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Abstract. The inconsistency allowed by architecture and design languages is a source for
software engineering problems. Inconsistencies arise due to the use of multiple views. In this
paper we present an approach that aids architects and designers in finding inconsistencies
between different views. This approach supports intra phase consistency checking and inter
phase consistency checking. Therefore the approach is suitable for detecting consistency
problems between for example multiple diagrams in a UML design as well as between a
design and the implementation.
The approach is based on verification of constraints and obligations that are imposed on
views using relation partition algebra. The constraints and obligations are driven by the
development process and therefore differ between projects. The challenge is to enable con-
sistency checking without imposing constraints on the development process. To this end we
developed a unifying approach for verification of constraints and obligations. Constraints
and obligations can be imposed between views within a development phase as well as be-
tween views of different phases, independent of which view is considered to be leading, and
independent on the view in which you want to see the violations. This enables consistency
checking in an arbitrary process.

1 Introduction

1.1 Background

Our research was carried out in the context of the Robocop and Space4U projects1. The goal of
these projects is the definition of a component based software architecture for the middleware layer
of high volume embedded appliances. Development of robust, reliable and manageble systems is a
critical issue in these projects. Our contribution to these projects focusses on terminal management
and development support activities. In this paper, we consider the latter topic.

In the context of Robocop and Space4U development support consists of a number of activities.
For example: automatic generation of template code for rapid development of components and
systems, analysis support for extra-functional properties at design-time and consistency checking.
In this paper we will discuss techniques for consistency checking at the architecture and design
phases of software development.

1.2 Motivation

The purpose of our research is to investigate how we can aid architects and designers in finding
inconsistencies between views. These views can be artefacts of a single development phase as
well as artefacts of different phases. For example we aim to support consistency checking between
different diagrams of a design and consistency checking between architecture and design (or design
and implementation).

1 These projects are funded in part by the European ITEA program and they are joint projects of various
European companies, together with private and public research institutes.
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UML [3] is becoming the defacto standard for software engineering projects. UML and UML
case tools offer a lot of freedom. They offer the possibility to describe a system using different
views [9]. For a specific view it is also possible to use different diagrams. These different diagrams
have overlapping information. For example, the dependencies in a class diagram and the messages
in a message sequence diagram are related. As a result these different diagrams can give rise to
inconsistencies.

Architecture description, detailed design and implementation are different views on a system
that also contain overlapping information. Therefore this can also give rise to inconsistencies.

Inconsistencies increase the chance of errors and complicates the management of software de-
velopment [6]. There is a need for verification of consistency in and between architecture, design,
and implementation. The consistency requirements depend on the development process and de-
velopment practices used within each particular project. The techniques discussed in this paper
can be used to check the consistency constraints for a particular project.

1.3 Overview

The remainder of this paper is structured as follows. Section 2 discusses a number of examples of
inconsistency problems and how these problems can be detected using relation partition algebra.
Section 3 generalizes these examples and presents an approach for detecting consistency problems
based on restrictions and obligations that one diagram imposes on another. Section 4 shows how
to extend the approach to enable verification of cardinalities of relations. In Section 5 we discuss
the applicability of the approach followed by some conluding remarks in section 6.

2 Examples of Consistency Checks

In this section we will present a number of examples that illustrate how Relation Partition Algebra
(RPA) can be used to find consistency problems. In this paper we use the following rules from
RPA [2]:

I = {< x, x >| ∀x}

A−1 = {< y, x >|< x, y >∈ A}

A − B = {< x, y >|< x, y >∈ A∧ < x, y >/∈ B}

A ∪ B = {< x, y >|< x, y >∈ A∨ < x, y >∈ B}

A ∩ B = {< x, y >|< x, y >∈ A∧ < x, y >∈ B}

A; B = {< x, z >| (∃y :< x, y >∈ A∧ < y, z >∈ B)}

A+ =

∞⋃

n=1

An, where An = A; An−1 for n ≥ 2

A∗ = A+ ∪ I

A ↑ B ≡ B−1; A; B

A ↓ B ≡ B; A; B−1

dAe = {< x, y, 1 >|< x, y >∈ A}

M2; M1 = {< x, z, n >| n =
∑

<x,y,n1>∈M1∧<y,z,n2>∈M2
n1 × n2}

The examples are based on a number of (design and implementation) views on a software
game called Tic Tac Toe. They illustrate that one view imposes constraints or obligations on a
different view and that there is a notion of a leading view and following view. Furthermore these
examples show that there is a choice in whether you are interested in the voilations of constraints /
obligations (in the following view) or the constraints / obligations that are violated (in the leading
view).
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HumanPlayer ComputerPlayer

Board
11

int b[3][3]

Player

GameManager

1

2

1

1

stop()

play()

getNextMove(Board b)

int token

setToken(int t)

Display

printLn(string s)
printBoard(Board b)

Fig. 1. Tic Tac Toe class diagram

2.1 Class Diagram and Message Sequence Diagrams

In this subsection we will illustrate how consistency between message sequence diagrams and class
diagrams can be verified. For this purpose we show how to detect:

– Missing dependencies in the class diagram based on information in the message sequence
diagrams (MSCs): This is an example of obligations imposed on the class diagram by the
MSCs.

– Method invocations in the MSCs that are not allowed based on the class diagram: This is an
example of constraints imposed on the MSCs by the class diagram.

Which of the two is appropriate depends on which view one considers to be leading. After
describing the different views, we will start with the first case. In this case we assume that when
the MSCs show a method invocation of an object of class x on an object of class y, then the class
diagram should show a dependency between class x and class y.

Consider the following example. We are designing a game called Tic Tac Toe. The structure
of the application is showed in Figure 1. The game is implemented using a GameManager that
controls the input of two Players and uses a Display for the output. There are two type of players
HumanPlayers and ComputerPlayers. The class Board is used to store the current game situation.
The structure information of the Tic Tac Toe class diagram is represented by the following sets
and relations.

CLASS = {GameManager, Board, Player, HumanPlayer,

ComputerPlayer, Display}

METHOD = {GameManager.play, GameManager.stop,

Player.getNextMove, Player.setToken,

HumanPlayer.getNextMove, HumanPlayer.setToken,

ComputerPlayer.getNextMove, ComputerPlayer.setToken,
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manager
GameManager : Human Player :

player 1
Computer Player :

player 2
Display :
display

getNextMove()

play()

printLn()

printBoard()

getNextMove()

printBoard()

c1

c2

c3

c4

c5

Fig. 2. Example message sequence diagram

Display.printLn, Display.printBoard}

IMPLEMENTS = {<GameManager.play,GameManager>,

<GameManager.stop,GameManager>,

<Player.getNextMove,Player>, <Player.setToken,Player>,

<HumanPlayer.getNextMove,HumanPlayer>,

<HumanPlayer.setToken,HumanPlayer>,

<ComputerPlayer.getNextMove,ComputerPlayer>,

<ComputerPlayer.setToken,ComputerPlayer>,

<Display.printLn,Display>,

<Display.printBoard,Display>}

INHERITANCE = {<HumanPlayer,Player>,<ComputerPlayer,Player>}

DEPENDENCY = {<GameManager,Player>,<GameManager,Display>}

AGGREGATION = {<GameManager,Board>}

The dynamics of our game are described using a message sequence diagram (see Figure 2).
There is a manager that fetches the next move of the 2 players. After each move the output
is updated using the printBoard method of the display. The HumanPlayer (Player1) writes some
comments to the output using the printLn method of the display, during his move. The information
of the message sequence diagram is represented by the following sets and relations.

OBJECT = {manager,player1,player2,display}

TY PE = {<manager,GameManager>,<player1,HumanPlayer>,

<player2,ComputerPlayer>,<display,Display>}

CALL = {c1, c2, c3, c4, c5}
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NEXT = {< c1, c2 >, < c2, c3 >, < c3, c4 >, < c4, c5 >}

CALLER = {<manager,c1 >,<player1,c2 >,<manager,c3 >,<manager,c4 >,<manager,c5 >}

CALLEE = {<player1,c1 >,<display,c2 >,<display,c3 >,<player2,c4 >,<display,c5 >}

MESSAGE = {<HumanPlayer.getNextMove,c1 >,<Display.printLn,c2 >,

<Display.printBoard,c3 >,<ComputerPlayer.getNextMove,c4 >,

<Display.printBoard,c5 >}

Next we will discuss how we can detect missing dependencies in the Tic Tac Toe class diagram
based on the calls in the message sequence diagram. We assume that a dependency from (a
superclass of) class x and on (a superclass of) class y must exist if an object of class x invokes a
method on an object of class y. We will construct a lower bound on for the dependencies in the
class diagram based on messages in the MSC. This lower bound contains the obligations from the
MSC on the class diagram.

We construct the relation between the objects calling each other (CALLER; CALLEE−1).
This relation contains the dependencies between objects. The relation need to be ’lifted’ to depen-
dencies between classes, in order to be able to compare with the dependencies in the class diagram.
Once we have identified the dependencies between classes based on the message sequence diagram
we verify that all these dependencies are also in the class diagram. This last check is not completely
straight forward, since we have to take inheritance into account.

Rule : ((CALLER; CALLEE−1) ↑ TY PE) ⊆ (1)

(DEPENDENCY ↓ INHERITANCE∗)

Missing dependencies are given by ((CALLER; CALLEE−1) ↑ TY PE)−(DEPENDENCY ↓
INHERITANCE∗). In our example we can deduce that one dependency is missing in the class
diagram. This is the dependency between HumanPlayer and Display. This is motivated by the
following hints:

< player1, display > ∈ CALLER; CALLEE−1

< HumanP layer, Display > ∈ ((CALLER; CALLEE−1) ↑ TY PE)

< HumanP layer, Display > /∈ (DEPENDENCY ↓ INHERITANCE∗)

We can also investigate the second possibility. This is the case in which the class diagram
imposes constraints on the MSCs. We assume that a method invocation of an object of class x on
an object of class y is only allowed when the class diagram shows a dependency between class x and
class y. The allowed dependencies between objects ((DEPENDENCY ↓ INHERITANCE∗) ↓
TY PE) provide an upper bound for the actual dependencies between objects as indicated in the
MSCs (CALLER � CALLEE).

Rule : (CALLER; CALLEE−1) ⊆ (2)

((DEPENDENCY ↓ INHERITANCE∗) ↓ TY PE)

In our example we can show that there is a dependency between player1 and display that is
not allowed. This is an inconsistency that can arise because class diagrams and MSCs contain
overlapping information. Eventhough MSCs are used to describe the dynamics it also implies
some structural information (dependencies). Information that does not cannot cause inconsistency
problems. For example, the order in which methods are invoked according to a MSC cannot cause
consistency problems in the class diagram.

2.2 Class Diagram and Profile

In this subsection we discuss how we can verify a class diagram against a profile. A profile can
be used to describe certain design rules. In this example the profile (design rules) is the leading



6

Manager Managed Element

Output

Data

Legend

These dependencies are allowed

when dependencies are lifted from

design level to profile level

These aggregations are allowed

when aggregations are lifted from

design level to profile level

Fig. 3. Profile describing allowed dependencies between classes

diagram which imposes constraints on the class diagram. The following procedure can be used to
verify whether a class diagram adheres to these design rules.

The procedure is illustrated based on a small example. We present a profile (see Figure 3) and
verify whether the design rules expressed in the profile are obeyed in the class diagram of the Tic
Tac Toe game (see Figure 1). In this case the profile describes which dependencies and aggregations
are allowed to exist between classes of specific categories in the design. The information in the
profile is represented by the following sets:

METACLASS = {Manager, Managed Element, Data, Output}

METADEPENDENCY = {<Manager,Output>,<Manager,Managed Element>}

METAAGGREGATION = {<Manager,Data>}

There also exists a relation between the classes in the profile and the classes in the design. This
relation expresses that a class in the design is of a certain category. This information is represented
by the following relation:

CATEGORY = {<Board,Data>,<GameManager,Manager>,

<Player,ManagedElement>,<HumanPlayer,ManagedElement>,

<ComputPlayer,ManagedElement>,<Display,Output>}

Next we discuss how we can detect dependencies and aggregations in the class diagram that are
not allowed according to the profile. Dependencies in the class diagram that are not allowed are
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found by ’lowering’ the allowed dependencies from the profile to the class diagram. The allowed
dependencies (constraints) provide an upper bound for the actual dependencies that are in the
class diagram.

Rule : DEPENDENCY ⊆ (METADEPENDENCY ↓ CATEGORY ) (3)

The rule above identifies whether there are violations of the design rules in the Class diagram.
We can find the violations as by DEPENDENCY −(METADEPENDENCY ↓ CATEGORY ).
The following rule is more useful if we are interested in which design rules are violated.

Rule : (DEPENDENCY ↑ CATEGORY ) ⊆ METADEPENDENCY (4)

The violated design rules are given by (DEPENDENCY ↑ CATEGORY )−METADEPENDENCY .
The rules (constraints) showed above are not violated by the class diagram of the Tic Tac Toe

application. In the previous subsection we found that a dependency between HumanPlayer and
Display was missing based on information in the message sequence diagram. However, adding this
dependency results in violation of a design rule.

Verification that the class diagram does not contain any aggregations that violate the design
rules is done in a similar fashion. The rule is shown below.

Rule : AGGREGATION ⊆ (METAAGGREGATION ↓ CATEGORY ) (5)

If we are interested in which design rules are violated the following rule is more useful.

Rule : (AGGREGATION ↑ CATEGORY ) ⊆ METAAGGREGATION (6)

2.3 Package Diagram and Class Diagram

In this subsection we will illustrate how the consistency between class diagrams and package
diagrams can be verified. For this purpose we show how to detect missing dependencies in the
package diagram based on the information in the class diagrams. In this example a class diagram
imposes obligations on the package diagrams, the other possibility would be that the package
diagram imposes constraints on the class diagram. The latter is not discussed in this subsection.
We assume that when a class of package x has a dependency on a class of package y, then the
package diagram should show a dependency between package x and y.

Consider the package structure illustrated in Figure 4. There is a Management package that
contains the GameManager and Board classes. There is a Graphics package that contains the
Display class. There is a Players package that contains the Player, HumanPlayer and the Comput-
erPlayer. Finally the package diagram shows that dependencies are allowed between classes of the
Management package and classes of the Graphics package. The information above is represented
by the following sets and relations.

PACKAGE = {Management,Graphics,Players}

CONTAINS = {<GameManager,Management>,<Board,Management>,

<Player,Players>,<HumanPlayer,Players>,

<ComputerPlayer,Players>,<Display,Graphics>,

Next we discuss how we can detect missing dependencies in the package diagram based on the
information in the class diagram. Missing dependencies in the package diagram are found by lifting
the dependencies between classes to the package diagram. The lifted dependencies (obligations)
provide a lower bound for the actual dependencies in the package diagram.

Rule : (DEPENDENCY ↓ INHERITANCE∗) ↑ CONTAINS) ⊆ (7)

{<Management,Graphics>}
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GameManager

Board

Display

HumanPlayer ComputerPlayer

Player

GraphicsManagement

Players

Fig. 4. Tic Tac Toe package diagram

2.4 Layering

Verification of layering in systems using relation partition algebra is already discussed in [1][10].
In this section we will briefly argue that the same reasoning can also be applied on structures of
classes and packages. High level package diagrams can be used to specify the layering rules.

Consider the Tic Tac Toe example again. The layering rules are described in a high level
package diagram (see Figure 5). The Graphics package will be put in the UI Layer package and
the Management and Players packages will be put in the Logic Layer. The dependencies between
the packages remain.

We can use the techniques described in [7] to verify whether the dependencies of sub-packages
and classes obey the layering rules, as long as we don’t allow inheritance to cross package bound-
aries.

2.5 Design and Implementation

In this subsection we will illustrate how consistency between implementation and design can be
verified. This is an example of inter-phase consistency checking. For this purpose we show how to
detect includes in C++ files that are not allowed according to the class diagram. This means the
class diagram is leading and imposes constraints on the implementation.

Consider the implementation illustrated in Figure 6. The boxes represent implementation files
in C++. The arrows represent includes of a header file by another file. For each class in the
class diagram (see Figure 1) there are two implementation files except for the Player class. This
information is represented by the following set and relations.

FILES = {Board.c, Board.h, GameManager.c, GameManager.h,

Display.c, Display.h, Player.h, HumanPlayer.c
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Logic Layer

UI Layer

Fig. 5. Package profile

HumanPlayer.h, ComputerPlayer.c, ComputerPlayer.h}

INCLUDES = {<Board.c,Board.h>, <GameManager.c,GameManager.h>,

<Display.c,Display.h>, <HumanPlayer.c,HumanPlayer.h>,

<ComputerPlayer.c,ComputerPlayer.h>, <GameManager.h,Board.h>,

<GameManager.h, Display.h>, <GameManager.h,Player.h>,

<HumanPlayer.h, Player.h>, <ComputerPlayer.h,Player.h>}

IMPLEMENTS = {<Board.c,Board>, <Board.h,Board>,

<GameManager.c,GameManager>, <GameManager.h,GameManager>,

<Display.c,Display>, <Display.h,Display>,

<HumanPlayer.c,HumanPlayer>,<HumanPlayer.h,HumanPlayer>,

<ComputerPlayer.c,ComputerPlayer>, <ComputerPlayer.h,ComputerPlayer>,

<Player.h,Player>}

Next we discuss how we can detect includes between implementation files that are not allowed
due to the constraints expressed in the design. Files that are part of the implementation of class
c1 are allowed to include:

– files that implement c2, if c1 depends on c2;

– files that implement c2, if c1 aggregates c2;

– files that also implement c1 or one of the parent classes of c1.

We construct an upper bound for the INCLUDES relation. This upper bound is constructed
by lowering the union of the dependencies, aggregations and the identity relation lifted with
INHERITANCE∗.
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HumanPlayer.h ComputerPlayer.h

Player.h

ComputerPlayer.cHumanPlayer.c

GameManager.h

GameManager.c

Display.h

Display.cBoard.c

Board.h

Fig. 6. Implementation of Tic Tac Toe game

Rule : INCLUDES ⊆ (8)

(DEPENDENCY ∪ AGGREGATION ∪ (I ↑ INHERITANCE∗)) ↓ IMPLEMENTS

The rule above is very convenient to find include relations in the implementation that violate
the constraints induced by the design. In the example there are no violations. To show these
violations in the design (class diagram) the following rule is convenient.

Rule : INCLUDES ↑ IMPLEMENTS ⊆ (9)

DEPENDENCY ∪ AGGREGATION ∪ (I ↑ INHERITANCE∗)

3 A General Approach to Consistency Checking

In the previous section we showed a number of examples that illustrated how relation partition
algebra can be used to verify consistency between different views. All these examples followed the
same pattern. In this section we show that this pattern can be generalized to an approach that
can be applied on a large variety of consistency problems.

Consistency problems arise due to the usage of multiple views when describing a software
design. Relations between elements in one view impose constraints or obligations on elements and
their relations in other views.

One problem when looking at consistency is to determine which view is leading. For example, a
message sequence diagram indicates there is a dependency between two classes and this dependency
is not shown in the class diagram. Which diagram is wrong? In UML there is no notion of a leading
diagram. Different design processes give rise to different sequences in which UML diagrams are
created, and also which diagram is considered to be the most important. We feel that the selection
of the leading view should be determined by the design process instead of being prescribed by the
design support tools.

Once we have determined which view is leading we need to identify the rules for the constraints
and/or obligations in the other view. The different approaches used for constraints and obligations
are discussed in the following subsections.
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3.1 Conventions

Let X and Y be two views of software development artefacts. View X contains a set of elements
X , which are related. This relation is represented by RX . View Y contains a set of elements Y ,
which are related. This relation is represented by RY . We assume the views X and Y are related
due to the fact that a mapping MY X exists between Y and X . MY X is a part of relation meaning
that it is functional and acyclic.

functional : (< x, y >∈ MY X ∧ < x, z >∈ MY X) ⇒ y = z

acyclic : M+

Y X ∩ I = ∅

3.2 Rules for constraints

There are two possibilites. View X is leading or view Y is leading. First we assume view X is
leading. We want to express that the relation RY is constrained by relation RX (we will use Rcon

X

to express that this relation contains the constraints). For example: < y1, y2 > is only allowed to
be an element of RY if and only if < x1, x2 >∈ Rcon

X , < y1, x1 >∈ MY X , and < y2, x2 >∈ MY X .
This rule can be expressed as follows:

Rule : RY ⊆ Rcon
X ↓ MY X (10)

The rule above is very convenient to find the violations in Y . The violations in Y are given by
RY −Rcon

X ↓ MY X . The next rule is very convenient to find the constraints in X that are not met.

Rule : (RY ↑ MY X) ⊆ Rcon
X (11)

The following table shows how to relate these general rules to the examples of section 2. The
instantiations of the first row can be used to get rule (2), and the second row to get rule (3) and
(4).

X R
con

X Y RY MY X

CLASS DEPENDENCY OBJECT (CALLER; CALLEE
−1) TY PE

METACLASS METADEP. CLASS DEPENDENCY CATEGORY

LAY ERS ALLOWED PACKAGE ∪ CLASS DEPENDENCY CONTAINS

Table 1. Example of applicability of constraints where view X is leading

Next we discuss the second possibilty. We assume view Y is leading. We want to express
that relation RX is constrained by RY (we use Rcon

Y to express that this relation contains the
constraints). For example: < x1, x2 > is only allowed to be an element of RX if there exists an
< y1, y2 >∈ RY , < y1, x1 >∈ MY X , and < y2, x2 >∈ MY X . This rule can be expressed as follows:

Rule : RX ⊆ Rcon
Y ↑ MY X (12)

The rule is very convenient to find the violations of the constraints in X . These violations are
given by RX − Rcon

Y ↑ MY X . Finding the constraints in Y that are not met is not possible. The
constraints expressed in Y imply that for all elements < x1, x2 > of RX there should be at least
one element in RY that ’allows’ < x1, x2 >:

∀<x1,x2>∈RX
: (∃<y1,y2>∈RY

:< y1, x1 >∈ MY X∧ < y2, x2 >∈ MY X)
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The problem is that Rcon
Y cannot be used as an upper bound for RX ↓ MY X because this

would be equivalent to the following expression:

∀<x1,x2>∈RX
: (∀<y1,y2>∈RY

:< y1, x1 >∈ MY X∧ < y2, x2 >∈ MY X)

3.3 Rules for obligations

There are two possibilities. View X is leading or view Y . First we assume view X is leading. We
want to express that the relation RY has some obligations due to relation RX (we will use Robl

X to
express that this relation contains obligations). For example: < y1, y2 > needs to be an element of
RY if < x1, x2 >∈ Robl

X , < y1, x1 >∈ MY X , and < y2, x2 >∈ MY X . This rule can be expressed as
follows:

Rule : Robl
X ⊆ (RY ↑ MY X) (13)

The rule is very convenient to find the obligations of view X that are not met. These obligations
are given by Robl

X − (RY ↑ MY X). Finding the violations in Y is not possible for the same reason
that it was not possible to find the voilations of constraints on X expressed in Y (see previous
subsection).

Next we discuss the second possibility. We assume view Y is leading. We want to express that
relation RX has some obligations due to relation RY (we will use Robl

Y to express that this relation
contains obligations). For example: < x1, x2 > needs to be an element of RX if < y1, y2 >∈ Robl

Y ,<
y1, x1 >∈ MY X , and < y2, x2 >∈ MY X . This rule can be expressed as follows:

Rule : Robl
Y ⊆ (RX ↓ MY X) (14)

The rule above is very convenient to find the obligations expressed in view Y that are not met.
The following rule is convenient to find the missing relations in X .

Rule : (Robl
Y ↑ MY X) ⊆ RX (15)

The following table shows how to relate these general rules to the examples of section 2. The
instantiation of the first row can be used to get rule (1), instantiation of the second row can be
used to get rule (7).

X RX Y R
obl

Y MY X

CLASS DEPENDENCY OBJECT (CALLER; CALLEE
−1) TY PE

PACKAGE <Management,Graphics> CLASS DEPENDENCY CONTAINS

Table 2. Example of applicability of obligations where view Y is leading

3.4 Exceptions

In this subsection we discuss how to deal with exceptions on rules. Exceptions can be made for
several reasons. Exceptions can be made to get more fine grained constraints and obligations. For
example you want to have a strict layering except for one specific component that is allowed to
by-pass some layers. These exceptions can be permanent, for example due to performance reasons.
Exceptions can also be made temporarily. This often happens due to time pressure, because there
is no time to solve the violations.
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Exceptions can be made for constraints and obligations. Consider we have the following rule
for constraints on view Y imposed by view X .

Rule : RY ⊆ Rcon
X ↓ MY X (16)

We want to make exceptions for some relations in view Y . The exceptions on the constraints are
elements of EY . The constraints of view X are lowered to view Y . The relations in view Y minus
the exeptions should be a subset of the lowered constraints. This is expressed by the following
rule.

Rule : RY − Econ
Y ⊆ Rcon

X ↓ MY X (17)

We express execeptions in view Y . Expressing exceptions in view X results in the following
rule.

Rule : RY ⊆ (Rcon
X ∪ Econ

X ) ↓ MY X (18)

The rule above is sub-optimal since Econ
Y ⊆ Econ

X ↓ MY X . Table 3 shows in which view
to specifiy the exceptions based on the leading view and whether we deal with constraints or
obligations.

constraints obligations

X is leading Y X

Y is leading X Y

Table 3. Where to define the exceptions

3.5 Overview

In this section we discussed how to express rules that can be used to verify consistency between
views. We identified that the following aspects influence the rule that needs to be used:

– Do we want to express constraints or obligations?

– Which view is leading?

– In which view do we want to see the violations?

For each of the three questions above there are two possibilities. As a result there are 23 possible
rules, in two cases this rule cannot be found. The resulting 6 rules are shown in Figure 7. Some of
these rules are the same. We observe that the rule for finding violations on constraints from view
X on view Y is the same as finding violations for obligations from view Y on view X and vice
versa.

Essentially consistency checking comes down to verification of constraints and obligations im-
posed from one view on another. Constraints provide an upper bound for the relations in a view
and obligations a lower bound.

obligations ⊆ relations ⊆ constraints
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(Y and RY )(X and RX)
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MY XR
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X
− E
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X
⊆ (RY − E
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Y
) ↑ MY X ⊆ R

con

X
RY − E

con

Y
⊆ R
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X
↓ MY X

(Robl

Y
− E
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Y
) ↑ MY X ⊆ RX − E

con

X
⊆ R
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Y
↑ MY X MY X R

obl

Y
− E

obl

Y
⊆ RX ↓ MY X

Fig. 7. Overview of rules for verification of obligations and constraints

a..b c..d

View X View Y

x1 x2

y1

y
′

1

y2

y
′′

2

y
′

2

Fig. 8. Example of constraints and obligations with cardinalities

4 Cardinality Based Consistency Checking

In this section we briefly discuss how to extend our approach for consistency checking with cardi-
nalities. The approach presented in section 3 provides a way to express whether relations between
certain elements must exist or are not allowed to exist. Next we will illustrate how to indicate that
the number of relations between certain elements is in a specific range.

We assume there are 2 views, view X and view Y (see Figure 8). View X contains a set of
elements X . These elements are related, this is represented by relation RX . View Y contains a set
of elements Y . These elements are related, this is represented by relation RY . The views X and
Y are related due to the fact that a relation MY X exists between Y and X .

X = {x1, x2}

RX = {< x1, x2 >}

Y = {< y1, y
′

1, y2, y
′

2, y
′′

2 >}

RY = {< y1, y2 >, < y1, y
′

2 >, < y′

1, y
′

2 >, < y′

1, y
′′

2 >}

View X is leading and we want to express that there are some constraints and obligations on
view Y . These constraints and obligations are based on the cardinalities of the relations in RX .
Each relation < x1, x2 > in the leading view X imposes constraints as well as obligations on the
relations in view Y . The following rule shows the constraints and obligations.
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Rule : ∀ < y1, x2, n >∈ dRY e; dMY Xe : n ∈ [c..d] (19)

∀ < x1, y2, m >∈ dM−1

Y Xe; dRY e : m ∈ [a..b]

5 Discussion

The techniques presented in this paper can be applied in different development processes and
for different consistency problems. It can be applied in a top-down approach where a high level
diagram is refined in more detailed ones and the high-level diagram imposes constraints on the
more detailed ones and also in a bottom-up approach where detailed diagrams impose obligations
on the high-level diagrams. We notice that one of the strenghts of UML and its tools is flexibility.
Little consistency is enforced by UML case tools and this is one of the reasons why they are able
to support the large number of different development processes. We also notice that there is a need
for consistency checking and that the required checks highly depend on the development process
and practices.

This paper describes how, probably project specific, consistency checks can be specified and
verified using relation partition algebra. We offer a unifying approach for verification of constraints
and obligations imposed on diagrams. The result is a way to verify consistency without imposing
constraints on the development process. Consistency can be verified within a development phase
(intra development phase consistency), for example by checking consistency between two views in
a design. Consistency can also be verified beteen different development phases (inter development
phase consistency), for example checking consistency between architecture and design or between
design and implementation.

6 Concluding Remarks

6.1 Related Work

Relation Algebras are used for software manipulations and analysis. Since 1994, when Relation
Partition Algebra (RPA) was defined at Philips [2] it has been applied in various areas of soft-
ware architecture analysis. RPA has been used to express software-related metrics as well as for
dedicated analyses, e.g. detecting cyclic dependencies [1], reverse architecting [7] [8], and verifi-
cation of module architectures in component based systems [10]. Also Holt [4] [5] suggests to use
a Relation Algebra (Tarski Algebra) as a theoretical basis for software manipulations.

The idea of imposing constraints on a design is also used in the work on UML profiles [11]. In
our approach we consider the architecture profile to be a leading view that imposes constraints on
a other views.

6.2 Contributions

Relation partition algebra has been used to verify constraints on relations between entities based
on their containing entities. Typical examples are constrainst from sub-systems toward components
and from components towards files. Usually these techniques are used to verify constraints from
early phases in the development process on the later phases.

Our contributions consist of a unifying approach for verification of constraints as well as obli-

gations. The techniques that have been used to verify inter development phase consistency (archi-
tecture vs. design) can also be used for intra development phase consistency (different views in a
design).

In our approach the constraints and obligations are not imposed based on the development
support tools and / or languages. Constraints and obligations are imposed by the development
process and yield ”leading” and ”following” views. This results in a situation where the containing
view is not necessarily leading.
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In order to be applicable in industrial development projects, the approach supports making
exceptions on constraints and obligations. Specific violations can be allowed for example due to
performance (structural) issues or time pressure (temporal). In the latter case it is interesting to
check whether the number of violations has increased since the previous consistency check. This
is supported by the approach, making exceptions for all the old violations during the consistency
checking will result in only the new violations.

6.3 Conclusions

Consistency can be verified during the development process using relation partition algebra. In this
paper we have presented a unifying approach for verification of consistency (constraints and obli-
gations) between views. We noticed that constraints and obligations are driven by the development
process more than the development support tools and languages. The strength of currently used
architecture and design description languages (like UML) is that they are very free and flexible,
therefore it does not constrain the development process. This freedom enables the introduction of
inconsistencies in a design. Our approach enables verification of consistency using constraints and
obligations that are suitable within a specific development process. The latter is possible since only
constraints and obligations that are relevant are used and we select the leading views in alignment
with that process.
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