

A platform for numerical computations with special application
to preconditioning
Citation for published version (APA):
Drenth, W. D. (2003). A platform for numerical computations with special application to preconditioning. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR569709

DOI:
10.6100/IR569709

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR569709
https://doi.org/10.6100/IR569709
https://research.tue.nl/en/publications/f51e7eaf-ab74-4253-a57e-bfcfcb1e6f15

A platform for numerical computations

with special application to preconditioning

Copyright c©2003 by Wienand Drenth, Eindhoven, The Netherlands.

All rights are reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission of the author.

The research that resulted in this thesis was supported by NWO, the Netherlands
Organisation for Scientific Research, projectnumber 613.002.035

Printed by Eindhoven University Press

Cover design: JWL Producties

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Drenth, Wienand D.

A platform for numerical computations
with special application to preconditioning /
by Wienand D. Drenth. -
Eindhoven: Eindhoven University of Technology, 2003. Proefschrift. -
ISBN 90-386-0742-3

NUR 919
Subject headings: numerical linear algebra; iterative methods /
boundary value problems; solution of discretized equations /
computer graphics
2000 Mathematics Subject Classification: 65D18, 65F05, 65F10, 65N22, 65Bxx, 47B35

A platform for numerical computations

with special application to preconditioning

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. R.A. van Santen, voor een

commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen
op donderdag 4 december 2003 om 16.00 uur

door

Wienand Daniël Drenth

geboren te Nijmegen

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. R.M.M. Mattheij
en
prof.dr. H.A. van der Vorst

Copromotor:
dr. J.M.L. Maubach

In loving memory of my mother

Preface

It seemed that out of battle I escaped
Down some profound dull tunnel, long since scooped
Through granites which titanic wars had groined.

Yet also there encumbered sleepers groaned,
Too fast in thought or death to be bestirred.
Then, as I probed them, one sprang up, and stared
With piteous recognition in fixed eyes,
Lifting distressful hands, as if to bless.
And by his smile, I knew that sullen hall, -
By his dead smile I knew we stood in Hell.

Wilfred Owen, Strange meeting

Research resulting in a dissertation is almost never a solitary business. Henceforth
this particular one as well presents the results of research performed by several peo-
ple. However, life itself is not always on the hand of doing research, and can turn
lonely and dark. Sometimes events take such an unexpected and complicated turn
that ”simple“ research related issues do not seem to matter anymore. This happened
in April 2001 when my mother suddenly died. At that moment research and its
importance became very relative to me. It took me pain and much time to find a
proper direction forward, and pick up research again. And even more important,
and perhaps at a higher cost, to find a new direction in life itself again. It is often
said that time heals many wounds, but then time should be abundant. Writing these
words this dissertation came to a good end. Though it is with mixed feelings, as the
relativity remains.

The research described in this thesis was started in the summer of 1998. It formed
part of a NWO project titled ”Development of an interactive environment for numerical
algorithms in large scale scientific computing“, and was carried out in cooperation with
Utrecht University. The environment mentioned eventually became the NumLab
workbench, or just NumLab. As the research progressed over the years the direction
was shifted more toward the development of numerical algorithms. Notwithstand-
ing this change, those algorithms were developed with the interactive environment
in mind as eventual workbench.

viii Preface

The years I was working on the above mentioned project were also instructive on a
wider field. Since I received my education at a non-technical university (Nijmegen),
working at a technical university gave me the opportunity to learn and see other
aspects of (mathematical) research. Looking back now, in the comfortable position
of speaking about past events only, I considered it as a very interesting period. It
certainly helps to widen ones horizon to taste a little on the various directions (theo-
retical and practical) that can be given in a particular research area. Moreover, a great
variety of topics to concentrate on certainly helped to make work pleasant. Hence I
found myself coding parts of NumLab on the one hand, but also working with pen-
cil and paper to do mathematics on the other hand. But at other moments when I
was teaching calculus to first-year students other challenges had to be faced.

Acknowledgments

As this thesis could not have been written without the help and collaboration of
others, there are several people I would like to thank. First of all many thanks
to my promoter prof.dr. R.M.M. Mattheij. Despite the difficulties encountered in
the past years, there is much to his credit that brought this research and thesis to a
good end. I must thank my supervisor dr. J.M.L. Maubach as well. His enthusiasm
was unrivaled and the lengthy discussions we had on various research topics con-
tributed greatly to the contents of this thesis. Finally, the comments made by prof.dr.
H.A. van der Vorst from Utrecht University, and prof.dr.ir. J.J. van Wijk and prof.dr.
W.H.A. Schilders from Eindhoven University on parts of my thesis were also helpful
and contributed in improving its contents.

Work without colleagues is no real work at all, as these individuals contribute to a
large extend to the habitat in which one lives and works. My former colleagues in the
Scientific Computing Group did create a very agreeable and pleasant environment
to live and work in. This being from an academic point of view, but certainly also
from a human point of view. I hope all goes well for you in the years to come.

Finally I would like to thank my parents for their support in the past years to bolster
both the intellectual and inner man. I think without them the challenge to write this
thesis was a much harder undertaking. It fills me with sorrow only my father can
witness the final steps. My mother, I hope you can see it all, wherever you are now.

Contents

Preface vii

1 Introduction 1

1.1 Computational platforms . 1

1.2 Problem setting . 3

1.3 Outline . 5

2 Direct methods: Efficient Gaussian elimination 7

2.1 Introduction . 7

2.2 Substructuring . 8

2.3 An efficient node ordering for the refinement along a line 10

2.4 Numerical examples and conclusions 18

3 Iterative methods and preconditioners 23

3.1 Iterative solution methods . 23

3.2 Complexity of iterative methods . 27

3.3 Estimates for the spectral condition number 29

3.4 Preconditioning . 31

3.4.1 Preconditioning methods . 32

3.4.2 Optimal order techniques for diffusive problems 33

3.4.3 Incomplete factorization methods 34

3.5 Approximate inverse preconditioning 34

3.5.1 Frobenius norm minimization 35

3.5.2 Factorized sparse approximate inverses 37

3.5.3 Practical use of approximate inverses 38

3.6 Diagonal approximate inverses . 38

4 The approximate inverse 41

4.1 The convection diffusion discretization 41

4.2 Eigenvalues and eigenvectors of tridiagonal matrices 43

4.3 The spectral condition number of Toeplitz matrices 45

4.4 A preconditioner based on approximate inverses 47

4.5 The spectral condition number related to a refined grid 55

x Contents

5 Recursive solution methods 61

5.1 Decoupling in one dimension . 61

5.2 A solver based on recursive decoupling 63

5.2.1 Description of the solver . 63

5.2.2 Complexity of the solver . 65

5.3 Decoupling in two dimensions . 66

5.4 Breakdown of uniform 2-D grids . 71

5.5 Three algorithms based on forced repeated decoupling 73

5.5.1 A recursive preconditioner: I . 74

5.5.2 A recursive preconditioner: II . 75

5.5.3 A recursive preconditioner: III 76

5.6 Complexity of the algorithms . 77

6 NumLab concepts 79

6.1 Introduction . 79

6.2 The foundation of NumLab . 84

6.3 The NumLab elements . 85

6.4 The NumLab operators . 86

6.4.1 Systems of equations . 86

6.4.2 Solvers and Preconditioners . 87

6.4.3 Partial differential equations . 89

6.4.4 Ordinary differential equations 91

6.5 The NumLab factored out common components 92

6.5.1 The Grid module . 92

6.5.2 The Space module . 94

6.5.3 The Function module . 94

6.5.4 The Operator module . 95

6.5.5 The Solver module . 96

6.5.6 NumLab components . 96

6.6 NumLab implementation . 97

7 NumLab preconditioners 101

7.1 Introduction . 101

7.2 Numerical results in one dimension . 103

7.3 Numerical results in two dimensions . 110

7.4 Numerical results in three dimensions 116

8 Conclusions and future work 123

8.1 Conclusions . 123

8.2 Directions for the future . 124

A Pentadiagonal Toeplitz matrices 127

Contents xi

B Turing completeness 129
B.1 Alphabets and language . 129
B.2 The Turing machine . 129
B.3 Primitive recursive functions . 132
B.4 µ-Recursive functions . 135

Bibliography 139

Index 147

Summary 149

Samenvatting 151

Curriculum Vitae 153

Chapter 1

Introduction

1.1 Computational platforms

The past few decades has witnessed a revolutionary increase in usage of computer
systems in scientific research. As systems became more attractive with respect to
price and performance, simulations run on computer platforms became a good al-
ternative to real experiments. Typical application areas are civil engineering, medical
sciences, hydrodynamics or aerodynamics.
Modern computer applications can accurately model complex problems with large
amounts of parameters and variables, and generate large sets of computed data.
These can have sizes of many gigabytes like in computational fluid dynamics sim-
ulations, as e.g. are met in weather forecasts. Since the performance of computers
has drastically improved, it has now become relatively easy to run simulations and
produce large datasets in a fairly short runtime.
One important aspect of analyzing the produced datasets and acquiring insight in
the simulated problem is scientific visualization. A most common way is to plot the
computed data, and examine this for further analysis. One step further is tracking,
which gives more interaction with the simulation. At each (time) step of the simula-
tion, the data produced is directly visualized, graphical or numerical, for inspection.
This way the simulation can be monitored during runtime and the process can be
stopped when the computed data is considered to be invalid. In order to avoid these
invalid results, the whole process can be restarted after changing the input.
However, though tracking is a nice feature to control the simulation in a more inter-
active manner, this option is not sufficient when many input parameters are present.
For example, when the simulation is to be run with different parameters it has to
be halted, reconfigured and restarted. Interactive steering is a means to control the
(visualization and simulation) parameters interactively and to overcome the prob-
lem of halting, reconfiguring and restarting. Parameters can be changed during the
simulation itself, and the visual and numerical tracking offers immediate feedback.

One of the biggest problems of early simulation applications was the monolithic and
specialized nature of the software. These applications were designed for a very re-
stricted set of problems and did lack a certain amount of tracking and steering. In
principle input and output data was read and written to file for further analysis. This

2 Chapter 1: Introduction

approach to modeling and simulating is very uneconomical and inflexible and has
prompted the appearance of libraries for greater reusability of application software
and application knowledge. However, a researcher is predominantly occupied with
performing research in an often very complex and specialized environment, often
having no application software at hand. Moreover, the researcher does not have the
time to develop, implement and test a sophisticated software platform for the par-
ticular research area, not to mention the possibility that the researcher does not have
the required programming skills. So, what is needed is a highly flexible, visual and
easy-to-use software platform and programming environment that allows a (inexpe-
rienced) researcher to reuse existing components in an easy way to run simulations.
On top of this the researcher should be able to extend the existing platform and en-
vironment by newly developed simulation software for future use.

Building such custom tailored software by reusing existing components has been
considered at several places. The most successful solutions come in the form of vi-
sual programming environments, such as AVS [97] or Iris Explorer [50]. But also
packages that offer a whole range of specialized routines, such as Matlab [67] or
Mathematica [107], are sophisticated tools for scientific applications. For such plat-
forms there are several aspects that are important. First of all there have to be com-
ponents. These are the reusable building bricks from which new applications can be
made. Secondly there are control mechanisms that drive and steer the components
that are put together in an application. Thirdly, a data exchange model is used to com-
municate and transfer between the various primitive units. Obviously, this model
should be generic enough in order to communicate with non-platform software. Fi-
nally a user interface should be available that offers the researcher the possibility to
track and steer the simulation.

In the future one may imagine that for an industrial problem, a computer will ”read“
a mathematical model and discretization from a book or paper and construct a soft-
ware application for all required calculations. In this thesis we make a step into
that direction. The software itself may have various representations, from classical
source code line representation up to a modern interactive visual one. The latter rep-
resentation facilitates rapid alterations and adaptations for research purposes and
application development.

The need for such platforms is apparent for research groups who spend considerable
time on the development of application software. A first step toward such a platform
was made in [29, 61]; this platform was called Numlab. Numlab allowed a certain
amount of flexibility as components of an application could be changed, and com-
municated with existing mathematical packages such as Matlab and Mathematica.
However, this version of Numlab was based on an inhouse developed interpreter
language which made the platform monolithic in some sense. One of the drawbacks
was that this did not allow implementation of additional tools in an easy way. It
can be compared to a library that needs to close down before a new book can be
added: The book has to be placed on the proper shelf and the inventory list must be
updated by hand. Then the library can reopen. In this thesis we present a concrete

Problem setting 3

and interactive visual workbench (Lab) for numerical computations (Num) and vi-
sualization: NumLab. It contains an application called network editor ([93]) and an
existing C++ interpreter ([27]). Source code is created with a computer mouse and
simple clicks: The user selects components from libraries (called modules) and con-
nects inputs and outputs. In NumLab a new book can be added without the need to
close down the library. The book is placed on the correct shelf and the inventory list
is updated automatically.

1.2 Problem setting

Since NumLab is quite an ambitious project, we shall concentrate ourselves on a
particular problem from real life. Our goal is to extend NumLab in such a way
that we have all the necessary tools to tackle this problem. A typical problem of
what is to be solved using the NumLab workbench is that of the moisture and salt
ion transportation in a brick wall. The prediction of salt ion transport is important,
because unbalanced salt concentrations damage bricks (see [11, 59, 62, 63, 80]).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

3

4

5

6

7

8

9

10

11

moisture content u(x)

di
ffu

si
on

 c
oe

ffi
ci

en
t

D
(u

)

Figure 1.1: Non-linear profile of diffusion coeffi-
cient D(u) as a function of the moisture content u.

Another problem is the shrinkage that occurs during drying. Moisture concentration
gradients in the material and corresponding gradients in the amount of shrinkage
will lead to drying stresses. Controlling these stresses is important, since they can
lead to deformation and/or cracking of the product. A correct description of the
evolution of moisture concentration profiles in the material is complicated by the
influence of shrinkage and stresses on mass transfer.

The simplest moisture transport mathematical model in [59, 62] is a non-trivial ellip-
tic model for the moisture content: A brick of length L1 and height L2 is modeled
with domain Ω = (0, L1) × (0, L2). Its moisture content u(x) satisfies

(1.1) ut = ∇ · (D(u)∇u) in Ω,

4 Chapter 1: Introduction

and u(x) satisfies some mixed boundary conditions on δΩ. The initial solution u0

has a transition layer at x1 = L1. The non-linearity of the diffusion coefficient is
schematically represented in figure 1.1.
Typically a problem like (1.1) is first discretized by a numerical method like the Fi-
nite Element Method (FEM) or the Finite Difference Method (FDM). To this end one
needs a grid, i.e., a set of points connected by lines which, e.g., give rise to elements
(FEM) which together cover the domain. Because of the typical form of the PDE, we
need a much finer grid at the boundary of a ”brick“ than in the interior. In figure 1.2
we have depicted two typical choices for such a mesh, embedded in a larger frame
of more bricks. The (non-linear) equations describing the moisture content at the
various nodes are then solved by e.g. Newton’s method. At the heart of this method
we encounter a linear system that we can write in generic form as

(1.2) Ax = b.

Since the grid is not uniform such linear systems will be ill-conditioned in general.
This hampers solving (1.2) efficiently.
Rather than intending to solve a problem like (1.1), we consider the more generic
linear diffusion problem

(1.3)
−∇ · a∇u+ cu = f in Ω = (0, 1)d ⊂ Rd,

u = g at ∂Ω.

The linear system arising from discretizing (1.3) may be ill-conditioned due to two
sources. In general, a non-smooth source term f will result in a non-smooth solution
u of (1.3). In order to get an accurate solution, grids with local refinements as in
figure 1.2 are required. A consequence of such refinements is that the resulting linear
system, as in (1.2), is unbalanced because of the large differences in scale. In fact this
is similar to a very inhomogeneous grid due to a rapidly varying diffusion coefficient
a. As remarked above, this means that the linear system becomes ill-conditioned.
Another problem is that due to the relatively large number of gridpoints near the
boundary the number of unknowns may rise enormously. Hence the problem size

Figure 1.2: A piece of wall with an unstructured and structured grid.

Outline 5

increases likewise which has its effects on efficient implementation and computation.
Both phenomena, an ill-conditioned system and a large number of unknowns, lead
to a larger computational complexity in general. In order to reduce this, techniques
called preconditioning have been developed to reduce this complexity. However, for
the problem at hand no really efficient techniques exist.
In this thesis we therefore will concentrate on constructing methods to solve linear
systems arising from configurations like the ones shown in figure 1.2. More in par-
ticular, we focus on a typical brick with such a highly non-uniform mesh and will
develop new ways to tackle the ill-conditioning and thus improve efficiency of it-
erative solvers. This then will be the test to demonstrate our platform NumLab.
The construction, outline and testing then constitutes the second major aspect of this
thesis.

1.3 Outline

As noted above we deal with two major subjects in this thesis. The first of these
is the NumLab workbench to facilitate numerical simulations. Secondly we extend
NumLab by adding tools that are designed for solving the problem as described in
the previous section. Before we consider in detail the NumLab workbench, we must
first construct, discuss and analyse the tools we want to add.
First in Chapter 2 a direct method is presented for the solution of convection domi-
nated problems. In particular, we focus on grids that have refinement layers which
are reminiscent of the brick-wall configuration. For such refinements this chapter
shows that a complete Gaussian factorization can be efficient with respect to both fill-
in as well as the band-width if the degrees of freedom are numbered such that they
exploit the special grid structure. This efficient way to factorize the matrix means
that inverses can be computed with an almost optimal number of floating points
operations (flops).
Next, in Chapter 3, iterative methods are examined; these are usually more efficient
than Gaussian elimination considered before. The main idea of such iterative meth-
ods is that the solution is computed by successive updating the existing approxi-
mation. If the method is successful, the approximation is close enough to the exact
solution after a number of iterations, given a desired accuracy for the computed solu-
tion. This process of iterating and constructing the solution is described for a variety
of iterative methods. Whereas with Gaussian factorization it is known beforehand
that the solution can be found after the successful factorization, which can be viewed
as one iteration, for iterative methods it is not known a priori how many iterations
are required to obtain the solution. A priori knowledge of this is important, since
the number of iterations determines the computational complexity. Unfortunately,
an explicit formula for the minimum number of iterations needed is known for few
iterative methods only. Another important notion in iterative methods is the condi-
tion number of the matrix. This condition number can be seen as a measure for the
”quality“ of the matrix and is important for error estimates. We also look at methods
that can improve the computational complexity of solving the problem. When solv-
ing a problem by an iterative method, the computational complexity often grows
polynomially with the number of unknowns. This is undesirable. Ideally the com-

6 Chapter 1: Introduction

putational complexity should be of the same order of magnitude as the number of
unknowns. In general terms, this means that every unknown has to be ”looked at“
only once in order to obtain the solution. Thus, what we want is an efficient way
to improve this computational complexity. This is called preconditioning. What can
be judged from this term is that the original problem is adapted such that the new
problem is better conditioned. This in turn might lead to fewer iterations and hence a
lower computational complexity. However, not all types of problems are that simple
to precondition. In this chapter we address several methods that result in a theoreti-
cally ideal computational complexity for a specific type of problems. As our problem
of interest does not have such properties, we concentrate on a special class of pre-
conditioning techniques which are based on approximated inverses (Section 3.5).
In Chapter 4 we look into these types of techniques in more detail. Of particular
interest for this chapter is a slightly modified form of the preconditioner. For this
so-called modified approximate inverse, several results are obtained in this chapter.
Numerical examples show that these also hold for the original unmodified version
which is used in computations.
The approximate inverse related preconditioner is examined further in Chapter 5.
Here it is shown that by applying this preconditioner, the resulting new problem
can be decoupled for one dimensional problems. This phenomenon gives rise to
a recursive solution method by successive application of the approximate inverse.
Unfortunately, in two dimensions this cannot be generalized straightforwardly. We
point at the properties that are inherited from the one dimensional case, and which
are not. This leads to a different solution procedure and we provide suggestions for
utilizing approximate inverse in two dimensions in a recursive manner.
The remainder of this thesis is devoted to the construction and use of NumLab. To
start with, in Chapter 6 we discuss the basic ideas of our platform. NumLab enables
us to implement and test new ideas by reusing existing components and building
new components easily either from scratch or by putting together existing compo-
nents. In NumLab, mathematical concepts, like operators and solvers, are imple-
mented using a uniform interface with a generic formulation. This enables one to
change components and parameters in a simulation. Also complex numerical tools
to solve complex problems can be composed with just a few components. Finally, all
tools can be used for visual programming which gives the researcher an overview of
the simulation and direct ways to interact with the simulation.
In Chapter 7 we continue with the NumLab workbench, and examine how we can
implement the new tools presented in Chapter 4. This chapter is the synthesis of
our computational platform (NumLab) in which (complex) mathematical tools (the
approximate inverse preconditioner) can be utilized in an easy manner. We seize the
opportunity to present several numerical examples to show the effectiveness of the
preconditioner from Chapter 4 for certain types of problems. In NumLab, running
another example can be obtained by simply changing a parameter in the required
module. This is detailed as well.
Finally, Chapter 8 summarizes the most important conclusions of this thesis. Fur-
thermore some recommendations for future work are addressed.

Chapter 2

Direct methods: Efficient Gaussian
elimination

In this chapter we discuss an efficient implementation of Gaussian elimination, suited
for the solution of convection dominated problems. The domains of interest are such
that they can be divided into similar substructures. Brick walls as have been dis-
cussed in Section 1.2 are a good example of such domains. The layer between two
substructures (two bricks for example) may be such that local refinement is needed
to capture the solution accurately. This part of a brick wall is simplified, but the char-
acteristics of uniform coarse parts with refinement layers in between are inherited.
For such locally refined grids we present a numbering of the degrees of freedom
with favourable properties. When k levels of refinement are used the amount of fill-
in is O(k2k). The original number of degrees of freedom n is O(2k), which implies
that the complexity of the method is O(n logn). This fill-in is comparable to the fill-
in-optimized minimum degree algorithm [46, 95]. The band-width is comparable to
the band-width-optimizing reverse Cuthill-McKee ordering [45]. Another benefit is
that Gaussian elimination is not only applicable to Poisson type problems, but also
to convection diffusion problems.

2.1 Introduction

The local bisection refinement, see [70], best preserves the regular substructures of
the domain of interest, much better than the more common Delaunay type gridding
(see [56]). Both grids in figure 1.2 – left Delaunay, right bisection – are obtained using
the same input data. The bisection refinement preserves the substructures best, and
in fact leads to semi-regular grids.

An even more important reason to use grids created by bisection refinement is that
semi-regular grids can also also be obtained in three and more dimensions, as well
as that efficient storage scheme and optimal order preconditioners exist for such re-
finement along lines, see [66].

Several efficient solvers have been published for elliptic problems that are discretized
with finite elements on refined grids. For instance, the optimal AMLI [7, 8], and
optimal BPX [24]. In principle, these solvers can solve elliptic problems without
domain decomposition. When convection dominates, the solvers no longer appear

8 Chapter 2: Direct methods: Efficient Gaussian elimination

to be efficient.

In this chapter we are interested in the subdomains which contain a line along which
all mesh refinement is situated (see figure 2.1). For this special subdomain, we show
that a Gaussian elimination can be performed such that a near optimal band-width
and near optimal fill-in is achieved. The results are based on a proper numbering
of the degrees of freedom. The minimum degree algorithm [46] has somewhat less
fill-in, even though no optimal tie-breaking strategy is known when different degrees
of freedom have the same connectivity. It should be noted that the total amount of
fill-in is quite sensitive to the tie-breaking strategy.

When solving the linear system of equations, our exact factors can be replaced by
an incomplete version (see for instance [58, 74, 39, 78]), combined with Krylov-space
based iterative solvers [86, 102]. However, because the focus of this chapter is on
demonstrating that we get optimal fill-in and band width matrix factors for the full
Gaussian elimination process, we do not provide an analysis of the incomplete case.

The substructures of interest are introduced in Section 2.2. In Section 2.3 a number-
ing of degrees of freedom is presented for which Gaussian elimination leads to an
amount of fill-in close to that of the fill-in-optimized minimum degree algorithm [46],
and on top leads to a band-width which is close to that of the reverse Cuthill-McKee
ordering [45]. In the final section some examples are given to illustrate the new num-
bering scheme.

2.2 Substructuring

In this chapter, we first restrict our attention to the bisection refinement along a
straight line as in figure 2.1.

Figure 2.1: Uniform refined quadrilateral with local refinement.

Furthermore we shall specifically focus on domain decompositions with building
block sketched in figure 2.2, that is, each subdomain will contain either a uniform
grid, or all or half of the refinement.

Substructuring 9

1 x 1 1 x 8 8 x 8

Figure 2.2: Grids which capture different levels of detail (1x1, 1x8 and 8x8).

The subdomains we examine in detail contain all refinement and are concentrated
around the refinement along a straight line. For these subdomains, we denote the
amount of horizontal blocks (layers) by K, and k denotes the level of refinement.
The related grids are called GK,k .

Figure 2.3: Refined grids GK,k for
K = 4, k = 1, 2.

Figure 2.4: Refined grids GK,k for
K = 8, k = 1, 2.

Let k ≥ 1. Each horizontal block is obtained by applying 2(k − 1) levels of bisection
refinement. Its connectivity-graph is called Bk. (Each two subsequent refinements
shrink the smallest edge-length by a factor two.) Figure 2.3 and figure 2.4 show the
refined grids related to K = 4 and K = 8 for both k = 1 and k = 2. Let Bk denote
the connectivity graph associated to a horizontal block. With Bk, we associate the
coarse grid element-size H = 1/K and smallest element-size h = H · 2−k. These
connectivity graphs Bk are discussed in more detail in the next section.

10 Chapter 2: Direct methods: Efficient Gaussian elimination

2.3 An efficient node ordering for the refinement along a

line

In this section we examine complete factorization based techniques, because optimal
order methods cannot be used for the problem of interest introduced in Section 1.2.
Because the amount of fill-in depends on the numbering of the degrees of freedom
(see [38]), we examine three numbering schemes:

(i) The Reverse Cuthill-McKee ordering [45];

(ii) Fill-in-optimized minimum degree ordering [95];

(iii) The (LR) numbering scheme proposed in this section in (2.2):
First numbering orthogonal to the line of refinement (shock) followed by num-
bering along the line of refinement.

It turns out that the numbering scheme (iii) proposed in (2.2) and (ii) leads to com-
parable amounts of fill-in, much less than the fill-in related to scheme (i). In the limit
scheme (ii) tends to have less fill-in than the our scheme (iii). Of course, our scheme
is faster: We do not compute but impose a numbering.

The real advantage of scheme (iii) shows when skyline storage formats are used.
This storage scheme stores a sparse matrix – or its factor – using just one integer
index ki per row i (see for instance [85]). Large software libraries such as ISSL use
the skyline because this is the format which allows the fastest possible matrix-vector
multiplication. The reason is obvious: Per row all matrix entries ai,i, . . . aki,i as well
as ai,ki , . . . ai,i are stored as vectors of numbers. This section shows that when using
the skyline storage for the LU factors, scheme (iii) uses much less memory than the
minimal degree scheme (ii). The reason for this is that the band-width of the ”mini-
mal degree permuted matrix“ is much larger than the band-width of the matrix with
our scheme (iii).
The remainder of this section is organized as follows. First, we calculate the exact
amount of fill-in created by the application of Gaussian elimination to the stiffness
matrix An on the grids in figure 2.3 and figure 2.4. Next, the amount of fill-in is com-
pared to the amount of entries in the original stiffness matrix An, and is shown to
be logarithmically dependent on the level of refinement. The corresponding amount
of fill-in is compared to the amount of fill-in resulting from the symmetric minimum
degree ordering, as implemented in Matlab.

The convective case is not examined since the induced extra non-zero matrix entries
have little or no effect on the order of the amount of fill-in. In the following dis-
cussion the degrees of freedom and the amount(s) of fill-in counts employ a certain
substructure induced by the bisection refinement.

First we have a closer look at the connectivity graphs Bk related to the horizontal
layers in figures 2.3 and 2.4. Note that the connectivity graphs in figures 2.5 and 2.6

An efficient node ordering for the refinement along a line 11

related to horizontal layers in figures 2.3 and 2.4 are mutually related. Figure 2.6
shows that Bk+1 consists of two sub-graphs of type Bk, and of two identical caps C,
one on each side. The caps are related to a grid that contains three triangles.

PSfrag replacements

B1

Figure 2.5: The connectivity
graph related to k = 1: B1.

PSfrag replacements
Bk

Bk

Bk+1

Figure 2.6: The connectivity
graph of level k + 1: Bk+1.

The edges of all non-directed graphs (see for instance figure 2.5) correspond to the
non-zero stiffness matrix entries, and the vertices to the degrees of freedom. Thus,
the diagonal edges from the central division line are not present (because all related
entries are zero). When counting degrees of freedom, we do not count the vertices
situated at the top, and when counting fill-in, we neither count the fill-in caused by
vertices at the top. Therefore the related collection of edges at the top is shown as
dotted lines.

We next give a result for the number of degrees of freedom related to Bk.

Theorem 2.1. Let Nk denote the amount of degrees of freedom related to Bk, excluding the
degrees of freedom related to vertices situated at the top. Then

(2.1) Nk = 5 · 2k − 2.

Proof. First consider the case k = 1. According to figure 2.5, the amount of degrees
of freedom is 8, which is equal to 5 · 21 − 2.

Next, assume that our claim holds for some k > 0, so let Nk = 5 · 2k − 2. Due to
the construction of Bk+1 in figure 2.6, Nk+1 is double the amount of Nk, with an
additional two degrees of freedom situated at the bottom corners. Hence

Nk+1 = 2(5 · 2k − 2) + 2 = 5 · 2k+1 − 2.

For K > 1, the K graphs Bk are superimposed. The related amount of degrees of
freedom NK,k is K ·Nk plus the amount of vertices on the lower bottom line of Bk,
which is 3 + 2k. Thus, the total degrees of freedom is given by

NK,k = K · (5 · 2k − 2) + 3 + 2k.

12 Chapter 2: Direct methods: Efficient Gaussian elimination

Note that we pretend not to eliminate the vertices at the Dirichlet boundaries (top
and bottom). The elimination would make the fill-in count below even more elabo-
rate, but has little effect on the amount of fill-in. Thus, as a matter of fact, we count
the fill-in of a stiffness matrix An induced by Neumann boundary conditions on the
domain’s top and bottom.

The Gaussian elimination process applied to An leads to the standard upper and
lower triangular factors such that An = LnUn. We count the amount of potential
non-zero entries ρ in Un, excluding its diagonal. The actual amount of fill-in follows
from ρ and the amount of non-zero entries in An. Because the grid depends on K
and k, so do An and ρ; we shall use the notation AK,k and ρK,k respectively when
necessary.

The amount of entries ρ depends on the numbering of the degrees of freedom (num-
bering of the vertices of the graphs Bk). We distinguish the following numbering
schemes:

(2.2)
(LR) First from left to right, next from bottom to top;
(BT) First from bottom to top, next from left to right.

The (LR) scheme is the one which leads to a nearly optimal band-width combined
with nearly optimal fill-in. The (BT) scheme performs poorly with respect to both
fill-in and band-width. The main reason that the (LR) numbering performs so well
turns out to be that the degrees of freedom are numbered first in a direction orthogonal to
the resolved line, and next in the direction tangent to this line. This numbering scheme
shortens possible paths which can lead to the creation of fill-in.

In [45] paths have been characterized that can cause fill-in. Let i < k be the numbers
of two degrees of freedom. A related (potential) non-zero fill-in is created in UK,k

during Gaussian elimination if there is a fill-in path: A path from vertex vi to vertex
vk through vertices v0, . . . , vi−1 ([76, Th. 3.3]). All counts for ρ depend on the (LR)
numbering. When graph Bk is related to a middle layer of a grid GK,k , its fill-in
paths can leave and reenter through its bottom horizontal line. Such paths are called
reentrant paths, all other paths are called non-reentrant, or internal.

Definition 2.2. For k > 0, define

(i) Pk, the amount of non-top vertices induced fill-in paths (inc. reentrant) of Bk;

(ii) Tk, the amount of top vertices induced fill-in paths of Bk;

(iii) Rk, the amount of bottom vertices reentrant fill-in paths of Bk.

Then the amount of non-zero entries ρK,k is given by

(2.3) ρK,k = K · Pk + Tk −Rk.

In Theorem 2.3 below where an explicit expression for ρK,k for the (LR) scheme is
given, several types of fill-in paths are distinguished:

An efficient node ordering for the refinement along a line 13

• To the right, or diagonally or vertically up (also non-zero entry in An);

• To the left, and next diagonally or vertically up;

• If possible, first down from vi, next left, and finally up to a vertex on a horizon-
tal line above vi;

• If possible, first down from vi, next right, and finally up to a vertex on a hori-
zontal line above or containing vi.

Theorem 2.3. Let AK,k be the standard stiffness matrix obtained on the grids GK,k in
figures 2.3 – 2.4, using an (LR) numbering scheme. Assume that AK,k = LK,kUK,k is fac-
tored by Gaussian elimination. Then the amount of potential non-zero entries in the strictly
upper triangular part of UK,k is

(2.4) ρK,k = K ·
(

(10k + 16) · 2k − 4k − 7
)

+ 2(1 + k).

Proof. The refined grid consists of K horizontal layers, each related to a graph Bk.
From (2.3) it follows that we have to count all of (i) Pk, (ii) Tk and (iii) Rk.

First, consider case (i). To determine Pk, we first count the non-zero entries related
to the bottom corner vertices of Bk. This amount equals

(2.5) 4k + 7.

The proof now employs induction with respect to the level k. Note that fill-in paths
counted for Pk can be reentrant.
For k = 1, the left corner vertex vlk has 6 fill-in paths ending at higher numbered
vertices, and the right corner vertex vrk has 5 such paths, two of which are depicted
in figure 2.7.

PSfrag replacements
B1

Figure 2.7: One fill-in path from vl1, and one from
vr1 .

14 Chapter 2: Direct methods: Efficient Gaussian elimination

Thus, for k = 1, the total amount of fill-in paths is:

6 + 5 = 4 · 1 + 7

Next, assume that (2.5) holds for some k ≥ 1. According to figure 2.6, Bk+1 has two
subgraphs of type Bk, and two cap graphs C, each introducing a new lower corner
vertex vlk+1 and vrk+1. Now vlk+1 has a fill-in path to all vertices vlk,and vrk+1 has a
fill-in path to all vertices vrk.Each has two additional fill-in-paths with the two new
top left and right vertices of graph Bk+1. So the new bottom left and right corner
vertices have a total of

4k + 7 + 2 + 2 = 4(k + 1) + 7

fill-in paths.

For case (i), we next assert that:

(2.6) Pk = (10k + 16) · 2k − 4k − 7.

Again, the proof makes use of induction with respect to k. First, let k = 1. The
vertex-wise fill-in path count in figure 2.8 shows that the total amount, for 8 vertices,
is given by

7 · 5 + 1 · 6 = (10 · 1 + 16) · 21 − 4 · 1 − 7.

5

5 5 5

6 5 5 5PSfrag replacements

B1

Figure 2.8: The amount of fill-in paths for each ver-
tex in B1.

Now, suppose (2.6) holds for some k ≥ 1. Recall that Bk+1 has two subgraphs of
type Bk and two cap graphs C (see figure 2.6). Thus, the total amount of fill-in paths
is given by

2 · (10k · 2k + 16 · 2k − 4k − 7) fill-in paths from for 2
graphs Bk (see (2.1));

2 · 2 · (5 · 2k − 2) 2 extra fill-in paths for 2 graphs Bk;
4(k + 1) + 7 fill-in paths for the new bottom

corners (see (2.5)).

An efficient node ordering for the refinement along a line 15

As desired, this adds up to (10(k + 1) + 16) · 2k+1 − 4(k + 1) − 7.

Next, consider case (ii). Here we count Tp, the amount of fill-in paths related to top
vertices of Bk:

(2.7) Tp = (k + 1)(2k + 3).

In order to see that this is correct, first look at B1. Figure 2.9 shows the amount of
extra paths for each individual vertex at the top. The amount equals

4 + 3 + 2 + 1 + 0 = 10 = (1 + 1)(2 · 1 + 3).

4 3 2 1

PSfrag replacements

B1

Figure 2.9: The amount of extra paths for each in-
dividual vertex at the top row of the top block B1.

Next, assume (2.7) holds for certain k ≥ 1. Note that the amount of vertices situated
at the top horizontal line (also at bottom horizontal line) of Bk is given by

(2.8) 2k + 3.

Then the fill-in paths from the vertices at the top of Bk+1 are:

(k + 1)(2k + 3) from top vertices of upper Bk,
inside Bk (see (2.7));

2k + 3 1 extra from top vertices of upper Bk
to new upper right corner(see (2.8));

2(k + 1) + 3 − 1 paths extra from new left vertex.

Again, this adds up to the desired result ((k + 1) + 1)(2(k + 1) + 3). Keeping (2.7) in
mind, the total amount of fill-in paths in case (ii) is:

(10k + 16) · 2k − 4k − 7 + ((k + 1)(2k + 3)) .

Finally, consider case (iii). Here, we count the amount of reentrant fill-in paths Rk

16 Chapter 2: Direct methods: Efficient Gaussian elimination

related to bottom vertices of graphBk. To this end, we first count the total amount of
paths related to bottom vertices, and next count and subtract the amount of internal
paths.

The total amount of fill-in paths related to bottom vertices of Bk is given by

(2.9) 4k2 + 13k + 9.

For k = 1, this holds, counting all such paths in figure 2.5. Assume this amount is
correct for certain k ≥ 1. Then for k + 1 we have

4k2 + 13k + 9 for each bottom vertex in bottom Bk (see 2.9);
2 · (2k + 3) 2 extra for each bottom vertex in bottom Bk (see (2.8));
4(k + 1) + 7 extra from two new vertices C graphs.

The total amount now is 4(k + 1)2 + 13(k + 1) + 9 indeed.
Next we count the amount of internal paths

(2.10) 2k2 + 10k + 8.

For k = 1, this holds (see figure 2.5). Assume this amount is correct for certain k ≥ 1.
Then for k + 1:

2k2 + 10k + 8 for each bottom vertex in bottom Bk (see 2.10);
2k + 3 − 1 1 extra for each bottom vertex in bottom Bk,

except right corner (see (2.8));
2 2 extra for right bottom corner vertex in Bk;
2 for the new left bottom corner vertex (in C graph);
2k + 3 + 2 for the new right bottom corner vertex (in C graph).

From (2.10) and (2.9) we obtain thus

Rk = (4k2 + 13k + 9) − (2k2 + 10k + 8) = 2k2 + 3k + 1.

Finally, note that

Tk −Rk = (k + 1)(2k + 3) − (2k2 + 3k + 1) = 2(1 + k),

which shows that (2.4) holds.

Remark 2.4. Theorem 2.3 shows that the amount of entries in the factors of An is
O(k · 2k). The amount of entries in An depends in a different manner on k:

Theorem 2.5. Let AK,k be the standard stiffness matrix obtained on the grids GK,k in
figures 2.3 – 2.4. Then the amount of non-zero entries in AK,k is given by

(2.11) AK,k = 25 · 2k−1 − 7.

An efficient node ordering for the refinement along a line 17

Proof. As before we use the fact that each graph Bk+1 contains two Bk subgraphs,
and cap graphs C, as in figures 2.5 and 2.6. For k = 1, figure 2.10 shows that AK,1

contains 18 non-zero entries.

3 2 2

3 2 2 2 2PSfrag replacements

B1

Figure 2.10: Amount of non-zero entries of AK,1.

Next assume (2.11) holds for a certain k ≥ 1. Then, looking at figure 2.11 we deduce
that the non-zero entries in AK,k+1 are counted as

2 · (AK,k) one for each subgraph Bk;
3 for the new right bottom corner vertex a (in C graph).
2 for the new left bottom corner vertex b (in C graph);
2 · 1 one each extra for vertices c and d.

a b

c d

PSfrag replacements
Bk

Bk

Bk+1

Figure 2.11: Amount of non-zero entries of AK,k+1.

This adds up to the desired amount for k + 1 in (2.11).

Remark 2.6. Theorem 2.5 shows that the amount of entries in AK,k is O(2k). Thus
using Gaussian elimination for the (LR) scheme produces factors which are roughly
k times larger than the matrix itself. In the typical case, where the average amount

18 Chapter 2: Direct methods: Efficient Gaussian elimination

of entries per row of A is small, a factor k = 10 or k = 20 is a reasonable fill-in. In
fact it can compensate for k = 10 or k = 20 iterations, had an iterative method been
used to solve Ax = b. Note that k = 20 corresponds to a difference in scales of 10−6.

2.4 Numerical examples and conclusions

In this last section we give two examples in order to illustrate the (LR) node num-
bering scheme discussed in Section 2.3, and compare its efficiency to the reverse
Cuthill-McKee and minimum degree ordering schemes.

Example 2.7. The first example considers Gaussian elimination of matrices AK,k

related to the grids shown in figures 2.3 and 2.4. Figure 2.12 depicts the amount of
non-zero entries in the factors for the (LR), (BT) and minimum degree schemes. As

2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

10
5

10
6

10
7

refinement level k (K = 1)

no
n−

ze
ro

 e
nt

rie
s

in
 fa

ct
or

s

left−right
minimum degree
bottom−up

Figure 2.12: Fill-in for K = 4, k = 0, . . . 7.

figure 2.12 shows the (LR) scheme’s fill-in is close to the minimum degree scheme’s
fill-in. Because an exact count of minimum degree scheme’s fill-in is not available in
the literature, we cannot do comparisons for k → ∞.

Next we compare the band-width related to the (LR), minimum degree and reverse
Cuthill-McKee schemes. This is shown in figures 2.13 and 2.14.

Numerical examples and conclusions 19

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 887

(a) Left-right ordering

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 821

(b) Minimum degree or-
dering

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 1201

(c) Rev. Cuthill-McKee
ordering

Figure 2.13: Factors for the three ordering schemes (K, k) = (4, 2).

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

nz = 36007

(a) Left-right ordering

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

nz = 26639

(b) Minimum degree or-
dering

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

nz = 284295

(c) Rev. Cuthill-McKee
ordering

Figure 2.14: Factors for the three ordering schemes (K, k) = (4, 6).

As will be clear from these figures, the envelope of the factors of the reordered min-
imum degree matrix is almost maximal, i.e. almost identical to the total amount of
degrees of freedom. Thus, using a minimum degree ordering, matrix-vector imple-
mentations for L and U should make use of column indexing. The L and U factors
from the (LR) scheme do not require such an indexing, whence matrix-vector mul-
tiplication is likely to be faster. Furthermore, the band-width related to the (LR)
scheme is comparable to the band-width optimizing reverse Cuthill-McKee scheme.

20 Chapter 2: Direct methods: Efficient Gaussian elimination

Figure 2.15: A brick covered by a lo-
cally refined finite element grid.

Example 2.8. In this example we examine a brick-like structure as in figure 2.15, and
in particular we look at the refinement layer near the boundary. This is the type of
grid we had in mind in Section 1.2 as representation of a typical brick with a highly
non-uniform mesh toward the boundary. The initial uniform grid in these tests has
size 19× 19, and at each refinement step one level of bisection refinement is applied
to the layer of elements closest to the boundary. Figure 2.16 shows in detail this layer
of interest, with several refinement steps.

Initial grid,
����� ����� ���	� ����

Figure 2.16: Initial uniform grid, the refinement layer at the bound-
ary and three bisection steps.

First we compare the band-width related to the (LR), minimum degree and reverse
Cuthill-McKee ordering schemes. Results are shown in figures 2.17 and 2.18.

Numerical examples and conclusions 21

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 21004

(a) Left-right ordering

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 16654

(b) Minimum degree or-
dering

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 43738

(c) Rev. Cuthill-McKee
ordering

Figure 2.17: Factors for the three ordering schemes for brick refinement k = 7.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 53790

(a) Left-right ordering

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 40538

(b) Minimum degree or-
dering

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 181414

(c) Rev. Cuthill-McKee
ordering

Figure 2.18: Factors for the three ordering schemes for brick refinement k = 9.

The number of non-zeros in the LU factors for the three schemes is compared in
figure 2.19 for a sequence of bisections.
From these figures and results we see that the (LR) scheme compares well with the
minimum degree scheme with respect to fill-in. When we compare the envelopes of
the matrix, we see that for both ordering schemes the envelope for the last couple of
rows and columns is maximal. However, with respect to the remainder of the matrix
the (LR) scheme’s envelope seems to be more favourable when storing the matrix

22 Chapter 2: Direct methods: Efficient Gaussian elimination

0 2 4 6 8 10 12
10

2

10
3

10
4

10
5

10
6

10
7

number of bisections k

no
n−

ze
ro

 e
nt

rie
s

in
 fa

ct
or

s

left−right
minimum degree
rev. Cuthill−McKee

Figure 2.19: Fill-in for a brick refinement, k = 0, . . . , 12.

in skyline format. Also compared to the band-width minimizing reverse Cuthill-
McKee scheme, the (LR) scheme has a much smaller envelope except for the last
couple of rows and columns. The maximal envelope of the (LR) scheme for these
rows and columns is due to our ordering of the degrees of freedom: Since our grid is
circular, the nodes that are numbered first are coupled to the nodes numbered last.
However, the number of rows that is filled in this way is smaller than the number of
bisection steps.

In this chapter we have shown that a major part of the stiffness matrix factors re-
lated to figures 2.3 and 2.4 can be efficiently stored in skyline format, using our (LR)
numbering scheme for the degrees of freedom. Thus optimal fast matrix-vector mul-
tiplications are possible. Furthermore, the (LR) numbering scheme leads to matrices
with much smaller bandwidth, and we have proved that the related fill-in is loga-
rithmic in the amount of levels of refinement. Also for grids as in figure 2.15 the (LR)
numbering scheme compares well with the minimum degree and reverse Cuthill-
McKee schemes, certainly when using the skyline format for storing the factors.

Chapter 3

Iterative methods and preconditioners

In this chapter we address the problem of computing the solution of a linear sys-
tem of equations resulting from the discretization of a convection diffusion equation.
There are two main classes of algorithms to compute the solution of a linear system:
direct methods and iterative methods. The Gaussian elimination technique discussed
in Chapter 2 is an example of a direct method. In this chapter we focus on iterative
methods. We start with introducing the underlying problem and indicate some iter-
ative methods. In particular we discuss the complexity of such methods and point at
the important factors determining this complexity. Methods to reduce this complex-
ity are dealt with next. This includes approximate inverse techniques as they will be
the methods of choice in Chapter 4.

3.1 Iterative solution methods

In this thesis we will exclusively study linear systems of equations arising from the
convection diffusion equation

(3.1)
−a∆u+ b · ∇u+ cu = f in Ω = (0, 1)d ⊂ Rd,

u = g at ∂Ω.

After discretization we typically obtain an n× n linear system of equations

(3.2) Anxn = bn.

For the following discussion the actual type of equation and discretization method
as such is not of importance. In contrast to Chapter 2 we will discuss iterative

methods to solve an equation like (3.2) here. Let x
(0)
n denote an initial guess and

r
(0)
n := bn − Anx

(0)
n the residual. Then the sequence x

(k)
n , k = 1, 2, . . . denotes the

iterates computed during the iterative process, with residuals r
(k)
n := bn − Anx

(k)
n .

Finally, let e
(k)
n := x

(k)
n − xn be the error at iteration step k.

Iterative solvers are classified as stationary or nonstationary. Stationary methods are
based on a splitting of the matrix An, denoted as

An = Pn −Qn,

24 Chapter 3: Iterative methods and preconditioners

where Pn is non-singular. For such methods the iteration can be expressed in the
simplified form

(3.3) Pnx
(k+1)
n = Qnx

(k)
n + bn,

or
x(k+1)
n = P−1

n Qnx
(k)
n + P−1

n bn.

Now it is easy to see that for the error we have

e(k)
n = (P−1

n Qn)
ke(0)
n .

As an example of stationary iterative methods consider the Successive Over Relaxation
Method (SOR). Here An is split up as An = Dn−Ln−Un where Dn, −Ln and −Un

denote the diagonal, lower-triangular and upper-triangular parts of An respectively,
and let ω > 0. For the SOR method we take Pn = 1

ωDn−Ln and Qn = 1−ω
ω Dn+Un.

The parameter ω is called the relaxation parameter. Then the SOR iterative method
can be written as

(3.4) x(k+1)
n = (Dn − ωLn)−1(ωUn + (1 − ω)Dn)x(k)

n + ω(Dn − ωLn)−1bn.

For the iteration matrix we have

(3.5) P−1
n Qn = (Dn − ωLn)

−1(ωUn + (1 − ω)Dn).

The value of ω is important for the convergence of the algorithm. Let ρ denote the
spectral radius of the Jacobi matrix J(An) := D−1

n (Ln +Un), i.e. ρ = maxλ∈σ(J(An)) |λ|
where σ(J(An)) is the spectrum of J(An). Then the theoretically optimal value for
ω is given by (cf. [9])

ωopt =
2

1 +
√

1 − ρ2
.

There exists a host of such stationary methods; however they are not of much impor-
tance for our particular problem here. We are actually more interested in nonstation-
ary iterative methods. Though these are usually more difficult to implement, they
can be very effective. The difference between stationary and nonstationary methods
is that in nonstationary methods the computations involve information that changes
at each iteration. The principle of these methods is that a projection process is em-

ployed one way or another. As such, at each iteration k the new residual r
(k)
n is

computed such that it is orthogonal to a subspace Kk of dimension k formed in the
k − 1 previous iterations. In other words, we construct a new approximate solution

x
(k)
n such that

bn −Anx
(k)
n ⊥ Kk.

Of particular interest are subspaces Kk defined by

(3.6) Kk = span{r(0)
n ,Anr

(0)
n , . . . ,Ak−1

n r(0)
n }.

Iterative solution methods 25

This is the so called Ritz-Galerkin approach. Subspaces defined this way are called
Krylov subspaces, and methods based on orthogonalisation of the new residual over
the current subspace are called Krylov subspace methods. It should be noted that other
methods can be constructed by selecting other subspaces for the orthogonality con-
dition.

The best known of these Krylov subspace methods is the Conjugate Gradient Method
(CG) (see [51]) for symmetric positive definite systems. This method generates a
sequence of vectors that satisfy the Ritz-Galerkin condition in (3.6). In short, the CG

algorithm can be described as follows (see for example [9, 84]). Let p
(k)
n be the search

direction vector at iteration step k. Then the iterate x
(k)
n is updated as

(3.7) x(k+1)
n = x(k)

n + αkp
(k)
n

for a scalar αk. Then for the new residual r
(k+1)
n

(3.8) r(k+1)
n = r(k)

n − αkAnp
(k)
n .

With αk = (r
(k)
n , r

(k)
n)/(p

(k)
n ,Anp

(k)
n) we minimize the error (r

(k+1)
n ,A−1

n r
(k+1)
n) over

the existing subspace Kk. Finally the search direction is updated as well

(3.9) p(k+1)
n = r(k+1)

n + βkp
(k)
n ,

with βk = (r
(k+1)
n , r

(k+1)
n)/(r

(k)
n , r

(k)
n). This ensures that r

(k+1)
n and r

(k)
n are orthogo-

nal.

For convergence estimates of the CG method the spectral condition number κ2 of An

is used. For a symmetric positive definite matrix An, if λn and λ1 are the maximum
and minimum eigenvalues of An respectively, then

(3.10) κ2(An) =
λn
λ1
.

Then it can be shown that after k iterations the error e
(k)
n satisfies

(3.11) ‖e(k)
n ‖An ≤ 2

(

√

κ2(An) − 1
√

κ2(An) + 1

)k

‖e(0)
n ‖An ,

where ‖yn‖An := (yn,Anyn)2 (see for example [76]).

For non-symmetric matrices the CG method is not suitable because the residual
vectors cannot be made orthogonal. One approach to solve iteratively for non-
symmetric matrices is the Bi-Conjugate Gradients Method (Bi-CG) (see for example [103]).
Implicitly this algorithm not only solves the original system Anxn = bn, but also its

dual linear system AT
n x̃n = b̃n. Explicitly the standard CG algorithm is augmented

26 Chapter 3: Iterative methods and preconditioners

by a second sequence of residuals r̃
(k)
n and search directions p̃

(k)
n based on multipli-

cation by AT
n and arbitrary r̃

(0)
n , i.e.

(3.12) r̃(k+1)
n = r̃(k)

n − αkA
T
n p̃(k)

n

and

(3.13) p̃(k+1)
n = r̃(k+1)

n + βkp̃
(k)
n .

Here αk = (r̃
(k)
n , r

(k)
n)/(p̃

(k)
n ,Anp

(k)
n) and βk = (r̃

(k+1)
n , r

(k+1)
n)/(r̃

(k)
n , r

(k)
n). For sym-

metric An Bi-CG reduces to the standard CG, at twice the cost of CG.

However, multiplication by the matrix AT
n may be cumbersome to implement effi-

ciently. This has led to the Conjugate Gradient Squared Method (CGS) (see [89]) which
is applicable for non-symmetric matrices, but does not need operations with AT

n .

This is achieved as follows. First we observe that the residual r
(k)
n and the search

direction p
(k)
n can be expressed as

(3.14) r(k)
n = Pk(An)r

(0)
n , and p(k)

n = Qk−1(An)r
(0)
n ,

where Pk and Qk−1 are polynomials of degree k and k − 1 respectively. Then

(3.15) αk =
(Pk(A

T
n)r̃

(0)
n , Pk(An)r

(0)
n)

(Qk−1(AT
n)r̃

(0)
n ,AnQk−1(An)r

(0)
n)

=
(r̃

(0)
n , Pk(An)2r

(0)
n)

(r̃
(0)
n ,AnQk−1(An)2r

(0)
n)

.

This leads to the idea of looking at residuals that satisfy

r̂(k)
n = Pk(An)2r(0)

n .

Let r̂n be an arbitrary vector such that (r̃n, r
(0)
n) 6= 0. Then the CGS algorithm con-

sists of the following steps. Let βk−1 = (r̃n, r
(k−1)
n)/(r̃n, r

(k−2)
n). Then let u

(k)
n be an

additional vector given by

(3.16) u(k)
n = r(k−1)

n + βk−1q
(k−1)
n .

The search direction p
(k−1)
n is now updated according to

(3.17) p(k)
n = u(k)

n + βk−1(q
(k−1)
n + βk−1p

(k−1)
n).

With v
(k)
n = Anp

(k)
n and αk = (r̃n, r

(k−1)
n)/(r̃n,v

(k)
n) let

q(k)
n = u(k)

n − αkv
(k)
n .

The new approximate solution and new residual are then computed as

(3.18) x(k)
n = x(k−1)

n + αk(u
(k)
n + q(k)

n)

Complexity of iterative methods 27

and

(3.19) r(k)
n = r(k−1)

n − αkAn(u
(k)
n + q(k)

n).

The quadratic nature of the recursion is expressed in the extra vectors needed for the
computation of the new search direction, approximation and residual.
In practice it is often observed that the CGS method converges twice as fast as the
Bi-CG method, though this has not been proved yet. A disadvantage of CGS is that
it usually shows irregular convergence behaviour which can lead to cancellation of
the iterative process. Because of its speed, however, the CGS method will be our
iterative method of choice for our numerical examples in Chapter 7.

3.2 Complexity of iterative methods

The efficiency of an iterative method depends on certain characteristics of the linear
system and on characteristics of the method itself. In general, an ill-conditioned lin-
ear system will lead to slow convergence of the iterative method used. This means
that a large number of iterations is needed in order to achieve the required accu-
racy of the solution. A large number of iterations implies a large number of floating
point operations, which in turn increases computational time. Besides causing a
large number of flops, an ill-conditioned linear system also affects the accuracy of
the solution. Ideally, we want the number of flops to be proportional to the number
of degrees of freedom n, provided we only have a single processor computer at hand.
However, this ideal situation is rarely achieved. In order to tackle the problem of a
large number of flops and reduce the number of iterations, and hence the number of
flops, linear systems are preconditioned. Basically this means a basis transformation:
A second linear operator is constructed (the preconditioner) such that the precondi-
tioned linear system, i.e. the system obtained after the basis transformation, is better
conditioned. Preconditioning is described in detail in Section 3.4.

The efficiency of an iterative method is measured by the total workload or computa-
tional complexity w(ε). This is the number of floating point operations (flops) required

for finding an approximation x
(k)
n for (3.2) such that ‖r(k)

n ‖ ≤ ε. For iterative meth-
ods, the total workload depends on the number of flops per iteration, and on the
number of iterations λ(ε) needed to achieve the required accuracy. For so called
sparse systems, i.e., with only a few non-zero entries per row, as we have in our case
the number of flops per iteration is typically O(n); indeed an iteration involves only
a number of vector updates and matrix-vector multiplications (see for example [9]).
This gives

w(ε) = λ(ε)O(n),

which indicates that the number of iterations is the important factor for determining
the total workload. Note that this definition of the total workload does not allow to
assess iterative methods that have different number of flops each iteration step.

Ideally we want the number of flops to be proportional to the number of degrees
of freedom n, (i.e. assuming we only have a single processor computer at hand).

28 Chapter 3: Iterative methods and preconditioners

Hence, an iterative method is called optimal if the total workload w(ε) is linearly
proportional to the number of degrees of freedom n, i.e.

(3.20) w(ε)
.
= C · n.

On a parallel computer with p processors the total workload would ideally be

w(ε)
.
=
C

p
· n.

If we elaborate further on this, and assume we can employ n processors in parallel,
then w(ε)

.
= O(1). This does not take into account inter-processor communication.

Furthermore this estimate does not hold when n→ ∞.

Suboptimal order methods have a workload that typically grows faster than n. If
w(ε) = C · n log(n) we have a method that is only marginally suboptimal. Really
suboptimal methods have a workload that is polynomially dependent on n, i.e. for
some θ > 0 we have

w(ε)
.
= C · n1+θ.

The number of iterations λ(ε) is a most important factor in determining the work-
load. This number depends on the specific iterative method used. For few iterative
methods the specifics that determine the worst case of the number of iterations k

needed to achieve ‖r(k)
n ‖ ≤ ε are explicitly known.

1. SOR: the convergence of this method depends strongly on the choice of the
relaxation parameter ω. The optimal value ωopt for this parameter depends
on the spectral radius of the Jacobi matrix, and in general this optimal value
is not easy to compute. For the Poisson problem on a uniformly refined two
dimensional grid, this value ωopt is easy to compute, and is found to be 2/(1 +
sin(πh)). For the spectral condition number of the iteration matrix in (3.5) we
find ρ(P−1

n Qn) ≈ 1− 2πh (see [76]). Then the number of iterations λ(ε) needed

such that e
(k)
n ≤ (P−1

n Qn)
ke

(0)
n for k > λ(ε) is of order log(ε)/ log(1 − 2πh),

under the assumption that ‖e(0)
n ‖ = 1. Typically we have ε = O(h2) so that

log(ε) = − log(n). So, λ(ε) is estimated by n log(n). Using the fact that SOR
costs n flops per iteration, we find for the total workload w(ε)

.
= n2 log(n).

2. CG: rate of convergence depends on the spectral condition number of the ma-
trix An. Typically for a Laplace type operator (a = 1, b = 0, c = 0 in (3.1)) in
two dimensions we have κ2(An) = O(n) (see Section 3.3 for a proof). Then for
given tolerance ε the number of iterations λ(ε) required such that

‖xn − x(k)
n ‖An ≤ ε‖xn − x(0)

n ‖An for k > λ(ε),

is given by

λ(ε) ≤
√

κ2(An) log(2/ε) + 1.

(see [5]). Hence, with κ2(An) = O(n) and O(n) flops per iteration, for such a

problem we have w(ε)
.
= n

3
2 which is suboptimal.

Estimates for the spectral condition number 29

For other methods mentioned before there are no estimates for the worst case num-
ber of iterations needed.

3.3 Estimates for the spectral condition number

In the previous section we mentioned the dependence of certain iterative methods on
the spectral condition number of the matrix. This spectral condition number is also
used in error estimates. In this section we give several results on estimates for the
spectral condition number. The results are for a symmetric positive definite linear
system originating from a finite element discretization in particular.

If we take b = 0 and c = 1 in (3.1) we can define two bilinear forms. For the second
order term a∆u we define the stiffness bilinear form

(3.21) A(u, v) :=

∫

Ω

a∇u∇v,

and the mass bilinear form

(3.22) C(u, v) :=

∫

Ω

cuv,

for the mass term cu. Because c = 1 we will omit the c in the following discussion.
Let {φi}ni=1 be a basis, spanning a finite dimensional Hilbert space H and define the
linear operators

[An]i,j := A(φj , φi) =

∫

Ω

a∇φj∇φi, i, j = 1, . . . , n,

and

[Cn]i,j := C(φj , φi) =

∫

Ω

φjφi, i, j = 1, . . . , n.

Finally, let λ̄min denote the smallest eigenvalue of the continuous eigenproblem

−∆u = λu, in Ω,

where u satisfies the homogeneous imposed Dirichlet boundary conditions.

For discretization we cover the domain Ω by a grid Ωh. An element of Ωh is denoted
by e and we define aspect ratios

h := min
e

{diam(e)}, H := max
e

{diam(e)}.

Let amin := minx∈Ω{a(x)} and amax := maxx∈Ω{a(x)}. Furthermore, let pmin and
pmax be the minimum and maximum number of elements respectively which share
any specific degree of freedom.
Then for κ2(An) we have the well known result, cf. [42, 43].

30 Chapter 3: Iterative methods and preconditioners

Theorem 3.1.

(3.23) κ2(An) ≤ γ
Hd

hd
H−2

λ̄min

amax

amin

pmax

pmin
,

where the constant γ does not depend on the aspect ratios h and H .

For a proof one may consult [42, pp. 164 -167] or [5, pp. 232-240].
For the mass matrix Cn an estimate for its spectral condition number is given by

Theorem 3.2.

(3.24) κ2(Cn) ≤ γc
Hd

hd
pmax

pmin
.

Thus the mass matrix has a condition number of orderO(1), ifHd/hd is bounded for n→ ∞.

Combining the two previous results gives

Corollary 3.3.

(3.25) κ2(An + Cn) =
O(Hd−2) +O(Hd)

O(hd)
.

Proof. From theorems 3.1 and 3.2 we find

((An + Cn)u, u)2 ≤ γ1H
d−2 + γ2H

d,

and
((An + Cn)u, u)2 ≥ γ3h

d.

The constants γ1, γ2 and γ3 do not depend on aspect ratios H and h. This completes
the proof.

If the factors amax/amin and pmax/pmin are known and independent of H and h, then
the result in Theorem 3.1 can be reformulated as

(3.26) κ2(An) = O(
Hd−2

hd
).

The previous result (3.26) is less interesting than it may seem at first sight. Consider
the Laplace operator, i.e. (3.1) with a = 1 and b = 0, c = 0, in two dimensions.
For a uniform grid we have the estimate κ2(An) = O(h−2) = O(n). Numerical
observations show that this estimate is sharp. However, for non-uniform grids this
estimate is not sharp. We demonstrate this for two grids with local refinements as
in figures 3.1 and 3.2 by direct computation. In both examples the size of H remains
unchanged and h is halved when an extra level of refinement is added. From (3.23) it
would follow that an extra level of refinement results in an increase of the condition
number by a factor 4. However, from table 3.1 we observe that κ2(An)

.
= O(l) for a

grid as in figure 3.1; here l is the level of refinement. For the second grid the results
in table 3.2 seem to indicate that κ2(An)

.
= O(n).

Preconditioning 31

Figure 3.1: Grid with refine-
ment at x = 1.

Figure 3.2: Grid with refine-
ment at x = 0.5.

2-D, number of unknowns (level of refinement)
n (l) 4 (1) 11 (2) 26 (3) 57 (4) 120 (5) 247 (6) 502 (7) 1013 (8)

κ2(An) 2.89 5.44 8.29 11.10 13.73 16.11 18.21 20.06

Table 3.1: κ2(An) for grid in figure 3.1.

2-D, number of unknowns (level of refinement)
n (l) 16 (0) 45 (1) 93 (2) 191 (3) 389 (4) 787 (5)

κ2(An) 9.47 28.69 71.12 164.82 362.40 768.83

Table 3.2: κ2(An) for grid in figure 3.2.

Remark 3.4. Consider once more the Laplace operator in two dimensions and sup-
pose Ω is covered with a uniform grid. Let An denote the matrix related to a dis-
cretization of this operator. We want to solve Anxn = bn using the CG iterative
method. Using the estimate κ2(An) = O(n) and the dependency of the CG method

on the spectral condition number, we find that the total workload is O(n
3
2) which is

not optimal. In order to achieve a lower complexity the spectral condition number
must be improved. How to do this is the subject of the next section.

3.4 Preconditioning

In this section we examine ways to obtain better convergence for iterative methods.
Improvements can be obtained by what is called preconditioning. Basically this means
that a new linear operator Mn is constructed, called a preconditioner, such that mul-
tiplying An by Mn results in a lower total workload w(ε). Multiplying can be done

32 Chapter 3: Iterative methods and preconditioners

either from the right or from the left. In order to do so, it is necessary that both the
construction of and the multiplication by Mn is relatively cheap. In the following
we first describe how to use such a preconditioner in general. Then we give a sur-
vey of existing techniques. This starts with methods that result in an optimal order
workload, followed by other techniques resulting in suboptimal order.

3.4.1 Preconditioning methods

Two classes of methods for the construction of a preconditioner Mn can be distin-
guished: explicit methods and implicit methods. For explicit methods we compute an
approximation Mn to A−1

n , and solve the preconditioned linear system

(3.27) MnAnxn = Mnbn.

Since both Mn and An are explicitly available, only matrix-vector multiplications
are required in iterations. Alternatively we can solve a right preconditioned linear
system

(3.28) AnMnyn = bn, xn = Mnun.

For implicit methods Mn approximates An. This gives the preconditioned system

(3.29) M−1
n Anxn = M−1

n bn.

Here it is seen that in an iterative method each matrix-vector multiplication requires
the solution of a linear system involving Mn. The necessity of cheaply solving a
system with M−1

n in order to optimize the workload is evident. We also have the
right preconditioned version, i.e.

(3.30) AnM
−1
n yn = bn, xn = M−1

n yn.

For completeness we mention another variant of preconditioning, viz. one that pre-
serves symmetry in case An itself is symmetric. In this situation Mn is available in a
factored form, i.e.

Mn = LnL
T
n .

The preconditioner is then split between left and right, and the system to solve be-
comes:

(3.31) L−1
n An(L−1

n)Tyn = L−1
n bn, xn = (L−1

n)Tyn.

Despite the various ways to create a new, preconditioned, linear system of equations,
the goal is to achieve a better conditioned linear operator such that iterative methods
converge in less steps. For methods depending on the spectral condition number of
the matrix this means (for (3.29))

(3.32) κ2(M
−1
n An) � κ2(An)

asymptotically in n. Of course, provided construction of and multiplication by Mn

is cheap.

Preconditioning 33

3.4.2 Optimal order techniques for diffusive problems

Consider the situation of a uniformly refined grid, such that the ratio H/h is fixed
for each grid level. These methods are all of multilevel type, and the most important
ones are:

• The Algebraic Multi-level Iterative (AMLI) methods. First appeared in [7, 8];

• The Bramble, Pasciak and Xu (BPX) preconditioner. Published in [24];

• Multigrid methods. See for example [25].

Despite many differences all three methods employ a breakdown of the finest grid
into coarser grids. This results in a recursive structure of the preconditioner. The
basic idea is that a specific relation between two successive levels of refinement, cq.
grids, is exploited and used to represent the solution in terms of this breakdown in
refinement levels.
Recursion in the sense of exploiting self-similar substructures was used in Chapter 2,
which resulted in a nearly optimal order method (O(n logn). In Chapter 5 a recursive
nature of grids is exploited as well in a very straightforward manner. This results in
a nearly optimal order method as well.

Secondly there are optimal order methods for non-uniform grids where H/h → ∞
with increasing level of refinement. These are also of the multilevel type:

• Related to the AMLI method is a method that make use of special 2-d bisection
refinement for AMLI permitted coarse grids. See [66];

• For the BPX method non-uniform grids are also allowed. However, bisection
refinement is not allowed, and only the highest level element can be further
refined. See [19, 35].

It should be noted that the type of refinement used is important for both methods.

Remark 3.5. Optimal order methods can be used for non-symmetric and indefinite
elliptic problems too. There exists an extensive literature on such problems. In [41]
a two-level preconditioner for grids with local refinement is constructed. Under the
assumptions that the coarse grid size H is small enough, and that the ratio H/h is
bounded, an optimal order preconditioner can be obtained.
Multigrid is also employed for non-symmetric and indefinite elliptic problems and
has been extensively studied; see for example [21, 23, 32, 33, 88, 108]. One of the
recurring assumptions is that the coarsest grid is sufficiently fine in order to ensure
a uniform convergence rate. It also appears that computation of the restriction and
prolongation operators are more costly than solving the original problem.

Remark 3.6. Unfortunately, there are situations when optimal order preconditioners
cannot be employed. In those situations one has to revert to preconditioning meth-
ods that are suboptimal. For symmetric elliptic boundary value problems in a finite
element context, a preconditioner based on domain decomposition was introduced

34 Chapter 3: Iterative methods and preconditioners

in [22]. This method, called BPS, has the following estimate of the condition number
of the preconditioned system

κ(M−1
n An) = O(1 + (ln(H/h))2).

Here H denotes the size of the subdomains, and h is the mesh-size.

3.4.3 Incomplete factorization methods

An important class of preconditioners are the incomplete factorizations methods. These
preconditioners are based on direct solution methods (cf. Chapter 2), where part of
the computation is skipped. This results in incomplete factors Ln and Un such that
LnUn ≈ An. These are then employed as preconditioners as in (3.31). For literature
see [74] and [31, 75, 84, 103, 104].

Given the incomplete calculation of the factors Ln and Un, a lot of different strate-
gies have been studied. The most straightforward strategy is to compute factors that
have the same sparsity pattern S as An. This method is called ILU(0). An imme-
diate improvement over ILU(0) are techniques that allow fill-in according to certain
criteria. An approach is to allow fill-in at certain positions such that it leads to more
non-zero bands in the factors. This is similar to omitting fill-in when the fill-in is out-
side a prescribed sparsity pattern, which is called the drop by position strategy. These
methods are called ILU(p) were p denotes the level of fill-in allowed. Besides drop-
ping fill-in based on a criteria for the position of fill-in, fill-in can also be omitted if its
absolute value is below a certain threshold τ , which is a drop by size strategy. These
methods are referred to as ILU(τ) or ILUT, where the τ denotes the threshold.

Finally we mention the Modified ILU (MILU) method ([49]), which employs a form
of additional correction to the diagonal entries. This correction leads to LnUnwn ≈
Anwn for almost constant wn. The efficiency of the MILU method strongly depends
on the amount of correction applied (see [101]). Let 0 ≤ α ≤ 1 be a parameter
steering the amount of correction. For α = 0 we obtain the ILU(0) method and α = 1
results in the standard MILU method. Experiments indicate the α = .95 leads to a
very substantial reduction in the number of iterations. Of interest is to note that the
MILU method is employed as smoother for multigrid methods (see [90, 106]).

3.5 Approximate inverse preconditioning

In the previous section we gave a summary of few of the most well known (implicit)
preconditioning methods. In this section we look at explicit preconditioners. Al-
though implicit preconditioners have been successfully employed in a number of
applications, there are two main reasons to examine explicit preconditioners. First of
all, with the introduction of high-performance architectures straightforward imple-
mentation of implicit preconditioners could lead to lowering of performance. Espe-
cially ILU-type preconditioners are troublesome to implement in parallel, because of
the recursive nature of the computation. Another drawback of ILU-type precondi-
tioners is the possibility of breakdowns during the factorization process, due to zero

Approximate inverse preconditioning 35

pivots. This typically occurs when the matrix An is non-symmetric and/or indefi-
nite. Even if some care is taken during the factorization, there is no guarantee that
the resulting preconditioners will work properly.

A viable alternative is to construct a preconditioner Gn that is an approximation
to A−1

n . As mentioned in Subsection 3.4.1 this preconditioner requires only matrix-
vector multiplications. Added benefit is that matrix-vector multiplications are well
suited for parallelism. Ideally, we would like Gn to resemble A−1

n as much a pos-
sible, as this obviously would result in a preconditioned linear system that is close
to the identity matrix. However, the inverse of a sparse matrix An is full in general,
which necessitates a more careful approach in the construction of such an explicit
preconditioner. These considerations have led to the development of so-called ap-
proximate inverse preconditioners. Basically the approximate inverse is constructed
by minimizing a consistent norm of the difference between the identity In and the
preconditioned linear system. The motivation for looking at such preconditioners is
the following:
For the continuous differential and boundary operators L and B respectively, the
Green’s functions give a representation of the inverse operator. So, intuitively, dis-
crete versions of the Green’s functions will be good approximations to A−1

n where
An is a discretization of L and B. However there are several restrictions. Green’s
functions are rarely available in closed form. Even if an explicit formula for the
Green’s functions is available, a discrete version, for example by sampling, is not
always beneficial. One major reason is that Green’s functions have global support
which will result in a full approximate inverse whereas an efficient preconditioner
should be sparse. Also, in two dimensions Green’s functions have a singularity at
the source point, which makes sampling more difficult. The problem of a full ap-
proximate inverse may be avoided by sampling the Green’s function in few points
only, so that a sparse approximate inverse is obtained. However, this turns out not
to be satisfactory either. Yet, let us call the approximate inverse Gn. For simplicity
we will also call this matrix the Green’s matrix.

In the following, we discuss several approximate inverse strategies, but only the
most relevant details are given. Most, if not all, literature on approximate inverses
deals with implementation and application only, which in fact means a lack of the-
oretical results. The method as such, however, is important for our discussion. In
Chapter 4 we will discuss our choice of Gn in greater detail.

3.5.1 Frobenius norm minimization

Historically Frobenius norm minimization is the first approximate inverse technique
that was proposed (see for instance [12]). The main idea is to compute a sparse
matrix Gn ≈ A−1

n as the solution of the constrained minimization problem

(3.33) min
Gn∈Sn

‖In −AnGn‖F .

Here Sn denotes a set of sparse matrices with sparsity pattern S, and ‖ · ‖F denotes
the Frobenius norm. Let ei denote the ith column of In and gi the ith column of Gn.

36 Chapter 3: Iterative methods and preconditioners

Since

‖In −AnGn‖2
F =

n
∑

i=1

‖ei −Angi‖2
2,

the minimization problem (3.33) to compute Gn is replaced by solving n distinct
linear least squares problems, each with constraints on the sparsity of gi. In order to
compute the gi we minimize

‖ei −Angi‖2
2

given the sparsity pattern for gi. This boils down to solving

(3.34) [Angi]j = [ei]j , (j, i) ∈ S.

This method has the highest potential for parallelism. The approximate inverse tech-
nique described in Chapter 4 is based on Frobenius norm minimization and solv-
ing (3.34) for obtaining Gn in particular.

This Frobenius norm minimization can be generalized into a weighted variant (see [4]).
Given a symmetric positive definite matrix Hn, the norm to be minimized is

(3.35) ‖In −AnGn‖2
FH

≡ tr((In −AnGn)Hn(In −AnGn)
T).

The n linear systems needed to compute the columns of Gn are

AT
nHnAngi = AT

nHnei, i = 1, . . . , n.

Clearly, Hn = In gives back (3.33).
If An is symmetric positive definite, with Hn = A−1

n the approximate inverse Gn

satisfies
[AnGn]i,j = δi,j , (i, j) ∈ S.

One of the important issues is the choice of the sparsity pattern S. If S is given or
known a priori, then computation of Gn is straightforward. This computation is
highly parallelizable since the computation of gi is a local process only.
The role of S is intended to remove small entries of A−1

n , and retain the large entries,
that influence the quality of the preconditioner. However, for an arbitrary sparse
matrix it is not known in advance which entries of its inverse are large. This makes
the choice of S difficult. In order to overcome this problem, a common choice is to
take the sparsity pattern of An for S. If there are still large elements in A−1

n located
outside the non-zero pattern of An, another choice is to take the sparsity pattern
of Ap

n, p ≥ 2. In general this means that more information of A−1
n is captured in

the approximate inverse Gn. However, there is no guarantee it will work properly.
Also the cost for computing and storing the approximate inverse grows rapidly for
increasing p.
As the problem of prescribing a good sparsity pattern S for Gn remained, adaptive
strategies have been developed, see [34, 47]. The approach in [47] is probably the
most successful and is better known as the SParse Approximate Inverse (SPAI) precon-
ditioner. The strategy is to start with an initial sparsity pattern and to enlarge it when

Approximate inverse preconditioning 37

entries found outside the sparsity pattern at that moment are considered to be large
according to some threshold. See [17, 47] for more details of the SPAI preconditioner.

3.5.2 Factorized sparse approximate inverses

A big disadvantage of the Frobenius norm based approximate inverse is that Gn

does not preserve symmetry and/or positive definiteness of An in general, even if
An is. This means it cannot be used with the CG method to solve symmetric positive
definite problems. We consider therefore a method that does have this property. It
is based on computing a factorized sparse approximate inverse using incomplete
inverse factorizations.
Assume that An can be factored as LnDnUn where Ln is lower triangular, Dn is di-
agonal and Un is upper triangular. Then A−1

n = U−1
n D−1

n L−1
n . The factorized sparse

approximate inverse is constructed by computing its factors Zn and Wn which are
sparse approximations to U−1

n and L−1
n respectively. Then as approximate inverse

we take

(3.36) Gn = ZnD
−1
n Wn.

Several approaches have been developed to compute the approximate factors Zn
and Wn.
A first class of methods does not need a factorization of An, but constructs the fac-
torized approximate inverse directly from An. This includes the Factorized Sparse
Approximate Inverse (FSAI) method introduced in [60] which can be described as fol-
lows. Assume that An is symmetric positive definite, and let SL denote a prescribed
lower triangular sparsity pattern including the main diagonal. Then the lower trian-

gular matrix Ẑn is computed by solving

(3.37) [AnẐn]i,j = δi,j , (i, j) ∈ SL.

Let D̂n := (diag(Ẑn))−1 and Zn = D̂
1/2
n Ẑn, then the preconditioned linear system

ZnAnZ
T
n is symmetric positive definite, and diagonal entries equal to 1. A common

choice for SL is to take

(3.38) SL := {(i, j) : [An]i,j 6= 0, i ≥ j},

i.e. the non-zeros in the lower triangular part of An. For a better approximation,
albeit at a higher cost, another choice is to take the non-zeros in the lower triangular
part of Ap

n for p ≥ 2. The main drawback of FSAI is that it relies on a prescribed
sparsity pattern, and is not well suited for general sparse matrices. The method can
be extended to the case of non-symmetric matrices. However, the solvability of the
local linear systems and the non-singularity of the approximate inverse is no longer
guaranteed.

A second method of computing a factorized approximate inverse is discussed in [14].
The advantage of this method is that a prescribed sparsity pattern is not required.

38 Chapter 3: Iterative methods and preconditioners

This method is based on incomplete (bi)conjugation and generally referred to as
AINV. The algorithm computes two sets of vectors, {wi}ni=1, {zi}ni=1 that are An-
biconjugate, i.e.

(3.39) zTi Anwj = 0 ⇔ i 6= j.

Let
Zn = [z1, . . . zn], and Wn = [w1, . . .wn,]

then

(3.40) WT
nAnZn = Dn = diag(p1, . . . , pn)

where
pi = wT

i Anzi 6= 0.

Wn and Zn are non-singular and hence

A−1
n = ZnD

−1
n WT

n

which gives us a factorization of A−1
n .

In general Zn and Wn are dense, and to get a sparse approximate inverse, the ma-

trices Zn and Wn are computed incompletely. This gives incomplete factors Ẑn, Ŵn

and an approximation D̂n ≈ Dn. The factorized approximate inverse takes the form

Gn = ẐnD̂
−1
n ŴT

n . The advantage of factorized sparse approximate inverse tech-
niques over the SPAI technique in Subsection 3.5.1 is that the former can be used as
preconditioners for the CG method for solving symmetric positive definite problems.

3.5.3 Practical use of approximate inverses

We conclude this section with some comments on the use of the approximate in-
verse preconditioning techniques. As has been mentioned before, the approximate
inverses were developed to overcome breakdown of preconditioners such as the
ILU(0). As such the setting in which approximate inverses are presented in liter-
ature is rather practical and implementation oriented. In [15] several tests were
done to compare the ILU(0) and the SPAI and AINV as preconditioner. The exper-
iments were performed on sparse matrices, mostly from the Harwell-Boeing collec-
tion. These non-symmetric matrices originate from a wide range of applications such
as oil reservoir simulation and circuit design. Several observations can be made.
AINV and SPAI fail for a few test problems, but for the remainder of the tests the ro-
bustness of the AINV and SPAI is comparable with the ILU(0). Rates of convergence
are also comparable; AINV seems to perform a bit better than SPAI. The time for the
iterative part however, shows that SPAI and AINV are much better than ILU(0) due
to the good vectorization properties of the approximate inverses. The price to pay
is the expensive construction time for SPAI and AINV with the first one being even
much more expensive than the latter. It should be noted that SPAI was designed for
parallel implementations which has not been taken into account in these tests. For
other tests in different settings see for instance [13, 14, 16, 34].

Diagonal approximate inverses 39

3.6 Diagonal approximate inverses

In the discussion of the choice for S, we mentioned that the sparsity pattern of An is
a common choice, or alternatively that of Ap

n for p ≥ 2. It is also possible to construct
a diagonal approximate inverse, which, in fact, inherits the sparsity patter of A0

n. Let
this diagonal approximate inverse be denoted by Dn. For right preconditioning we
observe that the columns of AnDn are scaled versions of the columns of An since
[AnDn].,j = [An].,j [Dn]j,j . Similarly, for the left preconditioned system DnAn the
rows are scaled. With such scalings it is possible to lower the condition number of
An. This is called equilibration and has been studied in considerable detail in [10, 98,
100, 99].
From [98] we derive several results on what can be obtained optimally with equili-
bration: Let ‖ · ‖p be be any Hölder norm, p > 0 or p = ∞, or the Frobenius norm.
For the left preconditioned linear system we then have

Theorem 3.7. Let κ(An) = ‖An‖∞‖A−1
n ‖p. Then for a diagonal matrix Dn, κ(DnAn)

is minimal if in DnAn all rows have identical 1-norm.

For the right preconditioned case:

Theorem 3.8. Let κ(An) = ‖An‖1‖A−1
n ‖p. Then κ(AnDn) is minimal if in AnDn all

columns have identical 1-norm.

However, in practice we are more interested in the spectral condition number κ2 of
the matrix. Then, based on 1√

n
‖ · ‖∞ ≤ ‖ · ‖2 ≤ √

n‖ · ‖∞, we have

Corollary 3.9. Let κ(An) = ‖An‖2‖A−1
n ‖p and let Dn denote the set of n × n diagonal

matrices. Then
κ(D̂nAn) ≤

√
n min

Dn∈Dn

κ(DnAn)

if all rows in D̂nAn have identical 2-norm, and

κ(AnD̂n) ≤
√
n min

Dn∈Dn

κ(AnDn)

if all columns in AnD̂n have identical 2-norm.

For sparse matrices that are symmetric positive definite the last result can be refined
(see [98]):

Corollary 3.10. Let An be symmetric positive definite and κ(An) = ‖An‖2‖A−1
n ‖2. As-

sume that An has at most m non-zeros in any row. Then

κ(An) ≤ m min
Dn∈Dn

κ(DnAnDn)

if the main diagonal of An is constant.

In [98] no information is provided about the optimality of Dn. These results indicate
that diagonal preconditioning is most efficient when this preconditioner equilibrates
the rows or columns of the given linear operator An.

Chapter 4

The approximate inverse

In this chapter we look further into the approximate inverse technique introduced in
Section 3.5. In the first section we consider a discretization for a general convection
diffusion equation on a non-uniform grid. For a certain class of tridiagonal matrices,
which also arise from the previously discussed discretizations, the eigenvalues and
eigenvectors can be determined. This theory leads to Toeplitz matrices which are
one of the few types of matrices for which the spectrum, and henceforth the spectral
condition number, can be computed.

The spectral condition numbers of our preconditioned linear systems AnGn and
GnAn are difficult to compute, since they are not symmetric. However, as it turns
out, these preconditioned linear systems resemble a Toeplitz matrix. For the one
dimensional case we alter the approximate inverse based preconditioner such that
the products AnGn and GnAn are Toeplitz for the pure diffusive problems. Using
Toeplitz matrix results summarized in [20] the spectral condition number can be de-
rived. For the product GnAn we give an estimate of the spectral condition number,
since in this case the inverse is explicitly known. The spectral condition number of
the other product AnGn is estimated in an alternative way, which is described at the
end of the chapter.

4.1 The convection diffusion discretization

Let a, b and c be non-negative real numbers, g a function, and consider the BVP:

−ad
2u

dx2
+ b

du

dx
+ cu = g(x), x ∈ Ω = (0, 1),

u(0) = u(1) = 0.

Let n be a positive integer, let ψ ∈ (0, 1]. Define f := 1/ψn+1 and F the mapping

(4.1) F : x 7→ f (1−x) − f

1 − f
.

42 Chapter 4: The approximate inverse

Finally, let

(4.2) xi := F (i/(n+ 1)) =
f (1−i/(n+1)) − f

1 − f
, ∀i = 0, . . . , n+ 1.

Then x0 = 0, xn+1 = 1, and

(4.3) ψ =
xi+1 − xi
xi − xi−1

, ∀i = 1, . . . , n.

Indeed,

xi+1 − xi
xi − xi−1

=
f1−(i+1)/(n+1) − f1−i/(n+1)

f1−i/(n+1) − f1−(i−1)/(n+1)
=
f1−1/(n+1) − f

f − f 1+1/(n+1)

=
f−1/(n+1) − 1

1 − f 1/(n+1)
=

ψ − 1

1 − ψ−1

=
ψ

ψ

ψ − 1

1 − ψ−1
= ψ

ψ − 1

ψ − 1
= ψ.

Thus grid points xi are denser for xi close to 1. Define

(4.4) hi := xi+1 − xi, ∀i = 0, . . . , n,

and let

(4.5) H := h0 and h := hn,

then
xi+1 − xi
xi − xi−1

= ψ ⇒ hi = ψiH, ∀i = 0, . . . , n.

Thus,
h = ψnH.

If we take Ω = (α, β), then H can simply be found, for

β−α =

n
∑

i=0

(xi+1 −xi) =

n
∑

i=0

hi =

n
∑

i=0

ψiH = H · 1 − ψn+1

1 − ψ
⇒ H = (β−α)

1 − ψ

1 − ψn+1
.

Now we proceed as follows: Let ui
.
= u(xi). Using (4.3), we find

xi−1 = xi − hi/ψ, xi+1 = xi + hi.

Using a Taylor expansion and a bit of algebra, a central difference approximation of
u 7→ u′′ is (see [69])

2

hi−1 + hi

(

ui+1 − ui
hi

− ui − ui−1

hi−1

)

.
= u′′(xi) ⇒

1

h2
i

2ψ

1 + ψ
(ψu(x− hi/ψ) − (1 + ψ)u(x) + u(x+ hi)) = u′′(xi) +O(hi).

Eigenvalues and eigenvectors of tridiagonal matrices 43

Thus discretizing the operator u 7→ −au′′ results in the difference equation

1

h2
i

· 2ψ

1 + ψ
· a (−ψui−1 + (1 + ψ)ui − ui+1) .

The related stencil is given by

1

h2
i

· 2ψ

1 + ψ
· a [−ψ, (1 + ψ),−1] , ∀i = 1, . . . , n.

For a first order downwind discretization of u 7→ bu′ the stencil is

1

hi
· b [−1, 1, 0] .

Thus, the stencil for the finite difference operator is given by

(4.6)
1

h2
i

· 2ψ

1 + ψ
· a [−ψ, (1 + ψ),−1] +

1

hi
· b [−1, 1, 0] + c [0, 1, 0] , i = 1, . . . , n.

After using the boundary values for u0 and un+1 we can collect these difference
equations in the usual way in a matrix An.

4.2 Eigenvalues and eigenvectors of tridiagonal matrices

In this section we compute the eigenvalues and eigenvectors related to the discretiza-
tion of convection and diffusion.

First, consider forward differences: Then An ∈ Rn×n is typically given by

An =

a0 a1

0 a0 a1

. . .
. . .

. . .

0 a0 a1

0 a0

, a0, a1 ∈ R, a1 6= 0.

Clearly, An resembles a Jordan matrix in a trivial way. Its eigenvalue is a0 (algebraic
multiplicity n), and its single eigenvector is e1 := [1, 0, . . . , 0]T (geometric multiplic-
ity 1).

Next consider backward differences: Then a typical form of An is

An =

a0 0
a−1 a0 0

. . .
. . .

. . .

a−1 a0 0
a−1 a0

, a−1, a0 ∈ R, a−1 6= 0.

44 Chapter 4: The approximate inverse

Here An is again similar to a Jordan matrix. Its eigenvalue is a0 (algebraic multi-
plicity n), and its single eigenvector is en := [0, . . . , 0, 1]T (geometric multiplicity
1).

To finish with, we consider central differences for the double derivative:
For some a−1, a0, a1 ∈ R, a−1 6= 0, a1 6= 0, and An ∈ Rn×n typically has the form

An =

a0 a1

a−1 a0 a1

. . .
. . .

. . .

a−1 a0 a1

a−1 a0

.

For this tridiagonal matrix we can find the eigenvalues and eigenvectors as follows.
Let λ ∈ R and xn = [x1, . . . , xn]T ∈ Rn be such that Anxn = λxn. Then

a0x1 + a1x2 = λx1,
a−1xk−1 + a0xk + a1xk+1 = λxk, k = 2, . . . , n− 1,
a−1xn−1 + a0xn = λxn.

Introducing x0 = xn+1 = 0, we find that {xk}n+1
k=0 satisfies the recurrence relation

(4.7)

x0 = 0,
a−1xk−1 + (a0 − λ)xk + a1xk+1 = 0, k = 1, . . . , n.
xn+1 = 0.

Using this relation, we proceed as follows. The characteristic polynomial of the re-
cursion is

x2 +
a0 − λ

a−1
x+

a1

a−1
= 0.

First let the roots λ1 and λ2 of the characteristic polynomial be different. Then there
are α1, α2 ∈ R, so that the solution of (4.7) is given by

xi = α1λ
i
1 + α2λ

i
2, i = 0, . . . , n+ 1.

Using the fact that x0 = xn+1 = 0 we find

xn+1 = α1

(

λn+1
1 − λn+1

2

)

= 0.

Note that α1 = −α2 = 0 would correspond to the trivial solution, which we therefore
exclude.
Hence

λn+1
1 = λn+1

2 ⇒
(

λ1

λ2

)n+1

= 1 ⇒ λ1

λ2
= e2πi·

p
n+1 = e

2pπi

n+1 .

Using λ1λ2 = a1/a−1, i.e.,

λ2
1 = λ1λ2 ·

λ1

λ2
= a1/a−1 · e

2pπi

n+1 ,

The spectral condition number of Toeplitz matrices 45

we find
λ1 = ±

√

a1/a−1 · e
pπi

n+1

λ2 = ±
√

a1/a−1 · e−
pπi

n+1 .

Since

a0 − λ

a−1
= −(λ1 + λ2) = −±

√

a1/a−1 · 2 cos(
pπ

n+ 1
)

we obtain
λ = a0 ± 2

√
a−1a1 cos(

pπ

n+ 1
).

If a1/a−1 < 0 we have complex eigenvalues, viz.

λ = a0 + 2i ·
√

|a−1a1| cos(
pπ

n+ 1
).

Finally λ1 = λ2 cannot occur as this would imply that xi = (α1 + α2 · i)λi1, i.e.,
α1 = α2 = 0 ⇒ x = 0.
The above results are summarized in the following corollary.

Corollary 4.1. For a−1a1 6= 0:

(4.8)

σ(An) =
(

a0 + 2
√
a−1a1 cos(pπ

n+1)
)n

p=1

⊂ (a0 − 2
√
a−1a1(1 − 2

(

π
n+1

)2

+O(π
n+1)4), a0 + 2

√
a−1a1)

⊂ (a0 − 2
√
a−1a1, a0 + 2

√
a−1a1).

The related eigenvectors xp are:

xp =

(

√

(a1/a−1)
i
sin(

πp

n+ 1
i)

)n

i=0

.

4.3 The spectral condition number of Toeplitz matrices

In this section we summarize a number of properties for so called Toeplitz matrices.
For a state of the art overview of properties see [20]. For Toeplitz matrices the spectral
condition number can be computed with the use of the ‖ · ‖∞ norm. This is the
main result of interest in relation to the approximate inverse preconditioner, which
is discussed in the next section.

Definition 4.2. Let b := (. . . , b−2, b−1, b0, b1, b2, . . .)
T ∈ R∞, a real vector in l1. The

infinite matrix Bn defined by

Bn =

b0 b1 b2 . . .
b−1 b0 b1 . . .
b−2 b1 b0 . . .

...
...

...
. . .

is called a Toeplitz matrix. The numbers . . . , b−2, b−1, b0, b1, b2, . . . do not depend on n.

46 Chapter 4: The approximate inverse

A finite section of a Toeplitz matrix, i.e. the matrix (see [20, (2.5)])

Bn =

b0 b1 . . . bn−1

b−1 b0
. . .

...
...

. . .
. . . b1

b−n+1 . . . b−1 b0

, bi ∈ R,

is also called a Toeplitz matrix.
For Toeplitz matrices the spectral condition number can be computed using the ‖·‖∞
norm. This is due to a special relation between the largest and smallest singular
values σ1(Bn) and σn(Bn) of a matrix Bn on the one hand and the values of ‖Bn‖∞
and ‖B−1

n ‖∞ on the other hand respectively.
For the largest singular value we have (see [20, (2.5) and Theorem 4.13])

Theorem 4.3. For b ∈ l1 the following holds

(4.9) lim
n→∞

σn(Bn) = lim
n→∞

||Bn||∞ =

∞
∑

i=−∞

|bi|.

There is a similar result for the smallest singular value σ1 (see [20, Theorem 4.3 (4.8)])

Theorem 4.4. If σ1(Bn) is such that for all n ∈ N, σ1(Bn) ≥ δ > 0 then

(4.10) lim
n→∞

σ1(Bn) = lim
n→∞

1

||B−1
n ||∞

.

Therefore, if Bn is Toeplitz, we have

lim
n→∞

κ2(Bn) = lim
n→∞

σn(Bn)

σ1(Bn)
=

limn→∞ σn(Bn)

limn→∞ σ1(Bn)
=

∞
∑

i=−∞

|bi|/ lim
n→∞

‖B−1
n ‖∞.

Example 4.5. The matrix [−1, 2,−1] has singular values that are equal to some of its
eigenvalues (see (4.8)) of which the largest one converges to 4 for n→ ∞.

Example 4.6. In the case of no refinement (i.e. ψ = 1) we have hi = H = h =
1/(n+ 1). Then the matrix An based on (4.6) is Toeplitz,

An =
1

h2
· a [−1, 2,−1] +

1

h
· b [−1, 1, 0] + c [0, 1, 0]

= [− a

h2
− b

h
, 2

a

h2
+
b

h
+ c,− a

h2
],

for each value of n. However we have An 6= AT
n , so κ2(An) is not simple to compute.

From (4.8) we find that

σ(An) =

(

2
a

h2
+
b

h
+ c+ 2

1

h2

√

(
a2

h2
+
ab

h
) cos(

pπ

n+ 1
)

)n

p=1

.

A preconditioner based on approximate inverses 47

However,
κ2(An) = σn(An)/σ1(An),

where σ1 ≤ σ2 ≤ ... ≤ σn are the singular values of An (positive square roots of
eigenvalues of AnA

T
n) are not known – because An is not symmetric. The theorems

stated above cannot be used because the entries of An depend on n. For fixed n and
refinement (ψ < 1) the matrix An does not have constant diagonals and cannot be
called Toeplitz.

4.4 A preconditioner based on approximate inverses

Now consider the application of the approximate inverse technique using Frobenius
norm minimization that was introduced in Subsection 3.5.1. This technique calcu-
lates a preconditioner Gn such that AnGn approximates In given a certain sparsity
pattern S that Gn should satisfy. First we describe computation of Gn for a gen-
eral sparsity pattern, and introduce necessary notations. Then, for the convection
diffusion operator we examine the structure of Gn in detail where Gn inherits the
sparsity structure of An. For the pure diffusion case AnGn is almost Toeplitz. We
compute a sparse matrix Ḡn such that AnḠn approximates In and is Toeplitz. For
this product we calculate the spectrum and spectral condition number.

Let S be a given sparsity pattern. Then in order to compute the columns of Gn we
have to solve

[Angi]j = [ei]j , (j, i) ∈ S, i = 1, . . . , n.

Let Si denote the sparsity pattern of gi, i.e.,

Si := {j : (j, i) ∈ S},

and let its elements be numbered as j1, . . . , jmi . Let A(i) be an mi×mi sub-matrix of
An, defined by

[A(i)]p,q := [An]jp,jq , p, q = 1, . . . ,mi,

and likewise let e(i) be the unit vector of dimension mi given by

[e(i)]p := δjp,i, p = 1, . . . ,mi.

Then solving the large n × n linear system reduces to solving the mi × mi linear
system

A(i)g(i) = e(i), i = 1, . . . , n.

Provided that A(i) is non-singular we thus obtain a vector g(i). This shows that if
i 6∈ Si, e(i) = 0 and hence gi = 0 as well. So we may assume that i ∈ Si.
From g(i) we construct gi via

[gi]jp =

{

[g(i)]p if jp ∈ Si,

0 otherwise.

48 Chapter 4: The approximate inverse

Finally, the approximate inverse, the Green’s matrix, Gn is constructed with the gi
as its columns, and Gn satisfied the prescribed sparsity pattern S.

In order to compute the approximate inverse of (4.6) we take

S = {(i, j) : [An]i,j 6= 0}.

Since An is tridiagonal, we have to consider only the equations for xi, xi−1 and xi+1.
For computing the ith column of Gn we have to solve A(i)g(i) = e2. Here A(i) is the
3× 3 sub-matrix of An, and g(i) a vector related to node i as explained in Section 3.5.
Since hi−1 = hi/ψ and hi+1 = hiψ we have to solve a system dependent on hi only:

c+ 2 a ψ3

h2
i

+ b ψ
hi

−2 a ψ3

(1+ψ)h2
i

0
−2 a ψ2

(1+ψ)h2
i
− b

hi
c+ 2 aψ

h2
i

+ b
hi

−2 aψ
(1+ψ)h2

i

0 −2 a
(1+ψ)h2

i
− b

ψ hi
c+ 2 a

ψ h2
i

+ b
ψ hi

g(i) =

0
1
0

 .

Except for i = 1 and i = n we find

g(i) =

2 aψ2 (2 a+hi (b+cψ hi))
(1+ψ)h4

i

(2 a ψ3+hi (b ψ+c hi)) (2 a+hi (b+cψ hi))

ψ h4
i

(2 a ψ+b (1+ψ)hi) (2 aψ3+hi (b ψ+c hi))
ψ (1+ψ)h4

i
,

/det(A(i)).

The vector g(1) related to node 1 is found by solving the 2× 2 linear system of equa-
tions

[

c+ 2 aψ
h2
1

+ b
h1

−2 a ψ
(1+ψ)h2

1
−2 a

(1+ψ) h2
1
− b

ψ h1
c+ 2 a

ψ h2
1

+ b
ψ h1

]

g(1) =

[

1
0

]

,

and likewise for g(n) related to node n we have to solve

[

c+ 2 aψ3

h2
n

+ b ψ
hn

−2 aψ3

(1+ψ)h2
n

−2 a ψ2

(1+ψ)h2
n
− b

hn
c+ 2 aψ

h2
n

+ b
hn

]

g(n) =

[

0
1

]

.

We find

g(1) =
1

det(A(1))

[

c+ 2 a
ψ h2

1
+ b

ψ h1

2 a
(1+ψ) h2

1
+ b

ψ h1

]

, and g(n) =
1

det(A(n))

[

2 a ψ3

(1+ψ)h2
n

c+ 2 aψ3

h2
n

+ b ψ
hn

]

.

We are interested in the matrix AnGn, a five diagonal matrix. In the following
we have a more detailed look at its entries. The ith column of AnGn is computed

A preconditioner based on approximate inverses 49

through with entries:

. . .
. . .

. . . ai−2,i−2 ai−2,i−1 0 0 0
ai−1,i−2 ai−1,i−1 ai−1,i 0 0

0 ai,i−1 ai,i ai,i+1 0
0 0 ai+1,i ai+1,i+1 ai+1,i+2

0 0 0 ai+2,i+1 ai+2,i+2
. . .

. . .
. . .

·

...
0

g(i),1
g(i),2
g(i),3

0
...

=

...
ai−2,i−1 · g(i),1

0
1
0

ai+2,i+1 · g(i),3
...

.

The upper non-zero co-diagonal is found to be

ai−2,i−1 · g(i),1 =
−2 aψ5

(1 + ψ) h2
i

g(i),1

=
−2 aψ5

(1 + ψ) h2
i

2 aψ2 (2 a+ hi (b+ c ψ hi))

(1 + ψ)h4
i

/det(A(i)).

In order to simplify the calculations, consider the purely diffusive problem, i.e. b =
c = 0. Then

det(A(i)) =
8a3ψ3(1 + ψ2)

h6
i (1 + ψ)2

, i = 2, . . . , n− 1,

and for i = 1 and i = n

det(A(1)) =
4a2(1 + ψ + ψ2)

h4
1(1 + ψ)2

, det(A(n)) =
4a2ψ4(1 + ψ + ψ2)

h4
n(1 + ψ)2

.

We find

(4.11) g(i) = h2
i ·

1 + ψ

2a(1 + ψ2)
·

1/ψ
(1 + ψ)/ψ

1

 , i = 2, . . . , n− 1,

and

g(1) = h2
1 ·

1 + ψ

2(1 + ψ + ψ2)

[

(1 + ψ)/ψ
1

]

, g(n) = h2
n · 1 + ψ

2(1 + ψ + ψ2)

[

1/ψ
(1 + ψ)/ψ

]

.

Then we find for the upper co-diagonal

ai−2,i−1 · g(i),1 =
−2 aψ5

(1 + ψ) h2
i

g1 =
−2 aψ5

(1 + ψ) h2
i

· h2
i ·

1 + ψ

2a(1 + ψ2)
· 1/ψ = −ψ4/(1 + ψ2),

and likewise for the lower co-diagonal

ai+2,i+1 · g(i),3 =
−2 a

(1 + ψ)ψ2 h2
i

· h2
i ·

1 + ψ

2a(1 + ψ2)
= − 1

ψ2(1 + ψ2)
.

50 Chapter 4: The approximate inverse

Note that these representations are independent of hi.
Except for the left upper and right lower corners, AnGn is a Toeplitz matrix. There-
fore, let Br

n be a Toeplitz matrix defined by

(4.12) Br
n := [− 1

ψ2(1 + ψ2)
, 0, 1, 0,− ψ4

1 + ψ2
].

Then Br
n approximates AnGn and is a Toeplitz matrix for each n. For the spectrum

of Br
n we have from (4.8)

σ(Br
n) ⊂ (1 − 2

√

ψ4

(1 + ψ2)2ψ2
, 1 + 2

√

ψ4

(1 + ψ2)2ψ2
) = (1 − 2

ψ

1 + ψ2
, 1 + 2

ψ

1 + ψ2
).

A similar analysis as carried out for the product AnGn can be performed for the
GnAn. To this end define a Toeplitz matrix Bl

n resembling GnAn except for the
corners. We obtain

(4.13) Bl
n = [− ψ2

1 + ψ2
, 0, 1, 0,− 1

1 + ψ2
],

and

σ(Bl
n) ⊂ (1 − 2

√

ψ2

(1 + ψ2)2
, 1 + 2

√

ψ2

(1 + ψ2)2
) = (1 − 2

ψ

1 + ψ2
, 1 + 2

ψ

1 + ψ2
).

We shall illustrate the approximate inverses and the connection to the Toeplitz ma-
trices by two examples.

Example 4.7. Let a = 1, b = c = 0, and ψ = 1. In this example we look for a matrix
Ḡn such that AnḠn is Toeplitz, which means it satisfies (4.12). So,

Br
n = AnḠn =

1 0 − 1
2

0 1
. . .

. . .

− 1
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . − 1

2
. . .

. . . 1 0
− 1

2 0 1

.

Note that AnḠn is the discretization of the Laplace operator on a coarser grid. The
degrees of freedom decouple after right multiplication by Ḡn, as is witnessed by the
zeros on the first lower and upper diagonal. Furthermore, the two resulting matrices
have a structure like An.

For Ḡn we find

A preconditioner based on approximate inverses 51

(4.14) Ḡn =
1

2n

∗ 1 ∗
∗ 2

. . .
...

∗ 1
. . .

. . .
...

. . .
. . . 1 ∗
. . . 2 ∗

∗ 1 ∗

which is similar to Gn except for full first and last columns. The first column of Ḡn

is given by

(4.15) [Ḡn]i,1 =

{

i(1
n − 1) + 2 for i ≤ 3,

i
n − 1 for i > 3

The last column of Ḡn is the reverse of the first column. We see in this example that
a relatively easy modification of the approximate inverse Gn results in a Toeplitz
product AnḠn.

In the next example we examine the situation for a refined grid.

Example 4.8. Let a = 1, b = c = 0, and ψ = 1/2. Then equation i (i = 1, . . . , n) reads
(see (4.6))

1

h2
i

· 2ψ

1 + ψ
[−ψ, (1 + ψ),−1] =

1

H2

1

(ψ2)i
· 2ψ

1 + ψ
[−ψ, (1 + ψ),−1] =

1

H2
4i · 2

3

[

−1

2
,
3

2
,−1

]

=

1

H2
4i ·
[

−1

3
, 1,−2

3

]

.

Thus for An we have

An =
4

H2
·

1 − 2
3

− 4
3 4 − 8

3

− 16
3 16 − 32

3

− 64
3 64

. . .

. . .
. . . − 2

3 · 4n−2

− 1
3 · 4n−1 4n−1 · 1

∈ R
n×n.

52 Chapter 4: The approximate inverse

The related approximate inverse is readily constructed from (4.11),

Gn =
H2

4
·

9
7

6
20

3
7

9
20

6
80

3
20

9
80

. . .

3
80

. . . 6
20∗4n−3

. . . 9
20∗4n−3

6
56∗2n

3
20∗4n−3

9
56∗2n

∈ R
n×n.

Note that the first and last column have a deviating structure. The two related pre-
conditioned linear systems AnGn and GnAn are explicitly given by

(4.16) AnGn =

1 0 − 1
20

0 1 0
. . .

− 48
21 0

. . . − 1
20

− 32
10

. . . 0 − 1
28

. . . 1 0

− 32
10 0 1

,

and

(4.17) GnAn =

31
35

12
35 − 4

5

− 6
35

39
35 0

. . .

− 1
5 0 1 − 4

5

− 1
5 1 0 − 4

5

. . . 0 39
35 − 12

35

− 1
5

6
35

31
35

.

It is easily seen these two products are almost Toeplitz.

A preconditioner based on approximate inverses 53

Related to the first product (4.16) is the Toeplitz matrix

Br
n =

1 0 − 1
20

0 1 0
. . .

− 32
10 0

. . . − 1
20

− 32
10

. . .
. . . − 1

20

. . . 1 0

− 32
10 0 1

.

The modified approximate inverse Ḡn such that Br
n = AnḠn is found to be

(4.18) Ḡn =
H2

4
·

∗ 6
20 ∗

∗ 9
20

6
80

...

∗ 3
20

9
80

. . .

... 3
80

. . . 6
20∗4n−3 ∗

. . . 9
20∗4n−3 ∗

∗ 3
20∗4n−3 ∗

.

Here we omit the explicit computation of the first and last column which is a very
technical calculation (cf. (4.14) in the previous example).

Related to the other product in (4.17) is the Toeplitz matrix

(4.19) Bl
n =

1 0 − 4
5

0 1 0
. . .

− 1
5 0

. . . − 4
5

− 1
5 1

. . . − 4
5

. . . 1 0

− 1
5 0 1

.

54 Chapter 4: The approximate inverse

The matrix Ḡn such that (4.19) holds is given by

(4.20) Ḡn =
H2

4
·

∗ ∗ ∗ . . . ∗
3
5

9
20

6
80

3
20

9
80

. . .

3
80

. . . 6
20∗4n−3

. . . 9
20∗4n−3

6
20∗4n−2

∗ . . . ∗ ∗ ∗

.

For the first and last rows the same remark can be made as above for (4.18). Bl
n

cannot be the discretization of a convection diffusion operator on a uniform grid, as
can be verified by some algebra.

To finish this example, we look at the spectrum of Bl
n. For simplicity we assume n

to be even. A close observation of (4.19) shows that the degrees of freedom decouple
into the odd and even numbered ones. This decoupling is the subject of Chapter 5,
so we will only use this observation. The degrees of freedom can be permuted ac-
cording to this decoupling, and Bl

n is then rewritten in permuted form as

B̄l
n =

[

Bl
n/2

Bl
n/2

]

where

Bl
n/2 =

1 − 4
5

− 1
5 1

. . .

. . .
. . . − 4

5

− 1
5 1

.

Using (4.8) the eigenvalues of this n/2× n/2 matrix are

σ(Bl
n/2) =

(

1 +
4

5
cos(

iπ

n+ 1
)

)n/2

i=1

⊂ (
1

5
,
9

5
),

where the interval does not depend on n or H
h . It is easily seen that σ(Bl

n) = σ(Bl
n/2)

and that each eigenvalue has algebraic multiplicity 2. However, boundedness of the
spectrum does not mean that the condition number is O(1) for ψ ↓ 0, since Bl

n is not
symmetric. Because in general the worst case estimate for the number of iterations
depends on the spectral condition number, we calculate this number for matrix Bl

n

in the next section.

The spectral condition number related to a refined grid 55

4.5 The spectral condition number related to a refined

grid

In the previous section we found that the preconditioned linear system resembles a
Toeplitz matrix Bn. However, since both Bl

n and Br
n are non-symmetric the spectral

condition number cannot easily be estimated. In [69] it is shown that with the use
of Green’s functions certain classes of tridiagonal matrices have inverses that can be
computed explicitly. This comes in handy as the relation (4.10) requires an explicit
inverse. Note that the calculation of κ2(B

l
n) and κ2(B

r
n) require different approaches,

because of different matrix properties.

First we summarize a result from [69]. Let Ω = (0, 1) be partitioned as 0 = x0 < x1 <
. . . < xn+1 = 1. Let hi = xi − xi−1. Assume that

u 7→ −d
2u

dx2
,

is discretized as

(4.21) − 2hi+1

hi+1 + hi
ui−1 + 2ui −

2hi
hi+1 + hi

ui+1 = hihi+1f(xi, u(xi), u
′(xi)).

Let An ∈ Rn×n be the matrix

(4.22) An = [− 2hi+1

hi+1 + hi
, 2,− 2hi

hi+1 + hi
].

Then (see [69, Corr. 5.5])

Property 4.9. For the matrix An defined as above, its inverse is explicitly given by

(4.23) [A−1
n]i,j =

hj+1+hj

2hj+1hj
(1 − xj)xi, i ≤ j

hj+1+hj

2hj+1hj
xj(1 − xi), i ≥ j.

We will use this result to compute the spectral condition number of Bl
n, without

convection, related to a refined grid with refinement factor ψ. Since the above result
holds for tridiagonal matrices, we assume that Bl

n has been permuted and parti-
tioned, i.e.,

(4.24) B̄l
n =

[

Bl
n/2

Bl
n/2

]

.

So in the following we estimate the spectral condition condition for Bl
n/2, which, of

course, is equal to that of Bl
n itself. From the construction of Bl

n in (4.13), there exist
b−1 and b1 such that

Bl
n/2 = [

b−1

2
, 1,

b1
2

].

Then for (Bl
n/2)

−1 we have

56 Chapter 4: The approximate inverse

Property 4.10. Let ψ ≤ 1 and Ψ := ψ2. Then Bl
n/2 is of the form (4.22), and

[(Bl
n/2)

−1]i,j =
Ψ−j(1 + Ψ)(1 + Ψ + . . .+ Ψn/2) (1 − x̃j)x̃i, i ≤ j

Ψ−j(1 + Ψ)(1 + Ψ + . . .+ Ψn/2) x̃j(1 − x̃i), i ≥ j.

Proof. First we show that Bl
n/2 is of a similar form as An. In particular we should

have

(4.25) b−1 = − 2h̃i+1

h̃i+1 + h̃i
and b1 = − 2h̃i

h̃i+1 + h̃i
,

cf. (4.22). For ease of writing we omit the tilde from now on. The required form
in (4.25) holds if

b−1

b1
=
hi+1

hi
.

In our case

b−1 = − 2ψ2

1 + ψ2
, b1 = − 2

1 + ψ2
⇒ hi+1

hi
=

− 2ψ2

1+ψ2

− 2
1+ψ2

= ψ2.

Let Ψ := ψ2 and m := n/2. Because

1 =
m+1
∑

i=1

hi = h1

m
∑

i=0

(Ψ)i = h1
1 − (Ψ)m+1

1 − Ψ
,

we find

h1 =
1 − Ψ

1 − (Ψ)m+1

and

hi =
1 − Ψ

1 − Ψm+1
Ψi−1.

Combining this with the identity x̃i =
∑i
j=1 hj we find

x̃i =
1 − Ψ

1 − Ψm+1

i
∑

j=1

Ψj−1 =
1 − Ψ

1 − Ψm+1

1 − Ψi

1 − Ψ
=

1− Ψi

1 − Ψm+1
.

For i = m + 1 we get x̃m+1 = 1. Having acquired expressions for hi and x̃i, we
use (4.23) to compute (Bl

n/2)
−1, and this completes the proof.

In order to estimate ‖(Bl
n/2)

−1‖∞ we have to look at the row sums. Once more let

m := n/2. For row sum ri of the ith row we find

ri =
1 + Ψ

1 − Ψ − Ψm+1 + Ψm+2
((m+ 1)(1 − Ψi) + i(Ψm+1 − 1)).

The spectral condition number related to a refined grid 57

Now we can estimate maxi ri. For the leading term (which is independent of i) we
see

lim
n→∞

1 + Ψ

1 − Ψ − Ψm+1 + Ψm+2
=

1 + Ψ

1 − Ψ
.

The second major part gives

(m+ 1)(1 − Ψi) + i(Ψm+1 − 1) ≤ (m+ 1)(1 − Ψi)

≤ m+ 1.

So we have

‖(Bl
n/2)

−1‖∞ ≤ 1 + Ψ

1 − Ψ
(
n

2
+ 1).

For the initial Toeplitz matrix Bl
n we summarize the results in the following corol-

lary:

Corollary 4.11.

‖(Bl
n)

−1‖∞ ≤ 1 + Ψ

1 − Ψ
(
n

2
+ 1).

Proof. Because of the partitioning of Bl
n in (4.24) we have

‖(Bl
n)

−1‖∞ = ‖(Bl
n/2)

−1‖∞.

This completes the proof.

Having established a bound for ‖(Bl
n)

−1‖∞ we can estimate the spectral condition
number of Bl

n.

Property 4.12.

(4.26) κ2(B
l
n) = O(n), n→ ∞.

Proof. We have κ2(B
l
n) = ‖Bl

n‖∞‖(Bl
n)

−1‖∞. It is readily seen that ‖Bl
n‖∞ = 2,

and this combined with the previous result ‖(Bl
n)

−1‖∞ = O(n) the result in (4.26) is
proven.

In Chapter 7 we give some examples to demonstrate that this estimate is sharp for
n→ ∞.

The above theory is only valid in situations where all row sums are zero (except for
the corner points). Therefore, because Br

n does not satisfy this condition we shall in-
vestigate a possible alternative in order to obtain estimates for the spectral condition
number. Assume that Br

n is permuted and partitioned like (4.24), i.e.,

B̄r
n =

[

Br
n/2

Br
n/2

]

.

58 Chapter 4: The approximate inverse

Here Br
n/2 is tridiagonal with entries given by

Br
n/2 = [− 1

ψ2(1 + ψ2)
, 1,− ψ4

1 + ψ2
].

Let Dn/2 be a diagonal matrix defined by

[Dn/2]i,i :=

(

1

ψ2

)i−1

, i = 1, . . . , n/2.

Then we have
D−1
n/2B

r
n/2Dn/2 = (Bl

n/2)
T ,

and thus

(4.27) Br
n/2 = Dn/2(B

l
n/2)

TD−1
n/2.

Now we can find an estimate for κ2(B
r
n/2), and henceforth for κ2(B

r
n). Using the

result κ2(B
l
n/2) = O(n/2) and κ2(Dn/2) = ψ−n, then the following bounds for

κ2(B
r
n/2) are easily established:

(4.28) 1 ≤ κ2(B
r
n/2)

.
= O(

n

2

(

1

ψ2

)n

), n→ ∞.

It should be noted that the above estimate is very rough. From numerical results it
seems more likely that

(4.29) κ2(B
r
n/2) ∼ O

(

1

ψ

)n

), n→ ∞.

In this chapter we gave an estimate for the spectral condition number of the precon-
ditioned system based on a modified approximate inverse. The results and observa-
tions in this chapter are for the pure diffusion problem only. However, intuitively
these results are valid for more general cases as well, which is demonstrated by nu-
merical examples in Chapter 7.

To finish this chapter we give an example to exemplify the estimates found.

Example 4.13. Let a = 1, b = c = 0, and ψ = 1/2, cf. Example 4.8. Then we look at
tridiagonal matrices Br

n and Bl
n with entries as in (4.12) and (4.13), i.e.,

Br
n = [−32

10
, 1, − 1

20
]

and

Bl
n = [−1

5
, 1, −4

5
].

The spectral condition number related to a refined grid 59

Furthermore, let Dn be a diagonal matrix defined by

[Dn]i,i := 4i−1.

Then, using 4.27, Br
n = Dn(B

l
n)
TD−1

n .

The spectral condition numbers for Br
n, Bl

n and Dn are given below in table 4.1.

1-D, number of unknowns
n 5 6 7 8 9 10 11

κ2(Br
n
) 1086.09 4390.73 1.77·104 7.10·104 2.85·105 1.14·106 4.58·106

κ2(Bl
n
) 9.20 11.38 13.55 15.71 17.87 20.03 22.18

κ2(Dn) 44 45 46 47 48 49 410

κ2(Br
n
)/κ2(Dn) 4.24 4.29 4.32 4.34 4.35 4.36 4.37

Table 4.1: Condition numbers for κ2(B
r
n), κ2(B

l
n) and κ2(Dn).

From this table we see that the results for κ2(B
l
n) are according to (4.26). Another

observation is that κ2(B
r
n) resembles the estimate in (4.29).

Chapter 5

Recursive solution methods

In this chapter we examine the application of the approximate inverse precondi-
tioner for convection diffusion problems as introduced in Chapter 4. In particular
we look at the decoupling mentioned in Example 4.8 and (4.24) in more detail.

In the first part of this chapter we consider a one dimensional setting. Using char-
acteristics of the approximate inverse Gn, we show that the preconditioned linear
operator AnGn decouples into two submatrices. On the resulting subproblems,
the same decoupling can be obtained using the approximate inverse preconditioner
again. This repeated decoupling gives rise to a recursive solution algorithm. The
computational complexity of this algorithm is shown to be O(n log(n)) with n the
number of degrees of freedom on the finest grid.

Secondly we examine the approximate inverses in two dimensions. Though the con-
struction of the approximate inverse Gn is similar to the 1-D case, the final result is
somewhat different. The main difference is that the decoupling depends on the type
of operator, as well as on the grid topology (tensor grid, grid of triangles etc.). For
a discretization of the Laplace operator on a uniform grid an interesting observation
is made. Even if there is no repeated decoupling, repeated application of approxi-
mate inverses seems to lead to approximations of the Laplace operator with a larger
support.

5.1 Decoupling in one dimension

Consider problem (3.1). We discretize this by a finite element method with linear ba-
sis functions, or a finite difference method resulting in a three point finite difference
stencil. The corresponding n× n matrix An is tridiagonal.

Let S denote the sparsity pattern of An (cf. Section 3.5), i.e.,

(5.1) S := {(i, j) : [An]i,j 6= 0}.

Because An is symmetric, (i, j) ∈ S implies (j, i) ∈ S. The sparsity pattern of A2
n,

denoted by S2, is then given by

(5.2) S2 = {(i, j) : ∃k : (i, k) ∈ S ∧ (j, k) ∈ S}.

62 Chapter 5: Recursive solution methods

This is easily seen since [A2
n]i,j =

∑

k aikakj and the observation that aikakj is non-
zero only if i − 2 ≤ j ≤ i + 2. Since the approximate inverse Gn is constructed
with sparsity pattern S, the sparsity pattern of AnGn, say S̄ , will be a subset of S2.
Because AnGn satisfies

(5.3) [AnGn]i,j = δi,j for (i, j) ∈ S,
we have

S̄ = {(i, j) : j = i− 2 ∨ j = i+ 2 ∨ j = i, 1 ≤ j ≤ n}.
From this we see that the set {1, . . . , n} decouples into sets Ŝ1 and Ŝ2 defined by

Ŝ1 = {i : i = 2k + 1, 0 ≤ k ≤ d n
2
e}

and
Ŝ2 = {i : i = 2k, 1 ≤ k ≤ bn

2
c}.

We summarize this in the following.

Property 5.1. For An and Gn as defined above the matrix AnGn is reducible. This implies
there exist S̄1 and S̄2, such that

S̄ = S̄1 ∪ S̄2, and S̄1 ∩ S̄2 = ∅,
that are given by

S̄1 = {(i, j) : i ∈ Ŝ1 ∧ [AnGn]i,j 6= 0},
and

S̄2 = {(i, j) : i ∈ Ŝ2 ∧ [AnGn]i,j 6= 0}.
2

The result in Property 5.1 can easily be extended to the p-approximate inverse pre-
conditioner. Let Sp denote the sparsity pattern of Ap

n, i.e.,

Sp := {(i, j) : ∃k1, . . . , kp−1 : (i, k1) ∈ S ∧ (k1, k2) ∈ S ∧ . . . ∧ (kp−1, j) ∈ S},
or in term of the band-width

Sp := {(i, j) : i− p ≤ j ≤ j = i+ p, 1 ≤ j ≤ n}.
Since

(5.4) [AnGn]i,j = δi,j for (i, j) ∈ Sp,

we have

S̄p = {(i, j) : j = i− p− 1 ∨ j = i+ p+ 1 ∨ j = i, 1 ≤ j ≤ n}.
From this we see that {1, . . . , n} decouples into p+ 1 disjoint sets:

Ŝq = {i : k(p+ 1) + q, 0 ≤ k ≤ dn
p
e}, q = 1, . . . , p+ 1.

So, Property 5.1 can be generalized as

A solver based on recursive decoupling 63

Property 5.2. For Gn constructed such that

[AnGn]i,j = δi,j for (i, j) ∈ Sp,

there exist sets S̄q , q = 1, . . . , p+ 1, such that

S̄ =

p+1
⋃

q=1

S̄q, and

p+1
⋂

q=1

S̄q = ∅.

2

Figures 5.1 and 5.2 below illustrate the decoupling for an 1-approximate inverse and
a 2-approximate inverse respectively.

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 146

Sparsity pattern AG

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 146

Sparsity pattern AG after permutation

Figure 5.1: Sparsity patterns for unpermuted and per-
muted AnGn. 1d Laplace, FEM, uniform grid, p = 1.

The analysis above shows that the sparsity pattern of An only determines whether
AnGn decouples or not. From this we see that this decoupling holds for all tridiago-
nal matrices, and as such decoupling takes place for convection diffusion problems.

5.2 A solver based on recursive decoupling

We can now employ the decoupling described in Section 5.1 to construct a solver
based on a recursive application of this decoupling. We do this in Subsection 5.2.1.
In Subsection 5.2.2 we analyse the complexity of this method.

5.2.1 Description of the solver

Let k denote the index of the recursion level. The level with the finest grid is num-
bered 0, with n0 degrees of freedom, and we want to solve

A0x0 = b0.

64 Chapter 5: Recursive solution methods

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 144

Sparsity pattern AG

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 144

Sparsity pattern AG after permutation

Figure 5.2: Sparsity patterns for unpermuted and per-
muted AnGn. 1d Laplace, FEM, transient grid, p = 2.

The level at which the recursion ends is numbered K, with nK degrees of freedom.
Throughout this section, Ak denotes and nk × nk matrix, and bk and xk are vectors
of dimension nk.

Suppose we want to solve the problem

(5.5) Akxk = bk.

We construct the matrix Gk with p = 1 as described previously, and use Gk as right
preconditioner. So, we solve the preconditioned system

AkGkyk = bk,

with
xk = Gkyk.

In the previous section we showed that Gk causes a decoupling of the nodes, with

two sets Ŝ1 and Ŝ2. Consider the permutation πk := {Ŝ1, Ŝ2} and related permuta-
tion matrix Pk . We now use Pk to decouple the system. We then obtain

PkAkGkP
−1
k Pkyk = Pkbk,

or

(5.6)

[

Ak+1,1

Ak+1,2

] [

yk+1,1

yk+1,2

]

=

[

bk+1,1

bk+1,2

]

.

Note that the matrix Ak is partitioned according to the decoupling of the nodes. The
vectors yk and Bk are partitioned correspondingly.

A solver based on recursive decoupling 65

Here the two new matrices Ak+1,i are again tridiagonal and the same procedure can
be repeated for construction and application of matrices Gk+1,i. The two subsolu-
tions yk+1,1 and yk+1,2 computed at this stage, possibly by going some levels further,
constitute the solution xk via

(5.7) xk = GkP
−1
k

[

yk+1,1

yk+1,1

]

.

The recursion ends at level K when the order of the matrices is small enough to be
solved by a direct method. All subsolutions are put together using (5.7) in order to
obtain the solution.

The algorithm can easily be extended to the case p > 1. Here Gk causes a decoupling

into p+ 1 sets Ŝq, q = 1, . . . p+ 1. With a permutation πk related to this decoupling
we end up with the generalized form of (5.6),

(5.8)

Ak+1,1

. . .

Ak+1,p+1

yk+1,1

...
yk+1,p+1

=

bk+1,1

...
bk+1,p+1

.

Below we give an implementation of the algorithm to solve A0x0 = b0 in pseu-
docode.

x = SOLVE(A,b,p)
IF order of A small enough:
use direct method to computer x;

ELSE
decouple problem into p+1 subproblems:
A_i and b_i for i = 1 ... p+1,
with permutation P;

x_i = SOLVE(A_i,b_i,p) for i = 1 ... p+1;
use P to obtain x from p+1 subsolutions;

5.2.2 Complexity of the solver

We now examine the workload of the recursive algorithm. The workload wk at level
k is related to the workload at the next level k + 1 through the simple recurrence
relation

wk = lk + 2wk+1.

Here lk denotes the cost to construct Gk, to compute the two subblocks and to recon-
struct the solution from the two subsolutions. The construction of the approximate
inverse Gk typically involves solving nk linear systems of dimension 3×3. Note that
lk is linearly proportional to nk, say lk = cnk, c ∈ R. Without loss of generality, we
assume n0 = 2K for the initial number of unknowns at level 0. Since the decoupling
divides the nodes evenly we have nk+1 = nk

2 .

66 Chapter 5: Recursive solution methods

So the recurrence relation becomes wk = c2K−k + 2wk+1. For the workload at the
lowest level K we assume wK = F . The solution is found to be

(5.9) wk =
c

2
(K − k)2K−k + F2K−k.

This shows that for solving A0x0 = b0 w0 = O(n0 log(n0)). Henceforth this algo-
rithm is not optimal. However, there are several issues that can be exploited in order
to improve the workload of the algorithm.
Note that nk small subproblems need to be solved for the construction of Gk. If this
is done in parallel the factor lk will no longer be linearly proportional to nk and we
may assume lk = c. Then (5.9) becomes wk = (F + c)2K−k − c, which is of the order
O(nk).
Another remark is that similarity of the subsystems can be used to reduce computa-
tional cost. For a stiffness matrix related to a uniform grid for instance, the related
nk subsystems that need to be solved to obtain Gk come in three types only: one for
each boundary, and one for all interior points. This implies that only a few subsys-
tems actually need to be solved, and hence the factor lk will be O(1).

For this generalized version where p > 1 it is easily seen that the workload wk at
level k is estimated by

(5.10) wk = lk + (p+ 1)wk+1.

Here lk denotes the effort to compute Gk, obtain the decoupling, and reconstruct
the solution. Construction of Gk involves solving Nk linear systems of dimension
(2p + 1) × (2p + 1). If p is large, computation of the local Green’s functions gi is
expensive. Also storage requirements for Gk increase with increasing p. However,
a larger p may be beneficial since the criteria on when to solve the subsystems by a
direct method is reached in fewer steps.

5.3 Decoupling in two dimensions

Consider now problem (3.1) in two dimension with b = 0 and c = 0. Let us cover
the domain Ω with a uniform grid, with m degrees of freedom in both directions, so
n = m2. A finite difference discretization, or a finite element discretization results in
the linear system of equations

(5.11) Anxn = bn.

As in Section 5.1, let S denote the sparsity pattern of An

(5.12) S := {(i, j) : [An]i,j 6= 0}.

Because of symmetry we have

(i, j) ∈ S ⇐⇒ (j, i) ∈ S.

In the next lemma we look at the sparsity pattern S2 of A2
n and how it relates to S.

Decoupling in two dimensions 67

Property 5.3. Let S2 denote the sparsity pattern of A2
n. Then we have

S2 := {(i, j) : ∃k : (i, k) ∈ S ∧ (j, k) ∈ S}.
Proof. Let l be a number such that (i, l) ∈ S and (j, l) ∈ S for some i and j. Because
of symmetry we also have (l, j) ∈ S and it follows that ailalj 6= 0. Entry [A2

n]i,j is
defined by

∑

k aikakj . Since for k = l we have a non-zero contribution to this sum,
the pair (i, j) related to entry [A2]i,j is contained in the sparsity pattern.

This means that the sparsity pattern of A2
n is the sparsity pattern of An comple-

mented by the ” neighbours’ neighbours“: If there are numbers i, j, k such that (i, j) ∈
S, (j, k) ∈ S and (i, k) 6∈ S, then (i, k) ∈ S2. Since this statement on the sparsity
pattern of A2

n holds for any two different matrices with identical sparsity patterns, it
is also true for AnGn with the extra knowledge that for some (i, j) ∈ S2 it holds that
[AnGn]i,j = 0. This is because of the property

[AnGn]i,j = δi,j for (i, j) ∈ S.
Then the sparsity pattern S̄ of AnGn can be defined as

S̄ := {(i, j) : ∃k, k 6= i : (i, k) ∈ S ∧ (j, k) ∈ S ∧ [AnGn]i,k = [AnGn]j,k = 0}.
So, a degree of freedom i gets disconnected from its neighbours, but becomes con-
nected to the neighbour’s neighbours, as shown in figure 5.3 for a uniform grid. A
neighbour is no longer a neighbour after the right multiplication by Gn. The left
picture in figure 5.3 is correct for a FDM discretization of −a∆u+b ·∇u+ cu, as well
for a FEM discretization of −a∆u+ cu.

Initial coupling of central dof New coupling of central dof

Figure 5.3: Initial connectivity in An and new connectivity in AnGn.

Next we examine whether there is a decoupling of the degrees of freedom as seen in
the one dimensional case. We have a uniform grid with m nodes in both directions,
and we number the points from 1 to m2 from bottom to top and from left to right.
For node i let Si denote the set of nodes that are neighbours of i, i.e.,

Si = {i+ 1, i+m, i− 1, i−m},

68 Chapter 5: Recursive solution methods

provided all entries exist: For example, if imodn = 1, then i−1 6∈ Si, or if imodn = 0,
then i+ 1 6∈ Si.

Given the same assumptions on existence, for the elements of Si we have:

Si+1 = {i+ 2, i+m+ 1, i, i−m+ 1},
Si+m = {i+m+ 1, i+ 2m, i+m− 1, i},
Si−1 = {i, i− 1 +m, i− 2, i− 1 −m},
Si−m = {i−m+ 1, i, i−m− 1, i− 2m}.

In AnGn, the set of neighbours for node i is Si+1 ∪ Si+m ∪ Si−1 ∪ Si−m.

Let Ŝi denote the set of nodes j such that i and j are connected,

Ŝi := {j : j = i+ 2km+ 2l, k, l ∈ Z, 1 ≤ j ≤ m2} ∪
{j : j = i+ (2k + 1)m+ 2l + 1, k, l ∈ Z, 1 ≤ j ≤ m2}

and consider in particular the sets Ŝ1 and Ŝ2. Then we have

(5.13)
Ŝ1 = {i : i = 2km+ 2l + 1, 0 ≤ k, l ≤ dm2 e − 1} ∪

{i : i = (2k + 1)m+ 2l+ 2, 0 ≤ k, l ≤ bm2 c − 1},

and

(5.14)
Ŝ2 = {i : i = 2km+ 2l + 2, 0 ≤ k ≤ dm2 e − 1, 0 ≤ l ≤ bm2 c − 1} ∪

{i : i = (2k + 1)m+ 2l+ 3, 0 ≤ k ≤ bm2 c − 1, 0 ≤ l ≤ dm2 e − 1}.

It is easy to see that Ŝ1 ∩ Ŝ2 = ∅ and that Ŝ1 ∪ Ŝ2 = {i}m2

i=1.

This result shows that the grid decouples into two disjoint sets of degrees of freedom.
For S̄ this gives (cf. Property 5.1):

Property 5.4. For a uniform grid, matrices An and Gn and sparsity pattern S̄ as defined
previously, the matrix AnGn is reducible. So there exist S̄1 and S̄2 for which it holds that

S̄ = S̄1 ∪ S̄2, and S̄1 ∩ S̄2 = ∅,

and are given by

S̄1 = {(i, j) : i ∈ Ŝ1 ∧ [AnGn]i,j 6= 0},

and

S̄2 = {(i, j) : i ∈ Ŝ2 ∧ [AnGn]i,j 6= 0}.

For a uniform grid the right multiplication by Gn results in a decoupling of the
degrees of freedom into two sets, as illustrated in figure 5.4, which shows the sparsity
patterns of An and AnGn.

Decoupling in two dimensions 69

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

Sparsity pattern A

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

Sparsity pattern AG

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

Sparsity pattern AG after permutation

Figure 5.4: Sparsity patterns for An, AnGn, and AnGn after permutation.

Remark 5.5. A consequence of the above property is that the matrix AnGn decou-
ples into two matrices, say B1 and B2. Now it is interesting to see that the rows of
these matrices satisfy the stencil

[− 1

12
, −1

6
, −1

6
, − 1

12
, 1, − 1

12
, −1

6
, −1

6
, − 1

12
].

This stencil corresponds to a nine point finite difference approximation for the Laplace
operator given by

∇2u(x, y)
.
=

1

8
(

1

h2
(u(x, y) − 1

12
u(x, y − 2h) − 1

6
u(x− h, y − h)−

1

6
u(x+ h, y − h) − 1

12
u(x− 2h, y) − 1

12
u(x+ 2h, y)−

1

6
u(x− h, y + h) − 1

6
u(x+ h, y + h) − 1

12
u(x, y + 2h)).

So far we have considered only matrices Gn that inherit the sparsity pattern of An. In
section 5.1 construction of Gn was examined where the sparsity pattern of Ap

n, p > 1
was used as a template. So, let Sp denote the sparsity pattern of Ap

n,

(5.15) Sp = {(i, j) : ∃k1, . . . kp−1 : (i, k1) ∈ S ∧ (k1, k2) ∈ S ∧ . . . ∧ (kp−1, j) ∈ S},

and let Gn be such that (5.4) is satisfied. Let S̄p denote the sparsity pattern of AnGn.
For p = 1 we showed that S̄ decouples into two disjoint sets. However for p = 2
there is no decoupling. In order to see this, we show that a node i remains connected
to its neighbours. Let

(5.16) S̄i = {i} ∪ {i+ am+ b : −3 ≤ a, b ≤ 3, |a| + |b| = 3}.

For i + 2m + 1 in this set, we take a closer look at S̄i+2m+1. We see i + m + 3 ∈
S̄i+2m+1, and for S̄i+m+3 we find i + 1 ∈ S̄i+m+3. So, we have (i, i + 2m + 1) ∈ S̄2,
(i + 2m + 1, i + m + 3) ∈ S̄2 and (i + m + 3, i + 1) ∈ S̄2. From this it follows that
(i, i + 1) ∈ S̄2. Similarly we can show that i is connected to its other neighbours as
well.

70 Chapter 5: Recursive solution methods

If we take p = 3, then for node i

(5.17) S̄i = {i} ∪ {i+ am+ b : −4 ≤ a, b ≤ 4, |a| + |b| = 4}.

For this case S̄3 happens to decouple into the odd and even numbered degrees of
freedom, similar to S̄ , and not into four sets as seen in Section 5.1. These two obser-
vations for p = 2 and p = 3 lead to a generalization of Property 5.4:

Property 5.6. Let p ≥ 1 and let Gn be constructed such that property (5.4) is satisfied. Let
S̄p denote the sparsity pattern of AnGn. If p is odd, then there exist two sets S̄1 and S̄2 such
that

S̄p = S̄1 ∪ S̄2, and S̄1 ∩ S̄2 = ∅.

S̄1 and S̄2 are as in Property 5.4. For even p there is no decoupling.

We are also interested to see whether this decoupling can be repeated for the right

picture in figure 5.3. Here we have two disjoint sets of nodes, Ŝ1 and Ŝ2, and associ-
ated a submatrix of AnGn to each, say B1 and B2. For both submatrix corresponding
approximate inverses G1 and G2 are computed, and we perform the same analysis
on neighbours as done for AnGn above. It turns out that two neighbouring nodes
do not decouple under the action of the approximate inverse. This is best made clear
in figure 5.5.

Graph of two neighbours a and b

a

b

c

neighbour’s neighbour = neighbour’s neighbour

a

b

c

Figure 5.5: Two neighbours a and b get not decoupled.

Finally, we take a look at the case where there is a refinement. For convenience, we
consider the situation of only one refinement point, as in figure 5.6. Following the
same analysis as performed previously, it is seen that neighbours remain neighbours
due to this refinement. This is illustrated in the figure by the dotted and solid lines.

Breakdown of uniform 2-D grids 71

Initial connectivity New connectivity

Figure 5.6: Initial connectivity in An and new connec-
tivity in AnGn for grid with one local refinement.

5.4 Breakdown of uniform 2-D grids

In this section we look at a breakdown of uniform grids as a result of the decoupling
technique discussed in the previous section. We first introduce a notation in order
to distinguish between different grids. Based on this breakdown we formulate an
algorithm.

We start with a grid G0. Since we want to decouple repeatedly it is convenient to
introduce levels. The first grid G0 is associated with level 0, and the two grids origi-
nating from this grid, called G1,1 and G1,2, are obviously connected to level 1. Note
that in literature the coarsest grid is usually associated with the lowest level num-
ber (0 for example), and the initial grid with some level number K. We reverse the
notation, since it is not known a priori how many times the decoupling can be re-
peated. Let k denote the current level with grid Gk. Of course, at level k there are
multiple grids, but we will consider one only and omit any designation other than
one related to the level. To distinguish between grids, we introduce a triple of inte-
gers (m,m1,m2) which are functions of k. Here m denotes the number of rows, m1

the number of nodes in odd numbered rows, and m2 the number of nodes in even
numbered rows. The rows are numbered in increasing order. For k even the grid is
rectangular, and the number of columns per row is always m1, and hence m2 = m1.
If k is odd, the grid is said to be oriented diagonally. So, from this triple (m,m1,m2)
we can tell what sort of grid we are dealing with.

Suppose now that k is even. Then we have a rectangular grid Gk with grid parame-
ters (m,m1,m1) (m2 = m1 for rectangular grids). The two grids that originate from
Gk after the decoupling are denoted byGk+1,1 andGk+1,2. These grids are orientated
diagonally. Then the grid parameters for these new grids are

Gk+1,1 : (m, dm1

2 e, bm1

2 c);
Gk+1,2 : (m, bm1

2 c, dm1

2 e).

72 Chapter 5: Recursive solution methods

For odd k, we have a diagonally orientated grid Gk with parameters (m,m1,m2).
The grids Gk+1,1 and Gk+1,2 resulting from the decoupling are rectangular and have
parameters as follows

Gk+1,1 : (dm2 e,m1,m1);

Gk+1,2 : (bm2 c,m2,m2).

Table 5.1 shows the grids that originate from an initial 7× 7 grid, represented by the
triple (m,m1,m2). In figures 5.7 and 5.8 the decoupling is made visible by depicting
the nodes of the initial grid and its two successors.

k = 0 (7, 7, 7)
k = 1 (7, 4, 3) (7, 3, 4)
k = 2 (4, 4, 4) (3, 3, 3) (4, 3, 3) (3, 4, 4)
k = 3 (4, 2, 2) (4, 2, 2) (3, 2, 1) (3, 1, 2) (4, 2, 1) (4, 1, 2) (3, 2, 2) (3, 2, 2)

Table 5.1: Breakdown of a 7× 7 grid after three decomposi-
tions, grid parameters are (m,m1,m2) shown.

Grid � � � � � � � Grid � � � � � � � Grid � � � � � � �

Figure 5.7: Decomposition of the rectangular (7, 7, 7) grid
into two diagonally oriented sets of nodes.

Grid � � 	
 	 � � Grid �
 	
 	 � Grid � � 	 � 	 �

Figure 5.8: Decomposition of the diagonal (7, 4, 3) grid into
two rectangularly oriented sets of nodes.

Related to grid Gk is the stiffness matrix Ak based on a finite element of finite differ-
ence discretization on that grid. The stiffness matrices related to the grid Gk+1,1 and

Three algorithms based on forced repeated decoupling 73

Gk+1,2 are denoted by Ak+1,1 and Ak+1,2 respectively. The order nk of a stiffness
matrix Ak related to a grid Gk with parameters (m,m1,m2) are easily found to be

k even : m ·m1;

k odd : dm2 em1 + bm2 cm2.

Now we have Ak and Gk we find that the new matrix AkGk decouples into parts
Ak+1,1 and Ak+1,2.

5.5 Three algorithms based on forced repeated decou-

pling

In the previous section we introduced definitions for grids, and explained how two
new grids Gk+1,1 and Gk+1,2 originate from initial grid Gk. This creation of two
new grids implies a decoupling of the original degrees of freedom into two disjoint
sets. With a proper permutation based on this decoupling the related linear operator
AkGk can be written as a 2 × 2 block matrix.

At level k we have to solve the system of equations

(5.18) Akxk = bk.

We construct the Green’s matrix Gk. Next, Gk is applied as a right preconditioner,
and we solve

AkGkyk = bk,

with

(5.19) xk = Gkyk.

The multiplication of Ak by the Green’s matrix Gk results in a decoupling of the

degrees of freedom into two disjoint sequences Ŝ1 and Ŝ2. Consider the permutation

πk := (Ŝ1 Ŝ2) and the corresponding permutation matrix Pk The permutation of
variables reorders the degrees of freedom such that the two sets are numbered one
after each other. We apply this permutation in order to get the decoupled system.
This is the linear system

(5.20) PkAkGkP
T
kPkyk = Pkbk.

Note that PT
k = P−1

k . This system is a 2 × 2 block system where all sub blocks are of
level k + 1:

(5.21)

[

Ak+1,1

Ak+1,2

] [

yk+1,1

yk+1,2

]

=

[

bk+1,1

bk+1,2

]

.

Here
[

Ak+1,1

Ak+1,2

]

:= PkAkGkP
T
k ,

74 Chapter 5: Recursive solution methods

[

yk+1,1

yk+1,2

]

:= Pkyk

and
[

bk+1,1

bk+1,2

]

:= Pkbk.

There are two independent linear subsystems,

(5.22)

{

Ak+1,1yk+1,1 = bk+1,1,

Ak+1,2yk+1,2 = bk+1,2,

to be solved, instead of one system in (5.18). These are related to two sub grids of
Gk , called Gk+1,1 and Gk+1,2 respectively. At this new level k + 1 the decoupling
procedure is to be repeated. Unfortunately this cannot be accomplished with the
matrices Ak+1,i, i = 1, 2, as outlined in the previous section. However, given the
regularity of the new grids Gk+1,1 and Gk+1,2 it is possible to repeat the decoupling.
In the following three algorithms are presented that make use of this.

5.5.1 A recursive preconditioner: I

A first idea is to find suitable preconditioners for the two linear systems in (5.22).
Related to grids Gk+1,1 andGk+1,2 we construct Laplace matrices Ak+1,1 and Ak+1,2

such that these matrices can be decoupled using Green’s matrices Gk+1,1 and Gk+1,2.
So, the Laplace matrices Ak+1,1 and Ak+1,2 are utilized as preconditioners for Ak+1,1

and Ak+1,2 respectively. The next step in the algorithm is to solve the preconditioned
systems

(5.23)

{

A−1
k+1,1Ak+1,1yk+1,1 = A−1

k+1,1bk+1,1

A−1
k+1,2Ak+1,2yk+1,2 = A−1

k+1,2bk+1,2.

Both Ak+1 and Ak+1 are discretizations of the Laplace operator: Ak+1 is related to
the a five point discretization, and Ak+1 to a nine point discretization. So, since Ak+1

and Ak+1 are discretizations of the same operator, it makes sense to use one of the
two as preconditioner for the other. Furthermore, we have seen that the matrix Ak+1

related to the five point stencil decouples after multiplication with the corresponding
Green’s matrix Gk+1.
In iterative methods systems of equations with Ak+1,1 and Ak+1,2 have to be solved
in order to apply this preconditioner. In order to solve these systems, the same pro-
cess of computing Green’s matrices Gk+1,1 and Gk+1,2, and decoupling of the the
degrees of freedom is repeated. The two subsolutions yk+1,1 and yk+1,2 are com-
puted at this stage, possibly by going some levels further. Using (5.19) the solution
xk is obtained via

(5.24) xk = GkP
−1
k

[

yk+1,1

yk+1,2

]

.

The recursion terminates at level K > 0 when the dimensions of the linear systems
AK at that level are such that the systems of equations can be solved using a direct

Three algorithms based on forced repeated decoupling 75

method. The 2K partial solutions are assembled to obtain the solution of the original
problem A0x0 = b0.

Below we give an implementation of the algorithm described above in (5.18) - (5.24),
called SOLVE-I, by the following pseudocode:

x = SOLVE-I(A, rhs)
IF order of A small enough:
use direct method to compute x;

ELSE
split A into two subproblems:
A1p, rhs1 and preconditioner A1,
A2p, rhs2 and preconditioner A2,
with permutation P;

x1 = CGS(A1p, rhs1, SOLVE-I(A1), EPS, MAXIT);
x2 = CGS(A2p, rhs2, SOLVE-I(A2), EPS, MAXIT);
use permutation P to obtain x from x1 and x2;

END

The tolerance EPS and maximum number of iterations MAXIT used by the inner CGS
iterative method are shown explicitly since these two parameters influence speed
and accuracy of SOLVE-I.

There are two ways to use the SOLVE-I algorithm: directly as a solver, or as a pre-
conditioner. When used as a solver, the call is directly to the algorithm:

x = SOLVE-I(A, rhs).

When used as a preconditioner inside an iterative method, the use of SOLVE-I is as
follows:

x = CGS(A, rhs, SOLVE-I, EPS, MAXIT).

5.5.2 A recursive preconditioner: II

In the SOLVE-I algorithm in the previous subsection the recursive nature follows
from (5.23). Since both Ak+1,i and Ak+1,i are matrices related to different discretiza-
tions of the Laplace operator, we consider substitution of Ak+1,i by Ak+1,i. With
this approach, matrices Ak+1,i need not to be computed explicitly. Another benefit
is that Ak+1,i required less storage since these matrices are sparser.
So, the linear systems in (5.23) with Ak+1,i are replaced by Ak+1,i resulting in

(5.25)

{

Ak+1,1yk+1,1 = bk+1,1,
Ak+1,2yk+1,2 = bk+1,2,

In this alternative in the recursive step we solve

Ak+1yk+1 = bk+1

76 Chapter 5: Recursive solution methods

instead of

Ak+1yk+1 = bk+1.

An updated version of the algorithm, now called SOLVE-II reads as follows:

x = SOLVE-II(A, rhs)
IF order of A small enough:
use direct method to compute x;

ELSE
split A into two subproblems:
A1 and rhs1,
A2 and rhs2,
with permutation P;

x1 = CGS(A1, rhs1, SOLVE-II(A1), EPS, MAXIT);
x2 = CGS(A2, rhs2, SOLVE-II(A2), EPS, MAXIT);
use permutation P to obtain x from x1 and x2;

END

5.5.3 A recursive preconditioner: III

The above algorithm can be altered even further, by simply replacing the calls to
an iterative method by a call to the algorithm itself. This results in the following
algorithm:

x = SOLVE-III(A, rhs)
IF size of A small enough:

use direct method to compute x;
ELSE

construct two matrices related to splitting of A:
A1 and rhs1,
A2 and rhs2,

with permutation P;
x1 = SOLVE-III(A1, rhs1);
x2 = SOLVE-III(A2, rhs2);
use permutation P to obtain x from x1 and x2;

END

To summarize, we have three versions of the SOLVE algorithm:

1. [SOLVE-I] The algorithm with inner iterative solvers to solve
A−1
k+1Ak+1yk+1 = A−1

k+1bk+1;

2. [SOLVE-II] The algorithm with inner iterative solvers to solve
Ak+1yk+1 = bk+1;

3. [SOLVE-III] The algorithm with a recursive call to itself.

Complexity of the algorithms 77

5.6 Complexity of the algorithms

The work at level k to solve the system Akxk = bk depends on the tolerance ε (EPS
in the SOLVE algorithms in Section 5.5) and is denoted by wk(ε). The work at this
level, except for the work required to solve the two subproblems, is denoted by lk.
This involves construction of the Green’s matrix and the related permutation. The
work required by the iterative method used (CGS for example) is denoted by gk.
Finally, let λk(ε) denote the average number of iterations needed for solving the two
subproblems. Then we obtain the following estimate for level k,

(5.26) wk(ε) = lk + 2λk+1(ε)(gk+1 + wk+1(ε)).

For CGS we assume λ(ε) iterations. Apart from wk+1(ε) as indicated above each
iteration costs 18nk+1 flops, see [9]. Furthermore, lk = 3nk (approximation for the
work to obtain the permutation, but still linear in the amount of degrees of freedom).
We assume nk+1 = nk

2 , and henceforth nk = 2K−knK where nK denotes the amount
of degrees of freedom at level K when a direct method is used. The work at level K
is fixed: wK(ε) = wK .

Then the workload wk(ε) at level k is expressed as follows:

wk(ε) = awk+1(ε) + bnK2K−k.

Here

a = 2λ(ε),

b = 3 + 18λ(ε).

We can solve this recursion:

wk(ε) = aK−kwK + bnK2K−k (a2)K−k − 1
a
2 − 1

.

Whence for the total workload w0(ε) to solve A0x0 = b0 we have

(5.27) w0(ε)
.
= O(λ(ε)K(wK + n0)).

Chapter 6

NumLab concepts

The scientific computing numerical and visualization algorithms are becoming more
and more complex. The construction of such algorithms from source code becomes
expensive: Interpretation is too slow, compilation prevents interactive steering and
overview gets lost. To make it worse, there is no formal computer language specifica-
tion of complex mathematical notions such as partial differential equations, ordinary
differential equations, boundary value problems, etc..

With this situation in mind this chapter discusses the concepts of the NumLab com-
putational platform. The aim of NumLab is to aid in the rapid (better) software con-
struction for complex scientific computations and visualizations. Though software
might also be written with the available tools on the market, down to the use of as-
sembler code, this would take an insubordinate amount of time. Our goal is to write
the same software much faster and in a convenient manner. To aid the rapid soft-
ware development, NumLab offers toolboxes of high level operators and invariance
of important operator properties under operator composition.

First a brief introduction of existing architectures is given, followed by the goals to
be achieved by NumLab.

6.1 Introduction

From a structural point of view, software environments for numerical computations
can be classified into three categories (see for instance [82]): Libraries, turnkey sys-
tems, and application frameworks.

Libraries for numerical algorithms such as LAPACK [2], NAGLIB [79], or IMSL [53],
or for visualization such as OpenGL [55], Open Inventor [105], or VTK [87], provide
services in the form of data structures and functions. Libraries are usually easy to
extend with new data types and functions. However, using libraries to build a com-
plete computational or visualization application requires involved programming.

Turnkey systems, such as Matlab [67], Mathematica [107], or the many existing dedi-
cated numerical simulators on the market, are simpler to use than libraries to build a
complete application. However, extending the functionality of such systems is usu-
ally limited to a given application domain, as in the case of the dedicated simulators,
or to a fixed set of supported data types, as in the case of the Matlab programming
environment.

80 Chapter 6: NumLab concepts

Application (computational) frameworks, such as the Diffpack and SciLab systems for
solving differential equations [26, 54] or the Oorange system for experimental math-
ematics [48] combine the advantages of the libraries and turnkey systems. On one
hand, frameworks have an open structure, similar to libraries, so they can be ex-
tended with new components, such as solvers, matrix storage schemes, or mesh gen-
erators. On the other hand, some frameworks (notably visualization) offer an easy
manner to construct a complete application that combines visualization, numerical
computations, and user interaction. This is usually provided by means of visual
programming tools such as Matlab’s Simulink [67] or the dataflow network editing
tools of the AVS [97], IRIS Explorer [1], or Oorange [48] frameworks. In these frame-
works, applications are constructed by assembling visual representations (icons) of
the computational or visualization components in a network. Program execution is
implemented in terms of computational operations on the network nodes and data
flows between these nodes respectively.

With the above in mind, let us consider how the NumLab environment integrates
the advantages of the above architectures. On the level of libraries, NumLab’s C++
routines call Fortran, Pascal, C and C++. Next, similar to a turnkey system, NumLab
offers full integration of visualization and numerical computation and implements
communication with other environments such as Simulink [67] and MathLink [107].
On the application framework level, NumLab provides interactive application con-
struction with its visual programming dataflow system Vission [92, 94]. Furthermore,
NumLab provides an object-level (subroutine-level) make-concept which allows for
interactive program validification.

In order to better address NumLab’s merits on all levels, we need a closer look
at computational frameworks. Though efficient and effective, most existing com-
putational frameworks are limited in several respects. First, limitations exist from
the perspectives of the end user, application designer, and component developer
[3, 37, 82, 94]. First, few computational frameworks facilitate convenient interaction
between visualization (data exploration) and computations (numerical exploration),
both essential to the end user. Secondly, from the application designer’s perspec-
tive, the visual programming facility, often provided in visualization frameworks
such as AVS or Explorer [1, 97], is usually not available for numerical frameworks.
Conversely, it is quite difficult to integrate large scale computational libraries in vi-
sualization frameworks.

Finally, from the numerical component developer perspective, understanding and
extending a framework’s architecture is still (usually) a very complex task, albeit
noticeably simplified in object-oriented environments such as [26, 87].

Next to limitation with respect to the three types of users, many computational
frameworks are constrained in a more structural manner: Similar mathematical con-
cepts are not factored out into similar software components. As a consequence, most
existing numerical software is heterogeneous, thus hard to deploy and understand.
For instance, in order to speed up the iterative solution of a system of linear equa-

Introduction 81

tions, a preconditioner is often used. Though iterative solvers and preconditioners
fit into the same mathematical concept, that of an approximation x which is mapped
into a subsequent approximation z ≈ F(x), most computational software imple-
ments them incompatibly, so preconditioners cannot be used as iterative solvers and
vice versa [26]. Another example emerges from finite element libraries. Such li-
braries frequently restrict reference element geometry and bases to a (sub)set of pos-
sibilities found in the literature. Because this set is hard coded, extensions to different
geometries and bases for research purposes is difficult, or even impossible.

The design of NumLab addresses all the above problems. NumLab is a numerical
framework that provides C++ software components (objects) for the development
of a large range of interdisciplinary applications (PDEs, ODEs, non-linear systems,
signal processing, and all combinations). Further, it provides interactive application
design/use with its visual programming dataflow system Vission,data interchange
(e.g. via Simulink and MathLink), and can be used both in a compiled and inter-
preted fashion. Its computational libraries factor out fundamental notions with re-
spect to numerical computations (such as evaluation of operators z = F(x) and their
derivatives), which keeps the amount of basic components small. All components
of these libraries are aware of dataflow, even in the absence of the Vission dataflow
system, and can for instance call back to see whether provided data is valid.

Visualisation

Solvers

ODE’s

PDE’s

Matlab, etc...
NAGlib,

1-4

2

2
3

5

1

1

14

1-4

Figure 6.1: High level components brought together.

In order to achieve its rapid software construction goal NumLab offers C++ libraries

(L1) with a uniform cross-language interface;

(L2) with factored out common numerical concepts ([72] and figure 6.1);

(L3) which are based on blue-prints (templates), ([73]);

82 Chapter 6: NumLab concepts

(L4) with high level components (PDE solvers, complex vector field visualizations,
see figure 6.1 ([71]));

(L5) which can be used for interpretation ([27]);

(L6) which can all be used for visual programming,

and in addition:

(A1) a visual programming application called Vission ([93]).

There are libraries based on both public and commercial software, and for both sci-
entific computing and visualization purposes.
The libraries have been designed with other important goals in mind as well, but
most of these are out of the scope of this thesis: parallelism, generation of C++ from
visual networks and vice versa, Turing completeness. The choice of an existing com-
puter language was based on the desire not to add another language to the tower of
Babel – different from the Lawrence Livermore BABEL project which introduces an
new scientific interface definition language (SIDL). The choice for C++ was simple:
It is a kind of computer language superset.

The properties of the NumLab libraries above ensure:

(M1) abstraction from data representation and much less different manuals to read;

(M2) second opinions (different solver/visualization) at about no cost;

(M3) speed due to on demand generation of specialized code from generic blue-
prints;

(M4) composition of complex solvers with just a few components;

(M5) low learning curve (comparable to Matlab);

(M6) overview and convenience.

The Vission application ensures crash-safe operation across multiple libraries ([81]).

The work required for the creation of the NumLab libraries can also be split corre-
sponding to the six points as follows:

(W1) encapsulation of all libraries and generation of data-conversion code;

(W2) factorization of concepts across libraries;

(W3) refactorization of libraries and production of in-house written libraries;

(W4) production of in-house written prototype libraries;

(W5) restriction to CINT C++ subset [27];

(W6) restriction to the Vission (C++) concepts [93].

Introduction 83

In practice the restriction to the CINT C++ subset has not lead to restrictions on the
encapsuled libraries: In C++ a certain result can be achieved with different algo-
rithms (different pieces of code) and so far we have not encountered problems we
could not solve.
The restrictions to the concepts of the Vission application were harder to deal with
due to the Vission’s research status. For instance, Vission does not offer naked point-
ers as C++ does. This complicates matters: Libraries such as the professional Visu-
alization ToolKit VTK libraries could not be encapsuled one to one with the source
code, which leads to maintenance problems (each new version of VTK requires a
thorough inspection). The fact is that it is possible to also introduce naked pointers
in Vission, but this would not solve all problems with libraries that return pointers.
The encapsulation of public domain and commercial libraries consumes a lot of time
but can, will and is automated for all or part of the task. In fact, most (eliminated)
weaknesses in the NumLab libraries have been found in an attempt to automate the
encapsulation.

The development of numerical libraries which function ”as expected“ in the visual
data-flow application (A1) consumed a large part of the amount of time dedicated
to the development of the NumLab libraries. The reason is that it was difficult to
write numerical libraries which lived up to the envisioned advantages: The visual
representation of a computer program should be a kind of network which should
offer:

(N1) structure: a network which contains function/object instances and argument
connections/alterations;

(N2) structure: data travels from the top of this network (source) and gets altered on
its journey down to the bottom (output);

(N3) overview: a network with just a few components can form a complex applica-
tion;

(N4) overview: network details can be hidden and be shown on demand;

(N5) interaction: a network accepts graphical input next to the standard console or
file input;

(N6) interaction: while it is executed a network can be altered in order to speed up
the computations.

In order to achieve this, two major problems had to be addressed. First, visualization
of low level components (such as a sorting algorithm) is

1. slow due to the interpretation,

2. and tends to become a visual mess of connections due to the multiple use of a
datum.

84 Chapter 6: NumLab concepts

Visualization of all levels of numerical components is further difficult because

3. (iterative) code tends to rebind (x(k) 7→ x(k+1)), for which no standard visual
realization exist,

4. and therefore control loops are non-trivial to realize.

To overcome the low level problems, NumLab as well as VTK/Inventor only of-
fers high level visual components such as linear-system solvers, ODE solvers, PDE
solvers, etc.. To overcome the second problem, libraries such as VTK and Inven-
tor make the problem the visual application’s problem. For visualization problems,
that seems fine, but for numerical problems, where fixed point iterations and hence
loops dominate the scene, this is impossible. Hence, NumLab offers primitives for
loop control.

This thesis adds both to the NumLab concepts and its content. As part of the work,
iterative solution routines and preconditioners were added to NumLab. The con-
struction of libraries for the Vission application are commented at in the following
order. First, Section 6.2 presents the NumLab foundations, which are principles to
which components of NumLab adhere. More in detail, Section 6.3 comments on the
NumLab elements and Section 6.4 examines NumLab operators. These are divided
into the categories systems of equations in Subsection 6.4.1, solvers and preconditioners
in Subsection 6.4.2, partial differential equations in Subsection 6.4.3 and ordinary differ-
ential equations in Subsection 6.4.4. Next, Section 6.5 explains how NumLab factors
out common components. Details with regard to the implementations are provided
in subsections.

6.2 The foundation of NumLab

NumLab offers various elements x of linear vector spaces V and operators F be-
tween such spaces. For all elements x,y ∈ V and a scalar c it offers

1. All vectorspace operations: x + y, c · x, etc..

For each operator F, it offers

2. Evaluation: z = F(x) which returns an element.

And for each differentiable operator F and element x, it offers:

3. Jacobian determination: Z = dF(x) which returns a linear operator.

The Jacobian determination can be exact or numerical and should be the Frechet
derivative; NumLab cannot examine continuity of the derivative.

The NumLab concept is the simplest possible: For an evaluation z = F(x), each op-
erator F can use other elements {xi}i, other elements {zi}i as well as other operators
{Fi}i; for a visual representation see figure 6.2.

The NumLab elements 85

x

z

*

Op

Op

Figure 6.2: NumLab operator and datum

The NumLab operator concept is more basic than for instance the DiffPack one.
There, specific operators cannot use all other operators. For instance, a linear solver
operator can use a preconditioner but not other operators. Thus, as an example,
DiffPack must and does offer SOR both as a linear solver and as a preconditioner. In
contrast, NumLab offers just one operator SOR which can both be used as a solver
or as a preconditioner, as will be explained in Subsection 6.4.2. Sometimes operators
use more input data. In case of an iterative solver for example, this may include an
initial value, a preconditioner and parameters to specify the stopping criteria of the
solver.

The NumLab implementation (toolboxes) implement the vector spaces RN , the vec-
tor spaces of (piecewise) functions defined on partitioned geometries as well vector
spaces of functions on Rd. Because most of NumLab’s applications are in finite vol-
ume/difference/elements, the remainder of this chapter will focus on R

N and spaces
of (piecewise) functions defined on partitioned geometries.

6.3 The NumLab elements

Here we consider the mathematical framework for spaces V in more detail. In gen-
eral, let Ω be the bounded polygonal/polyhedral domain of interest, with smooth
enough boundary ∂Ω. The linear vector space V = V1 × · · · × Vn is a cross-product
space of n spaces (n is the amount of degrees of freedom). Each space Vi is spanned

by basis functions {vij}Ni

j=1 where vij : Ω 7→ R. An element x ∈ V is a vector function
from Ω to R

n, and is written as x = [x1, . . . , xn], a vector of component functions.
Each component xi ∈ Vi is a linear combination of basis functions, for all c ∈ Ω

(6.1) xi(c) =

Ni
∑

j=1

xij(t)vij(c).

Each element xi is associated to a unique scalar vector Xi = [xi1, . . . , xiNi] ∈ R
Ni .

In turn, X denotes the aggregate of the vectors X = [X1, . . . ,Xn], and Xij = [Xi]j .
Summarized, we have vector functions x = [x1, . . . , xn] and related vectors of coeffi-
cient vectors X = [X1, . . . ,Xn].
Whenever n = 1, we use a more standard notation. In this case, the space is V ,

86 Chapter 6: NumLab concepts

spanned by basis functions {vj}Nj=1, and elements x ∈ V are related to coefficient
vector x = [x1, . . . , xN].

For most finite element computations, the basis functions vij of Vi have local support.
However, basis functions have global support in spectral finite elements computa-
tions. The local supports, also called elements, are created with the use of a triangula-
tion algorithm. On the lowest level, NumLab offers vectors in Rn and block matrices
in Rn×m for coefficient vectors {vij}j and Jacobian matrices. Of course, each matrix
block has full, diagonal or sparse representations.

6.4 The NumLab operators

This section discusses the NumLab operators. Here is a small overview on the Num-
Lab operators:

1. Problem-specific operators: Transient Finite Element, Volume, Difference opera-
tors F for transient boundary value problems (BVPs); Operators which formu-
late systems of ordinary differential equations (ODEs); operators which act on
linear operators (for instance image filters);

2. Problem-specific solvers for systems of ODEs: Time-step and time-integration op-
erators formulated with the use of (parts of) the problem-specific operators
mentioned above. The former operators require non-linear solvers for the com-
putation of solutions;

3. Solvers for systems of non-linear equations: Such systems are operators, and their
solution is reduced to the solution of a sequence of linear systems;

4. Solvers for systems of linear equations: Such systems are also operators F(x) =
Ax − b. Their solution is reduced to a sequence of operator evaluations and
vector space operations.

The reduction from one type of operator to another is commented on in the subsec-
tions below, in the reverse order of the itemization above. Thus, Subsection 6.4.1
examines systems of (non-)linear equations, Subsection 6.4.2 examines (non-)linear
solvers and preconditioners, Subsection 6.4.4 considers the reduction of systems of
ODEs to non-linear systems, and Subsection 6.4.3 deals with an initial boundary
value problem. The presented mathematical reductions are de facto standards, new
is NumLab’s software implementation which is a one to one mapping of these tech-
niques.

6.4.1 Systems of equations

NumLab has no special representation for (non-)linear systems of equations, such
entities are formulated with the use of operators. In NumLab a matrix is a linear
operator F which is of the form x 7→ Ax, where A is the canonical coefficient matrix
representation of F (obtained with the canonical basis of vector space V). Next, if

The NumLab operators 87

F is a linear operator and f an element, a linear system of equations is represented
with an affine operator G of the form

(6.2) x 7→ F(x) − f .

In NumLab, an image is a linear operator which simplifies image processing (see
Figure 6.4m).

Non-linear systems of equations are represented by an operator x 7→ F(x) such that
a solution of F(x) = 0 solves the non-linear system.

6.4.2 Solvers and Preconditioners

In NumLab, all solvers are represented as operators as well. Each solver S for the
problem z = F−1(x) calculates an approximation of F−1(x) for a specific argument
x and extra argument F. The operator S approximates F−1(x) as follows: it is im-
plemented as a fixed point iteration z(k+1) = S(z(k)) with initial value z(0) := z and
final value z = z(K). By construction, it is not continuous due to a stopping tolerance
ε > 0 and the maximum amount of iterations, and it is not possible to calculate dS
for a specific x and F.

All of NumLab’s iterative solvers adhere to the following principle: If z(0) ∈ V for
some space V , then

(6.3) z(0) (S)7→ z(1) (S)7→ z(2) (S)7→ z(3) (S)7→ · · · ,

is a sequence in V , i.e., each solver maps V into V . This holds even if V is con-
strained, such as V = {[1, 2] + λ[3, 4] : λ ∈ R} ⊂ R2. This is of importance because
Dirichlet or Neumann boundary conditions as will be discussed in Subsection 6.4.3
lead to constrained spaces V . The idea behind (6.3) is that all iterations should map
an approximate solution to a potentially better approximate solution of the problem
of interest. This at least requires that all z(k), k > 0 are in the same space as z(0).
Furthermore, because this holds, we can switch and mix linear solvers on demand.

As an example, let F be an affine operator (linear system) and consider the Richard-
son iterative solver R for the computation of z = F−1(x). This solver is defined with
the use of a fixed point iteration:

(6.4) z(k+1) = z(k) − (F(z(k)) − x),

The evaluation z = R(x) of the Richardson operator R is implemented with the use
of NumLab’s basic operations as follows:

(6.5)

r
(1)
= F(z(k));

r
(2)
= r− x;

z(k+1) (2)
= z(k) − r,

88 Chapter 6: NumLab concepts

with initial value z(0) := z and final value z := z(K). Here
(1)
= denotes operator eval-

uation and
(2)
= vector space operation, where the right hand part is assigned to the left

hand side. The computation of the Jacobian is not offered because R is not differen-
tiable.

Because iterative solvers can be slow, as detailed in Chapter 3, it is common to use
a preconditioner. Richardson method with preconditioner (operator) P passed as an
extra operator is:

(6.6) z(k+1) = z(k) −P(F(z(k)) − x).

Now the implementation of the evaluation z = R(x) of the preconditioned Richard-
son operator R is:

(6.7)

r
(1)
= F(z(k));

r
(2)
= r − x;

s
(1)
= P(r);

z(k+1) (2)
= z(k) − s.

The NumLab toolbox only offers the preconditioned Richardson method with de-
fault preconditioner x 7→ x. Each operator (such as x 7→ U−1L−1x) can be used as
a preconditioner. Likewise, each solver can use itself as preconditioner, if its maxi-
mum amount of iterations is set to for instance 1. It should be noted that different
solvers use preconditioners in a different manner.

Though preconditioning in NumLab is simple, this does not solve the problem of
proper preconditioning. This has been addressed in Chapter 3 and the application
designer should keep these mathematical restrictions in mind, when designing a
suitable solver for the problem at hand.

Similar to linear solvers, NumLab also formulates non-linear solvers as operators.
Problems with non-linear operators which do not provide derivative evaluation,
can be solved with the use of a fixed point method (comparable to the Richardson
method above), or with a combinatorial fixed point method [96] (a multi-dimensional
variant of the bisection method). Non-linear operators that provide derivative eval-
uation can also be solved with (damped, inexact) Newton methods (see [36, 40]).
As an example, let x be an element and F an operator, and consider the NumLab
undamped Newton’s method U for the calculation of z = F−1(x): The fixed point
iteration is:

(6.8) z(k+1) = z(k) − dF−1(z(k))(F(z(k)) − x),

The NumLab operators 89

and could be implemented as:

(6.9)

r
(1)
= F(z(k));

r
(2)
= r − x;

s
(1)
= inv(dF(z(k)))(r);

z(k+1) (2)
= z(k) − r,

where F 7→ inv(dF(z(k))) returns the inverse (linear operator) of the Jacobian of F at
z(k). However, NumLab implements Newton’s method differently. It uses a linear
solver R in order to approximate dF(z(k))−1(r):

(6.10)

r
(1)
= F(z(k));

r
(2)
= r − x;

s
(1)
= R(r, Jacobian(F));

z(k+1) (2)
= z(k) − r.

The linear solver is passed to Newton’s method as an extra operator, its Jacobian
matrix is calculated and passed to Richardson method. The Richardson solver is also
passed as an extra operator, which in turns could have been passed a preconditioner
as an extra operator.

6.4.3 Partial differential equations

In order to show how NumLab formulates partial differential equations (PDEs) as
operators, consider a PDE. Let d be a positive integer and Ω ⊂ Rd be the bounded
region of interest, and let ∂Ω denote its boundary. The problem of interest is to find
a solution u defined on Ω that satisfies

(6.11)
−∆u = h in Ω,

u = g at ∂Ω.

For the sake of simplicity of presentation, all boundary conditions are of Dirich-
let type. The NumLab construction of the operator depends on the discretization
method and on the specific properties desired from the operator: Whenever possible,
NumLab operators are maximal monotone (see [64]). This ensures that the Jacobian is
a positive (semi-) definite linear operator. For a finite element discretization of (6.11)
NumLab defines a maximal monotone operator as follows. First, Ω is covered with
elements (see [70]) which serve to define a basis {vj}Nj=1 (see [57]), which generates
the vector space V of interest. In standard Galerkin finite elements (see [5]), the solu-
tion u to (6.11) is assumed to be in the space V , i.e., u =

∑

j ujvj for some coefficient

vector u = [u1, . . . , uN] ∈ RN . Define E : V 7→ V and f ∈ V as follows:

(6.12) E(u) :=
∑

i

[∇

N
∑

j=1

ujvj

∇vi − hvi]

 vi, f =
∑

i

(

hvi

)

vi .

90 Chapter 6: NumLab concepts

Now recall that for an approximate solution u(0) ∈ V g an iterative solver must pro-
duce a sequence

(6.13) u(0) (S)7→ u(1) (S)7→ u(2) (S)7→ u(3) (S)7→ · · · ∈ V g,

and recall that NumLab’s iterative methods (such as Richardson method and all
methods in [9]) perform calculations on an unconstrained vector space R

N . These
solvers cannot perform calculations on non-linear subsets of RN such as affine sub-
sets.

In NumLab, this problem is solved as follows: Partial differential operators are de-
fined in such a manner that all required computations can take place in a linear
subset (i.e., a subspace) of RN which all solvers (for instance all methods in [9]) can
handle. For this linear BVP, as well as for all non-linear BVP’s discretized with the
finite element method, we proceed as follows. For γ : ∂Ω 7→ R define

(6.14) V γ = {u ∈ V : u = γ at ∂Ω}

and let P denote the projection of V onto V 0. The NumLab operator which repre-
sents the finite element discretization of (6.11) is defined through its evaluation and
computation of its Jacobian:

1. z = F(u) := P(E(u) − f) ∈ V

2. Z = dF(u) := I−P + PdE(u)PT ∈ V 7→ V .

In this manner

1. F : V 7→ V 0;

2. dF : V 7→ V 0 × V 0 and dF is invariant on V − V 0;

3. dF is the derivative of F in V 0;

4. dF is maximal monotone;

5. The concept (6.13) holds for all linear and non-linear solvers in NumLab;

6. F(x) = 0 ⇐⇒ P(x) solves the homogeneous problem related to (6.11),

In NumLab the linear vector space V is represented with RN , V 0 is a chosen linear
subspace.

If we want to solve the transient version

(6.15)
d
dtu(t) = ∆u+ f in Ω,

u = g at ∂Ω,

with a Method of Lines (MOL) discretization, we substitute F for E in the next sec-
tion. As an alternative one can simultaneously discretize in time and space (see for
instance [6]).

The NumLab operators 91

6.4.4 Ordinary differential equations

Standard discretizations of ordinary differential equations can also be formulated as
operators whose evaluation reduces to a sequence of vector space operations and
function evaluations. For instance, let F be a discrete NumLab operator, and con-
sider the initial value problem: Find x(t) for which:

(6.16)
d

dt
x(t) + F(t,x(t)) = 0 (t > 0), x(0) = x0 .

Let h > 0 denote the discrete time-step, and define tk = kh for all k = 0, 1, 2,
Next, let V be the space which is used to approximate x(t) at a specific time t, let
{vj}j be the basis used to this end and let M be the linear operator:

(6.17) [M]i,j = (vj ,vi).

Provided with an approximation x(k) ∈ V of x(tk), a fixed-step Euler backward
method determines an approximation x(k+1) ∈ V of x(tk+1)

(6.18) M(x(k+1) − x(k)) = −hE(tk+1,x
(k+1)),

which can be rewritten as

(6.19) M(x(k+1) − x(k)) + hE(tk+1,x
(k+1)) = 0 .

Define the operator E as follows:

(6.20) E(x) := M(x− x(k)) + hE(tk+1,x).

Then x(k+1) is a solution of E(x) = 0. Of course, E depends on the extra argument
values x(k), tk and h. Each time step we have to solve E(x) = 0 for which we can
use a non-linear solver examined above. Note that F is maximal monotone if E is
because M is a positive semi-definite linear operator. Likewise, in a finite difference
setting, if E is diagonal dominant, so is F. If E is an L-matrix, so if F, etc..

In general, if a NumLab operator depends on another one, its implementation will
keep all properties invariant. Both on a global scale and a lower level (element/stencil-
wise) scale.

The approach above generalizes in a straightforward manner to all explicit meth-
ods, such as Runge-Kutta type methods [30], as well as to all implicit discretization
methods, such as Backward Difference Formulas (BDF) [44]. Furthermore, this ap-
proach generalizes to the case of fixed and variable timestep integrators (see PEC and
PECE [68]). An example is the solution of a Lotka-Volterra predator-prey problem,
shown in Fig. 6.4 l.

92 Chapter 6: NumLab concepts

6.5 The NumLab factored out common components

For all offered ODE/PDE discretizations NumLab factors out common components.
For the sake of demonstration, we focus on the case of a finite element discretization
such as in Section 6.4.3. In NumLab, a finite element function x ∈ V is constructed
with a sequence of entities: In this list, on each line, each first item is input to Num-
Lab, and all others are derived (invisible):

1. boundary specification 7→ geometry specification 7→

2. reference element 7→

3. element generator 7→ computational grid (discrete geometry) 7→

4. reference functions 7→

5. boundary conditions 7→ linear and constrained spaces 7→ sampler 7→

6. symbolic function 7→

7. element x in the space V .

For each input alternatives are possible, for instance one can use quadrilateral in-
stead of triangular elements. A NumLab network which demonstrates all of these
input choices can be seen in figure 6.3. The various parts are encircled and num-
bered as follows: The grid is defined first (1), followed by the space (2). Then the
operator of interest (3) is constructed, followed by the solver (4). In this example we
have chosen for the CGS iterative method which is preconditioned by an incomplete
factorization. Finally, the visualization pipeline is indicated by (5).
NumLab’s basic requirements, such as (6.13), are elegantly and efficiently captured
by using an object-oriented approach to software design [18, 28, 77, 83]. Conse-
quently, we have implemented our numerical software framework as an object-
oriented library written in the C++ language [91]. The sections which follow provide
more (implementational) detail about the different factored out components.

6.5.1 The Grid module

Recall the NumLab element definitions in Section 6.3. To be able to define local sup-
port for the basis functions vij later on, we need to discretize the function’s domain
Ω. This is modeled in the software framework by the Grid module, which covers
the function’s domain with elements e. This Grid module takes a Contour as in-
put, which describes the boundary ∂Ω of Ω. The default contour is the unit square’s
contour.
In NumLab, the grid covers regions Ω in any dimension (e.g. 2D planar, manifold
or 3D spatial), and consists of a variety of element shapes, such as triangles, quadri-
laterals, tetrahedra, prisms, hexahedrals, n-simplices (see [70]), and so on. All grids
implement a common interface. This interface provides several but few services.
These include: Iteration over the grid elements and their related vertices, topological
queries such as the element which contains a given point. The amount of services

The NumLab factored out common components 93

5

4
2

1

3

Figure 6.3: A NumLab finite differences network.

94 Chapter 6: NumLab concepts

is a minimum: Modules which use a grid generator and need more service must
compute the required relations from the provided information.
Specific Grid generator modules produce grids in different manners. NumLab con-
tains Delaunay generators, simplicial generators, and regular generators, and ”gen-
erators”which read an existing grid from a file. An example generator is illustrated
in figure 6.4k, which shows a cubic finite element interpolant on a 2-manifold in R3.

6.5.2 The Space module

The linear vector space V is implemented by the software module Space. Space
takes a Grid and BoundaryConditions as inputs. The grid’s discretization in
combination with the boundary conditions are used to build the supports of its basis
functions vij . The default boundary conditions are Dirichlet type conditions for all
solution components. None, Robin, Neumann and vectorial boundary conditions
are specified per boundary part. Recall that elements in V do not have to satisfy the
Dirichlet boundary conditions.
Because Grid has a minimal interface, some information, required by Space for the
construction of the basis functions, is not provided. Whenever this happens, Space
internally computes the required information with the use of Grid’s services.

A specific Space module implements a specific set of basis functions, such as con-
stant, linear, quadratic, or even higher order polynomial degree, matched to the el-
ements’ geometry. The interface of the Space module follows the mathematical
properties of the vector space V presented so far: Elements x,y ∈ V can be added
together or scaled by real values. Furthermore, elements vij of V are functions, and
V permits evaluation at points c ∈ Ω of such functions and their derivatives.
It should be kept in mind that elements of V are functions, not linear combinations
of functions. Therefore, the name Space is somewhat misleading. However, for the
brevity of demonstration, the name Space will also be used in the sequel.

In most cases the required basis functions have local support, also called element-wise
support. The restriction of global basis function vij to support e is said to be local
function vir. In software, this is coded as follows: For space component i (so Vi),
element e, and local basis function r thereon, j := j(i, r) induces basis function
vij . The software implementation is on element-level for efficiency purposes: Given
a point c ∈ Ω, Space determines which support e contains c for the evaluation of
vij(c).

6.5.3 The Function module

As discussed, a vector function x : Ω 7→ Rn in a space V generated by vij is uniquely
related to a coefficient vector X with coefficients Xij . Based on this observation,
NumLab software module Function implements a vector function x as a block vec-
tor of real-valued coefficients Xij , combined with a reference to the related Space,
which contains related functions vij .
The Functionmodule provides services to evaluate the function and its derivatives
at a given point c ∈ Ω. To this end, both x’s coefficient vector X and the point c are

The NumLab factored out common components 95

passed to the Space module referred to by x. In turn, the Space module returns
the value of x(c). This is computed following the definition x(c) = [

∑

j xijvij(c)],
as described in the previous section. The computation of the partial derivatives of a
given function x in a point c follows a similar implementation.

Providing evaluation of functions x ∈ V and of their derivatives at given points is,
strictly speaking, the minimal interface the Space module has to implement. How-
ever, it is sometimes convenient to be able to evaluate a function at a point given
as an element number and local coordinates within that element. This is especially
important for efficiency in the case where one operation is iterated over all elements
of a Grid, such as in the case of numerical integration. If the Space module allows
evaluating functions at points specified as elements and local element coordinates,
the implementation of the numerical integration is considerably faster than when
point-to-element location has to be performed. Consequently, we also provided the
Space module with a function evaluation interface which accepts an element num-
ber and a point defined in the element local coordinates.

6.5.4 The Operator module

As described previously, an operator F : V 7→ W maps an element x ∈ V to an el-
ement z ∈ W . The evaluation z = G(x) computes the coefficients zij of z from the
coefficients xij of x, as well as from the bases {vij} and {wij} of V and W respec-
tively. Next to the evaluation of G, derivatives such as the Jacobian operator DG

of G are evaluated in a similar manner. Such derivatives are important in several
applications. For example, they can be used in order to find a solution of G(z) = x,
by Newton’s method.

The software implementation of the operator notion follows straightforwardly the
mathematical concepts introduced in Section 6.4. The implementation is done by
the Operator module, which offers two services: evaluation of z = G(x), coded
as G.eval(z,x), and of the Jacobian of G in point y, z = DG(y)x, coded as
G.getJ(y).eval(z,x). To evaluate z = G(x), the Operator module takes two
Function objects z and x as input and computes the coefficients zij using the coeffi-
cients xij and the bases of the Space objects z and x carry with them. It is important
that both the ’input’ z and the ’output’ x of the Operator module are provided,
since it is in this way that Operators determine the spaces V , respectively W .

To evaluate z = DG(y)x, the Operator proceeds similarly. Internally, DG(y) is
usually implemented as a coefficient matrix, and the operation DG(y)x is a matrix-
vector multiplication. However, the implementation details are hidden from the user
(DG(y)x may be computed element-wise, i.e. matrix-free), who works only with the
Function and Operator mathematical notions.

Specific Operator implementations differ in the way they compute the above two
evaluations. For example, a simple Diffusion operator z = G(x) may operate on
a scalar function and produce a function z where zi = xi−1 − 2xi + xi+1. A generic
Linear operator may produce a vector of coefficients z = Ax where A is a matrix.
A Summator operator z = G1(x) + G2(x) may take two inputs G1 and G2 and
produce a vector of coefficients zi = [G1(x)]i + [G2(x)]i. Remark that the modules

96 Chapter 6: NumLab concepts

implementing the Linear and Summator operators actually have two inputs each.
In both cases the function x is the first input, while the second is the matrix A for the
Linear operator and the operators G1 and G2 for the Summator operator. These
values could be as well hard-coded in the operator implementation. In both cases
however, we see Operator as a function of a single variable x, as described in the
mathematical framework.

6.5.5 The Solver module

We model the solving of G(z) = x by the module Solver in our software frame-
work. Mathematically, Solver is similar to an operator S : V 7→ W , where V and
W are function spaces. The interface of Solver provides evaluation at functions
x ∈ W, similarly to the Operator module. The implementation of the Solver
evaluation operation z = S(x) should provide an approximation z to z ≈ F−1(x).
However, Solver does not provide evaluation of its Jacobian, as this may be unde-
sirably complex to compute in the general case.

Practically, Solver takes as input an initial guess Function object x and an Operator
object G. Its output z is such that G(z) = x. The operations done by the solver
are either vector space operations or Operator evaluations, or evaluations of sim-
ilar operators G(z). In the actual implementation, this is modeled by providing the
Solver module with one or more extra inputs of type Solver. In this way, one can
for example connect a nested chain of preconditioners to an iterative solver module.

The implementation of a specific Solver follows straightforwardly from its mathe-
matical description. Iterative solvers such as Richardson, SOR, CG, Bi-CG, with or
without preconditioners, are easily implemented in this software framework.

The framework makes no distinction between a solver and a preconditioner, as dis-
cussed in Section 6.4. The sole difference between a solver and a preconditioner in
this framework is semantic, not structural. A solver is supposed to produce an exact
solution of G(z) = 0 (up to a desired numerical accuracy), whereas the precondi-
tioner is supposed to return an approximate one. Both are implemented as Solver
modules, which allows easy cascading of a chain of preconditioners to an iterative
solver as well as using preconditioners and solvers interchangeably in applications.
Furthermore, the framework makes no structural distinction between direct and it-
erative solvers. For example, an ILUSolver module is implemented to compute
an incomplete LU factorization (cf. Subsection 3.4.3) of its input operator G. The
ILUSolver module can be used as a preconditioner for a ConjugateGradient
solver module. In the case the ILUSolver is not connected to the Conjugate-
Gradient module’s input, the latter performs non preconditioned computations.
Alternatively, a LUSolver module is implemented to provide a complete LU factor-
ization of its input operator G (see Chapter 2). The LUSolver can be used either
directly to solve the equation G(z) = x, or as preconditioner for another Solver
module.

6.5.6 NumLab components

The natural modeling of the mathematics in terms of class hierarchies, the object-
oriented design allows users to easily extend the current framework with new soft-

NumLab implementation 97

ware modules. Implementing a new solver, preconditioner, or operator usually in-
volves writing only a few tens of lines of C++ to extend an existing one. The same
approach also facilitates the reuse of existing numerical libraries such as LAPACK
[2] or Templates [9] by integrating them in the current object-oriented framework.

Summarizing, the main classes of NumLab modules are:

• Grid: Produces a grid from a set of parameters. Examples are 2D and 3D grid
generators for regular and unstructured grids, and grid file readers;

• Function: Several specific functions vij are generated, such as cosines, or
piecewise (non-)conforming polynomial functions in several dimensions;

• Space: There is a single Space class, but a multitude of basis functions are
implemented. This module takes parameters defining the characteristics of the
space used.

• Operator: This produces an operator that maps elements between two spaces,
with the operators specifics given as input parameters. Operators for several
ODEs, PDEs, and non-linear systems have been implemented, such as Laplace,
Stokes, Navier-Stokes, and elasticity problems. Next, several operators for ma-
trix manipulation and image processing have been implemented. For example,
matrix sparsity patterns can be easily visualized, as in other applications like
Matlab (figure. 6.4j).

• Solver: A range of iterative solvers including CG, Bi-CG, CGS, Bi-CGStab,
etc. etc. are implemented. Solver specifics are given as input parameters. Sev-
eral preconditioners such as ILU are also provided as Solver specializations,
following the common treatment of solver and preconditioner modules previ-
ously described.

6.6 NumLab implementation

To conclude this chapter we comment on the implementation of the NumLab work-
bench as an indication of the complexity to achieve the six points M1 – M6. The
current NumLab workbench version consists of the following amounts of lines of
code:

• Computational libraries O(130.000) – contributed as part of this thesis;

• Visualization libraries O(70.000);

• Network editor O(40.000).

The computational and visualization libraries serve code from:

• VTK for visualization O(400.000) – current version 80%;

• Open Inventor for visualization O(400.000) – current version 100%;

98 Chapter 6: NumLab concepts

• LAPACK BLAS for computations O(1.000.000) - current version 10%;

• SEPRAN for computations O(1.000.000) - current version 1%.

A NumLab application which makes use of computations and visualization is linked
to an average of 40 to 50 different libraries.

To finish with, the NumLab workbench runs on Linux and Silicon Graphics sys-
tems with the appropriate versions of all libraries. In order to facilitate its mainte-
nance, processes are automated as much as is possible. The emphasis is on the au-
tomated construction of wrappers for external libraries such as VTK, Open Inventor
and SEPRAN.

NumLab implementation 99

d) e) f)

g) h) i) j)

k) l) m)

a) b) c)

Figure 6.4: Visualization of various numerical computations in the NumLab envi-
ronment.

Chapter 7

NumLab preconditioners

In this chapter we examine the implementation of the approximate inverse precon-
ditioner of Chapter 4 as part of the NumLab workbench. The NumLab concept has
been described in Chapter 6. In this chapter we show how the approximate inverse
preconditioner is implemented as part of NumLab and how this new tool is used for
research purposes. The implementation of our new tool, the approximate inverse
preconditioner, is described in Section 7.1. As detailed in Chapter 1 we are interested
in grids with a brick-like structure, and in particular in grids with several levels of
refinement. For such grids and the model problem in (7.1) of interest we illustrate
the effectiveness of the approximate inverse preconditioner by means of several ex-
amples. In Section 7.2 some one dimensional examples are considered first, followed
in Section 7.3 and Section 7.4 by more realistic two and three dimensional examples.

7.1 Introduction

In this section we describe how preconditioning techniques can be embedded inside
the NumLab workbench, and in particular the approximate inverse preconditioner.
Recall from Chapter 3 the convection diffusion equation

(7.1)
−a∆u+ b · ∇u+ cu = f in Ω = (0, 1)d ⊂ Rd,

u = g at ∂Ω,

and the resulting linear system of equations

(7.2) Anxn = bn

obtained after discretization of (7.1).
The approximate inverse preconditioner Gn from Chapter 4 is implemented in a
new module. Given the input of a linear operator An, this module first constructs
the approximate inverse Gn and subsequently evaluates a vector xn whenever called
upon. We apply this preconditioner to speed up the CGS iterative method as detailed
in Section 3.1. As the implementation into NumLab can be copied line by line, we
only give the lines relevant for the preconditioning steps. For a full implementa-
tion of the CGS algorithm see [103]. The matrix-vector multiplications are denoted
in operator notation as detailed in Section 6.2. So, the matrix-vector multiplication

102 Chapter 7: NumLab preconditioners

xn = Gnzn is denoted as x = G(z). Recall from Subsection 6.4.2 that
(1)
= denotes an

operator evaluation and
(2)
= denotes a vector space operation.

Then, for the right preconditioned system we solve the linear system

AnGnyn = bn, xn = Gnyn.

Using the notation of (6.7) we obtain, given an initial value x(0),

(7.3)

r(0) (1)
= b −A(x(0));
...

p
(1)
= G(p(k));

v
(1)
= A(p);
...

u
(1)
= G(u(k) + q(k));

x(k) (2)
= x(k−1) + αku;

u
(1)
= A(u);

r(k) (2)
= r(k−1) − αku;
...

After convergence we find the final value x(K).
For the left preconditioned case we solve the linear system

GnAnxn = Gnbn,

and translating this into pseudocode gives, given an initial value x(0),

(7.4)

r(0) (1)
= G(b −A(x(0)));
...

v1
(1)
= A(p(k));

v
(1)
= G(v1);
...

u
(2)
= u(k) + q(k);

x(k) (2)
= x(k−1) + αku;

u
(1)
= A(u);

u
(1)
= G(u);

r(k) (2)
= r(k−1) − αku;
...

Numerical results in one dimension 103

with final value x(K) . Note the two extra matrix-vector multiplications compared to
the unpreconditioned CGS algorithm.
In figure 7.1 a NumLab network is given showing the approximate inverse com-
ponent OperatorIteratorLinearAI connected to the CGS iterative solver. The
various distinctive parts of the network are indicated.
If we want to run another test on a different domain, in the part labeled (1) we have to
change one of the parameters of the module GeometryTransformationTensor;
see for example figure 7.10 for an opened interactor. Also, if we would like to change
the operator, we have to alter the module called DifferenceTransport. This is
shown for example in figure 7.3.

7.2 Numerical results in one dimension

In this section and the following we present numerical examples to illustrate the
effectiveness of the approximate inverse preconditioner, introduced in Section 3.5
and described in detail in Chapter 4. This is done by implementing the necessary
modules inside the NumLab workbench as new tools. This includes a new operator
module that constructs the approximate inverse and evaluates it. As all NumLab im-
plementations are made with visual programming in mind, this new module has a
user-interface to control and steer its operation. For the approximate inverse module
one could think of means to adapt the sparsity pattern of the approximate inverse
Gn, or even change the type of approximate inverse technique used. Note, however,
that depending on the level of flexibility wanted, every approximate inverse tech-
nique can be made into a single module. Since we consider Frobenius norm mini-
mization to compute Gn, cf. Subsection 3.5.1, we have a module that is specialized
in this task only.

As has been mentioned in Chapter 1 we assume that the inhomogeneity of the source
term f results in a solution u with layers toward the boundary. This in turn forces
us to utilize grids with local refinements as for example shown in figure 7.4 and
figure 7.11. For example, the function

u(x) =
π

2
+ arctan(

x− 1

0.01
)

has a steep layer near x = 1 and as such a computational domain as in figure 7.4 is
required to capture this steep gradient accurately. Note however that for the spec-
tral condition numbers the solution is not important. For solving the linear systems

iteratively we take x
(0)
n = 0 as initial guess.

In the examples to follow we perform tests as follows. First we are interested in
the spectral condition numbers of the matrices An, AnGn and GnAn. In the tables
with numerical results these tests are denoted by κ2-1, κ2-2 and κ2-3 respectively.
Secondly we use the CGS iterative method to solve the three corresponding linear
systems of equations. These are

CGS-1: the original system of equations

Anxn = bn,

104 Chapter 7: NumLab preconditioners

3

5

1

2
4

Figure 7.1: NumLab network showing the approximate inverse module.

Numerical results in one dimension 105

CGS-2: the right preconditioned system

AnGnyn = bn, xn = Gnyn,

and finally

CGS-3: the left preconditioned system

GnAnxn = Gnbn.

In order to make comparisons we use the ILU(0) preconditioner to precondition the
three linear systems and see how the CGS method performs. This results in three
more tests:

PCGS-1: Let K1 denote the ILU(0) factorization of An. Then we solve

K−1
1 Anxn = K−1

1 bn.

PCGS-2: Here let K2 denote the ILU(0) factorization of AnGn. The system of equa-
tions we solve is

K−1
2 AnGnyn = K−1

2 bn, xn = Gnyn.

PCGS-3: Let K3 denote the ILU(0) factorization of GnAn. The system to solve is

K−1
3 GnAnxn = K−1

3 Gnbn.

In the tables a bar (”-“) means that the iterative solver did not converge properly.
For the tests without ILU(0) preconditioner this means that the CGS solver broke
down because of irregular convergence behaviour. For the tests with additional
ILU(0) this failure is caused because the factors of the incomplete factorization are
ill-conditioned. This is one of the reasons why approximate inverse preconditioners
are studied (cf. Section 3.5).

In the one dimensional case all matrices An are tridiagonal and we take the spar-
sity pattern of An for the construction of Gn. Hence, construction of Gn requires
solving n 3 × 3 linear systems. The computational complexity for constructing this
Gn is approximately 15n. The computational cost for one CGS iteration is approxi-
mately 14n for the unpreconditioned case, and 20n for the preconditioned case (see
e.g. [9]). Here we have taken into account that Gn is an explicit preconditioner, and
as such only requires matrix-vector multiplications for its application. So the work
for constructing Gn is approximately equivalent to 1 iteration with the CGS method.
Here we use Gaussian elimination to solve the n linear systems, and do not take into
consideration similarity of these subsystems. The computational complexity for the
construction of the ILU(0) preconditioner for a tridiagonal matrix is approximately
3n. For the tests where we apply ILU(0) to AnGn and GnAn the cost for constructing
the incomplete factorization is the same. We illustrate this by two examples.

106 Chapter 7: NumLab preconditioners

0 1

Figure 7.2: A grid with refinement to x = 1, ψ = 1/2.

Example 7.1. In this example we consider the grid depicted in figure 7.2 with refine-
ment factor ψ = 1/2. Let n > 0 and let f := 1/ψn+1. Then the grid points xi are
given by (cf. (4.2))

(7.5) xi =
f (1−i/(n+1)) − f

1 − f
, ∀i = 0, . . . , n+ 1.

After using the boundary conditions in x0 and xn+1 we obtain an n×n linear system
of equations. First we consider the pure diffusive case, a = 1 and b = c = 0. The
results are given in table 7.1.

1-D, number of unknowns
n 4 5 6 7 8 9 10 11

κ2-1 119.92 497.60 2027.81 8188.27 3.29·104 1.32·105 5.28·105 2.12·106

κ2-2 13.75 39.41 60.15 168.92 249.04 696.75 1014.12 2833.04
κ2-3 2.87 5.33 4.86 7.56 6.97 9.76 9.12 11.94

CGS-1 5 7 10 13 18 - - -
CGS-2 2 5 3 7 4 9 10 11
CGS-3 2 5 3 7 4 9 5 11
PCGS-1 - - - - - - - -
PCGS-2 1 - - - - - - -
PCGS-3 1 1 1 1 1 1 3 1

Table 7.1: Results for grid 7.1, ψ = 1/2, diffusion only.

We see from this table that κ2(An) is O(h−2), and that the CGS method breaks down
for n ≥ 9. For the two preconditioned linear systems, κ2(GnAn) behaves as pre-
dicted by the estimate in Property 4.26, despite the fact we consider here GnAn

instead of the modified matrix Bl
n in (4.13). For the other product AnGn we observe

κ2(AnGn) ≈ O(h−1) as in (4.29). For the tests with the ILU(0) preconditioner we
see that this preconditioner breaks down because of ill-conditioned factors when ap-
plied to An and AnGn. Judging from the number of iterations needed to converge
the combination of the ILU(0) preconditioner and the matrix GnAn seems to be a
real winner. It should be noted that additional to the construction of Gn the con-
struction of the incomplete factors of GnAn is required, which means an increase in
computational complexity. However, this does not amount to the complexity of 1
extra iteration.

Next we consider the same grid but now with a convective term b∇u added. For
our NumLab network this means we have to alter an input parameter in the module
that defines the differential operator. This is illustrated in figure 7.3 in which we have

Numerical results in one dimension 107

altered the x-convection in order to run another test with convective coefficient
b = 100. The results are in table 7.2.

Figure 7.3: Interactor for changing the equation.

1-D, number of unknowns
n 4 5 6 7 8 9 10 11

κ2-1 32.18 92.91 294.68 1021.96 3777.55 1.45·104 5.68·105 2.25·105

κ2-2 18.11 78.36 83.00 343.78 362.26 1456.81 1543.67 5963.71
κ2-3 2.39 3.16 3.25 3.78 3.95 4.47 4.88 5.63

CGS-1 4 6 8 11 14 17 24 32
CGS-2 4 5 5 7 8 9 9 12
CGS-3 4 5 5 7 7 8 8 9
PCGS-1 - - - - - - - -
PCGS-2 1 - - - - - - -
PCGS-3 1 1 1 1 1 1 1 1

Table 7.2: Results for grid 7.1, ψ = 1/2, diffusion and convection.

The results for this test with convection are slightly better than the results for the non-
convective case. However, the growth of the condition numbers seems to be iden-
tical. Also the performance and breakdown of the ILU(0) preconditioner matches
the previous results. With respect to commenting on the number of iterations the
CGS iterative method needs to converge, we must take into account the irregular
convergence behaviour of the method. Nevertheless, in both tests we observe that
both preconditioned systems converge faster than the unpreconditioned system.

108 Chapter 7: NumLab preconditioners

0 1

Figure 7.4: A grid with refinement to x = 0 and x = 1, ψ = 1/2.

Example 7.2. To conclude with the one dimensional examples we look at the grid in
figure 7.4 which resembles a simple representation of a brick. Let m > 0 such that
n = 2m+ 1 and let f := 1/ψm+1. Then the grid points xi for this grid are given by

(7.6) xi =

1/2− f(2i/(n+1))−f
2(1−f) , 0 ≤ i < m+ 1,

1/2, i = m+ 1,

1/2 + f(2−2i/(n+1))−f
2(1−f) , m+ 1 < i ≤ n+ 1.

We consider the purely diffusive case. The results are displayed in table 7.3.

1-D, number of unknowns
n 3 5 7 9 11 13 15 17 19

κ2-1 4.57 21.53 99.14 425.24 1761.62 7171.82 2.89·104 1.16·105 4.66·105

κ2-2 1.50 6.33 16.75 37.58 76.40 164.02 321.86 679.88 1319.49
κ2-3 1.68 3.12 4.29 5.37 6.72 7.54 9.03 9.72 11.28

CGS-1 2 3 5 7 14 14 - 22 -
CGS-2 2 3 4 5 12 7 12 11 17
CGS-3 2 3 4 5 8 7 10 9 11
PCGS-1 1 1 - - - - - - -
PCGS-2 1 1 1 - - - - - -
PCGS-3 1 1 1 1 1 1 1 1 1

Table 7.3: Results for grid 7.4, ψ = 1/2, diffusion only.

We observe a growth of κ2(An) proportional to h−2, of κ2(AnGn) proportional to
h−1 and of κ2(GnAn) proportional to log(h−1). Also in this example we observe
breakdown of the CGS method for the unpreconditioned system, and faster conver-
gence for the two preconditioned systems. Furthermore, preconditioning An and
AnGn with ILU(0) fails because of ill-conditioned factors. This nullifies the fact that
preconditioning An with ILU(0) works for two problem sizes. Again, ILU(0) applied
to GnAn (PCGS-3) is the best.

In figure 7.5 the norms of the residuals at each iteration step are given for n = 13
and n = 15. The irregular convergence of the CGS method for solving the unprecon-
ditioned system (CGS-1) is clearly visible in the left hand figure; the stagnation of
the iterative process becomes clear in the right hand figure. Furthermore we see that
the iterative process for solving the two preconditioned systems converges much
smoother.

Numerical results in one dimension 109

0 2 4 6 8 10 12 14
10

−20

10
−15

10
−10

10
−5

10
0

10
5

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(a) n = 13

0 5 10 15 20 25 30 35 40
10

−15

10
−10

10
−5

10
0

10
5

10
10

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(b) n = 15

Figure 7.5: The norms of residuals computed during the
CGS iterative process (cf. table 7.3).

The computational complexity of CGS-2, CGS-3 and PCGS-3 is shown in figure 7.6.
Clearly PCGS-3 performs best, and the other two are comparable to each other.

2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

number of unknowns

nu
m

be
r

of
 fl

op
s

CGS−2
CGS−3
PCGS−3

Figure 7.6: The computational complexity
for the tests in Example 7.2.

The reduction in total workload is obvious when we compare these figures to CGS-
1. For example for n = 17, CGS-1 needs 22 iterations to obtain convergence and this
amounts to approximately 300n flops. Although we look at a particular problem, we
leave n explicitly as this makes it easier to compare the respective workloads. The

110 Chapter 7: NumLab preconditioners

computational complexity for solving CGS-3 is close to 200n flops. For PCGS-3 the
costs are approximately 40n flops and this is clearly much better than CGS-1 and
CGS-3, despite the additional construction of the incomplete factorization. Note also
that since the number of iterations for PCGS-3 seems to be constant regardless of the
number of degrees of freedom, this combination of approximate inverse and incom-
plete factorization preconditioning results in an optimal computational complexity
(see (3.20)).

7.3 Numerical results in two dimensions

In this section we examine tensor grids with refinement to one or more borders, as
shown in figures 7.7, 7.8 and 7.11 below. These grids are direct extensions to the
one dimensional grids in the previous section and are better representations of the
brick-like structure we had in mind in Section 1.2. With respect to executing such
tests in NumLab, the only change is made in the module that generates the grid. As
discussed previously, this module for the grid can either be a purpose made module
or a generic module in which a parameter can be set to get the grid of interest.

In all examples below the matrix An is pentadiagonal, and the approximate inverses
Gn inherit the sparsity pattern of An. This way the computational cost for one CGS
iteration is approximately 18n without preconditioner, and 28n with preconditioner.
The construction of Gn requires solving n 5 × 5 linear systems. The computational
complexity for this is approximately 65n flops which is a little more than 2 itera-
tions with CGS iterative method. Again we assume use of Gaussian elimination for
solving these systems, and we do not take into account similarity of subsystems that
might reduce the complexity. In this case the construction of the ILU(0) precondi-
tioner requires approximately 6n flops.

Figure 7.7: A tensor grid with refine-
ment to x = 1, ψ = 1/2.

Example 7.3. In this example we consider a grid as in figure 7.7 with refinement
toward the line x = 1. Let nx > 0 denote the number of gridpoints in the x-direction

Numerical results in two dimensions 111

and let f := 1/ψn+1. Then the x-coordinates in figure 7.7 are given by

(7.7) xi =
f (1−i/(nx+1)) − f

1− f
, ∀i = 0, . . . , nx + 1.

Let ny denote the number of gridpoints in the y-directions. The y-coordinates are
then given by yi = i/(ny + 1), i = 0, . . . , ny + 1. Then n = nxny is the total number
of degrees of freedom. In this example and the following nx = ny . We examine the
condition numbers and number of CGS iterations for a pure diffusive problem.

2-D, number of unknowns (number of refinement steps)
n (l) 16 (4) 25 (5) 36 (6) 49 (7) 64 (8) 81 (9) 100 (10) 121 (11)

κ2-1 62.53 244.71 973.81 3895.24 1.56·104 6.24·104 2.50·105 9.99·105

κ2-2 5.03 11.08 24.68 53.54 111.48 231.74 476.91 974.03
κ2-3 2.63 3.73 4.72 6.19 7.39 8.98 10.27 11.99
CGS-1 10 50 - - - - - -
CGS-2 8 10 12 15 16 20 21 22
CGS-3 8 10 11 14 14 18 17 19
PCGS-1 7 - - - - - - -
PCGS-2 5 5 7 - - - - -
PCGS-3 5 5 5 6 6 6 7 7

Table 7.4: Results for grid 7.7, ψ = 1/2, diffusion only.

From table 7.4 we observe the following for the spectral condition numbers. κ2(An)
grows proportional to h−2 and κ2(AnGn) grows proportional to h−1 which means a
reduction by an order of h−1. GnAn seems to be conditioned best with κ2(GnAn)

.
=

O(log(h−1)). With respect to convergence of the CGS method we see that the method
breaks down for solving with An for l ≥ 6 with l being the number of refinement
steps. Solving the systems with AnGn and GnAn results in an equivalent number
of iterations. This changes when an ILU(0) preconditioner is considered. An with
ILU(0) breaks down quickly because the factors are unstable. This is also the case for
AnGn with additional ILU(0) preconditioner. In contrast, the ILU(0) factorization of
GnAn does not show these instabilities and helps to reduce the number of iterations
further. Also the growth of the number of iterations for this test seems less than for
the test without additional ILU(0) preconditioner.

112 Chapter 7: NumLab preconditioners

Figure 7.8: A tensor grid with refine-
ment to x = 1 and y = 1, ψ = 1/2.

Example 7.4. Next we examine grids as in figure 7.8 with refinement to the lines
x = 1 and y = 1. The x-coordinates are as in (7.7) and the y-coordinates are computed
in the same way. We consider the purely diffusive case first. The results are given in
table 7.5.

2-D, number of unknowns (number of refinement steps)
n (l) 16 (4) 25 (5) 36 (6) 49 (7) 64 (8) 81 (9) 100 (10) 121 (11)

κ2-1 121.61 506.14 2066.41 8352.85 3.36·104 1.35·105 5.40·105 2.16·106

κ2-2 8.03 20.89 40.12 92.64 172.70 391.37 718.89 1612.62
κ2-3 2.78 3.83 4.80 5.90 6.92 8.03 9.08 10.19

CGS-1 11 21 37 - - - - -
CGS-2 9 13 14 16 17 19 20 23
CGS-3 8 11 11 13 15 16 17 18
PCGS-1 - - - - - - - -
PCGS-2 5 7 - - - - - -
PCGS-3 4 5 5 5 5 6 6 6

Table 7.5: Results for grid 7.8, ψ = 1/2, diffusion only.

Next we are interested to see the influence of a convective term b · ∇u. Therefore
consider convection in both directions with b = [100, 100]T . In figure 7.9 the cor-
responding NumLab interactor is shown, with the parameters x-convection and
y-convection set to 100. The results are given in table 7.6.

Numerical results in two dimensions 113

Figure 7.9: Interactor for changing the equation.

2-D, number of unknowns (number of refinement steps)
n (l) 16 (4) 25 (5) 36 (6) 49 (7) 64 (8) 81 (9) 100 (10) 121 (11)

κ2-1 41.81 129.53 432.80 1553.95 5866.31 2.28·104 8.99·104 3.57·105

κ2-2 23.23 54.07 118.92 255.26 523.16 1072.20 2152.34 4370.88
κ2-3 3.78 4.67 5.42 6.05 6.56 6.97 7.33 7.70
CGS-1 11 17 30 - - - - -
CGS-2 6 8 10 12 14 17 19 20
CGS-3 6 8 9 10 12 13 16 16
PCGS-1 - - - - - - - -
PCGS-2 - - - - - - - -
PCGS-3 3 3 4 5 5 5 5 6

Table 7.6: Results for grid 7.8, ψ = 1/2, diffusion and convection.

Despite the difference in differential operators we can make the same observations
for both tests. As in example 7.3, κ2(An) is proportional to h−2, and κ2(AnGn) and
κ2(GnAn) are proportional to h−1 and log(h−1) respectively. Also the results for the
CGS method are comparable. In both the non-convective and convective case we
observe breakdown of the CGS method for solving with An for l ≥ 7. The precon-
ditioned systems do not suffer from this breakdown. Despite the fact that conver-
gence of the CGS method is irregular the results seem to indicate that the number
of iterations needed for convergence is approximately proportional to the number
of refinement levels l. When applying the ILU(0) preconditioner to An and AnGn,
we observe also breakdown because of ill-conditioned factors. As before, ILU(0) ap-
plied to GnAn gives the best results, despite the additional cost for constructing the
incomplete factorization.

114 Chapter 7: NumLab preconditioners

Figure 7.10: Interactor for changing the grid.

Figure 7.11: A brick covered by a lo-
cally refined tensor product grid.

Example 7.5. To conclude this section we examine a sequence of grids with a brick
like refinement as in figure 7.11 with ψ = 1/2. This is in fact our problem of interest.
The x-coordinates for this grid are as in (7.6); the y-coordinates are obviously defined
similarly. In figure 7.10 we see that the grid parameters, AccumulationEndPoints,
are set such that we have the required grid. We consider the purely diffusive prob-
lem only. The computed spectral condition numbers and number of iterations are
given in table 7.7.

Numerical results in two dimensions 115

2-D, number of unknowns (number of refinement steps)
n (l) 9 (1) 25 (2) 49 (3) 81 (4) 121 (5) 169 (6) 225 (7) 289 (8) 361 (9)

κ2-1 4.58 21.63 100.11 431.12 1790.46 7299.92 2.95·104 1.19·105 4.75·105

κ2-2 1.63 3.42 7.87 18.69 42.15 87.39 184.73 373.88 776.25
κ2-3 1.62 2.28 3.20 4.34 5.48 6.63 7.78 8.91 10.02
CGS-1 3 6 11 33 70 - - - -
CGS-2 3 6 9 12 15 16 18 21 23
CGS-3 3 6 9 11 13 14 15 16 17
PCGS-1 5 6 9 - - - - - -
PCGS-2 2 4 6 7 - - - - -
PCGS-3 3 4 4 5 5 5 6 6 6

Table 7.7: Results for grid 7.11, ψ = 1/2, diffusion only.

The observations for this example with respect to the spectral condition number are
the same as for examples 7.3 and 7.4 and therefore can be omitted. With respect to
the convergence of the CGS method the number of iterations for CGS-3 seems to be
proportional to the number of refinement levels l as well. We see in this example
that the ILU(0) preconditioner applied to An (PCGS-1) does not break down imme-
diately. We have given the norms of the residuals in figure 7.12 for two grids. From
both figures it is clear that the iteration process of the CGS method for solving the
unpreconditioned system (CGS-1) is very irregular. Convergence for the two pre-
conditioned systems is much better. In case of CGS-3 convergence is even without
irregularities.

0 10 20 30 40 50 60 70
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(a) n = 121

0 20 40 60 80 100 120 140
10

−15

10
−10

10
−5

10
0

10
5

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(b) n = 169

Figure 7.12: The norms of residuals computed during the
CGS iterative process (cf. table 7.7).

116 Chapter 7: NumLab preconditioners

As in the one dimensional case, the left preconditioned system GnAn shows the
best results, both with and without an additional ILU(0) preconditioner. For the
reduction of the computational complexity we examine Example 7.5.

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3
x 10

5

number of unknowns

nu
m

be
r

of
 fl

op
s

CGS−2
CGS−3
PCGS−3

Figure 7.13: The computational complex-
ity for the tests in Example 7.5.

Clearly, PCGS-3 performs the best of the three, and CGS-2 and CGS-3 are comparable
to each other as could be seen from the iteration count for both methods. For example
for n = 121, CGS-1 needs 70 iterations for convergence. This costs approximately
1200n flops. CGS-3 performs much better with 420n flops, despite the construction
of the approximate inverse Gn. With 210n flops PCGS-3 performs most favourable.
Also here the number of iterations hardly seems to grow when the problem size is
increased. Hence, the total workload is primarily dependent on n only which makes
this combination close to optimal.

7.4 Numerical results in three dimensions

To conclude this chapter we present several three dimensional examples. Again, to
perform these only a minor alteration needs to be made in our reference network in
figure 7.1.
The grids of interest are once more tensor product grids. The finite difference sten-
cil is a 7 point stencil resulting in a 7-diagonal matrix An. In this case the cost for
one CGS iteration is 22n for the unpreconditioned system, and 36n for the precon-
ditioned case. Now construction of Gn requires solving 7 × 7 linear systems, and
the total computational cost is around 150n which equals approximately 4 CGS it-
erations. However, this more expensive construction of Gn is compensated for by
convergence of the preconditioned linear systems, and the possibility to utilize the
ILU(0) as additional preconditioner. For 7-diagonal matrices constructing the ILU(0)
preconditioner requires approximately 12n flops.

Example 7.6. First we consider grids with refinements to the planes x = 1, y = 1 and
z = 1, with refinement factor ψ = 1/2. For nx = ny = nz > 0, the coordinates for

Numerical results in three dimensions 117

all three directions are defined as in (7.7). The total number of degrees of freedom n
is given by n = nxnynz . Again, we examine the spectral condition number of An,
AnGn and GnAn, and consider the performance of the CGS method to solve the
corresponding linear systems. First we look at the purely diffusive case. The results
for a sequence of grids are shown in table 7.8.

3-D, number of unknowns (number of refinement steps)
n (l) 27 (3) 125 (5) 343 (7) 729 (9) 1331 (11) 2197 (13) 3375 (15) 4913 (17)

κ2-1 28.36 512.47 8474.53 1.37·105 2.19·106 3.51·107 5.62·198 8.99·109

κ2-2 3.11 15.16 68.23 289.31 1197.38 4881.77 1.98·104 7.95·104

κ2-3 1.85 3.63 5.75 7.92 10.09 12.25 14.41 16.57

CGS-1 10 - - - - - - -
CGS-2 8 13 17 22 22 25 30 34
CGS-3 7 10 13 16 18 18 19 20
PCGS-1 7 - - - - - - -
PCGS-2 4 8 - - - - - -
PCGS-3 4 5 6 6 6 6 6 6

Table 7.8: Results for a 3-D tensor grid with refinement to x = 1, y = 1, z = 1,
ψ = 1/2, diffusion only.

Figure 7.14: Interactor for changing the equation.

Next we consider the same grid, but now with a convective term b · ∇u added with
b = [100, 100, 100]T . See figure 7.14 for the change made in the NumLab network
in order to achieve this. For the same sequence of grids we computed the spectral
condition numbers, and solved the three linear systems with the CGS method. The
results are in table 7.9.

118 Chapter 7: NumLab preconditioners

3-D, number of unknowns (number of refinement steps)
n (l) 27 (3) 125 (5) 343 (7) 729 (9) 1331 (11) 2197 (13) 3375 (15) 4913 (17)

κ2-1 16.07 166.60 2143.91 3.23·104 5.11·105 8.16·106 1.31·108 2.09·109

κ2-2 8.16 51.83 271.05 1143.05 4627.43 1.87·104 7.53·104 3.02·105

κ2-3 3.26 6.35 8.77 10.18 10.93 11.59 12.49 13.57

CGS-1 10 36 - - - - - -
CGS-2 5 9 13 20 23 26 31 35
CGS-3 5 8 13 16 18 21 22 23
PCGS-1 4 - - - - - - -
PCGS-2 3 6 - - - - - -
PCGS-3 3 4 5 6 6 7 7 7

Table 7.9: Results for a 3-D tensor grid with refinement to x = 1, y = 1, z = 1,
ψ = 1/2, diffusion and convection.

One can make similar remarks about these two examples as were made for the exam-
ples in one and two dimensions. κ2(An) is once more proportional to h−2, κ2(AnGn)
to h−1 and κ2(GnAn) to log(h−1). Furthermore, the CGS method breaks down for
An, and ILU(0) is unstable for both An and AnGn.

Example 7.7. As a final example we consider tensor grids with refinement to all six
borders of the cube. This resembles the discretization of a brick 3-D. In figure 7.18
a network is shown with the modules that create this three dimensional tensor grid.
The module GeometryContourCube defines the domain Ω, in this case (0, 1)3. The
tensor grid itself is shown as well. The coordinates in all three directions are as
in (7.6), for nx = ny = nz > 0. First we look at the diffusive case. The results are
given in table 7.10.

3-D, number of unknowns (number of refinement steps)
n (l) 27 (1) 125 (2) 343 (3) 729 (4) 1331 (5) 2197 (6) 3375 (7) 4913 (8)

κ2-1 4.58 21.73 100.99 436.25 1815.35 7410.06 2.99·104 1.20·105

κ2-2 1.60 2.89 5.97 14.20 32.64 68.88 143.50 295.01
κ2-3 1.55 2.22 3.01 4.16 5.36 6.56 7.73 8.85

CGS-1 4 10 29 - - - - -
CGS-2 4 8 11 13 16 16 17 19
CGS-3 4 8 10 11 14 13 17 16
PCGS-1 5 7 9 - - - - -
PCGS-2 3 4 5 7 9 - - -
PCGS-3 3 4 4 5 5 6 6 6

Table 7.10: Results for a 3-D tensor grid with brick refinement, ψ = 1/2,
diffusion only.

Next we examine the same sequence of grids, but now with a convective term added.
Hence let b = [100, 100, 100]T (see figure 7.14). The results for these tests are in
table 7.11.

Numerical results in three dimensions 119

3-D, number of unknowns (number of refinement steps)
n (l) 27 (1) 125 (2) 343 (3) 729 (4) 1331 (5) 2197 (6) 3375 (7) 4913 (8)

κ2-1 4.57 14.75 44.91 137.26 440.70 1513.76 5522.96 2.10·104

κ2-2 1.76 4.38 11.62 28.24 65.32 147.74 319.15 654.33
κ2-3 1.95 3.47 5.15 6.79 8.26 9.61 10.96 12.18

CGS-1 10 - - - - - - -
CGS-2 4 6 9 10 13 15 17 19
CGS-3 4 6 8 10 11 13 16 17
PCGS-1 3 5 7 - - - - -
PCGS-2 2 3 3 5 8 - - -
PCGS-3 2 3 3 4 5 5 5 -

Table 7.11: Results for a 3-D tensor grid with brick refinement, ψ = 1/2,
diffusion and convection.

For both examples the conclusions and observations for the spectral condition num-
ber are similar to those made for the previous examples. We see that the ILU(0) pre-
conditioner applied to An performs slightly better than the problems preconditioned
by the approximate inverse. However, for larger problem sizes the latter method is
far more robust, as was also seen in the previous examples. Also here PCGS-3 shows
the best results, but for the larger sized problems the incomplete factors appear to be
ill-conditioned as well.

0 5 10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(a) n = 343

0 20 40 60 80 100 120 140
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(b) n = 729

Figure 7.15: The norms of residuals computed during the
CGS iterative process (cf. table 7.10).

For the tests on the purely diffusive problem the norms of the residuals for two
choices of grids are shown in figure 7.15. Clearly CGS-3 shows the best convergence

120 Chapter 7: NumLab preconditioners

behaviour, and does not suffer from irregularities. CGS-2 is not much worse than
CGS-3, but has some irregularities. The norms of the residuals for CGS-1 behave
very irregularly, and in the right hand figure for n = 729 the iterative process does
not even converge. In figure 7.16 the norms of the residuals are shown for two larger
sized problems. This clearly shows the smooth convergence of the CGS method
for problems CGS-2 and CGS-3. For these two examples the CGS method does not
converge for CGS-1, for which hence only part of the iterative process is shown.

0 2 4 6 8 10 12 14 16 18
10

−15

10
−10

10
−5

10
0

10
5

10
10

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(a) n = 3375

0 2 4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

10
5

10
10

iterations

no
rm

 o
f r

es
id

ua
l

CGS−1
CGS−2
CGS−3

(b) n = 4913

Figure 7.16: The norms of residuals computed during the
CGS iterative process (cf. table 7.10).

To conclude this example we examine the computational complexity of the several
tests performed. In figure 7.17 the number of flops is given for CGS-2, CGS-3 and
PCGS-3, as these give the best results. Clearly, PCGS-3 has the lowest computational
complexity. But in case of the test with convection, the factors of the ILU(0) precon-
ditioner appear to be ill-conditioned for larger sized problems.

For the purely diffusive problem we take a closer look at the problem with n = 343;
we leave the n in the following for ease of comparison. Then the computational
complexity for CGS-3 amounts to 500n flops. Compared to the 640n flops for CGS-1
the profit seems not much. However, CGS-1 breaks down eventually. As previously
the best results come from PCGS-3 for which the total costs are approximately 300n
flops for this grid. However, as we see in the example for the convection convection
problem, PCGS-3 appears to be prone to breakdown for larger sized problems as
well. For these problems CGS-3 does not suffer breakdown.

Numerical results in three dimensions 121

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

number of unknowns

nu
m

be
r

of
 fl

op
s

CGS−2
CGS−3
PCGS−3

(a) diffusion only

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10
x 10

6

number of unknowns

nu
m

be
r

of
 fl

op
s

CGS−2
CGS−3
PCGS−3

(b) diffusion and convection

Figure 7.17: The computational complexity for the tests in Example 7.7.

122 Chapter 7: NumLab preconditioners

Figure 7.18: A NumLab network for a three dimensional grid with
brick-like refinement, see Example 7.7.

Chapter 8

Conclusions and future work

Preconditioning techniques are important for efficiently solving linear systems of
equations. This holds in particular for problems for which standard methods do not
work satisfactorily. Among such problems are those for which the non-smooth so-
lution requires employing a computational grid with local refinements. Apart from
the need for efficient preconditioners and solution methods, the possibility of testing
newly developed tools without too much effort is equally important. This has lead
to the NumLab computational platform. Both topics have been discussed in this the-
sis. In this final chapter we give the major conclusions firsts, followed by several
recommendations for future research.

8.1 Conclusions

The major conclusions are the following.

• A Gaussian elimination strategy based on a special node numbering scheme
was considered for grids with refinements along a line. This strategy resulted
in an O(n logn) computational complexity and compares well with the fill-in-
optimized minimum degree algorithm.

• The standard estimate for the spectral condition number is not sharp for grids
with local refinements.

• Related to the brick wall problem we have a convection diffusion equation
which after discretization leads to a matrix An. For this matrix an approxi-
mate inverse preconditioner Gn based on Frobenius norm minimization was
considered. In a one dimensional setting theoretical estimates for the spectral
condition number of a modified version Bn of the left preconditioned matrix
GnAn; we obtained κ2(Bn)

.
= O(n).

Numerical tests showed that this estimate is sharp in one, two and three di-
mensions. We observed:

κ2(An)
.
= O(h−2),

κ2(AnGn)
.
= O(h−1),

κ2(GnAn)
.
= O(log(h−1)).

124 Chapter 8: Conclusions and future work

• In one and in two dimensions right multiplication of An by the approximate
inverse matrix Gn results in a reducible matrix AnGn. This matrix can be per-
muted and written as a 2 × 2 block matrix. This gives rise to various recursive
algorithms that employ this decoupling. Moreover, when An is a discretization
of the Laplace operator, so are the two submatrices of AnGn.

• Solving iteratively the unpreconditioned and preconditioned linear systems
showed that the original unpreconditioned problem is prone to break down
due to irregular convergence behaviour. Both preconditioned problems seem
to perform similarly. Additionally, an incomplete factorization of the matrix
An results in ill-conditioned factors. Hence, solving the original problem pre-
conditioned by ILU(0) is subject to breakdown as well. This is also seen when
the right preconditioned system with AnGn is (additionally) preconditioned
by an incomplete factorization. In contrast, solving the left preconditioned
system shows much improvement when preconditioned by ILU(0). This com-
bination of an approximate inverse preconditioner and an incomplete factor-
ization appears to be the best strategy with respect to computational complex-
ity. However, for large problem sizes this incomplete factorization gives ill-
conditioned factors as well. Because of this phenomenon the right precondi-
tioned system by the approximate inverse preconditioner is considered to be
most robust overall.

• The NumLab workbench offers a powerful tool to run numerical simulations.
Given the generic interface and the implementation of mathematical concepts
as operators, there is a maximum amount of flexibility and freedom in chang-
ing the various modules that together constitute a simulation.

8.2 Directions for the future

For both major topics some recommendations for future work can be given.
As for the mathematical component there are several aspects that need further re-
search. In Chapter 2 only complete Gaussian elimination was considered, which
gave rise to a direct solver. Of interest is to examine the effectiveness of incomplete
factorizations (ILU) (Subsection 3.4.3) employed as preconditioner for the number-
ing scheme presented in that chapter. Given the fact that the fill-in is almost opti-
mal for a complete factorization, incomplete factorization methods of the ILU(p) and
ILUT variant are thought to be beneficial.
Secondly, for the approximate inverse preconditioner discussed in Chapter 4 we
only gave theoretical results for the one dimensional case. Of interest is to exam-
ine in detail such preconditioners in higher dimensions and establish estimates for
the (spectral) condition numbers of the matrices AnGn and GnAn. Furthermore,
the decoupling phenomenon in Chapter 5 should be exploited further, especially in
two dimensions. Another point for future work is examination of the approximate
inverse preconditioner constructed as an approximate left inverse, i.e., GnAn ≈ In.

With respect to the NumLab workbench there are several steps in front of us to-

Directions for the future 125

ward an even more complete workbench. A first start is to merge available (parallel)
Finite Element assemblers (such as SEPRAN), integrating problem-specialized itera-
tive solvers and preconditioners.
Of particular research interest are the optimal multigrid/multilevel type solvers (see
Section 3.4). These can be used within the NumLab framework, but right now no
special support is provided. In order to offer convenient multigrid/multilevel solver
modules, a few modules need to be extended and others must be added. The grid
and solution data types must be extended to handle internal stacks of grids and so-
lutions. Restriction and prolongation require new modules, and application-specific
preconditioners are desirable. The strong coupling between the grid and basic itera-
tive solvers need not be a problem: operator evaluation can be grid based.
From a practical point of view, solving large PDE problems in NumLab is still slower
than specialized toolkits. This is due to the generic nature of the NumLab modules
that cannot make assumptions about specific data storage or discretization proper-
ties provided by other modules. This problem can be tackled in several ways: im-
plementing less generic (optimized) modules, re-engineering the generic modules’
implementations to make more extensive use of data caching, or parallelizing the
numerical code. A second limitation involves the need to program new Operator
subclasses, e.g., to model new PDEs (see Section 6.5.4). A better approach would be
to design generic Operators that accept their definition via a symbolic, interpreted
notation. Implementing such generic Operators would raise the same efficiency
problems outlined above.
Finally, from a technical point of view, separating the address space of the graphical
editor from the address space where all modules execute should be another future
goal. In this way NumLab applications will be more stable and less prone to break
down when contributed research-modules fail. Also, the computational modules
and visualization viewer module should be run on different threads so data can be
visualized while computations continue.

Appendix A

Pentadiagonal Toeplitz matrices

In this appendix we give an result from [52] related to pentadiagonal Toeplitz matri-
ces.

First note that the product of two Toeplitz matrices is close to, but not a Toeplitz
matrix. Let A and B be two 5 × 5 matrices given by

A =

x 1 0 0 0
1 x 1 0 0
0 1 x 1 0
0 0 1 x 1
0 0 0 1 x

, and B =

y 1 0 0 0
1 y 1 0 0
0 1 y 1 0
0 0 1 y 1
0 0 0 1 y

.

Then for the product we have

AB =

1 + x y x+ y 1 0 0
x+ y 2 + x y x+ y 1 0

1 x+ y 2 + x y x+ y 1
0 1 x+ y 2 + x y x+ y
0 0 1 x+ y 1 + x y

which is not a Toeplitz matrix.

Then we have a result from [52]. Let a, b, x ∈ C. Assume that

An(a, b) =

a b 1 0 0
b a b 1 0
1 b a b 1

0 1 b a b
. . .

0 0 1 b a
. . .

. . .
. . .

. . .

∈ R
n×n,

128 Appendix A: Pentadiagonal Toeplitz matrices

and that

Bn(x) =

x 1 0 0
1 x 1 0
0 1 x 1

0 0 1 x
. . .

. . .
. . .

∈ R
n×n,

Assume that b2 ≥ 4(a − 2), 2b ≤ a + 2 and a > 2b − 3/2, and that An(a, b) =
Bn(x) ◦Bn(y)−En, where En is zero, except for entries [En]1,1 = [En]n,n = 1. Then

||A−1
n ||∞ ≤ ||Bn(x)

−1||∞ · ||Bn(y)
−1||∞

and

lim
n→∞

||A−1
n ||∞ =

1

(x− 2)(y − 2)
.

Appendix B

Turing completeness

This appendix demonstrates that with the addition of certain basic modules, the
NumLab visual programming language of Chapter 6 is Turing complete. In Sec-
tion B.1 the concepts of alphabet and language are introduced first, followed in Sec-
tion B.2 by Turing machines. Then Section B.3 presents the NumLab module design
for primitive recursive functions. The last Section B.4 presents the NumLab module
design for µ-recursive functions. Able to imitate µ-recursive functions, NumLab is
Turing complete.

B.1 Alphabets and language

The definitions of string, alphabet and language are taken from [65, pp. 29–31]:

Definition B.1.

• An alphabet is finite set of symbols, such as the Roman alphabet {a, b, c, ...
, z} or the binary alphabet {0, 1}.

• A string over an alphabet Σ is a finite sequence of symbols from alphabet Σ.

• The set of all strings - including the empty string - over an alphabet Σ is denoted by
Σ∗.

These definitions permit the definition of a language:

Definition B.2. A language is set of strings over an alphabet Σ.

Note that in particular a language over σ is a subset of Σ∗. Turing machines are
defined using languages.

B.2 The Turing machine

We start by introducing the concept of a Turing machine. We describe a Turing ma-
chine keeping figure B.1 in mind.
A Turing machine consists of a tape and a finite-state machine, called control unit. The
control unit disposes over a head to read from and/or write to the tape. In each step,
the control unit reads the tape and then performs the following tasks:

130 Appendix B: Turing completeness

3 . 1 4

Finite control

Read/write head
(moves in both directions)

h s

s

s

0

1

3 s2

#

Figure B.1: A Turing machine

• Put the control unit in a new state;

• Either:

– Write a symbol on the current square on the tape or

– Move the read/write head one position to the left (’L’) or to the right (’R’).

The tape has a left end, but is unbounded on the right side. However, in a finite
numbers of steps, the machine can only visit a finite number of squares on the tape.
(In case the machine tries to move its head to the left off the end of the tape, it ceases
to operate).

Initially, the tape contains only symbols at the left end. The rest of the tape consists
of blank symbols. The machine is free to alter its input or write on the blank end of
the tape. The message (data) left at the end of the computation is called the answer.
The end of computations is reached when the control unit reaches the halt state. The
blank symbol will be denoted by #.

s1 s1
s2s2

s3s3

s0
s0

3 1 4

Read/write head
(moves in both directions)

h h

f(x)= sin(x)
x f(x)

.# #. ## 0

Figure B.2: A Turing machine which imitates a the sine-function

As an example, consider figure B.2. The Turing machine shown computes f(x) =
sin(x). Here x = 3.14 is the input the tape. So, to start with, the tape contains the

The Turing machine 131

symbols 3, ., 1 and 4, and the control unit is in state s1. At the end of the computa-
tions, the control unit is in the halt state h and has left behind the answer 0 on the
tape.

The following definition of a Turing machine comes from [65]:

Definition B.3. A Turing machine is a quadruple (K,Σ, δ, s) where

• K is a finite set of states, not containing the halt state denoted by h;

• Σ is an alphabet, containing the blank symbol #, but not containing the the symbols
L and R;

• s ∈ K is the initial state;

• δ is a function from K × Σ to (K ∪ h) × (Σ ∪ {L,R}).

With the use of this definition, we can define when a (mathematical) function is
Turing computable – required to prove the Turing completeness of NumLab:

Definition B.4. Turing computable functions:
Let Σ0 and Σ1 be alphabets not containing the blank symbol #. Let f be a a function from Σ∗

0

to Σ∗
1. A Turing machine M = (K,Σ, δ, s) is said to compute f if Σ0, Σ1 ⊆ Σ and for any

w ∈ Σ∗
0, if f(w) = u then

(B.1) (s,#w# `∗
M (h,#u#).

If such a Turing machine M exists, then f is said to be a Turing computable function.

Because a Turing machine can carry out any computation that can be carried out by
any similar type of automata, and because these automata seem to capture the essen-
tial features of real computing machines, we take the Turing machine to be a precise
formal equivalent of the intuitive notion of ”algorithm”. Following Church’s Thesis
or Church-Turing’s Thesis, nothing will be considered an algorithm if it cannot be ren-
dered as a Turing machine. It is a thesis, not a theorem, because it is not a mathemat-
ical result: It simply asserts that a certain informal concept corresponds to a certain
mathematical object. It is theoretically possible, however, that Church’s Thesis could
be overthrown at some future date, if someone were to propose an alternative model
of computation that was publicly acceptable as fulfilling the requirement of ”finite
labour at each step”and yet was provably capable of carrying out computations that
cannot be carried out by any Turing machine. No one considers this likely.

A language is called Turing complete, if it can generate all Turing computable func-
tions (see also [65]). In this small section, it is shown that NumLab is Turing com-
plete, if a few fundamental modules are added.

132 Appendix B: Turing completeness

B.3 Primitive recursive functions

The primitive recursive functions are defined by three types of initial functions and
two combining rules. These can all be presented in a straight-forward manner.

Definition B.5. The initial functions are the following three functions:

• The 0-place function ζ is the function from N0 to N such that

(B.2) ζ() = 0.

• Let k ≥ 1 and let 1 ≤ i ≤ k. Then the i-th k-place projection function πki is the
function from Nk to N such that

(B.3) πki (n1, ..., nk) = ni, for any n1, ...nk ∈ N.

Remark B.6. Point of notation: Hereafter we write n̄ for the k-tuple (n1, ..., nk).
Thus the above statement would be rewritten

(B.4) πki (n̄) = ni, for any n̄ ∈ N
k.

• The successor function σ is the function from N to N such that

(B.5) σ(n) = n+ 1, for any n ∈ N.

We introduce the related three NumLab basic modules, and an additional one. These
modules are:

• A zero module;

• An increment module;

• A decrement module;

• A decision or switch module,

and shown in figure B.3.

0 +1 -1 if v<>0

elsev then

Figure B.3: Basic elements

Obviously, the zero module itself is already the 0-place function ζ. Figure B.4 shows
the zero element from the initial functions

Primitive recursive functions 133

Furthermore the increment module acts as the successor function σ. Using these two
modules, we already dispose over the natural numbers, by consecutive incrementing
0.

0

Figure B.4: Initial function zero module

The k-place projection is shown in figure B.5. The figure shows on the left side a
k-place projection function πk. In this particular case, three input values n1, n2 and
n3 are entered into the module. The 2-projection selects the second component out
of three input values.

n1 n2 n3n2 n3n1

2-projection

n2

0

1

if v<> 0

if v<> 0

n2 2-projection

n2

Figure B.5: The 2-projection module

On the right hand side, it shows how we built the k-place projection function πk

from the axioms before. The module first selects n2 out of n1 and n2, by setting the
right value 0 on the decision module. Next, it selects n2 from n2 and n3 in the same
manner but now by setting a 1 on the second decision module. Finally, value n2 is
exporting to the outside.

As an example, we provide a possible NumLab implementation of the decision mod-
ule, using pseudo code:

134 Appendix B: Turing completeness

class decision: public module
{
void set(double *v) { this->v = v; }

...
double update()
{
return (v->update()) ? then->update() : else->update();

}
private:
module *v;
...

}

We now proceed with the definitions of composition and Primitive Recursion

Definition B.7.

• Let l > 0 and k ≥ 0, let g be an l-place function, and let h1, ..., hl be k-place functions.
Let f be the k-place function such that, for every n̄ ∈ Nk,

(B.6) f(n̄) = g(h1(n̄), ..., hl(n̄)).

Then f is said to be obtained from g, h1, ...hl by composition.

• Let k ≥ 0, let g be an k-place function, and let h be a (k + 2)-place function. Let f be
the (k + 1)-place function such that for every n̄ ∈ Nk,

(B.7) f(n̄, 0) = g(n̄)

and for every n̄ ∈ Nk and m ∈ N

(B.8) f(n̄,m+ 1) = h(n̄,m, f(n̄,m))

Then f is said to be obtained from g and h by primitive recursion.

Definition B.8. A function is said to be a primitive recursive function if it is an initial
function or can be generated from the initial functions by some sequence of operations of
composition and primitive recursion. More succinctly, the primitive recursive functions are
the smallest class of functions containing the initial function and closed under composition
and primitive recursion.

Because all primitive recursive functions terminate, the set of all primitive recursive
functions cannot represent the set of all Turing computable functions. Therefore,
in order to obtain all computable functions, some extension must be made to the
methods used thus far for defining functions.

µ-Recursive functions 135

g

h1 h2 hl

n

Figure B.6: The composition module

B.4 µ-Recursive functions

This section introduces µ-recursive functions and presents a visual module design
for their NumLab implementation. Because the functions in the set of µ-recursive
functions can imitate all Turing machines, NumLab is Turing complete with the ad-
dition of this type of module. First, we must define the concept of unbounded mini-
malisation:

Definition B.9. Let k ≥ 0 and let g be a (k + 1)-place functions. Then the unbounded
minimalisation of g is that k-place function f such that, for any n̄ ∈ N k

(B.9) f(n̄) =

{

the least m such that g(n̄,m) = 0 if such m exists;
0 otherwise.

The second clause guarantees that f is everywhere defined, regardless of what g is. We write

(B.10) f(n̄) = µm[g(n̄,m) = 0]

and say that f is obtained from g by unbounded minimalisation.

In general, the unbounded minimalisation of a primitive recursive function need to
be primitive recursive, or indeed computable in any intuitive sense. The reason, as
we shall show later, is that there is no general method of telling whether an m of the
required type exists. However, if g has the property that such an m exists for every
n̄, then f is computable if g is computable: Given n̄, we simply need to evaluate all
of g(n̄, 0), g(n̄, 1), ... until we find m such that g(n̄,m) = 0. However, in this case f
need not, in general, be primitive recursive.

These ideas leads to the definition of regular functions:

136 Appendix B: Turing completeness

-1

h

f

n k

g

f

if v <> 0

v

Figure B.7: The NumLab design of a primitive-recursive module

Definition B.10. A (k + 1)-place function g is called a regular function if and only if, for
every n̄ ∈ Nk, there is an m such that g(n̄,m) = 0. A function is µ-recursive if and only if
it can be obtained from the initial functions ζ, πki , and σ by the following operations:

• composition

• primitive recursion

• application of unbounded minimalisation to regular functions.

With this definition, each primitive recursive function is also µ-recursive.

Figure B.8 shows the NumLab module design for a µ-recursive function.

In order to finish this appendix, we refer to [65], which shows that the set of all
µ-recursive functions can imitate all Turing machines (so all computable functions).
Thus, because NumLab can generate modules for all µ-recursive functions, NumLab
is Turing complete.

µ-Recursive functions 137

f

n k

h

if v <> 0

+1

f

Figure B.8: The NumLab design of a µ-recursive module

Bibliography

[1] G. Abram and L. Treinis. An extended data-flow architecture for data analysis
and visualization. In Proc. IEEE Visualization, pages 263–270. ACM Press, 1995.

[2] E. Anderson, Z. Bai, and C. Bischof et al. LAPACK user’s guide. SIAM, Philadel-
phia, 1995.

[3] P. Astheimer. Sonification tools to supplement dataflow visualization. Scientific
Visualization: Advances and Challenges, pages 251–263, 1994.

[4] O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1996.

[5] O. Axelsson and V. Barker. Finite Element Solution of Boundary Value Problems.
Theory and Computation. Academic Press, Orlando, Florida, 1984.

[6] O. Axelsson and J. M. L. Maubach. Global space-time finite element methods
for time-dependent convection diffusion problems. Advances in Optimization
and Numerical Analysis, 275:165–184, 1994.

[7] O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning meth-
ods. I. Numerische Mathematik, 56:157–177, 1989.

[8] O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning meth-
ods. II. SIAM Journal on Numerical Analysis, 27:1569–1590, 1990.

[9] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. A. van der Vorst. Templates for the solution of linear
systems: Building blocks for iterative methods. SIAM, Philadelphia, 1994.

[10] F. L. Bauer. Optimally scaled matrices. Numerische Mathematik, 5:73–87, 1963.

[11] J. Bear and Y. Bachmat. Introduction of modelling of transport phenomena in porous
media, Vol. 4. Kluwer, Dordrecht, 1990.

[12] M. W. Benson and P. O. Frederickson. Iterative solution of large sparse linear
systems arising in certain multidimensional approximation problems. Utilitas
Mathematica, 22:127–140, 1982.

[13] M. Benzi, J. K. Collum, and M. Tuma. Robust appoximate inverse precondi-
tioning for the conjugate gradient method. SIAM Journal on Scientific Comput-
ing, 22:1318–1332, 2000.

140 Bibliography

[14] M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate inverse precondi-
tioner for the conjugate gradient method. SIAM Journal on Scientific Computing,
17:1135–1149, 1996.

[15] M. Benzi and M. Tuma. Numerical experiments with two approximate inverse
preconditioners. BIT, 38:234–241, 1998.

[16] M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for non-
symmetric linear systems. SIAM Journal on Scientific Computing, 19:968–994,
1998.

[17] M. Benzi and M. Tuma. A comparative study of sparse approximate inverse
preconditioners. Applied Numerical Mathematics, 30:305–340, 1999.

[18] G. Booch. Object-Oriented Analysis and Design, second edition. Ben-
jamin/Cummings, Redwood City, CA, 1994.

[19] F. Bornemann and H. Yserentant. A basic norm equivalence for the theory of
multilevel methods. Numerische Mathematik, 64:455–476, 1993.

[20] A. Böttcher and B. Silbermann. Introduction to large truncated Toeplitz matrices.
Springer, New York, 1999.

[21] J. H. Bramble, D. Y. Kwak, and J. E. Pasciak. Uniform convergence of multigrid
v-cycle iterations for indefinite and nonsymmetric problems. SIAM Journal on
Numerical Analysis, 31:1746–1763, 1994.

[22] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of precondi-
tioners for elliptic problems by substructuring, I. Mathematics of Computation,
47:103–134, 1986.

[23] J. H. Bramble, J. E. Pasciak, and J. Xu. The analysis of multigrid algorithms for
nonsymmetric and indefinite elliptic problems. Mathematics of Computation,
51:389–414, 1988.

[24] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners.
Mathematics of Computation, 55:1–22, 1990.

[25] W. L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, 1987.

[26] A. M. Bruaset and H. P. Langtangen. A Comprehensive Set of Tools for Solving
Partial Differential Equations: Diffpack. 1996.

[27] R. Brun, M. Goto, and F. Rademakers. The cint c/c++ interpreter.
http://root.cern.ch/root/CintInterpreter.html.

[28] T. Budd. An Introduction to Object-Oriented Programming. Addison-Wesley,
1997.

Bibliography 141

[29] J. P. E. Buskens and M. J. D. Slob. Prototype of the Numlab program. A lab-
oratory for numerical engineering. internal report RANA 96-04, Eindhoven
University of Technology, Eindhoven, 1996.

[30] J. C. Butcher. The numerical analysis of ordinary differential equations : Runge-Kutta
and general linear methods. Wiley, 1987.

[31] T. C. Chan and H. A. van der Vorst. Approximate and Incomplete Factoriza-
tions. In D. E. Keys, A. Samed, and V. Venkatakrishnan, editors, Parallel Nu-
merical Algorithms, volume 4 of ICASE/LaRC Interdisciplinary Series in Science
and Engineering, pages 167–202, Dordrecht, 1997. Kluwer Academic.

[32] Z. Chen and D. Y. Kwak. ν-cycle Galerkin-multigrid methods for nonconform-
ing methods for nonsymmetric and indefinite problems. Applied Numerical
Mathematics, 28:17–35, 1998.

[33] Z. Chen, D. Y. Kwak, and Y. J. Yon. Multigrid algorithms for nonconforming
and mixed methods for nonsymmetric and indefinite problems. SIAM Journal
on Scientific Computing, 19:502–515, 1998.

[34] J. D. F. Cosgrove, J. C. Dı́az, and A. Griewank. Approximate inverse precondi-
tionings for sparse linear systems. International Journal of Computer Mathemat-
ics, 44:91–110, 1992.

[35] W. Dahmen and A. Kunoth. Multilevel preconditioning. Numerische Mathe-
matik, 63:315–344, 1992.

[36] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM
Journal on Numerical Analysis, 19:400–408, 1982.

[37] A. M. Duclos and M. Grave. Reference models and formal specification for
scientific visualization. Scientific Visualization: Advances and Challenges, pages
251–263, 1994.

[38] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conju-
gate gradients. BIT, 29:635–657, 1989.

[39] I. S. Duff and H. A. van der Vorst. Developments and trends in the parallel
solution of linear systems. Parallel Computing, 25:1931–1970, 1999.

[40] S. C. Eisenstat and H. F. Walker. Globally convergent inexact Newton methods.
SIAM Journal on Optimization, 4:393–422, 1994.

[41] R. E. Ewing, S. I. Petrova, and P. S. Vassilevski. Two-level local refinement pre-
conditioners for nonsymmetric and indefinite elliptic problems. SIAM Journal
on Scientific Computing, 15:149–163, 1994.

[42] I. Fried. The l2 and l∞ condition numbers of the finite element stiffness and
mass matrices, and the pointwise convergence of the method. In J.R. White-
man, editor, The Mathematics of Finite Elements and Applications, pages 163–174,
New York, 1973. Academic Press.

142 Bibliography

[43] I. Fried. Numerical Solution of Differential Equations. Academic Press, New York,
1979.

[44] C. W. Gear. Numerical initial value problems in ordinary differential equations.
Prentice-Hall, 1971.

[45] A. George and J. Liu. Computer solution of large sparse positive definite systems.
Prentice Hall, Englewood Cliffs, New Jersey, 1981.

[46] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse Matrices in MATLAB: Design
and Implementation. SIAM Journal on Matrix Analysis and Application, 13:333–
356, 1992.

[47] M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate
inverses. SIAM Journal on Scientific Computing, 18:838–853, 1997.

[48] C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, and U. Schwarz. Oor-
ange: A Virtual Laboratory for Experimental Mathematics. Techni-
cal Report Sonderforschungsbereich 288, Technical University Berlin.
http://www-sfb288.math.tu-berlin.de/oorange/Oorange-
Doc.html.

[49] I. Gustafsson. A class of first order factorization methods. BIT, 18:142–156,
1978.

[50] M. A. Halse. IRIS Explorer User’s Guide. Silicon Graphics Inc., Mountain View,
California, 1993.

[51] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards. Sect. B, 49:409–
436, 1952.

[52] W. D. Hoskings and G. E. McMaster. Band with five toeplitz matrices. Linear
and Multilinear Algebra, 6:153 – 156, 1978.

[53] IMSL. FORTRAN Subroutines for Mathematical Applications, User’s Manual.
IMSL, 1987.

[54] INRIA-Rocquencourt. Scilab Documentation for release 2.4.1. 2000.
http://www-rocq.inria.fr/scilab/doc.html.

[55] N. Jackie, T. Davis, and M. Woo. OpenGL Programming Guide. Addison-Wesley,
1993.

[56] B. Joe. Construction of a k-dimensional Delaunay triangulation using local
transformations. SIAM Journal on Scientific Computing, 14:1415–1436, 1993.

[57] V. John, J. M. L. Maubach, and L. Tobiska. A non-conforming streamline dif-
fusion finite element method for convection diffusion problems. Numerische
Mathematik, 78:165–188, 1997.

Bibliography 143

[58] R. E. Kaasschieter. A general finite element preconditioning for the conjugate
gradient mathod. BIT, 29:824–849, 1989.

[59] A. A. J. Ketelaars. Drying deformable media. Kinetics, shrinkage and stresses. PhD
thesis, Eindhoven University of Technology, Eindhoven, 1992.

[60] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse
preconditioning i: Theory. SIAM Journal onf Matrix Analysis and Applications,
14:45–58, 1993.

[61] W. Kortsmit. NUMerical LABoratory uitbreidingen en iteratieve methoden.
Master’s thesis, Eindhoven University of Technology, 1997.

[62] B. Kroes. The influence of material properties on drying kinetics. PhD thesis, Eind-
hoven University of Technology, Eindhoven, 1999.

[63] C. Lartigue, J. R. Puiggali, and M. Quitard. A simplified study of moisture
transport in wood. In A. S. Mujamdar and M. A. Roques, editors, Drying ’89,
pages 169–179. Hemisphere, 1989.

[64] W. Layton, J. M. L. Maubach, and P. Rabier. Parallel algorithms for maximal
monotone operators of local type. Numerische Mathematik, 71:29–58, 1995.

[65] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, International (UK) Limited, London, 1981.

[66] S. D. Margenov and J. M. L. Maubach. Optimal algebraic multilevel precondi-
tioning for local refinement along a line. Numerical Linear Algebra with Applica-
tions, 2:347–361, 1995.

[67] Matlab. Matlab Reference Guide. The Math Works Inc., 1992.

[68] R. M. M. Mattheij and J. Molenaar. Ordinary differential equations in theory and
practice. Wiley, 1996.

[69] R. M. M. Mattheij and M. D. Smooke. Estimates for the inverse of tridiagonal
matrices arising in boundary-value problems. Linear Algebra and its Applica-
tions, 73:33–57, 1986.

[70] J. M. L. Maubach. Local bisection refinement for n-simplicial grids generated
by reflections. SIAM Journal on Scientific Computing, 16:210–227, 1995.

[71] J. M. L. Maubach and W. D. Drenth. Data-flow oriented visual programming
libraries for scientific computing. In P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra,
and A.G. Hoekstra, editors, Computational Science – ICCS 2002 (LNCS 2329).
Springer-Verlag, 2002.

[72] J. M. L. Maubach and A. C. Telea. Numerical laboratory for computation and
visualisation. Computing and Visualization in Science, accepted, 2001.

144 Bibliography

[73] J. M. L. Maubach and A. C. Telea. The numlab numerical laboratory for com-
putational and visualisation. Computing and Visualisation in Science, 2003. ac-
cepted.

[74] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix. Mathematics
of Computation, 31:148–162, 1977.

[75] J. A. Meijerink and H. A. van der Vorst. Guidelines for the usage of incomplete
deconpositions in solving sets of linear equations as they occur in practical
problems. Journal of Computational Physics, 44:134–155, 1981.

[76] G. A. Meurant. Computer solution of the large linear systems. Elsevier North
Holland, Amsterdam, 1999.

[77] B. Meyer. Object-oriented software construction. Prentice Hall, 1997.

[78] M. Magolu monga Made and H. A. van der Vorst. ParIC: A family of par-
allel incomplete Cholesky preconditioners. In M. Bubak, H. Afsarmanesh,
R. Williams, and B. Hertzberger, editors, High Performance Computing and Net-
working, 8th International Conference, pages 89–98, Berlin, 2000. Springer Verlag.

[79] NAG. FORTRAN Library, Introductory Guide, Mark 14. Numerical Analysis
Group Limited and Inc.,, 1990.

[80] D. M. Newitt and M. Coleman. The mechanisms of drying of solids. Part 3, the
drying characteristics of china clay. Transactions of the Institution of Chemical
Engineers, 30:28–45, 1952.

[81] M. Pastrnak. Distributed Visualisation and Simulation with Object-Oriented Net-
works. PhD thesis, Eindhoven University of Technology, Eindhoven, 2002.

[82] W. Ribarsky, B. Brown, T. Myerson, R. Feldmann, S. Smith, and L. Treinish.
Object-oriented, dataflow visualization systems - a paradigm shift? Scientific
Visualization: Advances and Challenges, pages 251–263, 1994.

[83] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modelling and Design. Prentice-Hall, 1991.

[84] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing company,
Boston, 1996.

[85] Y. Saad. SPARSEKIT: A basic toolkit for sparse matrix computations (Ver-
sion 2). http://www.cs.umn.edu/research/arpa/SPARSKIT/sparskit.html,
Boston, 1996.

[86] Y. Saad and M. H. Schulz. GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statis-
tical Computing, 7:856–869, 1986.

Bibliography 145

[87] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. Prentice Hall, 1995.

[88] Y. Shapira. Multigrid methods for 3-D definite and indefinite problems. Ap-
plied Numerical Mathematics, 26:377–398, 1998.

[89] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear sys-
tems. SIAM Journal on Scientific and Statistical Computing, 10:36–52, 1989.

[90] R. Stevenson. Modified ILU as a smoother. Numerische Mathematik, 68:295–309,
1994.

[91] B. Stroustrup. The C++ Programming Manual (3rd edition). Addison-Wesley,
1997.

[92] A. C. Telea. Combining Object Orientation and Dataflow Modeling in the Vis-
sion Simulation System. In R. Mitchell, A. C. Wills, J. Bosch, and B. Meyer, ed-
itors, Proceedings of TOOLS’99 Europe, Nancy 3-8 June 1999, pages 56–65. IEEE
Computer Society Press, 1999.

[93] A. C. Telea. Visualisation and Simulation with Object-Oriented Networks. PhD
thesis, Eindhoven University of Technology, Eindhoven, 2001.

[94] A. C. Telea and J. J. van Wijk. Vission: An Object Oriented dataflow system for
simulation and visualization. In E. Groeller and W. Ribarsky, editors, Proceed-
ings of IEEE VisSym ’99, pages 95–104. Springer, 1999.

[95] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by
optimally ordered triangular factorization. Proceedings of IEEE, 55:1801–1809,
1967.

[96] M. J. Todd. The Computation of Fixed Points and Applications, Lecture Notes in
Economics and Mathematical Systems 124. Springer Verlag, 1976.

[97] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gur-
witz, and A. van Dam. The application visualization system: A computational
environment for scientific visualization. IEEE Computer Graphics and Applica-
tions, pages 30–42, 1989. See also http://www.avs.com.

[98] A. van der Sluis. Condition numbers and equilibration of matrices. Numerische
Mathematik, 14:14–23, 1969.

[99] A. van der Sluis. Condition, equilibration and pivoting in linear algebraic
systems. Numerische Mathematik, 15:74–86, 1970.

[100] A. van der Sluis. Stability of solutions of linear algebraic systems. Numerische
Mathematik, 14:246–251, 1970.

[101] H. A. van der Vorst. High performance preconditioning. SIAM Journal on
Scientific and Statistical Computing, 10:1174–1185, 1989.

146 Bibliography

[102] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 13:631–644, 1992.

[103] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cam-
bridge Monographs on Applied and Computational Mathematrics. Cam-
bridge University Press, 2003.

[104] H. A. van der Vorst and K. Dekker. Conjugate gradient type methods and
preconditioning. Journal of Computational and Applied Mathematics, 24:73–87,
1988.

[105] J. Wernecke. The Inventor Mentor: Programming Object-Oriented 3D Graphics
with Open Inventor. Addison-Wesley, 1993.

[106] G. Wittum. On the robustness of ILU smoothing. SIAM Journal on Scientific and
Statistical Computing, 10:699–717, 1989.

[107] S. Wolfram. The Mathematica Book 4-th edition. Cambridge University Press,
1999.

[108] Y. J. Yon and D. Y. Kwak. Nonconforming multigrid methid for nonsymmetric
and indefinite problems. Computers & Mathematics with Applications, 30:1–7,
1995.

Index

alphabet . 129
AMLI . 33
approximate inverse 35

AINV . 37
Frobenius norm minimization.35
FSAI . 37
SPAI . 36

Bi-CG . 25
blank symbol .130
BPX . 33

CG . 25
CGS . 26
Church’s Thesis 131
Church-Turing’s Thesis 131
composition . 134
computational complexity 27
control unit . 129

diagonally oriented grid 71

equilibration . 39

fill-in path . 12
finite-state machine 129
flops . 27

Green’s functions 35
Green’s matrix . 35

halt state . 131

imitate . 135
incomplete factorizations 34
iterative methods

Bi-CG. .25

CG . 25
CGS . 26
SOR . 24

Jacobi matrix . 24

Krylov subspace.25
Krylov subspace method 25

language . 129
Left-right (LR) ordering 10

maximal monotone 89
Minimum degree ordering 10
multigrid . 33

network editor . 3
nonstationary iterative methods . . . 23

optimal order method 28

preconditioners
AMLI . 33
BPS . 34
BPX . 33
incomplete factorizations 34
multigrid . 33

preconditioning 27, 31
explicit . 32
implicit . 32

Primitive Recursion 134
primitive recursive function 134

regular function 136
residual . 23
Reverse Cuthill-McKee ordering . . . 10
Ritz-Galerkin approach 25

148 Index

SOR . 24
spectral condition number 25
spectral radius . 24
stationary iterative methods 23
string . 129
suboptimal order method 28

tape . 129
tie-breaking strategy 8
Toeplitz matrix . 45
total workload . 27
Turing complete 131
Turing machine 129

unbounded minimalisation 135

visualization
steering . 1
tracking and monitoring 1

Summary

Often solving partial differential equations in engineering and sciences is compli-
cated by the fact that their solutions exhibit sharp peaks or fronts. Any suitable dis-
cretization method for numerically solving such problems should use a grid taking
this activity into account. As a result the mesh is usually quite far from being uni-
form. This in turn causes difficulties when solving the linear systems that arise from
such discretized problems; often as a step in a Newton process when the problem
at hand is non-linear. The resulting system is said to be ill-conditioned. Typically
the solution is found by an iterative method. If the problem is ill-conditioned the
convergence (if at all) will be slow.
In order to speed up convergence so called preconditioning techniques are widely
used. We consider a class of problems, related to moisture and salt ion transporta-
tion in a brick wall, for which no effective preconditioner exists as of yet. This then
gives the first objective of this thesis: to construct techniques that are able to tackle
this problem. A first approach is based on Gaussian elimination for a particular
numbering scheme for the degrees of freedom related to refinement along a line.
Secondly we consider preconditioning techniques based on approximating the in-
verse. The advantage of this type of preconditioning is that application requires
only matrix-vector multiplications. More importantly, for the problem above men-
tioned standard preconditioning techniques based on incomplete factorizations are
prone to break down. For this approximate inverse preconditioner we derive sev-
eral estimates for the spectral condition number in the one dimensional case. This
analysis is based on a slightly modified variant so that Toeplitz matrix theory can be
used. A further analysis of this preconditioner shows that the degrees of freedom
decouple into two sets. In the one dimensional case we derive an algorithm based
on recursive application of this decoupling after applying this approximate inverse
preconditioner. For two dimensions this cannot be generalized straightforwardly
and we provide suggestions for a recursive application of the approximate inverse.

Besides the need for efficient solvers, another important aspect is to have a computa-
tional platform to run those solvers and perform numerical simulations. This is our
second objective. A suitable computational platform should enable the researcher
to use existing software and offer the possibility to extend the platform with newly
made software components for future use. Furthermore, there should be the possi-
bility to track and steer the simulation at runtime. This thesis describes the so called
NumLab environment that enables the researcher to implement and test new ideas

150 Summary

by reusing existing components and building new components from scratch or from
existing components. Mathematical concepts like operators and linear solvers are
implemented using a generic interface, which enables interactive change of compo-
nents and parameters.

We illustrate the foregoing by a series of numerical examples. The approximate in-
verse preconditioner is tested using the NumLab environment. The numerically
computed spectral condition numbers turn out to agree nicely with the theoretical
estimates. To illustrate the robustness our results are compared to an incomplete
factorization preconditioner. The latter breaks down, as does the iterative solver ap-
plied to the linear system of equations without preconditioning.

Samenvatting

Het oplossen van partiële differentiaalvergelijkingen uit technische en wetenschap-
pelijke toepassingen wordt vaak bemoeilijkt doordat de oplossingen op bepaalde
gebieden scherpe pieken of fronts vertonen. Elke geschikte discretisatiemethode om
zulke problemen numeriek op te lossen, behoort daartoe een rekenrooster te kie-
zen dat deze kenmerken in ogenschouw neemt. Als gevolg hiervan is het rooster
doorgaans verre van uniform. Dit op zijn beurt geeft moeilijkheden wanneer het li-
neaire stelsel dat volgt uit de discretisatie opgelost moet worden; vaak als stap in een
Newton proces als het probleem in kwestie niet-lineair is. Het resulterende systeem
wordt dan ook wel slecht geconditioneerd genoemd. In het algemeen wordt de op-
lossing gevonden met behulp van een iteratieve methode. Als het probleem slecht
geconditioneerd is, dan zal de convergentie (zo die er al is) traag zijn.
Om de convergentie te versnellen wordt veelvuldig gebruikt gemaakt van zoge-
naamde preconditioneringstechnieken. Wij bekijken een klasse van problemen, ge-
relateerd aan vocht- en zouttransport in een muur van bakstenen, waarvoor op dit
moment nog geen effectieve preconditioneerder bestaat. Dit geeft het eerste doel
van dit proefschrift: het construeren van technieken die in staat zijn deze problemen
aan te pakken. Een eerste aanpak is gebaseerd op Gauss eliminatie voor een speci-
fieke nummering van de onbekenden die bij een verfijning langs een lijn horen. Ten
tweede bekijken we preconditioneringstechnieken die gebaseerd zijn op het bena-
deren van de inverse. Het voordeel van dit type preconditioneerders is dat de toe-
passing ervan alleen matrix-vector vermenigvuldigingen vereist. Nog belangrijker
is dat voor het bovengenoemde probleem standaard preconditioneringstechnieken
gebaseerd op onvolledige factorisatie de neiging tot mislukken hebben. Voor deze
benaderde inverse preconditioneerder leiden we voor het één dimensionale geval
enkele schattingen voor het spectrale conditiegetal af. Deze analyse maakt gebruik
van een gedeeltelijk aangepaste variant opdat Toeplitz matrixtheorie toegepast kan
worden. Verdere bestudering van deze preconditioneerder leert dat de onbekenden
ontkoppelen in twee verzamelingen. We leiden voor het ééndimensionale geval een
algortime af dat gebruik maakt van het recursief toepassingen van deze ontkoppe-
ling na toepassing van de benaderde inverse preconditioneerder. In twee dimensies
in dit niet rechtstreeks generaliseerbaar. We geven enkele voorstellen voor het recur-
sief gebruik van de benaderde inverse.

Naast de behoefte aan efficiënte oplosmethoden is het hebben van een rekenplatform
voor het gebruiken van die oplosmethoden en het uitvoeren van numerieke simu-

152 Samenvatting

latie een ander belangrijk aspect. Dit is ons tweede doel. Een geschikt rekenplat-
form zou de onderzoeker in staat moeten stellen om bestaande programmatuur te
gebruiken en nieuw ontwikkelde programmatuur voor toekomstig gebruik aan het
platform toe te voegen. Verder moet er ook de beschikking zijn over middelen om
de simulatie te volgen en te sturen terwijl deze loopt. Dit proefschrift beschrijft de
zogeheten NumLab-omgeving die de onderzoeker in staat stelt om nieuwe ideëen te
implementeren en te testen door bestaande componenten te hergebruiken en nieuwe
componenten te bouwen uit het niets of uit bestaande delen. Wiskundige concepten
zoals operatoren en lineaire oplossers zijn geı̈mplementeerd met gebruikmaking van
een generieke interface. Dit staat het interactief veranderen van componenten en pa-
rameters toe.

Het voorgaande illustreren we met een reeks numerieke voorbeelden. De bena-
derde inverse preconditioneerder wordt getest met gebruikmaking van de NumLab-
omgeving. De numeriek berekende spectrale conditiegetallen zijn goed in overeen-
stemming met de theoretische schattingen. Om de robuustheid te illustreren verge-
lijken we onze resultaten met een onvolledige factorizatie preconditioneerder. De
laatste blijkt niet robuust, net als de iteratieve oplosser toegepast op het ongeprecon-
ditioneerde lineaire stelsel van vergelijkingen.

Curriculum Vitae

The author of this thesis was born on January 9th, 1976 in the city of Nijmegen. The
greater part of his childhood was spent in Deest, a small village on the south bank
of the river Waal between Nijmegen and Tiel. After elementary school he went to
the Pax Christi College in Druten in 1987 where he obtained his VWO diploma in
1993. Following this pre-university education the author went to study mathematics
at the University of Nijmegen. He specialized in the subject of numerical analysis,
with a strong component of functional analysis. He also followed several courses in
Latin, and participated in a drama group called Moira. In June 1998 he finished his
master’s thesis on the subject of least-squares methods for first order systems under
supervision of prof. Axelsson. On August 1st, 1998 he assumed a PhD position at
Eindhoven University of Technology in the Scientific Computing Group. Several re-
sults of his research are written in this thesis. As part of this research the 7th Copper
Mountain Conference on Iterative Methods was attended in 2002.
Next to being a mathematician, Drenth has a strong interest in historical matters as
well. This resulted in a cooperation with several others from around the world to
study the history of the British Army. The author has a particular interest in the
reserve forces of the British Army. His research in this field will result in a series of
books to be published from 2005 on.

	Preface
	Contents
	1 Introduction
	2 Direct methods: Ef cient Gaussian elimination
	3 Iterative methods and preconditioners
	4 The approximate inverse
	5 Recursive solution methods
	6 NumLab concepts
	7 NumLab preconditioners
	8 Conclusions and future work
	Appendix A
	Appendix B
	Bibliography
	Index
	Summary
	Samenvatting
	Curriculum Vitae

