

A process algebra of concurrent constraint programming

Citation for published version (APA):
Boer, de, F. S., & Palamidessi, C. (1993). A process algebra of concurrent constraint programming. (Computing
science notes; Vol. 9320). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/57dee13b-b78e-47dd-8d64-b687e141630f

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Process Algebra of Concurrent
Constraint Programming

by

F.S. de Boer

Computing Science Note 93/20
Eindhoven, June 1993

93/20

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A Process
Constraint
Frank S. de Boer

Alge bra of Concurrent
Programming

Department of Computing Science, Technical University Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
wsinfdb@tuewsd.win.tue.nl

Catuscia Palamidessi
Department of Computer Science, University of Pisa,
Corso Italia 40, 56100 Pisa, Italy
katuscia@apollo.di.unipi.it

Abstract

We develop an algebraic theory for the observational equivalence of concur
rent constraint programs which identifies processes which have the same final
results for all possible executions.

1 Introduction

In the last years there have been given several proposals to extend logic
programming with constructs for concurrency, aiming at the development
of a concurrent language which would maintain the typical advantages of
logic programming: declarative reading, computations as proofs, amenability
to meta-programming etc. Examples of concurrent logic languages include
PARLOG [6], Concurrent Prolog [12, 13], Guarded Horn Clauses [16, 17]
and their so-called flat versions. Concurrent constraint programming ([10,
14, 15]) represents one of the most successful proposals in this area.

Constraint programming is based on the notion of computing with sys
tems of partial information. The store is seen as a constraint on the values
that variables can assume, rather than a correspondence between variables
and values. All processes of the system share a common store, which, at
any stage of the computation, is given by the constraint established until
that moment. The execution of a tell action modifies the current store by
adding a constraint. An ask action is a test on the store: it can be executed
only if the current store is strong enough to entail a specified constraint.
If this is not the case, then the process suspends (waiting for the store to
accumulate more information by the contributions of the other processes).
The execution of an ask itself leaves the store unchanged. Hence both the
tell and ask actions are monotonic, in the sense that after their execution
the store contains the same or more information. Therefore the store evolves
monotonically during the computation, i.e. the set of possible values for the

variables shrinks.
This paper addresses the problem of an algebraic axiomatization for con

current constraint programming. The algebraic approach is one of the most
diffused methods in concurrency theory both for specification (i.e. definition
of new operators) and for program verification (i.e. check that a certain
implementation satisfies a given specification). During the last decade there
have been a number of proposals for process algebras: beside the Calculus of
Communicating Systems of Milner ([9]), several related formalisms have been
proposed, such as the Theory of Communicating Processes of Hoare ([1]) and
the Algebra of Communicating Systems of Bergstra and Klop ([2, 3, 5]).

For a given language there are, in general, various observability criteria
which are of interest. Since in concurrent constraint programming processes
communicate via a common store the relevant aspects of the behaviour of a
process, from the point of view of the environment, are described in terms
of its interaction with the common store. In this paper we consider the most
abstract description: only the final results are observable. This choice is
motivated by the fact that, due to the monotonic evolution of the store, the
intermediate states of the computation are just approximations of the final
result.

However, the equivalence induced by this notion of observables introduces
too many identifications to be characterized algebraically. For an algebraic
theory only those processes can be identified which not only have the same
observables, but which additionally show no observable difference when im
merged in any kind of context. An equivalence which satisfies this property
is called a congruence. The coarsest of such congruences is particularly of
interest since it exactly identifies those processes which cannot be distin
guished by any context; it corresponds to a fully abstract semantics. In this
paper we will develop a complete axiomatization of the coarsest congruence
contained in the equivalence induced by observing final results only.

To prove correctness and completeness of the axiomatization, it will be
convenient to define a fully abstract semantics. A compositional model is
more suitable for reasoning about the axioms because it characterizes classes
of processes which are observable equivalent in every context in terms of
canonical representatives.

Due to space limitations in this version we have omitted the proofs which
can be found in the full paper.

1.1 Plan of the paper

In the next section we define the notion of constraint system underlying the
language. In particular, we discuss distributive and complemented constraint
systems. In Section 3 we define the language, the operational model, and
the notion of observables. In Section 4 we present the axiomatization, and
in Section 5 we discuss its correctness and completeness. In section 5 we
also develop a fully abstract semantics which will be useful to prove those

results. In the last section we point out some directions for future research.

2 Constraint systems

The notion of constraint system we consider here is a simplification 1 of the
one developed in [14J.

Definition 2.1 A constraint system C is a complete (algebraic) lattice (C,::;
,II, true,Jalse) where II is the lub operation, and true, false are the least and
the greatest elements of C, respectively.

Following the standard terminology and notation, instead of ::; we will
refer to its inverse relation, denoted by I- and called entailment. Formally

'ifc, dEC. c I- d ¢> d::; c.

In order to treat the hiding operator of the language it will be helpful to
introduce a general notion of existential quantification. In this framework
it is convenient to formalize this notion by means of the theory of cylindric
algebras ([8]). This leads to the concept of cylindric constmint system.

Definition 2.2 Let Var be a (denumerable) set of variables x, y, z, As
sume that for each x E Var a function 3x : C --+ C is defined such that for
any c,d E C:

(i) c I- 3x(c),

(ii) if c I- d then 3x (c) I- 3x (d),

(iii) 3x(c II 3x(d)) ~ 3x(c) II 3x(d),

(iv) 3x (3 y(c)) ~ 3y(3 x (c)).

Then (C, I- , II, true, false, Var) is a cylindric constmint system.

In the following 3x (c) will be denoted by 3x c with the convention that, in case
of ambiguity, the scope of 3x is limited to the first constraint subexpression.
(So, for instance 3x c II d stands for 3x (c) II d.)

We introduce now two notions taken from lattice theory: the complement
and the distributivity. The complement of an element c, denoted by c-,
represents, in a sense, the negation of c. Distributivity is the usual property
about combinations oflubs and glbs (in the sequel the glb of a lattice will be

IThe approach of [14] follows Scott's treatment of information system ([11]): the start
ing point is a set of simple constraints on which a compact entailment relation is defined.
Then a constraint system is constructed by considering sets of simple constraints and by
extending the entailment relation on it. This construction is made in such a way that the
resulting structure is a complete algebraic lattice, which ensures the effectiveness of the
extended entailment relation. In this paper we abstract from this construction, and we
just consider the resulting structure.

denoted by v). Constraint systems satisfying distributivity and existence of
the complement are very rich structures (actually they are boolean algebras),
and for this reason they are particularly suitable to reason about equalities.
Furthermore, they have a very interesting feature, which will be useful for
developing our axiomatization: they are able to represent the entailment
relation as a constraint of the system itself:

Proposition 2.3 Let (C, 1-, II, true ,false) be a distributive and complemented
constmint system. Then

'<Ic,d,e E C. (e II c I- d) <* (e I- c- V d).

We will denote C V d by c --> d and (3 xc-)- by '<I xc.
The only·if part of previous proposition is a sort of 'deduction theorem'

for constraint systems.
In general, the existence of the complement and distributivity is a rather

strong assumption, and it would be very restrictive to require it to be satis·
fied by the constraint system on which the language operates. Actually we
do not need to do so. For our purpose it is sufficient to embed the constraint
system of the language into a complemented and distributive one. We use
this larger system only to represent terms in intermediate steps possibly
needed to derive certain equalities among processes. (This is in analogy for
instance with the idea of immerging the real numbers into the field of the
complex numbers, in order to solve equations between real numbers.) Given
a constraint system C we will indicate by dc(C) the distributive and com
plemented closure of C, namely the smallest distributive and complemented
constraint system which contains C as subsystem.

Example 2.4 Consider a Herbrand domain consisting only of the constants
a, band c and let C be the constraint system whose elements are the equalities
over this domain involving a variable x, and the entailment relation is the
'standard one', represented in Figure l(a). This constraint system is neither
distributive, nor the unicity of the complement is satisfied.

Consider now the constraint system C' which contains also the disequal
ities involving x, with the 'standard' entailment relation represented in Fig
ure l(b). We have that C' is distributive, complemented and C' = dc(C).

3 The language

In this section we present the language of concurrent constraint program
ming, its computational model and the intended observation criterium. The
definitions we give are equivalent to the ones in [15].

We assume given a cylindric constraint system (C, 1-, II, true,false, Var).
We use A, B, . .. to range over the set of processes, p, q, T, •• • to range over

false false

x=a x b x=c x=a

x b
true

true

(a) (b)

Figure 1: Herbrand constraint systems for x, a, b, c

process names, x, y, z, . .. to range over Var and n over the set of ask and tell
actions. In addition, the notation X indicates a list of the form (Xl, ... , Xn).

The processes are described by the following grammar

A ::= 8 In· A I A + A I A II A I 3x.A I p(x)

The symbol 6 denotes inaction. The process ask(c) . A waits until the
store entails c and then it behaves like A. The process tell(c) . A adds c to
the store and then it behaves like A. Sometimes we omit . and write, for
example, n(A + B) instead of n· (A + B). The operators II and + are the
parallel composition (or merge) and the nondeterministic choice (or plus),
respectively. 3x is the hiding operator: 3x.A is like the process A, with
the variable x seen as local. We will see that there is a strong relation with
the existential quantifier over the coustraint system, for this reason we have
used the same symbol. Finally, p(x) is a procedure call, p is the name of
the procedure, and x is the list of the actual parameters. The meaning
of a process is given with respect to a set W of declarations of the form
pUll :- A. We denote by Vrt(W) the set of the variants of the declarations
in W, obtained by renaming their variables. In the sequel we assume W to
be fixed, so we omit reference to it.

Syntactical identity between processes we denote by =. We assume the
following binding order between the operators (corresponding to decreasing
priority): ., +, II, 3x.

3.1 The operational model and the observables 0

The operational model is described in terms of a transition system T =
(Coni, -----*). The configurations Con! consist of a process and a constraint

representing the store. The rules of T are described in Table 1. (We assume
the commutativity of the parallel and the choice operator.)

Table 1: The Transition System T

Rl (ask(d)· A,c) ----; (A,c) if c f- d

R2 (tell(d) . A, c) ----; (A, c A d)

R3 (p(x), c) ---> (A, c) if p(x) :- A E Vrt(W)

R4 (A,3x c) ----; (B,d)
(3x.A, c) ---> (3~.B, c A 3x d)

R5 (A, d A 3x c) ----; (B, e)
(3~.A, c) ----; (3;.B, c A 3x e)

R6 (A,c) ----; (A',d)
(A II B, c) ----; (A' II B, d)
(A + B,c) ----; (A',d)

The way in which the store is queried and updated is described by the
rules Rl and R2. Note that the execution of a tell action is not constrained
by consistency requirements. As a consequence a tell action can always
proceed; it is an autonomous action. Also with respect to an ask action we
do not require the current store to be consistent with the asked constraint,
we require only that it is implied by the current store. Rule R3 describes the
replacement of a procedure call by the body of the procedure definition (in
W). The hiding of variables is described by the rules R4 and R5. To keep
track of the local store which contains information about the local variable,
we introduced an auxiliary operator 3;, where c represents the local store.
A local computation step then proceeds from a store which consists of the
local store and the global information about all the variables but the local
one. The resulting store of a local computation step represents the new local
store, and the new global store is obtained by adding to the old one the new
information about all the variables but the local one. Finally, R6 is the
usual rule for the parallel and the choice operator, where the behaviour of a
compound process is described in terms of the behaviour of the components.
Notice that parallelism is described as interleaving. Furthermore, the choice
operator models global non-determinism in the sense that the choices of a
process which are guarded by an ask action, depend on the current store
which is subject to modifications by)he external environment.

The result of a terminating computation consists of the final store. This
is formally represented by the notion of observables.

Definition 3.1 The observables are given by the function

O[A] = {c I (A, true) -* (B,c) f->}

where _* denotes the transitive closure of _, and f-> indicates that
there is no transition possible.

We want to identify those processes that have the same obervables in
every context:

Definition 3.2 By ~ we denote the congruence A ~ B iff for all contexts
C[J, O[C[A]D = O[C[BJ]. Here a context C[J is a process expression with
OCCurrences of a process variable, and C[AJ denotes the process obtained by
substituting A for this variable in C[J.

Note that the relation which identifies processes that have the same ob·
servables is not a congruence.

4 Process Algebra

In this section we investigate an axiomatization of the congruence~. For
technical convenience we restrict ourselves to finite processes, for a treatment
of recursion we refer to [5J. The kernel of the algebra consists of the axiom
system aprPA (the system in [4J restricted to action prefixing), plus the
failure axioms and the axioms for T-abstraction ([3]) .

The system aprPA (Table 2) axiomatizes the plus-operator (commuta
tivity, associativity, idempotency), 6, and the merge in terms of interleaving.
For the axiomatization of the merge an auxiliary operator, the left-merge
(ILl, is introduced. The system aprPA axiomatizes a notion of equivalence

which is known as bisimulation [5J. The system aprPA plus the failure
axioms (Table 3) axiomatizes the congruence induced by the equivalence
which identifies processes which have the same maximal traces. Finally, the
T-abstraction rules (Table 4) allow one to abstract from 'silent steps'. In the
context of concurrent constraint programming a silent-step corresponds to a
tell(true) or ask(true) action.

On top of this we have first the axioms for quantification (Table .5).
Quantification is axiomatized in terms of the auxiliary operator 3;, which
acts like a kind of state-operator [5, 4J. The local store which includes
information about the local variable x is represented by c. This auxiliary
operator distributes over the plus, and when it passes a tell action or an
ask action it quantifies the local variable (in case of an ask it also changes
the constraint), and updates the local store, which is then passed on. The
transformation of the constraint in the ask can be justified as follows: d is

Table 2: aprPA

e ·A = e

A+A - A AIIB = AlLB+BlL A -

A+B = B+A ellA = e

A+(B+C) = (A+B)+C (a·A) lLB = alA II B)

A+6 - A (A+B)lLC - AlLC+BlLC - -

Table 3: The Failure Axioms.

a(j3· A, + B ,) + a(j3· Az + B z)
a(j3 . A, + 13 . Az + B,)

+
a(j3· A, + 13· A z + B z)

a·A+a(B+C) = a·A+a(A+B)+a(B+C)

entailed by the local store e and an arbitrary global store 3x e iff (by the
deduction theorem) e --; d is entailed by 3x e, or equivalently Vx(e --; d) is
entailed bye. Note that VAe --; d) is an element of dele), and remember
that the deduction theorem holds in de(e) (this is the main reason why we
have intoduced the notion of dele)).

Next we introduce a system of axioms which characterize the specific
nature of the ask and tell actions. In the following a(c) and j3(c) represent
ask or tell actions on the constraint e. The axiom

la(c)(j3(d). A + B) = a(e)(j3(ell d)· A + B) I (1)

expresses that once a constraint has been established, either by telling or
asking it, it remains in the store. As a consequence, once a constraint is
established, asking or telling it will have the effect of a silent transition.
This is expressed by the following axiom

I a(e)(j3(e)· A + B) = a(e)(T' A + B) I (2)

Table 4: r-abstraction laws

a·r·A a·A

r·A+B r·A+r(A+B)

Table 5: Quantification

3x.A = 3!J"ue .A

3;'.6 6

3;'.(A + B) = 3;'.A + 3;'.B

3;'.tell(d)· A tell(3x(c II d)) . 3;{'d.A

3;'.ask(d) . A ask(Vx(c -> d)). 3;'.A

The axioms

I a(tell(c)· A + B) = a(tell(c)· A + B) + a· tell(c)· A I (3)

and
I tell(c) . A = tell(c) . A + ask(d) . tell(c) . A I (4)

together characterize the autonomous character of a tell action, namely the
fact that it can always proceed irrespective of the current store. It is worth
while noticing the similarity of axiom 3 with the I-axiom for asynchronous
communication ([7]). Axiom 4 can be informally justified as follows: sup
pose that the current store implies the asked constraint d, in this case the
process represented by the right-hand side of the axiom can select the ask
branch, execute the tell action and proceed with A. But this behaviour can
be simulated with the same observable effect by the other branch. In case
the current store does not imply d, the only choice left is to execute the
tell-branch. It is instructive to see why axiom 4 does not hold for ask ac
tions: let c and d be such that neither c f- d nor d f- c. Then the processes
A == ask(c) . 6 and B == A + ask(d) . ask(c) . 6 can be distinguished by the
context C[] == ([] + ask(d)· tell(c)· 8) II tell(d)· 6, namely after the execu
tion of tell(d) the process B in C[B] can select the ask(d) . ask(c) ·8 branch

after which the process terminates, whereas after the execution of tell(d) by
the process C[A] the process A is suspended, and thus the enabled branch
ask(d)· tell(c) . 8 is selected, so formally we have d E O[C[BJD \ O[C[A]l
However, the following axiom which allows the strengthening of an ask-guard
can be shown to be valid:

lask(c). A = ask(c)· A + ask(d)· A I (5)

provided d f- c. The axiom,

I tel1(c) . A = tell(d) . tell(e) . A I (6)

where C ~ d fI e, allows for the composition/decomposition of tell actions.
Again, in a similar way as described above, it can be shown that a corre
sponding axiom for ask actions is not valid. The following restricted version
of composition/decomposition,

lask(c). A + ask(c fI d)· B = ask(c)· A + ask(c)(A + ask(d)· B) I (7)

however, can be shown to be valid. We conclude with the following axiom

provided for every f E I -.> J if for every k E J(<:;; {ij liE I,j E J} we have
I\i Ci /u) If Ck then there exist i and j such that ask(l\i Ci/(i»·8 == ask(Ci])' Ai]
(~ denotes generalized sum, and i is to be understood to range over I, j over
J). This axiom can be informally justified as follows: let c be such that for
no Ck we have c f- ck. So after the execution of a the branch a·~kask(ck)·Ak
will terminate. Now suppose that for every i there exists j such that c f- Ci].
Define f E I -.> J such that C f- Ci/(,)' It follows that there exists no k such
that I\i Ci /u) f- Ck (otherwise we would have c f- ckl. So there exist i and
j such that ask(CiJ· Ai] == ask(l\;ci/(i»' 8. Thus the process represented
by the left-hand side of the axiom will also terminate in the current store C
after the execution of a, selecting the i lh branch.

Example 4.1 Consider the following equation:

a(ask(c)· 8 + A) = a(ask(c)· 8 + A) + a· A

If A == ~iai . Ai contains only initial ask actions, then the equation can be
obtained as an instance of the axiom 8.

5 Formal justification

In this section we discuss the formal justification (i.e., soundness and com
pleteness) of the process algebra we have presented. We indicate with the
symbol f- (not to be confused with the entailment relation H) the derivation

of an equality in the algebraic theory consisting of all the axioms of previous
section. First we define a compositional semantics which is fully abstract
with respect to O.

In the following, A denotes the set of ask and tell actions. For a set S,
P(S) is the set of all subsets of S. The domain of our semantics consists of
sets of ask-tell sequences together with a constraint: formally it is given by
the set P(A* X C), where C = (C, $, II, true,lalse) is the constraint system
underlying the language. Each element of this set represents a possible run
of the process within an environment (context). The constraint represents
the final store (as determined by the contributions of both the process and
the context), final in the sense that the process cannot proceed anymore
given that store. The ask-tell sequence represents the sequence of all actions
performed by the process in this run.

Before describing formally the semantics we need to introduce some
technical definitions. In the following, F, F1 , F2 will indicate elements of
P(A* X C).

The notation a(c) 0 F indicates the set obtained by prefixing a(c) to
those sequences for which c doesn't change the final result. Formally:

and

{(a(c)· I,d) I (f,d) E F and d f-c}
u

ask(c)oF= {(T,d) I (E,d),(T,d)EFanddl-c}
U

{(E,d) I d If c}

tell(c) 0 F = {(a(c)· I,d) I (f,d) E F and d I- c}

where E denotes the empty sequence. The semantics of prefixing an ask action
consists in adding the action to those sequences the final result of which
entails the asked constraint. Moreover, we select the sequences (E, d) and
(T,d), where d entails the asked constraint. With respect to these sequences,
which model the situation that the process either terminates immediately
or after some silent moves in the final store d, the action ask(c) behaves
like a silent step. (Note that we additionally perform some T-abstraction
by contracting a number of silent steps into one.) Finally, we have to add
those (empty) sequences consisting of a final result which does not imply
the asked constraint, since in these cases the resulting process terminates
immediately. Note that the main difference between the semantics of an ask
and tell action is that for an ask action we need additionally to record those
final stores which block the action. Since a tell action can always proceed
this additional recording does not apply.

Fl II F2 denotes the set of all possible interleavings of those sequences of
FI and F2 which result in the same final store:

FI II F2 = {(f,e) I (h,e) E Fdh,e) E F2 and I E (h II h)}

(h 1112 denotes the set of arbitrary interleavings of h and h).
Finally, the local state operator is defined by

3~(F) = {3~((I,d)) I (I,d) E F},

where:
3;((tell(d) . f, d))
3;((ask(d) . f, d))
3;(«, d))

tell(3x d) 0 3;,Ad((l, d))
= ask(1;I x(c -d)) 0 3;'((1, d))
= {«,e II 3x c) I c 113x e ~ d}

Definition 5.1 The mapping F from processes to the set P(A* X C) is
defined as follows.

Flo] = {«,c) ICE C}

Flask(c)· A] = ask(c) 0 FIA]

F[tell(c)· A] = tell(c) 0 F[A]

F[A + B] = (F[A] U FIB]) \ C U (F[A] n F[B] n C)

F[A II B] = FIA] II F[B]

F[3x.A] = 3;r"(F[A]) .

The set of all possible final results of the process 0 is the set C itself,
since 0 does not impose any constraints and all constraints are final for it.

"The semantics of a process A + B consists of the non-empty (with respect
to the actions) sequences of A and B, plus those empty sequences the final
result of which belongs both to A and B. These latter sequences represent
those stores from which neither A nor B can proceed. Here C is used as an
abbreviaton for {<} xC.

Quantification is described in terms of the state operator 3;' where c
represents the local store which contains information about the local x.

The correctness of F with respect to a is stated in the following theorem:

Theorem 5.2 For every process A we have

alA] = {c I 3f. (I, c) E FIA], con(f) ~ c,
1;1 f' (f' . ask(d) =' f =} can (I') I- d)}

Here con(J) denotes the conjunction of all the constmints occurring of the
ask and tell actions of f, and =' denotes the prefix relation.

However F is not fully abstract with respect to a. We need the fol·
lowing closure conditions which characterize the monotonic nature of the
computational model:

Definition 5.3 For F E P(A* X C) let Sat(F) denote the smallest set
containing F which is closed under the following conditions:

Cl I· n(c)· (3(d) -f' E F ~ I· n(c)· (3(c II d)· I'

C2 l·n(c)·{3(c)·I' E F {o} l·n(c)·T·I'

C3 I· tell(c)· tell(d). f' E F {o} I· tell(c II d). I' E F

C4 I· ask(c) . ask(d) . f' E F ~ I· ask(c II d) . I' E F

C5 I ·ask(c)· f' E F ~ I ·ask(d). I' E F (dl- c)

C6 I· ask(c II d) -f' E F, I· ask(c) . f" E F ~ I· ask(c) . ask(d) -f' E F

C7 I· n . T • f' E F {o} I· n . f' E F

(Note that we both use I to denote an element of A" and PtA" X C).) In
C5 it is assumed that the constraint d is entailed by the final result.

In the full paper we show how these conditions can be expressed by the
aXIoms.

Next we introduce the semantics F':

Definition 5.4 For every process A we define P[A] = Sat(F[A]).

In the full paper we show that F' is compositional and fully abstract
with respect to 0, which together with the correctness, gives the following
theorem:

Theorem 5.5 For any processes A and B we have

A", B {o} F/[A] = F/[B].

Given this characterization of the congruence we can prove the soundness
and completeness of the axiom system:

Theorem 5.6 For any processes A and B

Proof-sketch By Theorem 5.5 to prove soundness it suffices to show for
any axiom A = B that P[A] = P[B]' For a detailed proof of the com
pleteness we refer to the full paper. The structure of the proof consists of
a completeness result for basic processes, i.e., processes which are built up
from the ask/tell primitives and 8 using prefixing and choice only, and an
elemination theorem which states that every process is provable equal to a
basic process. In the completeness result for basic processes the following ex
pressiveness of the closure conditions plays a crucial role: let P[A] = F[A]
and Fn+l[A] = Sat(Fn[A]), then for every n and for every basic process A
there exists a basic process An such that I- A = An and F[An] = Fn[A].

o

6 Future Research

We investigated an algebraic axiomatization of concurrent constraint pro
gramming. An essential feature of our computational model is that the
execution of a tell action is not constrained by consistency requirements; it
is modelled as an autonomous action. Also with respect to an ask action
we do not require the asked constraint to be consistent with the current
store, we only require the asked constraint to be entailed by it. It would be
interesting to study algebraically other models which do impose consistency
requirements on the execution of a ask/tell action. These other models then
would require additionally an algebraic theory for inconsistency or failure.

References

[1] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicat
ing sequential processes. Journal of ACM, 31:499-560, 1984.

[2] J.A. Bergstra and J.W. Klop. Process algebra: specification and verifi
cation in bisimulation semantics. Mathematics and Computer Science
II, CWI Monographs, pages 61 - 94. North-Holland, 1986.

[3] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the
algebra of communicating processes. SIAM J. on Computing, 17(6):1134
- 1177, 1988.

[4] J.A. Bergstra, J.W. Klop, and J.V. Tucker. Process algebra with asyn
chronous communication mechanisms. S.D. Brookes, A.W. Roscoe, and
G. Winskel, editors, Proc. Seminar on Concurrency, volume 197 of Lec
ture Notes in Computer Science, pages 76 - 95. Springer-Verlag, 1985.

[5] J .C.M. Baeten and P. Weijland. Process Algebra, volume 18 of Cam
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1990.

[6] K.L. Clark and S. Gregory. PARLOG: parallel programming in logic.
ACM Trans. on Programming Languages and Systems, (8):1-49, 1986.

[7] F.S. de Boer, J.W. Klop, and C. Palamidessi. Asynchronous commu
nication in process algebra. Proc. of LICS 92, IEEE Computer Society
Press, 1992. To appear.

[8] 1. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras (Part J).
North-Holland, 1971.

[9] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, New York, 1980.

[10] V.A. Saraswat. Concurrent Constmint Programming Languages. PhD
thesis, Carnegie-Mellon University, January 1989. Published by The
MIT Press, U.S.A., 1990.

[11] D. Scott. Domains for denotational semantics. Proc. of ICALP, 1982.

[12] E.Y. Shapiro. A subset of Concurrent Prolog and its interpreter. Techni
cal Report TR-003, Institute for New Generation Computer Technology
(ICOT), Tokyo, 1983.

[13] E. Y. Shapiro. Concurrent Prolog: A progress report. Computer,
19(8):44-58, 1986.

[14] V.A. Saraswat and M. Rinard. Concurrent constmint progmmming.
Proc. of the seventeenth ACM Symposium on Principles of Program
ming Languages, pages 232-245. ACM, New York, 1990.

[15] V.A. Saraswat, M. Rinard, and P. Panangaden. Semantics foundations
of Concurrent Constmint Progmmming. Proc. of the eighteenth ACM
Symposium on Principles of Programming Languages. ACM, New York,
1991.

[16] K. Ueda. Guarded Horn Clauses. E. Y. Shapiro, editor, Concurrent
Prolog: Collected Papers. The MIT Press, 1987.

[17] K. Ueda. Guarded Horn Clauses, a parallel logic progmmming language
with the concept of a guard. M. Nivat and K. Fuchi, editors, Program
ming of Future Generation Computers, pages 441-456. North Holland,
Amsterdam, 1988.

In this series appeared:

91101 D. Alstein

91102 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91104 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91106 K.M. van Hee

91107 E.Poll

91/08 H. Schepers

91109 W.M.P.v.d.Aalst

91110 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91111 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91112 E. van der Sluis

91113 F. Rietman

91114 P. Lemmens

91115 A.T.M. Aerts
K.M. van Hee

91116 A.J.J.M. Marcelis

91117 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration m Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if. .. ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and sUbtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91/18 Rik van Geldrop

91119 Erik Poll

91120 A.E. Eiben
R.V. Schuwer

91121 J. Coenen
W.-P. de Roever
J.Zwiers

91122 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91125 P. Zhou
J. Hooman
R. Kuiper

91126 P. de Bra
GJ. Houben
J. Paredaens

91127 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91130 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91132 P. Struik

91/33 W. v.d. Aalst

91134 J. Coenen

91135 F.S. de Boer
J.W. Klop
C. Pa1amidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueIng systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J .C.M. Baeten
J .A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J .P.H.W. v .d.Eijnde

92/06 J.C.M. Baeten
J .A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92110 P.M.P. Rambags

92111 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92117 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation In acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshali/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part J, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92122 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92126 T.H.W.Beelen
WJJ.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
PJ. Zwietering

93/05 J .C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93110 K.M. van Hee

93111 K.M. van Hee

93112 K.M. van Hee

93113 K.M. van Hee

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p.33.

A Programming Logic for Fw, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
WJJ.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
I.H.M. Korst
PJ. Zwietering

93/05 I.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 1. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93112 K.M. van Hee

93/13 K.M. van Hee

93114 I.C.M. Baeten
J.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for FOl, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part lll: Modeling Methods, p. 10 I.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 1.C.M. Baeten
1.A. Bergstra
R.N. Bol

93/16 H. Schepers
1. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 0-1. Houben

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDaS system.
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

	Abstract
	1. Introduction
	1.1 Plan of the paper
	2. Constraint systems
	3. The language
	4. Process algebra
	5. Formal justification
	6. Future Research
	References

