

Traces and logic

Citation for published version (APA):
Penczek, W., & Kuiper, R. (1994). Traces and logic. (Computing science reports; Vol. 9452). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/917904e6-d53c-41fc-a833-19f9e49a4d3c

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

Traces and Logic

by

Wojciech Penczek and Ruurd Kuiper

94/52

Computing Science Report 94/52
Eindhoven, December 1994

Traces and Logic*

Wojciech Penczekt

Institute of Computer Science
Polish Academy of Sciences

Ordona 21, 01-237 Warsaw, Poland
penczek~wars.ipipan.waw.pl

Ruurd Kuiper*
Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

wsinruur~info.win.tue.nl

DECEMBER 1994

1 Introduction

Trace systems were introduced by Mazurkiewicz [23, 24] as semantics for concurrent
systems (think, for example, about Petri Nets [26]). The reader is briefly reminded
about some of the characteristics that are relevant to appreciate the logics developed
in connection with them.

The most characteristic feature of trace systems is that they model the distinc­
tion between concurrency and non-deterministic choice explicitly, while at the same
time abstracting from interleaving. The former is achieved through an indepen­
dence relation on actions, the latter through defining traces as equivalence classes
of finite sequences modulo interleaving.

One evident limitation is the restriction of the independence relation to a
context-independent one. As a consequence, for example Place Transition Nets
[41] can not be expressed; this can, retaining the concept of traces, be remedied by

'This report will appear as a chapter of The Book of Traces, edited by V. Diekert and G.
Rozenberg, to be published by World Scientific Publishing in Singapore.

, Partially supported by De stichting infonnatica-onderzoek in Nederland (SION) during the
author's stay at Ejndhoven University of Technology.

IPartiaIly supported by ESPRIT project P6021: "Building Correct Reactive Systems
(REACT)".

1

going to semi-commutations [28, 29]. Another limitation is the exclusion of non­
determinism between actions with the same label. To overcome this restriction,
instances of actions have to be distinguished explicitly. This means going to, e.g.,
event structures, which amounts to leaving the realm of trace systems. The choice
to allow only finite traces has the advantage of simplicity but the drawback that
an additional notion, run, is required to capture infinitary properties. Intuitively,
this notion incorporates the view that executions should be fair with respect to
concurrently enabled actions. Analogous approaches based on infinite traces exist
[10, 5].

The first area in which logics for trace systems make their appearance is formal
verification using program proof systems, i.e., verification by hand.

Interleaving Set Temporal Logic, ISTL, developed by Katz and Peled [16, 17]
can be viewed as the starting point of logics for trace systems. Historically, their
aim was to make the verification of Linear Time Temporal Logic (LTL) properties
of concurrent programs easier by exploiting the idea that sequences that differ only
in their interleaving are in some sense equivalent. For certain properties only one,
arbitrary, representative from each equivalence class of execution sequences then
needs to be considered. This clearly resembles the idea of abstraction in the concept
of trace. However, at that stage the relation to traces was not made explicit.

In [34], Peled and Pnueli, as a side issue, discuss the connection between trace
systems and ISTL. This paper primarily considers the other side of the trace system
view, namely the ability to distinguish concurrency explicitly, and the possibilities
of ISTL to reason about these matters. ISTL can thus be seen as a logic that is,
maybe somewhat retrospectively, directly geared to trace systems and enables to
exploit both features of that approach.

The second area in which logics and trace systems come to the fore is verification
by means of model checking, i.e., fully automated verification. Programs here are
essentially finite state and the logics are propositional.

The ability to abstract away from interleaving of concurrent actions was again
investigated first, now with the intention to avoid the state explosion problem.
Godefroid [12] presents constructions of reduced finite trace automata that gener­
ate representatives for finite executions of a program. Godefroid and ''''olper [13]
consider model checking of safety properties using reduced trace automata.

The further aim to likewise simplify model checking of an LTL formula against
a program, possibly involving liveness properties and hence infinite sequences, is
present in the approach of Peled [31]. Note that again the temporal logic itself is
not a trace system logic, but that the idea of representatives is used to enhance
efficiency.

As regards expressiveness, model checking for propositional ISTL could be con­
sidered. As yet, this has not been investigated.

Apart from the linear logics mentioned so far, various others exist, for instance
ones that deal with branching. They will make their appearance in the rest of
the chapter. A state-of-the-art overview of logics and results about them like the
ones just discussed is presented in the conclusions. Further topics as well as the

2

organization of the rest of the chapter are as follows. Didactic rather than historical
considerations dictated the organization of the material.

Section 2.1 contains preliminaries: trace systems together with the associated
models and acceptors. Furthermore, Elementary Petri Nets are chosen as the repre­
sentation of finite state concurrent systems. Also the two running examples, taken
from [34], are introduced. In Section 3 various temporal logics for trace systems
are compared as to their ability to distinguish between models. Section 4 deals
with model checking from the efficiency point of view: LTL without the next step
operator. Section 5 adapts the efficient model checking to branching time logics
without the next step operator. Section 6 again concerns model checking, but now
from the expressiveness point of view: CTLp. In Section 7 program proof systems
for ISTL with past operators are presented, considering both expressiveness and
efficiency. Section 8 contains an axiomatization of an essential subset of ISTL with
past operators. Section 9 contains some conclusions.

2 Trace Systems

This section provides notions used in the rest of the chapter. For a comparison of
trace structures with other models for concurrency see [49].

2.1 Traces

The starting point is an independence alphabet: an ordered pair (E, 1), where E
is a finite set of symbols (actions) and I ~ E x E is a symmetric and irreflexive
binary relation on E (the independence relation). Actions not related are said to
be dependent.

Let == be an equivalence relation defined on EO by u == u', if there is a finite
sequence of action sequences u 1, ... ,un such that u 1 = U, Un = u', and for each
i < n, Ui = sabt, ui+l = sbat, for some (a, b) E I and s, t E EO. The traces
over (E, I) are the equivalence classes of _. The trace of which a string u is a
representative is denoted by [u]. The following notations are used .

• [EO] = {[u]1 u E EO} - the set of all traces over (E,1),

• [E] = {[a] I a E E} - the set of all traces corresponding to actions.

2.2 Operations on Traces

Concatenation of traces [u], [t], denoted [u][t], is defined as rut).
The successor relation -> in [EO] is defined by: Tl -> T2 iff there is a E E

such that TJ[a) = T2. The prefix relation::; in [EO) is defined as the reflexive and
transitive closure of the successor relation, i.e., ::; = (->)*. The relation < denotes
the transitive closure of ->, i.e., (-»+. Let T E [EO] and Q ~ [EO]. The following
notations are used.

3

• ! r = {r' E [Y;*] I r' ~ r}, i r = {r' E [Y;*] I r ~ r'}, ! Q = UrEQ ! r'
i Q = UrEQ i r.

A set of traces R is prefix-closed, if R = ! R. A set R of traces has the I-diamond
property, if for all r E R, a, bEY; with (a, b) E I, (r[a] E Rand r[b] E R) implies
r[ab] E R. Notice that (a, b) E I implies lab] = [ba] and therefore r[ba] E R.

2.3 Connection to Computing

In this section the notions of trace system and interpreted trace system are defined.
They may be viewed as representations, corresponding to two levels of abstraction,
of the behaviour of concurrent systems. The concurrent systems themselves are
mostly left implicit. Therefore, intuitive notions like executions are only identified
in the representation.

Definition 2.1 A trace system T over (Y;, 1) is a prefix-closed subset of [Y;*] with
the I-diamond property.

Where no confusion is likely, (Y;, 1) is omitted. This may be viewed as representing
the behaviour of a concurrent system in terms of the executed actions.

To interpret the effect of actions, a set of variables Y and a domain of interpre­
tation 1) can be added.

Definition 2.2 An interpreted trace system (T,I), interpreted over (Y,1)), IS a
trace system T together with an interpretation function I : T - (Y -1)).

This may be viewed as representing the behaviour of a concurrent system in a less
abstract way, where also values of variables after executing the actions in a trace
are specified. Throughout the chapter, where the interpretation is not relevant and
extension straightforward the exposition just considers trace systems.

A trace represents a partial execution of a concurrent system. Executions with
different ordering of dependent actions yield different traces; executions that differ
only in the ordering of independent actions yield the same trace.

Omitting from the definition of I-diamond the requirement that the actions
involved are from I yields the following notion. A set R of traces has the diamond
property, if for all r E R, a, bEY; with a #- b, (r[a] E Rand r[b] E R) implies (a, b) E
I and r[ab] E R. Considering the fact that in trace systems closed diamonds only
occur for actions from I, this notion is used to indicate that for some subset of traces
diamonds only open with actions from I and that the trace closing the diamond is
present in the subset. A run R of T is a maximal (with respect to the inclusion
ordering) subset of T with the diamond property. A run represents a complete
execution of T, providing all the traces that occur in the different interieavings for
that execution.

A sequence x = ToaoTl al ... in S ~ T such that Ti [a;] = Ti+J for all i 2 0 is a
path in S. A path in S is maximal if is either infinite or its last trace does not have a

4

. S I" del . h . t' f . IT del . successor III . X "-' = aOa) ... IS t e restrlc IOn 0 x to actIOns. x = TOT) ... IS

the restriction of x to traces. Where no confusion is likely, restrictions are referred
to by just x as well. 1 x = {T E TIT::; T;, for i 2': O} denotes the set of traces
dominated by a path x. An observation of a run R of T is any maximal path x in
R such that R = 1 x. Note that an observation is a path which is cofinal with some
run. Thus, it carries information about all actions executed in the run. A maximal
path is called an observation (of T) if it is an observation of some run in T. A
suffix T; Ti+) ... of an observation x is said to be an observation starting at Tj. An
observation, like a run, represents a complete execution of T, now by providing all
traces that occur in just one interleaving for that execution. An arbitrary path in
a run might not enable to recover the run, as not even all actions occurring in the
run need to be present.

The following Lemma provides an alternative characterization for observations,
independent of the notion of run.

Lemma 2.3 A m.axim.al path x = TOaOT)a) ... in T is an observation iff

(Va E I;)(Vi E IN)(3j 2': i)(Tj[a] ~ T or (a,aj) ~ 1).

Proof: See [34] and [19]. o
Obviously, the above lemma also holds for suffixes of observations. Intuitively, if

an action is independent with all actions present in a suffix of a path and could have
been added at any point, it is concurrently enabled without being taken. The lemma
states, that such situation does not OCCllr in observations. The reader familiar with
fair computations may notice that observations are paths that are concurrency fair
in the sense that for each continuously concurrently enabled action either that action
itself or a dependent one is eventually taken.

Note that all notions concerning trace systems are defined in terms of traces
and the successor relation only. Once a trace system is given as a set of equivalence
classes, i.e., subsets of action sequences, the successor relation between traces can
also be obtained without recourse to (I;,1). Namely, by defining T) -> T2 iff there
are representatives u) E T), U2 E T2 and a E E such that u)a = U2. Thus, the set of
traces contains all information about a trace system, except for the independence
alphabet that defines its superset. A (I;,1) that could serve this purpose can be
obtained by taking as I; all actions that occur in the traces, and as f the pairs
of actions that extend two different traces to one and the same trace. Two trace
systems are considered to be identical if their sets of traces are, irrespective of (I;, f).

Trace systems and the associated notions are illustrated by the following two
examples, respectively concerning abstraction and expressiveness; an example of an
interpreted trace system is given in Section 2.7.

Example 2.4 [inevitability] The following property [25] is one for which abstrac­
tion of interleaving is useful.

• A subset Q ~ T is inevitable, if each observation of T contains a trace in Q.

5

/Ibl /'1
[£] [c] [cd] [cdc]

I I I
[a] [cal [cda] [cdca]

Figure 1: Trace system 71 with successor relation

It is not always the case that to check whether a property is inevitable, abstraction of
interleaving can be applied. Only one observation of each run can be considered for
stable properties (i.e., properties Q such that with each trace r E Q, r r n 7 ~ Q),
and properties of sets of actions.

A concrete example of the latter property is as follows. Consider the indepen­
dence alphabet (E, 1).

• E = {a,b,c,d},

• 1= {(a,c),(c,a),(a,d),(d,a)}.

Figure 1 shows the trace system Tt over (E, 1), together with the successor relation.
Tt contains infinitely many finite runs Hi and one infinite run R.

• Hi =! [(cd)ib], for i ?: 0,

• R = U~I ! [(cd)ia].

Every maximal path in 71 except for x = k]c[c]d[cd]c[cdc] ... and its suffixes, which
ignore a, is an observation of 71 .

• Let Q = {r I a E E(r) or bE E(r)},
where E(r) is the set of actions occurring in r.

Inevitability of Q means that either a or b will be executed eventually.

6

Figure 2: Trace system 72 with successor relation

Since the observations of the same run differ only in the ordering of independent
actions, it suffices to check whether one, arbitrary, observation of each run contains
a trace in Q.

It might seem surprising that Q is inevitable, as there is an infinite path x =
[fJc[cJd[cdJc[cdcJ ... which does not contain any trace from Q. However, this path is
not an observation, as the action a is continuously concurrently enabled and never
executed, and a property is inevitable if it holds for each observation.

Example 2.5 [serializability) Serializability is a property for which expression of
independence is useful. The definition of this notion in terms of trace semantics
was introduced in [34] .

• Two subsets T! ~ 1: and T2 ~ 1: are serializable for 7, if in every run of 7,
there exists an observation containing traces T and T' such that

1. T! ~ 1:(T), T2 n 1:(T) = 0, and T2 ~ 1:(T') or

2. T2 ~ 1:(T), T! n 1:(r) = 0, and T! ~ 1:(r'),

i.e., all the operations ofT! appear before those ofT2 , or the other way round.

A concrete example is as follows. Consider the independence alphabet (1:,1).

7

• I = {(al,bl),(bl,al),(a3,bl),(bl,a3),(al,b3),(b3,al),(a2,b1),(bl ,a2),
(al,b2),(b2,al)}. Note that the action al commutes with all bi actions, but
that a2 and a3 commute with bl only.

Figure 2 shows the trace system T2 together with the successor relation. T2 contains
two runs, marked by the thin and the thick lines, respectively.

~ can be thought of as implementing a database with two transactions.

• Let TI = {al,a2,a3} and T2 = {bl ,b2,b3}.

Each transition represents a database read or write operation. For a correct imple­
mentation, transactions should be serializable. One can check that, indeed, in each
run there is an observation satisfying the requirement of serializability, namely:

• [f)al[al)a2[al a2)a3[al a2a3)bl [al a2a3bdb2 [al a2a3bl b2)b3[al a2a3bl b2b3) in the
run marked by the thick line, and

• lc)bl[bdb2[bIHb3[blb2b3)al[blb2b3al)a2[blb2b3ala2)a3[blb2b3ala2a3) in the run
marked by the thin line.

The rest of this section mainly deals with various representations of trace systems,
used in the sequel. At the end of it, a choice for a syntax for finite state concurrent
systems is shown.

2.4 Frames and Models for Trace Systems

The notions of frame and model for trace systems respectively interpreted trace sys­
tems are introduced to interpret temporal logics. To start with, labelled transition
systems are defined.

Definition 2.6 A rooted labeled transition system (rlts) is a four-tuple F =
(W, L, ---+, wo), where W is a set of states, L a set of actions, ---+ ~ W x L x W a
labelled relation and Wo the root.
An interpreted rooted labeled transition system (F, V), interpreted over (y, 1), IS

an rlts F together with an interpretation function V : W ---+ (Y ---+ 1).

Elements of -+ are denoted as, e.g., W ~ WI. When convenient, labels are omitted.
Excepting L, rlts are defined up to isomorphism only.

Most of the notions given for trace systems transfer quite directly to rlts. x =
woaowlal ... , Wi ~ Wi+l is a, finite or infinite, path in F. The length of x is its
number of actions, denoted as Ixl. Similar restrictions as for trace systems, to E
and T, now, to E and W, apply. A maximal path in an rlts is a path that is either
infinite or its last state is not related to another state.

8

Wll W12

/ /
c d c d

Wo W21
,

W22 W23

I' I' I' I' c d c d
W31 W32 W33 W34

Figure 3: The frame for trace system 71

Definition 2.7 Let F = (W, L, -, wo) be an rlts.

• Path x = WOaOwl ... Wn is accepted at w in F, if Wn = W.

• FinSeq(w) d~ {x I x is accepted at w}.

• FinSeq(F) d~ {FinSeq(w) I w E W }.

Frames and models are defined up to isomorphism.

Definition 2.8 The frame F for a trace system 7 is an rlts for which L = ~,

W ::: 7, Wo ::: [f], and W ~ w' iff there exist r, r' E 7 such that w ::: r, w' ::: r'
a.nd r' = r[a].
The model (interpreted frame) M = (F, V) for an interpreted trace system (7,I)
is an interpreted rlts for which F is the frame for 7 and for all w E W, r E 7,
w::: r implies V(w) = I(r).

When convenient, traces of 7 will be used as the names of the states of the model
for (7,I).

Note that (~, 1) is not part of the above definition. This is in line with the
observation made in connection with Definition 2.1 of trace system, that no essential
information is present therein.

Example 2.9 The frame for the trace system in Example 2.4 is shown in Figure
3).

9

The main difference between trace systems and frames is that an equivalence class
of action sequences, a trace, is now presented more indirectly as the set of action
sequences that is accepted at one and the same state. This can be viewed as
transferring the information about independence of actions from the states, i.e., the
traces, to the structure, i.e., the labelled relation.

Lemma 2.10 Let F be the frame for trace system T .

• Ifw ~ T, then {x/I: I x E FinSeq(w)} = T .

• {{x/I: I x E FinSeq(w)} I w E W} = T.

Proof: Directly from Definition 2.8 o
(Interpreted) trace systems and (interpreted) frames can be viewed as different
ways of representing the same information. To clarify the connection it is now
shown which properties need to be satisfied by rlts in order to be a frame for some
trace system.

For an rlts F the relation IF ~ I: x I: is defined as follows: IF = {(a, b) I
(3w,w',w" E W): w' ~ w, w" ~ wand a # b}. Note that this relation is
well-defined, irrespectively of whether or not the rlts corresponds to a trace system.
Condition C4 in the Lemma below ensures that if for two actions a diamond is
closed once, it is closed wherever it occurs, i.e., that IF is context independent.

Lemma 2.11 An rlts F is the frame for a trace system iff it satisfies the following
conditions:

Ci. W = {w I Wo -* w} (reachability),

C2. {w I w - wo} = 0 (beginning),

C3. (\lw, w', w" E W) w ~ w' and w ~ w" implies w' = w" (forward determin­
ism),

C4. (\lw, w', w" E W)(3v E W) if w ~ w' and w ~ w" and (a, b) E h, then

w' ~ v and w" ~ v (forward-h-diamond property),

C5. (\lw, w', w" E W)(3v E W) if w ~ w' ~ w"
w" (concurrency closure property).

b a
and (a, b) E IF, then w - v -

C6. (\lw, w', w" E W) w' ~ wand w" ~ w implies w'
concurrency),

w" (no auto-

C7. (Vw, w', w" E W)(3v E W) if w' ~ wand w" ~ wand a # b, then v ~ w"

and v ~ w', (backward-diamond property j,

10

Proof: It is easy to see that the frame for a trace system satisfies the above
conditions. Cl ensures that all states are reachable from Woo C2 expresses that
Wo is the beginning. C3 states that each transition leaving a state has a different
label. C4 ensures that each branching caused by independent actions can always
be closed. C5 states that independent actions can permute. C6 says that each
action a is dependent with itself. C7 expresses that if actions join, then they are
independent. So, an open backward diamond can always be closed. Note that C2
together with C7 ensures that no loops occur.
It is equally straightforward, using induction on the length of action sequences where
necessary, to show that each rlts satisfying the conditions Cl - C7 is a frame for a
trace system, namely for {{x/E I x E FinSeq(w)} I w E W} over (E,Ip). The full
proof can be found in [38]. 0

Some notions given for trace systems transfer to frames for trace systems.

Definition 2.12 Let F = (W, E, -, wo) be the frame for a trace system.

a) F' = (W', E, -/, wo) is a subframe of F if

W' ~ Wand _'=- n (W' x E x W').

b) A subframe F' has the forward-diamond property, if for all w, Wi, W" E W',

a, bEE with a ;/; b, w ~ Wi and w ~ w" implies that there is v E W' such

that Wi ~ v and w" ~ v.

c) A subframe F' is a run of F if W' is a maximal subset of W such that F' has
the forward-diamond property.

Let x = wOalwlal ... be a maximal path in a run F' of F. 1 x denotes the set of
states {w E W' I w _" Wi, for i ~ O}. An observation of a run F' of F is any
maximal path x in F' such that W' = 1 x. A suffix WiajWj+l ... of an observation
x is said to be an observation starting at Wi.

The isomorphism:::: could be used to identify corresponding structures in the
realms of trace systems respectively frames; the above notions are defined so as to
give the same names to corresponding notions.

2.5 Acceptors

The r1ts defined in the previous section accept sets of sequences at each state.
Special rits, frames, were shown to be equivalent to trace systems in the ability to
characterize sets of sets of action sequences, i.e., sets of traces. In this section, a less
restricted subclass of rlts is considered that enables, for instance, to accept trace
systems that are infinite but which correspond to finite state programs, in a finite
way. The idea is to enable acceptors to be more concise by allowing loops, but still
requiring that the representatives of a trace are accepted at the same state. The
reason for this requirement is that acceptors are to represent concurrent programs
for which different interleavings of the same partial run lead to the same state. The

11

consequences of doing so are that closure of diamonds may occur also if actions
are not independent and that sequences of different length can be accepted at a
state. The first consequence means in fact that the independence information can
no longer be retrieved from the structure in the rlts; this is remedied by putting
the independence relation back in explicitly. This enables to partition the sets of
action sequences accepted at a state into traces again.

Definition 2.13 An acceptor for a trace system T is a five-tuple
F = (W, E, , I, wo), where (W, E, , wo) is an rlts and I is an independency
relation in E, satisfying the following conditions:

1} {[FinSeq(w)/E] I w E W} = T,

2} if x E FinSeq(w), then for each path y in F such that [YIE] = [xlE], Y E
FinSeq(w), for all w E W,

3} if x E FinSeq(w), then for each sequence u such that 11 E [xlE], there is a
path Y in F starting at Wo with YIE = 11, for all wE W.

As in case of frames it is now shown which properties need to be satisfied by rlts
with I in order to be an acceptor for some trace system. Notice that C1 - C2 and
C6 - C7 are dropped from the characterization of a frame.

Lemma 2.14 F = (W, E, , I, wo) is an acceptor of a trace system iff it satisfies
the following conditions:

C3. (Vw, w', w" E W) w ~ w' and w ~ w" implies w' = w" (forward determin­
ism),

C4. (Vw, w', w" E W)(:3v E W) if w ~ w' and w ~ w" and (a, b) E I, then

w' ~ v and w" ~ v {forward I-diamond property},

C5. (VW,W',W" E W)(:3v E W) ifw ~ w' ~ w" and (a,b) E I, then w ~ v ~ w"
{concurrency closure property}.

Proof: Follows from Definition 2.13 and the definition of trace system. o
In the literature rlts equipped with I satisfying the above conditions C3-C5 are

called rooted concurrent transition systems [43, 4] or rooted asynchronous transition
systems (rats) [1]. The latter name will be used in this chapter.

Rats are used as acceptors for both trace systems as well as frames. As before,
the connection to the former is made by defining which traces are accepted at each
state of the rats. As to the latter, the frame can be viewed as being represented by
the sequences accepted at each state, but now together with the relation I rather
than just the structure of the frame.

Definition 2.15 Let F be an rats.

12

• Tr(w) d;j ([x/~]I x E FinSeq(w)}.

de!
• Tr(F) = {Tr(w) I w E W}.

Note that just one trace system is accepted by an rats. This allows the following,
somewhat indirect, definition of acceptor for a frame. The indirectness is caused by
the fact that in a frame the relation I is encoded in the structure.

Definition 2.16 An rats F' is an acceptor for a frame F if F is the frame for the
trace system accepted by F'.

To enable identifying at which state of an rats F which traces are accepted, an
acceptance function AC : Tr(F) - W is defined, assigning to each trace accepted
by F the state of F which accepts a representative of this trace, i.e., AC(r) = w iff
for some x E FinSeq(w), [x/~] = r. Thanks to conditions C3 and C5 in Lemma
2.14, AC is well defined. AC is extended in the standard way on subsets of Tr(F):
AC(P) = {AC(r) IrE Plo for P ~ Tr(F).

Interpreted trace systems are accepted by rats equipped with interpretation
functions.

Definition 2.17 An interpreted rats (F, V) is an acceptor for an interpreted trace
system (T,I) if Tr(F) = T and V(w) = I(r), for each r such that AC(r) = w.

Note that just one interpreted trace system is accepted by an interpreted rats. This
allows the following definition of acceptor for a model.

Definition 2.18 An interpreted rats (F, V) is an acceptor for a model M if M is
the model for the interpreted trace system accepted by (F, V).

2.6 Finite State Trace Systems

Since one of the aims of this chapter is to show methods of proving properties of
interpreted trace systems by model checking, trace systems that are finite state are
of interest. These trace systems are a subclass of the recognizable trace systems
[27].

Definition 2.19 A trace system T is finite state, if there is an equivalence relation
EQ ~ TxT satisfying the following conditions.

1 EQ has a finite index,

2 (Vr,r' E neVa E [~]) ((r EQ r' and mEn implies (m EQ r'a)).

An interpreted trace system (T,I) is finite state, if in addition to the above two
conditions the following condition is satisfied.

3 ('<Ir, r' E T)(r EQ r' implies I(r) = I(r')).

13

The above definition states that the number of traces that are distinguishable with
respect to their continuations (clause 2) and with respect to their interpretation
(clause 3) is finite. However, T may well have infinitely many traces with different
prefixes i.e., 1 T #1 T' for infinitely many T, T' E T.

Example 2.20 The trace system Ti of Example 2.4 is finite state. The equivalence
classes of the relation EQ ~ Ti x Ti are the following.

• [[fllEQ = [(cdn

• [[allEQ = [(cd)"a],

• [[bllEQ = [(cd)"b],

• [[CllEQ = [(cd)"c],

• [[acllEQ = [(cd)*ac].

One can build a quotient structure of T by EQ.

Definition 2.21 The quotient structure of T by an equivalence relation EQ is a
five-tuple F = (W, E,~, J, wo), where:

• W = {[T]EQ I T E T} is the set of states,

• (E,1) is the given independence alphabet,

• -- ~ W x E x W is the transition relation such that [T]EQ ~ [T']EQ, if there
are traces TJ E [T]EQ, T{ E [T']EQ, and a E E such that TJ[a] = TL

• Wo = k]EQ.

Lemma 2.22 The quotient structure of T by an equivalence relation EQ is an
rats.

Proof: By straightforward verification of the conditions from Lemma 2.14. 0

Lemma 2.23 A trace system has a finite acceptor iff it is finite state.

Proof: (::}) If a trace system has a finite acceptor, then a relation EQ is defined
as follows: T EQ T' iff AC(T) = AC(T').
({=) If a trace system is finite state, then from Lemma 2.22 its quotient structure
with respect to EQ is a finite rats. 0

14

d

13 15

c

b a a

c

G 23 25

d

Figure 4: The rats Fl accepting the trace system ~

Corollary 2.24 A frame has a finite acceptor iff it is the frame for a finite state
trace system.

The above notions are straightforwardly extended to the interpreted case.

Example 2.25 [acceptors of trace systems) Below, the definition of a finite acceptor
of the trace system 71 of the Example 2.4 is given. The acceptor is shown in Figure
4.

The rats FI = (WI, LI, -->1,11, wa) accepting the trace system 71 is defined as
follows:

• WI = {13, 15,4,23, 25},

• El = {a,b,c,d},

• -->1 = {(13, b, 4), (13, a, 23), (13, c, 15), (15, d, 13), (15, a, 25), (25, d, 23),

(23, c, 25)},

• It = {(a, c), (c, a), (d, a), (a, d)},

• w6 = 13.

2.7 A Syntax for Finite State Concurrent Systems: Elemen-
tary Net-systems

Elementary Net systems (42) are a subclass of Petri Nets, namely those correspond­
ing to finite state programming languages. They may be viewed as programs for
which trace systems provide semantics; they serve as an easy representation of finite
state concurrent programs. Extensions covering the infinite state case are available

15

3

a c d

2 4 5

Figure 5: EN-system NI

and extensively studied. As such extensions are not used in the present exposition,
they are not considered here. For further information see, e.g., [41].

Definition 2.26 An Elementary Net system, EN-system for short, is an ordered
quadruple N = (B, E, F, co), where Band E are finite, disjoint, nonempty sets of
places and transitions, respectively, F <;; B x E U E x B is the flow reiation, with
dom(F) = B U E, and Co is a subset of B, called the initial case.

Any subset c of B is called a case. A case can be viewed as a state the EN-system
is in; Co is then the starting state. Nets are represented graphically using lines for
transitions, circles for places, and arrows for the flow relation. The initial case is
represented by dots in circles (see Figure 5).

Definition 2.27 Let N be an EN-system. For each x E B U E, the following sets
are defined:

• Pre(x) = {y I (y, x) E F} (preconditions),

• Post(x) = {y I (x,y) E F} (postconditions),

• Prox(x) = Pre(x) U Post(x) (proxconditions).

Definition 2.28 (firing sequence) A transition t is fire-able at a case c and leads
to the case c' (written crt > c'), if Pre(t) <;; c, Post(t) <;; c' , and c - Pre(t) =
c' - Post(t).

A finite sequence of transitions u = tot I ... tn is a firing sequence of N, if there
is a sequence of cases CI, ... ,cn+! such that Ci [ti > Ci+!, for i ::; n. This is denoted
by co[u > Ci+l. A case C is reachable, if there is a firing sequence that leads to it.

16

1 • • 2

a

3 4

a

5 6

a

7 8

Figure 6: EN-system N2

The last clause of the fire-ability condition prohibits firings that would fill an
already occupied place, unless that place first gets emptied by the firing.

Definition 2.29 An EN-system N is said to be contact-free if for each reachable
case c and for all tEE, the following condition holds:

• Pre(t) ~ c implies Post(t) n (c - Pre(t)) = 0.

So, if a reachable case contains the preconditions of a transition, then it does not
contain its postconditions, unless they coincide. Therefore, for contact-free nets a
transition t is fire-able at c, just when Pre(t) ~ c.

All EN-systems used in this chapter as examples are contact-free.

Example 2.30 In Figure 5, the EN-system N j is represented graphically.

The EN-system N j = (B j ,Ej ,Fj ,C6), where

• Bl = {1,2,3,4,5},

• El = {a,b,c,d},

• Fl = {(1,a),(a,2),(I,b),(b,4),(3,b),(3,c),(c,5),(5,d),(d,3)},

17

3 Comparison of Temporal Logics on Trace Sys­
tems

In this section temporal logics are introduced. These are propositional versions of:

• Linear Time Temporal Logic (LTL),

• Computation Tree Logic(·) (CTL(·)),

• Interleaving Set Temporal Logic(·) (ISTL(·)),

• Computation Tree Logic with Past Operators (CTLp).

These four logics are considered because they have been interpreted on models for
interpreted trace systems. Moreover, they allow us to show the main advantages of
using the trace semantics. For LTL and CTL it is shown that model checking can
be more effective if trace semantics is applied. For ISTL and CTLp it is shown that
new important properties can be expressed and proved either by proof rules or by
model checking, respectively.

The logics differ mainly in the way they are interpreted over models for inter­
preted trace systems. LTL is interpreted over all paths of a model, CTL(·) over the
tree defined by a model, ISTL over all runs of a model, and CTLp over the whole
partial order structure of a model.

Next, formal definitions of the logics are given and their distinguishing power be­
tween models for trace systems is compared. It is shown which logics can distinguish
branching points and which can distinguish concurrency from non-determinism.

3.1 Collection of Logics

In this section the syntax and semantics are defined for LTL, CTL*, ISTL*, and
CTLp. Propositional versions of these logics are defined on models for interpreted
trace systems over (y, 1)), where Y is equa.J to the set of propositional variables PV
and 1) is equa.J to the set of Boolean variables {true,Jalse}. It is convenient to
start with the definition of CTL *.

3.1.1 Computation Tree Logic* (CTL*)

The language ofCTL* [7, 3] is composed of state and path formulas. As the names
indicate, state formulas are interpreted over states and path formulas are interpreted
over paths.

Syntax of CTL*

Syntactically, the languages of all other logics considered in this paper are extensions
or restrictions of this well-known language.

The set of state formulas and the set of path formulas is defined inductively:

19

51. Each q E PV is a state formula,

52. if'P and 'if; are state formulas, then so are "''P and 'P 1\ 'if;,

53. if'P is a path formula, then E'P is a state formula,

PI. any state formula 'P is also a path formula,

P2. if 'P, 'if; are path formulas, then so are 'P 1\ 'if; and "''P,

P3. if 'P, 'if; are path formulas, then so are X'P and ('PU'if;).

E is a path quantifier with the intuitive meaning: there is a path. X is the next
step operator and U denotes U nti!.

The following abbreviations will be used for all the logics discussed:

de}) de} de}
• cp V 'if; = ..,(..,cp I\..,'if; ; true = cp V "'cp, for any cp; 'P --+ 'if; = "'cp V 'if;,

• cp ff! 'if; d;! (cp 1\ ..,'if;) V (..,cp 1\ 'if;); cp == 'if; d;! (cp --+ 'if;) 1\ ('if; --+ 'P),

• Fcp d;! trueUcp; A(cpU'if;) d;! ..,(E(..,'if;U(..,cpl\..,'if;)) V EG(..,'if;)),

de} de!
• A.Gcp = ..,EF..,cp, AH cp = ..,EP..,'P.

5emantics of CTL *
Let M = «W, L, --+, wo), V) be a model and P = XOaOxlal ... be a maximal path
starting at Xo E W. Let Pi denote the suffix XjaiXi+lai+1 ... of p.

51. x F q iff V(x)(q) = true, for q E PV,

52. x F "'cp iff not x F 'P,

x F cp 1\ 'if; iff x F cp and x F 'if;,
53. x F Ecp iff P F cp for some path p starting at x,

PI. P F cp iff Xo F cp for any state formula cp,

P2. P F cp 1\ 'if; iff P F cp and P F 'if;,

P F "'cp iff not P F cp,

P3. P F Xcp iff PI F cp,

P F (<pU1/» iff (3i ~ 0) Pi F if and (Vj: 0 ~ j < i) Pi F <po

A CTL* formula cp is said to be valid in a model M (written M FCTL- cp) iff
M,wo F cpo

20

Example 3.1 Let M = (F, V) be the model for an interpreted trace system (T,I).
For instance, the following properties can be expressed in CTL *:

• M P=CTLo AGcp - cp is an invariant in (T,I),

• M P=CTLo AFcp - cp will eventually hold in (T,I),

• M P=CTLo EFcp - cp is possible in (T,I).

3.1.2 Computation Tree Logic (CTL)

The language of the logic CTL is the restriction of the language of CTL * such that
only one single linear time operator (F,G,X, or U) can follow a path quantifier (A
or E).

3.1.3 Syntax of CTL

The set of CTL formulas is the maximal one generated by the rules:

51. Each q E PV is a formula,

52. if a: and ,p are formulas, then so are -,cp and cp 1I,p,

53'. if cp, ,p are formulas, then so are EXcp, EGcp, and E(cpU,p).

The semantics is the subset of the semantics of CTL* concerning CTL formulas.

Example 3.2 The following are CTL* formulas, which are not expressible in CTL:

• AFGcp,

• AGFcp.

3.1.4 Linear Time Temporal Logic (LTL)

The language of the logic LTL [22] is the restriction of the language of CTL* such
that it does not contain path quantifiers.

Syntax of LTL

The set of LTL formulas is the maximal one generated by the rules SI - S2 and
Pl- P3.

21

Semantics of LTL

LTL formulas are interpreted over models corresponding to executions of concurrent
systems. These correspond to maximal paths through interpreted trace systems in
the present framework.

The semantics is the subset of the semantics of CTL * concerning LTL formulas.
An LTL formula <p is said to be valid in a model M (written M FLTL <p) iff

P F <p, for all maximal paths p starting at Wo in M.

Example 3.3 Let M = (F, V) be the model for an interpreted trace system (T,I).
For instance, the following properties can be expressed in LTL:

• M FLTL G<p - <p is an invariant in (T, I),

• M FLTL F<p - <p is inevitable in (T, I).

3.1.5 Interleaving Set Temporal Logic* (ISTL*)

ISTL* was introduced in Peled's thesis [30] and then extensively studied in [16, 17].
The logic enables explicit reasoning about the observations and the runs they belong
to.

Syntax of ISTL*

The syntax of ISTL * is the same as that of CTL *.

Semantics of ISTL*

Although the synta.x ofISTL* is the same as that ofCTL*, the semantics is different.
ISTL * formulas are interpreted over models for runs of interpreted trace systems.

Let M = (F, V) be the model for an interpreted trace system (T,I). M' =
(F', V') is an ISTL * model for M if F' is a run of F and V' = V[W'.

One can easily notice that for each ISTL * model A{' there is a run R of T such
that M' is the model for the interpreted run (R,I[R).

Let Oxo be the set of all observations of M' starting at Xo E W' and let 0 =
xOaOxla'l ... E Oxo' Let 0i denote the suffix XiaiXi+lai+l ... of o.

SI, S2, PI - P3 like for CTL*,

S3. Xo F E<p iff 0 F <p for some observation 0 E Oxo starting at Xo.

An ISTL* formula <p is said to be valid in a model M (written M FISTL' <p) iff
M', Wo F <p, for all ISTL* models M' for M.

Example 3.4 In addition to the properties expressible in LTL (but now quantified
over observations) formulas of ISTL * can express partial order properties.

• M FISTL' AG<p - <p is an invariant in (T,I),

22

• M FISTL* AF<p - 'I' is inevitable in (T,I) (under the concurrency fairness
assumption),

• M FISTL* EF<p - 'I' holds at some state of each run in (T,I).

It will be show in the next section that serializability can be expressed in ISTL *.

3.1.6 Interleaving Set Temporal Logic (ISTL)

The language of ISTL is the same as that of CTL. Therefore, the logic ISTL is
a restriction of ISTL * in the same manner as the logic CTL was a restriction of
CTL*. Again, only a single linear time operator (F,G,X, or U) can follow a path
quantifier (A or E).

3.1.7 Computation Tree Logic with Past Operators (CTLp)

CTLp was introduced in [39, 36] in order to reason about partial order properties.
The language of CTLp is an extension of the language of CTL by past operators.
The original definition of CTL p included next step modalities labelled with actions.
It is further shown that if a valuation function encodes names of action executed
between successive states, then the labelled modalities are expressible using the
unlabelled versions.

Syntax of CTLp

Now, the set of CTLp formulas is defined.

S1. Each p E PV is a formula,

S2. if'P and 1/; are formulas, then so are 'P /\ 1/;, ~'P,

S3. if 'I' is a formula, then so are EX<p, EG<p, and E(<pU 1/;),

S4. if 'I' is a formula, then so are EY<p and EP<p.

The symbols E and A can be called observation quantifiers (they correspond to
path quantifiers in CTL). The other symbols have the following intuitive meaning:
X - next step, U - Until, Y - backward step, P - sometime in the past. Formulas of
the form EY<p and EPcp are called past formulas. Notice that the past formulas are
not symmetric to the future formulas. This is motivated by the desire to define the
simplest logic enabling to express partial order properties. Extensions with Ell 'P
and E(<pS1/;) are possible, but will not be discussed in this chapter.

23

Semantics of CTLp

Let M = ((W, I;, -+, wo), V) be a model and x E W. The notion of truth in M is
defined by the relation F as follows:

S1. M,x F q iff V(x)(q) = true, for q E PV,

S2. if 'P, t/J are state formulas,

M, x F "''P iff not M, x F 'P,

M, x F 'P " t/J iff M, x F 'P and M, x F t/J,

S3. M, x F EX'P iff M, x' F 'P for some x' E W with x -+ x',

M, Xo F EG'P iff there is an observation a = XOaOxlal ... such that for all
i 2:: 0 M, Xi F 'P,

M, Xo F E('PUt/J) iff there is an observation 0= xOaOxlal ... and k 2:: 0 such
that M, Xk F t/J, and for all 0 ::; i < k: M, Xi F 'P,

S4. M,x F EY'P iff M,x' F '1', for some x' E W with x' -+ x,

M, x F EP'P iff M, x' F 'P, for some x' E W with x' -+' X.

A formula'P is valid in a model M (written M FCTLp 'P), if M, Wo F 'P. A formula
'P is said to be valid, if M F 'P, for all models M.

The language of CTLp contains all the CTL formulas (with slightly different se­
mantics, tuned to observations) and moreover the formulas with the past modalities
EP and EY.

Example 3.5 In addition to the properties expressible in CTL (but quantified
now over observations), CTLp formulas can express partial order properties, i.e.,
properties requiring the distinction between concurrency and non-determinism.

• M FCTLp AG'P - 'P is an invariant in (7,7),

• M FCTLp AF'P - 'P is inevitable in (7,7), (under a concurrency fairness
assumption) ,

• M FCTLp EF'P - 'P is possible in (7,7),

• M FCTL p EF(AH 'P) - there is a partial execution in (7,7) such that 'P
holds at all its states,

• M FCTLp EG(AH'P) - there is a run in (7,7) such that 'P holds at all its
states,

• M FCTLp AF(EP'P) - 'P holds at some state of each run in (7,7),

24

• M FCTLp AG('P --. EPt/J) - always if'P holds, t/J held in the past; this
formula allows for specifying snapshots of concurrent programs ('P and t/J do
not contain temporal formulas).

Examples of snapshots of concurrent systems are shown in [18, 33]. It is shown
below that serializability can be expressed in the language of CTLp.

3.2 Encoding Labelled Next Step Operators

The label of the transition between two adjacent states of a model can be encoded
by the valuation of these states. This encoding allows to derive labelled next step
operators EXa and EYa.

Let M be the model for an interpreted trace system, PVE = {Pa I a E I;} and
PVE ~ PV.

Definition 3.6 The valuation function V encodes actions if for all Pa E PVE,
V(w)(Pa) = true iff the number of occurrences of ~-transitions in a path accepted
at w is odd.

The definition is correct since the paths accepted at w in M have the same numbers
of ~- transitions. The condition in this definition enables to find the label of the
transition between two adjacent states by only looking at its valuations, i.e., the
label is a iff Pa holds at exactly one of the two states.

Therefore, the following abbreviations can be defined for all the logics using EX
and/or EY:

• EXa'P d~ (Pa --. EX('P /I "'Pa)) /I ("'Pa --. EX('P /I Pa)),

• EYa'P ~ (Pa - EY('P 1\ "'Pa)) 1\ ("'Pa - EY('P 1\ Pa)).

EXa'P (EYa'P) expresses that there is the a-successor (a-predecessor, resp.) state
satisfying 'P.

Example 3.7 It follows from the definition of the model M for a trace system T
that M F EF(EYa(true) /I EYb(true)) for a # b expresses that actions a and bare
independent, i.e., (a, b) E I.

3.3 Examples of Inevitability and Serializability

Example 3.8 The partial order properties discussed in the former examples can
be formally expressed in the logics ISTL and CTLp. Let PVi = {Pb I b E Bd,
where B; is the set of places of EN-system N;, and M; = (F;, Vi) be the model for
trace semantics (T;,I;) of Nj, for i E {I, 2} (see Examples 2.30 and 2.32).

In the following way, the property discussed in Example 2.4 can be expressed by
ISTL and CTL p formulas:

25

INEVITABILITY (in ISTL) MI FISTL AF(p2 V P4),

INEVITABILITY (in CTLp) MI FCTLp AF(p2 V P4).

In the following way, the property discussed in Example 2.5 can be expressed by
ISTL and CTLp formulas:

SERIALIZABILITY (in ISTL):

1. M2 FISTL (PI/\p2/\p9) --.. EF«P7/\P2/\P9) V (PI/\pS/\p9)),

2. M2 FISTL AG[«P7/\ P2 /\ P9) V (PI /\ Ps/\ P9)) --.. EF(P7/\ Ps /\ P9)].

SERIALIZABILITY (in CTLp):

1. M2 FCTLp (PI/\ P2 /\ P9) --.. AF EP«p7/\ P2 /\ P9) V (pl/\ Ps /\ P9)),

2. M2 FCTLp AG[«P7/\p2/\p9)V(PI/\pS/\p9)) --.. AF(EP(P7/\PS/\P9))]'

The first formula expresses that each run contains a state at which either control
is before the execution of TI and after the execution of T2, or the other way round.
The second formula says that each run contains a state at which control is after the
execution of Tl and T2 •

3.4 Equivalence Notions for Frames for Trace Systems

In order to investigate equivalences imposed on models by temporal logics it is
assumed that the valuation functions do not encode any structural information,
but only actions executed between successive states. This is ensured by taking
PV = PVE and requiring that V encodes actions (see Definition 3.6).

As before, it is possible to find the label of the transition between two adjacent
states only by looking at its valuations. Let M = (F, V) be a model. Notice that
V satisfies the following conditions:

• V(WO)(Pa) = false, for each Pa E PV, and

• V(w)(Pa) t= V(w')(Pa) iff w ~ w'.

Now, equivalence notions for frames for trace systems are formally defined.
The following definitions contain four notions of equivalences. The notion of

maximal interleaving path equivalence is defined first. Let F and F' be frames for
trace systems.

Definition 3.9 F and F' are said to be maximal interleaving path equivalent
(F ~mip-e F') iff {x/E I x is a maximal path in F} = {x' /E I x' is a maximal path
in F'}.

Now, Park's and Milner's notion of forward bisimulation for F and F' are given,
denoted here as F ~J-b F', and referred to as f-bisimulation.

26

Definition 3.10 A relation Z ~ W X W' is an f-bisimulation between F and F'
iff(wo,w~) E Z and if(w,w') E Z,

a
• ifw ~ v, then there exists Vi E W' such that Wi _, Vi and (V,V') E Z, and

• the symmetric condition.

F and F' are f-bisimilar (F ~J-b F '), if there exists an f-bisimulation between F
and F'.

Then, definitions of a run trace equivalence and backward-forward bisimulation are
given.

Definition 3.11 F and F' are run trace equivalent (F ~r-t F') iff

• for each run FI in F, there is a run F{ in F' such that Fl and F{ are lSO­

morphic, and

• the symmetric condition.

Definition 3.12 A relation Z ~ F X F' is a bf-bisimulation for F and F' iff Z is
an f-bisimulation and if (w, Wi) E Z,

a
• if v ~ w, then there exists v' E W' such that v' -+, Wi and (v, v') E Z, and

• the symmetric condition.

F and F' are bf-bisimilar (F ~bJ -b F '), if there exists a bf-bisimulation for F and
F'.

3.5 Equivalences Imposed by Temporal Logics

In this section it is investigated which equivalences are imposed on models cor­
responding to interpreted trace systems by the different logics considered in this
chapter. Each induced equivalence will be shown to coincide with one equivalence
defined in the former section.

Let M = (F, V) and M' = (F', V') be the propositional models for interpreted
trace systems (T,I) and (T',I/) over (PVE , {true,Jalse}), respectively. The inter­
pretations I and I' are defined like the valuation functions in Definition 3.6.

Modal equivalences of M and M' are defined in the following way:

Definition 3.13 (modal equivalence) The modal equivalence =L imposed by
the logic L E {LT L, CTL, CT L*, ISTL, ISTL*, CTLp} is defined as follows:

M =L M' iff (M FL 'I' ¢} M' FL '1') for each formula 'I' of the logic L.

The next four theorems match equivalences of frames for trace systeins with those
induced by the considered temporal logics.

The equivalence induced by LTL coincides with maximal interleaving path equiv­
alence.

27

Theorem 3.14 F and F' are maximal interleaving path equivalent iff M =LTL M',
where (<=) holds, provided the sets of maximal paths in F and F' are finite in size.

The equivalence induced by CTL(·) coincides with forward bisimulation.

Theorem 3.15 F and F' are f·bisimilar iff M =CTL(.) M',

The equivalence induced by ISTL(·) coincides with run trace equivalence.

Theorem 3.16 F and F' are run trace equivalent iff M =ISTL(')

where (<=) holds, provided F and F' have finitely many runs.
M' ,

The equivalence induced by CTLp coincides with backward-forward bisimulation.

Theorem 3.17 F and F' are bf-bisimilar iff M =CTL p M'.

The proofs of the above theorems can be found in [14, 43J.

3.6 Comparing Equivalences

The aim of this section is to compare equivalences.
The following theorem shows that backward-forward bisimulation and run trace

equivalence coincide with isomorphism, whereas maximal interleaving path equiva­
lence is equal to forward bisimulation for trace systems.

Theorem 3.18 The following equalities hold:

• ""';J-b = ""mip-e:# iso.

The proof can be found in [14J. The reason for both above equalities is forward
determinism of frames. The relaxation of this condition, as in case of occurrence
transition systems [14], makes ~b'-b stronger than ~r-e and ~'-b stronger than
~ . nup-e-

Example 3.19 The models !II and M' (see Figure 7, where the displayed proposi­
tions hold at the states) for the following two interpreted trace systems (T,T) and
(T',7') (over (PV~, {true, false}) cannot be distinguished by any LTL and CTL*
formulas.

• T = {(€J, raJ, [bJ, lab], [bal}, 1; = {a, b}, [= 0, with the obvious I,

• T' = {[e], [a], [b], [ab]}, 1;' = {a,b}, [' = {(a, b), (b,a)}, with the obvious I'.

But, these models can be distinguished by ISTL and CTLp formulas.

• M ~ISTL EXpo 1\ EXPb, M' FISTL EXpo 1\ EXPb,

• M ~CTLp EF(EYPa 1\ EYpb), M' FCTLp EF(EYPa 1\ EYpb).

28

o o

;/~
{Pal {Pb}

b 1 1 a

{Pa,Pb} {Pa,Pb}

Figure 7: Models M and M'

3.7 Notes on Expressiveness

LTL and CTL are not comparable with respect to expressiveness. For example, the
LTL formula FGp is not expressible in CTL whereas the CTL formula EFp is not
expressible in LTL. The situation is similar as far ISTL * and CTLp are concerned.
The ISTL* formula AFGp is not expressible in CTLp , whereas the CTLp formula
EFp is not expressible in ISTL*.

Modal logics interpreted on asynchronous transition systems have been also
investigated in [21].

4 Efficient Model Checking for a Subset of LTL

Model checking for linear time temporal logic is linear in the size of the model
acceptor and PSPACE - complete in the length of the tested formula. In the
context of automatic verification, a finite state concurrent system could, in principle,
be given as an interpreted trace system, but, in practice, is usually given in a
program-like form; for this chapter one could think of EN-systems.

Starting from a suitable description of a concurrent system, a finite interpreted
rats can be obtained algorithmically that accepts all executions. However, the num­
ber of states is frequently exponential in the number of actions. Thus, the rats is
often so large as to transgress the boundaries of available computing power. There­
fore, methods for reducing rats are of interest as they can improve the feasibility of
model checking. Unfortunately, since checking whether an LTL formula holds for an
EN-system (i.e., it is true in its model) was proved to be N P - hard in the number
of the transitions of the EN-system, it is unlikely that a polynomial algorithm can
be found.

In this section it is shown that if trace semantics is used, a different, smaller,
structure than the rats, called a trace automaton suffices; various algorithms that
check a formula against an rats can be applied on the trace automaton as well. The
idea is that a much smaller transition graph suffices to generate for each equivalence
class of sequences a representative with respect to the independence relation. Of

29

course, this puts a constraint on the formulas to be checked: Formulas should eval­
uate to the same result on each representative of a class. This is called equivalence
robustness. A, rather mild, constraint is needed to ensure equivalence robustness:
Formulas should not contain next step operators. The subset of LTL formulas
satisfying this property is called LTL-x.

To start with, a standard method of model checking is given, after which it is
shown how the model acceptors it employs can be reduced using trace automata.

4.1 Standard Approach

Let P be an EN-system and (T,I) be its trace semantics. Then, let Mp = (F, Vp)
be a model acceptor for the model for (T, I).

The standard method of model checking ofLTL [50, 47] using automata-theoretic
constructions is then as follows. Since this method ignores the independence rela­
tion I, the substructure of F equal to (W, E, -, wo) and denoted by Fp is used.
To start with, Fp is turned into a generalized Biichi automaton (gba, for short)
Ap = (W, E, -, Wo, F), where F = {Fl' ... , Fk } <;; 21V

, by adding a set of accepting
conditions. Accepting conditions are needed to accommodate fairness; they enable
defining certain subsets of maximal paths (computations), called sets of accepting
computations of Fp . A computation of Ap is accepting if for each Fj , there is some
state in Fj that repeats infinitely often in the computation. L(Ap) denotes the set
of all accepting computations of Ap. For instance, L(Ap) is equal to the set of all
maximal paths of Ap, if F = 0.

Now, let Mp = (Ap, Vp) be a gba with valuation function Vp and let L(Mp)
denote the accepting computations of AIp.

Example 4.1 The new notions are explained on the EN-system Nl of Example
2.30. The model acceptor is defined as follows. Let PVl = {Pl,P2,P3,P4,P5}.
MN, = (FI , VI)' where the rats FI is shown in Figure 4 (Example 2.25) and
VI(W)(Pi) = true iff w corresponds to a case with the place i marked.

Assume that formulas are to be checked over observations of Fl. Since the
method deals wi th infini te paths only, all observations need to be extended to be
infinite. This can be easily achieved by adding one more transition looping at the
state 4 and labelling the transition with an action name, say, b. This extension
can obviously change some properties satisfied by N I . Since the property under
consideration remains unchanged, it is not discussed here how properties of extended
rats can be related to properties of original ones.

Next, FI = { {4, 23}} is defined. Now, the set of accepting computations is equal
to the set of observations.

Now, let cp be an LTL formula. To verify that each accepting computation of L(Mp)
satisfies the formula 'P (written Mp ~ 'P), a gba with a valuation function M~'P
should be built with L(M~'P) equal exactly to all accepting computations satisfying
-'cp. Then L(Mp) n L(M~'P) = 0 should be verified.

30

Since M p has got only one beginning state wo, the above intersection may be
non-empty only if A{~<p contains a computation starting at a state with the same
valuation as WOo Therefore, first a gba with a valuation function accepting all
computations satisfying "'P is found and then it is restricted to its reachable part
starting at the state with the same valuation as WOo The construction used in
the proof of Theorem 4.2 guarantees that there are no two states with the same
valuation function.

Theorem 4.2 ([47]) One can build a generalized Biichi automaton with a valua­
tion function M<p = (F<p, V<p), where F<p = (W, E, -, Wo, F), IWI ::; 2°(l<p1) such
that L(M<p) is exactly the set of computations satisfying an LTL formula 'P.

The above theorem is a slightly modified version of the original theorem as states
rather than transitions are labelled with sets of propositions. The transitions are
labelled with actions of E.

Example 4.3 Let 'PI = F(p2 V P4) be a given formula to be checked over MNI
of Example 4.1. Then, "'PI = G("P2 1\ "P4). A gba with a valuation function for
"'PI is then M~<Pl = «{wo}, EI , ((wo,a,wo) I a E Ed, {wo}, {{wo}}), V~<Pl)' where
V~<Pl (WO)(Pi) = false, for j = 2,4.

Next, it is checked whether L(Mp) n L(M~<p) = 0. This is done by taking the
product of Mp and the appropriate reachable part of M~<p (see the definition below),
and establishing whether it contains any accepting computation. If so, then Mp
satisfies 'P. The time complexity of the algorithm is O(size(Mp) x 2°(l<pI».

Definition 4.4 (product) The product of two generalized Bltchi automata Al =
(WI,E,->I,WI,FJ) and A2 = (W2,E,->2,W2,F2) is the automaton A = (W,E,­
, wo, F) defined by

• W = WI X W2, Wo = (WI,W2),

• F = UFjEJ'l {Fj x W2 } U UFjEJ', {WI X Fj },

• «VI,v2),a,(uI,u2» E - wh.en (vI,a,uJ) E ->1 and (v2,a,u2) E->2'

A further simplification is obtained by considering only the states for which both
Mp and M~<p have consistent valuations. This leads to the following definition for
Mp,~<p = (Fp,~<p, Vp,~<p).

Fp,~<p is equal to the product of Fp x F~<p restricted to the states W', for
which both components have consistent valuations, i.e., W' = {(v, Vi) E W x W~<p I
Vp(v) n Subformulas('P) = V~<p(V')}, Vp,~'P«v, Vi» = Vp(v).

Example 4.5 The product of the structures A1N, and M~<Pl is the following struc­
ture MN1'~<Pl = (FN1'~<P" VN1'~<Pl)' where FN1,~<Pl = ({(13,wo),(15,wo)},E I ,
{«13, wo), c, (15, wo», «15, wo), d, (13, wo))}, {(l3, won, {0, {(13, wo), (15, wo)}}),
(see Figure 8), and VN1'~<P,«Xy,WO»(pi) = true, for i = x,y.

Note that L(MN1'~<Pl) = 0. Therefore, MNI F 'PI.

31

d

c

Figure 8: The product automaton FN1.~<Pl

4.2 Trace Approach

In order to use the power of traces in model checking the notion of trace automaton is
introduced. Following that, several ways of obtaining such automata are discussed.

4.2.1 Trace Automata

Trace systems are also accepted by certain rooted labelled transition systems, called
trace automata, which do not need to be rats and can often be smaller than these.
Trace automata accept the same traces as some rats, but using a different definition
of acceptance.

Definition 4.6 A trace automaton is a five-tuple T A = (W, E, -, I, wo) such that
(W, E, -+, wo) is a rooted labelled transition system and I is an independence rela­
tion. T A accepts a trace T, if there is a finite path x in T A such that TEL [x/E].
The set of traces accepted by T A is denoted by TI'(T A).

Notice, that a trace T is accepted by T A if T A accepts a path corresponding to a
representative of a trace extending T. This means that a trace automaton does not
need to contain paths corresponding to all representatives of all accepted traces.

Lemma 4.7 Let F = (W, 1;, -, I, wo) be an rats and T A = (W', 1;, -', I, wo) be a
trace automaton such that

• W' <;;: W, -'<;;:-, and

• for each trace T E Tr(F), there is a finite path x in TA such that TEL [x/E].

Then, TI'(F) = TI'(T A).

Trace automata are used for model checking of certain safety properties, where they
can just replace rats. The method of model checking, to be explained shortly, uses
the fact that a trace automaton contains a path corresponding to a representative
of each trace or its extension. For example, for checking termination it is sufficient
to analyse only one representative of each maximal trace.

32

d

Figure 9: Trace automaton accepting the trace system 71

CD
a

Figure 10: Rcts F1 and two trace automata T A~ and T Ai

Example 4.8 Figure 9 shows the trace automaton accepting the trace system 71
(see Example 2.4) of EN-system N1 of Figure 5.

However, a trace automaton does not necessarily contain an infinite path cor­
responding to some observation of each run of the accepted trace system. Even
worse, a trace automaton may not contain any infinite path corresponding to an
observation (see Example 4.9). This disallows to model check liveness properties,
i.e., these requiring analysis of observations (as inevitability, for example) as the
standard method of model checking relies on testing whether the product of gba's
with valuation functions contains an accepting computation, i.e., an infinite path
satisfying some conditions. This method does not use any information given by
I. So, the lack of an observation in a trace automaton might make the standard
method incorrect when the rats is replaced by the trace automaton.

Example 4.9 Consider rats F1 as given in Figure 10, with I = {(a, b), (b, an.
Definition 4.6 allows two non-trivial reductions: TAl and T Ai. TAl correctly
represents the infinite observation baw

, whereas T Ai represents only the infinite
path aW

, which is not an observation

In order to also allow one checking liveness properties, trace automata have to
correctly represent runs of trace systems. The way they need to represent them
is similar to the way they represent traces. This means that for each run of the
accepted trace system, a trace automaton should contain a path corresponding to
one of its observations.

33

Definition 4.10 A trace automaton on runs is a trace automaton T A for which
Tr(T.4) is a trace system and which satisfies the following auxiliary property:

• for each run R of Tr(T A), there is a path x = WOaOwlal ... in T A such that
k]ao[ao]al[aoal]" . is an observation of R.

It follows from the definition that for each observation in rats F there is at least
one path in T A that is an observation of the same run, if Tr(F) = Tr(T A).

4.3 Algorithmically Generating Trace Automata on Runs

The main task is to obtain, in an algorithmic manner, a trace automaton on runs
from some suitable description of P, say from an EN-system, without first build­
ing the whole rats. So, let N be an EN-system and (T,I) be its trace semantics.
Obviously, first having to construct the rats in order to obtain the trace automa­
ton would not make the new model checking approach more efficient. Below it is
described how trace theoretical ideas are used to obtain the trace automaton. The
main idea is to construct the graph of a trace automaton from the EN-system by
recursively expanding cases, starting from the initial case. During this construction,
extra information is preserved at each case that enables to expand the graph by only
some rather that all transitions that are, according to the EN-system, enabled at
a case. During the construction, the graph therefore has as nodes cases plus some
extra information - what kind of information and how it is represented is explained
below.

There are essentially two approaches. One approach acquires the information
used to determine these subsets dynamically, i.e., choices made when building the
reduced automaton influence what needs to be added in subsequent construction
steps. This is the sleep set method, developed by Godefroid (see [12]). The other
approach first determines all information statically; this approach was pursued by
Peled as the ample set method. Peled later combined the two methods (see [31]).

To simplify the exposition, in the sequel, unless stated otherwise, only concur­
rently fair executions are considered. This ties in with con~idering observations.

Definition 4.11 (concurrency fairness assumption) For every infinite execu­
tion, for every action a that is enabled from some state on, either that action or an
action dependent with it is taken in the execution at some later state.

4.3.1 The sleep set method

In this approach, historically, rather than supplying sets of enabled actions that need
to be added, sets that need not be added are used. Obviously, this is no essential
difference, as complementation with respect to enabled actions immediately shows.

The idea is, that at some stage in the construction of the automaton an action
can be ignored at a state if the extensions of paths through that state by that
action can also be obtained as extensions of another, equivalent, path through the

34

automaton. Note that at that stage of the expansion such extensions need not
yet be available - it is enough to know that they will be available at some stage.
As this information depends on what has been put into the graph in previous
expansion steps, it can only be obtained during the construction of the graph, i.e.,
dynamically. For each node, it is represented as a set of enabled actions that need
not be considered for addition; this set is called a sleep set.

Let N be an EN-system and (T, X) be its trace semantics.

Definition 4.12 (Sleep set) At some stage in the construction of a trace automa­
ton (W, E, -T, I, wo) to accept the trace system T, a set Sleep(w) ~ en(w) is a sleep
set for a case w E W if for each firing sequence u of N such that wo[u> w, with

w .::. w' and a E Sleep(w), there is a case v E Wand a finite path y accepted at v
such that [u][a] is a prefix of [YIE].

An abstract algori thm for the construction of the graph that generates and uses the
sleep sets is presented in Figure 11. The algorithm is abstract in the sense that it
is highly nondeterministic: neither the order in which nodes are expanded nor the
order in which actions are selected for expansion is fixed. Several different choices
for this order have been investigated and various heuristics exist that improve the
efficiency of the algorithm or the extend of the reduction. We shall not enter into
this as the present aim is just to show how the trace theoretical ideas are used, not
to present particular algorithms.

Example 4.13 Consider the trace system over E = {a,b} and I = {(a,b),(b,a)}
accepted by the rats with two states 1 and 2, where a is continuously enabled,
looping in states 1 and 2 and b is enabled only at state 1 until it is executed once,
making the transition to state 2 (see Figure 10).

Clause 5 in Algorithm in Figure 11 disallows the erroneous trace automaton
where the reduction consists in the removal of the loop on state 2. The sequence
containing b and infinitely many a's would then not be accepted.

4.3.2 The ample set method

The idea now is that enough actions need to be added at each state to ensure
that every path reaching that node extends into every run. This information does
not depend on previous expansion steps and is therefore obtained through a static
analysis of the system. At each node, it is presented as a set of actions, indicating
that only these need to be considered for addition to the graph.

Let N be an EN-system and (T, X) be its trace semantics.

Definition 4.14 (Ample set) A set Ample(w) ~ en(w) is ample for a case w E
W in a trace automaton (W, E, -T, I, wo) accepting T if for each firing sequence u
of N such that wo[u> w, for each run R ofT such that [u] E R, {a EEl [uJ[a] E
R} nAmple(w):f. 0.

35

1 Build the starting node (wo, 0), where Wo = Co - (the initial case).

Nodes (w, Sleep(w» are expanded as follows. One by one, in some order that
is left implicit here, all enabled transitions that are not in the Sleep(w) are
added.

Firstly, the case is considered where a new transition, say w ~ v, a f/.
Sleep(w), is added for which the target node v was not yet present.

2 If transition w ~ v' with (a, b) E I is already present, then b is added to
Sleep(v).

Motivation: A representative for each u[ab]u' will be generated as u[ab] =
u[ba] (as (a, b) E I).

3 If c E Sleep(w) with (a,c) E I, then c is added to Sleep(v).

Motivation: A representative for each u[ac]u" will be generated as u[ac] =
u[ca] (as (a,c) E I) and c E Sleep(w).

Secondly, the case is considered where the expansion reuses a node that was
already present.

4 If the transition does not close a loop in the expansion, i.e. it does not connect
to a state which expansion has been started bnt not yet finished, a new sleep
set is constructed as before, then the intersection of the old one and the new
sleep set is taken and then the node is expanded again with this set as its
sleep set.

Motivation: Reaching a node via different rontes may allow to ignore different
sets of transitions; only a transitions that can be ignored in both cases can
safely be part of the sleep set. As this set determines which transitions need
to be added, a new expansion is necessary.

5 If the transition closes a loop, then it is not added to the sleep set.

Motivation: A loop generates an infinite sequence of actions. If an action in­
dependent with all the actions in the sequence were added to the sleep set, it
might be the case that some infinite sequence including infinite number of oc­
currences of that independent action would not be accepted by the automaton
and therefore no observations of some run would be represented.

Note that 5 can still not be omitted if only concurrency fair executions are
considered: The above mentioned sequence is concurrency fair.

Figure 11: Algorithm building a trace automaton on runs using sleep sets

36

1 Build the starting node (wo,Ample(wo», where Wo = Co - (the initial case),

2 If no transition from Ample(w) does close a loop in the expansion, i.e. no
transition does connect to a state which expansion has been started but not
yet finished, then

nodes (w,Ample(w» are expanded as follows. One by one, in some order
left implicit here, all enabled transitions that are in the Ample(w) are added.
If the corresponding target node is already present in the graph it is used,
otherwise it is added.

3 If a transition from Ample(w) closes a loop, then all transitions enabled at w
are added. If the corresponding target node is already present in the graph it
is used, otherwise it is added.

Figure 12: Algorithm building a trace automaton on runs using ample sets

Thus, for each run which contains the trace [u], there is an action from the ample
set extending that trace within the run.

The first task is to obtain ample sets. Various approaches exist. In [31] an
approach is presented where as ample sets faithful ones are taken.

Definition 4.15 A set F(w) ~ en(w) is faithful at a case w if at w until an action
from F(w) is executed, only actions outside F(w) that are independent of all actions
in F(w) are enabled.

The second task is to generate the reduced graph using a given ample set assignment.
An abstract algorithm for the construction of the graph that uses the ample sets is
presented in Figure 12. Again, the aim is just to show how trace theoretical ideas
are used - again various heuristics exist that yield improvements.

Trace automata generated by the algorithms are not necessarily minimal, but
time complexity of the algorithms is O(I~12 x n), where n is the number of transi­
tions investigated when generating the trace automaton. Since it was proved that
obtaining minimal trace automata is N P - hard, one should not aim at that.

Remarks

The different ways in which sleep sets respectively ample sets are used, the former
expressing which actions need not, and the latter expressing which actions need to
be added are just historically determined. Interpreting the sleep set as expressing
that from the enabled actions, say en(w), those not in the sleep set need to be added
makes comparison more straightforward: en(w) \ Sleep(w) can than be compared
to Ample(w) and en(w) \ Ample(w) to Sleep(w). The two approaches differ in an
essential way: The above correspondences do not always yield ample from sleep sets

37

1

b

Figure 13: Sleep set reduction that is not an ample set reduction

1

b

Figure 14: Ample set reduction that is not a sleep set reduction

or vice versa. The difference is even stronger: not every reduction obtained by the
sleep set approach can be obtained by the ample set approach or vice versa.

Figure 13 shows an example of this fact starting with a sleep set reduction. For
sleep set S/eep(3) = {a}, the corresponding set is en(3) \ S/eep(3) = {c}. As from
state 3 extensions in both runs are possible, only Amp/e(3) = {a, c} is allowed. This
also implies, that no ample set reduction can remove a at 3.

Figure 14 takes ample sets as a starting point. For ample set Ample(l) = {b},
the corresponding set is en(l)\Amp/e(l) = {a}. As at that state only Sleep(l) = 0
is allowed. This also implies, that no sleep set reduction can remove a at 1.

4.3.3 Examples

Next, two examples of trace automata on runs that are generated by the ample set
algorithm are given.

38

d

Figure 15: Trace automaton on runs accepting the trace system 'Ii
d

@Y
c

(~ @
a a a

c c

d ®

Figure 16: Rcts and trace automaton on runs accepting trace system T{

Example 4.16 Figure 15 shows the trace automaton on runs accepting the trace
system Tl (see Example 2.4) of EN-system Nl of Figure 5.

Example 4.17 Consider EN-system Nl from which the transition b is removed.
Figure 16 shows an rats and trace automaton on runs accepting the trace semantics
(without interpretation) T{ of N 1 . Remember that this trace automaton is built
under the assumption that only concurrency fair executions need to be represented.

As mentioned in the introduction, only equivalence robust formulas are amenable
to this approach. This is due to the fact that some formulas of LTL-x can hold in
some, but not in all the equivalent maximal paths of models. Therefore, a model
checking algorithm using a reduced structure would give another answer that the
algorithm applied to the full structure.

Given a formula <p, it is possible to choose the independence relation such as to
ensure equivalence robustness. Namely, by restricting the independence relation I
in Fp whenever it is necessary to make equivalence classes of maximal sequences
small enough for <p to be equivalence robust.

An action a is said to be visible for a proposition q in a structure M p if there are
two states w,w' E W such that w ~ w' and Vp(w)(q) =f. Vp(w')(q). It is assumed
that for each proposition q appearing in <p it is possible to calculate efficiently the

39

set V is(q) s::: ~ of actions that'includes at least the visible actions for q. V is(10) is
defined as the union of all Vis(q) with q occuring in 10.

Firstly, a sufficient condition for 10 to be equivalent robust is given.

Lemma 4.18 If (Vis('f') x Vis('f'» n 1= 0, then 10 is equivalent robust.

The proof relies on showing that each two equivalent maximal paths
with valuation function restricted to propositions appearing in 10 are
equivalent up to stuttering, i.e, repeating the same state finitely many
times. This implies that they cannot be distinguished by any LTL-x
formula.

Next, I' can be defined as 1\ I<p, where I<p = Vis('f') x Vis('f'), which ensures that
10 can be checked over a gba with valuation function built over a trace automaton
accepting Tr(FJ,) with FJ, = (W,~, --+, I', wo).

However, it turns out that I<p can be even smaller than the one defined above.
This follows from the fact that equivalence robustness is preserved by Boolean
operators. (Notice that it is not preserved by temporal operators.)

Therefore, if 10 = 101 V 102 (or 101 /\ 102), then I<p can be defined as (~(<p1) x
~(<pd) U (~('f'2) x ~('f'2»' which is usually smaller than Vis('f') x Vis('f').

A strategy to define I<p as small as possible is to rewrite the formula 10 in an
equivalent form in which as many as possible boolean operators are not in the
scope of a temporal modality. This procedure can also be automated efficiently. It
is worth mentioning here that one should avoid striving for optimal rewriting as the
complexity of achieving such is N P - hard in the size of the formula.

Example 4.19 Notice that 101 = F(p2 V P4) is equivalence robust for MNl =
(F1, Vd of Example 4.1. Therefore, a trace automaton can be used instead of F1 in
the standard way for model checking. Such a trace automaton is shown in Example
4.16.

The method presented above has been shown to be much better than the standard
method when there is no very tight coupling between the concurrent components
of the system. As examples indicate model checking of LTL-x using trace automata
can be efficiently used in practical applications.

Remarks

An independent approach that achieves reductions has been developed by Valmari
[45, 46, 51]. It is comparable to the ample set approach in that reductions are
achieved by assigning stubborn sets to states, again based on static analysis that
fulfil a similar role as ample sets. It fundamentally differs from the ample set
approach in that these assignments are not based on trace theoretical ideas nor
seem to be reducible to such ideas.

40

5 Efficient Model Checking for a Subset of CTL

Model checking for CTL is linear in the size of the model acceptor and linear in
the length of the tested formula [3). However, as in the case of LTL, the number of
states of the model acceptor is frequently exponential in the number of EN-system
transitions. Moreover, also like for LTL, checking whether a CTL formula holds
for an EN-system (i.e., it is true in its model) was proved to be N P - hard in the
number of transitions of the EN-system. It is therefore unlikely that a polynomial
algorithm can be found.

In this section it is shown that the approach used to make model checking
more efficient for LTL can be adapted to CTL. Equivalence robustness is redefined
for CTL and reductions (trace automata) are redefined accordingly to respect this
equivalence.

Again, formulas should not contain next step operators. The subset of CTL
formulas satisfying this property is called CTL-x.

To start with, a standard method of CTL-x model checking is given, after which
it is shown how the model acceptors it employs can be reduced using trace automata.

5.1 Standard Approach

Let P be an EN-system and (T,I) be its trace semantics. Then, let Mp = (F, V)
be a model acceptor for the model M for (T,I) and ,p be a given formula to be
checked.

The method ofCTL-x model checking is inductive, i.e., starting from the shortest
and most deeply nested subformula'P of,p the algorithm labels with 'P these states
of M p , which accept traces at which 'P holds in M. Therefore, in case of checking
a one level less deeply nested subformula, it can be assumed that the states have
just been labelled with all its subformulas. This process ends when ,p is attached
to states; Mp 1= ,p iff,p is attached to the root. Notice that the information about
independent actions is not used.

Below, algorithms for labelling states of Mp are given.

Labelling p, -''P, 'P A /

Notice, that:

1. Mp, w 1= q iff V(w)(q) = true, for w E PV,

2. Mp, w 1= -''P iff not M p , w 1= 'P,

Mp, w 1= 'P A / iff M p , w 1= 'P and Mp, w 1= /.
Therefore, in the first case it is checked whether V(w) gives w the value true, in
the second case it is checked whether w has been labelled 'P and in the third case it
is checked whether w has been labelled 'P and /.

41

Labelling E(cpUi)

Observe that Mp, W 1= E(cpUi) iff there is a state v E Wand a sequence of states
WO, .•. , Wn E W such that W = Wo --+ ... --+ Wn = v and Mp, v 1= i, Mp, Wi 1= cp
for 0 ~ i < n.

Firstly, all the states at which i holds are labelled with E(cpUi). Secondly, the
algorithm goes backward using the relation --+-1 and labels all states at which cp
holds with E(cpUi)·

Labelling EGcp

Observe that Mp, W 1= EGcp iff there is a maximal path x starting at W such that
M p , v 1= cp, for each v on x.

Let W<p = {v E W I Mp,v 1= cp} be the subset of W, labelled cp. A strongly
connected component in W<p is any subset U ~ W<p satisfying one of the following
conditions:

• (\iv, v' E U): v --+* v' and v' --+* v, or

• U contains only one state that does not have any successor in W.

All the maximal strongly connected components in W<p are selected. Notice that
they are disjoint. Then, W is labelled EGcp iff W is labeIled cp and there is a maximal
strongly connected component U in W<p reachable from W by a path contained in
W<p.

5.2 Trace Approach

The idea is to use special kind of reduced model acceptors such they preserve all
CTL-x formulas. First, it is shown which conditions should be satisfied by two
model acceptors ensuring that the accepted models are CTL-x equivalent.

Let M and M' be two finite model acceptors.

Definition 5.1 ([2]) A relation ~ ~ W x W' is a stuttering equivalence between
M and M' if the following conditions hold:

1. Wo""'" wh,
2. ifw ~ w', then V(w) = V'(w') and for every maximal path 71" of M that starts

at w, there is a maximal path 71"' in M' t.hat starts at w', a partition B 1 , B2 ...
of 71", and a partition B'l, B' 2 .•. of 71"' such that for all j 2: 0, Bj and B' j are
nonempty and finite, and every state in Bj is related by ,~, to every state in
B'j and

3. the same condition as (2) interchanging 11" and M with 71"' and M'.

M and Al' are said to be stuttering equivalent, if there is a stuttering equivalence
relation between them.

42

Figure 17: Possibilities of reduction by not expanding a.

In [2] stuttering equivalence is defined using approximants _n. Because model
acceptors are finite, it is easy to see that the two definitions are equivalent.

In order to avoid frequent referring to the model accepted by a model acceptor,
the following convention is assumed: a formula 'P is said to hold in a model acceptor
M' (denoted M' F= 'P) if 'P holds in the model accepted by M'. A model checker
enables to decide this fact automatically for a formula and an acceptor.

Theorem 5.2 ([2]) Let'P be a CTL*-x formula. Let M and M' be two stuttering
equivalent model acceptors. Then, M F= 'P iff M' F= 'P.

The next task is to generate a smaller model acceptor which is stuttering equivalent
to the model acceptor Mp without first building Mp.

5.3 The Ample Set Algorithm

In the Section 4 two algorithms are given that generate trace automata preserving
LTL-x formulas interpreted over observations. Presently, it is only known how to
modify the ample set algorithm (see Figure 12) to generate automata preserving
CTL-x formulas. The following exposition is based on [11].

The idea is to sharpen the requirements on generated subsets of successor states
without changing the original ample set algorithm. Let Vis denote the set of visible
actions in E, i.e., Vis = UqEPv Vis(q). Note that if the formulas that need to be
checked are known, then in order to get better reductions one should take PV to be
the propositions occuring in these formulas only. The actions of E \ Vis are called
invisible.

To explain the restrictions imposed on the set Ample(w) let's assume first that
the full model acceptor Mp does not contain loops except for self loops. Definition
5.1 describes the cases in which the model generator M' resulting after removing
a transition from Mp is stuttering equivalent with M p . In Figure 17 we have
indicated the two situations in which the a-labeled transition need not be expanded
from state w in AI. This is the case when the states w" and w' are stuttering

43

equivalent (denoted w" ~ w') or when the states wand w' are stuttering equivalent
(w ~ w') in the full model M.

If w" ~ w' or w ~ w', then for each path 7r with the prefix w, w", there is a path
7r' with the prefix w, w' such that two partitions of 7r and 7r' satisfying Condition (2)
of Definition 5.1 exist. Notice that it is because of the absence of non-trivial self­
loops in M that the path 7r' cannot contain the transition w ~ w". If it could, M
would not need to be stuttering equivalent with M' since w ~ wIt is not present in
M'. Therefore, the full model M remains stuttering equivalent with the model M'
obtained after removing the transition w ~ w" from M.

As for ensuring wIt ~ w', no efficiently checkable condition is known that would
imply this. Indeed, the general problem is PSPACE-hard in the number of the
transitions of EN-system, as it depends on the sub graphs of nodes reachable from
w" and w'. Therefore, we concentrate on the second case: ensuring that w ~ w'.

First observe that by repeatedly applying the argument above, it follows that if

w ~ w' then it suffices to only have the transition w ~ w' from w in M' and ignore
the subtree of other transitions (indicated by the triangle in the figure). Hence, to
reduce most effectively, we concentrate on singleton sets and impose the following
constraint:

CO Ample(w) contains either all actions enabled in state w , or exactly one of
these; i.e., Ample(w) is a singleton.

The next condition will make sure that the execution of b does not change any
propositional variable used in 'P assigned to wand w', which is a necessary condition
for w I"oJ Wi.

In keeping with extant literature [32], this condition is called C2:

C2 If Ample(w) =f. en(w), the action in Ample(w) is not visible.

In formulating the subsequent conditions we use the fact that we have already
imposed conditions CO and C2.

The general problem of showing that w ~ w' still is PSPACE-harcl in the number
of EN-system transitions. So, we aim for a stronger condition: for every path 7r
starting in w there is a path 7r' starting in Wi that is the same up to invisible
actions. Now, consider 7r. As long as the actions along 7r are independent of b
there is no problem in constructing 7r' because independent actions commute, so
that these 7r-actions can still occur after the b-action. Dependent actions do cause a
problem because there is no way to ensure that such actions can still occur without
exploring all paths starting in w'. SO, we disallow this situation by stipulating that
such actions can only occur after the b-action has occurred.

Cl No action a E ~ \ Ample(w) that is dependent on the action in Ample(w) can
be executed in P before the action from Ample(w) is executed, i.e., Ample(w)
is a faithful set.

Now, consider the first action c along 7r that depends on b and let til be the state on 7r
from which c is taken. Since the b-action must have occured along 7r before reaching

44

Vis = {b,c}

d

"'0 (a,d) E I

(b, d) E I

(c,d) E I

Figure 18: Correct CTL*-x reductions

Vis = {d}

state 'Iii, commutativety of independent actions implies that the constructed prefix
of rr' ends in state 'Iii, from which c and, indeed, the whole sequence of subsequent
actions along rr can be taken.

Condition Cl occurs in many variations in LTL-x preserving reduction meth­
ods [18, 31, 45, 13]. The conditions Cl, C2 are sufficient to guarantee that the
reduced state graph will preserve any checked linear temporal logic property 'P [32].
The condition CO is sufficient for branching temporal logics.

An example of a reduction obtained by the algorithm using Ample(w) satisfy­
ing conditions CO, Cl, and C2 is shown in Figure 18, where the dotted arrows
correspond to transitions that are not expanded.

In the former section about efficient LTL model checking, as ample sets faithful
ones were taken. However, this guaranteed only correct reductions for the concur­
rency fair version of LTL-x.

In Figure 19, the branching point after the execution of the visible action a is
omitted in the reduction, which causes a distinction between the truth value of a
CTL-x property in the full model acceptor (left) in which it does not hold and the
reduced model acceptor (right) in which it holds.

Let M' = (F', V') be the model acceptor such that F' is a trace automaton on
runs generated by the ample set algorithm under the assumption that Ample(w)
satisfies CO - C2, and V' = VIW'.

Theorem 5.3 Mp and M' are stuttering equivalent.

Proof: See [11] o

The above theorem together with Theorem 5.2 guarantees that the result of
checking any CTL-x formula 'P over M p is the same as checking 'P over M'.

Several experimental results showing how substantial reductions can be obtained
by the ample set algorithm for LTL-x and CTL-x are shown in [11].

45

b
a

a
b

a
~a,b~ E I

a c
a,c E I

a

P P P

d e e

p,

Let 'P = AG((p /\ ~q) -> (AFq v AF~p)). Notice that M', w~ F 'P, but M, Wo If: 'P.

Figure 19: A reduction under Cl and C2 but not CO that does not preserve CTL-x

6 Model Checking for CTLp

The logic CTLp has been introduced in order to express and prove partial order
properties by model checking. Let's start the presentation with giving definitions
of decidability and model checking for a logic.

Decidability of a logic concerns the existence of an algorithm to determine sat­
isfiability of formulas. Such algorithm should decide the question: given a formula
'P, is there a model M such that 'P holds in M ? Model checking concerns the ex­
istence of an algorithm to determine satisfaction of formulas in given models. Such
algorithm should decide the question: given a formula 'P and a finite model acceptor
M', does 'P hold in the model M accepted by M' ? In Section 4, it has been shown
that if a logic has a decision procedure of a certain form, namely using a finite
structure representing all models, a model checking algorithm can be obtained in a
standard manner.

Unfortunately, CTLp turns out to be not decidable, so this route could not
be followed here. However, CTLp nevertheless does admit of a model checking
algorithm. In this section undecidability of CTLp is shown and a model checking
algorithm is presented.

The present exposition is based on the paper by Penczek [39].

6.1 Undecidability of CTLp

Undecidability of CTLp is proved using the fact that the recurring tiling problem
is known to be undecidable (see [15]). This problem concerns the existence of a
certain covering with patterned tiles of the grid w x w.

46

North

West East
T3

South

Figure 20: A compound tile c

It will be shown that the grid can be encoded as a CTLp frame and that the
covering can be encoded as a CTLp formula. The recurring tiling problem then
reduces to deciding the satisfiability of that formula.

To start with, the recurring tiling problem is stated. Let r be a finite set of
types of tiles such that for each T E r each side - North, East, South and West - is
assigned a number (N(T), E(T), SeT), and WeT), resp.). Let Co <; r 4 be a set of
compound tiles, i.e., big tiles, consisting of four tiles being put together as follows:
c = CTI, T2, T3, T4) E Co iff S(Td = N(T3), E(Td = W(T2), N(T4) = S(T2)' and
W(T4) = E(T3) (see Figure 20).

The idea is now to try to cover each lattice point with a compound tile in such
a manner that a certain pattern ensues.

For each c = (T1 ,T2 ,T3,T4) E Co, let U(c),R(c) <; Co, where U stands for Up
and Rstands for Right, with U(e) = {e' E Co I e' = (T,T',T1 ,T2), for some T,T'},
R(e) = {e' E Co I e' = (T2 , T, T4, T'), for some T, T'}. Let To, T, E r be two special
types. The problem is to find a compound tile assignment e : w x w --+ Co such
that for all i,j E w, c(i,j) E Co, c(O,O) E {e' E Co I c' = (T, T',To, Til), for some
T, T', Til}, e(i, j + 1) E U(e(i, j)), and c(i+ 1, j) E R(e(i, j)), and there are infinitely
many compound tiles in the leftmost column, which contain the tile type Tf. The
above formulation means that one has to find a compound tile assignment of the
lattice points in the plane such that if a point is assigned a compound tile c, then
the point just above is assigned a compound tile from the set U(c) and the point to
the right is assigned a compound tile from the set R(c), the beginning is assigned a
compound tile of a given subset of Co and the given tile type T, occurs infinitely
often in the leftmost column (see Figure 21).

Next, it is shown how to reduce the recurrent tiling problem to the satisfiability
of a CTLp formula. This is possible since CTLp formulas can characterize frames

47

r r
0 C . 1\ t, J + ., 0 ,

r
TJ T2

TJ T2 T2
0 (i,j)- (. 1 ;\ - t+ ,J,

T3 Ta

T T'
(0,0) 0 , 0 ,

To Til

Figure 21: The patterning requirements of a covering with compound tiles

(and models) of trace systems up to isomorphism (see Section 3.6).
To enable the encoding of the tiling problem into CTLp, a frame for CTLp that

is isomorphic with the grid w x w is defined.
Let ~ = {a,b} and I = {(a,b),(b,a)}. Consider the trace system T = [~·l. The

frameforT is defined as F = ({Wi,j I (i,j) E wxw},~,-+,wo,o}, where Wi,j ~ Wi',j'

'ff ., . 1 d" . d h 'ff ., . d" . 1
I Z = Z + an J = J an Wi,j -+ Wi',j' I Z = Z an J = J +

F is obviously isomorphic (up to the labels of transitions) with the grid w x w
(see Figure 22).

Let PV = {Gi I Ci EGo} U {Pa,Ph}, i.e., each compound tile Cj is assigned the
atomic proposition Gj. The atomic propositions Pa and Ph are defined to encode
the labels of transitions, which allows to define the labelled next step operators (see
Section 3.2).

Now it is possible to give a set of formulas of CTLp such that its conjunction is
satisfiable iff the recurring tiling problem has a solution.

The following CTLp formulas characterize F up to isomorphism.
(A):

1. AC(EXatrue /\ EXhtrue)

2. EF(EYatrue /\ EYbtrue)

1) expresses that two actions a and b are executed at each state. 2) says that a and
b are independent at some state. Thus, by the definition of independence relation,
a and b are independent at each state.

48

bf bf bf

Wa,2 a . WI,2 a I W2,2 a . ..

bf bf bf

Wa,l a . WI,1 a I W2,1 a • o.

bI bI bI

wO,o a • Wl,O a , w2,O a I ••

Figure 22: The frame F isomorphic with the grid w x w

The following formulas describe the tiling.
(B):

1. V{Ci I Ci = (T, T', To, Til), for some T, T', Til},

2. AG(V({Ci I Ci E Co}) /\ (MC, --+ -,Cj li"# j}»,

3. AG(f\({Ci --+ EXa(V{Cj I Cj E R(Ci)}) I Ci E Co})),

4. AG(I\({Ci --+ EXb(V{Cj I Cj E U(Ci)}) I Ci E Co}»,

5. AG(-,EYatrue --+ EF(-,EYatrue /\ V{Ci I type Tj occurs in compound tile
Ci} ».

1) expresses that the tile type T at the beginning is To. 2) enforces exactly one
compound tile at each point of the grid. 3) and 4) ensure that successors have the
right compound tile. 5) requires that the tile type Tj occurs infinitely often in the
leftmost column.

The recurring tiling problem has a solution iff the conjunction of the formulas
A) and B) is satisfiable. Therefore, the validity problem for CTLp is undecidable.

In fact, using the same method, one can show that iflabelled next step operators
can be encoded in the language of ISTL, then ISTL is not decidable as well [37].

49

6.2 NP-hardness of CTLp Model Checking

The model checking problem for CTLp is formulated as: given a formula 'f' and
given a finite model acceptor M', does 'f' hold in the model M accepted by M' ?

NP-hardness of CTLp model checking problem follows intuitively from the fact
that the logic allows to express properties about selected states of a path (by using
past operators over models which look like tree). Model checking problem for CTL
is of polynomial complexity, but CTL allows only for saying something about all
states or some state of a path.

Then, NP-hardness of CTLp model checking is proved using the fact that the
3-SAT problem is NP-hard. This problem concerns the decidability of certain propo­
sitional formulas, i.e., whether or not a model exists for which such formula holds.

It will be shown that this problem can be encoded as checking whether or not
some CTLp formula holds in some model and that the encoding is polynomial (in
fact, even linear).

Note that here a decidability problem in one framework is reduced to a model
checking problem in another framework.

It is proved that 3-SAT problem is polynomially reducible to determining
whether M F= 'f', for some CTLp formula 'f' and some model acceptor Af' of M.

To start with, the 3-SAT problem is stated. Let 'if; = bl II ... II bm be a boolean
formula in 3-CNF, i.e., bi = Ii, V li2 V Ii" for 1 ~ i ~ In, Iii = Xk or "'Xk for some k
such that 1 ~ k ~ n, where XI, ... , Xn are the propositional variables appearing in
'if;.

Next, it is shown how to polynomially reduce the 3-SAT problem to a CTLp
model checking problem.

Let M' = (F', V') be a model acceptor (see Figure 23), defined as follows:

• Let X = {Xi 11 ~ i ~ Il} u {xi 11 ~ i ~ Il}, Y = {Vi I 0 ~ i ~ Il}, where
XnY = 0,

• F' = (W',~, --+', I, w~), where

• W ' =XUY,E=XxYUYxX,I=0,

• --+' = {(Yi-I, (Yi-I, Xi), Xi), (Yi-I, (Yi-I, xD, xi), (Xi, (Xi, Vi), Vi),

(xi, (xL Vi), Vi) 11 ~ i ~ Il},
I-

• Wo - Yo,

• PV = {bi 11 ~ i ~ In},

• V'(Xi)(b j) = true iff Xi appears as a literal in bj ,

• V'(x:)(bi) = true iff "'Xi appears as a literal in bi,

• V'(Yi)(bj) = false, for 0 ~ i ~ nand 0 ~ j ~ In.

The following equivalence holds:

50

X' 1

Yn-l

Figure 23: The rats F' of the model acceptor M'

*) 1/; is satisfiable iff M F EF(EPb11l ... 11 EPbm),

where M is the model accepted by M'.

Yn

Each path represents one of the possible valuations of the propositional variables
Xi. Since the independence relation I = 0, the model accepted by JlI' is a tree.
Therefore, to satisfy 1/;, there must be one such path on which each bi is true
somewhere. As the number of states in the model acceptor is linear in the number
of propositions in the formula, this reduction is linear. Hence, model checking for
CTLp is NP-hard.

6.3 Model Checking for CTLp _

To ease the exposition, initially a restricted version of the logic, called CTLp_, is
considered which contains only CTLp formulas without nested past modalities.

Although CTLp_ seems to be a small extension of CTL, it turns out that all the
partial order properties discussed so far are expressible in CTLp_. Therefore it is
easy to see that t.he proof.s of undecidability and of NP-hardness of model checking
also hold for CTLp_.

Because of NP-hardness, only a one exponential model checking algorithm is
presented for the restricted logic. It is shown at the end of the section that the
algorithm can be extended for CTLp model checking.

Unfortunately, neither of the two known methods for model checking applied to
CTL* (LTL) or CTL, can be used directly in the Case of CTLp_.

The first known method, for CTL * model checking [8) or as encountered in
Section 4 for LTL model checking [20, 47], requires building a model structure for a
formula. It follows from the undecidability of CTLp that this is not possible now.

The second known method, as encountered in Section 5, is for CTL [3]. The
idea there is to iteratively label with progressively more complicated subformulas
of the formula (which is checked) the states of M' where these subformulas hold.
Showing where this methods fails in the present setting is used as an introduction
to the method presented here.

51

The problem is caused by the combination of past operators and partial order
semantics. As stated in Section 2.6, the requirements on an equivalence relation
used to construct a model acceptor are just that traces from one equivalence class
can neither be distinguished by their interpretation nor by their continuations. As
CTL formulas are only concerned with the future, a CTL formula then has the
same value on each trace of such class - which enables to decide whether or not the
formula should be added as a label.

The equivalence relation provides no such property for the prefixes of the traces
from one equivalence class. Indeed, as will be shown, CTLp_ formulas with past
time operators turn out to potentially evaluate differently on different traces from
one class - which makes it no longer possible to decide about adding such formulas
as labels. The solution is of course to sharpen the equivalence relation accordingly.

Contrary to what naively might be expected, this is not a simple extension of
the ideas from CTL. Herein lies the novelty of the approach presented as well as
the connection with trace theory.

To ease the understanding, it is first shown how the requirements on the equiva­
lence relation defined on the model need to be strengthened to accommodate CTLp_
and next how a model acceptor that satisfies these requirements can be constructed
directly from a given model acceptor, i.e., without referring to the model.

Let M' = (F', V') be the model acceptor of a model M built using an equiva­
lence relation as defined in Definition 2.19. There are two cases to be investigated,
corresponding to the past time operators EP and EY.

Consider two traces [abc] and [de!] such that they belong to the same equiv­
alence class and M, [abc] F p (then also M, [de!] F p). All actions are
interdependent.

1. Let M, [E] F p, M, [a] F p, M, [ab] F p, and M, [d] F ~p, M, [de] F p.

Then, EPp evaluates differently on M, [abc] than on M, [de!], but EYp eval­
uates to the same value on both.

2. Now, let 111, [Ell= p, M, [all= p, M, [abll= ~p, and 111, [d) 1= ~p, M, [del 1= p.

Then, EYp evaluates differently on 111, [abcl than on 111, [de!], but EPp eval­
uates to the same value on both.

To achieve that such formulas do not evaluate differently on one equivalence class,
the original equivalence relation is strengthened, by the following extra require­
ments.

Let M" be a new model acceptor, defined using an equivalence relation satisfying
the conditions as before plus the requirement that its acceptance function AG"
satisfies the following properties concerning the prefixes of traces, defined in terms
of AG': AG"(T) = AG"(T') implies

PI) AG'(! T) = AG'(! T'), and

52

P2) for each a E E, if l' = Tda], then 1" = THa) and AC'(TJ) = AC'(T{), for
TI,T{ E [E*).

PI) ensures that traces accepted by the same state in M" satisfy the same E P
formulas, whereas P2) ensures the same for EY formulas. In fact, AC" ensures
that each CTLp_ formula receives just one value on all traces accepted at the same
state.

The next task is to construct Mil directly from M' rather than define M" via the
model M. To see how this can be done, an equivalence relation EQ that provides
an AC" with the above properties is defined, again, firstly on the states Tr(F') of
the model M.

Let P(E) be the family of all subsets of E and one be the following function
one: Tr(F') ---t {tt,!!} such that one(T) = tt, if 11'1 = 1, and one(T) = ff, if
11'1:/= 1, where (tt stands for true and ff stands for false).

Now a function Rep: T1'(F') ---t 2W 'xP(E)x{tt,ff} is defined such that Rep(1') =
{(AC'(TJ), E(T2)' one(T2)) I 1'11'2 = T}. The intuitive meaning is as follows. AC'(TI)
records states of W' accepting the prefixes of T. E(1'2) records names of actions
which occur in the trace leading from the prefix to T. one(1'2) says whether that
trace contained one or more actions.

Then, using Rep, the equivalence relation EQ and its equivalence classes are
defined.

• l' EQ 1" iff Rep(1') = Rep(1"), for 1', 1" E T1>(F')

• [T)EQ = {T' E Tr(F') I l' EQ r'},

Let F" = (W", E, -">", I, w~) be the quotient structure of Tr(F') by the equivalence
relation EQ snch that the elements of W" are of the form Rep(1') for r E T1>(F')
rather than [T)EQ. It is shown in [39) that the acceptance function AC" for F"
satisfies the properties PI) and P2).

It is now shown that F" can be defined directly from F'. The following notions
simplify the rest of the construction.

• a function last: W" ---t W', such that last(w") = w', if (w', 0, f f) E w",

last(w") gives the state of AI' accepting the traces accepted by w" in Mil,

• a function emp : P(E) ---t {tt,!!} such that emp(fl) = tt, if fl = 0, and
emp(fl) = f f, if fl :/= 0.

The following partial function Next : W" x E ---t W" allows to construct for a
given w" E W" and a E en(w") the state reached in W" after executing a at w",

a

i.e., w" -">" Next(w", a) holds.

• Next is defined as: Next(w",a) = {(w',flU{a},emp(fl)) I (w',fl,q) E w"}U
{(w~,fl,q) I (w',fl,q) E w" and {a} x fl <;;; I}, for any w" E W" and
a E en(last(w")), where w~ denotes the state in W' reached after executing
a at w'.

53

The correctness of the definition of Next follows from the following special case of
Levi's Lemma for traces [24].

Lemma 6.1 For each r, TI, T2 E [I;*] and a E [I;] the following condition holds:

Ta = TIT2 iff

1) T2 = T"a and TI Til = T, for some Til E [I;*] or

2) TI = T'a, {a} x I;(T2) ~ I, and T'T2 = T, for some T' E [I;*] and [a] = a.

This lemma allows to represent N ext(w", a) as the union of two sets corresponding
to the conditions 1) and 2).

Construction of F"

The construction of F" is performed now inductively, in stages.
Let F{' = (W{',I;,0,I,w~), where W{' = {w~} and w~ = {(w~,0,ff)}. Now,

for each node w" of WE' - W/: 1 (with Wil' = 0) the algorithm adds all its
successors in W" and extends ---;', respectively. Let F/, = (W/" I;, ___ ;', I, w~) and
W 0 - W" W" TI F" - (W" ~ II I ") I i - i - i-l* len, i+1 - i+1' L.J, -+i+1' , Wo J W lere

• W/+ 1 = W/, U {Next(w",a) 1 w" E W i0, a E en(last(w"»)},

• ---;~I=---:' U{(wl,a,Next(w",a» 1 w" E W j0, a E en(last(w"»)}.

The construction stops at the least integer m with F::' = F::'+ I . It is easy to see
that F::' is isomorphic to F".
Then, the new model acceptor Mil = (F", V") is defined as follows:

• F" - (W" I; ---" I w") - " ,,0,

• VI(W")(q) = V'(last(w"»(q), for q E PV.

The complexity of building Mil is: 0(1---' 1 x IP(I;)I x 22xllV'lxlP(E)/).
Notice that for each subformula 'P of CTLp _ formula 'I/; and for each T, T' E T"(F"),
if AG"(T) = AG"(T'), then M, T F <p iff M, T' F <p. Therefore, W" E W" is labelled
<p (written Mil, W" F <p), if M, T F <p, for some T with AG"(T) = w'.

Obviously, for each subformula 'P without past operators, for each T, T' E Tr(F'),
if AG'(T) = AG'(T'), then M, T F <p iff M, T' F <p. Therefore, w' E W' is labelled
<p (written M', w' F <p), if M, T F <p, for some T with AG'(T) = w'.

Next, algorithms labelling the states of Mil are shown. The method is inductive,
i.e., given a formula 1/;, starting from its shortest and most deeply nested subformula
<p the algorithm labels with <p these states of Mil, which accept traces, at which
<p holds in.M. Therefore, in case of checking a less nested sub formula, it can be
assumed that the states have just been labelled with all its subformulas.

Firstly, the states of M' are labelled with all the subformulas of I/; which do
not contain past subformulas. Then, the states of AI" are labelled with all the
subformulas of 1/;. Below, algorithms for labelling states of AI" are given.

54

Labelling p, -'<p, <p A r, E(<pUr)

The algorithms have been shown in Section 5.

Labelling EY<p

Observe that M", w" F EY <p iff there is (Wi, fl, tt) E w" such that M ' , Wi F <p.

Labelling EP<p

Observe that M", w" F EP<p iff there is (Wi, fl, q) E w", such that M ' , Wi F <p.

Labelling EX<p

Observe that AI", w" F EX <p iff there is v" E W" such that w" -+" v" and
M", v" F <p. Therefore, the algorithm finds all the states at which <p holds and
labels all its predecessors with EX <p.

Labelling EG<p

Observe that M", w" F EG<p iff there is an observation x starting at w" such that
AI", v" F <p, for each v" on x.

Let W,;: = {v" E W" 1 M", v" F <p} be the subset of W", labelled <p. A strongly
connected component in W,;: is any subset U <; w,;: satisfying one of the following
conditions:

• ('iv, Vi E U): v ~II* Vi and v' -+"* v, or

• U contains only one state that does not have any successor in W".

Secondly, all the maximal strongly connected components in W,;: are selected. No­
tice that they are disjoint. Then, w" is labelled EG<p iff w" is labelled <p and there
is a ma.ximal strongly connected component U in W~ reachable from w" by a path
contained in W,;: and for all a E 1: there is v in U such that a is not enabled at v
or a is dependent with at least one action enabled at v and leading to a state from
U (i.e., U "contains" an observation).

6.3.1 Complexity of CTLp _ Model Checking

In order to handle an arbitrary CTL p _ formula 1fJ, the state-labelling algorithm is
applied to the su bformulas of 1fJ starting wi th the shortest and most deeply nested
one. Since 1fJ contains at most length(1fJ) different subformulas, the algorithm re­
quires time

O(length(1fJ) x 1-.,' 1 x IP(1:)1 x 22xIW'IXIP(E)I).

In [39], several improvements are defined to the algorithm that decrease its com­
plexity.

55

Example 6.2 [proving serializability] Below, it is shown how to prove serializability
of the trace system 72 of Example 2.5.

It is to be verified:

1. M2 F PI/\ P2 /\ P9 -> AF EP«p7/\ P2 /\ P9) V (PI /\ Ps /\ P9)),

2. M2 F AG[«P7/\ P2 /\ P9) V (PI /\ Ps /\ P9)) -> AF(EP(P7/\ Ps /\ P9)].

Since M2 is finite, it is taken as its model acceptor !lI~. Moreover, observe that in
this case M~' is equal to M~. Therefore, the states of M2 are labelled. The only
difficult task is to label the states of M2 with the formulas:

Fl = AF EP«p7/\ P2 /\ P9) V (PI /\ Ps /\ P9)),

F2 = AF EP(P7/\ Ps /\ P9).

It is shown how to do that for the formula Flo First notice that:
Fl == ..,EG..,EP<p, where <p = «P7/\P2/\P9) V (PI/\pS/\p9). Next, the states of
M2 are labelled wit.h EG..,EP<p.

• M2, tv F <p, if tv ~ [ala2a3] or tv ~ [b l b2b3].

• M2,tv F EP<p for all tv such that tv ~ T for T Ei [ala2a3] U i [b l b2b3].

• M2, tva is not labelled EG..,EP<p.

Thus, M2, tva F AF EP«p7/\ P2 /\ P9) V (PI /\ Ps /\ P9)). Consequently, M2, tva F
PI /\ P2/\ P9 -> AF EP«p7/\ P2 /\ P9) V (PI II Ps /\ P9)).

6.3.2 Extending Model Checking to CTLp

The presented method of model checking can be extended such that past formulas
can be nested.

Define a sequence of unfoldings !III, ... , !lIn, where !l11 = !II", n is the maximal
depth of nested past formulas in 1/;, 111;+1 is obtained from M; in the same way as
M" was obtained from M'. Then, the states of Mi are labelled inductively with
subformulas of 1/; containing the nested past formulas of depth at most i. Then,
M, tva F 1/; iff the beginning state of Mn has been labelled with 1/;. In the worst
case the complexity is eXPn(2 x IW/I x IP(~)I).

7 Proving Program Properties using ISTLp

As discussed in the introduction to this chapter, trace systems are special in that
they both enable very detailed modelling and also offer opportunities for abstraction.
Interleaving Set Temporal Logic* (ISTL *), the propositional version of which was
introduced in Section 3, enables to exploit both features. This leads to two separate

56

approaches; an example of both will be given. The part concerning expressiveness is
based on Peled and Pnneli's [34], the part concerning abstraction is based on Katz
and Peled's [18].

The need for verification by hand is most obvious where automated verification
is intrinsically impossible. This is foremost the case when properties of systems
are considered that concern potentially unbounded data. Finite state descriptions
no longer suffice there. Consequently, propositional logics, representing data values
as propositions, do not apply. The ensuing extension to first order logic precludes
automated verification.

To allow giving a trace semantics to programs with variables, trace systems are
used that support state variables. Propositional ISTL is then extended accordingly
to first order ISTL. Furthermore, past time modalities are added. The resulting
logic is called ISTLp. These extra modalities are, as will be seen, crucial for the
proof system. Following that, programs are introduced and the connection between
behaviour of programs and ISTLp formulas is made. Finally, a proof system, or, in
fact, two proof systems, for the program part are presented, corresponding to the
two different strengths of trace systems.

As the interesting features of the approach can already be demonstrated on
simple finite state examples, only such are presented.

7.1 Programs

Like before, interpreted trace systems are used as the basis for program behaviour;
interpretation is used in this case to accommodate state variables.

Because ISTLp is interpreted on models rather than on interpreted trace sys­
tems, the corresponding models wiII be taken as the semantics of programs.

Programs themselves are taken as quadruples consisting of an independence
alphabet, an ordered set of variables and the initial condition. Programs are defined
in a first order language .[interpreted over a first order structure A for which the
standard interpretation of the relation and function symbols is assumed.

An interpretation :J of a vector of variables Y is a mapping associating with

each variable y from Y a value :J(y) from its domain. Let 1 Y 1 denote the number

of variables in Y.
-Definition 7.1 A program P is a quadruple < '£, I, y , e >, where ('£,1) is an

independence alphabet, Y a finite vector of program variables and e a first order

formula with free variables from Y (the initial condition). Furthermore, with each

action a is associated a first order formula ena (the enabling condition) and a 1 Y 1-
tuple of terms fa (transformation function), satisfying the following consistency
requirements for each (a, b) E I:

• (ena(Y) 1\ enb(Y) -+ fa(Jb(Y)) = fb(Ja(Y))

(commutativity of independent actions),

57

• en.(Y) -+ (enb(Y) <--? enb(fa(Y)))

(independent actions do not influence each others enabledness).

The enabling condition ena holds if the action a is enabled, whereas the trans--formation function fa gives the new values to the variables of Y after executing
a.

The consistency requirements ensure that the effect of the actions on the vari­
ables is compatible with inverting the order of execution between adjacent indepen­
dent actions.

To simplify the exposition, the programs are restricted such that e uniquely

determines the value of y. The extension to the unrestricted case is straightforward.
It is easy to see, especially considering their semantics, that EN-systems (see

Definition 2.26) can be regarded as a special case of the programs defined above.
Therefore the running examples can again be used, as these have been shown, in
Section 2.3 to be expressible as EN-systems.

Semantics

The semantics of programs is defined in two steps: the interpreted trace system
corresponding to a program is defined and then the program semantics is given as
the model corresponding to that.

Definition 7.2 The interpreted trace system corresponding to a program

P =< ~,I, y,e >, is (T,I) where:

• T is the minimal set of traces over (~, 1) containing [c:] such that if T E T
and I(T) validates ena (a is enabled at T), then T[a] E T,

• I[c:] validates e and ifT[a] E T, then I(T[a]) = fa(I(T)).

Note that the consistency conditions in the definition of program ensures that I is
well defined.

Also note that the use of variables is quite different than in Section 3.4. The
concern there was to code into the state precisely the information needed to capture
transition labellings. The aim here is to capture for each action the effect on the
state variables - this mayor may not capture the transition labellings.

Definition 7.3 The semantics of a program P =< ~,I, y, e > is the model for
the interpreted trace system (T,T) representing the behaviour ofP.

This model is called the model for P.

7.2 First Order ISTLp

The definition of ISTL is extended to its first order version with past operators.

58

Syntax of first order ISTLp

Only two entries in the definition of ISTL, given in Section 3, change, as follows.

S1. if <p is a first order formula, then <p is a formula,

S3. if <p, ,p are formulas, then so are EX<p, EG<p, E(<pU,p), EY<p and EP<p.

EY is the backward step modality and EP denotes sometime in the past. As in case
of CTLp , only two past modalities are added to the language of ISTL. Extensions
with EH<p and E(<p5,p) are possible, but will not be discussed in this chapter.

Semantics of first order ISTLp

Because a first order version of ISTLp is considered, models are extended by the
first order structure A. Let (F, V) be the model for an interpreted trace system
(T,1), as defined in Section 3.1.5. Then M = (A, F, V) is the extension to first
order, i.e., for every world x E W, (A, Vex)) is a first order model on which formulas
without temporal operators can be interpreted.

Clause 51 below just states that then evaluation of non-temporal formulas is as
usual. Let F' = (W', I;, _', we) be a run of F. Clause 53 gives the semantics of
the two new entries in the syntax, where x E 11" and 0 is an observation of F'.

S1. x F <p iff (A, Vex)) F <p , for non-temporal <p,

S3. M, x F EY <p iff M, x' F 9, for some x' E W with x' - x,

M, x F EP<p iff M, x' F 9, for some x' E W with x' -* x.

As before, a first order ISTLp formula 9 is valid in a model M (written M FISTLp

<p) iff (A, FI, VI), We F <p, for all runs F' of F, where VI = VIW'.

Definition 7.4 A formula 9 is valid for a program P if it is valid in the model
(A, F, V) for P.

7.3 Proof Systems for Programs

When a logic is used to describe properties of programs that manipulate data, three
different parts can be distinguished accordingly in the proof system:

• the logic part - to deal with logical truth,

• the (data) domain part - to deal with domain properties, and

• the program part - to deal with program properties.

59

The program part is used to remove the references to the program from formulas.
The logic and domain part are then used to derive the truth of I. he resulting formulas.

Because of the incompleteness incurred generally for first order logics over in­
terpreted domains, only relative completeness can be achieved. This means that
applying the program part enables to reduce the proof obligation about the pro­
gram to proving validity of formula, without further reference to the program. The
validity of some of the resulting formulas then has to be given by an oracle. These
formulas could be temporal formulas, expressing a complicated mixture of proper­
ties of the data domain and the trace structure. As the incompleteness is really due
to the interpretation of the data domain in first order logic and the modal logic is
introduced primarily to express properties of the interdependency of actions, the
oracle should preferably be limited to first-order non-temporal formulas only. This
result is achieved for ISTLp, both in case of exploiting expressiveness as when
exploiting abstraction.

Rather than giving full proof systems, the present exposition is limited to the
relevant and novel aspects of the programming part of the two systems considered.

7.4 Proof System to Exploit Expressiveness

Linear Time Temporal Logic, as discussed in Section 3, uses sequences, i.e., paths, of
states as models. ISTL * uses observations of runs. The small discrepancy between
the set of paths and the set of observations generated by a program can be taken care
of by requiring the appropriate condition explicitly by means of the LTL formula

Fair = /\ (FGinden a -> GFexa),
aEE

where indena means that a is enabled and independent with the action which is
executed, eXa means that a is executed.

ISTL * can be viewed as extending Linear Time Temporal Logic in the sense
that an LTL formula Fair -> cp is equivalent to ISTL* formula Acp.

Considering proof systems, this means that ISTL formulas corresponding to
LTL-ones can be handled as these. Program proof rules for LTL can be found in
[22]. ISTLp formulas that exploit the extra expressiveness of ISTLp, i.e., do not
quantify over all observations but rather assert the existence of one, have no LTL
analogon. At present, complete proof rules are only known for certain, important,
classes of such formulas, namely, those of form

AG(cp -> EX1/;)

and
AG(cp -> E(¢U1/;))

as well as their past time counterparts.
A general strategy to prove eventuality properties is firstly to prove properties

that hold after one step and then, secondly, to combine these results. The crucial

60

I ,

proof principles for this approach, considering future time only, are discussed. The
most relevant rules of the approach are presented.

To focus thought, the exposition is exemplified on one of the running examples,
serializability. A trace is also, slightly abusing notation, used as a formula charac­
terizing the state after the execution of its actions. It is shown how to establish the
following formula:

AG([£] -+ EF([ala2a3] V [b 1b2 ba])).

To do so, one has to first show how to establish formulas of the form AG('P -+ EX1/;).

Proof Rule for AG('P -+ EX1/;)

The semantical meaning of AG('P -+ EX1/;) is: for every run, for every trace T in
that run satisfying '1', there is an action a such that T[a] is in that run and satisfies
1/;.

To establish this formula, it suffices to provide a set F of actions with the
following properties.

For each trace T satisfying '1',

• for each run which contains T, there is an action from F extending T within
the run;

• extended traces satisfy 1/;.

Such a set is called a forward intercepting set.

For the serializability example

• The formula to be established is AG([£]--+ EX([aJ)).

• The required set is {ad.

Runs are difficult to handle in a finitary way. Therefore, the first idea is to describe
the set of actions without having to consider runs. In order to do so, notice that the
observations of a run are equivalent modulo permuting independent actions. The
requirement about the set F can thus be expressed as follows.

For each trace T satisfying '1', for each extension, i.e., action sequence u such
that T[U] is a trace of the program (thus extending into all runs), one of the
following two options should hold.

(OK -Now). The extension contains some action a from F that can be permuted
to occur immediately after the original trace, i.e., for all b in u that precede
a,(a,b)EI.

61

(OK -Later). The extension is not yet long enough to contain an action of F but
t.here is some action from F that is concurrently enabled in the extension, i.e.,
T" l= en. and for all b in v, (a, b) E I. (Note that this option may hold for
all finite prefixes of an infinite sequence of traces without a ever be taken: in
that case the sequence is not an observation and nothing needs to be shown.
Also note that because of the consistency requirement.s a remains enabled
throughout v.)

For the serializability example:

• The first option covers the sequences al, bl al and their extensions .

• The second one covers bl , bl b2 and bl b2b3 .

An extension is called violating, if it contains no actions from F that can be per­
muted back to its beginning and has no concurrently enabled action from F. This
requirement can be formulated negatively as: there are no violating extensions.

Now, there are still infinitely many extensions to consider. The second idea is to
show that no violating extensions exist by providing a finite graph that generates
all potentially harmful candidates.

The nodes of the graph are of form Oi =< 'Pi, Fi >. The intuitive meaning is
the following. 'Pi is a first order formula that denotes which traces could have been
generated when arriving at this node. Fi indicates which actions from F are still
enabled at this node.

The edges of the graph carry the transitions that build potentially violating
extensions.

The structure of the graph is, intuitively, as follows.

1. The starting node allows all traces T such that T l= 'P and also enables all
actions from F.

2. For each node Oi, every enabled transition a rt Fi contributes to a potentially
violating sequence and therefore is present on the edge to some OJ. To comply
with the above intuition, the corresponding 'Pi then allows at least all traces
that are obtained by extending already generated ones by a. Also, just those
actions from Fi that can not be permuted back over a are removed from Fi
to yield Fi.

3. To keep the graph finite, it is required that different nodes have different sets
of enabled actions.

4. Extensions generated by such a graph are violating ones just if a node Oi is
reached where Fi = 0. Therefore, in that case 'Pi = false should hold.

5. At each state satisfying 'P every action a in F satisfies the weakest precondition
of.,p, wp.(.,p), i.e., is enabled and, if executed, yields .,p.

The corresponding proof rule is NEXT.

62

false, 0

Figure 24: Graph for the serializability example

Nl. Go = ('Po, Fa), such that AG('P -+ 'Po)

N2. If G i ~ Gj then ('Pi A ena) -+ wPa('Pj) and Fj = Fi - {b I (a, b) E D}

N3. If Gi #- Gj , then F; #- Fj

N4. If Fi = 0, then 'Pi = false

N5. AG('P -+ wPa(,p», for each a E F

AG('P -+ EX,p)

For the sel'ializability example, to establish AG([c]-+ EX([ad», the graph is shown
in Figure 24.

A proof rule for AG('P -+ EF,p)

The difference with the NEXT situation is that now ,p should be satisfied in the
present in any subsequent state rather than after the execution of a single action.

The idea is to establish in a novel inductive manner that some property 1j; holds
for every run for some observation in some future state. It turns out that just
applying induction forward in time, i.e., providing intermediate assertions EX,pi
that hold along observations serving as an induction path to the desired state and
together achieve ,p fails.

The reason is the implicit universal quantification over runs. Because of this,
where runs overlap, intermediate assertions that hold along the observation serving

63

as the induction path to the desired state for one run, may be required to also
hold for some second run (for which that observation was never destined to be the
induction path). There are situations that this requirement can not be met, i.e., in
which the straightforward approach fails. There are cases in which in some state
along the induction path of the first run no intermediate assertion can be found
at all, because the desired state in the second run can no more be reached. There
are situations that this is the case for all induction paths, i.e., situations where the
straightforward inductive approach fails.

Serializability again provides an example. To prove is:

The first intermediate assertion, suitable for the thick-lined run in the Figure 2,
would be AG([c:]--> EX[ad) (or, equivalently, AG([c:]- EX[bd)) - choosing [at] V
[bd would only worsen the situation.

The next step would then require AG([ad - EX[atbt]). Now the assertion for
the subsequent step, AG([atbd - EF([ata2a3] V [b tb2b3])), does not hold anymore.

Already at state [at] in fact only [ata2a3] is reachable anymore, satisfying the
requirement for only the thick-lined run. However, at this state the runs still overlap,
thus requiring extensions into both. It is evident, that no other choice of inductive
paths and corresponding intermediate assertions would escape this situation.

A closer analysis indicates how to overcome the problem.
As runs are directed, there must be some turning state further on in the second

run that

1. still can be reached and

2. from which, going backward, the desired state can be reached.

Now if only backward paths are used that subsume the origin where one started,
this implies that there is also a path from the origin along which the desired state
can be reached by just going forward. That the origin is subsumed is necessary,
as otherwise this approach might not be sound; only a forward/backward but no
forward path leading to the desired state might exist. The idea is to find an assertion
characterizing the turning stat.e and then t.o show that the desired st.ate can be
reached by st.andard induction applied forward as well as backward.

For the serializability example, from [ad, and also even from [atbt]' [ata2a3bd
and [b t b2b3ad can both be reached. From these states, there are backwards paths
to the desired [ata2a3] and [b tb2b3]. As [0] was the origin state, no subsystems need
be considered for the backwards paths.

That backward paths subsume the origin is achieved by changing for the back­
ward part to the subsystem rooted in the state where 'P held. In [34] this is formal­
ized, here jnst the notation to indicate this subsystem, P"" is borrowed.

The corresponding proof rule is FRBK.

Fl AG('P - EF-if;)

64

AG(tp -t EF.,p)

For the example, by repeated application of the rule NEXT and the use of, essen­
tially, variants of familiar future time temporal logic rules, Fl can be established:
AG([c]-t EF([ala2a3bd V [blb2b3ad)). Using similar backward rules, F2 is estab­
lished: AG([ala2a3bl] V [b lb2b3atl -t EP([ala2a3] V [b l b2b3])). The desired result
then follows directly by FRBK.

The need to go to a subsystem for the backward part can also be seen from the
example. Consider, for instance, starting from [all rather than [c]. Again a forward
path to [b l b2b3atl exists, as well as a backward one to [b lb2b3]. However, a path
from [all to [b l b2b3] does not exist.

7.5 Proof System to Exploit Abstraction

The first idea is that in certain cases to establish AG('I' -t AF.,p) for a program
it is sufficient to prove the weaker property AG(tp -t EF.,p). Namely, for certain
combinations of programs and properties. This might especially simplify proofs,
when for some convenient observations the desired property is easier to establish
than for others.

Unfortunately, the rules for proving EF-properties as discussed in the previous
section are still very complicated. The second idea is therefore, to simplify the rules
as well. Rules are simplified in the sense that they remain sound for all programs
and properties, but generally not complete. Of course again a, maybe different,
su bclass of programs and properties could be provided for which such rules are
complete.

The question of simplifying the rules is addressed first. Secondly, a class of
programs and properties is defined for which OF properties imply OF-ones. It
turns out that for this class the simplified rules are in fact complete.

The inevitability property of the second example program is used to illustrate
the approach.

A simplified rule for AG(tp -+ EF.,p)

To limit the number of actions to be considered when iteratively assessing repre­
sentative sequences, for each state T a subset HT of helpful actions is defined.

The idea is to find a set of actions that are helpful in that in any state satisfying
'1', each of them yields .,p. The set should also be such that in each run there is an
observation where such an action is executed at the right moment, i.e., in a state
where 'I' holds.

65

The former requirement will be seen to be incorporated in the premises of a
proof rule. The latter requirement is achieved by the following definition, provided
that an action from the set is continuously enabled.

Definition 7.5 A faithful decomposition of a program in a state T is a subset of
actions 1iT ~ E such that each action in its complement, 1iT> is either independent
of each action in 1iT or disabled in T and its successors as long as no action from
1iT is executed.

Let faithful(\0, 1i) denote that 1i is a faithful decomposition in each state satis­
fying \0.

The idea is then to establish AG(\O -+ EF1/J) as follows. Find a set 1i with the
following properties.

1. To ensure availability of helpful actions, 1i should be faithful for \0.

2. To ensure enabledness of a helpful action, there should be an action a in 1i
that is enabled if \0 holds.

Furthermore, the following should hold about this action.

3. Actions from the faithful set that are independent from a need not be helpful
themselves, as they leave a enabled - they should leave \0 true though, as
otherwise a might not yield 1/J anymore. Of course, if" perchance" they yield
the desired 1/J, this is allowed too.

4. Actions from 1i that are not independent from a, for instance a itself, should
yield 1/J. This is required, because such actions might disable actions from 1i.

This leads to the following rule.

EVENTUAL

E1. faithful(\O,1i),

For some a E 1i,

E2. AG(\O -+ ena);

E3. for each bE 1i such that (b,a) E I,AG((\O/\enb) -+ WPb(\O V 1/J));

E4. for each bE 1i such that (b, a) rt. I, AG((\O /\ enb) -+ WPb(1/J))

AG('P -+ EF1/J)

66

Using this rule to prove AG(-,(a E E(r)Vb E E(r)) -+ EF(a E E(r)Vb E E(r)))
for the inevitability example, faithful(-,(a E E(r)Vb E E(r)), {a, b, c, d}) is chosen.

The premises of the EVENTUAL rule are then fulfilled:

El. {a,b,c,d} is trivially faithful, as {a, b, c, d} = 0

Choose a as the special action in {a, b, c, d},

E2. indeed a is enabled if it and b have not occurred yet;

E3. the actions from {a, b, c, d} that are independent of a, i.e., c and d, preserve

-,(a E E(r) V b E E(r));

E4. the only action from {a, b, c, d} that is not independent of a, b,

yields (a E E(r) V b E E(r))

AG(-,(a E E(r) vb E E(r)) -+ EF(a E E(r) V bE E(r)))

A condition under which replacement of E by A is allowed

To allow E in EF,p to be replaced by A, the following should hold for the com­
bination of program P and properties 'P and,p. For each run, there cannot be
observations 01 and 02 starting from a state ro where 'P holds such that ,p holds
eventually in some state rl on 01, but -,,p continually holds on 02. From this, a
sufficient, more manageable, condition is now argued.

Assume such an offending pair of observations exists. Because 01 and 02 are
observations of the same run, there is a state r2 on 02 that is reachable from rl.

The resulting path PI from ro to r2, shown in Figure 25, and the path P2 from
ro to r2 on 02 form a large diamond, and hence are equivalent. Therefore, P2
can be transformed into PI by repeatedly exchanging the order between adjacent
independent actions - "flipping". Always flipping the lowest of such pairs, one of
these flippings will cause, on a prefix of P2, the first occurrence of a state where ,p
holds. Hence there exists a diamond on 02, defined as follows.

Definition 7.6 An offending diamond for ,p is a state in which -',p holds, with two
immediate successors r' and r", generated by two independent actions a and b. The
state r' satisfies ,p and the state r" satisfies -,,p. Furthermore, the b-successor of
r', which is also the a-successor of r", satisfies -,,p.

This leads to the following theorem (see Figure 25).

Theorem 7.7 The non-existence of offending diamonds is sufficient to ensure that
AG('P -+ EF,p) implies AG('P -+ AF,p).

67

TO

Figure 25: An offending pair and an offending diamond

For the inevitability example: There exists no offending diamond, as once the
program establishes a E L(T) V b E L(T), this can not be made undone.

Therefore, AG(~(a E L(T) V bE L(T)) -> AF(a E L(T) V bE L(T))) has now
been shown.

For the class of programs and properties defined by the requirement that no
offending diamond exists, the EVENTUAL rule (together with the other rules) is
complete in the following sense. If 1l = L is chosen, the rule reduces to the LTL
rule to prove AG(I" --> AF'Ij;). For the restricted class of programs and properties,
this is exactly what the EVENTUAL rule achieves.

8 Axiomatization of a Subset of Propositional
ISTLp

In this section, a complete infinitary proof system for a subset of propositional ISTL
with past operators is presented.

In Section 6, it has been shown how to reduce the validity problem for CTLp to
the recurring tiling problem. This proof also goes through for ISTLp, because the
grid encoded has the forward-diamond property and ISTL with past operators is at
least as expressive as CTLp over such models. The complexity of the recurring tiling
problem, and thus also of the validity problem, is known to be nt-hard. Hence,
a complete finitary axiomatization of ISTLp does not exist. This motivates the
presence of infinitary rules.

In what follows, only trace systems with infinite runs are dealt with. This
inessential restriction allows to consider only infinite models for ISTLp and admits

68

of a simpler axiomatization.
The part of the proof system concerned with characterizing the logical operators

is standard, as for CTL with past and labelled operators.
The part of the axiom system concerned with characterizing models is obtained

as follows. A frame for ISTLp corresponds to a run of a trace system. Properties of
ISTLp frames given in Lemma 2.11, where the forward-IF-diamond property C4 is
strengthen to the forward-diamond property b) of Definition 2.12, are axiomatized.
The only property which cannot be expressed in the logic and therefore axiomatized
is C1.

The present exposition is based on the paper by Penczek [38], where the complete
proof system has been given for a subset of ISTLp extended with the past formulas
of form EH <p and E<pSI/;.

8.1 Proof System for ISTL'p

As an intermediate step, a proof system is given for the logic ISTL'p which is like
ISTLp except for the fact t.hat the forward path quantifiers range over maximal
paths rather than over observations, i.e., in the semantic rule S3 of ISTL the word
"observation" is replaced by "maximal path" .

The current literature is followed in that a proof system is given for the floating
version of the logic, i.e., the logic with validity (denoted F!) defined over all models
and all states. Both (floating and anchored) versions are of the same expressive
power, and a proof system for either one can be used as a proof system for the
other, using the following translation rules.

1. F I/; iff F! AYfalse --; 1/;,

2. F! I/; iff F AGI/;.

1) says that ..p holds in all models at the beginning states iff AY false --;..p holds in
all models at all states. Note that the formula trivializes at all but the beginning
state. 2) expresses that I/; holds in all models at all states iff AGI/; holds in all
models at the beginning states.

Denote by:

• EXi('P) d~ 'P /\ EX('P /\ EX('P /\ ... EX('P) ...)

(the operator EX occurs i times, for i ~ 0),

• EXO('P, 1/.') d~ ..p, EXi('P,..p) d~ 'P /\ EX('P /\ EX('P /\ ... EX(..p) ...)

(the operator EX occurs i times, for i ~ 1),

de! T de!
• EX,'P = 'P, EXu'P = EXa,EXa, ... EXa.'P, for u = ala2···an·

de!
• I(a,b) = EPEF(EYatrue/\EYbtrue),fora::j:b, a,bE'E.

I(a, b) expresses that the actions a and b are executed independently in the model.

69

Axioms

AI. all formulas of the form of tautologies of the classical prop. calculus

A2. EG'P = 'P II EX(EG'P) (fixed-point characterization of EG)

A3. E('PU1j;) = 1j; V ('P II EX(E('PU1j;))) (fixed-point characterization of EU)

A4. EP1j; = 1j; V EY EP1j; (fixed-point characterization of EP)

A5. 'P -+ AXaEYa'P (relating past and future)

A6. 'P -+ AYaEXa'P (relating past and future)

A7. EXtrue (infiniteness)

A8. EP(AY false) (beginning)

A9. EXa('P 111j;) = EXa('P) II EXa(1j;) (forward determinism)

AlD. EXaAXb'P -+ AXbEXa'P, for a # b (forward-diamond property)

All. (l(a, b) II EXaEXb'P) -+ EXbEXa'P (concurrency closure property)

A12. EYa('P 111j;) = EYa('P) II EYa(1j;) (no auto-concurrency)

A13. EYaAYb'P -+ AYbEYa'P, for a # b (backward-diamond property)

Proof Rules

MP. 'P, 'P -+ 1j; f- 1j; (modus ponens)

Rl. 'P -+ 1j; f- EXa'P -+ EXa1j;

R2. 'P -+ 1j; f- EYa'P -+ EYa 1j;

R3. {I/> -+ EXuEXi('P)}iEW f- I/> -+ EXuEG'P, for u E I;*

R4. {EXuEXi('P,1j;) -+ I/> hEW f- EXuE('PU1j;) -+ 1/>, for u E I;*

R5. AY false -+ AG'P f- 'P.

M P is the standard modus ponens rule. RI and R2 are rules expressing deductive
closures. R3 and R4 are infinitary rules characterizing EG and EU. R5 character­
izes the beginning state.

The "only if' part of the following lemma is used to prove that R3 and R4
preserve validity.

Lemma 8.1 For every model M and each state w,

(a) M, w F= EG<p iff M, w F= EXi(<p), for each i E w,

(b) M, w F= E('PU1j;) iff M, w F= EXi(<p, 1j;), for some i E w.

70

Proof: a) (~) follows directly from the definition of the temporal operator EG.
Since E is finite, each state in M has only finitely many successors. Therefore,

a) (¢=) follows from Konig's lemma.
b) similarly follows directly from the definitions of the operators EU and

EX i (.,.). 0

Note that the use of maximal paths rather than observations is crucial here; the
right hand sides of the two clauses guarantee the existence of a maximal path, but
not necessarily of an observation.

Theorem 8.2 The proof system is sound (i.e., I- 'P implies t=I 'P)'

Proof: It is easy to check that the axioms are valid and the proof rules preserve
validity. For the rules R3 and R4, this follows from Lemma 8.1 and the forward
determinism of frames. 0

Completeness of the Proof System for ISTL'p

The construction in this section builds a model for a consistent formula. An outline
of the construction is as follows:

• The Lindenbaum-Tarski algebra for the logic is built.

• The infinite operations, say Q, corresponding to the in finitary rules are defined
in the algebra.

• Q-filters in the algebra are defined. These are then used as worlds of the
model.

• The model is built. The axioms are used to prove that the model is isomorphic
with a run.

Let. - ~ Form x F01'm be the following relation: 'P - 1/; iff I- 'P = 1/;.
Note that - is a congruence with respect to all the logical and modal operators.

Let Form/ - denote the set of all equivalence classes of -. Elements of Form/ -
are denoted as follows ['P), [1/;), ".

Definition 8,3 The Lindenbaum-Tarski algebra for ISTL'p IS a 6-tuple LT A
(Form/ -, U, n, -, [true), (fa.lse]), where

• ['P] U [1/;] = ['P V 1/;),

• ['P] n [1/;] = ['P 1\ 1/;),

• -['P] = ["''P].

Theorem 8.4 The Lindenbaum- Tarski algebra LTA satisfies the following condi­
tions:

71

1. LTA is a non-degenerate Boolean algebra,

2. I- 'I' iff ['1'] = [t7'ue],

3. r; 'I' iff [-''1'] :j:. [false].

The proof of the above theorem is standard and can be found in [40] (p. 257).
Let ~ be a partial ordering in Form/ ~ x Form/ ~, defined as follows:

['1'] ~ [l/I] iff I- 'I' -+ l/I.

Lemma 8.5 In the algebra LT A the following conditions hold:

(a) [EX"EG'P] = inj;Ew{[EX"EXi'P]L foru E E',

(b) [EX"E('PUl/I)] = SUPiEw{[EX"EXi('P, l/I)]}, for 11 E E'.

Proof: Follows from axioms A2, A3, and rules R3 and R4.

Let Q denote the following infinite operations in the algebra LT A:
infiEw{EX"EXi(.)}, and SUPiEw{EX"EXi (., .)}, for u E E'.

o

Definition 8.6 A Q-filter in LT A is a maximal proper filter A which satisfies the
following conditions:

• if [EX"E('PUl/I)] E A, then there is i E w such that [EX"EXi('P, l/I)] E A,

• if [EX"EG'P] ~ A, then there is i E w such that [EX"EXi'P] ~ A.

Notice that the number of infinite operations is enumerable. The following standard
result is assumed (see [40]).

Lemma 8.7 If a set Q of infinite operations in a Boolean algebra is at most enu­
merable, then every non-zero element of the Boolean algebra belongs to a Q-filter.

Complet.eness can now be argued.

Theorem 8.8 The proof system is complete (i.e., F/ <P implies I- ¢).

Proof. (sketch)
It is shown that if r; ¢, then t.here is a model for -'¢, which by contraposition implies
that t.he theorem holds. Let U F be the family of all ultrafilters in the algebra LT A
and QF <;;; U F be the family of all Q-filters in LT A. Define the following relation
in U F x E x U F:

• D -!F D' iff {[EXa'Pll ['Pl E D'} <;;; D.

The following lemma is needed in order to build a required model for -'¢.

Lemma 8.9 If D is a Q-filter and [EXa'P] E D, then there is the Q-filter D' S.t.

D-!FD' and['P]ED' .

72

Proof: Using the standard construction method (cf. [40]), an ultrafilter D' can
be built s.t. D ~F D' and ['f'J ED'. To show that D' is a Q-fiIter, assume that
[EXuE(,pU</»J ED'. Then, by definition of ~F' [EXaEXuE(,pU</»J ED. Since D
is a Q-filter, there is i E w such that [EXaEXuEXi(,p, </»J E D. Therefore, by A9,
[EXuEXi(,p, </»J ED'. To complete the proof that D' is a Q-filter, assume that
[EXuEG,pJ fj. D'. Then, by definition of ~F' [EXaEXuEG,pJ fj. D. Since D is a Q­
filter, there is i E w such that [EXaEXuEXi,p] fj. D. Therefore, [EXuEXi,p] fj. D',
which proves that D' is a Q-filter.

It follows from A9 that D' is the only ultrafilter s.t. D ~F D'. 0

Then, if If </>, then, by R5, If AY false ---- AG</>. Then, by Theorem 8.4,
[AY false i\ ..,AG</>] =I (false]. Therefore, by Lemma 8.7, there is a Q-filter C E QF
such that [AYfalse] E C and [EF(..,</»] E C. Next, the structure F = (W, I;, ----, C)
and the structure M = (F, V) is defined as follows:

eW={DEQFI3D1, ... ,Dn EQF, D1----F ... ----FDn , D1=C, Dn=D},

e ---- = ----F n (W x I; x W),

e q E V(D) iff [qJ E D, where q E PV and DEW.

Now, the proof can be completed.

Lemma 8.10 The following conditions hold:

a) F is a frame for ISTLp,

b) For each I'" E Form, DEW: M, D F= I'" iff [ep] E D.

Proof: a) All the conditions stated in Lemma 2.11, where the forward-IF-diamond
property C4 is strengthen to the forward-diamond property b) of Definition 2.12,
hold for F.

e C1 holds by the definition of W; F is infinite by A7,

e For 2 ~ i ~ 7, Ci holds by the axiom Ak, where k = i + 6.

b) The proof is by induction on the complexity of a formula I'" using a well-founded
relation in the set of formulas. 0

Therefore, M is a model containing a state satisfying "'</>, which completes the
proof of completeness.

8.2 Proof System for a Subset of ISTLp

In the original semantics of ISTLp, the quantifiers E and A range over observations
rather than over forward paths. It is now shown that a small modification of the
proof system for ISTL' p leads to a complete proof system for the subset of ISTLp

without formulas of the form EG'f', but with the formulas of the form E(IOU </» and
A('f'U</».

73

Let Ao and Eo denote the quantifiers ranging over observations. Eo(<pU1/;) and
Ao(<pU1/;) can be expressed in the defined language and therefore derived using the
proof system.

Firstly, observe that M, w F Eo(<pU1/;) iff M, w F E(<pU1/;). Unfortunately,
the analogous property does not hold for Ao(<pU1/;). This problem can be solved
as follows. Select a proposition Cf E PV and add the following three new axioms
characterizing its values in the models:

AO"!. AY false --+ 0",

A0"2. 0" --+ EX!O" /\ (AY false V EYiO"),

de' ~ de' where EX!Cf = WaEE EXaO", EYiO" = EBaEE EYaO".

A0"3. EFO".

The axioms AO"l-2 express that 0" holds in exactly one path in the model. A0"3
ensures that the path at which 0" holds is an observation, namely, by stating that
it is cofinal with the run.

Now, the formulas of the form Ao(<pU1/;) are shown t.o be expressible in t.he
defined language:

Theorem 8.11 The following equivalence holds:

where 1/;, 'P and 1/; do not contain 0".

The proof of (¢=) follows from the fact that the formula ('PU 1/;) must hold in each
model at the observat.ion marked 0". Since for each run and each it.s observat.ion
there is a model in which this observation is marked 0", (<pU¢) holds in all models
at all observations.

In order t.o express formulas containing several subformulas of t.he form
Ao('P;U¢;), for each of them a special proposition 0"; has to be selected and three
new axioms for 0"; 1 are added, as above.

Therefore, the extended proof system contains a complete axiomatization of
ISTLp without formulas of the form EoG<p.

Moreover, it follows from the completeness theorem that the set of theorems of
the axiomatized fragment of ISTL is at most IIi. Therefore, the validity problem
for this subset is TIl-complete.

The given proof system for ISTLp can be adapted to a proof system for CTLp
[38] by strengthening AlO to the axiom

(l(a, b) /\ EXaAXb<P) --+ AXbEXa'P, for a f; b (I-diamond property).

74

9 Conclusions

Except for the introductory material, the table below follows from the organiza­
tion of the material in this chapter. The possible entries generated by the tabular
presentation provide some guidance to assess the state-of-the-art. In the following
table?? indicates current absence of a result; - indicates that a slot can not be
filled in a meaningful way.

model checking proof rules
logic standard efficient decidable axiomatization standard efficient

LTL YES YES YES YES YES YES
CTL YES YES YES YES YES ??
CTL* YES YES YES ?? ?? ??

ISTL ?? - ?? ?? ?? -
ISTL* ?? - NO ?? ?? -
ISTLp ?? - NO YES YES -
ISTL*p ?? - NO ?? ?? -
CTLp YES - NO YES ?? -
CTL*p ?? - NO ?? ?? -

The linear temporal logic LTL and its extension CTL* that enables to identify for­
ward branching points are conventional temporal logics in the sense that they do not
address partial order properties. The restriction CTL of CTL * is included because
in that case the complexity of standard model checking is linear. The information
about the existence of standard model checking procedures, axiomatizations, deci­
sion procedures and program proof rules for these logics is included in the table not
so much because of direct relevance to partial order considerations, but to provide
a somewhat wider context. Most of the results are discussed in [6].

As shown in Sections 4 and 5, partial order techniques can make model checking
more efficient for these logics without next step operators. Note that efficient model
checking is based on the idea that logics can only distinguish up to permutations of
independent actions, plus that in case of CTL also branching points are relevant.
Formulas can therefore be checked over any acceptor that respects the correspond­
ing equivalence. The independence of actions is thus only used for reducing the
acceptors; the logics considered are not partial order logics themselves. Because
of the very fact that the logics ISTL and CTLp and their extensions do enable
to distinguish between permutations, efficient model checking is not an option, as
indicated in t.he t.able. IVlethods based on ample sets as well as on sleep sets are
presented for LTL. The adaptation of the ample set approach for CTL (and, as only
reducing acceptors is involved, also for CTL *) is quite recent; the sleep set direction
has not yet been explored.

The same remark about enhancing efficiency as made in the case of model check­
ing applies in principle to program proof rules: It is the efficiency of proving LTL
formulas about programs that is enhanced, again the approach does not apply for
ISTL* and CTLp. There is a difference though, in that model checking is a semantic

75

activity but proving formulas occurs at the syntactic level. Therefore, independence
of actions cannot be hidden in the model but needs to be present in the proof sys­
tem. So in fact proving an LTL formula efficiently amounts to proving a formula
from a subset of ISTL * formulas. The table indicates what is in fact achieved:
efficient proving of LTL formulas about programs.

Program proof systems for branching time logics were slow to develop. The
proof system Fix and Grumberg provide for fair CTL [9] is the first result in this
area. Whether or not simplifying proof rules for CTL and extensions to CTL * are
feasible remains yet to be seen.

ISTL * extends the expressive power of LTL by enabling to explicitly mention
representatives of runs, i.e., exploit independence of actions. ISTL * p [34] is an
extension ofISTL* with CTL*-like nested past operators. As discussed in Section
7, on the one hand syntactically restricted and on the other hand extended, namely
with past operators, version ISTLp, admits of an axiomatization and program proof
system. In the absence of the past operators, i.e., for ISTL, no results are available.
The program proof rules and axiomatization for ISTLp is still incomplete in that it
does not cover formulas of form EG<p. The relevance of such formulas for expressing
properties of programs is still a matter of debate, though. CTLp extends the
expressive power of CTL by enabling to identify backward branching. This enables
to express independence of actions; together with the capability to identify forward
branching already present in CTL, properties of runs can be described, be it in a
less direct manner t.han in t.he case ofISTL *. Note that in the case of bot.h ISTLp
and CTLp the axiomatizations are infinitary.

The results in Section 6 about CTLp are that this logic, exploiting the expres­
siveness of the trace approach, is undecidable but that NP-hard model checking
applies; a one-exponential algorithm is presented for a restricted version without
nested past operators.

Some other options are the following. LTL extended with past operators is
not discussed, as the interpretation over sequences causes the expressiveness to
remain the same as for LTL. QISTL [17] and CCTL [35] can be viewed as ISTL-like
extensions of branching rather than linear time logics. As both logics are quite
involved and their practical relevance is yet to be assessed more fully, these are
not included in the table. A perhaps somewhat less obvious but interesting new
direction is proposed by Thiagarajan in [44]. The main idea there is to interpret
a multi-agent linear temporal logic over independence graphs of infinite traces.
This approach is motivated by the aim to connect decidability and model checking
problem for the logic to testing for non-emptiness of asynchronous Biichi automata.

76

References

[I) M. Bednarczyk, Categories of Asynchronous Transition Systems, PhD thesis,
University of Sussex, 1987, Available as Report 1/88, School of Cognitive and
Computing Sciences, University of Sussex.

(2) M. C. Browne, E. M. Clarke, and O. Griimberg, Characterizing finite Kripke
structures in propositional temporal logic, Theoretical Computer Science,
59:115-131,1988.

(3) E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of
finite state concurrent systems using temporal logic specifications: A practi­
cal approach, ACM Transactions on Programming Languages and Systems,
8(2):244-263, 1986.

(4) M. Droste, Concurrency, automata and domains, In M. S. Paterson, editor,
Proceedings of the 17th International Colloquium on A utomata, Languages
and Programming (ICALP'90), Warwick (England) 1990, number 443 in Lec­
ture Notes in Computer Science, pages 195-208, Berlin-Heidelberg-New York,
1990, Springer.

(5) V. Diekert, P. Gastin, and A. Petit, Rational and recognizable complex trace
languages, Information and Computation, to appear.

(6) E. A. Emerson, Temporal and modal logic, In J. van Leeuwen, editor, Hand­
book of Theoretical Computer Science, volume B, chapter 16, pages 995-1072,
Elsevier Science Publisher B. V., 1990.

(7) E. A. Emerson and J. Y. Halpern, Decision procedures and expressiveness
in the temporal logic of branching time, Journal of Computer and System
Sciences, 30:1-24, 1985.

(8) E. A. Emerson and J. Srinivasan, Branching time temporal logic, In J. \\'.
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Time, Branch­
ing Time and Partial Order in Logics and Models for Concurrency, number
354 in Lecture Notes in Computer Science, pages 123-172, Berlin-Heidelberg­
New York, 1988, Springer.

(9) 1. Fix and O. Grumberg, Verification of temporal properties, Technical
Report TR 93-1368, CS Cornell Univ., Ithaca NY, Aug. 1993.

[10) P. Gastin, Infinite traces, In I. Guessarian, editor, Proceedings of the Spring
School of Theoretical Computer Science on Semantics of Systems of Con­
current Processes, number 469 in Lecture Notes in Computer Science, pages
277-308, Berlin-Heidelberg-New York, 1990, Springer.

(11) R. Gerth, R. Kuiper, D. Peled, and W. Penczek, A partial order approach to
branching time logic model checking, In Proceedings of the Israeli Conference
on Theoretical Computer Science, 1995.

77

[12] P. Godefroid, Using partial orders to improve automatic verification methods,
In E. M. Clarke, editor, Proceedings of the 2nd International Conference on
Computer-Aided Verification (CAV '90), Rutgers, New Jersey, 1990, number
531 in Lecture Notes in Computer Science, pages 176-185, Berlin-Heidelberg­
New York, 1991, Springer.

[13] P. Godefroid and P. Wolper, A partial approach to model checking, In
Proceedings of the 6th IEEE Symposium on Logic in Computer Science, pages
406-415, 1991.

[14] U. Goltz, R. Kuiper, and W. Penczek, Propositional temporal logics and
equivalences, In W. R. Claveland, editor, Proceedings of the Third Inter­
national Conference on Concurrency Theory CONCUR '92, number 630 in
Lecture Notes in Computer Science, pages 222-235, Berlin-Heidelberg-New
York, 1992, Springer.

[15] D. Harel, Recurring dominoes: Making the highly undecidable highly under­
standable, Annals of Discrete Mathematics, 24:51-72, 1985.

[16] S. Katz and D. Peled, Defining conditional independence using collapses, In
M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas, editors, Semantics for
Concurrency, Workshops in Computing, pages 262-280, Berlin-Heidelberg­
New York, 1990, Springer.

[17] S. Katz and D. Peled, Interleaving set temporal logic, Theoretical Computer
Science, 75(3):21-43, 1991.

[18] S. Katz and D. Peled, Verification of distributed programs using representative
interleaving sequences, Distributed Computing, 6:107-120, 1992.

[19] M. Kwiatkowska, Fairness for non-interleaving concurrency, PhD Thesis,
University of Leicester (UK), 1989.

[20] O. Lichtenstein and A. Pnueli, Checking that finite state concurrent programs
satisfy their linear specification, In Proceedings of the 12th ACM Symposium
on Principles of Programming Languages, pages 97-107, 1985.

[21] K. Lodaya, R. Parikh, R. Ramanujam, and P. S. Thiagarajan, A logical
study of distributed transition systems, Information and Computation, 1994,
to appear.

[22] Z. 1\1anna and A. Pnueli, The Temp01'al Logic of Reactive and Concurrent
Systems, Specification, Springer, 1991.

[23] A. Mazurkiewicz, Concurrent program schemes and their interpretations,
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

78

[24] A. Mazurkiewicz, Trace theory, In W. Brauer et a!., editors, Petri Nets,
Applications and Relationship to other Models of Concurrency, number 255
in Lecture Notes in Computer Science, pages 279-324, Berlin-Heidelberg-New
York, 1987, Springer.

[25] A. Mazurkiewicz, E. Ochmaliski, and W. Penczek, Concurrent systems and
inevitability, Theoretical Computer Science, 64:281-304, 1989.

[26] M. Nielsen, G. Plotkin, and G. Winskel, Petri nets, event structures and
domains, part 1, Theoretical Computer Science, 13:85-108,1981.

[27] E. Ochmanski, Regular behaviour of concurrent systems, Bulletin of the
European Association for Theoretical Computer Science (EATCS), 27:56-67,
Oct 1985.

[28] E. Ochmanski, Semi-Commutation and Petri Nets, In V. Diekert, editor,
Proceedings of the ASMICS workshop Free Partially Commutative Monoids,
Kochel am See 1989, Report TUIVI-I9002, Technical University of Munich,
pages 151-166, 1990.

[29] E. Ochmanski, Modelling concurrency with semi-commutations, In I. M.
Havel and V. Koubek, editors, Proceedings of the 17th Symposium on Math­
ematical Foundations of Computer Science (lofFCS'92), Prague, (Czechoslo­
vakia), 1992, number 629 in Lecture Notes in Computer Science, pages 412-
420, Berlin-Heidelberg-New York, 1992, Springer.

[30] D. Peled, Interleaving set temporal logic, l\Iaster thesis, Technion, Israel,
1987.

[31] D. Peled, All from one, one from all: on model checking using representatives,
In Proceedings of the 5th International Conference on Computer Aided Ver­
ification, Greece, number 697 in Lecture Notes in Computer Science, pages
409-423, Berlin-Heidelberg-New York, 1993, Springer.

[32] D. Peled, Combining partial order reductions with on-the-fly model checking,
In Proceedings of 6th International Conference on Computer Aided Verifica­
tion, Stanford, California, number 818 in Lecture Notes in Computer Science,
pages 377-390, Berlin-Heidelberg-New York, June 1994, Springer.

[33] D. Peled, S. Katz, and A. Pnueli, Specifying and proving serializability in
temporal logic, In Proceedings of the Sixth Annual IEEE Symposium on Logic
in Computer Science (LICS '91), 1991.

[34] D. Peled and A. Pnueli, Proving partial order properties, Theoretical Com­
puter Science, 126:143-182, 1994, A preliminary version appeared in the
proceedings of ICALP'90, Lecture Notes in Computer Science 443, Springer.

79

[35] W. Penczek, A concurrent branching time temporal logic, In E. Borger,
H. Kleine Buning, and M. M. Richter, editors, Proceedings of the 3rd Work­
shop on Computer Science Logic, number 440 in Lecture Notes in Computer
Science, pages 337-354, Berlin-Heidelberg-New York, 1990, Springer.

[36] W. Penczek, On temporal logics for trace systems, In V. Diekert
and W. Ebinger, editors, Proceedings ASMICS Workshop Infinite Traces,
Tiibingen, Bericht 4/92, pages 158-204, Universitat Stuttgart, Fakultat In­
formatik, 1992.

[37] W. Penczek. On undecidability of temporal logics on trace systems. Informa­
tion Processing Letters, 43:147-153,1992.

[38] W. Penczek, Axiomatizations of temporal logics on trace systems, In P. En­
jalbert, A. Finkel, and K. W. Wagner, editors, Proceedings of the 10th An­
nual Symposium on Theoretical Aspects of Computer Science (STACS'93),
Wiirzburg 1993, number 665 in Lecture Notes in Computer Science, pages
452-462, Berlin-Heidelberg-New York, 1993, Springer, the full version sub­
mitted to Fundamenta Informaticae.

[39] W. Penczek, Temporal logics for trace systems: On automated verification,
International Journal of Foundations of Computer Science, 4:31-67, 1993.

[40] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, PWN,
Warszawa, 1970.

[41] W. Reisig, Petri Nets (an Introduction), Number 4 in EATCS I\10nographs on
Theoretical Computer Science, Springer, Berlin-Heidelberg-New York, 1985.

[42] G. Rozenberg, Behaviour of elementary net systems, In 'vV. Brauer, edit.or,
Petri nets: central models and their properties; advances in Petri nets; pro­
ceedings of an advanced course, Bad Honnef, 8.-19. Sept. 1986, Vol. 1, number
254 in Lecture Notes in Computer Science, pages 60-94, Berlin-Heidelberg­
New York, 1986, Springer.

[43] E. W. Stark, Concurrent transit.ion systems, Theoretical Computer Science,
64:221-269,1989.

[44] P. S. Thiagarajan, A trace ba.<;ed extension of linear time temporal logic,
In Proceedings of the 9th A nnual IEEE Symposium on Logic in Computer
Science (LICS'94), Lecture Notes in Computer Science, pages 438-447, 1994.

[45] A. Valmari, Stubborn sets for reduced state space generation, In Proceedings
of 10th International Conference on Application and Theory of Petri Nets,
volume 2, pages 1-22, 1989.

[46] A. Valmari, A stubborn attack on state explosion, Formal Methods in System
Design, 1 :285-313, 1992.

80

[47] M. Y. Vardi and P. Wolper, An automata-theoretic approach to automatic
program verification, In D. Kozen, editor, Proceedings of the First Annual
IEEE Symposium on Logic in Computer Science (LICS'86), pages 322-331,
1986.

[48] G. Winskel, An introduction to event structures, In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, number 354 in Lec­
ture Notes in Computer Science, pages 123-172, Berlin-Heidelberg-New York,
1988, Springer.

[49] G. Winskel and M. Nielsen. Models for concurrency. To appear in Handbook
of Logic in Computer Science, Oxford University Press.

[50] P. Wolper, On the relation of programs and computations to models of tempo­
rallogic, In Proceedings of the Colloquium on Temporal Logic in Specification,
Altrincham, Uf(, 1987, number 398 in Lecture Notes in Computer Science,
pages 75-123, Berlin-Heidelberg-New York, 1989, Springer.

[51] P. Wolper and P. Godefroid, Partial-order methods for temporal verification,
In E. Best, editor, Proceedings of the Third International Conference on Con­
currency Theory CONCUR '93, number 715 in Lecture Notes in Computer
Science, pages 233-246, Berlin-Heidelberg-New York, 1993, Springer.

81

94/39 A. Blokhuis
T. KIoks

94/40 D. Alstein

94/41 T. KIoks
D. Kratsch

94/42 J. Engelfriet
J.J. Vereijken

94/43 RC. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R Gerth S. Graf
W. Janssen B. Jonsson
S. Katz G. Lowe
M. Poel A. Pnueli
C. Rump J. Zwiers

94/45 G.J. Houben

94/46 R Bloo
F. Kamareddine
R Nederpelt

94/47 R Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 J.CM. Baeten
J.A. Bergstra

94/50 H. Geuvers

94/51 T. KIoks
D. Kratsch
H. Miiller

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice M.
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratie­
ve Logistiek", p. 43.

The A-cube with classes of terms modulo conversion,
p. 16.

On n-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

94/20 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

Beyond ~-Reduction in Church's A-), p. 22.

An introduction to the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi­
ons.

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Charts, p.
43.

94/24 D. Dams
O. Grumberg
R Gerth

94/25 T. Kloks

94/26 R.R Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 I. Hooman

94/30 I.C.M. Baeten
1.A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
RE. Watson

94/32 1.1. Vereijken

94/33 T. Laan

94/34 R Bloo
F. Kamareddine
R NederpeJt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'ltCTL*, 3CTL* and CTL*, p. 28.

K1,-free and W,-free graphs, p. 10.

On the foundations of functional programming: a
programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and n -conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect. p. 30.

Point-free substitution, p. 10.

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
KM. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 KR Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J.A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Milller

94/13 R Seljee

94/14 W. Peremans

94/15 RJ .M. Vaesscns
E.H.L. Aarts
J. K Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R NederpeJt

94/19 B.W. Watson

Canonical typing and IT-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathcmatical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The performance of single-keyword and multiple­
keyword pattern matching algorithms, p. 46.

93/34

93/35

93/36

93{37

93/38

93/39

93/40

I.C.M. Baeten and
I.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.PJ. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kioks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in PIT Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

93/14 J.c'M. Baeten
J .A. Bergstra

93/15 J.c'M. Baeten
J .A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 0-1. Houben

93120 F.S. de Boer

93/21 M. Codish
D. Dams
O. File
M. Bruynooghe

93122 E. Poll

93/23 E. de Kogel

93124 E. Poll and Paula Severi

93125 H. Schepers and R. Gerth

93126 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93128 F. Kamareddine and
R. Nederpelt

93129 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program­
ming, p. IS.

Freeness Analysis for Logic Programs - And Correct­
ness?, p. 24.

A Typechecker [or Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real­
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking [or Pennutation and Other Graphs,
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuiL~, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Rcgular Expressions, p. 17.

ILIAS, a sequential language for parallel matrix
computations, p. 20.

92/21 F.Kamareddine

92{22 R. NederpeJt
F.Kamareddine

92/23 F.Kamareddine
E.K1ein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
I.H.M. Korst
P.J. Zwietering

93/05 I.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-founded ness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

91/35 F.S. de Boer
J.W. KIop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R C. B ackhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 1. C.M. Baeten

92/15 F. Kamareddine

92/16 RR. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
I.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete lime process algebra, pAS.

The fine-structure of lambda calculus, p. 11 O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The IOtal order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Ge1drop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 KM. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikeldcr

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicil clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

Thc modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
I. v.d. Woude

91/11 R.C. Backhouse
P.I. de Bruin
G.Malcolm
E.Voermans
I. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.I.I.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

	1. Introduction
	2. Trace Systems
	2.1 Traces
	2.2 Operations on Traces
	2.3 Connection to Computing
	2.4 Frames and Models for Trace Systems
	2.5 Acceptors
	2.6 Finite State Trace Systems
	2.7 A Syntax for Finite State Concurrent Systems: Elementary Net-systems
	3. Comparison of Temporal Logics on Trace Systems
	3.1 Collection of Logics
	3.3.1 Computation Tree Logic* (CTL*)
	3.1.2. Computation Tree Logic (CTL)
	3.1.3 Syntax of CTL
	3.1.4 Linear Time Temporal Logic (LTL)
	3.1.5 Interleaving Set Temporal Logic* (ISTL*)
	3.1.6 Interleaving Set Temporal Logic (ISTL)
	3.1.7 Computation Tree Logic with Past Operators (CTLp)
	3.2 Encoding Labelled Next Step Operators
	3.3 Examples of Inevitability and Serializability
	3.4 Equivalence Notions for Frames for Trace Systems
	3.5 Equivalences Imposed by Temporal Logics
	3.6 Comparing Equivalences
	3.7 Notes on Expressiveness
	4. Efficient Model Checking for a Subset of LTL
	4.1 Standard Approach
	4.2 Trace Approach
	4.2.1 Trace Automata
	4.3 Algorithmically Generating Trace Automata on Runs
	4.3.1 The sleep set method
	4.3.2 The ample set method
	4.3.3 Examples
	5. Efficient Model Checking for a Subset of CTL
	5.1 Standard Approach
	5.2 Trace Approach
	5.3 The Ample Set Algorithm
	6. Model Checking for CTLp
	6.1 Undecidability of CTLp
	6.2 NP-hardness of CTLp Model Checking
	6.3 Model Checking for CTLp
	6.3.1 Complexity of CTLp_Model Checking
	6.3.2 Extending Model Checking to CTLp
	7. Proving Program Properties using ISTLp
	7.1 Programs
	7.2 First Order ISTLp
	7.3 Proof Systems for Programs
	7.4 Proof System to Exploit Expressiveness
	7.5 Proof System to Exploit Abstraction
	8. Axiomatization of a Subset of Propositional ISTLp
	8.1 Proof System for ISTL'p
	8.2 Proof System for a Subset of ISTLp
	9. Conclusions
	References

