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Abstract 

An important problem in event-based models of distributed computations is the amount of 
behavioral information. Even for simple applications, the number of events is large and the 
causal structure is complex. Event abstraction can be used to reduce the apparent complexity 
of a distributed comput.ation. 

This paper discusses one important aspect of event abstraction: causality among abstract 
events. Logical vector time and a derived notion called reversed vector time can be used to assign 
two meaningful timestamps to abstract events. These timestamps can be used to efficiently 
determine causal relationships between arbitrary abstract events. 

The class of convex abstract events is ident.ified as a subclass of abstract events that is general 
enough to be widely applicable and restricted enough to simplify timestamping. For this class, 
ordinary vector time is sufficient to determine causal relationships. At the cost of some extra 
computational effort, t.he timestamps derived for convex abstract events can also be used for 
arbitrary abstract events, overcoming the need for reversed timestamping. 

Key words: Distributed systems - Event abstraction - Causality - Precedence relation -
Partial order - Vector thue 

1 Introduction 

A distributed application consists of a. number of autonomous sequential processes, cooperating 
to achieve a common goal. Cooperation includes both communication and synchronization, and 
is achieved by the exchange of messages. Following Lamport [1.5], a distributed computation is 
modeled as an ordered set of events. An event represents some activity performed by some process 
and is considered to take place at an instant in time. Typically, the lowest-level observable events, 
or primitive events, are computations local to processes and interprocess-corumunication events. 

What is important in an event-based view of distributed computations is how events are causally 
related to each other. Causality can be expressed in terms of precedence. Sending a message, for 
example, always precedes receiving the message. This is true even if, because of clock skew, the 
time a.t which the send event occurs is larger than the time at which the receive event occurs, as 
measured by their respective local clocks. However, sending a message might be unrelated to a 
write action on a file local to another process. Neither event precedes the other and they are said 
to be concurrent. Lamport [15J has shown that causality among primitive events can be accurately 
modeled by a partial order. 

*This work was snpport.ed in part. by t.he N at-ural Sciences and Engineering Research Council of Canada. 



To determine causal relationships between events, logical-timestamp schemes have been pro
posed [10, 12, 15, 16, 17]. Logical time has been used for many different purposes: implementing 
causal broadcasts [4], measuring concurrency [6], detecting global predicates [9], implementing 
distributed breakpoints [13], computing consistent global snapshots [16], and visualizing program 
behavior [19]. 

However, experience shows that even for simple distributed applications, the amount of be
havioral information is very large, and the causality structure is very complex. Applications that 
must cope with this huge amount of information become slow and often need many resources (disk 
storage, memory, processor time). In addition, the programmer often has difficulties managing too 
much behavioral information. Therefore, it is desirable to rednce the amonnt of information that 
must be considered at once. 

A powerfnl way to reduce the apparent complexity of a computation is abstraction [5]. This 
paper focuses on one type of abstraction, namely event abstraction. Primitive events are gronped 
together into high-level abstract events, hiding their internal structure and creating an abstract 
view of the computation. Causality among abstract events is defined, and timestamp schemes 
are derived to efficiently determine causal relationships between abstract events. Each timestamp 
scheme is formally proven correct. Other important issues in event abstraction, such as specifying 
abstract behavior and the automatic recognition of abstract events to construct abstract views 
[1, 2], are beyond the scope of this paper. 

Given a hierarchy of abstract descriptions of program behavior, an application can be evaluated 
at an arbitrary level. Using the timestamp schemes presented in this paper, program behavior can 
be visualized or even simulated at any level of abstraction. Most of the applications of timestamps 
mentioned above can be adapted to use abstract descriptions of program behavior instead of prim
itive descriptions. Doing so, performance can be increased and only information that is of interest 
to the user is taken into consideration. 

To date, there has been no sound theoretical treatment in the literature of causality and log
ical time for arbitrary abstract events. Previous work at Waterloo [8, 14, 18] discusses abstract 
events with restrictive structural properties only. Event sets with these structural properties create 
abstract views of an execution that conform to the partial order among primitive events. Times
tamping algorithms for these abstract events are given. While such structures are attractive because 
the set of abstract events is again partially ordered, it appears that they are not general enough to 
be useful; many apparently intuitive abstract events do not satisfy the constraints (see also [14]). 
Thus, this paper takes another approach, starting with no structural requirements on abstract 
events, and recognizing that it is not feasible in practice to maintain a partial order on them. 

The paper is organized as follows. Section 2 presents a formal model of distributed computations 
and summarizes the basic definitions and results about logical vector time. Section 3 discusses 
causality among abstract events. In particular, it defines a precedence relation on abstract events. 
Section 4 derives a number of precedence tests for arbitrary abstract events, using vector time as 
introduced for primitive events. This section also introduces the notion of reversed vector time, 
which is essential to timestamping arbitrary abstract events efficiently. Section 5 deals with an 
important subcla.ss of abstract events, caned convex abstract events. It is shown that for this class 
of abstract events, times tamping schemes can be derived that do not depend on reversed vector 
time. At the cost of some extra computational effort, these timestamping schemes can also be used 
for arbitrary abstract events. Fina.1ly, Section 6 slImmarizes the results. 
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2 Basic definitions and results 

In this paper, a distributed system is a collection of many loosely-coupled machines. These ma
chines do not share any system resources and are only connected by a communication network. 
Communication channels may be lossy and delivery order mayor may not be guaranteed. 

A distributed program is a set of independent, cooperating program modules. Information 
is exchanged only by message passing. Both synchronous and asynchronous communication are 
allowed. To prevent unnecessarily complex forl1lulas, it is assumed that communication is point
to-point. However, it is straightforward to extend the results to multicast and broadcast schemes. 

At runtime, program modules are instantiated as processes which do not share memory. Again 
for the sake of simplicity, it is assumed that the llmuber of processes is fixed and known in advance. 
Each process performs a local computation. A distributed computation is the collection of all local 
compu tations. 

2.1 Distributed computations 

The model of distributed computations used in this paper is based on the notion of primitive 
events. Primitive events are considered to be atomic. Therefore, a primitive event is modeled as if 
it occurred instantaneously. Essentially, a distributed computation is a pair (E, :::), where E is the 
set of primitive events and::: is an ordering relation that models causal precedence. 

The detailed model given in the remainder of this subsection is based mainly on previous 
definitions of Mattern [16, 17], Charron-Bost [6, 7], and Fidge [11, 12]. Their definitions are, in 
turn, based on the "happens before" relation introduced by Lamport [1.5]. The algebraic structure 
underlying the model is vVinskel's elementary event structure [20]. 

The set of primitive events E is the union of N mutually disjoint sets of events, Eo, ... , EN-I, 
where N is the number of processes. Each of these sets represents a local computation. It is assumed 
that E is finite. Since this paper discusses timestamp schemes, this is not a real restriction: In 
practice, only finite (prefixes of) computations can be timestamped. The set of process identifiers, 
{O, ... ,N -I}, is denoted P. 

As mentioned, both synchronous and asynchronous communication are allowed. Every com
munication is modeled by a send event and a corresponding receive event. The sets of send and 
receive events are denoted by Sand R respectively. The two sets are disjoint subsets of the set of 
events E. A relation r <;; S x R relates send events to receive events. This relation is left- and 
right-unique. Furthermore, it is required that for every receive event in R, there is a corresponding 
send event in S. The absence of the converse condition means that messages might be lost or might 
still be in transit. A subset of r, r" denotes the set of synchronous message communications. 

For every i E P, the set Ei is totally ordered by a relation -<i. This models the fact that 
processes are sequentiaL The relation -<I is defined as the union of all -<i. It expresses the local 
ordering of events. The precedence relation ::: that models the causal ordering of events is defined 
as the smallest reflexive and transitive relation that satisfies the following two conditions. 

Cl The relation -<I uris a subset of :::. 

C2 For every (8, r) E rs and e E E \ {s, r}, e::: s '* e ::: rand s ::: e '* r ::: e. 

Since the restrictions on r do not guarantee the absence of cycles in the precedence relation, the set 
of definitions given so far models a. distributed computation if and only if the precedence relation 



is a partial order. 
The precedence relation extends the "happens before" relation as defined by Lamport [15] to 

synchronous communication in a natural way. Thc condition C2, originally given by Fidge [11, 12], 
means that a synchronous communication can be interpreted as if it occurred instantaneously. 
Distinguishing a send and a receive event such that the send event precedes the corresponding 
receive conforms to physical reality: a synchronous communication is initiated by one process and 
received by the other after a small but non-zero delay. 

We prefer this model of synchronous communication over other models of synchronous commu
nication in the literature. Charron-Bost et a1. [6], Cheung [8], and Fidge [11, 12] model synchronous 
communication as a pair of unrelated events. This has the disa.dvantage that a synchronous com
mnnication cannot be distinguished from a pair of concurrent events. Summers [18] models syn
chronous communication as a. pair of mutually related events. A drawback of this model is that 
the precedence relation is no longer a partial order, which raises theoretical problems. In [2], syn
chronous cOlnmUllication is modeled as a single event occurring in two processes simultaneously. 
This model is more abstract than the model presented above. Unfortunately, it has some theoretical 
problems that will be discussed shortly. 

The relation::; can be used to express concurrency in a natural way. Two events eo, el E E are 
concurrent if and only if eo i el and Cl i eo. That is, two events are concurrent if and only if they 
are unrelated by the precedence relation. 

Using the definitions above, it is possible to formalize the notion of cuts. A cut is the event
based equivalent of a global state. Formalizing the notion of cuts is useful to better understand the 
causality structure of a distributed computation. The proofs of many results to follow depend on 
the introduction of cuts. The following definition and theorem are due to Mattern [16, 17]. 

Definition 2.1. (Cut) A sct C C;; E is ca.ned a. cut of E if and only if for all events eo E C and 
el E E, el :01 eo =;. el E C, where :01 is the reflexive closure of the local ordering -<I. A cut is said 
to be left-closed under :01. The set of all cuts is denoted by C~,. 

Theorem 2.2. (Structure of cuts) The set. of ail cuts of a distributed computation, with the 
ordering defined by the subset relation C;;, is a complete lattice. The infimum and supremum of sets 
of cuts are defined by set intersection and set union respectively. 

In distributed computing, the su bset of consistent cuts is of particular interest. Consistent cuts 
characterize the sct of global states that might actually occur during a distributed computation. 

Definition 2.3. (Consistent cut, [6,16,17,20]) A set C C;; E is called a consistent cut of E if 
and only if for all events eo E C and el E E, el :0 eo =;. el E C. A consistent cut is left-closed 
under ::S. The set of all consistent cuts of a distributed computation is denoted by C~. 

Theorem 2.4. (Structure of consistent cuts, [16,17,20]) The set of consistent cuts, with the 
ordering defined by C;;, ;8 a complete lattice. 

2.2 Vector time 

As expla.ined before, for ma.ny applica.tions in distributed computing, it is useful to have a char
acterization of causality. Since the precedence relation is a. partial order, it is not possible to use 
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physical time or any other totally ordered set as a. characterization. For this reason, Mattern [16, 17J 
and Fidge [10, 12J independently introd uced partially ordered vector time. Vector time extends the 
idea of logical clocks introdnced by Lamport [l.SJ. 

In this subsection, we snmmarize some definitions and results given by Mattern in [17J. They 
form the basis for the remaining sections of this paper that discuss times tamping abstract events 
or sets of primitive events. 

An event causally precedes another event if and only if all its predecessors arc also predecessors of 
the other event. That is, an event precedes another event if and only if the cut of all its predecessors 
is a subset of the cut of all predecessors of the other event. The idea behind timestamps is to 
associate with each event e a value T.e, the timestamp of e, and, in addition, to define a relation ::; 
on timestamps in such a way as to ensure that for any eo, el E E, eo :5 el ¢} T.eo ::; T.el. The intent 
is to ma.ke ::; relatively inexpensive to calculate, thus avoiding expensive set-inclusion calculations. 
Figure 1 illustrates this interpretation of precedence between two events. Definitions of the function 
p, which defines the cut containing all predecessors of an event, and T, the timestamp of an event, 
are given below. Event eo precedes event CI since all the predecessors of eo are also predecessors of 

el· 

T.eo T.el 

Figure 1: Precedence between prilnitive events. 

Definition 2.5. (Causal past, [6, 17,20]) The function p. : E ---+ 2E defines the causal past of 
an event as follows. For any e E E, pc = {eo EEl eo :5 c}. Note that pc is a consistent cut. 

The causal past of an event in some process i is the set of all its predecessors in i. 

Definition 2.6. (Causal past in a process, [6]) For any i E P, the function Pi. : E ---+ 2E; 

defines the causal past in process i of an event as follows. For any e E E, Pie = {eo E Ei I eo :5 e}. 
Note that Pie = pe n Ei and that Pie is a. cut, but not necessa.rily a consistent cut. 

The two definitions of causal past and causal past in a process are essential to the results presented 
in this paper. In [2], some of these results are given for a slightly different model of distributed 
computations that models synchronous communica.tion as a single event. occurring in two processes 
simultaneously. As rnentioned, this 1110dcl raises some-theoretical probleills. In particular, since sets 
of events representing processes are not necessarily disjoint, the assulnption that the causal past 
in a process is a cut is, in general, not true. Consider, for exalnple, a synchronous-communication 
event e that is an element of two sets Ei and Ej for distinct'; and j in P. If e has a predecessor in 
process j, then the causal past in process i. Pie, is not a cut. The set Pie is not left-closed under 
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As a consequence, some definitions and deriva.tions given in [2] are not correct. However, it is 
believed that the definitions and derivations can be adapted in such a way that the results remain 
valid. Another possibility is to adapt the model of synchronous communication so that sets of 
events representing processes are disjoint. This is the approach pursued in this paper. 

Definition 2.5 yields the following useful result. 

Corollary 2.7. [17, 20] For any event e E E and any consistent Cllt C E C -<, e E C ¢} pc r:;; C. 

Proof. It follows from Definitions 2.3 (Consistent cut) and 2 .. 5 (Causal past). o 

Corollary 2.7 states that the causal past of a.n event is the smallest possible consistent cut that 
contains the event. This result is 1I0t very surprising, since the causal past of an event exactly 
reflects all its predecessors. 

Corollary 2.8. For any process i E P, event e E Ei, and any cut C E C:Ol' e E C ¢} Pie r:;; C. 

Proof. It follows from Defiuitions 2.1 (Cut) and 2.6 (Causal past in a process). o 

The introduction of the causal past is sufficient to formalize the notion of vector timestamps. A 
vector timestamp of size N is assigned to every event such that every component i E P of the 
timestamp is equal to the number of predecessors of the event in process i. 

Definition 2.9. (Timestamp function) The function l' : E ----> INN defines a timestamp for 
every event as follows. For any event e E E and process i E P, T.e.i = IPiel. 

Note that the vector representation of timestamps is possible only because the number of processes 
is known. However, vector representation of timestamps is not essential. If the number of processes 
is not known, the timestamp of a.n event can be defined as a set of pairs, where each pair consists 
of a process identifier and the corresponding timestamp component [12]. 

The following theorem shows that the timestamps as defined above can be used to determine 
the causal relation between primitive events. For two vectors to, t, E INN, we define to :s; t, to 
mean to.i :s; t,.i for all i, 0 :s; i < N. 

Theorem 2.10. (Precedence test for primitive events [16, 17]) For any events eo, e, E E, 
eo =' e, ¢} T.eo :s; T.c,. 

Proof. [6] Assume that eo ~ e,. Since ~ is transitive, it follows that, for any process i E P, 
PieD r:;; PiE,. Definition 2.9 (Timestamp function) yields T.eo :s; T.e,. It follows from the initial 
assumption that eo =' e, ~ T.eo:S; T.e,. 

Assume eo E Ei , for some process CE P, and e, E E such that eo i e,. It follows that 
Pie, C PieD. Definition 2.9 (Timestamp function) yields T.e,.i < T.eo.i. This gives T.eo t T.e,. 
It follows from the assumption that T.eo :s; T.c, ~ eo =' c,. 0 

This precedence test formalizes the visualization of precedence given in Figure 1. It provides an 
efficient way to determine precedence among prilnitive events; at most N integer comparisons are 
necessary. Precedence can be dctennincd even more efficiently .if it is known in which process an 
event occurs. 



Theorem 2.11. (Precedence test for primitive events [16]) For any i E P and events eo E E; 
and el E E. eo ::5 el {o} T.eo.i ~ T.el.i. 

Proof. Assume that eo ::5 el. It follows that p;eo <:: p;el' 
eo i el' This yields p;el C p;eo. Hence T.el·; < T.eo·i. 

This gives T.eo.i ~ T.el.i. Assume that 
o 

This theorem shows tha.t only one integer compa.rison is needed to decide whether an event precedes 
another if the process in which the event occurs is known. 

An example of the assignment of vector timestamps to events is given in Figure 2. For this 
example, the validity of the two precedence tests given above is easily verified. The vertical lines 
represent processes. Time increases from top to bottom. Events are depicted as dots. The ar
rows represent the communication relation r. A synchronous communication is represented by a 
horizontal arrow. 

(1,0,0) 

( 2,0,0) 

(3,0,0) 

(0,0,1) 

(O,l,l)+--_---i~ (0,1,2) 

(0,1,3) 

Figure 2: Timestamping events in a distributed computation. 

An algorithmic calculation of vector timestamps is based on a system of counters, one for each 
process. Every time all event OCClirs in a process the local counter is incremented by one. The 
global time corresponding to a.ny cut of the computa.tion consists of the vector of all the counter 
values. Every process i E P is assigned a vector Ci of size N which is its local clock. This local clock 
contains the loca.l approximation to globa.l time. Communication provides a way to update local 
clocks with information present in other processes. Every event is assigned a vector timestamp that 
is equal to the loca.l clock value at the time of its occurrence. The precise rules for maintaining 
the local clocks in such a. way that the timestamps satisfy the function T are as follows. The rules 
adapt the definitions of Fidge [10, 11, 12] and Mattern [16, 17] for synchronous communication. 
SmaU variations on the rules can be found in [5, 8, 18]. 

1. Initialization: 
Initia.lly, all the local clocks are set to t.he zero vector. 

2. Ticking: 
At the occurrence of an event ill process i E P, component of the local clock, Ci.i, is 
incremented by one. 

3. Asynchronolls communication: 
At the occurrence of an asynchronous message receipt, first rule 2 is applied and then the 
receiving process i E P assigns to its local clock the component wise maximum of C; and T.e, 
where e E E is t.he corresponding send event. 

4. Synchronous communication: 
When some process i E P sends a synchronous message to another process j E P, first process 
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i applies rule 2 and then assigns to its local clock the componentwise maximum of Ci and 
Cj. Subsequently, process j applies rule 2 and assigns to its local clock the componentwise 
maximum of Ci and Cj. Finally, after timestamping the two events, process i increments 
component j of its local clock, Ci.j, by one. 

In the remainder of this subsection, the not.ion of globa.! time is formalized. It. is shown that 
global time vectors have a st.ructure that is isomorphic to the structure of cuts. This property is 
needed in the remaining sections when causal relations between abstract events are investigated. 
As mentioned, the global time at any point during a computation consists of the vector of all the 
local counter values. This is formalized in the following definition. 

Definition 2.12. (Global time of a cut, [17]) The function T : C"" --+ INN defines the globa.! 
time of a cut. For any cut C, component i, where 0 :S i < N, of the time vector is defined as 
T.C.i = IC nEil. The set of all global time vectors of a computation, i.e., {T.C ICE C=',}, is 
denoted by T "',. 

This definition has SOBle interesting consequences. 

Corollary 2.13. For (lilY i E P and any event e E E, 

T ' . _ { T.pe.j, for j = i 
.p,e.) - 0, 1 . at terUllse 

Proof. It follows from Definitions 2 .. 5 (Causa.! past), 2.6 (Cansal past in a process), and 2.12 (Global 
time of a cnt). 0 

Corollary 2.14. [17J For any event e E E, T.pe = T.e. 

Proof. It follows from Definitions 2 . .5 (Causal past), 2.9 (Timestamp function), and 2.12 (Global 
time of a cut). 0 

Corollary 2.14 states that t.he timest.amp of an event. reflects it.s causal past. This is exactly what 
is shown in Figure 1. 

Corollary 2.15. [17J For (lny cuts Co, CI E C='" Co <;; C, ¢} T.Co :S T.C I . 

Proof. It follows from Definitions 2.1 (Cllt) and 2.12 (Global time of a cut). o 

Corollary 2.1.5 implies that the fnHction T is an isomorphism between the two complete lattices 

(C=,,,<;;) and (T=,,,:S), as well as the following. 

Theorem 2.16. (Structure of time vectors, [17]) The 8et of time vectors, T"", with the ordering 
defined by :S, forms a complete laUice. It is isomorphic to the lattice (C",,, <;;). 

Proof. It follows immediately from Theorem 2.2 (Structure of cuts) and Corollary 2.15. 0 

Theorem 2.17. (Structure of consistent time vectors) The set of consistent time vectors 
T", = {T.C ICE C",}, with the ordering defined by :S, forms a complete lattice. It is isomorphic 
to-(C=,,<;;). -
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Proof. It follows from Theorem 2.4 (Structure of consistent cnts) and Corollary 2.15. o 

Note that the set of consistent time vectors represents exactly the set of global states in which the 
computation might be during an actual execution. 

The above results are established by defining an isomorphism between the lattices of cuts and 
time vectors. The infimum and the supremum of sets of global time vectors corresponding to a 
set C of cuts, are therefore implicitly defined as T.(n c: c E C: c) and T.(U c: c E C: c) 
respectively. Let the quantifier SUP (and the corresponding binary operator "sup") on time vectors 
be defined as the componentwise maximum. and the quantifier INF (and binary operator "inf") 
as the component wise minimum. It follows from Definitions 2.1 (Cut) and 2.12 (Global time) that 
T.(n c: e E C: e) == (INF e: e E c: T.e) and T.(U e: e E C: e) = (SUP e: e E C: T.e). 
In other words, the infimum and supremum of sets of time vectors are defined by INF and SUP 
respectively. 

This concludes the introduction to vector time. The definitions and basic resuits given above 
provide a basis for the next sections. 

3 Abstract events and causality 

In a hierarchy of a.bstrad descriptions of program behavior, an abstract event is described uniquely 
by its constituents in the previous leveL However, to avoid recursive definitions and inductive 
proofs in the following, abstract events are often represented by non-empty sets of primitive events. 
Only when necessary is an abstract event represented in terms of its elements in the level below. 
For this purpose, the term "constituents" is used exclusively. 

An important part of an abstract description of behavior is a representation of causality among 
abstract events. The causality structure is defined by a precedence relation. For reasons of math
ernatical and pra.ctical cOllvenience, it \vould be preferable if this rela.tion had the same structural 
properties as the precedence relation on primitive events, i.e. if it were a pa.rtial order. There are 
two obvious possibilities to define precedence. 

The first possibility is to specify that an ahstract event A precedes an abstract event B if and 
only if every event in A precedes every event in B. This definition has one advantage: it guarantees 
anti-symmetry and transitivity. Taking the reflexive closure yields a precedence relation on abstract 
events that is a partial order. However, it also has two important disadvantages. First, it does 
not conform to the intuitive meaning of concurrency. Concurrency between primitive events is 
defined as their being unrelated by the precedence relation. If the same definition is used for 
abstract events, two abstract events can be concurrent while some primitive events in one abstract 
event precede some primitive events in the other. Second, this definition of precedence is too 
restrictive to be useful. Too many abst.ract event.s may be nnrelated, implying that the first level 
of abstraction might abstract away too mnch structure. Higher levels of abstraction might even 
conta.in only unrelated events. This defeats the purpose of behavioral abstraction that focuses on 
causal relations among events. Universal quantification seenlS to be too strong a requirement. 

The second possibility is to specify that an abstract event A precedes an abstract event B if 
and only if there exists a·n event in A that precedes at least one event in B. Intuitively, this is also 
a mea.ningful definition, since at least part of A happens before B is completed. This definition has 
one important disadvantage. In general, the precedence relation on abstract events is no longer a 
pa.rtial order. The relation usually is neither anti-sYlllmetric nor transitive. An advantage is that 
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concurrency conforms to its intuitive lueaning. Two abstract events A and B are causally unrelated 
if and only if every event in A is ca.usally unrelated to every event in B. An additional advantage is 
that abstract behavior maintains a lot of the structure of underlying levels of description. Although 
this choice does, in general, not yield a precedence relation which is a partial order, it seems to be 
the only one that is both meaningful and practically useful. Therefore, precedence among abstract 
events is formally defined as follows. 

Definition 3.1. (Precedence between abstract events) Let A and B be two abstract events. 
Precedence is defined as A::s B ¢} (3 a: a E A: (3 b: bE B: a::s b)) 

To represent causality concisely, it seems a logical choice to investigate the use of vector timestamps. 
The goal is to derive precedence tests similar to the ones for primitive events. Since the precedence 
relation on abstract events is not necessarily a partial onler, two approaches are possible. 

The first approach is to restrict the structure of abstract events so that the precedence relation 
is guaranteed to be a partial order, and then to try to timestamp these restricted abstract events 
in a meaningful way. This is the approach taken by Cheung [8J, Kunz [14], and Summers [18J. 
Unfortunately, imposing structural requirement.s that guarantee transitivity and anti-symmetry 
either makes the resulting abstractions difficult to manage or severely limits their expressiveness. 
The second approach, pursued in this paper, is to allow more flexible abstract-event structures at 
the cost of increasing the difficulty of obtaining and comparing timestamp vectors. By presenting 
timestamps for two classes of abstract events, this paper points out the trade-offs in structural 
flexibility and timestamping effort. 

Before giving any results, it is important to have criteria to evaluate timestamps and prece
dence tests. First, timestamps and precedence tests must be reasonably efficient in storage and 
computation time. Tha.t is, storage and computation tilHe lnust be silnilar to stora.ge and compu
tation time needed for determining precedence between primitive events. Second, in a hierarchy 
of true abstractions, a representation of causality should not depend on any other levels than the 
level immediately below. This means that it must be possible to calculate a timestamp for an 
abstract event from the timestamps of its constituents. It also means t.hat precedence tests must 
be defined in terms of the timestamps in the level being described. If tests depend on lower levels, 
determining precedence between two abst.ract events becomes cornpntationally expensive, beca.use 
the abstraction hierarchy must be traversed to a level that contains the desired information. For 
most of the definitions and results in t.he remaining sections, it is usually clear whether they satisfy 
the second crit.erion. Formal proofs are only given on a few occasions. 

4 Timestamping arbitrary abstract events 

This section discusses timestamps and precedence tests for arbitrary abstract events. Section 4.1 
starts by introducing some new definitions and adapting some previous definitions to abstract 
events. In Section 4.2, a timestamp is derived that represents the causal past of an abstract event. 
However, precedence tests using this timestamp do not satisfy the criteria for such tests. Section 4.3 
then introduces the notions of causal future and reversed vector tilue. In Section 4.4, these concepts 
are used to derive another timestamp for abstract events representing the causa.! future. Using the 
two timestamps for abstract events, precedence tests are derived that satisfy the criteria mentioned 
above. 
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4.1 Basic definitions and results 

Definition 4.1. (Location set) The location set of a primitive or abstract event is defined by 
a function l. : E U 2E ---+ 2P as the set of processes in which the event occurs. For any e E E, 
le = {i E Pie E Ei}. For any A s:: E, lA = {i E P I An Ei of 0}. Note that the location set of a 
primitive event always is a singleton. 

A property of primitive events that no longer holds for abstract events is atomicity. Consequently, 
abstract events have a duration. This is expressed by the following two functions. 

Definition 4.2. (Beginning and end of an abstract event) The beginning of an abstract event 
A is defined by a function [.J : 2£ -.2£ as [AJ = {aD E A I .(3 al : al E A: al -< ao)}. The end 
of an abstract event A is defined by a function [.1 : 2£ ---+ 2£ as [A1 = {ao E A I .(3 a, : a, E 
A: aD -< a,l}. 

Note that to determine whether an abstract event A precedes another abstract event B, it is 
sufficient to consider the beginning of A and the end of B instead of A and B in their entirety. 

Definition 4.3. (Causal past of an abstract event) The causal past of an abstract event is 
defined by a function p. : 2£ ---+ 2£ as follows. For any A c:; E, pA = (U a: a E A: pal. Note 
that the causal past of a·n abstract event is a. consistent cut. 

Definition 4.4. (Causal past of an abstract event in a process) For any i E P, the function 
Pi' : 2£ ---+ 2£; defines the causal past in process i of an abstract event as follows. For any A s:: E, 
PiA = (U a: a E A: Pia). Note that PiA = pA n Ei and that PiA is a cut, not necessarily 
consistent. 

The next corollary is a result of the prevIous definitions. It shows that the function r.1 really 
models the end of an abstract event. 

Corollary 4.5. For an ab"tmct event A, p r A1 = pA. 

Corollary 4 .. 5 states that the past of the end of an abstract event corresponds to the past of the 
completed event. Unfortunately, there is no such simple result relating causal past to the beginning 
of an abstract event. 

The last two results of this subsection are expressions for the time of the causal past of an 
abstract event. The next corollary is a direct consequence of Definition 4.4 (Cansal past of an 
abstract event in a process) and Definition 2.12 (Global time of a cut). It is a generalization of the 
result as derived for primitive events (Corollary 2.13). 

Corollary 4.6. Fo .. any lImec.,,, i E P and abstract evenl A, 

T .A· _ { T.pA.j, fo .. j =i 
.p, .J - 0, I . of lCrWlse 

The definition of the causal pa.st of an abstract event ca.n be used to derive the last result of this 
subsection. 

Property 4.7. Fo .. any flbstmet event A, T.pA = (SUP a: a E A: T.a). 
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Proof. 

T.pA 
{ Definition 4.3 (Causal past of an abstract event) } 

T.(U a: a E A: pal 
{ Theorem 2.17 (Structure of consistent time vectors) } 

(SUP a: a E A: T.pa) 
{ Corollary 2.14 } 

(SUP a: a E A: T.a) o 

This result is useful; combining it with Corollary 4 .. 5 yields that there is a simple expression in terms 
of timestamps that marks the end of an abstract event. Since Corollary 4.5 has no equivalent for the 
beginning of an abstract event, it is not possible to obtain a similar result for the beginning. Such 
a result may not be necessa.ry but would at least be convenient to express causal relations between 
abstract events. One way to get a similar result for the beginning of an abstract event is to introduce 
the notion of causal future. As shown in the following, this is the key to deriving precedence tests 
that satisfy the two criteria stated in the previous section. First, however, precedence among 
abstract events is characterized in the current framework. 

4.2 A timestamp for abstract events 

In this subsection, a timestamp and some precedence tests for abstract events are derived. As 
mentioned, precedence tests are evaluated according to their efficiency and hierarchical applicability. 

The efficiency of precedence tests in terms of the number of integer comparisons is compared 
to the efficiency of the straightforward precedence test that is a direct result of the definition of 
t.he precedence relation on abstract events. To determine whether an abstract event A precedes an 
abstract event B, one could simply check all the primitive events until a. primitive event in A is 
found that precedes a primitive event in B. If the precedence test of Theoreln 2.10 is used, this 
takes at most IAI . IBI . N integer comparisons since it does not make use of the location set of 
primitive events. Obviously, this is not very efficient. 

The second criterion for precedence tests is hierarchical applicability. Obviously, the abovemen
tioned test depends on the primitive level of the computation. Therefore, it does not satisfy the 
second criterion. 

One would expect that it is possible to do better. If abstract events are timestamped in a 
meaningful way, it should be possible to reduce the number of integer comparisons and perhaps 
make it independent of the primitive level of the computation. The time that marks the end of an 
abstract event stated in Property 4.7 seems to be a good candidate for a timestamp. The derivation 
below shows that this vector ca·n indeed be used as a timestamp. Let a be a.n event in E and let B 
be an abstra.ct event. 

a E pB 
¢} { pB is a consistent cut; Corollary 2.7 } 

pa <;; pB 
¢} { Theorem 2.17 (Structure of consistent time vectors) } 

T.pa ~ T.pB 
¢} { Corollary 2.14; Property 4.7 } 
T.a~(SUPb: bEB: T.b) 
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This deriva.tion shows that a. primitive e\"ent. is a.n element of the causal past. of an a.bstract event 
if and only if its timestamp is at most the time that marks the end of the abstract event. Since 
an abstract event A precedes an abstract event B if and only if at least one of its primitive events 
is an element of the causal past of B, it is useful to extend the timestamp fUllction on primitive 
events to abstract events as follows. 

Definition 4.8. (Timestamp of an abstract event) The function T : 2E -. INN defines the 
timestamp of an abstract event as follows. For allY A <;; E, T.A = (SUP a: a E A: T.a). 

This timestamp is an efficient encoding of the end of an abstract event (see Figure 3). Furthermore, 
the associativity of the quantifier SUP implies that the timestamp of an abstract event is equal to 
the supremum of the timestamps of its constituent.s. Therefore, t.he introduction of this timestamp 
seems to be a· step towards the fulftllment of the t.wo criteria for precedence tests. 

T.A 

Figure :3: The meaning of the timestamp of an abstract event. 

The following precedence test is a direct consequence of the derivation above and the definitions 
of the beginning of an abstract event (4.2) and the timest.amp function (4.8). 

Theorem 4.9. (Precedence test for abstract events) For any abstmct events A and B, 

A :5 B ~ (3 a: a E lAJ : T.rt 50 T.B). 

This test. has two disadvantages. First.. it. is st.ill not very efficient. In the worst case, the t.imestamp 
of each primitive event in lAJ must. be compared with the timestamp of B, yielding Il AJ I . N 
comparisons. Since the number of processes in the location set of A is an upper bound for the 
number of primitive events in the beginning, t.he maximum number of comparisons is ItA\ . N. 
Second, it still depends on the primitive level of the computation. Two or more abstract events 
cannot be merged into a higher-level abstract event without using information from the primitive 
level of the computation to compute the beginning of the newly formed abstract event. Therefore, 
this test still does not sa.lisfy either of the criteria for precedence tests, although it is considerably 
more efficient than the straightforward test mentioned earlier. An advantage of this test is that the 
only information needed to implement it is the set of timestamps of primitive events. 

Two remarks about the test in Theorem 4.9 3.re in order. First. the test does not make use of 
the location set of an event. It is possible to reduce the maximum number of integer comparisons 
if this information is available. This is shown in the remainder of this subsection. Second, note 
that the test in Theorem 4.9 compares the beginning of abstract event A with the end of abstract 
event B. This has already been suggested as a possible improvement in determining precedence 
between abstract events. However, there is an asymmetry ill the way the beginning and the end 
of the abstract events are used. The beginning of an abstract event is used explicitly. The end of 



an abstract event is encoded in its timestamp. If the asymmetry can be resolved, this might lead 
to precedence tests that no longer depend on the primitive level of the computation. Once again, 
this suggests introducing the causal future of events. 

The following derivation uses information about the location of events. Let a be a primitive 
event and B an abstract event. Let i be the process in la. 

a E PiB 
¢} { a E Ei; PiB is a cut; Corollary 2.8 } 

Pia <;; PiB 
¢} { Theorem 2.16 (Structure of time) } 

T.Pia :0; T.pi B 
¢} { Corollary 2.13; Corollary 4.G } 

T.pa.i :0; T.pB.; 
¢} { Corollary 2.14; Property 4.7; Definition 4.8 (Timestamp T) } 

T.a.; :0; T.B.; 

Theorem 4.10. (Precedence test for abstract events) For any abstract events A and B, 
A::s B ¢} (3 i,a: ; E P /I a E [AJ n Ei : T.o.;:O; T.B.;). 

This test is more efficient tha,n the previ011s one. In the worst case, the number of comparisons 
is I[AJI, which in turn has an upper bound IIAI. However, it still has the disadvantage that it 
depends on the primitive level of the computation. There seems to be no obvious way to overcome 
this problem within the current framework. Therefore, the next step is to extend the framework 
in a useful and meaningful way. Until now, only the past of events has been considered. The next 
step is to formalize the notion of the causal future of events. 

4.3 Causal future and reversed vector time 

In this subsection, the causal future is introduced for primitive events. The goal is two-fold. The 
first goal is to derive new precedence tests for primitive events in terms of causal future. The second 
goal is to find an efficient way to represent the causal future, in the same way that timestamps 
represent the causal past. 

The causal future is the dual of the causal past. Therefore, to define the causal future and 
explain its mea,ning in the entire framework, the duals of the relations ::S and ::Sl are needed. The 
successor rela,tion '=: is defined as the dual of::S. That is, for any eo, e] E E, eo '=: e] if and only if 
e] :S eo. The local successor relation '=:, is the dual of ::Sl. Before the definition of causal future is 
given, some rela.ted concepts a.rc defined that cla.rify its rela.tion with previous definitions. 

Definition 4.11. (Successor cut) A set C <;; E is called a successor cut, or ,=:-cut, of E if and 
only if for all events eo E C and e] E E, e] ,=:, eo '* "] E C. A ,=:-cut is said to be left-closed under 
b or right-dosed under ::s,. The set of all ,=:-cuts is denoted by Cel. 

Definition 4.12. (Consistent successor cut) A set C <;; E is called a consistent ,=:-cut of E if 
and only if for all events eo E C and e] E E, "] '=: eo '* e] E C. A consistent ,=:-cut is said to be 
left-dosed under ,=:. The set of all consistent ,=:-cuts is denoted by Ce. 

The next corollary states the obvious relation between cuts and ,=:-cuts. 
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Corollary 4.13. Let C be a 8ubset of E. 

C E C::!l ¢} E\C E C::" 
C E C::! ¢} E\C E C~. 

Definition 4.14. (Causal future) The function f. : E ---" 2E defines the causal future of an 
event as follows. For any e E E, fe = {eo EEl eo e: e}. Note that fe is a consistent e:-cut. 

Definition 4.15. (Causal future in a process) For any process i E p, the function fi. : E ----; 2E 

defines the causal future in process; of an event as follows. For any e E E, fie = {eo E Ei I eo e: e}. 
Note that fie = fe n Ei and that fie is a e:-cut. 

Since computations are finite, it is appropriat.e to define the following. 

Definition 4.16. (Reversed vector time of a successor cut) The function TR : C~l ---+ INN 
defines the reversed vector time of a e:-cut. For any e:-cut C, component i, where 0 :::; i < N, of 
the reversed time vector is defined as THC.; = IC nEd. 

This definition is the first step towards an efficient representation of the causal future. The fol
lowing corollary is a direct result of this definition, the definition of the time of a cut (2.12), and 
Corollary 4.13. It states the relation between vector time and reversed vector time. The binary 
operator "-" on vectors is componelltwise subtractioll. 

Corollary 4.17. For any successor cut C E C)-p T.(E\C) = T.E - THC. POl' any cut C E C::!" 
TR.(E\C) = THE - T.C. -

Note that T.E and TR.E are both equal to the vector in INN whose ith component is equal to the 
number of events in process i, i.e. IE;!. In the following. this vector is denoted by E to emphasize 
that it is a constant. 

For the derivation of precedence tests that ma.ke use of the location set, the cut Pie, for some 
e E E andi E P, is of particular interest.. For this cut, t.he corollary above yields the following 
equation: TR.(E\Pie) = E - T.Pie. If e is an event in Ei, then the left-hand side of this equation 
can, for component i, be simplified as shown in the following corollary. 

Corollary 4.18. For any; E P and e E E i , TRfie.i - 1 = E.i - T.Pie.; 

The following derivation shows the meaning of precedence in terms of causal past and causal future. 
Let eo and el be events in E. 

eo :S el 
{:} { The relation :::S is reflexive and transitive} 

(3 e: e E E: eo::s e II e::s el) 
¢} { Definitions 4.14 (Causal future) and 2 . .5 (Causal past) } 

(3 e: e E E: e E feD II e E pel) 
¢} { Definition of sct intersection} 

feD n pel of 0 

1.5 



The last expression in this deriva.tion states that. event eo precedes event e, if and only if the future 
of eo and the past of e, overlap. If this derivation is continued, a new precedence test can be 
derived. 

feo n pel i' 0 
~ { Set calculus; feo ~ E and pej <;; E } 

EVeo f. pel 
~ { Corollary 4.13 and Theorem 2.17 (Structure of consistent time vectors) } 

T.(EVeo) 'i. Tpe, 
~ { Corollary 4.17 } 

E - TR .feo 'i. Tpe, 

Note that there are two possibilities for continuing this derivation in the first step. It is easy to 
verify that the final result is the same. Deriva.tions similar to the two above can be given if the 
location set of eo or €1 is known. 

Theorem 4.19. Let; and j be processes;n P and let eo and e, be events in Ei und E j respectively. 
eo :5 e, ~ E - TR.feo 'i. Tpe, 

~ E.; - THfeo.; < Tpej.; 
~ E.) - THfeo.j < T.ped 

For natural numbers, the relations 'i. a.nd < arc equivalent. In the last two expressions of this 
theorem, therefore, the relation < appears. Furthermore, Corollaries 4.18 and 2.13 yield, for any 
process i in P and event e in Ei, the equation E.;- THfe.; = T.pe.; -1. This equality and Corollary 
2.14 applied to the second equivalence of the last theorem yield once again the precedence test of 
Theorem 2.11. 

There is also another wa.y to look a.t these precedence tests. The equivalences stated in this 

theorem are useful for determining the precedence between two events if there is an efficient rep
resentation of the reversed vector time of the causal future of events, siInilar to the representation 
of the vector time of the causal past of events ill Corollary 2.14. So the question is whether there 
exists a function TR : E --+ INN that can be calculated without too much overhead, such that, for 
anye E E, THfe = THe. The answer is yes. 

Definition 4.20. (Timestamp function TR) The function TR : E --+ INN defines a timestamp 
in reversed vector time for ever,v event as follows. For any event e E E and process i E P, 
TR.e.i = Ifiel. 

The function TR encodes exactly the set of timestamps that is obtained by applying a timestamp al
gorithm for ordinary vector timestamps while traversing event information backwards. The duality 
of the relations :5 and ~ immediately yields the desired result. 

Corollary 4.21. For any event e E E, TR.fe = TR.e. 

Every result in Section 2.2 has a dual in the framework developed in this subsection. The following 
theorem summarizes all t.he precedence tests for primitive events derived thus far. 
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Theorem 4.22. (Precedence tests for primitive events) Let i. and j be processes in P and 
let eo and e, be events in Ei and E j respective/yo 

eo ~ e, ¢} T.eo :0; T.e, 
¢} T.eo·i :0; T.e,.; 
¢} TR .e, :0; TR.eo 

T R . < TR . ¢} .C,.J _ .Co·) 

E - TR .eo 1. T.e, 
E · TR . T . 

• 1 - . .eo.l < .c," 
E · TR . T . 

¢} .) - .eo·) < .el·) 

Figure 4: Precedence among primitive events in terms of vector time and reversed vector time. 

The third and fourth tests are the duals of the first and second respectively. The last three tests 
a.re new. Figure 4 illustrates the meaning of these new tests. In terms of primitive events, nothing 
is gained by the three new tests. To make them useful, event information has to be traversed 
backwards while assigning every event a. reversed timesta.nlp. This is computationally expensive 
and requires extra storage. However, if these tests can be generalized to efficient precedence tests for 
abstract events that do not depend on primitive events, then the extra costs might be acceptable. 
Section 4.4 shows that such a genera.Iizatioll is indeed possible. 

4.4 Another timestamp for abstract events 

In this subsection, the new timestamp and precedence tests for primitive events are generalized 
to abstract events. The resulting tests are efficient and independent of the primitive level of the 
abstraction hierarchy. Like the tests for primitive events, the tests depend on reversed vector time. 
Before any precedence tests are derived, causal future is defined for abstract events. 

Definition 4.23. (Causal future of an abstract event) The causal future of an abstract event 
is defined by a function f. : 2E -. 2E as follows. For any A <;; E, fA = (U a: a E A: fa). Note 
that fA is a consistent ~-cut. 

Definition 4.24. (Causal future of an abstract event in a process) For any i E P, the 
function f i . : 2E -. 2Ei defines the causal future in process i of an abstract event as follows. For 
any A <;; E, f;A = (U a: a E A: fia). Note that fiA = fA n Ei and that fiA is a ~-cut. 
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The following results are a direct consequence of the duality of the relations ::S and t. Therefore, 
they are given without proof. 

Corollary 4.25. For an abstract. event A, flAJ = fA. 

This corollary is the dual of Corollary 4.·5. It states that the beginning of an abstract event and 
the event itself share the same causal future. 

The next two results are expressions for the reversed time of the causal future of an abstract 
event. 

Corollary 4.26. For any process i E P and abstract event A, 

T R f.A . = { TR.fA.j, for j = i 
., ~ 0 I . ) of, t€l'lillSe 

Property 4.27. For any abstract event A. TRfA = (SUP a: a E A: TRa). 

Property 4.27 gives a simple expression in terms of reversed vector time for the beginning of an 
abstract event. This is exactly the result we were looking for. 

The following derivation shows the meaning of precedence between abstract events in terms of 
causal past and causal future. Let A and B be abstract events. 

A::sB 
¢} { The relation ::S is reflexive and transitive; Definition 3.1 (Precedence) } 

(3 e: e E E: (3 a.: a E A: a::s eJ II (:I b: bE B: e::s b)) 
¢} { Definitions 4.14 (Causal future) and 2 . .5 (Causal past) } 

(3e: eEE: (:la: aEA: eEfa) II (3b: bEB: eEpb)) 
¢} { Definition of set union } 

(3 e: e E E: e E (U a: a E A: fa) II e E (U b: bE B: pb)) 
¢} { Definitions 4.23 (Causal fut.ure) and 4.3 (Causal past) } 

(3 e: e E E: e E fA II e E pB) 
¢} { Definition of set intersection} 

fA n pB t- 0 

This result is similar to the result for primitive events. It states tha.t A precedes B if and only if 
the future of A and the past of B overlap. 

fA n pB t- 0 
¢} { Set calculus; fA <;; E and pB <;; E } 

EVA "1 pB 
¢} { Corollary 4.13 and Theorem 2.17 (Structure of consistent time vectors)} 

T.(EVA) 'l T.pB 
¢} { Corollary 4.17 } 

E - TR.fA 'l T.pB 
¢} { Property 4.27; Property 4.7; Definition 4.8 (Timestamp T) } 

E - (SUP a: a E A: THa) 'l T.B 

This derivation suggests introducing a second timestamp for abstract events as follows. 
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Definition 4.28. (Reversed timestamp of an abstract event) The function TR : 2E ---> INN defines 
the reversed timestamp of an abstract event as follows. For any A C;; E, TR.A = (SUP a: a E 
A: TR.a). 

Like the other timestamp for a.bstract events, the reversed timestamp for an abstract event can 
be calculated from the timestamps of its constituents. It is an encoding of the beginning of the 
abstract event. Note that in an actual implementation, one probably wants to use E - THA as 
the reversed timestamp for an a.bstract event A. That is, one wants to timestamp an abstract 
event with two times in vector time instea.d of one in vector time and one in reversed vector time. 
Figure 5 shows the meaning of the reversed timestamp of an abstract event. It extends Figure 3. 
An abstract event is determined by the two times that mark its beginning and end. 

T.A 

Figure 5: The mea.ning of the two timestamps of an abstract event. 

The derivation a.bove a.nd the introduction of the reversed vector timestamp for abstract events 

yield a precedence test that is independent. of the computation a.t the level of primitive events. 

Theorem 4.29. For any abst.ract. events A and 13, A :< B ¢> E - TRA 1. T.B. 

The number of integer comparisons for this test is at most N. \,vithout further knowledge it is 
not possible to derive a more efficient test. Therefore, this is the first test that satisfies the two 
criteria for precedence tests for ahstract events. Figure 6 illustrates this result. The solid lines 
depict E - TR.A and T.B. The da.shed lines depict T.A and E - TR.B which are not involved in 

deciding A :< B. 
If the location set of an abstract event is known, derivations similar to the ones above yield the 

following result. 

Theorem 4.30. Let A and B be abstmct events. 
A :< B ¢> (3 i: i E IA: E.i - THA.i < T.B.i) 

¢> (3 i:i E lB: E.i - TR.A.i < T.B.i) 

These tests are, in terms of integer comparisons, more efficient than the previous one. If the 
loca.tion set of ahstract events is known, one only ha.s to consider components of the time vectors 
within the location set of one of the a.bstra.ct events. For the two tests, the maximum number of 
integer comparisons is IIAI and IIBI respect,ively. This is simila.r to the efficiency of the last test 
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Figure 6: Precedence among abstract cvents in terms of vector time and reversed vector time. 

derived in Section 4.2 (see Theorem 4.10). Howcver, unlike this test, the tests in Theorem 4.30 are 
independent of the primitive level of the abstraction hierarchy. 

Smumarizillg, at the cost of an extra timestamp for both primitive and abstract events, inde
pendence from the primitive abstraction level is gained. The question of which precedence test 
is most useful can only be answered in the context of a particular application. If many abstract 
events are formed in many different levels, then the t.ests derived in this subsection are probably 
more useful than the ones derived in Section 4.2. The Hext section even provides a third alternative 
based on the notion of conve" abstra.ct event.s. 

5 Timestamping convex abstract events 

Up to this point, no restrictions have been ilnposed on the structure of abstract events. However, 
applications do not necessarily lise arbitrary subsets of events. In this section, timestamps and 
precedence tests for the subclass of convex a.bstract events are discussed. 

Definition 5.1. (Convex abstract events) An a.bstract event A is called convex if and only if 
(If ao,a],e: aO,"1 E A II e E E: "0 =' e II e =' "1 =} e E A). 

Convexity is a meaningful requirement for abstract events for the following reason. For a convex 
abstract event A, there is no (primitive or abstract) event Q in the previous level that is not a 
constituent of A but depends on the completion of paIt of A such that,.in tum, the completion of 
A depends on Q. In other words, there is no outside interference; a convex abstract event describes 
a complete unit of work. Note that every non-convex abstract event implies a violation of the 
anti~symmetry requirement of a. partial order. 

Convexity is useful as well. First, convex abst.ract events are easier to recognize automatically 
than arbitrary abstra.ct events, beca.use it is not necessary to filter out interfering events. Second, 
they are more general and therefore more widely a.pplicable than, for example, complete precedence 
abstra.ctions [18] and contractiolls (3, 8, 18]. Third, since there are no interfering events, convex 
abstract events are considerably easier t.o display than arbitrary abstract events. Finally, this 
section shows that determining causality a,mong convex abstract events requires less timestamping 
effort than determining causality among arbitrary abstract events. 

There does not seem to be another class of abstract events that combines all these properties. 
Therefore, the class of convex abstract events is an interesting class for further study. 
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In addition, convexity can be used to derive alternative timestamping schemes for arbitrary 
abstract events. The idea of using timestampillg schemes for convex abstract events for arbitrary 
events is based on the following definition and resulting theorem. 

Definition 5.2. (Convex closure) The convex closnre of an abstract event A is defined by a 
fnnction c. : 2E --+ 2E as the smallest convex set of events containing A. 

Theorem 5.3. For any abstract events A and D, .4:< B ¢} cA :< cB. 

Proof. Assume A :< D. Since A is a subset of cA and B a subset of cB, the definition of precedence 
among abstract events (Definition 3.1) yields that cA :< cB. 

Assume cA :< cB. Let a E cA and b E cB be two events such that a :< b. There are four 
possibilities: (1)" E A and bE B; (2) (' 1. A and b E B; (3) a E A and b 1. B; (4) a 1. A and 
b 1. B. In case (1), it follows immediately that A :< B. In case (2), it follows from the definitions 
of convex abstract events (Definition 5.1) and the convex closure (Definition 5.2) that there is an 
event e E A such that e :< a. Since a :< b, e also precedes b. This yields A :< B. For cases (3) and 
(4), silnilar arguments ca.n be given. 0 

Theorem 5.3 means that timestamp schemes derived for convex abstract events can be used for 
arbitrary abstract events as follows. For any abstract event, first calculate its convex closure and 
use the resulting convex event set to calculate timestamps according to some scheme for convex 
abstract events. Then, assign these timestamps to the possibly non convex abstract event. The 
remainder of this section shows that this is an interesting alternative to reversed timestamping. 

The following property is the key to deriving an efficient precedence test for convex abstract 
events. It states that to determine the causal past of a convex abstract event A in a process i in 
its location set, it is sufficient to consider primitive events in the intersection of A and Ei. This is 
not necessarily true for all abstra.ct event tha.t is not convex: an event in Ei can succede all events 

in PiA and precede some other event in A \ Ei. 

Property 5.4. Let A be a convex abs/.ract event. For any i E lA, PiA = Pi(A n Ei). 

Proof. First, it, is proven t.hat Pi(A n Ei) <;; PiA. This follows immediately from An Ei <;; A. 
Second, it is proven that PiA <;; Pi( An Ei). Assume that e is an event in PiA \Pi(A nEd. Not.e 

that e E PiA implies t.hat e E E i . So e 1. Pi(A n Ed implies that e 1. A. It follows from i E lA, that 
An Ei is not empty. Given that e 1. Pi(A n Ei), it follows that there is an "i E An Ei, such that 
ai -< e. Since e E PiA, there also exists an event" E A such that e :< fl. However, this contradicts 
the convexity of A. From this contradict.ion it follows t.hat PiA <;; pi(A n E;). 

Combining these two results yields PiA = Pi(A n Ei). 0 

The duality of:< and::: gives the following property. 

Property 5.5. LeI. A be a convex ab.stract event. For an.y i E lA, fiA = fi(An E;). 

Let A be a convex abstract event and let i be a process in LAo Property 5 .. 5 can be used to derive an 
expression for TR .A.; in terms of vector time. This means that the first test in Theorem 4.30 can 
be expressed in terms of vector time, yielding a precedence test for the subclass of convex abstract 
events. 
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TR.A.i 
= { Definition 4.28 (Reversed timestamp TR); Property 4.27; Corollary 4.26 } 

TR.fiA.i 
{ Property .5.5 } 

TR.fi(A n Ei).; 
{ Definition 4.24 (Causal future) } 

TR.(U a: a E An Ei : fia).; 
= { (The dual of) Theorem 2.17 } 

(SUP a: a E An Ei: TRfi,,).; 

= { SUP is the componentwise maximulll } 
(MAX a: a E An Ei: TRfia.i) 

{ Corollary 4.18 } 
(MAX a: a E An Ei: E.i - T.Pia.i + 1) 

{ Corollaries 2.13 and 2.14; Domain is not empty} 
E.i - (MIN a: a E An E i : T.a.;) + 1 

It follows that for any i E lA, E.; - TRA.i = (MIN a: a E An E i : T.a.i) - 1. 
This derivation suggests replacing the reversed timestamp for convex abstract events. Two 

definitions of a new timestamp are given and shown equivalent. The first definition follows from 
the derivation a.bove and is in t.erms of primitive timestamps. The second, recursive definition 
shows that the new timestamp can be calculated from the timestamps of the constituents of an 
abstract event. 

Definition 5.6. (Second timestamp for convex abstract events) The function TGR : 
2E -----+ IN N defines a timestamp for primitive and abstract events as follows: 

T GR . _ { T.e.i - 1, for e E Pi 
.e.! - E' 1 . 

• 1., at lcnVlse 

for any e E E. 

TGR 
{

(MIN a: a E An Ei: T.a.;) - I, 
.A.i = 

E.-i, 
for ;. E LA 
otherwise 

for any A <;; E. 

EU 

For reasons of ll1athelnatical convenience that \\Till become clear in a Illmnent, any cOInponent 
corresponding to a process outside the location set of an event is defined to be E.i. 

Corollary 5.7. For' any convex abstract event A and process i E lA, E.i - TR.A.i = TGR.A.i. 

This corollary can be used to adapt Theorem 4.30 which yields the following precedence test for 
convex abstract events. 

Theorem 5.B. (Precedence test for convex abstract events) For any convex abstract events 
A and B, A==, B {o} (3 i: i E IA: TCR.A.i < T.n.i). 

Note that the components of the timestamp that correspond to processes outside the location set 
are not necessary to determine precedence between convex abstract events. 

As mentioned, the precedence test. in Theorem 5.8 can also be used for arbitrary abstract events 
provided that every abstract event is assigned the two timestamps defined by T and TGR. The 
latter must be calculated using the convex closure of abstra.ct events. 
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Theorem 5.9. (Precedence test for arbitrary abstract events) For any abstract events A 
and B, A:o B ¢> (3 i: i E l(cA): TCRcA.i < T.B.i). 

In order to show that the new timestamp T GR can be computed from the timestamps in the 
previous level of the abstraction hierarchy, the following recursively defined timestamp is shown to 
be equivalent to TGR. The binary operator co is used to denote constituents of an abstract event. 

Definition 5.10. (Recursive definition of TGR) The function TGRR : E U 2E -----> INN defines a 
timestamp for primitive and abstract events as follows. For any e E E, TCRRe = TCR.e. For any 
A C;; E, TGRR.A = (INF AD: AD co A: TGRRA o). 

Property 5.11. TCRR = TCR. 

Proof. The proof is by induction on the level of abstraction. 
Basis: For a.ny primitive event e E E, TGRRe is equal to TCR.e by definition. 
Induction Hypothesis: For any abstract event A in abstraction level at most n, TCRR.A = TGR.A. 

I"dudi!!e Step: Assume A is an abstract event in abstraction level n + 1. To avoid case analysis in 
the derivation below, it is assumed that n is at least one. For any process i E P, 

TGRRA.i 

{ Defini tion .5.10 } 
(MIN AD: AD co A: TCRR.Ao.£) 

= { Induction Hypothesis} 
(MIN AD: AD co A : TGR.Ao.i) 

{ Definition .5.6; n :;. 1 } 
(MIN AD: AD co A II i E lAo: (MIN a: a E AD n Ei: T.a.i) - 1) min 
(MIN AD: Ao co A II i <t LAD: E.i) 

= { i E IA ¢> (3 AD: AD co A: i E lAo); MIN is associative } 

{
(MIN a: a E A n E i : T.a.i) - 1, i E IA 
E.i, i <t IA 

{ Definition .5.6 } 
TGR.A.i 

It is easy to verify that the same result is obtained for 11 equal to zero. o 

The timestamp defined by T CR (or TGRR) marks the beginning of abstract events in vector time. 
It replaces the timestamp defined by TR that ma.rks the beginning in reversed vector time. The 
relation between TR and TGR is shown in Figure 7. 

Two rema.rks are in order. First, Theorems .5.8 and .5.9 have duals in terms of reversed vector 
time. However, they does not a.ppear to be of any practical use. Second, timestamp TGR can 
also be used to obtain a precedence test for primitive events. However, this test is the same as in 
Theorem 2.11. 

Compared to the precedence tests derived in the previous section, the precedence tests in The
orems 5.8 and .5.9 have one big advantage: they are independent of reversed vector time. However, 
it is still necessa.ry to timestamp every abstra.ct event twice. An interesting question is whether it 
is possible to determine precedence using only a single timestamp. The answer is yes provided that 

23 



~ ., . 
.... - -" " 

IA 
--''-+- - - - - 1-1 -'---

Figure 7: The relation between TR and TeR. 

abstract events are convex a.nd mutually disjoint. .. Depending on the application, this might be a 
reasonable assumption. 

A useful single timestamp for convex abstract. events seems to be a timestamp that integrates 
the times for the beginning and end of events. 

Definition 5.12. (A single timestamp for convex abstract events) The function Teo: 
EU2E --+ INN defines a timestamp for primitive and abstract event.s as follows. For any 0 E EU2E, 
Teo.o = T.o inf TeRa . 

For processes inside the location set of a convex a.bstract event, this timestalnp represents the 
beginning of the event. For processes outside the loca.t.ion set, it represents the end. This is 
forma.Iized in the following two corollaries (see also Figure 8). Note that the corollaries are true for 
arbitrary primitive or abstract events. 

Corollary 5.13. For any primitive a/' abstract. event a E E U 2E and process i E 10, Teo .o.i = 
TeRa.i. 

Corollary 5.14. For any primitive OT' abstract event Q E EU2 E and process i ¢ la, Teo .a.i = T.a.i. 

W : \ ,', ., '. 
" ......... ~ · . · . · . 

. . 
: IA : 
: r----I . 

Teo.A 

T.A 
E-TRA 

Figure 8: The t.imest.amp Teo. 

Assuming that abst.ract events are convex and mutually disjoint, timestamp function Teo charac
terizes causality. 

Theorem 5.15. (Precedence test for disjoint, convex abstract events) For any disjoint, 
convex abstract events A and B, A ~ 11 {} (3 i: ; E IA: Teo.A.; < Teo.B.i). 
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Proof. For convex abstract events, Theorem ,5,8 gives A =' lJ ¢} (3;: ; E LA: TCR.A.; < T,B.i), 
Corollary 5.13 states that for any i E LA, T CO .fl,; = T CR .fl.i, Furtllermore, Corollary 5,14 yields 
that only for components i, in both LA and LB, Tco,B,; # T,B,i, Since TcoB,; ::; T,B.i, it is 
sufficient to prove the following implication, 

Assume A =' B, If there is a process i E P and a primitive event a E An Ei such that 
i E LB and a E PiB, then TcoA,; < TcoB,;, 

Informally, if the ordering between A and B is caused by a primitive event in process; that is an 
element of both location sets, then the corresponding component of their timestamps must reflect 
this. 

Assume that A =' B and that; and a exist as above, Because A and B are disjoint and convex, 
fia :::J fiB, Definition 4,24 (Causal future of all abstract event in a process) gives fiA :::J fiB, which 
yields: 

fiA :::J fiB 
¢} { (The dual of) Theorem 2,17 } 

TRfiA > TR,fiB 
¢} { Corollary 4,26 } 

TRfA,i> TRfB,i 
¢} { Property 4,27; Definition 4,28 (Reversed timestamp TR) } 

TR.A,i > TR,B,i 

¢} { Algebra} 
E.i - TR,A,; < E.i - THB,; 

¢} { Corollary ,5,7 } 
TCR,A,; < TCR,B,i 

¢? { ; E LA n L B; Corollary ,5,];3 } 

TcoA,i < Tco,lJ,; 

o 

Unfortunately, the timestamp in Definition ,),12 and the precedence test in Theorem 5,15 do 
not appear to be useful for arbitrary abstract events: in most cases, it cannot be guaranteed that 
the convex closures of all abstract events are mutually disjoint. 

It remains to be shown that the new timestamp is useful in a hierarchy of abstract descriptions, 
First, it is shown that the timestamp can be expressed in terms of primitive timestamps, Second, 
we show that it can be defined recursively and, therefore, calculated from the timestamps of the 
constituents. 

Definition 5.16. (TcO in terms of primitive timestamps) The function T CI : EU 2E ---. INN 
defines a tinlestamp for primitive a.nd abstra.ct events as follows: 

TCI ' {T ,e, i-I, for e E Ei 
.e.1- = T,e.i, otherwise 

for any e E E, 
Cl { (MIN,,: a E An E i : T,a,;) - 1, for i E LA 

T ,A,;= (HAX C I ' 
m a:" E A: T,o,i), ot lerW1se 

for a.ny A ~ E, 

2e 
'J 



Definition 5.17. (Recursive definition of TCO) The function TC2 : E U 2E ---+ JNN defines a 
timestamp for primitive and abst.ract. event.s as follows: 

T C2 .e = TCI .e, 
for any e E E. 

T C2 A . _ { (MIN AD: AD co A 1\ ; E LAD: T C2 .Ao.i), 
.. 1- (MAXAo: AocoA: T C2 .Ao.;). 

for i E LA 
otherwise 

for any A <; E. 

Property 5.18. T CO = T CI = T C2 . 

Proof. First, we show that TCO = TCI. The equivalence is only shown for abstract. events. It is 
left t.o the reader to verify the property for primit.ive events. For any abstract event A and process 
; E P, 

Tco.A.i 

= { Definition 5.12 } 
(T.A inf TCRA).i 

{ Definition 4.8 } 
(MAX a: a E A: T.a.;) min TCRA.i 

Two cases can be distinguished. 
Assume i E LA. 

(MAX a: a E A: T.rt.i) min TCRA.; 
= { Definition ·5.6 } 

(MAX a: a E A: T.a.;) min 
«MIN a: a E A n E i : T.a.i) - 1) 

= { Domains not empty} 
(MIN a: a E A n E i : T.rt.i) - 1 

= { Definition 5.16 } 
TCi.A.i 

Assume i rt LA. 

(MAX a: ({ E A: T.a.;) min TCR.A.i 
{ Definition 5.6 } 

(MAX a: a E A: T.a.i) min E.i 
{ Domain not empty} 

(MAX a: a E A: T.a.i) 
{ Definition 5.16 } 

TCI.A.; 

Second, it is shown that TC2 = TCI. The proof is by induction. 
Basis: For any primitive event e E E. T C2e is equal to TCI.e by definition. 
Induction Hypothesis: For any abstract event. A in abstraction level at most n, T C2 .A = rCI.A. 
Inductive Step: Assume A is an a.bstract. event ill abstraction level n + 1. To avoid case analysis in 
the derivations below, it is assumed that n is at least one. Distinguish two cases. 

For a.ny i E LA, 

rC2.A.i 

{ Definition .5.17 } 
(MIN AD: AD co A 1\ i E LAD: T C2 .Ao.;) 

= { Induction Hypothesis} 
(MIN AD: AD co A 1\ i E LAD: TCI.Ao.i) 

{ Definition .5.16; n ;:: 1 } 
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For a.ny i rf. lA, 

T C2 A.i 
{ Definition 5.17 } 

(MAX AD: AD co A: T C2 .Ao.i) 
{ Induction Hypothesis} 

(MAX AD: AD co A: TCI.Ao.i) 
{ (\I AD: AD co A: i rt LAD); 

Definition 5.16; n ;:: 1 } 



(MIN AD: AD co A II i E lAo: 
(MIN a: a E AD n E;: T.".;) - 1) 
{ Domains not empty; associativity} 

(MIN a: a E An E;: T.a.i) - 1 
{ Definition 5.16 } 

TCI.A.i 

It is left to the reader t.o verify t.he case n equa.l to zero. 

6 Conclusions 

(MAX AD: AD co A : 
(MAX a: a E AD: T.a.i)) 
{ DOluains not empty; associativity} 

(MAX a: a E A: T.a.i) 
{ Definition 5.16 } 

TCI.A.i 

o 

In this paper, we have investigated causalit.y among abst.ract event.s. In part.icular, causality was 
formalized by defining a precedence relation on abstract event.s, and charact.erizations of the prece
dence relation using vector time were given. 

Several tests to determine precedence bet\veen abstract events were derived. Each test was 
evaluated against two criteria.: efficiency and applicability in a hierarchical abstraction facility. 

For arbitrary abstract. events, two alternatives were given t.hat. satisfy the criteria. The first 
alternative is based on the not.ion of reversed vect.or time. Every abstract event is assigned two 
timestanlps, Olle in ordinary vector time marking the end of the abstract event and one in reversed 
vector time marking the beginning. This leads to precedence tests that satisfy the two criteria. A 
disadvantage is that reversed vector time is computationally expensive. 

The second alternative is based on the notion of convexity. The structure of abstract events 
was restricted to the class of convex a.bstract events. For this class, the reversed vector timestamp 
can be replaced by a timestamp in terms of ordinary vector time. Although the class of convex 
events is itself meaningful and practically useful, this new timcstalnp can also be used for arbitrary 
abstract events: the convex closure of abstract events is used to calculate the correct timestamp. 
An advantage of this alternative is t.hat reversed timestamps are no longer needed. However, every 
ahstract event is still timestamped twice. A disadvantage is that on the fly calculations of the 
convex closure might be too expensive for some applications. 

As a final result, for mutually disjoint convex abstract events, a single timestamp is sufficient. 
This timestamp integrates the two timestamps marking the beginning and end of an abstract event. 
Unfortunately, this timestamp does not a.ppear to be useful for arbitrary abstract events. 
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