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the Paradigm Approach
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Abstract

An extension of the coordination specification language Paradigm is presented. In
this set-up Paradigm models cater for multiple managers sharing the coordination
of a set of common employees. A transition system semantics for the language is
provided, that allows for reasoning about such constructions as delegation and self-
management in matrix and general network organizations. An elaborated example
illustrates the expressiveness of the proposed version of Paradigm.

Key words: Paradigm, coordination, operational semantics,
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1 Introduction

The coordination specification language Paradigm [SGO87,EG94,GV02] intro-
duces a new approach toward design and analysis of coordination. Paradigm
is STD-based in the sense that the various components to be coordinated,
each are represented by a separate state transition diagram. In view of the
coordination between such STD components, Paradigm offers two central no-
tions, viz. subprocess and trap, in terms of which any concrete coordination
is to be expressed.

Intuitively speaking, a subprocess of an STD is a behavioural phase of that
STD. A trap of a subprocess is a final stage of that phase such that a trap
of a subprocess, once entered, cannot be left within that phase. This allows
for the formulation of global behaviour of an STD in terms of a subprocess, a
trap thereof, a next subprocess, a trap thereof, etc. Within a global behaviour
a trap between two consecutive subprocesses serves as an overlap between the
two phases: the trap is indeed trap of the first phase and all of its states
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are also present as states inside the next phase, be it that there they do not
necessarily constitute a trap.

To describe an STD’s detailed behaviours consistently with certain global
behaviours Paradigm, as presented in [GV02], introduces the employee as a
kind of double STD, one of which is the original STD. Actual coordination
is then specified in terms of allowed combinations of global behaviours of a
set of employees: This gives a sequence of allowed phase combinations and of
allowed changes between consecutive phase combinations for these employees.
Such sequences correspond with behaviours of another STD, referred to as
the manager (of these employees). Employees and managers together con-
stitute a Paradigm model. As it turns out, an STD being a manager of an
employee induces a directed is-manager-of relation, called is-mano, between
these two STDs: the STD which is the manager, has an is-manager-of relation
with the original STD being part of the employee, pointing from the manager
STD to the STD within the employee. Stretching the metaphor of manager
and employee a little more, the is-manager-of relation can be considered as
graph depicting the distribution of responsibility of the organization. Such an
organogram is in general a digraph and the organization a network.

Separating combined global behaviour (coordination) from detailed be-
haviour (local computation) share similarity to ideas behind Manifold [Arb96].
But, Paradigm does allow for bringing coordination and computation together,
as the notions of subprocess and trap already give a clear conceptual separation
within one component. Compared to approaches using tuple spaces [Gel85],
team automata [BEKR01] and statecharts [Har87], Paradigm expresses the co-
ordination not only in terms of immediate communicative steps —informing a
different component about what it has to do or about what has been done—
but also in terms of explicit longer-term effects: the subprocesses as the phases
and the traps as irrevocal stages thereof.

In [GV02] a fully STD-based formulation of Paradigm models has been
presented with the restriction that for the consistency between an employee’s
detailed and global behaviours –the latter in terms of a fixed set of subpro-
cesses and traps– exactly one manager is responsible. This still allows an
STD within an employee to participate in multiple is-mano relations with as
many managers, each responsible for a different set of global behaviours of
the employee. In addition, [GV02] formulates operational semantics for those
Paradigm models where each STD is part of at most one employee and where
its single manager is a different STD.

However, the kind of coordination problems we want to cover with Paradigm
often is more general. We want to reason about situations where STDs are
part of more than one employee, thus having separate managers for differ-
ent sets of global behaviours. We want to allow employees having more than
one manager (for the same set of global behaviours) and we want to reason
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about such situations. We also want to reason about situations where an
STD is manager of an employee with its own STD as part, i.e. an STD has
an is-mano relation with itself. Therefore the present paper about Paradigm
proposes an operational semantics for a larger set of Paradigm models than
in [GV02]. To that aim we adapt the original notion of consistency relation
into a partial –as opposed to total– form, here referred to as consistency rules,
which allows for richer Paradigm models where a set of employees can have
more than one manager. In other words, the coordination of one whole set
of combined global behaviours is shared among multiple managers. In pass-
ing, we present a compact and concise definition of the Paradigm notions, the
Paradigm models and their interpretation improving upon earlier expositions.

The larger class of Paradigm models makes Paradigm substantially more
suitable for modeling very different kinds of coordination problems, such as
communication-based cooperation between software components and/or hu-
man components, evolution on-the-fly and mobility: In addition the complete
semantics allows one to verify coordination-related properties of all kinds of
Paradigm models. Based on the new operational semantics of the extended set
of Paradigm models, we present a small but interesting coordination pattern
where a manager delegates a part of the coordination to another process.

The structure of our paper is as follows. After the introduction, Section 2
gives a concise definition of the Paradigm concepts, together with an opera-
tional semantics. A small example illustrates the concepts and the semantics.
Sections 3 contains specific variants of the example, among which the del-
egation pattern appears. Our experience with SMV for formal, automated
verification of coordination properties and a very short impression of partial
results established with Paradigm models with respect to evolution on-the-fly
is discussed in Section 4.

2 Operational Semantics

In this section we first introduce the basic concepts of Paradigm and illustrate
them using a simple production system.

Definition 2.1

(a) A process P is a collection of states st(P ) together with a collection of
transition ts(P ) ⊆ st(P ) × st(P ) between these states.

(b) A subprocess S of a process P is a subset st(S) ⊆ st(P ) of states
together with a subset ts(S) ⊆ ts(P ) of transitions such that ts(S) ⊆
st(S)×st(S) and a number of non-empty subsets of st(S), called traps.
If θ is a trap of a subprocess S and s → s′ is a transition in ts(S), then
s ∈ θ implies s′ ∈ θ.
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(c) A partitioning of a process P is a collection of subprocesses { Si | i ∈ I }
such that

st(P ) =
⋃

i∈I

st(Si) and
⋃

i∈I

ts(Si) .

Typically, P (π) and π denote a partition of the process P .

According to Definition 2.1 a process is identified with its state-transition
diagram. For simplicity of presentation we have discarded actions or labels of
transitions. The reader will find no difficulty in adding this when desired.

The trap condition states that once a subprocess reaches one of its traps,
it can not leave it while the subprocess is active. Control is caught within
the trap. Typically, another subprocess will be prescribed with other traps,
so that control can move elsewhere. A special trap of a subprocess S is the
trivial trap triv consisting of all states of S. For technical convenience we will
require below that traps of a subprocess are either nested or disjoint.

A particular production unit PU can be modeled by the diagram in Figure 2.1.

pu4 pu5

pu3

pu1
pu2

pu0

PU

Fig. 2.1. STD Process PU

The partition π of PU consists of four subprocesses. (See Figure 2.2.) Sub-
process In has three traps, viz. triv (the unnamed outer rectangle), check

and done. Subprocesses CheckOK, CheckKO and Out have besides the trivial
trap only one other trap viz, done, check and done, respectively.

Definition 2.2 A Paradigm model (Pi, 〈 πi,j 〉j∈Ji
) | 1 ≤ i ≤ n } consists of

• a number of processes P1, . . ., Pn with partitions (π1,j)j∈J1
, . . . , (πn,j)j∈Jn

for these processes, and

• a collection of consistency rules

P : s→ s′ ⇐ Pi(πi,j): Si,j

θi,j

→ S ′

i,j i ∈ I, j ∈ Ji(2.1)

where P is one of the processes P1, . . . , Pn, s, s′ are states of P and for each
process Pi it holds that Si,j, S

′

i,j are subprocesses of Pi of the partition πi,j,
θi,j is a trap of Si,j containing states of S ′

i,j only and I is short for the index
set { 1, . . . , n }.
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pu4 pu5

pu3

pu1

pu0

check

done

In

pu3

pu2pu1

done

CheckOK

pu5

pu3

pu1

done

CheckKO

pu3
pu0

start

Out

Fig. 2.2. Subprocess In, CheckOK, CheckKO, Out of PU

A consistency rule of the form (2.1) describes a condition on the local transition
s→ s′ of the process P . If, for all relevant i and j, the process Pi w.r.t.
partition πi,j adheres to the subprocess Si,j and resides in some state of Pi

that is contained in the trap θi,j, then P can make the move from s to s′.
Additionally, according to this consistency rule, P transfers the process Pi in
partition πi,j from subprocess Si,j to the subprocess S ′

i,j. Thus, application
of a consistency rule does not only affect the local state of the process at
the left-hand side, but also influences the local configuration of the other
processes as new subprocesses be can be prescribed. Consistency rules express
the relationships of local and global behavior: the local transition of P vs.
the global transfer of the Pi’s from traps θi,j to new subprocesses S ′

i,j for
partitions πi,j.

The traps θi,j in Equation (2.1) are called connecting traps, viz. connecting
the subprocess Si,j and S ′

i,j. As the process Pi does not change state (except
for the case were Pi equals P ) we require that the current state of Pi is also
admitted by S ′

i,j. Whence the condition θi,j ⊆ st(Si,j)∩st(S ′

i,j). It turns out,
although not strictly necessary, to be good modeling practice to require this
trap condition for the situation where P equals Pi as well.

An organizational view at a Paradigm process arises quite naturally. Con-
sistency rules express a one-to-many manager-employee relation. The pro-
cess P at the left-hand side is the manager, the processes at the right-hand
side are the employees. The employees inform the manager that they have
reached a certain ‘final’ stage, i.e. a trap, of the subprocess they are following.
There is, in general, no need for the manager to react immediately (as the
employees can not leave their traps anyway). The manager synchronizes with
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its employees and instructs them to continue with the activities of the new
subprocesses prescribed.

Two important differences with earlier work on Paradigm should be men-
tioned here. First, manager-employee relations need not to be hierarchical
anymore. In fact, they can change dynamically. For some part of the co-
ordination a process can be the manager, whereas for another part of the
coordination the same process can fulfill an employee role. Our formalism
allows for maximal flexibility in this respect, hence our mentioning of network
organizations generalizing hierarchical ones.

Second, since a process P can have several managers for the same partition,
managers are allowed to be partial. They do not need to provide a transfer
from a particular subprocess to some other, if another process as manager of
the process P may very well cater for this. Dually, two or more managers,
can prescribe the same or different transfers in the same situation. Whether
this constitutes a bug or a feature is a topic of debate. We have chosen to
resolve this via the non-determinism in the operational semantics. Paradigm
thus provides a way to distribute responsibilities, not only spatial via separate
partitions, but also temporal via applicability of consistency rules.

As an example of a Paradigm model consider the production unit PU intro-
duced above together with a production control C and a quality checker Q.
We call this Paradigm model CPUQ. The STDs of the processes C and Q are
given in Figure 2.3. The global idea is that in state pu0 the process PU asks
the controller process permission to proceed. When permission is granted
(subprocess In) the production process either goes, at its own choice, in a
‘high-quality mode’ or or in a ‘low-quality mode’. After a first step to pu1 in
high-quality mode the process Q assesses the quality of the product so-far. If
OK the production continues in high-quality mode (subprocess CheckOK); if
not OK the production continues in low-quality mode (subprocess CheckKO).
When the production unit has reached state pu5 it waits for permission to
return to the state pu0.

c0 c1

C

Q

q0

Fig. 2.3. STDs of processes C and Q

We define no partitions for the processes C and Q; process PU has a single
partition π with the subprocesses In, CheckOK, CheckKO and Out as before.
In the model the processes C and Q are managers of the process PU; the
process PU is employee of C and Q in its single partition π that is shared
by C and Q. It is safe for the processes C and Q to have no partitions and
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subsequently no subprocesses as these will not occur at the right-hand side of
any consistency rule below:

C: c0 → c1 ⇐PU(π): Out
start
→ In

C: c1 → c0 ⇐PU(π): In
done
→ Out

C: c1 → c0 ⇐PU(π): CheckOK
done
→ Out

C: c1 → c0 ⇐PU(π): CheckKO
done
→ Out

Q: q0 → q0 ⇐PU(π): In
check
→ CheckOK

Q: q0 → q0 ⇐PU(π): In
check
→ CheckKO

Note the overlap of the consistency rules of the process Q. The rules only differ
in their choice of the new PU-subprocess. This non-determinism is external
to PU. In general, such a choice can depend on the local state of the manager
(here Q) and the current subprocesses and traps for the other employees (not
applicable in the example here).

Definition 2.3 Let Π = { 〈Pi, (πi,j)j∈Ji
〉 | 1 ≤ i ≤ n } be a Paradigm model.

• A local configuration of the process P in Π is a tuple

P [s, 〈 πj(Sj, θj) 〉j∈J ]

where (πj)j∈J are the partitions of P in Π and each Sj is a subprocess of πj

with smallest trap θj containing the state s of P .

• A global configuration of Π is an n-tuple

( Pi[si, πi,j(Si,j, θi,j) 〉j∈Ji
] )i∈I

where each component is a local configuration of the particular process of Π
and I = {1, . . . , n}.

• A global transition of Π consists of two global configurations of Π, notation

( Pi[si, πi,j(Si,j, θi,j) 〉j∈Ji
] )i∈I → ( Pi[s

′

i, πi,j(S
′

i,j, θ
′

i,j) 〉j∈Ji
] )i∈I

provided that one of the processes Pk of Π has a consistency rule

Pk: sk → s′k ⇐ Pi(πi,j): Si,j

θ̂i,j

→ S ′

i,j i ∈ I, j ∈ Ji

such that si = s′i for all i 6= k, sk → s′k is a transition of Sk,j, for all j ∈ Jk

and θ̂i,j is a trap containing the trap θi,j.

That there is a global transition on the basis of a consistency rule with left-
hand side Pk: sk → s′k requires that, for each partition π, the current subpro-
cess of π provides the transition sk → s′k in its sub-STD.

A global configuration, also called global state, for the CPUQ Paradigm
model introduced above is, for example

( C[c1], PU[ pu0, π(In, triv) ], Q[q0] )(2.2)
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This configuration reflects the situation where the production unit just got
permission from the controller to proceed but has not done so yet. The nota-
tion C[c1] and Q[q0] reflects that for C and Q no partitions are defined.

The subprocess In of PU provides two local transitions for state pu0. In
fact, implicitly consistency rules P : pui → puj ⇐ for each transition in the
STD of process P is in place. As P is playing an employee role only, we do not
bother to list these as so-called autonomously consistency rules with empty
right-hand side. We have both

( C[c1], PU[ pu0, π(In, triv) ], Q[q0] ) → ( C[c1], PU[ pu1, π(In, check) ], Q[q0] )

and

( C[c1], PU[ pu0, π(In, triv) ], Q[q0] ) → ( C[c1], PU[ pu3, π(In, triv) ], Q[q0] )

confirming the internal non-determinism available to the process PU in its
state pu0, either a transition to state pu1 or a transition to state pu3. Note the
change of trap information of PU in partition π in the first global transition.
Also note that no other global transition starting from

( C[c1], PU[ pu0, π(In, triv) ], Q[q0] )

is possible: C requires PU to have reached to trap done; Q requires PU to
have reached the trap check.

Let us now focus on the global configuration

( C[c1], PU[ pu1, π(In, check) ], Q[q0] ) .

The processes C and PU can trigger no transition: C because none of its consis-
tency rules applies, PU because the subprocess In provides no local transition
from the state pu0. The process Q comes equipped with two consistency rules
that match. This leads to the global transitions

( C[c1], PU[pu1, π(In, check) ], Q[q0] ) → ( C[c1], PU[pu1, π(CheckOK, triv) ], Q[q0] )

( C[c1], PU[pu1, π(In, check) ], Q[q0] ) → ( C[c1], PU[pu1, π(CheckKO, triv) ], Q[q0] )

triggered by the controller process Q. From the perspective of the production
unit PU there is external non-determinism, either transfer to the subpro-
cess CheckOK or to the subprocess CheckKO, caused by the presence of two
applicable consistency rules.

The global transition rule of Definition 2.2 transforms the set of global con-
figurations of a Paradigm model into a finite state machine. 1 Endowed with
this operational interpretation Paradigm models become amenable to a variety

1 Only finitely many states are involved in the representation as we choose our processes
to be of a finitary nature. It is clear that there is no principle obstacle for the machinery
proposed above to deal with infinite state systems.
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of formal verification techniques. In Section 4 we discuss some experiments
conducted with the model checker SMV.

3 An example

Consider a factory unit for the painting of Delft vases in the colors trendy
red for big vases and classic blue for small ones. Vases are presented at three
designated spots, S1, S2 and S3, for painting. Transport of vases is dealt with
by a part of the factory that is not under consideration. Instead we focus
on the painting itself. There are two painting units R and B equipped with
an optical sensor that can distinguish big objects from small objects. The
painting units are capable of painting one color only. Unit R paints red (for
big vases), unit B paints blue (for small vases). See Figure 3.4.

pu1 pu2

pu3 pu4 pu5

Fig. 3.4. Paintshop 1

We can model this situation in Paradigm by a process R, a process B, and
three processes S1, S2, and S3 (cf. Figure 3.5 for the STDs of these processes).
Starting from the initial state r0 the process R can accept a request from either
spot. Upon such a request R moves to a state indicating that the request of
the particular spot processes has been accepted. From that state R can move
back to the initial state after painting of the vase at the spot has been finished.
The S processes run as follows: From the starting state s0 control either moves
to the state s1 or s3, dependent on the size of the first vase in its queue (s1 for
big vases, s3 for small ones). After the request for painting has been granted
and processed by the respective painting unit, states s2 and s4, the process
returns to the initial state s0.

The above description of coordination can be made precise by modeling the
above processes as a Paradigm model:

• the processes R and B have partitions ρ and β, respectively with subpro-
cesses Free and Done,

• the processes S1, S2, S3 have partition σ with subprocesses Request and GetPaint.

The processes are tied together with the following consistency rules:

R: r0 → ri ⇐Si(σ): Request
reqR
→ GetPaint
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r1

r0

r3 r2

R
b1

b0

b3 b2

B

s0

s1 s3

s4s2

S

Fig. 3.5. STD R, B and S processes

R: ri → r0 ⇐R(ρ): Done
triv
→ Free

B: b0 → bi ⇐Si(σ): Request
reqB
→ GetPaint

B: bi → b0 ⇐B(β): Done
triv
→ Free

for i = 1, 2, 3 and

Si: s0 → s1 ⇐

Si: s0 → s3 ⇐

Si: s1 → s2 ⇐

Si: s2 → s0 ⇐R(ρ): Free
do(i)
→ Done, Si(σ): GetPaint

painted
→ Request

Si: s3 → s4 ⇐

Si: s4 → s0 ⇐B(β): Free
do(i)
→ Done, Si(σ): GetPaint

painted
→ Request

r1

r0

r3 r2

do(1)

do(3) do(2)

Free

r1

r0

r3 r2

Done

Fig. 3.6. Subprocesses of R (subprocesses for B similar)

The manager-employee or is-mano relation of this of Paradigm model is de-
picted in the organogram Figure 3.8. Greek letters labeling the arrows indicate
the partition to which the manager role applies. Thus, for example both R

and B are manager of the spot processes in their single partition σ. Note
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s0

s1 s3

s4s2

Request

reqBreqR

s0

s1 s3

s4s2

GetPaint

painted

Fig. 3.7. Subprocesses of S

that R and each Si are both manager and employee with respect to each
other. Symmetrically this applies to the process B in relation to the Si. Self-
management occurs, e.g., when R moves from any ri to r0 thereby transferring
itself from the subprocess Done to Free. This also applies to the spot processes
when returning to the state s0.

R B

S2S1 S3

ρ
ρ

ρ β

β
β

σ
σ σ

σ
σ σ

ρ β

σ σ σ

Fig. 3.8. Organogram Paintshop 1

Some consistency rules have an empty right-hand side. Such moves are au-
tonomous as they are independent of other processes and do not result in a
transfer of subprocess.

The reader may wonder why the states s2 and s4 are included in the sub-
process Request. The reason is the formulation of the operational rule of
Definition 2.3 and the definition of a connecting trap (cf. Definition 2.2). As
a spot process transfers itself from GetPaint via trap painted to subprocess
Request, the trap painted is required to be part of the state space of sub-
process Request. However, by virtue of the very same consistency rule the
spot process will move directly to the state s0 without residence in neither
the included s2 nor s4. We could have chosen to relax the requirement on a
connecting trap in a situation of self-management as is the the case here. As
this will clutter up the basic definitions we did not do so.

The Paradigm model just sketch is unfair in its scheduling as its relies on the
scheduling of the non-deterministic choices in the interleaving semantics. For
example, from the global state
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( R[r2, ρ(Free, do(2))], B[b0, β(Free, triv)], S1[s0, σ(Request, triv)],

S2[s2, σ(GetPaint, painted)], S3[s1, σ(Request, reqR)] )

(3.3)

where at spot S2 a vase is being painted red. When the spot process is
satisfied with the painting it executes the consistency rule S2: s2 → s0 ⇐

R(ρ): Free
do(2)
→ Done, S2(σ): GetPaint

painted
→ Request. Assume that the pend-

ing request for red paint of spot process S3 is not answered by R. Instead, S2

progresses to its state s1 for another call upon R on the basis of its autonomous
consistency rule and reaches the local configuration S2[s1, σ(Request, reqR)]
again; the process R returns to its initial state r0 in subprocesses Free via its
self-managing rule. Next, the process R accepts the request of S2 by executing

the consistency rule R: r0 → r2 ⇐ S2(σ): Request
reqR
→ GetPaint reaching the

global state 3.3 again. From there the steps described above can be taken
once more or, in principle, ad infinitum.

In order to enforce fair scheduling for the painting of red vases in the factory
at hand, we decide to adapt the process R (but leave process B as it is). The
state r0 gets split into three copies r′0, r′′0 and r′′′0 . In each of these states it
is checked in subprocess Free whether the spot process associated with the
state, i.e. S1, S2 and S3, respectively, is raising a request. If this is the case,
the process R moves to the corresponding ri-state (i = 1, 2, 3) and transfers
the Si-process to the GetPaint subprocess as before. If the process Si is not
raising a request, the adapted R simply progresses to the next copy of r0.

r1

r′

0
r′′

0

r2r′′′

0
r3

do(1)

do(3) do(2)

Free

r1

r′

0
r′′

0

r2r′′′

0
r3

Done

Fig. 3.9. Subprocesses Round-Robin R

We use a negative premise of the form P (π): S
θ

9 to express that process P

in partition π is not executing subprocess S or is executing subprocess S but
does not reside in trap θ.

R: r′0 → r1 ⇐S1(σ): Request
reqR
→ GetPaint
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R: r′0 → r′′0 ⇐S1(σ): Request
reqR
9

R: r1 → r′′0 ⇐R(ρ): Done
triv
→ Free

R: r′′0 → r2 ⇐S2(σ): Request
reqR
→ GetPaint

R: r′′0 → r′′′0 ⇐S2(σ): Request
reqR
9

R: r2 → r′′′0 ⇐R(ρ): Done
triv
→ Free

R: r′′′0 → r3 ⇐S3(σ): Request
reqR
→ GetPaint

R: r′′′0 → r′0 ⇐S3(σ): Request
reqR
9

R: r3 → r′0 ⇐R(ρ): Done
triv
→ Free

The example above where process S3 could be neglected infinitely often,
does not apply anymore. A round-robin scheduling has been enforced upon
the model to prevent this. Note that the modification does only affect the
process R; the other processes B and S1, S2, S3 remain untouched.

Next we decide to separate the monitoring and painting duties of R and B. We
introduce two painter processes P1 and P2 both capable of painting red as well
as blue. The processes R and B watch the spot processes (R in round-robin
fashion, B in an unspecified way). When a request is made by a spot process,
R or B instruct an idle painter to paint the particular color at the designated
spot. The spot process releases the painter after approval of the painting.

P2P1

BR

S2S1 S3

Fig. 3.10. Paintshop 2

The painter processes P1 and P2 have the subprocesses as depicted in Fig-
ure 3.12. The STD of P1 and P2 can be deduced from this subprocesses.
Subprocess PaintR(i) for painter Pj corresponds to the situation where the
process Pj has been instructed by process R to paint red at spot i. Similar
for the blue process B. The STD for R as well as for B need to be adapted.
There is no blocking anymore of R or B while a spot process gets painted. The
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process R, say, has delegated this to the allocated painter process. Therefore
R, for the matter of argument, can continue for example with putting the
other painter process in charge of painting red at another spot.

r′

0
r′′

0

r′′′

0

R

p2

p4

p3

p6

p5

p0

p1

Free

Fig. 3.11. STD modified R and subprocess Free of P

p4

p0

p5

p0

p6

p0

p3

p0

p1

p0

p2

p0

prep

prep

prep

prep

prep

prep

PaintR(3)PaintR(1)

PaintR(2)

PaintB(1)

PaintB(2)

PaintB(3)

Fig. 3.12. Subprocesses PaintR(i) and PaintB(i) of P

The consistency rules of R, B and S1, S2, S3 will all be modified. This is natural
as the painters P1 and P2 interact with all these processes. However, the new
consistency rules for processes already present follow straightforwardly from
the previous ones. New are the rules for the painter process Pj themselves:
one rule expressing the autonomy to move to any state pk (k = 1, . . . , 6) and
a rule to return to the idle state and self-transfer to the Free-process in the
meanwhile. Note that the applicability of the rules Pj: p0 → pi ⇐ is biased:
it depends on the subprocess PaintR(i) or PaintB(i) whether such a rule can
be fired. This is the side-condition of Definition 2.3c that a local transition is
permitted by the current subprocesses.

R: r′0 → r′′0 ⇐S1(σ): Request
reqR
→ GetPaint, Pi(π): Free

idle
→ PaintR(1)

R: r′0 → r′′0 ⇐S1(σ): Request
reqR
9

R: r′′0 → r′′′0 ⇐S2(σ): Request
reqR
→ GetPaint, Pi(π): Free

idle
→ PaintR(2)

. . .
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B: b′0 → b′′0 ⇐S1(σ): Request
reqB
→ GetPaint, Pi(π): Free

idle
→ PaintB(1)

. . .

Si: s0 → s1 ⇐

Si: s1 → s2 ⇐Pj(π): PaintR(i)
prep
→ PaintR(i)

Si: s2 → s0 ⇐GetPaint
painted
→ Request, Pj(π): PaintR(i)

prep
→ Done

. . .

Pj: p0 → pk ⇐

Pj: pk → p0 ⇐Pj(π): Done
triv
→ Free

The organogram underlying the Paradigm model with painter processes is
given in Figure 3.13 (partition information omitted). The organization has
become layered now with self-management for the S and P processes.

S2S1 S3

P1 P2

R B

Fig. 3.13. Organogram Paintshop 2

4 Concluding remarks

An extension of the coordination specification languages Paradigm has been
discussed. Earlier versions of Paradigm supported hierarchical organizations
but with multiple managers in separate partitions. On top of this, the current
proposal provides means to express more intricate coordination patterns such
as mutual manager-employee relationships, self-management and delegation.

The operational semantics of Paradigm is based on two levels of transitions
systems. First there is the local level of STD of the involved Paradigm pro-
cesses; second there is the global level of subprocesses and traps. The notion
of a consistency rule connects the two levels. The semantics of the present
paper underlying extended Paradigm also improves upon its conciseness as
compared to [GV02].

It should be noted that a modeling of the examples discussed above using
multiple partitions is feabsible as well. For example, the processes R and B

could have three partitions, one for each spot processes. The Paradigm models
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presented here are more compact in flavour as having mutiple partitions can
be avoided. The drawback is that the models are slightly less transparent as
non-interference of managers of the same partitions is not always immediate.
However, the view of two-level semantics has paved the way for tool supported
experiments exploiting the SMV modelchecker Cadence [McM99]. In the MSc
thesis [Kam03] various patterns of delegation has been studied, systematically
translated into the SMV language verified using Cadence. It includes a first
attempt for reasoning upon delegation. (Independent work on using SMV for
the verification of Paradigm models has been reported in [GA02].) Currently
our experiments, as based on the present, more liberal coordination regime,
suffer from the state-explosion problem. Only relativily small Paradigm mod-
els have been inspected yet. However, we hope that standard abstraction and
partial evaluation techniques can help us here. Other student work that seeks
to relate our approach with the UML has been reported in [Cha02] where in
the context of a case study the UML has been endowed with history sensitive
information in order to deal with the basic Paradigm notions.

The research reported here has triggered various ideas regarding evolution-
on-the-fly. We hope to have convinced the reader that the Paradigm language
is flexible in two respects: First, a process can be adapted locally, only requir-
ing its own interface, i.e. its own consistency rules to be modified. Second,
new processes can be added and glued into an existing model without much
difficulty. New consistency rules define the interaction of a new process and
its coordination relation with the processes already present. The general idea
for this to be exploited in the context of evolution is as follows: starting from
an old Paradigm model and a new desired target Paradigm model, various in-
termediate Paradigm models can be defined. Change management processes
using the trap structure to catch processes that are ready to be updated, are
put in place to let the particular process evolve into a new one. In its new
incarnation the updated process executes subprocesses of a super-STD of its
original one. When an evolution phase has become stable, parts of the earlier
behaviour as expressed by parts of the super-STD and related subprocesses
can be dispensed with as they will have become unreachable.

A preliminary case-study regarding the classic Dining Philosophers prob-
lem that evolves from the basic configuration via deadlock-free stage to a
starvation-free situation is coming its way. It should be stressed that both
the expressiveness of the Paradigm language as discussed here and the related
techniques for semantics based reasoning and verification will make it possible
to describe and handle such evolution-on-the-fly schemes.

16



References

[Arb96] F. Arbab. Manifold version 2: Language reference manual. CWI,
Amsterdam, 1996.

[BEKR01] M. ter Beek, C. Ellis, J. Kleijn, and G. Rozenberg. Team automata for
spatial access control. In Proc. ECSCW 2001, European Conference on
Computer Supported Cooperative Work. Kluwer, 2001.

[Cha02] M. Chabab. Behaviour and communication in SOCCA and the UML.
Master’s thesis, LIACS, Leiden University, 2002.

[EG94] G. Engels and L. Groenewegen. Socca: Specifications of coordinated and
cooperative activities. In A. Finkelstein, J. Kramer, and B. Nuseibeh,
editors, Software Process Modelling and Technology, pages 71–102.
Research Studies Press, 1994.

[GA02] R. Gomez and J. Augosto. Automatic translation of Paradigm models
into PLTL-based programs. In Proc. SEKE02, pages 497–503. Ischia,
ACM Press, 2002.

[Gel85] D. Gelernter. Generative communication in Linda. ACM Computing
Surveys, 7:80–112, 1985.

[GV02] L. Groenewegen and E. de Vink. Operational semantics for coordination
in Paradigm. In F. Arbab and C. Talcott, editors, Proceedings
Coordination 2002, pages 191–206. LNCS 2315, 2002.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8:231–274, 1987.

[Kam03] N. van Kampenhout. Systematic specification and verification of
coordination: towards patterns for Paradigm models. Master’s thesis,
LIACS, Leiden University, 2003.

[McM99] K. McMillan. Getting started with SMV. Cadence Berkely Labs, 1999.
http://www-cad.eecs.berkely.edu/∼kenmcmil/tutorial.ps.

[SGO87] M. van Steen, L. Groenewegen, and G. Oosting. Parallel control
processes: Modular parallelism and communication. In L. Hertzberger,
editor, Proc. Intelligent Autonomous Systems, pages 562–579. North-
Holland, 1987.

17


	Introduction
	Operational Semantics
	An example
	Concluding remarks
	References

