledge of the state of
the system, e.g., each server knows exactly which service phases other servers
are in. In practice, this will very often not be the case. Even supervisors
that manage the entire process may not have the disposal of a complete
state description.

We conclude that the detailed optimal policy for the multi-server system
will be impractical and undesirable. Practice demands practical decision
support routines, i.e., sets of operational decision rules which are of an
intuitive nature and which can be computed and implemented easily. We
will describe a heuristic which provides a set of simple control rules which
are adequate to obtain near-optimal performance. This set of control rules
emerges from the optimal control policy for a single-server model closely
related to the multi-server model. The control rules only demand that a
server is aware of its own state and the size of the queue. A server need
not be aware of or inquire for the state of other servers. The closely related
model the heuristic is based on is in fact a slightly modified version of the

6We used MDP, developed at Eindhoven University of Technology.
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M|EN |1 model studied in Chapter 3. We discuss this model in the next
section, as a preliminary to the description of the heuristic.

Subsequently, we will show by means of numerical results that for fairly small
multi-server systems this simple control mechanism yields a near-optimal
average reward per period, making the complicated state-dependent optimal
control policy redundant.

����������	�:���.
We specifically aim at infinite horizon problems with average

reward criterion, and at instances that satisfy Fundamental Assumption 3.1
and Assumptions 5.1 and 5.2, so in the remainder of this chapter, either
these conditions are assumed to hold, or we make sure that they are met.

5.5 The M|E µi

N |1 model

Consider the M|EN |1 model studied extensively in Chapter 3, but let the
service rate be variable instead of constant. In particular, we consider a
workload-dependent service rate of µi :=min{i, s}µ, where i is the number
of jobs in the system and s is some fixed positive integer. We term this
model the M|E µi

N |1 model. Note that the M|EN |1 can be obtained from the
M|E µi

N |1 model by choosing s = 1.

Conversely, the M|E µi

N |1 model can be obtained from the M|EN |1 model
by rewriting the DPEs for Vn(i, k; co) as follows, where n ≥ 1, i ≥ 0 and
0 ≤ k ≤ N . Note that the uniformization is as in the M|EN |s model, i.e.,
λ+ sµ+ α = 1, where s is a new model parameter.

Vn(i, k; co) = λVn−1(i, k, arr) + µiVn−1(i, (k + 1)−) +

(s− µi)Vn−1(i, k) − ih

In Chapter 4, we considered several extensions of the M|EN |1 model, for
which we derived generalized monotonicity and threshold results. For the
M|E µi

N |1 model, however, it is impossible to establish such a generalization.
The following two counterexamples demonstrate that both inequality (3.1)
and inequality (3.2) need not hold, hence destroying the Key Proposition.

/ ��5�,6(6�������6���� �!"�7:*�9:
Consider the following instance of the M|E µi

N |1
model: µi =min{ i3 , 1} (so λ = α = 0), h = 0, N = 3 and r = (0, 30, 57, 81).
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Then,

V1(2, 2)− V1(1, 2) = 2
3 · 81 +

1
3 · 57 − (13 · 81 +

2
3 · 57) = 8,

but

V1(3, 0)− V1(2, 0) = 30 − ( 23 · 30 +
1
3 · 0) = 10,

which contradicts inequality (3.1).
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Consider the same instance as in the previous

counterexample, but let N = 2 and r = (0, 30, 57).

Then,

V1(2, 1)− V1(1, 1) = 2
3 · 57 +

1
3 · 30 − (13 · 57 +

2
3 · 30) = 9,

but

V1(2, 0)− V1(1, 0) = 2
3 · 30 +

1
3 · 0 − (13 · 30 +

2
3 · 0) = 10,

which contradicts inequality (3.2).

The fact that inequalities (3.1) and (3.2) have become invalid does not imply
that the threshold characterization of the optimal admission/termination
policy is lost as well. However, the following counterexample shows that, in
general, the optimal admission policy is no longer monotone in the number
of service phases completed for the job in service.
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Consider the following instance of the M|E µi

N |1
model: µi =min{ i2 , 1}, h = 5, c = 4, N = 5 and r = (0, 20, 35, 50, 65, 76).

Let there be a one-time arrival to the system, one period before the end of
the process. Then,

V1(1, 0, arr; ac) = max{10, 5} − 4 = 6 > 5 = V1(1, 0, arr; rj),

V1(1, 3, arr; ac) = max{55, 55} − 4 = 51 < 52 1
2 = V1(1, 3, arr; rj),

V1(1, 4, arr; ac) = max{66, 70} − 4 = 66 > 65 1
2 = V1(1, 4, arr; rj),

so the optimal admission policy is not monotone in k.
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The monotonicity of the optimal admission policy in the number of jobs in
the system will probably still apply. Namely, the relative increase in the
service rate when an extra job joins the system is higher when there are less
jobs in the system, which adds even more to the value of an additional job
when there are less jobs present.

/ ��,*<=�*>�(?5����#:*�9�
In the finite horizon case as well as the infinite horizon

case, the optimal admission policy for the M|E µi

N |1 model is monotone in
the number of jobs in the system.

Further, with respect to the optimal termination policy, we can argue that
Proposition 3.2 still holds. The proof given for the M|EN |1 model remains
valid for the M|E µi

N |1 model. Consequently, the optimal termination policy
for the M|E µi

N |1 model is monotone in k. We conjecture that the optimal
termination policy will be monotone in i as well, although we lack a cogent
and insightful theoretical explanation for this assertion.

/ ��,*<=�*>�(?5����#:*�9.
In the finite horizon case as well as the infinite horizon

case, the optimal termination policy for the M|E µi

N |1 model is monotone in
the number of jobs in the system.

Regarding the average reward criterion, the two conjectures are supported
by our numerical study (the results of which are presented in Section 5.7).
Without a single exception, all instances of the M|E µi

N |1 model we considered
as part of this numerical study featured optimal admission and termination
policies that were of a threshold type.

5.6 Description of the heuristic

In this section, we describe our heuristic for the multi-server model. This
heuristic provides a rule of thumb which approximates the optimal infinite
horizon control policy for the multi-server model with respect to the average
reward yielded by the system per unit of time.

5.6.1 Basic form of the heuristic

We take the variable service rate model described and studied in Section 5.5
as point of departure. Our main idea is the following. If the service times of
jobs were merely exponential instead of Erlang, and uncontrollable instead of
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subject to control, then the systems described by the M|EN |s and M|E µi

N |1
models would coincide if the latter had a variable service rate ofmin{i, s}µ,
where i is the number of jobs in the single-server system and s is the number
of servers in the multi-server system, each server having service rate µ. In our
case of Erlang distributed service times and admission as well as termination
control, we can still use the M|E µi

N |1 model as an approximation for the
M|EN |s model.

We base our heuristic on this idea. The optimal policy for the M|E µi

N |1
model is readily computed. For example, a fairly large single-server instance
with N = 10, s = 10 and imax = 20 required only about 0.2MB of disk space
and virtually no computing time. The corresponding multi-server instance
would be unmanageable; cf. the discussion in Section 5.4. Once the optimal
single-server policy has been determined, it can be used as a reference for
the multi-server system, in effect for each of the servers separately.

Let i∗max denote the maximum number of jobs admitted to the single-server
system at any point in time, as indicated by the optimal policy for the
M|E µi

N |1 model. Then, with respect to the multi-server system, for each
1 ≤ i ≤ i∗max, this policy prescribes up to which service phase the decision
will be to continue service and from which phase on the decision will be to
abort. Note that it was shown in Section 5.5 that the optimal termination
policy for the M|E µi

N |1 model is guaranteed to be monotone in k.

In that section, we also showed that the optimal admission policy for the
M|E µi

N |1 model is not necessarily monotone in k. However, we can ensure
a threshold form as follows: if it is optimal to accept a new job in some
state (i, k), then we prescribe to accept in all states (i, l) with l > k as well,
regardless of whether this was also prescribed by the optimal single-server
policy itself. We then obtain an admission policy for the multi-server system
that prescribes for each 0 ≤ i ≤ i∗max, and given that there is an arrival, up
to which service phase the decision will be to reject the new job and from
which phase on the decision will be to accept.

The scheme we have just described acts as a reference for each of the servers
in the multi-server system. Once a particular server has completed a service
phase or notices an arrival, it observes the number of service phases it has
completed for the job in service, and decides whether to accept or reject the
new job, if applicable, and whether to continue or abort service of the job
in service. To be clear, servers are not aware of the total amount of work
in the system, let alone the distribution of the workload over the various
servers, but they do know the total number of jobs in the system.
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In case of an arrival at the system, some servers may express the desire to
accept the new job, whereas others may reject it. This calls for a higher-level
decision, taken by some process supervisor, to determine whether the job is
actually admitted to the system or not. Two natural higher-level admission
policies are the following:

1. Admission policy Minor: accept if and only if at least one server wants
to accept.

2. Admission policy Major: accept if and only if the majority of servers
wants to accept; the new job will also be accepted if the ballot results
in a tie.

Hence, the heuristic constitutes in fact two admission policies, one for each
separate server and one for the process supervisors. We will include both
higher-level admission policies in our numerical study, and compare their
performance.

5.6.2 Refining the heuristic

In this section, we discuss a couple of natural adjustments we made to our
heuristic to enhance its performance.

5.6.2.1 Non-termination for i ≤ s and admission for i < s

We know from Proposition 5.3 and Remark 5.3 that it will be optimal in the
multi-server system not to abort any jobs as long as i ≤ s and no server has
completed all N service phases with respect to the job it is currently serving.
However, the optimal termination policy for the M|E µi

N |1 model may very
well prescribe to abort the job in service in certain states (i, k) with i ≤ s and
k < N .7 We correct this in our heuristic for the multi-server system simply
by instructing each server to continue service as long as the queue is empty
and node N has not yet been reached by the job being served by that server.
In the instances we considered in our numerical study, this modification of
the heuristic improved the performance of the heuristic significantly.

Similarly, we know from Proposition 5.4 and Remark 5.3 that it will be
optimal in the multi-server system to accept any new jobs as long as i < s.
Hence, we adjust the heuristic such that new jobs are automatically admitted

7This is actually a common phenomenon if the arrival rate is high. As an illustration,
we will highlight one occurrence in Section 5.7. See Example 5.2.
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to the multi-server system as long as there is at least one idle server. We
note, however, that we did not encounter any instances for which the optimal
admission policy for the M|E µi

N |1 did not already accept any new jobs as
long as i < s, hence the following conjecture.

/ ��,*<=�*>�(?5����#:*�L3
In the infinite horizon case with average reward criterion,

it is optimal in the M|E µi

N |1 model to accept a new job if i < s.

����������	�:��43
The prescribed and hence guaranteed admission for i < s and

non-termination for i ≤ s imply that the assumption that servers know the
number of jobs in the system may be replaced by the assumption that servers
know the size of the queue and, if the queue is empty, know whether there
is at least one idle server.

5.6.2.2 Preventing multiple service aborts

Upon arrival of a job which will be accepted by the higher-level admission
policy, the decision prescribed by our heuristic as regards the termination
of any jobs may cause more than one server to abort service. This might,
however, be very unfavourable for the system as a whole. Namely, it could
drain the system far too heavily, e.g., from i ≥ s jobs in the system to some
undesired level far below s. See Example 5.1. We correct this in our heuristic
by prescribing that irrespective of how many servers request an abort, only
one may actually abort service. This will be the one that has completed
the most service phases with respect to the job it is serving. Again, in our
instances, the performance of the heuristic improved significantly by this
adjustment. Note that we have obtained the following form of higher-level
termination control:

• make full use of capacity: if i ≤ s and s is such that sN = 0, then no
server may abort service;

• avoid unintended clearance: at any time, at most one server may abort
service.

�������� �!"�#:���

Consider some recurrent state (8, (1, 1, 4, 0)) in a six-server

instance of our multi-server model. Assume that the optimal single-server
policy accepts in each node if there are 8 jobs in the system and aborts service
in node 3 if there are 9 jobs in the system. Then an ignorant multi-server
implementation would let all 4 servers in node 3 abort service, inducing a
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transition to state (5, (4, 1, 0, 0)). Clearly, it will be better to let only 1 of
the 4 servers abort service, resulting in a transition to state (8, (2, 1, 3, 0)).

����������	�:���:
In Conjecture 5.1, we asserted that the optimal multi-server

policy, which has complete information on the state of the system, will
abort at most one job at service phase completion times. But we have also
demonstrated that it may very well perform multiple service aborts at arrival
times; cf. Counterexamples 5.3 and 5.4. Our heuristic, which always aborts
at most one job at a time, is set against this policy.

5.6.3 Final form of the heuristic

We term the heuristic we have just described and refined the VSR (‘variable
service rate’) heuristic. Its final form is summarized below.

The VSR heuristic

1. Let be given an instance of the M|EN |s model.

2. Consider the corresponding instance of the M|E µi

N |1 model.

3. Compute its optimal admission/termination control policy.

4. If not yet prescribed as such, fix the admission policy such that decision
accept is taken at arrival times as long as i < s. For i ≤ s, if prescribed
otherwise, fix the termination policy such that decision continue is
taken as long as node N has not yet been reached.

5. Moreover, if not yet prescribed as such, fix the admission policy for
each s ≤ i ≤ i∗max such that if decision accept is taken in state (i, k),
then decision accept is also taken in all states (i, l) with k < l ≤ N .

6. Translate this single-server policy to control rules for the multi-server
system:

i. In principle, each server in the multi-server system follows the
optimal policy obtained in Steps 3 to 5.

ii. Apply higher-level admission control: at arrival times, the
decision to accept or reject depends on the number of servers that
express their desire to accept. Under admission policy Minor, a
new job is admitted if at least one server wants to accept. Under
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admission policy Major, a new job is admitted if at least half of
all servers want to accept.

iii. Apply higher-level termination control: if, after the admission of
a new job, more than one server wants to abort, then only the
server that has completed the most service phases with respect
to the job it is serving is granted permission to do so.

5.7 Numerical results

We have evaluated the VSR heuristic for a large collection of test instances of
the multi-server model. In this section, we present the results we obtained for
three representative sample sets of instances. These results are characteristic
of the performance of the heuristic in case of a modest number of servers.

The remainder of the section is organized as follows. Section 5.7.1 contains
some preliminaries. Sections 5.7.2 through 5.7.4 list the results for various
instances of the model. The conclusions that can be drawn from the collected
results are compiled in Section 5.7.5.

5.7.1 Some general remarks

We will consider consecutively (i) a 3-server system with at most 4 service
phases per job, (ii) a 6-server system with at most 4 service phases per job,
and (iii) a 4-server system with at most 6 service phases per job. For each
system, we will consider 3 different cost structures. Further, for each system
and cost structure, we will consider a range of values of the gross workload.

Following Section 1.2.2, the gross workload ρ is defined as

ρ := λ
N

sµ
.

It is the utilization of the system if each job was to receive full service.
Interesting values of ρ are those for which we cannot do all work, but still a
sizeable fraction, e.g., values of ρ that lie somewhere between 1 and 2. The
service rate of the servers is considered fixed and equal to 1, i.e., µinit = 1,
where µinit denotes the service rate before uniformization. Hence, different
values of ρ are obtained solely by varying the arrival rate of jobs.
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For ρ → ∞, where N and s are fixed, it will be optimal for each server to
accept a new job if the job it is serving has already passed at least kopt ∈ K
service phases, where

K := argmax
k

r(k)− r(0)− c

k
.

The job in service is then terminated immediately, and replaced by the new
job. Note that this policy can be carried out for sure if higher-level admission
policy Minor is employed. In case of higher-level admission policy Major, the
new job will only be admitted to the system if at least d s2e − 1 of the other
servers accept the new job as well. So, for very high values of ρ, one may
expect that under higher-level admission policy Major, servers will often be
a nuisance to each other, which will probably reduce the performance of the
heuristic drastically. As we will see later on, this is indeed the case.

Denote by k∗ the smallest element of K and define

ρk∗ := λ
k∗

sµ
.

This would be the workload of the system if all jobs were to receive exactly
k∗ service phases’ worth of attention. In our decision model, the average
number of service phases that jobs admitted to the system will pass through
will gradually drop from N to k∗ as the ratio λ

sµ increases. For larger values
of this ratio, ρk∗ will give a more meaningful representation of the workload
of the system than ρ. For each system and cost structure considered, we
will include the value of ρ for which ρk∗ = 1, as well as at least two values
around that particular value.

Furthermore, we would like to note that the refinement of the heuristic
as discussed in Section 5.6.2 resulted in an improvement of up to 3.5% in
absolute value and up to 95% in relative value with respect to the average
reward per unit of time, as compared to the situation in which the measures
described there are not applied.

Finally, a sensitivity analysis indicated that small changes to the policy (as
computed by the heuristic) can influence the performance considerably. In
our test instances, artificial disturbances led to deviations of up to about
8% in absolute value.
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5.7.2 A 3-server system with at most 4 service phases per job

We consider a system with s = 3 servers, N = 4 service phases and reward
function r = (0, 25, 45, 60, 72). We consider three sets of instances:

Set 1 hinit = 2 and c = 10.

Set 2 hinit = 1 and c = 20.

Set 3 hinit = 5 and c = 0.

Here, hinit are the holding costs before uniformization. Note that these are
independent of the arrival rate of jobs. The uniformized holding costs h are
equal to hinit(λinit+s)

−1, where λinit is the arrival rate before uniformization.

Within each set, we consider various values of λinit, and hence ρ, and evaluate
the heuristic under both admission policy Minor and admission policy Major.
Note that Minor and Major will be identical and hence yield the same results
for any instance in Set 3, since c = 0 implies that jobs will never be rejected;
cf. Remark 3.4.

5.7.2.1 Results for Set 1

The results for Set 1 are listed in Table 5.1, where, as well as in the remainder
of this chapter, g∗ denotes the optimal average reward per unit of time for
the multi-server system and gMinor (gMajor, respectively) denotes the average
reward per unit of time as obtained by the VSR heuristic under admission
policy Minor (Major, respectively). The corresponding relative errors are
denoted by ∆Minor and ∆Major, e.g.,

∆Minor :=
gMinor − g

∗

g∗
· 100%.

The absolute and relative accuracy in all calculations performed in our
numerical study was 10−4.

Additionally, to give an impression of maximum queue sizes, iMinor
max denotes

the maximum number of jobs admitted to the multi-server system under the
VSR heuristic and admission policy Minor. This number is readily obtained
from the optimal single-server policy computed in Step 3 of the heuristic.

Further, note that for ρ→∞, it will be optimal for each server to accept a
new job as soon as the job currently in service has passed 2 service phases,
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because maxk (r(k)− 10)/k = 17.5, which is attained for k∗ = 2. We have

g∗ →

(
r(k∗)− r(0)− c

k∗
− hinit

)

s as ρ→∞,

which we can use to verify our implementation of the multi-server model.
We should have g∗ → (17.5− 2) · 3 = 46.5 as ρ→∞. In addition, note that
ρ = 2.000 corresponds to ρk∗ = 1.000.

ρ g∗ iMinor
max gMinor ∆Minor gMajor ∆Major

0.333 13.44 20 13.44 −0.0% 13.44 −0.0%
0.667 25.88 13 25.88 −0.0% 25.88 −0.0%
1.000 34.06 9 34.04 −0.1% 34.04 −0.1%
1.333 38.22 7 38.14 −0.2% 38.14 −0.2%
1.667 40.54 6 40.49 −0.1% 40.49 −0.1%
2.000 41.97 6 41.65 −0.8% 41.75 −0.5%
4.000 44.66 4 44.55 −0.2% 44.55 −0.2%

100.000 46.49 3 46.49 −0.0% 43.52 −6.4%

Table 5.1: Results for Set 1

5.7.2.2 Results for Set 2

The results for Set 2 are listed in Table 5.2. For ρ→∞, it will be optimal
for each server to accept a new job as soon as the job currently in service
has passed 3 service phases, because maxk (r(k) − 20)/k = 13 1

3 , which is
attained for k∗ = 3. Hence, we know that g∗ → (131

3 −1) ·3 = 37 as ρ→∞.
Further, note that ρ = 1.333 corresponds to ρk∗ = 1.000. Values of ρ below 1
have been omitted from the table, because in those cases the relative errors
were negligible, as was the case for Set 1.

ρ g∗ iMinor
max gMinor ∆Minor gMajor ∆Major

1.000 30.82 9 30.81 −0.0% 30.81 −0.0%
1.333 33.28 7 33.26 −0.1% 33.25 −0.1%
1.667 34.34 6 34.32 −0.1% 34.31 −0.1%
2.000 34.92 5 34.81 −0.3% 34.81 −0.3%
4.000 36.07 5 35.95 −0.3% 35.95 −0.3%

100.000 36.98 3 36.98 −0.0% 36.23 −2.0%

Table 5.2: Results for Set 2
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5.7.2.3 Results for Set 3

The results for Set 3 are listed in Table 5.3. We only have results for Minor
on display, since c = 0 implies that the policies corresponding to Minor and
Major are identical, as already noted. From c = 0 and the concavity of
the reward function, we can derive immediately that for ρ → ∞, it will be
optimal for each server to accept a new job as soon as the job currently in
service has passed the first service phase. Hence, g∗ → (25 − 5) · 3 = 60 as
ρ→∞. Further, note that ρ = 4.000 corresponds to ρk∗ = 1.000.

ρ g∗ iMinor
max gMinor ∆Minor

1.000 32.49 8 32.42 −0.2%
1.333 38.41 7 38.31 −0.3%
1.667 42.55 6 42.53 −0.0%
2.000 45.59 6 45.35 −0.5%
4.000 53.41 4 53.41 −0.0%
6.000 55.56 4 55.56 −0.0%

100.000 59.83 3 59.83 −0.0%

Table 5.3: Results for Set 3
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5.7.3 A 6-server system with at most 4 service phases per job

We consider the same system as in Section 5.7.2, but let s = 6 instead of 3,
so the system has twice as many servers at its disposal. Again, we consider
three sets of instances and various values of ρ within each set. In particular,
Set 4 features the same cost structure as Set 1, Set 5 features the same
cost structure as Set 2, and Set 6 features the same cost structure as Set 3.

5.7.3.1 Results for Set 4

The results for Set 4 are listed in Table 5.4. Note that g∗ → 93 as ρ→∞.

ρ g∗ iMinor
max gMinor ∆Minor gMajor ∆Major

0.333 26.99 39 26.99 −0.0% 26.99 −0.0%
0.667 53.24 26 53.24 −0.0% 53.24 −0.0%
1.000 72.05 16 71.98 −0.1% 71.98 −0.1%
1.333 80.82 12 80.57 −0.3% 80.57 −0.3%
1.667 85.30 11 85.07 −0.3% 85.10 −0.2%
2.000 87.67 10 86.97 −0.8% 87.08 −0.7%
4.000 91.13 8 90.04 −1.2% 90.44 −0.8%

100.000 92.98 6 92.98 −0.0% 86.89 −6.5%

Table 5.4: Results for Set 4

5.7.3.2 Results for Set 5

The results for Set 5 are listed in Table 5.5. Note that g∗ → 74 as ρ→∞.

ρ g∗ iMinor
max gMinor ∆Minor gMajor ∆Major

1.000 64.68 15 64.64 −0.1% 64.64 −0.1%
1.333 69.37 11 69.29 −0.1% 69.30 −0.1%
1.667 71.03 9 70.91 −0.2% 70.91 −0.2%
2.000 71.81 9 71.55 −0.4% 71.71 −0.1%
4.000 73.09 7 72.97 −0.2% 72.97 −0.2%

100.000 73.98 6 73.98 −0.0% 72.38 −2.2%

Table 5.5: Results for Set 5
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5.7.3.3 Results for Set 6

The results for Set 6 are listed in Table 5.6. Note that g∗ → 120 as ρ→∞.

ρ g∗ iMinor
max gMinor ∆Minor

1.000 69.26 16 69.06 −0.3%
1.333 82.04 14 81.60 −0.5%
1.667 90.64 12 90.43 −0.2%
2.000 96.68 11 95.71 −1.0%
4.000 111.36 8 111.13 −0.2%
6.000 114.75 7 114.75 −0.0%

100.000 119.79 6 119.79 −0.0%

Table 5.6: Results for Set 6
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To illustrate the concept of non-termination for i ≤ s, which

we have discussed in Section 5.6.2, consider the instance where ρ = 4.000.
Clearly, for i ≤ 6, the multi-server optimal termination policy only aborts
the service of a job if it has completed all 4 service phases. However, for
i ≤ 6, the optimal termination policy for the corresponding M|E µi

N |1 model
is as follows: for i = 1, 2, abort if at least 4 phases have been completed; for
i = 3, 4, abort if at least 3 phases have been completed; for i = 5, 6, abort if
at least 2 phases have been completed.

5.7.4 A 4-server system with at most 6 service phases per job

We consider a system with s = 4 servers, N = 6 service phases and reward
function r = (0, 20, 36, 49, 59, 69, 75). As before, we consider three sets of
instances and various values of ρ within each set. Set 7 features the same
cost structure as Set 2, Set 8 features the same cost structure as Set 1, and
Set 9 features the same cost structure as Set 3.
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5.7.4.1 Results for Set 7

The results for Set 7 are listed in Table 5.7. For ρ→∞, it will be optimal
for each server to accept a new job as soon as the job currently in service has
passed 5 service phases, because maxk (r(k)−20)/k = 9.8, which is attained
for k∗ = 5. Hence, we know that g∗ → (9.8 − 1) · 4 = 35.2 as ρ → ∞.
Further, note that ρ = 1.200 corresponds to ρk∗ = 1.000.

ρ g∗ iMinor
max gMinor ∆Minor gMajor ∆Major

0.333 10.87 29 10.87 −0.0% 10.87 −0.0%
0.667 21.31 18 21.31 −0.0% 21.31 −0.0%
1.000 28.70 11 28.66 −0.1% 28.66 −0.1%
1.200 30.82 9 30.75 −0.2% 30.74 −0.3%
1.333 31.66 8 31.57 −0.3% 31.59 −0.2%
1.667 32.83 7 32.64 −0.6% 32.71 −0.4%
2.000 33.45 6 33.17 −0.8% 33.17 −0.8%
4.000 34.57 5 34.09 −1.4% 34.09 −1.4%

100.000 35.12 4 35.12 −0.0% 33.43 −4.8%

Table 5.7: Results for Set 7

5.7.4.2 Results for Set 8

The results for Set 8 are listed in Table 5.8. Note that g∗ → (13−2) ·4 = 44
as ρ→∞, because maxk (r(k)−10)/k = 13, which is attained for k ∈ {2, 3}.
Hence, k∗ = 2 and therefore ρ = 3.000 corresponds to ρk∗ = 1.000.

ρ g∗ iMinor
max gMinor ∆Minor gMajor ∆Major

1.000 30.81 11 30.77 −0.1% 30.77 −0.1%
1.333 35.50 8 35.45 −0.1% 35.45 −0.1%
1.667 38.28 7 37.85 −1.1% 37.84 −1.1%
2.000 39.97 7 39.73 −0.6% 39.76 −0.5%
3.000 42.16 6 41.51 −1.5% 41.65 −1.2%
4.000 42.95 5 42.16 −1.8% 42.23 −1.7%

100.000 43.99 4 43.99 −0.0% 42.79 −2.7%

Table 5.8: Results for Set 8
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5.7.4.3 Results for Set 9

The results for Set 9 are listed in Table 5.9. Note that g∗ → (20−5)·4 = 60 as
ρ→∞ and that ρ = 6.000 corresponds to ρk∗ = 1.000, since k∗ = 1, which
follows immediately from c = 0 and the concavity of the reward function.

ρ g∗ iMinor
max gMinor ∆Minor

1.000 26.83 10 26.80 −0.1%
1.333 32.70 9 32.61 −0.3%
1.667 37.14 8 36.79 −0.9%
2.000 40.54 8 40.32 −0.5%
4.000 50.69 6 50.64 −0.1%
6.000 54.16 5 54.16 −0.0%
8.000 55.69 5 55.45 −0.4%

100.000 59.75 4 59.75 −0.0%

Table 5.9: Results for Set 9

5.7.5 Conclusions

The results presented in Tables 5.1 through 5.9 indicate that for meaningful
values of ρ, the VSR heuristic delivers a maximum relative error of up to
about 2%. In most cases, the relative error stays well below 1%. A recurrent
phenomenon in our numerical study is that the errors generally tend to be
higher for higher values of ρ. Alas, we do not have a clear understanding of
the cause of this recurrent pattern.

We further observe that the simple admission policy Minor and the more
complicated policy Major perform nearly the same, except for extremely
large values of ρ, in which case the performance of Major is relatively poor.
We already predicted this phenomenon in Section 5.7.1. Based on this, we
could give an all-round preference to Minor. An additional option would
be to calculate both gMinor and gMajor and to use the policy that yields the
highest average reward. We note, however, that it will not be possible to
compute these values explicitly for large instances, i.e., instances with a
large number of servers or a high maximum number of service phases. They
have to be obtained by means of simulation, which means that it could take
some time before accurate values are obtained.
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The conclusions drawn in this section apply to the complete collection of sets
of instances we included in our numerical study to evaluate the performance
of the VSR heuristic. We mention that the results we obtained for sets other
than those considered in Sections 5.7.2 through 5.7.4 are in accordance with
these conclusions. These sets also featured systems with up to 6 servers.
This means that our conclusions are valid for instances with a fairly modest
number of servers. In principle, we have no knowledge of the performance
for systems for which the number of servers plus the maximum number of
service phases is large. In the next section, we will compare the performance
of the VSR heuristic to that of another natural heuristic. In this comparison,
it will be possible to consider large instances. As will be illustrated by means
of some numerical results, the VSR heuristic outperforms the other heuristic.

5.8 Comparison of two heuristics via simulation

Besides modifying the service process of the M|EN |1 model to obtain a
heuristic for the computation of the optimal policy for the multi-server
model, as we did in our construction of the VSR heuristic, we could have
chosen to alter the arrival process of the M|EN |1 model to obtain a heuristic.
A model that comes to mind naturally in this respect is the Es|EN |1 model
of Section 4.2.

5.8.1 Obtaining a heuristic from the Es|EN |1 model

The main idea is that if we consider some arbitrary server in the multi-server
system, then, on average, one out of every s accepted jobs is routed to that
particular server. As an approximation, we can model the interarrival time
of jobs at each separate server by an Erlang(λ)-s distribution. Subsequently,
to obtain a single-server heuristic, we can consider each separate server in
isolation. This gives s identical Es|EN |1 systems. Further, we can allow for
the rejection of arrival phases, symbolizing the rejection of a new job in the
multi-server system. The optimal policy for this single-server system with
extended admission control, which is readily computed, can then be used as
a reference for each of the servers in the multi-server system separately.

Here, a natural correspondence is to let i jobs and a completed arrival phases
in the single-server system (cf. Section 4.2) correspond to s · i+a jobs in the
multi-server system. In the single-server system, we charge consideration
costs c/s for the acceptance of an arrival phase and associate a reward
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of r(0)/s with the rejection of an arrival phase. This is irrespective of
whether an accepted arrival phase actually leads to an extra job in the
system, which is the case if the number of arrival phases left has reached
zero. The multi-server system faces holding costs of hinit per job per unit
of time. In the corresponding single-server model, we charge total holding
costs of (i+ a/s) · hinit per unit of time.

A natural translation from the optimal policy for the single-server system
to actual control rules for the multi-server system is then as follows. We let
each of the servers in the multi-server system follow the optimal single-server
policy. In particular, the prescription by the optimal single-server policy to
abort in state (i, k, a) translates to the decision by an individual server in
the multi-server system to abort if there are si+a jobs in the system and the
server has completed k service phases with respect to the job it is serving.
Similarly, the prescription by the optimal single-server policy to reject an
arrival phase in state (i, k, a) translates to the decision by an individual
server in the multi-server system to reject a new job if there are already
si+a jobs in the system and the server has completed k service phases with
respect to the job it is serving.

Then, by ensuring a threshold form in the same way as we did in the
construction of the VSR heuristic, and by applying higher-level admission
and termination control in the same way as we did in the construction of
the VSR heuristic, we obtain a natural and practical heuristic based on the
Es|EN |1 model with extended admission control. We term this heuristic the
ERL (‘Erlang’) heuristic. Its final form is summarized below.

The ERL heuristic

1. Let be given an instance of the M|EN |s model.

2. Consider the corresponding instance of the Es|EN |1 model featuring
extended admission control. Accepting an arrival phase costs c/s and
rejecting it yields r(0)/s. The holding costs are equal to (i+ a/s)hinit

per unit of time.

3. Compute its optimal admission/termination control policy.

4. Fix this policy as follows: make sure that decision accept is taken as
long as i = 0 and that decision continue is taken in state (i, a) = (1, 0)
as long as node N has not yet been reached.
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5. Perform Step 5 of the VSR heuristic. This entails ensuring that the
admission policy is monotone in k for fixed (i, a).

6. Translate this single-server policy to control rules for the multi-server
system:

i. In principle, each server in the multi-server system follows the
optimal policy obtained in Steps 3 to 5, where the situation of i
jobs and a completed arrival phases in the single-server system
corresponds to si+ a jobs in the multi-server system.

ii. Apply higher-level admission control, as described for the VSR
heuristic.

iii. Apply higher-level termination control, as described for the VSR
heuristic.

5.8.2 Numerical results

In case of a fairly modest number of servers, a separate numerical study
(the results of which we omit here) pointed out that the VSR heuristic
yields better results than the ERL heuristic, although the difference in
performance is not substantial. More importantly, we would like to be able
to say something about the strength of the VSR heuristic in case of larger
systems. Unfortunately, we cannot compare gMinor or gMajor to g

∗, since the
latter cannot be computed, but we can show numerically that the superiority
of the VSR heuristic over the ERL heuristic grows as the system becomes
larger, hence justifying the selection of the VSR heuristic to be used as ‘the’
heuristic for the multi-server model. It remains the question whether the
average reward yielded by the VSR heuristic lies very close to the optimal
average reward. We do know g∗ as ρ → ∞, however, and our results show
that for sizeable values of ρ, the average reward yielded by the heuristic lies
close to the g∗ corresponding to ρ → ∞, from which we can conclude that
the performance is at least good.

The average reward associated with a policy corresponding to either the
VSR heuristic or the ERL heuristic can be computed by means of simulation.
Once the heuristic has established a single-server policy, we can simulate the
multi-server system with given decisions, taken from the single-server policy.
We have tested the performance of both heuristics for a selection of larger
instances of the multi-server model. Below, we show the results we obtained
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for two instances whose results are illustrative of the performance of the
heuristics, and of how their realization and performance compare. In both
cases, we considered 5 test values of the gross workload: ρ = 1, ρ∗ = 1 and 3
values around and in between these values. We only show the results for
admission policy Minor. Admission policy Major yielded similar results.

5.8.2.1 Results for an M|E10|10 system

We consider a ten-server system with hinit = 1.5, c = 30, N = 10 and reward
function r = (0, 24, 45, 60, 71, 79, 86, 91, 95, 98, 100). It is straightforward to
check that k∗ = 4, so we know that g∗ → (10.25− 1.5) · 10 = 87.5 as ρ→∞
and that ρk∗ = 1 corresponds to ρ = 2.5. Based on this, we select the set
R := {1, 1.5, 2, 2.5, 3} of values of ρ. This constitutes Set 10 of instances.

The results for Set 10 are listed in Table 5.10. For each instance, we
conducted 10 simulation runs, each considering 106 units of time (hence
considering approximately 106 service phase completions and 106 to 3 · 106

arrivals per run, depending on which ρ ∈ R is being considered). For each
instance and either the VSR or ERL heuristic, this yielded average rewards
per unit of time of g1, . . . , g10. The value gMinor listed in the table is defined
as the average of these 10 values, with σ its standard deviation. Further, ∆
is the relative gain if we were to use the VSR heuristic instead of the ERL
heuristic. Note that g∗ remains unknown for ρ ∈ R. We only have 87.5 as
an upper bound.

VSR ERL
ρ iMinor

max gMinor σ iMinor
max gMinor σ ∆

1.000 33 52.89 0.04 41 47.80 0.02 11%
1.500 23 69.95 0.04 31 57.31 0.02 22%
2.000 17 78.42 0.03 26 65.50 0.03 20%
2.500 15 82.42 0.04 23 69.15 0.03 19%
3.000 13 84.02 0.03 20 70.29 0.04 20%

Table 5.10: Results for Set 10
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5.8.2.2 Results for an M|E16|8 system

We consider an eight-server system with hinit = 1, c = 100, N = 16 and
reward function r = (0, 30, 56, 80, 102, 122, 138, 151, 162, 172, 182, 191, 200,
207, 212, 216, 220). It is straightforward to check that k∗ = 12, so we know
that g∗ → (81

3 − 1) · 8 = 58 2
3 as ρ → ∞ and that ρk∗ = 1 corresponds to

ρ = 11
3 . Based on this, we select the set R := {1, 1.333, 1.667, 2, 3} of values

of ρ. This constitutes Set 11 of instances. The results for this set are listed
in Table 5.11.

VSR ERL
ρ iMinor

max gMinor σ iMinor
max gMinor σ ∆

1.000 19 48.07 0.05 26 46.23 0.03 4%
1.333 13 54.09 0.04 21 48.52 0.02 11%
1.667 11 55.95 0.03 18 49.63 0.02 13%
2.000 10 56.65 0.02 16 49.90 0.02 14%
3.000 10 57.40 0.02 16 50.62 0.02 13%

Table 5.11: Results for Set 11

5.8.3 Conclusions

The overall picture is that the ERL heuristic is clearly outperformed by the
VSR heuristic. A trend is that the difference in performance becomes more
significant for larger s. An explanation for this is that the approximation of
the arrival process used by the ERL heuristic and the subsequent translation
from i jobs in the single-server policy to si jobs in the multi-server policy
are less accurate than anticipated. Consequently, the deviation increases
with s. Furthermore, Tables 5.10 and 5.11 indicate that the ERL heuristic
takes more insurance against idle time than the VSR heuristic. Apparently,
it takes too much insurance, which only causes extra holding costs, resulting
in a lower average reward than could have been obtained by maintaining a
smaller safety stock. Finally, we note that for sizeable ρ, the average reward
obtained by the VSR heuristic lies close to the upper bound corresponding
to ρ → ∞, which cannot even be reached by the optimal policy for those
values of ρ. Hence, although we do not know the exact difference between
gMinor and g

∗, we do know empirically that the relative error is fairly small.
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5.9 Conclusions

We have discussed a multi-server extension of the M|EN |1 model. The focus
was on numerical aspects of this M|EN |s model and its optimal control
policy. We have advocated the need for a heuristic for this model, and have
presented a heuristic which is based on the optimal policy for a slightly
modified version of the M|EN |1 model. The heuristic was refined and
evaluated by means of a numerical study. The numerical results showed that
our heuristic performs very well for multi-server systems with a fairly small
number of servers. For larger multi-server systems, we used simulation to
compare our heuristic to another natural heuristic. We showed empirically
that the first delivers superior performance.

There remain many intriguing open problems to be investigated. For
example, one may attempt to prove the following threshold result for the
multi-server system, which we pose as a conjecture.

/ ��,*<=�*>�(?5����#:*�9:
Let n ≥ 1 and (i, s) such that i > s. If it is optimal to

abort at least one job in state (i, s), then it is optimal as well to abort at
least one job in state (i+ 1, s).

Another challenge would be to prove or possibly disprove Conjectures 5.2
and 5.3, made with respect to the M|E µi

N |1 model.

Further, from a practical point of view, a natural and highly useful direction
for further research would be to investigate the performance of heuristics
for multi-server systems with more general routing mechanisms, such as the
feed-forward routing mechanism of the M|EN, jumps|1 model, or the general
tree-structured routing mechanism discussed at the end of Chapter 4.
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6
A two-class preemptive priority queue

with admission and termination control

I n the preceding chapters, we considered several on-line decision models
with both admission and termination control. A common feature of these

models was that there was only one class of jobs. This means that, upon
arrival to the system, jobs were assumed to be mutually indistinguishable.
This represents the situation that the actual content of a job is unknown
beforehand, and will only become clear during the service process. However,
if the nature of the process is such that new jobs can very well be classified
into distinct classes of jobs, based on job characteristics that can already be
recognized before any capacity engagement, then one-class models cannot be
used to accurately represent the system, and multi-class models are required.

There is an extensive literature on multi-class queueing models, either with
or without decision features. In the latter case, the focus has mainly been on
admission and scheduling control. For example, a classic static scheduling
result, established by various authors, is the cµ rule; see, e.g., Kakalik [30].
In case of a single-server queue with Poisson arrivals, non-preemptive service
discipline and independent service times, where class-i jobs have service rate
µi and holding costs ci per unit of time spent in the system, the cµ rule
minimizes the expected holding costs per unit of time over all jobs in the
system. At any time, the cµ rule gives priority to a class-i job if i maximizes
ciµi among all classes of which there are currently jobs present. It is an
example of an index rule (where ciµi is the index). Harrison [25] showed
that in the case of job rewards, the objective of maximizing the expected
discounted reward over an infinite horizon is optimized by an index rule too.

143
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A specific example of a dynamic scheduling control model is the two-class
preemptive priority queueing model of Groenevelt et al. [22], which we
already mentioned in Section 1.5.3. In this chapter, which is based on Brouns
and Van der Wal [12], we will consider a similar model, but with a different
cost structure and additional control features. In particular, we will study
a two-class Mλ1,λ2 |Mµ|1 preemptive priority queue with admission as well
as termination control. The two classes are assumed to represent more or
less valuable jobs, where the distinction can already be made upon arrival
to the system. The admission and termination control features are the same
as in Chapter 3. This means that one has the option to accept or reject new
type-1 or type-2 jobs, and, at any time, one has the option to remove any
number of type-1 or type-2 jobs from the system. We will show that there
exist optimal threshold policies for these two types of decisions. Formally,
there is also a third decision feature: the service order. However, we will
show presently that this third type is not a real issue—the conditions will
be such that the system is essentially a priority queue in which type-2 jobs
have priority over type-1 jobs.

The remainder of this chapter is organized as follows. In Section 6.1, we
describe the model in detail. We also reduce the model by recognizing that
type-2 jobs are preferable to type-1 jobs and should be given priority over
type-1 jobs. Section 6.2 gives an overview of the main results for the reduced
model, and the line of proof. The proof itself is given in Section 6.3. Finally,
in Section 6.4, under a certain restriction on the admission control structure,
we extend our results to the multi-server version of our model.

6.1 Model description

The basic model we study is a two-class single-server queueing system with
infinite buffer capacity. Type-i jobs, i = 1, 2, arrive at the station according
to a Poisson process with arrival rate λi ≥ 0. The workload of a job is
exponential with mean service time 1/µ, independent of which of the two
classes the job belongs to. The service discipline is unrestricted. Queued
jobs may be rearranged at any time and at any time the service of a job may
be interrupted—and resumed later, if so desired—in order to commence the
service of another job. The system is controlled in three ways: one has to
decide to accept or reject new arrivals, one has to decide to remove jobs
from the system or to maintain them, and one has to decide what job to
serve.
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We assume that the decision maker knows the number of type-1 jobs and
the number of type-2 jobs in the system. The structure of the system is that
of a (semi-)Markovian decision process. It can be described as follows.

States: The state of the system is described by the tuple (x, y), where x is
the number of type-1 jobs in the system and y is the number of type-2 jobs
in the system. A two-dimensional state space suffices, because service may
be interrupted at any time and because service times are exponential. The
question what job is served is part of the decision, not of the state. We also
use the intermediate states (x, y, arr/1) and (x, y, arr/2) immediately after
the arrival of a type-1 or type-2 job, respectively.

Events: We distinguish two possible events: (i) the arrival of a new job and
(ii) a service completion.

Decisions: If the event is an arrival, then first it has to be decided whether
to accept (decision accept) or reject (decision reject) the newly arrived
job. If it concerns a type-1 job, then this changes the state from (x, y, arr/1)
to (x + 1, y) or (x, y), respectively. If, alternatively, it concerns a type-2
job, then this changes the state from (x, y, arr/2) to (x, y + 1) or (x, y),
respectively. Next, it is decided either to maintain all jobs in the system
(decision continue) or to remove one or more jobs from the system (decision
abort), and it is decided what job to serve. If this is not the job already
in service, then the job in service is either removed from the system or put
back in the queue. The service of a job that has been placed back in the
queue can be resumed later—it need not be started all over again.

If the event is a service completion, then only the continue/abort decision
and the decision what job to serve have to be taken.

Costs and rewards: The reward for a type-i job, i = 1, 2, is ri, where it is
assumed that r2 > r1 > 0. This reward is earned upon service completion.
Jobs that do not complete their service, e.g., because they are rejected upon
arrival or removed while awaiting service, receive a reward of zero. Removing
jobs from the system is free of charge.

Apart from these rewards there are holding costs for the jobs residing in
the system, either awaiting service or being served. We assume these costs
are linear in the number of jobs and class-independent, namely, mh ≥ 0 per
unit of time when there are m = x+ y jobs present. In addition, each time
a job is admitted to the system, class-independent consideration costs c ≥ 0
are incurred. Rejecting jobs is free of charge. We assume that r1 > c+h/µ,
otherwise it will not be interesting to serve any type-1 jobs.
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Finally, there are no switching costs, i.e., no costs are incurred if we start
serving a type-2 job if the previous job in service was a type-1 job and vice
versa.

Discounting: We discount at a rate α ≥ 0, i.e., rewards and costs at time
t are to be multiplied by exp(−αt). As in Chapter 3, the discount rate α is
treated as the rate by which the process vanishes; cf. Section 3.1.

Criterion: The objective is to maximize the expected (discounted) reward
over an n-period time horizon. We allow λ1+λ2>µ, as well as λ1=λ2=0. In
the latter case, there are two batches, one consisting of type-1 jobs awaiting
service and one consisting of type-2 jobs awaiting service, without any future
arrivals.

Uniformization: The system evolves at arrival times, at service completion
times, and eventually when the process vanishes. Applying uniformization,
we can consider that transitions occur at the jump times of a Poisson process
with rate λ1+λ2+µ+α > 0. By scaling time, we take λ1+λ2+µ+α = 1
without loss of generality. Then, with probability λi≥0, i = 1, 2, a transition
concerns the arrival of a type-i job, with probability µ > 0 it concerns a
service completion and with probability α ≥ 0 the process vanishes. A
service completion is either a real service completion or an artificial service
completion when the server idles. In the latter case the state of the system
stays (0, 0) and the continue decision is taken by definition.

6.1.1 Dynamic Programming formulation

We now summarize and complete the model in terms of a mathematical
formulation. We first introduce some general value functions and then
promptly reduce the model by showing that it is optimal to always give
type-2 jobs priority over type-1 jobs. We then give the DPEs for the reduced
model. After that, we successively state and prove our main theorem.

Recapitulating, x and y denote the number of type-1 and type-2 jobs in the
system, respectively, and (x, y) is the state of the system for x, y ≥ 0. We
will use the following notation:

• Vn(x, y) denotes the maximum expected n-period α-discounted reward
when the current state, just before the next decision to continue or
abort, is (x, y). State (x, y) may be the result of an arrival immediately
after the accept/reject decision.
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• Vn(x, y;π) denotes the maximum expected n-period α-discounted
reward when the current state, just before the next decision to
continue or abort, is (x, y), and given that decision π is chosen in
that state, where π ∈ {continue, abort} if either x = 0 or y = 0 and
π ∈ {continue/1, continue/2, abort/1, abort/2} if x, y > 0. Here,
continue/i means we take the continue decision—i.e., it is decided
to maintain all jobs currently present—and commence the service of a
type-i job, i = 1, 2, and abort/i means we remove a type-i job from
the system, i = 1, 2, after which we make a transition to state (x−1, y)
if i = 1 and a transition to state (x, y − 1) if i = 2. Let π∗ denote
the optimal decision, so Vn(x, y) = Vn(x, y;π

∗). Note, again, that in
the notation π∗ the dependence on x, y and n is suppressed, and that
we use commas in our notation to separate state characteristics and a
semi-colon to separate the decision from the state.

• Vn(x, y, arr/i) denotes the maximum expected n-period reward when
the current state is (x, y), given that at this very point in time an
arrival event occurs, concerning a type-i job, i = 1, 2.

• Vn(x, y, arr/i;π) denotes the maximum expected n-period reward when
the current state is (x, y), given that there is an arrival of a type-i job,
i = 1, 2, at this point in time and given that decision π is chosen
in that state, where π ∈ {accept, reject}. Again, π∗ denotes the
optimal decision, so Vn(x, y, arr/i) = Vn(x, y, arr/i;π

∗).

• Finally, when time hits zero, all jobs currently in the system yield a
reward of zero for not having completed service. So, V0(x, y) = 0 for
all x, y.
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For all n ≥ 0 and x, y ≥ 0,

0 ≤ Vn(x, y + 1)− Vn(x+ 1, y) ≤ r2 − r1.

Proof. We first consider the left-hand inequality. Consider two n-period
process instances of our model, instance I1 starting in (x+1, y) and instance
I2 starting in (x, y + 1). We couple all jobs, all events and all decisions.
Instance I1 follows the optimal policy and instance I2 copies all actions
taken in I1. In particular, we let the additional type-2 job in I2 go through
exactly the same as the additional type-1 job in I1. I.e., if I1 aborts its
additional type-1 job, then I2 aborts its additional type-2 job, and if I1
takes the additional type-1 job into service, then I2 takes the additional
type-2 job into service.
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As long as the additional job does not complete its service, the rewards
and costs are the same for both instances. So, if the additional job never
completes its service, then the difference in reward between the two instances
is zero. If, alternatively, the additional job completes its service at some
point in time, generating a reward of r1 in I1 and a reward of r2 in I2,
then I1 and I2 become identical immediately after this service completion,
so that the difference in reward between the two instances is r2 − r1 > 0.

The reasoning is almost the same for the right-hand inequality. Again, let
instance I1 start in (x+1, y) and let instance I2 start in (x, y+1). But now
let I2 follow the optimal policy and let I1 copy all actions taken in I2.

2
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Type-2 jobs are preferred to type-1 jobs in the sense that

for all n ≥ 0 and x, y > 0, decision abort/1 in state (x, y) is at least as good
as decision abort/2.

Proof. Immediate, by noting that

Vn(x, y; abort/1) = Vn(x− 1, y) ≥ Vn(x, y − 1) = Vn(x, y; abort/2).

2

Corollary 6.1 makes the use of the notation abort/1 and abort/2 redundant.
We only need the notation abort, where it is determined by the state (x, y)
what type of job will be removed: a type-1 job if x > 0 and a type-2 job if
x = 0.

/ ������!"!0���21�;����
Type-2 jobs are preferred to type-1 jobs in the sense that

for all n ≥ 1 and x, y > 0, decision continue/2 in state (x, y) is at least as
good as decision continue/1.

Proof. Immediate, from

Vn(x, y; continue/2)− Vn(x, y; continue/1) =

µ[Vn−1(x, y − 1) + r2]− µ[Vn−1(x− 1, y) + r1]

and the right-hand inequality of Proposition 6.1.

2
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Corollary 6.2 makes the use of the notation continue/1 and continue/2
redundant. We only need the notation continue, where it is determined by
the state (x, y) what type of job will be served: a type-2 job if y > 0 and a
type-1 job if y = 0.

Then our (reduced) model is defined by the following set of DPEs. Again,
to save space, we will usually write ab for abort and co for continue in
formal expressions, and also ac for accept and rj for reject.

V0(x, y) = 0 x, y ≥ 0

For n ≥ 0:

Vn(x, y, arr/1) =max{Vn(x+ 1, y)− c, Vn(x, y)} x, y ≥ 0

Vn(x, y, arr/2) =max{Vn(x, y + 1)− c, Vn(x, y)} x, y ≥ 0

and for n ≥ 1:

Vn(0, 0) = Vn(0, 0; co)

Vn(0, 0; co) =
∑2

i=1 λiVn−1(0, 0, arr/i) + µVn−1(0, 0)

Vn(x, y) =max{Vn(x, y; co), Vn(x, y; ab)} x+ y > 0

Vn(x, y; co) =
∑2

i=1 λiVn−1(x, y, arr/i) +

µ[Vn−1(x, y − 1) + r2]− (x+ y)h x ≥ 0, y > 0

Vn(x, 0; co) =
∑2

i=1 λiVn−1(x, 0, arr/i) +

µ[Vn−1(x− 1, 0) + r1]− xh x > 0

Vn(x, y; ab) = Vn(x− 1, y) x > 0, y ≥ 0

Vn(0, y; ab) = Vn(0, y − 1) y > 0

6.2 Overview of the results

We will prove the following theorem.
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{Characterization of the optimal admission/termination policy}
For any remaining number of periods n, the optimal admission/termination
policy can be characterized as follows:

1. i. If it is optimal to reject an arriving type-1 job in state (x, y),
then it is optimal as well to reject it in all states (x, y + j) with
j > 0 and in all states (x+ j, y − j) with 0 < j ≤ y, and thus in
all states (x+ j, y) with j > 0.

ii. If it is optimal to reject an arriving type-2 job in state (x, y),
then it is optimal as well to reject it in all states (x + j, y) with
j > 0 and in all states (x− j, y + j) with 0 < j ≤ x, and thus in
all states (x, y + j) with j > 0.

2. If it is optimal to abort in state (x, y), then it is optimal as well to
abort in all states (x, y+ j) with j > 0, in all states (x+ j, y− j) with
0 < j ≤ y, and thus in all states (x+ j, y) with j > 0.

3. If it is optimal to reject an arriving type-2 job in state (x, y), then it
is optimal as well to reject an arriving type-1 job in state (x, y).

We refer to Figure 6.1 for a graphical representation of the structure of a
typical admission/termination policy. In the optimal termination policy,
the hollow dots represent states in which we continue and the solid dots
represent states in which we abort. The polyline marks the termination
region. In the optimal admission policy, the hollow dots represent states in
which we accept any new job, the half-filled dots represent states in which
we only accept a new job if it is a type-2 job and the solid dots represent
states in which we reject any new job.

����������	�;���

It is easily seen that Part 3 of Theorem 6.1 is immediate from

Proposition 6.1 and the DPEs for Vn(x, y, arr/1) and Vn(x, y, arr/2).

����������	�;����
If c = 0, then it is always optimal to accept an arriving job,

since it may be aborted at the same moment in time at no additional cost.

�������� �!"�#;���

Consider the following instance of our model: µ = 0.45,

λ1 = 0.35, λ2 = 0.2, α = 0, h = 0.5, c = 5, r1 = 10 and r2 = 25. Let n = 5.
The optimal admission policy—should there be an arrival at this point in
time—and the optimal termination policy are given by Figure 6.1.
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Figure 6.1: Optimal admission (left-hand side) and termination (right-hand

side) policies for Example 6.1

6.2.1 The line of proof

In order to establish Parts 1 and 2 of Theorem 6.1, we will prove the following
monotonicity results, which will be interpreted directly below.

$����� ���%'&)(*&+��,-;����
{Key Proposition}

For all n ≥ 0 and x, y ≥ 0,

Vn(x+ 1, y)− Vn(x, y) ≥ Vn(x+ 2, y)− Vn(x+ 1, y), (6.1)

Vn(x, y + 1)− Vn(x, y) ≥ Vn(x, y + 2)− Vn(x, y + 1), (6.2)

Vn(x+ 1, y)− Vn(x, y) ≥ Vn(x+ 1, y + 1)− Vn(x, y + 1), (6.3)

Vn(x+ 1, y + 1)− Vn(x, y + 1) ≥ Vn(x+ 2, y)− Vn(x+ 1, y), (6.4)

Vn(x+ 1, y + 1)− Vn(x+ 1, y) ≥ Vn(x, y + 2)− Vn(x, y + 1), (6.5)

Vn(0, y + 1)− Vn(0, y) ≥ Vn(x+ 1, y + 1)− Vn(x, y + 1). (6.6)

In addition, inequalities (6.1) to (6.6) hold:

• at arrival times of type-1 jobs; the inequalities are then referred to
as (6.1arr/1) to (6.6arr/1),

• at arrival times of type-2 jobs; the inequalities are then referred to
as (6.1arr/2) to (6.6arr/2),

• given that we take the (not necessarily optimal) decision continue

in each of the states that appear in the respective inequality; the
inequalities are then referred to as (6.1 co) to (6.6co).
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Inequality (6.1) states that Vn(x, y) is concave in x, i.e., the value of an
additional type-1 job is non-increasing in x for fixed y. Inequality (6.2) states
that Vn(x, y) is concave in y as well. Inequality (6.3) states that Vn(x, y) is
submodular, i.e., the value of an additional type-1 job is non-increasing in y
for fixed x and the value of an additional type-2 job is non-increasing in x for
fixed y; cf. (1.3). Inequality (6.4) states that Vn(x, y) is subconcave in x, i.e.,
the value of an additional type-1 job is non-increasing in x for a fixed total
number of jobs in the system; cf. (1.7). Inequality (6.5) states that Vn(x, y)
is subconcave in y as well. Inequality (6.6) is an auxiliary inequality, which
is used in our proofs of the other inequalities for certain boundary states.

����������	�;���.
Adding (6.4) to (6.3), we obtain (6.1). Adding (6.5) to (6.3),

we obtain (6.2). Furthermore, for x, y ≥ 0, (6.6) can be obtained through

Vn(0, y + 1)− Vn(0, y) ≥ {Proposition 6.1} Vn(1, y)− Vn(0, y)
≥ {(6.1) x times} Vn(x+ 1, y)− Vn(x, y)
≥ {(6.3)} Vn(x+ 1, y + 1)− Vn(x, y + 1).

Therefore, it suffices to prove the set of inequalities (6.3) to (6.5). However,
it will be convenient in our proofs to make use of (6.1), (6.2) and (6.6) as
well. One may easily verify that these implications also apply at arrival
times and given that we take the continue decision in each state appearing
in the respective inequality.

One might conjecture the reverse of (6.4), i.e., that the value of an additional
type-1 job is non-decreasing in x for a fixed total number of jobs in the
system. This would imply that (6.4) holds by equality for all x, y ≥ 0.
However, the conjecture translates to the assertion that for all x, y ≥ 0,

Vn(x+ 2, y)− Vn(x+ 1, y) ≥ Vn(x+ 1, y + 1)− Vn(x, y + 1), (6.7)

which does not hold in general. For example, in the instance considered
in Example 6.1, V5(2, 1) − V5(1, 1) is 1.0863 ± 0.0002 (the accuracy in the
calculations is 0.0002), whereas V5(1, 2)−V5(0, 2) is 1.3216±0.0002, so (6.7)
is surely violated.

However, if we let n → ∞ in the instance considered in Example 6.1, then
for each pair (x + 1, y) with 0 ≤ x ≤ 5 and 0 ≤ y ≤ 14 (following the
optimal policy, the number of type-1 jobs in the system will never exceed 5
and the maximum number of type-2 jobs in the system will never exceed 14)
the left-hand side and right-hand side of (6.7) converge to the same value.
We have numerically analysed a variety of other instances and have always
found the same result. This leads to the following conjecture.
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Let the total number of jobs in the system be fixed and

at least 1. Then for n→∞ the value of an additional type-1 job is constant
in x.

The conjecture implies that for n→∞ and x ≥ 1, the decision to abort or
not to abort is determined solely by the total number of jobs in the system,
i.e., x+ y, and not by x and y individually.

6.3 Proof of the Key Proposition

The proof of the Key Proposition is analogous to the proof of the Key
Proposition for the M|EN |1 model of Chapter 3. It uses induction on the
remaining number of periods and runs as follows.

Step 0: Observe that (6.3), (6.4) and (6.5) hold for n = 0.

Step 1: Assuming (6.3) to (6.5) to hold for some n ≥ 0, prove (6.3 arr/1)
to (6.5arr/1) for n, as well as (6.3 arr/2) to (6.5arr/2) for n.

Step 2: Using this result, prove that (6.3 co) to (6.5co) hold for n+ 1.

Step 3: Finally, prove that (6.3) to (6.5) also hold for n+ 1.

In the proof we will make use of Lemma 1.1.

Proof of the Key Proposition.

Step 0. Inequalities (6.3) to (6.5) hold by definition for n = 0.

Induction hypothesis. Assume that for some n ≥ 0, inequalities (6.3)
to (6.5) hold for all x, y ≥ 0. This will be our induction hypothesis.

Step 1. Under the induction hypothesis, we will show that (6.3 arr/1) to

(6.5arr/1) and (6.3arr/2) to (6.5arr/2) hold for n.

Let x, y ≥ 0. Let us first consider (6.3 arr/1), and thus the arrival of a type-1
job.

The next decision, d1 say, prescribed by the (optimal) policy corresponding
to Vn(x, y, arr/1), is either to accept or to reject the new (type-1) job.
Clearly, this also holds for the next decision, d2 say, prescribed by the
(optimal) policy corresponding to Vn(x+1, y+1, arr/1). There are at most
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four joint cases (d1, d2). These cases can be presented as follows, where A
indicates that accept is optimal andR indicates that accept is not optimal:

AA : Vn(x+1, y)− c ≥ Vn(x, y) ∧ Vn(x+2, y+1)− c ≥ Vn(x+1, y+1),
AR : Vn(x+1, y)− c ≥ Vn(x, y) ∧ Vn(x+2, y+1)− c < Vn(x+1, y+1),
RA : Vn(x+1, y)− c < Vn(x, y) ∧ Vn(x+2, y+1)− c ≥ Vn(x+1, y+1),
RR : Vn(x+1, y)− c < Vn(x, y) ∧ Vn(x+2, y+1)− c < Vn(x+1, y+1).

We will show that inequality (6.3 arr/1) holds for each case separately,
irrespective of the question whether that case can actually occur. This
is done by choosing an appropriate decision that is to be taken in the
state corresponding to the leftmost term of inequality (6.3 arr/1), i.e., state
(x + 1, y, arr/1), and an appropriate decision that is to be taken in the
state corresponding to the rightmost term of the inequality, i.e., state
(x, y + 1, arr/1), such that we obtain an inequality that holds under the
induction hypothesis, and by subsequently applying Lemma 1.1.

E.g., under AA,

Vn(x+ 1, y, arr/1; ac)− Vn(x, y, arr/1)

= Vn(x+ 2, y)− c− [Vn(x+ 1, y)− c]

= Vn(x+ 2, y)− Vn(x+ 1, y)

≥ {induction hypothesis; (6.3)}

Vn(x+ 2, y + 1)− Vn(x+ 1, y + 1)

= Vn(x+ 1, y + 1, arr/1)− Vn(x, y + 1, arr/1; ac),

to which we apply Lemma 1.1 to obtain the desired result for this case.

It is easy to see that the reasoning for case AA is similar for (6.4 arr/1)
and (6.5arr/1), and (6.3arr/2) to (6.5arr/2). For each inequality (6.j arr/i),
j = 3, 4, 5, i = 1, 2, case AA can be dealt with by choosing accept in the
other two states as well and by then using inequality (6.j), which holds under
the induction hypothesis. Similarly, case RR can always be dealt with by
choosing reject in the other two states as well.

The remaining cases AR and RA are somewhat more complicated. We
have conveniently summarized the analysis of these two cases in Table 6.1.
For each inequality we give two decisions that can be inserted such that an
inequality is obtained that holds, either under the induction hypothesis or
because its left-hand side is identical to its right-hand side. In each case,
Lemma 1.1 can then be applied to obtain the desired result.
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inequality case result by

rj AR ac lhs=rhs=c
(6.3arr/1)

rj RA ac induction hypothesis; (6.3); (6.1)

rj AR ac lhs=rhs=c
(6.4arr/1)

rj RA ac induction hypothesis; (6.4); (6.1)

rj AR ac induction hypothesis; (6.4); (6.5)
(6.5arr/1)

rj RA ac induction hypothesis; (6.2)

ac AR rj lhs=rhs
(6.3arr/2)

rj RA ac induction hypothesis; (6.3) twice

rj AR ac induction hypothesis; (6.5); (6.4)
(6.4arr/2)

rj RA ac induction hypothesis; (6.1)

rj AR ac lhs=rhs=c
(6.5arr/2)

rj RA ac induction hypothesis; (6.5); (6.2)

Table 6.1: Analysis of cases AR and RA

Step 2. Assuming (6.3) to (6.5), (6.3 arr/1) to (6.5arr/1) and (6.3arr/2) to

(6.5arr/2) for n, we show that (6.3co) to (6.5co) hold for n+1. We will use
the following lemma.

���������O;���

For all n ≥ 0 and x, y ≥ 0,

Vn(x+ 1, y)− Vn(x, y) ≤ r1.

Proof. The proof uses coupling and a sample path argument; cf. the proof
of Proposition 6.1. Let instance I1 start in (x + 1, y) and instance I0 in
(x, y). Couple all events and all decisions. Instance I1 follows the optimal
policy and instance I0 copies all actions taken in I1, until either I1 aborts its
additional type-1 job or the additional type-1 job in I1 completes its service.
This occurs at time T , say. Until then, the difference in reward between I1
and I0 is at most zero. At time T , either I1 aborts its additional type-1
job, generating a reward of zero, or this additional type-1 job completes
its service, generating a reward of r1. Immediately afterwards, I1 and I0
become identical. So the difference in reward between the two instances is
at most r1.

2

Now consider (6.3co). We distinguish the following three cases, which cover
all possible states (x, y): (I) x ≥ 0, y > 0, (II) x > 0, y = 0 and (III) x = 0,
y = 0.
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Case (I) gives

Vn+1(x+ 1, y; co)− Vn+1(x, y; co)

=
∑2

i=1 λi[Vn(x+ 1, y, arr/i)− Vn(x, y, arr/i)] +

µ[Vn(x+ 1, y − 1)− Vn(x, y − 1)]− h

≥ {induction hypothesis; (6.3 arr/1); (6.3arr/2); (6.3)}
∑2

i=1 λi[Vn(x+ 1, y + 1, arr/i)− Vn(x, y + 1, arr/i)] +

µ[Vn(x+ 1, y)− Vn(x, y)]− h

= Vn+1(x+ 1, y + 1; co)− Vn+1(x, y + 1; co).

Case (II) gives

Vn+1(x+ 1, 0; co)− Vn+1(x, 0; co)

=
∑2

i=1 λi[Vn(x+ 1, 0, arr/i)− Vn(x, 0, arr/i)] +

µ[Vn(x, 0)− Vn(x− 1, 0)]− h

≥ {induction hypothesis; (6.3 arr/1); (6.3arr/2); (6.1)}
∑2

i=1 λi[Vn(x+ 1, 1, arr/i)− Vn(x, 1, arr/i)] +

µ[Vn(x+ 1, 0)− Vn(x, 0)]− h

= Vn+1(x+ 1, 1; co)− Vn+1(x, 1; co).

Case (III) gives

Vn+1(1, 0; co)− Vn+1(0, 0; co)

=
∑2

i=1 λi[Vn(1, 0, arr/i)− Vn(0, 0, arr/i)] + µr1 − h

≥ {induction hypothesis; (6.3 arr/1); (6.3arr/2); Lemma 6.1}
∑2

i=1 λi[Vn(1, 1, arr/i)− Vn(0, 1, arr/i)] + µ[Vn(1, 0)− Vn(0, 0)]− h

= Vn+1(1, 1; co)− Vn+1(0, 1; co).

Next, consider (6.4co), and distinguish the following two cases, covering all
possible states (x, y): (I) x ≥ 0, y > 0 and (II) x ≥ 0, y = 0.

For case (I), the derivation is analogous to the one for (6.3 co) for case (I),
using the induction hypothesis and inequalities (6.4 arr/1), (6.4arr/2) and
(6.4).
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For case (II), we have

Vn+1(x+ 1, 1; co)− Vn+1(x, 1; co)

=
∑2

i=1 λi[Vn(x+ 1, 1, arr/i)− Vn(x, 1, arr/i)] +

µ[Vn(x+ 1, 0)− Vn(x, 0)]− h

≥ {induction hypothesis; (6.4 arr/1); (6.4arr/2)}
∑2

i=1 λi[Vn(x+ 2, 0, arr/i)− Vn(x+ 1, 0, arr/i)] +

µ[Vn(x+ 1, 0)− Vn(x, 0)]− h

= Vn+1(x+ 2, 0; co)− Vn+1(x+ 1, 0; co).

Finally, consider (6.5co), and distinguish the same two cases as considered
for (6.4co).

For case (I), the derivation is analogous to the one for (6.3 co) for case (I),
using the induction hypothesis and inequalities (6.5 arr/1), (6.5arr/2) and
(6.5).

For case (II), we have

Vn+1(x+ 1, 1; co)− Vn+1(x+ 1, 0; co)

=
∑2

i=1 λi[Vn(x+ 1, 1, arr/i)− Vn(x+ 1, 0, arr/i)] +

µ[Vn(x+ 1, 0)− Vn(x, 0) + r2 − r1]− h

≥ {induction hypothesis; (6.5 arr/1); (6.5arr/2); Proposition 6.1}
∑2

i=1 λi[Vn(x, 2, arr/i)− Vn(x, 1, arr/i)] +

µ[Vn(x, 1)− Vn(x, 0)]− h

= Vn+1(x, 2; co)− Vn+1(x, 1; co).

Step 3. Assuming (6.3) to (6.5), (6.3 arr/1) to (6.5arr/1) and (6.3arr/2) to

(6.5arr/2) for n, and (6.3co) to (6.5co) for n+1, we show that (6.3) to (6.5)
hold for n+ 1.

The line of reasoning resembles the one we followed in Step 1 of our proof.
For any of the three inequalities (6.3), (6.4) and (6.5) for n+1, we distinguish
all possible combinations of optimal decisions in two of the four states,
namely, the states s2 and s3 in Lemma 1.1.

The results are summarized in Table 6.2, where for each relevant situation
appropriate arguments are given, including the choices for the decisions in
states s1 and s4; cf. Lemma 1.1. If no decision is shown, then we take
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the optimal decision in that state. The abbreviation ‘ih’ used in the table
indicates that the induction hypothesis is used there. In addition, to save
more space, we will write (6.j co)m to indicate that inequality (6.j co) is
used m times, where 1 ≤ j ≤ 6 and m is some non-negative integer.

In the notation, C indicates that continue is strictly optimal, A that abort
is optimal and X that it is of no interest whether continue or abort is
optimal. Recall that A is not an option in state (0, 0). Furthermore, if it
is optimal to first abort j jobs and then to continue, then this is denoted
by Aj and we write ab j for the not necessarily optimal copied decision. So,
C ≡ A0 and A equals Aj for some j > 0.

As an example of the reasoning and the notation used in Table 6.2, we
consider the second case for inequality (6.3), i.e., AkC for 0 ≤ k ≤ x. Then

Vn+1(x+ 1, y; ab k)− Vn+1(x, y)

= Vn+1(x+ 1− k, y; co)− Vn+1(x− k, y; co)

≥ {ih; (6.1co) k}

Vn+1(x+ 1, y; co)− Vn+1(x, y; co)

≥ {ih; (6.3co)}

Vn+1(x+ 1, y + 1; co)− Vn+1(x, y + 1; co)

= Vn+1(x+ 1, y + 1)− Vn+1(x, y + 1; co),

to which we apply Lemma 1.1 to obtain the desired result for this case.
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For all 0 ≤ j ≤ k ≤ x, y ≥ 0, 0 < l ≤ y (provided y > 0), 0 < m ≤ y + 1,
0 < p ≤ y + 2, and k < q ≤ x+ 1:

inequality case result by

ab XA lhs=rhs=0
(6.3) ab k AkC co ih; (6.1co) k; (6.3co)

ab x+l Ax+lC co ih; (6.2co) l; (6.6co)

ab XA lhs=rhs=0
ab k AkC co ih; (6.1co) k; (6.4co)

(6.4)
ab x+m Ax+mC co ih; (6.2co)m−1;

(6.6co); (6.4co)

ab XAx+p ab x+(p−1) Proposition 6.1; rhs=0
ab k AjAk ab j ih; (6.4co) k−j ; (6.5co)

(6.5)
ab q AqAk ab k ih; (6.3co) q−k; (6.5co)
ab x+1+l Ax+1+lAk ab k ih; (6.2co) l+1; (6.3co) x−k

Table 6.2: Analysis of inequalities (6.3), (6.4) and (6.5) for n+ 1

With Table 6.2 we conclude our proof of the Key Proposition.

2

We now derive Parts 1 and 2 of Theorem 6.1 from the Key Proposition by
means of three corollaries. Note that Corollaries 6.3 and 6.4 correspond to
the first and second part of Part 1 of Theorem 6.1, respectively, and that
Corollary 6.5 corresponds to Part 2 of Theorem 6.1.

/ ������!"!0���21�;���.
Let n ≥ 0 and x, y ≥ 0. If it is optimal to reject an arriving

type-1 job in state (x, y), then it is optimal to reject it in all states (x, y+ j)
with j > 0 and in all states (x+ j, y − j) with 0 < j ≤ y.

Proof. Let n ≥ 0 and x ≥ 0. It suffices to show that

Vn(x, y) ≥ Vn(x+1, y)− c ⇒ Vn(x, y+1) ≥ Vn(x+1, y+1)− c, (6.8)

Vn(x, y) ≥ Vn(x+1, y)− c ⇒ Vn(x+1, y−1) ≥ Vn(x+2, y−1)− c, (6.9)

where (6.8) holds for y ≥ 0 and (6.9) for y > 0. One can easily verify that
implications (6.8) and (6.9) are immediate from inequalities (6.3) and (6.4),
respectively.

2
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Let n ≥ 0 and x, y ≥ 0. If it is optimal to reject an arriving

type-2 job in state (x, y), then it is optimal to reject it in all states (x+ j, y)
with j > 0 and in all states (x− j, y + j) with 0 < j ≤ x.

Proof. Let n ≥ 0 and y ≥ 0. It suffices to show that

Vn(x, y) ≥ Vn(x, y+1)− c ⇒ Vn(x+1, y) ≥ Vn(x+1, y+1)− c, (6.10)

Vn(x, y) ≥ Vn(x, y+1)− c ⇒ Vn(x−1, y+1) ≥ Vn(x−1, y+2)− c, (6.11)

where (6.10) holds for x ≥ 0 and (6.11) for x > 0. One can easily verify
that implications (6.10) and (6.11) are immediate from inequalities (6.3)
and (6.5), respectively.

2

/ ������!"!0���21�;���:
Let n ≥ 0. If it is optimal to abort in state (x, y), then

it is optimal to abort in all states (x, y + j) with j > 0 and in all states
(x+ j, y − j) with 0 < j ≤ y.

Proof. Let n ≥ 0. It suffices to show that

Vn(x− 1, y) = Vn(x, y) ⇒ Vn(x− 1, y + 1) 6< Vn(x, y + 1), (6.12)

Vn(0, y − 1) = Vn(0, y) ⇒ Vn(0, y) 6< Vn(0, y + 1), (6.13)

Vn(x− 1, y) = Vn(x, y) ⇒ Vn(x, y − 1) 6< Vn(x+ 1, y − 1), (6.14)

Vn(0, y − 1) = Vn(0, y) ⇒ Vn(0, y − 1) 6< Vn(1, y − 1), (6.15)

where (6.12) holds for x > 0, (6.13) for y > 0, (6.14) for x, y > 0, and
(6.15) for y > 0. One can easily verify that implications (6.12), (6.13),
(6.14) and (6.15) are immediate from inequalities (6.3), (6.2) and (6.4) and
Proposition 6.1, respectively.

2

6.3.1 Extension to heterogeneous consideration costs

In our basic model we considered class-independent consideration costs c≥0.
It is readily verified that Proposition 6.1 as well as the Key Proposition
and its proof stay intact if we consider class-dependent consideration costs
c1, c2 ≥ 0. As a result, Parts 1 and 2 of Theorem 6.1 remain valid if the
consideration costs are class-dependent. If c1 ≥ c2, i.e., if the consideration
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costs are at least as high for type-1 jobs as for type-2 jobs, then part 3 of
Theorem 6.1 remains valid as well, by Proposition 6.1 and the new DPEs
for Vn(x, y, arr/1) and Vn(x, y, arr/2).

6.4 General multi-server model

In our basic model we considered a single-server queue. The extension of our
monotonicity and threshold results for the single-server model to the general
multi-server case is not straightforward. If we follow the same approach as
for the single-server model, then it turns out that (6.7) is required in order
to establish (6.5) for all x, y for the multi-server model. But in Example 6.1
we have seen that (6.7) need not hold. Under the restrictive assumption that
c2 = 0 or that type-2 jobs may not be rejected upon arrival, it can be shown
that (6.7) holds for the single-server model, so that the value of an additional
type-1 job only depends on the total number of jobs in the system, and not
on the number of type-1 jobs and the number of type-2 jobs individually. In
this case our results can be extended to the multi-server model, which we
term the Mλ1,λ2 |Mµ|s model in the remainder of this section.

We start our analysis by recognizing that the extension of Proposition 6.1
to the multi-server case is straightforward and hence Corollaries 6.1 and 6.2
hold for the Mλ1,λ2 |Mµ|s model as well. As a result, we can use the same
state space as in the single-server case to fully describe the state of the
system. Then, in effect, in some state (x, y), a total of min{y, s} servers
will be serving a type-2 job, min{x,max{0, s− y}} servers will be serving
a type-1 job and max{0, s − (x + y)} servers will be idle. Note that these
three numbers add up to s.

In view of what follows, we also note now that the extension of Lemma 6.1
to the multi-server case is analogous to the extension of Proposition 6.1.

6.4.1 Dynamic Programming formulation

We first note that the uniformization is such that λ1+λ2+sµ+α = 1. Now,
extending the Mλ1,λ2 |Mµ|1 model to the Mλ1,λ2 |Mµ|s model, the only DPEs
that change are the ones for Vn(x, y; co). For n ≥ 1, the original DPEs for
Vn(x, y; co) are replaced by
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Vn(x, y; co) =
∑2

i=1 λiVn−1(x, y, arr/i) +

sµ[Vn−1(x, y − 1) + r2]− (x+ y)h x ≥ 0, y ≥ s

Vn(x, y; co) =
∑2

i=1 λiVn−1(x, y, arr/i) +

yµ[Vn−1(x, y − 1) + r2] +

(s− y)µ[Vn−1(x− 1, y) + r1]− (x+ y)h 0 ≤ y < s,
x ≥ s− y

Vn(x, y; co) =
∑2

i=1 λiVn−1(x, y, arr/i) +

yµ[Vn−1(x, y − 1) + r2] +

xµ[Vn−1(x− 1, y) + r1] +

[s− (x+ y)]µVn−1(x, y)− (x+ y)h x, y ≥ 0,
x+ y < s

6.4.2 Main result and its proof

We first make the following restrictive model assumption.

CE%F%=56�� �(?&M��,H;���

Type-2 jobs do not incur any consideration costs (i.e.,

c2 = 0) or may not be rejected upon arrival.

The reason for this assumption is contained in the proof of our main result,
which is stated in Proposition 6.3 below. In that proof, we will need (6.7).
But in Section 6.2.1 we have seen that (6.7) need not hold. In the proof of
Proposition 6.3, we will show that (6.7) does hold under Assumption 6.1,
which paves the way for the main result.

$����� ���%'&)(*&+��,-;���.
Under Assumption 6.1, the threshold characterization

given by Parts 1a and 2 of Theorem 6.1 extends to the Mλ1,λ2 |Mµ|s model.

Proof. We can maintain the Key Proposition of the single-server model,
and follow the lines of the proof given in Section 6.3. Note that it suffices to
verify Step 2 of the proof, since only the DPEs for Vn(x, y; co) have changed.
In our proof of each of the three inequalities (6.3 co), (6.4co) and (6.5co) for
n + 1, we will distinguish between several cases, where case (I) universally
corresponds to y ≥ s.
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It is straightforward to check that for each of the inequalities (6.3 co), (6.4co)
and (6.5co), the derivation corresponding to case (I) is analogous to the
derivation corresponding to case (I) in the single-server model. I.e., in the
derivation of (6.j co) for n+ 1, j = 3, 4, 5, we only need to apply (6.j arr/1),
(6.j arr/2) and (6.j), which hold on the basis of the induction hypothesis.

We will now check the three inequalities one by one for the remaining case
of y < s. Let us first consider (6.3co). We distinguish the following three
cases: (II) 0 ≤ y < s, x ≥ s − y, (III) x, y ≥ 0, x + y < s − 1, and (IV)
x, y ≥ 0, x+ y = s− 1. For convenience, we will use the following notation:
φ(x, y) :=

∑2
i=1 λi[Vn(x+1, y, arr/i)− Vn(x, y, arr/i)]. Furthermore, we will

make use of the same symbols as in Chapter 2 (such as À and Ê) to make
compound arguments more comprehensible; see Section 2.3.2.

Case (II) gives

Vn+1(x+ 1, y; co)− Vn+1(x, y; co)

= φ(x, y)À + yµ[Vn(x+ 1, y − 1)− Vn(x, y − 1)]Á +

[s− (y + 1)]µ[Vn(x, y)− Vn(x− 1, y)]Â +

µ[Vn(x, y)− Vn(x− 1, y)]Ã − h

≥ {ih; À ≥ Ê by (6.3 arr/1), (6.3arr/2);

Á ≥ Ë, Â ≥ Ì by (6.3); Ã ≥ Í by (6.1)}

= φ(x, y + 1)Ê + yµ[Vn(x+ 1, y)− Vn(x, y)]Ë +

[s− (y + 1)]µ[Vn(x, y + 1)− Vn(x− 1, y + 1)]Ì +

µ[Vn(x+ 1, y)− Vn(x, y)]Í − h

= Vn+1(x+ 1, y + 1; co)− Vn+1(x, y + 1; co).
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Case (III) gives

Vn+1(x+ 1, y; co)− Vn+1(x, y; co)

= φ(x, y)À + yµ[Vn(x+ 1, y − 1)− Vn(x, y − 1)]Á +

xµ[Vn(x, y)− Vn(x− 1, y)]Â + µ[Vn(x, y) + r1]Ã +

[s− (x+ y + 2)]µ[Vn(x+ 1, y)− Vn(x, y)]Ä +

µ[Vn(x+ 1, y)− Vn(x, y)]Å − µVn(x, y)Æ − h

≥ {ih; À ≥ Ê by (6.3 arr/1), (6.3arr/2);

Á + Å ≥ Ë, Â ≥ Ì, Ä ≥ Î by (6.3); Ã + Æ = Í + Ï}

= φ(x, y + 1)Ê + (y + 1)µ[Vn(x+ 1, y)− Vn(x, y)]Ë +

xµ[Vn(x, y + 1)− Vn(x− 1, y + 1)]Ì + µ[Vn(x, y + 1) + r1]Í +

[s− (x+ y + 2)]µ[Vn(x+ 1, y + 1)− Vn(x, y + 1)]Î −

µVn(x, y + 1)Ï − h

= Vn+1(x+ 1, y + 1; co)− Vn+1(x, y + 1; co).

Case (IV) gives

Vn+1(x+ 1, y; co)− Vn+1(x, y; co)

= φ(x, y)À + yµ[Vn(x+ 1, y − 1)− Vn(x, y − 1)]Á +

xµ[Vn(x, y)− Vn(x− 1, y)]Â + µ[Vn(x, y) + r1]Ã −

µVn(x, y)Ä − h

≥ {ih; À ≥ Ê by (6.3 arr/1), (6.3arr/2);

Á ≥ Ë, Â ≥ Ì by (6.3); Ã + Ä ≥ Í by Lemma 6.1}

= φ(x, y + 1)Ê + yµ[Vn(x+ 1, y)− Vn(x, y)]Ë +

xµ[Vn(x, y + 1)− Vn(x− 1, y + 1)]Ì +

µ[Vn(x+ 1, y)− Vn(x, y)]Í − h

= Vn+1(x+ 1, y + 1; co)− Vn+1(x, y + 1; co).

Next, consider (6.4co). We distinguish the following two cases: (II) 0≤y<s,
x ≥ s− (y + 1), and (III) x, y ≥ 0, x+ y < s− 1.
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Case (II) gives

Vn+1(x+ 1, y + 1; co)− Vn+1(x, y + 1; co)

= φ(x, y + 1)À + (y + 1)µ[Vn(x+ 1, y)− Vn(x, y)]Á +

[s− (y + 1)]µ[Vn(x, y + 1)− Vn(x− 1, y + 1)]Â − h

≥ {ih; À ≥ Ê by (6.4 arr/1), (6.4arr/2); Á ≥ Ë + Í, Â ≥ Ì by (6.4)}

= φ(x+ 1, y)Ê + yµ[Vn(x+ 2, y − 1)− Vn(x+ 1, y − 1)]Ë +

[s− (y + 1)]µ[Vn(x+ 1, y)− Vn(x, y)]Ì +

µ[Vn(x+ 1, y)− Vn(x, y)]Í − h

= Vn+1(x+ 2, y; co)− Vn+1(x+ 1, y; co).

Case (III) gives

Vn+1(x+ 1, y + 1; co)− Vn+1(x, y + 1; co)

= φ(x, y + 1)À + (y + 1)µ[Vn(x+ 1, y)− Vn(x, y)]Á +

xµ[Vn(x, y + 1)− Vn(x− 1, y + 1)]Â + µ[Vn(x, y + 1) + r1]Ã +

[s− (x+ y + 2)]µ[Vn(x+ 1, y + 1)− Vn(x, y + 1)]Ä −

µVn(x, y + 1)Å − h

≥ {ih; À ≥ Ê by (6.4 arr/1), (6.4arr/2);

Á ≥ Ë + Í, Â ≥ Ì, Ä ≥ Î by (6.4); Ã + Å = Ï + Ð}

= φ(x+ 1, y)Ê + yµ[Vn(x+ 2, y − 1)− Vn(x+ 1, y − 1)]Ë +

xµ[Vn(x+ 1, y)− Vn(x, y)]Ì + µ[Vn(x+ 1, y)− Vn(x, y)]Í +

[s− (x+ y + 2)]µ[Vn(x+ 2, y)− Vn(x+ 1, y)]Î +

µ[Vn(x+ 1, y) + r1]Ï − µVn(x+ 1, y)Ð − h

= Vn+1(x+ 2, y; co)− Vn+1(x+ 1, y; co).

Finally, consider (6.5co). For this inequality, we distinguish the following
three cases: (II) x ≥ 0, y = s − 1, (III) 0 ≤ y < s − 1, x ≥ s − (y + 1),
and (IV) x, y ≥ 0, x+ y < s− 1. For convenience, we will use the following
notation: ϕ(x, y) :=

∑2
i=1 λi[Vn(x, y + 1, arr/i)− Vn(x, y, arr/i)].
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Case (II) gives

Vn+1(x+ 1, y + 1; co)− Vn+1(x+ 1, y; co)

= ϕ(x+1, s−1)À + (s− 1)µ[Vn(x+ 1, s− 1)− Vn(x+ 1, s− 2)]Á +

µ[Vn(x+ 1, s− 1) + r2]Â − µ[Vn(x, s− 1) + r1]Ã − h

≥ {ih; À ≥ Ê by (6.5 arr/1), (6.5arr/2);

Á ≥ Ë by (6.5); Â + Ã ≥ Ì by Proposition 6.1}

= ϕ(x, s)Ê + (s− 1)µ[Vn(x, s)− Vn(x, s− 1)]Ë +

µ[Vn(x, s)− Vn(x, s− 1)]Ì − h

= Vn+1(x, y + 2; co)− Vn+1(x, y + 1; co).

Case (III) gives

Vn+1(x+ 1, y + 1; co)− Vn+1(x+ 1, y; co)

= ϕ(x+ 1, y)À + yµ[Vn(x+ 1, y)− Vn(x+ 1, y − 1)]Á +

[s− (y + 2)]µ[Vn(x, y + 1)− Vn(x, y)]Â +

µ[Vn(x+ 1, y) + r2]Ã − µ[Vn(x, y) + r1]Ä +

µ[Vn(x, y + 1)− Vn(x, y)]Å − h

≥ {ih; À ≥ Ê by (6.5 arr/1), (6.5arr/2);

Á + Å ≥ Ë, Â ≥ Ì by (6.5); Ã + Ä ≥ Í + Î by assuming (6.7)}

= ϕ(x, y + 1)Ê + (y + 1)µ[Vn(x, y + 1)− Vn(x, y)]Ë +

[s− (y + 2)]µ[Vn(x− 1, y + 2)− Vn(x− 1, y + 1)]Ì +

µ[Vn(x, y + 1) + r2]Í − µ[Vn(x− 1, y + 1) + r1]Î − h

= Vn+1(x, y + 2; co)− Vn+1(x, y + 1; co).
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Case (IV) gives

Vn+1(x+ 1, y + 1; co)− Vn+1(x+ 1, y; co)

= ϕ(x+ 1, y)À + yµ[Vn(x+ 1, y)− Vn(x+ 1, y − 1)]Á +

xµ[Vn(x, y + 1)− Vn(x, y)]Â +

[s− (x+ y + 2)]µ[Vn(x+ 1, y + 1)− Vn(x+ 1, y)]Ã +

µ[Vn(x+ 1, y) + r2]Ä − µVn(x+ 1, y)Å +

µ[Vn(x, y + 1)− Vn(x, y)]Æ − h

≥ {ih; À ≥ Ê by (6.5 arr/1), (6.5arr/2);

Á + Æ ≥ Ë, Â ≥ Ì, Ã ≥ Í by (6.5); Ä + Å = Î + Ï}

= ϕ(x, y + 1)Ê + (y + 1)µ[Vn(x, y + 1)− Vn(x, y)]Ë +

xµ[Vn(x− 1, y + 2)− Vn(x− 1, y + 1)]Ì +

[s− (x+ y + 2)]µ[Vn(x, y + 2)− Vn(x, y + 1)]Í +

µ[Vn(x, y + 1) + r2]Î − µVn(x, y + 1)Ï − h

= Vn+1(x, y + 2; co)− Vn+1(x, y + 1; co).

In the second last derivation, we assumed (6.7). Therefore, it remains to
prove that (6.7) holds under Assumption 6.1. We first add (6.7) to the Key
Proposition and define (6.7 arr/1), (6.7arr/2) and (6.7co), analogous to the
definition of (6.j arr/1), (6.j arr/2) and (6.j co) for 1 ≤ j ≤ 6. Next, we
observe that inequality (6.7) holds by definition for n = 0 (Step 0 ), and we
add it to the induction hypothesis. It now suffices to establish (6.7 arr/1)
and (6.7arr/2) for n (Step 1 ), (6.7co) for n + 1 (Step 2 ), and finally (6.7)
for n+ 1 (Step 3 ).

Step 1 is analogous to Step 1 for (6.4 arr/1) and (6.4arr/2). See Table 6.3 for
details. Note that because of Assumption 6.1, type-2 jobs are never rejected
and hence cases RA, AR and RR do not exist for (6.7 arr/2).

inequality case result by

ac AA ac induction hypothesis; (6.7)
rj AR ac lhs=rhs=c

(6.7arr/1)
rj RA ac induction hypothesis; (6.3)
rj RR rj induction hypothesis; (6.7)

(6.7arr/2) ac AA ac induction hypothesis; (6.7)

Table 6.3: Case distinction for inequalities (6.7 arr/1) and (6.7arr/2)
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Step 2 is analogous to Step 2 for (6.4 co). In fact, distinguishing the same
three cases, the derivations are identical to the derivations for (6.4 co), except
that the inequality signs are read the other way around, i.e., all ‘≥’-signs are
replaced by ‘≤’-signs. These hold on the basis of the induction hypothesis
and inequalities (6.7 arr/1), (6.7arr/2) and (6.7).

Finally, Step 3 is analogous to Step 3 for (6.4). See Table 6.4 for details.

For all x, y ≥ 0, 0 ≤ k ≤ x+ 1, and 0 < m ≤ y (provided y > 0):

inequality case result by

ab XA lhs=rhs=0
(6.7) ab k AkC co ih; (6.1co) k times; (6.7co)

ab x+1+m Ax+1+mC co ih; (6.6co); (6.3co) m times

Table 6.4: Analysis of inequality (6.7) for n+ 1

Table 6.4 concludes our proof of (6.7), and hence our proof of Proposition 6.3
is complete.

2
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In the derivation corresponding to case (III) for (6.5 co), we

used (6.7). We did not see any possibility to establish (6.5 co) without the
use of (6.7). This explains the introduction of Assumption 6.1. However, it
remains unclear whether Assumption 6.1 is actually a necessary condition
for the extension of the threshold characterization to the multi-server model,
as given by Proposition 6.3.

6.5 Conclusions

We have considered a Mλ1,λ2 |Mµ|1 preemptive priority queue. For this queue
we have dealt with two additional decision features. First, one has to decide
upon arrival of a job to accept or reject the new job. Second, at any point
in time, one may decide to remove any number of jobs from the system.
We have shown that the optimal strategy for both types of decisions is
characterized by threshold policies. Under the assumption that type-2 jobs
will always be admitted to the system, we have extended our results to the
general multi-server case.
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Two other extensions of our basic two-class model that come to mind
naturally are (1) the extension to more than 2 classes of jobs, and (2) the
extension to more general service time distributions, e.g., Erlang distributed
service times. However, both extensions will require a higher-dimensional
state space, and additional monotonicity properties have to be formulated
and established to obtain a monotonic characterization of the optimal
policy via inductive DP. This is also the case if we want to consider a
non-preemptive instead of preemptive resume service discipline, although
the analysis of that particular model is probably somewhat easier, because
the third dimension features only two states: ‘1’ if the server is serving a
type-1 job, and ‘2’ if the server is serving a type-2 job.

These models are left for future research. To give an impression of what
monotonicity properties would be required, we outline below some results
one would aim for in the context of the multi-class extension of the
Mλ1,λ2 |Mµ|1 model, which we term the Mλj |Mµ|1 model.

Let J ≥ 2 denote the number of classes of jobs. Type-i jobs, 1 ≤ i ≤ J , arrive
at the station according to a Poisson process with arrival rate λi ≥ 0. The
workload of a job is exponential with class-independent mean service time
1/µ. The reward for a type-i job is ri, where rJ > rJ−1 > · · · > r2 > r1 > 0.
The holding costs are class-independent and equal to mh ≥ 0 per unit of
time when there are m jobs present, and the consideration costs are ci ≥ 0
per type-i job admitted to the system.

The state of the system is described by the vector z = (z1, . . . , zJ), where
zi ≥ 0 (with 1 ≤ i ≤ J) denotes the number of type-i jobs in the system.
Analogous to the two-class model, we define the value function Vn(z). If
the current state is z and a type-i job is aborted, then there is an instant
transition to state z − ei.

Then, in generalization of Theorem 6.1, one may for example wish to show
that if it is optimal to abort in some state z, then it is optimal as well to
abort in all states z + ei with 1 ≤ i ≤ J and in all states z + ei − ej with
1 ≤ i < j ≤ J . This monotonic characterization of the optimal termination
policy would be a corollary of the following set of inequalities:

Vn(z + ei)− Vn(z) ≥ Vn(z + ei + ek)− Vn(z + ek), (6.16)

Vn(z + ej + ek)− Vn(z + ej) ≥ Vn(z + ei + ek)− Vn(z + ei), (6.17)

where n ≥ 0, z ≥ 0 and 1 ≤ k ≤ i ≤ j ≤ J . Note that (6.16) is the natural
generalization of (6.3) and that (6.17) is the natural generalization of (6.4).
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To be able to make an inductive proof work, this set of inequalities will
have to be supplemented with other inequalities. Moreover, it may turn out
that additional model assumptions are required to be able to establish the
complete set of inequalities, e.g., analogous to the multi-server extension, it
might be necessary to assume that ci = 0 for all 1 ≤ i ≤ J .



7
Conclusions and outlook

M otivated by lack-of-capacity problems in workflow environments,
we have constructed and studied a collection of workload models with

admission as well as termination control. The objective has been two-fold.
Our first goal has been to provide an impetus to the quantitative analysis
of workflow processes, in particular with respect to on-line decision-making
involving partial execution and premature termination of work. Our second
goal has been to extend the literature on the dynamic control of queueing
systems, by introducing and studying a new type of control and by focusing
on the derivation of monotonicity properties of the optimal control policy.

We would like to conclude this dissertation with a brief discussion of some
natural directions for further research, where we distinguish between on the
one hand research aimed specifically at the analysis of workflows and on the
other hand research in the area of the derivation of structural results for the
dynamic control of queueing systems.

7.1 Design and control of workflow processes

By far the most popular framework for the analysis of workflow processes
is Petri net theory. Petri nets can be used to analyse qualitative properties,
and are also commonly used as system specification tools. We refer to Van
der Aalst [1] for a more detailed discussion of the application of Petri nets
to workflows. Depending on the level of planning, Petri net theory can also
support quantitative performance optimization. Once a feasible workflow

171
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has been constructed by means of Petri nets, simulation can be used as a
means to investigate its behaviour in terms of performance measures such
as the average throughput time of process instances. Consider, for example,
the one-time hiring of resources, where the question is how many resources
to hire. If the structure of the workflow and the operational control rules are
fixed, then one may vary the number of resources and conduct simulations
until, as a result of trial-and-error, a satisfactory or possibly the optimal
number of resources has been determined. If the focus is not on one-time
decision-making, but on dynamic decision-making, based on the state of the
process, then the method of simulation is far less useful. Namely, a major
drawback of simulation is the fact that one can consider only one set of
operational control rules at a time. This means that, when in search of an
optimal set of control rules, one has to construct, simulate and compare
all possible schedules of states and decisions to be taken in those states, of
which there are in general (virtually) infinitely many. There remains a clear
challenge and need to construct a framework for quantitative performance
optimization of workflows, which can support the design of new process
definitions as well as the on-line management of existing processes.

Two of the very few papers studying quantitative design rules for workflow
processes are Buzacott [14] and Van der Aalst [2]. These are also mentioned
in Reijers [45], who lists a number of general (re)design rules. In these
studies, the focus is exclusively on tactical, static design aspects. In contrast,
in our thesis, we have focused on operational, dynamic decision-making in
workflow environments, which comes into play once a workflow definition
has been constructed. An example of a tactical decision is the decision
to pool the available resources. The operational decision-making then
involves the allocation of resources to activities in real time, where it may
possibly be allowed to let several resources work together on a case. This
leads to dynamic work-sharing. Another example is the subcontracting of
intricate cases to third-party specialists. The operational decision-making
then involves the question when to subcontract and when to carry out the
examination or investigation on one’s own. For small-scale problems, it will
be possible to build a decision model and to compute an optimal set of rules.
However, given the size and complexity of real-life workflow definitions, it is
more useful to focus on the construction of good heuristics. Nevertheless, in
that process, a good understanding of the performance of more basic models
may be very helpful.
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7.2 Structural results for the dynamic control of queueing
systems

7.2.1 A general framework for the derivation of structural results

For the models considered in this thesis, we employed a general analytic
approach—inductive Dynamic Programming—to obtain monotonicity
properties of the value function and the optimal policy. The models
themselves, however, were not general, as they involved specific control
models. This is in line with the vast majority of literature on the dynamic
control of queueing systems; cf. the references in Sections 1.4 to 1.7. First
efforts to construct a general framework for the derivation of monotonicity
properties using inductive DP were made by Glasserman and Yao [21], and
Altman and Koole [5]. Embroidering on this theme, Koole [34] proposed a
unified treatment of one-dimensional and two-dimensional models, which he
termed event-based dynamic programming. This is a systematic approach
that focuses on system events and the form of the value function, rather
than on the value function itself. Possible events are captured by event
operators. From these operators, specific models can be built. First for
the one-dimensional case and subsequently for the two-dimensional case,
Koole considers a collection of common operators, such as ‘a departure from
the system’. He shows for each operator separately that it satisfies certain
monotonicity properties. If operators have certain monotonicity properties
in common, then the value function of a specific model built from those
operators will satisfy these monotonicity properties as well, as is shown.
The operators discussed by Koole cover many specific models studied in
literature, e.g., those of Lippman [40], discussed in Section 1.7.4.1.

An interesting topic for further research would be to investigate if and to
what extent the notion of termination control and the various models with
admission and termination control we have studied in this thesis fit within
this general framework. For example, for some value function V (i), where
i is the number of jobs in the system, Koole introduced the operator TAC ,
defined by TACV (i) :=min{V (i)+ c, V (i+1)+ c′}. TAC models admission
control, where rejection incurs costs c, admission incurs costs c′ and the
objective is to minimize costs. In the same fashion, we could introduce an
operator TTC which models termination control. For example, regarding
the M|EN |1 model studied in Chapter 3, we could write

TTCV (i, k) :=max{V (i, k), max1≤j≤i V (i− j, 0) + r(k) + (j − 1)r(0)}.
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7.2.2 Higher-dimensional state space models

In the final section of each of the Chapters 2 to 6, we made some suggestions
for further research. Some of the models we proposed there concern models
whose natural description involves a state space of some dimension larger
than 2. An example is the multi-class extension of the Mλ1,λ2 |Mµ|1 model
studied in Chapter 6. To be able to obtain a monotonic characterization
of the optimal control policy for this Mλj |Mµ|1 model via inductive
DP, monotonicity properties beyond submodularity and subconcavity are
required. We touched briefly upon this subject in Section 1.7.4.2. In the
context of higher-dimensional tandem queues, Koole [35] uses the notion of
directional convexity. Following Shaked and Shanthikumar [51], a function
f(x) defined on INm is said to be directionally convex if

f(x+ z)− f(x) ≤ f(y + z)− f(y) (7.1)

for all x, y, z ∈ INm, where xi ≤ yi for all 1 ≤ i ≤ m. Note that (7.1) is
a sufficient condition for (6.16), which we formulated in the context of the
Mλj |Mµ|1 model, where the inequality sign is read the other way around,
because we consider the objective of maximizing rewards, whereas Koole
considers the objective of minimizing costs.

We would like to mention that the higher-dimensional tandem queues
studied by Koole can be very useful in the context of work-sharing problems;
cf. Section 7.1. If each case has to pass through a fixed number of consecutive
stages, corresponding to tasks 1 through N say, where each task may be
executed by a different resource, then this can be modelled by means of
N tandem queues. Suppose the resources can be classified into resource
classes 1 through R, where class r ∈ {1, . . . , R} is cross-trained to carry
out the set of tasks S(r) ⊂ {1, . . . , N}. The dynamic work-sharing control
problem then involves the question where all these flexible resources will
be put to work. For example, consider a process consisting of 3 stages
and 2 resources, where S(1) = {1, 2} and S(2) = {2, 3}. This gives rise
to a dynamic control model with a three-dimensional state space, featuring
states of the form (i, j, k), where i, j and k represent the number of work
items at stage 1, 2 and 3, respectively. The action set may be written as
A(i, j, k) = {(a1, a2) | a1 ∈ {1, 2}, a2 ∈ {2, 3}} for all i, j, k ≥ 0, where for
both resources we have that working at stage m corresponds to idling if
there is no work item available for that resource at that particular stage. If
work items can only be processed by one resource at a time, then decision
(2, 2) corresponds to the decision to process two work items simultaneously
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at stage 2, unless there is only 1 work item available, in which case one
of the two resources will idle. Righter et al. [47] report some results for a
particular version of this two-server three-task model, but there remain many
interesting open problems with respect to the characterization of the optimal
policy for her model as well as alternative versions and generalizations of
this model.

If the number of stages and servers becomes larger, the computation of the
optimal control policy will become intractable or even impossible; cf. our
study of the M|EN |s model in Chapter 5. In this case, we are interested in
heuristics that achieve good or possibly even near-optimal performance. The
development of such heuristics for work-sharing models is another natural
and useful direction for future research.

Clearly, the search for good approximations is not limited to tandem queues,
and the concept of work-sharing may be employed in other or more general
process environments as well. Besides processes in which tasks are executed
sequentially, modelled by means of a series of tandem queues, one can
imagine that case investigations may involve the execution of certain tasks
in parallel. For example, a case may consist of J independent tasks, which
may be executed simultaneously. The case is considered to be dealt with
to completion only if all of the J tasks have been executed for this case.
Such a situation can be modelled by means of a so-called fork-join queue.
Fork-join processes give rise to and include processes that feature enforced
waiting. Included are, for example, processes in which waiting for external
information is a key factor in the throughput time of case instances. More
complex models involve multiple (compound) forks and joins, and networks
containing sequential as well as parallel task execution elements.

In this thesis, we have taken first steps in the construction of a framework
for the modelling and analysis of dynamic control problems that are present
in deficient-capacity operating environments. Concerning the derivation of
analytical (structural) results in this area, our study opens up numerous
extensions and generalizations, and related models and results, and we have
highlighted some in this final chapter. Moreover, we have acknowledged the
development of good heuristics for complex control problems as a topic of
particular interest. This topic remains vastly open to future research.
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Samenvatting

Dienstverlenende ondernemingen en instanties hebben veelal—en bovendien
in toenemende mate—te maken met een overvloedige en onvermijdbare
toestroom van werk. Ondanks een scala aan mogelijke maatregelen, zoals
de invoering van overwerk, tijdelijk werk en meervoudige inzetbaarheid van
personeel, is er structureel onvoldoende capaciteit om alle aangeboden werk
tot in detail te kunnen afhandelen. Derhalve zijn tijd en capaciteit kostbaar.
Er zullen voortdurend beslissingen genomen moeten worden ten aanzien van
welke opdrachten uitgevoerd worden en welke niet, en hoe de beschikbare
capaciteit over de verschillende uit te voeren taken verdeeld zal worden.
Dit zal afhangen van de werkdruk enerzijds en het voordeel dat gepaard
gaat met het voortzetten van de afhandeling van in behandeling zijnde
opdrachten anderzijds. Afhankelijk van de hoeveelheid werk in portefeuille
kan besloten worden meer of juist minder aandacht te besteden aan de met
de diverse opdrachten corresponderende taken. Dit geeft aanleiding tot een
gedeeltelijke (of partiële) verwerking van opdrachten, met als doel om een
optimale verhouding te creëren tussen de factoren doorlooptijd en behaalde
kwaliteit, oftewel Quality of Service. Hierbij is doorlooptijd een synoniem
voor gemaakte kosten, en is Quality of Service een synoniem voor opbrengst.

In dit proefschrift richten we ons specifiek op twee essentiële dynamische
beslissingen die uit noodzaak genomen dienen te worden in werklastsystemen
waarin de capaciteit ontoereikend is om alle aangeboden werk tot voltooiing
te kunnen brengen:

(I) acceptatie (admission) of afwijzing (rejection) van nieuw werk, en
(II) voortzetting (continuation) of beëindiging (termination) van werk in

portefeuille.

De aan beslissing (I) ten grondslag liggende besturing staat in de literatuur
algemeen bekend onder de naam admission control. Beslissing (II) betreft
een nieuw type besturing, dat we zullen aanduiden met de term termination
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control. Dit type besturing is veel dynamischer en flexibeler dan de typen
besturing die het voortijdig beëindigen van werk toestaan die tot nu toe in
de literatuur bestudeerd zijn. Met de introductie van dit concept geven we
de eerste aanzet tot een nieuwe klasse van beslissingsmodellen, die op een
natuurlijke wijze binnen het onderzoeksgebied van de dynamische besturing
van wachtrijen valt.

In onze analyse van het concept termination control ligt de nadruk op het
bestuderen en karakteriseren van de optimale strategie met betrekking tot
de twee voornoemde dynamische beslissingselementen. Hierbij maken we
veelvuldig gebruik van een combinatie van twee bekende technieken, te weten
Dynamische Programmering (DP) en volledige inductie. In het bijzonder
wenden we ons tot deze methode om zekere monotonie-eigenschappen van
de waardefunctie van het beschouwde model te bewijzen. Gezamenlijk im-
pliceren deze eigenschappen vervolgens bepaalde monotonie-eigenschappen
van de optimale strategie voor het model, bijvoorbeeld een drempelwaarde-
structuur.

In Hoofdstuk 2 bestuderen we modellen met admission control, maar nog
zonder termination control. We beschouwen twee nauw verwante systemen,
die beide bestaan uit twee parallelle deelsystemen waarnaar aankomende
opdrachten gerouteerd moeten worden. Er zijn twee categorieën opdrachten.
De eerste betreft zogeheten ‘flexibele’ opdrachten. Deze kunnen door elk
der beide deelsystemen uitgevoerd worden. De tweede betreft zogeheten
‘aangewezen’ opdrachten. Er zijn twee soorten aangewezen opdrachten,
namelijk opdrachten die alleen door het ene deelsysteem uitgevoerd kunnen
worden en opdrachten die alleen door het andere deelsysteem uitgevoerd
kunnen worden. Beide systemen hebben eindige bufferruimte, en zijn dus
onderhevig aan blokkering. Gegeven de doelstelling het aantal geblokkeerde
opdrachten te minimaliseren, laten we zien dat in beide modellen de optimale
routeringsstrategie een drempelwaarde-structuur heeft.

In Hoofdstuk 3 breiden we de beslissingsstructuur uit met termination con-
trol. We introduceren het concept termination control in de context van een
M|EN |1 wachtrijsysteem waarin de executie van een opdracht op elk moment
beëindigd mag worden en waarin tevens op elke moment een willekeurig aan-
tal opdrachten uit de wachtrij verwijderd mag worden. Onder zekere regu-
lariteitsaannamen ten aanzien van de kosten- en opbrengststructuur leiden
we een reeks monotonie-eigenschappen van de waardefunctie af, en laten
we zien dat er optimale drempelwaarde-strategieën bestaan voor zowel de



Samenvatting 185

beslissing om een opdracht te accepteren of te weigeren, als de beslissing om
de afhandeling van een opdracht te continueren of juist te termineren.

In aansluiting hierop bespreken we in Hoofdstuk 4 een aantal uitbreidingen
van het in Hoofdstuk 3 bestudeerde basismodel. Onder deze uitbreidingen
bevinden zich groepsaankomsten, fase-type aankomsten, en een algemener
bedieningsproces, dat gekarakteriseerd wordt door een Markov feed-forward
routeringsmechanisme. Met behulp van DP leiden we gegeneraliseerde
monotonie- en drempelwaarde-resultaten af voor elk van deze uitbreidingen.
Daarnaast karakteriseren we de structuur van de optimale strategie voor
een zuiver discrete versie van het model met feed-forward routering. In dit
model bestaat de werklast van een opdracht uit de som van ten hoogste
N geometrische bedieningsfasen en wordt de toestand van het systeem op
deterministische beslissingstijdstippen gëınspecteerd.

Hoofdstuk 5 staat in het teken van een natuurlijke multi-server uitbreiding
van het model uit Hoofdstuk 3. Deze uitbreiding blijkt zowel analytisch als
computationeel onhandelbaar. Alhoewel het mogelijk is enkele elementaire
monotonie-eigenschappen af te leiden voor dit model, richten we ons op
numerieke aspecten van het model en de optimale strategie. In het bijzonder
bespreken we een heuristiek voor de berekening van de optimale strategie.
Deze heuristiek is gebaseerd op een nauw verwant model, waarvoor de
optimale strategie eenvoudig te berekenen is. We evalueren en verfijnen de
heuristiek aan de hand van een numerieke studie. De numerieke resultaten
geven aan dat de prestaties van de heuristiek die van de optimale strategie
zeer dicht benaderen.

In Hoofdstuk 6 bestuderen we een Mλ1,λ2 |Mµ|1 preemptive priority wachtrij-
systeem met admission control alsmede termination control. Er zijn twee
soorten opdrachten, die zich onderscheiden door hun opbrengst. Het sys-
teem mag opdrachten van beide typen accepteren of weigeren en op elk
moment mag een willekeurig aantal opdrachten van een der beide typen of
zelfs beide typen uit het systeem verwijderd worden. We tonen aan dat de
optimale beslissingen voor beide typen besturing zich laten karakteriseren
door drempelwaarde-strategieën. Vervolgens breiden we dit resultaat on-
der een zekere restrictie ten aanzien van de kostenstructuur of de admission
control structuur uit naar de natuurlijke multi-server variant van het model.

We besluiten het proefschrift met Hoofdstuk 7, waarin we in het kort enkele
natuurlijke richtingen voor verder onderzoek bespreken. Daarin maken we
onderscheid tussen enerzijds onderzoek dat specifiek gericht is op de analyse
van werkstromen en anderzijds onderzoek naar structuur-resultaten voor de
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dynamische besturing van wachtrijsystemen. In het kader hiervan staan we
stil bij het feit dat de problemen waar men in de praktijk mee geconfronteerd
wordt, veel groter en complexer van aard zijn dan die welke gerepresenteerd
kunnen worden middels de (generieke) modellen die we beschouwen in dit
proefschrift. We zijn er desalniettemin van overtuigd dat onze analyse een
essentiële stap in de richting van meer praktische uitbreidingen vormt. Een
beter (wiskundig) inzicht in (de structuur van) de optimale strategieën voor
vereenvoudigde problemen zal uitermate bruikbaar zijn in gecompliceerdere
situaties, waarin nauwkeurige heuristieken voor het omgaan met een ontoe-
reikende capaciteit niet alleen gewenst, maar zelfs noodzakelijk zijn.
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