

Time and order of abstract events in distributed computations

Citation for published version (APA):
Basten, T., Kunz, T. H., Black, J. P., & Taylor, D. J. (1994). Time and order of abstract events in distributed
computations. (Computing science notes; Vol. 9406). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/2cfe6afa-9c9c-497b-b70e-e27db0a6160c

Eindhoven University of Technology

Department of Mathematics and Computing Science

Time and the Order of Abstract Events in
Distributed Computations

by

T. Basten, T. Kunz, J. Black,
M. Coffin and D. Taylor

Computing Science Note 94/06
Eindhoven, February 1994

94/06

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven U ni versity of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Time and the Order of Abstract Events in
Distributed Computations *

Twan Basten" Thomas Kunz2
, James Black3

, Michael Coffin3
, and David Taylor3

1 Department of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven,
The Netherlands

2 Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
3 Department of Computer Science, University of \Vaterloo, vVaterloo, Ontario, Canada

Abstract

An important problem in event-based models of distributed computations is the amount of
behavioral information. Even for simple applications, the number of events is large and the
causal structure is complex. Event abstraction can be used to reduce the apparent complexity
of a distributed comput.ation.

This paper discusses one important aspect of event abstraction: causality among abstract
events. Logical vector time and a derived notion called reversed vector time can be used to assign
two meaningful timestamps to abstract events. These timestamps can be used to efficiently
determine causal relationships between arbitrary abstract events.

The class of convex abstract events is ident.ified as a subclass of abstract events that is general
enough to be widely applicable and restricted enough to simplify timestamping. For this class,
ordinary vector time is sufficient to determine causal relationships. At the cost of some extra
computational effort, t.he timestamps derived for convex abstract events can also be used for
arbitrary abstract events, overcoming the need for reversed timestamping.

Key words: Distributed systems - Event abstraction - Causality - Precedence relation -
Partial order - Vector thue

1 Introduction

A distributed application consists of a. number of autonomous sequential processes, cooperating
to achieve a common goal. Cooperation includes both communication and synchronization, and
is achieved by the exchange of messages. Following Lamport [1.5], a distributed computation is
modeled as an ordered set of events. An event represents some activity performed by some process
and is considered to take place at an instant in time. Typically, the lowest-level observable events,
or primitive events, are computations local to processes and interprocess-corumunication events.

What is important in an event-based view of distributed computations is how events are causally
related to each other. Causality can be expressed in terms of precedence. Sending a message, for
example, always precedes receiving the message. This is true even if, because of clock skew, the
time a.t which the send event occurs is larger than the time at which the receive event occurs, as
measured by their respective local clocks. However, sending a message might be unrelated to a
write action on a file local to another process. Neither event precedes the other and they are said
to be concurrent. Lamport [15J has shown that causality among primitive events can be accurately
modeled by a partial order.

*This work was snpport.ed in part. by t.he N at-ural Sciences and Engineering Research Council of Canada.

To determine causal relationships between events, logical-timestamp schemes have been pro
posed [10, 12, 15, 16, 17]. Logical time has been used for many different purposes: implementing
causal broadcasts [4], measuring concurrency [6], detecting global predicates [9], implementing
distributed breakpoints [13], computing consistent global snapshots [16], and visualizing program
behavior [19].

However, experience shows that even for simple distributed applications, the amount of be
havioral information is very large, and the causality structure is very complex. Applications that
must cope with this huge amount of information become slow and often need many resources (disk
storage, memory, processor time). In addition, the programmer often has difficulties managing too
much behavioral information. Therefore, it is desirable to rednce the amonnt of information that
must be considered at once.

A powerfnl way to reduce the apparent complexity of a computation is abstraction [5]. This
paper focuses on one type of abstraction, namely event abstraction. Primitive events are gronped
together into high-level abstract events, hiding their internal structure and creating an abstract
view of the computation. Causality among abstract events is defined, and timestamp schemes
are derived to efficiently determine causal relationships between abstract events. Each timestamp
scheme is formally proven correct. Other important issues in event abstraction, such as specifying
abstract behavior and the automatic recognition of abstract events to construct abstract views
[1, 2], are beyond the scope of this paper.

Given a hierarchy of abstract descriptions of program behavior, an application can be evaluated
at an arbitrary level. Using the timestamp schemes presented in this paper, program behavior can
be visualized or even simulated at any level of abstraction. Most of the applications of timestamps
mentioned above can be adapted to use abstract descriptions of program behavior instead of prim
itive descriptions. Doing so, performance can be increased and only information that is of interest
to the user is taken into consideration.

To date, there has been no sound theoretical treatment in the literature of causality and log
ical time for arbitrary abstract events. Previous work at Waterloo [8, 14, 18] discusses abstract
events with restrictive structural properties only. Event sets with these structural properties create
abstract views of an execution that conform to the partial order among primitive events. Times
tamping algorithms for these abstract events are given. While such structures are attractive because
the set of abstract events is again partially ordered, it appears that they are not general enough to
be useful; many apparently intuitive abstract events do not satisfy the constraints (see also [14]).
Thus, this paper takes another approach, starting with no structural requirements on abstract
events, and recognizing that it is not feasible in practice to maintain a partial order on them.

The paper is organized as follows. Section 2 presents a formal model of distributed computations
and summarizes the basic definitions and results about logical vector time. Section 3 discusses
causality among abstract events. In particular, it defines a precedence relation on abstract events.
Section 4 derives a number of precedence tests for arbitrary abstract events, using vector time as
introduced for primitive events. This section also introduces the notion of reversed vector time,
which is essential to timestamping arbitrary abstract events efficiently. Section 5 deals with an
important subcla.ss of abstract events, caned convex abstract events. It is shown that for this class
of abstract events, times tamping schemes can be derived that do not depend on reversed vector
time. At the cost of some extra computational effort, these timestamping schemes can also be used
for arbitrary abstract events. Fina.1ly, Section 6 slImmarizes the results.

2

2 Basic definitions and results

In this paper, a distributed system is a collection of many loosely-coupled machines. These ma
chines do not share any system resources and are only connected by a communication network.
Communication channels may be lossy and delivery order mayor may not be guaranteed.

A distributed program is a set of independent, cooperating program modules. Information
is exchanged only by message passing. Both synchronous and asynchronous communication are
allowed. To prevent unnecessarily complex forl1lulas, it is assumed that communication is point
to-point. However, it is straightforward to extend the results to multicast and broadcast schemes.

At runtime, program modules are instantiated as processes which do not share memory. Again
for the sake of simplicity, it is assumed that the llmuber of processes is fixed and known in advance.
Each process performs a local computation. A distributed computation is the collection of all local
compu tations.

2.1 Distributed computations

The model of distributed computations used in this paper is based on the notion of primitive
events. Primitive events are considered to be atomic. Therefore, a primitive event is modeled as if
it occurred instantaneously. Essentially, a distributed computation is a pair (E, :::), where E is the
set of primitive events and::: is an ordering relation that models causal precedence.

The detailed model given in the remainder of this subsection is based mainly on previous
definitions of Mattern [16, 17], Charron-Bost [6, 7], and Fidge [11, 12]. Their definitions are, in
turn, based on the "happens before" relation introduced by Lamport [1.5]. The algebraic structure
underlying the model is vVinskel's elementary event structure [20].

The set of primitive events E is the union of N mutually disjoint sets of events, Eo, ... , EN-I,
where N is the number of processes. Each of these sets represents a local computation. It is assumed
that E is finite. Since this paper discusses timestamp schemes, this is not a real restriction: In
practice, only finite (prefixes of) computations can be timestamped. The set of process identifiers,
{O, ... ,N -I}, is denoted P.

As mentioned, both synchronous and asynchronous communication are allowed. Every com
munication is modeled by a send event and a corresponding receive event. The sets of send and
receive events are denoted by Sand R respectively. The two sets are disjoint subsets of the set of
events E. A relation r <;; S x R relates send events to receive events. This relation is left- and
right-unique. Furthermore, it is required that for every receive event in R, there is a corresponding
send event in S. The absence of the converse condition means that messages might be lost or might
still be in transit. A subset of r, r" denotes the set of synchronous message communications.

For every i E P, the set Ei is totally ordered by a relation -<i. This models the fact that
processes are sequentiaL The relation -<I is defined as the union of all -<i. It expresses the local
ordering of events. The precedence relation ::: that models the causal ordering of events is defined
as the smallest reflexive and transitive relation that satisfies the following two conditions.

Cl The relation -<I uris a subset of :::.

C2 For every (8, r) E rs and e E E \ {s, r}, e::: s '* e ::: rand s ::: e '* r ::: e.

Since the restrictions on r do not guarantee the absence of cycles in the precedence relation, the set
of definitions given so far models a. distributed computation if and only if the precedence relation

is a partial order.
The precedence relation extends the "happens before" relation as defined by Lamport [15] to

synchronous communication in a natural way. Thc condition C2, originally given by Fidge [11, 12],
means that a synchronous communication can be interpreted as if it occurred instantaneously.
Distinguishing a send and a receive event such that the send event precedes the corresponding
receive conforms to physical reality: a synchronous communication is initiated by one process and
received by the other after a small but non-zero delay.

We prefer this model of synchronous communication over other models of synchronous commu
nication in the literature. Charron-Bost et a1. [6], Cheung [8], and Fidge [11, 12] model synchronous
communication as a pair of unrelated events. This has the disa.dvantage that a synchronous com
mnnication cannot be distinguished from a pair of concurrent events. Summers [18] models syn
chronous communication as a. pair of mutually related events. A drawback of this model is that
the precedence relation is no longer a partial order, which raises theoretical problems. In [2], syn
chronous cOlnmUllication is modeled as a single event occurring in two processes simultaneously.
This model is more abstract than the model presented above. Unfortunately, it has some theoretical
problems that will be discussed shortly.

The relation::; can be used to express concurrency in a natural way. Two events eo, el E E are
concurrent if and only if eo i el and Cl i eo. That is, two events are concurrent if and only if they
are unrelated by the precedence relation.

Using the definitions above, it is possible to formalize the notion of cuts. A cut is the event
based equivalent of a global state. Formalizing the notion of cuts is useful to better understand the
causality structure of a distributed computation. The proofs of many results to follow depend on
the introduction of cuts. The following definition and theorem are due to Mattern [16, 17].

Definition 2.1. (Cut) A sct C C;; E is ca.ned a. cut of E if and only if for all events eo E C and
el E E, el :01 eo =;. el E C, where :01 is the reflexive closure of the local ordering -<I. A cut is said
to be left-closed under :01. The set of all cuts is denoted by C~,.

Theorem 2.2. (Structure of cuts) The set. of ail cuts of a distributed computation, with the
ordering defined by the subset relation C;;, is a complete lattice. The infimum and supremum of sets
of cuts are defined by set intersection and set union respectively.

In distributed computing, the su bset of consistent cuts is of particular interest. Consistent cuts
characterize the sct of global states that might actually occur during a distributed computation.

Definition 2.3. (Consistent cut, [6,16,17,20]) A set C C;; E is called a consistent cut of E if
and only if for all events eo E C and el E E, el :0 eo =;. el E C. A consistent cut is left-closed
under ::S. The set of all consistent cuts of a distributed computation is denoted by C~.

Theorem 2.4. (Structure of consistent cuts, [16,17,20]) The set of consistent cuts, with the
ordering defined by C;;, ;8 a complete lattice.

2.2 Vector time

As expla.ined before, for ma.ny applica.tions in distributed computing, it is useful to have a char
acterization of causality. Since the precedence relation is a. partial order, it is not possible to use

4

physical time or any other totally ordered set as a. characterization. For this reason, Mattern [16, 17J
and Fidge [10, 12J independently introd uced partially ordered vector time. Vector time extends the
idea of logical clocks introdnced by Lamport [l.SJ.

In this subsection, we snmmarize some definitions and results given by Mattern in [17J. They
form the basis for the remaining sections of this paper that discuss times tamping abstract events
or sets of primitive events.

An event causally precedes another event if and only if all its predecessors arc also predecessors of
the other event. That is, an event precedes another event if and only if the cut of all its predecessors
is a subset of the cut of all predecessors of the other event. The idea behind timestamps is to
associate with each event e a value T.e, the timestamp of e, and, in addition, to define a relation ::;
on timestamps in such a way as to ensure that for any eo, el E E, eo :5 el ¢} T.eo ::; T.el. The intent
is to ma.ke ::; relatively inexpensive to calculate, thus avoiding expensive set-inclusion calculations.
Figure 1 illustrates this interpretation of precedence between two events. Definitions of the function
p, which defines the cut containing all predecessors of an event, and T, the timestamp of an event,
are given below. Event eo precedes event CI since all the predecessors of eo are also predecessors of

el·

T.eo T.el

Figure 1: Precedence between prilnitive events.

Definition 2.5. (Causal past, [6, 17,20]) The function p. : E ---+ 2E defines the causal past of
an event as follows. For any e E E, pc = {eo EEl eo :5 c}. Note that pc is a consistent cut.

The causal past of an event in some process i is the set of all its predecessors in i.

Definition 2.6. (Causal past in a process, [6]) For any i E P, the function Pi. : E ---+ 2E;

defines the causal past in process i of an event as follows. For any e E E, Pie = {eo E Ei I eo :5 e}.
Note that Pie = pe n Ei and that Pie is a. cut, but not necessa.rily a consistent cut.

The two definitions of causal past and causal past in a process are essential to the results presented
in this paper. In [2], some of these results are given for a slightly different model of distributed
computations that models synchronous communica.tion as a single event. occurring in two processes
simultaneously. As rnentioned, this 1110dcl raises some-theoretical probleills. In particular, since sets
of events representing processes are not necessarily disjoint, the assulnption that the causal past
in a process is a cut is, in general, not true. Consider, for exalnple, a synchronous-communication
event e that is an element of two sets Ei and Ej for distinct'; and j in P. If e has a predecessor in
process j, then the causal past in process i. Pie, is not a cut. The set Pie is not left-closed under

:51·

As a consequence, some definitions and deriva.tions given in [2] are not correct. However, it is
believed that the definitions and derivations can be adapted in such a way that the results remain
valid. Another possibility is to adapt the model of synchronous communication so that sets of
events representing processes are disjoint. This is the approach pursued in this paper.

Definition 2.5 yields the following useful result.

Corollary 2.7. [17, 20] For any event e E E and any consistent Cllt C E C -<, e E C ¢} pc r:;; C.

Proof. It follows from Definitions 2.3 (Consistent cut) and 2 .. 5 (Causal past). o

Corollary 2.7 states that the causal past of a.n event is the smallest possible consistent cut that
contains the event. This result is 1I0t very surprising, since the causal past of an event exactly
reflects all its predecessors.

Corollary 2.8. For any process i E P, event e E Ei, and any cut C E C:Ol' e E C ¢} Pie r:;; C.

Proof. It follows from Defiuitions 2.1 (Cut) and 2.6 (Causal past in a process). o

The introduction of the causal past is sufficient to formalize the notion of vector timestamps. A
vector timestamp of size N is assigned to every event such that every component i E P of the
timestamp is equal to the number of predecessors of the event in process i.

Definition 2.9. (Timestamp function) The function l' : E ----> INN defines a timestamp for
every event as follows. For any event e E E and process i E P, T.e.i = IPiel.

Note that the vector representation of timestamps is possible only because the number of processes
is known. However, vector representation of timestamps is not essential. If the number of processes
is not known, the timestamp of a.n event can be defined as a set of pairs, where each pair consists
of a process identifier and the corresponding timestamp component [12].

The following theorem shows that the timestamps as defined above can be used to determine
the causal relation between primitive events. For two vectors to, t, E INN, we define to :s; t, to
mean to.i :s; t,.i for all i, 0 :s; i < N.

Theorem 2.10. (Precedence test for primitive events [16, 17]) For any events eo, e, E E,
eo =' e, ¢} T.eo :s; T.c,.

Proof. [6] Assume that eo ~ e,. Since ~ is transitive, it follows that, for any process i E P,
PieD r:;; PiE,. Definition 2.9 (Timestamp function) yields T.eo :s; T.e,. It follows from the initial
assumption that eo =' e, ~ T.eo:S; T.e,.

Assume eo E Ei , for some process CE P, and e, E E such that eo i e,. It follows that
Pie, C PieD. Definition 2.9 (Timestamp function) yields T.e,.i < T.eo.i. This gives T.eo t T.e,.
It follows from the assumption that T.eo :s; T.c, ~ eo =' c,. 0

This precedence test formalizes the visualization of precedence given in Figure 1. It provides an
efficient way to determine precedence among prilnitive events; at most N integer comparisons are
necessary. Precedence can be dctennincd even more efficiently .if it is known in which process an
event occurs.

Theorem 2.11. (Precedence test for primitive events [16]) For any i E P and events eo E E;
and el E E. eo ::5 el {o} T.eo.i ~ T.el.i.

Proof. Assume that eo ::5 el. It follows that p;eo <:: p;el'
eo i el' This yields p;el C p;eo. Hence T.el·; < T.eo·i.

This gives T.eo.i ~ T.el.i. Assume that
o

This theorem shows tha.t only one integer compa.rison is needed to decide whether an event precedes
another if the process in which the event occurs is known.

An example of the assignment of vector timestamps to events is given in Figure 2. For this
example, the validity of the two precedence tests given above is easily verified. The vertical lines
represent processes. Time increases from top to bottom. Events are depicted as dots. The ar
rows represent the communication relation r. A synchronous communication is represented by a
horizontal arrow.

(1,0,0)

(2,0,0)

(3,0,0)

(0,0,1)

(O,l,l)+--_---i~ (0,1,2)

(0,1,3)

Figure 2: Timestamping events in a distributed computation.

An algorithmic calculation of vector timestamps is based on a system of counters, one for each
process. Every time all event OCClirs in a process the local counter is incremented by one. The
global time corresponding to a.ny cut of the computa.tion consists of the vector of all the counter
values. Every process i E P is assigned a vector Ci of size N which is its local clock. This local clock
contains the loca.l approximation to globa.l time. Communication provides a way to update local
clocks with information present in other processes. Every event is assigned a vector timestamp that
is equal to the loca.l clock value at the time of its occurrence. The precise rules for maintaining
the local clocks in such a. way that the timestamps satisfy the function T are as follows. The rules
adapt the definitions of Fidge [10, 11, 12] and Mattern [16, 17] for synchronous communication.
SmaU variations on the rules can be found in [5, 8, 18].

1. Initialization:
Initia.lly, all the local clocks are set to t.he zero vector.

2. Ticking:
At the occurrence of an event ill process i E P, component of the local clock, Ci.i, is
incremented by one.

3. Asynchronolls communication:
At the occurrence of an asynchronous message receipt, first rule 2 is applied and then the
receiving process i E P assigns to its local clock the component wise maximum of C; and T.e,
where e E E is t.he corresponding send event.

4. Synchronous communication:
When some process i E P sends a synchronous message to another process j E P, first process

7

i applies rule 2 and then assigns to its local clock the componentwise maximum of Ci and
Cj. Subsequently, process j applies rule 2 and assigns to its local clock the componentwise
maximum of Ci and Cj. Finally, after timestamping the two events, process i increments
component j of its local clock, Ci.j, by one.

In the remainder of this subsection, the not.ion of globa.! time is formalized. It. is shown that
global time vectors have a st.ructure that is isomorphic to the structure of cuts. This property is
needed in the remaining sections when causal relations between abstract events are investigated.
As mentioned, the global time at any point during a computation consists of the vector of all the
local counter values. This is formalized in the following definition.

Definition 2.12. (Global time of a cut, [17]) The function T : C"" --+ INN defines the globa.!
time of a cut. For any cut C, component i, where 0 :S i < N, of the time vector is defined as
T.C.i = IC nEil. The set of all global time vectors of a computation, i.e., {T.C ICE C=',}, is
denoted by T "',.

This definition has SOBle interesting consequences.

Corollary 2.13. For (lilY i E P and any event e E E,

T ' . _ { T.pe.j, for j = i
.p,e.) - 0, 1 . at terUllse

Proof. It follows from Definitions 2 .. 5 (Causa.! past), 2.6 (Cansal past in a process), and 2.12 (Global
time of a cnt). 0

Corollary 2.14. [17J For any event e E E, T.pe = T.e.

Proof. It follows from Definitions 2 . .5 (Causal past), 2.9 (Timestamp function), and 2.12 (Global
time of a cut). 0

Corollary 2.14 states that t.he timest.amp of an event. reflects it.s causal past. This is exactly what
is shown in Figure 1.

Corollary 2.15. [17J For (lny cuts Co, CI E C='" Co <;; C, ¢} T.Co :S T.C I .

Proof. It follows from Definitions 2.1 (Cllt) and 2.12 (Global time of a cut). o

Corollary 2.1.5 implies that the fnHction T is an isomorphism between the two complete lattices

(C=,,,<;;) and (T=,,,:S), as well as the following.

Theorem 2.16. (Structure of time vectors, [17]) The 8et of time vectors, T"", with the ordering
defined by :S, forms a complete laUice. It is isomorphic to the lattice (C",,, <;;).

Proof. It follows immediately from Theorem 2.2 (Structure of cuts) and Corollary 2.15. 0

Theorem 2.17. (Structure of consistent time vectors) The set of consistent time vectors
T", = {T.C ICE C",}, with the ordering defined by :S, forms a complete lattice. It is isomorphic
to-(C=,,<;;). -

8

Proof. It follows from Theorem 2.4 (Structure of consistent cnts) and Corollary 2.15. o

Note that the set of consistent time vectors represents exactly the set of global states in which the
computation might be during an actual execution.

The above results are established by defining an isomorphism between the lattices of cuts and
time vectors. The infimum and the supremum of sets of global time vectors corresponding to a
set C of cuts, are therefore implicitly defined as T.(n c: c E C: c) and T.(U c: c E C: c)
respectively. Let the quantifier SUP (and the corresponding binary operator "sup") on time vectors
be defined as the componentwise maximum. and the quantifier INF (and binary operator "inf")
as the component wise minimum. It follows from Definitions 2.1 (Cut) and 2.12 (Global time) that
T.(n c: e E C: e) == (INF e: e E c: T.e) and T.(U e: e E C: e) = (SUP e: e E C: T.e).
In other words, the infimum and supremum of sets of time vectors are defined by INF and SUP
respectively.

This concludes the introduction to vector time. The definitions and basic resuits given above
provide a basis for the next sections.

3 Abstract events and causality

In a hierarchy of a.bstrad descriptions of program behavior, an abstract event is described uniquely
by its constituents in the previous leveL However, to avoid recursive definitions and inductive
proofs in the following, abstract events are often represented by non-empty sets of primitive events.
Only when necessary is an abstract event represented in terms of its elements in the level below.
For this purpose, the term "constituents" is used exclusively.

An important part of an abstract description of behavior is a representation of causality among
abstract events. The causality structure is defined by a precedence relation. For reasons of math
ernatical and pra.ctical cOllvenience, it \vould be preferable if this rela.tion had the same structural
properties as the precedence relation on primitive events, i.e. if it were a pa.rtial order. There are
two obvious possibilities to define precedence.

The first possibility is to specify that an ahstract event A precedes an abstract event B if and
only if every event in A precedes every event in B. This definition has one advantage: it guarantees
anti-symmetry and transitivity. Taking the reflexive closure yields a precedence relation on abstract
events that is a partial order. However, it also has two important disadvantages. First, it does
not conform to the intuitive meaning of concurrency. Concurrency between primitive events is
defined as their being unrelated by the precedence relation. If the same definition is used for
abstract events, two abstract events can be concurrent while some primitive events in one abstract
event precede some primitive events in the other. Second, this definition of precedence is too
restrictive to be useful. Too many abst.ract event.s may be nnrelated, implying that the first level
of abstraction might abstract away too mnch structure. Higher levels of abstraction might even
conta.in only unrelated events. This defeats the purpose of behavioral abstraction that focuses on
causal relations among events. Universal quantification seenlS to be too strong a requirement.

The second possibility is to specify that an abstract event A precedes an abstract event B if
and only if there exists a·n event in A that precedes at least one event in B. Intuitively, this is also
a mea.ningful definition, since at least part of A happens before B is completed. This definition has
one important disadvantage. In general, the precedence relation on abstract events is no longer a
pa.rtial order. The relation usually is neither anti-sYlllmetric nor transitive. An advantage is that

9

concurrency conforms to its intuitive lueaning. Two abstract events A and B are causally unrelated
if and only if every event in A is ca.usally unrelated to every event in B. An additional advantage is
that abstract behavior maintains a lot of the structure of underlying levels of description. Although
this choice does, in general, not yield a precedence relation which is a partial order, it seems to be
the only one that is both meaningful and practically useful. Therefore, precedence among abstract
events is formally defined as follows.

Definition 3.1. (Precedence between abstract events) Let A and B be two abstract events.
Precedence is defined as A::s B ¢} (3 a: a E A: (3 b: bE B: a::s b))

To represent causality concisely, it seems a logical choice to investigate the use of vector timestamps.
The goal is to derive precedence tests similar to the ones for primitive events. Since the precedence
relation on abstract events is not necessarily a partial onler, two approaches are possible.

The first approach is to restrict the structure of abstract events so that the precedence relation
is guaranteed to be a partial order, and then to try to timestamp these restricted abstract events
in a meaningful way. This is the approach taken by Cheung [8J, Kunz [14], and Summers [18J.
Unfortunately, imposing structural requirement.s that guarantee transitivity and anti-symmetry
either makes the resulting abstractions difficult to manage or severely limits their expressiveness.
The second approach, pursued in this paper, is to allow more flexible abstract-event structures at
the cost of increasing the difficulty of obtaining and comparing timestamp vectors. By presenting
timestamps for two classes of abstract events, this paper points out the trade-offs in structural
flexibility and timestamping effort.

Before giving any results, it is important to have criteria to evaluate timestamps and prece
dence tests. First, timestamps and precedence tests must be reasonably efficient in storage and
computation time. Tha.t is, storage and computation tilHe lnust be silnilar to stora.ge and compu
tation time needed for determining precedence between primitive events. Second, in a hierarchy
of true abstractions, a representation of causality should not depend on any other levels than the
level immediately below. This means that it must be possible to calculate a timestamp for an
abstract event from the timestamps of its constituents. It also means t.hat precedence tests must
be defined in terms of the timestamps in the level being described. If tests depend on lower levels,
determining precedence between two abst.ract events becomes cornpntationally expensive, beca.use
the abstraction hierarchy must be traversed to a level that contains the desired information. For
most of the definitions and results in t.he remaining sections, it is usually clear whether they satisfy
the second crit.erion. Formal proofs are only given on a few occasions.

4 Timestamping arbitrary abstract events

This section discusses timestamps and precedence tests for arbitrary abstract events. Section 4.1
starts by introducing some new definitions and adapting some previous definitions to abstract
events. In Section 4.2, a timestamp is derived that represents the causal past of an abstract event.
However, precedence tests using this timestamp do not satisfy the criteria for such tests. Section 4.3
then introduces the notions of causal future and reversed vector tilue. In Section 4.4, these concepts
are used to derive another timestamp for abstract events representing the causa.! future. Using the
two timestamps for abstract events, precedence tests are derived that satisfy the criteria mentioned
above.

10

4.1 Basic definitions and results

Definition 4.1. (Location set) The location set of a primitive or abstract event is defined by
a function l. : E U 2E ---+ 2P as the set of processes in which the event occurs. For any e E E,
le = {i E Pie E Ei}. For any A s:: E, lA = {i E P I An Ei of 0}. Note that the location set of a
primitive event always is a singleton.

A property of primitive events that no longer holds for abstract events is atomicity. Consequently,
abstract events have a duration. This is expressed by the following two functions.

Definition 4.2. (Beginning and end of an abstract event) The beginning of an abstract event
A is defined by a function [.J : 2£ -.2£ as [AJ = {aD E A I .(3 al : al E A: al -< ao)}. The end
of an abstract event A is defined by a function [.1 : 2£ ---+ 2£ as [A1 = {ao E A I .(3 a, : a, E
A: aD -< a,l}.

Note that to determine whether an abstract event A precedes another abstract event B, it is
sufficient to consider the beginning of A and the end of B instead of A and B in their entirety.

Definition 4.3. (Causal past of an abstract event) The causal past of an abstract event is
defined by a function p. : 2£ ---+ 2£ as follows. For any A c:; E, pA = (U a: a E A: pal. Note
that the causal past of a·n abstract event is a. consistent cut.

Definition 4.4. (Causal past of an abstract event in a process) For any i E P, the function
Pi' : 2£ ---+ 2£; defines the causal past in process i of an abstract event as follows. For any A s:: E,
PiA = (U a: a E A: Pia). Note that PiA = pA n Ei and that PiA is a cut, not necessarily
consistent.

The next corollary is a result of the prevIous definitions. It shows that the function r.1 really
models the end of an abstract event.

Corollary 4.5. For an ab"tmct event A, p r A1 = pA.

Corollary 4 .. 5 states that the past of the end of an abstract event corresponds to the past of the
completed event. Unfortunately, there is no such simple result relating causal past to the beginning
of an abstract event.

The last two results of this subsection are expressions for the time of the causal past of an
abstract event. The next corollary is a direct consequence of Definition 4.4 (Cansal past of an
abstract event in a process) and Definition 2.12 (Global time of a cut). It is a generalization of the
result as derived for primitive events (Corollary 2.13).

Corollary 4.6. Fo .. any lImec.,,, i E P and abstract evenl A,

T .A· _ { T.pA.j, fo .. j =i
.p, .J - 0, I . of lCrWlse

The definition of the causal pa.st of an abstract event ca.n be used to derive the last result of this
subsection.

Property 4.7. Fo .. any flbstmet event A, T.pA = (SUP a: a E A: T.a).

11

Proof.

T.pA
{ Definition 4.3 (Causal past of an abstract event) }

T.(U a: a E A: pal
{ Theorem 2.17 (Structure of consistent time vectors) }

(SUP a: a E A: T.pa)
{ Corollary 2.14 }

(SUP a: a E A: T.a) o

This result is useful; combining it with Corollary 4 .. 5 yields that there is a simple expression in terms
of timestamps that marks the end of an abstract event. Since Corollary 4.5 has no equivalent for the
beginning of an abstract event, it is not possible to obtain a similar result for the beginning. Such
a result may not be necessa.ry but would at least be convenient to express causal relations between
abstract events. One way to get a similar result for the beginning of an abstract event is to introduce
the notion of causal future. As shown in the following, this is the key to deriving precedence tests
that satisfy the two criteria stated in the previous section. First, however, precedence among
abstract events is characterized in the current framework.

4.2 A timestamp for abstract events

In this subsection, a timestamp and some precedence tests for abstract events are derived. As
mentioned, precedence tests are evaluated according to their efficiency and hierarchical applicability.

The efficiency of precedence tests in terms of the number of integer comparisons is compared
to the efficiency of the straightforward precedence test that is a direct result of the definition of
t.he precedence relation on abstract events. To determine whether an abstract event A precedes an
abstract event B, one could simply check all the primitive events until a. primitive event in A is
found that precedes a primitive event in B. If the precedence test of Theoreln 2.10 is used, this
takes at most IAI . IBI . N integer comparisons since it does not make use of the location set of
primitive events. Obviously, this is not very efficient.

The second criterion for precedence tests is hierarchical applicability. Obviously, the abovemen
tioned test depends on the primitive level of the computation. Therefore, it does not satisfy the
second criterion.

One would expect that it is possible to do better. If abstract events are timestamped in a
meaningful way, it should be possible to reduce the number of integer comparisons and perhaps
make it independent of the primitive level of the computation. The time that marks the end of an
abstract event stated in Property 4.7 seems to be a good candidate for a timestamp. The derivation
below shows that this vector ca·n indeed be used as a timestamp. Let a be a.n event in E and let B
be an abstra.ct event.

a E pB
¢} { pB is a consistent cut; Corollary 2.7 }

pa <;; pB
¢} { Theorem 2.17 (Structure of consistent time vectors) }

T.pa ~ T.pB
¢} { Corollary 2.14; Property 4.7 }
T.a~(SUPb: bEB: T.b)

12

This deriva.tion shows that a. primitive e\"ent. is a.n element of the causal past. of an a.bstract event
if and only if its timestamp is at most the time that marks the end of the abstract event. Since
an abstract event A precedes an abstract event B if and only if at least one of its primitive events
is an element of the causal past of B, it is useful to extend the timestamp fUllction on primitive
events to abstract events as follows.

Definition 4.8. (Timestamp of an abstract event) The function T : 2E -. INN defines the
timestamp of an abstract event as follows. For allY A <;; E, T.A = (SUP a: a E A: T.a).

This timestamp is an efficient encoding of the end of an abstract event (see Figure 3). Furthermore,
the associativity of the quantifier SUP implies that the timestamp of an abstract event is equal to
the supremum of the timestamps of its constituent.s. Therefore, t.he introduction of this timestamp
seems to be a· step towards the fulftllment of the t.wo criteria for precedence tests.

T.A

Figure :3: The meaning of the timestamp of an abstract event.

The following precedence test is a direct consequence of the derivation above and the definitions
of the beginning of an abstract event (4.2) and the timest.amp function (4.8).

Theorem 4.9. (Precedence test for abstract events) For any abstmct events A and B,

A :5 B ~ (3 a: a E lAJ : T.rt 50 T.B).

This test. has two disadvantages. First.. it. is st.ill not very efficient. In the worst case, the t.imestamp
of each primitive event in lAJ must. be compared with the timestamp of B, yielding Il AJ I . N
comparisons. Since the number of processes in the location set of A is an upper bound for the
number of primitive events in the beginning, t.he maximum number of comparisons is ItA\ . N.
Second, it still depends on the primitive level of the computation. Two or more abstract events
cannot be merged into a higher-level abstract event without using information from the primitive
level of the computation to compute the beginning of the newly formed abstract event. Therefore,
this test still does not sa.lisfy either of the criteria for precedence tests, although it is considerably
more efficient than the straightforward test mentioned earlier. An advantage of this test is that the
only information needed to implement it is the set of timestamps of primitive events.

Two remarks about the test in Theorem 4.9 3.re in order. First. the test does not make use of
the location set of an event. It is possible to reduce the maximum number of integer comparisons
if this information is available. This is shown in the remainder of this subsection. Second, note
that the test in Theorem 4.9 compares the beginning of abstract event A with the end of abstract
event B. This has already been suggested as a possible improvement in determining precedence
between abstract events. However, there is an asymmetry ill the way the beginning and the end
of the abstract events are used. The beginning of an abstract event is used explicitly. The end of

an abstract event is encoded in its timestamp. If the asymmetry can be resolved, this might lead
to precedence tests that no longer depend on the primitive level of the computation. Once again,
this suggests introducing the causal future of events.

The following derivation uses information about the location of events. Let a be a primitive
event and B an abstract event. Let i be the process in la.

a E PiB
¢} { a E Ei; PiB is a cut; Corollary 2.8 }

Pia <;; PiB
¢} { Theorem 2.16 (Structure of time) }

T.Pia :0; T.pi B
¢} { Corollary 2.13; Corollary 4.G }

T.pa.i :0; T.pB.;
¢} { Corollary 2.14; Property 4.7; Definition 4.8 (Timestamp T) }

T.a.; :0; T.B.;

Theorem 4.10. (Precedence test for abstract events) For any abstract events A and B,
A::s B ¢} (3 i,a: ; E P /I a E [AJ n Ei : T.o.;:O; T.B.;).

This test is more efficient tha,n the previ011s one. In the worst case, the number of comparisons
is I[AJI, which in turn has an upper bound IIAI. However, it still has the disadvantage that it
depends on the primitive level of the computation. There seems to be no obvious way to overcome
this problem within the current framework. Therefore, the next step is to extend the framework
in a useful and meaningful way. Until now, only the past of events has been considered. The next
step is to formalize the notion of the causal future of events.

4.3 Causal future and reversed vector time

In this subsection, the causal future is introduced for primitive events. The goal is two-fold. The
first goal is to derive new precedence tests for primitive events in terms of causal future. The second
goal is to find an efficient way to represent the causal future, in the same way that timestamps
represent the causal past.

The causal future is the dual of the causal past. Therefore, to define the causal future and
explain its mea,ning in the entire framework, the duals of the relations ::S and ::Sl are needed. The
successor rela,tion '=: is defined as the dual of::S. That is, for any eo, e] E E, eo '=: e] if and only if
e] :S eo. The local successor relation '=:, is the dual of ::Sl. Before the definition of causal future is
given, some rela.ted concepts a.rc defined that cla.rify its rela.tion with previous definitions.

Definition 4.11. (Successor cut) A set C <;; E is called a successor cut, or ,=:-cut, of E if and
only if for all events eo E C and e] E E, e] ,=:, eo '* "] E C. A ,=:-cut is said to be left-closed under
b or right-dosed under ::s,. The set of all ,=:-cuts is denoted by Cel.

Definition 4.12. (Consistent successor cut) A set C <;; E is called a consistent ,=:-cut of E if
and only if for all events eo E C and e] E E, "] '=: eo '* e] E C. A consistent ,=:-cut is said to be
left-dosed under ,=:. The set of all consistent ,=:-cuts is denoted by Ce.

The next corollary states the obvious relation between cuts and ,=:-cuts.

14

Corollary 4.13. Let C be a 8ubset of E.

C E C::!l ¢} E\C E C::"
C E C::! ¢} E\C E C~.

Definition 4.14. (Causal future) The function f. : E ---" 2E defines the causal future of an
event as follows. For any e E E, fe = {eo EEl eo e: e}. Note that fe is a consistent e:-cut.

Definition 4.15. (Causal future in a process) For any process i E p, the function fi. : E ----; 2E

defines the causal future in process; of an event as follows. For any e E E, fie = {eo E Ei I eo e: e}.
Note that fie = fe n Ei and that fie is a e:-cut.

Since computations are finite, it is appropriat.e to define the following.

Definition 4.16. (Reversed vector time of a successor cut) The function TR : C~l ---+ INN
defines the reversed vector time of a e:-cut. For any e:-cut C, component i, where 0 :::; i < N, of
the reversed time vector is defined as THC.; = IC nEd.

This definition is the first step towards an efficient representation of the causal future. The fol
lowing corollary is a direct result of this definition, the definition of the time of a cut (2.12), and
Corollary 4.13. It states the relation between vector time and reversed vector time. The binary
operator "-" on vectors is componelltwise subtractioll.

Corollary 4.17. For any successor cut C E C)-p T.(E\C) = T.E - THC. POl' any cut C E C::!"
TR.(E\C) = THE - T.C. -

Note that T.E and TR.E are both equal to the vector in INN whose ith component is equal to the
number of events in process i, i.e. IE;!. In the following. this vector is denoted by E to emphasize
that it is a constant.

For the derivation of precedence tests that ma.ke use of the location set, the cut Pie, for some
e E E andi E P, is of particular interest.. For this cut, t.he corollary above yields the following
equation: TR.(E\Pie) = E - T.Pie. If e is an event in Ei, then the left-hand side of this equation
can, for component i, be simplified as shown in the following corollary.

Corollary 4.18. For any; E P and e E E i , TRfie.i - 1 = E.i - T.Pie.;

The following derivation shows the meaning of precedence in terms of causal past and causal future.
Let eo and el be events in E.

eo :S el
{:} { The relation :::S is reflexive and transitive}

(3 e: e E E: eo::s e II e::s el)
¢} { Definitions 4.14 (Causal future) and 2 . .5 (Causal past) }

(3 e: e E E: e E feD II e E pel)
¢} { Definition of sct intersection}

feD n pel of 0

1.5

The last expression in this deriva.tion states that. event eo precedes event e, if and only if the future
of eo and the past of e, overlap. If this derivation is continued, a new precedence test can be
derived.

feo n pel i' 0
~ { Set calculus; feo ~ E and pej <;; E }

EVeo f. pel
~ { Corollary 4.13 and Theorem 2.17 (Structure of consistent time vectors) }

T.(EVeo) 'i. Tpe,
~ { Corollary 4.17 }

E - TR .feo 'i. Tpe,

Note that there are two possibilities for continuing this derivation in the first step. It is easy to
verify that the final result is the same. Deriva.tions similar to the two above can be given if the
location set of eo or €1 is known.

Theorem 4.19. Let; and j be processes;n P and let eo and e, be events in Ei und E j respectively.
eo :5 e, ~ E - TR.feo 'i. Tpe,

~ E.; - THfeo.; < Tpej.;
~ E.) - THfeo.j < T.ped

For natural numbers, the relations 'i. a.nd < arc equivalent. In the last two expressions of this
theorem, therefore, the relation < appears. Furthermore, Corollaries 4.18 and 2.13 yield, for any
process i in P and event e in Ei, the equation E.;- THfe.; = T.pe.; -1. This equality and Corollary
2.14 applied to the second equivalence of the last theorem yield once again the precedence test of
Theorem 2.11.

There is also another wa.y to look a.t these precedence tests. The equivalences stated in this

theorem are useful for determining the precedence between two events if there is an efficient rep
resentation of the reversed vector time of the causal future of events, siInilar to the representation
of the vector time of the causal past of events ill Corollary 2.14. So the question is whether there
exists a function TR : E --+ INN that can be calculated without too much overhead, such that, for
anye E E, THfe = THe. The answer is yes.

Definition 4.20. (Timestamp function TR) The function TR : E --+ INN defines a timestamp
in reversed vector time for ever,v event as follows. For any event e E E and process i E P,
TR.e.i = Ifiel.

The function TR encodes exactly the set of timestamps that is obtained by applying a timestamp al
gorithm for ordinary vector timestamps while traversing event information backwards. The duality
of the relations :5 and ~ immediately yields the desired result.

Corollary 4.21. For any event e E E, TR.fe = TR.e.

Every result in Section 2.2 has a dual in the framework developed in this subsection. The following
theorem summarizes all t.he precedence tests for primitive events derived thus far.

1(;

Theorem 4.22. (Precedence tests for primitive events) Let i. and j be processes in P and
let eo and e, be events in Ei and E j respective/yo

eo ~ e, ¢} T.eo :0; T.e,
¢} T.eo·i :0; T.e,.;
¢} TR .e, :0; TR.eo

T R . < TR . ¢} .C,.J _ .Co·)

E - TR .eo 1. T.e,
E · TR . T .

• 1 - . .eo.l < .c,"
E · TR . T .

¢} .) - .eo·) < .el·)

Figure 4: Precedence among primitive events in terms of vector time and reversed vector time.

The third and fourth tests are the duals of the first and second respectively. The last three tests
a.re new. Figure 4 illustrates the meaning of these new tests. In terms of primitive events, nothing
is gained by the three new tests. To make them useful, event information has to be traversed
backwards while assigning every event a. reversed timesta.nlp. This is computationally expensive
and requires extra storage. However, if these tests can be generalized to efficient precedence tests for
abstract events that do not depend on primitive events, then the extra costs might be acceptable.
Section 4.4 shows that such a genera.Iizatioll is indeed possible.

4.4 Another timestamp for abstract events

In this subsection, the new timestamp and precedence tests for primitive events are generalized
to abstract events. The resulting tests are efficient and independent of the primitive level of the
abstraction hierarchy. Like the tests for primitive events, the tests depend on reversed vector time.
Before any precedence tests are derived, causal future is defined for abstract events.

Definition 4.23. (Causal future of an abstract event) The causal future of an abstract event
is defined by a function f. : 2E -. 2E as follows. For any A <;; E, fA = (U a: a E A: fa). Note
that fA is a consistent ~-cut.

Definition 4.24. (Causal future of an abstract event in a process) For any i E P, the
function f i . : 2E -. 2Ei defines the causal future in process i of an abstract event as follows. For
any A <;; E, f;A = (U a: a E A: fia). Note that fiA = fA n Ei and that fiA is a ~-cut.

17

The following results are a direct consequence of the duality of the relations ::S and t. Therefore,
they are given without proof.

Corollary 4.25. For an abstract. event A, flAJ = fA.

This corollary is the dual of Corollary 4.·5. It states that the beginning of an abstract event and
the event itself share the same causal future.

The next two results are expressions for the reversed time of the causal future of an abstract
event.

Corollary 4.26. For any process i E P and abstract event A,

T R f.A . = { TR.fA.j, for j = i
., ~ 0 I .) of, t€l'lillSe

Property 4.27. For any abstract event A. TRfA = (SUP a: a E A: TRa).

Property 4.27 gives a simple expression in terms of reversed vector time for the beginning of an
abstract event. This is exactly the result we were looking for.

The following derivation shows the meaning of precedence between abstract events in terms of
causal past and causal future. Let A and B be abstract events.

A::sB
¢} { The relation ::S is reflexive and transitive; Definition 3.1 (Precedence) }

(3 e: e E E: (3 a.: a E A: a::s eJ II (:I b: bE B: e::s b))
¢} { Definitions 4.14 (Causal future) and 2 . .5 (Causal past) }

(3e: eEE: (:la: aEA: eEfa) II (3b: bEB: eEpb))
¢} { Definition of set union }

(3 e: e E E: e E (U a: a E A: fa) II e E (U b: bE B: pb))
¢} { Definitions 4.23 (Causal fut.ure) and 4.3 (Causal past) }

(3 e: e E E: e E fA II e E pB)
¢} { Definition of set intersection}

fA n pB t- 0

This result is similar to the result for primitive events. It states tha.t A precedes B if and only if
the future of A and the past of B overlap.

fA n pB t- 0
¢} { Set calculus; fA <;; E and pB <;; E }

EVA "1 pB
¢} { Corollary 4.13 and Theorem 2.17 (Structure of consistent time vectors)}

T.(EVA) 'l T.pB
¢} { Corollary 4.17 }

E - TR.fA 'l T.pB
¢} { Property 4.27; Property 4.7; Definition 4.8 (Timestamp T) }

E - (SUP a: a E A: THa) 'l T.B

This derivation suggests introducing a second timestamp for abstract events as follows.

18

Definition 4.28. (Reversed timestamp of an abstract event) The function TR : 2E ---> INN defines
the reversed timestamp of an abstract event as follows. For any A C;; E, TR.A = (SUP a: a E
A: TR.a).

Like the other timestamp for a.bstract events, the reversed timestamp for an abstract event can
be calculated from the timestamps of its constituents. It is an encoding of the beginning of the
abstract event. Note that in an actual implementation, one probably wants to use E - THA as
the reversed timestamp for an a.bstract event A. That is, one wants to timestamp an abstract
event with two times in vector time instea.d of one in vector time and one in reversed vector time.
Figure 5 shows the meaning of the reversed timestamp of an abstract event. It extends Figure 3.
An abstract event is determined by the two times that mark its beginning and end.

T.A

Figure 5: The mea.ning of the two timestamps of an abstract event.

The derivation a.bove a.nd the introduction of the reversed vector timestamp for abstract events

yield a precedence test that is independent. of the computation a.t the level of primitive events.

Theorem 4.29. For any abst.ract. events A and 13, A :< B ¢> E - TRA 1. T.B.

The number of integer comparisons for this test is at most N. \,vithout further knowledge it is
not possible to derive a more efficient test. Therefore, this is the first test that satisfies the two
criteria for precedence tests for ahstract events. Figure 6 illustrates this result. The solid lines
depict E - TR.A and T.B. The da.shed lines depict T.A and E - TR.B which are not involved in

deciding A :< B.
If the location set of an abstract event is known, derivations similar to the ones above yield the

following result.

Theorem 4.30. Let A and B be abstmct events.
A :< B ¢> (3 i: i E IA: E.i - THA.i < T.B.i)

¢> (3 i:i E lB: E.i - TR.A.i < T.B.i)

These tests are, in terms of integer comparisons, more efficient than the previous one. If the
loca.tion set of ahstract events is known, one only ha.s to consider components of the time vectors
within the location set of one of the a.bstra.ct events. For the two tests, the maximum number of
integer comparisons is IIAI and IIBI respect,ively. This is simila.r to the efficiency of the last test

10

Figure 6: Precedence among abstract cvents in terms of vector time and reversed vector time.

derived in Section 4.2 (see Theorem 4.10). Howcver, unlike this test, the tests in Theorem 4.30 are
independent of the primitive level of the abstraction hierarchy.

Smumarizillg, at the cost of an extra timestamp for both primitive and abstract events, inde
pendence from the primitive abstraction level is gained. The question of which precedence test
is most useful can only be answered in the context of a particular application. If many abstract
events are formed in many different levels, then the t.ests derived in this subsection are probably
more useful than the ones derived in Section 4.2. The Hext section even provides a third alternative
based on the notion of conve" abstra.ct event.s.

5 Timestamping convex abstract events

Up to this point, no restrictions have been ilnposed on the structure of abstract events. However,
applications do not necessarily lise arbitrary subsets of events. In this section, timestamps and
precedence tests for the subclass of convex a.bstract events are discussed.

Definition 5.1. (Convex abstract events) An a.bstract event A is called convex if and only if
(If ao,a],e: aO,"1 E A II e E E: "0 =' e II e =' "1 =} e E A).

Convexity is a meaningful requirement for abstract events for the following reason. For a convex
abstract event A, there is no (primitive or abstract) event Q in the previous level that is not a
constituent of A but depends on the completion of paIt of A such that,.in tum, the completion of
A depends on Q. In other words, there is no outside interference; a convex abstract event describes
a complete unit of work. Note that every non-convex abstract event implies a violation of the
anti~symmetry requirement of a. partial order.

Convexity is useful as well. First, convex abst.ract events are easier to recognize automatically
than arbitrary abstra.ct events, beca.use it is not necessary to filter out interfering events. Second,
they are more general and therefore more widely a.pplicable than, for example, complete precedence
abstra.ctions [18] and contractiolls (3, 8, 18]. Third, since there are no interfering events, convex
abstract events are considerably easier t.o display than arbitrary abstract events. Finally, this
section shows that determining causality a,mong convex abstract events requires less timestamping
effort than determining causality among arbitrary abstract events.

There does not seem to be another class of abstract events that combines all these properties.
Therefore, the class of convex abstract events is an interesting class for further study.

20

In addition, convexity can be used to derive alternative timestamping schemes for arbitrary
abstract events. The idea of using timestampillg schemes for convex abstract events for arbitrary
events is based on the following definition and resulting theorem.

Definition 5.2. (Convex closure) The convex closnre of an abstract event A is defined by a
fnnction c. : 2E --+ 2E as the smallest convex set of events containing A.

Theorem 5.3. For any abstract events A and D, .4:< B ¢} cA :< cB.

Proof. Assume A :< D. Since A is a subset of cA and B a subset of cB, the definition of precedence
among abstract events (Definition 3.1) yields that cA :< cB.

Assume cA :< cB. Let a E cA and b E cB be two events such that a :< b. There are four
possibilities: (1)" E A and bE B; (2) (' 1. A and b E B; (3) a E A and b 1. B; (4) a 1. A and
b 1. B. In case (1), it follows immediately that A :< B. In case (2), it follows from the definitions
of convex abstract events (Definition 5.1) and the convex closure (Definition 5.2) that there is an
event e E A such that e :< a. Since a :< b, e also precedes b. This yields A :< B. For cases (3) and
(4), silnilar arguments ca.n be given. 0

Theorem 5.3 means that timestamp schemes derived for convex abstract events can be used for
arbitrary abstract events as follows. For any abstract event, first calculate its convex closure and
use the resulting convex event set to calculate timestamps according to some scheme for convex
abstract events. Then, assign these timestamps to the possibly non convex abstract event. The
remainder of this section shows that this is an interesting alternative to reversed timestamping.

The following property is the key to deriving an efficient precedence test for convex abstract
events. It states that to determine the causal past of a convex abstract event A in a process i in
its location set, it is sufficient to consider primitive events in the intersection of A and Ei. This is
not necessarily true for all abstra.ct event tha.t is not convex: an event in Ei can succede all events

in PiA and precede some other event in A \ Ei.

Property 5.4. Let A be a convex abs/.ract event. For any i E lA, PiA = Pi(A n Ei).

Proof. First, it, is proven t.hat Pi(A n Ei) <;; PiA. This follows immediately from An Ei <;; A.
Second, it is proven that PiA <;; Pi(An Ei). Assume that e is an event in PiA \Pi(A nEd. Not.e

that e E PiA implies t.hat e E E i . So e 1. Pi(A n Ed implies that e 1. A. It follows from i E lA, that
An Ei is not empty. Given that e 1. Pi(A n Ei), it follows that there is an "i E An Ei, such that
ai -< e. Since e E PiA, there also exists an event" E A such that e :< fl. However, this contradicts
the convexity of A. From this contradict.ion it follows t.hat PiA <;; pi(A n E;).

Combining these two results yields PiA = Pi(A n Ei). 0

The duality of:< and::: gives the following property.

Property 5.5. LeI. A be a convex ab.stract event. For an.y i E lA, fiA = fi(An E;).

Let A be a convex abstract event and let i be a process in LAo Property 5 .. 5 can be used to derive an
expression for TR .A.; in terms of vector time. This means that the first test in Theorem 4.30 can
be expressed in terms of vector time, yielding a precedence test for the subclass of convex abstract
events.

21

TR.A.i
= { Definition 4.28 (Reversed timestamp TR); Property 4.27; Corollary 4.26 }

TR.fiA.i
{ Property .5.5 }

TR.fi(A n Ei).;
{ Definition 4.24 (Causal future) }

TR.(U a: a E An Ei : fia).;
= { (The dual of) Theorem 2.17 }

(SUP a: a E An Ei: TRfi,,).;

= { SUP is the componentwise maximulll }
(MAX a: a E An Ei: TRfia.i)

{ Corollary 4.18 }
(MAX a: a E An Ei: E.i - T.Pia.i + 1)

{ Corollaries 2.13 and 2.14; Domain is not empty}
E.i - (MIN a: a E An E i : T.a.;) + 1

It follows that for any i E lA, E.; - TRA.i = (MIN a: a E An E i : T.a.i) - 1.
This derivation suggests replacing the reversed timestamp for convex abstract events. Two

definitions of a new timestamp are given and shown equivalent. The first definition follows from
the derivation a.bove and is in t.erms of primitive timestamps. The second, recursive definition
shows that the new timestamp can be calculated from the timestamps of the constituents of an
abstract event.

Definition 5.6. (Second timestamp for convex abstract events) The function TGR :
2E -----+ IN N defines a timestamp for primitive and abstract events as follows:

T GR . _ { T.e.i - 1, for e E Pi
.e.! - E' 1 .

• 1., at lcnVlse

for any e E E.

TGR
{

(MIN a: a E An Ei: T.a.;) - I,
.A.i =

E.-i,
for ;. E LA
otherwise

for any A <;; E.

EU

For reasons of ll1athelnatical convenience that \\Till become clear in a Illmnent, any cOInponent
corresponding to a process outside the location set of an event is defined to be E.i.

Corollary 5.7. For' any convex abstract event A and process i E lA, E.i - TR.A.i = TGR.A.i.

This corollary can be used to adapt Theorem 4.30 which yields the following precedence test for
convex abstract events.

Theorem 5.B. (Precedence test for convex abstract events) For any convex abstract events
A and B, A==, B {o} (3 i: i E IA: TCR.A.i < T.n.i).

Note that the components of the timestamp that correspond to processes outside the location set
are not necessary to determine precedence between convex abstract events.

As mentioned, the precedence test. in Theorem 5.8 can also be used for arbitrary abstract events
provided that every abstract event is assigned the two timestamps defined by T and TGR. The
latter must be calculated using the convex closure of abstra.ct events.

22

Theorem 5.9. (Precedence test for arbitrary abstract events) For any abstract events A
and B, A:o B ¢> (3 i: i E l(cA): TCRcA.i < T.B.i).

In order to show that the new timestamp T GR can be computed from the timestamps in the
previous level of the abstraction hierarchy, the following recursively defined timestamp is shown to
be equivalent to TGR. The binary operator co is used to denote constituents of an abstract event.

Definition 5.10. (Recursive definition of TGR) The function TGRR : E U 2E -----> INN defines a
timestamp for primitive and abstract events as follows. For any e E E, TCRRe = TCR.e. For any
A C;; E, TGRR.A = (INF AD: AD co A: TGRRA o).

Property 5.11. TCRR = TCR.

Proof. The proof is by induction on the level of abstraction.
Basis: For a.ny primitive event e E E, TGRRe is equal to TCR.e by definition.
Induction Hypothesis: For any abstract event A in abstraction level at most n, TCRR.A = TGR.A.

I"dudi!!e Step: Assume A is an abstract event in abstraction level n + 1. To avoid case analysis in
the derivation below, it is assumed that n is at least one. For any process i E P,

TGRRA.i

{ Defini tion .5.10 }
(MIN AD: AD co A: TCRR.Ao.£)

= { Induction Hypothesis}
(MIN AD: AD co A : TGR.Ao.i)

{ Definition .5.6; n :;. 1 }
(MIN AD: AD co A II i E lAo: (MIN a: a E AD n Ei: T.a.i) - 1) min
(MIN AD: Ao co A II i <t LAD: E.i)

= { i E IA ¢> (3 AD: AD co A: i E lAo); MIN is associative }

{
(MIN a: a E A n E i : T.a.i) - 1, i E IA
E.i, i <t IA

{ Definition .5.6 }
TGR.A.i

It is easy to verify that the same result is obtained for 11 equal to zero. o

The timestamp defined by T CR (or TGRR) marks the beginning of abstract events in vector time.
It replaces the timestamp defined by TR that ma.rks the beginning in reversed vector time. The
relation between TR and TGR is shown in Figure 7.

Two rema.rks are in order. First, Theorems .5.8 and .5.9 have duals in terms of reversed vector
time. However, they does not a.ppear to be of any practical use. Second, timestamp TGR can
also be used to obtain a precedence test for primitive events. However, this test is the same as in
Theorem 2.11.

Compared to the precedence tests derived in the previous section, the precedence tests in The
orems 5.8 and .5.9 have one big advantage: they are independent of reversed vector time. However,
it is still necessa.ry to timestamp every abstra.ct event twice. An interesting question is whether it
is possible to determine precedence using only a single timestamp. The answer is yes provided that

23

~ ., .
.... - -" "

IA
--''-+- - - - - 1-1 -'---

Figure 7: The relation between TR and TeR.

abstract events are convex a.nd mutually disjoint. .. Depending on the application, this might be a
reasonable assumption.

A useful single timestamp for convex abstract. events seems to be a timestamp that integrates
the times for the beginning and end of events.

Definition 5.12. (A single timestamp for convex abstract events) The function Teo:
EU2E --+ INN defines a timestamp for primitive and abstract event.s as follows. For any 0 E EU2E,
Teo.o = T.o inf TeRa .

For processes inside the location set of a convex a.bstract event, this timestalnp represents the
beginning of the event. For processes outside the loca.t.ion set, it represents the end. This is
forma.Iized in the following two corollaries (see also Figure 8). Note that the corollaries are true for
arbitrary primitive or abstract events.

Corollary 5.13. For any primitive a/' abstract. event a E E U 2E and process i E 10, Teo .o.i =
TeRa.i.

Corollary 5.14. For any primitive OT' abstract event Q E EU2 E and process i ¢ la, Teo .a.i = T.a.i.

W : \ ,', ., '.
" ~ · . · . · .

. .
: IA :
: r----I .

Teo.A

T.A
E-TRA

Figure 8: The t.imest.amp Teo.

Assuming that abst.ract events are convex and mutually disjoint, timestamp function Teo charac
terizes causality.

Theorem 5.15. (Precedence test for disjoint, convex abstract events) For any disjoint,
convex abstract events A and B, A ~ 11 {} (3 i: ; E IA: Teo.A.; < Teo.B.i).

24

Proof. For convex abstract events, Theorem ,5,8 gives A =' lJ ¢} (3;: ; E LA: TCR.A.; < T,B.i),
Corollary 5.13 states that for any i E LA, T CO .fl,; = T CR .fl.i, Furtllermore, Corollary 5,14 yields
that only for components i, in both LA and LB, Tco,B,; # T,B,i, Since TcoB,; ::; T,B.i, it is
sufficient to prove the following implication,

Assume A =' B, If there is a process i E P and a primitive event a E An Ei such that
i E LB and a E PiB, then TcoA,; < TcoB,;,

Informally, if the ordering between A and B is caused by a primitive event in process; that is an
element of both location sets, then the corresponding component of their timestamps must reflect
this.

Assume that A =' B and that; and a exist as above, Because A and B are disjoint and convex,
fia :::J fiB, Definition 4,24 (Causal future of all abstract event in a process) gives fiA :::J fiB, which
yields:

fiA :::J fiB
¢} { (The dual of) Theorem 2,17 }

TRfiA > TR,fiB
¢} { Corollary 4,26 }

TRfA,i> TRfB,i
¢} { Property 4,27; Definition 4,28 (Reversed timestamp TR) }

TR.A,i > TR,B,i

¢} { Algebra}
E.i - TR,A,; < E.i - THB,;

¢} { Corollary ,5,7 }
TCR,A,; < TCR,B,i

¢? { ; E LA n L B; Corollary ,5,];3 }

TcoA,i < Tco,lJ,;

o

Unfortunately, the timestamp in Definition ,),12 and the precedence test in Theorem 5,15 do
not appear to be useful for arbitrary abstract events: in most cases, it cannot be guaranteed that
the convex closures of all abstract events are mutually disjoint.

It remains to be shown that the new timestamp is useful in a hierarchy of abstract descriptions,
First, it is shown that the timestamp can be expressed in terms of primitive timestamps, Second,
we show that it can be defined recursively and, therefore, calculated from the timestamps of the
constituents.

Definition 5.16. (TcO in terms of primitive timestamps) The function T CI : EU 2E ---. INN
defines a tinlestamp for primitive a.nd abstra.ct events as follows:

TCI ' {T ,e, i-I, for e E Ei
.e.1- = T,e.i, otherwise

for any e E E,
Cl { (MIN,,: a E An E i : T,a,;) - 1, for i E LA

T ,A,;= (HAX C I '
m a:" E A: T,o,i), ot lerW1se

for a.ny A ~ E,

2e
'J

Definition 5.17. (Recursive definition of TCO) The function TC2 : E U 2E ---+ JNN defines a
timestamp for primitive and abst.ract. event.s as follows:

T C2 .e = TCI .e,
for any e E E.

T C2 A . _ { (MIN AD: AD co A 1\ ; E LAD: T C2 .Ao.i),
.. 1- (MAXAo: AocoA: T C2 .Ao.;).

for i E LA
otherwise

for any A <; E.

Property 5.18. T CO = T CI = T C2 .

Proof. First, we show that TCO = TCI. The equivalence is only shown for abstract. events. It is
left t.o the reader to verify the property for primit.ive events. For any abstract event A and process
; E P,

Tco.A.i

= { Definition 5.12 }
(T.A inf TCRA).i

{ Definition 4.8 }
(MAX a: a E A: T.a.;) min TCRA.i

Two cases can be distinguished.
Assume i E LA.

(MAX a: a E A: T.rt.i) min TCRA.;
= { Definition ·5.6 }

(MAX a: a E A: T.a.;) min
«MIN a: a E A n E i : T.a.i) - 1)

= { Domains not empty}
(MIN a: a E A n E i : T.rt.i) - 1

= { Definition 5.16 }
TCi.A.i

Assume i rt LA.

(MAX a: ({ E A: T.a.;) min TCR.A.i
{ Definition 5.6 }

(MAX a: a E A: T.a.i) min E.i
{ Domain not empty}

(MAX a: a E A: T.a.i)
{ Definition 5.16 }

TCI.A.;

Second, it is shown that TC2 = TCI. The proof is by induction.
Basis: For any primitive event e E E. T C2e is equal to TCI.e by definition.
Induction Hypothesis: For any abstract event. A in abstraction level at most n, T C2 .A = rCI.A.
Inductive Step: Assume A is an a.bstract. event ill abstraction level n + 1. To avoid case analysis in
the derivations below, it is assumed that n is at least one. Distinguish two cases.

For a.ny i E LA,

rC2.A.i

{ Definition .5.17 }
(MIN AD: AD co A 1\ i E LAD: T C2 .Ao.;)

= { Induction Hypothesis}
(MIN AD: AD co A 1\ i E LAD: TCI.Ao.i)

{ Definition .5.16; n ;:: 1 }

26

For a.ny i rf. lA,

T C2 A.i
{ Definition 5.17 }

(MAX AD: AD co A: T C2 .Ao.i)
{ Induction Hypothesis}

(MAX AD: AD co A: TCI.Ao.i)
{ (\I AD: AD co A: i rt LAD);

Definition 5.16; n ;:: 1 }

(MIN AD: AD co A II i E lAo:
(MIN a: a E AD n E;: T.".;) - 1)
{ Domains not empty; associativity}

(MIN a: a E An E;: T.a.i) - 1
{ Definition 5.16 }

TCI.A.i

It is left to the reader t.o verify t.he case n equa.l to zero.

6 Conclusions

(MAX AD: AD co A :
(MAX a: a E AD: T.a.i))
{ DOluains not empty; associativity}

(MAX a: a E A: T.a.i)
{ Definition 5.16 }

TCI.A.i

o

In this paper, we have investigated causalit.y among abst.ract event.s. In part.icular, causality was
formalized by defining a precedence relation on abstract event.s, and charact.erizations of the prece
dence relation using vector time were given.

Several tests to determine precedence bet\veen abstract events were derived. Each test was
evaluated against two criteria.: efficiency and applicability in a hierarchical abstraction facility.

For arbitrary abstract. events, two alternatives were given t.hat. satisfy the criteria. The first
alternative is based on the not.ion of reversed vect.or time. Every abstract event is assigned two
timestanlps, Olle in ordinary vector time marking the end of the abstract event and one in reversed
vector time marking the beginning. This leads to precedence tests that satisfy the two criteria. A
disadvantage is that reversed vector time is computationally expensive.

The second alternative is based on the notion of convexity. The structure of abstract events
was restricted to the class of convex a.bstract events. For this class, the reversed vector timestamp
can be replaced by a timestamp in terms of ordinary vector time. Although the class of convex
events is itself meaningful and practically useful, this new timcstalnp can also be used for arbitrary
abstract events: the convex closure of abstract events is used to calculate the correct timestamp.
An advantage of this alternative is t.hat reversed timestamps are no longer needed. However, every
ahstract event is still timestamped twice. A disadvantage is that on the fly calculations of the
convex closure might be too expensive for some applications.

As a final result, for mutually disjoint convex abstract events, a single timestamp is sufficient.
This timestamp integrates the two timestamps marking the beginning and end of an abstract event.
Unfortunately, this timestamp does not a.ppear to be useful for arbitrary abstract events.

References

1. A.A. Basten. Event Abstraction in J\·Jodeling Dist.ributed Comput,ations. In K. Ecker, editor, Procecd
mgs of the lllh. Workshop on Parallel Processing, Lessach, Austria, September 1993. To appear as
Informatik-Bericht, Technische Univcrsit.a.t. Clausthal, Germany, 20 pp. in ms.

2. A.A. Basten. Hierarchical Event-Based Behavioral Abstraction in Interactive Distributed Debugging: A
Theoretical Approach. rvlaster's thesis, Eindhoven Uuiversity of Technology, Department of Mathematics
and Computing Science, The Netherlands, Augllst. 1993.

3. E. Best and B. Ra.ndell. A Formal IVfodei of Atolflicity in Asynchronous Systems. Acta Informatica,
16:93-124,1981.

27

4. K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group Multicast. Technical
Report 91-1192, Computer Science Depart.ment, Cornell University, Ithaca, New York, USA, February
1991.

5. J.P. Black, M.H. Coffin, D.J. Taylor, T. Kunz, ond A.A. Basten. Linking Specification, Abstraction,
and Debugging. CCNG Technical Report E-232, Comput.er Communications and Networks Group, Uni
versity of Waterloo, Ontario, Canada, November 1993. Submitted 1993.11.04 to IBM Systems lournal,
26pp in ms.

6. B. Charron-Bost. Combinatorics and Geometry of Consistent Cuts: Applicat.ion to Concurrency The
ory. In J .-C. Bermond and M. Raynal, editors, Distributed Algorithms, volume 392 of Lecture Notes
in Computer Science, pages 45-56. Springer Verlag, Berlin, Germany, 1989. Proceedings of the 3rd
International Workshop WDAG '89, Nice, France, September 1989.

7. B. Charron-Bost, F. Mattern, and G. Tel. Synchronous a.nd Asynchronous Communication in Dis
tributed Computations. Technical Report. LITP 91.55, lnstitut Blaise Pascal, Universite Paris 7, Paris,
France, September 1991.

8. W.-H. Cheung. Process and Event Abstractioll for Debugging Distributed Programs. Ph.D. Thesis,
CCNG Technical Report T-1S9, University of 'Vat.erioo, Department of Comput.er Science, Waterloo,
Ontario, Canada, 1989.

9. R. Cooper and K. Marzullo. Consistent. Detection of Global Predicates. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debuggiug, pages 163-173, Santa Cruz, California, US, USA, May
1991. The proceedings appeareel also as ACM SIGPLAN Notices, 26(12), December 1991.

10. C.J. Fidge. Timest.amps in Message Passing Systems that Preserve the Partial Ordering. In Proceedings
of the 11th Aust.ralian Computer Science Conference, pages 55-66, Brisbane, Australia, February 1988.

11. C.J. Fidge. Dynamic Analysis of Evenl Orderings in AIessage-Passing Systems. PhD thesis, Australian
National University, Depart.ment of Comput.er Sciellce, Canberra, Australia, 1989.

12. C.J. Fidge. Logical Time in Dist.ribut.ed Compu(,ing Systems. IEEE Computer, 24(8):28-33, August
1991.

13. D. Haban and W. Weigel. Global Event.s and Global Breakpoints in Distributed Syst.ems. In Proceedings
of the 21st Annual Hawaii IlItcnwlional Conference on System Sciences, volume II, pages 166-175,
Kailua-Kona, Hawaii, USA, January 1988.

14. T. KUIlZ. Event Abstract.ioll: Some Definit.ions and Theorems. Technica.l Report TI-1/93, Technische
Hochschule Darmst.adt, Fa.chbereich Inforrnat.ik. Darmstadt., Germany, February 1993.

15. L. Lamport. Time, Clocks and the Ordering of Events in a Dist.ributed System. Communications of the
ACM, 21(7):558-565, July 1978.

16. F. Mattern. Virtual Time anel Glohal States of Distributed Systems. In M. Cosnard et. aI., editor, Par
allel and Distributed Algorithms, pages 215-226. Elsevier Science Publishers B.V., Amsterdam, North
Holland, The Netherlands, 1980. Proceedillgs of the International VVorkshop held in Gel's, France,
October, 1988.

17. F. Mattern. On the Relativistic Struct.ure of Logical Time in Distributed Systems. Bigre, 78:3-20,
March 1992. Proceedings of the workshop: Datation et Contrale ties Executions Reparties, December
4th, 1991, Rennes, France.

18. J.A. Summers. Precedence-Preserving Ab!lfmc/.ioll for Distributed Debugging. Master's thesis, Universit.y
of Waterloo, Dept. of Computer Science, 'Vaterloo, Ontario, CanacIa, 1992.

19. D.J. Taylor. A Protot.ype Debugger for Herllle5. Tn Proceedillgs of the 1992 CAS Conference, Volume I,
pages 29-42, Toronto, Ont.., Canada, November 1992. JRM Canada-Ltd. Laboratory, Centre for Advanced
St.udies.

28

20. G. Winskel. An Introduction to Event. Structures. In J.'V. de Ba.kker, \iV.P. de Roever, and G. Rozen
berg, editors, Linear Time, Branching Time and Partial Order in Logics and Afodels for Concurrency,
volume 354 of Lecture Notes in Computer Science, pages 364~397. Springer Verlag, Berlin, Germany,
1989. Proceedings of a. workshop held in Noordwijkerhout, t.he Netherlands, May/June]988.

29

Computing Science Notes

In this series appeared:

91/01 D. Alstein

91/02 R.P. N ederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E. Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transfonning Functional Database Schemes to Relational
Representations, p. 21.

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
crcation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J .A. Bergstra

92/04 J.P.H. W. v .d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R C. B ackhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 RN ederpe1t
F. Kamareddine

92/19 J.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pAS.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and mono type factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 KM. van Hee

93/11 KM. van Hee

93/12 KM. van Hee

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

NominaIization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon{ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 I.C.M. Baeten
I.A. Bergstra

93/15 I.C.M. Baeten
I.A. Bergstra
R.N. Bol

93/16 H. Schepers
I. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-I. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 I. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

93/33 L. Loyens and J. Moonen

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

J.c.M. Baeten and
J.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. B runekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.PJ. Claessen
D. Alstein

A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.w. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

93/48 R. Gerth

ILlAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in PIT Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p.23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

The object-oriented paradigm, p. 28.

Canonical typing and n -conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

	Abstract
	1. Introduction
	2. Basic definitions and results
	2.1 Distributed computations
	2.2 Vector time
	3. Abstract events and causality
	4. Timestamping arbitrary abstract events
	4.1 Basic definitions and results
	4.2 A timestamp for abstract events
	4.3 Causal future and reversed vector time
	4.4 Another timestamp for abstract events
	5. Timestamping convex abstract events
	6. Conclusions
	References

