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Some categorical properties for a model 
for second order lambda calculus 

with subtyping 

Erik Poll • 

Abstract 

In this paper we answer some of the category-theoretical questions, that were raised by 
the construction of a model for a second order lambda calculus with subtyping in [PoI91]. 
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1 Introduction 

For the construction of a model for second order (or polymorphic) lambda calculus with subtyping 

in [Po191] , some category-theoretical ingredients are needed. Some of these are already discussed 

in [tER89b] and [BR88]; here we deal with the rest of them. 

For the model construction the standard technique for solving recursive domain equations, a.'> 

presented in [SP82], is used. We take the initial fixed-point of an w-continuous functor on an 

w-category (the inverse-limit construction). That this category is an w-category and that this 

functor is an w-continuous functor is proved using properties of so-called O-cat,egories. A clear 

and self-contained presentation of this method can be found in [BRSS]. 

To apply the technique in this particular case, we have to work in a functor category, i.e. a 

category with functors from a category A to a category B as objects. vVe will show how all the 

necessary properties of an O-category B and of functors on B can be lifted to such a functol' 

category and to functors on this functor category. 

2 Second order lambda calculus 

In [PoI91] the general structure of an environment model for a second order lambda calculus with 

subtyping is given. It is an extension of the general structure of an environment model for second 

order lambda calculus as described in [BMM90] and [tER89a]. Rere we will not give all the 

details, but just those which are relevant for the problem that we set out to solve in this paper. 

We consider a somewhat simpler version than the one in [Po191]. However, the same method can 

be used for any of the versions of second order lambda calculus that can be found in literature. 

2.1 Syntax 

Types 

Let V,yp, be a set of type variables and B a set of type constants, or base types (e.g. bool,inlor 

real). The set of types over B is given by: 

u = b I ex I Uj ---+ U2 I II(Aex.u) 

where b E B and ex E V,yp, . 

Terms 

Let Vterm be a set of term variables and Cterm a set of term constants. All term constants have 

a specifies type, which we will write as a superscript when necessary. We first define t.he set 

of pseudo-terms over Cterm and Vterm , of which the set of terms will be a subset. The set of 

pseudo-terms over Cterm and Vterm is given by: 

M = c I x I AX: u. M) I M j M 2 1 A",. M) I Mu 

where x E Vterm , c E Cterm and u a type. 

So we have abstraction over term variables, (Ax: u. M) , and we have abstraction over type 

variables, (A",. M) , and the corresponding forms of application: of a term to a term, MjM" and 

of a term to a type, MO'. 

Terms are those pseudo-terms for which a type can be derived in a context. A context is a syntactic 

type assignment of the form Xo : Uo, .. . , Xn : Un, i.e. a partial function from Vterm to the set of 
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types. We write r f- M : u if we can derive that in context r the term M has type u, using the 

following rules: 

r,X: u f- M: T (I) 
r f- (AX: u. M) : u _ T -

r f- M : T "E VI)"' "not free in r (II 1) 
r f- (Aa. M : II(A". T) 

Subtyping 

(x : u) E r 
r F x: u 

rf- M :rf-MN :~f- N: u (_ E) 

r f- M : II(A". T t u a type (II E) 
rf- Mu: T" :-ul 

We have a relation :s on types, the subtype relation. If U:ST, we say that u is a subtype of T. 

The subtype relation will be a pre-order (i.e. reflexive and transitive). We add the following t.ype 

inference rule: the subsumption rule 

r f- M : u U < T (SUB) 
rf-M:T 

All subtyping will be based on a subtype relation :sB on the base types. For example, if in!. and 

real are base types) we could have int :::;B real. 

We have the following rules for deducing u :s T : 

<B 
u_ T(START) 
u5:r 

U:' (REFL) 
~ 

p<U u<T(TRANS) 
P:ST 

U<T U':sU T:ST' «_) 
u-r$u'-+r' -

- « II) 
lI(Aa.u) :s II(A".T) -

Note the contravariance of --+ with respect to the subtype relation. That S is indeed a pre-oreler 

is of course guaranteed by the rule (REFL) and (TRANS). Actually, because <B is already 

transitive, the rule (T RAN S) is derivable. 

2.2 Semantics 

Let T be the set of closed type expressions. 

We have to find a suitable domain for every type. Because each free type variable will be assigned 

a closed type expression by an environment TJ E Vtype -- T, we only have to consider the closed 

type expressions, i.e. the elements of T. From now on, whenever we say 'a is a type' we measn 'a 

is a closed type expression'. 

The domains will be cpos. For every a E T we have a cpo Doma. Terms of type a will be 

interpreted as elements of the cpo Doma. These cpos have to satisfy certain domain equations. 

For function types a ---+ b we require 

Here [Doma ----+ Domb1 is the cpo of continuous functions from Doma to Domb, with the pointwise 

ordering. This isomorphism allows us to interpret terms of type a ---+ b not only as elements of the 

cpo DOma-+b, but also, via projection, as functions from Doma to Domb. 
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For polymorphic types II(Aa.T) we require 

DOmO(Ao.T) ~ II DomT[a:=a] 
aET 

ITaET Damr[a,=al is the cpo which is the product of all the cpos Dr[a,=al' with the ordering 

coordinatewise. Terms of type II(Aa. T) can then be interpreted not only as elements of Damn(Aa.r) 

but also as elements of DomT[cr:=a] for all types a. Because we take the product over all types, 

including the type II(Aa.T) itself, this form of polymorphism is called impredicative. 

Notation Instead of II(Aa.T) we will write IIf; instead of T[a := a] we will then write f(a). 

Finally, for every base type a a cpo damaina is given. We could of course simply take Doma 

equal to domaina , but instead we will just require that 

Doma ~ domaina 

So the family of cpos Dam =< Dama I a E T > should be a solution of the following recursive 

domain equations 

Doma 
Doma-+b 
Damn! 

domaina 
[Dama ~ Dam,] 
ITaET Dam!(a) 

for all a E B 
for all a --+ bET 
for all IIf E T 

The associated bijections are called 4>a,<I>a--+b and 1>rrj) respectively. So 

E 
E 
E 

Doma --t domaina 
Dama_, --+ [Dama ~ Dam,] 
Domn! --t OaET Dom/(o.) 

These bijections are also needed for the model. 

for all a E B 
for all a --+ bET 
for all IIf E T 

CPO is the category with cpos as objects and continuous functions as morphisms. 

For the domain equations for function types we have the functian space funct.or , FS, 

FS: CPOoP x CPO --+ CPO 

defined by 

• if D and E are cpos, then FS(D,E) = [D --+ E], the cpo of continuolls functions from D to 

E, with the ordering pointwise. 

• if f E [D' --+ D] and g E [E --+ E], then 

FS(f,g) = (A~ E [D --+ E].g,~,f) E [[D --+ E] --+ [D' --+ E'J] 

For the polymorphic types we have the the generalized product functor, GP, 

GP: IT CPO --+ CPO 
aET 

ITaET CPO is a product category. Its objects are T-indexed families of CPO-objects, and its 

morphisms are T-indexed families of C PO-morphisms. Composition is defined coordinat.ewise. 

G P is defined by 

• if < Da I a E I > is a family of cpos, then GP« Da I a E Kind, » = ITau Da, the cpo 
which is the product of all the cpos DaJ with the ordering coordinatewise. 
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• if < fa I a E I > is a family of functions, where fa E [Da ---+ Ea] for all a E I, then 

GP« fa I a E I» = .1« da I a E I » E GP« Da I a E I ». < fa(d a} I a E I > which is 

a continuous function from GP« Da I a E I » to GP« Ea I a E I». 

We can now write the recursive domain equations as follows 

Coercions 

domaina 
FS(Doma, Dam,) 
GP« DomJ(a) I a E T » 

for all a E B 
for all a ---+ bET 
for all IIf E T 

Coercion functions are used to interpret suhtyping: for all a ::; b, we need a coercion function 

Coea b from Doma to Dam". The coercions between base types are given: for all a~Bb we have 

a function coerceab E domaina ----7 domainb . For these coercions the following holds 

coerceaa 
coerceac 

ole E domaina . e 
coercebc 0 coerceab 

for all a E B 
for all a SB b SB c 

The meaning of a term is defined by induction on its type derivation. Due to the subtyping, there 

may be many different type derivations for a term. We want the semantics to be coherent, which 

means that we get the same meaning for a term, irrespective of the particular type derivat.ion we 

choose. 

For example, suppose that int $ real, so real ---+ boo I $ int --+ bool. Let f be a term of type 

real ---+ boo I and M a term of type int. Then f also has type int ---+ bool, and M also has type real. 

For the meaning of f M we can the either consider f as a function from real to bool and 111 as an 

argument of type real, or f as a function from int to bool and M as an argument of type into In 

the former case the coercion Coeint real will be used to coerce (the meaning of) M , in the latter 
case Coereal_hool tnt_hool will be used to coerce (the meaning of) f. For certain Coeint real and 

COereal_bool int_bool this will result in two different meanings for f 11.1. To prevent this, some 

additional conditions have to be imposed on the coercion functions. 

The family of coercion functions Cae =< Coea b I a S b > should satisfy the following coherence 

conditions 

(0) Coca a Joe E Doma. e for all a E T 

(1 ) Coca c = Coeb cO COCa b for all a S b S c 

(2) Coea , <p;locoerceab o<Pa for all a SB b 

(3) COCa_b a'_b' ~;'~b,oFS( Coca' a, Coeb bl )o~a_b for all a ---+ b S a' ~ b' 

(4) CoenJ ng <I>ii;oGP( < CoeJ(a) g(a) I a E T »o<I>nJ for all IIf S IIg 

In [Pol9l] it is shown that the semantics is coherent if and only if t.he coercions satisfy these 

requirements. 

We will now show this can be elegantly described in category-theoretical terms. 

Every pre-order (A, $) can be seen as a category. The objects are the elements of A , and there 

is a (unique) arrow, called x;S;y, from x to y iff x $ y. Because ;S; is reflexive, there is an ident,jty 

x$x for all objects x and because $ is transitive, composition is always defined: y$z 0 x$Y wiII 

be xSz. 
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Let T be the category corresponding with the pre-order (T, ::;). Together, Dom and Cae can be 

seen as a functor from T to CPO. Dam is the object part, mapping every T-object, i.e. every 

element of T, to a CPO-object, a cpo. Coe is the morphism part, mapping every T-morphism 

a ~ b to a continuous function from Doma to Domb. We will call this functor Dom&Coe. 

For Dom&Coe to be a functor, identities and composition must be preserved. Preservation of 

identities and composition is equivalent with coherence conditious (0) and (1). 

In the same way, < domaina I a E B > and < coerceab I a::; B b > form a functor from the category 

corresponding with the pre-order ::;B on base types to CPO. 

So we are looking for a functor Dom&C De : T ~ CPO and a family of bijections <l> =< <l> a I a E T > 
such that 

domaina 
FS(Doma , Domb) 
GP« Dom/(a) I a E T » 

with <l> the associated family of bijections, and 

(2) Gaea b = <I>;locoerceab ocl>a 

for all a E B 

for all a ::;B b 

(3) Coea_b a'_h' = cI>;'~bIOFS( Coeal a, Goeb b,)o<l>a_b for all a -+ b :s; a' --+ b' 

(4) CoeIT/ ITg <l>ii~,GP« Coe/(a) g(a) I a E T »,<I>IT/ for all TIf::; TIg 

Any functor from T to CPO will satisfy conditions (0) and (1), so these can be omitted. 

2.3 The solution method 

In [SP82] and [BH88] a solution method is given for equations of the form 

X~FX 

where X ranges over the objects of a category J{ and F : J{ --+ J( is an endofunctor on that 

category. If f{ is an w-category - i.e. a category with an initial object and colimits for all w-chains 

- and F is an w-continuous functor - i.e. a functor that preserves colimits of w-chains 1 - the 

method yields a fixed point, a pair (A, <1» where A E Obj(K) and <l> is an isomorphism from FA 
to A in the category [{. 

This is the solution method we will use to to construct Dom&Coe and ~. So we have t.o find a 

suitable w-category, with functors from T to CPO as objects, and an w-continuous functor on 

that category. 

Because in general it is difficult to prove that a category is an w-category or that a functor is 

w-continuous, a special class of categories, the O-categories , have been introduced. For every 0-

category there is an associated category of embedding-projection pairs. Checking if such a category 

is an w-category is relatively easYl as is proving w-continuity of functors on these categories. 

In the next section we list some properties of a-categories and functors on O-categories that 

appear in [BH88], that we need in sections 3 and 4. 

In section 3 a suitable (functor) category is found. That this category is indeed an w-category 

is proved using properties of O-categories and the associated categories of projection-embedding 

pairs. 

In section 4 we will define a functor on this category and show that any fixed point of this fuuctor 

gives us a functor Dom&Coe and a family of bijections ~ solving the recursive domain equations 

and satisfying the coherence conditions. w-continuity is proved using so-called local continuity. 

1 Actually, such a functor should be called w- cocontinuous. 
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3 O-categories 

This section lists some of the definitions and results from [BHSS]. All proofs can be found t.here, 

except those involving the functor GP. GP and its properties are discussed in [tEHS9b]. 

1 definition w-category , w-continuous functor 

• an w-category is a category with an initial object and colimits for all w-chains 

• an w-continuous functor is a functor that preserves colimits of w-chains 

o 

3.1 O-categories 

2 definition O-category 

A category is an O-category iff 

• every hom-set is a poset in which every ascending w-chain has a l.u.b. 

• composition is w-continuous with respect to the partial order on the hom-sets 

o 

3 definition category of embedding-projection pairs 

If B is an O-category, then the associated category of embedding-projection paIrS BpR is the 

category with 

o 

• the same objects as B, i.e. Obj(BpR ) = Obj(B) 

• as morphisms embedding-projection pairs of morphisms, i.e. for a, bE Obj(BpR) 
(f,g) E HomB(a,b) 

IE HomB(a,b)lIg E H01nB(b,a)lIl,g ~ idb IIg,1 = ida 

4 definition localized category 

An O-category B is called localized if for any w-chain Ll. in BpR and for any Ll.-colimit 

(D,< (</>,,1/;,) >'EIN) there exists a B-object E and a BpR-morphism (f,g) from E to D snch 

that 

U(</>,,1/;,) = I,g 
i~O 

o 

5 theorem initiality theorem 

Let B be a localized O-category, Ll. an w-chain in BpR and (D,< (</>,1/;) >iEIN) a co-cone for Ll.. 

Then 

o 

(D,< (</>,1/;) >'EIN) is a co-limit for Ll. <==> U(</>;,1/;;) = idD 
i~O 
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This theorem enables us to prove or disprove that a category BpR is an w-category in a simple 

way, provided that B is localized. 

6 definition idempotent,split 

Let B be a category and bE Obj(B). Then 

a morphism I E HomB(b,b) is called an idempotent if 101 = I 
and 

a morphism I E H omB(b, b) is called split if there exist a B-object a and morphisms 

g E HomB(b,a) and h E HomB(a,b) such that I = goh and hog = ida. 

D 

Using these definitions we can give an easy method to establish that an O-category is localized. 

7 theorem 

If B is an O-category in which every idempotent is split, then B is localized. 
D 

3.2 Functors on O-categories 

8 definition local monotonicity , local continuity 

Let Band C be O-categories, and F a functor from B to C. 

F is called locally monotonic (locally continuous) if for all a,b E B, the functor F, viewed as a 

map from H omB(a, b) to H omc(Fa, Fb), is monotonic (continuous) with respect to the partial 

order on hom-sets. 
D 

Clearly any locaHy continuous functor is also locally monotonic. 

9 definition FpR 

Let Band C be O-categories, and F a locally monotonic functor from B to C. 

Then FpR is a functor from BpR to CPR, defined as follows 

• ifb E Obj(BPR ) then FPR(b) = F(b). (Remember Obj(BpR) = Obj(BPR ) and Obj(CPR) = 
Obj(CPR» 

• if (f,g) E HomBPR(b,b') then FPR(f, g) = (F(f),F(g)) 

Local-monotonicity of F is needed to guarantee that (F(f), F(g» is an embedding-project.ion pair. 
D 

The next theorem now enables us to prove that a functor FpR is w-continuous IfI a relatively 

simple way. 

10 theorem continuity theorem 

Let Band C be O-categories and F a functor from B to C. 

If F is locally continuous and B is localized, then FpR : B pR ---j. CPR is w-cont.inuous. 
D 
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3.3 Some examples of O-categories and locally continuous functors 

11 definition CPO 

CPO is the category with cpos as objects and continuous functions as morphisms 

o 

12 definition CPO 1-

CPO 1. is the category with cpos as objects and strict continuous functions as morphisms 

o 

CPO 1- is a subcategory of CPO. 

13 lemma In CPO and in CPO 1- every idempotent is split. 0 

14 theorem CPO and CPO 1- are localized O-categories . 0 

16 theorem CPOPR is an w-category. 0 

Finally, we consider two ways to construct new O-categories from old ones. 

17 lemma 

If B is a localized O-category, so is BOP, Moreover, BpR:::: (BOP)PR; the associated isomorphism 

is given by the following functor F, : BpR ~ (BOP)PR. 

The object part of F, is defined by F, b = b 
and the morphism part by F,(J,g) = (g,t) 

o 

18 lemma 

If A and B are localized O-categories, so is A x B. Moreover, ApR x BpR ~ (A x B)PR; t.he 

associated isomorphism is given by the following functor F2 : (BOP)PR x BpR ~ (BoP X B)PR. 

The object part of F2 is defined by F2 (a, b) (a, b) 
and the morphism part by F2 ((J'/'), (g, g')) = ((J, g), (J', g')) 

o 

19 lemma F Sand G P as defined on page 2.2 are locally continuous. 0 

Because CPO 1. is a subcategory of CPO and because FS and GP preserve strictness, we also 

have FS: CPO 1- OP x CPO 1- ~ CPO 1- and GP : [LeT CPO 1- ~ CPO 1-' 

Using definition 9, we get FSPR : ( CPOop x CPO)PR ~ CPOPR defined by 

FSPR(D,E) 

FSPR ((1/;, ¢'), (¢, 1/;')) 

FS(D,E) 

(F S( 1/;, ¢'), FS( ¢, 1/;')) 

If ((1/;,¢),(¢,1/;')): A x B ~ C x D in CPOop x CPO, this means that 
¢':B~D ¢:C~A 

1/;':D~B 1/;:A~C in CPO. 

GPPR : (]l.ei CPO)PR ~ CPOpR is given by 

GPPR«D.laEI» 

GPPR« ¢. I a E I >,< 1/;. I a E I » 
GP«D.laEI» 

(GP« ¢. I a E I »,GP«I/J. I a E I») 

By theorem 10 FSPR and GPPR are w-continuous. 
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20 remark 

FSPR is usually composed with the isomorphism between 

given by lemma's 17 and 18, and GPPR with the isomorphism between 

resultinginFSPR : CPOPRx CPOPR - CPOPRandGPPR:I1.El CPOPR - CPOPRwith 
the following definitions 

FSPR(D,E) 

FSPR((</I, ,p), (</I', ,p'» 

FS(D,E) 

(FS(,p, </I'), FS(</I, ,p')) 

GPPR« Da I a E I » 
GPPR« (</Ia,,pa) I a E I » 

GP«DalaEI» 

These functors are also w-continuous. 

o 

(GP« </Ia I a E I >),GP«,pa I a E I ») 
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4 Functor categories 

21 definition functor category [A, B] 
If A and B are categories, then [A, B] is the category with functors from A to B as objects and 

natural transformations between such functors as morphisms, i.e. 

'I E Hom[A,Bl(F,G) iff 'I: F~G 

o 

As we shall see ) for our purposes the notation [A, B) is preferable to the more convent.ional 

notation BA. 

If A is a discrete category - i.e. the only morphisms are identities - then [A, B] is simply a product 

category, viz. naEObj(A) B. 

22 lemma 

If B is an O-category, then [A, B] is an O-category. 

proof 

An [A, B]-morphism is a natural transformation, i.e. a mapping from A-objects to B-morphisms. 

The ordering on [A, B]-morphisms is just the ordering on B-morphisms, pointwise. That. [A, BJ is 

indeed an O-category is easily verified: 

o 

• every hom-set in [A, B] is a paset, and every ascending chain in a hom-set has a lub, which 

we get by taking the pointwise lubs . 

• composition of natural transformations is defined pointwise, so composition is w-continuolls 

with respect to the ordering on the hom-sets. 

23 lemma 

Let B be an O-category in which every idempotent is split. 

Then [A, BJ is a localized O-category. 

proof 

Idempotents in [A, BJ are mappings from A-objects to B-idempotents. So if every idempotent. 

in B splits, then every idempotent in [A, BJ splits (pointwise). If every idempotent is split. in a 

category then it is a localized category (theorem 7) so [A, BJ is localized. 
o 

From now on, B will be an O-category, and A an arbritary category. 

Because [A, B] is an O-category, there is an associated category of embedding-projection pairs. 

By definition 3, this category is defined as follows. 

24 definition [A, BJPR 
[A, BJpR is the category with functors from A to B as objects and projection-embedding pairs of 

natural transformations between such functors as morphisms, 

o 

('1,0) E HOm[A,BJpR(F,G) iff ry: F~G 
O:G~F 
0,'1 = idp 

'1,0 ~ ida 
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Because everything is defined pointwise, 

0.'1 = idp <==} If ,eObj(A) [0,.'1, = idp,j 

'1.0 !:::: idG <==} If,eobj(A) h,.o, !:::: idG,j 

25 lemma 

Let B and [A, Bj be localized O-categories and suppose that BpR is an w-category. 

Then in [A, BjPR every w-chain has a colimit. 

proof 

Let ~ be the following w-chain in [A, BjPR 

F' 

We will define a functor E from A to B. First we define its object part. 

Let a E Obj(A). Then 

F o (cJ>~, w~) 
a • 

(cJ>~, w~) 
F2a • ... 

is an w-chain B PR. B P R is an w-category, so this chain has a colimit: (Ea, < (1)~, 1/J~) liE IN ». 
This means that for all i E IN 

and, since B is localized, U 4>~o1jJ~ = idEa 

We define the morphism part of E E Obj([A, BjPR) by 

We will prove that this is defined, i.e. 

(i) U 1>l.F' f.1/J~ exists for all f : a ~ b in A 

and that 

(ii) (E,< (1)',1/J') I i EIN » is acoconefor~. 

Once we have established (i) and (ii), then 

(E, < (1)', 1/J') liE IN » is a coli mit for Ll 

{[A, Bj is localized} 

U1>'.1/J' = idE 1\ (E, < (1)', 1/J') liE IN » is a cocone for Ll 

= {idE and lubs defined pointwise} 

lfaeAU1>~.1/J~ = idEa 1\ (E,< (1)',1/J') liE IN » is acocone for Ll 

= {def 1>' and 1/J' , (iill 
true 

and we have proved that ~ has a colimit . 
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(i) To prove: U 1>~,F' f',,;~ exists for all f : a -. b in A. 

Because B is an O-category, a proof that < <fJioF i fo"p~ >iEIN' is an ascending chain in H o1nn(Ea, Eb) 
suffices. 

1>b'P M~ 
{1>~ = 1>~+1 ,<I>~ , ,,;~ = 1Jt~,,,;~+I} 
¢t+1o ~~oFi f o~~otP~+l 
{<I>' : F'~F'+I} 

¢~+1 oFi+l fo<l>~ o'lt~o¢~+l 

C {<I>~,IJt~ I;; idp ;+'} 

1>;+1,F'+1 f,,,;~+1 

(ii) To prove: (E, < (1)','';') liE IN » is a coeane for Ll.. 
We must prove that for all i E IN 

We know that for all a E Obj(A) and i E IN 

(.I.' .I.i) _ (.1.'+1 .,.Hl) ("" ,T.,) . 
'f'a'o/a - 't'a ,'f'a O'¥a,'l'a ,l.e. 

so we know that (b) is true. 

To prove (a) we only have to prove that 1>' : F'~E 
vi : E~Fi 

since we already know that for all a E Obj(A) ,,;~'1>~ idp " 

¢~o1jJ~ C idEa 
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Suppose k < j and f : a - b in A. 

For all i <IIi: Fi~Fi+l, so (2) commutes, and ljii: Fi+l~Fi, so (5) commutes. 

(1';, ¢i) = (qli+l, ¢i+l )o(<IIi, ljii), so (3) and (4) commute. 

Finally, (1) and (6) commute because 

Using 

¢{.oql: 
{qli = qli+lo<lli for all i } 

tMo<f>iao'l>~-10'" o~~ 

{¢~01>!, = idFia} 
. 1 • 

<It-'a - 0'" 04> a 

by definition 
(
*) Ef = UiEIN qI{oFi fo¢~ 

= U .. i Fif ./,i h>k'l"o ''I'a because < ¢ioFi /o1fia >jEIN is an ascending chain 

we can show that for all j > k 

For all j > k 

so 

l.e. 

o 

qli.F· f 
{LHS diagram} 

ql1.Fi /o¢~.qI~ 

(Uh>kqlt.Fi M~) .qI~ 
= {(*)} 

Efaq\~ 
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F' f.¢! 

{RHS diagram} 
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26 corollary 

Let B be a O-category in whicb every isomorphism is split (so B is localized) . Suppose that BpR 
is an w-category and that [A, BjpR has an initial element. 

Then [A, BjPR is an w-category. 

proof 

BpR is an w-category and by lemma 23 [A, Bj is a localized O-category, and so by lemma 25 every 

w-chain in [A, BjPR has a colimit. 

So if [A, BjPR has an initial element, [A, BjPR is an w-category. 
o 

27 corollary [A, CPO J.jPR is an w-category. 

proof 

In CP0J. every idempotent is split (lemma 13) and (CP0J.)PR = CPO pR is an w-category. 

By the previous corollary we only have to find an initial element in [A, CPOPRjPR. 
The obvious candidate for an initial object in [A, CPO l.]PR is the constant. functor which maps 

every A-object to the one-point cpo and every A-morphism to the only possible function,bet.ween 

two one-point cpos. It can easily be verified that this is indeed an initial element. 

o 

The category [A, CPO]PR, however, is not an w-category, because it does not have an initial 

object. The initial object of [A, CPO J.jPR is of course also an [A, CPOjpn-object, but it is not 

initial. 

We will construct the model in the category [T, CPO 1.jPR' As a consequence of using CPO 1. 
instead of CPO all coercions will be strict. The coercions coercea b for base types a and b the 

also need to be strict. 

15 



5 The model construction 

In the rest of this paper, the definitions of FS: CPO LOP x CPO L -> CPO Land 

GP: DaET CPO L -> CPO L no longer matter. The only thing that matters is that they are 

locally continuous. 

1K. is short for the category [7, CPO L]PR. 

28 definition IF: 1K.->1K. 
IF is a functor 1K. to 1K., so it consists of an object part, a mapping from Obj{1K.) to Obj(1K.), and 

an morphism part, a mapping from Mor{1K.) to Mor(1K.). 
The object part of IF is defined as follows: if F E Obj(1K.), then IFF E Obj(1K.), i.e. IFF is a 

functor from T to CPO L. The object part of IFF, a mapping from Obj(T) to Obj( CPO L)' is 

defined by 

(IFF)a 
(IFF)a -> b = 
(IFF)ITj 

domaina 
FS{Fa, Fb) 
GP« F(f(a)) I a E T » 

and the morphism part of IFF, a mapping from M or(T) to M orr CPO L), is defined by 

(IF F)a~b = caercea, 
(IFF)a -> b~a' -> b' = FS(F a'~a,F b~b') 
(IFF)ITj~ITg = GP« F j(a)~g(a) I a E T » 

The morphism part of IF is defined as follows: 

if('1,B) E Hom1K.(F,G), then IF('1,O) = ('1',B'), where 

('1~, B~) (iddamaina ,iddamaina ) 
(17~_"B~_,) = (FS('1a, Ba), FS(ry"B,)) 
('1;'I,B;'/) = (GP« '1/(a) I a E T »,GP« 0l(a) I a E T ») 

Checking 'I' : IFF~IFG and B' : IFG~IFF is straightforward, and it can easily be verified 

(coordinatewise) that 1F preserves identities and composition. 
o 

Note that for the coercions FS is used, which takes care of the contravariance of - with respect 

to the subtype relation whereas for the morphisms FSPR is used: 

which is covariant in both arguments, so that a fixed point can be constructed. 

Similarly, GP is used for the coercions, and GPPR is used for the morphisl11s: 

(GP«'1/(a) laET»,GP«BI(a) laET») = GPPR«17/(a) laET>,<OI(a) laET» 

In terms of the functors FSPR' and GPP1", as defined in remark 20: 

(FS('1a, Ba), FS(ry, , 0,)) = FS'PR{('1a, Ba), (f/b, Bb )) 

(GP« ry/(a) I a E T »,GP« 0l(a) I a E T ») = GP;'R( < ('1/(a),OI(a») I a E T > ) 

Any fixed point of 1F will solve the recursive domain equations and satisfy t.he condit,ions for t.he 

coercion functions. 
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For example, let (F, (<I>, w)) be a fixed point of 1F, i.e. (<I>, w) is an isomorphism between F and 

1FF. This means that <I>: F...!....1FF and W: 1FF"'!""F, such that <I>,w = id1FF and w,<I> = idF. 
Because everything is defined pointwise, this means that for all a E T 

<I>a,wa = id(1FF)a 
Wao<Pa = idFa 

and for all a :5 b <I>a 
Fa 

, 
(1FF)a 

wa 

1(1FF)a:5 b © 
<I>, 

I Fa :5 b 

Fb , (1F F)b 

W, 

Suppose II! :5 IIg. Then 

<I>IIJ 
FII! .. , __ ---,-____ ' (1FF)II! = GP« F(f(a» I a E T » 

I w~ I 
FII!:5 IIg © (1FF)II!:5 IIg = GP« F(f(a»(g(a» I a E T » 

<I>lIg 
FIIg _--..,.-____ ' (lFF)IIg = GP« F(g(a)) I a E T » 

W IIg 

and 

F II!:5IIg = WlIg , (1FF)II!:5IIg, <I>IIJ = WlIg ,GP« F !(a):5i1(a) I a E T » , <pn! 

so condition (4) (see page 6) is satisfied. In the same way it can be shown t.hat condit.ion (2) and 

(3) is satisfied. 

We now want to prove that 1F is an w-continuous functor, so that by the initial fixed point, lemlna 

an initial fixed point of 'IF can be constructed. For this we can use the notion of local continuity. 

We define the following functor. 

29 definition 71. : [T, CPO 1.1op x [T, CPO 1.1--> [T, CPO 1.1 
If(F, G) E Obj([T, CPO 1. lOP x [T, cPO 1.])' so F and G are functors from T to CPO 1. ' then 

71. (F, G) is defined by 

and 

(71(F, G»a 
(71(F, G»a --> b = 
(71(F, G»II! 

domaina 
FS(Fa, Gb) 
GP« G(f(a» I a E T » 

(71(F, G»a:5b = coercea, 
(71(F,G»a --> b:5a' --> b' = FS(F a':5a,G b:5b') 
(71(F, G))II!:5IIg CP( < C !(a):5g(a) I a E T » 
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If(1),O) E Hom«F,C),(F',C'», so 1): F'~F and 0: C~C' then 7-l(1), 0) is defined by 

(7-l(1),O»a 
(7-l(1), O))a - b 
(7-l( 1), O))ITJ 

iddomaina 
FS(1)a, 0,) 
CP« 0J(a) laET» 

Checking 7-l(1), 0) : 7-l(F, C)~7-l(F', C') is straightforward, and it can ea5ily be verified (coordi

natewise) that -:Ii preserves identities and composition. 

o 

30 lemma 7-l is locally continuous 

proof 

Because the ordering on the hom-sets of [T, CPO 1.] is defined coordinatewise, we can prove this 

coordinatewise. 

Let < (1)',0') >'EIN be an ascending chain in Hom[T,cPo"loPx[T,cPo"I«F,C),(F',C'», 
so TJi :F'~F, Oi: G~G/, r/ ~ 7]i+l and 0' I;Oi+1. 

We must prove 

which is equivalent to 

because lubs are take pointwise. 

We distinguish three cases: a is a base type, a is a function type, and a is a polymorphic t.ype. 

For base types it is trivial: 

For function types it follows from local continuity of FS, and for polymorphic types it follows 

from local continuity of C P: 

---+-types : (U 7-l( 'l, O'»a_' IT-types: (U 7-l (1]' , Bi )nJ 

= = 
U FS(1)~, OD U CP( < B}(a) I a E ObjeT) » 

FS(U 1)~, U eil CP« UO~(a) I a E ObjeT) » 
= = (7-l(U 1/i, U Oi))a_' (7-l(U 1/', U Oi»nJ 

o 

[T, CPO 1.1 is a localized O-category and 7-l is locally continuous, so 

7-lPR : ([T, CPO J.l op x [T, CPO J.])PR - [T, CPO J.lpR is w-continllolls. 

Let the functor 1F, be the isomorphism from [A, CPO J.lpR to ([A, CPO J.10P)PR, and let the 

functor 1F, be the isomorphism from ([A, CPO llOP)PR x [A, CPO llpli to 

([A, CPO J.lop x [A, CPO J.])PR, as defined in lemma's 17 and 18. 

So the object part of 1F, is defined by 1F, F = F 
and the morphism part by 1F, (1), 0) = (0,1/) 

and the object part of 1F2 is defined by 
and the morphism part by 

1F,(F, C) (F, C) 
1F2 «TJ,0),(q,,1/J» = «TJ,q,),(O,1/J)) 
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31 definition Ll. : [A, CPOl.lPR ~ [A, CPOl.lPR x [A, CPOl.lPR 
The object part of Ll. is defined by Ll.F = (F, F) 
and the morphism part by Ll.('1, 0) = (('1,0),('1,0» 

o 

proof 
(RpR,lF2 ,(lFl x J),Ll.)F 

= {definition Ll.,lFj,lF,} 
RPR(F,F) 
{ definition P R} 

R(F,F) 
= {definition R,lF} 

lFF 

and so IF = R pR,lF2 ,(lFl x I),Ll. 
o 

So 

33 lemma 1F is w-continuous 

proof 

(RpR,lF2 ,(lFj x I),Ll.)('1,O) 
= {definition Ll.,lFj,lF,} 

RPR((O, 'I), ('I, 0» 
{ definition PR} 
(R(O, '1),R( '1,0» 

= {definition R, IF} 
IF('1,O) 

7{,PR, 1F2 , 1Fl , I and dare w-continuous, and hence so is 7iPRo'JF20(1F1 x I)od. So by lemma 32 

1F is w-continuous. 

o 
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6 Concluding remarks 

It should be noted that the construction we have described is not limited to the particular set of 

types, subtype relation, O-category or functors that we gave in section 1. 

For the functors, FS and OP in the our case, only the local continuity is essential. Instead of 

CPO J. other O-cateories can also be used, provided the conditions needed to apply corollary 26 

are satisfied. 

It is of course no coincidence that the same functor comes up in both the recursive domain equa

tions for function types and the coherence condition for functions types, nor that the mixed con

tra/covariance of this functor exactly matches the mixed contra/covariance of the type constructor 

~ with respect to the subtype relation. 

Other type constructors, such a.'3 x (Cartesian product) , + (separated sum), 0 (sma.shed product) 

,Ell (coalesced sum) or (-h (lifting) can easily be included. All that is required is the correspond

ing (locally continuous) functor. In fact, FS represents the most difficult case, because it. is 

contravariant in one argument. For example, product types of the form a x b call be made llsillg 

the cartesian product functor CP: CP0.1 x CP0.1 ---->- CP0.1' The reclIrsive domain equation 

for x-types is 

Domaxb CP(Dom., Dom,} 

and the coherence condition is 

Coeaxb a'xb' 

Labelled products (records) and labelles sums (variants) (see [CW85J) can also be incorporated in 

the model, as well as the natural subtype relation on them. 

~>types - also called existential types or weak sums (see [MP88J) can also be added, using the 

generalized sum functor (see [tEH89bJ), a.'3 well a.'3 bounded II- and L-types. The subtype relation 

on types can be extended accordingly. In [Pol9l] the results described in this paper are also lIsed 

to construct models for second order la.mbda calculus with recursive types and subtyping. 
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