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Abstract

For queueing models that can be analyzed as (embedded) Markov chains, many results
are presented in terms of the probability generating function (PGF) of the stationary queue
length distribution. Queueing models that belong to this category are bulk service queues,
M/G/l and G/M/l-type queues, and discrete or discrete-time queues. The determination of
the PGF typically requires a fixed number of complex-valued zeros on and within the unit
circle of some analytic function. Rouche's theorem can be used to prove the existence of these
zeros and fulfills as such a prominent role in queueing theory. For most queueing models the
analytic function of interest is of the type z' - A(z), where A(z) is the PGF of a discrete
random variable. The standard application of Rouche's theorem requires that A(z) has a
radius of convergence strictly larger than one. However, in some applications this is not true.

In this note we present an elementary proof of the existence of the zeros for z' - A (z) that
includes functions A(z) with a radius of convergence of one. The proof is based on applying
the classical argument principle to a truncation of the series A(z).

Keywords: queueing theory, zeros of an analytic function, roots, Rouche's theorem, argument
principle, uniform convergence.
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1 Introduction

For queueing models that can be analyzed as (embedded) Markov chains, many results are pre
sented in terms of the probability generating function (PGF) of the stationary queue length dis
tribution. Queueing models that belong to this category are bulk service queues, MIGl1 and
GIM/1-type queues, and discrete or discrete-time queues. The determination of the PGF typi
cally requires a fixed number of complex-valued zeros on and within the unit circle of some analytic
function.

In 1932, Crommelin [7] was the first to use the technique of deriving a PGF in terms of zeros.
Crommelin obtained the PGF of the stationary queue length in the MIDis queue that was
expressed in terms of the s zeros on and within the unit circle of the function ZS - exp(>.(z - 1))
with>' < s. Since then, Crommelin's technique or a similar generating function technique has
been applied to numerous queueing models, see e.g. [3, 5,8, 14, 15, 16, 17, 19]. Crucial in applying
such techniques is to prove the existence of zeros in a certain domain of analyticity of the function
of interest. The zeros usually have no explicit representation, due to which one should rely on the
specific properties of the analytic function that defines the zeros in an implicit way. Therefore,
to prove the existence of the zeros, Rouche's theorem is a natural tool to use (as recognized by
Crommelin [7]).

Rouch<:?s theorem is a direct consequence of the argument principle and a powerful tool for
determining regions of the complex plane in which there may be zeros of a given analytic function.
The scope of application of Rouche's theorem goes well beyond the field of queueing theory. While
the verification of the conditions needed to apply Rouche's theorem can become rather difficult,
in queueing theory this is usually straightforward. For most queueing applications, the region
of interest is typically the unit disk {z E iC : Izj :S: I}, and the ingredient that makes Rouche's
theorem work is oftentimes the stability condition. This is why Rouche's theorem is a popular
and standardized tool in queueing theory. However, the standard way in which Rouche's theorem
is applied requires the analytic continuation of the function of interest outside the unit disk. This
can be done for many functions, but definitely not for all.

In the standard setting the number of zeros in the unit disk of the function ZS - A(z) has to be
determined, where A(z) is the PGF of a discrete random variable A. In order to apply Rouche's
theorem it is then required that A(z) has a radius of convergence larger than one, which is not
true in general. PGF's obey all the rules of power series with non-negative coefficients, and since
A(l) = 1 the radius of convergence of any PGF is at least 1. The shoe thus pinches for those PGF's
for which the radius of convergence is exactly 1. Examples of PGF's of heavy-tailed distributions
with a radius of convergence of 1 are presented in Sec. 4.

For Crommelin [7] this was obviously not an issue, since for the Poisson distribution A(z) =
exp(>.(z - 1)), which is an entire function in the complex plane. Another example of suitable
distributions are those with finite support, since in that case A(z) is a polynomial (see e.g. [14]).
A problem does occur when A(z) is assumed to be the PGF of an arbitrary discrete random
variable, like in [5, 8, 16, 17, 19]. In these papers, the assumption is made that A(z) has a radius
of convergence larger than 1, which is clearly a restriction.

This restriction of generality has been relieved by Abolnikov & Dukhovny [1] who applied the
so-called generalized principle of the argument (that was proved by Gakhov et al. [10] in 1973)
to prove the existence of the zeros in the unit disk for general A(z). Klimenok [13] extended this
result to a larger class of functions, again using the generalized principle of the argument. An
alternative approach to deal with general A(z) was presented by Boudreau et al. [4]. Under the
condition that all zeros in the unit disk are distinct, they were able to apply the implicit function
theorem to prove the existence of the zeros. However, examples can be constructed for which there
are multiple zeros, and so this approach does not cover the issue in full generality. The key idea
of Boudreau et al. is to study the parameterized function ZS - tA(z), 0 :S: t < 1, and then letting
t tend to one. The same idea, without making the assumption of distinct zeros, has been used by
Gail et al. [9] for a larger class of zeros, including ZS - A(z).

We present a proof of the existence of the zeros for general A(z) using the classical argument
principle and truncation of A(z). We make use of elementary results and techniques. The outcome
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of our analysis is that the standard setting based on Rouche's theorem can be extended such that
it holds for an arbitrary function A(z).

In Sec. 2 we first describe the classical application of Rouche's theorem in queueing theory. In
Sec. 3 we give our proof for general A(z), and in Sec. 4 we provide some examples of (heavy-tailed)
discrete distributions for which the classical approach fails, but to which our result can be applied.

2 Classical setting

In the vast majority of queueing problems to which Rouche's theorem is applied, the analytic
function of interest is given by ZS - A(z), where sEN and A(z) is the PGF of a nonnegative
discrete random variable A. Denoting lP'(A = j) by aj, we have that

00

A(z) = L ajzj ,
j=O

(1)

which is known to be analytic in the open disk {z E C : Izi < I} and continuous up to the unit circle
{z E C : Izi = I}. Note that A(z) is differentiable at z = 1 if and only if 2:':1 jaj_1zj-1 < 00. If
A(z) is differentiable at z = 1, it is differentiable at z for all z E C with IZI = 1. For continuous
time bulk service queues, M/G/l and G/M/l-type queues, the A(z) is typically of the form
A(z) = B(>'(I- z)), where B(s) is the Laplace-Stieltjes transform of a continuous random variable
and>. is some positive real constant (see e.g. [2, 11, 15]).

Let us first state Rouche's theorem (see e.g. Titchmarsh [18]):

Theorem 2.1. (Rouche) Let the bounded region D have as its boundary a simple closed contour
C. Let j(z) and g(z) be analytic both in D and on C. Assume that Ij(z)1 < Ig(z)1 on C. Then
j(z) - g(z) has in D the same number oj zeros as g(z), all zeros counted according to their
multiplicity.

When A(z) has a radius of convergence larger than one, we can prove the following result
concerning the number of zeros on and within the unit circle of ZS - A(z) by using Rouche's
theorem:

Lemma 2.2. Let A(z) be a PGF that is analytic in Izi :::; 1 + /,I, /,I > O. Assume that A'(I) < s,
sEN. Then the junction ZS - A(z) has exactly s zeros in Izl :::; 1.

Proof Define the functions j(z) := A(z), g(z) := ZS. Because j(l) = g(l) and 1'(1) = A'(l) <
s = g'(I), we have, for sufficiently small E > 0,

j(1 + f) < g(1 + E).

Consider all zwith Izi = 1 + E. By the triangle inequality and (2) we have that

00

Ij(z)1 :::; Lajlzl
j

= j(1 + E) < g(1 + E) = Ig(z)l,
j=O

(2)

(3)

and hence Ij(z)1 < Ig(z)l. Because both j(z) and g(z) are analytic for jzl :::; 1 + f, Rouche's
theorem tells us that g(z) and j(z) - g(z) have the same number of zeros in Izj :::; 1 + E. Letting
E tend to zero yields the proof. 0

The application of Lemma 2.2 is limited to the class of functions A(z) with a radius of conver
gence larger than 1. In case A(z) has radius of convergence 1, the results of the next section can
be applied.
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3 New setting

Before we present our main result, we first prove a result on the number and location of zeros of
ZS - A(z) on the unit circle. We define the period p of a series I:~oo bjzj as the largest integer
for which bj = 0 whenever j is not divisible by p.

Lemma 3.1. Let A(z) be a paF of some nonnegative discrete random variable with A(O) > O.
Assume A(z) is differentiable at z = 1 and A' (l) < s, where s is a positive integer. If ZS - A(z)
has period p, then ZS - A(z) has exactly p zeros on the unit circle given by the p-th roots of unity
Tk = exp(27rik/p), k = 0, 1, ... ,p - 1. In each of these zeros, the derivative of ZS - A(z) does not
vanish.

Proof Obviously, any zero ~ of ZS -A(z) with I~I = 1 is simple, since IA'(~)I :::; A'(IW = A' (l) < s
and, thus, sC-1 - A'(~) =1= O. Furthermore, for any z with Izl = 1, IA(z)1 = A(l) iff Zk = 1 when
ever ak > O. This easily follows from the fact that lao + akzkl < ao + ak if zk =1= 1. So, for z with
Izi = 1 and A(z) - ZS = 0 it follows that zk = 1 for all k with ak > 0, and ZS = 1. This implies
that zP = 1, which completes the proof. D

Note that the requirement ao = A(O) > 0 involves no essential limitation: If ao were zero we
would replace the distribution {a;}i2:0 by {aDi2:0 where a~ = aHm, am being the first non-zero
entry of {adi>O' and a corresponding decrease in s according to s' = s - m.

We are now in a position to give the main result:

Theorem 3.2. Let A(z) be a paF of some nonnegative discrete random variable with A(O) > O.
Assume A(z) is differentiable at z = 1 and A' (l) < s, where s is a positive integer. Also, let
ZS - A(z) have period p. Then the function ZS - A(z) has p zeros on the unit circle given by
Tk = exp(27rik/p), k = 0, 1, ... ,p - 1 and exactly s - p zeros in Izi < 1.

Proof Lemma 3.1 tells us that F(z) = ZS - A(z) has p equidistant zeros on the unit circle, and
so it remains to prove that this function has exactly s - p zeros within the unit circle. Thereto,
define, for N E N, the truncated paF

N-l 00

AN(z) = L ajzj + L ajzN,
j=O j=N

(4)

where N is a multiple of p. Then FN(z) = ZS - AN(z) has obviously 5 zeros in zED = {z E
c: Izl :::; I}, since AN(Z) is a polynomial satisfying A~(l) < 5, and Lemma 2.2 thus applies. By
Lemma 3.1 we know that FN(Z) has p simple and equidistant zeros on the unit circle. We further
have that

00

IA(z) - AN(z)1 < 2Laj, Izi :::; 1, (5)
j=N

00

IA'(z) - A~(z)1 < 2 L jaj, Izi :::; 1. (6)
j=N

Thus, AN(z) and A~(z) converge uniformly to A(z) and A'(z) on zED, respectively. Moreover,
if G : D -t C is continuous, then G(AN(z)) is uniformly convergent to G(A(z)) on zED.

Let z on C = {z E C : Izi = I}. If for all n E N there is a Zn E D with 0 < Iz - znl < ~ and
F(zn) = 0, then F(z) = 0 and

F'(z) = lim F(zn) - F(z) = O.
n---+oo Zn - Z

(7)

However, this is impossible by Lemma 3.1. Hence, there is an ry > 0 such that F(~) =1= 0 for all
~ E D(z,ry):= {~E D: 0 < I~ - zl < ry}. Since C is compact, it can be covered by finitely many
D(z,ry)'s. Hence, there is a 0 < r < 1 such that F(z) has no zeros in r:::; Izi < 1.
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Figure 1: Graphical representation of the compact set E.

Now we prove that for large N the function FN(z), as the function F(z), has no zeros in
r :S Izi < 1. Thereto, we show that there is an € > 0 and MEN such that FN(Z) f=. 0 for all
N ~ M and 0 < IZ-Tkl < €, k = 0,1, ... ,p-1. Because F'(z) is continuous and Ffv(z) converges
uniformly to F'(z) on zED, there are € > 0 and MEN such that (for k = 0,1, ... ,p - 1)

(8)

Furthermore, we have (for k = 0,1, ... ,p - 1)

IFN(Z) - F'(Tk)"(Z - Tk)1 = 11 (Ffv(s) - F'(Tk))dsl,
[rk ,z]

(9)

where the integration is carried out along the straight line that connects Tk and z. Hence, for
0< Iz - Tkl < € and N ~ M, we obtain (for k = 0,1, ... ,p -1)

So, it follows that for 0 < Iz - Tkl < € and N ~ M (for k = 0, 1, ... ,p - 1)

IFN(Z)/ = IFN(Z) - F'(Tk)(Z - Tk) + F'(Tk)(Z - Tk)1

> /F'(Tk)llz - Tkl - IFN(Z) - F'(Tk)(Z - Tk)1

> (1F'(Tk)l- 8)lz - Tkl > O.

Since FN(z) converges uniformly to F(z) and F(z) f=. 0 on the compact set (see Fig. 1)

p-l

E = {z E C: r:S Izl:S I} \ U D(Tk,€),
k=O

(11)
(12)
(13)

(14)

there exists an KEN such that FN(z) f=. 0 for all N ~ K and z E C with r :S Izl < 1. Hence,
for all N ~ K the number of zeros of FN(Z) with Izi < r is equal to s - p. This number can be
expressed by the argument principle (see e.g. Titchmarsh [18]) as follows

(15)
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The integrand converges uniformly to F'(z)/F(z), and thus

_1_ J F'(z) dz = lim _1_ J FJv(z) dz = s _ p.
21Ti 1\zl=r F(z) N-+oo 21Ti 1\zl=r FN(z)

Hence, the number of zeros of F(z) with Izi < r is also s - p. This completes the proof.

4 Examples

(16)

D

On behalf of Thm. 3.2, the A(z) with a radius of convergence of 1 do not have to be excluded from
the analysis of the zeros of Z8 - A(z). This further means that these PGF's can be incorporated
in the general formulation of the solution to the queueing models of interest. The A(z) that have
radius of convergence 1 are typically those associated with heavy-tailed random variables. Some
examples are given below.

(i) The discrete Pareto distribution (e.g. Johnson et al. [12]), defined by

with

1aj = c 'p+1'
J

j = 1,2, ... , (17)

(18)
00 -1

c= (l:aj) =((p+1)-\
j=l

where (0 is called the Riemann zeta function and p > 1. For k < p, the kth moment J.Lk of
the discrete Pareto distribution is given by

((p-k+1)
J.Lk= ((p+1) (19)

whereas for k ?: p the moments are infinite. The discrete Pareto distribution is also known
as the Zipf or Riemann zeta distribution

(ii) The discrete standard lognormal distribution, defined by

_ (logj)2aj = ce 2

where c is a normalization constant.

j = 1,2, ... , (20)

(iii) The discrete distribution, related to the continuous Weibull distribution, defined by

j = 0,1, ... , (21)

where p > 1 and c is a normalization constant.

(iv) The Haight's zeta distribution (see e.g. Johnson et al. [12]), defined by

with p > 1.
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