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Abstract 

We develop an algebraic theory for the observational equivalence of concur
rent constraint programs which identifies processes which have the same final 
results for all possible executions. 

1 Introduction 

In the last years there have been given several proposals to extend logic 
programming with constructs for concurrency, aiming at the development 
of a concurrent language which would maintain the typical advantages of 
logic programming: declarative reading, computations as proofs, amenability 
to meta-programming etc. Examples of concurrent logic languages include 
PARLOG [6], Concurrent Prolog [12, 13], Guarded Horn Clauses [16, 17] 
and their so-called flat versions. Concurrent constraint programming ([10, 
14, 15]) represents one of the most successful proposals in this area. 

Constraint programming is based on the notion of computing with sys
tems of partial information. The store is seen as a constraint on the values 
that variables can assume, rather than a correspondence between variables 
and values. All processes of the system share a common store, which, at 
any stage of the computation, is given by the constraint established until 
that moment. The execution of a tell action modifies the current store by 
adding a constraint. An ask action is a test on the store: it can be executed 
only if the current store is strong enough to entail a specified constraint. 
If this is not the case, then the process suspends (waiting for the store to 
accumulate more information by the contributions of the other processes). 
The execution of an ask itself leaves the store unchanged. Hence both the 
tell and ask actions are monotonic, in the sense that after their execution 
the store contains the same or more information. Therefore the store evolves 
monotonically during the computation, i.e. the set of possible values for the 



variables shrinks. 
This paper addresses the problem of an algebraic axiomatization for con

current constraint programming. The algebraic approach is one of the most 
diffused methods in concurrency theory both for specification (i.e. definition 
of new operators) and for program verification (i.e. check that a certain 
implementation satisfies a given specification). During the last decade there 
have been a number of proposals for process algebras: beside the Calculus of 
Communicating Systems of Milner ([9]), several related formalisms have been 
proposed, such as the Theory of Communicating Processes of Hoare ([1]) and 
the Algebra of Communicating Systems of Bergstra and Klop ([2, 3, 5]). 

For a given language there are, in general, various observability criteria 
which are of interest. Since in concurrent constraint programming processes 
communicate via a common store the relevant aspects of the behaviour of a 
process, from the point of view of the environment, are described in terms 
of its interaction with the common store. In this paper we consider the most 
abstract description: only the final results are observable. This choice is 
motivated by the fact that, due to the monotonic evolution of the store, the 
intermediate states of the computation are just approximations of the final 
result. 

However, the equivalence induced by this notion of observables introduces 
too many identifications to be characterized algebraically. For an algebraic 
theory only those processes can be identified which not only have the same 
observables, but which additionally show no observable difference when im
merged in any kind of context. An equivalence which satisfies this property 
is called a congruence. The coarsest of such congruences is particularly of 
interest since it exactly identifies those processes which cannot be distin
guished by any context; it corresponds to a fully abstract semantics. In this 
paper we will develop a complete axiomatization of the coarsest congruence 
contained in the equivalence induced by observing final results only. 

To prove correctness and completeness of the axiomatization, it will be 
convenient to define a fully abstract semantics. A compositional model is 
more suitable for reasoning about the axioms because it characterizes classes 
of processes which are observable equivalent in every context in terms of 
canonical representatives. 

Due to space limitations in this version we have omitted the proofs which 
can be found in the full paper. 

1.1 Plan of the paper 

In the next section we define the notion of constraint system underlying the 
language. In particular, we discuss distributive and complemented constraint 
systems. In Section 3 we define the language, the operational model, and 
the notion of observables. In Section 4 we present the axiomatization, and 
in Section 5 we discuss its correctness and completeness. In section 5 we 
also develop a fully abstract semantics which will be useful to prove those 



results. In the last section we point out some directions for future research. 

2 Constraint systems 

The notion of constraint system we consider here is a simplification 1 of the 
one developed in [14J. 

Definition 2.1 A constraint system C is a complete (algebraic) lattice (C,::; 
,II, true,Jalse) where II is the lub operation, and true, false are the least and 
the greatest elements of C, respectively. 

Following the standard terminology and notation, instead of ::; we will 
refer to its inverse relation, denoted by I- and called entailment. Formally 

'ifc, dEC. c I- d ¢> d::; c. 

In order to treat the hiding operator of the language it will be helpful to 
introduce a general notion of existential quantification. In this framework 
it is convenient to formalize this notion by means of the theory of cylindric 
algebras ([8]). This leads to the concept of cylindric constmint system. 

Definition 2.2 Let Var be a (denumerable) set of variables x, y, z, . ... As
sume that for each x E Var a function 3x : C --+ C is defined such that for 
any c,d E C: 

(i) c I- 3x(c), 

(ii) if c I- d then 3x (c) I- 3x (d), 

(iii) 3x(c II 3x(d)) ~ 3x(c) II 3x(d), 

(iv) 3x (3 y(c)) ~ 3y(3 x (c)). 

Then (C, I- , II, true, false, Var) is a cylindric constmint system. 

In the following 3x ( c) will be denoted by 3x c with the convention that, in case 
of ambiguity, the scope of 3x is limited to the first constraint subexpression. 
(So, for instance 3x c II d stands for 3x ( c) II d.) 

We introduce now two notions taken from lattice theory: the complement 
and the distributivity. The complement of an element c, denoted by c-, 
represents, in a sense, the negation of c. Distributivity is the usual property 
about combinations oflubs and glbs (in the sequel the glb of a lattice will be 

IThe approach of [14] follows Scott's treatment of information system ([11]): the start
ing point is a set of simple constraints on which a compact entailment relation is defined. 
Then a constraint system is constructed by considering sets of simple constraints and by 
extending the entailment relation on it. This construction is made in such a way that the 
resulting structure is a complete algebraic lattice, which ensures the effectiveness of the 
extended entailment relation. In this paper we abstract from this construction, and we 
just consider the resulting structure. 



denoted by v). Constraint systems satisfying distributivity and existence of 
the complement are very rich structures (actually they are boolean algebras), 
and for this reason they are particularly suitable to reason about equalities. 
Furthermore, they have a very interesting feature, which will be useful for 
developing our axiomatization: they are able to represent the entailment 
relation as a constraint of the system itself: 

Proposition 2.3 Let (C, 1-, II, true ,false) be a distributive and complemented 
constmint system. Then 

'<Ic,d,e E C. (e II c I- d) <* (e I- c- V d). 

We will denote C V d by c --> d and (3 xc-)- by '<I xc. 
The only·if part of previous proposition is a sort of 'deduction theorem' 

for constraint systems. 
In general, the existence of the complement and distributivity is a rather 

strong assumption, and it would be very restrictive to require it to be satis· 
fied by the constraint system on which the language operates. Actually we 
do not need to do so. For our purpose it is sufficient to embed the constraint 
system of the language into a complemented and distributive one. We use 
this larger system only to represent terms in intermediate steps possibly 
needed to derive certain equalities among processes. (This is in analogy for 
instance with the idea of immerging the real numbers into the field of the 
complex numbers, in order to solve equations between real numbers.) Given 
a constraint system C we will indicate by dc(C) the distributive and com
plemented closure of C, namely the smallest distributive and complemented 
constraint system which contains C as subsystem. 

Example 2.4 Consider a Herbrand domain consisting only of the constants 
a, band c and let C be the constraint system whose elements are the equalities 
over this domain involving a variable x, and the entailment relation is the 
'standard one', represented in Figure l(a). This constraint system is neither 
distributive, nor the unicity of the complement is satisfied. 

Consider now the constraint system C' which contains also the disequal
ities involving x, with the 'standard' entailment relation represented in Fig
ure l(b). We have that C' is distributive, complemented and C' = dc(C). 

3 The language 

In this section we present the language of concurrent constraint program
ming, its computational model and the intended observation criterium. The 
definitions we give are equivalent to the ones in [15]. 

We assume given a cylindric constraint system (C, 1-, II, true,false, Var). 
We use A, B, . .. to range over the set of processes, p, q, T, •• • to range over 
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Figure 1: Herbrand constraint systems for x, a, b, c 

process names, x, y, z, . .. to range over Var and n over the set of ask and tell 
actions. In addition, the notation X indicates a list of the form (Xl, ... , Xn). 

The processes are described by the following grammar 

A ::= 8 In· A I A + A I A II A I 3x.A I p(x) 

The symbol 6 denotes inaction. The process ask( c) . A waits until the 
store entails c and then it behaves like A. The process tell( c) . A adds c to 
the store and then it behaves like A. Sometimes we omit . and write, for 
example, n(A + B) instead of n· (A + B). The operators II and + are the 
parallel composition (or merge) and the nondeterministic choice (or plus), 
respectively. 3x is the hiding operator: 3x.A is like the process A, with 
the variable x seen as local. We will see that there is a strong relation with 
the existential quantifier over the coustraint system, for this reason we have 
used the same symbol. Finally, p( x) is a procedure call, p is the name of 
the procedure, and x is the list of the actual parameters. The meaning 
of a process is given with respect to a set W of declarations of the form 
pUll :- A. We denote by Vrt(W) the set of the variants of the declarations 
in W, obtained by renaming their variables. In the sequel we assume W to 
be fixed, so we omit reference to it. 

Syntactical identity between processes we denote by =. We assume the 
following binding order between the operators (corresponding to decreasing 
priority): ., +, II, 3x. 

3.1 The operational model and the observables 0 

The operational model is described in terms of a transition system T = 
(Coni, -----*). The configurations Con! consist of a process and a constraint 



representing the store. The rules of T are described in Table 1. (We assume 
the commutativity of the parallel and the choice operator.) 

Table 1: The Transition System T 

Rl (ask(d)· A,c) ----; (A,c) if c f- d 

R2 (tell(d) . A, c) ----; (A, c A d) 

R3 (p( x), c) ---> (A, c) if p( x) :- A E Vrt(W) 

R4 (A,3x c) ----; (B,d) 
(3x.A, c) ---> (3~.B, c A 3x d) 

R5 (A, d A 3x c) ----; (B, e) 
(3~.A, c) ----; (3;.B, c A 3x e) 

R6 (A,c) ----; (A',d) 
(A II B, c) ----; (A' II B, d) 
(A + B,c) ----; (A',d) 

The way in which the store is queried and updated is described by the 
rules Rl and R2. Note that the execution of a tell action is not constrained 
by consistency requirements. As a consequence a tell action can always 
proceed; it is an autonomous action. Also with respect to an ask action we 
do not require the current store to be consistent with the asked constraint, 
we require only that it is implied by the current store. Rule R3 describes the 
replacement of a procedure call by the body of the procedure definition (in 
W). The hiding of variables is described by the rules R4 and R5. To keep 
track of the local store which contains information about the local variable, 
we introduced an auxiliary operator 3;, where c represents the local store. 
A local computation step then proceeds from a store which consists of the 
local store and the global information about all the variables but the local 
one. The resulting store of a local computation step represents the new local 
store, and the new global store is obtained by adding to the old one the new 
information about all the variables but the local one. Finally, R6 is the 
usual rule for the parallel and the choice operator, where the behaviour of a 
compound process is described in terms of the behaviour of the components. 
Notice that parallelism is described as interleaving. Furthermore, the choice 
operator models global non-determinism in the sense that the choices of a 
process which are guarded by an ask action, depend on the current store 
which is subject to modifications by )he external environment. 



The result of a terminating computation consists of the final store. This 
is formally represented by the notion of observables. 

Definition 3.1 The observables are given by the function 

O[A] = {c I (A, true) -* (B,c) f->} 

where _* denotes the transitive closure of _, and f-> indicates that 
there is no transition possible. 

We want to identify those processes that have the same obervables in 
every context: 

Definition 3.2 By ~ we denote the congruence A ~ B iff for all contexts 
C[ J, O[C[A]D = O[C[BJ]. Here a context C[ J is a process expression with 
OCCurrences of a process variable, and C[AJ denotes the process obtained by 
substituting A for this variable in C[ J. 

Note that the relation which identifies processes that have the same ob· 
servables is not a congruence. 

4 Process Algebra 

In this section we investigate an axiomatization of the congruence~. For 
technical convenience we restrict ourselves to finite processes, for a treatment 
of recursion we refer to [5J. The kernel of the algebra consists of the axiom 
system aprPA (the system in [4J restricted to action prefixing), plus the 
failure axioms and the axioms for T-abstraction ([3]) . 

The system aprPA (Table 2) axiomatizes the plus-operator (commuta
tivity, associativity, idempotency), 6, and the merge in terms of interleaving. 
For the axiomatization of the merge an auxiliary operator, the left-merge 
(ILl, is introduced. The system aprPA axiomatizes a notion of equivalence 

which is known as bisimulation [5J. The system aprPA plus the failure 
axioms (Table 3) axiomatizes the congruence induced by the equivalence 
which identifies processes which have the same maximal traces. Finally, the 
T-abstraction rules (Table 4) allow one to abstract from 'silent steps'. In the 
context of concurrent constraint programming a silent-step corresponds to a 
tell( true) or ask( true) action. 

On top of this we have first the axioms for quantification (Table .5). 
Quantification is axiomatized in terms of the auxiliary operator 3;, which 
acts like a kind of state-operator [5, 4J. The local store which includes 
information about the local variable x is represented by c. This auxiliary 
operator distributes over the plus, and when it passes a tell action or an 
ask action it quantifies the local variable (in case of an ask it also changes 
the constraint), and updates the local store, which is then passed on. The 
transformation of the constraint in the ask can be justified as follows: d is 



Table 2: aprPA 

e ·A = e 

A+A - A AIIB = AlLB+BlL A -

A+B = B+A ellA = e 

A+(B+C) = (A+B)+C (a·A) lLB = alA II B) 

A+6 - A (A+B)lLC - AlLC+BlLC - -

Table 3: The Failure Axioms. 

a(j3· A, + B , ) + a(j3· Az + B z ) 
a(j3 . A, + 13 . Az + B,) 

+ 
a(j3· A, + 13· A z + B z) 

a·A+a(B+C) = a·A+a(A+B)+a(B+C) 

entailed by the local store e and an arbitrary global store 3x e iff (by the 
deduction theorem) e --; d is entailed by 3x e, or equivalently Vx(e --; d) is 
entailed bye. Note that VAe --; d) is an element of dele), and remember 
that the deduction theorem holds in de(e) (this is the main reason why we 
have intoduced the notion of dele)). 

Next we introduce a system of axioms which characterize the specific 
nature of the ask and tell actions. In the following a( c) and j3( c) represent 
ask or tell actions on the constraint e. The axiom 

la(c)(j3(d). A + B) = a(e)(j3(ell d)· A + B) I (1 ) 

expresses that once a constraint has been established, either by telling or 
asking it, it remains in the store. As a consequence, once a constraint is 
established, asking or telling it will have the effect of a silent transition. 
This is expressed by the following axiom 

I a(e)(j3(e)· A + B) = a(e)(T' A + B) I (2) 



Table 4: r-abstraction laws 

a·r·A a·A 

r·A+B r·A+r(A+B) 

Table 5: Quantification 

3x.A = 3!J"ue .A 

3;'.6 6 

3;'.(A + B) = 3;'.A + 3;'.B 

3;'.tell(d)· A tell(3x( c II d)) . 3;{'d.A 

3;'.ask( d) . A ask(Vx(c -> d)). 3;'.A 

The axioms 

I a(tell(c)· A + B) = a(tell(c)· A + B) + a· tell(c)· A I (3) 

and 
I tell( c) . A = tell( c) . A + ask( d) . tell( c) . A I (4) 

together characterize the autonomous character of a tell action, namely the 
fact that it can always proceed irrespective of the current store. It is worth
while noticing the similarity of axiom 3 with the I-axiom for asynchronous 
communication ([7]). Axiom 4 can be informally justified as follows: sup
pose that the current store implies the asked constraint d, in this case the 
process represented by the right-hand side of the axiom can select the ask
branch, execute the tell action and proceed with A. But this behaviour can 
be simulated with the same observable effect by the other branch. In case 
the current store does not imply d, the only choice left is to execute the 
tell-branch. It is instructive to see why axiom 4 does not hold for ask ac
tions: let c and d be such that neither c f- d nor d f- c. Then the processes 
A == ask( c) . 6 and B == A + ask( d) . ask( c) . 6 can be distinguished by the 
context C[] == ([] + ask(d)· tell(c)· 8) II tell(d)· 6, namely after the execu
tion of tell( d) the process B in C[ B] can select the ask( d) . ask( c) ·8 branch 



after which the process terminates, whereas after the execution of tell( d) by 
the process C[A] the process A is suspended, and thus the enabled branch 
ask(d)· tell(c) . 8 is selected, so formally we have d E O[C[BJD \ O[C[A]l 
However, the following axiom which allows the strengthening of an ask-guard 
can be shown to be valid: 

lask(c). A = ask(c)· A + ask(d)· A I (5) 

provided d f- c. The axiom, 

I tel1( c) . A = tell( d) . tell( e) . A I (6) 

where C ~ d fI e, allows for the composition/decomposition of tell actions. 
Again, in a similar way as described above, it can be shown that a corre
sponding axiom for ask actions is not valid. The following restricted version 
of composition/decomposition, 

lask(c). A + ask(c fI d)· B = ask(c)· A + ask(c)(A + ask(d)· B) I (7) 

however, can be shown to be valid. We conclude with the following axiom 

provided for every f E I -.> J if for every k E J( <:;; {ij liE I,j E J} we have 
I\i Ci /u) If Ck then there exist i and j such that ask(l\i Ci/(i»·8 == ask( Ci])' Ai] 
(~ denotes generalized sum, and i is to be understood to range over I, j over 
J). This axiom can be informally justified as follows: let c be such that for 
no Ck we have c f- ck. So after the execution of a the branch a·~kask(ck)·Ak 
will terminate. Now suppose that for every i there exists j such that c f- Ci]. 
Define f E I -.> J such that C f- Ci/(,)' It follows that there exists no k such 
that I\i Ci /u) f- Ck (otherwise we would have c f- ckl. So there exist i and 
j such that ask(CiJ· Ai] == ask(l\;ci/(i»' 8. Thus the process represented 
by the left-hand side of the axiom will also terminate in the current store C 
after the execution of a, selecting the i lh branch. 

Example 4.1 Consider the following equation: 

a(ask(c)· 8 + A) = a(ask(c)· 8 + A) + a· A 

If A == ~iai . Ai contains only initial ask actions, then the equation can be 
obtained as an instance of the axiom 8. 

5 Formal justification 

In this section we discuss the formal justification (i.e., soundness and com
pleteness) of the process algebra we have presented. We indicate with the 
symbol f- (not to be confused with the entailment relation H) the derivation 



of an equality in the algebraic theory consisting of all the axioms of previous 
section. First we define a compositional semantics which is fully abstract 
with respect to O. 

In the following, A denotes the set of ask and tell actions. For a set S, 
P( S) is the set of all subsets of S. The domain of our semantics consists of 
sets of ask-tell sequences together with a constraint: formally it is given by 
the set P(A* X C), where C = (C, $, II, true,lalse) is the constraint system 
underlying the language. Each element of this set represents a possible run 
of the process within an environment (context). The constraint represents 
the final store (as determined by the contributions of both the process and 
the context), final in the sense that the process cannot proceed anymore 
given that store. The ask-tell sequence represents the sequence of all actions 
performed by the process in this run. 

Before describing formally the semantics we need to introduce some 
technical definitions. In the following, F, F1 , F2 will indicate elements of 
P(A* X C). 

The notation a( c) 0 F indicates the set obtained by prefixing a( c) to 
those sequences for which c doesn't change the final result. Formally: 

and 

{(a(c)· I,d) I (f,d) E F and d f-c} 
u 

ask(c)oF= {(T,d) I (E,d),(T,d)EFanddl-c} 
U 

{(E,d) I d If c} 

tell(c) 0 F = {(a(c)· I,d) I (f,d) E F and d I- c} 

where E denotes the empty sequence. The semantics of prefixing an ask action 
consists in adding the action to those sequences the final result of which 
entails the asked constraint. Moreover, we select the sequences (E, d) and 
(T,d), where d entails the asked constraint. With respect to these sequences, 
which model the situation that the process either terminates immediately 
or after some silent moves in the final store d, the action ask( c) behaves 
like a silent step. (Note that we additionally perform some T-abstraction 
by contracting a number of silent steps into one.) Finally, we have to add 
those (empty) sequences consisting of a final result which does not imply 
the asked constraint, since in these cases the resulting process terminates 
immediately. Note that the main difference between the semantics of an ask 
and tell action is that for an ask action we need additionally to record those 
final stores which block the action. Since a tell action can always proceed 
this additional recording does not apply. 

Fl II F2 denotes the set of all possible interleavings of those sequences of 
FI and F2 which result in the same final store: 

FI II F2 = {(f,e) I (h,e) E Fdh,e) E F2 and I E (h II h)} 



(h 1112 denotes the set of arbitrary interleavings of h and h). 
Finally, the local state operator is defined by 

3~(F) = {3~((I,d)) I (I,d) E F}, 

where: 
3;( (tell( d) . f, d)) 
3;( (ask( d) . f, d)) 
3;( «, d)) 

tell(3x d) 0 3;,Ad((l, d)) 
= ask(1;I x( c -d)) 0 3;'((1, d)) 
= {«,e II 3x c) I c 113x e ~ d} 

Definition 5.1 The mapping F from processes to the set P(A* X C) is 
defined as follows. 

Flo] = {«,c) ICE C} 

Flask(c)· A] = ask(c) 0 FIA] 

F[tell(c)· A] = tell(c) 0 F[A] 

F[A + B] = (F[A] U FIB]) \ C U (F[A] n F[B] n C) 

F[A II B] = FIA] II F[B] 

F[3x.A] = 3;r"(F[A]) . 

The set of all possible final results of the process 0 is the set C itself, 
since 0 does not impose any constraints and all constraints are final for it. 

"The semantics of a process A + B consists of the non-empty (with respect 
to the actions) sequences of A and B, plus those empty sequences the final 
result of which belongs both to A and B. These latter sequences represent 
those stores from which neither A nor B can proceed. Here C is used as an 
abbreviaton for {<} xC. 

Quantification is described in terms of the state operator 3;' where c 
represents the local store which contains information about the local x. 

The correctness of F with respect to a is stated in the following theorem: 

Theorem 5.2 For every process A we have 

alA] = {c I 3f. (I, c) E FIA], con(f) ~ c, 
1;1 f' ( f' . ask( d) =' f =} can (I') I- d)} 

Here con(J) denotes the conjunction of all the constmints occurring of the 
ask and tell actions of f, and =' denotes the prefix relation. 

However F is not fully abstract with respect to a. We need the fol· 
lowing closure conditions which characterize the monotonic nature of the 
computational model: 

Definition 5.3 For F E P(A* X C) let Sat(F) denote the smallest set 
containing F which is closed under the following conditions: 



Cl I· n(c)· (3(d) -f' E F ~ I· n(c)· (3(c II d)· I' 

C2 l·n(c)·{3(c)·I' E F {o} l·n(c)·T·I' 

C3 I· tell(c)· tell(d). f' E F {o} I· tell(c II d). I' E F 

C4 I· ask( c) . ask( d) . f' E F ~ I· ask( c II d) . I' E F 

C5 I ·ask(c)· f' E F ~ I ·ask(d). I' E F (dl- c) 

C6 I· ask( c II d) -f' E F, I· ask( c) . f" E F ~ I· ask( c) . ask( d) -f' E F 

C7 I· n . T • f' E F {o} I· n . f' E F 

(Note that we both use I to denote an element of A" and PtA" X C).) In 
C5 it is assumed that the constraint d is entailed by the final result. 

In the full paper we show how these conditions can be expressed by the 
aXIoms. 

Next we introduce the semantics F': 

Definition 5.4 For every process A we define P[A] = Sat(F[A]). 

In the full paper we show that F' is compositional and fully abstract 
with respect to 0, which together with the correctness, gives the following 
theorem: 

Theorem 5.5 For any processes A and B we have 

A", B {o} F/[A] = F/[B]. 

Given this characterization of the congruence we can prove the soundness 
and completeness of the axiom system: 

Theorem 5.6 For any processes A and B 

Proof-sketch By Theorem 5.5 to prove soundness it suffices to show for 
any axiom A = B that P[A] = P[B]' For a detailed proof of the com
pleteness we refer to the full paper. The structure of the proof consists of 
a completeness result for basic processes, i.e., processes which are built up 
from the ask/tell primitives and 8 using prefixing and choice only, and an 
elemination theorem which states that every process is provable equal to a 
basic process. In the completeness result for basic processes the following ex
pressiveness of the closure conditions plays a crucial role: let P[A] = F[A] 
and Fn+l[A] = Sat(Fn[A]), then for every n and for every basic process A 
there exists a basic process An such that I- A = An and F[An] = Fn[A]. 

o 



6 Future Research 

We investigated an algebraic axiomatization of concurrent constraint pro
gramming. An essential feature of our computational model is that the 
execution of a tell action is not constrained by consistency requirements; it 
is modelled as an autonomous action. Also with respect to an ask action 
we do not require the asked constraint to be consistent with the current 
store, we only require the asked constraint to be entailed by it. It would be 
interesting to study algebraically other models which do impose consistency 
requirements on the execution of a ask/tell action. These other models then 
would require additionally an algebraic theory for inconsistency or failure. 
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