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Synopsis 

Viscoelastic constitutive equations are evaluated using the benchmark problem of the planar flow 
past a confined cylinder for a well-characterized solution of S%(w/w) polyisobutylene in 
tetradecane. The ratio of channel height to cylinder diameter is equal to two. We compare finite 
element simulations with point-wise measured velocities and stresses obtained by means of laser 
Doppler anemometry and a flow-induced birefringence technique, respectively. The Deborah 
number (De) ranges from 0.25 to 2.32. In the case of the geometry with a symmetrically confined 
cylinder, computations were made with a generalized Newtonian model and with both a single- and 
a four-mode Phan-Thien and Tanner (PlT) model. All model parameters were determined in simple 
shear flow. A similar analysis is presented in case of an asymmetrically confined cylinder (with 
De = 1.87). Impressively good agreement was found between the predictions of the four-mode P’IT 
model and the measured velocities and stresses. The agreement was even excellent in the geometry 
with the asymmetrically confined cylinder. 0 I995 Society of Rheology. 

I. INTRODUCTION 

A. Motivation 

The quality of viscoelastic flow simulations in complex geometries, i.e., where mixed 
shear and elongational deformation occur, depends strongly on the adequacy of the con- 
stitutive equation used to describe the non-Newtonian behavior of the polymeric liquid. 

In rheology, it is customary to evaluate constitutive equations in simple shear flows 
(viscometric flows). However, as is well known now, for two reasons such flows do not 
contain enough information concerning the fluid rheology to ensure reliable predictions 
in more complex flows. First, in many cases the viscometric functions can only be 
measured in a range of shear rates that is smaller than the range present in the actual 
practical flow. Second, and more essential, complex flows involve both shear and elon- 
gational deformation. Unfortunately, measurements of material functions in purely elon- 
gational flows are often unreliable or even impossible [Walters (1992)]. Therefore it is 
generally acknowledged that, apart from simple shear flows, complex flows should be 
used to find the (parameters of) constitutive equations for (polymeric) viscoelastic liq- 
uids. 

a)Present address: Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands 
bkomsponding author. 
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In the past two decades, numerous viscoelastic constitutive equations have been pro- 
posed for polymeric liquids [see, for example, Bird et al. (1987) and Larson (1988)]. 
With the development of new reliable numerical techniques, simulations with these equa- 
tions can be made presently in a reasonable range of complex flows [see, for example, 
Brown and McKinley (1994)] and the results can be compared with experimental data. In 
future work, the measured data in complex flows may be used to improve the fit of the 
model parameters. 

B. History of the subject 

A vast number of papers on complex polymer Rows exist. Four basic types of those 
flows studied in literature can be distinguished: rotational flows (such as the flow between 
two eccentric rotating cylinders), contraction flows (in particular the four to one contrac- 
tion), stagnation flows (flows past obstacles, e.g., spheres and cylinders), and free surface 
flows [“die (extrudate) swell”]. The contraction flows have received by far the most 
interest and for comprehensive reviews one is referred to Boger (1987) and Quinzani 
(1991). 

Numerous numerical methods have been developed for computing viscoelastic flows 
at higher Deborah numbers (De > 1). Recently, it was shown for the benchmark problem 
of a sphere falling in a tube. using an upper convected Maxwell (UCM) fluid, that widely 
varying methods yield the same answers [Brown and McKinley (I 994)]. This important 
result gives confidence that numerical solutions are true solutions of the mathematical 
problem and that no additional uncertainties are introduced. 

Experimental methods commonly used are streak-line visualization with tracer par- 
ticles and laser Doppler anemometry (LDA) for measuring the velocity field on the one 
hand and flow-induced birefringence (FIB) for stress measurements on the other. 

LDA has been used mostly in the case of polymer solutions (e.g., Davidson et al. 
( 1993a), Davidson rf al. (1993b), Aldhouse et al. (1986), Quinzani et al. (1994), Raiford 
et al. (1989). 

Stress measurements are based on flow-induced birefringence, using the linear stress 
optical rule (SOR). In polymer melts, it is fairly easy to measure the birefringence with, 
for example, the crossed polarizers experiment [e.g., Aldhouse et al. (1986), Han and 
Drexler (1973a), Han and Drexler (1973b), Han and Drexler (1973c), Isayev and 
Upadhyay (1985), Kajiwara et al. (1993), Kiriakidis et al. (1993), Maders et al. (1992), 
White and Baird (1988)]. 

In the case of polymer solutions the birefringence is so small that more sensitive 
measurement techniques are required. An example is the rheo-optical analyzer (ROA) 
developed by Fuller and Mikkelsen (1989). [Fuller (1995) gives a comprehensive review 
of techniques to measure birefringence.] The use of techniques like ROA in complex 
flows is not widespread yet, although some studies exist: Davidson et al. (1993a), 
Davidson er al. (I 993b3. Galante and Fratini (1993), Quinzani et al. ( I994), and Rajago- 
palan et al. (1992). Both LDA and ROA have the advantage of measuring data point- 
wise: together they enable the most quantitative mapping of both velocity and stress field. 

Studies that combined point-wise velocity and stress measurements are rare. Quinzani 
( 1991). Quinzani et al. (1994) and Armstrong et al. (1992) studied in this way the flow of 
a polyisobutylene solution through a planar four to one contraction. Davidson et al. 

( 1993a) and Davidson et af. (1993b) similarly studied the flow of a polystyrene solution 
through a planar wavy walled channel. Both groups, however, did not compare their 
experimental data with complete numerical simulations using viscoelastic constitutive 
equations. In the study of Quinzani (1991) stresses were computed along the centerline 
only by means of integration of viscoelastic constitutive equations using the measured 
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velocity field. They tested various constitutive equations by comparing the computed 
results with the measured stresses. Though this procedure rapidly provides information 
on the quality of viscoelastic constitutive equations, it has one major drawback, since it is 
not guaranteed that the computed stresses and measured velocities are consistent with the 
solution of the full fluid mechanical problem. Mitsoulis (1993) found reasonable overall 
agreement between numerical simulations for an integral model of the K-BKZ type with 
the experimental data of Quinzani (1991). However, he overpredicts the stresses by as 
much as 40% for the highest Deborah numbers (De G 0.77). 

A second attempt to compare both point-wise measured stress and velocity data with 
numerical simulations in a complex flow is reported in our previous paper Baaijens et al. 
(1994). That study concerned the ilow of a polyisobutylene solution (as used by Quinzani 
et al.) in the planar flow past a symmetrically confined cylinder at a low Deborah number 
(De = 0.22). Surprisingly, we found a dramatic discrepancy between measured and com- 
puted stresses downstream of the cylinder along the centerline. The measured stresses 
reached a maximum that was a factor of 2 higher than computed. Even more dramati- 
cally, the measured stresses relaxed much slower: at the centerline after seven cylinder 
radii, the measured stresses were about 50% of their maximum value, while in the 
computations stresses were fully relaxed to zero after five radii. These results came up in 
three independent experiments (with the same batch of fluid). These findings induced the 
present study in which we build a new experimental apparatus to study the same flow 
over a wider range of Deborah numbers. 

Before elucidating the objectives of the present study in more detail, related literature 
on flows of polymer solutions past cylinders is reviewed first. It is found for polymer 
solutions that the effect of viscoelasticity on the velocity field is influenced by (i) the 
position of the constraining walls, (ii) by the degree of elasticity in the flow (character- 
ized by the Deborah number), (iii) by the relative importance of inertia (characterized by 
the Reynolds number), and (iv) by the rheological behavior of the liquid in elongational 
now. 

In case of the unbounded flow past a cylinder (in a uniform stream, i.e., with a uniform 
velocity field far from the cylinder) experiments gave only a small effect of viscoelastic- 
ity on the streamline pattern [Manero and Mena (1981), Mena and Caswell (1974), 
Ultmann and Denn (1970)]. The results seemed contradictory: the streamlines shifted 
either a little upstream or downstream of the cylinder relative to the Newtonian Row 
situation. Based on their experimental results, Manero and Mena (1981) suggested that 
the direction depends on the value of the De number: a downstream shift at low elasticity 
(De < 1) and an upstream shift at high elasticity (De > 1). 

Two early full numerical studies that solved the planar Bow past a cylinder in a 
uniform stream have been reported. Pilate and Crochet (1977) applied a second-order 
fluid model at low to moderate Deborah numbers (0 < De < 1) and low to high Rey- 
nolds numbers (0.1 < Re < 100). Townsend (1980) considered two Oldroyd models 
(one representing a constant viscosity, elastic fluid, and one representing a viscoelastic 
fluid with shear thinning) at low Deborah numbers. Both studies revealed a small down- 
stream displacement of the streamlines as observed experimentally by Manero and Mena 
(1981). 

The flow past a symmetrically conjined cylinder has not been studied extensively. 
Dhahir and Walters (1989) reported some experiments and calculations, but focused 
merely on the eccentric case which will be discussed below. McKinley (1991) reported 
unique LDA measurements of flow instabilities past a symmetrically confined cylinder, 
using an organic Boger fluid. Further, we already mentioned our previous study Baaijens 
et al. (1994). 
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In the case of the asymmetrically con$ned cylinder, the effect of viscoelasticity on the 
velocity field is more pronounced. This is explained by the influence of the stress field on 
the kinematics. The effect is demonstrated experimentally by Walters and coworkers 
[Dhahir and Walters (1989), Cochrane er al. (1981) Jones and Walters (1989), Georgiou 
et al. (1991)]. Cochrane et al. (1981) observed that the streak lines for a viscoelastic fluid 
were much more sensitive for a small asymmetry in the constraining of the cylinder than 
for a purely viscous, Newtonian fluid. Dhahir and Walters (1989) visualized streamlines 
for the planar flow past an asymmetrically confined cylinder and observed that for a 
(elongational thickening) viscoelastic liquid more material flows through the broader gap, 
compared with a Newtonian liquid. Jones and Walters (1989) and Georgiou et al. (1991) 
found the same effect in the flow of several types of liquids through an antisymmetric 
array of confined cylinders. It is considered as a manifestation of the extensional viscos- 
ity: molecules entering the narrow gap must elongate more strongly than those entering 
the broad gap, which results, for elongational thickening liquids, in a locally higher flow 
resistance in the narrow gap. Interestingly, Olsson (1994) simulated with the Giesekus 
model the start-up of flow past a cylinder that is located near one on the walls. He found 
unstable behavior of the fluid, that was more pronounced if the velocity was increased 
and/or the velocity rise time was shortened. 

To end with, the work of Liu et al. (1995) is of interest in this context as well. They 
performed experiments with spheres rolling in a viscoelastic fluid down an inclined wall 
and observed that the sense of the rotation is in the other direction compared with a 
sphere rolling down an inclined plane in a Newtonian fluid (in which case it rotates as in 
air). Moreover, if a sphere was dropped a small distance from a vertical wall in a vis- 
coelastic fluid, the sphere moved to the wall and rotated in the “counter” sense. If the 
same sphere was dropped in a Newtonian fluid, it moved away from the wall. These 
effects are also explained by the reluctance of polymer molecules to flow through the 
narrow gap between sphere and wall. The net force on the sphere causes its counter 
rotation compared with a Newtonian fluid. 

C. Objectives and choices made 

The main objective of the present study was to evaluate viscoelastic constimtive 
equations by means of a comparison of point-wise measured data of both velocity and 
stress fields with results of numerical simulations of the complex flow. 

To facilitate the analysis both experimentally and computationally, model fluids are 
used instead of polymer melts. The benchmark problem [Brown and McKinley (1994)] of 
me stagnation flow past a confined circular cylinder is used in two variations: a sym- 
metrically and an asymmetrically confined cylinder. 

Several features make this type of complex flow geometry interesting. First, it has 
received far less interest than contraction flows. In particular, a detailed quantitative 
mapping of the stress and velocity field and a comparison with numerical simulation does 
not exist yet for this flow. 

Second, viscoelastic finite element computations are presently only feasible in two- 
dimensional flows. Planar flows have the advantage, compared with axisymmetric flows, 
that stresses can be measured with birefringence techniques. In nonplanar flows the 
interpretation of birefringence measurements in terms of stresses is far more complex, if 
not impossible. 

Third, the flow past a submerged circular object differs in a fundamental way from the 
(almost classical) 4:1 contraction flow. On the surface of the cylinder two stagnation 
points exist: one at the front where the material is compressed, and one at the aft, where 
the material is stretched after being sheared along the side of the surface of the object. 
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Compared with the contraction flows, elongation rates are expected to be higher since the 
material is accelerated from rest in the rear stagnation point. This complex flow field is 
promising to contain relevant information for testing constitutive equations. 

And fourth and finally, numerical simulations of abrupt contraction flows suffer from 
the complication of the presence of singular re-entry comer points. Such difficulties are 
absent in the Row past a cylinder, which is expected to facilitate the computations. 

In the experiments the cylinder will be confined, since it has been observed that the 
effect of viscoelasticity on the velocity field is influenced by the relative position of the 
cylinder to the confining plates (see Sec. I B). 

Velocities will be measured point-wise with laser Doppler anemometry (LDA), and 
stresses with a flow-induced birefringence (FIB) technique. Only a few studies have used 
these two methods simultaneously [Armstrong et al. (1992) Davidson et al. (1993b)]. A 
5%(w/w) polyisobutylene in tetradecane solution will be used as model fluid to connect 
with the study of Armstrong et al. (1992), who analyzed experimentally in the same way 
the flow of the same fluid through a four to one contraction. The fluid is viscoelastic and 
shear thinning, which behavior is preferred when aiming at making progress towards 
“melt-like” behavior [Brown and McKinley (1994)]. 

II. METHODS 

A. Fluid preparation and rheological characterization 

A solution of 5%(w/w) polyisobutylene (Vistanex L120, Exxon Chem., weight aver- 
age molecular weight M, = 1 X 106) in tetradecane (Ct~H3u, isomeric mixture of 95% 
purity) was used as a model fluid, which is the same fluid as used by Quinzani et al. 
(1990) and Quinzani et al. ( 1994). 

The fluid was prepared by cutting the polyisobutylene first in cubes of = 0.5 cm3. 
These were added in the appropriate amount to tetradecane in 1~” bottles, while stirring 
with a magnetic stirrer at ambient temperature ( = 24 “C). After stirring during at least 5 
days the bottles were rotated on a rolling machine for approximately one week to im- 
prove the homogeneity of the solution. 

A Rheometrics-RFS-II viscometer with a cone-plate geometry (diameter 50 mm, cone 
angle 0.0199 rad) was used to characterize the rheology of the fluid in simple shear. 
Steady, dynamic, and transient tests have been performed. The results are presented in 
Sec. III A. 

6. Experimental apparatus for complex flows 

1. Flow loop 

The experiments were performed with a closed flow loop: a rotary pump (Nakamura 
RO-lo-VT) was used to pump continuously approximately 2.58 of the solution from a 
glass reservoir through the flow cell and back into the reservoir. Reservoir, pump, and 
flow cell are connected by solvent resistant, flexible tubing (with inner walls made of 
Viton or NBR rubber). The flow cell is made of Plexiglas (PMMA) with side windows 
made of Schott SF-57 glass (Schott Glass Inc.). This special glass is extremely low in 
birefringence (it has a stress optical coefficient that is 2X lo-l4 Pa-‘, roughly more than 
100 times smaller than other glass types). To avoid stain formation, these special win- 
dows were coated [with an antireflection coating (TiOz)]. 
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2. Laser Doppler equipment 

A differential Doppler technique was used in backscatter mode [Drain (1980)] to 
measure the velocity component U normal to the bisector of the two crossed beams (with 
intersection angle 0) according the equation: 

(1) 

where UD is the Doppler frequency that is measured by the flow velocity analyzer (Dan- 
tee 58N20), v&if[ is a preset frequency shift that enables to measure negative velocities, 
A is,the wavelength of the light. 

The measurements are operated from a personal computer with the software Floware 
(Dantec). The incident light beams are generated by a 300 mW argon-ion laser (Ion Laser 
Technology 5500A) and the green component with wavelength A = 514.5 nm was used. 
The laser probe is fixed on an XYZ-traverse (Dantec, Lightweight Traverse), that is 
controlled by Floware. It has a range of 540 mm along each axis. 

The spatial resolution of the laser Doppler measurements is determined by the dimen- 
sions of the measuring volume which has an ellipsoidal shape with dimensions 50X50 
X200 pm in our case. The resolution of the velocity measurement is determined by the 
FVA hardware and amounts 0.13 mm/s. 

3. F/B equipment 

Birefringence techniques that use polarization modulation of light enable simultaneous 
and point-wise measurement of both extinction angle x and phase retardation S. Fuller 
(1990) has reviewed this subject. In the present study, the polarization modulation tech- 
nique is applied that uses a rotating (with frequency o) half-wave plate [as introduced by 
Fuller and Mikkelsen (1989)]. The measurement system, called rheo-optical analyzer 
(ROA), was provided by Fuller. 

The measurement system ROA consists of a sequence of optical elements together 
with some computer hardware and software. Details of the whole system are described in 
Baaijens (1994). The optical part contains the polarization modulation generator, which 
consists of a laser, polarizer, and a rotating half-wave plate. Then a lens collimates the 
laser beam before it enters the tlow cell. After the flow cell a circular polarizer and a 
photodetector complete the optical train. Neglecting system imperfections, the time- 
dependent intensity signal is described by [Fuller and Mikkelsen (1989)] 

I = $ I,[ 1 +R, sin(4wt)+R2 cos(4wt)], (2) 

where I0 is the intensity at the exit of the diode laser, and RI and R2 are 

R, = -sin Scos2x (3) 

R2 = sin 6sin 2x. (4) 

RI and R2 are obtained from the measured intensity signal by means of a Fourier trans- 
formation. Since X E [ - 7r/4,7r/4], the angles X and Sfollow directly from Eqs. (3) and (4); 

X = arctan( -R2 /RI), (5) 

S = sign(Rt)arcsin~~. (6) 

Stresses can now be found after substitution of Eqs. (5) and (6) (with birefringence 
An = hl(27rd)S, d: length of light path, A: wavelength of light) in 
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axis 

Polarization Modulation 

PC 

controller 

FIG. 1. Schematic drawing of the experiments: the view is along the (vertical) mean flow direction through the 
flow cell [with PMG: polarization modulation generator (laser, polarizer, rotating half-wave plate)]. Both FIB 
and LDA measurement systems, including the traverse tables, are controlled by a separate personal computer. 
Details of all equipment are given in Baaijens (1994). 

ATl 
QY = 2c sin 2x3 

An 
N, = rm-~J,y = -cos2x. 

c 
(8) 

The system is capable of measuring birefringence as low as @(lo@), which is orders 
of magnitudes lower than for the (classical) field-wise “fringe-counting” method 
[An = G’;rlO-4)]. 

Control of the experiment and data acquisition are performed by the ROA software, 
that is implemented in the package LABView (National Instruments, LABView for Win- 
dows), with a personal computer (486DX-50 MHz, 8 Mb RAM) equipped with a data 
acquisition board (National Instruments, AT-MIO-16L9). 

4. Measurement procedure 

Figure 1 shows schematically the apparatus used in the experiments with the position 
of the two measurement systems relative to the flow cell. FIB and LDA measurements 
were performed simultaneously, but independently. Each system has its own computer 
controlled traverse. To be able to measure the centerline velocities near the cylinder, the 
LDA laser probe is positioned along the long side of the flow cell with the laser beams in 
the plane that is perpendicular to the axial (neutral) direction of the cylinder. This con- 
figuration also results in rapid data collection, since the light scattered in the whole solid 
angle of the laser probe is useful for detection of Doppler bursts. 

During the LDA experiments the velocity was averaged from 100 acquired samples 
that satisfied the strongest validation criterion (+3 dB). Increasing the number of vali- 
dated samples did not change the average velocity. A seeding of small particles (Merck 
Iriodine 111, coated rutile crystals, density p = 2.5X lo3 kg/m3, diameter particles 
d, s 15 pm) was added in a concentration of approximately 0.01 g// to increase the 
data rate. The effective data rate ( = number of validated samples per unit of time) was 
between 50 and 400 Hz. The seeding did not affect the birefringence measurements. The 
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FIG. 2. Shear stress along a cross-sectional line in the fully developed flow region: (X) measured using 
literature value C = 1.87X 10m9 Pa-‘, and (--) computed with a Carreau-Yasuda model at De = 2.32. 

laser was operated at a power level of 70 mW, and the high voltage of the photomultiplier 
was between 1000 and 1096 V. 

The laser beam of the birefringence measurements is collimated by a lens with focal 
length 400 mm, which gave a maximum beam radius of 0.35 mm at the exit and entrance 
windows of the flow cell (in later experiments, we have improved this to a maximum 
radius of 0.15 mm with another type of half-wave plate and a lens with f = 800 mm). 
From the measured birefringence parameters x and An, the stresses were found using the 
stress optical rule. The stress optical coefficient as determined by Quinzani (1991) in a 
Couette flow cell was used: C = 1.87X 10e9 Pa- ‘. In a later experiment, we measured 
the stress optical coefficient ourselves in a Couette cell for simultaneous mechanical and 
optical (with ROA) measurements on the Rheometrics-RFS-II and found [Baaijens 
(1994)]: C = 1.86X lop9 Pa-‘, see Figs. 2 and 3. 

0.5An sin(2X) x 10” 

FIG. 3. Validation of linearity of stress optical rule in a self-constructed Couette cell on a Rheometrics-RFS-2 
with simultaneous mechanical and optical measurements. The mechanical stress 7 is plotted as function of the 
simultaneously measured optical signal An/2 sin 2x; the stress optical coefficient follows from linear fit of data 
points: C = 1.86X 10m9 Pa-‘. 
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TABLE I. Definition Y, and [ in Eq. (13). specifying several constitutive 
equations of the differential type. P’lT = Phan-Thien-Tanner, I: unity ten- 
sor, 6, u: model parameters, tr(7): trace of tensor 7. 

Constitutive equation 

m-r-a 
PIT-b 
Giesekus 

,cA /m tr(T,)I 0<5<2 
[l+c,X,lq, tr(rJ1 0<5<2 
(1+crthJ71i71) 0 

The influence of parasitic birefringence effects of the viewing windows was mini- 
mized by the use of the Schott SF57 glass. In all cases, except at the lowest flow rate, it 
sufficed to subtract offset values for both R 1 and Rz. These offsets were measured during 
zero flow and were mean values of measurements taken in about 20 different spatial 
points spread over the domain. In case of the lowest flow rate, the small spatial variation 
in the offset values could not be neglected compared with the signal during flow. A 
special procedure was followed here: after measuring the signals RI and R2 during flow 
and during zero flow, the latter values were subtracted point-wise from the first. 

C. Mathematical problem definition and numerical methods 

The flow field has been computed with finite element methods (FEMs) that are imple- 
mented in the package SEPRAN [Segal (1992)]. The mathematical problem to be solved 
is described by the equations for conservation of momentum: 

dv 
p --$+v.vv -V*a = 0, 

i 1 

and conservation of mass: 

v.v = 0, (10) 

where v denotes the velocity field, p is the density, and u the Cauchy stress tensor, 
defined as 

u = -pI+ 7, (11) 

where p (x,t) is the pressure field, I the unit tensor, and 7 the extra-stress tensor. The full 
equations of conservation of momentum were used, since the Reynolds number ranged 
between 0.029 and 0.174, and test runs had shown that neglecting the convective term 
v.Vv (“Stokes flow approximation”) influenced the solution of the velocity field up to 
approximately 5%. The problem is defined completely when an appropriate constitutive 
equation is substituted for the extra-stress field 7. 

For a generalized Newtonian fluid the relation 

T = 2 77(11&D, (12) 

holds, with D, the rate-of-deformation tensor 2D = L+LT, L = (Vv)*, and 77(iiD) a 
viscosity that depends on a generalized shear rate (via IID : the second invariant of D), 
for example the Carreau-Yasuda (CY) equation [Eq (23)]. The viscoelastic models are 
defined by Eqs. (13)-(15) and Table I, together with the fitted parameters in Table II: 

1 217i 
i+ x. Yi.7;: = ~ D i = l,...,N, 

I 1 
(13) 
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TABLE II. Parameter values for one-mode and four-mode (n: number of modes) nonlinear viscoelastic con- 
stitutive models at the reference temperature of 25 “C in the case of the 5% PIB/C14 solution [averaged time 
constant of four-mode fit h = 4.31 X IO-* s, see Eq. (27)]. 

Maxwell parameters PI-r Giesekus 

n vi (Pa s) A, (s) 5 c a rl, (Pa sl 

I 9.28X 10-l 2.90x10-2 0.0 0.39 0.21 0.05 
4 4.43x10-' 4.30x10-3 0.0 0.39 0.40 0.0 

4.40x10-' 3.70x 10-Z 
9.20X 1O-2 2.03~ 10-l 
1.70x 10-3 3.00x100 

with 77i ,hi the parameters of a linear viscoelastic Maxwell model, D the rate of defor- 
mation tensor, i denoting a single mode, the tensor Y defined for some models in Table 
I and 

the Gordon-Schowalter derivative with u the velocity field [u = u(x,t), x the position, t 
the time), L = (VU)~. Many other models can be found in for example Larson (1988). 
Often, a Newtonian (“solvent”) term 277sD is added to the viscoelastic extra-stress ten- 
sor, and the total extra-stress tensor for a model with N modes is then found from 

N 

T= 2~,D+~ 7i. 
i 

(15) 

1. Numerical method for generalized Newtonian models 

Computations with the (generalized Newtonian) CY model have been made with the 
Galerkin method (with a Picard linearization of the nonlinear viscosity term), see Cuve- 
lier et al. (1986). The velocity and pressure were discretized using the Crouzeix-Raviart 
Pz - P 1 triangular element with extended quadratic basis functions for the velocity and 
a piecewise discontinuous linear basis function for the pressure. The pressure is elimi- 
nated with the penalty function method. Convergence of the iterative procedure was 
checked with 

& -=c l ,, (17) 

with uk the velocity after the kth iteration, ik = ~AUk-r]max/jUk-l!r the relative 
residual of the discretized system after iteration (k- 1) and E, = 1 X 10 . 

2. Numerical method for viscoelastic models 

The viscoelastic computations have been performed with the method for stationary 
two-dimensional flow of Hulsen (1988) [see also Hulsen (1990) and Hulsen and van der 
Zanden (1991)]. It is an iterative, decoupled method. The balance equations of mass and 
momentum are discretized with the standard Gale&in method (with the same element as 
in case of the generalized Newtonian method). The extra-stress tensor is computed from 
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FIG. 4. Left: part of (symmetric) FEM mesh in the case of geometry with symmetrically confined cylinder. 
Right: enlarged region of FEM mesh (the same region as marked with the dashed box in tbe plot on the left). 

the last computed velocity field by integration of the viscoelastic constitutive equation 
along the streamlines (these are computed from the velocity field via the stream function) 
with a fourth-order Runge Kutta scheme. A Picard iteration scheme is used to solve the 
resulting set of nonlinear equations. For details about the construction of the streamlines 
and the iterative procedure the reader is referred to Hulsen (1988) and Hulsen and van der 
Zanden (1991). 

Convergence is tested after each iteration with 

I I Uk+I-Ukmax 
(18) 

(19) 

where uk is the velocity after the kth iteration, and R is the residual value of system of 
equations for the “free” degrees of freedom (thus without the essential boundary condi- 
tions) for the discretized momentum equation and E, ,E: the convergence criteria (both 
usually 1 X 10W3). 

Part of the FEM mesh used in all computations is plotted in Fig. 4; the complete mesh 
has 1900 elements and 3981 nodal points The resulting problem has 7962 degrees of 
freedom (velocities only) in case of both the viscoelastic constitutive equation and the 
generalized Newtonian model. Mesh refinement in both x and y direction with a factor 
1.5 did not influence the solution significantly. 

3. Definition of boundary conditions 

Denote the velocity vector with u, the outward normal on a boundary with n, the 
tangential vector on the boundary with t, and the Cauchy stress tensor with u. The 
boundary conditions are then defined by the symmetry condition 

u.n = 0, Gw 

t-(a-n) = 0 (21) 
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FIG. 5. Geometry with boundaries r, -Ts (boundary conditions: see text); x positions of boundaries r, and Ts 
are not plotted on scale (r, at x = - SR and r5 at x = ISR). 

along the centerline boundaries r2 and r4 (see Fig. 5), and the no-slip condition 

u=o (22) 

on the boundaries r3 and I’6. At the entrance (r,) and exit (T.J boundaries, fully devel- 
oped flow conditions were assumed in case of the viscoelastic computations, which were 
calculated numerically for the model used. In case of the generalized Newtonian model, 
it was convenient to prescribe a Newtonian velocity profile at entrance and exit bound- 
aries. It was proven that it did not affect the solution in the region of interest. 

III. RESULTS 

A. Rheological characterization and parameter determination in simple 
shear flow 

Experiments in both steady and small amplitude oscillatory simple shear flow are used 
to fit parameters of nonlinear viscoelastic constitutive equations. Predictions in planar 
elongation are analyzed for various fits of constitutive equations. 

Master curves for dj~), N,( +), q’(w), and 7/1( w a a reference temperature of 25 “C ) t 
were created after time-temperature superposition [Ferry (1980)]. 

The four plots in Fig. 6 show that the shifting procedure results in smooth master 
curves for both 71 and Nt in steady shear, and v’ and 7” in small amplitude oscillatory 
shear. The master curve for N 1 is shown for the range of shear rates where the data are 
not scattered too much. At shear rates lower than plotted the scatter was unacceptably 
large. 

The viscosity function in steady simple shear flow was fitted with the (generalized 
Newtonian) Carreau-Yasuda (CY) model: 

7j = 7jpy[ 1+ ( Acu&)“]‘“- l)‘a, (23) 

which gave as fitted values for {wy,X~~,a,n}: (0.96 Pas, 0.02 s, 1, 0.45) (this fit is 
plotted in Fig. 7). 

As viscoelastic models, the Phan-Thien-Tanner-b (PT’Tb) equation and the Giesekus 
equation have been fitted on the data in Fig. 6. Armstrong et al. (1992), who compared 
six models, showed that these two models describe stresses of this fluid along the cen- 
terline in a four to one contraction flow most adequately. 

The parameters of the viscoelastic constitutive equations were fitted using the follow- 
ing procedure. First, the Maxwell parameters {TV, Xi} were determined by fitting the 
linear viscoelastic Maxwell model to the complex viscosity with a Levenbergh- 
Marquardt method [see Zoetelief (1992)]. Th e components of the complex viscosity for a 
multimode Maxwell model: 
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FIG. 6. Master curves at r,,, = 25 “C in simple shear flow for the 5% PIBIC14 solution. Top: steady shear 
viscosity dj+‘and first normal stress difference N,( +) together with four fitted constitutive equations [(-) 
denotes the PTT model with one mode. (- -) denotes the PlT model with four modes, (-,-) denotes the 
Giesekus model with one mode, (...) denotes the Giesekus model with four modes]. Bottom: complex viscosity 
with fitted Maxwell models (“Maxwell- I:” Maxwell model with one mode). 

N 
7’ = T *+;2p (24) 

I 
N 2 

d’= 7 f$, (25) 
I 

where i represents the number of a mode, and N is the number of modes. A one-mode 
and a four-mode model were fitted. Both results are plotted in Fig. 6, and the parameter 
values are tabulated in Table II. 

Second, the nonlinearity parameters in the nonlinear viscoelastic FTT and Giesekus 
equations were determined by minimizing 

where the index j denotes a shear rate value, Nl,j denotes the first normal stress differ- 
ence, r//j the shear viscosity, and the superscript exp denotes the measured value. The 
residue 4 was minimized with respect to the nonlinearity parameters by a trial and error 
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FIG. 7. Comparison of our measured steady shear viscosity and Carreau-Yasuda (CY) fit with the CY fit of 
Quinzani (1991) for 58 PlBIC14 [open symbols denote the measured data for the current fluid, (-) denotes the 
fit on the data of the current fluid, (- -) denotes the fit of Quinzani]. 

variation of these parameters and evaluation of q. Stresses were calculated by solving 
numerically the nonlinear system of equations for the constitutive equations in steady 
simple shear flow with a Gauss-Newton method as implemented in Matlab (The Math- 
Works Inc., function “fsolve”). In the case of the one-mode fit, the solvent contribution 
to the extra-stress tensor (2t7sD) was used to adjust the zero-shear-rate viscosity level (the 
viscosity of tetradecane is 0.002 Pa s). In the case of the four-mode fit, the “solvent” 
viscosity was neglected (vs = 0). All parameters of the nonlinear viscoelastic equations 
used are tabulated in Table II. For a multimode model the viscosity average value for the 
time constant, x, is defined by 

The four-mode P’M’ model fits the measured viscosity best of all four fits that have 
been evaluated, see Fig. 6, where the results for the two nonlinear viscoelastic models are 
shown. The single-mode models fit the steady shear viscosity equally well as the four- 
mode models for shear rates up to 40 s-l, i.e., until shear thinning has just started. For 
higher shear rates the single-mode Giesekus model predicts a too strong shear thinning 
and its prediction of the viscosity is worst of all four fits. The two four-mode fits are both 
more accurate than the one-mode PTI’ model for shear rates between 80 and 500 s-l. At 
higher shear rates the four-mode Giesekus model is again too shear thinning. Although 
the same holds for the one-mode PTT model, the effect is less serious and its prediction 
of the viscosity still agrees fairly well with the measured data. 

Although differences between the fits are small, the normal stress difference Nt is 
fitted best by the one-mode PTT model for shear rates below 200 s-‘, while for higher 
shear rates the prediction of the four-mode PTT model is best. The differences between 
results for the Giesekus model are larger. 

Quinzani et al. (1990) have characterized the rheology of this solution in simple shear 
flow, and our results can be compared with those. In Fig. 7 our steady shear viscosity and 
the fits of the CY model of Quinzani (n = 0.4, v,-- = 1.424 Pa s, a = 1, hcY = 0.024 
s) are plotted together. It clearly reveals differences between the fluids. The zero shear 
viscosity at 25 “C in our measurements is 0.96 Pa s, while Quinzani’s result is 1.424 Pa s. 
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Our data proved to be reproducible with each new batch of fluid made, and the large 
difference between our zero shear viscosity and Quinzani’s is probably caused by differ- 
ences in the molecular weight distributions of the PIB batch used. 

In the present study, the parameter 5 in the PTT equation has not been used, since it 
did not improve any of the fits. Moreover, a nonzero 5 parameter is known to cause 
oscillations in stresses during start-up of steady shear. We also aimed to fit the data with 
as few parameters as possible. Therefore the four-mode equations were fitted with a 
single value for E or LY for all modes. 

1. Start-up of simple shear flow 

Shear stresses have been measured during start-up of simple shear flow, for four 
values of the final shear rate 90: 10, 30, 60, 100 (l/s). (Unfortunately, no reliable transient 
measurement of normal stress was possible, due to too great an oscillation in the normal 
force that depended on the rotation frequency of the plate.) The transient viscosity func- 
tion v+ is defined as 

(28) 

The measured data have been compared with model predictions with parameters from 
Table II. Stresses were calculated with a fourth- and fifth-order Runge-Kutta integration, 
with automatic step size control (as implemented in Matlab, The MathWorks Inc.). To 
avoid the singularity in the stresses at I = 0 s, a ramp of 0.02 s has been used in the shear 
rate history during the calculations. The results are shown in Fig. 8 (single- and four- 
mode PTT model and single- and four-modes Giesekus model). 

Differences between computations and measurements are mainly due to differences in 
the steady state value for v. This steady-state value is predicted accurately by all four 
models at shear rates of 10 and 30 s- ‘. At higher shear rates (60, 100 s-t), however, both 
four-mode models proved to be more accurate than the single-mode models. It also 
appears that for the two highest shear rates all models predict an overshoot, that is largest 
in case of the Giesekus models. A small overshoot is also present in the measured data 
and the PTT models have an overshoot that is closer to the measured data than do the 
Giesekus models. 

2. Predictions in planar elongational flow 

Model predictions in steady planar elongation are compared for the different models in 
Fig. 9. All fitted viscoelastic models show modest elongation thickening behavior, i.e., an 
increase in elongational viscosity with increasing elongation rate. The effect is controlled 
by the value of the nonlinearity parameters E and LY in the P’IT and Giesekus model, 
respectively. The smaller these values, the stronger the elongation thickening (in the limit 
E + 0 or (r --f 0 the models change into the UCM model that has infinite extensional 
stresses above a certain extension rate). The single-mode Giesekus model possesses a 
higher elongational viscosity than the other models: this is due to the relatively low value 
of the parameter (Y, see Table II. 
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FIG. 8. Viscosity 71’ during start-up of steady simple shear Row at T = 25 “C for the 5% PIBK14 solution. 
Top: single-mode (left) and four-mode (right) PlT model. Bottom: one-mode (left) and four-mode (tight) 
Giesekus equation. 
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FIG. 9. Predictions in planar elongation of viscoelastic constitutive equations with parameter values fitted in 
simple shear Row for the 5% PIB/C14 solution. [(-) d enotes the PTT model with one mode, (- -) denotes the 
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model with four modes]. 
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FIG. 10. Normal stress as function of shear stress for 5% PIB/C14. Data consist of measurements in simple 
shear (RF.52) and their fit (RFS-2 lit, with N, = a ?, (see text) together with stresses measured with l3 along 
a cross section in the fully developed flow region in the planar flow cell at three De numbers. 

B. Flow past a confined cylinder 

1. Demonstration of LDA and FIB techniques in fully developed slit flow 

The accuracy of the LDA measurements is demonstrated by the excellent agreement 
between calculated velocities and measured velocities in the fully developed flow at 
x/R = -5.0 as shown in Figs. 12-14), in combination with a maximum noise level of 
3% in the measured velocities. 

The excellent agreement between computations and measured stresses in the fully 
developed flow region at x/R = -5.0 in Fig. 2 and in Figs. 12-14 proves the accuracy 
of the stress measurements and of the value for the stress optical coefficient 
(C = 1.87X1O-9 Pa-‘). 

To demonstrate further the accuracy of the optical stress measurements, the stresses 
measured in simple shear with the Rheometrics-RFS-2 (cone and plate geometry) are 
plotted together with the stresses as measured at three different flow rates in fully devel- 
oped flow that is also a simple shear flow. Figure 10 shows Nt as a function of 7. The 
measured curve of N,(r) on the RFS-2 has been fitted with the relation Nt = a# with 
a = 0.13 Pa(’ -‘I and b = 1.66. A good agreement is found, and the scatter in the 
optically measured data is of the same magnitude as in the mechanically measured data 
[in later experiments we improved the optical part of our ROA system such that the 
radius of the laser beam was a factor of two smaller and the optical data have even 
significant less scatter than the mechanical data, see Figure 4.23 in Baaijens (1994)]. 

2. Synmetricd/y confined cy/inder 

Experiments were carried out at an ambient temperature of 2450.5 “C. Stresses and 
velocities were measured along five cross-sectional lines: x/R = -5, -2.0, - 1.5, 1.5, 
and 2.0, and along the centerline: y/R = 0 [(x,y) coordinates are defined in Fig. 51. 

Velocities are made dimensionless with the mean velocity U, and stresses with 

7. = 3q$JIR, (29) 

where q~ is the zero shear viscosity. The factor 3 in this definition of TO is arbitrary and 
is added only to obtain a scaling that fitted nicely in the plots of Figs. 12-14. Table III 
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TABLE III. Mean velocity U. typical shear rate U/R, scaling stress 70. and dimensionless numbers De, Re, for 
the cases studied in the geometry with the symmetrically confined cylinder [definitions of q, De, and Re in 
Eqs. (29)-(31). respectively]. 

UIR 
6’) De Re 

0.0115 5.750 16.865 0.248 0.019 
0.0424 21.200 62.119 0.93 I 0.069 
0.0633 3 1.650 92.828 1.364 0.102 
0.0868 43.400 127.291 1.871 0.140 
0.1074 53.700 157.500 2.315 0.174 

shows the values for the nondimensionalizing parameters U and 70, together with the 
Deborah number De and Reynolds number Re. The Deborah number is defined by 

De = Xfjc, (30) 

where Af is a characteristic relaxation time of the fluid [the average Maxwell time as 
defined in Eq. (27)] and +c is a characteristic shear rate ( = inverse process time). 

We define the Reynolds number Re as 

Re = Udpiq,, (31) 

with V a characteristic velocity of the flow, d a characteristic length of the geometry, p 
the density of the liquid, and r7tt the zero shear viscosity. Here we used for U the mean 
velocity and for d the cylinder radius. 

The results are presented in this article only for three of the five cases in Table III: 
De = 0.25, 0.93, and 2.32. Results for the two other intermediate cases (De = 1.36, 
1.87) can be found in Baaijens (1994). In all cases we observed stable flows. Samples of 
the fluid were regularly taken to monitor their rheology by steady and dynamic tests on 
the Rheometrics-RFS-2. No changes were found. Model parameters are used as fitted at 
a reference temperature of 25 “C. 

The four-mode PIT model was used as viscoelastic constitutive equation, since it was 
found above that this model fitted data in simple shear flow well. The single-mode PTT 
model was used to demonstrate the differences between a single-mode and a multimode 
model in the complex flow. The computations with these viscoelastic models were made 
by step-wise increasing the flow rate: first, at the lowest flow rate the solution was 
obtained with the iterative procedure and the result was used as the starting solution for 
the computation at a higher flow rate. The number of iterations for each flow rate is given 
in Table IV. Note that the use of the four-mode model decreased the number of iterations. 

LDA measurements along the third, ‘neutral” direction at two positions (at x/R = -5 
and x/R = 1.5) show the assumption of a nominally two-dimensional flow field is good, 
see Fig. 11. 

The results for the velocity and stress field, numerical as well as experimental, are 
presented along several cross-sectional lines in Figs. 12-14 and along the center line in 
Fig. 15. In Figs. 12-14, dimensionless velocities are plotted in the top graph, dimension- 
less first normal stress differences in the middle graph, and dimensionless shear stresses 
in the bottom graph. The base line of all cross-sectional profiles is depicted with a dotted 
vertical line. Subsequent curves from left to right correspond with subsequent dotted base 
lines. The “x/R” ordinate of the kth cross section (k = 1,2,... ,M; the number of cross 
sections M varies with the plots) is denoted with Xk . Actual values for velocity or stress 
can be obtained by multiplying the plotted dimensionless value (that is found by reading 
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TABLE IV. Mean velocity U and number of iterations nlter for the compu- 
rations with the one- and four-mode PIT equations, in the case of the 
geometry with the symmetrically confined cylinder. The solution at each 
(excepl the lowest) flow rate was obtained by using the result of the previ- 
ous (lower) flow rate 

& n ,ter FTr- 1 niter ETTm4 

0.0424 29 13 
0.0633 26 12 
0.0700 22 6 
0.0800 25 8 
0.0868 22 6 
0.1074 33 11 

Zniler 157 56 

of its horizontal ordinate on the "x/R" axis minus the ordinate Xk of the corresponding 
base line) with the number used for the scaling (U or 70, see Table III). 

3. Axial velocity field 

The graphs on top of Figs. 12-14 present the results of the computations and expcri- 
ments for the axial velocity field along several cross sections, while the middle and 
bottom graphs show the results for the first normal stress differences and shear stress, 
respectively. 

A small asymmetry is observed in the measured velocity profiles. This is explained by 
an eccentricity in the placement of the cylinder between the walls. In Baaijens (1994) it 
is shown, that in case of an eccentricity as little as O.O5R( = 0.1 mm), the four-mode 
P’lT model predicts a more asymmetric axial velocity field than the measurements. In- 
terestingly, these predictions also showed that the stress profiles are less sensitive to this 
eccentricity than is the velocity field. It is estimated that a negligible degree of asymme- 

FIG. 11. Measurement of the axial velocity along the neutral (z) direction at two positions (x/R = -5.0,1.5) 
and three flow rates [(+): (I = 0.0118 (m/s), (X): U = 0.0424 (m/s), and (0): U = 0.0633 (m/s)] that shows 
the flow is nominally two-dimensional. 
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FIG. 12. Measured (0) and computed [(-) four-mode ITI model, (- -) one-mode PTT model, (-.-) CY 
model] results for the planar flow of the 5% PIBK14 solution at De = 0.25 past a cylinder confined symmetri- 
cally between two parallel plates. Velocities are made dimensionless with the mean velocity (I and stresses with 
Q. X, denotes the x/R coordinate of the base line corresponding with each separate curve (see text). 

try in the experimental flow field (with the distance between the walls of 4R and a 
cylinder with radius R) can only be obtained in a flow cell with an eccentricity below 
O.OlR. 

At all Deborah numbers excellent point-wise agreement is found between the mea- 
sured axial velocities and those computed with the CY model. The results for the single- 
and four-mode PTT model agree excellently with measured data at the two lowest Debo- 
rah numbers (De = 0.25, 0.93). The good agreement between computed and measured 
axial velocities at De = 0.25 for all models (Fig. 12) was expected, since for De --+ 0, the 
flow behavior becomes Newtonian. At De = 2.32, the agreement is good for the four- 
mode model and fairly good for the single-mode model. 

The most pronounced differences between the computed results for both fits of the 
F”IT model and the measured velocities exist at De = 2.32 along the downstream cen- 
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FIG. 13. As in Fig. 12, now with De = 0.93. 

terline (X > 0, y = 0). Immediately downstream of the cylinder, the calculated axial 
velocities for the FTI models show an overshoot compared with the measurements. The 
effect is strongest for the single-mode PTI model: a relatively large overshoot in the 
velocity profile is observed. The overshoot is completely absent in the measured veloci- 
ties and in the results for the CY model. In the case of the axial velocities, the results for 
the four-mode P’IT model show a remarkable improvement compared with those for the 
single-mode fit, but some quantitative differences with the measured velocities remain. 

4. Stress field 

Good agreement is found between computed and measured stresses at all flow rates 
with both PIT fits, and sometimes the agreement is excellent (Figs. 12-15). In the plots 
along cross lines, the profiles of Nr at x/R = 2.0, -2.0 are left out to improve the clarity 
of the plots. 
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FIG. 14. As in Fig. 12, now with De = 2.32. 

At the lowest Deborah number (De = 0.25) the predictions of the shear stresses for 
both PIT models and the generalized Newtonian model agree excellently with measured 
data (Fig. 12). The PTT models also predict excellently the normal stress differences. The 
results obtained with these two fits cannot be distinguished at any position at this low 
Deborah number. The only difference between the simulations with the PIT models and 
the measurements is that they predict too low a maximum in the cross-sectional normal 
stress profile at x/R = 1.5. Except near the confining walls, the CY model predicts the 
normal stress difference along the cross section x/R = - 1.5 excellently, thus apparently 
elasticity is not important here. In the fully developed flow region and near the confining 
walls the CY model clearly fails to predict the measured normal stress differences, of 
course, since it cannot predict normal stresses in shear flow. This effect is independent of 
the Deborah number and is not discussed in case of the other two Deborah numbers 
below. Along the cross section x/R = 1.5, the CY model predicts the normal stress 
difference well; its maximum value near the center line is lower compared with the PlT 
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FIG. 15. Measured (0) and computed [(-) four-mode PIT model, (- -) one-mode ITT, (-.-) CY] velocity 
(left) and first normal stress difference (right) along the centerline for the flow of the 5% PEW14 solution past 
a symmetrically confined cylinder, for De = 0.25. 0.93, 2.32. Velocities are made dimensionless with mean 
velocity U, stresses with q (see text). 

models as is also clear from Fig. 15. Thus a small influence of the elastic response of the 
fluid is already present at this low flow rate. 

At De = 0.93, excellent agreement is found between computed and measured shear 
and normal stresses for both PTT models along all cross sections (Fig. 13). Differences 
between these two models are negligible except for the maximum value of Nt at x/R 
= 1.5 and near the side walls. At that position the single-mode PIT model has a higher 

maximum than the four-mode model. Upstream of the cylinder, the CY model predicts 
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the normal stress difference along x/R = - 1.5 excellently, except near the confining 
walls. The CY model underpredicts the normal stress differences along the centerline 
downstream of the cylinder (see also Fig. 15). thus now the stress field is clearly influ- 
enced by the elastic response of the fluid to the history of the deformation. 

At De = 2.32, more pronounced differences are found. In the experiments, the pres- 
ence of the cylinder is manifest further upstream of the cylinder than in the computations: 
the minimum normal stress difference along cross section x/R = - 1.5 is lower for the 
measured data than for both PTT models and the CY equation. Downstream of the 
cylinder. the four-mode PIT model predicts the normal stress differences excellently, 
except the minima of the cross-sectional profile along x/R = 1.5. Good agreement is also 
found for the single-mode model, it has, however, a maximum in the normal stress profile 
along the centerline that is too high. Again, the CY model predicts too low values for the 
normal stress difference near the downstream centerline. All three models predict the 
shear stress profiles well downstream of the cylinder, but upstream of the cylinder the 
agreement is only reasonable. Along x/R = - 1.5, the prediction with the single-mode 
PIT fit differs mostly from the measured shear stress. The results for the four-mode PTT 
model and the CY model coincide at this site and agree fairly well with the measured 
shear stress profile. Along x/R = -2.0, both PTT models predict the measured shear 
stress profile excellently, while now the shear stress profile for the CY model is not in 
accordance with measured data except near the walls. 

The measured velocities along the center line have been fitted with polynomials to 
calculate the elongational velocity gradient (elongation rate) along this line. The results 
are plotted in Fig. 16. It appears that the elongation rate is minimal = -65 s-’ upstream 
of the cylinder, and maximal = 70 s-t downstream of the cylinder at the highest flow 
rate. This magnitude is an order higher than in the study of Armstrong er al. (1992), 
where the maximum elongation rate was = 10 s- ‘. Hencky strains EH were computed 
with 

EH = (32) 

using the polynomial fits for du(x)ldx and u(x), as EH = 0.37?0.03 for the five flow 
rates. Thus the strain along the centerline is nearly invariant with flow rate and relatively 
low {compare with EH = 3-7 for extensional rheometers [Macosko (1994)]}. 

5. Comparison with results of Baaijens et al. (1994) 

The above results for the stresses are not in accordance with those presented in our 
earlier study Baaijens et al. (1994) ( see also Note added in proof in Baaijens et al. 
(1994)). We are now convinced that the discrepancy between the results in Baaijens et al. 
(1994) and the present results can only be explained by a change in the rheological 
behavior during the former experiments. 

In Baaijens et al. (1994), we discussed two possible nonstatistical errors that might 
have affected the stress measurements: (i) influence of the subtraction procedure to ac- 
count for the parasitic birefringence in the glass windows (due to the clamping of the 
windows in the flow cell and to the pressure build-up in the fluid during flow). (ii) failure 
of the stress optical rule in the elongational flow past the cylinder. 

Failure of the stress optical rule is rather unlikely, in view of the results of Quinzani 
(1991) in the four to one contraction. Our results in this article confirm this statement. 

We showed in Baaijens ef al. ( 1994) that the effect of the fluid pressure on the window 
strain can be neglected. The subtraction procedure itself is legitimate in the limit of small 
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FIG. 16. Polynomial fit of measured velocities along centerline past the symmetrically confined cylinder (left) 
and the derivative of fitted polynomial (right) at the five Deborah numbers investigated (see Table Ill), Top row: 
upstream of cylinder, bottom row: downstream of cylinder. De = 0.25, 0.93, 1.36, 1.87, 2.32. 

birefringence [see also Galante and Fratini (1993)]. The SF-57 glass used in the present 
study, instead of BK-7 glass in Baaijens et al. (1994), simplified the subtraction proce- 
dure, since a single off-set value was sufficient to shift the measurements at all spatial 
positions. Only at the lowest flow rate (De = 0.25) we still needed to measure the 
birefringence during zero flow at all positions. The result after point-wise subtraction is 
excellent: smooth symmetric stress profiles and excellent agreement with computational 
results for all models. 

To investigate the effect of the subtraction procedure further, we replaced in our 
present flow loop the new flow cell by the one we used in Baaijens ef al. (1994) thus 
with the BK-7 glass. At De = 0.25, using the point-wise subtraction procedure, we now 
found excellent agreement between the results with this flow cell and those obtained with 
the new cell [Schoonen (1994)J 

It is remarkable that in all these latest experiments we were able to obtain smooth and 
symmetric stress profiles at the low Deborah number of 0.25 even in the developed flow 
region. In the previous study Baaijens er al. (1994) we only measured distorted, noisy 
profiles at this site. This despite the fact that in the older flow cell the light path through 
the flow cell was even a factor of 2 longer, which would benefit the accuracy of the 
measurement of birefringence (which is proportional with the length of the light path). It 
appears, that our present ROA system has a better resolution for the stresses than the 
system we used in Baaijens et al. (1994). Also, our present system is in this respect 
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superior to the two-color system of Quinzani (1991), who also was not able to measure 
stresses in fully developed flow at De = 0.25 for the similar model fluid. 

From a methodological point of view, it is important to be able to measure stresses in 
fully developed flow to be able to demonstrate the measurement technique and to quan- 
tify its accuracy, since then the shear stress is described by a generalized Newtonian 
model. Several facts were in favor of the adequacy of the stress measurements in 
Baaijens et al. (1994): (i) the centerline stresses upstream of the cylinder did agree well 
with the computations, and the differences between computed and measured stresses 
existed downstream of the cylinder in the region where the fluid relaxes from the mixed 
shear and elongational flow; (ii) only after the point-wise subtraction procedure was the 
symmetry of the cross-sectional stress profiles excellent; (iii) the results reproduced well. 

All together, we measured fluid properties in the former experiments and not just an 
artifact caused by the experimental apparatus. Unfortunately, up to now we have not been 
able to reproduce those results afterwards with a new fluid and despite many systematic 
attempts, we could not yet identify the reason that has caused the different behavior. In 
any event, the measured stresses as reported in Baaijens et al. (1994) should be consid- 
ered as not representative for the present 5% PIB/C14 solution. 

C. Asymmetrically confined cylinder 

As a second step, the influence of viscoelasticity on the flow in a channel with an 
asymmetrically confined cylinder was investigated. We expected that this asymmetrical 
flow would be more sensitive for viscoelastic stresses such that also the velocity field 
should be influenced (see also Sec. I B). Since in the previous section the four-mode PTT 
model proved to be superior to the one-mode fit, here only the four-mode P’IT fit will be 
used in the viscoelastic computations. 

The cylinder was moved 1 mm towards one of the walls relative to the symmetrical 
situation, which resulted in a narrower gap between the wall and the cylinder of 1 mm at 
that side of the cylinder and a wider gap of 3 mm on the other side. Keeping x/R 
= y/R = 0 in the center of the cylinder, the wall that is closest to the cylinder is at 

y/R = 1.5, and the other wall at y/R = -2.5. 

1. Experimental and numerical aspects 

Measurements of the axial velocities and the stresses have been performed along 
cross-sectional lines at x/R = -5.0, 22.5, 22.0, + 1.5, 0.0 and along axial lines at 
y/R = 0, - 1.5. The flow rate was set such that the mean velocity was 0.0868 m/s and 
thus De = 1.87. The stress measurements were performed with a lens with a focal length 
f = 200 mm, which resulted in a maximum beam radius at the exit and entrance planes 
of the flow cell of = 0.25 mm. 

The same numerical method was used as in the previous section. Parts of the mesh are 
shown in Figs. 17 and 18: the total mesh has 5364 elements and 11014 nodal points. 

Both the generalized Newtonian CY model and the four-mode FTT equation were 
used, with parameter values as in Sec. II. Convergence was obtained with the conver- 
gence criteria as in Sec. II C. In case of the P’TT equation, computations were performed 
by increasing the flow rate stepwise using each intermediate result as a starting value for 
the new computation (Table V). 

2. Comparison of computations with experiments 

Figures 19 and 20 show the results for the geometry with the asymmetrically confined 
cylinder. Velocities are normalized with the mean velocity U and stresses with 
70 = 37)oUlR ( = 127.3 Pa at the present flow rate). 
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FIG. 17. Part of FEM mesh used for the geometry with asymmetrically confined cylinder. 
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FIG. 18. Detail of FEM mesh used for the geometry with asymmetrically confined cylinder (the same region as 
marked with the dashed box in Fig. 17). 
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TABLE V. Mean velocity U and number of iterations nlter for the computations with the four-mode m 
equation, in the case of the geometry with the asymmetrically confined cylinder. The solution with U = 0.0868 
m/s was obtained by increasing the flow rate stepwise, which resulted in total 61 iterations. 

0.0212 0.0415 0.0562 0.0868 

%er 13 15 12 21 

-2 

-6 -2 0 2 4 6 
K/R or u/U +X, 

-6 -4 -2 0 2 4 6 
xIR or N&,+X, 

-6 -4 -2 0 2 4 
x/R or T/qJ+xk 

FIG. 19. Measured (0) and computed [(-) four-mode PTT, (- -) CY (velocities only)] quantities for the planar 
flow of the 5c/c PIBK 14 solution at De = 1.87 past an asymmettically confined cylinder: velocity (top), first 
normal stress difference (middle), shear stress (bottom). Velocities are made dimensionless with the mean 
velocity CJ. and the stresses with 7o. X1 denote the x/R coordinate of the base line corresponding with each 
separate curve (see text). 
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y/R = -1.5 
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FIG. u). Left column: measured (0) and computed velocities [(-) four-mode PTT, (- -) CY] along several 
lines in the flow of the 5% PIB/C14 solution past an asymmetrically confined cylinder. Right column: measured 
[(X ): 7, (0): NI] and computed stresses (four-mode F’IT only) along the same lines as the velocities in the left 
column. De = 1.87. 

For both constitutive equations, the four-mode F’IT model and the generalized New- 
tonian model, the computed velocity profiles upstream of the cylinder agree well with 
those that were measured. Thus, the fluid is not sufficient elongation thickening to cause 
a significantly larger Bow through the broader gap compared with an inelastic fluid. This 
correlates with the planar elongational viscosity as predicted by the four-mode PTI 
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model, which is nearly constant with elongation rate (Fig. 9). It appears that the shear 
thinning behavior is the dominant phenomenon for the velocity field in the present flow. 

Comparison of the computed velocity profiles with the velocity measurements along 
line x/R = 0 in the broader gap shows that both models describe the measured velocity 
well (Fig. 20, top left plot). However, near the maximum of the profile, the CY model is 
closer to the measured data than the PTT model, which predicts a higher maximum. This 
might be due to too little shear thinning behavior of the PTT model for shear rates above 
100 s- ‘, since at this site high shear rates are present with a maximum value = 250 s-’ 
(compare Fig. 6). 

The measured velocity profile along line y/R = - 1 S is described more accurately by 
the CY model than by the PTT model: the latter has too high a maximum (Fig. 20). For 
both models, the rising and descending parts of the computed velocity profile agree well 
with the measured data. 

Along line y/R = 0 (upstream and downstream of the cylinder), excellent agreement 
is observed between both computed and measured velocities. No overshoot of the veloc- 
ity downstream of the cylinder exists here. 

Downstream of the cylinder, the computed velocity profiles for the PTT model agree 
excellently with the measured velocities and better than those for the CY equation (Fig. 
19). 

The normal stress differences along cross-sectional lines upstream of the cylinder as 
computed with the PTT model agree excellently with measured data. Downstream of the 
cylinder some small differences between computed and measured normal stress differ- 
ences are found near the line y/R = 0, but the agreement is still impressive. Excellent 
point-wise agreement is found between measured and computed shear stresses at all sites 
(Fig. 19). Excellent agreement of computed and measured stresses exists along the line 
y/R = 0. 

IV. DISCUSSION 

Quinzani (1991) [see also Armstrong et al. (1992)] has shown that, out of six consti- 
tutive equations, the Phan-Thien-Tanner equation best describes the centerline stresses in 
the four to one contraction flow, followed by the Giesekus model. Though the Phan- 
Thien-Tanner model agreed best with measured data, still a fairly large difference was 
found between computed and measured results. Our present results give, for the Phan- 
Thien-Tanner model, a significantly closer agreement with experimental data in the 
confined flow around a cylinder. This difference in agreement is probably, or at least 
partly, caused by the integration procedure that Quinzani et al. used to compute stresses 
from measured velocities. Decoupling the kinematics from the stresses can lead to a 
solution that is inconsistent with the set of equations for the full flow problem. This 
problem is illustrated by the difference between the measured velocities along the down- 
stream centerline and those computed with the finite element method for the single-mode 
PIT model (Fig. 14). Moreover, Baaijens (1993), who tested a new numerical method for 
viscoelastic Rows, computed also Quinzani’s contraction flow using the Phan-Thien- 
Tanner equation. He also found good agreement for the centerline stresses between the 
result of his (full) flow simulations and the measured stresses of Quinzani. Apparently, 
computation of the full flow field provides a more reliable route for testing constitutive 
equations. 

The results of Baaijens (1993) with the PTI model also agree better with centerline 
stresses measured by Quinzani (1991) in the four to one contraction than the results of 
Mitsoulis (1993) with an integral model of the K-BKZ type. 
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With respect to the rheological behavior in elongational flows of the 5% PIBK14 
fluid, two observations suggest that the results of the computations for the flow past a 
cylinder correlate with the prediction of the steady state planar elongational viscosity 
(Fig. 9). First, only small differences exist between centerline stresses in the symmetric 
geometry for the one- and four-mode PTT fit and the four-mode Giesekus model [results 
of computations with this latter model can be found in Baaijens (1994)], similarly to their 
planar elongational viscosity curves. Second, in the asymmetric geometry there is no 
effect of elongational thickening that would cause the fluid to pass the cylinder preferably 
through the broader gap. This agrees with the nearly constant planar elongational viscos- 
ity curves rl(g) for these models. 

On the other hand, the single-mode Giesekus model has a different elongational vis- 
cosity curve compared with the other three fits. It is likely that for this model fit the 
results of the centerline stresses past a symmetrically confined cylinder would differ from 
those for the other fits: it is expected to predict higher centerline stresses. Unfortunately, 
we did not obtain convergence of the finite element simulations with the one-mode 
Giesekus model fit. By integration of the constitutive equations along the centerline, 
using a polynomial fit of the measured velocities, we found indeed that the fitted single- 
mode Giesekus model predicts higher normal stresses. These results are plotted in Fig. 
21. This figure also illustrates the inconsistency problem of the integration procedure that 
uses measured kinematics: a large difference exists between the results for the one-mode 
PTT model computed in this way and those computed with FEM. 

The influence of the numerical method has also been investigated. Two other numeri- 
cal methods have been used: the operator splitting method introduced by Baaijens (1993) 
and the discontinuous Galerkin method as discussed in Baaijens et al. (1994). Both 
methods agreed with the computations in this article within 5% [see Baaijens (1994)]. 

V. CONCLUSIONS AND RECOMMENDATIONS 

In this study, the complex planar flow past a cylinder is used to evaluate in a rigorous 
way the viscoelastic constitutive equations of a polymeric liquid. The evaluation was 
made by comparing the results of finite element computations with point-wise measure- 
ments of both velocity and stress field. To facilitate the analysis and to connect with 
previous studies, a 5% (w/w) polyisobutylene solution in tetradecane was used as a model 
fluid. In the results, Deborah numbers range between 0.25 and 2.32 in the symmetrical 
geometry and it equalled 1.87 in the asymmetrical geometry. 

The main conclusions and recommendations can be summarized as follows. 
In the experimental arrangement developed in this study, accurate point-wise map- 

pings of velocity and stress fields can be obtained, using simultaneously laser Doppler 
anemometry and a flow-induced birefringence technique based on polarization modula- 
tion. Together, these two experimental techniques constitute useful tools to obtain experi- 
mental data that are suitable for testing constitutive equations rigorously by a quantitative 
comparison with numerical flow simulations. 

In the experiments stable, nominally two-dimensional flows were established, while 
retaining for the fluid used constant material functions in simple shear flow. 

There is confidence that the results for the viscoelastic constitutive equations present 
accurate solutions of the mathematical problem and were not influenced by the numerical 
method used, since they agreed well with those for two other widely varying numerical 
techniques. 

Good (to excellent) agreement was obtained between experiments and finite element 
computations for the planar flows using the four-mode PTT model. The agreement is 



1274 BAAIJENS ET AL. 

g 60. 

$ 40. 

20. 

OL 
0 0.002 0.004 0.006 0.008 0.01 0.012 

x b-4 

0 
0 0.002 0.004 0.006 0.006 0.01 0.012 

x [ml 

Q 

FIG. 21. Computation of normal stress difference along centerline by integration of constitutive equations with 
the use of measured velocity field. Top: centerline velocities downstream of cylinder with polynomial fit. 
Middle: derivative of velocity fit. Bottom: predictions of normal stress difference along centerline: single-mode 
PTT model (-), single-mode Giesekus model (- -), result for finite element computation with single mode FTT 
model (...), experimental data (0). 

satisfying, particularly since this study is the first that successfully compared point-wise 
velocity and stress measurements with viscoelastic simulations in a more or less complex 
flow. This result is probably due to the absence of singularities like those present in 
abrupt contraction flows. 

A generalized Newtonian model describes details of the velocity field even more 
accurately, but fails with the prediction of normal stresses. 

It appears that the model fluid used is not very sensitive for elongational deformation, 
i.e., its elongational viscosity depends only weakly on elongational rate. This is also 
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predicted by the four-mode PTT and Giesekus models which are fitted adequately with 
data measured in simple shear flow. The use of a model fluid that is more sensitive for 
elongational flows will give more drastic viscoelastic effects, see for example the results 
of Walters and co-workers with polyacrylamide solutions [Dhahir and Walters (1989), 
Cochrane et al. (1981), Jones and Walters (1989), Georgiou et al. (1991)]. 

The integration procedure to compute stresses that uses measured kinematics can lead 
to inaccurate results because the method is not self-consistent. 

Our previous results, reported in Baaijens et al. (1994), disagree with the results in this 
article. It is most likely that this is caused by a change in the rheological properties in the 
fluid during the former experiments. Unfortunately, we did not succeed in identifying the 

real cause, since we were not able to reproduce the precise effect. 
Extension to the analysis of the transient rheological behavior of the fluid during 

start-up of the flow around the cylinder is promising as a more rigorous test for consti- 
tutive models. 

In future work on polymer solutions it is recommended, besides using higher Deborah 
numbers, that one search for a flow situation where normal stresses have a more pro- 
nounced influence on the velocity field, since then the flow is expected to discriminate 
more strongly between different models. 
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