

Modelling, control and fault detection of discretely-observed
systems
Citation for published version (APA):
Philips, P. P. H. H. (2001). Modelling, control and fault detection of discretely-observed systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Applied Physics and Science Education]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR543245

DOI:
10.6100/IR543245

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR543245
https://doi.org/10.6100/IR543245
https://research.tue.nl/en/publications/f15f69e1-3a72-4aa1-9192-93ddbc8f8fe3

Modelling, Control and Fault Detection of
Discretely-Observed Systems

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Philips, Patrick P.H.H.

Modelling, Control and Fault Detection of Discretely-Observed Systems / by
Patrick P.H.H. Philips.
Eindhoven : Technische Universiteit Eindhoven, 2001.
Proefschrift. - ISBN 90-386-1729-1
NUGI 831
Trefw.: regelsystemen; speciale methoden / hybride systemen / wiskundige
modellen / discrete systemen / foutendetectie
Subject headings: nonlinear control systems / hybrid systems / modelling /
discrete event systems / fault diagnosis

Druk: Universiteitsdrukkerij TU Eindhoven, The Netherlands

Copyright c© 2001 by P.P.H.H. Philips
All rights reserved. No parts of this publication may be reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording or
by any information storage and retrieval system, without permission of the copyright
holder.

Modelling, Control and Fault Detection of
Discretely-Observed Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus,
prof.dr. M. Rem, voor een commissie

aangewezen door het College voor Promoties
in het openbaar te verdedigen op

maandag 23 april 2001 om 16.00 uur

door

Patrick Peter Hubert Helena Philips

geboren te Roermond

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.dipl-ing. H.A. Preisig
en
prof.dr.ir P.P.J. van den Bosch

Copromotor:
dr.ir. W.P.M.H. Heemels

Contents

Summary ix

1 Introduction 1
1.1 Hybrid world . 1
1.2 Systems . 2

1.2.1 Continuous systems . 3
1.2.2 Discrete-event systems 4
1.2.3 Hybrid systems . 5

1.3 Discrete-event models of continuous systems 6
1.4 Goals . 9
1.5 Achievements . 10
1.6 Outline . 12

2 Preliminaries 15
2.1 Automata . 15
2.2 Representation of discrete states 16
2.3 Directed graphs . 19
2.4 Adjacency matrices . 20
2.5 Labeled digraphs . 21
2.6 The Neighbor matrix . 22
2.7 The (relative) interior of a set 23
2.8 Notes and references . 23

3 Discrete-event models of continuous systems 25
3.1 The models . 25

3.1.1 Isomorphism . 29
3.2 Discrete-event modelling algorithm 30

3.2.1 State discretization . 30
3.2.2 Discrete inputs . 32
3.2.3 Input discretization . 32
3.2.4 Transition function . 33

v

vi Contents

3.2.5 Computing the transition function 34
3.3 Systems with outputs . 36

3.3.1 Building the discrete-event model 36
3.3.2 Choice of the state coordinates 40
3.3.3 Nonlinear systems with linear output maps 41
3.3.4 Linear systems . 42

3.4 Computational effort . 44
3.4.1 Linear systems . 44
3.4.2 Hierarchical structure 49

3.5 Example: a three tank system 53
3.5.1 The nonlinear system 54
3.5.2 The linear system . 57

3.6 Notes and references . 58

4 State reconstruction 61
4.1 Continuous-state reconstruction 61

4.1.1 The linear, time-invariant case 63
4.1.2 The linear, time-varying case 64
4.1.3 The general case . 65
4.1.4 Event-based observability and detectability 67
4.1.5 Three tank example . 70

4.2 Discrete-state reconstruction 72
4.2.1 Discrete-state measurement 72
4.2.2 Event measurements 74
4.2.3 Rolling ball example . 76

4.3 Notes and references . 78

5 Control strategies 81
5.1 Control goals . 81
5.2 Preventing, correcting, and moving inputs 85

5.2.1 Preventing inputs . 85
5.2.2 Correcting inputs . 86
5.2.3 Moving inputs . 90

5.3 Discretely controlled invariant sets 91
5.4 ‘Forceable state-transition’ control strategy 94

5.4.1 Sufficient condition for the forceability of a transition . 95
5.4.2 Forceability graph . 96
5.4.3 Control strategy . 97
5.4.4 Example: two tank system 98

5.5 ‘Forceable set-transition’ control strategy 101
5.5.1 Control strategy . 102
5.5.2 Troublesome situation 103

Contents vii

5.5.3 Example: two tank system 104
5.6 ‘Invariant sets’ control strategy 105

5.6.1 Control strategy . 106
5.6.2 Pathological case . 108
5.6.3 Example: two tank system 108

5.7 Transition measurements . 110
5.7.1 Strong forceability graph 110
5.7.2 Correcting versus preventing inputs 112

5.8 Relaxing Assumption 5.1.3 . 112
5.8.1 Using correcting inputs 114
5.8.2 Additional computations 114

5.9 Notes and references . 116

6 Fault detection and isolation 119
6.1 Fault detection and isolation 119
6.2 Merging states . 123
6.3 Example . 127
6.4 Notes and references . 130

7 Conclusions and recommendations 131
7.1 Contributions . 131

7.1.1 Discrete-event models of continuous systems 131
7.1.2 State reconstruction . 132
7.1.3 Control . 133
7.1.4 Fault detection and isolation 135
7.1.5 Explicit computations via Boolean vectors and matrices 135

7.2 Recommendations for further research 135

Bibliography 139

Notation 149

Index 151

Samenvatting 153

Dankwoord 155

Curriculum Vitae 157

viii Contents

Summary

In this thesis, controlled systems are studied for which the plant is described
by continuous dynamics and the controller is given by a discrete-event model.
Examples are plants that are observed by discrete sensors and manipulated by
discrete inputs, and continuous systems for which the interaction with other
processes is supervised by a computer program. For such systems models,
control strategies and a fault detection scheme are developed.

The approach followed in the thesis to study this kind of hybrid systems
is to translate the continuous dynamics of the plant (described by continuous
differential equations) into a discrete-event system. In this way the interaction
of two discrete-event systems is studied, which facilitates the analysis of the
original hybrid system.

To ‘discretize’ the continuous dynamics, the state space of the system is
partitioned into hypercubes associated to discrete states of an automaton. An
discrete-event model can be described by specifying the possible transitions be-
tween discrete states. A transition from one discrete state to another discrete
state is possible whenever there is a trajectory governed by the continuous
dynamics from the corresponding hypercube to the other. To verify if there
exists such a trajectory, an automated algorithm is developed that checks the
boundary surface between two hypercubes for derivatives of trajectories (given
by the continuous differential equation) that are directed towards the adjacent
hypercube and therefore allowing a transition.

For systems with discrete measurements, i.e. measurements for which only
a signal is emitted when a certain value is reached instead of when a certain
time period has elapsed, it is shown how to reconstruct the continuous tra-
jectory for both linear and nonlinear systems. When the input is known, the
differential equations exactly describe the continuous plant, and measurement
noise and disturbances are absent, a multipoint boundary value problem has to
be solved to reconstruct the continuous state. Using the reconstructed infor-
mation, a conventional continuous controller can be applied, or the information
can be used for additional control actions. If still a discrete-event system is
to be used as a controller, then for systems with outputs it is shown how to
reconstruct the discrete state from a sequence of discrete measurements.

ix

x Summary

The discrete-event models that result from the modelling algorithm can
be used for controller synthesis. Three controller design strategies are pro-
posed. For these strategies, besides the obtained discrete-event model, also
the knowledge that the underlying system is continuous is used.

The first controller design method is based on the construction of transi-
tions that can be guaranteed to occur by choosing suitable inputs. Since it is
difficult to determine whether this is possible, a sufficient condition is derived.
The idea is to prevent (or correct) undesired transitions with inputs that are
moving towards a desired transition. From all transitions that satisfy this suf-
ficient condition, a graph is constructed. Suitable paths from a given initial
state to a desired target state can be found from this graph by a constructive
algorithm.

The principle of the second and third controller synthesis methods is based
on the construction of controlled invariant sets for which it is certain that al-
ways inputs can be chosen that prevent the continuous trajectory from leaving
this set. The idea is now to compute a sequence of nested invariant sets such
that the first set contains the desired discrete states and the last one contains
the initial state. This sequence of nested sets is constructed with the property
that always inputs can be chosen that will move the continuous trajectory in
the direction of a predecessor in the sequence, until eventually the target set
is reached. The difference between the two synthesis methods is the construc-
tion of the controlled invariant sets. One method deletes discrete states that
obstruct the invariance, whereas the other method includes discrete states to
which the transition cannot be prevented.

The discrete-event models of the continuous systems can also be used for
fault detection and isolation purposes. For this, for each possible fault that
can occur a different discrete-event model of the plant is constructed. Next, by
observing transitions of the real plant it is deduced by comparing the discrete-
event models, if a measured transition can be caused by the nominal plant
(i.e. without faults) or only can result from a fault that has occurred. Besides
detecting a fault, it is also important to isolate the fault, which means that
it has to be determined which fault actually happened. By merging two or
more discrete states into one new state, the total number of discrete states
can be reduced resulting in faster computations for on-line implementation of
the fault detection scheme. However, it is only reasonable to merge discrete
states if no information is lost. Explicit expressions are given that indicate
that (e.g. transition or fault detection) information is preserved after merging
states.

All the controller design and fault detection schemes are explicitly stated in
terms of Boolean vectors and matrices and can, in principle, be implemented
directly. Furthermore, all concepts are illustrated by means of examples, show-
ing the capabilities of the methods.

Chapter 1

Introduction

This chapter serves as a first introduction to the subject of this thesis. Hybrid
systems are introduced as being dynamical systems of a mixed continuous and
discrete-event nature. The goals of this study, as well as the achievements
that have been made, are presented.

1.1 Hybrid world

Many objects surrounding us in daily life have a hybrid nature in the sense that
they possess continuous dynamics (described by e.g. differential equations) as
well as discrete characteristics (e.g. logic switching). That is, their behavior
is influenced by both continuous1 and discrete2 variables. For example, a car
has a speed which can take any (continuous) value between zero and its top
speed. Also the gas pedal takes any (continuous) position in between the
admissable range. But there is only a finite (discrete) number of gears from
which we can choose. For each gear the car has different dynamical properties.
Switching between the gears is done externally by a driver or by an automatic
gearbox. Other examples of hybrid systems are washing machines, VCR’s, cd-
players, microwaves, and the temperature control in a house via a thermostat,
to mention just a few.

In industrial environments examples of hybrid systems are given by con-
veyer belts, robots, batch processes, and many (complex) machines. The in-
troduction of computers in control systems has caused a considerable growth
of hybrid systems. Digital computers can only deal with discrete variables by
nature. They have to be supplied with discrete information and only discrete
information will be returned. Consequently, for any continuous plant that is to
be controlled by a computer, the closed-loop system will be a hybrid system.

1A continuous variable is a real-valued variable.
2A discrete variable is a variable that is an element of a countable set.

1

2 Introduction

This may be disregarded for the case where the computer is only used for im-
plementing conventional control laws and the influence of the ‘discretization’
of the plant’s output and input can be neglected. However, in case where the
computer serves, for example, as a supervisor that has to control the inter-
action of several smaller processes, it might be necessary to take the hybrid
nature into account. Moreover, in process industry often such a supervisor
not only has to (hierarchically) operate a process at a certain working point,
but also it has to take care of the start-up or shut-down procedure of a plant.
Also other tasks, such as safety handling and fault detection may need to be
performed and incorporated in the control strategy. It is evident that in these
situations the overall control strategy requires an (in some sense) intelligent
character. That is, the controller has to recognize the ‘discrete-state’ the plant
is in (e.g. the shut-down or an unsafe mode) and has to respond adequately.
In most cases it is impossible to find a continuous controller that can deal with
all these tasks.

Traditionally, system and control theory deals with systems for which the
‘state’ describing the system and the input acting on it have continuous values.
Although early modern (i.e. based on the state space approach) books on
control theory already treat discrete-event systems (e.g. (Kalman et al. 1969,
Zadeh and Desoer 1963)), control theoretical results are mainly obtained for
continuous systems. The first general results on controlling discrete-event
systems only became available a few decades later (Ramadge and Wonham
1982, Ramadge and Wonham 1987b). It is rather difficult to establish general
methods for constructing controllers for the large class of hybrid systems.
Successful approaches to hybrid control system design are mainly established
in the form of case studies like automated vehicles (Lygeros et al. 1998) or
traffic management (Tomlin et al. 1998) for which specific strategies can be
applied, or when a special structure of the underlying model class is imposed
(e.g. (Tittus and Egardt 1998, Bett and Lemmon 1999, Bemporad and Morari
1999)). For an overview of many other interesting control strategies, see e.g.
(Henzinger and Sastry 1998, Vaandrager and van Schuppen 1999, Lynch and
Krogh 2000). However, it is clear that still a lot of research is needed to obtain
generally applicable methods for designing practically useful controllers that
can be implemented in an industrial environment.

1.2 Systems

To discuss the notion of a hybrid system in some detail, first it is explained
what we mean by continuous systems and discrete-event systems. Let us
recapitulate the definition of a system (Sontag 1990):

Definition 1.2.1 A system or machine Σ = (T ,X ,U , φ) consists of:

1.2 Systems 3

• A time set T ,

• A nonempty set X called the state space of Σ,

• A nonempty set U control-value or input-value space of Σ,

• A map φ : Dφ → X called the transition map of Σ, which is defined on
a subset Dφ of

{(τ, σ, x, ω)|σ, τ ∈ T , σ ≤ τ, x ∈ X , ω ∈ U [σ,τ)},

such that the (1) nontriviality, (2) restriction, (3) semigroup, and (4)
identity properties hold (Sontag 1990).

The transition map φ can be read as the state at time τ resulting from
applying input ω, starting at time σ with state x. Often φ is written as
φ(x, ω) when τ and σ are clear from the context. To illustrate this definition
of a system, a constant (time invariant), continuous time, linear system can
be defined (see (Sontag 1990) or (Kalman et al. 1969)) by T = R, X = R

n,
U = R

m, and

φ(τ, σ, x, ω) = eA(τ−σ)x(σ) +
∫ τ

θ=σ
eA(τ−θ)Bω(θ)dθ,

where A, B are the system and input matrix, respectively.

1.2.1 Continuous systems

Using this definition, we can explain what is meant by a continuous system in
this thesis. A continuous system is a system with the following properties:

1. T = R,

2. X ⊆ R
n and is open and connected,

3. U ⊆ R
m,

4. The transition map φ is induced by a differential equation of the form

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (1.1)

where f is a continuous function in its arguments x(t) ∈ R
n and u(t) ∈

R
m.

4 Introduction

So, the term ‘continuous system’ refers to the continuity of the state and
input space of the system Σ and is not related to the time set T (and thus
should not be confused with continuous-time as opposed to discrete-time sys-
tems3). The differential equations often follow from first principle modelling,
resulting in a state space model.

1.2.2 Discrete-event systems

In general, discrete-event systems are systems for which both the dynamics
is event-driven as opposed to time driven, and for which (at least some of)
the variables required to describe the dynamics are discrete (Cassandras et
al. 1995). So, the behavior of a discrete-event system is governed by the
occurrence of events and not by the fact that time evolves.

Possible descriptions of discrete-event systems are (Cassandras et al. 1995):

• Automata (Hopcroft and Ullman 1979),

• Petri nets (Reisig 1985),

• Stochastic timed automata (Doberkat 1981),

• Linear systems in the (max,+)-algebra (Olsder 1993),

• Markov chains (Freedman 1971).

Using Definition 1.2.1, the type of discrete-event systems we will use are
given by systems with the following properties:

1. X is a finite set of discrete states,

2. U is a finite set of inputs, also called the input alphabet,

3. T = Z,

4. The transition map is defined as the next-state or transition map φ(t+
1, t, x, u).

Note that for discrete-event systems there is no notion of time and the time
set T is only used for the ordering of the events. In computer science, these
systems are called automata. In the sequel, an automaton is described by
Σ = (X̃, Ũ , φ), with X̃ the set of discrete states, Ũ the set of discrete inputs,
and φ the transition map (cf. Section 2.1 for a more detailed definition).

3In this thesis, we are only concerned with continuous-time systems. For discrete-time,
the differential equation (1.1) will be replaced by a difference equation x(t+1) = f(x(t), u(t))
and T = Z.

1.2 Systems 5

1.2.3 Hybrid systems

There are various descriptions for modelling hybrid systems (see e.g. (Van der
Schaft and Schumacher 2000)). Often, these modelling methods have emerged
from a specific background. When a certain system is investigated, e.g. some
mechanical system with hysteresis, then a (hybrid) model is needed that can
describe the characteristics of hysteresis. If the interaction between a computer
and a continuous plant is the subject of interest, then probably a completely
different hybrid model is needed. In such cases, it is not necessary (or de-
sirable) to use a more sophisticated hybrid modelling method that also can
describe other hybrid phenomena, thereby rendering the analysis (in general)
more difficult. Indeed, the more powerful the modelling method, the more dif-
ficult the analysis of the model class will be. So, a trade-off between modelling
power (expressiveness) and decisive power has to be made.

Examples of methods for modelling hybrid phenomena are

• Hybrid Petri nets (David and Alla 1994),

• Mixed logical dynamical models (Bemporad and Morari 1999),

• Linear complementarity systems (Van der Schaft and Schumacher 1996,
Heemels et al. 2000),

• Differential automata (Tavernini 1987),

• Hybrid automata (Branicky et al. 1998).

Historically, two different approaches for solving hybrid problems can be
distinguished; the ‘continuous’ approach (mostly adopted by control engi-
neers), which tries to capture the discrete variables into continuous models,
and the ‘discrete-event’ approach (mostly developed by computer scientists),
which attempts to include the continuous dynamics (approximately) into a
discrete-event model. Nowadays, both views have developed in the same di-
rection, resulting in the acceptance of a model first referred to as the con-
trolled general hybrid dynamical system (Branicky et al. 1998), but most widely
known as the hybrid automaton. The hybrid automaton model as presented
below is a trimmed version of the one in (Branicky et al. 1998) as the discrete
events are generated by the continuous dynamics only. Branicky’s model is
more general, because it incorporates for instance externally supplied discrete
events. The model as described here suits our purpose and points out the
characteristics of a hybrid system: continuous phases separated by events at
which discrete actions such as re-initialization of the continuous state x and
discrete state q take place. A hybrid automaton is defined as a quadruple

6 Introduction

(using the notation as in (Branicky et al. 1998))

H = {Q,Σ, A,G},

where

• Q is the set of discrete states,

• Σ = {Σq}q∈Q is the collection of continuous systems Σq = (Xq,Uq, φq),
see Section 1.2.1,

• A = {Aq}q∈Q. Aq ⊆ Xq is the jump set for discrete state q,

• G = {Gq}q∈Q. Gq : Aq → S is the jump transition map,

where, S =
⋃

q∈Q Xq×{q} is the hybrid state space ofH. Loosely speaking,
a hybrid trajectory evolves as follows. Starting in some initial state s0 =
(x0, q0) for which x0 ∈ Xq0 \ Aq0 , the continuous part of the state evolves
according to φq0 with input u ∈ Uq0 until it reaches (if ever) Aq0 at time t1
(the discrete part remains constant). In this case, the hybrid state will jump to
s1 = (x1, q1) = Gq0(x(t

−
1)) with x(t−1) := limτ↑t1 x(τ) from which the process

continues.
This model captures a large number of hybrid phenomena such as switch-

ing and jumps of the state. However, due to its generality analysis is difficult
and the obtained results are therefore rather limited. In (Branicky et al. 1998)
an existence result for optimal controls is given which in general is hard to
verify for concrete systems. In (Van Schuppen 1998) a sufficient condition for
controllability of hybrid automata is presented. In (Lygeros et al. 1998, Tom-
lin et al. 1998) controllers are designed for specific case studies like automated
vehicles or traffic management. So, although the modelling power of hybrid
automata is large, for obtaining practically relevant results, additional restric-
tions have to be imposed to limit the class of systems under study on one
hand, and enlarge the capabilities of deducing theoretical as well as practical
results on the other. Fortunately, there are enough practically relevant prob-
lems that can be classified as being hybrid control problems, but for which
it is not necessary that the overall hybrid control problem has to be solved,
before obtaining interesting solutions.

1.3 Discrete-event models of continuous systems

In this thesis, we are concerned with continuous plants that are only observed
by discrete sensors (i.e. only emitting a signal when a certain boundary in the
state space is reached or crossed).

1.3 Discrete-event models of continuous systems 7

The continuous system is described, as before, by a set of differential equa-
tions:

ẋ(t) = f(x(t), u(t)), x(t0) = x0,

with x (t) ∈ R
n. For the moment, we assume that u(t) takes values from

some discrete set, i.e. u(t) ∈ {ũ1, ..., ũk}. For the case that x(t) ∈ R
2 a

trajectory evolves in a 2-dimensional state space, see Figure 1.1 (a).

x(t0)

x(te)

(1, 1) (2, 1) (3, 1) (4, 1)

(4, 2)

(4, 3)

(4, 4)

(a) (b)
Figure 1.1: (a) A trajctory in 2-dimensional state space; (b) discretization of
the state space and the resulting discrete trajectory

The discrete sensors are represented by a set of boundaries in the state
space. To be specific, for each component xi of the state vector x the following
values give the positions of the ‘sensors’.

βi0 < βi1 < ... < βini
(ni ≥ 1).

These discrete sensors induce a partitioning of the state space into hypercubes,
being rectangles in Figure 1.1 (b). Since it is only measured when a boundary
is reached, the only available information is the knowledge in which hypercube
the system is currently in. This means that we only have coarse, discretized
(quantized) information of the plant’s state.

The motivation for studying systems observed by discrete sensors is twofold.
The first reason is the frequent occurrence of these type of sensors in practical
situations, such as level sensors and encoders. The second reason is that con-
trol on the basis of discretized information can be used for hierarchical control.
The discretized information can serve as a basis for a coarse representation of
the plant. This model then can be employed for high level hierarchical con-
trol or decision making that does not depend on the exact continuous state of
the plant. Low level controllers can be used for fine-tuning. Note that it is

8 Introduction

not strictly necessary that we have actually discrete sensors; we can also have
continuous sensors in our plant, but we only act on the basis of the (artificial)
discrete information.

Based on this discrete (or quantized) information, we want to influence
the plant by control actions. One objective can be the steering of the process
from one place in the state space to another (and possibly keep it there), the
reachability or stabilization problem, respectively. The controller is modelled
by a discrete-event system. Since a discrete-event controller cannot commu-
nicate with the system at a continuous level, an interface is required for the
interconnection of the discrete-event controller and the continuous system, see
Figure 1.2 (a).

Discrete-eventDiscrete-event

DADA

ContinuousContinuous

ADAD Discrete-eventInterface

(a) (b)

controllercontroller

plantplant

model

Figure 1.2: (a) Hybrid system and (b) two discrete-event systems

In this figure, the discrete to analog conversion is denoted by ‘DA’, which
is sometimes also called the injector (Lunze et al. 1997). The block with
‘AD’ represents the analog to discrete conversion, also called quantizer (Lunze
1994). The interaction of a discrete-event controller with a continuous system
(Figure 1.2 (a)) results in a hybrid system. The approach we will follow for
dealing with this particular kind of hybrid systems is to model the continuous
plant together with the interface as a discrete-event model, see Figure 1.2 (b).
In this case, the interaction of two discrete-event models can be studied, which
is less difficult than considering the overall hybrid system. In literature, these
kind of systems are also referred to as ‘quantized systems’ (Lunze 2000). The
resulting discrete-event models are known as ‘discrete abstractions’ (Lunze
1999), or ‘qualitative models’ (Lunze 1994).

Roughly, the construction of the discrete-event model of the continuous
model is done as follows. The discrete sensors induce a partitioning of the state
space into hypercubes, as is depicted in Figure 1.1 (b). Each hypercube can be
identified with a tuple as shown in the figure. Such tuple can be interpreted
as a discrete state. If there exists a trajectory from x(t0) to x(te) in the

1.4 Goals 9

continuous state space (see Figure 1.1 (a)), then the discrete-event model that
has to result must allow the corresponding path in terms of discrete states,
as depicted in Figure 1.1 (b). Hence, transitions from (1, 2) to (2, 2), from
(2, 2) to (2, 3) and from (2, 3) to (3, 3) must be possible with the automaton
representing the continuous system. Since a continuous trajectory that evolves
from one hypercube to another has to cross the boundary between the two
hypercubes, it will be shown that it is sufficient to check the trajectories (in
fact, only the derivatives of the trajectories) on the boundary between two
hypercubes. The resulting discrete-event models then will be used for control
and fault detection purposes.

1.4 Goals

The goals of this thesis are the following:

(i) Give a mathematically sound and practically relevant method for abstract-
ing discrete-event systems from continuous systems described by differ-
ential equations.

(ii) Develop algorithms to design controllers on the basis of the obtained
models.

(iii) Use these models for fault detection (i.e. determining if a fault has
occurred) and fault isolation (i.e. deduce which fault has occurred)
purposes.

(iv) Explore the (im)possibilities and (dis)advantages when using discrete-
event models of continuous systems.

Concerning (i) it should be remarked that the idea of determining tran-
sitions between discrete states (induced by a partitioning of the continuous
state space) by examining derivatives on the boundaries separating states has
already been reported in (Lemmon and Antsaklis 1993, Preisig 1996b) and
further developed in (Preisig et al. 1997) for linear systems (some preliminary
work can be found in (Preisig 1992, Preisig 1993)). The method has been
adapted for the nonlinear case in Chapter 3, see also (Bruinsma 1997, Philips
et al. 1997).

The idea of abstracting discrete-event models from continuous systems is
quite general. There are a number of authors that approximate continuous
systems by discrete-event models as well. The differences between the various
approaches are mainly caused by the description of the resulting discrete-
event models (automata, timed automata, rectangular automata or stochastic
automata), the model of the continuous plant (continuous time or discrete

10 Introduction

time, linear or nonlinear) and the choice of the discrete states as related to
subsets of the continuous state space (rectangles, half spaces, or more general
shapes). For more details on other discrete-event modelling methods, we refer
the reader to the end of Chapter 3.

Of course, it would not make sense to derive a model without being able
to use it for analysis or controller synthesis purposes. With respect to (ii),
the most straightforward approach for control once a discrete-event model is
obtained, is to use the existing theory (e.g. (Ramadge and Wonham 1987b))
on controller design for discrete-event systems. However, much more effective
synthesis techniques are obtained, if the continuous nature of the underly-
ing system is exploited. Particular actions that are possible for this kind of
discretely observed systems are not included in design methods for general
discrete-event systems. In Chapter 5 we introduce three types of such actions
and show their additional value for the control problems considered here.

Using the obtained discrete-event model for diagnosis (iii) seems a natural
step since conventional methods have already been based on making logic
decisions from observed plant behavior. The logic (rules) behind this are often
deduced from operator’s insight and experience or expert systems. When using
discrete-event models abstracted from physical modelling, extracting the logic
can be done systematically.

In the procedure of trying to achieve (i), (ii) and (iii) one is bound to reach
the limitations of the discrete-event modelling approach that is used. These
limitations are as important as the results that are established, since they
indicate possible bottlenecks and ways to improve and enlarge the capabilities
of the methods for future research in this direction.

1.5 Achievements

Modelling

The concept of a discrete-event model of a continuous system as used in this
thesis, is given on the basis of an automaton, a continuous system, and map-
pings between the continuous state space and the discrete states. Much effort
is put in exactly defining the mapping from the continuous state to the discrete
state, which is defined for (pieces of) trajectories instead of points in the state
space. In this way, neither the situation can occur where it cannot be decided
to which discrete state a point in the state space should be assigned, nor will
it lead to an incorrect discrete-event model. Moreover, the proposed mapping
from the continuous to the discrete domain allows other (more general) kinds
of discrete states, such as ordered combinations of the discrete states as we
will use them. These kind of states can be exploited for the construction of
more ‘precise’ discrete-event models, but most likely at the cost of elaborate

1.5 Achievements 11

computations (such as integrations) and a large number of discrete states. In
this thesis, we restrict ourselves to discrete states that allow a computation-
ally less involved modelling method. To reduce the number of computations,
the structural properties of the continuous system such as linearity or sparsity
are exploited. Also, it is shown how to reduce the number of discrete states
without losing information in some sense. This is done by merging two or
more states into one new state, thus reducing the total number of states, and
then checking if explicitly given conditions are satisfied, guaranteeing no loss
of information.

A substantial piece of the modelling part is dedicated to continuous sys-
tems with outputs. A procedure is given that adapts the modelling method
for these systems. It is shown that outputs (in general) complicate the mod-
elling method. For outputs that are linear combinations of the state vector,
alternative and less computationally demanding methods are presented.

State reconstruction

A method is proposed to reconstruct the continuous state for nonlinear sys-
tems from the information provided by discrete measurements of parts of the
continuous state (not necessarily the same part for each measurement).

Control

For systems with discrete measurements (and possibly discrete inputs) three
controller design methods are proposed. These control strategies use the
discrete-event model of the continuous system as well as additional informa-
tion provided by the continuous plant, such as continuity and information
on derivatives that holds for parts of the state space. All controller design
methods are illustrated by means of a two tank system.

Fault detection and isolation

It is shown how to use discrete-event models of continuous systems for fault
detection and isolation purposes. Conditions are given for which a possible
fault can be detected and isolated by the proposed detection scheme. Also,
reduction of the number of discrete states is discussed together with a condi-
tion that has to be satisfied in order not to loose information concerning the
detection and isolation of faults.

Boolean matrices

In this thesis, we make extensive use of Boolean matrices and vectors. Since a
Boolean vector can be used for representing a set, it is possible to give explicit

12 Introduction

expressions for particular sets in terms of operations on Boolean matrices.
Therefore all controller design methods, the fault detection scheme, conditions
and definitions are explicitly described by Boolean matrices and vectors.

1.6 Outline

After some preliminaries in Chapter 2, we will present the definition of a
discrete-event model of a continuous system in Chapter 3. Next, the discrete-
event modelling algorithm is presented that is used to extract discrete-event
models from continuous systems. Important issues here are the mapping from
the continuous state space to the discrete state space, and the determination
of the transition function. For systems with outputs, a procedure is given
for incorporating outputs in the modelling structure. If these outputs (in
the continuous domain) are linear combinations of the continuous state, then
alternative techniques can be given. Furthermore, it is shown how to use
linearity and/or sparsity of the continuous system to reduce the computational
effort necessary to obtain the discrete-event model. A three tank system serves
as an example for illustrating the modelling method and the benefits that can
be made by exploiting the structure of the continuous system.

In Chapter 4 it is first shown how to reconstruct the continuous state from
partial discrete measurements. This is done for linear as well as for nonlinear
systems. Next, a procedure is proposed for reconstructing the discrete state
from partial discrete observations.

In Chapter 5 three controller design strategies are proposed. First, the
control objectives and concepts that are used are explained. Then, the no-
tion of ‘preventing’, ‘correcting’, and ‘moving’ inputs is formalized, followed
by the definition of controlled invariant sets in the context as they are needed
here. Next, the three synthesis methods are explained. The first method is
based on preventing transitions to undesired states with inputs that ensure
the movement towards a desired state. The second controller strategy con-
structs a nested set of controlled invariant sets that will be used for letting
the state evolve to the desired objective. The third design method has a sim-
ilar strategy, but differs in the construction of the controlled invariant sets.
All control strategies are illustrated by a two tank example. Each controller
design method is explained for the case that it is measured when the contin-
uous trajectory reaches a boundary (defining our discrete states). Next, it is
discussed how to adapt the strategies for the case that it is only measured
that such boundary is crossed (instead of reached). The chapter is ended with
the discussion of some additional computations that are required when an
assumption that is made cannot be satisfied.

Chapter 6 deals with the detection and isolation of faults. After explaining

1.6 Outline 13

how the discrete-event models can be used for these purposes, conditions are
given that have to be satisfied for a fault to be detectable or uniquely iden-
tifiable. Next, the reduction of the number of discrete states by merging two
or more discrete states into one new discrete state is examined. Specifically, a
condition is given that has to be satisfied in order not to loose information, for
instance, causing a fault no longer to be detectable. A heat exchanger plant
is used for showing the possibilities of the discussed material.

Finally, conclusions and recommendations will complete the thesis.

14 Introduction

Chapter 2

Preliminaries

The following concepts are frequently used in this thesis.

2.1 Automata

Definition 2.1.1 A nondeterministic automaton is defined as the triple Σ =
(X̃, Ũ , φ) with

• X̃, the set of discrete states,

• Ũ , the set of discrete inputs,

• φ : X̃ × Ũ → 2X̃ , the partial transition function.

Given a discrete state x̃ ∈ X̃ and a discrete input ũ ∈ Ũ , the transition
function φ determines the next possible state: x̃new ∈ φ(x̃, ũ). Since φ needs
not to be defined for all discrete states, it is a partial function. In case of
finite X̃ the automaton is called a finite automaton. For a nondeterministic
automaton it is not certain what the result of applying an input ũ will be for
a given discrete state x̃, since the next state is only known to be an element
of some (known) set. Clearly, this makes the control of such systems difficult.
An automaton is said to be deterministic if only one new state is possible, i.e.
φ : X̃ × Ũ → X̃ and xnew = φ(x̃, ũ).

An automaton with outputs is a 5-tuple Σ = (X̃, Ũ , φ, Ỹ , h) consisting of
an automaton together with a set of discrete outputs Ỹ and an output map
h : X̃ × Ũ → Ỹ . In computer science, automata with outputs often are
referred to as sequential machines (Booth 1967, Hopcroft and Ullman 1979).
If the output is only a function of the state (i.e. ỹ = h(x̃)), then it is called a
Moore machine. If it is a function of the state and the input (i.e. ỹ = h(x̃, ũ))
then the term Mealy machine is used.

15

16 Preliminaries

2.2 Representation of discrete states

The elements of the discrete sets X̃ and Ũ , the discrete states x̃ and inputs
ũ respectively, can be represented in various ways. Each representation has
its own applications and advantages. In this thesis, three different kinds of
representation are used for the discrete states; the tuple representation x̃, the
integer representation x̄, and the Boolean vector representation x̂. Accordingly
the corresponding discrete sets are denoted by X̃, X̄, and X̂, respectively. For
the remainder of this thesis, when no particular representation is specified, a
discrete state is denoted by x̃.

Tuple representation In this representation, a discrete state is given by
an n-tuple: x̃ = (x̃1, x̃2, ..., x̃n) ∈ X̃ = {1, ...,m1} × {1, ...,m2} × ... ×
{1, ...,mn}, with x̃i ∈ {1, ...,mi}. This is probably the most natural
representation for our purpose.

To facilitate the translation into other forms in a general manner, the
following ordering of elements in X̃ is assumed:

X̃ = {(1, 1, ..., 1), (2, 1, ..., 1), ..., (m1, 1, ..., 1),
(1, 2, 1, ..., 1), ..., (m1 − 1,m2, ...,mn), (m1,m2, ...,mn)}.

Integer representation A discrete state is given by an integer x̄ ∈ X̄ =
{1, ..., p}, where p =

∏n
j=1 mj . This is the most commonly used repre-

sentation of a discrete state in literature, but is only used in this the-
sis as an intermediate form between the tuple representation and the
Boolean vector representation to be explained next. The transformation
Tti : X̃ → X̄ is given by

Tti(x̃) = (
n∑

i=1

ai(x̃i − 1)) + 1,

with

ai =
{

1 i = 1∏i−1
j=1 mj i = 2, ..., n.

(2.1)

The ordering of the elements in X̃ is not necessary, but as can be seen
from Example 2.2.1, results in the fact that the i-th element in the or-
dered set X̃ actually corresponds to the integer i in the integer domain.
The inverse transformation Tit : X̄ → X̃ is given by the following recur-

2.2 Representation of discrete states 17

sive scheme

x̃n =
⌈
x̄

an

⌉
,

x̃n−k =

⌈
x̄−Πn

j=n−k+1(x̃j − 1)aj
an−k

⌉
, k = 1, ..., n− 1,

from which we get the coordinates of x̄. Here �a� denotes the smallest
integer greater than or equal to a.

Boolean vector representation A discrete state is given by means of a
vector x̂ ∈ X̂ ⊂ {0, 1}p, where X̂ are all vectors that have only one
nonzero element. The transformation from the integer to the Boolean
vector representation Tib : X̄ → X̂ is defined as:

Tib(x̄) = [0, 0, ..., 0, 1, 0, ..., 0, 0]T ,

with the 1 at the x̄-th position. In this way, x̂ = Tib(x̄) is equal to the
unit-vector denoted by ex̄. Consequently, the transformation Tbi : X̂ →
X̄ is defined by

Tbi(x̂) = j if x̂j = 1.

The transformations Ttb : X̃ → X̂ and Tbt : X̂ → X̄ follow immediately
from the composite mapping

Ttb(x̃) = Tib ◦ Tti(x̃), and
Tbt(x̂) = Tit ◦ Tbi(x̂),

respectively.
The different forms of representation are explained for the discrete states

but of course can also be used of the discrete inputs.

Example 2.2.1 As a comparison, the three representation forms are put to-
gether in one table for the case where m1 = 3, m2 = 2, and m3 = 2, implying
that p = 12.

18 Preliminaries

3-Tuple Integer Boolean vector
(1, 1, 1) 1 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

(2, 1, 1) 2 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

(3, 1, 1) 3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

(1, 2, 1) 4 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]T

(2, 2, 1) 5 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T

(3, 2, 1) 6 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

(1, 1, 2) 7 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]T

(2, 1, 2) 8 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]T

(3, 1, 2) 9 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T

(1, 2, 2) 10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]T

(2, 2, 2) 11 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]T

(3, 2, 2) 12 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]T

It is possible to have the transformations mentioned in the foregoing op-
erate on sets. Suppose X̃1 is a subset of X̃. Then the corresponding set in
integer representation will be denoted as X̄1 and has the same number of el-
ements as in the tuple representation. Moreover, we define TTI : 2X̃ → 2X̄

by

X̄1 = TTI(X̃1) = {x̄ | x̄ = Tti(x̃) for some x̃ ∈ X̃1}.

In the Boolean vector domain it is possible to represent a set of discrete
states X̃1 ⊆ X̃ by the single vector x̂1 ∈ 2X̂ = {0, 1}p defined by x̂i1 = 1 if
i ∈ X̄1, and x̂i1 = 0 if i /∈ X̄1 for i = 1, ..., p. The advantage of representing
sets in the Boolean vector domain is, that various operations on sets can be
easily expressed. These computations are based on the binary operations ⊕
(‘or’), ⊗ (‘and’), and � on {0, 1} defined by 0⊕ 0 = 0⊗ 0 = 0⊗ 1 = 1⊗ 0 =
0� 0 = 0� 1 = 1� 1 = 0, and 0⊕ 1 = 1⊕ 0 = 1⊕ 1 = 1⊗ 1 = 1� 0 = 1.

Union The union of two sets Z̃ := X̃1 ∪ X̃2 is computed by ẑ = x̂1 ⊕ x̂2 with
ẑi = x̂i1 ⊕ x̂i2.

Intersection The intersection Z̃ := X̃1 ∩ X̃2 is computed by ẑ = x̂1 ⊗ x̂2

with ẑi = x̂i1 ⊗ x̂i2. Furthermore, note that X̃1 ∩ X̃2 �= ∅ ⇐⇒ x̂T1 x̂2 �= 0.

Difference The set difference Z̃ := X̃1 \X̃2 is computed by ẑ = x̂1� x̂2 with
ẑi = x̂i1 � x̂i2.

Subsets One can check if x̂1 ⊆ x̂2 in the Boolean vector notation by using

x̂1 ⊆ x̂2 ⇐⇒ x̂1 ⊕ x̂2 = x̂2 ⇐⇒ x̂1 � x̂2 = 0.

2.3 Directed graphs 19

2.3 Directed graphs

An automaton Σ = (X̃, Ũ , φ) describes the relations between elements of the
set X̃ (the discrete states) which depend on the elements of the set Ũ (the
inputs) by means of the transition function φ. This information can be vi-
sualized by using labeled directed graphs. A directed graph (digraph) is a
tuple Γ = (V,E), where V is the set of vertices (or nodes), and E is the set of
ordered pairs of vertices called edges (or arcs). As an example in Figure 2.1
the digraph is depicted for the set of vertices V = {1, 2, 3, 4} and the set of
edges E = {(1, 3), (3, 4), (4, 3), (2, 4), (4, 2), (2, 1)}. To each edge we can also

1 2

3 4

Figure 2.1: A directed graph

attach a label or a set of labels in which case we obtain a labeled digraph.
Now, a labeled digraph Γ is associated with an automaton Σ by assigning to
each discrete state x̃ ∈ X̃ a vertex v ∈ V and to each discrete input ũ ∈ Ũ a
collection of edges Eũ ⊆ E with the label ‘ũ’ in such a way that there is an
edge from v1 to v2 with the label ũ iff the automaton allows a transition from
the corresponding discrete states x̃1 to x̃2 with the input ũ. So, if v1 and v2

are associated with x̃1 and x̃2, respectively and (v1, v2) is labeled with ũ then

(v1, v2) ∈ Eũ ⇐⇒ x̃2 ∈ φ(x̃1, ũ).

For conveniently representing an automaton by a digraph, we will use the
same symbols for both the discrete states and the corresponding vertices. An
example of an automaton represented by a directed graph is given in Figure
2.2.

Example 2.3.1 Given the nondeterministic automaton Σ = (X̃, Ũ , φ), with
X̃ = {x̃1, x̃2, x̃3, x̃4}, Ũ = {ũ1, ũ2} and φ defined by

φ(x̃1, ũ1) = {x̃3},
φ(x̃2, ũ1) = {x̃4},
φ(x̃3, ũ1) = {x̃4},

φ(x̃4, ũ2) = {x̃2, x̃3},
then the corresponding labelled digraph is depicted in Figure 2.2.

20 Preliminaries

x̃1 x̃2

x̃3 x̃4

ũ1, ũ2

ũ1

ũ1

ũ1 ũ2

ũ2

Figure 2.2: Digraph of an automaton

2.4 Adjacency matrices

Digraphs can be represented by so called adjacency matrices. For a digraph
Γ = (V,E) the adjacency matrix A ∈ {0, 1}p×p is a Boolean matrix defined by

aij =
{

1 if (vj , vi) ∈ E
0 if (vj , vi) /∈ E.

As an example, the adjacency matrix of the digraph depicted in Figure 2.1
is given by

A =

0 1 0 0
0 0 0 1
1 0 0 1
0 1 1 0

 .

Since an adjacency matrix represents a digraph and a labelled digraph can
represent an automaton, it can be seen that an automaton can be represented
by a set of adjacency matrices {Eũ}ũ∈Ũ ; for each input ũ ∈ Ũ a different
adjacency matrix Aũ is needed.

If the discrete states of the automaton are represented by Boolean vectors,
then adjacency matrices facilitate many computational and analysis issues. In
this respect, the following operations are useful.

Boolean matrix multiplication Given A ∈ {0, 1}n×l, B ∈ {0, 1}l×m, then
C = AB is defined as cij =

⊕l
k=1 aik ⊗ bkj = (ai1 ⊗ b1j)⊕ (ai2 ⊗ b2j)⊕

...⊕ (ail ⊗ blj).

Boolean matrix “or” Given A,B ∈ {0, 1}n×m, then C = A⊕B is defined
as cij = aij ⊕ bij .

Boolean matrix “and” Given A,B ∈ {0, 1}n×m, then C = A⊗B is defined
as cij = aij ⊗ bij .

2.5 Labeled digraphs 21

For instance, the possible next new states given a set of initial states X̃1

and an input ũ for automata, can easily be computed by representing X̃1

by x̂1 in the Boolean vector domain (see page 18). The vector x̂2 = Aũx̂1

represents now the set of states that can be reached within one step from
the set of states X̃1 with input ũ. The set of discrete states that can be
reached after k transitions from initial set X̃1 with the input ũ is equal to
x̂2 = Ak

ũx̂1. If we want to know which discrete states can be reached within k
steps, then this is computed by x̂2 = (Ak

ũ⊕Ak−1
ũ ⊕ ...⊕Aũ⊕I)x̂1 = (Aũ⊕I)kx̂,

where I is the identity matrix of appropriate dimensions. To compute the set
of states that can be reached after (within) k steps using arbitrary discrete
input sequences (possibly a different one after each transition) it is sufficient
to replace the adjacency matrix Aũ in the previous, by the ‘overall’ adjacency
matrix defined by

AŨ := Aũ1 ⊕Aũ2 ⊕ ...⊕Aũq ,

where q is the number of discrete inputs, i.e. q = #(Ũ).
The set of states that can be reached from some initial state (or set of initial

states) using any input-sequence is characterized by the so-called reachability
matrix of a graph, which is defined by (AŨ ⊕ I)p−1. Note, that it is sufficient
to take the (p− 1)-th power (Kim 1982).

Also the transposed adjacency matrix AT is useful for computations. By
the definition of an adjacency matrix it holds that aij = 1 iff there is an
edge from vertex vj to vertex vi. If B = AT , we obtain bij = aji. Hence,
bij = aji = 1 if there is an edge from vertex vi to vertex vj . As a consequence,
given an initial discrete state (or set of states) x̂1 then x̂2 = AT

ũ x̂1 is the set
of states from which x̂1 can be reached in one step with input ũ.

2.5 Labeled digraphs

To facilitate computations, it is sometimes convenient to represent the labeled
digraphs by matrices. For enabling actual computations, each label is repre-
sented by a unique number such that from this number the original label can
be restored and moreover, from the sum of such numbers also the correspond-
ing set of labels can be restored. One possibility is via the function g defined
for discrete inputs in the integer domain: g : Ū → N

g(ū) = 2ū−1.

Now, the labelled adjacency matrix AŨ is constructed by

AŨ = g(ū1)Aũ1 + g(ū2)Aũ2 + ...+ g(ūq)Aũq

= 20Aũ1 + 21Aũ2 + 22Aũ3 + ...+ 2q−1Aũq ,

22 Preliminaries

where ‘+’ is the regular (not the logical) addition. It is easily computed
what the next possible discrete states are from a given initial discrete state
x̂ in the Boolean vector domain, and which input will lead to which state by
computing w = AŨ x̂. Although the initial discrete state is represented in the
Boolean vector domain, the (matrix) multiplication is not the Boolean matrix
multiplication but the ordinary one. The result w is a p-dimensional vector of
integers. Suppose that wi �= 0. This implies that the discrete state x̄′ = i (in
the integer domain) can be reached from the initial state x̂. Moreover, from
the value of wi it can be seen which discrete inputs actually are able to cause
this transition. This can be deduced from the following recursive scheme:

vq =
⌊
wi

2q−1

⌋
,

vk =

⌊
wi −

∑q
k+1 vi2

i−1

2k−1

⌋
, k = q − 1, ..., 1

where �a denotes the largest integer smaller than or equal to a. Hence, the
input ū = j (in integer representation) can cause the transition x̄ → x̄′ = i
if and only if wi �= 0 and vj = 1. The set of inputs that allow the transition
from discrete state x̄ to discrete state i is thus given by Ū1 = {l ∈ Ū | vl = 1}.

Example 2.5.1 Given the automaton Σ defined in Example 2.2.1, the labeled
adjacency matrix AŨ is given by

AŨ = 20

0 1 0 0
0 0 0 1
0 0 0 1
0 0 0 0

+ 21

0 1 0 0
0 0 0 0
1 0 0 0
0 1 1 0

 =

0 3 0 0
0 0 0 1
2 0 0 1
0 2 2 0

 .

Given the initial state x̂ = [0, 1, 0, 0]T we obtain w = AŨ x̂ = [3, 0, 0, 2]T from
which we can see that the states x̃′ = 1, and x̃′′ = 4 can be reached. The
transition to x̃′ = 1 can be caused by both ū1 and ū2 (since 3 = 1 · 20 + 1 · 21

indicates that v2 = 1 and v1 = 1). The transition to x̃′′ = 4 is caused by ū2

only (as 2 = 0 · 20 + 1 · 21 indicates that v1 = 0 and v2 = 1).

2.6 The Neighbor matrix

Finally, the so-called Neighbor matrix N ∈ {0, 1}p×p is defined as:

nij =
{

1 if j ∈ {i± ak | k = 1, ..., n}
0 else.

2.7 The (relative) interior of a set 23

with ak defined as in (2.1). The Neighbor matrix N can be interpreted as
follows: for the discrete state x̂1 the set x̂2 = Nx̂1 contains all discrete states
for which the tuple representation differs only one unit in each coordinate from
the tuple representation of x̂1 (these are the ‘neighbors’ of x̃1). For example,
in Figure 1.1 in Section 1.3 the neighbors of (2, 2) are given by (1, 2), (2, 1),
(2, 3) and (3, 2).

2.7 The (relative) interior of a set

Given the set D′ ⊆ R
n. Define the set D as the smallest linear variety (i.e.

affine subspace) of R
n containingD′. Throughout this thesis, when mentioning

the interior of D′, denoted by int(D′) the interior relative to D is meant. To
be precise,

int(D′) = {x ∈ D′ | ∃δ > 0, BD(x, δ) ⊆ D′},

with BD(x0, δ) := {x ∈ D | ‖x− x0‖ < δ}.
In case D = R

n this definition is equivalent to the conventional interior of
D′.

2.8 Notes and references

Automata

In this section we used the ‘classical’ definition of an automaton, because it cor-
responds to our definition of a system. For references, see e.g. (Hopcroft and
Ullman 1979, Sontag 1990). For a nondeterministic automaton with outputs, a
more general description is given by using the behavioral relation L(x̃′, ỹ, x̃, ũ)
which includes all 4-tuples (x̃′, ỹ, x̃, ũ) for which it holds that the automaton
switches from state x̃ to x̃′ for the input ũ and simultaneously produces output
ỹ (Lichtenberg and Lunze 1997).

Representation of discrete states

The material in this section is used for facilitating computation and notation
in the Chapters 4, 5 and 6. The tuple representation of a discrete state is
especially suited for our purposes, but is not used in general. The integer and
Boolean vector notation are more commonly used each at their own field of
application: in automata theory, see e.g. (Hopcroft and Ullman 1979, Booth
1967) and the theory of digraphs, see e.g. (Robinson and Foulds 1980) respec-
tively. The theory of adjacency matrices is closely connected with Boolean
matrix theory, see (Kim 1982).

24 Preliminaries

Chapter 3

Discrete-event models of
continuous systems

In this chapter a notion of a discrete-event model of a continuous system is
formalized. We will discuss a method that creates a discrete-event model from
a given set of differential equations and a partitioning of the continuous state
space. Moreover, it is shown how to construct discrete-event models from
systems for which the (measured) output is not equal to the state. Using a
straightforward approach, the computational effort to obtain discrete-event
models from continuous systems can become very large. Taking advantage
of structural properties, the effort can be significantly reduced. One method
proposed in this thesis exploits the linearity of the system, while the other
approach is based on a hierarchical decomposition.

3.1 The models

Consider a continuous-time system described by the differential equations:

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (3.1)

involving the variables x(t) ∈ R
n and u(t) ∈ R

m, which represent the state
and input, respectively. It is assumed that f is continuous and that the system
(3.1) has a unique solution ξ for every initial value in the region of interest
and for any input of interest (the exact input function space will be defined
next). As indicated in Chapter 1, the first goal of the thesis is to provide a
mathematically rigorous concept of discrete-event models of continuous sys-
tems, which is not present in the literature for continuous-time systems. We
start by a formal and abstract notion, that allows general choices of discrete
states as will be demonstrated in Example 3.1.4. Next the hypercube set-up
as described in Section 1.3 will be formalized based on this general concept.

25

26 Discrete-event models of continuous systems

To introduce the concept of a discrete-event system (DES) of a continuous
system, we define the set of continuous functions from closed intervals to R

n as
Cn :=

⋃
a≤bC

0([a, b],Rn), where a may be equal to −∞ but b may not be equal
to ∞. Also, we define the set of piecewise continuous functions from closed
intervals to R

m, which are right continuous1: PCm :=
⋃

a≤b PC
0([a, b],Rm).

For T ⊆ R the space PC0(T,Rm) denotes the collection of all piecewise con-
tinuous functions from T to R

m with a finite number of discontinuity points
in a time interval of finite length. We will first formalize the concept of a
discrete-event system of a continuous system, after which the ingredients of
the definition are discussed in more detail.

Definition 3.1.1 (DES of a continuous system) A discrete-event model
of the system (3.1) is given by an automaton

Σ = (X̃, Ũ , φ), (3.2)

together with the mappings

Q : Cn → X̃,

S : PCm → Ũ ,

such that the following holds:

Condition 3.1.2 (completeness) Let υ ∈ PC0([t0, te],Rm) be an input-
signal applied to the system (3.1) from time t0 to te. Let ξ ∈ C0([t0, te],Rn)
denote a trajectory satisfying (3.1) for input υ. For all ti ∈ [t0, te] satisfying
Q(ξ[t0,ti]) �= Q(ξ[t0,ti+ε]) for all sufficiently small ε > 0, it holds that x̃2 ∈
φ(x̃1, ũ) where x̃1 := Q(ξ[t0,ti]), x̃2 := limt↓ti Q(ξ[t0,t]), and ũ = S(υ[t0,ti]).

Condition 3.1.2 states that if for a given input the continuous trajectory
results in a change of the discretized states, then also the automaton should
allow the transition between the corresponding discrete states and with the
corresponding discrete input. In other words, it is not possible that for the
continuous system a transition occurs that is not modelled by the discrete-
event model.

To each piece of trajectory (including the history) we associate a discrete
state with the mappingQ. To illustrate this, in the following examples possible
choices for Σ are presented.

Example 3.1.3 Consider the linear autonomous differential equation

ẋ =
[

0 1
−1 0

]
x

1A function ξ is right continuous if for all τ it holds that limt↓τ ξ(t) = ξ(τ).

3.1 The models 27

resulting in the vector field as depicted in Figure 3.1 for the region of interest
{x| − 0.5 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 0.5}. For this system with no inputs Ũ

−0.5 0 0.5 1
−1

−0.5

0

0.5

x1

x
2

1 2 3

4 5 6

7 8 9

Figure 3.1: Vector field

and S are irrelevant. The mapping Q is based on the regions numbered by
1, ..., 9 in Figure 3.1. The interior of each cell belongs to the corresponding
region. A region includes the parts of the boundary where the flow leaves the
region, while the parts where the flow enters the region are excluded from the
region (the point (0, 0) is assigned to only one region, say 7). As an example,
region 5 is defined by {x ∈ R

2 | 0 ≤ x1 < 0.5,−0.5 ≤ x2 < 0}. Q is defined
as follows: trajectories currently in region 1 (2, ..., 9) are assigned the discrete
state 1 (2, ..., 9). From Figure 3.1 it can be seen that the transition function φ
must allow the following transitions between discrete states to satisfy Condition
3.1.2:

φ(1) = {4} φ(4) = {7} φ(7) = {8}
φ(2) = {1} φ(5) = {2, 4} φ(8) = {5, 9}
φ(3) = {2} φ(6) = {3, 5} φ(9) = {6}

By concatenating discrete states resulting from sequential transitions a
complete trajectory can be transformed into a sequence of discrete states. If
Condition 3.1.2 is satisfied, then also the automaton will generate this state
sequence. So, all discretized (quantized) trajectories of the continuous system
can also be generated by the discrete-event model. The property that the
set of discretized trajectories of the continuous system is a subset of the set
of discrete trajectories of the discrete-event model (called completeness in
literature) is crucial (Lunze 1994). Completeness allows us to transfer the
results obtained for the discrete-event model to the underlying continuous
system, i.e. if a result holds for the discrete-event model, then it also holds for

28 Discrete-event models of continuous systems

the continuous system. For results on fault diagnosis this is shown in (Förstner
and Lunze n.d.). It is clear that a discrete-event representation of a continuous
system also may generate discrete-state sequences that are not related to a
trajectory of the system (3.1), that is, the automaton (3.2) generates spurious
solutions. If we have two discrete-event models (Σ1, Q1, S1) and (Σ2, Q2, S2)
of the continuous system (3.1), then we can say that (Σ1, Q1, S1) is better
than (Σ2, Q2, S2) (or has a better quality) if it has less spurious solutions.
The choice of the discrete states is very important for the quality of a model,
as can be seen from the following Example.

Example 3.1.4 Again, consider the system described in Example 3.1.3. Note
that with the set of discrete states defined as in Example 3.1.3, the automaton
allows the sequence 8, 5, 2. However from Figure 3.2, it can be seen that in
the continuous domain there is no trajectory from region 8 to region 2 go-
ing through region 5, so this is a spurious solution. However, suppose we

−0.5 0 0.5 1
−1

−0.5

0

0.5

x1

x
2

1 2 3

4 5 6

7 8 9

x0 x′0

x′′0

Figure 3.2: Vector field and trajectories

define a different set of discrete states and a mapping Q as follows: trajecto-
ries completely in region 1 (2, ..., 9) are assigned the discrete state 1 (2, ..., 9).
Any trajectory currently in region 1 and coming from region 2 is denoted
as discrete state 〈2, 1〉, etc. The set of discrete states is then defined as
X̃ = {1, 2, ..., 9, 〈1, 2〉 , 〈2, 1〉 , ..., 〈8, 9〉 , 〈9, 8〉}. From the trajectories in Figure
3.2 it is clear that there is no path from region 8 to region 2 via region 5. The
new transition function therefore should not allow the transition 〈8, 5〉 → 〈5, 2〉.
In fact, if the new transition function allows a transition 〈a, b〉 → 〈b, c〉 then
we are certain that there exists a trajectory in the continuous domain from
region a to region c via region b. In terms of the old discrete states, we are
certain that the sequence a, b, c is no spurious solution of our automaton, so
our new discrete-event model of the continuous system is of a better quality

3.1 The models 29

than our previous model. However, this improved quality is at the cost of the
larger number of discrete states that is grown from 9 to 33.

3.1.1 Isomorphism

When looking at Example 3.1.3, it is obvious that another discrete-event sys-
tem can be obtained by identifying the nine regions in Figure 3.1 by 9, 8, 7, ..., 1
instead of 1, 2, 3, ..., 9 and adapting the transition function φ correspondingly.
It is clear that by doing so, the dynamics of both discrete-event models are in-
trinsically the same, that is, no additional transitions arise and no transitions
disappear. This means that different discrete event-models of a continuous
system can result in the same behavior of the discrete-event models. This is
formalized in the concept of isomorphism.

Definition 3.1.5 (Isomorphism) Consider two discrete-event models of a
continuous system (3.1) (Σ = (X̃, Ũ , φ), Q, S), and (Σ′ = (X̃ ′, Ũ ′, φ′), Q′, S′).
Furthermore two invertible mappings T : X̃ → X̃ ′, V : Ũ → Ũ ′ are given
such that Q′ = T ◦ Q and S′ = V ◦ S. Then the two discrete-event models
of the continuous system are said to be isomorphic, if for all ξ ∈ Cn and
υ ∈ PCm satisfying (3.1) we have for x̃′ = Q′(ξ) = T (Q(ξ)) = T (x̃) and
ũ′ = S′(υ) = V (S(υ)) = V (ũ) that

φ(x̃, ũ) = T−1φ′(T (x̃), V (ũ)).

Note that this implies that φ′(x̃′, ũ′) = Tφ(T−1(x̃′), V −1(ũ′)).
Definition 3.1.5 states that if two discrete-event models are isomorphic,

then we can always switch between them without changing possible transitions.
This is depicted in Figure 3.3.

ξ

x̃

x̃′

υ

ũ

ũ′

φ

φ′

X̃1

X̃ ′
1

TT T−1T−1 V V −1

Q

Q′

S

S′

Figure 3.3: Isomorphic discrete-event models of a continuous system

A consequence of this isomorphism is that, for theoretical purposes, we
are not concerned with the exact representation of the elements of the set
of discrete states X̃. In the remainder of this thesis a discrete state will be
represented by an n-tuple x̃, an integer x̄, or a Boolean vector x̂, see Chapter
2 for more details.

30 Discrete-event models of continuous systems

3.2 Discrete-event modelling algorithm

A continuous system described by (3.1) is given. First, we have to define a
set of discrete states X̃ and a collection of discrete inputs Ũ for the discrete-
event system to be constructed. Next, these discrete states and inputs are
related to the continuous state space and input space by the mappings Q and
S, respectively. Finally, the transition function φ is constructed.

3.2.1 State discretization

For each component xi, (i = 1, ..., n), a set of boundaries is given:

βi0 < βi1 < . . . < βini
(ni ≥ 1). (3.3)

The extreme boundaries βi0 and βini
determine the region of interest in the

state space:

V = {x ∈ R
n|βi0 ≤ xi ≤ βini

, i = 1, ..., n}.

We can think of the state space being partitioned into hypercubes (cells) natu-
rally induced by the boundaries. Each hypercube can be labelled by an n-tuple
a = (a1, . . . , an) of integers ai with 1 ≤ ai ≤ ni for each i. To be precise, the
hypercube Hx(a) is defined as the bounded region in R

n given by

Hx(a) := {x ∈ R
n|βiai−1 ≤ xi ≤ βiai , i = 1, ..., n}. (3.4)

Each such n-tuple a corresponds to a discrete state.
As explained in Definition 3.1.5 it does not matter whether we identify a

discrete state x̃ with its corresponding n-tuple, an integer or a Boolean vector
(see Figure 3.4). Therefore we choose the notation x̃ for a discrete state mostly,
that is, Hx (x̃) should be read asHx(a), where x̃ and a are essentially the same.

(1, 1) (2, 1)

(1, 2) (2, 2)

1 2

3 4

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

β1
0 β1

1 β1
2

β1
0

β2
1

β2
2

Figure 3.4: Different discrete-state representations

It can be seen that the set of boundaries (3.3) define
∏

i ni hypercubes, so
the cardinality of the set of discrete states is equal to #(X̃) =

∏
i ni.

3.2 Discrete-event modelling algorithm 31

Two discrete states x̃1 and x̃2 are said to be adjacent if their corresponding
hypercubes Hx(x̃1) and Hx(x̃2) share an (n− 1)-dimensional boundary plane.
The transition from one discrete state to another is called a discrete event and
is denoted by x̃1 → x̃2. We will use the following standing assumption:

Assumption 3.2.1 Only transitions between adjacent hypercubes are allowed.

Stated differently, the possibility is excluded that two components xi and
xj (i �= j) of a trajectory cross a boundary at the same time instant (which
only can happen if the continuous trajectory crosses edges of hypercubes).
These trajectories cross a set of states with measure zero and, hence, have
no influence on the generic system behavior. In practice such situations are
unlikely to happen; for almost all initial states and almost all input functions
Assumption 3.2.1 holds for the corresponding trajectories.

Mapping Q

The trajectory ξ evolves through several hypercubes in the state space. The
mapping Q maps this signal to the set X̃. At each time-instant t a discrete
state can be assigned to the (continuous) state ξ(t). It is obvious that it is not
possible to define unambiguously the relation between a discrete state and the
corresponding hypercube. Since a point on a boundary plane belongs to two
hypercubes, a decision procedure has to be proposed. A practically relevant
and useful procedure incorporates how a trajectory has reached that particular
point. This implies that Q becomes a dynamic mapping as part of the past
has to be included. Since Q is a dynamic mapping, it acts on a trajectory
ξ from a certain time-instant t0 until the time-instant of interest t. Since
the specification of an initial state does not involve a history, the situation can
occur that it cannot be decided to which discrete state a trajectory starting and
remaining on boundary planes between hypercubes belongs. One approach to
overcome this situation is to assume that the discrete state at the initial time is
known. However, we will opt for restricting the domain of Q to a new class of
functions Cnx,int that is relevant for the purposes in this thesis. To be specific,

Cnx,int := {ξ ∈ Cn | ∃x̃ ∈ X̃ such that ξ(t0) ∈ int(Hx(x̃)),D(ξ) = [t0, te]},

where D(ξ) denotes the domain2 of a function ξ. Hence, we only consider
trajectories in Cn that start in the interior of one of the hypercubes Hx(x̃).
Since this class is characterized by initial conditions in the state space, the
label x appears in the subscript of Cnx,int.

To define the mapping Q : Cnx,int → X̃, it is convenient to use the n-
tuple representation of a discrete state x̃ = a = (a1, ..., an). In this way, Q

2In case t0 = −∞ we assume that limt→−∞ ξ(t) ∈ int(Hx(x̃))

32 Discrete-event models of continuous systems

can be composed from the component-wise mappings Qi, i = 1, ..., n such
that Q = (Q1, ..., Qn). Let ξi denote the i-th coordinate of ξ and define
H i

x(a
i) := {z ∈ R | βi

ai−1
≤ z ≤ βi

ai}. The mapping Qi is defined as follows:

Qi(ξ) = ai ⇐⇒ ∃t∗ ∈ D(ξ) s.t.
{

ξi(t∗) ∈ int(H i
x(a

i)),
ξi(τ) ∈ H i

x(a
i),∀τ ∈ D(ξ), τ ≥ t∗,

with ξ ∈ Cnx,int.
In words, this means that for points in the interior of a hypercube the

corresponding uniquely defined discrete state applies, and that for points on
the boundary plane between hypercubes the discrete state corresponds to the
last hypercube that contained part of the trajectory in its interior. Assumption
3.2.1 implies that if at a time-instant t a single transition occurs, then it holds
that the n-tuples Q(ξ[t0,t]) and Q(ξ[t0,t+ε]) differ in exactly one coordinate with
one unit, for all sufficiently small ε > 0.

3.2.2 Discrete inputs

In many situations, the input u is chosen from a discrete set, for example be-
cause we are dealing with switches turning a device on or off. Other examples
are valves (closed/open), a gear box of a car, and quantized outputs of a
computer. In such cases, the output υ is a piecewise constant function, where
at time-instance t we have that υ(t) ∈ U = {u1, u2, ..., uk}. In this case, it
suffices to take our mapping S to be a static mapping, i.e. each element in
U is identified uniquely by an element of the set of discrete inputs Ũ by a
one-to-one mapping S:

S(υ(t)) ∈ Ũ .

3.2.3 Input discretization

If the input evolves in the continuous domain then the same procedure can
be followed as for the state discretization. However, special attention has to
be paid to the input signals that are allowed. Since this discussion is rather
technical, it can be skipped for readers who are primarily interested in the case
of discrete inputs or only want to grasp the general ideas instead of details.

The difficulty with input signals in the continuous domain in case piece-
wise continuous functions are allowed (and this is our intention), is that it is
not clear to which discrete input the signal belongs at the discontinuity. This
problem is similar as we have seen for the initial condition lying on the bound-
ary between two hypercubes in the case of the state discretization. Now, at
each discontinuity of the input signal a new ‘initial input’ arises. To overcome
this problem, we restrict our inputs to signals for which at the discontinuity,
the input signal starts in the interior of some hypercube.

3.2 Discrete-event modelling algorithm 33

To formalize this, for each input component ui, (i = 1, ...,m), a set of
boundaries is given:

γi0 < γi1 < . . . < γimi
(mi ≥ 1). (3.5)

Similar to the state space, each hypercube induced by the boundaries in
the input space is labelled by an m-tuple b = (b1, . . . , bm) of integers bi with
1 ≤ bi ≤ mi for each i, such that the corresponding hypercube is defined by

Hu(b) := {u ∈ R
m|γibi−1 ≤ ui ≤ γibi , i = 1, ...,m}.

In this case the set of boundaries (3.5) define
∏

imi hypercubes. Each m-
tuple corresponds to a discrete input and similar to the discrete states, discrete
inputs will just be denoted by ũ independently of the representation.

Let {ti} ⊂ D(υ) = [t0, te] be the set of time-instants where discontinuities
occur in the signal υ and let t0 be included. The domain of the mapping S is
restricted to the space PCmu,int defined as

PCmu,int := {υ ∈ PCm | ∀tj ∈ {ti},∃ũ ∈ Ũ s.t. lim
t↓tj

υ(t) ∈ int(Hu(ũ))}.

Now, S : PCmu,int → Ũ is defined as S := (S1, ..., Sm), with

Si(υ) = bi ⇐⇒ ∃t∗ ∈ D(υ) s.t.
{

υi(t∗) ∈ int(H i
u(b

i)),
υi(τ) ∈ H i

u(b
i),∀τ ∈ D(υ), τ ≥ t∗,

with υ ∈ PCmu,int and H i
u(b

i) defined in a similar way as H i
x(a

i).

3.2.4 Transition function

Next, the possibly nondeterministic (partial) transition function φ : X̃ × Ũ →
2X̃ has to be determined such that Condition 3.1.2 is satisfied.

Lemma 3.2.2 A DES of the continuous system (3.1) with S,Q as above is
obtained iff for all x̃1, x̃2 ∈ X̃, x̃1 �= x̃2 and ũ ∈ Ũ , φ satisfies the following
condition.

Condition 3.2.3 x̃2 ∈ φ(x̃1, ũ) ⇐⇒ ∃ξ, υ, t∗ such that Q(ξ[t0,t∗]) = x̃1,
limt↓t∗ Q(ξ[t0,t]) = x̃2, and limt↓t∗ S(υ[t0,t]) = ũ. Here, ξ ∈ Cnx,int is the solution
of (3.1) for the input υ ∈ PCmu,int.

Condition 3.2.3 is a reformulation of Condition 3.1.2 in the sense that
only trajectories of the continuous system with one discrete transition are
considered. Note that this is without loss of generality as trajectories of the

34 Discrete-event models of continuous systems

continuous system that contain more than one transition can be split in ap-
propriate pieces. Since this gives a condition that is necessary and sufficient
for the existence of a single transition x̃1 → x̃2 for input ũ, it can be used to
construct a discrete-event model of a continuous system.

Remark 3.2.4 Note that Condition 3.2.3 is not imposed on transitions be-
tween identical discrete states x̃1 = x̃2 (called ‘self-loops’). Hence, in principle
self-loops might be either included or omitted. We decided to omit them as no
additional information is added to the model. Indeed, for any input a transi-
tion between identical states (i.e. staying in the same hypercube) is possible.

3.2.5 Computing the transition function

The idea for using Lemma 3.2.2 is to examine the flow generated by the dy-
namical system (3.1) along the boundary separating the two regions that cor-
respond to two adjacent discrete states.

Condition 3.2.5 Consider two adjacent states x̃1 = (x̃1, ..., x̃r, ..., x̃n) and
x̃2 = (x̃1, ..., x̃r + 1, ..., x̃n), such that {x ∈ R

n | xr = βrj } is the separating
hyperplane and x ∈ Hx(x̃1) =⇒ xr ≤ βrj and x ∈ Hx(x̃2) =⇒ xr ≥ βrj .

Note that j is equal to the r-th coordinate of the n-tuple x̃1, i.e. j = x̃r.
Denote in (3.1) the r-th coordinate of f by f r. Then we have the following
result.

Theorem 3.2.6 Given x̃1 and x̃2 as in Condition 3.2.5. The transition x̃1 →
x̃2 is possible with the input ũ if and only if

∃x ∈ Hx(x̃1) ∩Hx(x̃2) and ∃u ∈ Hu(ũ) such that f r(x, u) > 0.

For the proof of this we will use a result originally presented in 1942 by
Nagumo (Nagumo 1942) and reformulated in (Blanchini 1999) in the form it
will be used here (see also (Aubin and Cellina 1984) for more details).

Theorem 3.2.7 (Nagumo) (Blanchini 1999) Consider the system given by
ẋ = f(x(t), u(t)), with u(t) ∈ U , where U ⊂ R

n is a compact set. Assume
that, for each initial condition in a set X ⊆ R

n, it admits a globally unique
solution. Let K ⊆ X be a closed and convex set. Then the set K is positively
invariant (i.e. x(0) ∈ K =⇒ ∀t ≥ 0, x(t) ∈ K) if and only if

∀x ∈ ∂K, ∀u ∈ U , lim
h↓0

inf
dist(x+ hf(x, u),K)

h
= 0.

3.2 Discrete-event modelling algorithm 35

Note that the result does not depend on the norm that induces the distance
dist(x,K) := minz∈K ‖x− z‖.

The result has the following geometrical interpretation (Blanchini 1999).
If for all x ∈ ∂K the derivative ẋ ‘points inside or is tangent to K’, then the
trajectory ξ remains in K.

Proof. (Theorem 3.2.6) The if part follows from continuity of f(x, u).
Suppose that for x0 ∈ Hx(x̃1)∩Hx(x̃2) and u ∈ Hu(ũ) it holds that f r(x0, u) >
0. Then there exists δ > 0 such that f r(x, u) > 0 for all x ∈ B(x0, δ) := {x |
‖x− x0‖ < δ} and B(x0, δ) ∩ int(Hx(x̃1) ∩ Hx(x̃2)) �= ∅. This implies that
there always exists x′0 ∈ int(Hx(x̃1) ∩Hx(x̃2)) for which f r(x′0, u) > 0.

By continuity, there exists an neighborhood V of x′0 for which it holds
that V ⊆ int(Hx(x̃1) ∪Hx(x̃2)) and f r(x0, u) > 0 for all x ∈ V . Let x(t) be a
solution of the system with input u(t) = u such that x(0) = x′0 and let ε > 0 be
such that x(t) ∈ V for all t ∈ (−ε, ε). Then xr(t) is strictly increasing on the
same interval and consequently x(−ε) ∈ int(Hx(x̃1)) and x(ε) ∈ int(Hx(x̃2))
from which it follows that the transition x̃1 → x̃2 has occurred.

For the only if part we take X = Hx(x̃1) ∪ Hx(x̃2), K = Hx(x̃1) and
U = Hu(ũ). Now assume that f r(x, u) ≤ 0 for all x ∈ K and u ∈ Hu(ũ), then
from Theorem 3.2.7 it follows that K is positively invariant implying that no
transition is possible. Indeed, since f r(x, u) ≤ 0 for all x ∈ Hx(x̃1)∩Hx(x̃2) ⊂
K and realizing that the possibility of a transition does not depend on f r(x, u)
for x /∈ Hx(x̃1) ∩Hx(x̃2) shows that no transition is possible.

The consequence of this result is that, to assess whether a transition be-
tween two adjacent states is possible or not, we need to look at the sign of a
coordinate of f on the separating boundary. Concretely, if we want to decide
whether a transition is possible from x̃1 to x̃2, we shall start by checking the
so-called extremal points of Hx(x̃1) ∩Hx(x̃2), i.e. the points x satisfying

xi = βix̃i
1−1 or βix̃i

1
, i �= r,

xr = βrx̃r
1
.

If the value of f r in any of these points is positive, we conclude by continu-
ity that there is also a point in the (relative) interior of Hx(x̃1) ∩ Hx(x̃2) at
which f r takes a positive value and the transition from x̃1 to x̃2 is possible.
In the case that the values of f r in all these points (there are 2n−1 of them)
are non-positive, it is necessary to search for a possible positive value of f r

on Hx(x̃1) ∩ Hx(x̃2). This can be conveniently performed by using an opti-
mization procedure which searches the maximum of f r on Hx(x̃1) ∩ Hx(x̃2).
If the maximum value is non-positive as well, then we can conclude that the
transition from x̃1 to x̃2 is impossible. If the maximum value is positive, then
the transition is possible.

36 Discrete-event models of continuous systems

3.3 Systems with outputs

Consider the continuous-time system described by the set of differential equa-
tions and the output equation

ẋ(t) = f(x(t), u(t)), x(t0) = x0,
y(t) = g(x(t)),

(3.6)

where x(t) ∈ R
n is the state variable, u(t) ∈ R

m is the input and y(t) ∈ R
l is

the output.

Definition 3.3.1 A discrete-event model of the system (3.6) is given by an
output automaton

Σ = (X̃, Ũ , Ỹ , φ, h),

together with the mappings

Q : Cnx,int → 2X̃ ,

R : Cly,int → Ỹ ,

S : PCmu,int → Ũ ,

such that the following holds:

Condition 3.3.2 Let υ ∈ PC0([t0, te],Rm) be an input signal applied to the
system (3.6) from time t0 until time te. Let θ ∈ C0([t0, te],Rl) denote an output
signal satisfying (3.6) for input υ. For all ti ∈ [t0, te] satisfying R(θ[t0,ti]) �=
R(θ[t0,ti+ε]) for all sufficiently small ε > 0 it holds that ỹ2 = h(x̃2), x̃2 ∈
φ(x̃1, ũ) and ỹ1 = h(x̃1), where ỹ1 := R(θ[t0,ti]), ỹ2 := limt↓ti R(θ[t0,t]), ∃x̃1 ∈
Q(ξ[t0,ti]), ∃x̃2 ∈ limt↓ti Q(ξ[t0,t]) and ũ = S(υ[t0,ti]).

For the same reason as for the state and input, the mapping R is defined on
output signals starting in the interior of some hypercube in the output space.
Hence, the class Cly,int is defined similarly as Cnx,int. Note that Q maps (pieces
of) trajectory to sets of discrete states instead of only one discrete state. This
is because a hypercube in the state space can be associated with more than
one output. Since each discrete state x̃ can only correspond to one output ỹ,
the hypercube has to be related with more than one discrete states.

3.3.1 Building the discrete-event model

To build a discrete-event model of a continuous system with outputs again
the set of discrete states X̃, the set of discrete inputs Ũ , and the transition
function φ need to be specified. But now also the set of discrete outputs Ỹ

3.3 Systems with outputs 37

and the output map h have to be defined. Finally we need the map R which
maps the output space to the set of discrete outputs.

For the construction of an output automaton the set of discrete states
X̃ must be chosen in a different way as for the automaton in Section 3.2.
Also the definition of the mapping Q needs to be adapted. The reason for
these differences is that with the old definitions the situation can occur that a
discrete output changes while the discrete state still remains the same. This
behavior cannot be captured in an output automaton.

Example 3.3.3 Suppose two equivalent continuous systems are given and de-
scribed by (3.6) such that state x corresponds to the first system and state z to
the second system. Both systems have the same output y. See Figure 3.5 for
the two related discretized state- and measurement spaces. From Figure 3.5 it

x1 = y

x2

y
z1

z2

Figure 3.5: Equal output and different state-coordinates

can be seen that for the second system with state z, one discrete state is related
with several discrete outputs, whereas for the first system each discrete state is
only related with one discrete output. For the second system it can happen that
the discrete output ỹ changes while the continuous state still remains inside
one hypercube, such that no transition occurs between two discrete states.

Discrete outputs

The discrete outputs are chosen in a similar way as the discrete states and the
discrete inputs in Section 3.2, i.e. for each component yi, i ∈ {1, ..., l} of the
output space R

l a set of boundaries is defined:

ρi0 < ρi1 < ... < ρiki
(ki ≥ 1). (3.7)

Again, each hypercube induced by these boundaries is labeled by an l-tuple
c = (c1, ...cl) with integers ci ∈ {1, ...ki}. The hypercube corresponding to c is
now defined as the bounded region in R

l described by

Hy(c) := {y ∈ R
l|ρici−1 ≤ yi ≤ ρici , i = 1, ..., l}.

38 Discrete-event models of continuous systems

With the set of boundaries (3.7) in the output space, we have
∏

i ki hypercubes.
Each hypercube corresponds to a discrete output, implying that the cardinality
#(Ỹ) of the set of discrete outputs is equal to

∏
i ki.

Mapping R

To map the signal that lives in the continuous output space R
l to the set

of discrete outputs a similar approach is followed as with the mappings Q
and S in the previous sections. With a similar notation, R := (R1, ..., Rl) is
composed from component-wise mappings Ri, i = 1, ..., l defined as

Ri(θ) = ci ⇐⇒ ∃t∗ ∈ D(θ) s.t.
{

θi(t∗) ∈ int(H i
y(c

i)),
θi(τ) ∈ H i

y(c
i),∀τ ∈ D(θ), τ ≥ t∗,

with θ ∈ Cly,int being a continuous function with closed domain and θ(t0) in
the interior of some Hy(ỹ).

Output map and discrete states

Next, the set of discrete states X̃ is related with the set of discrete outputs Ỹ .
That is, given a discrete state x̃ the corresponding discrete output ỹ has to be
determined. As mentioned before, each discrete state x̃ may only correspond
to one particular discrete output ỹ, since otherwise (measured) outputs can
change while there is no change of the discrete state. Since this cannot be
modelled by an output automaton, the set of discrete states X̃ is constructed
such that each discrete state only is related to one discrete output. To achieve
this, the construction of the set of discrete states and the construction of the
output map are combined. First a temporary set of discrete states X̃temp is
defined in a similar way as described in Section 3.2. For each discrete state x̃
in the set X̃temp it is decided what the corresponding (set of) output(s) ỹ is to
the associated hypercube Hx(x̃) and the output function g(x). From this, the
final set of discrete states X̃ and the output map h can be determined. The
procedure is as follows.

step 1 Define the temporary set of discrete states X̃temp from the set of
boundaries (3.3) as described in Section 3.2.

step 2 Determine for each discrete state x̃ ∈ X̃temp the corresponding region
in R

n, i.e. the hypercube Hx(x̃). Map this set to the output space by
means of the output function g(x), i.e. compute g(Hx(x̃)). We compute
now the (set of) discrete output(s) that corresponds to this region in R

l,

3.3 Systems with outputs 39

i.e. compute R(g((Hx(x̃))))3. The result is that each discrete state x̃
is related to a set of corresponding discrete outputs ỹ. This composite
relation is denoted htemp : X̃temp → 2Ỹ . See Figure 3.6.

x̃
Hx(x̃)

y →y →
x1

x2

g(x)

ỹ1 ỹ2 ỹ3

R(y)
{ỹ1, ỹ2}

Figure 3.6: From discrete state to discrete output

step 3 Each state x̃ ∈ X̃temp that corresponds to more than one discrete
output, say q outputs, is replaced by q new discrete states. To introduce
some notation, assume that if x̃ = 1 corresponds to ỹ = {3, 4, 5}, then
x̃ = 1 is replaced by the states x̃1 = 13, x̃2 = 14, and x̃3 = 15. This
results in the final set of discrete states X̃. In this way each discrete state
x̃ ∈ X̃temp is related to (a set of) discrete state(s) {x̃i} ⊂ X̃ described
by a relation R : X̃temp → 2X̃ ,

R(x̃) = {x̃ỹ | ỹ ∈ htemp(x̃)}.

step 4 To each of the discrete states x̃ỹ ∈ R(x̃), x̃ỹ ∈ X̃, x̃ ∈ X̃temp, is
uniquely assigned one of the outputs ỹ ∈ Ỹ , such that ỹ = h(x̃ỹ) ∈
htemp(x̃). This defines the output map h. For example, h(13) = 3,
h(14) = 4, and h(15) = 5. For those discrete states x̃ that corresponded
to just one discrete output ỹ, naturally h(x̃) = ỹ. As a result, only one
discrete output ỹ is assigned to each discrete state x̃ ∈ X̃ by the output
map h.

Mapping Q

From the construction of the set of discrete states it follows that a hypercube
as induced by the boundaries (3.3) may correspond to more than one discrete
state. Therefore the mapping Q also has to be adapted. First, the temporary

3Each point y ∈ g(Hx(x̃)) should be associated with the function θ ∈ Cl
y,int defined by

θ(t) = y for all t ∈ [a, b]. The reason for this is that the discretization mapping R maps on
functions only and not on points.

40 Discrete-event models of continuous systems

mapping Qtemp : Cnx,int → X̃temp is constructed in the usual manner. Then,

Q : Cnx,int → 2X̃ is defined as the composite mapping:

Q = R ◦Qtemp.

In words: Q maps the (continuous) states in a hypercube to the set of all
discrete states that are related to that hypercube by step 3, as discussed
before.

Transition function

Finally the transition function is constructed such that Condition 3.3.2 is
satisfied with the sets and mappings as defined before. For this, the following
algorithm is executed.

1. Compute the temporary transition function φtemp by determining the
transitions between the discrete states of the set X̃temp. This can be
done by applying the algorithm as described in Section 3.2.

2. For all x̃1, x̃2 ∈ X̃temp and ũ ∈ Ũ a transition rule is defined for φ as
follows

x̃2 ∈ φtemp(x̃1, ũ) =⇒ x̃2i ∈ φ(x̃1j , ũ), ∀x̃1j ∈ R(x̃1),∀x̃2i ∈ R(x̃2).

3. Add transitions between states x̃i, x̃j ∈ R(x̃) by the rule

x̃j ∈ φ(x̃i, ·) ⇐⇒ h(x̃j), h(x̃i) are neighbors.

By this procedure, the transition function φ is defined such that Condition
3.3.2 is satisfied. Clearly, this procedure will induce many spurious solutions.

3.3.2 Choice of the state coordinates

The difference between systems with and without outputs is that in the former
case we (usually) have some freedom to choose our state-coordinates while
in the latter case the state-coordinates are completely fixed. The freedom
to choose the state-coordinates can be used to influence the quality and the
complexity of the discrete-event model of the continuous system. The choice of
the state-coordinates is important for the quality of the discrete-event model
since the following scheme applies

continuous model ẋ = f(x, u) T−→ ż = f ′(z, u)
↓ ↓

discrete-event model Σ = (X̃, Ũ , φ)
Q,S

Σ = (Z̃, Ũ , φ′)
Q′, S′

3.3 Systems with outputs 41

This means that two systems that are equivalent in the continuous domain
(that is, they only differ by a similarity transformation of the form z = Tx)
do not need to have the same discrete-event models. Also, the measured
output of the continuous system (3.6) define the discrete outputs, which in
turn are connected with the discrete states by the output map h.

The choice of discrete states influences the complexity for determining the
output map h. By some clever choices, the construction of a discrete-event
model of a continuous system with outputs can be simplified considerably, as
will be shown in the next subsections.

3.3.3 Nonlinear systems with linear output maps

To obtain simpler procedures for computing the output map h, first the class of
nonlinear systems with linear output maps is considered, which are described
by

ẋ(t) = f(x(t), u(t)), x(t0) = x0,
y(t) = Cx(t),

(3.8)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
l and C has full row-rank.

To compute the discrete-event model of this system, first a variable z ∈
R
n−l is chosen such that z = Dx, where D ∈ R

(n−l)×n is a matrix chosen
rendering T = [CT DT]T invertible. With this, the following equivalent system
can be obtained[

ẏ(t)
ż(t)

]
=

[
C
D

]
f(

[
C
D

]−1 [
y(t)
z(t)

]
, u(t)).

By defining the new state x∗ := Tx = [yT zT]T , the system (3.8) is repre-
sented equivalently by

ẋ∗(t) = f∗(x∗(t), u(t)), x∗(t0) = x∗0, u(t) ∈ R
m,

y(t) = [I 0]x∗(t), y(t) ∈ R
l.

(3.9)

For the system in this state space form, a discrete-event model is constructed.
The set of discrete inputs Ũ follows from the set of bounds (3.5). The set of
discrete outputs Ỹ is determined by the set of boundaries (3.7) reflecting for
instance the positions of the measurements (sensors). Recall that each discrete
output ỹ ∈ Ỹ is related to an l-tuple c = (c1, ..., cl) defining the hypercube
Hy(c) in R

l. According to the partitioning of the state space x∗ = [yT zT]T ,
for the first l coordinates x∗,i, i = 1, ..., l, the same set of boundaries (3.7) as
for the output space can be used. For the last (n − l) coordinates a set of
additional boundaries {βij} can be chosen freely. So, βij = γij for i = 1, ..., l
and j = 1, ..., ni, while βij can be chosen freely for i = l+1, ...n. Each n-tuple

42 Discrete-event models of continuous systems

a = (a1, ..., an) assigned to a hypercube in the state space can be partitioned
as a = (c, d), where c is the l-tuple as for the outputs and d is an (n− l)-tuple
following from the additional boundaries βij , i = l + 1, ..., n and j = 0, ..., ni.
This defines the set of discrete states X̃ for the transformed system. In this
way every discrete state is already uniquely assigned to a discrete output.
There is no need for a temporary set of discrete states X̃temp or a temporary
output map htemp since the output map h is defined readily by

h(a) = c ⇐⇒ a = (c, d) for some d.

Note that each discrete state is related to only one discrete output. There-
fore the transition function φ can be determined by applying the algorithm of
Section 3.2 to the set of differential equations ẋ∗ = f∗(x∗, u) and the speci-
fied boundaries. This concludes the construction of the discrete-event model,
which is more easy than following the complicated procedure described in
Subsection 3.3.1.

The freedom in choosing D and the boundaries for discretizing z can be
used for constructing the best possible automaton meeting the requirements
one has. For linear, observable systems, a simple way to find D for the equiv-
alent system (3.9) is to choose the rows of D from the (regular) observability
matrix.

3.3.4 Linear systems

For linear systems, one can follow the same approach as for nonlinear systems
with linear output maps. However, in some special cases, it is even possible
to rewrite the continuous system such that the set of discrete outputs Ỹ and
the set of discrete states X̃ can be taken equal. In fact, this implies that we
can apply a state reduction of the continuous system where the new states are
equal to the measurements y. For these kind of systems the proposed discrete-
event modelling algorithm for systems without outputs can be applied readily,
since the construction of the output function h is trivial.

Consider the linear time-invariant system given by

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0,
y(t) = Cx(t),

(3.10)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
l, and C has full row-rank.

Proposition 3.3.4 Let the linear system (3.10) be given. The variable y is
governed by equations of the form

ẏ(t) = Fy(t) +Gu(t)

iff ker(C) is A-invariant4.
4A vector space V is A-invariant if AV ⊆ V.

3.3 Systems with outputs 43

Proof. The if -part: by using the pseudo-inverse of C (or any other left-
inverse), we can express the state x as a function of y and a ‘free’ variable w
as follows

x = CT (CCT)−1y +Mw,

with

Im(M) = ker(C).

By differentiating the output equation and substituting x we get

ẏ = CACT (CCT)−1y + CAMw + CBu.

Since A(ker(C)) ⊆ ker(C) we obtain that CAM = 0 and thus ẏ = Fy + Gu
for F = CACT (CCT)−1 and G = CB.

For the only if -part suppose that ẏ(t) = Fy(t) +Gu(t) and choose x(0) =
x0 ∈ ker(C). Hence, y(0) = Cx0 = 0 and take u(t) = 0 for all t. This results
in y(t) = 0 for all t ∈ R. For the original system,

ẋ(t) = Ax(t),
0 = y(t) = Cx(t)

for initial condition x(0) ∈ ker(C), which implies that x(t) ∈ ker(C) for all
t ∈ R. This shows that ker(C) is A-invariant because x0 was chosen in ker(C).

Example 3.3.5 Given the system (3.10) where the output matrix C can be
written as C = C ′T−1, where C ′ = [I 0] and T is a similarity transformation
such that T−1AT = Λ, where Λ is a diagonal matrix. Then it is clear to see
that

ker(C) = ker(
[
I
0

]
T−1) = Im(T

[
0
I

]
).

Since A = TΛT−1 we have that A ker(C) results in

AT

[
0
I

]
= TΛT−1T

[
0
I

]

= T

[
Λ1 0
0 Λ2

] [
0
I

]

= T

[
0
Λ2

]
⊆ Im(T

[
0
I

]
) = ker(C).

From which we get that ker(C) is A-invariant. It can be seen that y is governed
by ẏ = Λ1y + CBu, with y(t0) = Cx0.

44 Discrete-event models of continuous systems

3.4 Computational effort

A disadvantage of the state discretization of continuous plants is the com-
putational effort which is necessary to obtain these models. The underlying
combinatorial growth characteristic is known as the state-explosion problem.
It is straightforward to compute the number of optimizations NO that is nec-
essary to compute a discrete-event model of a continuous system given the
discretization of the state space and input space, see Figure 3.7.

β1
0 β1

1 β1
2 β1

3

β2
0

β2
1

β2
2

β2
3

β3
3
β3

2β3
1
β3

0

Figure 3.7: The boundary plane x1 = β1
1 separates 3 · 3 pairs of states

For each discrete input (i.e.
∏m

k=1 mk times) the following computations
have to be performed for each coordinate (i.e. n times); for the i-th coordinate,
ni − 1 boundary planes have to be checked and for each such boundary plane
there are

∏
j 	=i nj boundaries Hx(x̃1) ∩ Hx(x̃2) separating two hypercubes.

Generally, for each such boundary an optimization has to be performed. With
this, the total number of optimizations NO becomes:

NO =
n∑

i=1

(ni − 1)(

∏
j 	=i

nj)(
m∏
k=1

mk)

 . (3.11)

Furthermore, in the most general case when also the input space is continuous,
each optimization is performed over m(n− 1) variables.

Two methods will now be discussed that can be used to reduce the com-
putational effort. The first one exploits the properties of a linear system to
efficiently compute the possible transitions. The second method can be used
for both linear and nonlinear systems and exploits (possible) sparsity of a
system.

3.4.1 Linear systems

For linear systems the computational effort can be reduced by exploiting the
fact that for each coordinate transitions in the positive and negative directions

3.4 Computational effort 45

are separated by a single hypersurface in the state-input space. Therefore, no
(numerical) optimizations are involved. Furthermore, it is not necessary to de-
termine the possibility for a transition between each (adjacent) pair of discrete
states, since in one step the possibility of several transitions are immediately
decided.

For linear systems we have

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, (3.12)

with x(t) ∈ R
n and u(t) ∈ R

m. First, we define z := [xT , uT]T ∈ R
n+m, with

x ∈ R
n and u ∈ R

m. Also the space R
n+m is partitioned into hypercubes

defined by the boundaries βji , and γji
5. Furthermore, the (n+m)× (n+m)-

dimensional matrix Ā is defined as

Ā =
[
A B
0 0

]
.

If we use the (n +m)-dimensional unit-vector ek, then the first derivative of
the k-th element in a point x ∈ R

n and for u ∈ R
m can be written as

ẋk = eTk Āz.

In the (n +m)-dimensional space R
n+m, the derivative of the k-th com-

ponent of x (1 ≤ k ≤ n), defines two half-spaces, one where the sign of
the derivative for that component is positive and one where the sign of the
derivative is negative. These half-spaces are separated by a hyperplane whose
elements result in a derivative zero in the specific coordinate, i.e. ẋk = 0.
This observation will be the basis for a computationally attractive method for
obtaining the transition function φ.

The (n+m− 1)-dimensional hyperplane in R
n+m on which the derivative

for the k-th component is zero, is defined by

Nk := {z ∈ R
n+m | eTk Āz = 0}.

For each discrete input it has to be decided separately which transitions are
possible. Hence, fix ũ ∈ Ũ . We will use the n-tuple representation of a discrete
state, i.e. x̃ = (a1, ..., an). Now, fix aj for j �= k. Consider all discrete states
from the set S̃ := {x̃| x̃ = (a1, ..., ak, ..., an), 1 ≤ ak ≤ nk} and the set of
corresponding points in R

n+m (a column of hypercubes) which we will call ZS̃
(see Figure 3.8 for k = 2, ũ = 1 and a1 = 2).

For all the discrete states in S̃ it is possible to determine in one step the
possible transitions in the ek-direction for the given discrete input ũ. For a

5In case of discrete inputs, the procedure to be explained is repeated for each single
discrete input ũ ∈ Ũ and z is defined as z := [xT , ũT]T .

46 Discrete-event models of continuous systems

x1

x2

u

ẋ2 = 0

γmax

γmin

Figure 3.8: State-input space

particular discrete state labelled by, say (a1, ..., ak, ..., an), transitions to states
corresponding to (a1, ..., ak − 1, ..., an) and (a1, ..., ak + 1, ..., an) have to be
examined. For this purpose, the k-th component zk = γek of the elements z
on the hyperplane Nk are, if possible, expressed as a function of the remaining
coordinates z− ∈ ker(eTk). Substituting z = γek + z− in eTk Āz = 0 results for
the case where eTk Āek = akk �= 0 in the following expression for γ:

γ =
−1

eTk Āek
eTk Āz

−, z− ∈ ker(eTk).

Now, for a point z = z∗ + δek with z∗ ∈ Nk, and δ ∈ R we have that

sign(ẋk) = sign(eTk Āz
∗︸ ︷︷ ︸

=0

+ δeTk Āek) (3.13)

= sign(δeTk Āek) = sign(δ)sign(eTk Āek)
= sign(δ)sign(akk).

This implies, that if for a point z∗ on the hyperplane Nk, we move towards
the (positive) ek-direction, then the derivative in the new point z = z∗ + δek
has a component in the ek-direction and the sign of this component is equal
to the sign of the akk-element of the system matrix A (i.e. sign(akk)). If from
all points in ZS̃ that also belong to the hyperplane Nk we know the point
with the maximal element γmax in the ek-direction, then we are certain that
all points z ∈ ZS̃ that have a component in the ek-direction bigger than γmax

will have a derivative with a component in the ek-direction with the same sign
as sign(akk) (see Figure 3.8). To be more precise, first we define

γmax := max
z−

{
γ =

−1
eTk Āek

eTk Āz
− | z− ∈ ker(eTk), z

− + γek ∈ ZS̃ ∩Nk

}
.

Proposition 3.4.1 ∀z := z− + γek ∈ ZS̃, z
− ∈ ker(eTk), with γ > γmax it

holds that sign(ẋk) = sign(akk).

3.4 Computational effort 47

Proof. For any z satisfying the assumption, choose δ such that z∗ =
z− + (γ − δ)ek ∈ Nk. Since γ > γmax it follows that δ > 0. Now with
z = z− + (γ − δ)ek︸ ︷︷ ︸

z∗

+ δek it follows from (3.13) that sign(ẋk) = sign(akk).

Proposition 3.4.2 ∃z := z− + γek ∈ ZS̃, z
− ∈ ker(eTk), with γ < γmax, for

which it holds that sign(ẋk) = −sign(akk).

Proof. Choose z = z− + γek ∈ ZS̃ such that there exists a δ for which
z∗ = z− + (γ − δ)ek ∈ Nk and (γ − δ) = γmax. Then, since γ < γmax it must
hold that δ < 0 and from (3.13) it follows that for z = z− + (γ − δ)ek︸ ︷︷ ︸

z∗

+ δek

we have that sign(ẋk) = −sign(akk).

The first proposition states that “above” the elements in the plane Γmax =
{z ∈ ZS̃ | zk = γmax} all derivatives of the k-th component of x have the
same sign and the second propositions states that “below” the plane Γmax

there exists at least one point for which the derivative of the k-th component
of x has the opposite sign (see Figure 3.8). With this information and the
knowledge to which hypercube the elements in Γmax belong, it is possible to
decide for all discrete states in S̃, labelled by (a1, ..., ak, ..., an), if a transition
to (a1, ..., ak + q, ..., an) is possible, where q = −sign(akk). Following the
same reasoning, it is possible to compute γmin and the corresponding plane
Γmin from which the discrete states that allow a transition in the opposite
direction follow. In conclusion, by computing γmax and γmin all transitions of
the discrete states in S̃ from (a1, ..., ak, ..., an) to (a1, ..., ak ± 1, ..., an) can be
determined at once. Since we are dealing with linear systems, the computation
of γmax and γmin is straightforward:

γmax =

{ −1
akk

eTk (Ā
+zmin + Ā−zmax), akk > 0

−1
akk

eTk (Ā
+zmax + Ā−zmin), akk < 0

γmin =

{ −1
akk

eTk (Ā
+zmax + Ā−zmin), akk > 0

−1
akk

eTk (Ā
+zmin + Ā−zmax), akk < 0

where the entries of Ā+ and Ā− defined by

ā+
ij =

{
aij aij > 0
0 else

and ā−ij =
{

aij aij < 0
0 else.

48 Discrete-event models of continuous systems

and

zimax =
{

max{zi | z ∈ ZS̃} i �= k
0 i = k

zimin =
{

min{zi | z ∈ ZS̃} i �= k
0 i = k

In words: for computing γmax in case akk < 0 (and consequently −1
akk

> 0),
all elements of Ā that have a positive influence on the maximum (i.e. Ā+)
should contribute maximally (hence zmax) whereas all elements that have a
negative influence (Ā−) should contribute minimally (by zmin).

For the case that akk = 0, it is not possible to compute γmax, and γmin.
In this case the hyperplane Nk is parallel to the ek-direction. Therefore it is
computed for each set ZS̃ if it is intersected by Nk. If so, then the discrete
states in S̃ allow transitions from discrete states labelled by (a1, ..., ak, ..., an) to
both (a1, ..., ak+1, ..., an) and (a1, ..., ak−1, ..., an). If not, then only transitions
to (a1, ..., ak + q, ..., an) are possible, where q ∈ {−1, 1} can be determined by
computing sign(ẋk) in one point z ∈ ZS̃ ; for all other points in ZS̃ the sign(ẋk)
will be the same. It is easily verified whether ZS̃ is intersected by Nk by
computing the intersection ofNk with the line l := zmin+λ(zmax−zmin), λ ∈ R,
as will be explained. The parameter λ∗ that corresponds to the intersection
point can be computed readily. Indeed from eTk Āzmin+λeTk Ā(zmax−zmin) = 0
it follows that

λ∗ =
−eTk Āzmin

eTk Ā(zmax − zmin)
.

If it holds that 0 < λ∗ < 1, that is if the intersection point of Nk and l is a
convex combination of zmin and zmax, then Nk intersects the interior of ZS̃ .

To determine the number of computations necessary for the construction of
a discrete-event model for a linear system, it can be seen from the procedure
described here, that for coordinate i in one step for ñi discrete states the
possible transitions are determined. For each coordinate this has to be done∏

j 	=i nj times. Furthermore, this computation is performed for all discrete
inputs, i.e.

∏m
k=1 mk times. With this, the total number of computations for

a linear system becomes:

NC =
n∑

i=1

(

∏
j 	=i

nj)(
m∏
k=1

mk)

 . (3.14)

Compared with the nonlinear case it is observed that besides a reduction
of the number of computations also the nature of the computations is dif-
ferent. For the nonlinear case these are (demanding) optimizations whereas

3.4 Computational effort 49

for the linear system these are only simple algebraic computations. Hence,
it is extremely beneficial to exploit the linear structure of the system to be
modelled.

3.4.2 Hierarchical structure

We will discuss two ways of using a hierarchical structure for reducing the
computational effort.

Local refinement

The first method is effective for the situation where a part of the state space
is of particular interest, e.g. because a high accuracy is needed there for
control purposes. To obtain the high accuracy, a fine partitioning of the state
space in the region of particular interest is needed. However, introducing a
fine partitioning of this region will be at the cost of introducing unnecessary
discrete states, since the boundaries that are used for the partitioning (i.e.
the refinement) also will partition other regions. To illustrate this, see Figure
3.9 (a). By refining the partitioning of the region in the center (i.e. the

β1
0β1

0

β1
1

β1
1β1

1

β1
2

β1
2

β1
2

β1
3β1

3β1
4
β1
5 β1

6

β2
0β2

0

β2
1

β2
1 β2

1

β2
2

β2
2

β2
2

β2
3

β2
3

β2
4

β2
5

β2
6

b11
b12

b13

b21

b22

b23

(a) (b)
Figure 3.9: Refinement of the partitioning (a) and using a hierarchical struc-
ture with two models (b)

region of particular interest), besides the 16 desired states in the center, also
16 undesired states are added (in the grey areas) because of the expansion of
the number of boundaries.

50 Discrete-event models of continuous systems

Instead of using one discrete-event model for the complete state space re-
gion, it is convenient if we use two discrete-event models: one (coarse) discrete-
event model for the coarse partitioning, and another discrete-event model for
the fine partitioning, thus avoiding the introduction of unnecessary discrete
states. By using a supervisor which keeps track of the region we are operating
in, it is possible to use multiple discrete-event models by switching between
them when appropriate, see Figure 3.10.

x̃x̃

ũũ

{x̃}new

{x̃}new
Discrete event

Supervisor

Model

Model

Model

(a) (b)

1

i

ν

model

Figure 3.10: The (a) complete- and (b) hierarchical discrete-event model

For the partitioning in Figure 3.9 this implies that a coarse discrete-event
model (with 9 discrete states) is valid for the off center regions and that for the
region in the center a more accurate model is used (with 16 discrete states),
see Figure 3.9 (b).

Creating the models for this hierarchical structure is performed in the same
manner as for the original system except for some additional book-keeping.
The discrete-event model for the coarse partitioning is obtained by applying
the procedure described in Section 3.2 with the boundaries defining the coarse
partitioning (e.g. the boundaries βi0, β

i
1, β

i
2, and β

i
3, i = 1, 2, in Figure 3.9 (b)).

If from this coarse discrete-event model it follows that (given a discrete state
x̃) a transition is possible to the discrete state for which the refinement applies,
then for the hierarchical model, this means that transitions are possible from
x̃ to all discrete states of the accurate model that are adjacent to x̃. If the
accurate discrete-event model is constructed by the method in Section 3.2 with
the boundaries defining the fine partitioning (e.g. the boundaries βi1, b

i
1, b

i
2,

bi3, and βi2, i = 1, 2, in Figure 3.9 (b)) then from this model it can not be
seen if transitions to discrete states of the coarse model are possible, since
these are not states of the accurate model itself. For this reason, additional
boundaries are introduced to expand the region of interest of the accurate
model, see the grey areas in Figure 3.9 (b). If according to the accurate
model with the expanded number of states, a transition is possible from one
of the original discrete states to one of the additional discrete states (the grey

3.4 Computational effort 51

states in Figure 3.9 (b)), then for the hierarchical model, this means that a
transition is possible to the associated coarse discrete state. Note that the
additional discrete states that arise in this manner (the grey states) are not
used in the model itself6, so the accurate model has 16 discrete states instead
of 32.

Sparsity

For both nonlinear and linear systems the number of optimizations or compu-
tations can be reduced by exploiting the sparsity of the differential equation
(3.1) or (3.12). As expressed in (3.11) for our discrete-event modelling algo-
rithm it is assumed that for each of the coordinates xi all the coordinates of x
are of importance for the possibility of a transition (i.e. for ẋi). In many cases
however, only a part of the state x and the input u influences the derivative
ẋi. This makes it profitable to consider sub-systems of the overall system such
that the sum of the computations for the individual systems is less than for
the overall system.

For each component xi of the state vector, we compute the sets of indices
of the components of the state x and the input u that influence the sign of the
derivative f i(x, u), collected in the sets Si

x and Si
u, respectively.

Si
x := {j | ∃x ∈ R

n,∃u ∈ R
m such that

∂f i(x, u)
∂xj

�= 0},

Si
u := {j | ∃x ∈ R

n,∃u ∈ R
m such that

∂f i(x, u)
∂uj

�= 0}.

These sets serve as a basis for decomposing the original system into a
number of sub-systems. For instance, consider a system without inputs ẋ =
f(x), x ∈ R

3 , and assume that S1
x = {1, 2}, S2

x = {1}, and S3
x = {2, 3}.

Then a possible decomposition is given by [ẋ1, ẋ2]T = f1([x1, x2]T) and ẋ3 =
f2([x2, x3]T). Note that these subsystems are not decoupled, since f2 still
depends on a state in f1. In general, the state space is partitioned in ν
subspaces, such that R

n = R
n1 × ... × R

nν , and
∑ν

i=1 ni = n. The new
state z is a permutation of the original state components and is decomposed
as z = [z1, ..., zν]T . The indices of the components of the original state vector
that are elements of the ‘sub state’ zj , are collected in the sets Xj , j = 1, ..., ν.
So, if z1 = [x1, x2]T then X1 = {1, 2}. The partitioning of the state space is
such that Xj ∩Xk = ∅ for j �= k, and

⋃ν
j=1 Xj = {1, ..., n}.

The differential equations in (3.1) are now partitioned accordingly such
that we have ν sub-systems,

żi = fi(wi, vi),
6In fact, transitions between additional states need not to be computed at all, since only

transitions from original states to additional states are of interest.

52 Discrete-event models of continuous systems

where wi (vi) is a vector consisting of those components xj (uj) of x (u) that
influence żi directly. For each sub-system i these vectors can be characterized
by the sets of indices Si

w (and Si
v) of the components of the original state-vector

x (or input-vector u):

Si
w := {j ∈ Sk

x | k ∈ Xi}, and Si
v := {j ∈ Sk

u | k ∈ Xi}.

The computational effort to obtain discrete-event models of all these sub-
systems may be significantly less than creating the complete model at once.
For each sub-model i the computational effort to produce the discrete-event
model is

NOi =
∑
j∈Xi

(nj − 1)(

∏
k∈Si

w\j
nk)(

∏
l∈Si

v

ml)

 , (3.15)

involving #(Si
v)(#(Si

w) − 1) variables. Note, that for each optimization less
(or equal) variables are involved than for the overall system.

The information provided by these sub-models now can be used to recon-
struct the complete discrete-event model that would result from the original
procedure. For this, each discrete state x̃ and input ũ is decomposed into w̃i

and ṽi for i = 1, ..., ν. Next, for all the sub-models the next possible states
{z̃i}new are computed given w̃i and ṽi. Given these next new states {z̃i}new
it is easy to reconstruct the set of new states {x̃}new since for example in the
tuple presentation, a discrete state x̃ is equal to (z̃1, ..., z̃ν) except for a known
permutation of elements. This procedure can be performed off-line and from
the results a new complete discrete-event model can be built. Since for all the
sub-models, the computation of {z̃i}new can be done in parallel (on different
machines) even more computation-time can be gained than only caused by the
reduction of the number of computations and variables for each optimization.

By creating a hierarchical structure, it is possible to use the sub-models
explicitly instead of building one large model. In this case, a supervisor is used
to extract the necessary information for each sub-model and to reconstruct
the complete state from the information provided by the sub-models. This
requires extracting w̃i and ṽi from x̃ and ũ for each of the sub-models, that
is for i = 1, ..., ν, as defined by the sets Si

w and Si
v, respectively. These parts

w̃i, ṽi provide the information that is necessary for sub-model i to compute (in
parallel with the other models) the next possible discrete states {z̃i}, which
then are used to reconstruct x̃. Clearly, this is the same procedure as for the
construction of the overall discrete-event model. The procedure is depicted in
Figure 3.11.

3.5 Example: a three tank system 53

x̃

x̃
ũ

ũ

{x̃}new

{x̃}new
Discrete event

Supervisor

Model Model Model

w̃1, ṽ1

{z̃1}new

w̃i, ṽi {z̃i}new

w̃ν , ṽν

{z̃ν}new

(a) (b)

1 i ν

model

Figure 3.11: The (a) complete- and (b) hierarchical discrete-event model

3.5 Example: a three tank system

To clarify the main concepts discussed in the previous sections, a three tank
system as in Figure 3.12 serves as an illustration. It consists of three commu-

s1 s2

s3 s4 s5

x1 x2 x3
12
3
45
6

F̂1 F̂2

Figure 3.12: Three tank system (parallel)

nicating tanks (all with cross section At) which are connected through pipes
(all with cross-section Ap). The input u = (s1, s2, s3, s4, s5) of the system con-
sists of the on/off switches, s1, . . . , s5 controlling the valves, where si ∈ {0, 1}
(closed/open). The first and the last tank can be filled by the flows F̂1 and
F̂2 respectively. Only the last tank has a drain. The (continuous) state vector
x = [x1, x2, x3]T is given by the water levels in each tank. Each tank is divided
into six parts (discrete states) that are defined by the levels: 0, 0.01, 0.1, 0.2,
0.3, 0.4, and 0.5 [m]. It is only observed if a level is reached. This implies that
although the dynamics are described by continuous differential equations, only
discrete outputs are observed and discrete inputs are applied, so for a controller
supervising this system, this tank system acts as a discrete-event system.

The discrete states for the discrete-event model that will be computed are
induced by the partitioning of the continuous state space into hypercubes.
This partitioning is defined by the boundaries βij following from the level-
measurements. By this, the region of interest in the state space is divided

54 Discrete-event models of continuous systems

into 216 hypercubes resulting in an equal number of discrete states. Since the
input u is given by the position of the switches s1, ..., s5 it is not necessary
to discretize the input space, because the input is already discrete. Each of
the five inputs can take two values (0 or 1) resulting in 25 = 32 discrete
inputs. The mapping Q is defined as in Section 3.2. Since the input is already
discrete, there is no need for a mapping S from the continuous to the discrete
domain. The transition function φ is computed for a nonlinear and for a linear
model of the three tank system. To illustrate the computation effort necessary
to obtain these discrete-event models, they are computed without and with
using knowledge of the systems structure (sparsity). In conclusion, a discrete-
event model of the three-tank system is computed in four different ways. The
computations are performed on a Personal Computer with a Pentium III 500
MHz processor and with 128Mb memory.

3.5.1 The nonlinear system

First, the system is modelled by the following set of nonlinear differential
equations.

dx1

dt
=

1
At

(
s1F̂1 − s3Ap

√
2gΨ(x1 − x2)

)
, (3.16a)

dx2

dt
=

1
At

(
s3Ap

√
2gΨ(x1 − x2)− s4Ap

√
2gΨ(x2 − x3)

)
, (3.16b)

dx3

dt
=

1
At

(
s2F̂2 + s4Ap

√
2gΨ(x2 − x3)− s5Ap

√
2gΨ(x3)

)
, (3.16c)

where Ψ(x) := sign(x)
√

|x|.
The differential equations describing the system have three coordinates

(n = 3) and for our discretization each coordinate is partitioned into 6 regions
(ñi = 6). Furthermore there are 5 inputs (m = 5) and each input can take two
values (m̃i = 2). From (3.11) it follows that the number of optimizations is
approximately NOnl =

∑3
i=1((6− 1)(

∏
j 	=i 6)(

∏5
k=1 2)) = 12480. The time to

perform these optimizations and to compute the discrete-event model of the
complete system is 522.17 [s] (8 minutes and 42 seconds).

With the resulting discrete-event model we can compute the next possible
discrete state(s) given an initial discrete state and a discrete input. In Figure
3.13 (a) a continuous trajectory is depicted starting form initial state x0 =
[0.25, 0.25, 0.25]T and simulated for 250 [s]. The input applied to the system
only changes if a boundary (level sensor) is reached. This results in the input

3.5 Example: a three tank system 55

υ

υ[0,250] =

(0, 0, 0, 0, 1), 0 ≤ t < 33.2
(0, 0, 0, 1, 1), 33.2 ≤ t < 56.2
(0, 0, 1, 1, 1), 56.2 ≤ t < 143.8
(1, 1, 1, 1, 1), 143.8 ≤ t ≤ 250.

The corresponding discretized (i.e. observed by the level sensors) trajectory
is shown in Figure 3.13 (b) and is given by the sequence

(4, 4, 4)
(00001)−→ (4, 4, 3)

(00001)−→ (4, 4, 2)
(00011)−→ (4, 4, 3)

(00011)−→

(4, 3, 3)
(00011)−→ (4, 3, 2)

(00111)−→ (3, 3, 2)
(00111)−→ (3, 2, 2)

(00111)−→

(2, 2, 2)
(11111)−→ (3, 2, 2)

(11111)−→ (3, 3, 2)
(11111)−→ (3, 3, 3)

(11111)−→ (4, 3, 3).

The set of discrete states resulting from our discrete-event model with ini-
tial discrete state (4, 4, 4) and the same input sequence as for the continuous
case is given in Figure 3.13 (c). Due to the nondeterminism of the discrete-
event model the set of discrete states that can be reached (15 states) is more
than the original 9 states that are actually reached. Finally, in Figure 3.13 (d)
a discrete trajectory is shown that cannot result from the differential equa-
tions (3.16) describing the three tank system but that is possible according
a sequence of discrete states resulting from our discrete-event model. This
sequence is given by

(4, 4, 4)
(00001)−→ (4, 4, 3)

(00001)−→ (4, 4, 2)
(00011)−→ (4, 4, 3)

(00011)−→

(4, 3, 3)
(00011)−→ (4, 3, 2)

(00111)−→ (3, 3, 2)
(00111)−→ (3, 2, 2)

(00111)−→

(3, 3, 2)
(11111)−→ (3, 3, 3)

(11111)−→ (4, 3, 3)
(11111)−→ (4, 4, 3)

(11111)−→ (5, 4, 3).

Clearly, for input u = (0, 0, 1, 1, 1), i.e. only s1 and s2 are closed, the level

in all tanks has to drop monotonically. Hence the sequence (3, 3, 2)
(00111)−→

(3, 2, 2)
(00111)−→ (3, 3, 2) is a spurious solution of our discrete-event model.

Next we exploit the structure of the system. From the differential equations
(3.16) it can be seen that a single tank is not influenced by all the inputs or
the level of the fluid in all other tanks. In fact, instead of considering the three
tank system as one system it is also possible to look at the tanks separately,
see Figure 3.14.

By this the original state space is partitioned in 3 sub-spaces and for the
new coordinates z1 = x1, z2 = x2, and z3 = x3 we consider the differential

56 Discrete-event models of continuous systems

0
0.5

00.20.4
0

0.1

0.2

0.3

0.4

0.5

0
0.5

00.20.4
0

0.1

0.2

0.3

0.4

0.5

0
0.5

00.20.4
0

0.1

0.2

0.3

0.4

0.5

0
0.5

00.20.4
0

0.1

0.2

0.3

0.4

0.5

x1x1

x1x1

x2x2

x2x2

x
3

x
3

x
3

x
3 x0

(a) (b)

(c) (d)
Figure 3.13: Continuous (a) and discretized (b) simulation result together with
discrete simulation (c) and a spurious discrete trajectory (d)

s1 s2

s3, x
2 s4, x

3
s5

x1 x2 x3
12
3
45
6

F̂1 F̂2

s3, x
1 s4, x

2

Figure 3.14: Considering the tanks separately

equations of the form

ż1 =
1
At

(
s1F̂1 − s3Ap

√
2gΨ(x1 − x2)

)
= f1(x1, x2, u1, u3) = f1(w1, v1)

ż2 =
1
At

(
s3Ap

√
2gΨ(x1 − x2)− s4Ap

√
2gΨ(x2 − x3)

)
= f2(x1, x2, x3, u3, u4) = f2(w2, v2)

ż3 =
1
At

(
s2F̂2 + s4Ap

√
2gΨ(x2 − x3)− s5Ap

√
2gΨx3

)
= f3(x2, x3, u2, u4, u5) = f3(w3, v3).

Using the notation as in Subsection 3.4.2 it is clear that X1 = {1}, X2 =
{2} and X3 = {3}. Since the first tank is only influenced by x1, x2, u1, and u3,

3.5 Example: a three tank system 57

the sets S1
w = {1, 2} and S1

v = {1, 3} result. Similarly we obtain S2
w = {1, 2, 3},

S2
v = {3, 4}, and S3

w = {2, 3}, S3
v = {2, 4, 5}.

If we use this to compute the number of optimizations for each of the
systems by (3.15), then we obtain the following results.

NOnl,1 = (6− 1)(6)(2 · 2) = 120,
NOnl,2 = (6− 1)(6 · 6)(2 · 2) = 720,
NOnl,3 = (6− 1)(6)(2 · 2 · 2) = 240.

In conclusion, we need a total of 120 + 720 + 240 = 1080 optimizations
to obtain the complete discrete-event model of the three tank system. The
time needed to perform these computations is 2.97 [s] for the first, 26.86 [s]
for the second, and 5.55 [s] for the third model. From the number of opti-
mizations it follows that the second system needs 6 times more optimizations
than the first system and for the third system 2 times more optimizations
are required. From the computation-times we can see that the second system
required almost 9 times more computation-time than the first system and the
third system needs 1.7 times more time to compute the discrete-event model.
The difference of the ratios of computation-times compared with the ratios
of the number of optimizations is probably due to the fact that besides the
number of optimizations also the number of variables of the optimizations
changes. For the second system there are two variables for the optimization
(x1 and x2), whereas for the first and the third system only one variable (x2)
is involved. Hence the ratios of the computation-times are smaller than the
ratios of the number of computations.

The total time to compute the overall model by the hierarchical method is
equal to 35.38 [s]. This is 1

14.8 of the time needed by the previous procedure.
The ratio of the number of optimizations of both methods is 12380

1080 = 11.5

3.5.2 The linear system

By assuming that the flow between tanks depends linearly on the difference
between the levels instead of the square root of the difference (by Bernoulli’s
equation) we obtain the following differential equations

dx1

dt
=

1
At

(
s1F̂1 − s3Apβ(x1 − x2)

)
,

dx2

dt
=

1
At

(
s3Apβ(x1 − x2)− s4Apβ(x2 − x3)

)
,

dx3

dt
=

1
At

(
s2F̂2 + s4Apβ(x2 − x3)− s5Apβx

3
)
.

58 Discrete-event models of continuous systems

Since inputs (switches si) are multiplied with states, this is still a nonlin-
ear system. However, because the switches can only take a finite number of
values (1 and 0) it is still possible to use the algorithm for linear systems for
computing the discrete-event model of this system by fixing the input for each
of the computations. This simply means that for each input we consider a
different linear model.

Using equation (3.14) it follows that the number of computations for the
complete three tank system is NC =

∑3
i=1((6 · 6)(

∏5
k=1 2)) = 3456. The

discrete-event model is computed in 40.81 [s].
By exploiting the sparsity of the system as we have seen for the nonlinear

case, the number of computations can be reduced even more. For the first
tank (6)(2 · 2) = 24 computations are necessary. The second tank requires
(6 · 6)(2 · 2) = 144 computations and for the third tank (6)(2 · 2 · 2) = 48
computations are needed which brings the total amount of computations at
216. Computing the discrete-event models for the three systems separately
required 0.16, 1.87, and 0.27 [s] respectively. The total computation-time
then is 2.30 [s]. This is 1

17.7 of the computation-time for the complete system
at once, whereas the ratio of the number of computations is 3456

216 = 16.
To summarize the results, the following table is presented

Computations computation-time [s]
Nonlinear 12480 522.17

Nonlinear
1
2
3

120
720
240

 1080

2.97
26.86
5.55

 35.38

Linear 3456 40.81

Linear
1
2
3

24
144
48

 216

0.16
1.87
0.27

 2.30

3.6 Notes and references

Discrete-event models of continuous systems

Approximating the behavior of continuous plants by a finite automaton has
already been described in 1970 (Vinogradov 1970), and has been further de-
veloped in (Kornoushenko 1975). However (Kornoushenko 1975, Vinogradov
1970) require an explicit solution of the differential equation describing the
plant. This state-equation is used to obtain a discrete-time approximation,
which in turn is used for the construction of a deterministic automaton. With
the growing interest in hybrid systems (Grossman et al. 1993, Antsaklis et
al. 1993, Alur et al. 1996, Antsaklis et al. 1997, Antsaklis et al. 1999) the qual-

3.6 Notes and references 59

itative modelling approach has gained renewed attention as a way to combine
discrete with continuous dynamics. In (Puri et al. 1996) a method is dis-
cussed for computing an arbitrary close approximation of the set of states
reached after time t starting from an initial set, for a differential inclusion
ẋ ∈ f(x) satisfying a Lipschitz condition. Various formalisms of discrete-
event models of continuous systems are given in literature. In (Stiver and
Antsaklis 1993) the discrete states are defined by hypersurfaces and the ‘in-
terface’ between both domains is given by a static map. Transitions are com-
puted by a derivative test similar to the one described in this chapter, but
no explicit (automated) algorithm is given. For linear discrete-time systems
a method is discussed in (Lunze 1994, Lunze 1996) for obtaining qualitative
models. Discrete states are defined by rectangles and the discrete model is
represented by stochastic automata. Also a condition for the existence of a
deterministic model is given. In (Lunze et al. 1997) the continuous dynamics
has been transformed into a Petri-net using discrete states based on rectan-
gular sets and also the continuous dynamics (defined for each rectangular set)
has been used to obtained additional (time) information. Another approach is
followed in (Lunze et al. 1999b, Lunze et al. 1999a), where a continuous-time
model is first transformed into a discrete-time model. Next, by a procedure
based on backward integrating, a stochastic automaton is obtained with dis-
crete states not necessarily based on rectangular sets. Results are obtained for
linear systems without inputs. In (Lunze 1999) timed discrete-event abstrac-
tion of continuous systems is proposed modelled by a semi-Markov process.
Two discretization methods are described in (Stursberg et al. 1997). Both
methods use discrete states based on rectangular sets and result in a timed
automaton. One method checks the derivatives in gridpoints and the other
method uses forward/backward integration. Completeness of the model is the
main problem for the latter method. In (Raisch and O’Young 1998) it is ex-
plained how to obtain a discrete-event model from discrete-time systems by
solving linear inequalities based on the system’s inverse. The discrete model
then uses a recorded string of measurement and control symbols to compute
the next possible states. By this, the nondeterminism is reduced. The pro-
posed modelling method is only effective for affine models. The discretization
method discussed in this chapter is based on (Preisig 1996b), further improved
and extended in (Preisig et al. 1997, Philips et al. 1997). Exploiting sparsity
of the continuous system for reducing the computational effort is discussed
in (Philips and Weiss 2000). Methods for reducing the number of discrete
states when constructing a discrete-event model of a plant are presented in
(Preisig 1989, Preisig 1996a). The use of a hierarchical structure is related to
multigrid methods in numerical analysis (local refinement) and to hierarchical
discrete-event systems (Raisch and Itigin 2000).

60 Discrete-event models of continuous systems

Isomorphism

The definition of isomorphism of two discrete-event models (Definition 3.1.5)
is based on the definition of two automata being isomorphic (Booth 1967)
with the difference that we also allow different discrete-input sets and that we
compare (transformed) discrete states instead of discrete outputs only.

Mappings Q, R, and S

In the literature, the mappings from the continuous to the discrete domains
always are defined to be static. Although the concept and the intention of
these mappings is clear, We believe that these static mappings cannot assign
a discrete state for all continuous states; at least not in a proper way. For
instance, in the three tank example a trajectory can evolve on a boundary
plane in the state space. The mappings used in literature will assign no discrete
states when open (rectangular) sets are used; multiple discrete states when
closed (rectangular) sets are used or they will change from one discrete state
to another when semi open (rectangular) sets are used, because the boundary
of such set is reached without being crossed.

Systems with outputs

Most systems that are studied in the literature mentioned above are systems
without outputs or systems for which the output are components of the state-
vector. For simplicity, for the remainder of this thesis systems without outputs
are considered. Only in the next chapter, we will describe methods for recon-
structing the complete discrete and continuous state for systems with outputs.

Computational effort

It is understood that the number of optimizations NO and the number of
computations NC as mentioned in this chapter only serve as a measure for
the computational effort, and are not the exact number of optimizations and
certainly not the exact number of computations. They serve as a measure for
computational effort since they represent the number of times that a sequence
of computations (or a procedure) has to be performed.

Chapter 4

State reconstruction

This chapter deals with the problem of state reconstruction. Two types of
states are considered: continuous and discrete states. First it is shown how to
reconstruct the continuous state of a continuous system from discrete partial
measurement data. Next, we will discuss how to reconstruct the unknown
(initial) discrete state from a sequence of discrete measurements (events). Both
methods are illustrated by examples.

4.1 Continuous-state reconstruction

The partitioning of the state space on which the construction of the discrete-
event models is based, is often induced by the placement of ‘discrete sensors’.
Discrete sensors are only able to detect when a process variable crosses a cer-
tain value and occur frequently in industrial practice. For instance, a motor
encoder can be seen as a discrete sensor, since the (angular) position mea-
surements of the motor axis become available only when specific positions
are reached. As a consequence, the measurement instants are asynchronous in
time (Heemels et al. 1999). Also, one could think of an automated bus that has
to determine its position and speed based on markers (e.g. magnets) placed on
fixed positions in the road (De Bruin and van den Bosch 1998). Characteristic
for these discrete measurements is that the time-instants at which the infor-
mation becomes available are not equidistant in time. It is clear that a system
with discrete sensors provides poorer information on the time-evolution of the
state-variables of a plant than a usual continuous sensor. On the other hand,
discrete sensors can be far more reliable and robust in operation, or yield a
higher resolution. They may also operate on larger ranges than continuous
sensors normally would. All these advantages recommend them for the safety
tasks for which they are often used. Another typical application field is the
implementation of relay control schemes.

61

62 State reconstruction

It is studied here how to deal with these discretely-observed systems by
using a discrete-event model of the original continuous system. For control pur-
poses, it is interesting to consider another approach of dealing with this kind of
systems: reconstructing the continuous state from the discrete measurements
allows the application of conventional control strategies. Also complete state
information can be directly used to enhance the performance of a supervisory
control scheme. Another application lies in the area of fault detection.

In real life, discrete sensors are not necessarily used exclusively, but in com-
bination with continuous sensors that provide measurement data throughout
the time evolution of the plant. However, in this section we shall consider the
situation where only discrete sensors are present. A particular time-evolution
of the plant will be recorded as a sequence of state level crossings. The avail-
able measurement data consists of the values that have been crossed and the
time when the crossings took place.

To formalize the problem, suppose that we have a process that is described
by a model of the form

ẋ(t) = f(x(t), u(t), t), x(t0) = x0 (4.1)

and x(t) ∈ R
n, u(t) ∈ R

m. Furthermore suppose that we have a number of
sensors that detect whether a certain state variable xi has reached a certain
value βij . That means that, for each coordinate xi, a set of values

Bi = {βi1, ..., βini−1}, βi1 < ... < βini−1 (4.2)

is given such that, the situation xi(t) = βij results in the emission of a sensor
signal and the recording of the time when the state event occurs. Note that
Bi differs from the set of boundaries (3.3) because we assume that the outer
boundaries defining the region of interest (i.e. βi0 and βini

) are not measurable.
Furthermore, we assume that the input υ applied to the system is known.

A particular trajectory of the system will be observed as a sequence of
k time moments t0 < t1 < ... < tk, a sequence of state coordinates i1, ..., ik
(ij ∈ {1, ..., n}) and a sequence of values b1, ..., bk satisfying

bj ∈ Bij (4.3)

corresponding to the levels reached by the state variable xij of the model at
the time moments tj . Our problem can now be formulated as follows.

Problem 4.1.1 (The continuous-state reconstruction problem) Let
T = {t1,..., tk}, I = {i1, ..., ik}, V = {b1, ..., bk} satisfying ij ∈ {1, ..., n} and
bj ∈ Bij for j = 1, ..., k be given. Find all state trajectories of (4.1) with known
input υ such that

xij (tj) = bj , j = 1, ..., k. (4.4)

4.1 Continuous-state reconstruction 63

It is assumed that the model of the time-continuous system 4.1 is exactly
known. One can regard this problem as a multipoint boundary-value problem
for the differential equation (4.1) in the sense of (Meyer 1973). As we put
no constraints on the data, it is quite clear that the problem might have no,
several, or an infinite number of solutions. The existence and uniqueness for
the problem that we have formulated will receive attention in this section.

The setting presented so far is quite general. It includes the case that some
state variables are not monitored at all (Bi = ∅ and ni = 1).

Assuming that the differential equation is such that the initial value prob-
lem has a unique solution, it is obvious that finding the state trajectory of
(4.1) satisfying (4.4) is equivalent to determining the initial condition x0 =
x(t0). This is particularly convenient whenever an analytical expression for
the initial-value solution is available. Therefore, we first examine a large class
of systems for which this is true: linear time-invariant systems.

4.1.1 The linear, time-invariant case

We concentrate in this subsection on the case that the process is described by

ẋ(t) = Ax(t) +Bu(t). (4.5)

Then, the initial-value solution with x(t0) = x0 and input u(t) can be expressed
analytically by the variation-of-constants formula

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−τ)Bu (τ) dτ . (4.6)

The conditions (4.4) become

bj = xij (tj) = eTij

(
eA(tj−t0) x0 +

∫ tj

t0

eA(tj−τ)Bu(τ)dτ
)
,

or

bj − eTij

∫ tj

t0

eA(tj−τ) Bu (τ) dτ = eTij e
A(tj−t0)x0, (4.7)

with j = 1, ..., k. This is a system of k linear equations in x0. Introducing

P :=

 eTi1 e

A(t1−t0)

...
eTik eA(tk−t0)

 ∈ R

k×n (4.8)

64 State reconstruction

and

d :=

b1 − eTi1

∫ t1
t0
eA(t1−τ) Bu (τ) dτ

...
bk − eTik

∫ tk
t0
eA(tk−τ)Bu (τ) dτ

 ∈ R

k (4.9)

the system (4.7) can be written in the compact form

Px0 = d. (4.10)

Note, that both P and d are depending on the initial condition x (t0) =
x0 and the input u(t) because these determine the time-instants tj and the
indices ij of the states that cross certain levels. Since both the matrix P and
the vector d can be readily computed from the available data, the state recon-
struction problem is in principle solvable for this case. Indeed, the problem
has a solution if and only if

d ∈ ImP.

If our model is correct, that is if the data is generated by the system (4.1)
then this condition must be guaranteed. In particular, if P is surjective, i.e.
if it has full row rank, the solution exists for every d. On the other hand, the
problem has at most one solution if and only if P is injective, i.e. if it has full
column rank. In general, whenever a solution exists, the set of all solutions
can be parameterized by the formula

x0 = P#d+ P0w, (4.11)

where P# is a left inverse of P , P0 is a matrix such that KerP = ImP0 and
w is an arbitrary vector parameter. Of course, if k = n and P is invertible,
the solution to (4.10) exists and is unique. Otherwise, x0 is known to be an
element of the affine subspace of R

n through x∗0 := P#d and parallel to kerP .

4.1.2 The linear, time-varying case

Let us consider now the case that our model is linear time-varying, i.e. of the
form

ẋ(t) = A(t)x(t) +B(t)u(t). (4.12)

The solution for this differential equation can be written again as

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ,

4.1 Continuous-state reconstruction 65

where the transition matrix Φ(t, t0) satisfies

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I.

In general there is no analytic expression for the transition matrix. However,
we can follow the derivation in the previous section in order to obtain at least
a numerical procedure to assess reconstructibility and, eventually, to solve for
the initial state.

The conditions (4.4) can be written as

bj = xij (tj) = eTij [Φ(tj , t0)x0 +
∫ tj

t0

Φ(tj , τ) Bu(τ)dτ],

or

bj − eTij

∫ tj

t0

Φ(tj , τ) Bu (τ) dτ = eTij Φ(tj , t0) x0, (4.13)

with j = 1, ..., k. Introducing

P :=

 eTi1 Φ(t1, t0)

...
eTik Φ(tk, t0)

 ∈ R

k×n (4.14)

and

d :=

b1 − eTi1

∫ t1
t0

Φ(t1, τ) Bu (τ) dτ
...

bk − eTik
∫ tk
t0

Φ(tk, τ) Bu (τ) dτ

 ∈ R

k (4.15)

the system (4.13) can be written in a compact form as in (4.10). Although
there is no general analytic formula for the transition matrix, computing the
matrix P and the vector d from the available data amounts to several numerical
integrations of the system (4.12), which is for reasonably complex models not
a very challenging task.

4.1.3 The general case

Not much is known about the general problem. The theory of multipoint
boundary-value problems offers some necessary conditions for the existence
of solutions to the state reconstruction problem. For example, (Meyer 1973,
Section 4.1) gives two such existence results for the case that the number
of recorded events k equals the state space dimension n. The first result,

66 State reconstruction

(Meyer 1973, Theorem 4.1.1), reduces the problem to the existence of a Cauchy
problem for a partial differential equation. This leads to a numerical solution
for the multipoint boundary value problem by the method of invariant em-
bedding. The second existence result (Meyer 1973, Theorem 4.1.2) states that
the solution exists provided that the length of the intervals between two con-
secutive results is small enough. Quantitative estimates are provided. It is
assumed however that information is available about all state variables which
is not always the case in our setting, neither it is necessary.

There are at least two other solution methods concerning the numerical
solution of the state reconstruction problem besides these invariant embed-
ding methods: the finite difference methods and the shooting methods. See
(Roberts and Shipman 1972) and (Keller 1968). For testing purposes we have
implemented a variant of Newton’s method as one of the shooting methods
((Roberts and Shipman 1972, Chapter 6)), which now will be explained briefly.

Introducing the notation x(t; t0, x0) for the solution of (4.1) given input υ
and initial condition x(t0) = x0, we try to find the initial value x0 (in principle
there might be more than one minimizer) that minimizes

J(x0) =
k∑

j=1

∥∥xij (tj ; t0, x0)− bj
∥∥2
.

By defining x(t1,..., tk, t0, x0) := [xi1 (t1; t0, x0) , ..., xik (tk; t0, x0)]T and b :=
[b1, ..., bk]T the objective function J(x0) can be written as

J(x0) = [x(t1,..., tk, t0, x0)− b]T [x(t1,..., tk, t0, x0)− b].

Let x∗0 be an initial state for which J(x∗0) ≤ J(x0), for x0 �= x∗0. In case that
the state reconstruction problem is uniquely solvable, this is the state we are
looking for. Furthermore, let x̂0 be the current estimate of the optimal initial
condition then we can write x∗0 = x̂0 +∆x. By taking the Taylor expansion of
x(t1,..., tk, t0, x̂0 +∆x) and neglecting higher order terms we obtain

x(t1,..., tk, t0, x̂0 +∆x) ≈ x(t1,..., tk, t0, x̂0) +
∂x(t1, ..., tk; t0, x̂0)

∂x0
∆x.

This yields

J(x0) ≈ [P∆x− d]T [P∆x− d],

with P := ∂x(t1,...,tk;t0,x̂0)
∂x0

and d := b− x(t1,..., tk, t0, x̂0). Since for the optimal

solution x∗0 it must hold that ∂J(x0)
∂x0

= 0, we obtain that

∂J(x0)
∂x0

≈ 2P TP∆x− 2P Td = 0,

4.1 Continuous-state reconstruction 67

from which we get that ∆x ≈ (P TP)−1Pd, provided that P TP is invertible
(i.e. P is injective). For linear time-invariant systems taking initial guess
x̂0 = 0 will immediately lead to the optimal solution in one step and is equal
to (4.11). Note that (P TP)−1P is a left inverse of P . For nonlinear systems
the new estimate is obtained by the recursion scheme

x̂new0 := x̂0 + (P TP)−1P Td,

The elements of the matrix P can be conveniently obtained by integrating the
variational system corresponding to (4.1)

dΦ
dt

=
∂f

∂x
(x (t; t0, x̂0))Φ, Φ (t0) = I.

In this way, (4.1) is linearized in each point of the (estimated) trajectory
x (t; t0, x̂0) such that the linear time-varying system (4.12) results and P can
be computed similarly as in (4.14). Actually, it is proven in (Perko 1991, p.
83) that indeed

P =

 eTi1Φ(t1; t0, x̂0)

...
eTikΦ(tk; t0, x̂0)

 .

Numerical results on a concrete example are presented in Section 4.1.5.

4.1.4 Event-based observability and detectability

As we have seen in the previous section the state reconstruction problem can be
approached at least numerically. However there are a number of fundamental
issues that can be immediately raised in connection to the state reconstruc-
tion problem from partial discrete measurements. Answering these issues is
a challenging task, and even in the linear time-invariant case this is still an
open problem.

If the solution to the state reconstruction problem does not exist, it is of
course irrelevant to study which method might be suitable to find it. Hence,
it is important to guarantee that every initial state can be reconstructed from
a long enough sequence of recorded state events and a suitably chosen input
signal. This leads us to consider the following notion.

Definition 4.1.2 (Event-based observability) A state x0 ∈ R
n is said

to be event-based observable (or event-based reconstructible) for the system
(4.1) together with the level sensors (4.2), if there exists an input υ resulting
in the sequence of events given by T = {t1,..., tk}, I = {i1, ..., ik} and V =
{b1, ..., bk} for which the state reconstruction problem has a unique solution
(equal to x0).

68 State reconstruction

We have no practical criterion to assess reconstructibility of a state of a
system. It is however not difficult to give some situations in which a state
is not reconstructible. The extreme case is when the state trajectory of an
autonomous system (i.e. with no inputs), initialized in the given state never
crosses a level boundary. For example, when the respective state is one of two
equilibrium states within one hypercube. However, this is not particularly
bothersome in many practical situations. Indeed, if the sensor system is used
for safety issues, it is important that the critical states that lead to unbounded
solutions can be observed.

Definition 4.1.3 (Event-based detectability) A state x0 ∈ R
n is said

to be event-based detectable for the system (4.1) together with the level sensors
(4.2) if for all υ ∈ PC0[0,∞), a state trajectory initialized in x0 is either
bounded, or the resulting sequence of events given by T = {t1,..., tk}, I =
{i1, ..., ik} and V = {b1, ..., bk} is such that the state reconstruction problem
has a unique solution (equal to x0).

For practical purposes it is often important to be able to determine the
initial state out of a known set of possible initial states. Also it can be con-
venient to know how many observations it at least takes to reconstruct x0.
Specifically, we introduce the following definition.

Definition 4.1.4 (Set restricted k-step observability) A state x0 ∈
S ⊂ R

n is said to be set restricted k-step observable for the system (4.1)
together with the level sensors (4.2) if there exists an input υ ∈ PC0[0,∞) such
that with the corresponding sequence of events, of length k, T = {t1, ..., tk},
I = {i1, ..., ik}, and V = {b1, ..., bk} generated by the state trajectory initialized
in x0 with input υ, the state reconstruction problem has a unique solution in
the set S, equal to x0.

The advantage now is that we can exploit the fact that x0 is known to be
an element of S. The more restrictive S is, the easier the state reconstruction
problem becomes.

The level sensors (4.2) naturally induce a partitioning of the state space.
Based on this partitioning we are able to create a discrete-event model of
the continuous system as discussed in the previous chapter. Suppose the set
S is equal to the region in the state space corresponding to the particular
discrete state x̃0 which contains x0, i.e. S = Hx(x̃0). Then, it is possible,
using the discrete-event model of the system, to determine all possible tran-
sition sequences of length k when starting in x̃0. Since it is possible that
more than one adjacent discrete states can be reached from a given discrete
state x̃, various transition sequences can occur. Suppose we have l possible
transition sequences, then for all sequences the index sets I1, ..., Il and the

4.1 Continuous-state reconstruction 69

measurement sets V1, ...Vl are known. The only missing information are the
time sequences T1, ..., Tl. However, for linear time-invariant systems it can
be decided on this partial information whether a continuous state is not set
restricted k-step observable. Suppose, for the set of indices Ij we construct
the ‘output’ matrix EIj = [ei1 , ...eik]

T . Now, it is intuitively clear that if the
pair (A,EIj) is not observable then the state x0 cannot be reconstructed from
the discrete measurements, since even less information is available then is the
case for continuous measurements. Hence, all pairs (A,EIj), j = 1, ..., l being
observable is a necessary condition for set restricted k-step observability. To
be specific, for the linear time-invariant case, the following holds.

Proposition 4.1.5 Given an index set I and a time set T , define the ‘output’
matrix E = [ei1 , ...eik]

T . Furthermore let P be defined as in (4.8)̇, then (A,E)
not observable implies that P is not injective and hence the state reconstruction
problem does not have a unique solution.

Proof. Suppose (A,E) is not observable, then clearly there exists a vector
v such that

E
EA
EA2

...
EAn−1

 v = 0.

Taking the Taylor expansion of eAt and using the Caley-Hamilton theorem we
can write eAt = α1(t)I + α2(t)A + ... + αn(t)An−1. Using this we obtain for
all t that

EeAtv = E
(
α1(t)I + α2(t)A+ ...+ αnA

n−1
)
v = 0.

From which we get that

EeAt1

EeAt2

...
EeAtk

 v = 0 =⇒

eTi1e

At1

eTi2e
At2

...
eTike

Atk

 v = Pv = 0,

proving that P does not have full column rank (is not injective) and hence the
state reconstruction problem does not has a unique solution.

Even if it is known that x0 ∈ S, where S is an open set in R
n, then still the

state reconstruction problem is not solvable, since in this case for any point

70 State reconstruction

x0 in S there exists a point x0 + εv that is also in S for ε small enough and
v satisfying Pv = 0. If however S is a lower dimensional manifold in R

n then
this reasoning no longer holds and the state reconstruction problem might be
solvable.

4.1.5 Three tank example

To illustrate the method explained in the foregoing, it is applied to a three
tank system depicted in Figure 4.1.

V0 s0

L1

L2

L3

A1

A2

A3

r1

r2

r3

β2
4
β2

3
β2

2β2
1

Figure 4.1: Three tank system (series)

The system consists of three tanks in cascade. Water enters the first tank
with a volume flow V0 [m3/s] when the switch s0 ∈ {0, 1} controlling the valve
is on (s0 = 1). The water flows from the first (second) into the second (third)
tank. The last tank has a drain. The state vector x = [L1, L2, L3]T is given
by the water levels in each tank. The model of the three tank system used for
the simulation is given by

ẋ1 =
1
A1

(−2πr2
1

√
2g x1 + V0 u),

ẋ2 =
1
A2

(2πr2
1

√
2g x1 − 2πr2

2

√
2g x2),

ẋ3 =
1
A3

(2πr2
2

√
2g x2 − 2πr2

3

√
2g x3),

with xi = Li and u = s0 ∈ {0, 1}. The values of the parameters used for

4.1 Continuous-state reconstruction 71

the simulation are: ri = 0.01 [m], g = 9.81 [m/s2], Ai = π(0.05)2 [m2], V0 =
0.001 [m3/s].

The event detectors measuring the levels are mounted at the same positions
for each tank, so each state has the same set of boundaries

Bi = {0.02, 0.05, 0.10, 0.15}, i = 1, 2, 3.

Starting with the initial condition x0 = x(0) = [0.07, 0.12, 0.03]T , the
system is simulated during one second. The input is given by

u(t) =
{

0, 0 ≤ t ≤ 2
3

1, 2
3 < t ≤ 1

The first event occurs after 0.165 seconds; the third state variable hits the
boundary x3 = β3

2 = 0.05. The time response is depicted in Figure 4.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time [s]

L
ev
el

[m
]

βi1

βi2

βi3

βi4

L1

L2

L3

t1 t2 t3 t4

Figure 4.2: Time response

After one second four events have happened. The data we now have is

T = {0.165, 0.231, 0.501, 0.604},
I = {3, 1, 2, 3},
V = {0.05 , 0.05, 0.1, 0.1},
b = [0.05, 0.05, 0.1, 0.1]T .

For the initial guess of x0 it is reasonable to assume that it is known in which
cube, defined by the boundaries, of the state space x(t) is at t = t0. Using the
initial guess x̂0 = [0.09, 0.14, 0.01]T the procedure explained in Section 4.1.3
is followed. After six iterations the procedure is stopped when J(x̂0) < 1·10−8.
The estimation of x0 then is x̂0 =

[
0.070 0.120 0.030

]T which is equal to
the real x0 known from the simulation.

72 State reconstruction

4.2 Discrete-state reconstruction

In Chapter 3 it is assumed that the initial continuous state is known to be
in the interior of a hypercube to avoid problems with the mapping Q. If
this initial hypercube Hx(x̃0) is known (and consequently x̃0 is known) and
every component of the continuous state is measured (i.e. each boundary
βij) then after an arbitrary number of measurements (transitions) the discrete
state is still exactly known. If the initial discrete state x̃0 is not known or if
not all components of the continuous state x are observed, the discrete state
after k measurements may be unknown. However, from measured transitions
(outputs) it may be possible to reconstruct the discrete state. In the sequel it is
assumed that the initial discrete state is not given, but at least the continuous
state is known to be in the interior of a hypercube associated with the unknown
discrete state.

4.2.1 Discrete-state measurement

First we assume that to each discrete state an output is assigned, i.e. actual
discrete states are measured.

Unknown input

Suppose we are given an output automaton Σ defined by the 5-tuple

Σ = (X̃, Ũ , φ, Ỹ , h),

where X̃ is the set of discrete states, Ũ is a finite set of inputs (the input
alphabet), Ỹ is a finite set of outputs (the output alphabet), φ : X̃ × Ũ → 2X̃

is the transition function and finally h : X̃ → Ỹ is the output map.

Problem 4.2.1 (The discrete-state reconstruction problem) Given
an automaton Σ and a measured sequence ỹ1ỹ2...ỹk ∈ Ỹ k of length k, find the
state x̃ ∈ X̃ of the automaton after the k-th measurement.

First for each measurement ỹl, l ∈ {1, ..., k} the following sets are defined:

X̃l := {x̃ | ∃ũ ∈ Ũ , z̃ ∈ X̃l−1 such that h(x̃) = ỹl with x̃ ∈ φ(z̃, ũ)},
(4.16)

with X̃0 := X̃ (the set of all discrete states).
The following proposition is straightforward.

Proposition 4.2.2 Given an automaton Σ together with a measured sequence
ỹ1ỹ2...ỹk ∈ Ỹ k of length k, then after the l-th measurement (l ∈ {0, 1, ..., k) we
have that x̃ ∈ X̃l. Moreover X̃l is the smallest set which can contain x̃ based
on the first l measurements.

4.2 Discrete-state reconstruction 73

Proof. Clearly, before the first measurement it holds that x̃ ∈ X̃0 which
is the smallest set containing x̃ (as we do not have any measurement informa-
tion). Next, suppose that before the l-th measurement we have that x̃ ∈ X̃l−1,
then after observing ỹl it is certain that x̃ must be in the set that can be
reached from X̃l−1 with some input ũ ∈ Ũ , causing the measurement ỹl. This
is exactly the set described in (4.16).

Based on this information we have after l observations, that X̃l is the
smallest set for which we are certain that it contains x.

Remark 4.2.3 Using Boolean notation it is easy to compute X̃l if we use the
output matrix H defined as

ŷTHx̂ = 1 ⇐⇒ h(x̃) = ỹ,

with x̂ and ŷ in Boolean vector representation of x̃ ∈ X̃ and ỹ ∈ Ỹ . The set X̃l

(in Boolean vector notation represented by the single vector x̂l) is computed by

x̂l = (AŨ x̂l−1)⊗ (HT ŷl).

To see this, realize that ẑ1 := AŨ x̂l−1 represents the set of discrete states
that can be reached from X̃l−1 with one of the inputs ũ ∈ Ũ . Furthermore,
ẑ2 := HT ŷl represents the set of states that will result in the measurement
ỹl. Consequently, the intersection of Z̃1 ∩ Z̃2, computed by z̃1 ⊗ z̃2, yields all
discrete states that can be reached from X̃l−1 and for which ỹl is the output.

Known input

Previously it is assumed that the applied input sequence is unknown. The
results however are easily extended to the more relevant case where the applied
inputs are known.

Corollary 4.2.4 Given an automaton Σ and a measured sequence ỹ1ỹ2...ỹk ∈
Ỹ k of length k, and the applied input sequence ũ1ũ2...ũk ∈ Ũk, then Proposi-
tion 4.2.2 still holds if (4.16) is replaced by

X̃l = {x̃ | ∃z̃ ∈ X̃l−1 such that h(x̃) = ỹl with x̃ ∈ φ(z̃, ũl)}.

Furthermore since {ũl} ⊂ Ũ we have that Xl as computed above has less or
an equal number of elements than in the case that no input sequence is known
(i.e. when (4.16) is used).

Remark 4.2.5 For a known input sequence the set X̃l is computed explicitly
in the Boolean vector domain by

x̂l = (Aũl
x̂l)⊗ (HT ŷl).

74 State reconstruction

Remark 4.2.6 For ease of explanation, throughout this section it is assumed
that (discrete) inputs only change when a measurement is made. This implies
that the measurement sequence and the input sequence have the same length.
However, all procedures described in this section can be adapted for the case
where inputs change in between measurements.

4.2.2 Event measurements

Instead of the measurements of discrete outputs, in many practical cases the
changes between discrete states are observed. That is, we detect the occurrence
of an event. The continuous-state reconstruction problem was actually based
on the detection of events. The discrete-state reconstruction problem is easily
translated to the case were the elements of the observed sequence ỹ1ỹ2...ỹl are
related with events instead of discrete states. For this, only the output-map
h must be adapted. Instead of mapping a discrete state to a discrete output,
the adapted output map must translate the difference between two discrete
states to an output, that is h : X̃ × X̃ → Ỹ is given by

ỹ = h(x̃new,x̃old), x̃new, x̃old ∈ X̃.

In case of discrete-state measurements we actually used the fact that h was
complete (i.e. for each state, an output was defined). However, for event
measurements this assumption would be too restrictive, because then for all
combinations of discrete states h must be defined. For our purposes, it is suf-
ficient to assume that h(x̃new, x̃old) is defined for all pairs of adjacent discrete
states (x̃old, x̃new) ∈ X̃ × X̃ or for which x̃new ∈ φ(x̃old, ũ) for some ũ ∈ Ũ .
This is equal to the assumption that all boundaries βij are actually observed
or that each crossing of a boundary is measured, respectively. This implies
that no transition from one discrete state to another is possible without being
observed. Notice that it is not known what the direction of a crossing is, that
is h(x̃1, x̃2) = h(x̃2, x̃1).

Complete transition measurement

First, we consider the case that each transition (event) is observed. Under this
assumption, Proposition 4.2.2 holds if (4.16) is replaced by

X̃l = {x̃ | ∃ũ ∈ Ũ , z̃ ∈ X̃l−1 such that h(x̃, z̃) = ỹl with x̃ ∈ φ(z̃, ũ)}.

In case of known inputs, we can improve upon the above expression by
replacing it by

X̃l = {x̃ | ∃z̃ ∈ X̃l−1 such that h(x̃, z̃) = ỹl with x̃ ∈ φ(z̃, ũl)}.

4.2 Discrete-state reconstruction 75

Remark 4.2.7 For describing the output function in case of discrete-event
measurements we can use the labelled output matrix H = HT defined as

x̂T2Hx̂1 = ỹ ⇐⇒ h(x̃2, x̃1) = ỹ,

where x̂i is the Boolean representation of x̃i, i = 1, 2. Furthermore by using
the notation Ỹ©2 ỹ = 1 ⇐⇒ ỹ ∈ Ỹ the set X̃l can be computed explicitly (with
some abuse of notation) by

x̂l = (AŨ ⊗H)x̂l−1©2 ỹl,

and in case of a known input by

x̂l = (Aũl
⊗H)x̂l−1©2 ỹl.

This should be interpreted as follows. The operation AŨ ⊗ H results in a
labelled matrix for which the ij-th element is ỹ ∈ Ỹ if and only if the ij-th
elements of AŨ and H are ‘1’ and ỹ, respectively. By multiplication with the
Boolean vector x̂l−1, a vector results for which a component is either zero, or
consists of a (set of) symbol(s) Ỹl ⊆ Ỹ . By checking this vector (component
wise) for the element ỹl only a ‘1’ arises at coordinates that also contain the
symbol ỹl. Otherwise, a ‘0’ results. As a consequence the Boolean vector x̂l is
computed this way.

Partial transition measurement

Finally, the more general case is considered where not all transitions from one
discrete state to another are measured. This happens when not all boundaries
βij defining the partitioning of the state space are actually observed. Now, after
each measurement ỹl the discrete state can evolve to other states without
knowing this. Therefore, after each measurement we have to compute all
discrete states that can be reached from a given set without causing events.
We only consider the case where the input is known.

The set of states that can be reached from a given initial set S̃ with input
ũ ∈ Ũ without causing measurements is denoted by M̃(S̃, ũ) and is computed
by the following recursive scheme

Algorithm 4.2.8 Given input ũ and initial set S̃, define M̃0(S̃, ũ) := S̃ and
then for k ≥ 0, repeat

M̃k+1(S̃, ũ) = {x̃ ∈ φ(z̃, ũ) | z̃ ∈ M̃k(S̃, ũ), h(x̃, z̃) /∈ Ỹ } ∪ M̃k(S̃, ũ),

until M̃k+1(S̃, ũ) = M̃k(S̃, ũ). The set M̃(S̃, ũ) is equal to Mk(S̃, ũ).

76 State reconstruction

With this, Proposition 4.2.2 holds if (4.16) is replaced by

X̃l = {x̃ | ∃z̃ ∈ M(X̃l−1, ũ), such that h(x̃, z̃) = ỹl with x̃ ∈ φ(z̃, ũ)}.

Remark 4.2.9 Using Boolean vector notation the recursive scheme for com-
puting M̃(S̃, ũ) is executed easily. To do so, we will use the Boolean matrix
version H of the labelled output matrix H (i.e. hij = 1 ⇐⇒ hij ∈ Ỹ)̇. Then,
M̃k+1(S̃, ũ) is computed by

m̂k+1(S̃, ũ) = (Aũ �H)m̂k(S̃, ũ)⊕ m̂k(S̃, ũ).

Indeed, the set represented by ẑ1 := Aũm̂k(S̃, ũ) contains all discrete states
that can be reached from states in M̃k(S̃, ũ) with input ũ. Furthermore, ẑ2 :=
Hm̂k(S̃, ũ) represents the discrete states to which transitions from M̃k(S̃, ũ)
would result in some measurement ỹ ∈ Ỹ . Consequently, the set difference
Z̃1 \ Z̃2 computed by ẑ1 � ẑ2 = (Aũ �H)m̂k(S̃, ũ) contains all discrete states
that can be reached from M̃k(S̃, ũ) with input ũ without causing a measurement.
As a consequence, the computation of X̃l in Boolean vector notation becomes

x̂l = (Aũl
⊗H)m̂(X̃l−1, ũl)©2 ỹl.

4.2.3 Rolling ball example

Consider a square in a two-dimensional space which is divided into 9 regions
defined by the lines b1, b2, b3, and b4 as depicted in Figure 4.3. Now suppose
a ball would roll over the square resulting in the path as shown in Figure
4.3, starting in square 1. This path is only observed when the ball crosses a
line bi. This will result in the observed sequence b1b3b2b4. The purpose now
is to determine the region the ball is in after the fourth observation. First,

b1 b2

b3

b4

1 2 3

4 5
6

7 8 9

Figure 4.3: A trajectory in a 2-D plane

the corresponding automaton Σ has to be constructed. The discrete states are
associated to the regions defined by b1, b2, b3, and b4, and denoted by a number:

4.2 Discrete-state reconstruction 77

x̃old/x̃new 1 2 3 4 5 6 7 8 9
1 − b1 − b3 − − − − −
2 b1 − b2 − b3 − − − −
3 − b2 − − − b3 − − −
4 b3 − − − b1 − b4 − −
5 − b3 − b1 − b2 − b4 −
6 − − b3 − b2 − − − b4
7 − − − b4 − − − b1 −
8 − − − − b4 − b1 − b2
9 − − − − − b4 − b2 −

Table 4.1: The output map h

1 for the lower left square, and increasing from the left to the right, from the
bottom to the top. Now Σ is defined by X̃ = {1, 2, ..., 9}, Ỹ = {b1, b2, b3, b4}.
The transition function φ is defined by the directed graph depicted in Figure
4.4.

Note, that we assume the input sequence to be unknown. The output map

b1

b1
b1

b1

b1

b1

b2

b2

b2

b2

b2

b2
b3b3b3b3b3b3

b4b4b4b4b4b4

1 2 3

4

7

Figure 4.4: Directed graph with measurements as labels

h is given in Table 4.1.
This results in the labelled measurement matrix H:

H =

0 b1 0 b3 0 0 0 0 0
b1 0 b2 0 b3 0 0 0 0
0 b2 0 0 0 b3 0 0 0
b3 0 0 0 b1 0 b4 0 0
0 b3 0 b1 0 b2 0 b4 0
0 0 b3 0 b2 0 0 0 b4
0 0 0 b4 0 0 0 b1 0
0 0 0 0 b4 0 b1 0 b2
0 0 0 0 0 b4 0 b2 0

.

78 State reconstruction

The discrete states are represented in the Boolean vector domain e.g. x̃ = 3 is
written as x̃ = [0, 0, 1, 0, 0, 0, 0, 0, 0]T . For the outputs we still use the symbolic
presentation, e.g. ỹ = b2.

Furthermore the adjacency matrix A ∈ B9×9of the directed graph shown
in Figure 4.4 is given by:

A =

0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0

.

With this, the following sequence of sets X̃l results after the successive obser-
vations:

x̂1 = (A⊗H)x̂0©2 b1,
x̂2 = (A⊗H)x̂1©2 b3,
x̂3 = (A⊗H)x̂2©2 b2,
x̂4 = (A⊗H)x̂3©2 b4.

The corresponding sets are depicted in Figure 4.5.
From Figure 4.5 it can be seen that after four measurements the correct

discrete state is found by the proposed procedure.

4.3 Notes and references

Continuous-state reconstruction

The continuous-state reconstruction procedure discussed in this chapter is
based on material presented in (Philips and Weiss 1998) and deals with both
linear and nonlinear systems.

In (Raisch 1993) the continuous state is reconstructed from discrete mea-
surements for systems that are piecewise linear for each discrete input. The
reconstructed continuous output is used for control purposes. Also an ob-
servability condition is given involving controllable and reachable sets. In
(Delchamps 1989) the idea is posed to design a feedback control law that
helps to gather information on the continuous state. Recently, (Schnabel and

4.3 Notes and references 79

b1

b2

b3

b4

Figure 4.5: The sets X̃l (grey): possible states following from a new measure-
ment

Krebs 2000) proposed a method for reconstructing the continuous state for
affine continuous systems. Their method is based on the construction of sets
containing those states that allow evolution without reaching sensors within
the observed time. In (Phillips and Tomizuka 1995) a state reconstruction
method is presented that utilizes the Luenberger observer framework. For
this, it is necessary that always the same state-variables are measured when
an event occurs.

Discrete-state reconstruction

The reconstruction of the discrete state as presented in this section is dis-
cussed in terms of automata. The fact that an automaton may result from
the discretization of a continuous plant is not important (for the algorithm)
and is only reflected in the type of measurements that is referred to as ‘event
measurements’. This type of measurements (i.e. the measurement map h :
X̃ × X̃ → Ỹ) is not standard in automata theory, but is especially suited for
our purpose. If the automaton results from a discretization of a continuous
plant, then completeness of the model implies that results obtained by the ob-
servation of the discrete event model imply that the corresponding discretized
states can be assumed by the continuous system and, moreover, the other
states can be excluded.

In (Booth 1967) the so-called initial and terminal state identification prob-
lems are solved by applying a prespecified input sequence such that the au-
tomaton is brought to a known state (for the terminal state identification
problem) or the initial state can be determined from observed outputs. Ob-

80 State reconstruction

servability of discrete-event systems based on automata is discussed in (Lin
and Wonham 1988), where observation of discrete-event systems is combined
with supervisory control. For automata without inputs, (Özveren and Willsky
1990) propose an observer represented by an automaton that determines the
discrete state at points in time, based on partial measurements of transitions.

Concerning the observation of qualitative (i.e. discrete) states of con-
tinuous systems, (Lichtenberg and Lunze 1997) present a method for recon-
struction of the discrete state based on qualitative (discrete-event) models of
continuous systems represented by (nondeterministic) automata or stochastic
automata with event measurements. For this, the automaton is described by
distinct Boolean matrices for each input-output combination. For the stochas-
tic automaton, the Boolean matrices are replaced by matrices which entries
represent the possibility of a transition. It is assumed that each new state
results in a new measurement. For discrete-time systems with symbolic ob-
servations (i.e. discrete measurements) that are used for piecewise smooth
feedback or finite state dynamic feedback, (Ramadge 1990) presents condi-
tions under which the symbolic observations become periodic.

Chapter 5

Control strategies

In this chapter methods for controller design are proposed for systems with a
‘discretized’ state space and input space, as discussed in Chapter 3. Instead
of designing the supervisor solely on the basis of the discrete approximation of
the continuous plant, also information provided by the continuous system is
incorporated in the synthesis. The fact that the underlying system is contin-
uous allows control actions that would not be possible for pure discrete-event
systems. As a consequence, the approach pursued here offers additional pos-
sibilities compared to methods suited for pure discrete-event systems. The
proposed methods allow structured controller design where the computations
(based on Boolean vector operations) are given explicitly. As an advantage, no
specialistic insight or knowledge of operators of the plant is needed, which is
often the case with ‘rule-based’ control strategies. Also, for complex systems,
structured controller synthesis reduces the possibility that the controller is not
prepared for all possible situations that can occur.

5.1 Control goals

The problem of controlling a continuous system using only discrete-state in-
formation and acting on a finite number of discrete inputs, can be related to
various practical situations. For instance, it involves the control of a system
that is continuous by nature, but is observed by discrete sensors only (i.e.
sensors only detecting when a state crosses a certain boundary). It is also of
importance for the situation where a continuous plant is to be supervised by
some programmable logical controller or computer program which builds on
discrete-state information. In such situations, the controller often will be a
discrete-event system. Since a discrete-event controller cannot communicate
with the system at a continuous level it is necessary to use an interface. This
can be modelled as discretizing the continuous state space of the system into

81

82 Control strategies

a finite set of symbols to be used by the controller as explained in Chapter 3.
The discrete-event models extracted from continuous systems as discussed in
Chapter 3 are now used for control purposes.

First, recall that the systems under consideration are of the following form:

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (5.1)

with x(t) ∈ R
n, u(t) ∈ R

m, together with the set of boundaries for each
component xi, (i = 1, ..., n),

βi0 < βi1 < . . . < βini
(ni ≥ 1), (5.2)

and, when applicable, for each component ui, (i = 1, ...m),

γi0 < γi1 < . . . < γimi
(mi ≥ 1). (5.3)

Furthermore, these boundaries induce hypercubes Hx(x̃) and Hu(ũ) in the
state space and input space, respectively which are associated with discrete
state x̃ and discrete input ũ.

The proposed controller design methods are based on discrete inputs ũ ∈ Ũ
in such a way that any continuous input u(t) ∈ Hu(ũ) can be chosen when
the discrete input ũ should be applied to the system according to the discrete
controller. This means that while applying discrete input ũ, some freedom
is left for low-level control; the only requirement is that u(t) ∈ Hu(ũ). This
makes the proposed strategies suitable for supervisory control. In the case
where u(t) already takes values from some discrete set Ũ , it is understood
that Hu(ũ) = {ũ} in the remainder of this chapter.

The only available information for the controller, is the knowledge of the
hypercube Hx(x̃) the continuous trajectory lives in. Loosely speaking, the
controller applies a piecewise constant (in terms of discrete inputs) input to
the system, which only changes when the trajectory goes (or is about to go)
from one hypercube to another. The following definition is given.

Definition 5.1.1 Given the system (5.1). A solution trajectory ξ ∈ C0[0, T]
of (5.1) for input υ ∈ PC0[0, T] is called discretely controlled.

In this chapter two different control goals are distinguished:

The reachability problem Given the system (5.1), a set of boundaries
(5.2), the discrete initial state x̃0, the set of target states X̃e, and a
set of discrete inputs Ũ . Find a controller that realizes for any contin-
uous initial state x0 ∈ Hx(x̃0) a discretely controlled trajectory ξ (with
ξ(0) = x0) that intersects int

(⋃
x̃∈X̃e

Hx(x̃)
)
.

5.1 Control goals 83

The reachability problem is the problem of controlling the trajectory from
an initial discrete state to a desired final set of discrete states (more precisely,
to the corresponding hypercubes in state space).

The stabilization problem Given the system (5.1), a set of boundaries
(5.2), the discrete initial state x̃0, the set of target states X̃e, and a set
of discrete inputs Ũ . Find a controller that realizes for any continuous
initial state x0 ∈ Hx(x̃0) a discretely controlled trajectory ξ (with ξ(0) =
x0) intersecting int

(⋃
x̃∈X̃e

Hx(x̃)
)

in such a way that for all te > 0

with ξ(te) ∈ int
(⋃

x̃∈X̃e
Hx(x̃)

)
it holds that ξ(t) ∈

⋃
x̃∈X̃e

Hx(x̃) for all
t ≥ te.

The stabilization problem is the problem of controlling the state trajectory
from an initial discrete state to a desired set of discrete states and preventing
the trajectory from leaving the corresponding set of hypercubes after the state
has entered the interior.

Remark 5.1.2 Note that this notion of stability implies the more natural sta-
bility for which only the existence of te such that x(t) ∈

⋃
x̃∈X̃e

Hx(x̃) for all
t ≥ te is required, as e.g. for qualitative stability (Lunze 1995). Realizing
the latter definition of stability on the basis of the automaton implies that the
definition stated here is obtained.

At this point, it should be realized that the problem to be solved yields the
control of nonlinear systems solely on the basis of discrete partial measure-
ments and discrete inputs. Of course, it is impossible to solve this problem in
its full generality, as controlling nonlinear systems with complete state mea-
surements and continuous inputs in general is extremely difficult and solutions
are found only for limited classes of systems (e.g. affine nonlinear control sys-
tems (Nijmeijer and Van der Schaft 1990)). As a consequence (and as a first
attempt), we will propose three control methodologies, which will work under
an appropriate assumption. To overcome problems arising from violating this
assumption, several modifications will be discussed at the end of the chapter.

Assumption 5.1.3 A discretely controlled trajectory ξ will never reach a point
x ∈ R

n that belongs to more than two hypercubes, i.e. for all t ∈ R+ it holds
that ξ(t) /∈

⋂
i∈I Hx(x̃i) for all index sets I with cardinality #(I) > 2.

This assumption is made because otherwise the Assumption 3.2.1 in Chap-
ter 3 would easily be violated. Furthermore, this somewhat facilitates the so-
lution of the difficult nonlinear control problems we have to solve. Moreover,
the computation and explanation of the concepts that form the basis of the

84 Control strategies

control strategies proposed in this chapter are facilitated. In Section 5.8 it is
discussed how to adapt (if possible) the proposed control strategies for cases
where Assumption 5.1.3 does not hold.

The following concepts are used for specifying the control strategies in this
chapter. First, we loosely introduce these notions after which we formalize
them in the next section.

Preventing input An input that prevents a transition from happening, see
Figure 5.1 (a). A preventing input is applied immediately when a bound-
ary is reached. As such, it is necessary that it is noticed (measured) that
a transition possibly is about to occur. This means that we assume that
it is exactly measured when the state trajectory reaches a boundary
between two hypercubes. Moreover, it is necessary that instantaneous
control action is possible.

Correcting input An input that corrects a transition that just has oc-
curred, see Figure 5.1 (b). To use a correcting input it is sufficient that
a transition, i.e. the actual change of the discrete state, is measured.
Also the assumption of instantaneous action can now be relaxed.

Moving input An input for which it is certain that the state trajectory
moves towards a particular boundary plane1. Applying this input guar-
antees for all initial states x0 in hypercube Hx(x̃) that when the trajec-
tory (started in x0) leaves Hx(x̃), it is closer to the specified boundary
plane than the initial state x0 ∈ Hx(x̃), see Figure 5.1 (c).

(a) (b) (c)

x0
x0

x0
x′0

x′′0
x′′′0

Hx(x̃)Hx(x̃)Hx(x̃)
ũ

ũ ũp

ũc ũm

Figure 5.1: (a) Preserving input ũp; (b) correcting input ũc; (c) moving input
ũm

In the next section, these concepts will be defined more precisely together
with methods to decide if a specific input is preventing, correcting or mov-
ing for a transition. These types of inputs are the elements from which the
proposed controller design methods are built.

1Trajectories starting at the specified boundary plane will cross it.

5.2 Preventing, correcting, and moving inputs 85

5.2 Preventing, correcting, and moving inputs

5.2.1 Preventing inputs

Let the system (5.1) be given, together with a set of boundaries (5.2), and a
finite set of inputs Ũ . Fix ũ ∈ Ũ and consider the two adjacent states x̃1 =
(x̃1, ..., x̃r, ..., x̃n) and x̃2 = (x̃1, ..., x̃r+1, ..., x̃n), such that {x ∈ R

n | xr = βrj }
is the separating hyperplane and x ∈ Hx(x̃1) =⇒ xr ≤ βrj and x ∈ Hx(x̃2) =⇒
xr ≥ βrj (as in Condition 3.2.5). Note that j is equal to the r-th coordinate of
the n-tuple x̃1, i.e. j = x̃r.

Definition 5.2.1 (Preventing input) Given x̃1 and x̃2 as in Condition
3.2.5. An input ũ ∈ Ũ is preventing for the transition x̃1 → x̃2 if this transi-
tion is not possible with the specific input ũ, i.e. x̃2 /∈ φ(x̃1, ũ).

This means that ũ can be used to prevent the state from changing from
Hx(x̃1) to Hx(x̃2).

Proposition 5.2.2 An input ũ ∈ Ũ is preventing for the transition x̃1 → x̃2

if and only if

f r(x, u) ≤ 0,∀x ∈ Hx(x̃1) ∩Hx(x̃2), ∀u ∈ Hu(ũ). (5.4)

Proof. Follows from Theorem 3.2.6 in Section 3.2.

The preventing inputs can be determined directly from the discrete-event
model of the discretely-observed continuous system (5.1) that was constructed
in Chapter 3. By using the Boolean vector notation x̂ for a discrete state x̃
and the set of adjacency matrices {Aũ1 , ..., Aũk

} for representing the discrete-
event model as explained in Chapter 2, the computation of preventing inputs
is straightforward.

Proposition 5.2.3 Given a discrete state x̃1, the input ũi is preventing for
the transition x̃1 → x̃2 if and only if x̂T2 Aũi x̂1 = 0.

Proof. The set of states X̃3 that can be reached from x̃1 with input ũi is
represented by x̂3 := Aũi x̂1. The discrete state x̃2 is not an element of X̃3 iff
x̂T2 x̂3 = 0. Clearly, the relation x̂T2 Aũi x̂1 = 0 is equivalent to x̃2 /∈ φ(x̃1, ũ).

There exists at least one input ũ ∈ Ũ = {ũ1, ..., ũk} that is preventing for
x̃1 → x̃2 if for any of the adjacency matrices Aũl

the ij-th element is zero,
where i and j are the integer representations of x̃2 and x̃1, respectively. Recall
that for two Boolean matrices A and B the ‘and’ operator is defined by C =

86 Control strategies

A⊗B with cij = aij · bij . Now, given a set of discrete inputs Ũ = {ũ1, ..., ũk},
define the Boolean matrix SŨ ∈ {0, 1}p×p as

SŨ = Aũ1 ⊗Aũ2 ⊗ ...⊗Aũk
=

⊗
i∈Ũ

Ai (5.5)

and notice that sij = 0 implies that aij = 0 for some Aũl
. With this, there

exists at least one input ũ ∈ Ũ that is preventing for x̃1 → x̃2 if and only if
x̂T2 SŨ x̂1 = 0. Furthermore, x̂2 = SŨ x̂1 contains all neighboring states of x̃1

that cannot be avoided by any input of the set Ũ .

5.2.2 Correcting inputs

Let the system (5.1) be given, together with a set of boundaries (5.2), and a
finite set of inputs Ũ .

Definition 5.2.4 (Correcting input) Given x̃1 and x̃2 as in Condition
3.2.5. An input ũ ∈ Ũ is correcting for the transition x̃1 → x̃2 if

f r(x, u) < 0,∀x ∈ Hx(x̃1) ∩Hx(x̃2), ∀u ∈ Hu(ũ). (5.6)

This means that ũ can be used to correct the changing of the continuous
state from Hx(x̃1) to Hx(x̃2).

Proposition 5.2.5 If input ũ ∈ Ũ is correcting for the transition x̃1 → x̃2,
then there exists an open set Ω, with int(Hx(x̃1)∪Hx(x̃2)) ⊇ Ω ⊇ int(Hx(x̃1)∩
Hx(x̃2)) with the following property. For any state trajectory ξ corresponding
to an input v with v(t) ∈ Hu(ũ) for all t ≥ 0, and initial condition ξ(0) =
x0 ∈ Ω there exists a t1 ≥ 0 such that ξ(t) ∈ Ω for 0 ≤ t ≤ t1, and ξ(t1) ∈
int(Hx(x̃1)).

Proof. Pick any point x0 ∈ int(Hx(x̃1) ∩ Hx(x̃2)) and take δ > 0 such
that

• B(x0, δ) := {x | ‖x− x0‖ < δ} ⊆ int(Hx(x̃1) ∪Hx(x̃2)), and;

• there exists an ε > 0 with f r(x, u) < −ε for all x ∈ B(x0, δ) and all
u ∈ Hu(ũ).

To see that in particular the last property can be obtained, consider the
function x 4→ g(x) = maxu∈Hu(ũ) f

r(x, u). Since Hu(ũ) is compact, the max-
imum is attained for some u∗x ∈ Hu(ũ). Hence, for all Hu(ũ) we have that
g(x0) = f r(x0, u

∗
x0
) < 0 by the hypothesis of the theorem. Since f is continu-

ous, the function g is continuous as well. Hence, there exists an ε > 0 and a

5.2 Preventing, correcting, and moving inputs 87

δ > 0 such that for all x ∈ B(x0, δ) it holds that g(x) ≤ −ε, which establishes
the result mentioned above.

For a trajectory ξ of the system starting in ξ(0) ∈ B(x0, δ) we denote the
maximal interval that the trajectory remains in B(x0, δ) by (t1ξ , t

2
ξ). Formally,

t1ξ := sup{t < 0 | ξ(t) �∈ B(x0, δ)} (5.7a)

t2ξ := inf{t > 0 | ξ(t) �∈ B(x0, δ)}. (5.7b)

Note that both extremes exist and are finite when ξ is a trajectory correspond-
ing to an input v with v(t) ∈ Hu(ũ) for all t. Indeed, in this case we have
inside B(x0, δ) that ξ̇r(t) = f r(ξ(t), v(t)) ≤ −ε. As a consequence, t1ξ ≤ 2δ

ε

and t2ξ ≥ −2δ
ε .

To continue, we take 0 < δ′ < δ and consider Ω′
x0

:= Hx(x̃1) ∩ Hx(x̃2) ∩
B(x0, δ

′). The set Ωx0 is now defined as the set of all points inside B(x0, δ)
that can be reached in (either forward or backward time) starting in Ω′

x0
with

input values lying in Hu(ũ. If the state trajectory corresponding to an input
v and initial condition z0 at time 0 is denoted by ξz0,v, we can formally define
this set as

Ωx0 :=

{
z ∈ B(x0, δ)

∣∣∣∣∣ ∃z0 ∈ Ω′
x0
∃v such that ξz0,v(t) = z for some t,

t ∈ (t1ξx0,v
, t2ξx0,v

) and v(t) ∈ Hu(ũ) for all t

}

As Ωx0 is open, the union Ω :=
⋃

x0
Ωx0 is open as well. Since Ωx0 consists of

the collection of solutions trajectories crossing the boundaryHx(x̃1)∩Hx(x̃2)∩
B(x0, δ

′) (note that f r(x, u) ≤ −ε) and lying in B(x0, δ) ⊂ int(Hx(x̃1) ∪
Hx(x̃2)), the proposition follows by construction.

In words this proposition states that when the transition x̃1 to x̃2 has
occurred, then we can ‘correct’ the transition as long as the state ξ(t) is in
the open set Ω. Indeed, choosing the discrete input ũ will steer the state
ξ(t) ∈ Hx(x̃2) back to Hx(x̃1) (without triggering another transition first).

Note that the proposition for a correcting input differs from the proposition
for a preventing input by the strictness of the inequality in (5.4) and (5.6).
The strictness of the inequality together with the continuity of f(x, u) allows
us to correct a transition: if f r(x, u) < 0 at the boundary xr = βrj between two
adjacent hypercubes Hx(x̃1), and Hx(x̃2), then due to continuity f r(x, u) < 0
close to the boundary as well. As long as the continuous state has not left Ω
a correcting input ũ can be used to correct the transition.

Next, inequality (5.6) is used for constructing the Boolean matrix Kũ ∈
{0, 1}p×p for a discrete input ũ:

(kũ)ij =
{

0 j → i can be corrected
1 else.

88 Control strategies

Notice that x̂2 = Kũx̂1 represents the set of discrete states for which a
transition from x̃1 cannot be corrected. Clearly, the input ũ is correcting for
the transition x̃1 → x̃2 if and only if x̂T2 Kũx̂1 = 0. At first sight, it might
be strange to construct a matrix from which the transitions that cannot be
corrected are deduced, however notice that Kũ is comparable with the matrix
Sũ.

The computation of the matrices Kũ involves elaborate optimizations for
deciding whether the sign of the r-th coordinate derivative f r(x, u) is strictly
negative or positive for all (continuous) states on the boundary between two
hypercubes. It would be convenient if from the information provided by the
discrete-event model the inequality (5.6) could be checked immediately (like
for preventing inputs). A necessary condition for a transition x̃1 → x̃2 to
be correctable in terms of the transition function φ (or equivalently, of the
adjacency matrices {Au}u∈Ũ) is given by the following proposition.

Proposition 5.2.6 (Necessary cond. for a correcting input) For a
transition x̃1 → x̃2 to be correctable with the input ũ ∈ Ũ it is necessary that

1. The transition x̃1 → x̃2 is not possible with input ũ, i.e. x̂T2 Aũx̂1 = 0.

2. The transition x̃2 → x̃1 is possible with input ũ, i.e. x̂T1 Aũx̂2 = 1.

That this condition is only necessary and not sufficient follows from the
construction of our discrete-event model (Chapter 3), where it can be seen that
for checking the possibility of a transition the existence of a strict inequality
is checked (see Theorem 3.2.6). So, if according to the resulting discrete-event
model the transition x̃1 → x̃2 is not possible and the transition x̃2 → x̃1 is
possible, then still there might exists points x ∈ Hx(x̃1) ∩ Hx(x̃2) for which
the derivative in the particular direction is zero, that is f r(x, u) = 0 such that
strictness of the inequality for points on the boundary can not be guaranteed,
see Figure 5.2.

Hx(x̃1)Hx(x̃2)

Figure 5.2: ũ is not correcting for the transition x̃1 → x̃2

It would be convenient if the condition stated in Proposition 5.2.6 also
would be sufficient. This is the case if the following assumption is satisfied.

5.2 Preventing, correcting, and moving inputs 89

Assumption 5.2.7 If for two adjacent states x̃1, x̃2 and discrete input ũ there
exists an x0 ∈ int(Hx(x̃1) ∩ Hx(x̃2)) with f r(x0, u) = 0 for some u ∈ Hu(ũ)
then one of the following two conditions should be satisfied

1. ∃x1, x2 ∈ int (Hx(x̃1) ∩Hx(x̃2)) and ∃u1, u2 ∈ Hu(ũ) for which it holds
that f r(x1, u1) > 0 and f r(x2, u2) < 0,

2. f r(x, u) = 0, ∀x ∈ int (Hx(x̃1) ∩Hx(x̃2)) and ∀u ∈ Hu(ũ).

In this way it is certain that if on the boundary between two hypercubes
the derivative f r(x, u) = 0 for some point x and some u (i.e. the inequality
sign is non-strict) then there must exist both positive and negative derivatives
on the boundary, or f r(x, u) = 0 for all points on the boundary and all inputs
u ∈ Hu(ũ). Both situations are reflected in the transition function of the
discrete-event model; in the first case, both x̃1 → x̃2 and x̃2 → x̃1 are possible,
in the second case none of the transitions is possible. One important class of
systems for which this condition is satisfied, is the class of linear systems. In
Section 3.3.4 it is shown that for linear systems ẋr = 0 defines a ((n+m− 1)-
dimensional) hyperplane in the state-input space R

n+m separating two half-
spaces: one for which the derivative of the r-th coordinate is positive and one
for which it is negative.

If this assumption holds, then the adjacency matrix Aũ and the neighbor
matrix N (see Chapter 2) can be used for the computation of Kũ. First
recall that for a discrete state x̃1 the Boolean vector x̂2 := Nx̂1 represents
the set of all discrete states for which the tuple representation differs only
one unit in each coordinate from the tuple representation of x̃1. In the way
our discrete states are related to hypercubes in the state space, the set X̃2

contains all hypercubes adjacent to the hypercube Hx(x̃1), i.e. all ‘neighbors’
of x̃1. To these states transitions from x̃1 are allowed, but not necessarily
possible according the discrete-event model. Given a discrete state x̃1 and
a discrete input ũ we know that x̂3 := Aũx̂1 is the set of discrete states to
which transitions are possible with the input ũ according our model. Since
x̂2 := Nx̂1 are all adjacent discrete states to x̃1, the set difference x̂4 := x̂2�x̂3

are all adjacent discrete states of x̃1 for which a transitions is not possible with
the input ũ according to the discrete-event model. This set can be computed
in one step by x̂4 = (N �A)x̂1.

For computing Kũ, recall that x̂2 := Kũx̂1 is the set of discrete states
for which a transition from x̃1 cannot be corrected. Since Proposition 5.2.6
together with Assumption 5.2.7 is necessary and sufficient, it follows that an
input is not correcting for a transition x̃1 → x̃2 if and only if it allows the
transition x̃1 → x̃2 or if the transition x̃2 → x̃1 is not possible. Given x̃1

the set of states to which a transition is possible with input ũ is given by
x̂2 := Aũx̂1. Furthermore, the set of states from which a transition to x̃1 is

90 Control strategies

possible with input ũ is given by x̂3 := AT
ũ x̂1, so the set of states from which

a transition to x̃1 is not possible is given by x̂4 := (N � AT
ũ)x̂1. Combining

both yields the set of states for which a transition cannot be corrected with
input ũ, x̂3 ⊕ x̂4 = ((N �AT

ũ)⊕Aũ)x̂1. Hence the Boolean matrix Kũ is given
by

Kũ := ((N �AT
ũ)⊕Aũ).

5.2.3 Moving inputs

From the description of moving inputs in Section 5.1 it is clear that an input is
moving for a transition x̃1 → x̃2 if with this input for all trajectories ξ starting
in Hx(x̃1) the distance to the boundary plane Hx(x̃1) ∩ Hx(x̃2) is decreased
when ξ leaves Hx(x̃1). From Figure 5.1 (c) it can be seen that the trajectory
starting in x′′0 is moving according to this description. However, to facilitate
computations (specifically, to avoid the necessity to integrate) the definition
of moving inputs is strengthened.

Let the system (5.1) be given, together with a set of boundaries (5.2), and
a finite set of inputs Ũ .

Definition 5.2.8 (Moving input) Given x̃1 and x̃2 as in Condition 3.2.5.
An input ũ ∈ Ũ is moving for the transition x̃1 → x̃2 if

f r(x, u) > 0, ∀x ∈ Hx(x̃1), ∀u ∈ Hu(ũ). (5.8)

This means that the r-th coordinate of x increases as f r(x, u) > 0 and
therefore moves towards the boundary between Hx(x̃1) and Hx(x̃2).

With this new definition the trajectory starting in x′′0 is no longer moving,
so the class of moving inputs is contracted. We opt for using Definition 5.2.8
because such a property can be verified automatically.

Fix input ũ ∈ Ũ . All transitions for which ũ is a moving input are repre-
sented by the direction matrix Dũ ∈ {0, 1}p×p given by

(dũ)ij =
{

1 ũ is moving for j → i
0 else.

The computation ofDũ can be automated by using optimizations for check-
ing (5.8). Using λmin := minx∈Hx(j) f

r(x, u) and λmax := maxx∈Hx(j) f
r(x, u)

we have that f r(x, u) > 0, ∀x ∈ Hx(x̃1) ⇐⇒ λmin > 0 and f r(x, u) < 0,
∀x ∈ Hx(x̃1) ⇐⇒ λmax < 0. Note that (dũ)ij = 1 =⇒ (dũ)ji = 0. Further-
more, for linear systems the same techniques can be used as for the computa-
tion of the transition function as discussed in Section 3.3.4. In fact, for linear
systems all information needed can be extracted from the adjacency matrices
{Aũi}.

5.3 Discretely controlled invariant sets 91

Note, that x̂2 := Dũx̂1 represents the set of all discrete states adjacent to
x̃1 for which the input ũ is moving. With this, it is clear that the input ũ is
moving for the transition x̃1 → x̃2 if and only if x̂T2 Dũx̂1 �= 0, since this is
equivalent to x̂2 ⊗Dũx̂1 �= 0.

If x̂2 represents the set X̃2 then x̂T2 Dũx̂1 �= 0 implies that there exists
x̃′2 ∈ X̃2 such that the input ũ is moving for x̃1 → x̃′2. In this case we say that
ũ is moving for the set X̃2 from x̃1.

Furthermore, for a set of inputs Ũ the direction matrix D is given by

D =
⊕
ũ∈Ũ

Dũ.

Obviously, there exists an input ũ ∈ Ũ which is moving for the transition
x̃1 → x̃2 if and only if x̂T2 Dx̂1 �= 0.

These three types of inputs form the basis for the controller design methods
that will be proposed in the next section. To use the preventing inputs, some
assumptions have to be made on the sensors and the control action. Therefore,
first the three proposed controller design methods are explained with the use
of preventing and moving inputs under the following assumption.

Assumption 5.2.9 It is measured whenever the continuous state trajectory ξ
reaches a boundary plane Hx(x̃1)∩Hx(x̃2). When this is observed, immediate
control action is possible.

In Section 5.7, it is discussed how to adapt the design method for the
situation where the aforementioned assumption is relaxed in which case the
correcting inputs will replace the preventing inputs.

5.3 Discretely controlled invariant sets

Since the proposed controller design methods depend heavily on the construc-
tion of discretely controlled invariant sets, this notion is formalized first.

Definition 5.3.1 (Discretely controlled invariant set) The set Ω :=⋃
x̃∈Z̃ Hx(x̃) (and the corresponding set of discrete states Z̃) is called a dis-

cretely controlled invariant set, if for each initial state x0 ∈ Ω, a discretely
controlled trajectory ξ (with ξ(0) = x0) exists, such that ξ(t) ∈ Ω for all t ≥ 0.

Proposition 5.3.2 The set Z̃ ⊆ X̃ is discretely controlled invariant for the
set of inputs Ṽ ⊆ Ũ iff (in Boolean vector notation) SṼ ẑ � ẑ = 0, where
SṼ =

⊗
i∈Ṽ Ai.

92 Control strategies

Proof. Recall that z̃′ := SṼ z̃ represents the set of states to which tran-
sitions from states in the set Z̃ cannot be avoided. If Z̃ ′ is a subset of Z̃
or equivalently ẑ′ � ẑ = 0), then transitions to states outside the set Z̃ can
be prevented with inputs from the set Ṽ , hence any trajectory starting in⋃

x̃∈Z̃ Hx(x̃) can be kept from leaving this set. If SṼ ẑ � ẑ �= 0, then clearly
transitions to states outside Z̃ cannot be prevented, hence Z̃ is not discretely
controlled invariant.

Definition 5.3.3 Given the set Z̃, then X̃inv is the largest discretely con-
trolled invariant set in Z̃ if

i) X̃inv ⊆ Z̃,

ii) X̃inv is discretely controlled invariant,

iii) If X̃ ′
inv satisfies i) and ii) then X̃ ′

inv ⊆ X̃inv.

Proposition 5.3.4 Given a set Z̃ ⊆ X̃, the largest discretely controlled in-
variant set X̃inv for the set of inputs Ṽ which is contained in Z̃ is computed
from the sequence of sets given by Z̃ = X̃0 ⊃ X̃1 ⊃ X̃2 ⊃ ... ⊃ X̃j, with

1. x̂0 := ẑ,

2. x̂k+1 = x̂k � ST
Ṽ
(SṼ x̂k � x̂k).

When x̂j+1 = x̂j then x̂inv := x̂j.

Proof. i) Note that from step 2 we have that X̃k+1 ⊆ X̃k, since only states
are removed from X̃k to obtain X̃k+1. Hence X̃k ⊆ Z̃ and i) is satisfied.

ii) X̃k = X̃k+1 is equivalent to x̂k = x̂k�ST
Ṽ
(SṼ x̂k� x̂k) implying that 0 =

x̂Tk S
T
Ṽ
(SṼ x̂k�x̂k) = (SṼ x̂k)

T (SṼ x̂k�x̂k). Since the set represented by SṼ x̂k�
x̂k is a subset of the set represented by SṼ x̂k it holds that (SṼ x̂k)

T (SṼ x̂k �
x̂k) = 0 ⇐⇒ SṼ x̂k � x̂k = 0 thus proving that X̃k is controlled invariant.

To prove iii) we claim that for any set Z̃ ′ ⊆ Z̃ it holds that X̃ ′
k ⊆ X̃k

where {X̃ ′
k} is the sequence of sets generated by the algorithm as given in the

proposition with X̃ ′
0 := Z̃ ′. Starting with X̃ ′

0 := Z̃ ′ and X̃0 := Z̃ we have that
X̃ ′

0 ⊆ X̃0, so the claim holds for k = 0. We proceed by induction, i.e. suppose
X̃ ′

k ⊆ X̃k is true. Now we will prove that if x̃ ∈ X̃ ′
k ∩ X̃k is removed from

X̃k on the basis of the algorithm, then it is also removed from X̃ ′
k implying

that X̃ ′
k+1 ⊆ X̃k+1. Suppose that x̃ ∈ X̃ ′

k ∩ X̃k has to be removed from X̃k,
then this implies that x̂TST

Ṽ
(SṼ x̂� x̂k) = 1. Recall that SṼ x̂� x̂k represents

the set of states to which transitions cannot be prevented from x̃ that are
not in X̃k, and ST

Ṽ
(SṼ x̂ � x̂k) represents the set of states (from which x̃ is

5.3 Discretely controlled invariant sets 93

an element) that lead to those states. Since X̃ ′
k ⊆ X̃k, the set represented

by SṼ x̂ � x̂k is a subset of the set represented by SṼ x̂ � x̂′k. Consequently,
x̂TST

Ṽ
(SṼ x̂� x̂′k) = 1. Since x̃ ∈ X̃ ′

k it is certain that x̃ will be removed from
X̃ ′

k. Hence, X̃ ′
k+1 ⊆ X̃k+1. To prove iii) take an arbitrary X̃ ′

inv satisfying i)
and ii). Set Z̃ ′ in the claim above equal to X̃ ′

inv and observe that controlled
invariance yields that X̃ ′

k = X̃ ′
inv for all k. Since X̃ ′

inv ⊆ X̃k for all k the result
follows as X̃k is equal to X̃inv for sufficient large k.

Starting with the set X̃0 = Z̃, all discrete states are removed from X̃0 that
cause unpreventable transitions to states outside X̃0. From X̃0 unpreventable
transitions occur to states outside X̃0, represented by x̂′ := SṼ x̂0 � x̂0. The
discrete states in X̃0 from which these transitions happen are given by x̂′′ :=
ST
Ṽ
x̂′ ⊗ x̂0. Removing these states from X̃0 yields x̂1 := x̂0 � (ST

Ṽ
x̂′ ⊗ x̂0) =

x̂0�ST
Ṽ
x̂′ (we can only extract states from X̃0 that actually are elements of X̃0).

This is repeated until X̃k is controlled invariant (or equivalently, X̃k = X̃k−1).
Since X̃0 has a finite number of elements and only states are removed, the
algorithm is finite.

Definition 5.3.5 Given the set Z̃, then X̃inv is the smallest discretely con-
trolled invariant set containing Z̃, if

i) Z̃ ⊆ X̃inv,

ii) X̃inv is discretely controlled invariant,

iii) If X̃ ′
inv satisfies i) and ii) then X̃inv ⊆ X̃ ′

inv.

Proposition 5.3.6 Given a set Z̃ ⊆ X̃, the smallest discretely controlled
invariant set X̃inv for the set of inputs Ṽ containing Z̃ is computed from the
sequence of sets given by Z̃ = X̃0 ⊂ X̃1 ⊂ X̃2 ⊂ ... ⊂ X̃j, with

1. x̂0 := ẑ,

2. x̂k+1 = x̂k ⊕ SṼ x̂k.

When x̂j+1 = x̂j then x̂inv := x̂j.

Proof. i) Note that we have X̃k ⊆ X̃k+1 as only states are added to obtain
X̃k+1. Hence, Z̃ ⊆ X̃k for all k and i) is satisfied.

ii) X̃k = X̃k+1 is equivalent to x̂k = x̂k ⊕ SṼ x̂k ⇐⇒ SṼ x̂k � x̂k = 0 (since
SṼ x̂k must represent a subset of X̃k), proving the controlled invariance of X̃k.

iii) We claim that for any set Z̃ ′ ⊇ Z̃ it holds that X̃ ′
k ⊇ X̃k, where {X̃ ′

k}
is generated by the algorithm with X̃ ′

0 = Z̃ ′. Starting with X̃ ′
0 := Z̃ ′ and

94 Control strategies

X̃0 := Z̃ we have that X̃ ′
0 ⊇ X̃0, proving that the claim holds for k = 0.

To proceed by induction, assume that X̃ ′
k ⊇ X̃k. Correspondingly we can

write x̂′k = x̂k ⊕ ∆x̂′k. With this, it follows that x̂k+1 = x̂k ⊕ SṼ x̂k and
x̂′k+1 = x̂k ⊕ ∆x̂′k ⊕ SṼ (x̂k ⊕ ∆x̂′k) = x̂k ⊕ ∆x̂′k ⊕ SṼ x̂k ⊕ SṼ∆x̂

′
k. Hence,

X̃ ′
k+1 ⊇ X̃k+1. Similar reasoning as for the proof of iii) for Proposition 5.3.4

gives the desired result

Starting with the set X̃0 = Z̃, all discrete states are added to X̃0 to
which transitions from states in X̃0 cannot be prevented (represented by x̂′ :=
SṼ x̂0). This is repeated until X̃k is discretely controlled invariant. Since
only states are added to which transitions cannot be avoided, the smallest
discretely controlled invariant set containing Z̃ results. Since, starting from
X̃0, only states are added and the total number of discrete states in X̃ is finite,
the algorithm also is finite.

For the sake of the reachability problem it is convenient to have an exten-
sion of the concept of controlled invariant set.

Definition 5.3.7 (Γ-controlled inv. set) Let the sets Ω :=
⋃

x̃∈Z̃ Hx(x̃)
and Γ :=

⋃
x̃∈Z̃1

Hx(x̃) be given. Ω is called Γ-controlled invariant (and Z̃ is
Z̃1-controlled invariant), if for each initial state x0 ∈ Ω, a discretely controlled
trajectory ξ (with ξ(0) = x0) exists, such that either ξ(t) ∈ Ω for all t ≥ 0, or
ξ(te) ∈ Γ, where te = inf{t > 0 | ξ(t) /∈ Ω}.

Loosely speaking, Ω is Γ-controlled invariant, if we leave the set via Γ in
case the state cannot remain in Ω. Note that discretely controlled invariance
is equivalent to ∅-controlled invariance.

Proposition 5.3.8 Z̃ ⊆ X̃ is Z̃1-controlled invariant for the set of inputs
Ṽ ⊆ Ũ iff (in Boolean vector notation) SṼ (ẑ � ẑ1) � ẑ = 0, where SṼ =⊗

ũ∈Ṽ Aũ.

Proof. From all the discrete states in Z̃ that are not in Z̃1 (i.e. Z̃ \
Z̃1 represented by ẑ � ẑ1) transitions cannot be prevented to the set ẑ′ =
SṼ (ẑ � ẑ1). If ẑ′ � ẑ = 0, then Z̃ ′ ⊆ Z̃ and we can only leave Z̃ via Z̃1. If
SṼ (ẑ � ẑ1) � ẑ �= 0, then clearly transitions to states outside Z̃ cannot be
prevented from a discrete state which is in Z̃ but not in Z̃1.

5.4 ‘Forceable state-transition’ control strategy

The first controller design method, that we propose, is most easily explained
for the reachability problem, although it is also applicable to the stabilizing
problem with some minor extensions. Recall that Assumption 5.2.9 holds.

5.4 ‘Forceable state-transition’ control strategy 95

From the transition function φ it can be seen that a transition from one
state to another is possible with a particular input. However, due to non-
determinism, often also other transitions are possible with this input. As a
consequence, it is not known which of the possible transitions actually will
happen, since this depends on the unknown continuous state. The idea of the
first controller synthesis is to find a way to guarantee that a transition from
one discrete state to another is possible and all other transitions can be ruled
out. To do so, we introduce the following concept.

Definition 5.4.1 (Forceable transition) Given two (adjacent) discrete
states x̃1, x̃2 the transition x̃1 → x̃2 is called forceable, if from each initial state
x0 ∈ Hx(x̃1) there exists a discretely controlled trajectory ξ (with ξ(0) = x0)
for which there exists a t1 > 0 such that ξ(t) ∈ Hx(x̃1)∪Hx(x̃2) for all t ∈ [0, t1]
and ξ(t1) ∈ int(Hx(x̃2)).

The forceable transitions are defining a directed graph on the set of discrete
states that we call the forceability graph. It is obvious that the reachability
problem is easily solvable if the forceability graph is known:

Proposition 5.4.2 The reachability problem is solvable for x̃0 to x̃e, if the
forceability graph contains a path from x̃0 to x̃e.

A solution to the reachability problem can be found by constructing the
forceability graph. Unfortunately, it is very difficult in general to check whether
a given transition is forceable. In the next section we give a sufficient condition
for forceability and we show how it can be systematically checked using the
continuous model. Because our condition is not necessary we are only able
to construct a subgraph of the forceability graph. Hence, if there is no path
from the initial discrete state to the target discrete state in this subgraph the
reachability problem may still have a solution. However, if such a path exists
then it is certain that the problem is solvable and a control strategy can be
constructed that realizes the desired path.

5.4.1 Sufficient condition for the forceability of a transition

Given the system (5.1), together with a set of boundaries (5.2), and a finite
set of inputs Ũ , let ũ ∈ Ũ be fixed and let x̃1 and x̃2 be two adjacent states.

Using the concept of moving and preventing inputs, we can formulate the
following proposition.

Proposition 5.4.3 The transition x̃1 → x̃2 is forceable, if for each transition
x̃1 → x̃3 �= x̃2 to a state x̃3 adjacent to x̃1, there exists an input that is
preventing for x̃1 → x̃3 among the inputs that are moving for x̃1 → x̃2.

96 Control strategies

Proof. Suppose that the set of inputs that are moving for the transition
x̃1 → x̃2 is given by Ũm. If we pick any ũ1 ∈ Ũm it is guaranteed that the
continuous state x(t) moves towards the common boundary Hx(x̃1)∩Hx(x̃2).
The only phenomenon that might obstruct x(t) from crossing the boundary
Hx(x̃1)∩Hx(x̃2), is that another boundaryHx(x̃1)∩Hx(x̃3), x̃3 �= x̃2 is reached
first. In this case the transition x̃1 → x̃3 will be prevented by an input ũ2. If
we choose ũ2 from the set Ũm, then still it is guaranteed that x(t) is moving
towards the desired boundary. By construction, it is certain that the transition
x̃1 → x̃2 will occur, and all other transitions x̃1 → x̃3, x̃3 �= x̃2 , will not (and
thus x̃1 → x̃2 is forceable).

Since the condition in Proposition 5.4.3 is only sufficient it is used to
construct a subgraph of the forceability graph, as will be explained in the
next section.

5.4.2 Forceability graph

Now we present a practical method to determine the subgraph of the force-
ability graph based upon Proposition 5.4.3. Given a set of discrete inputs
Ũ = {ũi}, the corresponding transition matrices {Aũi} and the direction ma-
trices {Dũi} the conditions of Proposition 5.4.3 guaranteeing the transition
x̃1 → x̃2 to be forceable can be checked by performing the following steps:

1. Determine all inputs for which x̃1 is moving to x̃1 → x̃2, i.e. compute

Ũm = {ũ ∈ Ũ | x̂T2 Dũx̂1 �= 0}. (5.9)

2. Check if, transitions to discrete states other than x̃2 can be prevented
by some input ũ ∈ Ũm, i.e. verify that

SŨm
x̂1 � x̂2 = 0,

with SŨm
:=

⊗
ũ∈Ũm

Aũ.

By computing this for all discrete states (that is, for all transitions j → i),
the forceability matrix P is constructed:

pij =
{

1 SŨm
x̂1 � x̂2 = 0, Ũm = {ũ ∈ Ũ | x̂T2 Dũx̂1 �= 0}

0 else,

where j and i are the integer presentations of x̃1 and x̃2, respectively.
The Boolean vector x̂2 := Px̂1 represents a set that contains discrete states

to which a transition from x̃1 is forceable. The forceability matrix P is the
adjacency matrix of a subgraph of the forceability graph. If we label each

5.4 ‘Forceable state-transition’ control strategy 97

edge in the forceability graph with the set of inputs Ũm as defined in (5.9)
then we have the labelled forceability graph. The labels indicate which inputs
we can choose to prevent undesirable transitions and still guarantee movement
towards a desired transition.

5.4.3 Control strategy

The reachability problem requires to discretely control the state from the
initial discrete state x̃0 to the target set of discrete states X̃e (x̃0 /∈ X̃e). For
this we have to search for a path in the forceability subgraph from x̃0 to X̃e.
The following algorithm provides all these paths with minimal length (i.e.
number of discrete states) by first searching backward (from X̃e) and then
forward (from x̃0).

step 1 Set x̂1 := x̂e and iterate

x̂i+1 = P T x̂i

until x̃0 ∈ X̃i+1, i.e. x̂T0 x̂i+1 = 1. Set r = i+1. Now we have computed
all forceable paths of length r − 1 that lead to X̃e, and at least one of
these paths starts from x̃0, see Figure 5.3 (a).

step 2 Set ẑ1 = x̂0 and for i = 1, ..., r − 1 compute

ẑi+1 = P ẑi ⊗ x̂r−i.

So, the set Z̃i (represented by the Boolean vector ẑi) is the intersection
of the forceable paths starting from x̃0 of length i− 1, see Figure 5.3 (b)
and the forceable paths that are r− i−1 steps away from X̃e, see Figure
5.3 (a). The resulting set {Z̃1, Z̃2, ..., Z̃r} contains the discrete states on
forceable paths originating from x̃0 and ending in X̃e, see Figure 5.3 (c).
It is always possible to go from Z̃i to Z̃i+1 such that, starting from x̃0

we reach X̃e.

The actual control algorithm consists of choosing a moving input ũ ∈ Ũm

from the labelled forceability graph such that a transition from x̃1 ∈ Z̃i to
x̃2 ∈ Z̃i+1 is forced until the target state is reached. Each time a sensor detects
that the continuous state reaches a boundary Hx(x̃1)∩Hx(x̃3) with x̃3 /∈ Z̃i+1

the particular transition is prevented by choosing an input ũ ∈ Ũm such that
x̃3 /∈ φ(x̃1, ũ), i.e. x̂T3 Aũx̂1 = 0. Whenever a sensor detects that the continuous
state reaches a boundary Hx(x̃1)∩Hx(x̃2), x̃2 ∈ Z̃i+1, then the current input is
maintained for τ time units to make sure that the boundary actually is crossed.
After τ time units, an input is chosen that is moving for Z̃i+2. However, in
case a boundary of an undesired discrete state (i.e. a state not in Z̃i+2) is

98 Control strategies

x̃0x̃0x̃0

x̃ex̃ex̃e

(a) (b) (c)
Figure 5.3: (a) Forceable paths of length 2 ending in x̃e, (b) forceable paths
starting in x̃0, and (c) forceable paths starting in x̃0 and ending in x̃e

reached before τ time units have expired, then a preventing input is directly
applied which is moving for Z̃i+2 to realize a suitable continuation and the
action with respect to ‘τ ’ is cancelled. The parameter τ > 0, can be chosen
freely.

Remark 5.4.4 If a control action triggered by a time event (the elapse of a
time period of τ units) is not included and the actions would be synchronous
with the measurements, then two problems might occur. First, if we would
wait until the next boundary is hit (i.e. τ = ∞) for choosing a new preventing
input, then in case of an equilibrium for the current input (which was moving
for x̃1 → Z̃i+1 but not necessarily for x̃2 → Z̃i+2) in x̃2 ∈ Z̃i+1 the continuous
state may not leave x̃2 and no further improvement is possible. Second, if we
would directly change the input after a boundary was reached (i.e. τ = 0),
then the new moving input could bring the trajectory back to x̃1, because this
input needs not to be preventing for the transition x̃2 → x̃1.

Remark 5.4.5 The usage of forceability subgraph is exploited for solving the
reachability problem. To solve the stabilization problem one should solve the
reachability problem for the largest discretely controlled invariant set contained
in X̃e. If this set is empty, then the stabilization problem cannot be solved.
In this case, the best one can do is solving the reachability problem for the
smallest discretely controlled invariant set containing X̃e.

5.4.4 Example: two tank system

Consider the two tank system depicted in Fig. 5.4.
It consists of two communicating tanks which are connected through a

small pipe. Both tanks can be filled by controlling the valves in the respective
feed lines (s1, s2). The pipe between the tubes can be blocked by means of the

5.4 ‘Forceable state-transition’ control strategy 99

�

�
�

�
�

s1 s2

s3 s4

Figure 5.4: The two tank system

switch s3. Only the second tank has a drain s4. The input ũ = (s1, s2, s3, s4)
consists of the vector of switch positions (open or closed) for the four valves
controlling the flows in the system. The input set has 24 = 16 elements.
The state vector x = [x1, x2]T is given by the water levels in each tank. The
continuous model can easily be deduced from the three tank example in Section
3.5 by leaving out the equation for the second (middle) tank and renaming
the elements of the state and input vector when necessary.

Each tank is divided into six parts (states) defined by the levels (βij):
0, 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5 [m].

After computing the transition- and direction matrices we obtain the force-
ability graph as depicted in Figure 5.5, where the discrete states are repre-
sented by their tuple representation.

1
1

2

2

3

3

4

4

5

5

6

6
Figure 5.5: Forceability graph for the two tank system

A possible time trajectory from x̃0 = (6, 6) to x̃e = (4, 6) is shown in Figure
5.6.

For this example, τ was chosen equal to 0.1 [s]. From the forceability
graph it can be seen that a possible path is given by the sequence (6, 6) →
(6, 5) → (6, 4) → (5, 4) → (5, 3) → (4, 3) → (4, 4) → (4, 5) → (4, 6). From
Fig. 5.6 it can be seen that this indeed is the path the controller forces
the system to follow. Furthermore, at the top of Figure 5.6 it is shown at
which time instants the input changes. Starting with s4 open and all other

100 Control strategies

20 40 60 80 100 120

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time [s]

L
ev
el

[m
]

x2

x1

βi3

βi4

βi5

t1t2t3 t4 t5 t6

Figure 5.6: Trajectory for x̃0 = (6, 6) and x̃e = (4, 6)

switches closed, after approximately 21 seconds the boundary β2
5 is reached

and τ = 0.1 seconds later, at t1 the controller opens s3 (and closes s4) in order
to lower the level in the first tank. As a result, the level of the second tank
starts to rise, which would cause x2 to cross boundary β2

4 . This is prevented
immediately by opening s4 at time t2. At t3, discrete state (5, 4) is reached
and s3 is closed (s4 is still open) such that the level in the second tank can
drop in order to reach (5, 3). Then s4 is switched off and s3 is switched on
at t4, allowing the level in the first tank to drop again. However, since the
level in the second tank starts to rise, the transition (5, 3) → (5, 4) has to
be prevented by opening s4 again at t5. Finally, at t6 the valves s3 and s4
are turned off and s2 is turned on such that the level in the second tank
rises until the desired discrete state is reached. In summary, the following
sequence is generated: (6, 6) 0001−→ (6, 5) 0001−→ (6, 4) 00104−→ (6, 5) 0011−→ (5, 4) 0001−→
(5, 3) 00104−→ (5, 4) 0011−→ (4, 3) 0100−→ (4, 4) 0100−→ (4, 5) 0100−→ (4, 6). Here (6, 6) 0001−→ (6, 5)
denotes the transition (6, 6) → (6, 5) with input ũ = (0, 0, 0, 1), and (6, 4) 00104−→
(6, 5) 0011−→ (5, 4) indicates that the transition (6, 4) → (5, 4) is realized after
preventing (6, 4) 0010−→ (6, 5) with input ũ = (0, 0, 1, 1). From the simulation it
follows that Assumption 5.1.3 is not violated.

It is important to realize that the proposed controller design method is
systematic, i.e. the computation of the forceability graph (in fact a subgraph)
is performed in an automated way. The advantage is that no specialistic insight
or knowledge of operators of the plant is needed, which is often the case with
‘rule-based’ control strategies.

5.5 ‘Forceable set-transition’ control strategy 101

5.5 ‘Forceable set-transition’ control strategy

The previous controller design method is restrictive in the sense that for the
existence of a forceable transition it is necessary that all undesired transi-
tions have to be preventable. The controller design method discussed in this
section relaxes this. Even if a transition to a certain discrete state cannot
be prevented, this will not be a problem when from the new state a desired
transition to another state is again possible. Instead of forceable transitions
between states, we are now considering forceable transitions between sets. The
key idea is to compute a finite sequence of nested (‘target set’-)controlled in-
variant sets (see Section 5.3). Each set contains its predecessor. The first set
contains the target set and the last set contains the initial state. Furthermore,
as these sets are (‘target set’-)controlled invariant, the state trajectory can
only move to the predecessor of the current set, which is smaller and ‘closer’
to the target set.

It is no longer possible to construct a forceability graph, which has the
advantage that all paths are available for each initial state x̃0 and target state
x̃e beforehand. Instead, for the given initial state x̃0 and the set of target
states X̃e, the following procedure is performed to obtain the nested sequence
of sets.

1. (Initialization) For the reachability problem, set ẑ1 := x̂1 := x̂e (which
can be a Boolean representation of a set). For the stabilizing problem
we compute the largest controlled invariant set X̃inv for the set of inputs
Ũ contained in X̃e. If there is no non-trivial solution, then the stabiliz-
ing problem cannot be solved. The best alternative is to compute the
smallest controlled invariant set X̃inv for the set of inputs Ũ contain-
ing the target set of discrete states X̃e. Next, we set ẑ1 := x̂1 := x̂inv
(Z̃1 := X̃1 := X̃inv) and k := 1.

2. (Moving neighbors) Next, the set of discrete states X̃2 containing
all x̃′2 /∈ X̃1 for which there exist moving inputs for some transition
x̃′2 → x̃′1 ∈ X̃1 is computed, i.e.

x̂2 = (DT x̂1)� x̂1.

3. (Check controlled invariance) Check for each single discrete state
x̃′2 ∈ X̃2, whether transitions to states x̃ /∈ X̃1 ∪ X̃2 can be prevented
by at least one of the moving inputs for some x̃′2 → x̃′1 ∈ X̃1. That is,
compute

x̂3 = SŨm
x̂′2 � (x̂2 ⊕ x̂1),

with Ũm = {ũ ∈ Ũ | x̂T1 Dũx̂
′
2 �= 0}. Consider the following two cases.

102 Control strategies

i) (Is controlled invariant) If x̂3 = 0 for all x̃′2 ∈ X̃2, then we set
Z̃k+1 := X̃1 ∪ X̃2, which is Z̃1-controlled invariant2. If the initial
state x̃0 ∈ Z̃k+1, then the algorithm has successfully finished. Oth-
erwise, set k := k + 1, rename x̂1 := x̂1 ⊕ x̂2 and execute step 2
again.

ii) (Make controlled invariant) If x̂3 �= 0, then this implies that we
cannot prevent the transition x̃′2 → x̃′3 ∈ X̃3 by any input ũ ∈ Ũm.
The discrete state x̃′2 is removed from X̃2, i.e. set x̂2 := x̂2 � x̂′2. If
x̂2 = x̂1, then no further improvement is possible and the strategy
fails. Otherwise, perform step 3 again for the new X̃2.

If finished successfully, the procedure results in a sequence of nested, Z̃1-
controlled invariant sets, x̃0 ∈ Z̃r ⊃ Z̃r−1 ⊃ ... ⊃ Z̃2 ⊃ Z̃1.

The connection with the first controller design method can be explained
by using the directed graph presented in Figure 5.7.

1 2

3 4

Figure 5.7: Forceable states versus forceable sets

In this figure, the solid arrows indicate forceable transitions whereas the
dashed arrows represent transitions that cannot be forced but for which moving
inputs exist. As can be seen, there is no forceable path from discrete state 1
to state 4. Hence, the first controller design method would fail to solve the
reachability problem (from 1 to 4) for this situation. However, we are certain
that a transition from discrete state 1 to one of the states in the set {2, 3} will
happen. Hence, the transition between the sets {1} and {2, 3} is forceable.
From the set {2, 3} we then finally can force a transition to the discrete state
4. Consequently the methodology discussed in this section yields a solution in
this case.

5.5.1 Control strategy

Instead of forcing transition between states, this controller design method is
based on forcing transitions between sets. The aim of the controller strategy is
to let the continuous state x(t) evolve from one Z̃1-controlled invariant set Z̃k

2In case Z̃1 is controlled invariant (as e.g. in the stabilization problem), then a Z̃1-
controlled invariant set containing Z̃1 is controlled invariant as well.

5.5 ‘Forceable set-transition’ control strategy 103

to the smaller set Z̃k−1, which is ‘closer’ to the target set Z̃1. This is repeated
until the set of target discrete states Z̃1 (equal to X̃e in the reachability prob-
lem) is entered. Initially, from x̃0 ∈ Z̃r the set of inputs Ũm is computed which
are moving to the set Z̃r−1. This set is given by Ũm = {ũ ∈ Ũ | ẑTr−1Dũx̂0 �= 0}.
Three situations are now distinguished.

• Whenever it is observed that a transition is about to occur to a discrete
state x̃new /∈ Z̃r (i.e. the situation would be worse after the transition),
then an input is chosen from Ũm, which is preventing for the transition
x̃ → x̃new. That is choose ũ ∈ Ũm for which x̂TnewAũx̂0 = 0.

• If x̃new ∈ Z̃r \ Z̃r−1 (i.e. the ‘distance’ to the target set stays ‘equal’),
then the current input is maintained for τ time units to ensure that the
transition actually occurs (similar as in Section 5.4.3). After τ time units
an input is chosen that is moving for the transition x̃new → Z̃r−1.

• In case x̃new ∈ Z̃r−1, the current moving input will be maintained for τ
time units as well, to guarantee that the set Z̃r−1 is entered, which is
‘closer’ to Z̃1 (i.e. the target set). Next, the strategy aims at moving
from Z̃r−1 to Z̃r−2

3 by switching to an input that is moving for Z̃r−2

after τ time units.

If in the latter two cases a boundary of an undesired discrete state is
reached before τ time units have expired, then a preventing input is directly
applied which is moving for Z̃r−1 or Z̃r−2, respectively. The parameter τ > 0,
can be chosen freely.

By these two control actions, we ensure that the trajectory can only leave
the set Z̃r to a set Z̃r−1. Next, the strategy aims at moving from Z̃r−1 to Z̃r−2

in a similar manner until Z̃1 is actually reached.

5.5.2 Troublesome situation

In general, it is not possible to guarantee that the state will evolve to a smaller
set. Although moving inputs are used to try to let the state evolve in the
direction of the desired state, it is not certain that the state will actually
reach a smaller controlled invariant set as can be shown by looking at the
following example.

Example 5.5.1 Consider the discrete states x̃1, x̃2, x̃3, and x̃4 and their
corresponding hypercubes, depicted in Figure 5.8. The objective is to reach
the set {x̃1, x̃3, x̃4} from x̃2. Suppose we start in ξ(t0) with an input ũ that

3In case x̃new ∈ Z̃k for some k < r− 1 then one might improve by choosing an input that
is moving from Z̃k to Z̃k−1.

104 Control strategies

x̃1 x̃2

x̃3 x̃4

ξ(t0) = ξ(t2)

ξ(t1)

Figure 5.8: A cyclic trajectory in Hx(x̃2)

is moving for x̃2 → x̃4. However, in order to prevent the state from leaving
Hx(x̃2), at time t1 a preventing input is applied that is moving for x̃2 → x̃1. It
might be the case that at time t2 the point x(t0) is reached again and the input
ũ is applied again, since it is preventing and moving. Thus, a cyclic trajectory
arises that prevents us from reaching the set {x̃1, x̃3, x̃4}.

There is no proof that the continuous trajectory will reach a smaller con-
trolled invariant set in general. However, it is guaranteed that the situation
will never become worse. A possible (heuristic) solution is to keep on aiming
at the same state (e.g. x̃4 in the example) as long as possible.

5.5.3 Example: two tank system

Again, we consider the two tank system discussed in Section 5.4.4. For this
example the aim is to reach the discrete state x̃e = (4, 6) from the initial
state x̃0 = (6, 6). If we compute the x̃e-controlled invariant sets by exploiting
the procedure discussed in this section then this results in 9 sets (including
the target state x̃e), {Z̃k}k=1,...,9. It turns out that these sets are actually
controlled invariant instead of only x̃e-invariant. In Figure 5.9 the sets Z̃k+1 \
Z̃k are depicted. Each such set has the same color or shading in the figure
and consist of discrete states which are k steps remote from the target state
x̃e, where k = 1, ..., 8. In Figure 5.9 also all paths are shown for which moving
inputs exist and that will lead to the target state x̃e = (4, 6) within 8 steps.
Starting in the initial discrete state x̃0 = (6, 6) ∈ Z̃9 which is 8 transitions
remote from the target state x̃e, it is certain (for this example) that we can
move to one of the states in the invariant set Z̃8 consisting of states being
7 transitions remote from the target state. This is repeated until the target
state x̃e is reached. If this control strategy is applied to the two tank system,
exactly the same time-trajectory and input sequence is obtained as for the
example in Section 5.4.4. Further details of the time-trajectory have already
been given in Section 5.4.4.

5.6 ‘Invariant sets’ control strategy 105

x̃e x̃0

Figure 5.9: Digraph of all paths for which moving inputs exist ending in x̃e

5.6 ‘Invariant sets’ control strategy

The third design method can also be used for both the stabilization problem
and the reachability problem; there are just some minor differences between
the applied strategies for each of the problems, as will be pointed out. Recall
that Assumption 5.2.9 holds.

This last design method resembles the procedure described in the pre-
vious section in the sense that it constructs a sequence of nested (‘target
set’-)controlled invariant sets. However, instead of making a set controlled
invariant by deleting states, it is tried to make the set controlled invariant by
adding states. As a consequence, steps 1 and 2 remain the same as the first
two steps of the previous synthesis method, while step 3 differs.

1. (Initialization) For the reachability problem, set ẑ1 := x̂1 := x̂e (which
can be a Boolean representation of a set). For the stabilization problem
we compute the largest controlled invariant set X̃inv for the set of inputs
Ũ contained in X̃e. If there is no non-trivial solution, then the stabiliza-
tion problem cannot be solved. The best alternative is to compute the
smallest controlled invariant set X̃inv for the set of inputs Ũ containing
the target discrete state X̃e, see the shaded hypercubes in Figure 5.10
(a). Next, we set ẑ1 := x̂1 := x̂inv (Z̃1 := X̃1 := X̃inv) and k := 1.

2. (Moving neighbors) Next, the set of discrete states X̃2 containing
all x̃′2 /∈ X̃1 for which there exist moving inputs for some transition
x̃′2 → x̃′1 ∈ X̃1 is computed, i.e.

x̂2 = (DT x̂1)� x̂1

106 Control strategies

(described by the dark Hypercubes in 5.10 (b)).

3. (Check controlled invariance) Check for each single discrete state
x̃′2 ∈ X̃2 whether transitions to states x̃ /∈ X̃1 ∪ X̃2 can be prevented by
at least one of the moving inputs for x̃′2 → x̃′1 for some x̃′1 ∈ X̃1. That
is, compute

x̂3 = SŨm
x̂′2 � (x̂2 ⊕ x̂1),

with Ũm := {ũ ∈ Ũ | x̂T1 Dũx̂
′
2 �= 0}. Consider the following two cases.

i) (Is controlled invariant) If x̂3 = 0 for all x̃′2 ∈ X̃2 then X̃1 ∪ X̃2

is Z̃1-controlled invariant4 and will be denoted by Z̃k+1, see Figure
5.10 (c). If the initial state x̃0 ∈ Z̃k+1, then the algorithm has
finished successfully, see Figure 5.10 (d). Otherwise, set k := k+1,
rename x̂1 := x̂1 ⊕ x̂2 and execute step 2 again.

ii) (Make controlled invariant) If x̂3 �= 0 for some x̃′2 ∈ X̃2, then
this implies that for all x̃′3 ∈ X̃3 the transition x̃′2 → x̃′3 cannot be
prevented by any input ũ ∈ Ũm. Instead of deleting x̃′2 as in Section
5.5 to (try to) construct a Z̃1-controlled invariant set Z̃k+1, X̃3 is
now added to X̃2 under the condition that for each x̃′3 ∈ X̃3 there
exists a moving input for x̃′3 back to X̃2. This means that if

x̂T2 Dx̂
′
3 �= 0, (5.10)

for each x̃′3 ∈ X̃3, then we rename X̃1 and X̃2 such that

x̂1 := x̂1 ⊕ x̂2, x̂2 := x̂3

and repeat step 3. In case (5.10) is not satisfied, the design method
fails and the procedure is stopped.

If successfully finished, the procedure results in a sequence of nested, Z̃1-
controlled invariant sets, x̃0 ∈ Z̃r ⊃ Z̃r−1 ⊃ ... ⊃ Z̃2 ⊃ Z̃1.

5.6.1 Control strategy

Similar as for the previous control strategy, the aim is to let the continuous
state x(t) evolve from one Z̃1-controlled invariant set Z̃k to the smaller set
Z̃k−1. This is repeated until the set of target discrete states Z̃1 (equal to
X̃e in the reachability problem) is entered. Initially, from x̃0 ∈ Z̃r the set of
inputs Ũm is computed which are moving to the set Z̃r−1. This set is given by
Ũm = {ũ ∈ Ũ | ẑTr−1Dũx̂0 �= 0}. Again, three situations are distinguished.

4Recall that in case Z̃1 is controlled invariant (as e.g. in the stabilization problem), then
a Z̃1-controlled invariant containing Z̃1 set is controlled invariant as well.

5.6 ‘Invariant sets’ control strategy 107

(a) (b)

(c) (d)

x̃0x̃0

x̃0x̃0

x̃ex̃e

x̃ex̃e

Figure 5.10: The construction of nested, controlled invariant sets

• Whenever it is observed that a transition is about to occur to a discrete
state x̃new /∈ Z̃r (i.e. the situation would be worse after the transition),
then an input is chosen from Ũm, which is preventing for the transition
x̃ → x̃new. That is choose ũ ∈ Ũm for which x̂TnewAũx̂0 = 0.

• If x̃new ∈ Z̃r \ Z̃r−1 (i.e. the ‘distance’ to the target set stays ‘equal’),
then the current input is maintained for τ time units to ensure that the
transition actually occurs (similar as in Section 5.4.3). After τ time units
an input is chosen that is moving for the transition x̃new → Z̃r−1.

• In case x̃new ∈ Z̃r−1, the current moving input will be maintained for τ
time units as well, to guarantee that the set Z̃r−1 is entered, which is
‘closer’ to Z̃1 (i.e. the target set). Next, the strategy aims at moving
from Z̃r−1 to Z̃r−2

5 by switching to an input that is moving for Z̃r−2

after τ time units.

If in the latter two cases a boundary of an undesired discrete state is
reached before τ time units have expired, then a preventing input is directly
applied which is moving for Z̃r−1 or Z̃r−2, respectively. The parameter τ > 0,
can be chosen freely.

By these two control actions, we ensure that the trajectory can only leave
the set Z̃r to a set Z̃r−1. Next, the strategy aims at moving from Z̃r−1 to Z̃r−2

in a similar manner until Z̃1 is actually reached.
5In case x̃new ∈ Z̃k for some k < r− 1 then one might improve by choosing an input that

is moving from Z̃k to Z̃k−1.

108 Control strategies

5.6.2 Pathological case

An important issue of this method is that in principle no guarantee can be
given that the state will evolve to a smaller set. Moving inputs are used to
try to let the state evolve in the direction of the desired state. In spite of this
aim, it is not certain that the state will actually reach a smaller controlled
invariant set, as the same situation can occur as discussed in Example 5.5.1.
For the controller strategy discussed in this section there might arise another
troublesome situation as shown in the example depicted in Figure 5.11.

Example 5.6.1 (Pathological case) For the grey states in Figure 5.11
there exist moving inputs to the target state (dark grey in the center), indi-
cated by the solid arrows. This set is made controlled invariant by extending it
with states such that the shaded area results (step 3.ii) of the algorithm). How-
ever, for the grey states transitions to the added states cannot be prevented, as
indicated by the dotted arrows. For the added states there exist moving inputs
to the grey states. It is clear from the picture that it is not guaranteed that the
target state is reached since it is possible that cyclic trajectories exist.

Figure 5.11: Set of states (grey states) which are moving for the target state
(dark grey) and the corresponding controlled invariant set (shaded)

As indicated by the example, no rigorous proof can be given that the
proposed synthesis method will succeed. However, it can be guaranteed that
the controller will never worsen the current situation.

5.6.3 Example: two tank system

Consider the two tank system as defined in Section 5.4.4. This time, the aim
is to control the continuous state from the initial state x0 = [0.42, 0.44]T ∈
Hx(x̃0), that is x̃0 = (6, 6) to the target discrete state x̃e = (3, 6). The
x̃e-controlled invariant sets that are computed by performing the steps dis-
cussed in this section actually turn out to be controlled invariant, as x̃e is

5.6 ‘Invariant sets’ control strategy 109

controlled invariant. The resulting sequence {Z̃i}i=1,...10 is depicted in Figure
5.12, where the sets are pictured in the forceability graph of the two tank
system as explained in Section 5.4.2.

1
1

2

2

3

3

4

4

5

5

6

6

x̃e

x̃0

Figure 5.12: Controlled invariant sets originating from x̃e = (3, 6), depicted in
the forceability graph of the two tank system

From this forceability graph, it can be seen that there is no path ending
in x̃e = (3, 6) and originating in x̃0 = (6, 6), therefore the ‘forceable state-
transitions’ controller design method will not succeed. From Figure 5.12 it
can be seen that there exists a sequence of nested x̃e-controlled invariant sets,
the first beginning in x̃e = (3, 6)̇, and the last covering all discrete states and
thus including x̃0 = (6, 6). Note, that since the Z̃10 covers all discrete states,
we obtained a global controller (and stabilizer) to x̃e. Applying the proposed
control strategy with τ = 0.1 [s] results in the time-response as shown in
Figure 5.13.

In Figure 5.13 also the time instants are shown for which the input changes.
Starting with all switches closed except for s4, the second tank drops its level
until after approximately 21 seconds the discrete state (6, 4) is reached. After
τ seconds, at t1 switch s3 opens and s4 closes in order to reach state (5, 4).
However, this causes the level in the second tank to rise which would result in
a transition back to the state (6, 5). This is prevented at time t2 by closing s3
and opening s4. As a consequence, the level in the second tank lowers again,
until at t3 the transition (6, 4) → (6, 3) is prevented by closing s4 and opening
s3. Eventually, the sequence of discrete states, which results from the control
actions is: (6, 6) 0001−→ (6, 5) 0001−→ (6, 4) 00104−→ (6, 5) 00014−→ (6, 3) 0010−→ (5, 4) 0001−→
(5, 3) 00104−→ (5, 4) 0011−→ (4, 3) 00014−→ (4, 2) 0100−→ (3, 3) 0100−→ (3, 4) 0100−→ (3, 5) 0100−→ (3, 6).
Here, the notation is similar as in Section 5.4.4. From the simulation it can
be seen that Assumption 5.1.3 is not violated.

110 Control strategies

20 40 60 80 100 120 140 160 180
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time [s]

L
ev
el

[m
]

x2

x1

βi2

βi3

βi4

βi5

t1t2 t3t4t5t6 t7 t8 t9

Figure 5.13: Trajectory for x̃0 = (6, 6) and x̃e = (3, 6)

5.7 Transition measurements

So far, the proposed controller design methods are explained for the case that
it is detected when the continuous state reaches the boundary between two
states and instantaneous control action is possible. This is valid, when, for
instance, an optical sensor is used that emits a signal whenever a beam of
light is interrupted, and a (infinitely) fast actuator is available. This assump-
tion allows the usage of preventing inputs. For many practical situations
these assumptions may however be too strong. Some mechanical sensors, e.g.
switches are constructed such that a signal is emitted when the ‘state’ already
has changed. Furthermore, instantaneous control action may be impossible
due to large computation-times or slow actuators. The proposed controller
design methods can be adapted such that they are suitable for this last sit-
uation as well. Note that the definition of a discretely controlled trajectory
is still valid: a discretely controlled trajectory is a trajectory for which the
applied (discrete) input only changes after each measurement (transition).

5.7.1 Strong forceability graph

In Section 5.4.1 a sufficient condition for forceability was based on prevent-
ing undesired transitions (Proposition 5.4.3). As already stated, preventing
transitions requires the exact detection of the continuous state reaching the
boundary between two adjacent hypercubes and instantaneous control actions
(see Assumption 5.2.9). To relax these requirements, the concept of a strongly
forceable transition is introduced. For a strongly forceable transition it is de-
manded that an undesired transition can be corrected instead of prevented.

5.7 Transition measurements 111

The transition actually has occurred but can be corrected; as long as the con-
tinuous time trajectory ξ is in the open set Ω corresponding to the particular
transition, see Proposition 5.2.5. To prevent technicalities, the next defini-
tion is in some sense an extension of Definition 5.4.1 based on the sufficient
condition in Proposition 5.4.3 for the case of correcting inputs.

Definition 5.7.1 The transition x̃1 → x̃2 is strongly forceable, if there exists
a set Ũ ′

m of discrete inputs such that, for each transition x̃1 → x̃3 �= x̃2 to a
state x̃3 adjacent to x̃1 with an input in ũ1 ∈ Ũ ′

m, there exists another input
ũ2 ∈ Ũ ′

m that is correcting for x̃1 → x̃3 among the inputs that are moving for
x̃1 → x̃2.

Now, again a graph can be computed by using the definition. The strong
forceability graph can be constructed in a similar way as the forceability graph.
Given a set of discrete inputs Ũ = {ũ1, ..., ũk}, the matrices {Kũ} and the
direction matrices {Dũ} it can be verified whether a transition x̃1 → x̃2 is
forceable by the following steps.

1. Compute all inputs for which x̃1 is moving to x̃1 → x̃2. This set is given
by

Ũm = {ũ ∈ Ũ | x̂T2 Dũx̂1 �= 0}. (5.11)

2. Check if there exists a set Ũ ′
m ⊆ Ũm, such that by choosing some input

ũ ∈ Ũ ′
m �= ∅ we can correct for transitions to discrete states other than

x̃2. That is, check if

(AŨ ′
m

⊗KŨ ′
m
)x̂1 � x̂2 = 0,

with AŨ ′
m
=

⊕
ũ∈Ũ ′

m
Aũ, and KŨ ′

m
=

⊗
ũ∈Ũ ′

m
Kũ.

To understand the second computation, realize that x̂3 := KŨ ′
m
x̂1 are all

states for which a transition from x̃1 cannot be corrected with one of the inputs
in the set Ũ ′

m. However, it must be possible that a transition can actually occur
before we require a transition to be correctable. The set x̂4 := AŨ ′

m
x̂1 are all

states that can be reached from x̃1 with one of the inputs in the set Ũ ′
m. So,

the intersection of both sets, i.e. x̂5 := x̂3 ⊗ x̂4 gives all states that can be
reached from x̃1 and for which the transition cannot be corrected. This can
also be written as x̂5 = (AŨ ′

m
⊗KŨ ′

m
)x̂1. The set difference x̂5� x̂2 are now all

states unequal to x̃2 that can be reached from x̃1 and for which the transition
is not correctable

112 Control strategies

Notice that the computation of 1) and 2) corresponds to checking the
condition stated in Definition 5.7.1. By performing the computations for all
transitions j → i the strong forceability matrix P s is constructed:

psij =
{

1 (AŨ ′
m

⊗KŨ ′
m
)x̂1 � x̂2 = 0

0 else,

where x̃1 = j, and x̃2 = i.
Hence x̂2 = P sx̂1 represents all discrete states to which a transition from

x̃1 is strongly forceable. If we label each edge in the strong forceability graph
with the set of inputs Ũ ′

m as defined in (5.11) then we have the labelled strong
forceability graph. The labels indicate which inputs we can choose from to
correct transitions and still guarantee movement to a desired transition. The
control strategy discussed in Section 5.4.3 can now be used, based on the
strong forceability graph P s.

5.7.2 Correcting versus preventing inputs

The ‘invariant sets’ and the ‘forceable set-transition’ controller design methods
are easily adapted for the situation where it is detected that a transition
already has occurred. The only change is the replacement of the Boolean
matrix SŨm

which is used for determining the set of states to which possible
transitions cannot be prevented with inputs from the set Ũm, by the Boolean
matrix

(AŨ ′
m

⊗KŨ ′
m
),

with AŨ ′
m

=
⊕

ũ∈Ũ ′
m
Aũ, and KŨ ′

m
=

⊗
ũ∈Ũ ′

m
Kũ. Here Ũ ′

m ⊆ Ũm is a set for

which the number of discrete states in X̃2 computed by x̂2 = (AŨ ′
m
⊗KŨ ′

m
)x̂1

is minimal. Recall that X̃2 is the set of states to which transitions from x̃1

cannot be corrected with inputs from the set Ũ ′
m. Indeed, Ũ ′

m needs not to be
unique; there might be different subsets of Ũm resulting in the same number
of discrete states in X̃2. In this case, we just have to choose one, noticing that
different sets might result in different controlled invariant sets.

5.8 Relaxing Assumption 5.1.3

For the correctness of the controller design methods discussed previously, it
is necessary that Assumption 5.1.3 holds. Unfortunately, it is not possible to
guarantee a priori that Assumption 5.1.3 will not be violated by the proposed
control strategies. First, we will show how the controllers can cause the vio-
lation and what problems result from it. Next, we will reduce the possibility

5.8 Relaxing Assumption 5.1.3 113

that the assumption will be violated by eliminating one of the causes. Fi-
nally, it is shown how, by additional computations, one can handle violation
of Assumption 5.1.3.

One of the basic ideas behind all three controller design methods is to
prevent undesired transitions from occurring (if possible). This is done by
using either preventing inputs or correcting inputs. In Figure 5.14 it is shown
how preventing inputs can result in trajectories ξ that reach points that belong
to three hypercubes. In Figure 5.14 (a) the continuous-time trajectory evolves
along the boundary plane separating the two corresponding hypercubes due to
a preventing input. But, if a trajectory evolving on a boundary plane reaches
a different boundary plane (see Figure 5.14 (a)), then Assumption 5.1.3 is no
longer satisfied. Another reason that might result in violating the assumption
is the switching of inputs that are used for preventing or correcting transitions,
as depicted in Figure 5.14 (b). Here, it is tried to force the transition x̃1 → x̃2.
However, both inputs that are preventing (or correcting) undesired transitions
move the trajectory ξ to the same corner. This will result in very fast switching
and, eventually, a point will be reached that is an elements of more than two
hypercubes, thus violating Assumption 5.1.3.

Hx(x̃1)

Hx(x̃1)

Hx(x̃2)

Hx(x̃2)

ξ(t0)

ξ(t0)

ξ(t1) ξ(t1)

(a) (b)
Figure 5.14: (a) Trajectory ξ evolving along boundary plane due to preserving
input; (b) switching inputs let the trajectory ξ evolve to an edge

It is clear that, if Assumption 5.1.3 does not hold, then Assumption 3.2.1
in Chapter 3 will easily be violated, which means that the modelling method
of Chapter 3 cannot be used without additional transitions. Furthermore, if
Assumption 5.1.3 is violated, then an input ũ which is preventing or correcting
for a transition x̃1 → x̃2 no longer guarantees that the transition indeed is
prevented or corrected. Indeed, it is still guaranteed that the trajectory ξ
will not enter (or will leave) Hx(x̃2), but it is not clear that ξ will ‘return’ to
Hx(x̃1), because other hypercubes might be reached (see Figure 5.15).

114 Control strategies

Hx(x̃1) Hx(x̃2)

Hx(x̃3)

Figure 5.15: The transition x̃1 → x̃2 is prevented, but the trajectory will not
return to Hx(x̃1)

5.8.1 Using correcting inputs

The problem of preventing inputs which resulting in continuous-time trajecto-
ries evolving on boundary planes between hypercubes can be solved by utilizing
correcting inputs instead of preventing inputs. Indeed, by using correcting in-
puts, we are always certain (due to the strictness of inequality (5.6) that a
trajectory will not evolve along a boundary, but moves away from it.

5.8.2 Additional computations

If nevertheless Assumption 5.1.3 is violated, additional computations are nec-
essary to obtain a controller that guarantees that a transition can indeed
be prevented (or corrected). For instance, for a point x on the boundary
Hx(x̃1) ∩Hx(x̃2) ∩Hx(x̃3) for different x̃1, x̃2, and x̃3, it must be shown that
preventing the transition x̃1 → x̃2 will not result in the (possibly undesired)
transition x̃1 → x̃3, see Figure 5.16.

Hx(x̃1)
Hx(x̃2)

x

Hx(x̃4)

Hx(x̃5)

Hx(x̃3)

Hx(x̃6)

Hx(x̃7)x1

x2

Figure 5.16: Points on the boundary plane Hx(x̃1) ∩Hx(x̃2) that also belong
to other hypercubes

To guarantee that applying an input ũ which is preventing for x̃1 → x̃2 will

5.8 Relaxing Assumption 5.1.3 115

not result in an undesired other transition, it must be checked for all points
x that also belong to lower dimensional boundaries of Hx(x̃1) ∩Hx(x̃2), that
the derivative in x, given by f(x, u), points inside the interior of Hx(x̃1) for all
u ∈ Hu(ũ). If it is measured on which intersection of boundary planes (i.e. on
which lower dimensional boundary) the continuous-time trajectory is (as we
assume) then it is sufficient that this holds for all points on the intersection at
hand. For example, for all points on the line-segment given by the intersection
Hx(x̃1) ∩ Hx(x̃2) ∩ Hx(x̃3) excluded by points x1 and x2 in Figure 5.16 the
derivative has to point inside int(Hx(x̃1)) for all u ∈ Hu(ũ). If it is measured
that the trajectory is on this particular line-segment, then this input ũ can be
applied to prevent the transition x̃1 → x̃2 when necessary (correcting inputs
can be applied as long as we are in the neighborhood of the line-segment). If
it is measured that the trajectory is in one of the points x1 or x2 then for these
points there also have to exist inputs ũ1 and ũ2 such that for all u1 ∈ Hu(ũ1)
and u2 ∈ Hu(ũ2) it holds that f(x1, u1) and f(x2, u2) point inside the interior
of Hx(x̃1). If such inputs do not exist, then the transition x̃1 → x̃2 cannot
be prevented (or corrected) while guaranteeing that the continuous state will
remain in Hx(x̃1) and will not go to Hx(x̃3) from points on (lower dimensional)
boundaries of Hx(x̃1) ∩Hx(x̃2).

To be precise, the following steps have to be executed for computing the
inputs that are preventing for the transition x̃1 → x̃2,

1. Compute all preventing inputs as usual, i.e. compute the set {ũ ∈ Ũ |
x̂T2 Aux̂1 = 0}. If this set is empty, then x̃1 → x̃2 cannot be prevented.

2. Determine all lower dimensional boundaries that arise from Hx(x̃1) in-
tersecting other hypercubes Hx(x̃i) adjacent to Hx(x̃2). For the n-
dimensional case this results in n − 2, n − 3, ..., 0 dimensional faces.
For each face, the lower dimensional faces are excluded (i.e. only con-
sider the relative interior of the faces). So, for the 3-dimensional case
the objects we obtain are lines (without beginning and end point) and
points (which are the beginning and end points of the lines, see e.g.
Figure 5.16).

3. For all these objects, determine whether an ũ ∈ Ũ exists for which
f(x, u) points to int(Hx(x̃1)) for all u ∈ Hu(ũ) and all points x on these
objects. If there does not exist such an input ũ, then it is said that
x̃1 → x̃2 cannot be prevented.

The actual implementation of this last step can be performed by using
optimizations and involves cumbersome book-keeping.

116 Control strategies

5.9 Notes and references

The ‘forceable state-transition’ controller design method has been published in
(Philips et al. 1999c). The ‘forceable set-transition’ and ‘invariant set’ strate-
gies are based on discretely controlled invariant sets first used (in this context)
in (Philips et al. 1999b). In (Philips et al. 1999b) a strategy is proposed that
resembles the invariant set based methods discussed in this chapter, but is less
transparent and does not use moving inputs which reduces the chance that a
smaller controlled invariant set will be reached. This method has proven to
work for a three tank system. The latter two methods discussed in this chap-
ter are improvements in comparison to this preliminary work. The approach
followed for both methods is analogous to well known concepts in control the-
ory, such as the controllability set (also used in dynamic programming) and
the Lyapunov approach to stability (also used by computer scientists), see e.g.
(Passino et al. 1994, Sontag 1990).

In this chapter only sufficient conditions were given that guarantee a spe-
cific discrete transition (so-called forceability). Necessary and sufficient con-
ditions are not available in the context considered here and is an important
problem that deserves further attention. The corresponding problem for affine
systems on simplices and rectangles has been treated in (Habets and van
Schuppen 2000).

In this chapter methods for controller design are proposed for continuous
systems with a ‘discretized’ state space and a discrete (or discretized) input
space. Given a discrete-event model of a such continuous plant, usually one
forgets about the continuous origin of the model and just applies the exist-
ing theory on designing supervisors for discrete-event systems as developed
in (Ramadge and Wonham 1982, Ramadge and Wonham 1987b, Ramadge
and Wonham 1987a) or e.g. (Heymann and Lin 1998). However, we believe
that the discrete-event models under study in general have a high degree of
nondeterminism for which (for our purpose) the existing discrete-event con-
troller strategies are not suited. Moreover, the specification of the control
goals as defined in this chapter seems to be difficult to translate into terms
of legal languages, as is necessary for the aforementioned discrete controller
design methods. By only focussing on the discrete-event model, important
information provided by the underlying continuous system (such as deriva-
tive information) is neglected. Here, we try to incorporate such additional
knowledge to obtain stronger control strategies. In contrast to most of the
following controller design methods, our strategies are based on transitions
between discrete states (which are prevented or corrected) rather than the
discrete states itself (i.e. where the discrete input is a function of the discrete
state ũ = fcon(x̃)).

The supervisory control theory of (Ramadge and Wonham 1987b) is suited

5.9 Notes and references 117

(in a slightly modified version) for the framework presented in (Moor and
Raisch 1999) and used for hierarchical control in (Raisch and Itigin 2000,
Raisch et al. 2000). This framework uses the behavior approach (Willems
1991) for solving the control problem of satisfying ‘acceptable’ trajectories.

In (Niinomi et al. 1995, Cury et al. 1998) continuous systems are studied for
which the events are generated by a zero-detector. The discrete-event control
problem is solved using the approach presented in (Thistle and Wonham 1994).
For this, an outer approximation of the exact original discrete-event model
(which may not be finite) is constructed, such that the synthesis of the super-
visor can be performed for the resulting finite representation.

Necessary and sufficient conditions for the existence of a stabilizing quali-
tative controller (i.e. the input depends on the discrete state) for discrete time
systems are given in (Lunze 1995). Also, it is shown how to determine the
control law by constructing the graph of the qualitative model and choosing
controls such that a certain vertex, which represents an invariant set (contain-
ing the equilibrium state), is the only end vertex of the graph and for all other
vertices it holds that they are not strongly connected and no self-circles are
possible.

In (Drakunov et al. 1993) the nondeterministic automaton resulting from
the discretization of the continuous system is represented as a deterministic
automaton with unknown disturbances. Next, a sliding mode control strategy
for finite automata is used resulting in high frequency switching of the input.
The approach followed in (Delchamps 1988, Delchamps 1990) for linear dis-
crete time systems is based on the exact continuous description of the plant,
rather than using a discrete-event model. In (Hsu 1985) an optimal control
method is proposed on the basis of a deterministic ‘cell-to-cell mapping’ as
an approximation of the continuous dynamics (see also (Papa et al. 1997)).
In (Kowalewski et al. 1999) existing controllers are verified by using discrete
approximation of the continuous plant.

Another example of a control strategy that is based on a partitioning of
the continuous state space is given by (Angelis and Philips 1999), where a
rectangular partitioning is assumed and to each hypercube a constant input
is assigned which is computed by solving a set of linear matrix inequalities.

118 Control strategies

Chapter 6

Fault detection and isolation

Fault detection and isolation based on a discrete-event model of a continuous
system is the subject of this chapter. Propositions are given that can be used
directly for the purpose of fault detection and isolation, and that can serve as
a tool to analyze detection and isolation properties. Next, it is studied if it
is possible to reduce the number of discrete states of the discrete-event model
without losing information regarding fault detection and isolation. We give a
computation method for reducing the complexity of the discrete-event model
such that it can be checked if transition and fault detection properties are
preserved. The results are illustrated by means of an example.

6.1 Fault detection and isolation

Fault detection and isolation in industrial processes are becoming increasingly
important. Main reasons for this are the growing demands for higher prod-
uct quality, safety and operational reliability. Whereas most approaches for
detecting and isolating faults are based on the observation in the continuous
measurement space, we will use a fault detection and isolation method which
is based on the observation of events. For this, first a discrete-event model is
constructed, which is based on the continuous model of the process, such that
a complete model is obtained capturing all possible discrete-state transitions
as is explained in Chapter 3. This procedure is repeated for all models with
faults of interest. Next, by observing events from the real system, it is decided
whether or not a particular event must have been caused by a fault and, if
possible, by which fault. For this approach it is necessary that a fault persists
sufficiently long as to be detectable (i.e. long enough to cause an event to
occur).

Consider a system and a set of faults D̃ := {d̃1, ..., d̃r}, such that if no fault

119

120 Fault detection and isolation

occurs the dynamics are described by

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (6.1)

with x(t) ∈ R
n, u(t) ∈ R

m. We will refer to (6.1) as the nominal model. For
a fixed fault d̃ ∈ D̃ the dynamics are described by

ẋ(t) = fd̃(x(t), u(t)), x(t0) = x0.

Furthermore, the same sets of boundaries {βij} and {γij} apply as for the
nominal system. Note, that in this way changes in the process and actuator
failures can be modelled, however sensor failures cannot be incorporated.

For the nominal model and for each model with fixed fault d̃, the adjacency
matrices are determined following the approach described in Chapter 3. Let
Aũ denote the nominal adjacency matrix for input ũ, that is, without faults
and let {Ad̃

ũ} denote the set of adjacency matrices for ũ when a fault d̃ ∈ D̃
occurs.

For our fault detection method we are interested whether a measured tran-
sition x̃1 → x̃2 corresponding to input ũ cannot happen according to the nom-
inal discrete-event model, but is only caused by some fault d̃ ∈ D̃. Indeed,
the most straightforward approach would be to check if an observed transition
x̃1 → x̃2 cannot be caused by the applied input ũ according to our nomi-
nal model, in which case it would hold that x̃2 /∈ φ(x̃1, ũ) or, equivalently
x̂T2 Aũx̂1 = 0. However, since x̂T2 Aũx̂1 = 0 also could be caused by unmodelled
dynamics (outside the modelled faults d̃ ∈ D̃), we will assume here that we are
only interested in the occurrence of faults from the set D̃, which contains all
reasonably expectable faults. This implies that given a measured transition
x̃1 → x̃2 which cannot be caused by the applied input ũ solely, it must be
checked if this transition might be caused by (at least) one of the faults d̃ ∈
D̃ in combination with input ũ. We assume that only one fault at a time can
occur.

Our fault detection scheme is based on the following observation:

Condition 6.1.1 (Fault detection condition) Given a measured transi-
tion x̂1 → x̂2 and an input ũ applied at the time the transition occurs, then a
fault in D̃ has occurred if

1. the observed transition is possible with at least one of the faults d̃ ∈ D̃
in combination with input ũ and

2. the observed transition is not possible with the applied input ũ solely (i.e.
according the nominal model).

6.1 Fault detection and isolation 121

By using the adjacency matrices {Aũ} and {Ad̃
ũ} of the nominal system

and the systems with faults d̃, respectively, Condition 6.1.1 is easily checked
for an observed transition x̂1 → x̂2.

Proposition 6.1.2 (fault detection) Given a measured transition x̂1 →
x̂2 and an input ũ applied at the time the transition occurs, then a fault d̃ ∈ D̃
has occurred if

x̂T2 (F
d̃
ũ)x̂1 = 1

for some d̃ ∈ D̃, where F d̃
ũ := Ad̃

ũ �Aũ is the fault adjacency matrix for input
ũ and fault d̃.

Proof. Note that x̂3 := Ad̃
ũx̂1 �Aũx̂1 = (Ad̃

ũ �Aũ)x̂1 represents all states
to which transitions are possible from x̃1 with the fault d̃ and input ũ reduced
by the set of states to which transitions are possible with the nominal model
and input ũ. Since x̃2 ∈ X̃3 if and only if x̂T2 x̂3 = 1, the proposition holds.

For each input ũ ∈ Ũ and each fault d̃ ∈ D̃ the corresponding fault adja-
cency matrix F d̃

ũ can be computed. Then, after having observed the transition
x̃1 → x̃2 under input ũ, it can be checked for each fault d̃, whether it could
have caused the transition or the transition complies with the nominal model.
However, instead of constructing a fault adjacency matrix for each of the faults
d̃, it can be convenient for the purpose of fault detection to construct the fault
adjacency matrix for input ũ and the set of faults D̃ := {d̃1, ..., d̃r}:

F D̃
u := F d̃1

u ⊕ F d̃2
u ⊕ ...⊕ F d̃r

u = Ad̃1
ũ ⊕Ad̃2

ũ ⊕ ...⊕Ad̃r
ũ �Aũ.

By attaching to each fault d̃ a label, it is possible to directly deduce the set
of faults (if any) that could have caused the observed transition x̃1 → x̃2 with
input ũ. For enabling computations, a label is a unique number such that even
from the sum of these numbers the set of original labels can be restored. One
possibility is to assign a number 2j−1 to the fault d̃j . In this way the labeled
fault adjacency matrix for input ũ and the set of faults D̃ := {d̃1, ..., d̃r} is
given by

FD̃
ũ := 20F d̃1

ũ + 21F d̃2
ũ + ...+ 2r−1F d̃r

ũ ,

where the addition is applied in the conventional way.
Finally, the fault adjacency matrix for the set of inputs Ũ = {ũ1, ..., ũk}

and the fault d̃ ∈ D̃ is defined by

F d̃
Ũ
:= F d̃

ũ1
⊕ F d̃

ũ2
⊕ ...⊕ F d̃

ũk
.

Using these matrices, the following results are immediate.

122 Fault detection and isolation

Proposition 6.1.3 (fault detection and isolation) Given a measured
transition x̃1 → x̃2 and an input ũ applied at the time the transition occurs,
then some fault d̃ ∈ D̃ has occurred if

x̂T2 (F
D̃
ũ)x̂1 = 1,

or equivalently

x̂T2 (F
D̃
ũ)x̂1 = q �= 0.

Notice, that for the computations with the labeled fault adjacency matrix
the standard algebra applies. The set of possible faults can be derived from q
because each fault was labelled in such a way that from the sum of labels the
original labels can be deduced by the procedure explained in Chapter 2. For
example, assume that x̂T2 (F̂

D̃
ũ)x̂1 = 11, then it can be seen that the fault d̃1,

d̃2, or d̃4 has caused the transition, since 21−1 + 22−1 + 24−1 = 11.
If we want to detect faults by observing transitions then it is interesting

to know whether or not a fault d̃j can be observed at all. This is formalized
by the definition of detectability of a fault.

Definition 6.1.4 (Detectability of a fault) The fault d̃ is said to be
detectable, if there exists an input ũ ∈ Ũ and a corresponding transition x̃1 →
x̃2 from which the fault can be detected (i.e. x̂T2 (F

d̃
ũ)x̂1 = 1).

The following observation is straightforward.

Proposition 6.1.5 The fault d̃ is detectable if

F d̃
Ũ

�= 0.

Indeed, if the Boolean matrix F d̃
Ũ

�= 0, then there exists an input ũ ∈ Ũ

and a transition x̃1 → x̃2 such that x̂T2 F
d̃
Ũ
x̂1 = 1.

So far, it was tried to determine which fault has occurred by a single
observation. The fault isolation method is easily extended for the case that
multiple transitions are measured.

Proposition 6.1.6 Given two subsequent transitions x̃1 → x̃2 and x̃2 → x̃3

together with corresponding inputs ũ1 and ũ2, respectively, then the set of faults
D̃′ ⊆ D̃ that could have caused the transitions is given by

D̃′ = {d̃ ∈ D̃ | x̂T2 F d̃
ũ1
x̂1 = x̂T3 F

d̃
ũ2
x̂2 = 1}

= {d̃ ∈ D̃ | x̂T2 F d̃
ũ1
x̂1 = 1} ∩ {d̃ ∈ D̃ | x̂T3 F d̃

ũ2
x̂2 = 1}.

6.2 Merging states 123

If several subsequent observations are made, then for each of the transitions
the corresponding sets of faults that could possibly have caused the transition
can be computed. Next, the set of possible faults can be reduced by taking
the intersection of these sets (as done for two observations in the proposition
above). This is only possible if it is assumed (as already mentioned) that only
one fault has occurred during the time interval of interest. This way, the actual
fault that has occurred can be identified (i.e. isolated), if the subsequent sets
of possible faults decrease until only one element is left. In some cases it is
possible to directly identify the fault that caused a detection from only one
observation.

Proposition 6.1.7 (uniqueness of a fault detection) Given a fault d̃j,
there exists an input ũ ∈ Ũ and a corresponding transition x̃1 → x̃2 from which
the fault d̃j can be determined uniquely if

F
d̃j

ũ1
�

⊕
i	=j

F d̃i
ũ1

⊕

F

d̃j

ũ2
�

⊕
i	=j

F d̃i
ũ2

⊕ ...⊕

F

d̃j

ũk
�

⊕
i	=j

F d̃i
ũk

 �= 0.

Proof. Notice, that x̂3 := F
d̃j

ũ1
x̂1 represents all states to which transitions

from x̃1 could be caused by the fault d̃j while applying ũ1. Similarly, x̂4 :=
(
⊕

i	=j F
d̃i
ũ1
)x̂1 is the set of states to which transitions from x̃1 could be caused

by one of the faults d̃i ∈ D̃, i �= j, while applying ũ1. Consequently, the

set difference x̂5 := x̂3 � x̂4 = (F d̃j

ũ1
�

⊕
i	=j F

d̃i
ũ1
)x̂1 are the states to which

transitions from x̃1 could only be caused by the fault d̃j while applying ũ1.
There exists an input ũ and a transition x̃1 → x̃2 that only could be caused

by the fault d̃j if at least one of the matrices (F d̃j

ũ �
⊕

i	=j F
d̃i
ũ) �= 0.

6.2 Merging states

For real-time applications it is often important to keep the time to compute
x̂T2 (F

d̃
ũi
)x̂1 as small as possible. For this purpose it may be useful to check

if the number of discrete states can be reduced without losing information
in the sense that the same faults still can be detected and isolated. Given a
set of boundaries {βij} for each coordinate i ∈ 1, ..., n, it is possible to delete
one (or more) boundaries or even parts of boundaries and define a new set of
discrete states X̃∗. This merging of states can be expressed by the mapping
M ∈ {0, 1}p∗×p:

x̂∗1 = Mx̂1,

124 Fault detection and isolation

where x̃1 ∈ X̃, x̃∗1 ∈ X̃∗, and p∗ < p, with p = #(X̃) and p∗ = #(X̃∗) are then
number of states in X̃ and X̃∗, respectively. The new state x̃∗ = i represents
the union of old states satisfying {j | mij = 1}, where i and j are the integer
representations of the new and old states, respectively. Each state x̃ ∈ X̃ can
only be included in one new state x̃∗ ∈ X̃∗. Consequently, each column of M
only contains exactly one ‘1’. Furthermore, we have that

x̂1 = MT x̂∗1

is the Boolean representation of the set X̃1 which contains all (old) states that
have been merged to obtain x̃∗1. Note that MMT = I.

For the new set of states it is possible to construct the corresponding
adjacency matrices directly from the original ones:

A∗
ũ = MAũM

T � I.

Indeed, given the state x̃∗1 ∈ X̃∗ we know that we are in one of the original
states of the set represented by x̂1 = MT x̂∗1. From X̃1 transitions are possible
to {φ(x̃, ũ) | x̃ ∈ X̃1}, computed by x̂2 = Aũx̂1. Hence, after one transition
we are in the set X̃∗

2 represented by x̂∗2 = Mx̂2 of new states. Since self-loops
are not modelled in our setting it is not allowed that (x̂∗2)T x̂∗1 = 1, so all
possible 1’s on the diagonal of MAũM

T are removed, resulting in the Boolean
substraction by the identity matrix I. For a given discrete-event model of a
continuous system {Σ, Q, S}, merging states results in a new discrete-event
model Σ = {X̃∗, Ũ , φ∗} of the continuous system, where Q∗ := M ◦ Q and
S∗ := S.

Suppose that by merging states the discrete-event model of the continuous
system now is represented by X̃∗, Ũ , and the adjacency matrices {A∗

ũ}. By
construction of A∗

ũ it can be seen that if a transition x̃1 → x̃2 is possible, then
the transition x̃∗1 → x̃∗2, x̂∗i = Mx̂i, i = 1, 2 is not possible if it would result in
a self-loop. This means that x̃1 and x̃2 are merged into the same new state
x̃∗1 = x̃∗2. Moreover, due to the agglomeration of states, it might happen that
the transition x̃∗1 → x̃∗2 is possible, whereas the transition x̃1 → x̃2, where
x̃1 and x̃2 are elements of the sets represented by MT x̂∗i , i = 1, 2, is not
possible. Obviously, x̃1 and x̃2 must be ‘neighbors’ (i.e. Hx(x̃1) and Hx(x̃2)
must be adjacent) for a transition to be possible. This reasoning indicates
that information of the original discrete-event system can be lost by merging
states. To summarize, there are two causes for loosing information:

1. A transition x̃1 → x̃2 is possible, where x̃1 and x̃2 are merged into the
same new state x̃∗1 = x̃∗2 and consequently the transition x̃∗1 → x̃∗2 is not
possible.

6.2 Merging states 125

2. A transition x̃∗1 → x̃∗2 is possible, but there does not exist a transition
x̃1 → x̃2 for two adjacent discrete states x̂1 ∈ MT x̂∗1 and x̂2 ∈ MT x̂∗2.

This second cause indicates that, if the transition x̃∗1 → x̃∗2 is possible,
then for all states in the set MT x̂∗1, the corresponding transitions to adjacent
states in the set MT x̂∗2 also must be possible in order to represent the same
transition information. This is shown in Figure 6.1.

x̃1
Mx̃1

x̃∗1

x̃∗2
MT x̃∗2x̃2

Figure 6.1: Merging states without loss of information

To formalize the discussion, the following definition is made.

Definition 6.2.1 The adjacency matrices A∗
ũ and Aũ of the merged and orig-

inal model, respectively, contain the same information if for all x̃1 ∈ X̃ and
all neighbors x̃2 of x̃1(represented by Nx̂1) it holds that

x̂T2 Aũx̂1 = (x̂∗2)
TA∗

ũx̂
∗
1,

with x̂∗i = Mx̂i, i = 1, 2.

Proposition 6.2.2 A∗
ũ and Aũ contain the same information if and only if

Aũ = MTA∗
ũM ⊗N .

Proof. For the if part, assume that Aũ = MTA∗
ũM ⊗N , then x̂T2 Aũx̂1 =

x̂T2 M
TA∗

ũMx̂1 ⊗ x̂T2 Nx̂1. Since x̂T2 Nx̂1 = 1 in case x̃1 and x̃2 are neighbors,
this implies that x̂T2 Aũx̂1 = (x̂∗2)TA∗

ũx̂
∗
1. For the only if part, assume that

x̂T2 Aũx̂1 = (x̂∗2)TA∗
ũx̂

∗
1 = x̂T2 M

TA∗
ũMx̂1 for all x̃1 and all neighbors x̃2 of x̃1,

that is for all x̃1 and x̃2 for which x̂T2 Nx̂1 = 1. If x̂T2 Nx̂1 = 0 then the equality
does not necessarily have to hold. This condition can be written as x̂T2 Aũx̂1 ⊗
x̂T2 Nx̂1 = x̂T2 M

TA∗
ũMx̂1 ⊗ x̂T2 Nx̂1 which must hold for all x̃1, x̃2 ∈ X̃ (not

necessarily neighbors). Clearly this can only be true if Aũ⊗N = MTA∗
ũM⊗N .

Since Aũ ⊗N = Aũ the conclusion follows.

With respect to fault detection, it is also interesting to know if information
is lost when merging the states or, stated otherwise, if a fault adjacency matrix

126 Fault detection and isolation

of the new system F ∗d̃
ũ := (A∗d̃

ũ � A∗
ũ) contains the same information as the

original fault adjacency matrix F d̃
ũ for fault detection and isolation purposes.

It is clear that every transition x̃1 → x̃2 from which a fault could be detected
should result in a transition x̃∗1 → x̃∗2 from which the fault can be observed
as well. Conversely, for each transition x̃∗1 → x̃∗2 all corresponding transitions
x̃1 → x̃2, x̃i ∈ MT x̃∗1, i = 1, 2 should be possible, since otherwise a fault is
expected, while in reality a common transition x̃1 → x̃2 has occurred. Clearly,
the same definition and condition as discussed for the adjacency matrices {Aũ}
apply for fault detection.

Definition 6.2.3 The fault adjacency matrices F ∗d̃
ũ and F d̃

ũ of the merged and
original model, respectively, contain the same information if for all x̃1 ∈ X̃
and all neighbors x̃2 of x̃1(represented by Nx̂1) it holds that

x̂T2 F
d̃
ũ x̂1 = (x̂∗2)

TF ∗d̃
ũ x̂∗1,

with x̂∗i = Mx̂i, i = 1, 2.

Proposition 6.2.4 F ∗d̃
ũ and F ∗d̃

ũ contain the same information if and only if

F d̃
ũ = MTF ∗d̃

ũ M ⊗N . (6.2)

For the proof the same reasoning can be followed as for the proof of Propo-
sition 6.2.2.

Corollary 6.2.5 After a merging of states, the detection and isolation in-
formation is preserved iff

F d̃
ũ = MTF ∗d̃

ũ M ⊗N, ∀ũ ∈ Ũ ,∀d̃ ∈ D̃.

Corollary 6.2.6 After a merging of states, the detection information is pre-
served iff

F D̃
ũ = MTF ∗D̃

ũ M ⊗N, ∀ũ ∈ Ũ .

It is possible that after a merging of states the information is preserved
only for some specific inputs. Even then, it is computationally worthwhile
to use the reduced number of states for these specific inputs and to use the
original discrete states for the other inputs.

6.3 Example 127

6.3 Example

To illustrate the possibilities of the results presented here, they are applied
to a process that is studied in (Ramkumar et al. 1998) and (Ramkumar et
al. 1999). A schematic picture of the process is shown in Figure 6.2. A pro-
cess liquid is pumped at a preset flow rate from one of the two storage tanks
to an indirect plate heat exchanger (HE), which raises the temperature of
the process liquid to a predetermined value. The process requires the liquid
stream to be maintained at this temperature for a given period of time. This
is achieved by the use of a holding tube followed by a temperature activated
diverter valve which allows only fluid of the correct temperature to progress
through the process (the remainder being rejected or returned to the feed
tank). Next, the process fluid is then cooled to the lowest possible tempera-
ture by firstly exchanging otherwise wasted heat with incoming feed regener-
ation and subsequently by the use of externally supplied cooling water. The
plate heat exchanger consists therefore of three separate but interconnected
sections: feed preheat/regeneration, heating and cooling. The heating section
is supplied with circulatory hot water pumped with the heating pump (HP)
from an electrically heated reservoir (HU). This kind of processes are used in
industry for e.g. continuous, high temperature short time pasteurization.

Figure 6.2: The heat exchanger pilot plant

Following the notation from (Ramkumar et al. 1998), the system under
study is described by:

HU dT2
dt = 1

MCp
(PWR− ṁ2Cp(T2 − T5))

HE dT5
dt = (1.63 N2

0.35)
0.078(0.2394T2 − 13.119)dT2

dt

dT4
dt = (0.87N2

0.5)
0.085(0.98T2)dT2

dt

HP ṁ2 = ρwK1(1173N2 − 169.9)

128 Fault detection and isolation

where the following notation is used:

T2 Heating water inlet temp. [◦C] to HE
T4 Product temp. [◦C] at exit HE
T5 Heating water exit temp. [◦C] from HE
PWR Heat input [W]
N2 Speed of pump N2 [1/min]
M Mass of water in heating tank = 4.67 [kg]
Cp Heat capacity of water = 4180 [J/kg◦C]
ṁ2 Mass flow rate [kg/ sec] of heating water
ρw Density of water = 1000 [kg/m3]
K1 Convert ml/min to m3/ sec: 10−6/60

The state-vector is given by x = [T2, T4, T5]T and the input-vector is u =
[PWR,N2]T . The following possible faults are considered:

1. Failure of the heater (PWR = 0)

2. Pump N2 is malfunctioning (N2 = 0)

3. Leakage in hot-water circulation (ṁ2 reduces with 50%)

These faults are denoted d̃1, d̃2, d̃3, respectively. The system, including the
possible faults, is modelled by

ẋ1 =
−ρwK1

M
((1− d̃2)1173u2 − 169.9)(1− 0.5d̃3)(x1 − x2) +

(1− d̃1)u1

Mcp

ẋ2 = (1.63
(1− d̃2)u2

0.35
)0.078(0.2397x1 − 13.119) ·(

−ρwK1

M
((1− d̃2)1173u2 − 169.9)(1− 0.5d̃3)(x1 − x2) +

(1− d̃1)u1

Mcp

)

ẋ3 = (0.87
(1− d̃2)u2

0.5
)0.085(0.98x1) ·(

−ρwK1

M
((1− d̃2)1173u2 − 169.9)(1− 0.5d̃3)(x1 − x2) +

(1− d̃1)u1

Mcp

)

Next, the various adjacency matrices have to be computed. Since the input
set U is not a discrete set, the input space is discretized. This is done in the
same manner as for the state space, i.e. by choosing boundaries that generate
the discrete-input regions (see Chapter 3). To check for a given discrete input,
whether a transition is possible amounts to verifying if there exists an input
in the corresponding hypercube such that the particular transition is possible.
The following boundaries are chosen in accordance with (Ramkumar et al.
1998).

6.3 Example 129

Boundaries
T2 T4 T5 PWR N2

55 45 48 50 0.20
58 49 50 120 0.25
60 52 54 150 0.30
62 54 57 200 0.40
64 57 59 270 0.50

From this it follows that there are 64 discrete states and 16 discrete in-
puts. The adjacency matrices Aũi and A

d̃j

ũi
, 1 ≤ i ≤ 16, and 1 ≤ j ≤ 3 are

generated automatically by the procedure as explained in Chapter 3 and are

used to construct the fault adjacency matrices F d̃j

ũi
∈ {0, 1}64×64 as defined

in Proposition 6.1.2. To see if a certain fault d̃j is detectable with an input

ũ it follows from Proposition 6.1.5 that F d̃j

ũi
�= 0. In the following table a ‘1’

denotes that F d̃j

ũi
�= 0 and a ‘0’ denotes that F d̃j

ũi
= 0.

F
d̃j

ũi
ũ1 ũ2 ũ3 ũ4 ũ5 ũ6 ũ7 ũ8

d̃1 1 1 1 1 1 1 1 1
d̃2 0 0 0 0 0 0 0 0
d̃3 0 0 0 0 0 0 0 0

F
d̃j

ũi
ũ9 ũ10 ũ11 ũ12 ũ13 ũ14 ũ15 ũ16

d̃1 1 1 1 1 1 1 1 1
d̃2 1 1 0 0 1 1 1 0
d̃3 1 1 0 0 1 1 1 0

From this it can be seen that F d̃j

ũi
�= 0, for j = 1, 2, 3 implying that for

all possible faults there exists an input and a transition resulting in a fault
detection. Furthermore, checking the condition stated in Proposition 6.1.7
shows that only for fault d̃1 there exists a transition such that d̃1 uniquely can
be determined. Also it can be shown that e.g. merging the discrete-states
(i, 1, 4), (i, 2, 4), (i, 3, 4) and (i, 4, 4) to (i, 1, 4) for i = 1, 2, 3, 4 (which means a
reduction from 64 to 52 states) does not affect the detection and isolation prop-
erties of d̃2 and d̃3. This means that it holds that if d̃2 and d̃3 can be detected by
a transition between the original states with a specific input ũ, then d̃2 and d̃3

will also be detected by a transition between the merged states with the input
ũ. Merging the states (1, i, 1), (2, i, 1), (3, i, 1), (4, i, 1), (1, i, 2), (2, i, 2), (3, i, 2),
and (4, i, 2) to the new state (i, 1, 1) for i = 1, 2, 3, 4 (which is a reduction from
64 states to 36 states) does not affect the detection properties of F d̃

ũ1
, F d̃

ũ5
, F d̃

ũ11
,

and F d̃
ũ16

. This means that when applying one of the inputs ũ1, ũ5, ũ11, or ũ16

130 Fault detection and isolation

the merged states can be used for checking if a fault has occurred when the
transition x̃∗1 → x̃∗2 is observed.

In (Ramkumar et al. 1998) and (Ramkumar et al. 1999) the process under
study is discussed in more detail. Also, experimental results are presented
using a fault detection scheme similar to the one discussed in this section.

6.4 Notes and references

This chapter is based on material presented in (Philips et al. 1999a). A similar
approach for detecting faults as discussed here is used in (Ramkumar et al.
1998) where also a case study is included. The main difference is that we use a
different representation of the discrete-event models (Boolean matrices) that
eases the analysis of fault detection and isolation properties.

Although the merging of states also applies to the reduction of the number
of discrete states for the discrete-event model itself, it is treated in this chapter
(rather than in Chapter 3) because it is particularly relevant to fault detection.
In comparison with adjacency matrices, the fault adjacency matrices in general
contain little information (there are a few elements equal to ‘1’), which makes
the merging more effective.

In (Förstner et al. 2000) discrete-event models of continuous systems with
asynchronous input and state events are derived for the purpose of fault di-
agnoses (see the references therein). A timed discrete-event representation of
a discretely-observed (i.e. quantized) system which is modelled by a semi-
Markov process, is the basis for fault diagnoses in (Lunze 2000). In (Lunze
and Schiller 1999) fault detection for quantized systems is performed by exam-
ining the probabilities that a certain effect has occurred due to a certain cause.
A fault detection method for hybrid systems that relies on the mixed logical
dynamical modelling framework is discussed in (Bemporad et al. 1999). In
(Cassandras and Lafortune 1999) a fault detection method for discrete-event
systems is discussed which is based on the construction of an observer for the
discrete-event system. From the measured sequence of symbols (outputs), the
observer deduces the unmeasured transitions (the faults).

For other model based fault diagnoses methods, for example (Frank 1990,
Garćıa and Frank 1997) give a survey of various linear and nonlinear observer-
based fault diagnoses methods.

Chapter 7

Conclusions and
recommendations

In this thesis, it is shown how to construct a discrete-event model of a con-
tinuous system described by a set of differential equations and based on a
discretized state space. Moreover, the resulting model is used for control and
fault detection purposes. In this respect, the following contributions have been
made.

7.1 Contributions

7.1.1 Discrete-event models of continuous systems

Discrete-event models of continuous systems can simply serve as models of
continuous systems that are observed by discrete sensors or that have to be
controlled by a discrete-event controller, but can also be interpreted as coarse
abstractions of continuous systems that can be used for designing high-level
controllers in a hierarchical control scheme.

The definition of a discrete-event model of a continuous system, as it is
used in this thesis, is given in a manner that is general enough to allow mod-
elling techniques other than the one presented in this thesis. In particular, the
mappings from the discrete to the continuous domain (i.e. the state and input
space) are defined on (pieces of) trajectories rather than on points in the state
and input space. This has proven to be necessary for constructing a math-
ematically correct model in the sense that otherwise the situation can occur
where either no discrete state can be assigned to a point in continuous space
or the resulting discrete-event model may be incorrect. The mapping used
in this thesis has the natural interpretation that a boundary in state space
separating and belonging to two hypercubes (that correspond with discrete

131

132 Conclusions and recommendations

states) actually has to be crossed by the continuous-time trajectory before a
new discrete state is observed. Moreover, this mapping has the advantage that
more advanced constructions of discrete states are possible, which can be used
for obtaining more precise discrete-event models (i.e. with less spurious solu-
tions). However, this will most certainly be at the cost of a significantly larger
number of discrete states and more elaborate computations for generating the
discrete-event model.

The choice of the discrete states (which are based on hypercubes in the
continuous space) for our models allows a computationally effective modelling
method. This method is based on searching for positive (or negative) deriva-
tives f r(x, u) for a coordinate r along the boundary plane separating two
hypercubes. Due to Nagumo’s theorem (Nagumo 1942) the existence of a
positive (or negative) derivative is necessary and sufficient for a ‘positive’ (or
‘negative’) transition to be possible. It is shown that exploiting specific prop-
erties of the continuous systems such as linearity or sparsity can lead to a
significant reduction of the number and complexity of the computations. For
linear systems, the optimizations that are necessary for determining the pos-
sible transitions in the general case do not have to be performed. Linearity
allows us to assign possible transitions to a whole range of states instead of
on a one-by-one basis. Sparsity of the continuous system means that particu-
lar coordinates of the continuous state vector are not influenced by all other
states or inputs. As a result, the original continuous system can be broken
down into (smaller) subsystems for which the discrete-event models have to be
computed. Finally, the overall discrete-event system can be easily constructed
from these collections of discrete-event sub-models. This allows a modular
approach for modelling large systems.

For continuous systems with outputs not equal to (a subset of coordinates
of) the continuous state, it may be necessary to define additional discrete states
other than those induced by the partitioning of the state space. The reason
is that otherwise it might occur that for a given discrete state more than one
discrete output is valid for the corresponding hypercube in the continuous state
space. As this is impossible for our automaton, additional discrete states are
needed to associate only one discrete output to each discrete state. However, it
is shown that a continuous system for which the output is a linear combination
of elements of the state vector can be transformed such that the standard
modelling algorithm applies. This leads to a reduction of complexity and
computation-time with regard to the general approach.

7.1.2 State reconstruction

For continuous systems with discrete measurements, the actual continuous
state can be reconstructed on the basis of the exact knowledge of the time

7.1 Contributions 133

and the value of the recorded component of the continuous state whenever a
measurement is made. When the input is known, the differential equations ex-
actly describe the continuous plant, and measurement noise and disturbances
are absent, a multipoint boundary value problem has to be solved to recon-
struct the continuous state. For linear, time-invariant systems, the necessary
integration can be done analytically, for the linear time-varying case the tran-
sition matrix has to be determined by numerical integration. In both cases,
the initial state is found by solving a set of linear equations. For the nonlinear
case, this is no longer true and Newton’s method is exploited for solving the
multipoint boundary value problem. Questions related to observability are
formalized and turn out to be difficult for discretely observed systems.

The discrete state can be reconstructed from measured discrete outputs
or transitions. To do so, a set is constructed after each measurement, that
contains all discrete states from which transitions are possible resulting in the
measured output, and that could be reached in accordance with the previously
recorded measurement. To allow transition measurement in our automaton-
based framework, a non-standard output map is introduced that generates an
output given a new and an old discrete state.

7.1.3 Control

The discrete-event models that result from the modelling algorithm can be
used for controller synthesis. Some first steps are made for systematically
designing control strategies for nonlinear systems on the basis of discretized
information. For these strategies, besides the obtained discrete-event model,
also the knowledge that the underlying system is continuous is used.

The control goals that are considered are the reachability problem and the
stabilization problem. The former one involves controlling the continuous state
from an initial discrete state (i.e. the corresponding hypercube) to a target
set of discrete states. The second problem additionally requires to keep the
continuous state in the target set once it has entered.

Two situations are distinguished: the case where it actually is measured
that the continuous state trajectory reaches a boundary in state space, and
the situation that only the crossing of such a boundary is observed. In the
first case it is investigated whether a possible undesired transition can be
prevented by choosing a suitable input. This requires instantaneous control
action. For the second case, an occurred undesired transition is tried to be
reversed (corrected) if possible. These ideas are formalized by the definition
of ‘preventing inputs’ and ‘correcting inputs’, respectively. Together with the
‘moving inputs’ which assure the movement of the state trajectory into a
particular direction in the state space, these types of inputs form the building
blocks of the proposed control strategies.

134 Conclusions and recommendations

The first controller design method, the ‘forceable state-transition’ control
strategy, is based on the construction of ‘forceable’ transitions. These are tran-
sitions that can be guaranteed to occur by choosing suitable inputs. Since it
is difficult to determine whether a transition is forceable, a sufficient condition
is given. The idea is to prevent (or correct) undesired transitions with inputs
that are moving towards a particular desired transition. From all transitions
that satisfy this sufficient condition (and are consequently forceable), a graph
is constructed. For a given initial state and a desired target state, all suit-
able paths can be found from this graph by a constructive algorithm, thereby
solving the reachability problem.

The principle of the second and third synthesis methods, the ‘forceable set-
transition’ and the ‘invariant sets’ control strategies is based on the notion of
a discretely controlled invariant set. For such a set it is certain that always
inputs can be chosen that prevent the continuous trajectory from leaving this
set. Related to this are the so-called Γ-controlled invariant sets for which
the trajectory can only leave the set via Γ. The idea is now to compute a
sequence of nested Γ-controlled invariant sets (for the reachability problem;
for the stabilization problem controlled invariant sets are required) such that
the first set contains the desired discrete states and the last one contains the
initial state. This sequence of nested sets is constructed with the property
that always inputs can be chosen that will move the continuous trajectory
to a predecessor in the sequence, until eventually the target set is reached.
The difference between the two synthesis methods is the construction of the
controlled invariant sets. The ‘forceable set-transition’ method deletes discrete
states that obstruct the Γ-controlled invariance, whereas the ‘forceable set-
transition’ method includes discrete states to which the transition cannot be
prevented. For the stabilization problem an algorithm is given to compute the
largest controlled invariant set contained in the target set. If this set does not
exist (if it is the empty set), then the stabilization problem is not solvable.
The best we can do in such a situation, is to compute the smallest controlled
invariant set containing the target set.

Two problems can be pointed out for the proposed strategies. First, even
though for the prevention (or correction) of undesired transitions always inputs
are chosen for which it is certain that the continuous state moves towards a
desired set of discrete states (i.e. moving inputs) it can not be guaranteed that
two subsequent inputs will move the state trajectory in the same direction.
As a result cyclic behavior inside one of the invariant sets of the sequence
may occur, which prevents improvement of the continuous state towards the
desired objective. Second, the Assumption 3.2.1 made for the discrete-event
modelling method might be violated by the designed controllers. Fortunately,
by performing additional computations and cumbersome book-keeping, this
last problem can be overcome. Verification or simulation has to performed for

7.2 Recommendations for further research 135

checking the presence of the phenomena described in the first problem.

7.1.4 Fault detection and isolation

Discrete-event models of continuous systems can be exploited for the detection
and isolation of faults. For these purposes, each fault that is to be expected
results in separate discrete-event models. Next, by observing transitions of the
real plant it is deduced by comparing the discrete-event models, if a measured
transition can be caused by the nominal plant (i.e. without faults) or only
can result from a fault that has occurred. Besides detecting a fault, it is also
important to isolate the fault, which means that it has to be determined which
fault actually happened. Conditions are given from which it can be seen if,
for a given fault, there exist an input and a transition such that the particular
fault can be detected at all (detectability of a fault) or even isolated by only
observing one transition (uniqueness of a fault detection).

Bymerging two or more discrete states into one new state, the total number
of discrete states can be reduced resulting in faster computations for on-line
implementation of the fault detection scheme. However, it is only reasonable
to merge discrete states if no information is lost. For example, transitions that
are possible with the old set of states still should be possible with the new set,
and conversely, transitions between new states should also be possible for the
corresponding old discrete states. Explicit expressions are given that indicate
that (e.g. transition or fault detection) information is preserved after merging
states.

7.1.5 Explicit computations via Boolean vectors and matrices

Throughout this thesis, Boolean matrices and vectors are employed for com-
putational and didactical reasons. One advantage of Boolean vectors is that a
single vector can be used for representing a set. In this way, specific sets can
be defined explicitly in terms of operations with Boolean matrices on discrete
states or sets. All the controller design and fault detection schemes are explic-
itly stated in terms of Boolean vectors and matrices and can, in principle, be
implemented directly. However, it still has to be investigated what the compu-
tationally most efficient way is for numerical implementation of the algorithms
presented in the thesis, but it is shown that the Boolean representation is an
effective method for analyzing, describing and proving a variety of properties.

7.2 Recommendations for further research

Roughly, I propose three directions that can be followed for further research.
First, the obtained results based on the modelling method presented in this

136 Conclusions and recommendations

thesis allow, of course, improvement and extension. Second, more practically,
the methods proposed in this thesis can be tested and verified on real plants
where noise and disturbances can no longer be neglected. It should be investi-
gated which adjustments have to be made for implementation of the proposed
concepts, preferably verified by experiments. Third, other discrete-event mod-
elling methods can be investigated, possibly allowing more ‘precise’ models or
the integration of additional information such as time.

Concerning the first research direction, new control strategies can be in-
vented. A new control goal that can be relevant is to prevent the continuous
state from reaching certain regions in state space (e.g. for safety reasons).
The proposed strategies can be extended or adapted to satisfy this specifica-
tion. Furthermore, transitions between hypercubes that are not adjacent can
be included in the discrete-event models to overcome the problems related to
points that belong to three or more hypercubes. The consequences of this
inclusion deserve further attention. Also, the use of discrete-event models for
hierarchical control is an important topic for future research.

With respect to the second issue, the presence of disturbances has to be
incorporated in the modelling method. This can be achieved by adding vari-
ables to the continuous model (representing the disturbance). For each such
variable the upper and lower bounds have to be determined. Doing so, the
discrete-event model can be constructed by treating these variables as addi-
tional discretized ‘inputs’ that are always present. One might also think of
pursuing a stochastic approach. Another possible subject of investigation is
the dependence of the discrete-event model on the separating hyperplane be-
tween positive and negative derivatives of a state component indicating possi-
ble transitions. If these transitions are highly sensitive to the position of such
equilibrium planes, small modelling errors lead to erroneous discrete-event
models and consequently to possibly wrong control actions or detections of
faults. Practical situations ask for an accurate treatment of this phenomenon.

Finally, for the third research direction other types of discrete states can
be used as a basis for the discrete-event model. A couple of possibilities can
be given.

• To overcome the problems with points that belong to three or more
hypercubes, a partitioning of the state space can be used from which
these points (i.e. the faces to which they belong) are excluded. The
faces are then isolated and can be treated as separate discrete states.

• Or, as mentioned before, one might use ordered pairs of hypercubes as
discrete states.

• Also, the boundary planes separating the hypercubes in our setting can
serve as discrete states. For determining possible transitions for these

7.2 Recommendations for further research 137

types of discrete states in an effective way, research can focus on re-
stricted classes of systems, such as linear systems.

Time consuming integration can be avoided by using discrete-time mod-
els. Furthermore, time information such as minimal and maximal times for
transitions to occur could be included in these discrete-event models. This
information is useful for time-optimal control strategies and for further im-
proving the fault detection scheme.

Many of the ideas and techniques presented in this thesis might be useful
in these settings as well and contribute to the development of a mature theory
and technology of using discrete-event models of continuous plants for control
and fault detection in practice.

138 Conclusions and recommendations

Bibliography

Alur, Rajeev, Henzinger, Thomas A. and Sontag, Eduardo D., Eds.) (1996).
Hybrid Systems III: Verification and Control. Vol. 1066 of Lecture Notes
in Computer Science. Springer-Verlag.

Angelis, Georgo and Patrick Philips (1999). Piecewise-constant control for sys-
tems with discrete measurements. In: Proceedings of the 1999 American
Control Conference (ACC’99). San Diego, USA. pp. 2965–2966.

Antsaklis, Panos, Kohn, Wolf, Lemmon, Michael, Nerode, Anil and Sastry,
Shankar, Eds.) (1999). Hybrid Systems V. Vol. 1567 of Lecture Notes in
Computer Science. Springer-Verlag.

Antsaklis, Panos, Kohn, Wolf, Nerode, Anil and Sastry, Shankar, Eds.)
(1993). Hybrid Systems II. Vol. 999 of Lecture Notes in Computer Science.
Springer-Verlag.

Antsaklis, Panos, Kohn, Wolf, Nerode, Anil and Sastry, Shankar, Eds.) (1997).
Hybrid Systems IV. Vol. 1273 of Lecture Notes in Computer Science.
Springer-Verlag.

Aubin, J.P. and A. Cellina (1984). Differential Inclusions. Grundlehren der
Mathematischen Wissenschaften. 264 ed.. Springer-Verlag.

Bemporad, Alberto and Manfred Morari (1999). Control of systems integrating
logic, dynamics, and constraints. Automatica 35(3), 407–428.

Bemporad, Alberto, Domenico Mignone and Manfred Morari (1999). Moving
horizon estimation for hybrid systems and fault detection. In: Proceedings
of the 1999 American Control Conference (ACC’99). San Diego, Califor-
nia. pp. 2471–2475.

Bett, Christopher J. and Michael D. Lemmon (1999). Bounded amplitude per-
formance of switched LPV systems with applications to hybrid systems.
Automatica 35, 491–503.

139

140 Bibliography

Blanchini, F. (1999). Set invariance in control. Automatica 35, 1747–1767.

Booth, Tylor L. (1967). Sequential Machines and Automata Theory. John Wi-
ley and Sons, Inc.. New York.

Branicky, Michael S., Vivek S. Borkar and Sanjoy K. Mitter (1998). A unified
framework for hybrid control: Model and optimal control theory. IEEE
Transactions on Automatic Control 43(1), 31–45.

Bruinsma, U.B.D.M.R. (1997). State-event discrete modelling of non-linear
batch plants. Master’s thesis. Eindhoven University of Technology. NR-
1984.

Cassandras, Christos G. and Stéphane Lafortune (1999). Introduction to Dis-
crete Event Systems. Kluwer Academic Publishers.

Cassandras, Christos G., Stéphane Lafortune and Geert Jan Olsder (1995).
Introduction to the modelling, control and optimization of discrete event
systems. Technical report. Faculty of Technical Mathematics and Infor-
matics, Delft University of Technology. Delft, the Netherlands. Report
95-22.

Cury, José E.R., Bruce H. Kroch and Toshihiko Niinomi (1998). Synthesis of
supervisory controllers for hybrid systems based on approximating au-
tomata. IEEE Transactions on Automatic Control 43(4), 564–568.

David, R. and H. Alla (1994). Petri nets for modelling of dynamic systems.
Automatica 30(2), 175–202.

De Bruin, D. and P.P.J. van den Bosch (1998). Measurement of the lateral vehi-
cle position with permanent magnets. In: Proceedings of the IFAC Work-
shop on Intelligent Components for Vehicles (IVC’98). Seville, Spain.
pp. 9–14.

Delchamps, David F. (1988). The ‘stabilization’ of linear systems with quan-
tized feedback. In: Proceedings of the 27th IEEE Conference on Decision
and Control. Austin, Texas. pp. 405–410.

Delchamps, David F. (1989). Extracting state information from a quantized
output record. Systems & Control Letters 13, 365–372.

Delchamps, David F. (1990). Stabilizing a linear system with quantized state
feedback. IEEE Transactions on Automatic Control 35(8), 916–924.

Doberkat, Ernst-Erich (1981). Stochastic Automata: Stability, Nondetermin-
ism, and Prediction. Vol. 113 of Lecture Notes in Computer Science.
Springer-Verlag.

Bibliography 141

Drakunov, Sergey, Murat Doğruel and Ümit Özgüner (1993). Sliding mode
control in hybrid systems. In: Proceedings of the 1993 International Sym-
posium on Intelligent Control. Chicago, Illinois, USA. pp. 186–189.

Förstner, Dirk and Jan Lunze (n.d.). Discrete-event models of quantised sys-
tems for diagnosis. Accepted for publication in the International Journal
of Control.

Förstner, Dirk, Merten Jung and Jan Lunze (2000). Discrete-event abstrac-
tion of quantized systems with asynchronous input and state events. In:
Proceedings of the 4th International Conference on Automation of Mixed
Processes: Hybrid Dynamic Systems (S. Engell, S. Kowalewski and J. Za-
ytoon, Eds.). Dortmund, Germany. pp. 55–60.

Frank, P.M. (1990). Fault diagnosis in dynamic systems using analytical and
knowledge based reduncancy - a survey and new methods. Automatica
26(3), 459–474.

Freedman, David (1971). Markov Chains. Holden-Day Series in Probability
and Statistics. Holden-Day. San Francisco.

Garćıa, E. Alcorta and P.M. Frank (1997). Deterministic nonlinear observer-
based approaches to fault diagnoses: A survey. Control Engineering Prac-
tice 5(5), 663–670.

Grossman, Robert L., Nerode, Anil, Ravn, Anders P. and Rischel, Hans, Eds.)
(1993). Hybrid Systems. Vol. 736 of Lecture Notes in Computer Science.
Springer-Verlag.

Habets, L.C.G.J.M. and J.H. van Schuppen (2000). A control problem for
affine dynamical systems on a full-dimensional simplex. Technical report.
CWI, PNA-R0017.

Heemels, W.P.M.H., J.M. Schumacher and S. Weiland (2000). Linear comple-
mentarity systems. SIAM J. Appl. Math. 60(4), 1234–1269.

Heemels, W.P.M.H., R.J.A. Gorter, A. van Zijl, P.P.J. van den Bosch, S. Wei-
land, W.H.A. Hendrix and M.R. Vonder (1999). Asynchronous measure-
ment and control: A case study on motor synchronization. Control Engi-
neering Practice 7, 1467–1482.

Henzinger, Thomas A. and Sastry, Shankar, Eds.) (1998). Hybrid Systems:
Computation and Control. Vol. 1386 of Lecture Notes in Computer Sci-
ence. Springer.

142 Bibliography

Heymann, Michael and Feng Lin (1998). Discrete-event control of nondeter-
ministic systems. IEEE Transactions on Automatic Control 43(1), 3–17.

Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata
Theory, Languages and Computation. Addison-Wesley Series in Com-
puter Science. Addison-Wesley.

Hsu, C.S. (1985). A discrete method of optimal control based upon the
cell state space concept. Journal of optimization theory and applications
64(4), 547–569.

Kalman, R.E., P.L. Falb and M.A. Arbib (1969). Topics in Mathematical
System Theory. International Series in Pure and Applied Mathematics.
McGraw-Hill.

Keller, Herbert B. (1968). Numerical Methods for Two-Point Boundary-Value
Problems. Blaisdell. Waltham.

Kim, Ki Hang (1982). Boolean Matrix Theory and Applications. Marcel
Dekker.

Kornoushenko, E.K. (1975). Finite-automaton approximation to the behaviour
of continuous plants. Automation and Remote Control pp. 2068–2074.

Kowalewski, S., S. Engell, J. Preußig and O. Stursberg (1999). Verification of
logic controllers for continuous plants using timed condition/event-system
models. Automatica 35, 505–518.

Lemmon, M.D. and P.J. Antsaklis (1993). Event identification in hybrid con-
trol systems. In: Proceedings of the 32nd Conference on Decision and
Control. San Antonio, Texas, USA. pp. 2323–2328.

Lichtenberg, G. and J. Lunze (1997). Observation of qualitative states
by means of a qualitative model. International Journal of Control
66(6), 885–903.

Lin, F. and W.M. Wonham (1988). On observability of discrete event systems.
Information Sciences 44(3), 173–198.

Lunze, J. (1994). Qualitative modelling of linear dynamical systems with quan-
tized state measurements. Automatica 30(3), 417–431.

Lunze, J. (2000). Diagnosis of quantised systems by means of timed discrete-
event representations. In: Hybrid Systems: Computation and Control
(N. Lynch and B. Krogh, Eds.). Springer-Verlag. pp. 258–271.

Bibliography 143

Lunze, Jan (1995). Stabilization of nonlinear systems by qualitative feedback
controllers. International Journal of Control 62(1), 109–128.

Lunze, Jan (1996). The existence of a discrete-event representation of linear
continuous-variable systems with quantised state measurements. In: Pro-
ceedings of the 13th IFAC Triennial World Congress. San Fransisco, USA.
pp. 503–508.

Lunze, Jan (1999). A timed discrete-event abstraction of continuous-variable
systems. International Journal of Control 72(13), 1147–1164.

Lunze, Jan and Frank Schiller (1999). An example of fault diagnosis by means
of probabilistic logic reasoning. Control Engineering Practice 7, 271–278.

Lunze, Jan, Bernhard Nixdorf and Henrik Richter (1997). Hybrid modelling of
continuous-variable systems with application to supervisory control. In:
Proceedings of the European Control Conference ECC’ 97. Brussels.

Lunze, Jan, Bernhard Nixdorf and Jochen Schröder (1999a). Deterministic
discrete-event representations of linear continuous-variable systems. Au-
tomatica 35, 395–406.

Lunze, Jan, Bernhard Nixdorf and Jochen Schröder (1999b). A unified ap-
proach to the representation of discrete-time and discrete-event quantised
systems. In: Proceedings of the European Control Conference ECC’99.
Karlsruhe, Germany.

Lygeros, John, Datta N. Godbole and Shankar Sastry (1998). Verified hy-
brid controllers for automated vehicles. IEEE Transactions on Automatic
Control 43(4), 522–539.

Lynch, Nancy and Krogh, Bruce, Eds.) (2000). Hybrid Systems: Computation
and Control. Vol. 1790 of Lecture Notes in Computer Science. Springer.

Meyer, Gunter H. (1973). Initial Value Methods for Boundary Value Problems.
Vol. 100 of Mathematics in Science and Engineering. Academic Press.
New York.

Moor, T. and J. Raisch (1999). Supervisory control of hybrid systems within
a behavioural framework. System & Control Letters 38, 157–166.

Nagumo, Mitio (1942). über die lage der integralkurven gewöhnlicher differen-
tialgleichungen. Proceedings of the Physico-Mathematical Society of Japan
24, 551–559.

144 Bibliography

Niinomi, Toshihiko, Bruce H. Krogh and José E.R. Cury (1995). Synthesis of
supervisory controllers for hybrid systems based on approximating au-
tomata. In: Proceedings of the 34th Conference on Decision and Control.
New Orleans, LA. pp. 1461–1466.

Nijmeijer, H. and A.J. Van der Schaft (1990). Nonlinear Dynamical Control
Systems. Springer.

Olsder, Gert Jan (1993). On structural properties of min-max systems. Tech-
nical Report 93-95. Delft University of Technology.

Özveren, Cüneyt M. and Alan S. Willsky (1990). Observability of dis-
crete event dynamic systems. IEEE Transactions on Automatic Control
35(7), 797–806.

Papa, Mauricio, Heng-Ming Tai and Sujeet Shenoi (1997). Cell mapping
for controller design and evaluation. IEEE Control Systems Magazine
17(2), 52–65.

Passino, Kevin M., Anthony N. Michel and Panos J. Antsaklis (1994). Lya-
punov stability of a class of discrete event systems. IEEE Transactions
on Automatic Control 39(2), 269–279.

Perko, Lawrence (1991). Differential Equations and Dynamical Systems. Vol. 7
of Texts in Applied Mathematics. Springer-Verlag.

Philips, P., K.B. Ramkumar, K.W. Lim, H.A. Preisig and M. Weiss (1999a).
Automaton-based fault detection and isolation. Computers & Chemical
Engineering 23 Supplement, S215–S218.

Philips, Patrick and Martin Weiss (2000). Hierarchical discrete-event models
of continuous systems. In: Proceedings of IMACS Symposium on Mathe-
matical Modelling (MATHMOD 3). Vienna, Austria. pp. 437–440.

Philips, Patrick, Martin Weiss and Heinz A. Preisig (1999b). Control based
on discrete-event models of continuous systems. In: Proceedings of the
European Control Conference (ECC’99). Karlsruhe, Germany.

Philips, Patrick, Martin Weiss and Heinz A. Preisig (1999c). A design strategy
for discrete control of continuous systems. In: Proceedings of the 1999
American Control Conference (ACC’99). San Diego, USA. pp. 2097–2101.

Philips, Patrick, Udo Bruinsma, Martin Weiss and Heinz A. Preisig (1997).
A mathematical approach to discrete-event dynamic modelling of hybrid
systems. In: Proceedings IFAC Symposium on AI in Real-Time Control.
Kuala Lumpur, Malaysia.

Bibliography 145

Philips, P.P.H.H. and M. Weiss (1998). State reconstruction from discrete
partial measurement data. In: Proceedings 5-Th IFAC Symposium on
Dynamics and Control of Process Systems. Corfu, Greece. pp. 533–537.

Phillips, Anthony M. and Masayoshi Tomizuka (1995). Multirate extimation
and control under time-varying data sampling with applications to in-
formation storage devices. In: Proceedings of the 1995 American Control
Conference. Seatle, Washingthon. pp. 4151–4155.

Preisig, Heinz A. (1989). The application of finite automata theory to sequen-
tial control of chemical processes. In: IFAC Dynamics and Control of
Chemical Reactors (DYCORD+’89). Maastricht, the Netherlands.

Preisig, Heinz A. (1992). Discrete-event controlled systems in the chemical
processing industry. In: Proceedings of the IFAC Symposium on Dynam-
ics and Control of Chemical Reactors, Distillation Columns and Batch
Processes (DYCORD+92). College Park, Maryland, USA. pp. 277–282.

Preisig, Heinz A. (1993). First principle based event-discrete dynamic system
models and EDD controller synthesis. In: Proceedings of the IFAC 93
Worldcongress (Volume 4). Sydney, Australia. pp. 207–210.

Preisig, Heinz A. (1996a). Event-discrete modelling of manufactorings systems:
Reduction of the state space. In: Proceedings of the 2th International
Conference on Computer Integrated Manufactoring in Process Industries
(I-CIMPRO ’96). Eindhoven, the Netherlands. pp. 434–443.

Preisig, Heinz A. (1996b). A mathematical approach to discrete-event dy-
namic modelling of hybrid systems. Computers & Chemical Engeneering
20, S1301–S1306.

Preisig, Heinz A., Marc J.H. Pijpers and Martin Weiss (1997). A discrete mod-
elling procedure for continuous processes based on state-discretisation. In:
Proceedings of the 2th IMACS Symposium on Mathematical Modelling.
Vienna. pp. 189–194.

Puri, Anuj, Vivek Borkar and Pravin Varaiya (1996). ε-aproximation of dif-
ferential inclusions. In: Hybrid Systems III: Verification and Control
(R. Alur, T. A. Henzinger and E. D. Sontag, Eds.). Springer-Verlag.
pp. 362–376.

Raisch, J. and A. Itigin (2000). Synthesis of hierarchical process control sys-
tems based on sequential aggregation. In: Proceedings of the IMACS
Symposium on Mathematical Modelling (3rd MATHMOD) (I. Troch and
F. Breitenecker, Eds.). Vienna, Austria. pp. 385–390.

146 Bibliography

Raisch, Jörg (1993). Control of continuous plants by symbolic output feedback.
In: Hybrid Systems II (Panos Antsaklis, Wolf Kohn, Anil Nerode and
Shankar Sastry, Eds.). pp. 370–390.

Raisch, Jörg, Alexander Itigin and Thomas Moor (2000). Hierarchical control
of hybrid systems. In: Proceedings of the 4th International Conference on
Automation of Mixed Processes: Hybrid Dynamical Systems (S. Engell,
S. Kowalewski and J. Zaytoon, Eds.). Dortmund, Germany. pp. 67–72.

Raisch, Jörg and Siu D. O’Young (1998). Discrete approximation and super-
visory control of continuous systems. IEEE Transactions on Automatic
Control 43(4), 569–573.

Ramadge, Peter J. (1990). On the periodicity of symbolic observations of piece-
wise smooth discrete-time systems. IEEE Transactions on Automatic
Control 35(7), 807–813.

Ramadge, Peter J. G. and Murray W. Wonham (1987a). On the supremal
controllable sublanguage of a given language. SIAM Journal of Control
and Optimization 25(3), 637–659.

Ramadge, Peter J. G. and Murray W. Wonham (1987b). Supervisory con-
trol of a class of discrete event processes. SIAM Journal of Control and
Optimization 25(1), 206–230.

Ramadge, P.J. and W.M. Wonham (1982). Supervisory control of discrete
event processes. In: Feedback Control of Linear and Nonlinear Systems,
Lecture Notes in Control and Information Sciences 39. Springer-Verlag.
New York. pp. 202–214.

Ramkumar, K.B., P. Philips, W.K. Ho, H.A. Preisig and K.W. Lim (1999).
A real-time realization of fault-detection and diagnosis using finite-state
automation. In: Proceedings of the 14-Th IFAC World Congress. Beijing,
China.

Ramkumar, K.B., Patrick Philips, H.A. Preisig, W.K. Ho and K.W. Lim
(1998). Structured fault-detection and diagnosis using finite-state au-
tomaton. In: Proceedings of the 24th Annual Conference of the IEEE
Industrial Electronics Society. Aachen, Germany. pp. 1667–1672.

Reisig, W. (1985). Petri Nets: An Introduction. Vol. 4 of Monographs in The-
oretical Computer Science. Springer Verlag. New York.

Roberts, Sanford M. and Jerome S. Shipman (1972). Two-Point Boundary
Value Problems: Shooting Methods. Vol. 31 of Modern Analytic and Com-
putational Methods in Science and Mathematics. Elsevier. New York.

Bibliography 147

Robinson, D.F. and L.R. Foulds (1980). Digraphs: Theory and Techniques.
Gordon and Breach science publishers.

Schnabel, Mark K. and Volker G. Krebs (2000). State reconstruction for a
class of discrete-continuous dynamical systems based on discrete measure-
ments. In: Proceedings of the 4th International Conference on Automation
of Mixed Processes: Hybrid Dynamical Systems (S. Engell, S. Kowalewski
and J. Zaytoon, Eds.). Dortmund, Germany. pp. 61–66.

Sontag, Eduardo D. (1990). Mathematical Control Theory: Deterministic
Finite Dimensional Systems. Vol. 6 of Texts in Applied Mathematics.
Springer-Verlag. New York.

Stiver, J.A. and Panos J. Antsaklis (1993). Extracting discrete event system
models from hybrid control systems. In: Proceedings of the 1993 Interna-
tional Symposium on Intelligent Control. Chicago, Illinois, USA. pp. 298–
301.

Stursberg, O., S. Kowalewski and S. Engell (1997). Generating timed discrete
models of continuous systems. In: Proceedings of the 2nd IMACS Sym-
posium on Mathematical Modelling of Systems (MATHMOD). Vienna,
Austria. pp. 203–210.

Tavernini, Lucio (1987). Differential automata and their discrete simulators.
Nonlinear Analysis, Theory, Methods and Applications 11(6), 665–683.

Thistle, J.G. and W.M. Wonham (1994). Supervision of infinite behavior of
discrete-event systems. SIAM Journal on Optimal Control and Optimiza-
tion 32(4), 1098–1113.

Tittus, Michael and Bo Egardt (1998). Control design for integrator hybrid
systems. IEEE Transactions on Automatic Control 43(4), 491–500.

Tomlin, Claire, George J. Pappas and Sastry Shankar (1998). Conflict resolu-
tion for traffic management: A study in multiagent hybrid systems. IEEE
Transactions on Automatic Control 43(4), 509–521.

Vaandrager, Frits W. and van Schuppen, Jan, Eds.) (1999). Hybrid Systems:
Computation and Control. Vol. 1569 of Lecture Notes in Computer Sci-
ence. Springer.

Van der Schaft, A. J. and J. M. Schumacher (1996). The complementary-
slackness class of hybrid systems. Mathematics of Control, Signals and
Systems 9, 266–301.

148 Bibliography

Van der Schaft, A.J. and J.M. Schumacher (2000). An Introduction to Hybrid
Dynamical Systems. Vol. 251 of Lecture Notes in Control and Information
Sciences. Springer. London.

Van Schuppen, Jan (1998). A sufficient condition for controllability of a class
of hybrid systems. In: Hybrid Systems: Computation and Control (T.A.
Henzinger and S. Sastry, Eds.). number 1386 In: Lecture Notes in Com-
puter Science. Springer. Berlin. pp. 374–383.

Vinogradov, Yu. A. (1970). On finite model schemes having discrete function-
ing. Systems Theory Research 23, 121–128.

Willems, J.C. (1991). Paradigms and puzzles in the theory of dynamic systems.
IEEE Transactions on Automatic Control 36(3), 258–294.

Zadeh, Lofti A. and Charles A. Desoer (1963). Linear System Theory: The
State Space Approach. McGraw-Hill Series in System Science. McGraw-
Hill.

Notation

Symbol Description Page

⊗ Boolean ‘and’ 18
� Boolean ‘difference’ 18
⊕ Boolean ‘or’ 18
#(X̃) cardinality (number of elements) of a set X̃ 30
2X̃ collection of all subsets of X̃ 15
X̃ \ X̃ ′ set difference 6
f ◦ g(x) composite function f(g(x)) 17
Im(A) image of A 43
ker(A) kernel of A 43
aT transposed of a 21
ai associated with the i-th coordinate of a vector 30
ai i-th element of a set 30
Aũ, AŨ adjacency matrix for input ũ or the input set Ũ 21
AŨ labeled adjacency matrix for the input set Ũ 21
C0 continuous functions 3.1
Cn continuous functions from closed intervals to R

n 3.1
Cnx,int, Cly,int Cn functions starting in int(Hx(x̃)), int(Hy(ỹ)) 31
d̃ discrete fault 119
Dũ direction matrix for input ũ 90
D̃ set of discrete faults 119
D(ξ) domain of a function ξ 31
ei i-th unit vector 63
F d̃
ũ fault adjacency matrix for fault d̃ and input ũ 121

φ transition function 15
h output map 15
Hx(x̃), Hu(ũ), Hy(ỹ) hypercube associated with x̃, ũ, or ỹ 30
int(Hx(x̃)) (relative) interior of Hx(x̃) 23
k number of discrete inputs 32
Kũ matrix defining uncorrectable transitions for ũ 90

149

150 Notation

l dimension of the output space 36
m dimension of the input space 25
M Boolean matrix used for merging discrete states 123
n dimension of the state space 25
N neighbor matrix 22
NC number of computations 48
NO number of optimizations 44
p number of discrete states 16
PC0 piecewise continuous functions 26
PCm piecewise continuous functions from closed intervals to R

m 26
PCmu,int PCm function starting in the interior of Hu(ũ) 33
Q map from continuous to discrete states 31
r number of discrete faults 119
R map from continuous to discrete outputs 38
S map from continuous to discrete inputs 33
SŨ matrix defining unpreventable transitions for the input set Ũ 86
T transformation matrix 16
u continuous input 3
υ input signal 26
υ[t0,t1] input signal for a closed interval 26
Ũ set of discrete inputs 15
x continuous state 3
x̃, x̄, x̂ discrete state (tuple, integer, Boolean vector representation) 16
ξ state trajectory 26
ξ[t0,t1] state trajectory for a closed interval 26
X̃, X̄, X̂ set of discrete states 16
y continous output 36
ỹ discrete output 36
θ output signal 36
θ[t0,t1] output signal for a closed interval 36
Ỹ set of discrete outputs 37

Index

adjacency matrix, 20
adjacent, 31
automaton, 4

hybrid, 5
nondeterministic, 15

Boolean
matrix, 20
vector, 17

boundaries, 30

control strategy
‘forceable set-transition’, 101
‘forceable state-transition’, 94
‘invariant sets’, 105

detectability
event-based, 68
fault, 122

direction matrix, 90
discrete event, 31
discrete sensor, 6
discrete state

Boolean vector representation
of a, 17

integer representation of a, 16
tuple representation of a, 16

discretely controlled trajectory, 82
discretization

input, 32
state, 30

fault
detectability of a, 122
detection condition, 120

isolation, 122

graph
directed, 19
forceability, 95
labeled, 21
labelled forceability, 97
strong forceability, 110

hierarchical, 49

input
correcting, 84, 86
moving, 84, 90
preventing, 84, 85

invariant set
Γ-controlled, 94
discretely controlled, 91

isomorphism, 29

machine, 2
Mealy, 15
Moore, 15

measurement
discrete-state, 72
event, 74
transition, 110

merging (states), 123

neighbor matrix, 22
nondeterministic, 15

observability
event-based, 67
set restricted k-step, 68

151

152 Index

reachability matrix, 21
reachability problem, 82

sparsity, 51
spurious solution, 28
stabilization problem, 83
state reconstruction

continuous, 61
discrete, 72

system, 2
continuous, 3
discrete-event, 4
discrete-event model of a con-

tinuous, 6, 26
general hybrid dynamical, 5
hybrid, 5

transition, 31
forceable, 95
function, 33

Samenvatting

In dit proefschrift worden geregelde systemen bestudeerd, die bestaan uit een
continu proces en een discrete-toestand regelaar. Voorbeelden hiervan zijn
processen, die worden geobserveerd door discrete sensoren en die bestuurd
worden d.m.v. discrete ingangen, en systemen waarbij de interactie met andere
processen begeleid wordt door een computer programma. Voor deze systemen
zijn modellen, regelstrategieën en een fout-detectie methode ontwikkeld.

De aanpak die in dit proefschrift wordt gevolgd om dergelijke hybride sys-
temen te bestuderen is gebaseerd op het omzetten van de continue dynamica
van het proces (beschreven door differentiaalvergelijkingen) naar een discrete-
toestand systeem. Op deze manier kan de interactie tussen twee discrete-
toestand systemen bestudeerd worden, hetgeen makelijker is dan het analy-
seren van het oorspronkelijke hybride systeem.

Om de continue dynamica te ‘discretizeren’ wordt de toestandsruimte gepar-
titioneerd in (meerdimensionale) rechthoeken waaraan discrete toestanden van
een automaat worden toegekend. Een discrete-toestand model kan worden
beschreven door de mogelijke transities tussen discrete toestanden te specifi-
ceren. Een overgang van een discrete toestand naar een andere is mogelijk
wanneer er een trajectorie bestaat die aan de continue dynamica voldoet en
van de overeenkomstige rechthoek naar de andere gaat. Om na te gaan of zo’n
trajectorie bestaat is een algoritme ontwikkeld, dat het grensvlak tussen twee
rechthoeken controleert op afgeleiden van de trajectoriën, die gericht zijn naar
de naburige rechthoek en daardoor een transitie toestaan.

Voor systemen met discrete metingen, d.w.z. metingen waarbij alleen een
signaal uitgegeven wordt als een bepaalde waarde is bereikt in plaats van
wanneer een bepaalde tijd is verstreken, wordt getoond hoe de continue tra-
jectorie gereconstrueerd kan worden voor zowel lineaire als niet-lineaire syste-
men. Wanneer de ingang bekend is, de differentiaalvergelijkingen het proces
exact beschrijven, en meetruis en verstoringen afwezig zijn dient hiertoe een
meerpunt randwaardeprobleem opgelost te worden. Op deze manier kan een
conventionele continue regelaar worden aangewend, of de informatie kan ge-
bruikt worden voor extra regelacties. In het geval dat een discrete-toestand
regelaar gebruikt moet worden, wordt getoond hoe de discrete toestand gere-

153

154 Samenvatting

construeerd kan worden uitgaande van discrete metingen.
De discrete-toestand modellen die resulteren van het modelleer algoritme

kunnen gebruikt worden voor regelaarontwerp. Er worden drie regelaaront-
werp strategieën voorgesteld, waarbij, behalve het verkregen discrete-toestand
model, ook het feit wordt gebruikt dat het onderliggende systeem continu is.

De eerste regelaarontwerp methode is gebaseerd op de constructie van tran-
sities waarvan gegarandeerd kan worden dat ze daadwerkelijk plaatsvinden
door de juiste ingangen te kiezen. Omdat het in het algemeen moeilijk is om
te bepalen of dit mogelijk is, wordt een voldoende conditie hiervoor afgeleid.
Het idee is om ongewenste transities te voorkomen (of the corrigeren) met
ingangen die de continue toestand een gewenste richting laten bewegen. Met
alle transities die aan de voldoende conditie voldoen wordt een graaf gecon-
strueerd. Geschikte paden van een gegeven begintoestand naar een gewenste
eindtoestand kunnen worden gevonden d.m.v. een algoritme.

Het principe van de tweede en derde regelaarontwerp methode is gebaseerd
op de constructie van (geregelde) invariante verzamelingen waarvoor het zeker
is dat altijd ingangen gevonden kunnen worden die voorkomen dat de continue
trajectorie de verzameling verlaat. Het idee is om een reeks van verzameling-
en te berekenen zodanig dat de eerste verzameling de gewenste eindtoestand
bevat, terwijl de laatste verzameling de begintoestand bevat. Deze reeks verza-
melingen is zodanig geconstrueerd dat altijd een ingang gekozen kan worden
die de continue toestand in de richting van een voorganger in de reeks verza-
melingen beweegt, totdat uiteindelijk de gewenste toestand is bereikt. Het
verschil tussen de twee regelaarontwerp methoden is de constructie van de
invariante verzamelingen. Een methode verwijdert discrete toestanden die
de invariantie onmogelijk maken, terwijl de andere methode die discrete toe-
standen toevoegt waarnaar transities niet voorkomen kunnen worden.

Discrete-toestand modellen van de continue systemen kunnen ook gebruikt
worden voor het detecteren en isoleren van fouten in een proces. Hiertoe wordt
voor iedere verwachte fout een apart discrete-toestand model gemaakt. Vervol-
gens wordt middels het vergelijken van de discrete-toestand modellen bepaald
of een gemeten transitie veroorzaakt kan zijn door het nominale (foutvrije)
proces of door een opgetreden fout. Door het samenvoegen van twee of meer
discrete-toestanden tot een nieuwe toestand kan het totale aantal toestanden
gereduceerd worden waardoor snellere berekeningen (voor on-line implemen-
tatie van de fout-detectie methode) mogelijk zijn. Het is echter alleen redelijk
om toestanden samen te voegen wanneer er geen informatie verloren gaat.
Expliciete uitdrukkingen worden gegeven die aangeven of dit het geval is.

Alle regelaarontwerp en fout-detectie methoden zijn expliciet uitgedrukt
in termen van Booleaanse vectoren en matrices en kunnen, in principe, direct
gëimplementeerd worden. Alle besproken concepten worden toegelicht door
middel van voorbeelden, die de mogelijkheden van de methoden laten zien.

Dankwoord

In de tijd dat ik met mijn promotie bezig ben geweest zijn verschillende mensen
van belang voor mij geweest. Graag wil ik deze mensen bedanken.

Als eerste wil ik mij promotor Heinz Preisig bedanken, die mij de kans en
de ruimte gaf om iets van de opdracht te maken. Ook mijn tweede promotor,
Paul van den Bosch ben ik dankbaar voor zijn begeleiding en adviezen. De
commissieleden Jan van Schuppen en Jan Lunze ben ik erkentelijk voor hun
waardevol commentaar. Grote dank en waardering ben ik Maurice Heemels
verschuldigd, die als copromotor zijn best gedaan heeft om het beste uit mij te
halen; een taak die hem de nodige tijd gekost heeft. Om dezelfde reden dank
ik Martin Weiss, die in de eerste helft van mijn promotie van groot belang
voor mij was.

Al mijn collega’s bij de ‘systems and control’ groep van natuurkunde wil ik
bedanken voor de prettige sfeer waarin ik met hen heb mogen werken. In het
bijzonder wil ik mijn collega-AIO’s bedanken (in volgorde van kennismaking):
Georgo Angelis, Uwe Keineidam, Roel Lipsch, Annelies Balkema, Mathieu
Westerweele en Gerwald Verdijck. Hartelijk dank voor al jullie adviezen, hulp,
luisterende oren en, natuurlijk, voor alle lol.

Dankbaar ben ik ook de mensen bij de ‘control systems’ groep van elek-
trotechniek, die mij in de laatste fase van mijn promotie hartelijk in hun groep
hebben opgenomen. Diederik, Dik, Vick, Bart, Leo, Patricia, Hardy, Andrei,
en Mario: succes met jullie promotie of baan.

Tenslotte wil ik mijn vrienden, mijn ouders en mijn zus bedanken, die mij
niet alleen de afgelopen periode gesteund hebben, maar altijd.

Patrick Philips
Eindhoven, Februari 2001.

155

156 Dankwoord

Curriculum Vitae

9 mei 1971 Geboren te Roermond.

1983 - 1989 Atheneum B, scholengemeenschap Sint Ursula, Horn.

1989 - 1993 Studie wertuigbouwkunde, Hogeschool Eindhoven. Afstudeer-
richting mechatronica.

1993 - 1996 Verkorte opleiding werktuigbouwkunde, Technische Universiteit
Eindhoven. Met lof afgestudeerd bij de sectie Systeem en Regeltechniek
op het onderwerp ‘Selection of Actuators and Sensors Based on Robust
Performance’. Afstudeerwerk beloond met de Unilever research award.

1996 - 2001 Promotieonderzoek, als assistent in opleiding (AIO-4) bij de
‘systems and control group’ van de faculteit Technische Natuurkunde,
Technische Universiteit Eindhoven.

157

	Contents
	Summary
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Bibliography
	Notation
	Index
	Samenvatting
	Dankwoord
	Curriculum vitae

