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Chapter 1

Introduction and motivation

1.1 Brief summary

In this thesis we are concerned with the use of local search heuristics in
combinatorial optimization. The motivation of the research is given by the
common defect of many local search heuristics that they tend to get stuck in
an unpromising part of the search space. We propose a restart mechanism
for local search heuristics that attempts to overcome this deficiency.

1.2 Combinatorial optimization

Combinatorial optimization is the discipline that is concerned with finding
the best solution to a problem that has a finite or countably infinite set
of alternative solutions. These problems arise in situations where discrete
decision variables are involved, such as in planning and design.

A combinatorial optimization problem is specified by a set of problem
instances and is either a minimization problem or a maximization problem.
Each solution has a quantitative quality measure, which is generally referred
to as its cost. By reversing the sign of the solution cost, a maximization
problem is transformed into a minimization problem. Hence, without loss
of generality, we will restrict ourselves to minimization problems.

An instance of a combinatorial optimization problem is a pair (S, f),
where S is the solution set and f is the cost function f : S — R. The
problem is to find an optimum solution, i.e., a solution s € S such that
f(s) < f(¢') for all s’ € S. Usually, the solution set and the cost function
are given implicitly by means of an algorithm with parameters, rather than
explicitly (see Papadimitriou and Steiglitz [54]). For a given problem type,

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

we have two polynomial algorithms. One of the algorithms tests whether
or not its input is a solution. The other algorithm calculates the cost of a
solution.

Many combinatorial optimization problems are NP-hard, see Garey and
Johnson [24]. It is generally believed that NP-hard problems cannot be
solved to optimality within an amount of time that is polynomially bounded
in the size of the problem instance. From a computational point of view, ob-
taining an optimal solution may require an excessive amount of time. Nev-
ertheless, remarkable successes were booked recently in finding optimum
solutions to large problems instances; see for instance Applegate, Bixby,
Chvétal and Cook [3]. On the other hand, there is much interest in find-
ing near-optimal solutions in an amount of time that is practically feasible.
Roughly speaking, there are two options for obtaining near-optimal solutions
to NP-hard problems: constructive methods and local search methods. Con-
structive methods build a single solution, while local search methods start
with a given solution and repeatedly try to improve it. In certain cases,
constructive methods are known to produce, in polynomial time, solutions
with a cost that is within a prespecified bound from the unknown optimum
cost. Local search heuristics, in general, have no such performance guar-
antees, neither with respect to the cost nor with respect to the running
time. Nevertheless, for many combinatorial optimization problems, local
search heuristics are known to produce excellent solutions within a reason-
able amount of time; see for instance Aarts & Lenstra [2].

1.3 Local search heuristics

Local search heuristics date back to the 1950’s, when Bock [8] and Croes
[18] proposed link exchange algorithms for the traveling salesman problem.
Later, the same ideas where applied to a variety of other problems, such as
scheduling (Page [53], Nicholson [50]) and graph partitioning (Kernighan &
Lin [37]). After a relatively quiet period, the recent increase in computa-
tional resources has contributed to a revival of the subject.

Starting from a given initial solution, a local search heuristic repeatedly
tries to find a better solution by modifying the current solution slightly,
until a stop criterion is met. Applying modifications to the current solution
is called a mowe or a step. Moving from one solution to the next is sometimes
called an iteration. The sequence of successive solutions that are visited by
a local search heuristic is called the path or the trajectory.

The neighborhood function describes what kind of modifications to the
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Figure 1.1: A two-exchange move for the traveling salesman problem.

current solution are allowed. Let (S, f) be an instance of a combinatorial
optimization problem. A neighborhood function is a mapping N : S — 2°
that defines for each solution s € § a set of solutions that are in a sense close
to s. The set N(s) is the neighborhood of solution s, and each s’ € N (s)
is called a neighbor of s. Because N imposes a topology upon S, the pair
(8, N) is often referred to as the search space.

Traveling salesman. In the traveling salesman problem (TSP) we are
given a finite set of cities and for each pair of distinct cities, the cost of travel
between them. The set of solutions consists of all tours that pass through
all the cities exactly once and return to the point of departure. The cost
of a tour is equal to the sum of the cost of the edges. We want to find a
cheapest tour. A tour is often represented by a graph. The cities correspond
to the vertices of the graph and for every pair of subsequent cities in the
tour, there is an edge between the corresponding vertices. The two-exchange
neighborhood replaces two edges in the current solution by two others in such
a way that another tour is obtained, see Figure 1.1.

Let (S, f) be an instance of a combinatorial optimization problem and
let A be a neighborhood function. A solution s € S is called locally optimal
with respect to N when f(s) < f(s'), for all s’ € N (s).

Besides the neighborhood function, there are two other ingredients that
constitute a local search heuristic: a search strategy and a stop criterion.
The search strategy determines which neighbor of the current solution is
chosen as the successor. Common search strategies include best improve-
ment, which selects the best neighbor, and first improvement, which selects
the first neighbor that is better than the current solution while searching
the neighborhood of the current solution. Often, the decision which search
strategy to employ depends on the neighborhood function. In general, small
neighborhoods can be searched faster than big neighborhoods, but big neigh-
borhoods are more likely to contain an improving neighbor. A well-chosen
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combination of neighborhood size and search strategy strikes a balance be-
tween speed and effectiveness.

Stop criteria are usually expressed in terms of the length of the search
process or in terms of the quality of the solutions that are found. Common
stop criteria include a bound on the running time, a maximum number of
iterations, a maximum number of subsequent non-improving iterations, the
current solution being a local optimum, and the current solution having a
cost that is lower than a given threshold.

Iterative improvement. Starting from a given solution, an iterative
improvement algorithm repeatedly selects a neighbor as long as it improves
the current solution. Consequently, the algorithm terminates when the cur-
rent solution is a local optimum. Iterative improvement for the TSP with
the 2-exchange neighborhood is known as 2-opt (Lin [41]).

Another very important issue for successfully applying a local search
heuristic is the initial solution. A common way to obtain an initial solu-
tion is by means of a construction heuristic, which is either randomized or
deterministic. The construction of the initial solution is not part of the lo-
cal search heuristic itself. Nevertheless, it can have a great impact on the
performance of the local search heuristic. The construction of good initial
solutions is a major topic of the thesis, as will become clear later on.

1.3.1 Multiple independent runs

The main drawback of iterative improvement is that it gets trapped in the
first local optimum that is encountered, which can be very bad. A common
way to improve iterative improvement is by performing multiple runs, each
started with a different solution, and taking the best result. The runs are
independent of each other in the sense that there is no common memory in
which they share information about the search process. Obviously, the same
technique can also be applied to other local search heuristics that tend to get
trapped in poor-quality local optima. When the local search heuristic under
consideration is randomized, different results can be obtained even when the
heuristic is started with the same solution. In that case, the initial solutions
need not be different for each run.

Multiple independent runs are capable of improving the performance of
many local search heuristics for a variety of combinatorial optimization prob-
lems. Because of the simplicity, multiple independent runs are frequently
used in practice, and they often produce better results than a single run of
a local search heuristic. On the down side, each run is started from scratch,
wasting all efforts of preceding runs.
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1.3.2 Escaping from local optima

Ever since the introduction of local search heuristics, a large variety of meth-
ods has been proposed to reduce the chance of getting trapped in a poor
local optimum. Basically, there are two options. Either one can change the
topology of the search space or one can change the search strategy. The
topology of the search space can be changed by using a different neighbor-
hood function. Alternatively, multi-level local search heuristics use two or
more different neighborhood functions and frequently switch from one neigh-
borhood function to another. In wariable depth search, a relatively simple
neighborhood function is turned into a more complex one by letting a single
move consist of multiple simple moves. Below, we discuss two popular local
search heuristics that have a built-in mechanism to avoid getting trapped
in poor local optima, namely simulated annealing and tabu search. In both
heuristics, it is the search strategy that reduces the chance of getting trapped
in a poor local optimum.

Simulated annealing. Simulated annealing was introduced by Kirk-
patrick, Gelatt and Vecchi [38] and Cerny [14]. Each iteration of simulated
annealing consists of two parts. First, a neighbor of the current solution is
selected uniformly at random. Next, it is determined whether or not the
neighbor is accepted in the sense that it becomes the successor of the cur-
rent solution. When the neighbor is better than the current solution, it is
accepted. When it is worse than the current solution, it is accepted with a
certain probability that is reversely related to the cost difference with the
current solution. At the ith iteration, the acceptance probability is given
by exp(—(f(s') — f(s))/ti), where s denotes the current solution, s’ is the
selected neighbor, and ¢; is the control parameter at iteration ¢. The control
parameter is gradually decreased such that the probability of accepting a
deteriorating move decreases over time.

Tabu search. Tabu search was proposed by Glover [27]. See also Glover
[28, 29] and De Werra and Hertz [73]. Tabu search repeatedly selects the
best neighbor, even when it is worse than the current solution. The set of
neighbors is restricted by a so-called tabu list. After effectuating a move,
the reverse move is added to the tabu list, indicating that it is forbidden
for the next ¢ iterations, where ¢ is called the tabu tenure. In this way, tabu
search prevents visiting solutions that were recently seen.
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1.4 Pathology of local search heuristics

A highly desirable property of local search heuristics is the existence of a
trade-off between computational effort and the quality of the solutions that
are found. Unfortunately, even some of the most successful heuristics seem
to lack this property. Apparently, there are other pitfalls besides the danger
of getting trapped in a poor local optimum. In this section we discuss some
of the weaknesses that are common to many local search heuristics. These
weaknesses are generally referred to as getting stuck.

The issue of getting stuck is best illustrated with an example. Chained
Lin-Kernighan (CLK) [47] is a well known local search heuristic for the
TSP. We did five runs of CLK on the TSPLIB problem instance pla7397
with 7,397 cities (Reinelt [56]), each started in a different solution, and cal-
culated the relative excess permillage above the optimum as a function of
the iteration number. The results are given in Figure 1.2. The trajectories
of these independent runs are improving very fast in the beginning of the
search processes. Quite early in the search process, the trajectories start
to diverge. Apparently, something can go wrong at an early stage that is
not easily corrected later on. There often appear to be almost no improve-
ments when CLK is given more time. None of the five runs was able to
find an optimum tour. About half of the time was wasted, as no further
improvements were found. We conclude that CLK is likely to get stuck in a
near-optimal solution, and that the result of CLK is quite dependent of the
initial solution.

We obtained similar results for other combinatorial optimization prob-
lems and local search heuristics. Starting from a given solution, a local
search heuristic typically finds many big improvements in the beginning of
the search. After a while, it takes longer to find an improvement, and the
improvements are smaller. When no improvements are found for a long
time, either we have found an optimum, or the heuristic got stuck.

There appears to be a generalized notion of getting stuck in a local
optimum, namely getting stuck in a part of the search space that does not
contain any further improvements. From now on, we adopt the following
definition.

Definition 1.4.1. A local search heuristic is said to get stuck when it tra-
verses a relatively long path without any significant improvements.

Although this definition is rather vague, is does capture the essence of
the common deficiency of many local search heuristics.
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Figure 1.2: The trajectories of five runs of CLK for TSPLIB instance
pla7397. The solution quality on the y-axis is given in per mille above
the optimum as a function of the iteration number on the z-axis.

convergence

Some heuristics are known to converge to an optimum, when given enough
time: an optimum is found (with probability 1) as the number of iterations
approaches infinity. Unfortunately, these heuristics theoretically require an
infinite amount of processing time before actually finding an optimum. Be-
sides that, we do not know the optimum cost of the problem instance in
advance, so we cannot tell whether the heuristic has found an optimum or
not. As a result, we do not know when to stop.

For many of the most successful heuristics found to date, no convergence
results are known. The known convergence results are mainly of theoretical
interest and not of much practical value.

Notice that the notion of getting stuck, as we use it, is not the opposite
of convergence: even heuristics that are known to converge can get stuck in
an unpromising part of the search space, wasting a lot of time.

1.4.1 Cost landscape

To make the behavior of local search heuristics intuitively clear, we use the
following metaphor. Consider the problem of finding the lowest point on
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the surface of the Earth. The solution set is the set of integer grid points,
which are denoted by pairs (z,y) where z specifies the longitude and y the
latitude. The cost of a solution is its height with respect to the average sea
level. The neighborhood of a point (z,y) is defined as the set of points that
can be obtained by increasing or decreasing x or y by one.

Although many local search problems are not as easy to visualize as the
Earth metaphor, much of the local search terminology seems to be derived
from it. For example, many combinatorial optimization problems have bi-
nary decision variables, and in general more than two of them; nevertheless,
the triple (S, N, f) is often referred to as the cost landscape. In what follows,
we use the Earth metaphor to clarify some of the local search terminology
that is related to the notion of getting stuck.

barriers

Obviously, local search heuristics generally prefer improving moves to de-
teriorating moves. Consequently, there is a danger of getting stuck in an
unpromising part of the search space. It is not hard to imagine that some-
times a number of unattractive moves have to be effectuated before any
further improvement can be found. In the Farth example, a region enclosed
by mountains is hard to escape from. The mountains form an almost im-
penetrable obstacle for local search heuristics. These obstacles are known
as barriers. Many search strategies are unlikely to select a move that de-
teriorates the cost of the current solution, let alone a whole sequence of
deteriorating (uphill) moves. As a result, for many local search heuristics it
is unlikely to find any further improvements.

Many local search heuristics have a mechanism that allows uphill moves,
notably simulated annealing and tabu search. But even then, only a limited
number of subsequent uphill moves is allowed, because local search heuristics
should not be too willing to effectuate deteriorating moves. As a result, it
can sometimes be very hard to escape from unpromising parts of the search
space due to the existence of barriers.

plateaux

A plateau is a part of the search space in which all solutions have approx-
imately the same cost. In the Earth metaphor, Holland is an example of
a plateau and because it is so flat, finding the lowest point is hard. On a
plateau, a local search heuristic can get lost in the sense that there is no clear
preference for one solution to the other. Furthermore, when the plateau is
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surrounded by barriers, the presence of many cost-equivalent neighbors im-
plies that the heuristic is not likely to choose a neighbor that is significantly
worse than the current solution. Consequently, it can be very hard for a
local search heuristic to escape from a plateau.

cycling

Neighbor selection rules can sometimes result in revisiting solutions over
and over again, a phenomenon which is known as cycling. Obviously, cy-
cling prevents that further improvements are found. Therefore, many local
search heuristics try to avoid visiting solutions that were visited before.
Simply remembering all visited solutions is not an option because of the
excessive memory requirements and the complexity of comparing a neigh-
bor with all these solutions. Tabu search uses a form of fingerprinting to
identify solutions that were visited recently, while simulated annealing relies
on randomization.

1.5 Commonality-preserving restarts

In almost every practical situation, we face the problem that we do not know
whether our heuristic found an optimum or got stuck in an unpromising part
of the search space with a non-optimal solution. At this point, we are faced
with a dilemma: should we stop or continue? In general, we do not know
the value of an optimal solution, so we do not know when to stop.

The most obvious remedy against getting stuck is performing multiple
independent runs, each started in a different solution, and taking the best
solution. Multiple independent runs have a major disadvantage: they ignore
the knowledge that has been acquired by preceding runs. We present a
restart mechanism that is more subtle in the sense that subsequent runs
take advantage of the past by using information from previous runs.

Experiments indicate that solutions produced by multiple independent
runs of a local search heuristic have many parts in common. Because the
same parts are found over and over again, it is tempting to think of them as
being “probably right”. We operationalize this finding as follows. Instead
of starting from scratch, a subsequent run of the local search heuristic is
started in a solution that already contains these so-called commonalities. By
perturbing the building elements of the best solution found so far in such a
way that commonalities have a low chance of being replaced by others, we
obtain an initial solution that preserves many commonalities. In this way,
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the local search heuristic can immediately start exploring interesting regions
of the search space.

The main objective of the thesis is finding a restart mechanism for exist-
ing local search heuristics that performs better than a single long run of the
heuristic and better than multiple independent runs, given the same total
processing time.

1.6 Thesis overview

In Chapter 2, we elaborate on the concept of commonalities. We give a
definition, show the abundance of commonalities in good solutions, and
sketch a general commonality-preserving restart mechanism.

The first application of commonalities is given in Chapter 3, which is
based upon a paper by Schilham and Ten Eikelder [64]. There we im-
prove the finite-time behavior of the Chained Lin-Kernighan heuristic for the
symmetric traveling salesman problem by using a commonality-preserving
restart mechanism. The commonalities are the edges that constitute the
tours.

In Chapter 4, we describe the Whizzkids problem of 1996. Four news-
paper boys must deliver newspapers to 120 subscribers in Manhattan. The
problem is to cluster and route the addresses and produce a newspaper de-
livery plan such that the last newspaper is delivered as early as possible.
The edges that connect subsequent addresses are used as commonalities.
These edges capture the assignment part of the problem as well as the se-
quencing part. We describe a commonality-preserving restart mechanism
for a tabu search heuristic that is based upon Osman’s A-interchange neigh-
borhood and the 2-opt and Lin-Kernighan heuristics for tour improvement.
Although the problem is still open, in the sense that there is a gap between
the best known upper bound and the best known lower bound, we were able
to find solutions with the best known delivery time for the last newspaper.

Chapter 5 gives some new upper bounds for a number of hard problem
instances of the job shop scheduling problem. These upper bounds were
obtained with a commonality-preserving restart mechanism for the tabu
search heuristic of Nowicki and Smutnicki. For each pair of operations that
are processed on the same machine, we must specify whether one comes
before the other, or vice versa. These elementary precedences are used as
our commonality concept. The chapter is based upon a paper by Schilham
and Ten Eikelder [63].

The Whizzkids problem of 1997 is a generalization of the job shop
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scheduling problem and is studied in Chapter 6. The problem is to find
a schedule for a so-called parents’ night, at which parents have conversa-
tions with the teachers of their kids to discuss their progress at school.
For each parent, a partial order is given in which the teachers are to be
visited. The objective is to finish the parents’ night as early as possible.
We adapted the tabu search heuristic of Nowicki and Smutnicki and im-
plemented a commonality-preserving restart mechanism. This time, the
commonalities are the pairwise orders in which the conversations take place,
from the parents’ point of view and from the teachers’ point of view. The
commonality-preserving restart mechanism is slightly better than multiple
independent runs and slightly better than a single long run.

Chapter 7 demonstrates that commonalities may also be useful in finding
lower bounds, which is illustrated in the context of the job shop scheduling
problem. The commonalities of good solutions are employed to guide the
shave algorithm of Martin and Shmoys. Sharper lower bounds were found
for a number of open problem instances. The chapter is based upon a paper
by Schilham and Ten Eikelder [65].

The final chapter, Chapter 8, contains some general conclusions.



12

CHAPTER 1. INTRODUCTION AND MOTIVATION



Chapter 2

Commonalities

2.1 Introduction

In order to find solutions to a combinatorial optimization problem with
help of a computer, we must decide on how to represent solutions. We
discuss solution representations and define what commonalities are. The
existence and abundance of commonalities is demonstrated by considering
well known local search heuristics for the traveling salesman problem and the
job shop scheduling problem. These two problems are typical and notorious
combinatorial optimization problems. In the chapters to come, we give
two applications of commonalities, thereby showing that commonalities are
useful. First of all, we use them as the basis of a restart mechanism for local
search heuristics. Furthermore, commonalities are employed to guide the
shave algorithm of Martin and Shmoys [45], which derives lower bounds for
job shop scheduling problems.

2.2 Building elements

Before we can implement a local search heuristic for a combinatorial opti-
mization problem, we must decide on how to represent solutions. A single
solution can have many equivalent representations. The representation can
have a significant impact on the performance of the local search heuristic.
An instance of a combinatorial optimization problem can often be as-
sociated with a set of so-called building elements. The building elements
are the elements that constitute solutions. Each solution corresponds to a
subset of the set of building elements. Building elements are the parts that
distinguish one solution from the other. Neighborhoods are often defined in

13
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terms of exchange functions, which replace a number of building elements
by some other building elements while preserving feasibility.

Traveling salesman. In the traveling salesman problem (TSP) we are
given a finite set of cities and for each pair of distinct cities, the cost of travel
between them. The set of solutions consists of all tours that pass through
all the cities exactly once and return to the point of departure. The cost
of a tour is equal to the sum of the cost of the edges. We want to find a
cheapest tour. When the cost of travel between two cities is independent
of the order in which they are visited, the problem is called a symmetric
traveling salesman problem. A tour is often represented by a graph. The
cities correspond to the vertices of the graph, and for every pair of subse-
quent cities in the tour, there is an edge between the corresponding vertices.
The building elements are the edges that connect cities in a tour. A tour
corresponds to a set of edges, but not every set of edges corresponds to a
tour. The 2-exchange neighborhood replaces two edges by two other edges
such that a tour is obtained.

Job shop scheduling. In the job shop scheduling problem (JSSP) we
are given a set J of n jobs, a set M of m machines and a set O of N
operations. For each operation u € O there is a processing time p, € Z™, a
unique machine M, € M on which it must be processed, and a unique job
Ju € J to which it belongs. Furthermore, a binary precedence relation <
is given that decomposes O into chains, one for each job. The problem is
to find a start time s, for every operation u € O such that the makespan,
defined as Chax = max,eco{sy + pu}, is minimized subject to the following
constraints:

Sy >0 for all u € O,
Sy > Sy + Du for all u,v € O with u < v, and
Sy > Sy + Dy OF Sy > Sy +pp  for all u,v € O with M, = M,,.

The first constraint implies that no machine is available before time 0, the
second constraint accounts for the precedence relation < such that no oper-
ation will start before its predecessor in the chain has finished, and the last
constraint is the machine capacity constraint, which stipulates that every
machine can process at most one operation at a time. For simplicity, we
assume that every job visits a machine at most once. An instance of the
job shop scheduling problem can be represented by a disjunctive graph (Roy
& Sussmann [62]). This is a vertex-weighted mixed graph G = (O, A, E)
where the arc set A consists of job arcs connecting consecutive operations
of the same job, and the edge set E consists of edges connecting distinct
operations that must be executed on the same machine. Each vertex u € O
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has a weight p,. Every solution ¢ to the job shop scheduling problem in-
duces a unique acyclic digraph G(o) obtained from G by replacing every
edge {u,v} € E by a machine arc (u,v) or (v,u). The earliest start time
of operation u is equal to the length of a longest path in G(o) up to and
excluding u. The cost of the solution, denoted by ¢(¢), is equal to the length
of a longest path in G(o). Our set of feasible solutions S is the set of acyclic
digraphs that can be obtained from G. These acyclic digraphs correspond
to the set of left-justified schedules. Most neighborhoods for the job shop
scheduling problem are based on reversing a machine arc on a longest path in
the digraph. Reversing an arc on a longest path always results in a feasible
solution, and reversing an arc that is not on a longest path will never im-
prove the solution and can even lead to infeasibility (Van Laarhoven, Aarts
& Lenstra [39]). The machine arcs are the building elements.

Not all combinatorial optimization problems have a natural concept of
building elements. For example, in the Earth metaphor, solutions are pairs
of integers, which have no internal structure. There is no natural representa-
tion of numbers other than the numbers themselves. As a result, the Earth
metaphor is not suitable for illustrating the concept of building elements.

2.3 Commonalities

Often, it is intuitively clear that certain building elements are unlikely to be
part of a good solution. In a TSP instance, it is unlikely that optimum solu-
tions have many long edges. Hence, good solutions will probably not contain
many of these building elements. Similarly, for a given JSSP instance, sup-
pose that the first operation of the first job and the last operation of the
second job are to be processed on the same machine. Scheduling the second
job before the first job on the machine will probably lead to a bad solution.
All good solutions are likely to schedule the former job before the latter one.

Besides these relatively obvious rules of thumb, it turns out that good
solutions also have a lot of building elements in common that are not so
obvious. We are interested in the building elements that are common to
many good solutions. We intend to characterize the typical structure of
good solutions in terms of the building elements that they consist of.

Definition 2.3.1. Let £ denote a multiset of solutions. The commonality
set of L is defined as the set of building elements that are common to all
solutions in L. FEach building element in the commonality set is called a
commonality of L.
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The notion of commonalities of solutions is intimately related to the no-
tion of distance between solutions. Solutions with zero distance must be
equal and have all building elements in common. On the contrary, differ-
ent solutions cannot have all building elements in common. The number
of commonalities is non-increasing in |£| and obviously depends upon the
method that was used to generate the solutions.

For a given multiset £ of good solutions, the commonality set of L is
a partial solution. Intuitively, this partial solution is a blueprint of good
solutions that characterizes their essential structure.

We will now investigate the commonalities of solutions obtained with
well known heuristics for the TSP and the JSSP.

2.3.1 Existence of commonalities

For the TSP and JSSP, we generated a number of good solutions by means
of well known heuristics from the literature: the Chained Lin-Kernighan
heuristic (Applegate et al. [6] and Johnson [35]) for the TSP and the tabu
search heuristic of Nowicki and Smutnicki [51] for the JSSP. We focus on
the question whether good solutions have commonalities and, if so, what the
partial solutions that they induce look like.

Hypothesis 1. Good solutions have many building elements in common.

Traveling salesman. For TSPLIB instance vm1084, we performed
five runs of Chained Lin-Kernighan, each of which is started with a Quick-
Boruvka solution (see Chapter 3). Each run consists of 100,000 iterations.
The resulting tours are all within one per mille of the optimum. The union
of the tours is given in Figure 2.1. The edges in the intersection of the tours
are colored black, while the edges in the union minus the intersection are
colored grey. The black edges are commonalities, the grey edges are not
common to all five solutions. The black edges form a partial tour consisting
of a number of tour segments. Notice that the grey edges are not distributed
evenly over the space: they appear only in certain cross-over regions where
good alternative edges apparently exist. We conclude that the five tours
have many edges in common.

Job shop scheduling. For the first three machines, the machine arcs
common to five different optimum solutions to instance mt10 (see Fisher
and Thompson [20]) are given in Figure 2.2. Only the machine arcs in the
transitive reduction of each machine order are given. Apparently, jobs 5
and 6 are very flexible: they can be scheduled before or after any other job.
The commonalities define a partial order on each machine. The solutions
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Figure 2.1: Existence of commonalities. The union of five different solutions
to TSPLIB instance vim1084. Black edges are common to all five solutions
and grey edges are not common to all.

were obtained with the local search heuristic of Nowicki and Smutnicki. The
initial solution was obtained with a randomized construction heuristic. We
conclude that the solutions have many machine arcs in common.

We conclude that good solutions to TSP’s and JSSP’s have many com-
monalities. In addition, we believe that good solutions to other combinato-
rial optimization problems that involve routing or sequencing also have many
commonalities. Next, we study the number of commonalities in relation to
the quality of the solutions under consideration.

2.3.2 Abundance of commonalities

We continue our investigation of the commonalities of solutions to TSP’s
and JSSP’s that are produced by well known local search heuristics. Here,
we discuss the number of commonalities and the relation with the quality
of the solutions. It is trivial that the number of solutions with cost at most
x is less than or equal to the number of solutions with cost at most y when
r < y. We give empirical evidence that, for TSP and JSSP, the number
of different building elements in the set of solutions with cost at most x
decreases rapidly when x decreases to the optimum cost. Equivalently, the
number of commonalities increases when x decreases to the optimum cost.

Hypothesis 2. The number of commonalities increases with the quality of
the solutions.
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Figure 2.2: Existence of commonalities. Common machine arcs of five opti-
mum solutions to mt10. Only the first three machines are shown.

Traveling salesman. In order to get an impression of the abundance
of commonalities in the local optima generated by independent runs of the
Chained Lin-Kernighan heuristic, we carried out the following experiment.
For TSPLIB-instance rl11849 we did 50 independent runs with various run
lengths T'. We consider six run lengths: 1, 10, 100, 1,000, 10,000 and 100,000
iterations. For each run length, we count the number of different edges in
the local optima produced by r independent runs, for 1 < r < 50. Obviously,
this number is non-decreasing in r. We calculate the ratio of the number
of different edges to the size of the problem instance, in this case, 11,849
cities. For each run length, the ratio is given as a function of r in Figure
2.3. It appears that the number of different edges converges as the number
of runs increases. For all run lengths, the number of different edges in the
50 local optima is less than three times the number of edges in a single
tour. Furthermore, this number decreases as the run length 7' increases.
The results were obtained with CLK starting from a Quick-Boruvka tour.
Similar results were obtained when the initial solution was generated at
random. As increasing the number of iterations generally results in finding
better solutions, we conclude that the number of commonalities in the local
optima produced by CLK increases significantly when the quality of the
local optima increases.

Job shop scheduling. We carried out the following experiment. The
25 best local optima found during 25 independent runs of the tabu search
heuristic of Nowicki and Smutnicki [51] are stored in a list £. For every
machine arc (u, v) in the best local optimum L in £, we determine whether
or not all other local optima in £ have u scheduled before v. The percentage
of machine arcs in L; for which this is the case is given in Table 2.1. The
initial solutions are obtained from a randomized construction heuristic. Each



2.3. COMMONALITIES 19

2.4 T T T T T T T T T

22 | q

Figure 2.3: Abundance of commonalities for TSPLIB instance r111849. The
relative number of different edges on the y-axis as a function of the number
of tours on the x-axis for various run lengths.

independent run halts after T subsequent non-improving iterations. Hence,
T = 0 corresponds to taking a random initial solution and 7" = 1 to stopping
at the first local optimum that is found. We repeat the experiment ten times
and take the averages. Notice that for T'= 0 and T" = 1 there is exactly one
solution in £ for every independent run. For the other values of 7' this is
not necessarily true. Although some runs contribute more to £ than others,
it is not the case that £ consists entirely of local optima found during a
relatively small number of runs. It is remarkable that the percentages of
common machine arcs are very close for ' = 0 and 7" = 1. On the other
hand, the values for 7" = 1 and 7" = 10 differ considerably. For larger T, the
percentage of common machine arcs increases to about 80%. Interestingly,
the percentages are approximately the same for all problem instances that
we considered. As the quality of the solutions generally increases when T
becomes larger, we conclude that the number of commonalities in the local
optima produced by the tabu search heuristic of Nowicki and Smutnicki
increases when the quality of the solutions increases.

For TSP’s and JSSP’s, we conclude that the number of commonalities
increases with the quality of the solutions. Similar results are expected for
other combinatorial optimization problems that involve routing or sequenc-
ing. We believe that it is no coincidence that so many good solutions have
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instance/T 0o 10 10! 102 10° 10* 10° 10°
ta2l | 35.7 36.2 63.2 70.6 723 77.7 783 82.2
ta22 | 36.4 37.1 64.6 65.7 747 77.2 78.7 80.1
ta23 | 35.8 384 623 69.9 73.9 775 79.8 83.9
ta24 | 36.4 37.3 64.3 684 73.1 76.7 83.0 88.9
ta25 | 35.9 372 64.3 721 73.1 73.0 752 79.4
ta26 | 35.9 38.2 63.9 70.3 71.4 75.7 80.2 80.2
ta27 | 36.2 382 61.9 70.3 741 79.0 81.3 83.9
ta28 | 36.7 37.8 63.0 67.7 76.6 79.5 80.5 82.0
ta29 | 36.3 382 66.7 71.9 788 83.6 852 86.1
ta30 | 35.4 36.8 62.2 69.7 741 73.6 779 83.5
ynl | 37.1 39.8 649 73.2 79.1 8l.1 820 85.5
yn2 | 37.1 38.0 65.6 70.5 747 78.7 80.8 82.6
yn3 | 36.3 36.6 61.1 70.7 76.0 80.2 855 87.8
ynd | 32.8 344 572 70.2 720 784 80.6 81.8

Table 2.1: Abundance of commonalities. The average percentage of machine
arcs in the best local optimum found that are common to the 25 best local
optima found during 25 independent runs of the tabu search heuristic due
to Nowicki and Smutnicki for the JSSP, for various problem instances and
run lengths 7.

so many characteristics in common. In the next section, we demonstrate
that commonalities have applications in combinatorial optimization.

2.4 Applications of commonalities

Given that commonalities are abundant and that their quantity increases
with the quality of the solutions, we could think of commonalities as char-
acterizations of what good solutions look like: “commonalities are probably
right”.

Hypothesis 3. Commonalities have useful applications in combinatorial
optimization.

We exploit the abundance of commonalities in two ways: in a restart
mechanism for local search heuristics, and in a shave algorithm for the job
shop scheduling problem that distills information from good solutions to
guide the shaving process. Both applications are sketched below. The details
are given in the remainder of the thesis.
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2.4.1 Commonality-preserving restarts

In Chapter 1, we demonstrated that local search heuristics have a tendency
to get stuck in an unpromising part of the search space. In an attempt to
reduce the time that is wasted in unpromising areas, we perform multiple
shorter runs, instead of a single long run. Unlike multiple independent runs,
that start each run from scratch, we take advantage of the existence and
abundance of commonalities of the solutions found by preceding runs in the
following way. As stated before, it is often intuitively clear that certain
building elements are likely to be part of a good solution. When the same
building elements are found over and over again, they are “probably right”,
and we could as well put them in the initial solution of subsequent runs. This
observation is the basis of our commonality-preserving restart mechanism,
which we will describe below.

During the search, a list of solutions £ = (L1, Lo, . .. ) is maintained such
that ¢(L;) < ¢(Lj) whenever i < j. In every run, one or more solutions are
inserted into £. The insertion criterion of a solution depends on the problem
at hand and on the local search heuristic; the goal is to obtain a diverse col-
lection of promising solutions. First, we perform one or more independent
runs, starting from a solution that is obtained with a constructive heuristic.
When L contains at least two solutions, the initial solution for the next run
is a perturbed copy of L1, the best solution found so far, which is obtained
as follows. In the selection phase, we determine which building elements
in L; are accepted. Each building element in L; is accepted with a certain
probability that depends upon the number of solutions in £ that contain the
building element. Building elements that are common to many solutions in
L have an acceptance probability that is close to 1. Less common building
elements have a relatively low acceptance probability. More generally, we
require that good solutions in £ have more influence on the selection process
than bad solutions. Therefore, we give every L; € L a weight to represent
its relative quality in £. This time, the acceptance probability of a building
element not only depends upon the number of solutions of which it is part,
but also on their relative quality. The building elements that are accepted
will become part of the initial solution of the next run. As the result of
the selection phase is a partial solution, in the augmentation phase we in-
sert building elements at random in such a way that a complete solution is
obtained. A new search is started from the thus constructed solution. By
incorporating the commonalities of the solutions found by preceding runs in
the initial solution of the next run, we are able to prune unfruitful portions
of the search space, although we do not fix any building elements.
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The list £ acts as a global memory that attempts to capture what good
solutions look like. Since £ changes over time, building elements that first
appeared “right” can turn out to be “wrong” later.

Our restart mechanism has at least two parameters. First, we must
determine the run length at which the local search heuristic under consid-
eration tends to get stuck. In general, longer runs are required for larger
instances. In addition to the run length parameter, one or more parameters
influence the acceptance probabilities of the building elements. Implicitly,
the latter parameters determine the amount of perturbation that is inflicted
upon the best solution found so far.

The main objective of the commonality-preserving restart mechanism is
to reduce the chance of getting stuck in an unpromising part of the search
space. Furthermore, commonality information can save time by directing
the search to interesting parts of the search space. Obviously, our restart
mechanism can also get stuck, for instance, when all solutions in £ are in the
same unpromising part of the search space that is surrounded by barriers.
As a result, we must carefully select an insertion criterion in order to obtain
a sufficiently diverse collection of solutions in L.

related work

Many successful local search heuristics that are found in the literature em-
ploy some sort of memory to guide the search process. Back in 1973, Lin
and Kernighan proposed their famous variable depth search heuristic for the
TSP [42]. They observed that local optima found during the course of the
algorithm have certain edges in common. They exploited this observation
by fixing these common edges in the sense that it was forbidden to break
them in subsequent steps. In this way, a memory is used to guide further
search.

Later, other memory-based local search heuristics emerged, including
tabu search and genetic algorithms. Tabu search exploits certain forms of
memory to guide the search process to explore the solution space beyond
local optimality. Simple forms of tabu search only use a short term memory
to avoid cycling. More advanced forms of tabu search also employ longer
term memories in such a way that promising areas can be searched more
thoroughly (intensification), and the search can be directed to unexplored
parts of the search space (diversification). The latter form of tabu search is
also known as adaptive memory programming, or AMP. Many local search
heuristics fit into this category, see Taillard et al. [70] and Glover & Laguna
[30]. The main characteristics of AMP are the following:
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e A set of solutions or some interesting characteristics of solutions is
memorized.

e Initial solutions are generated using the data contained in the memory.
e The initial solution is improved by invoking a local search heuristic.
e The resulting solution is inserted into the memory.

For example, Rochat & Taillard [60] implemented a highly successful heuris-
tic for vehicle routing problems. Vehicle routing problems (VRP’s) are con-
cerned with the delivery of goods to customers by a number of vehicles.
A solution consists of a set of tours, one for each vehicle, such that each
customer is visited exactly once. The objective is to minimize the total
distance travelled by the vehicles. The heuristic consists of two phases. In
the first phase, a number of reasonable solutions are generated by a tabu
search heuristic and the tours in these solutions are memorized. In the sec-
ond phase, a new initial solution is constructed by a process that is based
upon selecting a number of non-overlapping tours. A new search is started
from the thus constructed provisory solution. The tours in the best solution
found are added to the memory, and the process is repeated.

Closely related to AMP is the notion of vocabulary building, see Glover
& Laguna [30]. The basic idea is to identify interesting fragments of so-
lutions as a basis for generating combinations. During the search process
a memory consisting of such fragments is maintained, new fragments are
inserted into the memory, and certain fragments are combined into larger
fragments. The obvious difference with our approach is that commonality-
preserving restarts operate on the level of building elements, while AMP
and vocabulary building manipulate larger solution fragments.

Rosing & ReVelle [61] introduced heuristic concentration, which is closely
related to AMP and vocabulary building. Their two-stage heuristic is par-
ticularly suited for location problems in which the number of facilities is
given in advance

A technique that, like our commonality-preserving restart mechanism,
operates on building elements is the principle of persistent attractiveness
(Glover & Laguna [30]). This principle is concerned with building elements
that persist in being attractive to bring into a solution but, unfortunately,
the moves to accomplish this are rarely selected because most of the time
other moves seem slightly more promising. For each building element a
number of characteristics are maintained during the search process, includ-
ing the number of iterations in which it is part of the solution, the number
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of times that a move that brings it into the solution is selected, and the
number of times that such a move is among the best moves available in the
neighborhood of a solution. When a given building element is not frequently
part of the solution and the moves that would bring it into the solution are
frequently one of the best moves available although they are not frequently
selected, these moves deserve a higher evaluation. Based upon this informa-
tion, the move evaluation function is modified such that this kind of move is
favored. The difference with our approach is that information about build-
ing elements is employed within the local search heuristic, i.e. the neighbor
selection rule is adapted, while we only employ the information in the con-
struction of an initial solution.

Combinatorial optimization problems can often be stated in terms of
decision variables that must be assigned a value from a given domain.
Glover & Laguna define highly consistent variables as variables that are
more frequently found in elite solutions. Furthermore, they define strongly
determined variables as variables that would cause the greatest disruption
by changing their values. The idea is to identify the more consistent and
strongly determined variables, and then to generate solutions that give these
variables their “preferred values” in a restart mechanism or by modifying
the neighbor selection rule. It is clear that these notions are closely related
to the concept of commonalities. Unlike our approach, these variables are
often fixed during the search.

Genetic algorithms were invented by Holland [33] in 1975. Starting from
a set of initial solutions, the population, a number of generations are pro-
duced. Each subsequent generation is obtained as follows. First, a number
of solution pairs, the parents, are selected from the population, based on
their cost. A crossover operation is applied to each of these solution pairs
resulting in a new solution, the offspring, which combines features of both
parent solutions. Each offspring is usually subjected to a randomized muta-
tion operation that slightly perturbs it. Finally, the offspring is added to the
population to form the next generation. Commonality-preserving restarts
can be viewed as a genetic approach where the offspring can have more than
two parents. The solution list £ corresponds to the population. Generat-
ing an initial solutions corresponds to a crossover step, while applying local
search to the initial solution corresponds to a mutation step.

2.4.2 Shaving

Another application of commonalities is given in Chapter 7, where they are
employed to speed-up the shaving algorithm due to Martin and Shmoys
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[45], which derives lower bounds for job shop scheduling instances. Shaving
is a systematic way to update the processing window of each operation in
schedules of length at most 7', for a given schedule length T". Each operation
is required to start within its processing window, in order to let the schedule
complete by time 7. Initially, the processing window of an operation is
specified by the sum of the process times of its job predecessors, the head,
and the sum of the processing times of its job successors, the tail. Given these
heads and tails, a preemptive lower bound is calculated for each machine.
For each operation, shaving tries to reduce the processing window as follows.
When it is shown that fixing the start time of an operation at a certain value
always results in a schedule of length more than T, it is justified to remove
that value from the processing window of the operation. These updates can
have consequences for the heads and tails of other operations. Reducing
processing windows can lead to improved preemptive lower bounds for the
machines. In addition, when the processing window of an operation becomes
empty, schedules of length at most 7' cannot exit, hence T+ 1 is a lower
bound. The order in which the operations are shaved can have a significant
influence on the running time of the shave algorithm. Given a number of
good solutions, we attempt to use commonalities in order to determine a
shave order that heuristically optimizes the propagation of updates.
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Chapter 3

Traveling salesman problem

3.1 Introduction

In the traveling salesman problem (TSP) we are given a finite set of cities and
for each pair of distinct cities the cost of travel between them. We restrict
ourselves to the symmetric case, where the cost of travel between cities is
the same in both directions. We want to find a cheapest tour that passes
through all the cities exactly once and returns to the point of departure.
The TSP is well studied in the literature, see Lawler, Lenstra, Rinnooy Kan
and Shmoys [40], Johnson and McGeoch [35], Jinger, Reinelt and Rinaldi
[36], and Reinelt [57].

Currently, one of the most effective TSP heuristics is the Chained Lin-
Kernighan algorithm (CLK) proposed by Martin, Otto and Felten [46, 47].
Although CLK produces very good solutions, it appears that CLK can get
stuck in an unpromising part of the search space, meaning that no significant
improvements are found when given more time. A common way to avoid this
behavior is by performing multiple independent runs. The main drawback
of this approach is that all efforts of preceding runs are wasted. We present a
randomized algorithm that repeatedly invokes Chained Lin-Kernighan while
maintaining a global memory that is used to construct a reasonable initial
solution from which the next search starts. The best solution found during
every run is added to the global memory. We are interested in edges that
are common to many good solutions in the global memory. These common-
alities are thought of as being “probably right” and will be part of the new
initial solution with high probability. An initial solution for the next run is
obtained by perturbing the best solution found so far, based on the com-
monality information. In this commonality-preserving restart mechanism,

27
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information gathered during previous runs is used in subsequent runs.

We select seven instances from the TSPLIB set of test instances collected
by Reinelt [56, 58] with sizes ranging from 3,795 to 85,900 cities. For each
problem instance, we fix the total number of CLK iterations and determine
the best way to use them. We compare four strategies that are based on
CLK: a single long run, multiple independent runs starting from a solution
obtained by a constructive heuristic, restarts from a solution that is obtained
by perturbing the best solution found so far at random, and commonality-
preserving restarts.

The commonality-preserving restart mechanism improves the finite-time
performance of CLK: given a sufficiently large and practically feasible time
span, we are able to find better solutions and increase the robustness. In-
dependent runs and restarts with random perturbation also improve upon
a single long run, but they are not as good as the commonality-preserving
restart strategy.

We start with a description of the Lin-Kernighan heuristic in Section 3.2.
In Section 3.3, we describe the Chained Lin-Kernighan implementation of
Applegate, Bixby, Chvatal and Cook and demonstrate that it tends to get
stuck. Section 3.4 describes our commonality-preserving restart mechanism
for Chained Lin-Kernighan. The experimental setup and the computational
results are given in Sections 3.5 and 3.6, respectively.

3.2 Lin-Kernighan

Suppose that we have a n-city TSP, with c(u, v) denoting the cost of travel
between city u and v. The Lin-Kernighan heuristic [42] is a variable depth
local search heuristic for symmetric TSP’s. We assume that tours are ori-
ented. In a given tour, the successor of city u is denoted by succ(u) and
the predecessor is denoted by pred(u). The basic operation is to invert
a subsequence (u,...,v) of a tour, denoted by flip(u,v). See Figure 3.1.
When

c(pred(u), u) + c(v, succ(v)) > c(pred(u),v) + c(u, succ(v)),

the tour is improved. The well known 2-opt algorithm (see Croes [18])
continues until no improving flip move is found.

Flip operations are also the building elements of Lin-Kernighan. While
the 2-opt algorithm searches for a single flip, Lin-Kernighan attempts to
build a sequence of flips such that the combined effect of these flips produces
a better tour. By allowing that intermediate tours are more costly than the
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succ(v) u succ(v) u

pred(u) v pred(u) v

Figure 3.1: The move flip(u,v) inverts the cities between v and v.

initial tour, Lin-Kernighan can escape from local optima where the 2-opt
algorithm would get stuck and terminate.

Given an initial tour 7y, we construct a sequence of flips, each initial
subsequence of which appears to be promising in the sense that it might lead
to a better tour. Let 7 denote the tour that we obtain when the sequence
of flips is applied to 7. For a city u, let pred(u) and succ(u) denote the
predecessor and the successor of u in 7, respectively.

We follow the description of Applegate et al. [4]. Let base be a fixed
vertex. We consider only flips of the form flip(succ(base), probe), for ver-
tices probe that are distinct from pred(base), base and succ(base). Such a
flip replaces the pair of edges (base, succ(base)) and (probe, succ(probe)) by
(succ(base), succ(probe)) and (base, probe), see Figure 3.2. When

c(base, succ(base)) + c(probe, succ(probe)) >
c(succ(base), succ(probe)) + c(base, probe), (3.1)

the move is improving. Instead of such an improving move, for the first flip,
Lin-Kernighan requires only that

c(base, succ(base)) — c(succ(base), succ(probe)) > 0,

which tries to improve a single edge in the tour.
For the subsequent flips, let A be a variable that is initially zero and
after each flip(succ(base),probe) is incremented by the local improvement

c(base, succ(base)) — c(succ(base), succ(probe)) +

c(probe, succ(probe)) — c(base, probe);
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succ(probe) succ(base) succ(probe) succ(base)

base probe base probe

Figure 3.2: The move flip(succ(base), probe).

as a result, the cost of 7 is always equal to the cost of 79 minus A.
For the subsequent flip moves, it is required that probe is a promising
vertex, which means that

A + c(base, succ(base)) — c(succ(base), succ(probe)) > 0.

By allowing that A is negative, intermediate tours can be more costly than
the initial tour. When an improving tour is found, the sequence of flips is
memorized and the search continues for even better tours.

As vertex base is fixed, vertex probe is promising when c(succ(base),
succ(probe)) is small enough. When checking for a promising vertex, we
consider the edges incident with vertex succ(base), ordered by increasing
cost. When considering such an edge (succ(base), a) we let probe = pred(a),
see Figure 3.3. When more than one promising vertex exists, we select the
one that maximizes

c(pred(a), a) — c(succ(base), a), (3.2)

which includes another term from equation (3.1). In order to reduce the com-
putation times, only a limited number of vertices a are considered. These
vertices a are called the neighbors of vertex succ(base); frequently, only the k
nearest vertices are considered, for some fixed k. A neighbor a of succ(base)
is called promising when probe = pred(a) is a promising vertex. The flip
search procedure is outlined below.



3.2. LIN-KERNIGHAN 31

a probe = pred(a)

base succ(base)

Figure 3.3: Finding a promising vertex.

Flip Search:

A=0
while there exist promising neighbors of succ(base)
let a be the promising neighbor of succ(base) that maximizes
equation (3.2)
A = A + c(base, succ(base)) — c(succ(base), a)+
c(pred(a),a) — c(base, pred(a))
add flip(succ(base),pred(a)) to the flip sequence
endwhile

In order to enhance the flip search procedure, a backtracking scheme
is used. Instead of concentrating only on the most promising neighbor,
alternative neighbors are also considered. In their original paper [42], Lin
and Kernighan proposed that five choices for the first flip in the sequence,
and for each of these flips another five choices for the second flip in the
sequence should be explored. At the other levels, Lin and Kernighan allow
only one flip. In the implementation of Applegate et al., a backtracking
scheme is denoted by a tuple (b1, ba,...,b,), for some integer z. The value
b; is called the breadth of level 7 because at most b; alternative flips are
explored at level ¢, and no backtracking is permitted at any level lower
than z. At level i the best b; flips according to equation (3.2) are explored.
Alternative flip search procedures have been proposed by Mak and Morton
[43], Reinelt [57], and Johnson and McGeoch [35].

If the search is successful in finding a sequence of flips having an initial
subsequence that improves the tour, this subsequence is applied to the tour.
Otherwise, Lin-Kernighan halts. For further details, the reader is referred
to Applegate et al. [4, 6] and Johnson [35].
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3.3 Chained Lin-Kernighan

For a long time, the Lin-Kernighan heuristic was the method of choice for
finding excellent solutions to symmetric TSP’s. An obvious way to obtain
even better solutions is by performing, as long as time permits, multiple
independent runs of Lin-Kernighan, each started in a different solution, and
taking the best. Martin, Otto and Felten [47] improved upon these inde-
pendent runs by perturbing the best Lin-Kernighan tour in a certain way
and reapplying the algorithm. We refer to their algorithm as Chained Lin-
Kernighan, to match the chained local optimization concept introduced by
Martin and Otto [48].

Chained Lin-Kernighan consists of a number of iterations and each it-
eration invokes the Lin-Kernighan heuristic. In the first iteration, Lin-
Kernighan is started from an initial solution obtained by a constructive
heuristic. In the subsequent iterations, Lin-Kernighan is started from the
best solution found so far, after it is perturbed by a so-called double bridge
move, see Figure 3.4. A double bridge move is a special 4-opt move that
consists of two 2-opt moves that are illegal in the sense that they transform
the tour into two disjoint cycles. A double bridge move has the property
that it can alter the global shape of the tour and it cannot be undone very
easily by subsequent invocations of Lin-Kernighan. If this effort produces a
better tour, we discard the old LK tour and work with the new one. Oth-
erwise, we continue with the old tour and apply a different double bridge
move. CLK halts after a given number 7' of iterations, which is called the
run length.

AN

\0 ll/

Figure 3.4: Double bridge move.

We use the CLK implementation of Applegate, Bixby, Chvatal and Cook,
which is part of the Concorde project [3]. Their CLK implementation has
many parameters, including the constructive heuristic for the initial solution,
the backtracking scheme of Lin-Kernighan, and the class of double bridge
moves.

We tried to select the best possible parameters for CLK. In a personal
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communication with one of the authors, the main parameters were deter-
mined. These parameters are optimized for instances with 10,000 or more
cities. The initial tour is generated by the Quick-Bortivka constructive
heuristic, which is based on the minimum-weight spanning tree algorithm
of Boruvka [9]. It works as follows. First, the cities are sorted according to
their first coordinate. The cities are processed in order and for each city u
with degree less than two, the cheapest edge {u,v} over all cities v having
degree less than two is inserted, provided that it does not create a subtour.
According to Applegate et al. [6], the Quick-Bortuvka heuristic is not as
effective as certain other constructive heuristics, but it appears to work well
for CLK. The backtracking scheme that we adopt is (4,3,3,2). There are
many ways to generate a double bridge move. We will use double bridge
moves for which the edges are geometrically close. The choice of the edges
is randomized, hence CLK is randomized.

From now on, we shall treat CLK as a black box. We demonstrate that
it tends to get stuck and that it can be improved by restarting a number
of times. Any other heuristic for the TSP could have been used instead of
CLK, but it was more appealing to use CLK because it is among the most
effective heuristics for the symmetric TSP.

3.3.1 CLK gets stuck

For a number of TSPLIB [56, 58] test instances we did five independent runs
of CLK. The initial solution is produced by the Quick-Boruvka constructive
heuristic. We calculated the relative excess permillage above the best known
upper bound as a function of the iteration number. The results are given
in Figure 3.5. The trajectories of these independent runs are improving
very fast in the beginning of the search processes. Quite early in the search
process, the trajectories start to diverge. Apparently, something can go
wrong early in the search process, that is not easily corrected later on.
Often, there appear to be almost no improvements when CLK is given more
time. Similar results were obtained when the initial solution is generated
at random. We conclude that CLK runs the risk of getting stuck in an
unpromising part of the search space.

Some runs produce tours that are significantly better than the tours
produced by other runs. By performing multiple shorter runs, we attempt
to increase the robustness of CLK without sacrificing the quality of the
solutions found.
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Figure 3.5: The trajectories of five runs

of CLK for a number of TSPLIB

instances. The solution quality on the y-axis is given in per mille above the
best known tour as a function of the iteration number on the z-axis.
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3.4 Restarting Chained Lin-Kernighan

Suppose that we have a problem instance and a maximum number of CLK
iterations Tiota1. Because a single long run of CLK is likely to get stuck, we
hope that a sequence of shorter runs can improve the performance of CLK.

The most obvious alternative to a single long run is multiple independent
runs. This strategy has only one parameter, the run length. We compare a
single long run to multiple shorter runs on a time-equivalent basis, hence, a
run length of T CLK iterations implies that we can perform |Tiota1/7 | runs.
The drawback of this approach is that each run starts from scratch and does
not take advantage of the knowledge gathered during the preceding runs.

In the remainder of the section we propose two alternative restart mech-
anisms for Chained Lin-Kernighan. First, we describe a commonality-pre-
serving restart mechanism and then we sketch restarts with random pertur-
bation, which is more or less a special case of the commonality-preserving
restart mechanism.

3.4.1 Commonality-preserving restart mechanism

A tour is often represented as a graph that has a vertex for every city and
an edge for every pair of cities that are visited subsequently. A solution
corresponds to a subset of the set of building elements, consisting of all
undirected edges {u,v}. The cost of a tour o, denoted by c(o), is equal to
the sum of the cost of the edges that constitute it. Given this representation
of tours, we will now introduce a commonality concept based upon it.

Definition 3.4.1. The commonality set of a multiset 2 of tours is defined
as the subset of edges that are common to all tours in 3. FEach edge in the
commonality set is called a commonality of 3.

Obviously, the number of commonalities in ¥ is non-increasing in the
number of tours in Y.

With the commonality concept, we try to characterize the general struc-
ture of good solutions. When certain edges are common to many good
solutions, they are interpreted as being “probably right” and we intent to
construct initial solutions that preserve them, since it appears to be useless
to exclude them from the next initial solution.

In order to get an impression of the abundance of commonalities in the
local optima generated by independent runs of the Chained Lin-Kernighan
heuristic, we carried out the following experiment. For a number of TSPLIB
instances, we did 50 independent runs with various run lengths 7. For each
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problem instance and run length, we counted the number of different edges
in the local optima produced by the first  independent runs, for 1 < r < 50.
Obviously, this number is non-decreasing in r. We calculate the ratio of the
number of different edges to the size of the problem instance. For each
problem instance and run length, the ratio is given as a function of r in
Figure 3.6. It appears that the number of different edges converges as the
number of runs increases. For all instances, the number of different edges in
the 50 local optima is less than three times the number of edges in a single
tour. Furthermore, this number decreases as the run length T' increases,
indicating that the number of commonalities increases with the quality of
the solutions. The results were obtained with CLK starting from a Quick-
Bortvka tour. Similar results were obtained when the initial solution was
generated at random. We conclude that the local optima produced by the
CLK heuristic have many commonalities.

We will now describe our commonality-preserving restart mechanism.
During the search, a list of tours £ = (L1, Lo, ..., L) is maintained such
that ¢(L;) < ¢(L;) whenever ¢ < j. After every run, the best solution found
is inserted into £. We start with k¥ = 2, where L; and Ls are obtained
by two independent runs starting from a Quick-Bortvka solution. The two
independent runs are followed by a number of restarts. For every restart,
an initial solution Lg is constructed as follows. Initially, Lo is equal to L,
which is the best solution found so far. In the selection phase, we determine
which edges in Ly are accepted. Each edge {u,v} € Ly is accepted with a
certain probability that depends on the number of tours in £ that have the
edge. Naturally, we want that good solutions in £ have more influence on
the selection process than bad solutions. Therefore, we give every L; € L a
weight w(L;) € [0, 1] to represent its relative quality in £. The solutions are
weighted such that good solutions have a higher weight than bad solutions:

e(Lj)—c(Ly)
w(Ly) =p"" <@ eo,1],

for some p € (0,1]. The exponent of p is the excess permillage of ¢(L;) over
¢(L1). When p = 1, all L; have equal weight, but when p < 1, a penalty
is given for every per mille above ¢(L1). Furthermore, the weight of L; is
always 1 and as p | 0, w(L;) | 0 when ¢(L;) > ¢(L1).

Consider an edge {u,v} € Lg. When the sum of the weights of the
solutions in £ that have that edge is close to the total weight of the solutions
in £, the edge is highly desirable and should be part of the new initial tour
with high probability. Therefore, we define the acceptance probability of
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{u,v} as

P
Z{LiELHu,v}eLi} w(LZ) c [0 1]
ZLiEL w(LZ) ’ ’

for some ¢ € [0,00). The parameter 1) controls the amount of perturbation.
When ¢ = 0, all {u,v} € Lg are accepted and Ly is not perturbed. As
1 — 00, only edges {u,v} € Lo that are common to all L; € £ are accepted.

The result of the selection phase is a partial tour, consisting of a number
of tour segments. In the augmentation phase we reconnect the segments of
the partial tour at random. We repeatedly select two endpoints at random
that do not belong to the same segment and join them by an edge. When
there are no more endpoints, we have a complete tour. Testing whether
or not two endpoints belong to the same segment is implemented with a
union-find data structure. By connecting endpoints at random, many bad
edges are created. It is likely that a single run of Lin-Kernighan gets rid
of most of the really bad edges. What remains are a number of interesting
alternative edges that could lead to further improvements beyond L.

Our restart mechanism has three parameters: the run length 7', the
weight parameter p, and the perturbation parameter 1. Intuitively, the run
length determines how well the vicinity of the best solution found so far is
explored. A long run requires a rather big perturbation since the surround-
ings of the best solution found so far are thoroughly explored. Similarly, a
short run should be followed by a small perturbation. The number of edges
to be perturbed is determined by the parameter 1. The parameter p is
related to the concepts of intensification and diversification in the following
way. When p =1, all tours L; € L have the same weight and their “votes”
are considered equally important during the selection phase. In case p < 1,
the tours with cost ¢(L1) have more influence than the other tours in £,
resulting in a higher acceptance probability of the edges in Ly. The former
case resembles diversification while the latter resembles intensification.

pacc(uy U) = <

3.4.2 Restarts with random perturbation

In order to determine whether or not the commonality information is use-
ful, we compare our restart mechanism with restarts that perturb the best
solution found so far at random. The first CLK run is started from a Quick-
Boruvka solution. After the initial run, we do a number of restarts, while
maintaining the best solution found so far, denoted by ¢*. The initial so-
lution of the next CLK run is a perturbed version of ¢*. Every edge in ¢*
is accepted with a fixed probability p, which is a parameter of the restart
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Instance LB UB T* Thotal time
13795 28,772 28,772 | 25,000 600,000 5.6-10°
pla7397 23,260,728 23,260,728 | 25,000 600,000 4.6 -10°
rl11849 923,288 923,288 | 30,000 720,000 5.3-103
usal3d509 | 19,982,859 19,982,859 | 25,000 600,000 6.4-10°
d18512 645,198 645,255 | 40,000 960,000  6.7-10°
pla33810 | 66,005,185 66,059,941 | 50,000 1,200,000 12.0-103
pla85900 | 142,307,500 142,409,553 | 75,000 1,800,000 22.0-103

Table 3.1: Best knows upper bounds and lower bounds, the critical point
and the total number of CLK iterations, and the running times for the long
run in seconds on a Pentium I11/450 MHz.

mechanism. In the augmentation phase, the tour segments are connected at
random in the same way as we did for the commonality-preserving restart
mechanism.

3.5 Experimental setup

Suppose that we have a problem instance and we do not want to spend more
than a given number Tiy. of CLK iterations. We try to determine the best
strategy to use them: a single long run (LR), multiple shorter independent
runs (IR), commonality-preserving restarts (CP), and restarts with random
perturbation (RP).

Our test instances are taken from TSPLIB. For all problems, either the
value of a provably optimal solution or an interval given by the best known
lower and upper bounds is listed in Table 3.1. The list dates from 25 October
1999 [59]. All problem instances are geometric. The pla instances use the
rounded up Euclidean norm, the other instances use the rounded Euclidean
norm. Problem instance fl3795 is a drilling problem, the pla instances are
derived from programmable logic arrays, and the other instances are city
coordinates.

In order to select appropriate run lengths, we examine, for each test
instance, the trajectories of five long CLK runs, see Figure 3.5. In the
beginning of the search many large improvements are found, but after a
while the steepness decreases and the trajectories start to diverge. For each
test instance, we estimate the critical point T at which the five independent
runs are slowed down significantly while at the same time the trajectories
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are considerably diverged. The advantage of this “visual” method is that
T* will depend on the size of the instance, which seems plausible.

For all strategies except LR, we must decide which run lengths to use.
We will always have that the number of runs times the run length is fixed for
a given problem instance. To ensure divisibility, the possible run lengths and
Tiota1 are a multiple of T*. For every instance, the total number of iterations
Tiotal is chosen to be equal to 247™. We consider the following run lengths:
T*, 27>, 3T*, 4T* and 6T*. As a result, instead of a single run of 247*
iterations we can also have 24 runs of length 7%, 12 runs of length 27, 8
runs of length 37, 6 runs of length 47™ or 4 runs of length 67*. Notice
that the total number of iterations does not grow very fast with the size of
the instance; in fact, it grows sub-linearly. The corresponding running times
for a single long run are given in Table 3.1. Because of the limited number
of restarts, there is almost no computational overhead. Consequently, the
running times of all four strategies are approximately the same.

In the commonality-preserving restart mechanism, we start with two
independent runs. The number of subsequent restarts is 22, 10, 6, 4 or 2,
depending on the run length. As a result of a number of initial experiments,
we select p € {0.9,0.98,1.0} and ¢ € {0.25,0.5,1.0}. The values for p and 9
are chosen in such a way that two of them are fairly extreme, and the other
one is reasonable.

Restarts with random perturbation starts with a single run. After the
initial run, we do 23, 11, 7, 5 or 3 restarts, depending on the run length.
The parameter p is chosen in such a way that the total number of edges that
is perturbed is approximately the same as in the commonality-preserving
restart mechanism described above. We found that the amount of pertur-
bation inflicted by the commonality-preserving restart mechanism ranges
between 2 and 6 percent when ¥ = 0.25 and between 7 and 16 percent when
1 = 1.0. As a result, we select p € {0.85,0.9,0.95}.

The major advantage of fixing the number of iterations for every instance
is that the experiments can be carried out on different machines in parallel
without concern of their different speeds.

3.6 Results

In order to identify proper parameter values, we perform a number of com-
putational experiments. Due to the randomized nature of CLK, the outcome
of each experiment is a random variable. We are interested in the average
and standard deviation of the outcomes of our computational experiments.
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For a given problem instance, strategy (LR, IR, CP, RP), and parameter
set, the average of the outcomes of a number of computational experiments
gives an indication of the effectiveness of the heuristic, while the standard
deviation is a measure of the robustness. When comparing parameter sets,
our primary objective is to minimize the average result and our secondary
objective is to minimize the standard deviation.

Due to the immense popularity of the TSP and the TSPLIB-instances,
many researchers have been hunting for better solutions. In the literature,
most results concerning upper bounds for TSP instances are expressed in
terms of the permillage above the optimum or the best known lower bound.
The excess permillage of the solutions found by our computational experi-
ments typically ranges between 0 and 4. Given this small range, we use a
significance level of 0.1 per mille to distinguish between the different param-
eter values.

We did ten computational experiments for every problem instance, strat-
egy, and parameter set. Consequently, for every instance we did 10 times
LR, 50 times IR, 150 times RP, and 450 times CP, giving a total of 660
experiments per instance. As we consider seven problem instances, the to-
tal number of computational experiments is 4,620. Because of the practical
limitations imposed by the running times, see Table 3.1, we assume that ten
experiments are sufficient to distinguish between the different parameter
values. We try to identify the best parameter values and seek a consistent
relation between the parameter values and the size of the problem instance.

3.6.1 Very best parameters

It is tempting to simply select the best parameters. For each restart strategy
and problem instance, we single out the best parameter set, i.e., the one with
the lowest average and in case of a draw between two or more parameters
sets, the one with the lowest standard deviation. The results of the long
run and each of the restart strategies are given in Table 3.2. Except for the
largest instance, pla88590, we conclude that IR is often significantly better
than LR, with respect to the average and the standard deviation. The
average of RP is generally better than the average of IR, and the standard
deviation is about the same. RP gives the same results for pla85900 as LR.
In addition, the average result of CP is slightly better than that of RP,
while the standard deviation is approximately the same. Furthermore, CP
produces better results for pla85900 than LR does.
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Instance | LR IR RP CP

13795 5.0 [1.5,3.8] [1.1,5.7] [1.1,5.1
pla7397 | 2.0 [1.4,1.7] [1.2,1.6] [L.1,1.7
r111849 | 3.0 [1.9,2.1] [1.6,1.9] [1.3,2.1

] ] ]
e b
usal3509 | 1.2 [1.1, 1.3] [0.9, 1.2] [0.8, 1.1]
] ] ]
] ] ]
] ] ]

d18512 | 0.9 [0.9,1.2] [0.9,1.2] [0.8, 1.1
pla33810 | 3.6 [3.3,3.7] [3.1,3.7] [3.0,3.8
pla85900 | 2.6 [2.7,3.4] [2.6,3.4] [2.5,3.4

Table 3.3: Overview of the range of the results in permillage above the best
known upper bound, over all parameter sets for each strategy.

Unfortunately, it appears that for each of the three restart strategies, the
parameters behave erratically in the sense that there is no clear relationship
between the parameter values and the size of the problem instance. In the
next section, we present an alternative parameter selection methodology.

3.6.2 Consistent parameters

For each test instance and strategy, the results of the best parameter sets and
the results of the worst parameter sets are given in Table 3.3. Apparently,
the ranges are often relatively small. Furthermore, we found that, for all
restart strategies, there are many alternative parameter sets that perform
almost as well as the very best parameters. In this section, we attempt to
identify, for each of our restart strategies, a consistent relationship between
each of the parameters and the size of the problem instance. In this way,
we hope to be able to select appropriate parameters for problem instances
other than the test instances.

Although the two parameters of RP and the three parameters of CP are
not necessarily independent of each other, we investigate for each of these
parameters in isolation the relation with the size of the problem instance
by aggregating the results over the other parameters. Aggregating means
that for every value of a parameter, we calculate the average and standard
deviation of the results of all parameter sets that have that value for the pa-
rameter. Consequently, we have far more than ten experimental results for
every parameter value, which will generally improve the reliability of the re-
sults. In this way, we hope to find a consistent relation, i.e., a trend, between
the parameter and the size of the problem instance. For each parameter,
we first identify the trend, and then we select the best parameter value that
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satisfies the trend. As following the trend is more important than obtaining
the very best results, in some cases, minor concessions (compared to Table
3.2) are required. A detailed analysis for each of the restart strategies is
given below.

Analysis of IR

Multiple independent runs have only one parameter, the run length. We
calculate the averages over the ten runs and seek a relationship between the
run length and the size of the problem instance.

We give a brief summary of the results. For the smallest instance, 13795,
the best results are obtained with the shortest run length. The results
monotonously get worse for longer runs. The results of the medium sized
instances, pla7397, r111849 and usal3509, roughly resemble a u-shape, i.e.,
the results get worse to the left and to the right of the best run length.
For the larger instances, d18512, pla3d3810, and pla85900, the results get
monotonously better when the run length is increased; the best results are
obtained with the longest run length. We conclude that there is a clear
relationship between the run length and the size of the problem instance.
The preferred run length grows with the size of the problem instance.

The only concession (compared to Table 3.2) to obtain a consistent rela-
tionship is the run length of pla7397, at the expense of a slightly increased
standard deviation. For each problem instance, the preferred run length and
the corresponding results are listed in Table 3.4.

Analysis of RP

The restart mechanism that randomly perturbs the best solution found so
far (RP) has two parameters: the run length 7" and p, which determines the
amount of perturbation.

To determine the run length T', we aggregate the outcomes of the exper-
iments for a given instance and 7' over the three values of p. Consequently,
we have 30 experiments for every instance and T'. The results are summa-
rized as follows. For 13795, the best results are obtained with the shortest
run length and the results monotonously get worse for larger T'. For pla7397,
r111849, usal3509, and d18512, the results are approximately u-shaped and
the best results are obtained with medium run lengths (37, 27, 37™, and
3T, respectively). The results for pla33810 are also approximately u-shaped
and the best results are obtained with a run length of 47*. The results for
pla88900 monotonously improve for larger T. We conclude that there is



3.6. RESULTS 45

a clear relationship between the run length and the size of the problem
instance: larger instances require relatively longer runs.

For each problem instance we identify the best value for p by aggregating
over all values of T. We give a summary of the aggregated results. For
instances pla7397 and r111849, the best results are obtained with the smallest
value of p, which corresponds to a relatively high amount of perturbation.
The other instances prefer the medium or large value for p. Larger instances
tend to prefer the largest value for p. The only exception is the smallest
instance, which also requires the largest value for p. We conclude that
the relationship with the instance size is not very strong. The acceptance
probability tends to increase in the size of the instance, implying that larger
instances need relatively less perturbation than smaller instances.

In order to obtain a consistent relation between the parameters and the
size of the problem instance, two concessions are required. Compared to
Table 3.2, we increase the run length for r111849 at the expense of a higher
average and standard deviation. For pla33810, parameter p is increased
and the run length is decreased, resulting in a higher average. The selected
values and the corresponding results are summarized in Table 3.4.

Analysis of CP

The commonality-preserving restart mechanism has three parameters: the
run length 7', the perturbation parameter v, and the weight parameter p.
For each parameter, we seek a relation with the size of the problem instance
by aggregating the results over all values of the other parameters.

First we determine the run length 7. For each value of T', the results of
the experiments are aggregated over all values of p and 1. There are nine
parameter sets with the same value of T and we compare the averages found
by these nine parameter sets with the averages found by the nine parameter
sets that correspond to different values of T. Consequently, for every value
of T' we have 90 computational experiments. The results are summarized
as follows. For 13795, pla7397, and r111849, the shortest run length gives
the best results and the results deteriorate monotonously for larger values of
T. The results for usal3509, d18512, and pla33810 are u-shaped (27*, 37,
and 37, respectively). For pla88900, the results get monotonously better
for larger T'. The longest run length gives the best results. There appears to
be a clear relationship between the run length and the size of the problem
instance. Small instances require a short run, while larger instances prefer
a longer run.

In order to determine v, we aggregate the results over all values of T
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and p. Consequently, we have 150 experiments for every given instance and
1. The results are summarized as follows. For 13795, ) = 1, which corre-
sponds to relatively low acceptance probabilities and thus a high amount of
perturbation, gives the best results. For pla7397, all values of ¢ give approx-
imately the same results. For the remaining instances, r111849, usal3509,
d18512, pla33810, and pla88900, 1) should be small in general, which corre-
sponds to relatively high acceptance probabilities, and thus a low amount
of perturbation. We conclude that parameter ¥ tends to decrease in the
instance size, but is mainly constant; most instances prefer ) = 0.25, which
is equivalent to 2 to 6% of perturbation.

We attempt to find a relationship between p and the size of the problem
instance by aggregating the results of the experiments over all values of T'
and ¢. As a result, we have 150 experiments for every given instance and
p- The results are summarized as follows. For 13795, pla7397, and r111849,
there is only a slight tendency that low and medium values for p give the
best results. For usal3509, d18512, pla33810, and pla88900, there is only
a slight tendency that medium and high values for p give the best results.
Therefore, p appears to grow with the size of the problem instance. In
general, the preferred value of p is either 0.98 or 1.0, indicating a tendency
towards diversification, since all solutions in £ have approximately the same
weight.

A number of concessions are required in order to obtain a consistent
relation between each parameter and the size of the problem instance. For
each test instance, the selected parameter values and the corresponding
results are listed in Table 3.4.

Comparing the strategies

Given the results in Table 3.4, we compare the single long run to the three
strategies based upon multiple shorter runs.

For the majority of the test instances, we conclude that IR is a robust
way to improve upon the performance of LR, as can be deduced from Table
3.4. Only pla85900 is better off with LR. The standard deviation is often
considerably smaller than or equal to the one corresponding to the long run.

For all test instances, RP produces equivalent or better solutions on
average than IR. For the largest test instance, pla85900, RP gives the same
result as LR. The standard deviation is approximately the same as for IR.
We conclude that RP is better than or equivalent to IR and LR.
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For all test instances CP produces solutions which are on average equiva-
lent to or better than the solutions produced by RP. The standard deviation
is approximately the same as for IR. We conclude that CP is better than or
equivalent to RP, IR and LR.

3.7 Conclusion

Chained Lin-Kernighan (CLK) is one of the most successful heuristics for
symmetric TSP’s. We illustrated that CLK tends to get stuck in an un-
promising part of the search space. Instead of a single long run of CLK, we
study three strategies that are based upon multiple shorter runs.

A common way to avoid getting stuck is by performing multiple inde-
pendent runs. Multiple independent runs (IR) often drastically improve
upon the performance of a single long run (LR), especially for the smaller
instances. This is probably partially because the parameters of CLK were
optimized for instances with 10,000 cities or more.

The major drawback of multiple independent runs is that information
gathered during previous runs is discarded in the subsequent runs. We pro-
pose two alternative restart mechanisms that are based upon the following
observation. Computational experiments indicate that good local optima
generated by CLK have many edges in common. These so-called common-
alities are interpreted as being “probably right”. In an early paper, Lin
and Kernighan [42] already found that good solutions to a TSP have many
edges in common and suggested that these edges should be fixed during the
remainder of the search. Instead of fixing these commonalities in subsequent
runs, we propose two restart mechanisms that preserve many commonalities
when constructing an initial solution for the subsequent run. We assume
that the best solution found by each run is stored in a list L.

A simple way to construct an initial solution that preserves many com-
monalities is by perturbing a copy of the best solution found so far. In our
computational experiments, the amount of perturbation ranges between 5
and 15 percent of the edges and depends on the size of the problem instance.
By perturbing only a small fraction of the edges, many commonalities are
preserved. These restarts with random perturbation (RP) turn out to be
better than or equivalent to LR and IR, in the sense that the average and
standard deviation are often lower.

A more complex commonality-preserving restart mechanism (CP) con-
structs an initial solution for the next run by perturbing a copy of the best
solution found so far in the following way. Each edge in the best solution
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found so far is subjected to an acceptance trial. The probability that an
edge is not removed depends upon the number of solutions in £ that have
the edge. When many solutions in £ have the edge, the probability that it is
part of the initial solution of the next run is high. For all test instances, CP
produced a lower average and standard deviation than the other strategies.

When we analyzed the outcomes of our computational experiments, we
noted that the very best results lead to inconsistent parameter values with
respect to the size of the problem instance. By aggregation, the trend is
determined for each parameter. Only minor concessions are required to
obtain a consistent relation between most parameters and the size of the
problem instance.

The three restart strategies based upon multiple shorter runs that we
have considered have a standard deviation which is often significantly lower
than that of LR. The standard deviation is approximately the same for
the three restart strategies IR, RP and CP. We conclude that restarting
improves upon the robustness and reduces the chance of getting stuck in an
unpromising part of the search space.
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Chapter 4

Whizzkids 96

4.1 Introduction and motivation

In 1996 and 1997, the Department of Mathematics and Computing Science
at the Technische Universiteit Eindhoven organized a contest in cooperation
with the IT-firm CMG and the newspaper De Telegraaf. The purpose of the
contest was to increase the interest in mathematics and computer science,
especially among high school students.

In 1996, the participants had to construct a newspaper delivery plan.
We describe the assignment and the process of finding a hard problem in-
stance. A number of local search heuristics that were employed to find upper
bounds are discussed. We conclude with a commonality-preserving restart
mechanism. The underlying tabu search heuristic is based upon well known
ingredients, such as Osman’s A-interchange neighborhood, the 2-opt heuris-
tic, and the Lin-Kernighan heuristic. Good solutions are obtained within
minutes. Solutions of cost 1,183, which is the best known upper bound,
are found within hours. Commonality-preserving restarts are slightly better
than multiple independent runs and slightly better than a single long run.

4.2 Assignment

One of our tasks was to design a problem that is easily grasped by lay-
men, while computationally challenging. Many combinatorial optimization
problems meet these requirements. Our choice fell upon the class of ve-
hicle routing problems (VRP’s). These problems are easily visualized and
therefore suitable for a variety of solution approaches, including paper and
pencil.

o1
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VRP’s are in general NP-hard. Several optimization algorithms have
been proposed for VRP’s, see Cornuéjols & Harche [17], Christofides, Had-
jiconstantinou & Mingozzi [15], Araque et al. [7], and Fisher [21]. In most
cases, these exact algorithms are not capable of solving VRP’s when the
number of customers exceeds 50. As a result, one often resorts to local
search heuristics, see for instance Gendreau, Laporte & Potvin [26].

Besides being computationally challenging, there were other require-
ments. For practical reasons, the size of the problem instance should not
be too large. On the other hand, the problem size had to exceed the prob-
lem sizes that optimization methods are capable of solving. Furthermore, it
was required that the problem is non-standard, such that it was not easy to
adapt existing route planning software.

In order to avoid difficulties when calculating and comparing distances,
we do not use the Euclidean norm, but use Manhattan distances. The
problem with the Euclidean norm is that, according to Garey, Graham &
Johnson [23], there is no known algorithm that compares sums of square
roots in polynomial time. The distance between two customers is defined
as the difference between the z-coordinates plus the difference between the
y-coordinates. As a result, distances are symmetric. We proposed the fol-
lowing vehicle routing problem.

Definition 4.2.1. (Whizzkids ’96). Four newspaper delivery boys deliver
newspapers to 120 subscribers in Manhattan. The addresses are located at
integer points in the plane. They start at the same time from a single depot.
The problem is to cluster and route the addresses and produce a mewspaper
delivery plan. The primary objective is to deliver the last newspaper as early
as possible. The secondary objective is to minimize the average delivery time
of the newspapers.

Formally, the Whizzkids '96 problem resembles a m-TSP with minmax
objective and symmetric Manhattan distances. As the TSP is a subproblem,
Whizzkids ’96 is NP-hard. We use the secondary objective to distinguish
between solutions that are submitted by the participants and have the same
primary objective.

While in classical VRP’s it is often required that all tours end at the
depot, we deliberately chose to drop this requirement. As a result, the
Whizzkids ’96 problem is concerned with paths rather than tours. In the
literature, relatively little attention has been paid to the min-max objective,
although an adaptive memory programming heuristic for the minmax m-
TSP can be found in a paper by Golden et al. [32].
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4.2.1 Finding a hard problem instance

We generated a number of random problem instances with 120 addresses.
The following ideas were used to generate hard instances:

e The addresses are clustered.

e The number of clusters and the number of newspaper delivery boys
are relatively prime.

e The location of the depot is chosen in such a way that, in good solu-
tions, each cluster is likely to be visited by at least two boys.

The locations of the addresses and the depot were generated at random
in the plane with integral x and y coordinates between 0 and 500. First, we
generated rectangular clusters. The clusters are mutually non-overlapping,
and positioned at random locations. Next, the locations of the addresses
were drawn uniformly at random from the clusters.

In order to get an idea of the hardness of each instance, we implemented a
simulated annealing heuristic. Only the primary objective was taken into ac-
count. We experimented with various cooling schedules, resulting in running
times ranging from a couple of minutes to several hours on a Sun SPARC-5.
For each instance, we performed many short and longer runs, and analyzed
the cost distribution of the solutions. We preferred cost distributions that
are non-smooth and had a thin tail to the left, indicating that the best so-
lutions are not found often, and a thick tail to the right, indicating that the
chance of getting trapped in solutions of mediocre quality is high. To assess
the quality of the upper bounds obtained by simulated annealing, we calcu-
lated a number of simple lower bounds for the problem instances, such as
the maximum distance between the depot and any address and a quarter of
the weight of a minimum-weight spanning tree. A large gap between these
simple lower bounds and upper bounds also gave an idea of the hardness of
the instance.

Assignment. We chose a problem instance consisting of three clusters.
The problem instance is given in Figure 4.1. The large dot represents the
depot, the other dots correspond to the 120 addresses. The coordinates can
be obtained via our website,

http://www.win.tue.nl/whizzkids/1996/index .html.

The chosen instance was hard for our simulated annealing heuristic, and
we expected that it would also be hard for other approximation methods.
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Figure 4.1: The Whizzkids ’96 assignment. The large dot represents the
depot, the other dots correspond to the 120 addresses.

4.3 Results

We discuss our upper bounds and lower bounds and the results of the par-
ticipants. A brief description of the applied techniques is given.

4.3.1 Staff

First, we describe the simulated annealing heuristic that was developed to
help identify hard problem instances. The initial solution is constructed by
a best insertion heuristic that processes the addresses in a random order.
The neighborhood is a mixture of insert moves and tail swaps such that at
least one longest path is affected; 9 out of 10 moves are insert moves. Every
now and then, a path improvement heuristic, based upon 2-opt, was applied
to the current solution. Only the primary objective was taken into account.
Using a geometric cooling schedule, our simulated annealing heuristic was
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able to find solutions of cost 1,183, but it took an excessive amount of time
on a Sun SPARC-5.

Bas Aarts and Pascal Coumans (Philips Research Laboratories) imple-
mented a simulated annealing heuristic with balanced paths in the sense
that all paths contain about the same number of addresses. After 531 runs
of 5 hours each, the best known solution was found: a primary objective of
1,183 and a secondary objective of 558.82.

Trivial lower bounds include the maximum distance between the depot
and any address (626) and a quarter of the weight of a minimum-weight
spanning tree (1,007). Cor Hurkens and Arjen Vestjens used a number of
more advanced techniques, including Lagrange relaxation and branch-and-
cut, to obtain a lower bound of 1,160. In the mean time, André Rohe and
Sanjeeb Dash of Rice University improved the lower bound to 1,170.

4.3.2 Participants

We received over 900 solutions in two categories, general and professional.
There were 18 solutions in which the last newspaper was delivered at time
1,183. In order to distinguish between them, we calculated the average
delivery time of the newspapers. There were two solutions with a minimum
secondary objective of 558.82. The most successful approaches were based
on local search heuristics, but paper-and-pencil and interactive approaches
also proved to be competitive. We give a brief description of some heuristics
that were employed to find approximate solutions.

e Eric Taillard adapted his tabu search heuristic for capacitated vehicle
routing problems [67]. This heuristic operates on the set of partial
solutions and has a penalty term in the objective. A partial solution
consists of up to four paths and possibly a number of unvisited ad-
dresses. The penalty is the sum of the lengths of the edges from the
depot to the unvisited addresses. The initial solution is obtained by a
modified version of the savings heuristic due to Clarke & Wright [16]
for VRP’s. By memorizing and re-using a number of good paths and
some user-interaction, Taillard found solutions of cost 1,183.

e A team of computer science students developed a graphical support
tool. The four paths are displayed on the screen and the user can
modify the paths by moving addresses between them. The length of
each path is updated automatically.



56 CHAPTER 4. WHIZZKIDS ’96

e Surprisingly, by using a paper-and-pencil approach, a 14 year old high
school student was able to beat most of the professional participants.

Other local search heuristics known from the literature that could be
adapted to the Whizzkids '96 problem include Osman’s simulated annealing
algorithm [52], and Taburoute (Gendreau, Hertz & Laporte [25]).

4.4 Tabu search

We present a tabu search heuristic that is based upon techniques that are
well known from the literature: Osman’s A-interchange neighborhood, the
2-opt heuristic, and the Lin-Kernighan heuristic. In this section, we study
the finite-time behavior of our tabu search heuristic. In the next section,
we introduce a commonality concept for Whizzkids '96, together with a
commonality-preserving restart mechanism.

4.4.1 Neighborhood

The neighborhood that we employ is based upon Osman’s A-interchange
neighborhood [52]. Osman interchanges two subsets of addresses of two
different paths such that the cardinality of each subset is at most A. We
put A = 1. As a result, we have two types of moves: insert moves and swap
moves. An insert move consists of removing an address from its path and
inserting it into the other path. A swap move exchanges two addresses that
are in different paths. The insert neighborhood contains @(n?) neighbors
and is significantly smaller than the swap neighborhood, which contains
O(n*) neighbors, where n is the number of addresses.

4.4.2 Tabu list

In order to prevent cycling and to direct the search to unexplored regions,
the neighborhoods are restricted by a tabu list 7. The tabu list determines
whether or not we are allowed to insert an address into a path. After we
remove an address from a path, we are not allowed to re-insert it for the next
[ iterations, where | denotes the tabu tenure. The tabu list is implemented
by maintaining for each address a and newspaper boy b a time t,3, which
denotes the iteration number at which address a was last removed from b’s
path. Initially, ¢, = —oo0, for all addresses a and newspaper boys b. The
iteration number is initially 0, and is increased by one after each effectuated
move. When the current iteration number is smaller than ¢, + [, it is not
allowed to insert a into b’s path, i.e, the move is tabu.
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4.4.3 Neighborhood search strategy

Due to the min-max criterion, there exist many solutions with the same cost.
This effect is amplified by using Manhattan distances: many addresses can
be visited without any additional cost. For each pair of points (z1,y1) and
(x2,y2), every third point (x3,ys3) with z; < z3 < x5 and y1 < y3 < ya can
be traversed with no additional cost. We adopt a greedy neighbor search
strategy that takes this observation into account by defining the cost of a
move as 1,000 times the cost difference between the longest paths plus the
sum of the cost differences between the two affected paths. A negative cost
implies an improvement, a positive cost implies a deterioration. Notice that
we are only concerned with the primary objective.

Our neighborhood search strategy is centered around randomized mini-
mum cost insertions, which are defined as follows. For a given address and
a path, each possible insertion point is considered. The cost of inserting the
address at a given position in the path is calculated in constant time. The
address is inserted at a randomly selected insertion point of lowest cost.

In each iteration, either a best insert move or a best swap move is effec-
tuated, depending on which one is better. A best insert move is determined
in the following way. For each address, a minimum cost insertion point in
another path is determined. By processing the addresses in a random order
and keeping track of the best insert move found so far, a random best insert
move is obtained. A best swap move is determined in a similar fashion. For
each pair of addresses in different paths, a minimum cost insertion point in
the other path is determined. Again, the addresses are processed in a ran-
dom order, resulting in a random best swap move. When a move is tabu,
but the resulting solution is better than the best so far, the tabu status is
overruled. Otherwise, the cost of the move is defined as cc.

We require that each move always involves two different paths. More-
over, by requiring that each move involves at least one longest path, the
neighborhood is significantly reduced.

4.4.4 Path improvement heuristic

After every move, a path improvement heuristic (PIH) is applied to both af-
fected paths. We either use the 2-opt heuristic or the Lin-Kernighan heuris-
tic for that purpose.

In order to apply a path improvement heuristic, each path is transformed
into a tour that begins and ends at the depot by adding a dummy address X
with the property that the distance from the depot to X is 0, while the dis-
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PIH av  sd
none | 1,621 87
2-opt | 1,597 87

LK | 1,566 78

Table 4.1: Cost of the initial solution obtained with randomized best inser-
tion and a path improvement heuristic applied to each path.

tance from any address to X is M, for some large integer M. Consequently,
each tour has at least one edge of length M. When X is not adjacent to the
depot, the tour must contain two edges of length M. For each path, 2-opt
is repeated until no more improvements are found. As the path is taken as
the initial solution, 2-opt cannot produce a longer path.

Alternatively, we can use the Lin-Kernighan heuristic. We apply a single
iteration of the Chained Lin-Kernighan (CLK) implementation of Applegate,
Bixby, Chvéatal & Cook, which is part of their Concorde project [3] to solve
large TSP’s. A single iteration of CLK corresponds to one invocation of
the Lin-Kernighan heuristic. The initial solution is generated by the Quick-
Boruvka constructive heuristic. As a result, CLK can produce a path which
is worse than the original one. In that case, we keep the original path.

4.4.5 Results

We performed a number of computational experiments in which the initial
solution is obtained by the following randomized best insertion heuristic.
Initially, each paperboy path is empty. For each address, the cost of insertion
at a best possible place in each path is computed. The address is inserted
into a path that gives the lowest cost. The addresses are processed in a
random order. When all addresses have been processed, a path improvement
heuristic is invoked for each path.

We generated 250 initial solutions with and without a path improvement
heuristic. The average (av) and standard deviation (sd) are listed in Table
4.1. We conclude that the Lin-Kernighan heuristic (LK) gives better results
than the 2-opt heuristic, and the 2-opt heuristic gives better results than
when no path improvement heuristic is employed. There are no significant
differences in the running times.

For tabu search, we performed a number of computational experiments
in which we put a maximum 7" on the number of successive non-improving
iterations. A number of different values for T', values for the tabu tenure
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[, and path improvement heuristics are considered. The experiments are
repeated ten times. The average solutions quality (av) and the standard
deviation of the solution quality (sd) are listed in Table 4.2. The experi-
ments were carried out on a Pentium III/450 MHz PC. The running times
range from 20 seconds for T" = 50 to 27,000 seconds for 7" = 80,000. In-
terestingly, the running times are approximately the same for each of the
three path improvement heuristics, implying that tabu search spends most
of its time exploring the neighborhood. We conclude that Lin-Kernighan
gives better results than 2-opt, and 2-opt gives better results than when no
path improvement heuristic is employed. The best tabu tenure is [ = 20, for
each path improvement heuristic. Furthermore, it seems that, for each path
improvement heuristic and [, the results improve monotonously for larger 7.

From now on, we use Lin-Kernighan as the path improvement heuristic
and use a tabu tenure [ of 20. In the next section, we attempt to improve
the performance of tabu search by restarting frequently in such a way that
many commonalities are preserved.

4.5 Commonality-preserving restarts

Each solution to the Whizzkids '96 problem is a combination of assignment
and sequencing decisions. The neighborhood of our tabu search heuristic
is primarily concerned with changing the assignment of addresses to paper-
boys. A path improvement heuristic is in charge of the sequencing decisions.
Therefore, it is natural to restrict our commonality concept to assignment
decisions.

Definition 4.5.1. Suppose that L is a multiset of solutions to the Whizzkids
'96 problem. A pair (u,v) consisting of two distinct addresses u and v is
called a commonality of £ when in all L; € L address u and v are assigned
to the same paperboy.

Let ¢(L;) denote the cost of solution L;, which is defined as the time
at which the last newspaper is delivered. After an initial number of inde-
pendent runs, a number of restarts are performed. The best solution found
by every run is inserted into £. After k runs, £ = (Li,..., L) such that
¢(L;) < ¢(Lj) whenever i < j.

An initial solution Lg for the next run is obtained by perturbing L1, the
best solution found so far. Initially, Lg is equal to Li. The four paths of Lg
are processed one after the other. Notice that the edges in a path capture
the sequencing decisions as well as the assignment decisions. In order to
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l 10 20 30

PIH T av sd av sd av sd
50 1,364 51| 1,373 36 | 1,372 56

100 1,331 39| 1,336 31| 1,334 30

250 1,328 66 | 1,304 27 | 1,325 36

500 1,304 60 | 1,284 31| 1,295 48

none 1,000 | 1,263 40 | 1,278 29 | 1,266 26
5,000 | 1,244 27| 1,248 17| 1,228 19

10,000 | 1,248 42 | 1,245 19 | 1,230 16
20,000 | 1,230 34 | 1,219 20 | 1,229 17
40,000 | 1,220 17| 1,214 16 | 1,226 19
80,000 | 1,206 14 | 1,199 10| 1,212 9

50 1,332 51| 1,304 43| 1,336 39

100 1,314 36 | 1,307 44| 1,306 50

250 1,273 38 | 1,268 38 | 1,278 35

500 1,262 37| 1,249 32| 1,254 29

2-opt 1,000 | 1,246 22| 1,264 24| 1,246 17
5,000 | 1,254 38 | 1,228 16 | 1,235 16

10,000 | 1,213 17 | 1,215 15| 1,224 17
20,000 | 1,214 17 | 1,203 14 | 1,213 6
40,000 | 1,205 14 | 1,203 12 | 1,204 9
80,000 | 1,197 9 | 1,193 9 | 1,202 8

50 1,281 43| 1,269 30| 1,300 44

100 1,247 42| 1,259 31| 1,273 36

250 1,243 27| 1,242 36 | 1,256 21

500 1,248 33| 1,246 32| 1,258 24

LK 1,000 | 1,223 16 | 1,227 17 | 1,239 31
5,000 | 1,206 16 | 1,218 15| 1,215 14

10,000 | 1,204 17| 1,206 11 | 1,206
20,000 | 1,202 16 | 1,195 9 | 1,201
40,000 | 1,194 6 | 1,192 5 | 1,196
80,000 | 1,193 16 | 1,190 3 | 1,195

Table 4.2: Results for ten runs of the tabu search heuristic for various pa-
rameters.

preserve this sequencing information, our restart mechanism operates in
terms of these edges. For each path of Lg, the edges are traversed in path
order. The commonality class C(u,v) of a pair (u,v) of addresses is defined
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Figure 4.2: The trajectories of 30 independent runs of tabu search. The
solution quality on the y-axis is given as a function of the iteration number
on the z-axis.

as the number of solutions in £ that have v and v assigned to the same path.
For each edge {u,v} in Ly, the acceptance probability is defined in terms of
the fraction of solutions in £ that have u and v assigned to the same path:

C(u,v)
k 9

Pacc (ua U) ‘= Pmin + (pmax - pmin)

where pmin and pmax are given thresholds such that 0 < puin < Pmax < 1.
When {u,v} is accepted, it stays in Lyg. When {u,v} is rejected, either
address u or address v is relocated to another path. For both addresses, the
best insertion point in a different path is determined. When more than one
best insertion place exists, ties are broken at random. In case the resulting
cost of relocating u is less than or equal to v’s relocation cost, u is relocated;
otherwise, v is relocated. Let s(u) denote the successor of address u in a
path. When v is removed, the next edge to consider is {v,s(v)}. When v
is removed, the next edge to consider is {s(v), s(s(v))}. After applying the
Lin-Kernighan heuristic to each path, the construction of the initial solution
is complete.



62 CHAPTER 4. WHIZZKIDS ’96

strategy av sd  best

IR 1,187.15 0.88 1,186
CP/0.80 | 1,187.15 2.54 1,183
CP/0.85 | 1,186.55 1.82 1,183
CP/0.90 | 1,187.00 1.56 1,183
CP/0.95 | 1,186.45 1.79 1,183

LR | 1,187.20 2.02 1,183

Table 4.3: The results of a single long run, twelve independent runs, and
two independent runs followed by ten restarts of the commonality-preserving
restart mechanism for various values of ppax. The run length T is 20,000,
Lin-Kernighan is used as path improvement heuristic, and the tabu tenure
[ is 20.

4.5.1 Results

In order to determine whether or not tabu search tends to get stuck, we
perform 30 independent long runs with / = 20 and Lin-Kernighan as path
improvement heuristic. The corresponding trajectories in cost space are
given in Figure 4.2. As there are often substantial improvements after hours
of computation, we conclude that tabu search does not get stuck early in
the search process. Nevertheless, we are interested whether or not multiple
shorter runs give better results than a single long run. Therefore, we must
determine a proper run length. The total number of iterations at which
the independent runs slow down significantly appears to be around 40,000.
Furthermore, after 40,000 iterations, the majority of the independent runs
have no improvement for the subsequent 15,000 to 20,000 iterations. As our
stop criterion consists of putting a maximum 7T to the number of subsequent
non-improving iterations, we will use 7' = 20,000 in our experiments with
multiple shorter runs.

We carried out a number of computational experiments in which we com-
pare two independent runs followed by ten commonality-preserving restarts
(CP) to twelve independent runs (IR) and a single long run (LR). We ex-
perimented with a number of different values for ppax. The experiments
were repeated 20 times. For each strategy, the average (av), standard de-
viation (sd), and the best solution found by the 20 computational exper-
iments are listed in Table 4.3. Each entry of the form CP/x corresponds
to commonality-preserving restarts with ppi, = 0 and ppax = . A sin-
gle long run is simulated by having a single independent run followed by
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eleven restarts with pmin = Pmax = 1.0, which corresponds to no perturba-
tion. Although the average results of the commonality-preserving restarts
are slightly lower than or equal to the average results of the independent
runs and the long run, the standard deviation of the independent runs is
significantly smaller than that of the other strategies. We conclude that
commonality-preserving restarts and the single long run are less robust than
the independent runs. Given that the averages are approximately the same
for all strategies, the relatively high standard deviation of the commonality-
preserving restarts and the single long run imply that the best solution found
by the 20 experiments is likely to be better than that of the independent
runs. The best solution found by the 20 experiments with a single long run
and each of the four commonality-preserving strategies were able to find
solutions of cost 1,183, while the independent runs could do no better than
1,186.

4.6 Conclusion

We described a tabu search heuristic that is based upon standard ingredi-
ents such as Osman’s A-interchange neighborhood and the Lin-Kernighan
heuristic. The neighborhood of tabu search is mainly concerned with the
assignment of addresses to paperboys. The Lin-Kernighan heuristic is em-
ployed to deal with the sequencing decisions for each paperboy. Frequently,
solutions of cost 1,183, which is the best known upper bound, are found
within hours.

In an attempt to improve the performance of the tabu search heuristic,
we proposed a commonality-preserving restart mechanism. We compared
two independent runs followed by ten commonality-preserving restarts to
twelve independent runs and to a single long run. The average results of
the commonality-preserving restarts are slightly lower than or equal to the
average results of the independent runs and the long run. The independent
runs are more robust than the commonality-preserving restarts and the sin-
gle long run in the sense that the standard deviation is significantly smaller.
On the other hand, the cost of the best solution found by 20 experiments
with the commonality-preserving restart mechanism and the long run was
1,183, while the cost of the best solution found by 20 experiments with the
independent runs was 1,186.

During the numerous computational experiments, a number of different
solutions with cost 1,183 were found. In Figure 4.3, the union of these twelve
solutions is given. It appears that only a small number of alternative edges
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Figure 4.3: Twelve different solutions of cost 1,183. The black edges are
common to all solutions, while the grey edges are not.

can be part of solutions of cost 1,183. Instead of commonality-preserving
restarts, one could fix the commonalities and optimize over the other build-
ing elements. Given the abundance of commonalities, a straightforward
explicit enumeration could do the job.



Chapter 5

Job shop scheduling

5.1 Introduction

Tabu search (Glover & Laguna [30]) has proven to be a very effective local
search heuristic for the job shop scheduling problem (Nowicki & Smutnicki
[61], Ten Eikelder, Aarts, Verhoeven & Aarts [19], Taillard [68]). It employs
a greedy neighborhood search strategy and a mechanism to prevent getting
trapped in local optima. Tabu search is, in general, not known to converge
to a global optimum. In its elementary form, tabu search often seems to get
stuck in some part of the search space, meaning that no further improve-
ments will be found when it is given more time. When we have reasons to
believe that an optimum solution has not yet been found, another mech-
anism is needed to direct the search to other regions. This mechanism is
known as diversification (Glover & Laguna [30]).

One often resorts to multiple independent runs in order to ensure that a
large portion of the search space is visited. This simple restart mechanism
starts from a randomly generated solution and turns out to be very robust
in the sense that the variance of the quality of the best solution found during
a fixed number of independent runs is relatively small. Indeed, independent
runs can be viewed as a simple diversification mechanism. Unfortunately,
all efforts of previous runs are wasted, which results in a poor efficiency.

Another common way to restart tabu search is by means of a backtrack
mechanism. During the search, a list of elite solutions is maintained. When
tabu search terminates, it is restarted with a solution on the list. Appro-
priate measures are taken to ensure that the trajectory followed is different
from the one before. Backtracking is a simple example of a so-called intensi-
fication mechanism (Glover & Laguna [30]). In this way, the surroundings of

65
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good solutions are thoroughly explored. Good results can be obtained with
this approach, see for instance Nowicki & Smutnicki [51] and Ten Eikelder,
Aarts, Verhoeven & Aarts [19].

When good solutions that are found during independent runs are com-
pared, it turns out that they have many attributes in common. When an
attribute is common to many good solutions, it is interpreted as being “prob-
ably right”. We present a probabilistic restart mechanism for tabu search
that exploits this feature. During the execution of our algorithm, a list £ of
elite solutions is maintained. The main idea is that a new start solution is
constructed by perturbing the best solution found so far. When an attribute
of the best solution found so far is common to many good solutions in £, it
will become part of the initial solution of the next run with high probabil-
ity. The amount of perturbation is a parameter of the restart mechanism.
Perturbing all attributes corresponds to multiple independent runs and per-
turbing a small number of attributes resembles backtracking. In this way, a
balance between diversification and intensification is obtained. We perform
a number of computational experiments in which the running time is limited
to 15 minutes on a Pentium IT 333 MHz/Linux machine. We conclude that
our restart mechanism is more robust than backtracking, more effective than
independent runs, but slightly less effective than backtracking.

This chapter is organized as follows. The job shop scheduling problem is
introduced in Section 5.2. Section 5.3 describes the underlying tabu search
algorithm upon which the restart mechanism will be built. The restart
mechanism is described in Section 5.4 and computational results can be
found in Section 5.5.

5.2 Job shop scheduling

In the job shop scheduling problem we are given a set J of n jobs, a set M
of m machines and a set O of N operations. For each operation u € O there
is a processing time p, € Z™, a unique machine M, € M on which it must
be processed, and a unique job J, € J to which it belongs. Furthermore, a
binary precedence relation < is given that decomposes O into chains, one for
each job. The problem is to find a start time s, for every operation u € O
such that the makespan, defined as Cax = maxyco{sy + Py}, is minimized
subject to the following constraints:

Su >0 for all u € O,
Sy = Sy + Du for all u,v € O with u < v, and
Sy > Sy + Py O Sy > Sy +py,  for all u,v € O with M, = M,,.
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The first constraint implies that no machine is available before time 0, the
second constraint accounts for the precedence relation < such that no oper-
ation will start before its predecessor in the chain has finished, and the last
constraint is the machine capacity constraint which stipulates that every
machine can process at most one operation at a time.

5.2.1 Solution representation

An instance of the job shop scheduling problem can be represented by a
disjunctive graph (Roy & Sussmann [62]). This is a vertex-weighted mixed
graph G = (O, A, E) where the arc set A consists of job arcs connecting
consecutive operations of the same job, and the edge set E consists of edges
connecting distinct operations that must be executed on the same machine.
Each vertex v € O has a weight p,.

Every solution o to the job shop scheduling problem induces a unique
acyclic digraph G(o) obtained from G by replacing every edge {u,v} € E
by a machine arc (u,v) or (v,u). The earliest start time of operation u is
equal to the length of a longest path in G(o) up to and excluding u. The
cost of the solution, denoted by ¢(o), is equal to the length of a longest path
in G(o). Our set of feasible solutions S is the set of acyclic digraphs that
can be obtained from G. These acyclic digraphs correspond to the set of
left-justified solutions.

From now on, no distinction will be made between a solution and its
corresponding digraph. We introduce the following additional notation. In
an acyclic digraph G(o), jp,, is the immediate job predecessor of an operation
u € O, js, is its immediate job successor, mp, is its immediate machine
predecessor, and ms, is its immediate machine successor, whenever they
exist.

5.3 Elementary tabu search

Tabu search is one of the most effective local search heuristics for the job
shop scheduling problem. A detailed survey of local search heuristics applied
to the job shop scheduling problem is given by Vaessens, Aarts & Lenstra
[71]. We will describe an elementary tabu search heuristic that is based upon
ideas from Nowicki & Smutnicki [51], Taillard [68] and Ten Eikelder, Aarts,
Verhoeven & Aarts [19]. It does not incorporate an intensification or diver-
sification mechanism, but it is designed to fit into our restart framework,
which will be introduced later.
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5.3.1 Neighborhood

Most neighborhoods for the job shop scheduling problem are based on re-
versing a machine arc on a longest path in the digraph. Reversing an arc
on a longest path always results in a feasible solution, and reversing an arc
that is not on a longest path will never improve the solution and can even
lead to infeasibility (Van Laarhoven, Aarts & Lenstra [39]).

The neighborhood function we use is the one proposed by Nowicki &
Smutnicki [51], which is based on the neighborhoods defined by Matsuo, Suh
& Sullivan [44]. A block is a maximal sequence of size at least one, consisting
of adjacent operations that are processed on the same machine and belong
to a longest path. An operation of a block is called internal when it is
neither the first nor the last operation of that block. An internal arc is an
arc between two internal operations of a block. Matsuo, Suh & Sullivan [44]
noted that reversing an internal arc cannot decrease the makespan. Nowicki
and Smutnicki observed that the same applies to machine arcs from the first
operation of the first block to an internal operation and for machine arcs from
an internal operation to the last operation of the last block. This leads to
the following neighborhood function. For a given solution ¢ consider a single
critical path (B, ..., By), where each B; denotes a block. The neighborhood
N (o) of o consists of all solutions that can be obtained by swapping the last
two operations of B, the first two or the last two operations of Bo, ..., By_1,
or the first two operations of B).

Each neighbor of o can be obtained by reversing a machine arc (u,v) € o.
Such a reversal is called a move. From now on no distinction will be made
between a move (u,v) and the resulting neighbor.

5.3.2 Tabu list and aspiration levels

An important characteristic of tabu search is that the neighbor selection
mechanism is influenced by a so-called tabu list. The purpose of a tabu list
is to prevent cycling, i.e., moving to solutions that were visited before. This
can be achieved by maintaining a list of the most recently visited solutions
and testing for each neighbor if it is on the list or not.

Unfortunately, this involves comparing complete solutions, which is very
time-consuming. Instead we maintain a tabu list 7 consisting of machine
arcs. After reversing a machine arc (u,v) all machine arcs originating from
v, including (v,u), are appended to 7, which means that they cannot be
reversed for some period of time. This period of time is called the tabu
tenure and it is denoted by l. The tabu tenure must be large enough to
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avoid cycling and small enough not to forbid too many moves.

It is known that randomizing the tabu tenure reduces the chance of
getting trapped in a long cycle. In our algorithm we set | = max{N + X, 1},
where N is the average number of neighbors of the solutions visited so far
and X is a random number between 0 and 5. The value of the tabu tenure
is updated every [ + 2 iterations.

For each operation v € O let ¢, denote the last iteration number at which
a machine arc (-, v) was reversed to (v, ). Initially we put all t, = —oco. Each
time that a machine arc (-,v) is reversed the value ¢, is set to the current
iteration number. This information is used to determine whether a move is
allowed or not. Reversing a machine arc (v,-) is not allowed at iteration k
when k < t, + 1. When this is the case the move is called tabu.

A drawback of the approach sketched above is that it can happen that
a certain move is tabu although the resulting solution was never visited
before. A mechanism for overruling the tabu status of moves is provided
by aspiration levels. For every operation v € O let a, denote the threshold
on the cost of any move (v,-) for overruling the tabu status. When the
corresponding neighbor’s cost are less than this threshold, the tabu status
is overruled. A common approach is to set a, equal to the makespan of the
best solution found so far, for every operation v € O. This implies that the
tabu status of any move (v, -) is overruled when the resulting solution’s cost
is less than the cost of the best solution found so far.

5.3.3 Neighborhood search strategy

A tabu search heuristic usually moves from a solution to a neighboring
solution with minimum cost. Finding a minimum-cost neighbor of a solution
o is a time consuming process with complexity O(|N(c)|N), where |N(0)|
is the size of ¢’s neighborhood and N the number of operations. Instead of
calculating the exact cost of a neighbor we use Taillard’s O(1) time lower
bound [68].

For every operation v € O, r, denotes the head of operation u, which is
defined as the length of a longest path up to and excluding u, and g, denotes
the tail of operation u, defined as the length of a longest path originating
from and excluding u. These quantities determine which operations are on
a longest path in the digraph: an operation u is on a longest path, i.e.,
critical, when ry + py + ¢ = Chax. Taillard’s lower bound on the makespan
of the neighboring solution obtained by reversing a machine arc (u,v) on a
longest path is calculated as follows. When an arc (u,v) on a longest path
is reversed, the heads and tails of 4 and v can be updated in constant time
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Figure 5.1: Before and after reversal of machine arc (u,v).

(see Figure 5.1):

7y = max{rjp, + Pjp, Tmp, + Pmp, };
i, = max{rj, +DPjp Ty + Do};
q,, = max{pjs. + s >Pms, + Ams, };
% = IIlaX{pjsv + Qjs,; Pu + q;}

The value Ay, = max{r, + py + ¢.,,7), + pv + ¢, } is a lower bound on the
new makespan; when the new longest path passes through u or v, the new
makespan is equal to Ay ..

Using lower bounds instead of exact neighbor costs has consequences for
the use of aspiration levels. Let UB denote the cost of the best solution
found so far. When it must be decided whether or not to overrule the tabu
status of a move it is not appropriate to test whether the lower bound on the
neighbor cost is less than UB. Instead, for every operation v the threshold
Qp 1s defined as the minimum of UB and the lowest lower bound that was
calculated for any selected reversal (-,v). This value is interpreted as the so-
called best promise that a move (-,v) ever made when evaluating the lower
bound on its cost.

A drawback of using lower bounds is that the neighbor with the lowest
lower bound is not necessarily a minimum-cost neighbor. The following
neighborhood search strategy strikes a balance between accuracy and speed.
For every neighbor (u,v) the lower bound A, , is calculated. The cost of
every tabu move (u,v) that is not overruled by the corresponding aspiration
level, i.e., Ay y > o, is set to B + t,, where B > UB. In this way, moves
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that were recently made tabu are less attractive than old tabu moves and
tabu moves are always less attractive than non-tabu moves. Neighbors that
have their tabu status overruled maintain their lower bound cost. For every
non-tabu move, including the overruled tabu moves, for which the lower
bound is smaller than the cost of the current solution, the exact cost is
calculated. The move with minimum cost is selected and in case of a tie
between the minimum lower bound and the minimum exact cost we prefer
the latter one. By convention the minimum over an empty set is co.

As the average solution quality improves, the number of neighbors with
lower cost than the current solution decreases. Hence, the number of exact
cost calculations decreases during the course of the algorithm, reducing the
time required for an iteration.

When the selected move (u,v) is tabu, its tabu status is relazed by
putting ¢, = —oo. Furthermore, as the aspiration level «a, of an operation
v is defined as the minimum of UB and the lowest lower bound that was
calculated for any selected reversal (-, v), the aspiration level of v is updated
only when the calculated cost of (u,v) is a lower bound, i.e., no exact cost
calculation was performed.

After reversing a machine arc (u, v) the heads and tails must be updated.
Profiling indicated that these updates consume 90% of the total computation
time. Instead of recalculating every value we use the bow-tie algorithm
proposed by Ten Eikelder, Aarts, Verhoeven & Aarts [19], which decreases
the total update time by 35 to 40 percent. Suppose that (u,v) is the machine
arc that will be reversed next. The head of v is determined by a longest path
to v which contains either (u,v) or (jp,,v). After reversing (u,v) the length
of a longest path to v is equal to the maximum of ry,p +pmp, and rjp +pjp. .
As p,, > 0 we conclude that r,, cannot increase (see Figure 5.1). Because the
head of an operation is defined in terms of its job predecessor and machine
predecessor, only the head of v and of all operations that can be reached
from v require an update. This is accomplished by calculating the set of all
operations that can be reached from v and applying Bellmann’s labelling
algorithm to the subgraph induced by these operations. The update of the
tails is analogous.

5.4 Restart mechanism

In our experience, the elementary tabu search algorithm described above
tends to get stuck in some part of the search space. There are several ways
to direct the search to other parts of the search space.
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One way to overcome this problem is by restarting the search with a
new random initial solution. In this way, it is likely that a larger part of
the search space will be explored. Its major drawback is that the search is
restarted from scratch since the efforts of the preceding runs are ignored.
As a diversification mechanism this works well, but it lacks intensification.

Another way to restart tabu search is by means of a backtrack mecha-
nism. When tabu search gets stuck, it jumps back to a promising solution
found in the past and avoids that the same search path is followed again. See
for instance Nowicki & Smutnicki [51] and Ten Eikelder, Aarts, Verhoeven
& Aarts [19]. A drawback of this approach is that the new start solution is
close to the original search path, which can prevent escaping from a region
in which it got stuck. In other words, the emphasis lies on intensifying the
search while it incorporates almost no diversification.

Instead of restarting the search, one can also maintain a frequency based
memory that depends on the number of times that a particular attribute has
been added to or removed from a solution. When selecting a neighbor, this
type of memory is used to discourage changes that have already occurred
frequently, for instance by means of a penalty term in the objective function.
Although this technique incorporates both intensification and diversification,
it requires a lot of experience and tuning. See for instance Taillard [68] and
Glover & Laguna [30].

This section describes a probabilistic restart mechanism based upon mul-
tiple independent runs that does not restart from scratch but uses informa-
tion obtained from preceding runs to construct an initial solution.

5.4.1 Commonalities

For job shop scheduling problems it is often the case that certain scheduling
decisions are more obvious than others. For instance, suppose that operation
u is the first operation of its job, operation v is the last operation of another
job and they require processing on the same machine. It is clear that good
solutions will probably have (u,v) rather than (v,u). Hence, it is likely that
good solutions have certain machine arcs in common and it is this kind of
information that could be useful when constructing a new start solution.

Definition 5.4.1. Let £ denote a multiset of solutions. The commonal-
ity set of L is defined as the subset of machine arcs that are common to
all solutions in L. Fach machine arc in the commonality set is called a
commonality of L.

In order to get an idea of the abundance of commonalities, we carried
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instance/T 0o 10° 10! 102 10° 10* 10° 10°
ta2l | 35.7 36.2 63.2 70.6 723 77.7 783 82.2
ta22 | 36.4 37.1 64.6 65.7 747 77.2 78.7 80.1
ta23 | 35.8 384 62.3 69.9 73.9 775 79.8 83.9
ta24 | 36.4 37.3 64.3 684 73.1 76.7 83.0 88.9
ta25 | 35.9 37.2 64.3 721 73.1 73.0 752 79.4
ta26 | 35.9 38.2 63.9 70.3 71.4 75.7 80.2 80.2
ta27 | 36.2 382 61.9 70.3 741 79.0 81.3 83.9
ta28 | 36.7 37.8 63.0 67.7 76.6 79.5 80.5 82.0
ta29 | 36.3 382 66.7 71.9 788 83.6 852 86.1
ta30 | 35.4 36.8 62.2 69.7 741 73.6 779 83.5
ynl | 37.1 39.8 64.9 73.2 79.1 8L.1 820 855
yn2 | 37.1 38.0 65.6 70.5 747 78.7 80.8 82.6
yn3 | 36.3 36.6 61.1 70.7 76.0 80.2 855 87.8
ynd | 32.8 344 572 70.2 720 78.4 80.6 81.8

Table 5.1: The average percentage of machine arcs in the best local opti-
mum found that are common to the 25 best local optima found during 25
independent runs of the elementary tabu search algorithm.

out the following experiment. The 25 best local optima found during 25
independent runs of the elementary tabu search heuristic are stored in a
list £. For every machine arc (u,v) in the best local optimum L; in L,
we determine whether or not all other local optima in £ have u scheduled
before v. The percentage of machine arcs in L; for which this is the case
is given in Table 5.1. The initial solutions are obtained from a randomized
construction heuristic. Each independent run halts after T subsequent non-
improving iterations. Hence T = 0 corresponds to taking a random initial
solution and 7" = 1 to stopping at the first local optimum that is found. We
repeat the experiment ten times and take the averages. Notice that for "= 0
and T" = 1 there is exactly one local optimum in £ for every independent
run. For the other values of T this is not necessarily true. Although some
runs contribute more to £ than others, it is not the case that £ consists
entirely of local optima found during a relatively small number of runs. It
is remarkable that the percentages of common machine arcs are very close
for T =0 and T' = 1. On the other hand, the values for T'=1 and T' = 10
differ considerably. For larger 7', the percentage of common machine arcs
increases to about 80%. Interestingly, the percentages are approximately
the same for all problem instances that we considered. We conclude that
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good local optima have many machine arcs in common.

Our restart mechanism is based upon perturbing the best solution found
so far while preserving the commonalities of a number of so-called elite
solutions. The machine arcs common to these elite solutions will form the
basis of the new start solution. In this way, useful information gathered
during previous runs is used by subsequent runs.

5.4.2 Perturbation

During the execution of tabu search a list £ = (Li, Lo, ..., L) of k elite
solutions is maintained, for some value k to be chosen later. In order to
keep the solutions in £ sufficiently diverse, a solution is inserted only when
it is a local optimum and it improves the best solution found so far. The
worst solution in £ is removed when |£| > k.

We are interested in the machine arcs that are common to these local
optima. This information is used to construct a new starting solution Lg
for tabu search. Machine arcs that are common to many solutions in £ are
thought of as being “probably right” and should be part of Lg.

Assume that ¢(L;) < ¢(Lit1) for i = 1,2,...,k — 1. The commonality
class C(u,v) of a machine arc (u,v) in L is defined as the largest index 4
such that all successive local optima L1, Lo,...,L; in £ have u < v. The
construction of a new starting solution Ly consists of two phases. In the first
phase, the selection phase, each machine arc (u,v) in L is either accepted
with a probability pacc(u, v) or rejected with probability 1 — pacc(u, v), where
PDace(u, v) ranges between pmin and pmax and depends on the commonality
class of (u,v) in L:

C(u,v) —1 k—C(u,v)

pacc(u7 U) = E_1 Pmax T E_1 Pmin-

When (u,v) is common to all L; € £, the acceptance probability pacc(u,v)
is set to a value pmax that is close to 1. We put ppin = %, reflecting that
machine arcs (u,v) that have C(u,v) = 1 are not commonalities but rather
peculiarities of L.

For example, the acceptance probabilities for a 20 x 20-problem instance
with 3,800 machine arcs where |£| = 10 are given in Table 5.2. The table
is to be interpreted as follows. According to the sixth row, there are 17
machine arcs common to Li,...,Ls that do not belong to Lg. Each of
these machine arcs has an acceptance probability of 0.70, and 11 of them
become part of the next start solution. In this experiment all machine arcs
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C(u,v) | #(u,v) pacc #accepted
10 3591 0.95 3424
9 113  0.90 102
8 6 0.85 4
7 38 0.80 28
6 11 0.75 8
5 17 0.70 11
4 2 0.65 2
3 2 0.60 1
2 16 0.55 8
1 4 0.50 1

Table 5.2: Acceptance probabilities for a sample 20 x 20 instance.

in the transitive closure of the precedence graph induced by each machine
are processed. In Section 5.4.4 we give an alternative method.

In the second phase, the augmentation phase, Ly is augmented to a
complete solution. For every machine arc (u,v) in L; that was rejected a
coin is flipped. Either (u,v) or its complement (v, w) is inserted into Lg, with
equal probability, provided that it does not create a cycle. When it does, the
inserted machine arc is reversed. The machine arcs in L1 are not processed
in a specific order. Some orders will probably do better than others, but we
ignore this.

The solution Ly obtained in this way is a perturbed version of the best
local optimum found so far. It will serve as the initial solution of the next
tabu search run. The amount of perturbation applied is determined by pmax,
Pmin and |L£|, and typically ranges between 5 and 15 percent.

5.4.3 Restarting tabu search

The first tabu search run starts with a solution that is generated by a simple
randomized construction heuristic, which operates as follows. A operation
is called enabled when its job predecessor is already scheduled, otherwise it
is called disabled. Initially, only the first operation of each job is enabled.
A solution is constructed by repeatedly selecting at random an enabled
operation to be scheduled next on its machine, disabling the operation and
enabling its job successor.

Each time that a local optimum is found that improves the best solution
found so far it is stored in the list £. After T" subsequent iterations without
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improvement of the best solution tabu search halts. Each subsequent tabu
search run starts with a solution obtained by perturbing L;. Before each
restart the tabu list and aspiration levels are cleared and during the search
list £ is updated.

Initially, when tabu search gets stuck, the next initial solution will be
close to the best solution found so far. At this point, our restart mechanism
resembles backtracking. After each restart in which L; is not improved, the
value of pmax is decreased by multiplying it with a value €, 0 < ¢ < 1, which
is a parameter of the restart mechanism. This results in more perturbation
of L1 when constructing a new initial solution. Hence, after a large number
of non-improving restarts, the initial solution is a strongly perturbed copy
of the best solution found so far. It could as well be generated at random;
in this case our restart mechanism resembles multiple independent runs.
When a restart improves Li, pmax iS reset to its original value. Hence,
the parameters pp.x and e determine the amount of perturbation having
multiple independent runs and backtracking to the best solution found so
far as special cases. Backtracking corresponds t0 Pmax = Pmin = 1 and
multiple independent runs to pmax = Pmin = %

One could argue that in order to get a sufficiently diverse population the
best local optima found during multiple independent runs should be com-
bined. In this scenario after n; independent runs a number of probabilistic
restarts will be executed. Experiments showed that it is not necessary to
have more than one independent run.

5.4.4 Implementation details

In the selection phase the commonality of every machine arc (u,v) in Lg
is determined. This involves testing whether (u,v) € L; or not, for i =
2,3,...,k. According to the definition of digraphs in Section 5.2.1 either
(u,v) or (v,u) exists in every L;, hence the test takes constant time. Unfor-
tunately, the number of machine arcs in a digraph is © (mn?) for n jobs and
m machines. This implies a total of ©(kmn?) machine arcs that must be
stored in memory, where k is the number of local optima in £, typically 25.
As a result, the memory requirements for larger job shop instances become
impractical.

Instead of storing every machine arc of a digraph, we only store the
machine arcs in the transitive reduction of the precedence graph induced by
each machine. These machine arcs are called direct machine arcs and the
others are called transitive machine arcs. Notice that transitive machine
arcs are never part of a longest path, provided that all operations have a
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non-zero processing time. Operation u is scheduled before operation v when
there exists a path (u = wg, u1,...,uq = v) such that M,,, = pfor 0 <i <d.
Testing whether u is scheduled before v in L; now requires O(n) time.

The selection phase processes all direct and transitive machine arcs, ei-
ther explicitly or implicitly. For instance, when the direct machine arcs
(u,v) and (v, w) are selected, the transitive machine arc (u,w) is implicitly
selected. On the other hand, when (u,v) is selected but (v, w) is not, an ex-
plicit selection trial is required for (u,w). In the selection phase Ly is initially
equal to Ly. Then, for every direct machine arc (u,v) € Lo the acceptance
probability pacc(u,v) is determined and with probability 1 — pacc(u,v) it is
rejected, meaning that (u,v) is removed from Ly. When a direct machine
arc (u,v) is removed, new direct machine arcs (mp,,v) and (u,ms,) are
inserted, where mp, denotes a direct machine predecessor of w and ms,
denotes a direct machine successor of v (see Figure 5.2). As a result of re-
moving machine arcs, the operations on some machine are not completely
ordered. Some operations have more that one direct machine predecessor or
direct machine successor. These new direct machine arcs are subjected to
the same acceptance trial described above. In the worst case all direct and
transitive machine arcs are processed. It turns out that in practice about
one and a half times the number of direct machine arcs are processed, which
is far less than the number of machine arcs in the transitive closure.

During the augmentation phase every rejected machine arc is reversed
with probability % and inserted into Lg, provided that it does not create a
cycle. Inserting a machine arc can make other machine arcs transitive. Since
the number of rejected machine arcs is usually small and determining which
machine arcs are transitive is quite expensive, transitive machine arcs are
not removed. Instead, after the selection and augmentation phase we take
the transitive reduction of the precedence graph induced by each machine
in Lg.

Profiling indicates that the running time overhead of the restart mecha-
nisms is less than 2 percent. This is due to the relatively small number of
restarts, typically between 10 and 30 when the total running time is 15 min-
utes (see Section 5.5). Hence, the benefit of using advanced data structures
for the restart mechanism is negligible.

5.5 Results

In many practical situations the amount of time available for finding an
acceptable solution of a combinatorial optimization problem is limited to a
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Figure 5.2: Rejection of (u,v).

couple of hours or perhaps a few days. Hence, our tuning objective is to
find values for the parameters of tabu search and the restart mechanism
such that the performance in a given amount of time is as good as possible.
Obviously, the optimum value of these parameters depends on the class of
problem instances to which our algorithm is to be applied. In particular the
size of these instances plays an important role. In order to be able to compare
our algorithm with other techniques our class of problem instances Z is a
set of 14 well known 20 x 20 benchmark instances proposed by Taillard [66],
ta21 to ta30, and Yamada & Nakano [74], ynl to yn4. These test instances
are still open, although the gap between the best upper and lower bounds
is relatively small. All tuning experiments were performed on a Pentium II
333 MHz/Linux machine and the running time was limited to 15 minutes.

5.5.1 Tuning

The restart mechanism described above has a number of parameters and
we want to find good values for them. The most important parameters are
Pmax and €, which determine the amount of perturbation that is applied
to the best local optimum when creating a new starting solution. These
parameters are closely related to the stop criterion 7' of tabu search, which
is defined as the maximum number of subsequent iterations in which the
best solution is not improved. Intuitively, the immediate surroundings of
the best solution found so far are more thoroughly searched when T is big.
As a result, more perturbation is needed to prevent that the new starting
solution is too close to the best solution found so far. This is accomplished
by choosing a smaller value for pmax.

Because tuning requires a lot of computational effort, we chose to focus
our attention to the two most important parameters, T and ppax. Dur-
ing the tuning experiments we always have that € is equal to pmax. The
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T  Pmax av, sd, #restarts

25,000 0.95 | 0.0684 0.0008 74
25,000 0.97 | 0.0678 0.0006 77
25,000 0.99 | 0.0679 0.0003 83
50,000 0.95 | 0.0678 0.0006 40
50,000 0.97 | 0.0676 0.0008 42
50,000 0.99 | 0.0682 0.0011 45
100,000 0.95 | 0.0676 0.0006 21
100,000 0.97 | 0.0684 0.0008 21
100,000 0.99 | 0.0682 0.0008 22
250,000 0.95 | 0.0687 0.0010 7
250,000 0.97 | 0.0688 0.0007 7
250,000 0.99 | 0.0681 0.0008 7
500,000 0.95 | 0.0689 0.0008 3
500,000 0.97 | 0.0685 0.0006 3
500,000 0.99 | 0.0683 0.0009 3
1,000,000 0.95 | 0.0693 0.0006 1
1,000,000 0.97 | 0.0689 0.0004 1
1,000,000 0.99 | 0.0695 0.0009 1

Table 5.3: Tuning results for our probabilistic restart mechanism with
pmin = %7 €= pmax and k = 25

other parameters were fixed to appropriate values found during numerous
preliminary experiments: k = 25 and ppin = 0.5.

Our objective is to find a set of parameters that performs well on the set
T of test instances. First, we need a measure of how good a given parameter
set is. For each parameter set (T, pmax) the algorithm is executed once for
every test instance I € Z. The average relative distance to the lower bound
over the instances in 7 is given by

1 UB; — LB;
T, pna) = 1 3 e
#T Pmax) Tl < LB

where UB7 is the cost of the best solution found and LBj is the best known
lower bound. We use this quantity to measure the performance of a pa-
rameter set. As the algorithm incorporates randomization, z(T, pmax) is a
random variable. Therefore, the experiment is repeated ten times for ev-
ery parameter set and the average av, and the standard deviation sd, are
calculated. The results are given in Table 5.3.
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T AT Tinin av, sd, #restarts
25,000 1,000 1,000 | 0.0679 0.0011 21
25,000 2,500 2,500 | 0.0681 0.0011 27
25,000 5,000 5,000 | 0.0677 0.0013 42
25,000 10,000 10,000 | 0.0678 0.0009 75
50,000 2,000 2,000 | 0.0679 0.0010 10
50,000 5,000 5,000 | 0.0676 0.0011 13
50,000 10,000 10,000 | 0.0681 0.0012 20
50,000 20,000 20,000 | 0.0670 0.0009 36

100,000 4,000 4,000 | 0.0676 0.0009 4
100,000 10,000 10,000 | 0.0673 0.0009 6
100,000 20,000 20,000 | 0.0666 0.0007 9
100,000 20,000 40,000 | 0.0675 0.0010 17
250,000 10,000 10,000 | 0.0687 0.0011 1
250,000 25,000 25,000 | 0.0679 0.0011 2
250,000 50,000 50,000 | 0.0676 0.0009 3
250,000 100,000 100,000 | 0.0678 0.0010 6
500,000 20,000 20,000 | 0.0687 0.0008 0
500,000 50,000 50,000 | 0.0686 0.0008 0
500,000 100,000 100,000 | 0.0683 0.0005 1
500,000 200,000 200,000 | 0.0678 0.0007 2

Table 5.4: Tuning results for backtracking.

The results in this table, and the tables to come, should not be taken
too literally, since for a problem size of 20 x 20 far more runs are needed
to determine an accurate confidence interval. Nevertheless, the trends in
the tables provide sufficient information to distinguish good parameter sets
from bad ones.

A quick glance at Table 5.3 suggests that, for our test instances, T' should
be smaller than 250,000. Moreover, we note that the preferred value for T
decreases from 100,000 to 25,000 when pmax and € are increased from 0.95 to
0.99. This is in accordance with our intuition that a stronger perturbation,
i.e., small pmax and €, of the best solution found so far is needed when
its surroundings are more thoroughly searched, which corresponds to a high
value of T'. The best parameters with respect to av, and sd, are 7' = 100,000
and pmax = 0.95. These parameters resulted in an average of 21 restarts in
15 minutes of computation time.

We applied the same tuning method to multiple independent runs and to
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T av, sd, #restarts

5,000 | 0.0751 0.0003 175
10,000 | 0.0729 0.0010 102
25,000 | 0.0710 0.0009 48
50,000 | 0.0706 0.0009 26
75,000 | 0.0701 0.0009 19
100,000 | 0.0700 0.0007 15
250,000 | 0.0699 0.0015 6
500,000 | 0.0695 0.0019 3

Table 5.5: Tuning multiple independent runs.

a backtrack mechanism inspired by Ten Eikelder, Aarts, Verhoeven & Aarts
[19]. The backtrack mechanism under consideration maintains a list £ of k
elite solutions. Each time that a local optimum is found that improves the
best solution, it is stored in the list together with the current tabu list, the
aspiration levels and the list of the unvisited neighbors. After T subsequent
iterations in which no improvement of the best solution is found, tabu search
halts. The best unvisited neighbor of the best solution in £ is the new start
solution and T is decreased by AT, which is a parameter of the backtrack
mechanism. When T is less than Ty,;,, another parameter of the backtrack
mechanism, or the best local optimum in £ has no unvisited neighbors, it is
removed from £ and T is reset to its original value. The tuning results are
given in Table 5.4. In this table, the number of restarts denotes the number
of different solutions on the elite list in which backtracking occurred. The
best results are obtained for T' = 50,000 and 7" = 100,000. In fact, the
results are slightly better than the results of our restart mechanism. On the
other hand, the standard deviation of our approach appears to be smaller.
We always have AT = T, and high values of these parameters give better
results than small values, meaning that jumping back to another solution
in the elite list is to be preferred to exhausting all unvisited neighbors of
the elite solution that is currently used for backtracking. Again we conclude
that frequently restarting the search is to be preferred to longer runs.

The results for independent runs are given in Table 5.5. Clearly, the qual-
ity of the solutions found increases with T', at the expense of a considerable
increase of the standard deviation. Independent runs are dominated with
respect to solution quality and standard deviation by our restart mechanism
and by backtracking.
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instance size LB old UB new UB A
tal6 20 x 15 | 1300 1368 1362 6
ta2l 20 x 20 | 1539 1647 1645 2
ta25 20 x 20 | 1504 1598 1597 1
ta26 20 x 20 | 1539 1655 1651 4
ta27 20 x 20 | 1616 1689 1687 2
ta30 20 x 20 | 1473 1596 1585 11
tadl 30 x 15 | 1764 1766 1764 2
ta36 30 x 15 | 1819 1823 1819 4
ta38 30 x 15 | 1673 1681 1677 4
ta39 30 x 15 | 1795 1798 1795 x 3
tad4 30 x 20 | 1927 2003 1998 5
tad6 30 x 20 | 1940 2033 2029 4
tad7 30 x 20 | 1789 1920 1913 7
tad8 30 x 20 | 1912 1973 1971 2
tad9 30 x 20 | 1915 1991 1984 7
tab0 30 x 20 | 1807 1951 1937 14
ta62 50 x 20 | 2869 2895 2872 23
tab7 50 x 20 | 2825 2826 2825 x 1

swv04 20 x 10 | 1450 1483 1478 5
swv08 20 x 15 | 1640 1770 1759 11
swvl0 20 x 15 | 1631 1773 1761 12
swvll 50 x 10 | 2983 3005 2989 16
swvl2 50 x 10 | 2972 3038 3022 16
swvl3 50 x 10 | 3104 3146 3104 * 42
swvld 50 x 10 | 2885 2940 2911 29
ynl 20x20 | 826 888 887 1
yn2 20 x 20| 861 909 908 1
yn3 20 x 20 | 827 894 893 1
ynd 20 x20 | 918 972 970 2

Table 5.6: New upper bounds. An * means that an optimum was found.

5.5.2 Unlimited time

During the numerous computational experiments while testing and tuning
our restart mechanism we solved five problem instances known from the liter-
ature that were not solved before. Moreover, we improved the upper bound
of twenty other hard problem instances. The computation time ranged be-
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tween a couple of hours and several days. These results are summarized in
Table 5.6; an * means that an optimum was found.

5.6 Conclusion

We presented a restart mechanism for tabu search that is based upon per-
turbing certain machine arcs in the best local optimum found so far. Dur-
ing the search process, a list £ consisting of k elite solutions is maintained.
Machine arcs that are common to many local optima in £ have a small
perturbation probability since they are “probably right”. According to the
tuning results we conclude that our restart mechanism is more robust than
backtracking, approximately as robust as independent runs, more effective
than independent runs, but slightly less effective than backtracking. When
compared to backtracking our restart mechanism has the advantage that it
is not necessary to store a list of tabu lists and aspiration levels. A drawback
is that it is less trivial to implement.

When the running time was of no concern new upper bounds to twenty
five hard benchmark instances were found and five of these were solved
for the first time. It might be time for a benchmark with bigger problem
instances.
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Chapter 6

Whizzkids 97

6.1 Introduction and motivation

In 1997, a second Whizzkids contest was organized by the Department of
Mathematics and Computing Science at the Technische Universiteit Eind-
hoven, CMG and De Telegraaf. This time, the participants had to construct
a plan for a so-called parents’ night at school where parents have the op-
portunity to have conversations with the teachers of their kids. Again, the
principal reason was to increase interest in mathematics and computer sci-
ence among high school students. We discuss a tabu search heuristic that
is based upon the well known tabu search heuristic due to Nowicki and
Smutnicki for the job shop scheduling problem. In addition, we propose a
commonality-preserving restart mechanism, which slightly improves upon
the finite-time behavior of the tabu search heuristic.

6.2 Assignment

The requirements for the contest were the same as in 1996: the assignment
is easy to state but hard to solve, and it should be a non-standard problem
that has not received much attention in the literature. Furthermore, the
size of the problem instance should be too large for enumerative solution
methods, such that participants are forced to use intuition and heuristics in
which a lot of creativity can be deployed.

In 1997, the participants had to construct a plan for a parents’ night
at school, a problem that is likely to be close to the personal experience of
the target group of participants. Each parent selects a number of teachers,
specifies the duration of the conversations, and gives a partial order in which

85
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the conversations are required to take place. The order is not necessarily
linear. Each parent specifies which teachers belong to the same group. The
order between these groups of teachers is fixed, but the order of the teachers
within each group is irrelevant. For example, a parent can require that the
math teacher comes first, then the teachers of the classical languages in any
order, and finally the teachers of the natural sciences in any order.

Definition 6.2.1. (Whizzkids '97). Given are 20 parents and 15 teachers.
Each parent specifies a partial order of a special kind in which the teachers
are to be wisited and the corresponding conversation times. The order is
not mecessarily linear: each parent specifies which teachers belong to the
same group; the order of the teachers within each group is irrelevant, while
the order between the groups is fixed. It is not required that every parent
meets every teacher. The problem is to construct a plan in which the last
conversation is completed as early as possible. The secondary objective is to
minimize the average amount of time that the parents spend at school.

Whizzkids '97 is a mixture of a job shop and an open shop scheduling
problem: in a job shop scheduling problem, the operations of each job are
completely ordered, while in a open shop scheduling problem, there are no
precedences between the operations that belong to the same job. In terms
of the job shop scheduling problem, the parents correspond to jobs. As we
must decide upon the relative order of the conversations for each teacher,
the teachers correspond to machines. In addition, we must decide upon the
relative order of the teachers within each group, implying that the groups
also correspond to machines. Nevertheless, it is appropriate to differentiate
between teachers and groups. Obviously, the conversations correspond to
the operations of a job shop scheduling problem. In what follows, we use the
terms parent and job, teacher and machine, and conversation and operation
interchangeably. As the job shop scheduling problem is a special case of
Whizzkids ’97, the latter is NP-hard in the strong sense.

The primary objective corresponds to the makespan of a job shop schedul-
ing problem. The secondary objective corresponds to the average flow time.
According to Wennink [72], given a linear ordering of the conversations for
each parent and each teacher, the average flow time can be minimized by
solving a minimum cost flow problem. The secondary objective enables
us to differentiate between solutions of the same length submitted by the
participants.
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6.2.1 Finding a hard problem instance

We generated a number of random problem instances with 20 parents and
15 teachers. We used the following ideas to generate hard instances:

e A small number of relatively long conversations are included, because
it is likely that these conversations are hard to manipulate within a
schedule.

e Teacher loads are balanced, implying that all teachers are equally busy
and no teacher is easy to schedule.

e The parent orders are highly correlated such that, at any time, many
parents have to compete for the same teacher.

All conversation times are in minutes. We assume that the parents’ night
starts at 16:00. In order to obtain some level of realism, we attempt to find
a hard problem instance that can be finished just before midnight. As a
result, the optimum makespan should be slightly less than 480 minutes.

The problem instances are generated as follows. First, we determine for
each parent a subset of teachers. For each parent, the probability of not
having a conversation with a certain teacher is 0.35. The total number of
conversations is at most 300 (20 times 15).

Next, the conversation times are generated at random, according to the
following probability distribution: with probability 0.85, a value is drawn
uniformly at random from the interval [5,20], and with probability 0.15, a
value is drawn uniformly at random from the interval [40, 50]. Subsequently,
the machine with maximum load is determined, and all conversations on the
other machines are multiplied with a machine-dependent factor in order to
balance the machine loads.

For the first job, we determine a random complete ordering. The other
jobs initially have the same order as the first job, but a small number of
random pairs of operations are transposed. In this way, we obtain a high
job order correlation. As a result, many machines are requested by multiple
jobs at any time, giving many scheduling conflicts.

Finally, the groups are constructed as follows. The operations of each
job are traversed in job order. As long as there are operations left, a random
number G in [1,3] is drawn, indicating that the next G operations in the
job belong to the same group.

In order to test the generated problem instances, we implemented a tabu
search heuristic (see Section 6.3). For each instance, we performed 1,000 rel-
atively short runs, starting from a random initial solution. We analyzed the
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Figure 6.1: The chosen problem instance. Each row corresponds to a parent
and each conversation consists of a teacher and a duration in minutes.

cost distribution of the solutions that were found. Furthermore, we cal-
culated a number of simple lower bounds for the problem instances: the
maximum job length, the maximum machine load, and the maximum pre-
emptive single-machine head-body-tail bound over all teachers and groups.
Based upon the cost distributions and the lower bounds, we selected a prob-
lem instance for which there was a significant gap between the best upper
and lower bounds, and which had a non-smooth cost distribution with only
a small number of solutions of a very high quality.

Assignment. The chosen problem instance consists of 197 conversa-
tions, see Figure 6.1. For example, according to the third row, parent num-
ber 3 specifies that the first conversation takes place with teacher B for 9
minutes, followed by teacher D for 9 minutes and teacher E for 15 minutes
in any order, etcetera. The data can be obtained via our website,

http://www.win.tue.nl/whizzkids/1997/instance.txt.

6.2.2 Results

For the chosen instance, we performed a number of very long runs of our
tabu search heuristic. An upper bound of 469 was found. The details can
be found in Section 6.3.

Simple lower bounds include the maximum job length (338) and the
maximum machine load (299). The maximum preemptive single-machine
head-body-tail bound over all groups and teachers is 416.
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Cor Hurkens implemented a branch-and-bound algorithm based upon
shaving, which is a lower bounding technique due to Martin and Shmoys for
the job shop scheduling problem (see Chapter 7). For a given time 7', shaving
is a systematic way to reduce the start time intervals of the conversations
in schedules of length at most 7. Shaving gives a lower bound of 434, while
double shave gives 446. Compared to the job shop scheduling problem, a
different ascendant set condition was used, which was significantly faster
to compute, quadratic in the number of operations on the resource instead
of cubic, but slightly less powerful. Branching takes place by splitting the
start time interval of a conversation in halves, producing two nodes. The
first conversation to branch on was selected by hand. The tree is traversed
in depth first-order; it reached a depth of 35, and a total of 19,500 nodes
were generated. Branch-and-bound with double shaving proved that 469 is
a lower bound. As the lower bound equals the upper bound, the instance
is solved. The total computation time of the branch-and-bound algorithm
was approximately 65 hours on a Pentium 11/266 MHz.

We received 349 solutions in the general and professional category, eleven
of which with a makespan of 469. The very best schedule had an average
flow time of 262.05 minutes. It appeared that the contest was harder than
the previous one.

6.3 Tabu search

We describe the tabu search heuristic that was implemented to help deter-
mine hard problem instances. The tabu search heuristic was derived from
the tabu search heuristic for the job shop scheduling problem, as described
in Chapter 5. Only the primary objective is taken into account.

6.3.1 Solution representation

The problem instance is represented by a vertex-weighted mixed graph.
Each conversation corresponds to a vertex and the weight of a vertex is equal
to the duration of the conversation. For each direct precedence between two
teachers, as specified by a parent, there is a (directed) arc. There is an
(undirected) edge between each pair of conversations of the same teacher
and between each pair of conversations within the same group. An edge
indicates a capacity constraint: a teacher can have at most one conversation
at a time (machine edge) and a parent can have at most one conversation at
a time (group edge). Hence, we must decide which of the two conversations
comes first by orienting the edge, i.e., turning it into an arc. A solution
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is obtained by orienting all edges in such a way that the resulting directed
graph is acyclic. The makespan of the solution is equal to the length of
a longest path in the graph, where the length of a path (vi,ve,...,v;) is
defined as the sum of the processing times . ; p,, of the operations. By
using this representation, we implicitly restrict our attention to left-justified
schedules.

We introduce the following additional notation. In an acyclic digraph,
Jp,, is the immediate job predecessor of an operation u € O, js, is its im-
mediate job successor, mp,, is its immediate machine predecessor, and ms,,
is its immediate machine successor, whenever they exist.

6.3.2 Neighborhood

Our neighborhood function is a generalization of the one proposed by Now-
icki and Smutnicki [51] for job shop scheduling. A block is maximum se-
quence of operations processed by the same machine or in the same group
and belonging to a longest path. Hence, a longest path is a sequence of
blocks. An internal arc is an arc between two operations in a single block,
provided that neither operation is the first or the last operation in the block.
The neighborhood of a solution consists of all solutions that can be obtained
by swapping the last two operations of the first block, the first two operations
of the last block, or the first two or last two operations of an intermediate
block.

6.3.3 Tabu list and aspiration levels

In order to prevent cycling, a tabu list 7 is employed. After reversing a
machine arc or group arc (u,v), it is forbidden to reverse any arc originating
from v, for some period of time. This period of time is called the tabu
tenure, and in our algorithm it is equal to max{N + X, 1}, where A is
the average number of neighbors of the solutions visited so far and X is a
random number between 0 and 5. With this tabu list, it is possible that
a certain move is forbidden although the resulting solution was never seen
before. Aspiration level criteria can overrule the tabu status of moves. The
tabu list and aspiration level criteria are exactly the same as for the job
shop scheduling problem. For details, the reader is referred to Chapter 5.

6.3.4 Neighborhood search strategy

We adopt a greedy neighborhood search strategy in which a minimum-cost
neighbor is selected at each iteration. The neighborhood is explored by
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traversing a longest path in the current solution; a tie between a group arc
and a machine arc is broken at random.

A significant speed-up is obtained by calculating fast approximations of
the cost of neighbors, rather than calculating the exact cost. For the job shop
scheduling problem, Taillard [68] proposed an O(1) time cost approximation
of neighbors. It is based on the heads and tails of the operations, and how
they change after a reversal of a machine arc. The head r, of an operation
u is the length of a longest path up to and excluding w; the tail ¢, of u is
the length of a longest path originating from and excluding u. Given that
the head of an operation can be expressed recursively in terms of the head
of its job and machine predecessors, and that the tail of an operation can
be expressed in terms of the tail of its job and machine successor, updating
heads and tails after reversing a machine arc requires only constant time.

We generalize Taillard’s cost approximation as follows. For machine
arcs, the O(1) time cost approximation of Taillard for the job shop is used
(see Chapter 5). The cost of the solution that is obtained after reversing a
machine arc (u, v) is approximated by max{r], + p, +q.,, 7., + Py + ¢, }, where
a prime indicates an updated value. When, after the reversal, (v,u) is on a
longest path, the approximation is exact. Otherwise, it is a lower bound on
the new makespan.

For group arcs, a similar approximation is used. The heads and tails can
be updated in constant time (see Figure 6.2):

'rq') = maX{iju + Djp,s Tmp, T pmpv};
Ty = max{Tmp + Dmp, >y + Do}
qy = max{pmsu + Qmsuapjsv + qjsv};

!/

¢y, = max{Pms, + Gms,> Pu + ¢y }-

~

Again, max{r!, + py, + ¢.,,7l, + p» + ¢,} is a lower bound on the new
makespan. When, after the reversal, (v,u) is on a longest path, the bound
is exact.

As a result of using lower bounds on the cost of neighbors, the aspiration
criterion is also expressed in terms of these lower bounds. The aspiration
level «,, of an operation v is defined as the lowest lower bound that was
ever evaluated for any move involving v. The tabu status of a move (u,v)
is overruled when the lower bound is lower than «,.

A neighbor is selected as follows. For each move, we calculate the lower
bound. When the lower bound is lower than the cost of the current solution,
the exact cost of the neighbor is calculated. Tabu moves are made less
attractive by adding a large number B to their cost. A lowest cost neighbor
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Figure 6.2: Before and after reversal of group arc (u,v).

is selected; in case of a tie between a minimum lower bound neighbor and a
minimum exact cost neighbor, we obviously prefer the latter one.

After reversing a machine arc, we apply the bow-tie algorithm proposed
by Ten Eikelder, Aarts, Verhoeven & Aarts [19] to update the heads and
tails of affected operations, as described in Chapter 5. For group arcs, we
follow a similar approach.

6.3.5 Results

We performed a number of computational experiments. The initial solution
is constructed as follows. First, all conversations within each group are or-
dered at random. We build a graph with a vertex for each operation and an
arc for each job precedence and each group precedence. Then, for each ma-
chine, the operations are ordered at random. One by one, the corresponding
machine arcs are added to the graph. When a cycle is detected, the ma-
chine arc is reversed. Consequently, the initial solution is highly randomized.
For a given integer T', tabu search stops after T" subsequent non-improving
iterations.

For various run lengths 7', the average (av) and standard deviation (sd)
are given for 25 independent runs. The running times range from a couple
of seconds to a couple of hours on a Pentium II1/266 MHz PC. The results
are given in Table 6.1. We conclude that, in general, a high value of T
gives better results than a low value of T'. For the largest run lengths, the
averages are within 2 percent of the optimum. The optimum of 469 was
never found during these runs. After a number of very long runs, which
took several weeks each on a Pentium 11/266 MHz PC, solutions of cost 469
were eventually found. In the next section we consider multiple shorter runs
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T av sd

1,000 | 548.80 23.00
5,000 | 506.08 10.87
10,000 | 506.84 15.12
50,000 | 489.08 5.63
100,000 | 485.84  3.70
500,000 | 481.52  2.97
1,000,000 | 480.04 2.21
2,000,000 | 479.88  1.96
4,000,000 | 477.04  2.05
6,000,000 | 477.60 1.28
8,000,000 | 476.67  1.95
10,000,000 | 476.70  1.62
12,000,000 | 476.60  1.40
14,000,000 | 476.14  1.68
16,000,000 | 476.40 1.63
18,000,000 | 476.52  1.53
20,000,000 | 476.12  1.51

Table 6.1: The results of 25 independent runs of the tabu search heuristic for
various run lengths T'. After T subsequent non-improving iterations, tabu
search halts.

instead of a single long run.

6.4 Commonality-preserving restarts

As was the case for the job shop scheduling problem, good solutions to
the Whizzkids '97 problem seem to have many machine arcs in common.
In addition, these good solutions also seem to have many group arcs in
common.

Definition 6.4.1. Let £ denote a multiset of solutions. The commonality
set of L is defined as the subset of machine arcs and group arcs that are
common to all solutions in L. FEach machine arc and group arc in the
commonality set is called a commonality of L.

In this section, we exploit the existence of commonalities in the following
way. Instead of starting from scratch, we construct a random initial solution
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that preserves many commonalities of solutions that are found by previous
runs.

We start with a single independent run. During the independent run, a
list of solutions £ = (L1, Lo, ..., L) is maintained, for some k to be deter-
mined later. The best k local optima that are seen during the independent
run are stored in L.

Subsequently, a number of restarts are carried out. For each restart, the
initial solution Lg is a perturbed version of Lq, which is the best solution
in £. Initially, Lg is equal to Li. The perturbation of L consists of two
phases, a selection phase that determines which machine arcs and group arcs
in Lo are removed, and an augmentation phase in which the partial solution
produced by the selection phase is augmented to a complete solution.

In the selection phase, each machine arc and group arc in L is subjected
to an acceptance trial. Intuitively, when many solutions in £ have that u
comes before v, the machine arc or group arc (u,v) should be accepted with
a high probability. On the other hand, when (u,v) is only present in L1, the
acceptance probability should be low, i.e., close to % The commonality class
C(u,v) of a machine arc or group arc (u,v) in L; is defined as the largest
index ¢ such that all solutions L1, Lo, ..., L; have that v comes before v.
For a given pmax < 1 and a pyin > %, the acceptance probability of (u,v) is
given by

C(u,v) —1 k —C(u,v)
ﬁpmax + E—1 Pmin-

Pacc (u; U) =
When (u,v) is common to all L; € £, pacc(U,v) = Pmax; when (u,v) only
appears in Li, pacc(t, V) = Pmin-

In the augmentation phase, a coin is flipped for every machine arc and
group arc (u,v) that was not accepted. With probability %, the arc in
inserted into Lo, and with probability % its opposite, (v,u), is inserted.
When a cycle is created, the arc is reversed.

During the restarts, we adopt a different maintenance policy for £. Only
locally optimal solutions that are better than the best solution in £ are
inserted into £. In this way we hope to maintain a sufficiently diverse
population L.

After each subsequent run that failed to improve the best solution found
so far, the value ppax is decreased by multiplying it by €, which is another
parameter of the restart mechanism. When a run improves the best solution
found so far, pmax is reset to its original value. We assume that € is always

equal to the initial value of pyax and, unless stated otherwise, pmin = %
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Figure 6.3: The trajectories of 30 runs of tabu search. The solution quality
on the y-axis is given as a function of the iteration number on the z-axis.

6.4.1 Results

First, we determine when the tabu search heuristic tends to get stuck. In
Figure 6.3, the cost trajectories of 30 independent long runs are given. We
conclude that after a total of 5,000,000 iterations, the trajectories are slowed
down significantly. Unfortunately, our stop criterion consists of putting a
maximum 7" on the number of subsequent non-improving iterations. Conse-
quently, it is not easy to derive from Figure 6.3 a value for T' that corresponds
to a total of 5,000,000 iterations. Therefore, we revert to Table 6.1. Accord-
ing to this table, both the average and the standard deviation appear to
stagnate when the run length T' exceeds 4,000,000 iterations. As a result,
we will adopt T' = 4,000,000 in our further experiments.

We perform a number of computational experiments in which we com-
pare commonality-preserving restarts to independent runs and to a single
long run. In our restart mechanism, the parameter k is always equal to
the number of restarts plus 1. In Table 6.2 we compare the results of 26
independent runs, a single run followed by 25 restarts with various values
of pmax, and a single long run. A long run is simulated by having a sin-
gle run followed by 25 restarts with pmin = Pmax = € = 1.0. We conclude
that the commonality-preserving restarts are slightly better than multiple
independent runs and slightly better than a single long run; there is no sig-
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strategy av sd

IR 474.40 1.13
CP/0.80 | 474.27 1.08
CP/0.85 | 474.20 1.19
CP/0.90 | 474.20 1.06
CP/0.95 | 474.17 1.29
CP/0.98 | 473.97 1.19

LR 474.23 1.28

Table 6.2: Best solution found by 26 independent runs, one independent run
followed by 25 restarts for various values of pmax, and a single long run. The
run length is 4,000,000 iterations.

nificant difference in the standard deviation. The best results are obtained
when the parameter pmax is close to 1. Although commonality-preserving
restarts improve upon the finite-time behavior of tabu search, during these
experiments, we did not find any solutions of cost 469.

6.5 Conclusion

We implemented a tabu search heuristic, which is based upon the algorithm
of Nowicki and Smutnicki for the job shop scheduling problem. After many
long runs which took several weeks each, solutions of cost 469 were found.
Cor Hurkens proved that 469 is a lower bound, hence the Whizzkids ’97
problem has been solved.

In an attempt to improve upon the finite-time behavior of tabu search,
we proposed a commonality-preserving restart mechanism. We compared a
short run followed by 25 restarts to 26 independent runs and to a single long
run. Commonality-preserving restarts are slightly better than independent
runs and slightly better than a single long run, in the sense that the av-
erage makespan of the solutions found is lower. The standard deviation is
approximately the same for each of the three strategies.



Chapter 7

Heuristic shaving

7.1 Introduction

We are concerned with finding lower bounds to job shop scheduling prob-
lems. For completeness, we restate the definition of the job shop scheduling
problem.

In the job shop scheduling problem we are given a set J of n jobs, a set
M of m machines and a set O of operations. For each operation ¢ € O
there is an integral processing time p; > 0, a unique machine M; € M on
which it must be processed, and a unique job J; € J to which it belongs.
Furthermore, a binary precedence relation < is given that decomposes O
into chains, one for each job. The problem is to find a start time s; for every
operation ¢ € O such that the makespan, defined as Chax = max;co s; + pi,
is minimized subject to the following constraints:

$; >0 forallz € O,
5; > 8 +pi for all 7,5 € O with 7 < j, and
SjZSi-i-piOI'SiZSj-I—pj fOraﬂi,jEOWithMi:Mj.

The first constraint implies that no machine is available before time 0, the
second constraint accounts for the precedence relation < such that no oper-
ation will start before its predecessor in the chain has finished, and the last
constraint is the machine capacity constraint which stipulates that every
machine can process at most one operation at a time. For simplicity, we
assume that every job visits a machine at most once.

As the job shop scheduling problem is NP-hard, one often resorts to
approximation methods. Suppose that we have a heuristic to generate high
quality solutions to the job shop scheduling problem. When, after numerous

97
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runs, it seems that no better solution can be found, we might have found an
optimum. We could try to prove that the solution is optimal by calculating
lower bounds. The difference between the lower bound and the upper bound
gives an indication of the relative quality of the solution.

The following lower bounds are trivial:

max,ec M Z p; (maximum machine load), and
1€O:M;=p

max. ey Z p; (maximum job length).
1€0:J; =7

In general, better lower bounds can be obtained with Jackson’s preemp-
tive schedule for the single-machine relaxations [34]. Carlier and Pinson
[12] proposed a method to strengthen Jackson’s preemptive lower bound by
means of ascendant set and descendant set updates. Another lower bound
technique is the shaving algorithm of Martin and Shmoys [45, 49], which
can be viewed as a depth-delimited branch-and-bound method, based upon
the work of Carlier and Pinson. Shaving is known to produce excellent
bounds, but at the expense of considerable running times. Other lower
bounding techniques include the surrogate duality relaxation proposed by
Fisher, Lageweg, Lenstra, and Rinnooy Kan [22], the cutting plane approach
of Applegate and Cook [5], the geometric methods of Brucker and Jurisch
[10], and the fractional packing approach of Martin and Shmoys [45].

The lower bound techniques discussed so far do not use any information
about solutions, only about the problem instance. We propose a variant of
the shaving algorithm that incorporates information about solutions to guide
the process. Suppose that we have a list £ of good solutions. We investigate
whether or not information contained in these solutions can be employed to
improve the running time of the shaving algorithm. In the original shaving
algorithm of Martin and Shmoys, the order in which the operations are
shaved solely depends on the job precedences, i.e., on the problem instance
and not on solutions. In our approach, two types of heuristic information
distilled from the solutions in £ influence the order in which the operations
are shaved: the pairwise machine precedences common to many solutions
in £, and the intervals of time spanned by the different start times of the
operations in the solutions in £. The heuristic information only determines
the order in which the operations are shaved. As a result, the validity of the
lower bounds is unaffected. Our heuristic shave algorithm derives the same
lower bounds as Martin and Shmoys’ algorithm, but it often significantly
improves upon the running time. In addition, new lower bounds are derived
for a number of open problem instances that were proposed by Taillard [66].
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The chapter is organized as follows. In Section 7.2, the single-machine
relaxation of a job shop scheduling problem is described together with Car-
lier and Pinson’s update algorithm for heads and tails. The principles of
shaving are discussed in Section 7.3. The shaving algorithm of Martin and
Shmoys is described in Section 7.4. Section 7.5 is devoted to our heuristic
shave method, and the results are given in Section 7.6.

7.2 Single-machine relaxation

In the single-machine relaxation of a job shop scheduling problem, all ma-
chine capacity constraints are relaxed, except for one machine, y € M. Let
O, denote the set of operations processed by machine y. Relaxing the ca-
pacity constraints of a machine implies that more than one operation can
be processed at the same time on that machine. Since the job predecessors
of an operation i € O, do not require processing on machine y, they can
be started at time 0 and processed continuously until they complete at time
T = Zj€0:j<i pj. As aresult, operation ¢ can start at time r; or later. The
value r; is called the head or release time of operation ¢. Analogously, when
operation ¢ completes, all job successors of 7 can be processed continuously
until they are completed. The total processing time of the job successors of
operation ¢ is denoted by ¢; := Zjeo:i <jPj- The value g; is called the tail
or delivery time of operation i.

The processing time of an operation is often referred to as its body. The
single-machine relaxation of a job shop scheduling problem leads to a single-
machine head-body-tail problem.

Definition 7.2.1. In the single-machine head-body-tail problem we are
asked to find a schedule for the set O, of operations on a machine p, such
that no operation i € O, 1is started before its release time r;. Furthermore,
each operation © € O, is processed continuously for p; units of time and
requires a delivery time q; after its completion on the machine. The machine
can process at most one operation at a time. The objective is to minimize the
makespan which is defined as the maximum completion time plus delivery
time over all operations.

Obviously, the optimum makespan of the single-machine head-body-tail
problem corresponding to each machine y € M is a lower bound on the
optimum makespan of the job shop scheduling problem at hand.

In the notation of Graham, Lawler, Lenstra and Rinnooy Kan [31], the
single-machine head-body-tail problem is equivalent to the single-machine



100 CHAPTER 7. HEURISTIC SHAVING

1| r pi @
1 4 6 20
2 0O 8 25
3 9 4 30
4115 6 9
5120 8 14
6121 & 16

Table 7.1: An instance of a single-machine head-body-tail problem with 6
operations.

scheduling problem 1|r;,d; < 0|Lmax with release times and due dates
(by putting the due date d; of operation i equal to —¢;). Unfortunately,
the single-machine head-body-tail problem is strongly NP-hard. By allow-
ing preemption we get a preemptive single-machine head-body-tail problem,
which is equivalent to 1|rj,d; < 0,pmin|Lmax. In order to solve the prob-
lem, we can use Jackson’s preemptive earliest due date rule [34] as follows.
A schedule ogpp is constructed, starting at time 0. An operation i is called
available at time ¢ when t > 7; and it has not been completed by time ¢. At
any point in time, the available operation with maximum tail is scheduled,
and ties are broken arbitrarily. The release times and completion times of
the operations are taken as decision points. By sorting the operations in non-
decreasing tail order, the preemptive schedule is computable in O(nlogn)
time, where n is the number of operations on the machine. In practice, the
preemptive bound is almost as good as the non-preemptive single-machine
bound, but is far more efficient to calculate. Therefore, many optimization
methods for the job shop scheduling problem rely on it. In fact, Jackson’s
preemptive schedule was used by Carlier and Pinson’s algorithm [11] that
solved the notorious 10 x 10 problem instance mt10 (Fisher and Thompson
[20]) for the first time.

Example. In Table 7.1, the data of a head-body-tail problem with six
operations are given. The resulting preemptive schedule is given in Figure
7.1. The makespan of the preemptive schedule in Figure 7.1 is 50, which is
the sum of the completion time and the tail of operation 5.

For a given instance of a job shop scheduling problem, let LBY, denote
the makespan of the preemptive schedule for machine p. The maximum
preemptive single-machine bound over all machines is denoted by LB,.
The value LBy, is a lower bound on the makespan of every solution, and it
can be calculated in O(mnlogn) time, where n is the number of jobs and
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Figure 7.1: Preemptive schedule with a makespan of 50 constructed with
Jackson’s earliest due date rule.

m the number of machines.

7.2.1 Carlier-Pinson updates of heads and tails

In any solution to an instance of the job shop scheduling problem, the start
time of an operation i is at least r; and the amount of work after completing
1 is at least ¢;. Carlier and Pinson proposed a method to increase heads and
tails. They focus on the schedules of length at most 7', for some time T,
and try to prove that certain operations must be processed before others,
thereby updating heads and tails. Obviously, these updated heads and tails
are only valid for schedules of length at most 7. The idea is that when, as
a result of a head or tail update, a single-machine bound exceeds T', there
can be no schedules of length 7', hence 7'+ 1 is a lower bound.

Carlier and Pinson’s method is based upon the notion of ascendant sets
and descendant sets, for which we introduce the following notation. For a
set of operations U on a machine u, we define

T(U) = minieUri,

p(U) = Z pi, and
icU

q(U) = miniqui.

Definition 7.2.2. For a given machine u, o time 1T, and an operation
i €0y, asetUC O\ {i} is called an ascendant set of operation i, when

r(UU{i}) +p(UU{i}) +q(U) > T. (7.1)

The earliest possible time at which U U {i} can start is #(U U {i}). The
total processing time of U U {i} is p(U U {i}), and when ¢ is not completed
after all operations in U, U U {i} is followed by a tail of length at least
q(U). So, when equation (7.1) holds, we conclude that in any schedule that
completes by time T operation ¢ must be scheduled after all operations in
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U. As a consequence, the head of 7 must be at least the earliest possible
completion time of U. Such an update of r; is called an ascendant set update.

Descendant sets are defined similarly. Due to the symmetric role of heads
and tails, interchanging the heads and tails just changes the direction in time
through which we are scheduling. By starting at time 7" and scheduling
backward, we can restrict ourselves to ascendant sets and head updates.

An efficient algorithm to find the largest possible ascendent set update
for every operation on a machine y is the algorithm of Carlier and Pinson
[12], which is outlined below.

Definition 7.2.3. For a given machine i and a preemptive schedule cEpD,
let p;(t) denote the amount of processing that remains for operation i in
schedule ogpp at time t. Furthermore, let p(t,U) = > ;cypi(t), for any
UcCOy.

Carlier and Pinson’s algorithm repeatedly transforms a preemptive sched-
ule into another preemptive schedule. Given is a preemptive schedule ogpp
for machine u. For each operation i, a set U; is constructed that initially
consists of all operations that have a longer tail than operation ¢, and which
have not been completely processed in ogpp at time r;. The key to Carlier
and Pinson’s algorithm is that, when

i + pi + p(rs, Us) + q(Us) > T, (7.2)

the head of operation ¢ must be at least as large as the completion time in
oepp of the last operation in U;. The proof is based upon the construction
of a set V of operations such that U; UV is an ascendant set of operation .
The set V is constructed as follows. Let ¢ < r; denote the earliest time such
that between ¢ and r; in ogpp the machine is continuously busy processing
operations with tails at least as large as q(U;). If V denotes the set of
operations that are at least partially processed between ¢ and r;, then it can
be shown that U; UV is an ascendant set of operation ¢. The details of the
proof can be found in Martin [45].

Suppose that U; does not satisfy the condition above. Notice that there
are two terms in equation (7.2) that are in a sense complementary. When
we remove an operation from U;, the term p(r;, U;) cannot increase while the
term q(U;) cannot decrease. If the operation that is removed from U; does
not have the smallest tail, the term ¢(U;) stays the same, so the left-hand
site of equation (7.2) will not increase. Consequently, only the removal of an
operation in U; with minimum tail has a chance of increasing the left-hand
site of equation (7.2), and can lead to an ascendant set update for operation
i.
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Carlier and Pinson’s algorithm takes a machine p and a time T as argu-
ments. The algorithm is outlined below.

Carlier-Pinson Head Update:
1. Calculate a preemptive schedule ogpp for machine pu.
2. For every operation 4 in O, do the following steps.

(a) Calculate U; := {j € Oulp;(r:) > 0,95 > g;}-
(b) If U; = 0, proceed with the next operation.
(c) When r; + p; + p(ri, Ui) + q(U;) > T
e Let j € U; denote the last operation to complete in schedule
oepp. Update ’s head: r; := max{r;, C;}, where C; denotes
the completion time of operation j in ogpp.
e Proceed with the next operation.

Otherwise,

e Remove an operation j € U; with minimum tail from set Uj.
e Go to Step 2b.

The complexity of the algorithm is O(n?), where n is the number of
operations on machine p, which is equal to the number of jobs. In 1994,
Carlier and Pinson [13] presented an algorithm that runs in O(nlogn) time.
We refer to this algorithm as Fast Carlier-Pinson Head Update. The total
complexity for updating all machines is O(mn?) (O(mnlogn)), where m
denotes the number of machines.

Example (continued). Suppose that we have a job shop schedule with a
makespan of 52. Put T'= 52 and consider operation 4. All other operations
have a longer tail than operation 4, but operations 2 and 3 have already
been completed by time r4 = 15. Hence, Uy = {1,5,6} and p(r4,Uy) = 19.
Since Uy satisfies equation (7.2), we conclude that the head of operation
4 must be at least the maximum completion time of Uy, which is 36 (see
Figure 7.1). Because t = 0 and the corresponding V' = {1, 2, 3}, it is easily
checked that U, UV is an ascendant set of operation 4. The new preemptive
schedule is given in Figure 7.2. Notice that the makespan of the preemptive
schedule is increased by one.

Descendant sets are found in a similar fashion. By interchanging the
heads and the tails prior to the invocation of procedure Carlier-Pinson Head
Update, the largest possible descendent set update is determined for each
operation.
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Figure 7.2: The new preemptive schedule with a makespan of 51.

In general, updating one operation can have consequences for the up-
dates of other operations . In order to see this, observe that for operation i,
the set Uj; is defined in terms of ogpp, which in turn depends on the heads
and tails of all operations. Suppose that operation ¢ is processed before op-
eration j in Step 2 of Carlier-Pinson Head Update. When the head or tail of
operation j is increased and we would recalculate ogpp, we might obtain a
different preemptive schedule than we had before j’s update. Consequently,
the set U; could be different, and new ascendant sets could be found for
operation i. Therefore, in order to find all updates we must repeatedly in-
voke Carlier-Pinson Head Update for ascendant sets and descendant sets
until no more updates are found. This is accomplished by the procedure
Carlier-Pinson Update, which has two parameters: a machine y and a time
T. The procedure is outlined below.

Carlier-Pinson Update:

1. In order to find ascendant sets and head updates, invoke Carlier-
Pinson Head Update for machine p and time 7.

2. Interchange the heads and the tails of the operations in O,,.

3. In order to find descendant sets and tail updates, invoke Carlier-
Pinson Head Update for machine y and time 7.

4. Interchange the heads and the tails of the operations in O, again.

5. If any head or tail was updated in Step 1 or 3, go to Step 1. Otherwise,
halt.

As a result of updating the heads and tails for every machine, it is
possible that the preemptive lower bound is increased. The new preemptive
lower bound is denoted by LBy(T), and is valid for all job shop schedules
that are no longer than 7', for any 7'. In practice, the number of rounds in
Carlier-Pinson Update is small. In 65% of the invocations, one round was
sufficient; in 30% of the invocations, two rounds were sufficient; only 5% of
the invocations required three or more rounds.



7.2. SINGLE-MACHINE RELAXATION 105

Choosing T

Let S denote the set of all schedules. Let S C S denote the set of job shop
schedules of length at most 7. The heads and tails of the operations upon
termination of Carlier-Pinson Update depend upon Spr: every solution in
St has the property that, for every operation 7, the start time of ¢ is at least
r; and the amount of work after the completion of 7 is at least ¢;. Hence,
the preemptive lower bound LBy, (T) is a lower bound on the length of each
schedule in Sy. Obviously, LBy (T') > LBy, for all T. When LB, (T) < T,
LBy, is also a lower bound on S (because T is a lower bound on §\ S7). On
the other hand, when LBy, (T) > T, we conclude that schedules of length
no longer than 7" cannot exist, hence 7'+ 1 is a lower bound on S.

If we have a solution of cost UB, we can put 7" = UB and invoke
Carlier-Pinson Update to obtain the lower bound LBy (UB) on Sypg, with
the property that LBy < LB (UB) < UB. Therefore, LBy (UB) is
also a lower bound on §. Obviously, the higher we put 7', the less likely
it is that ascendant set and descendant set updates are found. Indeed,
limp oo LBpe(T') | LBpy.

Instead of using an upper bound, we can also bluff by choosing a value
for T for which we have no evidence that there actually exists a schedule
that completes by time 7. Suppose that we invoke Carlier-Pinson Update
with such a value of T. When LB (T) > T, infeasibility is derived, and
we conclude that S = (). As a result, schedules of length at most 7" do
not exist, hence 7'+ 1 is a lower bound on S. Given an initial lower bound
and an upper bound, we can use bisection search over 1" between the initial
lower bound and upper bound to determine the largest value of T" for which

Sr=0.

7.2.2 Propagation of updates

According to the previous section, an update of an operation can lead to
an update of another operation on the same machine. Therefore, we must
iterate Carlier-Pinson Update until no more updates are found on the ma-
chine. In this section, we illustrate that an update of an operation on a
machine can affect other machines in the sense that new ascendant set or
descendant set updates could be found on them. Therefore, we should iter-
ate Carlier-Pinson Update until no more updates are found on any affected
machine.

For a given job shop scheduling problem instance and an operation 7, let
Jp; denote the direct job predecessor of ¢ and let js; denote the direct job
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successor of 7. The head (tail) of an operation is recursively related to the
head (tail) of its job predecessor (successor):

i Tjp; + Djp,> and

>
4% 2= DPjs; T s,

So, if we increase the head (tail) of an operation, we can propagate the
update to its job successors (predecessors). For instance, when r; has just
been increased, the release time of its job successor js; is affected when
rjs, < Ti+p;. In that case, we update rj;, and proceed with the job successor
of js;. Otherwise, the propagation comes to an end.

Procedure Head Propagate takes an operation ¢, a set K of affected ma-
chines, and a time 7" as arguments. It assumes that i’s head has just been
increased. The new value of the head of operation ¢ is propagated to its job
successors. When the head of a job successor j of ¢ has been updated, we
check if r; + p; + q; > T. If so, infeasibility is derived, implying that either
©’s head update cannot lead to schedules of length at most T, or S = (.
The former case can only occur as a result of shaving, which is discussed in
the next section. When infeasibility is not derived, the machine correspond-
ing to operation j is added to K, indicating that the machine is possibly
affected by ¢’s head update and new ascendant sets could be found on it.
Upon completion, all machines different from M; that are affected by i’s
update are contained in K. In some cases, M; is inserted into K prior to the
invocation of the procedure. Procedure Head Propagate is outlined below;
procedure Tail Propagate works in a similar fashion.

Head Propagate:
1. When 4 has no job successor, halt (no further propagation possible).
2. Put z :=1 and y := Js;.

3. When ry, < r; + p;, operation y is affected by the head update of
operation z and we put ry :=r, + p, and K := KU {M,}. Otherwise,
halt (no further propagation possible).

4. In case ry + py + gy > T, halt (infeasible).
5. When y has a job successor, put z :=y and y := js, and go to Step 3.

As discussed above, a head or tail update of an operation on a machine
can have consequences for the operations on a different machine p’ such that



7.2. SINGLE-MACHINE RELAXATION 107

new ascendant sets and descendant sets can be found on y'. For a given set
K of affected machines and a time 7', the following algorithm repeatedly
invokes Carlier-Pinson Update for some machine u € K. Each update is
propagated and the affected machines are added to K. The algorithm con-
tinues until I becomes empty or infeasibility is derived.

Iterated Carlier-Pinson Update:
1. If K is empty, halt.
2. Select some machine u € K.

3. Invoke Carlier-Pinson Update to find ascendant set updates and de-
scendant set updates on machine y with time 7.

4. When LBE > T, halt (infeasible).

5. For all operations ¢ on machine u, whose head was updated in Step 3,
invoke Head Propagate with machine set X and time 7. When Head
Propagate derived infeasibility, halt (infeasible).

6. For all operations 7 on machine u, whose tail was updated in Step 3,
invoke Tail Propagate with machine set K and time 7. When Tail
Propagate derived infeasibility, halt (infeasible).

7. Put K=K\ {u}.
8. Go to Step 1.

For a given T, suppose that Iterated Carlier-Pinson Update is invoked
with £ = M. Upon termination, there are no more head or tail updates
possible on any machine. As a result of the updates, the preemptive lower
bound is generally improved. When infeasibility is derived, we conclude that
St = 0, hence T + 1 is a lower bound on S. We use bisection search over
T to find the largest value of T' for which Iterated Carlier-Pinson Update
derives that St = 0.

In the next section, we discuss shaving, which is interpreted as a form of
branch-and-bound. In the branching step, the head or tail of some operation
1 is tentatively increased and the update is propagated. As a result, one or
more machines are affected. Subsequently, Iterated Carlier-Pinson Update
is invoked with X containing only the affected machines. When infeasibility
is derived, we conclude that the branch cannot lead to a schedule of length
at most T', hence the branch is discarded.



108 CHAPTER 7. HEURISTIC SHAVING

7.3 Shaving

Given are a job shop scheduling instance and a time 7. Consider the heads
and tails of the operations upon termination of Iterated Carlier-Pinson Up-
date with K = M. Assume that infeasibility has not been derived. Shaving
(Martin and Shmoys [49]) is a systematic way to further increase the heads
and tails.

Shaving is centered around the concept of processing windows. For a
given time T, the processing window of an operation i is defined as the
interval of time in which the operation is required to start processing in
order to let the schedule complete by time 7. The processing window of
operation 7 is denoted by [u;,v;], where wu; is initially equal to r; and is
increased during the shaving process, and v; is initially equal to T'— p; — ¢;
and is decreased during the shaving process. In any schedule that completes
by time T, the start time of operation ¢ must lie in the interval [u;, v;], see
Figure 7.3. For a given time 7, the notion of processing windows is just
another way to interpret heads and tails and is therefore equivalent. In the
remainder of the chapter, r; and u; are used interchangeably.

pi pi i

0 u; =15 v; T

Figure 7.3: The processing window [u;, v;] of operation i for a given time T'.

Shaving attempts to reduce the processing windows of operations in the
following way. If we prove that starting operation ¢ at the left endpoint u;
of its processing window cannot lead to a schedule of length at most 7', we
can reduce the processing window to [u; + 1,v;] . More generally, if we can
prove that ¢ cannot start in [u;, w], for some u; < w < v;, we can reduce i’s
processing window to [w+1, v;]. This process is called head shaving, because
pruning the left end of a processing window corresponds to increasing the
head. Similarly, tail shaving tries to reduce the right end of a processing
window: by proving that ¢ cannot start in [w, v;], for some u; < w < v;, we
can reduce i’s processing window to [u;, w — 1]. Pruning the right end of a
processing window corresponds to increasing the tail.

Obviously, when the processing window of an operation becomes empty,
we conclude that St = 0, hence T'+1 is a lower bound on S. Furthermore, as
a result of increasing heads and tails, the preemptive lower bound LBy, (T')
is generally improved. When, during the shaving process, LBp:(T) becomes



7.3. SHAVING 109

larger than 7', we also conclude that Sy = () and 7'+ 1 is a lower bound on
S.

Shaving can be interpreted as a depth-delimited type of branch-and-
bound. A branching step consists of temporarily reducing the processing
window of an operation. The bounding step tries to derive infeasibility for
the chosen branch. When infeasibility has been derived, the branch can be
discarded, and the processing window is reduced.

7.3.1 Branching

Head shaving and tail shaving are branching strategies that split a processing
window in two parts: a left branch and a right branch.

Head shaving attempts to increase the head of an operation i by tem-
porarily reducing i’s processing window to some prefix [u;, w]|, for some
u; < w < v;. Because in any schedule of length at most 1" operation i
either starts in [u;, w] or in [w + 1, v;], the temporary reduction corresponds
to taking the left branch. When it can be shown that the left branch cannot
lead to a schedule of length at most T, the processing window of 4 is reduced
to [w + 1, v;] by increasing r;.

Similarly, tail shaving attempts to increase the tail of an operation ¢ by
temporarily reducing i’s processing window to some suffix [w,v;], for some
u; < w < v;. In any schedule of length at most 7', operation i either starts
in [u;, w — 1] or in [w,v;]. Therefore, the temporary reduction corresponds
to taking the right branch. When it is proved that the right branch cannot
lead to a schedule of length at most 7', ¢’s processing window is reduced to
[uj, w — 1] by increasing g;.

The way in which the operation ¢ and the value w are chosen is described
later.

7.3.2 Bounding

Suppose that, as a result of branching, ¢’s processing window is temporarily
restricted to [u;, w]. In the bounding step, we try to derive infeasibility
for the selected branch. When infeasibility is derived, we conclude that
when i starts in [u;, w], we cannot obtain a schedule of length at most 7.
Consequently, we can reduce #’s processing window to [w + 1,v;].

Definition 7.3.1. For a given set of operations with heads and tails, corre-
sponding to one or more single-machine head-body-tail problems and a time
T, a bounding algorithm tries to prove that schedules of length at most T
cannot exist.
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For a given T', a bounding algorithm tries to derive infeasibility for the
chosen branch. For example, all variants of Carlier and Pinson’s update al-
gorithm are bounding algorithms. They try to derive infeasibility for a given
T by updating heads and tails. Infeasibility is derived when the preemptive
lower bound of one of the machines exceeds T', or when a processing window
of an operation becomes empty. Iterated Carlier-Pinson Update is the most
powerful bounding algorithm discussed so far, but it is also the most time-
consuming one. The choice of the bounding algorithm has a great influence
on the lower bound that can be derived by shaving, but also on the running
time.

7.3.3 Remove Prefir and Remove Suffix

Recall that head shaving takes the left branch by temporarily reducing the
processing window of an operation ¢ to some prefix, while tail shaving takes
the right branch by temporarily reducing the processing window of an oper-
ation 7 to some suffix. Subsequently, a bounding algorithm is invoked that
tries to derive infeasibility for the chosen branch. When infeasibility is de-
rived, the branch is discarded. Head shaving and tail shaving rely on the
following two procedures, which combine a branch and a bound step.

Procedure Remove Prefix has three parameters: an operation 4, a value
w such that u; < w < v;, and a time T'. First, the right branch is taken by
increasing i’s head to w, thereby reducing i’s processing window to [w, v;].
The update is propagated to the job successors and the set I of all affected
machines is determined. Next, the bounding algorithm Iterated Carlier-
Pinson Update is invoked with machine set K to see if infeasibility can be
derived for the right branch. The procedure is outlined below.

Remove Prefiz:

1. Remove the prefix [u;, w — 1] from 4’s processing window by increasing
the head of 7, r; := w.

2. If r; + p; + ¢; > T, halt (infeasible).

3. Mark the machine on which i is processed as affected by putting K :=

4. Invoke Head Propagate for operation ¢, with machine set K and time
T. When infeasibility is derived, halt (infeasible).
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5. Invoke Iterated Carlier-Pinson Update with the set K of machines that
are affected by ¢’s update, and time 7. When infeasibility is derived,
halt (infeasible).

Similarly, procedure Remove Suffiz has three parameters: an operation
i, a value w such that u; < w < v;, and a time T'. First, the suffix [w+ 1, v;]
is removed from #’s processing window by increasing ¢; by v; — w, which
corresponds to taking the left branch. The update is propagated to the job
predecessors and the set K of affected machines is determined. Next, the
bounding algorithm Iterated Carlier-Pinson Update is invoked with machine
set K to see if infeasibility can be derived for the left branch.

7.4 Martin and Shmoys

For a given time 7', head shaving and tail shaving attempt to reduce the
processing windows as much as possible. As these reductions correspond to
increasing heads and tails, the preemptive lower bound LBy, (T) is generally
improved. When LB, (T) > T, or the processing window of an operation
becomes empty, we conclude that schedules of length at most 7' cannot exist,
hence T+ 1 is a lower bound on S.

The order in which the operations are shaved and the way in which w is
chosen can vary from one shaving strategy to another. In this section, we
focus on the shaving strategy due to Martin and Shmoys [45, 49]. Proce-
dure MS Head Shave considers all operations one by one in an attempt to
reduce the prefix of their processing windows as much as possible. Similarly,
procedure MS Tail Shave attempts to reduce the suffix of their processing
windows as much as possible.

7.4.1 MS Head Shave and MS Tail Shave

MS Head Shave processes all operations one by one. For each operation ¢, the
longest prefix that can be removed from its processing window is determined
in the following way. Let & denote the step size, which is initially equal to
1. First, we try to shave off one unit of the front of the processing window
[u;, v;] by invoking Remove Suffix with w = u; +§ — 1. When Remove Suffix
derives infeasibility, we conclude that when i starts in [u;, w], we cannot
obtain a schedule of length at most 1. Therefore, we can discard that part
of the processing window. This is accomplished by invoking Remove Prefiz
with w = u; +6. When Remove Prefix derives infeasibility, we conclude that
schedules of length at most T" cannot exist, hence 7'+ 1 is a lower bound.
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Otherwise, the step size ¢ is doubled and the process is repeated. Let §
denote the step size for which Remove Suffiz could not derive infeasibility.
We proceed with bisection search between the current left endpoint u; and
M = w; + 9, starting with a step size of |0/2|. We continue as long as
the step size is nonzero and infeasibility is derived by Remove Suffiz. Upon
termination, we have either maximally reduced the left end of the processing
window of operation i, or proved that schedules of length at most 7' cannot
exist.

In order to profit from the propagation of updates, for head shave, the
operations are sorted by increasing release time. When two or more op-
erations have the same release time, the relative order in which they are
processed is arbitrary. The order in which the operations are processed is
fixed in advance.

For a given time T', MS Head Shave is outlined below. When an inter-
val becomes empty or a preemptive lower bounds exceeds T, infeasibility is
derived. In that case, T+ 1 is a lower bound.

MS Head Shave:
For all operations ¢ in increasing u; order, do:

1. § := 1, bisection := false, M :=0
2. If u; > v;, halt (infeasible: schedules of length at most 7" cannot exist).

3. Temporarily reduce i’s processing window to the prefix [u;, u; + 0 — 1]
by invoking Remowve Suffiz for operation i, with value w = u; +9 — 1,
and time 7.

4. When infeasibility is derived in Step 3, we can discard the prefix
[wi,u; + 6 — 1]:
e Undo all updates accomplished in Step 3.

e Invoke Remove Prefix for operation ¢ with value w = u; + 9, and
time 7. When infeasibility is derived, halt (infeasible: schedules
of length at most 7' cannot exist).

o If bisection = true, § := | ¥45% |. Otherwise, § := 26.

e When 6 > 0, go to Step 2. Otherwise, proceed with the next
operation.

Otherwise,

e Undo all updates accomplished in Step 3.
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e bisection := true, M :=u; + 4, § := [§/2]

e When 6 > 0, go to Step 2. Otherwise, proceed with the next
operation.

Suppose that the complexity of each procedure that is directly or indi-
rectly invoked by MS Head Shave is polynomial in the number of operations
of the job shop instance. In the worst case, all values in [u;,v;] are shaved
off one by one. As a result, the complexity of MS Head Shave is at least
pseudo-polynomial in the length of the job shop instance.

MS Tail Shave works similarly. In order to profit from the propagation
of updates, the operations are shaved in decreasing head order.

In the Section 7.5, we propose an alternative shave order that incorpo-
rates information derived from good solutions.

7.4.2 MS Shave

Head and tail updates that are found by MS Head Shave and MS Tail Shave
can have consequences for other operations. Therefore, shaving consists of
a number of passes. In each pass, all operations are head shaved and tail
shaved. When no updates are found during a pass, shaving terminates. In
Martin and Shmoys’ algorithm first all heads are shaved and then all tails.
For a given time T', MS Shave is outlined below.

MS Shave:

1. Invoke MS Head Shave with time 7. When infeasibility is derived,
halt (infeasible: schedules of length at most 7' cannot exist).

2. Invoke MS Tail Shave with time T'. When infeasibility is derived, halt
(infeasible: schedules of length at most 7' cannot exist).

3. If any head or tail was updated during Step 1 or 2, go to Step 1.

Shaving is useful in finding lower bounds in the following two ways. First
of all, the updated heads and tails can lead to a sharper preemptive single-
machine lower bound LBy (T), for a given T. On the other hand, when a
processing window of an operation becomes empty, or the preemptive single-
machine bound of some machine exceeds T, we conclude that schedules of
length at most 7' cannot exist. Hence, 7'+ 1 is a lower bound on S. In the
latter case, bisection search over T is employed to find the largest value of T’
for which 87 = (). The time T ranges between an initial lower bound and an
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initial upper bound. Obviously, the initial lower bound LB can be obtained
with Iterated Carlier-Pinson Update.

The complexity of MS Shave depends upon the complexity of MS Head
Shave and MS Tail Shave. In addition, it is proportional to logT', due to
the bisection over T'.

7.4.3 MS Double Shave

According to Definition 7.3.1, MS Shave itself is a bounding algorithm.
Instead of only using Remowve Prefix and Remove Suffiz to derive infeasibility
for a chosen branch, we can also use MS Shave for that purpose. Recall that
head shaving invokes Remove Suffiz in an attempt to derive infeasibility for
the left branch. When Remove Suffiz cannot derive infeasibility, we invoke
the more powerful MS Shave on the chosen branch. When MS Shave derives
infeasibility, the branch is discarded. For tail shaving, we proceed in a similar
fashion.

The resulting algorithm is called MS Double Shave. In terms of branch-
and-bound, the maximum branch depth of MS Shave is one, while the max-
imum branch depth of MS Double Shave is two.

7.4.4 Results

For a number of test instances, the best possible lower bounds that can
be derived by MS Shave and MS Double Shave are given in Table 7.2.
All algorithms discussed so far maintain the total amount by which the
heads and tails are increased, or equivalently, the total amount by which
the processing windows are reduced. This quantity can be found in Table
7.2 in the result column. A result of —1 indicates that infeasibility was
derived.

We conclude that the lower bounds found by MS Double Shave are much
better that those found by MS Shave. On the other hand, the computation
times of MS Double Shave are often much longer. For many instances, MS
Double Shave is able to show that the optimum value minus 1 is infeasible.

Our implementation is not as efficient as the implementation of Martin
and Shmoys because we use the O(n?) update algorithm of Carlier and
Pinson instead of the O(nlogn) algorithm. Furthermore, we did not use
k-tailed ascendant sets (see Martin [45]). All our experiments are carried
out on a 333 MHz Pentium IT PC, while Martin and Shmoys used a 90 MHz
Pentium PC. The running times of our implementation of MS Shave and MS
Double Shave is up to three times smaller than the running times reported by



7.5. HEURISTIC SHAVING 115

MS Shave MS Double Shave
instance optimum T result time T  result time
mt10 930 918 -1 20 929 -1 158
919 8,395 14 930 38,734 815
abzb 1,234 | 1,201 -1 711,233 -1 278
1,202 4,272 711,234 40,912 532
la19 842 829 -1 9 841 -1 225
830 5,811 10 842 27,325 494
la24 935 917 -1 40 934 -1 5,304
918 15,045 44 935 58,216 7,144
la25 977 957 -1 22 976 -1 6,315
958 6,772 20 977 53,444 14,987
la36 1,268 | 1,266 -1 26 | 1,267 -1 1,399
1,267 15,051 27 | 1,268 93,569 9,156

Table 7.2: The running times of MS Shave and MS Double Shave in seconds.

Martin and Shmoys. We conclude that the difference in efficiency between
their implementation and ours is not very large.

7.5 Heuristic shaving

Given is a list £ of good schedules. We will use the information contained in
them in an attempt to improve upon the efficiency of the shaving strategy
of Martin and Shmoys. The running time of our heuristic shave strategy
does not include the time that is needed to generate the schedules in £. We
assume that we already have these schedules, and investigate whether or
not we can use them to guide the shave process. Although we use heuristic
information derived from the schedules in £, the correctness of the obtained
lower bounds is not affected. When the heuristic information is misleading,
it only can have consequences for the running time.

Recall that every pass of MS Head Shave (MS Tail Shave) starts with
sorting all operations in increasing (decreasing) head order. We propose
an alternative order in which the operations are processed. A precedence
graph for the operations with job arcs and the machine arcs common to
all schedules in £ is employed to heuristically optimize the propagation of
updates. In addition, the time intervals in which the operations start in the
schedules in £ help us to further refine the heuristic shave order.
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7.5.1 Commonalities

A schedule is often represented by a vertex-weighted acyclic digraph G =
(O, A). The arc set A consists of job arcs connecting consecutive operations
of the same job, and machine arcs connecting consecutive operations that
must be processed on the same machine. Each vertex ¢ € O has a weight
p;- The makespan of the schedule is equal to the length of a longest path
in G. The job arcs are fixed, but the machine arcs correspond to basic
scheduling decisions. A job arc (7, j) specifies that operation i is processed
before operation j in the same job. A machine arc (i,j) stipulates that
operation ¢ is processed before operation j on the same machine.

For a schedule L, let ¢(L) denote the makespan. Suppose that £ =
(L1, Lo, ...) is a list of good schedules, such that ¢(L;) < ¢(L;) whenever
i < j. Let UB denote the length of the best schedule in L.

Definition 7.5.1. For a given ke > 1, the machine arcs that are com-
mon to the schedules L € {Li,..., Ly, } are called the commonalities of

{L1,...,Lg,,.}-

The commonalities form a partial order on each machine. Commonalities
are thought of as being “probably right” in the sense that it is likely that
they are part of many good schedules. Notice that when kay is increased,
the set of commonalities becomes more reliable but contains fewer machine
arcs, and therefore less information.

While commonalities are parts of existing solutions of cost at least UB,
shaving is concerned with proving that solutions of cost 7' < UB cannot
exist. In order to apply commonalities to shaving, we use the following
proposition.

Proposition 7.5.1. ForT' not much smaller than UB, many machine arcs
that are common to the schedules in L are also common to the schedules in
St, whenever St is nonempty.

We employ the commonalities of £ to determine a heuristic shave order in
the following way. Instead of sorting the operations in advance before every
pass in increasing (decreasing) head order, we construct a precedence graph
G to determine the order in which the operations are head (tail) shaved.
Each operation corresponds to a node in G and for every job arc there is an
arc in G. Furthermore, we add the machine arcs that are common to the
best karc solutions in £, for some kac > 1. The common machine arcs are
determined as follows. For every pair {i, j} of operations that are processed
on the same machine, we check whether or not i is scheduled before j in
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i
job1 (3)—=2)—)—
J
job2  (2)—=3)—()—

job3  (2)—=@)—1)—=()

Figure 7.4: A precedence graph G with three machine arcs for a problem
instance with three jobs and four machines. Each operation corresponds to
a vertex. The label of a vertex is the machine on which the operation is to
be processed.

every solution L € {L1,..., Lk, }. When this is the case, the machine arc
(4,7) is added to the precedence graph G.

In order to clarify the intuition behind the precedence graph thus con-
structed, consider the one given in Figure 7.4. Let ¢ denote the second
operation of job 1 and let j denote the first operation of job 2. Both opera-
tions are processed on machine 2. Notice that operation j is released before
operation 7. Nevertheless, as operation i is to be processed before operation
J in many good solutions, intuitively, it is more likely that operation 4 is
in an ascendant set of operation j than vice versa. Hence, j’s head could
depend on ¢’s head: when 7 is the last operation to complete in an ascendant
set U; of operation j, then j’s head is greater than or equal to the comple-
tion time of 7. Therefore, an update of 7’s head could lead to an update
of j’s head. Suppose that i’s head is updated. As a result, machine 2 is
affected, so Carlier-Pinson Update is invoked. Carlier-Pinson Update finds
all ascendant set updates and descendant set updates for the operations on
machine 2, including operation j. As these updates are, more or less, for
free, shaving j before i could be a waste of time.

A shave iteration is quite expensive, so every update should be propa-
gated as much as possible. Propagation of updates is relatively cheap, and it
often has a multiplicative effect on the update. Our shave order heuristically
optimizes the propagation of updates.

For head shaving, the precedence graph determines the shave order in the
following way. An operation is called available when all its job and machine
predecessors in G have already been shaved, but the operation itself has not
been shaved in the current pass. Hence, only the first operation of each
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job is initially available. The set of available operations shifts to the right
during head shaving. Similarly, for tail shaving, only the last operation of
each job is initially available. The set of available operations shifts to the
left during tail shaving.

7.5.2 Heuristic start intervals

During the shave process, it is possible that two or more operations are
available at the same time. In Martin and Shmoys’ algorithm, the operations
are sorted before every pass. For operations with the same release time, ties
are broken arbitrarily.

When more than one operation is available, we use priorities to select the
next one to shave. The priorities are based upon heuristic information that
is distilled from a number of good schedules. Given a list £ = (L1, Lo, ...)
of good schedules, such that ¢(L;) < ¢(L;) whenever ¢ < j. Let UB denote
the makespan of the best schedule in L.

Definition 7.5.2. Let s;(L) denote the start time of operation i in schedule
L. The heuristic start interval of operation i, determined by {L1, ..., Ly, }
is the interval [ay, B;] where

Q = MINpelr, .. L

t}si(L), and
Bi

maxre(r,. .1, 1Si(L),

int

for some kg > 1.

The heuristic start intervals [a;, 5;] give an indication of the range of
the start time of each operation in good schedules. Intuitively, it is unlikely
that a good schedule has an operation i that does not start in [, §;]. When
kint T 00, the heuristic start intervals become more reliable.

While heuristic start intervals are derived from existing solutions of cost
at least UB, shaving is concerned with proving that solutions of cost T' < UB
cannot exist. In order to apply heuristic start intervals to shaving, we use
the following proposition.

Proposition 7.5.2. For T not much smaller than UB, the heuristic start
intervals of the operations determined by L approximate the possible start
times of the operations in the schedules in ST, whenever St is nonempty.

Given the sharp lower bounds that are derived by double shave, see Table
7.2, the values of T' with which we shave are not much smaller than UB.
Consequently, the heuristic start intervals determined by £ approximate the
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possible start times of the operations in the schedules of length at most T
(if any). We exploit this feature in the following way.

For a given time T and an operation i € O, let u; = r; and v; = T'—q; —p;-
As some operations have a more flexible start time in good solutions than
others, a large gap between u; and v; does not necessarily mean that a lot
of reductions can be expected. The heuristic start intervals [«;, 5;] indicate
which operations have a flexible start time in good schedules and which
operations are pretty much fixed to a specific point in time. When T' = UB,
we always have that a; > w; and B; < v; = UB — ¢; — p;- According
to Proposition 7.5.2, for 7' not much smaller than UB, these relations are
approximately true. As a result, it is likely that [ay, 8;] C [us,v;], and
therefore it is unlikely that we can shave within [a;, 5;]. For our heuristic
shave algorithm, we adopt a greedy priority rule: the available operation
with the largest gap between u; and «; or between UB — ¢; — p; and f; is
shaved first. Intuitively, it is more likely that we can shave off a large part
of a processing window in case of a large gap than in case of a small gap.

7.5.3 Heuristic Head Shave and Heuristic Tail Shave

For a given list £ of good schedules, a value k¢, a value ki, and a time T,
procedure Heuristic Head Shave is outlined below. We put UB = ¢(Ly).

Heuristic Head Shave:

1. Initialize the precedence graph G with all job arcs and the machine
arcs that are common to the best k... schedules in L.

2. Determine for every operation 4 the heuristic start interval [;, 8;] using
the best ki, schedules in L.

3. Insert all available operations into a priority queue ). The priority of
operation ¢ is a; — u;.

4. While ) not empty

(a) Select an available operation i € ) with maximum priority.

(b) 4 :=1, bisection := false, M :=0.

(¢) If u; > v;, halt (infeasible: schedules of length at most 7" cannot
exist).

(d) Temporarily reduce i’s processing window to the prefix [u;, u; +
0 — 1] by invoking Remove Suffiz for operation i, with value w =
u; +6 — 1, and time T
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(e) When infeasibility is derived in Step 4d, we can discard the prefix
[ui, ui + 0 — 1]:

e Undo all updates accomplished in Step 4d.

e Invoke Remove Prefix for operation ¢ with value w = wu; + 9,
and time T. When infeasibility is derived, halt (infeasible:
schedules of length at most 7' cannot exist).

o If bisection = true, § := [@J Otherwise, § := 24.

e When 6 > 0, go to Step 4c. Otherwise, mark operation i to
reflect that it has been shaved. Each unmarked successor j
of ¢ in G is added to @), provided that all its predecessors in
G are marked. The corresponding priority is a; — u;. Go to
Step 4.

Otherwise,

e Undo all updates accomplished in Step 4d.

e bisection := true, M :=u; + 0, § := [0/2].

e When 6 > 0, go to Step 4c. Otherwise, mark operation i to
reflect that it has been shaved. Each unmarked successor j
of 7 in G is added to @, provided that all its predecessors in
G are marked. The corresponding priority is a; — u;. Go to
Step 4.

For Heuristic Tail Shave, the available operation with the largest gap
between UB — q; — p; and (3; is shaved first. Initially, only the last operation
of each job is available.

7.5.4 Heuristic Shave and Heuristic Double Shave

Heuristic Shave is the same as MS Shave, except that MS Head Shave is re-
placed by Heuristic Head Shave and MS Tail Shave is replaced by Heuristic
Tail Shave.

Heuristic Double Shave is completely analogous to MS Double Shave.

7.6 Results

We restrict our attention to double shaving. Compared to MS Double Shave,
our Heuristic Double Shave has the following additional parameters: a list
L of good schedules, a value ki > 1, and a value kingy > 1. The best kare
schedules in £ determine which heuristic machine arcs are added to G, and
the best kint schedules in £ determine the heuristic start intervals.
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In order to find reasonable parameter settings, we will use the set of
problem instances in Table 7.2 in a number of computational experiments.
For each of these test instances the optimum makespan is known. Qur goal
is to find appropriate parameters for these test instances first. In this way,
we hope to find general settings that work well on other, open, instances.
Then, in Section 7.6.3, we apply Heuristic Double Shave with the selected
parameters to a number of open problems instances.

For each of the test instances, we generated a number of good schedules
with multiple runs of the tabu search heuristic due to Nowicki and Smutnicki
[61]. The running times varied from a couple of minutes to several hours.
These running times are not included in our results.

We are interested in the effect of the size of k., the size of kin, and the
quality of the solutions in £ on the running time of Heuristic Double Shave.
We consider two cases: £ contains only optima, and £ contains no optima.

7.6.1 L contains only optima

For each test instance we have a list £ = (L1, La,...) of different optima
with makespan Ciax. The first k... solutions in £ determine which machine
arcs are added to the precedence graph G. When k,.. = 0, G contains only
job arcs. The first ki solutions in £ determine the heuristic start intervals.
When k¢ > 1, the priority of an available operation ¢ is determined by the
gap between [u;,v;] and the heuristic start interval [ay, 5;]; when ki = 0,
the priority is determined by the release time (just like Martin and Shmoys
did). Even when we do not employ common machine arcs and heuristic
start intervals, i.e., ke = 0 and ki, = 0, there is a difference between the
shave order of Martin and Shmoys and our shave order. The shave order of
Martin and Shmoys is completely determined beforehand, while our shave
order is dynamic in the sense that priorities can change during shaving as a
result of updating heads and tails.

We carried out some computational experiments for Heuristic Double
Shave with different values for karc and kint. We put UB = ¢(L1) = Cpax
and the parameter T is equal to the optimum minus one. The results are
given in Table 7.3. We conclude that in most cases where ki = 0, the
running times are approximately the same as for MS Double Shave (see Ta-
ble 7.2). Furthermore, most cases where ky. = 0 and kiny > 2 give very
bad results. We explain this as follows. Consider the different schedules in
L. When an operation i is early in its job (relatively small w;), but always
late on its machine (relatively large o), its priority is very high, due to the
large gap between [u;, v;] and the heuristic start interval o, 5;]. As a result,
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instance/T  karc/kint | O 2 4 8 16

mt10/929 189 158 260 261 260
158 149 163 163 163
157 150 150 150 150
159 151 150 151 151
6 158 150 150 150 150
284 727 727 729 730
170 147 147 147 147
165 143 143 143 143
167 144 144 145 145
6 164 141 141 142 142

abz5/1,233

1a19/841 220 260 259 259 259
216 121 122 121 122

215 121 121 121 121

214 121 122 121 121

1a24/934 4957 7,827 7,749 7,624 7614
4,931 5453 5441 5489 5,489

4,999 5166 5,137 5173 5,178

5008 5225 5,185 5224 5,224

6 5182 5,316 5,322 5317 5311

1a25,/976 5078 10,506 10,508 7,397 7,415
6,933 6,202 6,209 6,060 6,062

6,012 6,300 6,313 6,042 6,042

7,162 7,230 7,244 7,331 7,389

6 7134 7,223 7,245 7,288 7,265

1a36,/1,267 1,423 3,813 2,336 3,296 3,312

1,345 490 459 492 490
1,332 533 466 528 528
1,320 579 914 978 LY
6 1,311 619 952 616 615

0
2
4
8
1
0
2
4
8
1
0
2
4
8
16 216 122 122 122 122
0
2
4
8
1
0
2
4
8
1
0
2
4
8
1

Table 7.3: The running time in seconds of Heuristic Double Shave for a
number of problem instances and parameters. The list £ contains only
optima.

Heuristic Double Shave is too greedy. This is prevented by adding common
machine arcs to G, which reflect that operation i is relatively late on its ma-
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chine. Their presence in G cause the operation to be delayed in the shaving
process by making it available later. According to the results, it appears
that both common machine arcs and heuristic start intervals are necessary
to improve upon the running times of Martin and Shmoys, i.e., karc > 2 and
kint > 2. Although larger values of ku and kiny sometimes improve and
sometimes deteriorate the running time, we conclude that there is no reason
to use more than two solutions. Apparently, two distinct solutions contain
approximately the same heuristic information as three or more solutions.
When ke = 2 and king = 2, the running time of Heuristic Double Shave on
abzb and lal9 is about half the running time of MS Double Shave. On 1a36,
Heuristic Double Shave is approximately three times faster than MS Double
Shave. For mt10, 1a24 and 1a25, the running times are roughly the same as
for MS Double Shave.

For each problem instance, we determine the average running time of
Heuristic Double Shave over a number of different pairs of optima £ =
(L1, L2). The results are given in Table 7.4. Apparently, the running time
can be quite dependent on the pair of optima that is used. Nevertheless, we
conclude that the results are quite stable for the different pairs of optima.

instance | mt10 abz5 1al9 la24 1a25 1a36
run 1 147 157 122 5,176 5,897 447
run 2 126 159 219 5,114 6,693 433
run 3 | 148 157 120 5,104 6,970 881
run 4 | 145 157 116 5,099 7,111 904
run 5 126 157 220 5,100 5,821 496
run 6 | 148 157 122 5,188 5,833 430
run 7 | 147 157 120 5,084 6,032 529
run 8 | 146 159 119 5,326 6,208 494
run 9 | 149 167 116 5,135 6,312 490
run 10 | 126 142 219 5,124 7,092 488
average | 141 157 149 5,145 6,397 559

Table 7.4: The running time of Heuristic Double Shave using different pairs
of optima.

7.6.2 L contains no optima

In this section, we investigate the influence of the quality of the solutions in
L on the running time of Heuristic Double Shave. For each test instance,
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let Cpax denote the makespan of an optimum solution. We consider the
following cases: the best solution in £ has a makespan of Ciax + 1 and the
best solution in £ has a makespan of approximately Ciax + 5. As usual, the
value of UB is equal to the makespan of the best solution in £, although we
know the optimum. Parameter 7' is equal to UB minus one. We carried out
a number of computational experiments for k... = 2 and kin; = 2.

Unfortunately, for only two problem instances we had a number of so-
lutions with a makespan of Cpax + 1. For these instances, the results are
given in Table 7.5. Compared to Table 7.4, the average result for 1al9 is
slightly worse, while the average result of 1a25 is slightly better. We con-
clude that there is no evidence that sub-optimality of the solutions harms
the usefulness of the heuristic information contained in L.

instance | lal9 1a25

UB 843 978
run 1 128 5,559
run 2 229 5,657
run 3 129 6,763
run 4 129 6,669
run 5 124 5,940
run 6 122 6,569
run 7 | 232 6,004
run 8 129 6,736
run 9 127 6,222
run 10 | 232 5,450
average | 168 6,157

Table 7.5: The running time of Heuristic Double Shave using different pairs
of solutions of cost UB = Cinax + 1.

In Table 7.6, we consider the case where solutions of cost approximately
Chax + 5 are employed. Compared to Table 7.4, we conclude that for most
instances Heuristic Double Shave performs significantly worse. Only for
la24 and la25 it perform slightly better, implying that luck also plays a
role. Therefore, we conclude that it is likely that the quality of the solutions
in £ does affect the quality of the heuristic information contained in them.
Nevertheless, the results are in most cases still better than the corresponding
results of MS Double Shave.
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instance | mt10 abzb 1al9 la24 1a25 1a36
UB 937 1,238 847 940 982 1,271
run 1 218 179 247 5,097 6,056 329
run 2 130 183 259 4,830 6,158 521
run 3 130 333 258 3,583 6,372 610
run 4 130 302 247 4,792 4,844 503
run 5 133 302 259 4,814 6,359 494
run 6 132 170 261 3,577 6,092 598
run 7 | 130 381 249 4,392 7,259 934
run 8 | 221 302 259 5,350 6,330 491
run 9 130 302 248 5,281 6,680 2,028
run 10 | 161 301 247 4,716 5,985 777
average | 152 276 253 4,643 6,214 729

Table 7.6: The running time of Heuristic Double Shave using different pairs
of solutions of cost UB, which is approximately equal to Cpax + 5.

7.6.3 New lower bounds

We consider a number of open problem instances proposed by Taillard [66].
We concentrate on Taillard’s benchmark instances tall to ta20, having 20
jobs and 15 machines. At the time of writing, only tal4 had been solved.

For some instances we do not have solutions with the best known upper
bound. In that case, we use a number of solutions that are slightly worse.
As usual, the value UB is set to the best solution in £, and not to the best
known upper bound. Notice that the solutions in £ do not all have the
same cost. In Table 7.7 new lower bounds are given, which are derived by
Heuristic Double Shave with ks = 2 and kit = 2. The running times are
given in seconds on a Pentium II1/333 MHz PC. All solutions are obtained
with the tabu search algorithm due to Nowicki and Smutnicki [51]. The
running times of tabu search, which ranged between a couple of hours and
several days, are not included in the table.

For tal7, Heuristic Double Shave proved that solutions of cost at most
1,461 cannot exist, hence 1,462 is a lower bound. Furthermore, it could not
derive infeasibility for 7' = 1,462; it took 114,583 seconds to derive that
solutions of cost 1,462 could exist. For tal8, our heuristic double shaver
could not derive infeasibility for 7' = 1,369, the best known lower bound
from the literature. It took 237,540 seconds to derive that solutions of cost
1,369 could exist.
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instance old LB UB | c¢(L1) ¢(L2) new LB time
tall 1,321 1,364 | 1,367 1,373 1,323 371,160
tal2 1,321 1,367 | 1,377 1,377 1,351 145,513
tal3 1,271 1,350 | 1,350 1,350 1,282 67,181
tald 1,293 1,342 | 1,342 1,342 1,304 30,886
tal6 1,300 1,362 | 1,368 1,368 1,302 69,338
tal? 1,458 1,464 | 1476 1,476 1,462 14,295
tal9 1,276 1,341 | 1,341 1,344 1,297 31,054
ta20 1,316 1,353 | 1,359 1,359 1,318 282,814

Table 7.7: New lower bounds on some Taillard instances with 20 jobs and
15 machines using two good solutions.

Obviously, the same lower bounds could be derived by MS Double Shave,
but it could take considerably longer.

7.7 Conclusion

Given is a list £ of good solutions to an instance of a job shop scheduling
problem. We distill heuristic information from £, which is used in an at-
tempt to improve upon the running time of the shaving method proposed
by Martin and Shmoys. The heuristic information is employed to determine
the order in which the operations are shaved. The job arcs and the machine
arcs that are common to the solutions in £ determine a partial order on the
operations. Ties between available operations are broken by considering the
heuristic start intervals of the operations in the solutions in L.

Experiments indicate that both common machine arcs and heuristic start
intervals are required to improve upon the running time of Martin and
Shmoys. It is sufficient to have two good solutions. Although the running
time generally increases as the quality of the solutions in £ deteriorates, the
results are quite stable for different pairs of good solutions. For three out
of six problem instances, the heuristic shave algorithm is two to three times
faster than the shaving algorithm due to Martin and Shmoys. Furthermore,
with the heuristic shave algorithm, we found new lower bounds to a number
of open problem instances.
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Conclusion

The research reported in this thesis is motivated by the common defect of
many local search heuristics that they tend to get stuck. When a local
search heuristics gets stuck, a lot of time is wasted in an unfruitful part of
the search space.

In an attempt to overcome this weakness, we experimented with multi-
ple independent runs. Each run was started in a different solution, which
was constructed from scratch. It turned out that good solutions to a com-
binatorial optimization problem have many building elements in common,
frequently up to 80 or 90 percent. These so-called commonalities are inter-
preted as being “probably right” in the sense that it is expected that they
are contained in almost every good solution. The commonalities of a num-
ber of good solutions form the basis of a restart mechanism for local search
heuristics that takes advantage of the past by using information obtained
by previous runs. The idea is to perform multiple shorter runs instead of a
single long run. During the search, a list of good solutions is maintained.
The initial solution of each subsequent run is obtained by perturbing the
best solution found so far in such a way that many commonalities of the
solutions in the list are preserved. In this way, the search is immediately
directed to an interesting part of the search space. The run length and
the amount of perturbation are parameters of this commonality-preserving
restart mechanism.

For a number of combinatorial optimization problems and local search
heuristics we implemented this commonality-preserving restart mechanism.
The commonality-preserving restart mechanism was compared to a number
of other strategies that are based upon multiple shorter runs and to a single
long run. We compared the averages of the quality of the solutions that
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are found and the associated standard deviation. The average quality is an
indication of the effectiveness, while the standard deviation is a measure
of the robustness. All computational experiments were carried out on a
time-equivalent basis. The results are summarized below.

Traveling salesman. The Chained Lin-Kernighan heuristic is one
of the most successful heuristics for symmetric traveling salesman prob-
lems. Experiments clearly indicate that Chained Lin-Kernighan tends to
get stuck. With respect to the average result, our commonality-preserving
restart mechanism is better than a single long run, better than multiple
independent runs, and better than a restart mechanism that perturbs the
best solution found so far at random. The standard deviation of each of the
three strategies that are based upon multiple runs was approximately the
same and often considerably smaller than that of a single long run.

Whizzkids ’96. We implemented a tabu search heuristic that employs
Chained Lin-Kernighan as a path improvement heuristic. According to
some computational experiments, the tabu search heuristic did not seem
to get stuck. Nevertheless, our commonality-preserving restart mechanism
appeared to be more effective than multiple independent runs and more ef-
fective than a single long run. The independent runs proved to be more
robust than the other strategies. As each of the strategies frequently pro-
duced solutions with the best known upper bound, it seems that there is
not much room for further improvement.

Job shop scheduling. The tabu search heuristic of Nowicki and Smut-
nicki is one of the most effective heuristics for job shop scheduling problems.
We compared a commonality-preserving restart mechanism to multiple inde-
pendent runs and to a backtrack mechanism. Our commonality-preserving
restarts are more effective than independent runs, approximately as robust
as independent runs, more robust than backtracking, and slightly less effec-
tive than backtracking. During the experiments, new upper bounds were
found for a large number of benchmark instances.

Whizzkids ’97. We implemented a tabu search heuristic based upon the
tabu search heuristic of Nowicki and Smutnicki for the job shop scheduling
problem. In our computational experiments, it was clear that the tabu
search heuristic tends to get stuck. Our commonality-preserving restart
mechanism is more effective than a single long run and more effective than
multiple independent runs. The standard deviation is approximately the
same for each of the strategies that we considered. As the problem is solved,
the high quality of the solutions that are obtained by each of the strategies
implies that there is not much room for further improvement.

Although the details of the commonality-preserving restart mechanisms
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vary from one case to the other, we conclude that they are quite successful.

Multiple independent runs and backtracking are extreme cases of a com-
monality-preserving restart mechanism: perturbing all building elements
of the best solution found so far corresponds to multiple independent runs,
while perturbing none of the building elements corresponds to a simple form
of backtracking. Performing multiple independent runs in which each run
is started in a different solution is a simple diversification mechanism, while
backtracking is an intensification mechanism. Therefore, by varying the
amount of perturbation, a balance between intensification and diversification
is obtained. Similarly, the amount of perturbation determines the balance
between the effectiveness of backtracking and the robustness of multiple
independent runs.

Commonalities are also useful in finding lower bounds, which was demon-
strated in the context of the shaving algorithm, a lower bounding method
for job shop scheduling due to Martin and Shmoys. The commonalities of
a small number of good solutions were employed, together with some other
heuristic information derived from the solutions, to determine an efficient or-
der in which the operations are processed by the algorithm. For three out of
six problem instances, our heuristic shave algorithm was two to three times
faster than the shaving algorithm due to Martin and Shmoys. In some cases,
it was slightly slower. Furthermore, with the heuristic shave algorithm, we
found new lower bounds to a number of open problem instances.

Given the results of the commonality-preserving restart mechanisms and
the results of the heuristic shaving algorithm, we conclude that commonal-
ities have useful applications in combinatorial optimization.
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