

Some categorical properties for a model for second order
lambda calculus with subtyping
Citation for published version (APA):
Poll, E. (1991). Some categorical properties for a model for second order lambda calculus with subtyping.
(Computing science notes; Vol. 9119). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/438a890d-9638-4a0c-809c-5a66d2dc16fc

Eindhoven University of Technology

Department of Mathematics and Computing Science

Some categorical properties for a model
for second order lambda calculus with subtyping

by

Erik Poll

Computing Science Note 91/19
Eindhoven, September 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M. van Hee.

Some categorical properties for a model
for second order lambda calculus

with subtyping

Erik Poll •

Abstract

In this paper we answer some of the category-theoretical questions, that were raised by
the construction of a model for a second order lambda calculus with subtyping in [PoI91].

Contents

1 Introduction

2 Second order lambda calculus
2.1 Syntax
2.2 Semantics
2.3 The solution method

3 O-categories
3.1 O-categories
3.2 Functors on O-categories
3.3 Some examples of O-categories and locally continuous functors

4 Functor categories

5 The model construction

6 Concluding remarks

·supported by the Dutch organization for scientific research (NWO).

1

2

2
2
3
6

7
7
8
9

11

16

20

1 Introduction

For the construction of a model for second order (or polymorphic) lambda calculus with subtyping

in [Po191] , some category-theoretical ingredients are needed. Some of these are already discussed

in [tER89b] and [BR88]; here we deal with the rest of them.

For the model construction the standard technique for solving recursive domain equations, a.'>

presented in [SP82], is used. We take the initial fixed-point of an w-continuous functor on an

w-category (the inverse-limit construction). That this category is an w-category and that this

functor is an w-continuous functor is proved using properties of so-called O-cat,egories. A clear

and self-contained presentation of this method can be found in [BRSS].

To apply the technique in this particular case, we have to work in a functor category, i.e. a

category with functors from a category A to a category B as objects. vVe will show how all the

necessary properties of an O-category B and of functors on B can be lifted to such a functol'

category and to functors on this functor category.

2 Second order lambda calculus

In [PoI91] the general structure of an environment model for a second order lambda calculus with

subtyping is given. It is an extension of the general structure of an environment model for second

order lambda calculus as described in [BMM90] and [tER89a]. Rere we will not give all the

details, but just those which are relevant for the problem that we set out to solve in this paper.

We consider a somewhat simpler version than the one in [Po191]. However, the same method can

be used for any of the versions of second order lambda calculus that can be found in literature.

2.1 Syntax

Types

Let V,yp, be a set of type variables and B a set of type constants, or base types (e.g. bool,inlor

real). The set of types over B is given by:

u = b I ex I Uj ---+ U2 I II(Aex.u)

where b E B and ex E V,yp, .

Terms

Let Vterm be a set of term variables and Cterm a set of term constants. All term constants have

a specifies type, which we will write as a superscript when necessary. We first define t.he set

of pseudo-terms over Cterm and Vterm , of which the set of terms will be a subset. The set of

pseudo-terms over Cterm and Vterm is given by:

M = c I x I AX: u. M) I M j M 2 1 A",. M) I Mu

where x E Vterm , c E Cterm and u a type.

So we have abstraction over term variables, (Ax: u. M) , and we have abstraction over type

variables, (A",. M) , and the corresponding forms of application: of a term to a term, MjM" and

of a term to a type, MO'.

Terms are those pseudo-terms for which a type can be derived in a context. A context is a syntactic

type assignment of the form Xo : Uo, .. . , Xn : Un, i.e. a partial function from Vterm to the set of

2

types. We write r f- M : u if we can derive that in context r the term M has type u, using the

following rules:

r,X: u f- M: T (I)
r f- (AX: u. M) : u _ T -

r f- M : T "E VI)"' "not free in r (II 1)
r f- (Aa. M : II(A". T)

Subtyping

(x : u) E r
r F x: u

rf- M :rf-MN :~f- N: u (_ E)

r f- M : II(A". T t u a type (II E)
rf- Mu: T" :-ul

We have a relation :s on types, the subtype relation. If U:ST, we say that u is a subtype of T.

The subtype relation will be a pre-order (i.e. reflexive and transitive). We add the following t.ype

inference rule: the subsumption rule

r f- M : u U < T (SUB)
rf-M:T

All subtyping will be based on a subtype relation :sB on the base types. For example, if in!. and

real are base types) we could have int :::;B real.

We have the following rules for deducing u :s T :

<B
u_ T(START)
u5:r

U:' (REFL)
~

p<U u<T(TRANS)
P:ST

U<T U':sU T:ST' «_)
u-r$u'-+r' -

- « II)
lI(Aa.u) :s II(A".T) -

Note the contravariance of --+ with respect to the subtype relation. That S is indeed a pre-oreler

is of course guaranteed by the rule (REFL) and (TRANS). Actually, because <B is already

transitive, the rule (T RAN S) is derivable.

2.2 Semantics

Let T be the set of closed type expressions.

We have to find a suitable domain for every type. Because each free type variable will be assigned

a closed type expression by an environment TJ E Vtype -- T, we only have to consider the closed

type expressions, i.e. the elements of T. From now on, whenever we say 'a is a type' we measn 'a

is a closed type expression'.

The domains will be cpos. For every a E T we have a cpo Doma. Terms of type a will be

interpreted as elements of the cpo Doma. These cpos have to satisfy certain domain equations.

For function types a ---+ b we require

Here [Doma ----+ Domb1 is the cpo of continuous functions from Doma to Domb, with the pointwise

ordering. This isomorphism allows us to interpret terms of type a ---+ b not only as elements of the

cpo DOma-+b, but also, via projection, as functions from Doma to Domb.

3

For polymorphic types II(Aa.T) we require

DOmO(Ao.T) ~ II DomT[a:=a]
aET

ITaET Damr[a,=al is the cpo which is the product of all the cpos Dr[a,=al' with the ordering

coordinatewise. Terms of type II(Aa. T) can then be interpreted not only as elements of Damn(Aa.r)

but also as elements of DomT[cr:=a] for all types a. Because we take the product over all types,

including the type II(Aa.T) itself, this form of polymorphism is called impredicative.

Notation Instead of II(Aa.T) we will write IIf; instead of T[a := a] we will then write f(a).

Finally, for every base type a a cpo damaina is given. We could of course simply take Doma

equal to domaina , but instead we will just require that

Doma ~ domaina

So the family of cpos Dam =< Dama I a E T > should be a solution of the following recursive

domain equations

Doma
Doma-+b
Damn!

domaina
[Dama ~ Dam,]
ITaET Dam!(a)

for all a E B
for all a --+ bET
for all IIf E T

The associated bijections are called 4>a,<I>a--+b and 1>rrj) respectively. So

E
E
E

Doma --t domaina
Dama_, --+ [Dama ~ Dam,]
Domn! --t OaET Dom/(o.)

These bijections are also needed for the model.

for all a E B
for all a --+ bET
for all IIf E T

CPO is the category with cpos as objects and continuous functions as morphisms.

For the domain equations for function types we have the functian space funct.or , FS,

FS: CPOoP x CPO --+ CPO

defined by

• if D and E are cpos, then FS(D,E) = [D --+ E], the cpo of continuolls functions from D to

E, with the ordering pointwise.

• if f E [D' --+ D] and g E [E --+ E], then

FS(f,g) = (A~ E [D --+ E].g,~,f) E [[D --+ E] --+ [D' --+ E'J]

For the polymorphic types we have the the generalized product functor, GP,

GP: IT CPO --+ CPO
aET

ITaET CPO is a product category. Its objects are T-indexed families of CPO-objects, and its

morphisms are T-indexed families of C PO-morphisms. Composition is defined coordinat.ewise.

G P is defined by

• if < Da I a E I > is a family of cpos, then GP« Da I a E Kind, » = ITau Da, the cpo
which is the product of all the cpos DaJ with the ordering coordinatewise.

4

• if < fa I a E I > is a family of functions, where fa E [Da ---+ Ea] for all a E I, then

GP« fa I a E I» = .1« da I a E I » E GP« Da I a E I ». < fa(d a} I a E I > which is

a continuous function from GP« Da I a E I » to GP« Ea I a E I».

We can now write the recursive domain equations as follows

Coercions

domaina
FS(Doma, Dam,)
GP« DomJ(a) I a E T »

for all a E B
for all a ---+ bET
for all IIf E T

Coercion functions are used to interpret suhtyping: for all a ::; b, we need a coercion function

Coea b from Doma to Dam". The coercions between base types are given: for all a~Bb we have

a function coerceab E domaina ----7 domainb . For these coercions the following holds

coerceaa
coerceac

ole E domaina . e
coercebc 0 coerceab

for all a E B
for all a SB b SB c

The meaning of a term is defined by induction on its type derivation. Due to the subtyping, there

may be many different type derivations for a term. We want the semantics to be coherent, which

means that we get the same meaning for a term, irrespective of the particular type derivat.ion we

choose.

For example, suppose that int $ real, so real ---+ boo I $ int --+ bool. Let f be a term of type

real ---+ boo I and M a term of type int. Then f also has type int ---+ bool, and M also has type real.

For the meaning of f M we can the either consider f as a function from real to bool and 111 as an

argument of type real, or f as a function from int to bool and M as an argument of type into In

the former case the coercion Coeint real will be used to coerce (the meaning of) M , in the latter
case Coereal_hool tnt_hool will be used to coerce (the meaning of) f. For certain Coeint real and

COereal_bool int_bool this will result in two different meanings for f 11.1. To prevent this, some

additional conditions have to be imposed on the coercion functions.

The family of coercion functions Cae =< Coea b I a S b > should satisfy the following coherence

conditions

(0) Coca a Joe E Doma. e for all a E T

(1) Coca c = Coeb cO COCa b for all a S b S c

(2) Coea , <p;locoerceab o<Pa for all a SB b

(3) COCa_b a'_b' ~;'~b,oFS(Coca' a, Coeb bl)o~a_b for all a ---+ b S a' ~ b'

(4) CoenJ ng <I>ii;oGP(< CoeJ(a) g(a) I a E T »o<I>nJ for all IIf S IIg

In [Pol9l] it is shown that the semantics is coherent if and only if t.he coercions satisfy these

requirements.

We will now show this can be elegantly described in category-theoretical terms.

Every pre-order (A, $) can be seen as a category. The objects are the elements of A , and there

is a (unique) arrow, called x;S;y, from x to y iff x $ y. Because ;S; is reflexive, there is an ident,jty

x$x for all objects x and because $ is transitive, composition is always defined: y$z 0 x$Y wiII

be xSz.

5

Let T be the category corresponding with the pre-order (T, ::;). Together, Dom and Cae can be

seen as a functor from T to CPO. Dam is the object part, mapping every T-object, i.e. every

element of T, to a CPO-object, a cpo. Coe is the morphism part, mapping every T-morphism

a ~ b to a continuous function from Doma to Domb. We will call this functor Dom&Coe.

For Dom&Coe to be a functor, identities and composition must be preserved. Preservation of

identities and composition is equivalent with coherence conditious (0) and (1).

In the same way, < domaina I a E B > and < coerceab I a::; B b > form a functor from the category

corresponding with the pre-order ::;B on base types to CPO.

So we are looking for a functor Dom&C De : T ~ CPO and a family of bijections <l> =< <l> a I a E T >
such that

domaina
FS(Doma , Domb)
GP« Dom/(a) I a E T »

with <l> the associated family of bijections, and

(2) Gaea b = <I>;locoerceab ocl>a

for all a E B

for all a ::;B b

(3) Coea_b a'_h' = cI>;'~bIOFS(Coeal a, Goeb b,)o<l>a_b for all a -+ b :s; a' --+ b'

(4) CoeIT/ ITg <l>ii~,GP« Coe/(a) g(a) I a E T »,<I>IT/ for all TIf::; TIg

Any functor from T to CPO will satisfy conditions (0) and (1), so these can be omitted.

2.3 The solution method

In [SP82] and [BH88] a solution method is given for equations of the form

X~FX

where X ranges over the objects of a category J{ and F : J{ --+ J(is an endofunctor on that

category. If f{ is an w-category - i.e. a category with an initial object and colimits for all w-chains

- and F is an w-continuous functor - i.e. a functor that preserves colimits of w-chains 1 - the

method yields a fixed point, a pair (A, <1» where A E Obj(K) and <l> is an isomorphism from FA
to A in the category [{.

This is the solution method we will use to to construct Dom&Coe and ~. So we have t.o find a

suitable w-category, with functors from T to CPO as objects, and an w-continuous functor on

that category.

Because in general it is difficult to prove that a category is an w-category or that a functor is

w-continuous, a special class of categories, the O-categories , have been introduced. For every 0-

category there is an associated category of embedding-projection pairs. Checking if such a category

is an w-category is relatively easYl as is proving w-continuity of functors on these categories.

In the next section we list some properties of a-categories and functors on O-categories that

appear in [BH88], that we need in sections 3 and 4.

In section 3 a suitable (functor) category is found. That this category is indeed an w-category

is proved using properties of O-categories and the associated categories of projection-embedding

pairs.

In section 4 we will define a functor on this category and show that any fixed point of this fuuctor

gives us a functor Dom&Coe and a family of bijections ~ solving the recursive domain equations

and satisfying the coherence conditions. w-continuity is proved using so-called local continuity.

1 Actually, such a functor should be called w- cocontinuous.

6

3 O-categories

This section lists some of the definitions and results from [BHSS]. All proofs can be found t.here,

except those involving the functor GP. GP and its properties are discussed in [tEHS9b].

1 definition w-category , w-continuous functor

• an w-category is a category with an initial object and colimits for all w-chains

• an w-continuous functor is a functor that preserves colimits of w-chains

o

3.1 O-categories

2 definition O-category

A category is an O-category iff

• every hom-set is a poset in which every ascending w-chain has a l.u.b.

• composition is w-continuous with respect to the partial order on the hom-sets

o

3 definition category of embedding-projection pairs

If B is an O-category, then the associated category of embedding-projection paIrS BpR is the

category with

o

• the same objects as B, i.e. Obj(BpR) = Obj(B)

• as morphisms embedding-projection pairs of morphisms, i.e. for a, bE Obj(BpR)
(f,g) E HomB(a,b)

IE HomB(a,b)lIg E H01nB(b,a)lIl,g ~ idb IIg,1 = ida

4 definition localized category

An O-category B is called localized if for any w-chain Ll. in BpR and for any Ll.-colimit

(D,< (</>,,1/;,) >'EIN) there exists a B-object E and a BpR-morphism (f,g) from E to D snch

that

U(</>,,1/;,) = I,g
i~O

o

5 theorem initiality theorem

Let B be a localized O-category, Ll. an w-chain in BpR and (D,< (</>,1/;) >iEIN) a co-cone for Ll..

Then

o

(D,< (</>,1/;) >'EIN) is a co-limit for Ll. <==> U(</>;,1/;;) = idD
i~O

7

This theorem enables us to prove or disprove that a category BpR is an w-category in a simple

way, provided that B is localized.

6 definition idempotent,split

Let B be a category and bE Obj(B). Then

a morphism I E HomB(b,b) is called an idempotent if 101 = I
and

a morphism I E H omB(b, b) is called split if there exist a B-object a and morphisms

g E HomB(b,a) and h E HomB(a,b) such that I = goh and hog = ida.

D

Using these definitions we can give an easy method to establish that an O-category is localized.

7 theorem

If B is an O-category in which every idempotent is split, then B is localized.
D

3.2 Functors on O-categories

8 definition local monotonicity , local continuity

Let Band C be O-categories, and F a functor from B to C.

F is called locally monotonic (locally continuous) if for all a,b E B, the functor F, viewed as a

map from H omB(a, b) to H omc(Fa, Fb), is monotonic (continuous) with respect to the partial

order on hom-sets.
D

Clearly any locaHy continuous functor is also locally monotonic.

9 definition FpR

Let Band C be O-categories, and F a locally monotonic functor from B to C.

Then FpR is a functor from BpR to CPR, defined as follows

• ifb E Obj(BPR) then FPR(b) = F(b). (Remember Obj(BpR) = Obj(BPR) and Obj(CPR) =
Obj(CPR»

• if (f,g) E HomBPR(b,b') then FPR(f, g) = (F(f),F(g))

Local-monotonicity of F is needed to guarantee that (F(f), F(g» is an embedding-project.ion pair.
D

The next theorem now enables us to prove that a functor FpR is w-continuous IfI a relatively

simple way.

10 theorem continuity theorem

Let Band C be O-categories and F a functor from B to C.

If F is locally continuous and B is localized, then FpR : B pR ---j. CPR is w-cont.inuous.
D

8

3.3 Some examples of O-categories and locally continuous functors

11 definition CPO

CPO is the category with cpos as objects and continuous functions as morphisms

o

12 definition CPO 1-

CPO 1. is the category with cpos as objects and strict continuous functions as morphisms

o

CPO 1- is a subcategory of CPO.

13 lemma In CPO and in CPO 1- every idempotent is split. 0

14 theorem CPO and CPO 1- are localized O-categories . 0

16 theorem CPOPR is an w-category. 0

Finally, we consider two ways to construct new O-categories from old ones.

17 lemma

If B is a localized O-category, so is BOP, Moreover, BpR:::: (BOP)PR; the associated isomorphism

is given by the following functor F, : BpR ~ (BOP)PR.

The object part of F, is defined by F, b = b
and the morphism part by F,(J,g) = (g,t)

o

18 lemma

If A and B are localized O-categories, so is A x B. Moreover, ApR x BpR ~ (A x B)PR; t.he

associated isomorphism is given by the following functor F2 : (BOP)PR x BpR ~ (BoP X B)PR.

The object part of F2 is defined by F2 (a, b) (a, b)
and the morphism part by F2 ((J'/'), (g, g')) = ((J, g), (J', g'))

o

19 lemma F Sand G P as defined on page 2.2 are locally continuous. 0

Because CPO 1. is a subcategory of CPO and because FS and GP preserve strictness, we also

have FS: CPO 1- OP x CPO 1- ~ CPO 1- and GP : [LeT CPO 1- ~ CPO 1-'

Using definition 9, we get FSPR : (CPOop x CPO)PR ~ CPOPR defined by

FSPR(D,E)

FSPR ((1/;, ¢'), (¢, 1/;'))

FS(D,E)

(F S(1/;, ¢'), FS(¢, 1/;'))

If ((1/;,¢),(¢,1/;')): A x B ~ C x D in CPOop x CPO, this means that
¢':B~D ¢:C~A

1/;':D~B 1/;:A~C in CPO.

GPPR : (]l.ei CPO)PR ~ CPOpR is given by

GPPR«D.laEI»

GPPR« ¢. I a E I >,< 1/;. I a E I »
GP«D.laEI»

(GP« ¢. I a E I »,GP«I/J. I a E I»)

By theorem 10 FSPR and GPPR are w-continuous.

9

20 remark

FSPR is usually composed with the isomorphism between

given by lemma's 17 and 18, and GPPR with the isomorphism between

resultinginFSPR : CPOPRx CPOPR - CPOPRandGPPR:I1.El CPOPR - CPOPRwith
the following definitions

FSPR(D,E)

FSPR((</I, ,p), (</I', ,p'»

FS(D,E)

(FS(,p, </I'), FS(</I, ,p'))

GPPR« Da I a E I »
GPPR« (</Ia,,pa) I a E I »

GP«DalaEI»

These functors are also w-continuous.

o

(GP« </Ia I a E I >),GP«,pa I a E I »)

10

4 Functor categories

21 definition functor category [A, B]
If A and B are categories, then [A, B] is the category with functors from A to B as objects and

natural transformations between such functors as morphisms, i.e.

'I E Hom[A,Bl(F,G) iff 'I: F~G

o

As we shall see) for our purposes the notation [A, B) is preferable to the more convent.ional

notation BA.

If A is a discrete category - i.e. the only morphisms are identities - then [A, B] is simply a product

category, viz. naEObj(A) B.

22 lemma

If B is an O-category, then [A, B] is an O-category.

proof

An [A, B]-morphism is a natural transformation, i.e. a mapping from A-objects to B-morphisms.

The ordering on [A, B]-morphisms is just the ordering on B-morphisms, pointwise. That. [A, BJ is

indeed an O-category is easily verified:

o

• every hom-set in [A, B] is a paset, and every ascending chain in a hom-set has a lub, which

we get by taking the pointwise lubs .

• composition of natural transformations is defined pointwise, so composition is w-continuolls

with respect to the ordering on the hom-sets.

23 lemma

Let B be an O-category in which every idempotent is split.

Then [A, BJ is a localized O-category.

proof

Idempotents in [A, BJ are mappings from A-objects to B-idempotents. So if every idempotent.

in B splits, then every idempotent in [A, BJ splits (pointwise). If every idempotent is split. in a

category then it is a localized category (theorem 7) so [A, BJ is localized.
o

From now on, B will be an O-category, and A an arbritary category.

Because [A, B] is an O-category, there is an associated category of embedding-projection pairs.

By definition 3, this category is defined as follows.

24 definition [A, BJPR
[A, BJpR is the category with functors from A to B as objects and projection-embedding pairs of

natural transformations between such functors as morphisms,

o

('1,0) E HOm[A,BJpR(F,G) iff ry: F~G
O:G~F
0,'1 = idp

'1,0 ~ ida

11

Because everything is defined pointwise,

0.'1 = idp <==} If ,eObj(A) [0,.'1, = idp,j

'1.0 !:::: idG <==} If,eobj(A) h,.o, !:::: idG,j

25 lemma

Let B and [A, Bj be localized O-categories and suppose that BpR is an w-category.

Then in [A, BjPR every w-chain has a colimit.

proof

Let ~ be the following w-chain in [A, BjPR

F'

We will define a functor E from A to B. First we define its object part.

Let a E Obj(A). Then

F o (cJ>~, w~)
a •

(cJ>~, w~)
F2a • ...

is an w-chain B PR. B P R is an w-category, so this chain has a colimit: (Ea, < (1)~, 1/J~) liE IN ».
This means that for all i E IN

and, since B is localized, U 4>~o1jJ~ = idEa

We define the morphism part of E E Obj([A, BjPR) by

We will prove that this is defined, i.e.

(i) U 1>l.F' f.1/J~ exists for all f : a ~ b in A

and that

(ii) (E,< (1)',1/J') I i EIN » is acoconefor~.

Once we have established (i) and (ii), then

(E, < (1)', 1/J') liE IN » is a coli mit for Ll

{[A, Bj is localized}

U1>'.1/J' = idE 1\ (E, < (1)', 1/J') liE IN » is a cocone for Ll

= {idE and lubs defined pointwise}

lfaeAU1>~.1/J~ = idEa 1\ (E,< (1)',1/J') liE IN » is acocone for Ll

= {def 1>' and 1/J' , (iill
true

and we have proved that ~ has a colimit .

12

(i) To prove: U 1>~,F' f',,;~ exists for all f : a -. b in A.

Because B is an O-category, a proof that < <fJioF i fo"p~ >iEIN' is an ascending chain in H o1nn(Ea, Eb)
suffices.

1>b'P M~
{1>~ = 1>~+1 ,<I>~ , ,,;~ = 1Jt~,,,;~+I}
¢t+1o ~~oFi f o~~otP~+l
{<I>' : F'~F'+I}

¢~+1 oFi+l fo<l>~ o'lt~o¢~+l

C {<I>~,IJt~ I;; idp ;+'}

1>;+1,F'+1 f,,,;~+1

(ii) To prove: (E, < (1)','';') liE IN » is a coeane for Ll..
We must prove that for all i E IN

We know that for all a E Obj(A) and i E IN

(.I.' .I.i) _ (.1.'+1 .,.Hl) ("" ,T.,) .
'f'a'o/a - 't'a ,'f'a O'¥a,'l'a ,l.e.

so we know that (b) is true.

To prove (a) we only have to prove that 1>' : F'~E
vi : E~Fi

since we already know that for all a E Obj(A) ,,;~'1>~ idp "

¢~o1jJ~ C idEa

13

Suppose k < j and f : a - b in A.

For all i <IIi: Fi~Fi+l, so (2) commutes, and ljii: Fi+l~Fi, so (5) commutes.

(1';, ¢i) = (qli+l, ¢i+l)o(<IIi, ljii), so (3) and (4) commute.

Finally, (1) and (6) commute because

Using

¢{.oql:
{qli = qli+lo<lli for all i }

tMo<f>iao'l>~-10'" o~~

{¢~01>!, = idFia}
. 1 •

<It-'a - 0'" 04> a

by definition
(
*) Ef = UiEIN qI{oFi fo¢~

= U .. i Fif ./,i h>k'l"o ''I'a because < ¢ioFi /o1fia >jEIN is an ascending chain

we can show that for all j > k

For all j > k

so

l.e.

o

qli.F· f
{LHS diagram}

ql1.Fi /o¢~.qI~

(Uh>kqlt.Fi M~) .qI~
= {(*)}

Efaq\~

14

=

F' f.¢!

{RHS diagram}

¢t·qI{.Fi M~

26 corollary

Let B be a O-category in whicb every isomorphism is split (so B is localized) . Suppose that BpR
is an w-category and that [A, BjpR has an initial element.

Then [A, BjPR is an w-category.

proof

BpR is an w-category and by lemma 23 [A, Bj is a localized O-category, and so by lemma 25 every

w-chain in [A, BjPR has a colimit.

So if [A, BjPR has an initial element, [A, BjPR is an w-category.
o

27 corollary [A, CPO J.jPR is an w-category.

proof

In CP0J. every idempotent is split (lemma 13) and (CP0J.)PR = CPO pR is an w-category.

By the previous corollary we only have to find an initial element in [A, CPOPRjPR.
The obvious candidate for an initial object in [A, CPO l.]PR is the constant. functor which maps

every A-object to the one-point cpo and every A-morphism to the only possible function,bet.ween

two one-point cpos. It can easily be verified that this is indeed an initial element.

o

The category [A, CPO]PR, however, is not an w-category, because it does not have an initial

object. The initial object of [A, CPO J.jPR is of course also an [A, CPOjpn-object, but it is not

initial.

We will construct the model in the category [T, CPO 1.jPR' As a consequence of using CPO 1.
instead of CPO all coercions will be strict. The coercions coercea b for base types a and b the

also need to be strict.

15

5 The model construction

In the rest of this paper, the definitions of FS: CPO LOP x CPO L -> CPO Land

GP: DaET CPO L -> CPO L no longer matter. The only thing that matters is that they are

locally continuous.

1K. is short for the category [7, CPO L]PR.

28 definition IF: 1K.->1K.
IF is a functor 1K. to 1K., so it consists of an object part, a mapping from Obj{1K.) to Obj(1K.), and

an morphism part, a mapping from Mor{1K.) to Mor(1K.).
The object part of IF is defined as follows: if F E Obj(1K.), then IFF E Obj(1K.), i.e. IFF is a

functor from T to CPO L. The object part of IFF, a mapping from Obj(T) to Obj(CPO L)' is

defined by

(IFF)a
(IFF)a -> b =
(IFF)ITj

domaina
FS{Fa, Fb)
GP« F(f(a)) I a E T »

and the morphism part of IFF, a mapping from M or(T) to M orr CPO L), is defined by

(IF F)a~b = caercea,
(IFF)a -> b~a' -> b' = FS(F a'~a,F b~b')
(IFF)ITj~ITg = GP« F j(a)~g(a) I a E T »

The morphism part of IF is defined as follows:

if('1,B) E Hom1K.(F,G), then IF('1,O) = ('1',B'), where

('1~, B~) (iddamaina ,iddamaina)
(17~_"B~_,) = (FS('1a, Ba), FS(ry"B,))
('1;'I,B;'/) = (GP« '1/(a) I a E T »,GP« 0l(a) I a E T »)

Checking 'I' : IFF~IFG and B' : IFG~IFF is straightforward, and it can easily be verified

(coordinatewise) that 1F preserves identities and composition.
o

Note that for the coercions FS is used, which takes care of the contravariance of - with respect

to the subtype relation whereas for the morphisms FSPR is used:

which is covariant in both arguments, so that a fixed point can be constructed.

Similarly, GP is used for the coercions, and GPPR is used for the morphisl11s:

(GP«'1/(a) laET»,GP«BI(a) laET») = GPPR«17/(a) laET>,<OI(a) laET»

In terms of the functors FSPR' and GPP1", as defined in remark 20:

(FS('1a, Ba), FS(ry, , 0,)) = FS'PR{('1a, Ba), (f/b, Bb))

(GP« ry/(a) I a E T »,GP« 0l(a) I a E T ») = GP;'R(< ('1/(a),OI(a») I a E T >)

Any fixed point of 1F will solve the recursive domain equations and satisfy t.he condit,ions for t.he

coercion functions.

16

For example, let (F, (<I>, w)) be a fixed point of 1F, i.e. (<I>, w) is an isomorphism between F and

1FF. This means that <I>: F...!....1FF and W: 1FF"'!""F, such that <I>,w = id1FF and w,<I> = idF.
Because everything is defined pointwise, this means that for all a E T

<I>a,wa = id(1FF)a
Wao<Pa = idFa

and for all a :5 b <I>a
Fa

,
(1FF)a

wa

1(1FF)a:5 b ©
<I>,

I Fa :5 b

Fb , (1F F)b

W,

Suppose II! :5 IIg. Then

<I>IIJ
FII! .. , __ ---,-____ ' (1FF)II! = GP« F(f(a» I a E T »

I w~ I
FII!:5 IIg © (1FF)II!:5 IIg = GP« F(f(a»(g(a» I a E T »

<I>lIg
FIIg _--..,.-____ ' (lFF)IIg = GP« F(g(a)) I a E T »

W IIg

and

F II!:5IIg = WlIg , (1FF)II!:5IIg, <I>IIJ = WlIg ,GP« F !(a):5i1(a) I a E T » , <pn!

so condition (4) (see page 6) is satisfied. In the same way it can be shown t.hat condit.ion (2) and

(3) is satisfied.

We now want to prove that 1F is an w-continuous functor, so that by the initial fixed point, lemlna

an initial fixed point of 'IF can be constructed. For this we can use the notion of local continuity.

We define the following functor.

29 definition 71. : [T, CPO 1.1op x [T, CPO 1.1--> [T, CPO 1.1
If(F, G) E Obj([T, CPO 1. lOP x [T, cPO 1.])' so F and G are functors from T to CPO 1. ' then

71. (F, G) is defined by

and

(71(F, G»a
(71(F, G»a --> b =
(71(F, G»II!

domaina
FS(Fa, Gb)
GP« G(f(a» I a E T »

(71(F, G»a:5b = coercea,
(71(F,G»a --> b:5a' --> b' = FS(F a':5a,G b:5b')
(71(F, G))II!:5IIg CP(< C !(a):5g(a) I a E T »

17

If(1),O) E Hom«F,C),(F',C'», so 1): F'~F and 0: C~C' then 7-l(1), 0) is defined by

(7-l(1),O»a
(7-l(1), O))a - b
(7-l(1), O))ITJ

iddomaina
FS(1)a, 0,)
CP« 0J(a) laET»

Checking 7-l(1), 0) : 7-l(F, C)~7-l(F', C') is straightforward, and it can ea5ily be verified (coordi

natewise) that -:Ii preserves identities and composition.

o

30 lemma 7-l is locally continuous

proof

Because the ordering on the hom-sets of [T, CPO 1.] is defined coordinatewise, we can prove this

coordinatewise.

Let < (1)',0') >'EIN be an ascending chain in Hom[T,cPo"loPx[T,cPo"I«F,C),(F',C'»,
so TJi :F'~F, Oi: G~G/, r/ ~ 7]i+l and 0' I;Oi+1.

We must prove

which is equivalent to

because lubs are take pointwise.

We distinguish three cases: a is a base type, a is a function type, and a is a polymorphic t.ype.

For base types it is trivial:

For function types it follows from local continuity of FS, and for polymorphic types it follows

from local continuity of C P:

---+-types : (U 7-l('l, O'»a_' IT-types: (U 7-l (1]' , Bi)nJ

= =
U FS(1)~, OD U CP(< B}(a) I a E ObjeT) »

FS(U 1)~, U eil CP« UO~(a) I a E ObjeT) »
= = (7-l(U 1/i, U Oi))a_' (7-l(U 1/', U Oi»nJ

o

[T, CPO 1.1 is a localized O-category and 7-l is locally continuous, so

7-lPR : ([T, CPO J.l op x [T, CPO J.])PR - [T, CPO J.lpR is w-continllolls.

Let the functor 1F, be the isomorphism from [A, CPO J.lpR to ([A, CPO J.10P)PR, and let the

functor 1F, be the isomorphism from ([A, CPO llOP)PR x [A, CPO llpli to

([A, CPO J.lop x [A, CPO J.])PR, as defined in lemma's 17 and 18.

So the object part of 1F, is defined by 1F, F = F
and the morphism part by 1F, (1), 0) = (0,1/)

and the object part of 1F2 is defined by
and the morphism part by

1F,(F, C) (F, C)
1F2 «TJ,0),(q,,1/J» = «TJ,q,),(O,1/J))

18

31 definition Ll. : [A, CPOl.lPR ~ [A, CPOl.lPR x [A, CPOl.lPR
The object part of Ll. is defined by Ll.F = (F, F)
and the morphism part by Ll.('1, 0) = (('1,0),('1,0»

o

proof
(RpR,lF2 ,(lFl x J),Ll.)F

= {definition Ll.,lFj,lF,}
RPR(F,F)
{ definition P R}

R(F,F)
= {definition R,lF}

lFF

and so IF = R pR,lF2 ,(lFl x I),Ll.
o

So

33 lemma 1F is w-continuous

proof

(RpR,lF2 ,(lFj x I),Ll.)('1,O)
= {definition Ll.,lFj,lF,}

RPR((O, 'I), ('I, 0»
{ definition PR}
(R(O, '1),R('1,0»

= {definition R, IF}
IF('1,O)

7{,PR, 1F2 , 1Fl , I and dare w-continuous, and hence so is 7iPRo'JF20(1F1 x I)od. So by lemma 32

1F is w-continuous.

o

19

6 Concluding remarks

It should be noted that the construction we have described is not limited to the particular set of

types, subtype relation, O-category or functors that we gave in section 1.

For the functors, FS and OP in the our case, only the local continuity is essential. Instead of

CPO J. other O-cateories can also be used, provided the conditions needed to apply corollary 26

are satisfied.

It is of course no coincidence that the same functor comes up in both the recursive domain equa

tions for function types and the coherence condition for functions types, nor that the mixed con

tra/covariance of this functor exactly matches the mixed contra/covariance of the type constructor

~ with respect to the subtype relation.

Other type constructors, such a.'3 x (Cartesian product) , + (separated sum), 0 (sma.shed product)

,Ell (coalesced sum) or (-h (lifting) can easily be included. All that is required is the correspond

ing (locally continuous) functor. In fact, FS represents the most difficult case, because it. is

contravariant in one argument. For example, product types of the form a x b call be made llsillg

the cartesian product functor CP: CP0.1 x CP0.1 ---->- CP0.1' The reclIrsive domain equation

for x-types is

Domaxb CP(Dom., Dom,}

and the coherence condition is

Coeaxb a'xb'

Labelled products (records) and labelles sums (variants) (see [CW85J) can also be incorporated in

the model, as well as the natural subtype relation on them.

~>types - also called existential types or weak sums (see [MP88J) can also be added, using the

generalized sum functor (see [tEH89bJ), a.'3 well a.'3 bounded II- and L-types. The subtype relation

on types can be extended accordingly. In [Pol9l] the results described in this paper are also lIsed

to construct models for second order la.mbda calculus with recursive types and subtyping.

Acknowledgements

I would like to thank Huub the Eikelder and Jaap van der Woude for their comments on preliminary

versions of this paper.

20

References

[BH88] R. Bos and C. Hemerik. An introduction to the category-theoretic solution of recursive
domain equations. Technical Report 15, Eindhoven University of Technology, 1988.

[BMM90] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The semantics of second-order

lambda calculus. Information and Computation, 85:76-134, 1990.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction and poly

morphism. Computing Surveys, 17(4):471-522,1985.

[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have exist.ential type. ACM

Trans. on Prog. Lang. and Syst., 10(3):470-502,1988.

[PoI91]

[SP82]

Erik Poll. Cpo-models for second order lambda calculus with recursive types and sub

typing. Computing Science Note 07, Eindhoven University of Technology, 1991.

J.C. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain

equations. SIAM Journal of Computing, 11:761-783,1982.

[tEH89a] H. ten Eikelder and C. Hemerik. The construction of a cpo model for second order lamba

calculus with recursion. In Procs. CSN'S9 Computing Science in the Netherlands, pages

131-148,1989.

[tEH89b] H. ten Eikelder and C. Hemerik. Some category-theoretical propert.ies relat.ed to a model

for a polymorphic lambda calculus. Computing Science Note 03, Eindhoven University
of Technology, 1989.

21

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89(2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T. Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aens
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.c.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calcuJus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simuJated annealing
problems.

ELDA, data manipuJatie taal.

Optimal segmentations.

TowardS a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-BJonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.e. Ebergen

90/6 A.J.J.M. Marcelis

90{7 A.J.J M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. 01derog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.s. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networlcs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p. 23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E. v .d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. NederpeJt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. VoelTIlans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E. VoelTIlans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls. p. 15.

Two Case Studies in ExSpect. p. 24.

The Nature of Delay-Insensitive Computing. p.18.

Data. Process and Behaviour Modelling in an integrated
specification framework. p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. iL .• then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

PerfolTIlance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p.

TelTIlinology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB HypelTIledia Package. Why and how it was
built. p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.JM. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van lIee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 . A.E. Eiben
R.V. Schuwcr

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zbou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arit1unelical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query ;<;olving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a'Formal Model, p. 21.

Asserlional Data Rcification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. .

,
A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference morlel, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compoSitional proof system for dynamic proces !

creation, p. 24.

	Abstract
	Contents
	1. Introduction
	2. Second oder lambda calculus
	2.1 Syntax
	2.2 Semantics
	2.3 The solution method
	3. O-categories
	3.1 O-categories
	3.2 Functors on O-categories
	3.3 Some examples of O-categories and locally continuous functors
	4. Functor categories
	5. The model construction
	6. Concluding remarks
	References

