

Inheritance of interorganizational workflows : how to agree to
disagree without loosing control?
Citation for published version (APA):
Aalst, van der, W. M. P. (2003). Inheritance of interorganizational workflows : how to agree to disagree without
loosing control? Information Technology and Management, 4(4), 345-389.
https://doi.org/10.1023/A:1025182201690

DOI:
10.1023/A:1025182201690

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1023/A:1025182201690
https://doi.org/10.1023/A:1025182201690
https://research.tue.nl/en/publications/2b604fc5-bc30-4511-8748-6f84258e9ba3

Information Technology and Management 4, 345–389, 2003
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Inheritance of Interorganizational Workflows:
How to Agree to Disagree Without Loosing Control?

W.M.P. VAN DER AALST w.m.p.v.d.aalst@tm.tue.nl
Department of Technology Management, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB,
Eindhoven, The Netherlands, and
Department of Computer Science, University of Colorado at Boulder, Campus Box 430, Boulder,
CO 80309-0430, USA

Abstract. Internet-based technology, E-commerce, and the rise of networked virtual enterprises have fueled
the need for interorganizational workflows. Although XML allows trading partners to exchange informa-
tion, it cannot be used to coordinate activities in different organizational entities. Business-to-business
processes are hindered by the lack of a common language to support collaboration. This paper describes
the P2P (Public-To-Private) approach which addresses one of the most notorious problems in this domain:
How to design an interorganizational workflow such that there is local autonomy without compromising
the consistency of the overall process. The approach uses a notion of inheritance and consists of three
steps: (1) create a common understanding of the interorganizational workflow by specifying the shared
public workflow, (2) partition the public workflow over the organizational entities involved, and (3) for
each organizational entity: create a private workflow which is a subclass of the relevant part of the public
workflow. This paper shows that this approach avoids typical anomalies in business-to-business collabo-
ration (e.g., deadlocks and livelocks) and yields an interorganizational workflow which is guaranteed to
realize the behavior specified in the public workflow.

Keywords: information systems (H), electronic commerce (K.4.4), workflow management (H.4.1), Petri
nets (D.2.2), inheritance of dynamic behavior, verification

1. Introduction

Today’s corporations often must operate across organizational boundaries. Phenomena
such as E-commerce, extended enterprises, and the Internet stimulate cooperation be-
tween organizations. Therefore, the importance of workflows distributed over a number
of organizations is increasing. Interorganizational workflow offers companies the oppor-
tunity to re-shape business processes beyond the boundaries of their own organizations.
However, interorganizational workflows are typically subject to conflicting constraints.
On the one hand, there is a strong need for coordination to optimize the flow of work in
and between the different organizations. On the other hand, the organizations involved
are essentially autonomous and have the freedom to create or modify workflows at any
point in time. As the subtitle of this paper suggests (“How to agree to disagree without
loosing control?”), this is exactly the problem that will be tackled in this paper. To mo-
tivate the approach described in this paper, we first discuss some of the developments in
the field of E-commerce and Internet-based technologies.

346 VAN DER AALST

E-commerce refers to the enabling of purchasing and selling of goods and ser-
vices through a communications network [5,16,28,37,40,53,57]. The ability to conduct
business activities involved in marketing, finance, manufacturing, selling, and negoti-
ation, electronically, is what E-commerce is all about. One major objective of adopt-
ing E-commerce strategies is to reduce costs and improve the efficiency of business
processes by replacing paper business with electronic alternatives. E-commerce, in its
earliest incarnation known as Electronic Data Interchange (EDI), has been traditionally
used by larger corporations to share and exchange information between business partners
and suppliers using private networks [19,34,35]. EDI enables the exchange of business
data from one computer to another computer. It eliminates the need to re-key infor-
mation from documents or messages by supporting the creation of electronic versions
of documents or messages using public standard formats, which can then be transmit-
ted, received, and interpreted by other systems. Typical applications were (and still are)
supply-chain management processes like order placement and processing. However,
with the explosive growth of the Internet in the last couple of years, E-commerce is now
able to offer solutions for a much broader range of business processes than EDI previ-
ously addressed. Also, the extensive availability of the Internet has enabled smaller com-
panies, hindered previously by the large financial investment required for these private
networks, to conduct business electronically. Technologies like bar coding, automatic
teller machines, e-mail, fax, video-conferencing, workflow, and the World-Wide-Web
have continued to impact the success of E-commerce. Although the term E-commerce
frequently refers to on-line retailing involving businesses and consumers, experts predict
that as E-commerce continues to grow, business-to-business E-commerce will continue
to enjoy the lion share of the revenue.

The Internet and the World-Wide-Web (WWW) have become the de facto standard
for E-commerce. The Internet has evolved from a primitive medium to exchange data
to the backbone of today’s information society. In [32], Kumar and Zhao identify five
stages in the development of the WWW. In the first phase, primitive text-based tools
such as Gopher and Archie are used primarily for knowledge discovery. In the second
phase, hypertext-based graphical browsers are used for knowledge discovery. The third
phase is marked by connecting applications and databases to the WWW using gate-
ways based on technologies such as CGI. As a result, the WWW can be used to process
transactions in a synchronous manner and present up-to-date information. The fourth
phase is the phase where asynchronous mode interaction between series of trading part-
ners is enabled using semantic languages such as XML, ontologies, etc. In the fifth
phase procedural information is attached to the information exchanged, i.e., the work-
flow processes are made explicit (in a common language) and WWW-based applications
become “process-aware”. Today, we are in-between phase three and phase four. Ku-
mar and Zhao [32] envision that the emphasis will shift from short-lived transactions
of a synchronous nature to long-lived transactions which require a complex asynchro-
nous exchange of information. Clearly, the main focus of WWW-based tools and the
associated research has been on information, communication, and presentation [50]. As
a result, problems related to collaboration, coordination, and business process support

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 347

Figure 1. The interactions between contractor and subcontractor.

have been neglected. Satisfactory concepts and products to support interorganizational
workflows are still missing. Business-to-business E-commerce will be hindered by these
problems. Therefore, we focus on some of the problems related to interorganizational
workflow.

To introduce the problems tackled in this paper we use a small example of an
interorganizational workflow involving two business partners: a contractor and a sub-
contractor. The interaction between these two business partners is shown in figure 1
using a so-called sequence diagram. First, the contractor sends an order to the sub-
contractor. Then, the contractor sends a detailed specification to the subcontractor and
the subcontractor sends a cost statement to the contractor. Based on the specification
the subcontractor manufactures the desired product and sends it to the contractor. For
this very simple business-to-business protocol a sequence diagram is suitable. However,
sequence diagrams are typically used to describe scenarios rather than a complete spec-
ification of a business-to-business protocol or trade procedure. Sequence diagram have
problems expressing a mixture of choice and synchronization and subtle aspects such as
the moment of choice. In section 2.3, we will address these subtle, but crucial, issues
using the workflow model shown in figure 20 (see appendix A). Given these limitations,
we use Petri nets [43,44] to model such business-to-business protocols.

Figure 2 specifies the process described earlier in terms of a Petri net. The transi-
tions, represented by squares, correspond to tasks and the places, represented by circles,
correspond to the causal relations between the tasks [8]. The places order, specification,
cost_statement, and product are used to exchange the messages shown in figure 1. Places
may contain tokens and, at any time, the distribution of tokens over places specifies the
current state of the process. Initially, place i (i.e., the source place) contains one token
corresponding to a new case also called workflow instance. Transitions are enabled if
each input place contains a token, i.e., initially transition send_order is enabled. Enabled
transitions can fire by removing a token from each input place and producing a token for
each output place, i.e., firing send_order results in the consumption of the token in i and
the production of three new tokens. After firing send_order, transitions receive_order
and create_specification are enabled. These two transitions can be fired, i.e., executed,
in any order. After firing these two transitions, transition process_specification becomes

348 VAN DER AALST

Figure 2. The public workflow Npubl.

enabled. It is easy to see that starting with a token in place i all transitions are exe-
cuted (i.e., fired) in a predefined order thus resulting in the state with just one token in
the sink place o. Moreover, the exchange of tokens via the places order, specification,
cost_statement, and product matches the interaction pattern shown in figure 1. Since
this Petri net exhibits no choices and the degree of parallelism is limited, the model may
seem unnecessary complex. However, for more complex business-to-business proto-
cols, the more advanced constructs offered by the Petri-net formalism are indispensable.
Moreover, in contrast to figure 1, figure 2 also shows the tasks.

We will use the term public workflow for the Petri net shown in figure 2. One
can think of this Petri net as the contract between the contractor and the subcontractor,
i.e., figure 2 does not necessarily show the way the tasks are actually executed. The
real process may be much more detailed and involving much more tasks. The public
workflow only contains the tasks which are of interest to both parties.

Figure 2 does not show who is executing the tasks. Therefore, we extend the Petri
net with a notion of hierarchy as shown in figures 3–5. Figure 3 shows the top-level of the
interorganizational workflow, i.e., the two business partners involved and the messages
exchanged. The two large squares in figure 3 are called domains. In this case there
are two domains: one for the contractor (left) and one for the subcontractor (right).
The two domains are connected via the channels order, specification, cost_statement,
and product. The shaded rectangles correspond to methods, i.e., services offered by the
domains.

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 349

Figure 3. The interorganizational workflow Qpart.

Figure 4. The WF-net Npart
0 (public part of contractor).

Figure 5. The WF-net N
part
1 (public part of subcontractor).

350 VAN DER AALST

Figure 6. The WF-net N
priv
0 (private part of contractor).

In the interorganizational workflow shown in figures 3–5, the public workflow is
partitioned over the two domains. Figure 4 shows the contractor’s share of the public
workflow and figure 5 shows the subcontractor’s share of the public workflow. Tran-
sitions in the two domains are mapped onto methods, i.e., the execution of a transition
provides the corresponding service offered by the domain in figure 3. In this particular
example there is a one-to-one correspondence between transitions and methods. How-
ever, in general several transitions may offer the same service (i.e., are mapped onto
the same method). Moreover, there may be transitions which are just added for rout-
ing purposes and do not correspond to relevant tasks. These tasks are not mapped onto
methods.

The interorganizational workflow corresponding to the partitioned public workflow
(i.e., figures 3–5) serves only as an agreement, i.e., it is the business-to-business proto-
col the business partners agreed upon and not the real workflow as it is executed. The
workflow description which is used to actually execute the workflow within one of the
domains is called the private workflow. The private workflow typically contains several
tasks which are only of local interest. Figure 6 shows a rather a-typical private work-
flow. This is the private workflow of the contractor and contains no additional tasks. The
only thing that has been added is the place cs connecting the task which processes the
cost statement to the task creating the specification. This place may have been added
because the contractor thinks that it is more efficient to create the specification after the
cost statement has been processed. From a local point of view, such a change is quite
acceptable. If the contractor is only interested in the part of the public workflow shown
in figure 4, the change may seem harmless. However, if the subcontractor executes its
local workflow as specified in figure 5, then the process (i.e., the overall interorgani-
zational workflow) will deadlock after the execution of send_order and receive_order.
This example shows that local changes may have dramatic effects.

Figure 7 shows an alternative private workflow. In this workflow many tasks have
been added which are only of local interest, e.g., in-between the sending of the order
and the creation of the specification task collect_input may be executed multiple times.

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 351

Figure 7. An alternative WF-net N
priv
0 (private part of contractor).

Figure 8. The WF-net Npriv
1 (private part of subcontractor).

Although the private workflow shown in figure 7 adds many tasks to its part of the public
workflow, the original order of the key tasks is not changed. In contrast with figure 6,
figure 7 is consistent with figure 4. If the subcontractor executes its local workflow as
specified in figure 4 and the contractor executes its local workflow as specified in fig-
ure 7, then the overall interorganizational workflow will run smoothly without deadlocks
or similar anomalies.

Figure 8 shows the private workflow of the subcontractor. This workflow contains
three tasks not present in the figure 5: decide, procedure_1, and procedure_2. After
the order is received, a decision is made. Based on this decision one of two possible
procedures is executed. In one procedure, the specification is processed before the cost
statement is created. In the other procedure, the cost statement is created before the spec-
ification is processed. Again, from a local perspective, there is no apparent reason why
the private workflow cannot be extended in this way. The first procedure corresponds to
the order specified in the public workflow. The second procedure only offers the oppor-
tunity to reverse the order of the tasks process_specification and create_cost_statement.
If the private workflow of the subcontractor shown in figure 8 is combined with the pri-

352 VAN DER AALST

Figure 9. An alternative WF-net N
priv
1 (private part of subcontractor).

vate workflow of the contractor shown in figure 6, then there is still a potential deadlock.
However, executing the alternative procedure can actually help to avoid the deadlock
mentioned earlier. If the subcontractor uses the second procedure, the addition of the
place cs in the contractor’s workflow does not result in a deadlock. This illustrates that
the contractor can detect the presence of the alternative procedure and indicates that the
private workflow shown in figure 8 is not consistent with figure 5. If the private work-
flow of the subcontractor shown in figure 8 is combined with the private workflow of the
contractor shown in figure 7, then there are no potential anomalies such deadlocks and
livelocks. Nevertheless, something essential has changed. Based on the public workflow,
the contractor may assume that the specification has been processed by the subcontractor
when the cost statement is processed. However, if the workflow shown in figure 8 is used,
this is no longer guaranteed. Therefore, we consider the workflow shown in figure 8 not
a suitable candidate to realize the subcontractor’s share of the public workflow.

Figure 9 shows an alternative private workflow. This workflow is consistent with
the subcontractor’s part of the public workflow. If the private workflows shown in fig-
ures 6 and 9 are combined, the key tasks are executed in the order specified in the public
workflow.

This paper addresses the problems illustrated by this small example: How to make
sure that the local implementation of a workflow does not create all kinds of anomalies
over organizational borders? To solve these problems we propose the P2P (Public-To-
Private) approach which is based on projection inheritance. Projection inheritance has
been defined in [7,14,15] and uses encapsulation as a mechanism to establish subclass–
superclass relationships. In contrast to many other notions of inheritance, it primarily
addresses the dynamic behavior rather than data types or method signatures. The P2P
approach consists of three steps. In the first step, the public workflow is created. In
the second step, the public workflow is partitioned over a number of domains. Finally,
a private workflow is created for each domain such that the private workflow is a sub-
class of the corresponding part of the public workflow. If the P2P approach is followed,
it is guaranteed that the overall workflow (i.e., the workflow obtained by combining all

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 353

private workflows) is free of deadlocks and other similar anomalies. Moreover, the over-
all workflow is a subclass of the public workflow. Therefore, it is guaranteed that the
business-to-business protocol specified in the public workflow is actually realized. To
demonstrate the validity of our approach we show that the Greatest Common Denomi-
nator (GCD) of all local views (i.e., the part of the process visible from one domain) is
the public workflow. We also show that the Least Common Multiple (LCM) of all local
views is the overall workflow.

The remainder of this paper is organized as follows. First, we introduce the no-
tations, techniques, and theoretical results used in this paper. Unfortunately the proofs
are quite complex and require a lot of preliminaries. The paper builds on Petri nets
[43,44], sound WF-nets [1], branching bisimilarity [25], projection inheritance [14], and
GCD/LCM of processes [6,7]. The corresponding concepts are all introduced in sec-
tion 2. Readers familiar with these concepts can pass over selected parts of this section.
Section 3 introduces the framework used to model interorganizational workflows. The
P2P approach is described in section 4. Section 5 demonstrates that the overall workflow
realizes the public workflow if the P2P approach is used. Section 6 introduces the no-
tion of views and shows that the GCD and LCM of these views coincide with the public
respectively overall workflow. Finally, we conclude the paper by relating the results to
existing work, describing our tool Woflan which partly supports the P2P approach, and
summarizing our plans for future work.

2. Preliminaries

In the introduction we sketched the potential problems when connecting autonomous
workflow processes in an interorganizational setting. To reason about these problems
and to present a concrete approach for dealing with this problems, we need to intro-
duce some basic notations and concepts. The concurrent nature of distributed workflow
processes and the tricky nature of the errors pointed out in the introduction, forces us to
use a rigorous formalism that can deal with this issues. Most workflow management sys-
tems use a vendor-specific workflow language. To avoid results which are tool-specific
and to benefit from 40 years of research in concurrent systems, we use Petri nets. The
variant of Petri nets used in this paper, i.e., the class of sound workflow nets, is closely re-
lated to the modeling languages used in contemporary workflow management systems.
The close relationship is demonstrated by our tool Woflan [55] which automatically
translates workflow processes specified with Staffware, COSA, Protos, XRL, Meteor,
etc. to workflow nets. Another reason for using Petri nets is that the P2P approach
heavily depends on the inheritance notions described in [7,14,15].

2.1. Place/Transition nets

In this section, we define a variant of the classic Petri-net model, namely labeled
Place/Transition nets. For a more elaborate introduction to Petri nets, the reader is re-
ferred to [21,41,43].

354 VAN DER AALST

Let U be some universe of identifiers; let L be some set of action labels. Lv =
L \ {τ } is the set of all visible labels. (The role of τ , the silent action, will be explained
later.)

We assume that the reader is familiar with basic mathematical notations. We
use P(U) to denote the powerset of U , i.e., the set consisting of all subsets of U . U ∗ de-
notes the set of all sequences over U and ε is the empty sequence (i.e., the sequence of
length 0). For some relation R over U (i.e., R ⊂ U × U), R∗ is the transitive closure of
R and R−1 is the inverse of R. A function f from set A to set B is denoted f : A→ B .
rng(f) is the range of f .

Definition 1 (Labeled P/T-net). A labeled Place/Transition net is a tuple (P, T,M,F, �)

where:

(1) P ⊆ U is a finite set of places,

(2) T ⊆ U is a finite set of transitions such that P ∩ T = ∅,

(3) M ⊆ Lv is a finite set of methods such that M ∩ (P ∪ T) = ∅,

(4) F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation, and

(5) � : T → M ∪ {τ } is a labeling function.

Each transition has a label which refers to the method or operation that is executed
if the transition fires. However, if the transition bears a τ label, then no method is
executed. Note that there can be many transitions with the same label, i.e., executing
the same method. Figure 2 shows a P/T-net with 13 places and 8 transitions. The figure
only shows the labels of the transitions, i.e., the identifiers of the transitions and some of
the places are not shown. In this particular example there are no two transitions with the
same label. Therefore, we can use the transition labels to identify transitions.

Let (P, T ,M,F, �) be a labeled P/T-net. Elements of P ∪ T are referred to as
nodes. A node x ∈ P ∪ T is called an input node of another node y ∈ P ∪ T if and
only if there exists a directed arc from x to y; that is, if and only if xFy. Node x is
called an output node of y if and only if there exists a directed arc from y to x. If x is a
place in P , it is called an input place or an output place; if it is a transition, it is called
an input or an output transition. The set of all input nodes of some node x is called the
preset of x; its set of output nodes is called the postset, e.g., the preset of the transition
labeled receive_order in figure 2 is the singleton containing order and the preset of
the transition labeled handle_product contains three places. Two auxiliary functions
•_, _• : (P ∪T)→ P(P ∪T) are defined that assign to each node its preset and postset,
respectively. For any node x ∈ P ∪ T , •x = {y | yFx} and x• = {y | xFy}. Note
that the preset and postset functions depend on the context, i.e., the P/T-net the function
applies to. If a node is used in several nets, it is not always clear to which P/T-net the
preset/postset functions refer. Therefore, we augment the preset and postset notation

with the name of the net whenever confusion is possible:
N•x is the preset of node x in

net N and x
N• is the postset of node x in net N .

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 355

Definition 2 (Marked, labeled P/T-net). A marked, labeled P/T-net is a pair (N, s),
where N = (P, T ,M,F, �) is a labeled P/T-net and where s is a bag over P denoting
the marking (also called state) of the net. The set of all marked, labeled P/T-nets is
denoted N .

For some bag X over alphabet A and a ∈ A, X(a) denotes the number of occur-
rences of a in X, often called the cardinality of a in X. The set of all bags over A is
denoted B(A). The empty bag, which is the function yielding 0 for any element in A,
is denoted 0. For the explicit enumeration of a bag we use square brackets and super-
scripts to denote the cardinality of the elements. For example, [a2, b, c3] denotes the bag
with two elements a, one b, and three elements c. In this paper, we allow the use of sets
as bags.

Definition 3 (Transition enabling). Let (N, s) be a marked, labeled P/T-net in N , where
N = (P, T ,M,F, �). A transition t ∈ T is enabled, denoted (N, s)[t〉, if and only if
each of its input places p contains a token. That is, (N, s)[t〉 ⇔ •t � s.

If a transition t is enabled in marking s (notation: (N, s)[t〉), then t can fire. If,
in addition, t has label a (i.e., a = �(t) is the associated method, operation, or observable
action) and firing t results is marking s′, then (N, s)[a〉(N, s′) is used to denote the
potential firing.

Definition 4 (Firing rule). The firing rule _[_〉_ ⊆ N × L×N is the smallest relation
satisfying for any (N, s) in N , with N = (P, T ,M,F, �), and any t ∈ T ,

(N, s)[t〉 ⇒ (N, s)[�(t)〉(N, s −•t + t•).

[〉_ ⊆ N × L × N is a ternary relation linking markings through transition
labels, i.e., (N, s)[a〉(N, s′) if any only if there is a transition with label a enabled in
(N, s) whose execution results in (N, s′). Consider the labeled P/T-net shown in figure 2.
In the marking with just a token in i (i.e., marking [i]) only transition send_order is
enabled. Firing this transition in marking [i] results in a state where the three output
places of send_order are marked, i.e., the transition consumes one token and produces
three tokens. Note that if transition handle_product is fired, three tokens are consumed
and only one token is produced.

Definition 5 (Firing sequence). Let (N, s0) with N = (P, T ,M,F, �) be a marked,
labeled P/T-net in N . A sequence σ ∈ T ∗ is called a firing sequence of (N, s0) if
and only if σ = ε or, for some positive natural number n ∈ N, there exist markings
s1, . . . , sn ∈ B(P) and transitions t1, . . . , tn ∈ T such that σ = t1 . . . tn and, for all i
with 0 � i < n, (N, si)[ti+1〉 and si+1 = si −•ti+1+ ti+1•. Sequence σ is said to be
enabled in marking s0, denoted (N, s0)[σ 〉. Firing the sequence σ results in the unique
marking s, denoted (N, s0)[σ 〉(N, s), where s = s0, if σ = ε and s = sn otherwise.

356 VAN DER AALST

In figure 2 the following firing sequence is enabled in marking [i]: send_order,
receive_order, create_specification, process_specification, create_cost_statement, pro-
cess_cost_statement, ship_product, handle_product. Execution of this firing sequence
starting in [i] yields marking [o], i.e., the state with just one token in the sink place.

Definition 6 (Reachable markings). The set of reachable markings of a marked, labeled
P/T-net (N, s) ∈ N with N = (P, T ,M,F, �), denoted [N, s〉, is defined as the set
{s′ ∈ B(P) | (∃σ : σ ∈ T ∗: (N, s)[σ 〉(N, s′))}.

In figure 2, eleven markings are reachable from [i]. Note that there is not a one-
to-one correspondence between places and markings. One marking may mark multiple
places and there are many markings marking a given place.

Definition 7 (Connectedness). A labeled P/T-net N = (P, T ,M,F, �) is weakly con-
nected, or simply connected, if and only if, for every two nodes x and y in P ∪ T ,
x(F ∪ F−1)∗y. Net N is strongly connected if and only if, for every two nodes x and y

in P ∪ T , xF ∗y.

The P/T-net shown in figure 2 is connected but not strongly connected since there
is no directed path from place o to place i.

Definition 8 (Directed path). Let (P, T ,M,F, �) be a labeled P/T-net. A (directed)
path C from a node n1 to a node nk is a sequence 〈n1, n2, . . . , nk〉 such that niFni+1

for 1 � i � k − 1. C is elementary if and only if for any two nodes ni and nj on C,
i �= j ⇒ ni �= nj . C is non-trivial iff it contains at least two nodes.

Since the P/T-net shown in figure 2 is acyclic all directed paths are elementary.

Definition 9 (Union of labeled P/T-nets). Let N0 = (P0, T0,M0, F0, �0) and N1=
(P1, T1,M1, F1, �1) be two labeled P/T-nets such that (P0∪P1)∩ (T0∪T1) = ∅ and such
that, for all t ∈ T0 ∩ T1, �0(t) = �1(t). The union N0 ∪ N1 of N0 and N1 is the labeled
P/T-net (P0 ∪P1, T0 ∪ T1, F0 ∪ F1, �0 ∪ �1). If two P/T-nets satisfy the above mentioned
two conditions, their union is said to be well defined.

Definition 10 (Boundedness). A marked, labeled P/T-net (N, s) ∈ N is bounded
if and only if the set of reachable markings [N, s〉 is finite.

The labeled P/T-net shown in figure 2 is bounded for any initial marking. The
marked P/T-net shown in figure 10 is not bounded because place cost_statement can be
marked with any number of tokens by executing the transitions create_cost_statement
and repeat alternatingly.

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 357

Figure 10. A non-bounded, non-safe, non-live marked P/T-net with two dead transitions.

Definition 11 (Safeness). A marked, labeled P/T-net (N, s) ∈ N with N = (P, T ,

M,F, �) is safe if and only if, for any reachable marking s′ ∈ [N, s〉 and any place
p ∈ P , s′(p) � 1.

Safeness implies boundedness. Therefore, the unbounded marked P/T-net shown in
figure 10 cannot be safe.

Definition 12 (Dead transition). Let (N, s) be a marked, labeled P/T-net in N .
A transition t ∈ T is dead in (N, s) if and only if there is no reachable marking
s′ ∈ [N, s〉 such that (N, s′)[t〉.

The transitions process_cost_statement and handle_product are dead in the marked
P/T-net shown in figure 10. Transition process_cost_statement requires a token from
both specification and cost_statement. However, the only way to produce a token for
cost_statement is to first fire process_specification and remove the token from specifica-
tion. As a result, handle_product is also never enabled and therefore both transitions are
dead. None of the transitions in figure 2 is dead given the initial marking [i].

358 VAN DER AALST

Definition 13 (Liveness). A marked, labeled P/T-net (N, s) ∈ N with N = (P, T ,M,

F, �) is live if and only if, for every reachable marking s′ ∈ [N, s〉 and transition t ∈ T ,
there is a reachable marking s′′ ∈ [N, s′〉 such that (N, s′′)[t〉.

A marked P/T-net containing dead transitions is not live, e.g., the marked P/T-net
shown in figure 10 cannot be live because it contains two dead transitions. However,
there are non-live marked P/T-nets without any dead transitions. Consider for example
the P/T-net shown in figure 2 with initial marking [i] which is not live and has no dead
transitions. Note that if we fuse i and o in figure 2, then the corresponding net is live
in [i].
2.2. Workflow nets

For the modeling of workflow processes we use labeled P/T-nets with a specific structure.
We will name these nets workflow nets (WF-nets).

Definition 14 (WF-net). Let N = (P, T ,M,F, �) be a labeled P/T-net. Net N is a
workflow net (WF-net) if and only if the following conditions are satisfied:

(1) instance creation: P contains an input (source) place i ∈ U such that •i = ∅,

(2) instance completion: P contains an output (sink) place o ∈ U such that o• = ∅,

(3) connectedness: N̄ = (P, T ∪ {t̄},M,F ∪ {(o, t̄), (t̄ , i)}, � ∪ {(t̄, τ)}) is strongly
connected (t̄ /∈ T),

(4) method use: M = rng(�) \ {τ },
(5) visible start: for any t ∈ T such that t ∈ i•: �(t) ∈ Lv , and

(6) visible end: for any t ∈ T such that t ∈ •o: �(t) ∈ Lv.

Note that the connectedness requirement implies that there is one unique source
and one unique sink place. For the readers familiar with the work presented in [1,4]: the
WF-nets defined in this paper are extended with the latter three requirements, i.e., all
methods are actually used in the network, and the start transitions i• and stop transitions
•o have non-τ labels. The P/T-nets shown in figures 2 and 10 are WF-nets. The structure
of a WF-net allows us to define the following functions.

Definition 15 (source, sink, start, stop, strip). Let N = (P, T ,M,F, �) be a WF-net.

(1) source(N) is the (unique) input place i ∈ P such that •i = ∅,

(2) sink(N) is the (unique) output place o ∈ P such that o• = ∅,

(3) start(N) = {t ∈ T | i ∈ •t} is the set of start transitions,

(4) stop(N) = {t ∈ T | o ∈ t•} is the set of stop transitions, and

(5) strip(N) = (P ′, T ,M,F ∩ ((P ′ × T) ∪ (T × P ′)), �) with P ′ = P \ {source(N),

sink(N)} is the WF-net without source and sink place.

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 359

Definition 14 only gives a static characterization of a WF-net. Workflows will have
a life-cycle which satisfies the following requirements.

Definition 16 (Soundness). A WF-net N with source(N) = i and sink(N) = o is said
to be weakly sound if and only if the following conditions are satisfied:1

(1) safeness: (N, [i]) is safe,

(2) proper completion: for any reachable marking s ∈ [N, [i]〉, o ∈ s implies s = [o],
and

(3) completion option: for any reachable marking s ∈ [N, [i]〉, [o] ∈ [N, s〉.
N is said to be strongly sound, or simply sound, if and only if, in addition there are no
dead transitions, i.e., (N, [i]) contains no dead transitions.

The set of all (strongly) sound WF-nets is denoted W . The first requirement states
that a sound WF-net is safe. The second requirement states that the moment a token is
put in place o all the other places should be empty, which corresponds to the termination
of a workflow instance (i.e., a case) without leaving dangling references. The third
requirement states that starting from the initial marking [i], i.e., activation of the case, it
is always possible to reach the marking with one token in place o, which means that it is
always feasible to terminate successfully. If a WF-net meets these three requirements, it
is weakly sound. The fourth requirement, which states that there are no dead transitions,
corresponds to the requirement that for each transition there is an execution sequence
activating this transition. Any weakly sound WF-net is strongly sound if this fourth
requirement is met.

The WF-net shown in figure 2 is strongly sound. However, the WF-net shown in
figure 10 is not strongly sound and even not weakly sound, because it is not possible to
mark the sink place o, i.e., the third requirement is violated. (In fact, all requirements
except the second one are violated.)

To show the relation between strong and weak soundness we use the β operator
which removes all dead transitions and corresponding places from the net.

Definition 17 (Removing dead transitions: β). Let (N, s) be a marked, labeled P/T-net
in N , with N = (P, T ,M,F, �) and a set of dead transitions D ⊆ T . β is a function
such that it maps marked P/T-nets onto P/T nets: β(N, s) = (P ′, T ′,M ′, F ′, �′) with
T ′ = T \ D, P ′ = {p ∈ P | (•p ∪ p•) �⊆ D}, F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)),
dom(�′) = T ′, for t ∈ T ′: �′(t) = �(t), and M ′ = rng(�′) \ {τ }. If N is a WF-net with
source place i, then β can also be applied without explictly stating the initial marking,
i.e., β(N) = β(N, [i]).

The following theorem states that any weakly sound WF-net can be transformed
into a strongly sound WF-net by removing the dead transitions using the β operator.

1 Note that [i] and [o] are bags containing the input respectively output place of N .

360 VAN DER AALST

Theorem 1 (Relation between weak and strong soundness). Let N be a weakly
sound WF-net. β(N) is strongly sound.

Proof. N satisfies the first three requirements stated definition 16. Removing the dead
transitions and associated places does not change the set of reachable markings. There-
fore, β(N) satisfies the first three requirements. Moreover, because of the removal of
dead transitions, β(N) also satisfies the fourth requirement. Remains to prove that β(N)

is a WF-net. It is easy to show that the six requirements stated in definition 14 are not
jeopardized by the removal of dead parts. �

The fact that a weakly sound WF-net can be transformed into strongly sound net
allows us to focus on the properties of strongly sound WF-nets. Therefore, we will use
the term “soundness” to refer to strongly sound WF-nets unless stated otherwise.

Theorem 2 (Characterization of soundness). Let N = (P, T ,M,F, �) be a WF-net
and N̄ = (P, T ∪ {t̄},M,F ∪ {(o, t̄), (t̄ , i)}, � ∪ {(t̄, τ)}) the short-circuited version of
N (t̄ /∈ T). N is sound if and only if (N̄, [i]) is live and safe.

Proof. The proof is similar to the proof in [1]. The only difference is that in this paper
a stronger notion of soundness is used, which implies safeness rather than boundedness
of the short-circuited net. �

If we add a transition t̄ to figure 2 as described in theorem 2, then the corresponding
P/T-net is both live and safe. If we add a transition t̄ to figure 10, then the resulting net
is not live and unbounded. Note that these observations support theorem 2.

The fact that soundness coincides with standard properties such as liveness and
safeness allows us to use existing tools and techniques to verify soundness of a given
WF-net.

The alphabet operator α is a function yielding the set of visible labels of all transi-
tions of the net that are not dead.

Definition 18 (Alphabet operator α). Let (N, s) be a marked, labeled P/T-net in N ,
with N = (P, T ,M,F, �). α : N → P(Lv) is a function such that α(N, s) = {�(t) |
t ∈ T ∧ �(t) �= τ ∧ t is not dead}.

Since sound WF-nets do not contain dead transitions, α(N, [i]) equals {�(t) | t ∈
T ∧ �(t) �= τ }, which is denoted by α(N).

2.3. Branching bisimilarity

To formalize projection inheritance, we need to formalize a notion of equivalence. In
this paper, we use branching bisimilarity [25] as the standard equivalence relation on
marked, labeled P/T-nets in N . The notion of a silent action is pivotal to the definition
of branching bisimilarity. Silent actions are actions (i.e., transition firings) that cannot

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 361

be observed. Silent actions are denoted with the label τ , i.e., only transitions in a P/T-net
with a label different from τ are observable. Note that we assume that τ is an element
of L. The τ -labeled transitions are used to distinguish between external, or observable,
and internal, or silent, behavior. A single label is sufficient, since all internal actions are
equal in the sense that they do not have any visible effects.

Two marked, labeled P/T-nets are called branching bisimilar, denoted p∼b q,
if and only if their observable behaviors coincide (i.e., abstracting from silent actions).
For a formal definition we refer to definition A.4 in appendix A. Branching bisimilar-
ity (i.e., the relation ∼b is an equivalence relation on N , i.e., ∼b is reflexive, sym-
metric, and transitive (see appendix A for more details). Using this equivalence re-
lations we define two WF-nets N0 and N1 in W to be behavioral equivalent if and
only if (N0, [i])∼b(N1, [i]). This will be denoted by N0

∼= N1 (cf. definition A.5 in
appendix A).

2.4. Inheritance

In [7,14,15] four notions of inheritance have been identified. Unlike most other notions
of inheritance, these notions focus on the dynamics rather than data and/or signatures
of methods. These inheritance notions address the usual aspects: substitutability (Can
the superclass be replaced by the subclass without breaking the system?), subclassing
(implementation inheritance: Can the subclass use the implementation of the super-
class?), and subtyping (interface inheritance: Can the subclass use or conform to the
interface of the superclass?). The four inheritance notions are inspired by a mixture of
these aspects.

In this paper, we restrict ourselves to one of the four inheritance notions: projec-
tion inheritance. In the future we hope to extend our framework with other notions of
inheritance (cf. section 7). The basic idea of projection inheritance can be characterized
as follows.

If it is not possible to distinguish the behaviors of x and y when arbitrary methods
of x are executed, but when only the effects of methods that are also present in y are
considered, then x is a subclass of y.

For projection inheritance, all new methods (i.e., methods added in the subclass) are
hidden. Therefore, we introduce the abstraction operator τI that can be used to hide
methods.

Definition 19 (Abstraction). Let N = (P, T ,M,F, �0) be a labeled P/T-net. For any
I ⊆ Lv , the abstraction operator τI is a function that renames all transition labels in I

to the silent action τ . Formally, τI (N) = (P, T ,M,F, �1) such that, for any t ∈ T ,
�0(t) ∈ I implies �1(t) = τ and �0(t) /∈ I implies �1(t) = �0(t).

The definition of projection inheritance is straightforward, given the abstraction
operator and branching bisimilarity as an equivalence notion.

362 VAN DER AALST

Figure 11. N2, N3, and N4 are subclasses of N0 under projection inheritance.

Definition 20 (Inheritance). For any two (weakly) sound WF-nets N0 and N1 in W ,
N1 is a subclass of N0 under projection inheritance, denoted N1 �pj N0, if and only if
there is an I ⊆ Lv such that (τI (N1), [i])∼b(N0, [i]).

It is easy to show that �pj is a partial order, i.e., �pj is reflexive, anti-symmetric,
and transitive [14,15]. Let us consider the five WF-nets shown in figure 11 to illustrate
the notion of projection inheritance. N1 is not a subclass of N0 because hiding of the
new task d results in a potential trace where a is followed by c without executing b,
i.e., the WF-net where d is renamed to τ is not branching bisimilar. N2 is a subclass of
N0 because hiding e in N2 results in a behavior equivalent to the behavior of N0, i.e., the
addition of e only postpones the execution of b and does not allow for a bypass such as
the one in N1. N3 is also a subclass of N0: Hiding the parallel branch containing f yields
the original behavior. Finally, N4 is also a subclass of N0.

Based on the notion of projection inheritance we have defined three inheritance-
preserving transformation rules. These rules correspond to design patterns when ex-
tending a superclass to incorporate new behavior: (1) adding a loop, (2) inserting meth-
ods in-between existing methods, and (3) putting new methods in parallel with existing
methods. See appendix B for a formal definition of each of these rules. The inheritance-
preserving transformation rules distinguish the work presented in [7,14,15] from earlier
work on inheritance. The rules correspond to design constructs that are often used in
practice, namely iteration, sequential composition, and parallel composition. If a de-
signer sticks to these rules, inheritance is guaranteed!

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 363

2.5. Greatest common divisor/least common multiple of WF-nets

Projection inheritance provides a (partial) ordering of WF-nets. This ordering, like any
ordering, can be used to define the notions of Greatest Common Divisor (GCD) and
Least Common Multiple (LCM). Since �pj is not a total ordering, there is not always a
unique upper and lower bound. Therefore, we also define a Maximal Common Divisor
(MCD) and a Minimal Common Multiple (MCM) for a given set of WF-nets.

Definition 21 (GCD, LCM). Let N0, N1, . . . , Nn−1, where n is some natural number,
and N be sound WF-nets in W .

(1) Net N is a Maximal Common Divisor (MCD) of N0, N1, . . . , Nn−1 if and only if

(a) (∀k: 0 � k < n: Nk �pj N) and,

(b) for any workflow process definition N ′ such that (∀k: 0 � k < n: Nk �pj N
′)

and N ′ �pj N , N ′ ∼= N .

(2) Net N is a Greatest Common Divisor (GCD) of N0, N1, . . . , Nn−1 if and only if, it
is an MCD of N0, N1, . . . , Nn−1 such that, for all MCDs N ′ of N0, N1, . . . , Nn−1,
N ′ ∼= N .

(3) Net N is a Minimal Common Multiple (MCM) of N0, N1, . . . , Nn−1 if and only if

(a) (∀k: 0 � k < n: N �pj Nk) and,

(b) for any workflow process definition N ′ such that (∀k: 0 � k < n: N ′ �pj Nk)

and N �pj N
′, N ′ ∼= N .

(4) Net N is a Least Common Multiple (LCM) of N0, N1, . . . , Nn−1 if and only if, it
is an MCM of N0, N1, . . . , Nn−1 such that, for all MCMs N ′ of N0, N1, . . . , Nn−1,
N ′ ∼= N .

The GCD of a set of WF-nets is a WF-net that captures the part these nets have in
common, i.e., the part where they agree on. The LCM captures all possible behaviors.
Consider for example the WF-nets N0, N2, N3, and N4 shown in figure 11. The GCD
of these four nets is N0. Each of the four WF-nets is a subclass of this net and it is not
possible to find a different WF-net which is also a subclass of N0, N2, N3, and N4 and at
the same time a subclass of N0. N0 is reasonable choice for the GCD: Each of the nets
executes a, b, and c in sequential order. Figure 12 shows NGCD = N0 as the GCD of N0,
N2, N3, and N4. Figure 12 also shows the WF-net NLCM. NLCM is a subclass of each of
the four nets considered. Moreover, it is not possible to find a different WF-net which
is also a subclass of N0, N2, N3, and N4 and at the same time a superclass of NLCM.
Therefore, NLCM is indeed the LCM of N0, N2, N3, and N4. Any sequence generated by
one of the four nets can also be generated by NLCM after the appropriate abstraction.

As figure 12 indicates, the size of the GCD is typically smaller than the LCM.
This may be confusing since the GCD is larger with respect to the ordering �pj. This

364 VAN DER AALST

Figure 12. The greatest common divisor NGCD and least common multiple NLCM of N0, N2, N3, and N4
shown in figure 11.

apparent paradox can easily be explained by the following property: N0 �pj N1 implies
α(N0) ⊇ α(N1).

In [6,7] the notions GCD, MCD, LCM, and MCM have been explored in the con-
text of the four inheritance relations. For the inheritance relation considered in this paper,
i.e., projection inheritance, the main results can be summarized as follows:

– For any set of sound WF-nets there is a MCD, i.e., an upper bound with respect to �pj

(modulo branching bisimulation).

– Given any set of WF-nets it is possible to find a MCD. However, it is not always
possible to find an MCM. Consider for example two WF-nets both containing two
transitions labeled a and b. If in one net a is executed before b and in the other
net b is executed before a, then it is not possible to construct an MCM. Note that
the notion of MCM is related to multiple inheritance, i.e., the MCM needs to inherit
the properties of multiple WF-nets. In many object-oriented frameworks multiple
inheritance is difficult to handle. Therefore, it is not surprising that the MCM does
not necessarily exist.

– Let N0, N1, . . . , Nn−1, where n is some natural number, be n sound WF-nets in W .
If there is a sound WF-net N in W such that (∀k: 0 � k < n: Nk �pj N) and, for
any sound WF-net N ′ in W , (∀k: 0 � k < n: Nk �pj N

′) implies N �pj N
′, then

N is a GCD of N0, N1, . . . , Nn−1, i.e., there is one unique MCD modulo branching
bisimulation.

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 365

– Similarly, if there is a sound WF-net N in W such that (∀k: 0 � k < n: N �pj Nk)

and, for any sound WF-net N ′ in W , (∀k: 0 � k < n: N ′ �pj Nk) implies N ′ �pj N ,
then N is an LCM of N0, N1, . . . , Nn−1, i.e., there is one unique MCM modulo
branching bisimulation.

3. Interorganizational workflows

The WF-net introduced in section 2.2 specifies one workflow process in isolation. The
goal of the paper is to tackle problems related to interorganizational workflows. There-
fore, we define an interorganizational workflow net (IOWF-net) as a set of WF-nets
connected through channels.

Definition 22 (IOWF-net). An interorganizational workflow net (IOWF-net) is a tuple
(C, n,N0, N1, . . . , Nn−1,G) where:

(1) C ⊆ U is a finite set of channels,

(2) N0, N1, . . . , Nn−1 are n WF-nets such that:

(a) (∀k: 0 � k < n: Nk = (Pk, Tk,Mk, Fk, �k)),

(b) (∀k, l: 0 � k < l < n: (Pk ∪ Tk ∪Mk) ∩ (Pl ∪ Tl ∪Ml) = ∅), and

(c) (∀k: 0 � k < n: (Pk ∪ Tk ∪Mk) ∩ C = ∅),
(3) M = (

⋃
k: 0 � k < n: Mk) is the union of methods, and

(4) G ⊆ (C ×M) ∪ (M × C) is a set of directed arcs, called the channel flow relation.

An IOWF-net consists of a set of interconnected WF-nets. The interconnection
structure is specified by a set of channels C, a set of methods M, and a channel flow
relation G. Figures 3–5 show an example of an IOWF-net. Figure 3 shows the four
channels order, specification, cost_statement, and product. Figures 4 and 5 show the two
WF-nets. Only the methods (i.e., labels) attached to transitions in the WF-nets are visi-
ble. Npart

0 has four methods: send_order, create_specification, process_cost_statement,
and handle_product. Npart

1 also has four methods: receive_order, process_specification,
create_cost_statement, and ship_product. Figure 3 also shows the channel flow rela-
tion G, e.g., method send_order is connected to channel order, channel order is con-
nected to method receive_order, etc.

The semantics of an IOWF-net are given in terms of a labeled P/T-net, i.e., by
taking the union of all WF-nets, adding a place for each channel, connecting transitions
to these newly added places as specified by G, and removing superfluous source and sink
places, the IOWF-net is transformed into a labeled P/T-net. We call this the flattening
of the interorganizational workflow. The following definition describes a function flat
which transforms any IOWF-net into a labeled P/T-net.

366 VAN DER AALST

Definition 23 (flat(Q)). Let Q = (C, n,N0, N1, . . . , Nn−1,G) be an IOWF-net.
N = (P, T ,M,F, �) is the such that:

(1) P = C ∪ (
⋃

k: 0 � k < n: Pk),

(2) Pi = {source(Nk) | 0 � k < n},
(3) Po = {sink(Nk) | 0 � k < n},
(4) T = (

⋃
k: 0 � k < n: Tk),

(5) M = (
⋃

k: 0 � k < n: Mk),

(6) � = (
⋃

k: 0 � k < n: �k), and

(7) F = (
⋃

k: 0 � k < n: Fk)∪ {(p, t) ∈ P × T | (p, �(t)) ∈ G} ∪ {(t, p) ∈ T × P |
(�(t), p) ∈ G}.

Let N ′ = (P ′, T ,M,F ′, �) be the labeled P/T-net obtained by removing all places X =
{p ∈ Pi | N• (pN•) �= {p}} ∪ {p ∈ Po | (N•p)N• �= {p}}, i.e., P ′ = P \ X and F ′ =
F ∩ ((P ′ × T) ∪ (T × P ′)). flat(Q) = N ′ is the flattened IOWF-net.

The definition of flat is fairly straightforward except for the removal of source and
sink places. Source place source(Nk) is removed if and only if there is a transition which
consumes tokens from source(Nk) and at least one other place, i.e., only source places
which serve as the only input place for all connected transitions are kept. Similarly, sink
place sink(Nk) is removed if and only if there is a transition which produces tokens for
sink(Nk) and at least one other place. Figure 13 shows the flattened interorganizational
workflow defined by figures 3, 6 and 8. Note that the source place and sink place of the
WF-net shown in 8 have been removed in the flattened net: the source place of Npriv

1

was not the only input place of receive_order and the sink place of Npriv
1 was not the

only output place of ship_product. In both cases the start/stop transition is connected
to a place representing one of the channels. Note that the WF-net shown in figure 2
is the flattened interorganizational workflow defined by figures 3, 4, and 5, i.e., the
semantics of the interorganizational workflow are not changed after partitioning Npubl

over a contractor subflow and a subcontractor subflow.
As is illustrated by figure 13, the channels connect the WF-nets constituting the

interorganizational workflow. It is easy to see that these connections may cause dead-
locks. For example, if in the WF-net shown in figure 13 the first procedure is chosen,
then the workflow process deadlocks, i.e., the state obtained after executing send_order,
receive_order, decide, and procedure_1 is dead. Another undesirable phenomenon is
called multiple activation. To explain this anomaly we introduce the term activation.
A subflow in an IOWF-net is activated if at least one of the places in the subflow is
marked (except the source and sink place). Note that a subflow becomes activated after
one of the start transitions fires. A subflow becomes deactivated if each of the sub-
flow places is empty after one of the stop transitions fires. Ideally, every activation is
followed by a deactivation. However, in an interorganizational workflow an activated

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 367

Figure 13. The flattened interorganizational workflow composed of the private WF-nets shown in figures 6
and 8.

subflow could become activated again without being deactivated first. Such a multi-
ple activation may lead to all kinds of anomalies because the subflow embedded in the
interorganizational workflow exhibits behavior which is not possible in the WF-net in
isolation. For example multiple activation of a subflow k may result in states not consid-
ered when establishing the soundness of WF-net Nk. To formulate the requirement that
there is no multiple activation, we define the notion of activation safeness.

Definition 24 (Activation safeness). Let (N, s) be a marked, labeled P/T-net in N ,
where N = (P, T ,M,F, �). A subset of places P ′ ⊆ P is activation safe in (N, s) if
and only if for any reachable state s′ ∈ [N, s〉, any transition t ∈ •P ′ \ P ′•, and any
place p ∈ P ′: (N, s′)[t〉 implies s′(p) = 0.

A set of places P ′ is activation safe if all transitions producing tokens for P ′ but not
consuming tokens from P ′ are not enabled as long as there are tokens in P ′. It is easy to
see that there is no multiple activation of a subflow in an interorganizational workflow
if and only if the places of each subflow are activation safe. Using definition 24, we can
formulate the notion of soundness for IOWF-nets.

Definition 25 (Soundness). Let Q = (C, n,N0, N1, . . . , Nn−1,G) be an IOWF-net and
let N = (P, T ,M,F, �) be the corresponding flattened net without dead transitions, i.e.,
N = β(flat(Q)). Q is sound if and only if:

(1) (∀k: 0 � k < n: Nk ∈W), i.e., all subflows are sound,

(2) N ∈W , i.e., the flattened IOWF-net is a sound WF-net, and

(3) (∀k: 0 � k < n: Pk \ {source(Nk), sink(Nk)} is activation safe in (N, [i])), i.e.,
there is no multiple activation.

The first two requirements are fairly straightforward: A sound IOWF-net is com-
posed of sound WF-nets and the flattened IOWF-net is also a sound WF-net. Note that
we consider the flattened IOWF-net without dead transitions, i.e., the dead parts which

368 VAN DER AALST

do not affect the dynamic behavior are removed using β. The last requirement has been
added to avoid multiple activation. The IOWF-net defined by figures 3–5 is an example
of a sound IOWF-net: it is composed of two sound WF-nets, the flattened IOWF-net is a
sound WF-net, and there is no multiple activation. The IOWF-net defined by figures 3,
6, and 8 is not sound because the flattened net is not sound.

The first two requirements in definition 25 can be checked using the result stated
in theorem 2. The last requirement does not correspond to well-established notions such
as liveness and safeness and may be hard to check since there are no efficient analysis
techniques/tools to verify this requirement. Therefore, we introduce a stronger require-
ment which can be validated syntactically (i.e., based on the structure of the flattened
net). This requirement states that there is not a path from a transition inside one of the
subflows to one of its start transitions not containing one of its stop transitions, i.e., the
topology of the net guarantees that a subflow cannot trigger itself indirectly before it is
deactivated. In other words: there is no self triggering. The following property defines
the absence of self triggering and shows that the absence of self triggering assures that
there is no multiple activation.

Property 1 (Self triggering). Let Q = (C, n,N0, N1, . . . , Nn−1,G) be an IOWF-
net satisfying the first two requirements stated in definition 25 (i.e., all subflows are
sound and the flattened IOWF-net N = β(flat(Q)) is a sound WF-net). If (∀k, t, t ′:
0 � k < n ∧ t ∈ Tk ∧ t ′ ∈ start(Nk): all non-trivial directed paths in N from t to t ′
contain at least one occurrence of a transition in stop(Nk)) and (∀k: 0 � k < n:

(
⋂

t : t ∈ start(Nk):
N• t) �= ∅) (i.e., start transitions share input places), then Q is

sound.

Proof. To prove this property, we use proof by contradiction, i.e., we assume that
for some subflow k ∈ D, there is a firing sequence σ such that (N, [i])[σ 〉(N, s),
t ∈ start(Nk), (N, s)[t〉, and p ∈ Pk is marked in s. Without loss of generality, we
further assume that s was the first state in the sequence having these properties (i.e.,
a start transition is enabled while a place in Pk is marked). Partition the sequence σ in
two subsequences σ1 and σ2 such that σ2 contains all firings since the last firing of a
transition in stop(Nk), i.e., σ1 is either empty or ends with the last firing of a transition in
stop(Nk). The first sequence ends in state s′ (i.e., (N, [i])[σ1〉(N, s′)). Note that in s′ all
places in Pk are empty. (Otherwise there would have been a prefix of σ containing the
anomaly.) Now we concentrate on the second subsequence: (N, s′)[σ2〉(N, s). In this
sequence no transition in stop(Nk) fires. Therefore, we remove all transitions stop(Nk)

from N and name the new net N ′. Note that (N ′, s′)[σ2〉(N ′, s). The requirement that all
non-trivial directed paths in N from a transition inside Nk to one of the start transitions in
Nk contain at least one of the stop transitions in Nk implies that we can partition the tran-

sitions of N ′ in two subsets TX and TY such that {t ∈ T \Tk | tN
′• ∩N ′• start(Nk) �= ∅} ⊆ TX,

Tk ⊆ TY , and
N ′• TX ∩ TY

N ′• = ∅ because all stop transitions have been removed. Now we
apply the well-known exchange lemma (see, for example, [21, p. 23]) which allows us

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 369

to project σ2 onto the transitions in TX and TY : σ2X and σ2Y . Since
N ′• TX ∩ TY

N ′• = ∅, the
exchange lemma shows that we can first execute σ2X followed by σ2Y . Let state s′′ be the
state after executing σ2X, i.e., (N ′, s′)[σ2X〉(N ′, s′′). It is easy to see that in s′′ at least one
of the input places of the start transitions of Nk contains multiple tokens, because start
transitions share input places. (Note that σ2Y marks a place in Pk , i.e., fires at least one
start transition of Nk, and also enables a start transition of Nk without adding any new
tokens to the input places.) Therefore, the safeness property is violated. The sequence
composed of σ1 followed by σ2X is also possible in (N, [i]). Therefore, (N, [i]) cannot
be a sound WF-net and we find a contradiction. �

Property 1 shows that the only way that a subflow becomes activated multiple times
(i.e., the place is not activation safe), is through self triggering.

Based on the notion of soundness of IOWF-nets (definition 25) and the semantics
of IOWF-nets (definition 23), we define requirements for a partitioning to be valid.

Definition 26 (Valid partitioning). Let N be a sound WF-net and Q be an IOWF-net.
Q is a valid partitioning of N if and only if Q is sound and N = β(flat(Q)).

The IOWF-net defined by figures 3, 4, and 5 is a valid partitioning of the WF-net
shown in figure 2.

4. P2P approach

The example used in the introduction is a nice illustration of the anomalies that can oc-
cur if business partners do not have a common understanding of the interorganizational
workflow at hand. Many problems that are not likely to occur in a workflow which is un-
der the supervision of one organizational unit will occur in a workflow partitioned over
multiple organizations. Recent developments such as the rise of the WWW, business-
to-business E-commerce, and networked virtual companies, have fueled the need for
more (complex) interorganizational workflows. To avoid anomalies such as interorga-
nizational deadlocks and livelocks on the one hand and to allow local autonomy for the
organizational units involved on the other hand, we propose the P2P (Public-To-Private)
approach. This approach is based on projection inheritance and consists of three steps.
These steps were already introduced informally in section 1.

Definition 27 (P2P approach). Let D = {0, 1, . . . , n − 1} be a set of n domains. The
Public-To-Private (P2P) approach consists of the following three steps:

Step 1. Create a public workflow Npubl = (P publ, T publ,Mpubl, F publ, �publ) such that
Npubl is a sound WF-net.

Step 2. Map each task onto one of the domains, i.e., construct a function map :
T publ → D and a valid partitioning Qpart = (C, n,N

part
0 , N

part
1 , . . . , N

part
n−1,G) of

Npubl such that for all k ∈D: N
part
k = (P

part
k , T

part
k ,M

part
k , F

part
k , �

part
k) and T

part
k =

370 VAN DER AALST

{t ∈ T publ | map(t) = k}. Qpart is called the partitioned public workflow and for
each domain k ∈ D: Npart

k is called the public part of k.
Step 3. For each domain k ∈ D define a sound WF-net Npriv

k = (P
priv
k , T

priv
k ,M

priv
k ,

F
priv
k , �

priv
k) such that N

priv
k is a subclass of N

part
k under projection inheritance

(i.e., Npriv
k �pj N

part
k), the labels of start and stop transitions are not changed (i.e.,

{�priv
k (t) | t ∈ start(Npriv

k) ∪ stop(Npriv
k)} ⊆ α(N

part
k)), and Qoverall = (C, n,N

priv
0 ,

N
priv
1 , . . . , N

priv
n−1,G) is an IOWF-net. Npriv

k is called the private workflow of domain k,
Qoverall is called the overall workflow, and Noverall = β(flat(Qoverall)) is called the
overall WF-net.

In the first step, the public workflow is created. This workflow is specified in terms
of a sound WF-net Npubl and serves as a contract between all business partners involved.
Figure 2 shows an example of such a public workflow. In the second step, the public
workflow is partitioned over the set of domains D. Note that each domain corresponds
to an organizational entity. For the definition of the P2P approach, we prefer to use the
more neutral term “domain” instead of terms like “business partner” and “organizational
unit”. Figures 3–5 show an example of such a partitioning over two domains. Note that
the partitioned workflow is a valid interorganizational workflow Qpart as defined in defi-
nitions 22 and 26. At first glance it may seem that this requirement is rather restrictive.
This is not the case, as we will motivate later. As a result of the partitioning, each frag-
ment of the partitioned workflow corresponds to one of the domains and is represented
by a sound WF-net. The WF-net Npart

k of a domain k is called the public part of k. In
the final step, the public parts are replaced by private workflows. Each private workflow
corresponds to the actual workflow as it is executed in one of the domains. The key of
the P2P approach is that each private workflow N

priv
k is a subclass of the correspond-

ing private workflow N
part
k under projection inheritance, i.e., Npriv

k �pj N
part
k . Moreover,

a private workflow is not allowed to change the labels of start and stop transitions. This
requirement follows from the fact that at the interorganizational level it has to be clear
whether a domain is active or not. Figures 7 and 9 show two private workflows satis-
fying the requirements formulated in step 3. The interorganizational workflow obtained
by connecting the private workflows is called the overall workflow Qoverall. Note that
figures 3, 7, and 9 describe such an overall workflow. Since Qoverall is an IOWF-net, we
can use function flat to obtain the overall WF-net Noverall = β(flat(Qoverall)). In the next
section we will show that the fattened IOWF-net is indeed a WF-net. In fact we will
show both the WF-net Noverall and the IOWF-net Qoverall are sound. Figure 14 shows the
fattened IOWF-net of the overall workflow described in figures 3, 7, and 9. It is easy to
verify that the result shown in figure 14 is indeed a sound WF-net.

The P2P approach does not impose any restrictions on the public workflow, i.e.,
any sound WF-net can be promoted to public workflow. However, the requirement that
the partitioning in step 2 has to be valid may seem quite restrictive. Recall that the
partitioning is only valid if all public parts (i.e., local fragments of the workflow) are
sound, there is no multiple activation, and the flattened IOWF-net equals the public

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 371

Figure 14. The flattened IOWF Noverall composed of the private WF-nets shown in figures 7 and 9.

workflow. To illustrate the implications of these prerequisites consider the three WF-
nets shown in figure 15. Each of the four WF-nets consists of four sequential tasks:
prepare, produce, assemble, and ship. The dashed lines indicate the partitioning of the
corresponding WF-nets. The first WF-net, i.e., figure 15(a), is partitioned vertically:
prepare and produce are mapped onto one domain and assemble and ship are mapped
onto another domain. It is easy to see that this partitioning is valid. The WF-net shown in
figure 15(b) is partitioned horizontally: prepare and ship are mapped onto one domain
and produce and assemble are mapped onto another domain. This partitioning is not
valid because the first fragment, i.e., the P/T net on the left-hand-side of the line in
figure 15(b), is not a WF-net. The causal relation between prepare and ship via produce
and assemble is removed by partitioning the WF-net. The P2P requires each fragment to
be a sound WF-net, i.e., each public part of the workflow in isolation should be a correct
workflow. Clearly, the requirement stated in step 2 is very restrictive. However, a closer
observation of figure 15(b) shows that there is no apparent reason why the horizontal
partitioning should not be allowed. As figure 15(c) shows the problem can easily be
solved by adding an implicit place c4. The horizontal partitioning of the WF-net with
c4 is valid. This example shows that if a partitioning is not valid, it is often possible to
“massage” the public workflow a bit to make a valid partitioning possible.

372 VAN DER AALST

Figure 15. A valid partitioning (a), a non-valid partitioning (b), and a valid partitioning obtained by adding
implicit place c4 (c).

Place c4 is called implicit since it does not influence the behavior of the WF-net,
i.e., a place of a marked P/T net is said to be implicit or redundant if and only if it does
not depend on the number of tokens in the place whether any of its output transitions is
enabled by some reachable marking.

Definition 28 (Implicit place). Let (N, s) with N = (P, T ,M,F, �) be a marked, la-
beled, ordinary P/T net. A place p ∈ P is called implicit in (N, s) if and only if, for all
reachable markings s′ ∈ [N, s〉 and transition t ∈ p•, s′ � •t \ {p} ⇒ s′ � •t .

Implicit places and their properties have been studied in [18,20]. Adding implicit
places does not change the behavior. In fact, extending a WF-net with implicit places
yields a P/T net which is branching bisimilar to the original net [14,15]. From a com-
putational point of view, it may be quite expensive to check whether a place is im-
plicit. However, several authors have investigated techniques to find structural implicit

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 373

places [17,18,20]. A structural implicit place is a place which is guaranteed to be im-
plicit by the structure of the Petri net. Every structural implicit place is an implicit place,
but there may be implicit places which are not structural implicit. Since the set of all
structural implicit places can be found without constructing the reachability graph, it
allows for very efficient analysis techniques. For this particular application, it suffices
to only consider structural implicit places. Moreover, it is quite easy to build a facility
which (semi-)automatically adds implicit places where needed. For more information
on adding (structural) implicit places, we refer to [2,5].

By adding implicit places it is possible to make any partitioning valid as long as
each public part of the public workflow has a clear starting point and a clear ending point,
i.e., subflow k is activated by firing one of its start transitions and is deactivated by firing
one of its stop transitions, every activation/deactivation is communicated via a channel or
the source/sink place of the public workflow, and there is no multiple activation. These
conditions are quite reasonable: it should always be clear if a domain is activated or not.
If these conditions are met, then the partitioning can be made valid by adding (structural)
implicit places.

5. The overall workflow realizes the public workflow

The P2P approach starts with the creation of a public workflow which serves as some
kind of contract. Then, the P2P approach partitions the public workflow and creates a set
of private workflows which together constitute the overall workflow. One can think of
the overall workflow as the interorganizational workflow actually being executed. In this
section, we show that when using the P2P approach the overall workflow in fact realizes
the public workflow. To be more precise, we will show that:

– the flattened overall workflow is a sound WF-net (i.e., Noverall ∈W),

– the overall workflow Qoverall is sound, and

– the overall WF-net is a subclass of the public workflow under projection inheritance
(i.e., Noverall �pj N

publ).

To prove these properties, we start this section with a rather complex but fairly general
theorem. The theorem states that under certain conditions, a subflow can be replaced a
subclass subflow without endangering soundness and yielding a subclass.

Figure 16 illustrates the essence of theorem 3: Consider a sound WF-net N0 com-
posed of NA and NB . NA and NB communicate through a set of common places PA∩PB .
NB is chosen in such a way that if we remove the places PA ∩ PB and add a source and
sink place we obtain a sound WF-net NW

B . In addition, it is assumed that there is no mul-
tiple activation. Moreover, there are three additional P/T nets NC , NW

C , and N1. N1 is
composed of NA and NC . The connections between NA and NC in N1 are essentially the
same as the connections between NA and NB in N0, e.g., PA ∩ PC = PA ∩ PB (see the-
orem 3 for details). Moreover, NC is chosen in such a way that if we remove the places
PA ∩ PC and add a source and sink place we obtain a sound WF-net NW

C which is a

374 VAN DER AALST

Figure 16. The essence of theorem 3: if NW
C

is a subclass of NW
B

, then N1 is a subclass of N0.

subclass of NW
B under projection inheritance. Under these conditions N1 is guaranteed

to be sound and a subclass of N0. In other words: theorem 3 shows that inheritance is
some kind of congruence under the composition of WF-nets.

Theorem 3 (Compositionality of projection inheritance). LetN0 = (P0, T0,M0, F0, �0),
N1 = (P1, T1,M1, F1, �1), NA = (PA, TA,MA, FA, �A), NB = (PB, TB,MB, FB, �B),
NC = (PC, TC,MC, FC, �C), NW

B = (PW
B , T W

B ,MW
B , FW

B , �WB), and NW
C = (PW

C , T W
C ,

MW
C , FW

C , �WC) be labeled P/T-nets. If

(1) N0 is a sound WF-net in W with source place i = source(N0) and sink place
o = sink(N0),

(2) N0 = NA ∪NB is well defined,

(3) N1 = NA ∪NC is well defined,

(4) TA ∩ TB = ∅,

(5) TA ∩ TC = ∅,

(6) PA ∩ PB = PA ∩ PC ,

(7) NW
B is a sound WF-net in W such that strip(NW

B) = (PB \ PA, TB,MB, FB ∩
((PW

B × T W
B)∪ (T W

B × PW
B)), �B), iB = source(NW

B), oB = sink(NW
B), and

{iB, oB} ∩ P0 = ∅,

(8) NW
C is a sound WF-net in W such that strip(NW

C) = (PC \ PA, TC,MC, FC ∩
((PW

C × T W
C)∪ (T W

C × PW
C)), �C), iC = source(NW

C), oC = sink(NW
C), and

{iC, oC} ∩P1 = ∅,

(9) {�B(t) | t ∈ start(NW
B)} = {�C(t) | t ∈ start(NW

C)}, i.e., the sets of start labels
coincide,

(10) {�B(t) | t ∈ stop(NW
B)} = {�C(t) | t ∈ stop(NW

C)}, i.e., the sets of stop labels
coincide,

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 375

(11) (∀t : t ∈ TB ∧ �B(t) = τ : (
N0• t ∩ PA = ∅) ∧ (t

N0• ∩ PA = ∅)),
(12) (∀t : t ∈ TC ∧ �1(t) /∈ α(NW

B): (
N1• t ∩ PA = ∅) ∧ (t

N1• ∩ PA = ∅)),
(13) (∀t, t ′: t ∈ TB ∧ t ′ ∈ TC ∧ �B(t) = �C(t

′): (
N0• t ∩ PA = N1• t ′ ∩ PA) ∧ (t

N0• ∩ PA =
t ′
N1• ∩ PA)),

(14) PW
B is activation safe in (N0, [i]), and

(15) NW
C �pj N

W
B ,

then N1 is a weakly sound WF-net in W such that N1 �pj N0.

Proof. The proof is a variant of the proof of theorem 40 given in [9]. Note that N1

is not necessarily strongly sound. However, by simply removing the dead parts we
obtain a strongly sound WF-nets, i.e., β(N1) is sound. This solves the problem raised
in [10]. �

By applying theorem 3 it is possible to prove that Noverall obtained using the P2P
approach is a sound WF-net and a subclass of Npubl.

Theorem 4. Let D, Npubl, Qoverall, and Noverall be as defined in definition 27.

(1) Qoverall is sound, and

(2) Noverall is a subclass of Npubl under projection inheritance (i.e., Noverall �pj N
publ).

Proof. For any k ∈ D: Qk = (C, n,N
priv
0 , . . . , N

priv
k−1, N

part
k , . . . , N

part
n−1,G), i.e., Qk is

the IOWF-net where the first k public parts are replaced by private workflows. We use
induction in k to prove that Qk is sound and β(flat(Qk)) is a subclass of Npubl for any
k ∈ D:

Base case. Assume that k = 0. Qk = Qpart. Qpart is a valid partitioning of Npubl.
Therefore, Qk is sound and β(flat(Qk)) = Npubl. Moreover, β(flat(Qk)) is a subclass
of Npubl.

Inductive step. Assume that k � 1. The induction hypothesis states that Qk−1 is sound
and β(flat(Qk−1)) is a subclass of Npubl. We need to prove that Qk is sound and
β(flat(Qk)) is a subclass ofNpubl. QA = (C, n,N

priv
0 , . . . , N

priv
k−2, N

part
k , . . . , N

part
n−1,G

′)
with G′ = G \ ((C × Mk−1) ∪ (Mk−1 × C)). Clearly, Qk−1, Qk and QA are
IOWF-nets. Therefore, we can apply the function flat to obtain N1 = β(flat(Qk)),
N0 = β(flat(Qk−1)), and NA = β(flat(QA)). Let NW

B = N
part
k−1 and NW

C = N
priv
k−1. It is

easy to verify that N0, N1, NA, NW
B , and NW

C satisfy all the requirements mentioned
in theorem 3. Therefore, theorem 3 can be used to show that N1 = β(flat(Qk)) is
sound and N1 = flat(Qk)�pj N0 = β(flat(Qk−1)). Since projection inheritance is
transitive, β(flat(Qk))�pj β(flat(Qk−1)), and β(flat(Qk−1))�pj N

publ, we conclude
that β(flat(Qk))�pj N

publ. Remains to prove that there is no multiple activation in Qk.

376 VAN DER AALST

Since β(flat(Qk))�pj N
publ and Npubl contains all start and stop transitions of the in-

dividual subflows, it is not possible to fire a start transition while the places in the sub-
flow are not empty. This can easily be verified by considering the firing sequences in
β(flat(Qk)) after abstraction. Qk is sound because all subflows are sound, β(flat(Qk))

is sound, and there is no multiple activation.

Hence, Qoverall = Qn is sound and Noverall = β(flat(Qn)) is a subclass of Npubl. �

Theorem 4 clearly shows the value of the P2P approach: Without the need for
any coordination among the business parters involved, the resulting interorganizational
workflow is guaranteed to be sound. Moreover, it is guaranteed that the resulting in-
terorganizational workflow realizes the public workflow, i.e., the tasks agreed upon in
the public workflow are executed in the proper order. Consider for example the public
workflow Npart shown in figure 2 and the IOWF-net Qoverall described by figures 3, 7,
and 9. Qoverall can be obtained via the P2P approach since the WF-net shown in figure 7
is a subclass of the WF-net shown in figure 4 and the WF-net shown in figure 9 is a
subclass of the WF-net shown in figure 5. Therefore, it is guaranteed that the overall
WF-net shown in figure 14 is sound and a subclass of the WF-net figure 2.

6. Local view

In this section we focus on the view on the interorganizational workflow from the per-
spective of one of the domains. The local view of a domain is a detailed description its
own private workflow and a high-level description of the part of the workflow handled
by the other domains, i.e., the local view of k ∈ D is composed of Npart

0 , N
part
1 , . . . ,

N
part
k−1, N

priv
k , N

part
k+1, . . . , N

part
n−1.

Definition 29 (Local view). Let D, Qpart, Npart
k , and N

priv
k , etc. be as defined in defi-

nition 27. For all k ∈ D: Qview
k = (C, n,N0, N1, . . . , Nn−1,G) with Nk = N

priv
k and

(∀l: 0 � l < n ∧ l �= k: Nl = N
part
l) is called the local view. Nview

k = β(flat(Qview
k))

is the local view WF-net.

Figure 17 shows the local view WF-net Nview
0 of the contractor on the interorgani-

zational workflow described by figures 3, 7, and 9. The contractor has a detailed view
of its own part of the workflow (left) and a high-level view of the subcontractor’s part of
the workflow (right).

The following theorem shows that each local view has some desirable properties.

Theorem 5. Let D, Npubl, Noverall, Qview
k , Nview

k , etc. be as defined in definitions 27
and 29. For any k ∈ D:

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 377

Figure 17. The local view Nview
0 of the contractor on the interorganizational workflow composed of the

private WF-nets shown in figures 7 and 9.

(1) Qview
k is sound,

(2) Noverall is a subclass of Nview
k (i.e., Noverall �pj N

view
k), and

(3) Nview
k is a subclass of Npubl (i.e., Nview

k �pj N
publ).

Proof. Reorder the domains such that k is the first domain, i.e., Qpart = (C, n,

N
part
k , N

part
0 , N

part
1 , . . . , N

part
k−1, N

part
k+1, . . . , N

part
n−1,G). After reordering use a proof sim-

ilar to the proof of theorem 4. Let Qk be as defined in the proof of theorem 4
(after reordering). Qview

k = Q1, Nview
k = β(flat(Q1)), Npubl = β(flat(Q0)),

Noverall = β(flat(Qn−1)). Clearly, Qview
k is sound. Moreover, for all i, j ∈ D with

i � j : β(flat(Qi))�pj β(flat(Qj)). Hence, Noverall �pj N
view
k �pj N

publ. �

Theorem 5 illustrates that the local views generated by the P2P approach are con-
sistent with the public workflow and the overall workflow, i.e., each local view is sound,
is a subclass of the public workflow, and a superclass of the overall workflow. Con-
sider for example the interorganizational workflow described by figures 3, 7, and 9. The
contractor’s local view described by the WF-net shown in figure 17 is guaranteed to be
sound, is a subclass of the WF-net shown in figure 2, and is a superclass of the WF-net
shown in figure 14.

If we combine all local views and calculate the GCD, i.e., the part of the workflow
all domains agree on, then we obtain the public workflow. If we calculate the LCM, then
we obtain the overall workflow.

Theorem 6. Let D, Npubl, Noverall, Nview
k , etc. be as defined in definitions 27 and 29.

(1) Npubl is the greatest common divisor (GCD) of Nview
0 , Nview

1 , . . . Nview
n−1 ,

(2) Noverall is the least common multiple (LCM) of Nview
0 , Nview

1 , . . . Nview
n−1 .

378 VAN DER AALST

Proof. To prove that Npubl is the GCD, we use the property stated in section 2.5.
We need to prove that (a) (∀k: 0 � k < n: Nview

k �pj N
publ), and (b) for any sound

WF-net N ′ in W , (∀k: 0 � k < n: Nview
k �pj N

′) implies Npubl �pj N
′. Property (a)

follows directly from theorem 5. To prove (b) take an arbitrary N ′ in W such that
(∀k: 0 � k < n: Nview

k �pj N
′). We need to show that Npubl �pj N

′. First note that
α(Npubl) = (

⋂
k: 0 � k < n: α(Nview

k)) ⊇ α(N ′). Take an arbitrary local view
WF-net, e.g., Nview

0 . Hiding the methods α(Nview
0) \α(Npubl) in Nview

0 yields Npubl. Hid-
ing the methods α(Nview

0) \ α(N ′) in Nview
0 yields N ′. Since (α(Nview

0) \ α(Npubl)) ⊆
(α(Nview

0) \ α(N ′)), we obtain N ′ by abstracting from the methods α(Npubl)\ α(N ′) in
Npubl, i.e., Npubl �pj N

′ and (b) holds.
The proof that Noverall is the LCM is similar. A crucial element of this proof is the

observation that α(Noverall) = (
⋃

k: 0 � k < n: α(Nview
k)) ⊆ α(N ′). �

Theorems 5 and 6 illustrate the fact that both the workflow all business partners
agreed on (Npubl) and the actual workflow (Noverall) are in harmony with the local views.
These results demonstrate the sophistication of the P2P approach.

7. Related work and future extensions

Petri nets have been proposed for modeling workflow process definitions long before the
term “workflow management” was coined and workflow management systems became
readily available. Consider for example the work on Information Control Nets, a variant
of the classical Petri nets, in the late seventies [22,23]. For the reader interested in
the application of Petri nets to workflow management, we refer to the workshops on
workflow management held in conjunction with the annual International Conference on
Application and Theory of Petri Nets and an elaborate paper on workflow modeling
using Petri nets [1].

Only a few papers in the literature focus on the verification of workflow process
definitions. In [27] some verification issues have been examined and the complexity of
selected correctness issues has been identified, but no concrete verification procedures
have been suggested. In [1] and [12] concrete verification procedures based on Petri nets
have been proposed. This paper builds upon the work presented in [1] where the concept
of a sound WF-net was introduced (see section 2.2). The technique presented in [12]
has been developed for checking the consistency of transactional workflows including
temporal constraints. However, the technique is restricted to acyclic workflows and
only gives necessary conditions (i.e., not sufficient conditions) for consistency. In [47]
a reduction technique has been proposed. This reduction technique uses a correctness
criterion which corresponds to soundness and the class of workflow processes consid-
ered are in essence acyclic free-choice Petri nets. Based on this reduction technique the
analysis tool FlowMake [46] has been developed. FlowMake can interface with the IBM
MQSeries Workflow product. Some researchers worked on the compositional verifica-
tion of workflows [14,56] using well-known Petri-net results such as the refinement rules
in [54].

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 379

This paper differs from the above approaches because the focus is on interorgani-
zational workflows. Only a few papers explicitly focus on the problem of verifying the
correctness of interorganizational workflows [2,31]. In [2] the interaction between do-
mains is specified in terms of message sequence charts and the actual overall workflow
is checked with respect to these message sequence charts. A similar, but more formal
and complete, approach is presented by Kindler, Martens, and Reisig in [31]. The au-
thors give local criteria, using the concept of scenarios (similar to runs or basic message
sequence charts), to guarantee the absence of certain anomalies at the global level. Both
approaches [2,31] are not constructive, i.e., they only specify criteria for various notions
of correctness but do not provide concrete design rules such as the transformation rules
presented in section 2.4.

In the last decade several researchers [13,29,30,36] explored notions of behav-
ioral inheritance (also named subtyping or substitutability). Researchers in the domain
of formal process models (e.g., Petri-nets and process algebras) have tackled similar
questions based on the explicit representation of a process by using various notions of
(bi)simulation [14]. The inheritance notion used in this paper is characterized by the
fact that it is equipped with both inheritance-preserving transformation rules to con-
struct subclasses [14,15] and transfer rules to migrate instances from a superclass to a
subclass and vice versa [7]. These features are very relevant for a both constructive and
robust approach towards interorganizational workflows.

The primary focus of this paper is to ensure correctness of interorganizational
workflows at a conceptual level. The P2P approach is independent of the workflow man-
agement systems used and can be applied in different technical infrastructures. Clearly,
many researchers have focused on different aspects of interorganizational workflows
[24,26,33,38,39,45,48]. Much work has been done on workflow transactions in the
context of cross-organizational workflows, e.g. [24,26,45]. However, this work typ-
ically considers correctness issues at the task level rather than the process level. For
example, the coordination model and the service model presented in [24] are not ex-
plicitly addressing control flow problems resulting from causal relations (or the absence
of such relations). The work conducted in projects such as CrossFlow [26], WISE [33],
OSM [38], and COSMOS [39] is highly relevant for the enactment of interorganizational
workflows. However, these projects do not consider the correctness issues tackled in this
paper. Consider for example the Common Open Service Market (COSM) infrastructure
proposed in [38,39]. This infrastructure proposes mobile agents. The control-flow within
each agent is managed by a Petri-net-based workflow engine. Unfortunately, this work
does not address the design problems mentioned in the introduction of this paper. Based
on these observations, we conclude that the P2P is complementary to the work reported
in [24,26,33,38,39,45,48].

In this paper, we did not address implementation issues. Most of today’s commer-
cial workflow systems use a centralized enactment service. Therefore, many of the re-
search prototypes such as MENTOR (University of Saarland at Saarbrucken), METEOR
(University of Georgia), MOBILE (University of Erlangen), Panta Rhei (University of
Klagenfurt), and WASA (University of Muenster) focus on distribution aspects. These

380 VAN DER AALST

systems typically provide for message passing. Therefore, they can be used to support
the P2P approach. A more detailed discussion on the architecture of an enactment ser-
vice to take care of interorganizational workflows is outside the scope of this paper. The
focus of this paper is on the design and analysis of interorganizational workflows.

We have developed a tool named Woflan (WOrkFLow ANalyzer [1,55]). Woflan
is an analysis tool which can be used to verify the correctness of a workflow process
definition. The analysis tool uses state-of-the-art techniques to find potential errors in
the definition of a workflow process. Woflan is designed as a WFMS-independent analy-
sis tool. In principle it can interface with many workflow management systems. At the
moment, Woflan can interface with the WFMS COSA (Software Ley [51]), the WFMS
METEOR (LSDIS [49]), the WFMS Staffware (Staffware [52]), and the BPR-tool Pro-
tos (Pallas Athena [42]). Woflan has not been designed to analyze interorganizational
workflows. However, Woflan can be used to verify the soundness property used through-
out this paper. Moreover, Woflan can also check whether one workflow (i.e., WF-net)
is a subclass of another workflow. One of the key features of Woflan is ability to guide
the user to the source of a design error, i.e., Woflan supplies many context-sensitive di-
agnostics which support the user in correcting design flaws. Although Woflan has not
specifically been designed to verify the correctness of interorganizational workflows, it
can support some of the crucial steps in the P2P approach, e.g., Woflan can verify the
correctness of the public workflow, and, for each domain, Woflan can be used to check
whether the private workflow is a subclass of the corresponding public part under pro-
jection inheritance. Figure 18 shows a screenshot of Woflan while analyzing a process
realized using the workflow management system COSA.

To illustrate the relevance of the results we have used the P2P approach to design an
interorganizational workflow for a fictive electronic bookstore similar to amazon.com or
bn.com. This case study has been described in [11]. The screenshot shown in figure 18
shows the analysis of the public workflow of the book ordering process of an electronic
bookstore described in [3]. A predecessor of the P2P approach has also been applied to
an interorganizational workflow in the Telecom industry [5]. This workflow deals with
the issue of service bundling between service providers.

In the future we hope to extend the P2P approach in several directions. First of
all, we want to address local dynamic changes. The transfer rules presented in [7] can
be used to migrate cases (i.e., workflow instances) from a superclass to a subclass and
vice versa. Therefore, it is possible to change the workflows in each of the domains on
the fly, i.e., it is possible to automatically transfer each case to the latest version of the
process. As long as the superclass/subclass relationships are established, it is possible
to migrate cases without jeopardizing the correctness of both the local and overall work-
flow. Second, we want to tackle a topic we did not address in this paper: reconfiguration
of interorganizational workflows. In this paper, we assumed the public workflow and the
partitioning of the public workflow over the domains to be fixed. In real applications,
tasks are moved from one organization to another and the “contract” (i.e., the public
workflow) is changed on a regular basis. A preliminary exploration of these problems
shows that the P2P approach can be extended to address these reconfiguration issues.

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 381

Figure 18. A screenshot showing COSA (background) and Woflan (foreground): The public workflow of
an electronic bookstore is implemented using COSA and verified using Woflan.

Third, we want to evaluate the P2P approach using a real implementation. For example,
we could use the workflow management system METEOR [49] to enact some of the in-
terorganizational workflows designed using the P2P approach. The METEOR system is
entirely based on CORBA to provide a platform independent and reliable environment.
It also supports interoperability mechanisms like SWAP and JFLOW. Moreover, the ME-
TEOR3 model introduces the notion of foreign task vs. native tasks. A foreign task refers
to a task whose realization (implementation) is unknown to workflow designer, whereas

382 VAN DER AALST

the implementation details are known to the workflow designer for a native task. An-
other important feature for interorganizational workflows are channels (also called sink
nodes) that are used to specify communication or synchronization between two indepen-
dent workflows. Some preliminary work using METEOR and a predecessor of the P2P
approach was already presented in [5]. Fourth, we would like to experiment with other
notions of inheritance. This paper deploys only the notion of projection inheritance. In
[7,14,15] we defined three other notions of inheritance. These notions seem to be less
suitable for interorganizational workflows. Nevertheless, we would like to try to gener-
alize some of the results using a weaker notion of inheritance. Finally, we plan to extend
Woflan to offer more support for interorganizational workflows.

Acknowledgements

The author would like to thank Twan Basten for his excellent work on inheritance
of dynamic behavior, Eric Verbeek for the development of Woflan, a verification tool
which can be used to analyze many of the properties defined in this paper, and Kemafor
Anyanwu for applying the P2P approach to a telecommunications case. Finally, the au-
thor would like to thank the anonymous referees and the associate editor for their useful
suggestions.

Appendix A. Branching bisimilarity

As indicated in section 2.3, we need a notion of equivalence to formalize projection in-
heritance For this purpose we use branching bisimilarity [25] as the standard equivalence
relation on marked, labeled P/T-nets in N .

The notion of a silent action is pivotal to the definition of branching bisimilarity.
Silent actions are actions (i.e., transition firings) that cannot be observed. Silent actions
are denoted with the label τ , i.e., only transitions in a P/T-net with a label different
from τ are observable. Note that we assume that τ is an element of L. The τ -labeled
transitions are used to distinguish between external, or observable, and internal, or silent,
behavior. A single label is sufficient, since all internal actions are equal in the sense that
they do not have any visible effects.

In the context of workflow management, we want to distinguish successful termi-
nation from deadlock. A termination predicate defines in what states a marked P/T-net
can terminate successfully. If a marked, labeled P/T-net is in a state where it cannot per-
form any actions or terminate successfully, then it is said to be in a deadlock. Based on
the notion of soundness, successful termination corresponds to the state with one token
in the sink place.

Definition A.1. The class of marked, labeled P/T-nets N is equipped with the following
termination predicate: ↓ = {(N, [o]) | N is a WF-net ∧ o = sink(N)}.

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 383

Figure 19. The essence of a branching bisimulation.

To define branching bisimilarity, two auxiliary definitions are needed: (1) a relation
expressing that a marked, labeled P/T-net can evolve into another marked, labeled P/T-
net by executing a sequence of zero or more τ actions; (2) a predicate expressing that a
marked, labeled P/T-net can terminate by performing zero or more τ actions.

Definition A.2. The relation _ "⇒ _ ⊆ N × N is defined as the smallest relation
satisfying, for any p, p′, p′′ ∈ N , p "⇒ p and (p "⇒ p′ ∧ p′[τ 〉p′′) ⇒ p "⇒ p′′.

Definition A.3. The predicate ⇓_ ⊆ N is defined as the smallest set of marked, labeled
P/T-nets satisfying, for any p, p′ ∈ N , ↓p⇒ ⇓p and (⇓p ∧ p′[τ 〉p) ⇒ ⇓p′.

Let, for any two marked, labeled P/T-nets p, p′ ∈ N and action α ∈ L, p[(α)〉p′
be an abbreviation of the predicate (α = τ ∧ p = p′) ∨ p[α〉p′. Thus, p[(τ)〉p′ means
that zero τ actions are performed, when the first disjunct of the predicate is satisfied, or
that one τ action is performed, when the second disjunct is satisfied. For any observable
action a ∈ L \ {τ }, the first disjunct of the predicate can never be satisfied. Hence,
p[(a)〉p′ is simply equal to p[a〉p′, meaning that a single a action is performed.

Definition A.4 (Branching bisimilarity). A binary relation R ⊆ N × N is called a
branching bisimulation if and only if, for any p, p′, q, q ′ ∈ N and α ∈ L,

(1) pRq ∧ p[α〉p′ ⇒
(∃q ′, q ′′: q ′, q ′′ ∈ N : q "⇒ q ′′ ∧ q ′′[(α)〉q ′ ∧ pRq ′′ ∧ p′Rq ′),

(2) pRq ∧ q[α〉q ′ ⇒
(∃p′, p′′: p′, p′′ ∈ N : p "⇒ p′′ ∧ p′′[(α)〉p′ ∧ p′′Rq ∧ p′Rq ′), and

(3) pRq ⇒ (↓p⇒ ⇓q ∧ ↓q ⇒ ⇓p).
Two marked, labeled P/T-nets are called branching bisimilar, denoted p∼b q, if and
only if there exists a branching bisimulation R such that pRq.

Figure 19 shows the essence of a branching bisimulation. The firing rule is depicted
by arrows. The dashed lines represent a branching bisimulation. A marked, labeled
P/T-net must be able to simulate any action of an equivalent marked, labeled P/T-net
after performing any number of silent actions, except for a silent action which it may or

384 VAN DER AALST

Figure 20. Three marked WF-nets: the first two are branching bisimilar and the third one is not branching
bisimilar to the other two.

may not simulate. The third property in definition A.4 guarantees that related marked,
labeled P/T-nets always have the same termination options.

Branching bisimilarity is an equivalence relation on N , i.e., ∼b is reflexive, sym-
metric, and transitive. See [14] for more details and pointers to other notions of branch-
ing bisimilarity.

To illustrate the relevance of branching bisimilarity as an equivalence notion we
use the three marked WF-nets shown in figure 20. Each of the nets has the following
visible behavior: either the trace abce is realized or trace abde is realized. Therefore, it
is interesting to investigate whether the three marked WF-nets are branching bisimilar.
(N0, [i]) and (N1, [i]) are branching bisimilar. However, (N0, [i]) and (N2, [i]) are not,
i.e., although they are trace equivalent (N0, [i]) �∼b (N2, [i])! The reason is that in N0

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 385

the moment of choice between c and d is made after the execution of b while in N2

the choice is made before the execution of b. This distinction is vital when dealing
with interorganizational workflows. Assume that b corresponds to sending an request
to a supplier and that c is executed in case of a positive response and that d is executed
in case of a negative response. In N0 the WF-net can handle both a positive response
(c) and a negative response (d) after sending the request (b). However, in N2 the WF-
net can handle either the positive or the negative response, i.e., the choice between c

and d is made before the execution of b. Clearly, the latter WF-net is not acceptable,
since it assumes that before sending the request the answer of the supplier is already
known. This simple example shows that straightforward notions of equivalence such
as trace equivalence (after abstraction of internal steps) are not selective enough for the
problems addressed in this paper. Therefore, we use the more refined notion of branching
bisimilarity.

Definition A.5 (Behavioral equivalence of WF-nets). For any two WF-nets N0 and N1

in W , N0
∼= N1 if and only if (N0, [i])∼b(N1, [i]).

Consider the three nets shown in figure 20: N0
∼= N1, N0 �∼= N2, and N1 �∼= N2.

Appendix B. Inheritance preserving transformation rules

Without proof we summarize some of the results given in [7,14,15].

Theorem B.1 (Projection-inheritance-preserving transformation rule PPS). Let N0 =
(P0, T0,M0, F0, �0) be a sound WF-net in W . If N = (P, T ,M,F, �) is a labeled
P/T-net with place p ∈ P such that

(1) p /∈ {i, o}, P0 ∩ P = {p}, T0 ∩ T = ∅,

(2) (∀t : t ∈ T : �(t) /∈ α(N0)),

(3) (∀t : t ∈ T ∧ p ∈ •t : �(t) �= τ),

(4) (N, [p]) is live and safe, and

(5) N1 = N0 ∪N is well defined,

then N1 is a sound WF-net in W such that N1 �pp N0.

Note that PPS can be used to construct the subclass N2 in figure 11 from the WF-net N0

shown in the same figure.

Theorem B.2 (Projection-inheritance-preserving transformation rule PJS). Let N0 =
(P0, T0,M0, F0, �0) be a sound WF-net in W . If N = (P, T ,M,F, �) is a labeled
P/T-net with place p ∈ P and transition tp ∈ T such that

386 VAN DER AALST

(1) p /∈ {i, o}, P0 ∩ P = {p}, T0 ∩ T = {tp}, (tp, p) ∈ F0, and
N• tp = {p},

(2) (∀t : t ∈ T \ T0: �(t) /∈ α(N0)),

(3) (N, [p]) is live and safe, and

(4) N1 = (P0, T0,M0, F0 \ {(tp, p)}, �0) ∪ (P, T ,M,F \ {(p, tp)}, �) is well defined,

then N1 is a sound WF-net in W such that N1 �pj N0.

Transformation rule PJS can be used to construct N4 from N0 in figure 11.

Theorem B.3 (Projection-inheritance-preserving transformation rule PJT). Let N0 =
(P0, T0,M0, F0, �0) be a sound WF-net in W . Let N = (P, T ,M,F, �) be a labeled
P/T-net. Assume that q ∈ U is a fresh identifier not appearing in P0 ∪ T0 ∪ P ∪ T . If N
contains a place p ∈ P and transitions ti , to ∈ T such that

(1)
N•p = {to}, pN• = {ti},

(2) P0 ∩ P = ∅, T0 ∩ T = {ti, to},
(3) (∀t : t ∈ T \ T0: �(t) /∈ α(N0)),

(4) (N, [p]) is live and safe,

(5) N1 = N0 ∪ (P \ {p}, T , F \ {(p, ti), (to, p)}, �) is well defined,

(6) q is implicit in (N
q

0 , [i]) with N
q

0 = (P0 ∪ {q}, T0, F0 ∪ {(ti, q), (q, to)}, �0), and

(7) N
q

0 is a sound WF-net,

then N1 is a sound WF-net in W such that N1 �pj N0.

Transformation rule PJT can be used to construct subclass N3 from superclass N0

in figure 11.
Rule PPS can be used to insert a loop or iteration at any point in the process,

provided that the added part always returns to the initial state. Rule PJS can be used
to insert new methods by replacing a connection between a transition and a place by
an arbitrary complex subnet. Rule PJT can be used to add parallel behavior, i.e., new
methods which are executed in parallel with existing methods.

References

[1] W.M.P. van der Aalst, The application of Petri nets to workflow management, The Journal of Circuits,
Systems and Computers 8(1) (1998) 21–66.

[2] W.M.P. van der Aalst, Interorganizational workflows: An approach based on message sequence charts
and Petri nets, Systems Analysis – Modelling – Simulation 34(3) (1999) 335–367.

[3] W.M.P. van der Aalst, Inheritance of interorganizational workflows: How to agree to disagree without
loosing control? BETA working paper series, WP 46, Eindhoven University of Technology, Eind-
hoven (2000).

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 387

[4] W.M.P. van der Aalst, Workflow verification: Finding control-flow errors using Petri-net-based tech-
niques, in: Business Process Management: Models, Techniques, and Empirical Studies, Lecture Notes
in Computer Science, Vol. 1806, eds. W.M.P. van der Aalst, J. Desel and A. Oberweis (Springer,
Berlin, 2000) pp. 161–183.

[5] W.M.P. van der Aalst and K. Anyanwu, Inheritance of interorganizational workflows to enable
business-to-business E-commerce, in: Proceedings of the 2nd International Conference on Tele-
communications and Electronic Commerce (ICTEC’99), eds. A. Dognac, E. van Heck, T. Saarinnen
et al. (Nashville, Tennessee, October 1999) pp. 141–157.

[6] W.M.P. van der Aalst and T. Basten, Identifying commonalities and differences in object life cy-
cles using behavioral inheritance, in: Application and Theory of Petri Nets 2001, Lecture Notes in
Computer Science, Vol. 2075, eds. J.M. Colom and M. Koutny (Springer, Berlin, 2001) pp. 32–
52.

[7] W.M.P. van der Aalst and T. Basten, Inheritance of workflows: An approach to tackling problems
related to change, Theoretical Computer Science 270(1–2) (2002) 125–203.

[8] W.M.P. van der Aalst and K.M. van Hee, Workflow Management: Models, Methods, and Systems
(MIT Press, Cambridge, MA, 2002).

[9] W.M.P. van der Aalst, K.M. van Hee and R.A. van der Toorn, Component-based software architec-
tures: A framework based on inheritance of behavior, Science of Computer Programming 42(2–3)
(2002) 129–171.

[10] W.M.P. van der Aalst, K.M. van Hee and R.A. van der Toorn, Compositionality of projection inheri-
tance (Erratum), Science of Computer Programming 44(3) (2002) 343–344.

[11] W.M.P. van der Aalst and M. Weske, The P2P approach to interorganizational workflows, in: Proceed-
ings of the 13th International Conference on Advanced Information Systems Engineering (CAiSE’01),
Lecture Notes in Computer Science, Vol. 2068, eds. K.R. Dittrich, A. Geppert and M.C. Norrie
(Springer, Berlin, 2001) pp. 140–156.

[12] N.R. Adam, V. Atluri and W. Huang, Modeling and analysis of workflows using Petri nets, Journal of
Intelligent Information Systems 10(2) (1998) 131–158.

[13] P. America, Designing an object-oriented programming language with behavioral subtyping, in:
Foundation of Object-Oriented Languages, Lecture Notes in Computer Science, Vol. 489, eds.
J.W. de Bakker, W.P. de Roever and G. Rozenberg (Springer, Berlin, 1991) pp. 60–90.

[14] T. Basten, In terms of nets: System design with Petri nets and process algebra, PhD thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands (December 1998).

[15] T. Basten and W.M.P. van der Aalst, Inheritance of Behavior, Journal of Logic and Algebraic Pro-
gramming 47(2) (2001) 47–145.

[16] R. Benjamin and R. Wigand, Electronic markets and virtual value chains on the information super-
highway, Sloan Management Review (1995) 62–72.

[17] G. Berthelot, Checking Properties of Nets Using Transformations, in: Advances in Petri Nets 1985,
Lecture Notes in Computer Science, Vol. 222, ed. G. Rozenberg (Springer, Berlin, 1986) pp. 19–
40.

[18] G. Berthelot, Transformations and decompositions of nets, in: Advances in Petri Nets 1986, Part I:
Petri Nets, Central Models and Their Properties, Lecture Notes in Computer Science, Vol. 254,
eds. W. Brauer, W. Reisig and G. Rozenberg (Springer, Berlin, 1987) pp. 360–376.

[19] R.W.H. Bons, R.M. Lee and R.W. Wagenaar, Designing trustworthy interorganizational trade pro-
cedures for open electronic commerce, International Journal of Electronic Commerce 2(3) (1998)
61–83.

[20] J.M. Colom and M. Silva, Improving the linearly based characterization of P/T nets, in: Advances in
Petri Nets 1990, Lecture Notes in Computer Science, Vol. 483, ed. G. Rozenberg (Springer, Berlin,
1990) pp. 113–146.

[21] J. Desel and J. Esparza, Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer Science,
Vol. 40 (Cambridge University Press, Cambridge, UK, 1995).

388 VAN DER AALST

[22] C.A. Ellis, Information control nets: A mathematical model of office information flow, in: Proceed-
ings of the Conference on Simulation, Measurement and Modeling of Computer Systems (ACM Press,
Boulder, CO, 1979) pp. 225–240.

[23] C.A. Ellis and G.J. Nutt, Modelling and enactment of workflow systems, in: Application and Theory
of Petri Nets 1993, Lecture Notes in Computer Science, Vol. 691, ed. M. Ajmone Marsan (Springer,
Berlin, 1993) pp. 1–16.

[24] D. Georgakopoulos, H. Schuster, A. Cichocki and D. Baker, Managing process and service fusion in
virtual enterprises, Information Systems 24(6) (1999) 429–456.

[25] R.J. van Glabbeek and W.P. Weijland, Branching time and abstraction in bisimulation semantics,
Journal of the ACM 43(3) (1996) 555–600.

[26] P. Grefen, K. Aberer, Y. Hoffner and H. Ludwig, CrossFlow: Cross-organizational workflow man-
agement in dynamic virtual enterprises, International Journal of Computer Systems, Science, and
Engineering 15(5) (2001) 277–290.

[27] A.H.M. ter Hofstede, M.E. Orlowska and J. Rajapakse, Verification problems in conceptual workflow
specifications, Data and Knowledge Engineering 24(3) (1998) 239–256.

[28] R. Kalakota and A.B. Whinston, Frontiers of Electronic Commerce (Addison-Wesley, Reading, MA,
1996).

[29] H. Kilov and W. Harvey, eds., Object-Oriented Behavioral Specifications, The Kluwer International
Series in Engineering and Computer Science, Vol. 371 (Kluwer Academic Publishers, Boston, MA,
USA, 1996).

[30] H. Kilov, B. Rumpe and I. Simmonds, eds., Behavioral Specifications of Businesses and Systems,
The Kluwer International Series in Engineering and Computer Science, Vol. 523 (Kluwer Academic
Publishers, Boston, MA, USA, 1999).

[31] E. Kindler, A. Martens and W. Reisig, Inter-operability of workflow applications: Local criteria for
Global soundness, in: Business Process Management: Models, Techniques, and Empirical Studies,
Lecture Notes in Computer Science, Vol. 1806, eds. W.M.P. van der Aalst, J. Desel and A. Oberweis
(Springer, Berlin, 2000) pp. 235–253.

[32] A. Kumar and J.L. Zhao, Workflow support for electronic commerce applications, Decision Support
Systems 32(3) (2002) 265–278.

[33] A. Lazcano, G. Alonso, H. Schuldt and C. Schuler, The WISE approach to electronic commerce,
International Journal of Computer Systems, Science, and Engineering 15(5) (2001) 345–357.

[34] R.M. Lee, Distributed electronic trade scenarios: Representation, design, prototyping, International
Journal of Electronic Commerce 3(2) (1999) 105–120.

[35] R.M. Lee and R.W.H. Bons, Soft-coded trade procedures for open-edi, International Journal of Elec-
tronic Commerce 1(1) (1996) 27–49.

[36] B. Liskov and J. Wing, A behavioral notion of subtyping, ACM Transactions on Programming Lan-
guages and Systems 16(6) (November 1994) 1811–1841.

[37] T.W. Malone, R.I. Benjamin and J. Yates, Electronic markets and electronic hierarchies: Effects of
information technology on market structure and corporate strategies, Communications of the ACM
30(6) (1987) 484–497.

[38] M. Merz, B. Liberman and W. Lamersdorf, Using mobile agents to support interorganizational work-
flow-management, International Journal on Applied Artificial Intelligence 11(6) (1997) 551–572.

[39] M. Merz, B. Liberman and W. Lamersdorf, Crossing organisational boundaries with mobile agents in
electronic service markets, Integrated Computer-Aided Engineering 6(2) (1999) 91–104.

[40] M. Merz, B. Liberman, K. Muller-Jones and W. Lamersdorf, Interorganisational workflow manage-
ment with mobile agents in COSM, in: Proceedings of PAAM96 Conference on the Practical Appli-
cation of Agents and Multiagent Systems (1996).

[41] T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE 77(4) (1989)
541–580.

[42] Pallas Athena, Protos User Manual (Pallas Athena BV, Plasmolen, The Netherlands, 1999).

INHERITANCE OF INTERORGANIZATIONAL WORKFLOWS 389

[43] W. Reisig and G. Rozenberg, eds., Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer
Science, Vol. 1491 (Springer, Berlin, 1998).

[44] W. Reisig and G. Rozenberg, eds., Lectures on Petri Nets II: Applications, Lecture Notes in Computer
Science, Vol. 1492 (Springer, Berlin, 1998).

[45] A. Reuter and F. Schwenkreis, Contracts – a low-level mechanism for building general-purpose work-
flow management-systems, Data Engineering Bulletin 18(1) (1995) 4–10.

[46] W. Sadiq and M.E. Orlowska, FlowMake Product Information, Distributed Systems Technology
Centre, Queensland, Australia, http://www.dstc.edu.au/Research/Projects/FlowMake/productinfo/
index.html.

[47] W. Sadiq and M.E. Orlowska, Applying graph reduction techniques for identifying structural conflicts
in process models, in: Proceedings of the 11th International Conference on Advanced Information
Systems Engineering (CAiSE ’99), Lecture Notes in Computer Science, Vol. 1626, eds. M. Jarke and
A. Oberweis (Springer, Berlin, 1999) pp. 195–209.

[48] H. Schuster, D. Georgakopoulos, A. Cichocki and D. Baker, Modeling and composing service-based
and reference process-based multi-enterprise processes, in: Advanced Information Systems Engineer-
ing, 12th International Conference CAiSE 2000, Lecture Notes in Computer Science, Vol. 1789, eds.
B. Wangler and L. Bergman (Springer, Berlin, 2000) pp. 247–263.

[49] A. Sheth, K. Kochut and J. Miller, Large Scale Distributed Information Systems (LSDIS) laboratory,
METEOR project page, http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

[50] A.P. Sheth, W.M.P. van der Aalst and I.B. Arpinar, Processes driving the networked economy:
ProcessPortals, ProcessVortex, and Dynamically Trading Processes, IEEE Concurrency 7(3) (1999)
18–31.

[51] Software-Ley, COSA User Manual (Software-Ley GmbH, Pullheim, Germany, 1998).
[52] Staffware, Staffware 2000/GWD User Manual (Staffware plc, Berkshire, UK, 1999).
[53] The White House, A Framework for Global Electronic Commerce, http://www.ecommerce.gov/

framewrk.htm, 1997.
[54] R. Valette, Analysis of Petri nets by stepwise refinements, Journal of Computer and System Sciences

18 (1979) 35–46.
[55] H.M.W. Verbeek, T. Basten and W.M.P. van der Aalst, Diagnosing workflow processes using woflan,

The Computer Journal 44(4) (2001) 246–279.
[56] M. Voorhoeve, Compositional modeling and verification of workflow processes, in: Business Process

Management: Models, Techniques, and Empirical Studies, Lecture Notes in Computer Science,
Vol. 1806, eds. W.M.P. van der Aalst, J. Desel and A. Oberweis (Springer, Berlin, 2000) pp. 184–
200.

[57] V. Zwass, Electronic commerce: Structures and issues, International Journal of Electronic Commerce
1(1) (1996) 3–23.

