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1 Introduction

1.1 Reconnection

“There is hardly a term in plasma physics which exhibits more scents, facets and
also ambiguities, and which at times seems to be used with a touch of magic. The
basic picture is that of two field lines frozen in and carried along with the fluid,
until they come close to each other at some point where, due to weak non-ideal
effects in Ohm’s law, they are cut and reconnected in a different way.”
D. Biskamp, Magnetic Reconnection in Plasmas, [1]

Everything is plasma.
Actually, not everything. In our everyday life only few examples of plasma come to mind,

such as incandescent tubes and recently plasma screens. But when we look beyond our
relatively cool and dense little planet, almost everything is plasma: stars, interstellar
matter, protostars, matter that is either so hot or so dilute and rarefied that the constituent
atoms have shed their electrons, resulting in a gas of positively charged nuclei and negatively
charged electrons, interacting through the Coulomb-force but otherwise freely moving and
independently of each other.

Interstellar space is full of plasma, irradiated by stars and cosmic rays, pulled at by
galaxies, black holes or young stellar objects, swirling it around but not quite holding onto it
and letting it go in the form of jets that escape again in a very straight fashion for sometimes
many tens of light-years. Our Sun itself charges itself up as a giant dynamo and hurls plasma
at us in the form of solar wind against which we are shielded by the Earth’s magnetic field,
causing aurora Borealis (northern light), and magnetic substorms in our magnetopause.

In all these phenomena the ionized particles were violently dislocated from the magnetic
field line to which they at one time were intimately bound. This violent overthrow, rerouting
the infrastructure of the plasma, is called magnetic reconnection (see Fig. 1.1).

To understand what magnetic reconnection is, and under what circumstances it occurs,
we first look at the situation in which it does not occur. An ideal plasma is a plasma that
is an ideal electric conductor. Because of the relative freedom of the charged particles, this
is not a very far-fetched idea. In this case the plasma particles and magnetic field lines
are indissolubly connected. When the magnetic field is perturbed, the plasma responds by
generating a current that tries to nullify the original disturbance. This is demonstrated in
superconducting materials, that expel an external magnetic field with so much success that
a magnet actually stays afloat above them, unable to push in its magnetic field. When the
material becomes resistive, the magnetic field sinks in, and the magnet lands on top. The
same happens to a plasma when the particles do collide, and thus experience friction and
resistivity. The current that had formed decays and the magnetic field becomes prone to
change. Change here means that it may undergo topological change: the magnetic field lines
can be envisaged to be cut loose, and then reconnected again enabling the magnetic field to
relax into a differently organized state.

This process is responsible for the transformation of differential rotation of e.g. the Sun
into a giant dynamo, and the unleashing of coronal mass ejections, that lead to magnetic
storms that make astronauts dive away behind a lead wall and create havoc amongst the global
positioning satellites. It is also responsible for the reorganization of the magnetic field within
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1 Introduction

Figure 1.1: The basic process of magnetic field line reconnection: the relaxation of magnetic
tension by the reorganization of the magnetic field.

fusion plasmas in present day laboratory experiments, threatening magnetic confinement by
creating exponentially growing helical structures within the plasma that do not support a
large temperature gradient.

However, under these circumstances, due to the high temperature, particle collisions be-
come so scarce that the sheer speed with which the reconnection process unfolds poses a
riddle: How can the structure of the magnetic field change so drastically in a time that is so
short that only few plasma particles can collide? The mean collision time between electrons
can be up to a factor 10 larger than the timescale in which the reconnection process takes
place. When this is the case, the process is called collisionless reconnection.

There are several mechanisms that may cause reconnection to occur in the absence of
collisions, such as (electromagnetic) turbulence, and wave-particle interactions such as Landau
damping. One that seems promising in predicting fast reconnection is electron inertia: the
finite electron mass results in the fact that the current sheet that should prevent reconnection
from happening is drawn up too late. In this fashion the field lines have come loose and
reconnected before the shielding electrons get into motion.

Slowish electrons yield a possible mechanism for collisionless reconnection, but still a lot
of questions remain. As stated before, a magnetic field line within a certain part of the plasma
‘carries’ electrons with a certain temperature. But what happens when this field line is cut
open and connected to a field line with electrons of a very different temperature? Especially
in fusion experiments the temperature gradient can be enormous, larger than anywhere else
in the universe, even. What do electrons with different energies do during the reconnection
process? This will be one of the main questions addressed in this thesis.

1.2 Relevance

Reconnection takes place in various types of plasmas: plasmas can either be too hot or too
dilute to display collisional, resistive behaviour. The main application of the research that
will be presented here is nuclear fusion. Nuclear fusion is the process during which two lighter
atomic nuclei collide and merge into a heavier one. The reaction products carry the energy
that is released in such a process as kinetic energy, i.e. by going extremely fast. The process
that is the most feasible candidate to produce fusion power in a reactor is between two

2



1.2 Relevance

Figure 1.2: A schematic drawing of a tokamak. Shown are the toroidal magnetic field coils,
the vessel, the heat exchanger and the plasma (in orange).
(Figure: FOM Rijnhuizen)

hydrogen isotopes, deuterium (D) and tritium (T) to yield helium and a neutron,

2
1D + 3

1T → 4
2He + n + 17.6MeV.

Because of energy and momentum conservation, most of the kinetic energy will be carried by
the neutron. Deuterium consists of a nucleus with a positively charged proton and a neutron
and a negatively charged electron surrounding it, and tritium has a proton and two neutrons
in its nucleus. The process is hindered by the Coulomb-force: the nuclei are both positively
charged and hence repel each other. This means that the nuclei have to have a very high
velocity to overcome this barrier.

The Sun also relies on nuclear fusion as its energy source, and confines plasma at a
temperature of 15 million degrees Kelvin in its core with its huge gravity field pulling the
plasma inward. This leads to a relatively slow, smouldering fusion reaction.

Here on Earth, we have to do better. And hotter. We want to maintain a fusion reac-
tion with minimum input power and maximum yield, which means that we have to heat the
D-T plasma to a much higher temperature. When the ions have a mean energy of 15 keV,
corresponding to roughly 150 million degrees Kelvin, enough particles have such a high en-
ergy that they can pass through the Coulomb barrier by quantum mechanical tunneling. To
achieve such temperatures is hard, but not impossible. To keep the plasma insulated, present
day fusion reactor concepts use a toroidally shaped magnetic field. The best candidate for
delivering net fusion power in the near future is called the tokamak (see Fig. 1.2), a machine
with a strong magnetic field in the toroidal direction (the long way around the torus), and

3



1 Introduction

Figure 1.3: On the left the circles represent a poloidal cross section of the closed flux sur-
faces, and the dashed line shows the resonant surface. On the right the surfaces
around the resonant surfaces are torn by a tearing mode with mode number
m = 3. A chain of magnetic islands appears.

a current through the plasma, generated either inductively or non-inductively, results in a
smaller poloidal component. The now helical magnetic field lines are thus organized on nested
concentric surfaces, also called flux surfaces. The radial profile of the current density induces
a poloidal field that is different for each flux surface, leading to the situation where the mag-
netic field has a different direction on each flux surface, yielding a profile of the magnetic
winding number, q. The magnetic field strength B is large compared to the plasma pressure
p, even in the next generation machine ITER. This is also called the low-β regime, with
β = 2µ0p/B

2. The plasma in ITER will have approximately β ≈ 0.03. Some other machine
concepts, such as reverse field pinches, can operate in intermediate or high β.

A tokamak is a complicated machine. The chemicals the wall is made of may pollute the
plasma, the magnetic field is generated by a finite number of coils, and therefore rippled, and
because of the fact that the toroidal magnetic field is stronger on the inboard-side (the high
field side) than on the outboard-side (the low field side) of the torus, particles do no longer
follow a field line helically but sometimes stop and turn around when the magnetic field
becomes too high, changing the transport properties of the plasma. A tokamak is constantly
being fuelled and heated, in a localized way, so that the magnetic winding number q can be
adjusted to be non-monotonic. Depending on the profile of the winding number and on the
heat distribution, instabilities may arise. These instabilities set the plasma into motion, and
some may cause the reconnection of magnetic field lines.

The research presented in this thesis is ultimately aimed at achieving a more thorough
understanding of collisionless reconnection, which is responsible for one particular plasma
phenomenon that may occur in tokamak plasmas, viz. the tearing mode.

This so-called tearing mode is a perturbation of the flux surfaces, resulting in the local
break-up (or ‘tearing’) of the flux surface structure, creating a region of helical magnetic
islands. In Fig. 1.3 a poloidal cross section of the plasma is depicted before and after such a
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1.3 Modelling of magnetic reconnection

break-up. It can be started by only a small perturbation after which it grows exponentially,
and is therefore called an “instability”.

This can have several consequences for the plasma confinement: the perturbation of the
plasma may lead to the onset of plasma turbulence, creating chaotic small scale structures.
Furthermore, the perturbation of one flux surface can induce the break-up of neighboring
flux surfaces, resulting in magnetic island chains with different mode numbers. When those
island chains grow and start to overlap radially this can be the starting point of magnetic

field ergodization. The magnetic field lines are no longer confined to their two-dimensional
toroidal surfaces, but can fill up a three-dimensional volume, extending over a large radial
distance. Because of the excellent parallel conductivity along the field lines, this leads to
enhanced transport of particles from the core of the plasma to the edge. When the tearing
mode affects the layer in the plasma where the magnetic field returns to the exact same spot
after one toroidal rotation, i.e. where the magnetic winding number q = 1, generally near the
core of the plasma, it can completely or partly turn the enclosed flux inside out, effectively
spilling the heat of the central plasma outwards and relaxing it to the temperature of the
edge of this region. When this happens repetitively, this is called the sawtooth oscillation in
tokamak-jargon, referring to the time-trace of the central temperature which builds up and
crashes periodically. If the islands grow too large it is possible that an instability at e.g. the
q = 2 surface causes a plasma disruption: the plasma discharge ends at once, releasing all of
the magnetic energy stored in the magnetic field. This may cause considerable damage to the
inside of the machine, and is something one does not want to happen to an expensive nuclear
facility too often.

1.3 Modelling of magnetic reconnection

A lot of effort is put into the study of tearing modes, as they may cause particle and heat
transport and threaten the plasma confinement within tokamaks. Experiments are being
undertaken that attempt to visualize magnetic islands and to control their onset and growth
by applying spatially and temporally localized heating at the center of the island [2].

Reconnection in tokamaks is characterized by the fact that there is a dominant, nowhere
vanishing, toroidal ‘guide’-field in the plasma. Because of the fast transport and equilibra-
tion along the magnetic field lines the dynamics that concern the tearing mode are reduced
to the plane perpendicular to the magnetic field. This contrasts to the astrophysical appli-
cations, where generally reconnection is located at regions where B(x) → 0, yielding large
gyro-orbits so that particles can decouple from the magnetic field, thus facilitating magnetic
reconnection [3, 4].

The assumption of a strong guide field implies that the plasma β is low, which makes
the coupling to whistler-type modes negligible as the scale length on which they play a role
becomes vanishingly small. In the low-β ordering the kinetic Alfvén wave can couple to the
tearing mode.

The excitation of the tearing mode can be modelled in various ways. The perturbation
of the flux surfaces can be assumed to stem from an external source, either by means of
a forcing of e.g. external magnetic field coils or growing secondary magnetic island chains.
This is named forced magnetic reconnection [5]. Another way is to describe reconnection
as a result of an instability in a plasma that consists of an external, ideal, region that is
considered to be far away from the reconnection region, and an internal region that is treated
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as a resistive or otherwise unideal boundary layer [6, 7]. Both approaches are able to model
a smooth current profile, in which either an external force or the instability because of the
current profile itself drive the reconnection of magnetic field. Neoclassical tearing modes can
be considered a combination of both, where the mode starts as a perturbation of a linearly
stable equilibrium, but becomes unstable as a consequence of the driving feedback of the
bootstrap current that depends on the width of the magnetic island that is created.

In this thesis a tearing mode is excited locally by imposing a steep current gradient at
two locations, so that they constitute a current layer. In this way the whole plasma region
is treated on the same footing, and no further assumptions need to be made regarding the
scales.

The literature on reconnection in tokamaks has addressed a number of different mech-
anisms that enable magnetic field lines to reconnect. A lot of research is done in resistive
models [8]. When it became clear that reconnection can occur in near-collisionless plasmas
on time scales that are much shorter than the resistive time scale, that corresponds to the
mean electron-ion collision time, different collisionless physical mechanisms were investigated,
such as reconnection as a result of Landau resonances [9], and electron inertia. The latter
has been studied in both a two-fluid context [7, 10] as well as with a kinetic model for the
electrons [11]. Electron inertia proved a good candidate to yield fast reconnection rates that
were comparable to those found in tokamak experiments.

The effect of the ion temperature on the process of magnetic reconnection has been
studied extensively. The consequences of a finite ion gyro-radius have been studied within
the framework of the two-fluid drift-Alfvén model [12]. When the ion gyro-radius becomes
so large that the effects can no longer be described perturbatively, a kinetic model is called
for to calculate the influence of the ion dynamics on the stability and dynamics of a tearing
mode. The effects of energetic ions, as they emerge during intense plasma heating and in a
burning fusion plasma, have been studied by looking at the consequences of an anisotropic
ion pressure [13]. These include the effects of trapped ions. Although the ion temperature
effects are not negligible, in this thesis the electron dynamics are studied separately, assuming
a passive ion-response to parallel electron compression.

The approach to model collisionless magnetic reconnection that is presented in this thesis
is novel, and its results should be compared to results obtained with the same model equations,
but by a different approach, as e.g. reported in [11]. Here, a kinetic model is used to calculate
the evolution in time of a tearing mode in a smooth equilibrium in a straight, double periodic
domain. It is noted that the computational effort that is needed is a limiting factor. Our
approach makes use of local excitation of the mode by perturbing steep current gradients,
which yields a self-consistent and analytically tractable model that is valid on the infinite
plane. The numerical implementation requires the use of a discrete number of contours that
represent the parallel velocity, instead of a smooth and continuous velocity distribution as
in [11].

1.4 This thesis

1.4.1 Physical question

Fast magnetic reconnection is observed in laboratory fusion experiments, as well as in the
rarefied plasmas in the Earth’s magnetosphere [14]. The fact that this happens at timescales
so much shorter than the collision times of the electrons motivated the study of electron inertia
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as a fast reconnection mechanism [10, 15, 16]. Here, we will focus on reconnection in fusion
plasmas, that are designed to sustain a very large temperature gradient across the magnetic
field lines. However, in collisionless plasmas, electrons move and equilibrate rapidly along the
reconnecting field lines, but have mean collision times perpendicular to the magnetic field
that are long compared to the transit time of the system. Therefore, a temperature difference
poses a fundamental physics problem whose solution requires a kinetic model, as electrons of
different energies are shown to display different behaviour during this process [17].

In this thesis the behaviour of a collisionless reconnecting instability is studied, in a plasma
with a strong magnetic guide field and where reconnection is made possible by finite electron
inertia.
The main question addressed in this thesis will be:

What is the effect of a temperature gradient on reconnecting magnetic field

lines in near-collisionless plasmas?

This question can be made more specific, considering the underlying physics:

• What is the role of collisionless electrons in this process?

• How do the reconnected electrons contribute to the current and temperature distribu-
tions inside the magnetic island?

• How is the macroscopic magnetic field modified?

To be able to answer these questions, the following subquestions need to be addressed:

◦ How do we set up a kinetic model that can take into account non-collisionality and a
temperature gradient?

◦ What are the kinetic effects of the electron motion parallel to the magnetic field, and
how do they affect the linear and nonlinear stability properties of a tearing mode in a
straight current layer with or without a temperature gradient?

◦ What are the linear stability properties of a tearing mode in an annular current layer,
what are the subsequent isothermal nonlinear effects, and how do they agree with
numerical simulations based on the very same model?

◦ How does the anatomy of a nonlinear reconnecting mode in an annular current layer
change when kinetic effects such as a temperature gradient are taken into account?

1.4.2 Method

Model

The nonlinear aspects of reconnection have proven to be essential to understand why it can be
so fast. Also, temperature effects are expected to be dependent on the finite island size [17].
Therefore, we make use of a method that has shown to be suitable for the handling of nonlinear
dynamics in fluid problems, viz. contour dynamics. This is a formalism that is used in studying
two-dimensional fluid flow, calculating the evolution in time of the boundaries of an area with
uniform vorticity, and more recently also applied to plasma fluid models [18, 19, 20, 21].

However, the combination of the weak collisionality of the plasma and the fact that we
are interested in the effects of a temperature gradient requires a kinetic model. Therefore we
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have developed a kinetic contour dynamics model. This is a novel model, and it takes some
initial investigations to make sure that we can apply it to our problem.

First, a kinetic model is developed to provide a basic tokamak-like background. It assumes
a dominant magnetic field in one direction and a smaller perpendicular component, and a
plasma β ≪ 1. The ion dynamics are reduced so that they only respond passively to local
charge imbalance by parallel electron compression. The fact that the equilibration along the
magnetic field lines happens at very short time scales reduces the dynamics of interest, making
it effectively two-dimensional. The model describes the electron dynamics perpendicular to
the magnetic field, and is applicable to timescales that are large compared to the characteristic
time of plasma oscillations, ω−1

pe and the electron gyro-frequency Ωe. The electron velocity
parallel to the magnetic field is described by a distribution function that may depend on time
and space [11, 17].

The isothermal two-fluid plasma model [12] is retrieved as a limit of the drift-kinetic
model by replacing the full electron velocity distribution function by an equilibrium part and
a discrete amount of electrons with plus and minus the thermal velocity, that thus constitutes
a current in a specified region.

Here it is noted that contour dynamics is predominantly a method that determines the
choice of the initial conditions of a plasma problem. By specifying finite spatial areas with
uniform electron velocity distribution, the boundaries specify discretized contours, and hence
all the analysis that will follow can be considered contour dynamics. On the other hand,
by means of discretization in velocity space only the kinetic formalism can reduce to fluid
formalism. When discretization in both real and velocity space is applied, the method can be
used in numerical simulations.

Linear stability

This model, described in detail in Chapter 3, is applied to an equilibrium current distribu-
tion that is uniform, except for discontinuities in one direction of inhomogeneity at certain
places. In fact, because the distribution is uniform almost everywhere, the discontinuity is
the only place where the equilibrium may be perturbed. Because this jump is a boundary for
electrons with a specific velocity parallel to the magnetic field, one may say that for every
parallel velocity the electrons can be represented by a specific contour. The assumption that
these electrons behave like an incompressible fluid completes the correspondence between the
methods used in incompressible 2D Euler-flow and kinetic modelling of collisionless
reconnecting instabilities in magnetized plasma.

The equilibrium that is used, upon which the perturbations and the ensuing instabilities
take place, is generally chosen to be of rather simple geometry, slab or cylinder, and harbours
the scale length de in it, the electron inertial skin depth, which is a consequence of assuming
finite electron inertia as the mechanism that causes reconnection.

To be able to perform nonlinear analysis of the dynamics of this system, we have to be
certain of the linear stability properties of the equilibrium. In slab geometry, the full drift-
kinetic model becomes tractable enough to derive a linear dispersion relation for the frequency
or growth rate of an instability, and study the influence of a number of parameters, among
which the difference or mismatch between the velocity distribution functions of the electrons
from either originating area of the reconnecting magnetic field lines. Also statements about
the form and symmetry of the resulting magnetic islands in the nonlinear stage are made,
once steady reconnection (∂2ψ/∂t2 = 0) is reached. In cylindrical geometry, linear stability
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analysis can be performed using the two-fluid drift-Alfvén equations.

Numerics

The idea of applying contour dynamics to problems in plasma physics is not new [19, 20, 21].
However, no attempt was made to study magnetic reconnection with this method. We have
gratefully made use of the computer code that was developed by P.W.C. Vosbeek [18, 22],
which was made available to us by L.P.J. Kamp of the TU Eindhoven. We adapted this code
to model a discretized electron velocity distribution along the magnetic field lines, making it
possible to discern between the behaviour of very fast and more or less co-moving electrons.
The discretization in velocity space is discussed in section 2.3.3. In this way we can study the
nonlinear dynamics in the plane perpendicular to the magnetic guide field causing collisionless
magnetic reconnection and model the effects of a spatially varying distribution of parallel
velocity, such as a temperature gradient. More subtle phase-space effects such as Landau
damping are beyond the scope of this thesis. Numerically, it is more straightforward to study
the cylindrical equilibria, as they form a spatially bounded area on the infinite plane.

The choice of this approach to model nonlinear collisionless reconnection provides us with
a transparent physical model which makes the linear and nonlinear analysis and the numerical
simulations comparable to a high degree.

1.5 Outline

Chapter 2 introduces some background on the type of plasma physics that will be discussed
in this thesis.

Chapters 3 and 4 treat the same subject, but Chapter 3 is set up as a more introductory
and complete paper, providing derivations, discussions and proofs, whereas Chapter 4 has the
form of a compact report. They consider the linear stability properties of a straight current
slab for the full drift-kinetic equations. The effect of a temperature gradient is discussed in
both the linear and nonlinear stage of an unstable tearing mode.

In Chapter 5 the analysis is extended to cylindrical geometry, considering the linear sta-
bility of an annular current equilibrium using the isothermal two-fluid equations. A numerical
contour dynamics code is used to calculate the nonlinear evolution in time of this equilibrium.
The analytical results have been compared to growth rates that can be obtained using the
contour dynamics code. Some nonlinear phenomena have been observed and quantified.

The code was extended so that it can handle arbitrarily many contours in velocity space,
making it possible to study kinetic effects and to model a collisionless plasma with a temper-
ature gradient. The numerical results are reported in Chapter 6. These results are compared
to the theoretical predictions made in Chapters 3 and 4.

The results of the work presented in this thesis are discussed in Chapter 7. In Appendix
A the equivalence of the cylindrical and the slab results is shown, making sure that they are
limiting cases of each other.
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2 Model equations

In this chapter some of the basic plasma phenomena will be brought to the footlight that are
essential to fully appreciate the work presented in this thesis.

First, by showing how individual particles move in electromagnetic fields, we will progress
towards more collective effects such as drift flows and waves. This introduction is not intended
to be complete, but merely touches upon the basic subjects.

2.1 Single particle trajectories and drift motion

2.1.1 Gyro-orbits and guiding centre motion

The equation of motion for a particle of type α where α = i, e stands for ion or electron, with
mass mα and charge qα in an electromagnetic field can be given by

dx

dt
= v,

dv

dt
=

qα
mα

(E + v × B), (2.1)

with the last term the Lorentz force. Ignoring the source equations for the moment, the fields
comply to Maxwell’s equations,

∇× E = −∂B
∂t
, (2.2)

∇ · B = 0. (2.3)

If we consider the case with a homogeneous, static, magnetic field in the z-direction and no
electric field, then we can split the velocity in a parallel part v‖ = v · b with b = B/B the
unit vector in the direction of B, and a perpendicular part v⊥. We can solve the system given
by Eq. (2.1) by

vx = v⊥ sinΩt, vy = v⊥ cos Ωt, (2.4)

and integrate to yield ρ = {ρx, ρy, 0}, with

ρx = ρα cos Ωαt, ρy = ρα sinΩαt, (2.5)

where

Ωα =
qαB

mα
, ρα =

v⊥
Ωα

, (2.6)

are the gyro- or Larmor frequency and radius, so that

ρα = − mα

qαB2
v × B. (2.7)

This describes a particle at x = {x, y, z} = R + ρα, that is gyrating with a frequency Ωα,
and a radius ρα around a point in space, its guiding centre, at R.

The guiding centre may undergo all kinds of movements, and because of the thermal
velocity the particle might move extremely fast, but the basis remains the same: a particle
gyrates around a field line, and the radius becomes smaller for smaller mass and larger
magnetic field.
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2 Model equations

Note furthermore that the direction in which positively charged particles are gyrating is
opposite to that of negatively charged particles.

If we apply some constant force F on the particle, the equation of motion of the particle
Eq. (2.1) becomes

dv

dt
=

qα
mα

(E + v × B) +
1

mα
F. (2.8)

The motion due to the applied force can be separated from the gyration if we transform to
the guiding centre reference frame. The velocity becomes

vg ≡
dR

dt
= v +

1

qαB2
(qαv × B + F) × B,

= v‖b +
F × B

qαB2
. (2.9)

So an arbitrary force F leads to an acceleration along the magnetic field line and a charge
dependent drift, i.e. a velocity perpendicular to the (dominant) magnetic field. A drift can
generally be seen as the consequence of an asymmetry in the force-field during a gyro-orbit.
A particle speeds up when the the force is in line with the motion, and so the gyro-radius
increases, whereas it decreases again when the orbit has reached its zenith. In this way the
particle slides sidewards, perpendicular to both the applied force and the magnetic field.

Because of the charge qα in the expression for drift velocities, they are opposite for elec-
trons and ions and generally lead to charge separation and currents, except when the force F

is proportional to qα.

2.1.2 The E × B drift

If an electric field is present in the plasma, as a result of a perturbation or current that is
driven through it, the plasma particles will be subject to an electric force qαE. If we assume
this field to be constant, and fill this in in Eq. (2.9), the charge drops out and we get

vE =
E × B

B2
. (2.10)

This is called the E×B-drift. This is a velocity that is perpendicular to both the electric and
the magnetic field. Though this is derived from a simplified particle trajectory picture, this
velocity actually gives rise to a drift, or a flow of the plasma. This does not lead to charge
separation, and hence currents.

2.1.3 The polarization drift

If the electric field is constant in space but not in time, ∂E/∂t 6= 0, the E × B-drift is not
constant either. Instead it pulls the electrons perpendicularly to the magnetic field to and
fro, and one can consider this as a force corresponding to the change in the E × B-velocity,

F = mα
dvE
dt

=
mα

B2

∂E

∂t
× B.

This force F then yields a secondary drift of its own, similar to the E × B-drift,

vp,α =
mα

qαB2

∂E

∂t
.

This we call the polarization drift. As can be deduced from the fact that the charge qα is
still in the expression, the drift results in charge separation, or a current.
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2.1.4 The diamagnetic drift

The previous drift phenomena are the consequence of a force perpendicular to the magnetic
field line along which the plasma particle is gyrating, and can be understood as the motion
of a single particle in an external field. Some drifts, on the other hand, arise as the result of
the gradient of the macroscopic quantities, such as the plasma pressure or the magnetic field.
To briefly introduce them, we turn to the momentum balance equation of the ion fluid,

miniDtvi = qini(E + v × B) −∇pi −∇ · Πi, (2.11)

with Dt = ∂t + vi · ∇, ni ≈ ne = n the particle density and Πi is the gyroviscous part of the
pressure tensor. If we take the cross product of this equation with the magnetic field unity
vector b = B/B0 and divide by qiniB0, we get

mi

qiB2
0

Dtvi × B =
1

B2
(E × B) − 1

qiniB2
∇pi × B − 1

niB2
∇ · Πi × B. (2.12)

In this relation we can identify the following terms: first of all the first term on the right hand
side, which corresponds to the E × B-velocity vE .

If the magnetic field is assumed to be strong and almost constant, vE is the dominant
contribution to the nonlinear vi · ∇vi term on the left hand side. In that case the left hand
side of Eq. (2.12) reduces to the previously given definition of the ion polarization drift.

Then, the second term on the right hand side is called the ion diamagnetic drift, which also
has an electron counterpart. It arises out of the fact that a charged particle that is gyrating
around a magnetic field line B corresponds to a current itself, and generates a magnetic
field in the direction opposite to the applied field. The contributions of particles gyrating
around neighboring field lines cancel when the plasma is homogeneous. When we sum over
all the particles, we find the magnetization M = −n〈mµ〉b. Here, µ is the magnetic moment
defined by v2

⊥/2B. When a plasma has a thermal distribution 〈1
2mv

2
⊥〉 = T , we can write the

magnetization as a function of the pressure p,

M = − p

B
b.

If the pressure is not constant, this gives rise to a current, the so-called diamagnetic current,

j = ∇× M = −∇p× B

B2
, (2.13)

where again the magnetic field B is taken to be constant. If divided by electron or ion charge
and density, this becomes the diamagnetic drift velocity (for ions or electrons),

vD,α = −∇p× B

qαnB2
. (2.14)

Here again it is stressed that this is a drift that would not pull on a single particle: it is the
consequence of the fact that at one point there are more particles gyrating than at the point
next to it, resulting in a net movement of the fluid. If B is curved and has a considerable
gradient, we have to let the curl in Eq. (2.13) act on B as well. This gives terms that
correspond to the velocities that are called the curvature drift and ∇B drift.

When the diamagnetic drift velocity vD is also convoluted in the vi ·∇vi term on the left
hand side, we get a diamagnetic contribution to the polarization drift velocity. However, this
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term cancels exactly against the gyroviscous term, the last term on the right hand side of
Eq. (2.12). This is called the gyroviscous cancellation. When B is large and constant, the vE
contribution is dominant over vD, and the gyroviscous term is smaller by at least two orders
of magnitude.

2.2 The Vlasov equation

The equations for single particle motion describe the dynamics of individual, non-interacting
particles, and by definition, a plasma consists of a large number of intimately interacting
particles displaying collective behaviour. The behaviour of only a limited number of particles
with a simplified model of their relative forces already turns out to be quite hard to calculate.
One way of dealing with the multitude of variables and degrees of freedom is invoking a
distribution function fα(x,v, t). This function is defined such that the amount of particles
species α with velocity v at x on time t is

s
d3x d3vfα.

Such a distribution is normalized such that integration over all of phase-space gives

x
d3x d3vfα = nα(t),

the total number of ions or electrons at time t. This is assumed to be constant. If we could
determine f(x,v, t) we would know the electromagnetic fields from that point onwards, be-
cause a particle distribution evolves according to (here) classical mechanics. A volume in
phase-space moves according to the Boltzmann equation,

∂fα
∂t

+
∂

∂ξi

(

∂ξifα
∂t

)

= Cα, (2.15)

where ξi = {x,v} are the six-dimensional phase-space coordinates, and Cα is a collision
term, changing the distribution function in time. In the case of plasma, collisions are not
very likely to occur in the same sense as in a neutral gas. It is more appropriate to think of it
as a short-range interaction term, causing small angle deflections that may sum up to large
angle deflections. This can be modelled using a Fokker-Planck type collision operator. How-
ever, when the temperature in a magnetized plasma becomes high enough, it will experience
vanishingly small Spitzer resistivity, proportional to T−3/2. In this regime, the short-range
interaction term Cα will be neglected. The Boltzmann equation can be simplified if

∂

∂x

dx

dt
=
dx

dt

∂

∂x
,

∂

∂v

dv

dt
=
dv

dt

∂

∂v
,

where the first equality follows trivially if the space variables are orthogonal. The second term
holds since the Lorentz-term in the interaction is always perpendicular to v, and because we
neglect resistive and radiative terms, that may be proportional to η v. Thus we arrive at the
Vlasov equation,

∂fα
∂t

+ v · ∇fα + qα(E + v × B) · ∂fα
∂v

= 0. (2.16)

We wish to obtain a closed set of equations to calculate the evolution in time for the distribu-
tion function and the electromagnetic fields. This is done by combining the Vlasov equation
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and Maxwell’s equations in the following way: we established that

nα(x, t) =

∫

d3vfα(x,v, t),

uα(x, t) =

∫

d3v v fα(x,v, t),

so that the charge and current density become

ρα(x, t) =
∑

α

qαnα,

J(x, t) =
∑

α

qαnαuα.

In this way we can extract macroscopic quantities by taking moments from the Boltzmann
or Vlasov equation. In other words, a macroscopic variable 〈g〉 that depends on (x, t) is the
result of averaging the function g(x,v, t) over velocity space,

〈g〉α ≡
∫

d3v g(x,v, t)fα(x,v, t).

This only works when fα goes to zero fast enough for v → ∞.
The zeroeth moment of the Vlasov equation thus yields the continuity equation,

∂nα
∂t

+ ∇ · (nαuα) = 0. (2.17)

The first moment, multiplying fα with mαv, gives the momentum balance equation,

∂

∂t
(nαmαuα) + ∇ · (nαmα〈vv〉α) − qαnα(E + uα × B) = 0. (2.18)

Finally, the energy equation is obtained by multiplying with mαv
2,

∂

∂t
(nαmα〈v2〉α) + ∇ · (nαmα〈vv2〉α) − qαnαE · uα = 0. (2.19)

Here we see clearly that the n-th moment equation always requires knowledge of the n+1-th
moment. This means that if we want to actually calculate something, we have to truncate this
infinite hierarchy somewhere. This is usually done after the second moment, and transport
theory is used to model the term that involves the third moment.

At this point the further study of these equations will not be pursued. Instead, an approach
is taken that leans more heavily on the form of the electron distribution function f ≡ fe.

Even though there are many classes of solutions to Eq. (2.16), one that is particularly
important is the Maxwellian equilibrium distribution function, representing local thermal
equilibrium,

f = n
∏

i=x,y,z

√

m

2πkTi
e−

1

2
mv2i /kTi = n

∏

i=x,y,z

e−v
2
i /v

2
t,i

√
πvt,i

,

with Boltzmann constant k, density n, and a different temperature Ti in every direction i.
These temperatures can be defined by the mean velocities in each direction:

v2
i =

kTi
m

=
1

2
v2
t,i, i = x, y, z,
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or vt =
√

2kT/m.
In a magnetized plasma, velocities and temperatures are highly anisotropic. It is instruc-

tive to define a component parallel and perpendicular to the (dominant) magnetic field, so
that

f = n
e
−v2

‖
/v2

t‖

√
πvt‖

e−v
2
⊥/v

2
t⊥

πv2
t⊥

,

with definitions kT‖ = 1
2mv

2
t‖ and kT⊥ = 1

2mv
2
t⊥. Then

v2
⊥ =

1

πv2
t⊥

∫ ∞

0
dv⊥ 2πv3

⊥e
−v2⊥/v2t⊥ = 2v2

t⊥

∫ ∞

0
dxx3e−x

2

= v2
t⊥ =

2kT⊥
m

,

v2
‖ =

1√
πvt‖

∫ ∞

−∞
dv‖ v

2
‖e

−v2
‖
/v2

t‖ =
1

2
v2
t‖ =

kT‖
m

.

so that v2 = v2
‖ + v2

⊥ = 1
2v

2
t‖ + v2

t⊥. Note that
∫

d3v =
∫∞
−∞ dv‖

∫∞
0 dv⊥ 2πv⊥.

2.3 The drift-kinetic approximation

Solving coupled partial differential equations for the distribution function and the fields in
three dimensions is very complex. However, in a tokamak plasma, the anisotropy that is
introduced by the strong magnetic guidefield vastly simplifies the equations. Without loss of
generality we will call the direction of the dominant part of the magnetic field the z-direction.
Furthermore, we assume that the fields do not vary on short time or length scales, such as
the electron (inverse) gyro-frequency or radius. This means that instead of the general kinetic
equations in {x,v, t}, which still contains all the phase-information of the gyro-motions of
the electrons, we can average over the phase-angle and the perpendicular velocity. In this
way we obtain a distribution function that keeps track of the position of the guiding centre
R and the parallel velocity v‖ in time.

2.3.1 Reduction by strong magnetization

The magnetic field in a tokamak can locally be assumed to be of the following form,

B = B0ez + ∇ψ × ez, (2.20)

where ez corresponds to the toroidal angle, going the long way around the torus, and x, y are
perpendicular components, corresponding to r, θ in the poloidal plane. Here, B0 is considered
constant, and |∇ψ| ≪ B0 a considerably smaller perpendicular component, representing the
poloidal field created by the toroidal current in a tokamak. In other words, Bx,y ∼ εB0, with
ε ≪ 1. Here we note that we can distinguish between the x − y plane and the direction
perpendicular to the magnetic field, which from here will be labeled ⊥, not to be confused
with the microscopic perpendicular component associated with the helical motion of plasma
particles around the field line. The corresponding electric field is

E = −ez(∇φ− ∂tψ). (2.21)

In general we can say that the velocity in the parallel direction, along the field line, is also
considerably larger than the drift-velocity across, so v⊥ ∼ εv‖, and if we project on the z-axis
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2.3 The drift-kinetic approximation

and its perpendicular plane we have

vz = v‖ + O(ε2),

vx,y = v⊥ + v‖
Bx,y

B
+ O(ε2).

As v‖ ∼ O(1), the v‖-term in the perpendicular velocity is kept. Because B0 is constant and
|∇ψ| ≪ B0, we may neglect the ∇B and curvature drifts. If we assume that the dominant
component of the perpendicular velocity is the E × B-drift, we can decompose the velocity
as follows

v = v⊥ + v‖
B

B
,

=
E × B

B2
+ v‖

B0ez + ∇ψ × ez

B
,

≈
∇φ+ v‖∇ψ

B0
× ez + v‖ez.

At this point we introduce the Poisson brackets. They are defined as

[f, g] ≡ ez · ∇f ×∇g = ∂xf∂yg − ∂yf∂xg, (2.22)

with respect to the z-axis, where the last equal-sign only holds in cartesian coordinates. This
notation allows us to write the v · ∇-operator as

v · ∇ =
1

B0
(∇φ+ v‖∇ψ + v‖ez) · ∇,

=
1

B0

(

[φ+ v‖ψ, . . .] + v‖∂z
)

.

In much the same way the acceleration becomes

− e

me
(E + v × B) = − e

me
(∂tψ − ∂zφ+

1

B0
[φ, ψ]).

This yields the following form of the kinetic equation for collisionless plasmas in the drift
approximation [1, 2, 3],

∂f

∂t
+

1

B0
([φ+ v‖ψ, f ] + v‖∂zf) +

e

me
(

1

B0
[ψ, φ] + ∂zφ− ∂tψ)

∂f

∂v‖
= 0, (2.23)

known as the drift-kinetic equation.
This equation has reduced the number of degrees of freedom considerably, and smoothened

the fast and spiky dynamics of a set of electromagnetically interacting point particles, but
still hosts the infamous particle-wave resonances. Most importantly, it is tailored to study
the instabilities that this thesis focusses on, and resolves the issues of combining extreme low
collisionality and the interest in the effects of a temperature gradient.

It can be closed by taking the zeroeth and first moment equation as sources,

∇2φ =
Ωi

n0

∫

dv‖f(x, v‖, t), (2.24)

∇2ψ = −e
∫

dv‖ v‖f(x, v‖, t), (2.25)

the ion response equation (see section 2.4) and the parallel momentum balance equation,
respectively.
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2 Model equations

2.3.2 Convective form of the drift-kinetic equation

The set of equations (2.9, 2.24, 2.25) can be simplified further by assuming that the z-direction
is an ignorable coordinate. One can align the velocity coordinate to z by transforming to the
canonical momentum in the z-direction,

vz = v‖ +
e

me
ψ. (2.26)

This simplifies Eq. (2.9) for the new distribution function f(x, vz, t) to [4]

Dtf ≡ ∂f

∂t
+

1

B0
[Φ, f ] = 0, (2.27)

with streamfunction
Φ = φ+ vzψ − e

2me
ψ2, (2.28)

as all derivatives with respect to z vanish. Eq. (2.24) remains unchanged, but Eq. (2.25)
becomes

∇2ψ − d−2
e ψ =

∫

dvz vz f(x, vz, t), (2.29)

with de = c/ωpe =
√

me/e2n the electron inertial skindepth. This introduces a shielding of
the current density on the lengthscale de.

One of the most striking characteristics of this formulation is the Lagrangian convective
form of Eq. (2.27), that reminds of two-dimensional Eulerian fluid flow. It has the form of a
total Lagrangian derivative Dtf = 0, where the quantity f is advected by streamfunction Φ,
but keeps it unchanged in the comoving frame. This is a very important property, that we
will exploit more than once. It enables us to use the powerful technique of contour dynamics

that has been used for 2D fluid flow [5, 6] and plasma dynamics using a two-fluid model [7],
but now applies to the kinetic formulation as well.

2.3.3 Discretization of the perturbed distribution function

Solving the system of equations (2.27, 2.24, 2.29) is still a formidable complex task, as it
requires knowledge of the exact form of the distribution function f . This complexity may
be reduced by linearization, splitting f into an constant equilibrium part f0 and a a smaller
fluctuating part f1 ≪ |f0|,

f = f0(v) + f1(x,v, t).

This may already be enough to yield tractable analysis in suitably chosen geometries, but in
order to use e.g. numerical contour dynamics, it is essential to take one extra step. We can
discretize f1 as the sum of a number of δ-functions of v with weights that may depend on
space and time.

In Chapter 5 and 6 we shall consider a model with weights that are spatially constant
except for jumps at a finite number of contours. These contours thus define the boundaries
between two areas with a differently perturbed electron distribution f1.

We can write the equilibrium and perturbed part of the distribution function as follows:

f0(vz) =
n√
πvt

e−v
2
z/v

2
t ,

f1(x, vz, t) =
N−1
∑

i=0

f1,i(x, t)δ(vz − vi),
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2.3 The drift-kinetic approximation

where N is the depth of the discretization in velocity space, or the number of contours used
as an initial condition to model a jump. The moments of the perturbed distribution function
are

hj =

∫

dvz v
j
zf1 =

N−1
∑

i=0

vji f1,i(x, t). (2.30)

Hence, for given values of the support velocities v0, · · · , vN−1, the firstN moments h0, · · · , hN−1

determine the weights f1,0, · · · , f1,N−1.
If we want to impose a perturbation to the equilibrium distribution function, one degree

of freedom remains: dependent on how we choose the vi, the weights f1,i(x, t) are determined.
One approach is to define moments in a way that low order moments correspond to basic

deviations from a Maxwellian distribution and higher order moments reflect less likely devia-
tions. This can be achieved by using orthogonal functions instead of vni . Hermite polynomials
Hn(x) are polynomials that satisfy

∫ ∞

−∞
Hm(x)Hn(x)e

−x2

dx = 2n
√
π n! δm,n. (2.31)

Now, we define Hermitian moments as

hHj =

∫

Hj(v/vt) f1 dv, (2.32)

so that a perturbation ∼ vm exp(−v2/v2
t ) of the distribution function only perturbs the

lowest m+1 moments hH0 , . . . , h
H
m. Because of the orthogonality of the Hermite polynomials,

a perturbation ∼ Hm(v/vt) exp(−v2/v2
t ) would only perturb the moment hHm.

If we apply this to the sum of δ-functions that should impose a perturbation to f0, we
note that this procedure cannot eliminate all moments higher than N . However, by chosing vi
as the zeroes of the N -th Hermite polynomial, the next, N + 1-th moment vanishes: hHN = 0.
The first N moments, however, do not vanish, and are given by

hHj =

N−1
∑

i=0

fiHj(vi/vt), j = 0, . . . , N − 1. (2.33)

The first four moments have a well-known physical interpretation,

0: density perturbation ne,1 = hH0 ,

1: velocity (current) perturbation j1 = −ene,0ve,1 = 1
2vth

H
1 ,

2: temperature perturbation ne,0T1 = 1
4v

2
tmeh

H
2 ,

3: heat flow q = 1
8v

3
tmeh

H
3 .

The simplest case, N = 1, corresponds to the Euler system. Only one type of contour exists,
that limits an area with higher electron density, corresponding to an elevated level of vorticity.
No current perturbation is possible. For N = 2, the isothermal two-fluid model is retrieved
[2, 7, 8]. By making a negative perturbation at negative vz and a positive for positive vz
(or vice versa), this results in a shifted Maxwellian, corresponding to a current perturbation.
With N = 3, it is possible to capture non-isothermal effects. It is, however, equivalent to an
isothermal electron model with a different temperature, to which an extra δ-function at v = 0
is added to model the ion potential vorticity [2, 3]. Truely kinetic modelling therefore starts
for N ≥ 4.
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2 Model equations

2.3.4 Isothermal fluid equations

The full drift-kinetic equations can be used to resolve phenomena that are fast or slow com-
pared to the thermal speed of the bulk plasma. When e.g. a wave with a phase velocity that
is slow compared to the thermal speed travels through the plasma, the affected plasma par-
ticles have the time to thermalize, i.e. relay the information that the wave is compressing or
diluting the plasma locally to the plasma in the direct surroundings. Such a perturbation is
then called isothermal.

Or, if λmfp is the mean free path of an electron, and tc a typical time (e.g. a transit time,
vttc = lc, with lc the size of the system), then

isothermal:
ω

k
≪ λmfp

tc
.

The other limit, where very fast wave phenomena compress and dilute plasma so fast that
they cannot interchange information at all, is called adiabatic.

adiabatic:
ω

k
≫ λmfp

tc
.

For adiabatic processes, thermal conduction is unimportant, and the adiabatic gas law applies,

∂t p n
−5/3 = 0. (2.34)

The regime in between these two limiting cases is captured by the resonances in the drift-
kinetic equation.

There have been many attempts to construct a collisionless limit of the plasma fluid
equations [2, 9]. In this thesis however, the focus will not be on the details of the intricate
challenges that arise when a gas consisting of particles that do not collide on timescales that
we are considering, needs to be described as a fluid, which entails instant thermalization.
Even though the assumptions of a collisionless fluid are hard to meet, the equations prove
most useful.

Here, the fluid equations will be derived as the zeroeth and first moment of the drift-kinetic
equation with the discretized N = 2 electron velocity distribution function,

f ≡ fiso = f0 + f1 (2.35)

with

f0 =
ne,0√
πvt

e
−v2

‖
/v2t , f1 = − j1

2evt
{δ(v‖ − vt) − δ(v‖ + vt)}, (2.36)

so that
∫

dv‖f = ne, (2.37)

−e
∫

dv‖ v‖f = j1, (2.38)

me

ne

∫

dv‖ v
2
‖f = mev

2
t = Te, (2.39)

become electron density, current density and electron temperature. Here we note that the
ratio of pressure over density is fixed at mev

2
t .
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2.3 The drift-kinetic approximation

The perturbed part of the electron distribution function is described as a sum of two
delta-distributions in velocity space, corresponding to the two contours that can be drawn
around the area in which this perturbation plays a role. When the distribution function would
be discretized using N velocities, the weights wi of these perturbations could be chosen such
that only the first moment hH1 of the distribution function becomes non-zero. Here, N = 2
yields the simplest isothermal description, which can analytically be manipulated to give the
two-fluid drift-Alfvén model equations.

Performing the integration over parallel velocity over Eq. (2.23) multiplied by unity,

0 = ∂t

∫

dv‖f +
1

B0
[φ,

∫

dv‖f ] +
1

B0
[ψ,

∫

dv‖ v‖f ] + ∂z

∫

dv‖ v‖f

= ∂tn+
1

B0
[φ, n] − 1

eB0
[ψ, j1] −

1

e
∂zj1,

⇒ 0 = ∂tN +
1

B0
[φ,N ] − v2

A(
1

B0
[ψ,∇2ψ] + ∂z∇2ψ),

where we used that the current density only has a parallel component envt ≈ ∇2ψ, and in
the last line multiplied by Ωi/n0 = eB0/min0 to obtain an equation in the vortical quantity
N = Ωin/n0.

The same can be done for a parallel momentum balance equation, multiplying Eq. (2.23)
by mv‖,

0 = ∂t

∫

dv‖ v‖f +
1

B0
[φ,

∫

dv‖ v‖f ] +
1

B0
[ψ,

∫

dv‖ v
2
‖f ] + ∂z

∫

dv‖ v
2
‖f

− e

m
(∂tψ +

1

B0
[φ, ψ] − ∂zφ)

∫

dv‖ v‖
∂f

∂v‖

= −1

e
∂t∇2ψ − 1

eB0
[φ,∇2ψ] +

1

B0
[ψ, nv2

t ] + ∂z(nev
2
t )

+
ene
me

(∂tψ +
1

B0
[φ, ψ] − ∂zφ),

⇒ 0 = ∂t(d
2
e∇2ψ − ψ) +

1

B0
[φ, d2

e∇2ψ − ψ] − 1

B0
[ψ,Nρ2

s] − ∂z(Nρ
2
s),

where ρs =
√

memiv2
t /eB0 the ion-sound Larmor radius. It is demonstrated here that when

the distribution function f(x, v‖, t) is discretized by taking two well-chosen values, the fluid
equations emerge. Also, taking two values is exactly enough to provide for two non-zero
moment equations. The third, being the equation for heat conduction, vanishes as this
discretization only allows isothermal dynamics,

∫

dv‖(v
2
‖ − v2

t )fiso ≡ 0.

In this way the hierarchy of needing the (N + 1)-th moment to close the N -th moment
equation is resolved. We obtain

∂tN +
1

B0
[φ,N ] = v2

A(
1

B0
[ψ,∇2ψ] + ∂z∇2ψ), (2.40)

∂t(d
2
e∇2ψ − ψ) +

1

B0
[φ, d2

e∇2ψ − ψ] =
1

B0
[ψ,Nρ2

s] + ∂z(Nρ
2
s). (2.41)
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2 Model equations

This is not a closed set of equations, as we have two equations for three unknowns. The third
equation stems from the modelling of the ion response to electron density perturbations, and
is discussed in section 2.4.

2.4 The cold ion approximation

The dynamics of the electrons in a plasma is described by a fluid or a kinetic model, which
takes into account the degrees of freedom along the magnetic field lines of the electrons
as they move through the plasma. In the work presented in this thesis, however, the ions
are often considered to be cold relative to the electrons. This choice of words may however
sound misleading, as the process of nuclear fusion between ions is supposed to happen at
temperatures of roughly 15 keV, hundreds of millions of degrees.

In the strong guide field ordering we observe that we can neglect the electron gyroradius ρe
for phenomena on the drift scale, but generally we cannot do the same for the ion gyro-radius
ρi. To model ion gyromotion correctly, some rigor is in order, and a kinetic model for the
perpendicular motion of the ions is called for, as e.g. in [10].

Another possibility is to neglect the ion gyroradius all the same, and consider them to be
cold. This is not entirely justified physically, but the effects of taking into account the finite
ion Larmor radius have been studied in both two-fluid context [2] and in a complete kinetic
model for the ions [10, 11], and can be looked at more or less separately from the electron
dynamics, which is the primary subject of investigation in this thesis.

Here, our aim is to focus on the phenomena that concern the parallel electron dynamics.
The drift ordering focusses on timescales ω−1

pe < τ < Ω−1
i , so we do not resolve the jittery

movement of plasma waves. However, electrons can be considered to move approximately
along flux tubes parallel to the magnetic field. An ion density perturbation could lead to a
region of positive space charge, to which electrons react by compression along the flux tube,
or vice versa. This does not occur instantly because distances (wave lengths) along the field
line are large compared to perpendicular length scales. With this in mind we do not model
the dynamics of the ions separately, but we assume them to be passive as time scales are
short with respect to the ion gyro-frequency Ωi, subtly changing their gyro-orbits to assure
local charge neutrality.

In most of the physical applications the electron temperature is roughly the same as the
ion temperature, so

Te ≈ Ti, → vt,e ≫ vt,i

by at least one order of magnitude ∼
√

mi/me. Furthermore, the parallel acceleration of
electrons by the electromagnetic field goes with Ωe, and with Ωi for ions, which is a difference
of order mi/me, which implies that the change in ve as a result of a perturbation of the space
charge is larger than the change in vi by two orders of magnitude.

So assuming ions to be cold merely states that they do not move in the same way electrons
do, and that they behave according to simplified reduced dynamics. These can be derived
from several types of arguments.

2.4.1 The polarization drift approach

The starting point of this line of reasoning is the ion momentum balance equation,

miniDtvi = qini(E + v × B) −∇pi −∇ · Πi, (2.42)
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2.4 The cold ion approximation

where Dt = ∂t+vi ·∇, and Πi is the gyroviscous part of the pressure tensor. Dividing by nimi

and taking the curl of this equation yields

∇×Dtvi = ∇× (vi × ~Ωi) +
1

n2
i

∇ni ×∇pi, (2.43)

where the notation ~Ωi = qiB/mi, reminiscent of the ion gyrofrequency, is introduced. When
we apply the vector identity

∇× (vi · ∇vi) = vi · ∇~ω + ~ω∇ · vi − ~ω · ∇vi,

with ~ω ≡ ∇× vi the ion vorticity, and if we assume that the pressure gradient is parallel to
the density gradient, the barotropic fluid approximation, we may write Eq. (2.43) as

Dt(~ω + ~Ωi) + (~ω + ~Ωi)∇ · vi = (~ω + ~Ωi) · ∇vi. (2.44)

Here we may use the ion continuity equation Dtni + ni∇ · vi = 0 to eliminate ∇ · vi, so that

Dt

(

~ω + ~Ωi

ni

)

=

(

~ω + ~Ωi

ni

)

· ∇vi. (2.45)

If we furthermore assume that B ≈ B0ez, we can say that the ion velocity in the z-direction viz
is not directly driven by the 2-D dynamics perpendicular to B. Only parallel density fluc-
tuations may couple to the perpendicular equations, and the fast equilibration parallel to
magnetic field lines results in the fact that this is a very small effect. This means that in the
z-direction, we can put viz ≈ 0. This reduces Eq. (2.45) to

DtU ≡ Dt

(

ωz + Ωi

ni

)

= 0. (2.46)

Here, Ωi is no loger a vector quantity and thus has become the ion Larmor frequency. The
quantity U that is conserved here is called the potential vorticity. In fact, only assuming
k‖ = 0 and using Ertel’s theorem [12] also yields this conservation law.

If we compare this to the derivation of the drift phenomena in section 2.1.4, we note that
this term arises out of the ion polarization drift term. In this case, the E×B-drift is absorbed
in the time derivative of ~Ωi and the diamagnetic drift drops out when taking the curl.

When the ion vorticity is small with respect to the ion gyrofrequency, e.g. when B0 is
large, Eq. (2.46) becomes

Dt

(

ωz
Ωi

− δn

n0

)

= 0, (2.47)

where ni = n0 + δn. This is called the quasi-geostrophic approximation, which states that
|δn| ≪ n0. Here we suppress the subscript i, as the plasma is supposed to be quasi-neutral
on the timescales that are considered here, so that ni = ne.

If in Eq. (2.42) the E × B-drift is dominant, then

vi ≈
1

B0
∇φ× ez ⇒ ~ω =

1

B0
∇2φ ez.

When we fill this in Eq. (2.47), we get

Dt

( ∇2φ

B0Ωi
− δn

n0

)

= 0, (2.48)
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where now Dt ≡ ∂t + [φ, . . .]. This is called the geostrophic approximation.
An interpretation of this equation is that electron density fluctuations are equal in size to

the ion (E×B-flow) vorticity. In other words, when electrons may undergo fast phenomena,
the ions cancel the local space charge by changing their vortical motion. To be a little more
specific, we can look at the microscopic picture.

2.4.2 The particle approach

To express the density fluctuations in terms of vorticity, we construct a field of which the
rotation of the ion is a particular solution. If we consider a region with a constant charge
density, causing an electric field E = −∇φ = −B0δωx, corresponding to a potential

φ =
1

2
B0δω(x2 + y2),

this would describe the rotation of plasma as the consequence of the E × B-velocity, with a
constant vorticity ∇2φ/B0 = 2δω. The gyrofrequency ω of an individual particle is found by
solving the equation of motion Eq. (2.1), but now with a background electric field, so that

miẍ = qv × B + qE

becomes

−ω2 = −ωΩi − δωΩi. (2.49)

When δω = ∇2φ/2B0 = 0 the vorticity is just ω = Ωi. The electric field obviously alters the
motion of the gyrating ions, by an amount of perturbed vorticity δω,

ω ≈ Ωi + δω,

which can be found by substitution in Eq. (2.49),

(Ωi + δω)2 = Ωi(Ωi + δω) − Ωiδω,

when the δ2 term is neglected. So the (perturbed) electric field can induce ion vorticity. To
see how this is coupled to the density we look back at the definition of the ion Larmor radius
Eq. (2.6),

ρi =
v⊥,i
Ω
, ⇒ δρi = −ρi

δω

Ω
≈ −ρi

1

2

∇2φ

B0Ωi
,

we see that the extra vorticity has an effect on the radius of gyration of the ions, that now
encircle an area

A = πρ2
i ⇒ δA

A
= 2

δρi
ρi

= − ∇2φ

B0Ωi
,

and the argument to couple this to density goes roughly like this: the larger the area that is
circled by an ion, the less ions per area,

δn

n
= −δA

A
=

∇2φ

B0Ωi
.

So, in words, parallel perturbations of the electron pressure may cause (temporary) electric
fields that cause the surrounding ions to change their gyro-radius a little, thus changing the
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2.5 The generalized Ohm’s law

ion density to compensate the charge imbalance. The electron pressure is no longer visible
in the equations since we are used to take the curl of the momentum balance equation to
consider vorticities instead of momentum, which does not mean pressure does not play a role.

How do these ways of looking at electron-ion interaction mesh? To see that ions indeed
gyrate in a way that a temporarily higher electron density in a flux tube in the middle induces
them to increase the ion density there, we can think of it as a time-varying electric field. The
accumulation of electrons (the parallel electron pressure perturbation) takes some time to
build up, so you get with the field of a space charge

δE ∼ −δωx, and ∂tx = − 1

Ωi
∂tE,

a velocity towards the flux tube, or

δx ∼ − 1

Ωi
δE.

So in this way we can think as well in terms of vorticity as in terms of a relatively passive
ion response to electron density perturbations, of the cold ion approximation.

2.5 The generalized Ohm’s law

As it is assumed that there is no electrical resistivity in the plasma that we consider, it is not
bad practice to be precise in how electrical fields are dealt with by the plasma. In an ideal
plasma, without resistivity, viscosity or inertia, we may simply say that electric fields cannot
exist: they are immediately annihilated by the infinitely mobile fluid, so, in a moving frame,

E + v × B = 0.

This can be translated to the by now more common notation, using the fields φ and ψ,

∂tψ + ∂zφ+
1

B0
[φ, ψ] = 0. (2.50)

It was claimed in the introduction that field lines in an ideal plasma that intersected a volume
at some time t, at later times would still intersect the exact same volume, or, in other words,
that the magnetic field is frozen into the plasma. This can now be shown using this expression.

First, a flux surface need not be exactly identical to a surface on which ψ is constant. We
can see that a parallel disturbance of φ breaks the Lagrangian covariance in Eq. (2.50). A
flux surface can be constructed by demanding that

B · ∇χ = 0 ⇒ B0∂zχ+ [ψ, χ] = 0. (2.51)

Here, the new flux coordinate χ is assumed to be constant along a magnetic field line.

Second, the flux through a surface at a time t should be the same after the surface flows
with the plasma for a time δt, so “frozen in” can be quantified thus,

∂tχ+
1

B0
[φ, χ] = 0. (2.52)
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If we define the following covariant derivatives in the usual way,

Dt = ∂t +
1

B0
[φ, . ],

∇‖ = ∂z +
1

B0
[ψ, . ],

then the Jacobi identity of these two operators becomes

Dt∇‖A−∇‖DtA = [∂tψ + ∂zφ+
1

B0
[φ, ψ], A].

So, when Ohm’s ideal law applies, the right hand side becomes identical to zero, so then
Dt∇‖A = ∇‖DtA. Furthermore, if we consider A = χ, and χ labels flux surfaces at some time
t, then it will keep doing so, or

(∂t +
1

B0
[φ, . ])(B0∂zχ+ [ψ, χ]) = 0.

This implies that ∇‖DtA = 0, or (2.52) along a field line, must also hold, so that magnetic
flux is frozen into the plasma as long as the ideal Ohm’s law applies. This concludes the
excursion into ideal magnetohydrodynamics.

When dissipative effects or electron inertia are taken into account, they enter through the
generalized Ohm’s law,

E + v × B = ηJ + d2
e

dJ

dt
− 1

ne
(∇pe − J × B). (2.53)

The first two terms on the right hand side break the flux-preserving symmetry, and can cause
reconnection to occur, so that the magnetic field lines inside a χ = c surface can be broken
up and reconnected again. The last two terms modify the electric field, but can not induce
reconnection by themselves.

In this thesis, η will be considered negligible, and we will focus on the inertial term as
a mechanism for collisionless reconnection. When two magnetic field lines with a different
orientation, that are then frozen into the plasma, are pushed together, the resulting electric
field accelerates electrons to prevent the cancellation of the magnetic flux. The finite electron
inertia prohibits this current from arising instantaneously, thus facilitating reconnection.

2.6 Kinetic waves in a strongly magnetized plasma

In this section we will consider plane waves in an infinite periodic slab geometry. This analysis
can be applied to both fluid and kinetic equations alike, and in the presence of a temperature
or density gradient. This may already give an indication of some of the kinetic modifications
that one may expect to arise when we depart from fluid theory.

In this section it will be shown how the structure of the dispersion relation for waves in
strongly magnetized plasmas differs when we compare kinetic and fluid theory. The parallel
velocity distribution function yields a complex relation that shows the interplay between a
particle population and waves, which is captured in the plasma dispersion function if the
distribution is Maxwellian. It has already been shown in section 2.3.4 that the fluid equations
can be derived from the drift-kinetic equation in a straightforward manner using the perturbed
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2.6 Kinetic waves in a strongly magnetized plasma

distribution function that is discretized in velocity space only with N = 2. Here it will be
shown that the correspondence lies even closer, and that it is possible to obtain the fluid
results from the kinetic dispersion relation by the substitution of a ‘discretized’ dispersion
function, which is based on the discretized distribution function, but itself is smooth. This
gives some insight on how fluid theory captures most of the isothermal kinetic dynamics, but
does away with the resonances.

Note that in this approach no use is made of contours, that correspond to the boundary
in space of a region with a perturbed distribution function. The geometry here is simplified
to perform a general linear analysis of possible waves. This leaves room to introduce some
other excursions from isotropy, such as an equilibrium density and temperature gradient.

2.6.1 Waves in drift-kinetic theory

We consider a plane plasma slab, with a magnetic guide-field B = B0 ez + ∇ψ × ez, where
∇ψ ≪ B0. The Maxwell-Vlasov equation for the distribution function f(x, v‖, t), with v‖
parallel to the magnetic field, in the drift-approximation given by Eq. (2.23), is repeated here
for convenience,

∂tf + [φ, f ] + v‖(∂zf + [ψ, f ]) +
e

me
([ψ, φ] + ∂zφ− ∂tψ)

∂f

∂v‖
= 0. (2.54)

All perturbed quantities may be split into an equilibrium and a fluctuating part,

A ≡ A0(x, v‖) +A1(x, y, z, t)

in which A0 ≫ A1, and with A0 the solution to the equilibrium equations, and a fluctuating
part A1 ∼ exp(i(ωt− k · x)) that describes the plane wave disturbances.

The unperturbed, equilibrium distribution function may be of the form (cf. section 2.2),

f0(x, v‖) =
1√
π

n0

vt
e
−v2

‖
/v2t with

1

2
mev

2
t = k Te‖, (2.55)

though most of the analysis does not depend on the specific form of the distribution function.
For the present analysis, the equilibrium may contain gradients in density and temperature,
here chosen in x-direction, and without loss of generality,

∂xn0 = − n0

Ln
∂xvt = − vt

2LT
. (2.56)

This leads to the expression for the gradient in the distribution function

∂xf0 = f0

(

− 1

Ln
+

1

2

1

LT

)

+
v‖

2LT

∂f

∂v‖
.

The partial derivative to the parallel velocity is only evaluated under the integral sign, by
partial integration, so that no information about the specific form of the distribution function
is needed beforehand.

Here, we will focus on dynamics where the electrons are not assumed to move so quickly
that they induce charge separation, creating plasma waves with the plasma frequency
ω2

pe = ne e
2/ǫ0 me. The ion response to parallel electron compressibility is modelled by the
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cold ion approximation, that was introduced in section 2.4, and is quantified in Eq. (2.46):
DtU = 0, or

∂t(∇2φ−N) + [φ,∇2φ−N ] = 0 (2.57)

with N ≡ Ωi logn. If N is a function of x, we get a contribution from the bracket [φ,N ] 6= 0.
We close the drift-kinetic equation by taking the zeroeth and first moment of it, providing

us with the sources for the potential vorticity equation and Ampére’s equation,

∇2φ =
Ωi

n0

∫

dv‖f, (2.58)

∇2ψ = −e
∫

dv‖ v‖ f, (2.59)

respectively. Linearizing Eqs. (2.54, 2.58, 2.59), we get

(ω− v‖kz)f1 +

[

kyf0

(

1

Ln
− 1

2LT

)

− ky
v‖

2LT

∂f0

∂v‖

]

(φ1 + v‖ψ1) = Ωe
∂f0

∂v‖
(ωψ1 + kzφ1) (2.60)

and

−k2
⊥φ1 =

Ωi

n0

∫

dv‖f1 +

[

φ1,
Ωi

ωn0

]

(2.61)

−k2
⊥ψ1 = − e

B0

∫

dv‖v‖f1 (2.62)

If we linearize the potential vorticity equation for the ion response for an equilibrium with a
density gradient, we obtain, by [φ,N ] = −∂yφ∂xN = kyφ1Ωi/Ln:

ω(−k2
⊥φ1 −N) − ω∗

ωρ2
s

φ1 = 0,

with ω∗ = kyv
2
t /meLn the density component of the diamagnetic frequency. The ion-sound

Larmor radius,

ρs =
vt
eB0

√
mime,

is a length scale that does often surface in drift theory. It corresponds to how disturbances
in the electron density couple to the ion gas, the electrons being so much more volatile than
the ions.

2.6.2 The plasma dispersion function

The drift-kinetic equation manages the information on where particles are and how fast they
are moving. In this sense it contains particle-wave resonances, phenomena such as (inverse)
Landau damping, that can be visualized by plasma particles surfing from a plasma wave that
loses its energy this way, or, inversely, fast fusion-born particles exciting a localized plasma
tsunami.

The plasma dispersion function is a function that ‘scans’ a Gaussian distribution with a
resonant denominator. Its definition is

Z(ζ) ≡ 1√
π

∫ ∞

−∞
dt
e−t

2

t− ζ
.

30



2.6 Kinetic waves in a strongly magnetized plasma

This is a function that corresponds solely to a Gaussian or Maxwellian distribution function,
and we will use this function in subsequent analysis. This does not mean that conclusions
become very different when a different distribution function is used; we just cannot use the
symbol Z(ζ) anymore, nor its characteristics.

Now, we renormalize in order to get dimensionless quantities:

u = v‖/vt φ =
φ1

vtρe
=

Ωe

v2
t

φ1

ζ =
ω

kzvt
ψ =

ψ1

ρe
=

Ωe

vt
ψ1

ζ∗ =
ky
kz

vt
ΩeLn

F0 =
vt
n0
f0 (

∫

duF0 = 1)

ζT =
ky
kz

vt
ΩeLT

F1 =
vt
n0
f1

The drift-kinetic equation Eq. (2.54) then becomes:

F1 = − 1

u− ζ

[[

−
(

ζ∗ −
1

2
ζT

)

F0 +
1

2
ζT u

∂F0

∂u

]

(φ+ uψ) +
∂F0

∂u
(φ+ ζψ)

]

and the dimensionless counterparts of Eqs. (2.58, 2.59) are given by

(−k2
⊥ − ζ∗

ζ
)φ =

1

ρ2
s

∫

du F1 (2.63)

−k2
⊥ψ = − 1

d2
e

∫

du uF1. (2.64)

Here, the electron inertial skin depth de =
√

me/n0e2 is the length scale at which electro-
magnetic disturbances are screened in the plasma by the electrons. Note that d2

e/ρ
2
s = v2

A/v
2
t .

If we express the integrals in Eqs. (2.63, 2.64) using the plasma dispersion function, we
get

(−k2
⊥ρ

2
s −

ζ∗
ζ

)φ =

∫

du F1 =

[

−(ζ∗ −
1

2
ζT )

∫

du
F0

u− ζ
− (1 − 1

2
ζT ζ)

∫

du
1

u− ζ

∂F0

∂u

]

(φ+ ζψ)

+
1

2
ζT

∫

du
∂F0

∂u
(φ+ uψ) + ψ

[

−(ζ∗ −
1

2
ζT )

∫

du F0 +
1

2
ζT ζ

∫

du
∂F0

∂u

]

= (φ+ ζψ)

[

−(ζ∗ −
1

2
ζT )Z(ζ) − (1 − 1

2
ζT ζ)Z

′(ζ)

]

− ζ∗ψ (2.65)

k2
⊥d

2
eψ =

∫

du u F1 = ζ

∫

du F1 + ζ∗φ (2.66)

Here, the prime denotes derivation with respect to its argument. Inspection of Eq. (2.66)
shows that

ψ = −ζ ρ
2
s

d2
e

φ,

so that we can fill this in in Eq. (2.65), yielding

ρ2
sk

2
⊥ +

ζ∗
ζ

+

(

1 − ζ2 ρ
2
s

d2
e

)[

−(ζ∗ −
1

2
ζT )Z(ζ) − (1 − 1

2
ζT ζ)Z

′(ζ)

]

+ ζ∗ζ
ρ2
s

d2
e

= 0, (2.67)

31



2 Model equations

0.2 0.4 0.6 0.8 1

-2

-1

1

2

1 2 3 4 5

-1

-0.5

0.5

1

1.5

2

2.5

Figure 2.1: Left we see ω(ζ) in the kinetic case (bold) and the fluid approximation (thin
line). The dashed line indicates the imaginary part of ω(ζ). We see that the
singularities around the Alfvénic velocities are resolved in the kinetic case (in
this figure, de < ρs). On the right hand side we see the same picture, for the
same ωT . Here, de > ρs.

as the required dispersion relation.

For ζ∗ = ζT = 0, the dispersion relation becomes

ρ2
sk

2
⊥ = −

(

1

ρ2
s

− ζ2

d2
e

)

Z ′(ζ). (2.68)

We can rewrite the dispersion relation as the frequency/growth rate being a function of the
parameter ζ 1. This means rewriting the parameters ζ∗ and ζT , as they contain a kz,

ζ∗ =
ω∗
kz

=
ω∗
ω
ζ, ζT =

ωT
ω
ζ.

Now we can rewrite Eq. (2.68) to yield

ω(ζ) =

(

1 − ζ2 ρ
2
s

d2
e

) −(ω∗ − 1
2ωT )ζZ(ζ) + 1

2ωT ζ
2Z ′(ζ) − ω∗

−ρ2
sk

2
⊥ +

(

1 − ζ2 ρ
2
s

d2e

)

Z ′(ζ)
. (2.69)

In the derivation of this relation no assumption was made about the specific form of the
distribution function F0, other than that we use the symbol Z for the plasma dispersion
function, that is defined for a Maxwellian distribution. If we want to make a comparison with
e.g. the fluid model, we suppose that the distribution function F0 is Maxwellian, and that we
are far away from the particle-wave resonance of the plasma dispersion function, so |ζ| ≫ 1,
so that waves do not interchange energy with the thermal electrons.

1This means that if in the usual ω(k) representation

ω(k) ∼ (ω − kzV )

so that there is a solution with a wave propagating in the z-direction with a phase velocity V , this shows up
in the ω(ζ) representation as

ω(ζ) ∼
ω

ω − kzV
=

ζ

ζ − V
,

i.e. as a pole.
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2.6 Kinetic waves in a strongly magnetized plasma

If we take the limit ζ → ∞, the plasma dispersion function reduces to

Z(ζ) → −1

ζ
− 1

2ζ3
− · · ·

and, similarly, its derivative,

Z ′(ζ) → 1

ζ2
+

3

2ζ4
+ · · ·

This leads to the reduced dispersion relation for large ζ, with

ω(ζ)
ζ→∞−−−→ ω∗ + ωT

1 + k2
⊥d

2
e

. (2.70)

This is an interesting result, because there are no specific kinetic corrections to this so-called
kinetic diamagnetic drift-frequency, apart from the finite de correction which also shows up
in fluid theory, as we shall see.

2.6.3 Waves in the two-fluid drift-Alfvén model

We introduce a version of the nonlinear drift-Alfvén fluid equations: in φ, ψ and N ≡ Ωi log n:

∂t(∇2φ−N) + [φ,∇2φ−N ] = 0, (2.71)

∂t(ψ − d2
e∇2ψ) + [φ, ψ − d2

e∇2ψ] = −ρ2
s[N,ψ] + ∂z(φ− ρ2

sN), (2.72)

∂tN + [φ,N ] = v2
A

(

[ψ,∇2ψ] + ∂z∇2ψ
)

, (2.73)

which are again three equations to solve three variables. Here, the density part of the potential
vorticity N is treated as an independent variable. The linearized version of Eqs. (2.71 - 2.73)
read

ω(−k2
⊥φ−N) =

ω∗
ρ2
s

φ (2.74)

ω(1 + k2
⊥de)ψ = −kz(φ− ρ2

sN) − ω∗ψ (2.75)

ωN − v2
Akzk

2
⊥ψ = −ω∗

ρ2
s

φ (2.76)

If we put vt = 1, so that d2
e/ρ

2
s = v2

A, and ζ = ω/kz, this yields the fluid dispersion relation,

ω(ζ) =
ω∗

1 + k2
⊥d

2
e

ζ2 − d2
e/ρ

2
s

ζ2 −
d2
e

ρ2
s

1 + k2
⊥ρ

2
s

1 + k2
⊥d

2
e

.

The limit for large ζ is identical to the kinetic case when we take out the temperature gradient
in Eq. (2.70),

ω(ζ)
ζ→∞−−−→ ω∗

1 + k2
⊥d

2
e

. (2.77)

The fluid equations Eqs. (2.71 - 2.73) are derived with the assumption that the plasma is
isothermal, so it does not come as a surprise that the temperature part of the diamagnetic
frequency ωT does not arise.
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Figure 2.2: Again the dispersion relation ω(ζ) is plotted. Here we see in the left figure
that (de > ρs) the limit for large ζ is the same for the fluid expression and the
kinetic description (bold) as the imaginary part tends to zero quite fast, but the
behaviour for small ζ very different. Right we see that there is a regime where, if
de > ρs and ωT becomes too large, that the fluid equation ‘flips’ (back), whereas
the kinetic equation does not, and the solutions do not converge until ζ becomes
large.

2.6.4 The fluid reduction of the kinetic equations

We would like to compare the ω(ζ) relation obtained in the kinetic approach to its fluid
counterpart.

If we do not use the complete plasma-dispersion function Z(ζ) which still holds all particle-
wave resonances, but instead fill in the isothermal discretized ncont = 2 distribution function
as introduced in section 2.3, where only the thermal speeds (in the ±ez direction) are retained,
we get

ZF (ζ) =

∫

du
FN=2

u− ζ
=

∫

du
1

u− ζ

1

2
[δ(u− 1) + δ(u+ 1)]

=
ζ

1 − ζ2
, (2.78)

where FN=2 is the dimensionless version of the discretized distribution function. Looking at
Eq. (2.54), or Eqs. (2.65) and (2.66), we note that they contain a derivative of the distribution
function with respect to the parallel velocity, that leads to the primed version of the plasma
dispersion function. This is not possible for ZF , since we can not take a derivative of the
delta distribution with respect to its argument, so instead we take

ZF
′ =

1

ζ2 − 1
, (2.79)

which yields equivalence of the fluid equations and the kinetic equations when ωT = 0.
Eq. (2.79) is obtained by partial integration, thus delaying the substitution with the delta
distributions, and it complies to Z ′

F = −ζZF . Therefore, here the prime does not mean
differentiation with respect to the argument, but merely suggests correspondence to Z ′(ζ).

Using the substitutions of the plasma dispersion function (2.78, 2.79) we can construct a
fluid-like dispersion relation out of the kinetic dispersion relation Eq. (2.69),

ω(ζ) =
ω∗(ζ2ρ2

s − d2
e)

ρ2
sζ

2 + d2
e(k

2
⊥ρ

2
s(ζ

2 − 1) − 1)
. (2.80)
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2.6 Kinetic waves in a strongly magnetized plasma

The dispersion relation for ω∗ = ωT = 0 from Eq. (2.68) becomes

ω2 = k2
zv

2
A

1 + k2
⊥ρ

2
s

1 + k2
⊥d

2
e

,

which is the exact fluid result for the limit of low plasma β: β ≪ 1, see e.g. the discussion
and Eq. (26) in [13].

Eq. (2.80) no longer contains the (inverse) temperature gradient length ωT , since by
using this single-temperature distribution function it can no longer support a difference in
temperature. In Eq. (2.69) this can be seen more clearly if we highlight a part of the equation,

ω(ζ) =

[

ω∗(1 + Z) +
1

2
ωT ζ(Z + ζZ ′)

]

A,

with A the rest of the equation. If Z ′ = −ζZ, then no temperature gradient remains in the
dispersion relation.

When we look for a way to introduce a temperature gradient in the fluid equations, the
only place where we find temperature in a way that the length scale enters the linearized
equations is in the Ampère equation (2.72). There is a term ρ2

s[N,ψ], that we can imagine to
be [ρ2

sN,ψ]. If we keep in mind that ρ2
s ∼ v2

t , then we can say that, if gradients are defined
in a similar way as in the kinetic case, cf. (2.56),

[ρ2
sN,ψ] = ∂x(ρ

2
sN0)∂yψ1 =

(

− 1

LT
− 1

Ln

)

ρ2
sN0(ikyψ1).

This leads to an expression for ω(ζ)

ω(ζ) =

ζ2(ω∗ + ωT )
ρ2
s

d2
e

− ω∗

ζ2(1 + k2
⊥d

2
e)
ρ2
s

d2
e

− (1 + k2
⊥ρ

2
s)

,

which not only leads to the correct asymptotical behaviour for ζ → ∞, but is also identical
to the kinetic case if we use the ‘fluid’ distribution functions for ωT = 0 (which is reasonable
since ωT is supposed to drop out in this limit).
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3 Kinetic model of a collisionless tearing

instability in slab geometry

Abstract

Temperature gradients are shown to deform and shift the magnetic islands that
grow during fast collisionless reconnection when electron inertia decouples the
plasma motion from the magnetic field. A kinetic model of the electrons describes
the collisionless processes during the reconnection of field lines that originate
in regions with different temperatures. Using a novel model of the reconnecting
instability as a surface mode, the kinetic effects are treated analytically in both the
linear and nonlinear stages of the instability of a current-carrying low-β plasma
slab in a strong magnetic guide field. This configuration is shown to be unstable
with respect to tearing modes of large enough wavelength, and stable with respect
to short wavelength and kink-like perturbations. A temperature gradient across
the chain of magnetic islands yields a new criterion for marginal stability and a
diamagnetic shift of the chain with respect to the initial perturbations.
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3.1 Introduction

3.1 Introduction

Fast magnetic reconnection under near collisionless conditions is observed in the Earth’s
magnetosphere [1] and in laboratory plasmas. Fast internal plasma relaxations (sawteeth),
occurring in near thermonuclear fusion conditions in tokamaks, were found to grow on a
timescale that could not be explained by resistivity alone [2], and have motivated the study
of electron inertia as a fast reconnection mechanism [3, 4, 5, 6, 7]. In thermonuclear magnetic
confinement, reconnection is of particular concern as it connects field lines that originate in
plasma regions with different temperatures, thus reducing thermal insulation. In collisionless
plasmas, where electrons move rapidly along the reconnecting field lines, a temperature differ-
ence betweeen the connecting field lines poses a fundamental physics problem whose solution
requires a kinetic model. A temperature difference δT was shown [8] to modify the mag-
netic geometry near the x-points that form during reconnection. However, whereas Ref. [8]
presents this effect in the vicinity of the magnetic x-point during reconnection at a con-
stant rate, the present paper shows the effects of temperature differences on a reconnecting
instability (tearing mode) that produces finite-size magnetic islands.

We show that in both the linear and nonlinear stages of the tearing instability, tempera-
ture differences cause a phase shift of the magnetic island chain with respect to the distant
magnetic perturbations, together with island deformations consistent with the x-point defor-
mations reported in [8]. The nonlinear phase shift may prove important in magnetic plasma
confinement, where reconnection affects the heat loss most when multiple island chains form.
Interactions between primary island chains can create secondary and higher order islands
and eventually a chaotic magnetic field that fills the volume ergodically. Via phase shifts
between primary and higher order island structures, temperature gradients can affect the
onset of chaos. This mechanism is as yet unquantified and differs from the more direct ways
in which the temperature gradient affects the onset of instabilities, growth rates of tearing
modes [9, 10], and the level of plasma turbulence.

A fluid four-field model that incorporates all the fluid nonlinearities [11] has been studied
extensively, and resulted in a compact representation in a two-fluid model [12] that allowed
for the identification of its Hamiltonian structure and consequently conserved quantities.

It has also been shown [13] that the absence of dissipation in such a fluid model leads
to the formation of current and vorticity layers that become increasingly small and seem to
implode with time. It turns out that this finite-time singularity can be resolved by replacing
the fluid description by a drift-kinetic model, assuming a kinetic electron response of the
electrons parallel to the magnetic guide field [8].

In this ordering [12, 14, 15] a magnetic guide field dominates so that parallel equilibration
occurs at a time scale much smaller than the perpendicular dynamics, and a distribution
function is assumed for the parallel velocity of the electrons. In this way, the model can
self-consistently cope with both the (perpendicular) non-collisionality and the fact that the
plasma sustains a considerable temperature gradient.

To study the nature of a kinetic collisionless reconnecting tearing mode, in this paper
a force-free equilibrium is considered that is periodic in the y-direction, and piecewise ho-
mogeneous in the x-direction. In this way regions of uniform canonical momentum in the
z-direction, taken to be an ignorable coordinate, are created. The analysis is analogous to
a one-dimensional version of contour dynamics [16]. This equilibrium automatically satisfies
any formulation of the Vlasov equations as there are no gradients. This allows for a fully
analytical approach to the question of linear kinetic stability. An exact dispersion relation in
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3 Kinetic collisionless tearing instability in slab geometry

the linear regime can be obtained, which is sensitive to small temperature gradients.

The jumps, though highly artificial and unphysical, can be considered far away from the
actual (linear) mode, as it arises in between two interfaces that can be arbitrarily far apart
in this description. No assumptions of periodicity in the x-direction have to be made, and all
quantities vanish for |x| → ∞. This is very different from the Harris-sheet pinch approach [17].

This model set-up proves to be unstable with respect to a tearing mode, and stable to the
kink mode. More importantly, it is stable for phenomena with short wavelengths, up until
a stability barrier. This means that when an unstable mode with a specific parameter set is
studied in a periodic domain, there will not be an infinity of modes with a larger wavenumber
that need to be taken into account as well. A domain can be chosen such that there is only
one unstable mode present.

The dispersion relation of such a mode can be given in a closed form, but is in the
kinetic case more complex than when a two-fluid description of this system is used. It can
be shown that far away from wave-particle resonances similar behaviour is predicted by both
descriptions, but some essentially kinetic features of the kinetic tearing mode are recovered
as well.

A point of careful scrutiny is the validity of the strong guide-field limit used here. This limit
is analyzed in the ∆′ description in Refs. [18, 19] with a fluid model that includes compression
and the Hall term, which are important at scales below the ion skin depth di = de

√

mi/m,
but for sufficiently low β Refs. [18, 19] recover the drift-Alfvén system as used in Refs. [5, 6, 7].
In the present model the equilibrium scales are below di. A complete stability analysis of the
equilibrium (3.9) using the fluid model of Refs. [18, 19] shows that the effects of compression
and the Hall term are indeed significant, but only in narrow layers of width de

√
β around the

current jumps. For β ≪ 1 these effects are negligible in the dispersion relation, and neither
affect the reconnecting mode nor create another instability of the equilibrium (3.9).

One of the major challenges has been to prove that the stability boundary that can be
found using two-fluid theory remains the only stability boundary in the kinetic case, even
though the anatomy of the unstable mode has changed in several complicating ways. The
proof is attached as an appendix, and is rigorous as long as the current inside the current
layer is carried by electrons that move considerably slower than their thermal speed.

The kinetic description also allows for the inclusion of a temperature gradient in a self-
consistent way. In this paper we show how the stability boundary of the tearing mode is
changed by this temperature gradient, and how it results in an x-dependent shift of the
reconnection layer in the electron diamagnetic direction.

The paper is organized as follows. First, the drift-kinetic equations are outlined in sec-
tion 3.2. Then, the specifics of the equilibrium are given in section 3.3. The dispersion relations
based on the two-fluid model and the kinetic model are detailed and compared in sections 3.4
and 3.6. The influence of the application of a small temperature gradient to the equilibrium
is described in the linear and the nonlinear stage of the mode in sections 3.7 and 3.8, and the
results will be discussed and summarized in section 3.9.

3.2 The drift-kinetic model

The magnetic island geometry is described with a 2D model with a strong magnetic guide
field in the z-direction and smaller perpendicular perturbations that only depend on (x, y):
B = B0ez + ez × ∇ψ, with |∇ψ| ≪ B0, in order to model a low-β tokamak. This
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3.2 The drift-kinetic model

ordering neglects magnetic curvature and particle trapping due to ∇B. The electric field
is E = ez∂ψ/∂t − ∇φ and φ, ψ are the electric and magnetic potentials. The electrons and
their velocities ‖ B are described by a distribution function f̃ = f̃(t,x, v‖) that satisfies the
collisionless drift-kinetic equation

∂tf̃ +
1

B0
[φ, f̃ ] + v‖∇‖f̃ =

e

me
(∂tψ −∇‖φ)

∂f̃

∂v‖
. (3.1)

The bracket is defined as [g, h] = ez ·∇g×∇h and ∇‖ = ∂z +[ψ, ] is the derivative along the
total magnetic field B. Larmor radius effects are neglected here, and the magnetic moment
has been integrated over.

The ions respond to parallel fluctuations of the electron density by moving perpendicularly
to the magnetic field with the polarization drift to maintain quasi-neutrality, while the parallel
ion flow is negligible. This is described by a fluid model for the perpendicular motion of the
ions in which we neglect ion Larmor radius effects. This leads to the ion vorticity equation

1

B0
∇2φ =

Ωi

n0
δn,

where in addition the drift ordering is assumed, so that n ≈ n0, consistent with ∇2φ ≪ Ωi.
Thus, the ion vorticity equation describes electron density perturbations as a source for the
electric field, just as Ampère’s law relates the magnetic field to the current density. This leads
to a closed system with three equations for φ, ψ and f .

We consider cases in which the z-coordinate is ignorable, ∂z = 0, so that we can change
the velocity coordinate to the canonical momentum,

vz = v‖ +
e

m
ψ,

and write Eq. (3.1) as

∂tf + [Φ, f ] = 0, (3.2)

with f = f(t,x, vz) and Φ = (φ+ vzψ− (e/2me)ψ
2)/B0 a vz-dependent streamfunction. This

means that any function of G(f, vz) is a solution of Eq. (3.2). The first two moments of the
new electron distribution function,

∫

dvz f = n0 +
1

ev2
A

∇2φ, (3.3)

−e
∫

dvz vzf = ∇2
eψ, ∇2

e ≡ ∇2 − d−2
e , (3.4)

with electron inertial skin depth de =
√

m/e2n0 and Alfvén velocity vA = B0/
√
n0mi, provide

the sources for the electric and magnetic fields in the plasma. The conservation laws of this
system, discussed in e.g. Ref. [8], relies on the smallness of ion Larmor radius effects (the
cold-ion limit). Finite ion Larmor radius effects, as presented in e.g. Ref. [12], give rise to a
more complicated mathematical structure (although the opposite limit of large Larmor radii
gives the comparably simple equation, the Boltzmann response of adiabatic ions).

The system of equations (3.2, 3.3) can also be closed by a fluid equation instead of (3.4)
and still maintain all kinetic properties. By taking the first two moments of the kinetic
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3 Kinetic collisionless tearing instability in slab geometry
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Figure 3.1: Equilibria with a current layer of width 2L, for L = 2de (a) and L = 0.5de (b).
Dashed curves: x-dependence of the electron distribution function f at fixed v;
solid curves: the current density ∇2ψ0(x), showing a current layer at |x| < L
and screening at distances > de; dotted curves: ψ0.

equation one obtains the isothermal fluid equations

∂t∇2φ+ [φ,∇2φ] = v2
A[ψ,∇2ψ], (3.5)

∂t∇2
eψ + [φ,∇2

eψ] = − v2
t

v2
A

[∇2φ, ψ]. (3.6)

Here, vt =
√

2Te/me is the parallel electron thermal velocity. These equations also constitute
the two-fluid model [12]. By including either Eq. (3.3) or (3.4) the kinetic effects such as
particle-wave resonances are accounted for.

3.3 Equilibrium

The system of equations (3.2)–(3.4) describes reconnection due to electron inertia in the
strong guide-field (low-β) limit. In order to apply this model nonlinearly, i.e., for finite size
islands, we avoid the usual ∆′ analysis [20], where the reconnection drive at large scales is
described with MHD. Instead, the driving force is modelled by positioning current density
jumps at a distance ∼ de of each other, resulting in a sheared magnetic field around x = 0.
The locations of the jumps are spatially separated from the reconnection layer where the
magnetic islands grow and thermal effects are concentrated, but there is no separation of
scales. The equilibrium electron distribution function is chosen as simple as possible for this
kinetic model: spatially constant except for jumps at x = ±L well outside the reconnection
region,

f0 =
n0

vt
√
π
×
{

e−v
2
z/v

2
t , |x| > L,

e−(vz/vt−ζ0)2 , |x| < L.
(3.7)

The sources in Eqs. (3.3) and (3.4) are a constant density n0 and a source for the current
density that equals j0 ≡ en0vtζ0 in the layer −L < x < L and vanishes elsewhere,

∫

dvz f0 = n0,

−e
∫

dvz vzf0 =

{

0 for |x| > L,

j0 for |x| < L.
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3.3 Equilibrium

The current density ∇2ψ differs from this piecewise constant function because via the ∇2
e

operator in Eq. (3.4), electron inertia screens the currents on distances larger than de, as
shown in Fig. 3.1(a,b). The current density vanishes towards x = ±∞. The parallel electron
thermal velocity is defined by

Te =
1

2
mev

2
t =

me

n0

∫

dvz v
2
zf0. (3.8)

Note that the two-fluid model is immediately recovered when for the electron thermal dis-
tribution function a Dirac delta distribution at ±vt is inserted, so that electrons only move
with plus or minus the electron thermal speed [12]. In this framework there are two conserved
generalized vorticities, ω± = ∇2φ∓ v2

A/vt∇2
eψ, advected by their own respective streamfunc-

tions Φ±. By superposition of regions of the two types of current-vorticity, of equal weight
but opposite sign, a region of of pure current density can be constructed, like the current slab
as described here. The evolution of the borders or contours of such a region of generalized
vorticity is again determined by the positions of its own contour and that of the contours of
the region of the other type of generalized vorticity [21]. The kinetic case is similar, only with
an infinite amount of contours. In this perspective it is clear that the work presented here
is an analytical application of contour dynamics which has been used in several numerical
studies [22, 23].

Here we add that there is no equilibrium electric potential, and (so) no ion potential
vorticity as a result of E × B drift. This is equivalent to stating that we consider ourselves
in the frame where the ions stand still.

These demands can be met by constructing a force-free equilibrium, in which we make
sure that the [ψ,∇2ψ] bracket (or j × B-term) cancels. We can solve for the equilibrium ψ0

by observing that

∇2
eψ0 =

1

2
j0
∑

±
sign(L± x).

Solving for ψ0, one find that the equilibrium magnetic potential and current density are

ψ0(x) =
1

2
d2
ej0
∑

±
sign(L± x)(1 − e−|L±x|/de). (3.9)

and

∇2ψ0(x) =
1

2
j0
∑

±
sign(L± x)e−|L±x|/de . (3.10)

In this way we have constructed a smooth ψ0 that goes to zero for x→ ±∞, and that hosts a
region of nonzero mean electron velocity for |x| < L. This results in a localized current density
j(x) that is shielded on the scale of de, the electron inertial skin depth, and thus becomes
invisible for large |x|. Integrated over the whole domain there is no net current density.

In this configuration it is therefore not suitable to assign a value of ∆′ to this equilibrium,
as this quantity is defined as the mismatch between the left and right asymptotic derivative
at x = 0, or the integrated current density inside the current layer as perceived from the
so-called ‘outer’ region, far away from the reconnection zone at x = 0. In this case ∂xψ0 → 0
for x→ ±∞. This equilibrium is not destabilized by outer forcing.

When L ≫ de, the term ‘current layer’ becomes less descriptive of the equilibrium, and
we end up with two current jumps on the edge of a region of small perpendicular magnetic
field ψ′

0. The dynamics of this configuration become trivial in this limit, as the perturbations
at x = ±L can no longer couple to yield a mode.
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3 Kinetic collisionless tearing instability in slab geometry

3.4 Linear stability

The equilibrium and the dynamics are completely determined by the location of the jumps
in the generalized current density, as all quantities are constant in between and in the rest
of the domain. So, since f is piecewise constant and the kinetic equation (3.2) is purely
advective, an instability can perturb f only by perturbing the contours at x± = ±L. The
fluid equations are obtained from taking moments of the kinetic equation, so the same will
hold. The perturbations of the form A = A0(x) + A1(x) exp(i(ky − ωt)), again assuming z
ignorable and y periodic and infinite, may be called surface waves. From here, a prime will
denote derivation with respect to x.

If we want to calculate the plasma response to these perturbations, we have to solve the
system of differential equations (3.3) and (3.4) in the kinetic case, or, in the fluid case, (3.5)
and (3.6).

3.4.1 Fluid case

The fluid case will be treated first, as it is more straightforward in terms of symmetry and
tractability. If we linearize Eqs. (3.5) and (3.6) we get

−ω∇2φ1 = v2
Ak
(

ψ′
0 ∇2

eψ1 − ψ1 ∇2
eψ

′
0

)

, (3.11)

−ω∇2
eψ1 = k

v2
t

v2
A

ψ′
0 ∇2φ1 + kφ1 ∇2

eψ
′
0. (3.12)

The construction of the equilibrium is such, that the fluid equations decouple away from the
interfaces of the current layer, because ∇2

eψ
′
0 = j0(δ(x + L) − δ(x − L)). Thus, away from

x = ±L, Eqs. (3.11) and (3.12) reduce to ∇2φ1 = 0 and ∇2
eψ1 = 0, with general solutions

that decay for |x| → ∞ of the form

φ1 =
(

φL e
−k|x+L| + φR e

−k|x−L|
)

ei(ky−ωt), (3.13)

ψ1 =
(

ψL e
−ke|x+L| + ψR e

−ke|x−L|
)

ei(ky−ωt), (3.14)

with ke =
√

k2 + d−2
e . The discontinuous derivatives at at x = ±L are determined by

∇2φ1 = −2k
(

δ(x+ L)φL − δ(x− L)φR

)

ei(ky−ωt),

∇2
eψ1 = −2ke

(

δ(x+ L)ψL − δ(x− L)ψR

)

ei(ky−ωt).

Away from the interfaces, these source functions vanish so that the fluid equations decouple.
The boundary conditions at x = ±L prevent the system from being trivial: all terms of

Eqs. (3.11) and (3.12) contain Dirac delta distributions: we can explicitly write the values of
the fields at the location of the contours, x = ±L,

φ1(−L) ∼ φL + e−2kLφR, φ1(L) ∼ e−2kLφL + φR,

ψ1(−L) ∼ ψR + e−2keLψR, ψ1(L) ∼ e−2keLψL + ψR,

ψ′
0(−L) = −k‖

k
, ψ′

0(L) =
k‖

k
,

with k‖ = kBy(L) = kdej0/2B0 the maximum parallel wave number.
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3.4 Linear stability

de 2de
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Figure 3.2: On the left the stability of the current layer (R+ = 0) as a function of normalized
layer width L/de and wavelength π/kde is shown. At the stability boundary,
ω = 0. On the right the profiles of φ1 (dashed curve) and ψ1 (solid curve),
showing jumps in the derivatives at x = ±L.

Now demanding the fluid equations to hold for the perturbation of nontrivial fields φ, ψ at
both the interfaces simultaneously, we obtain the constraints for the response of the plasma,
i.e. a dispersion relation. Normalizing the frequency to the Alfvén frequency,

ζ =
ω

k‖vt
,

one finds the dispersion relation

DF (ζ) = (ζ2 − ζ2
+R+)(ζ2 − ζ2

−R−) = 0, (3.15)

where we introduce the shorthand notation

ζ2
± = 1 +

v2
A

v2
t

1 ∓ e−2kL

kdeǫ
,

R±(k) = 1 − 1 ± e−2keL

kedeǫ
,

ǫ = 1 − e−2L/de ,

The dispersion relation has solutions

ζ2 = ζ2
±R±. (3.16)

Here, the minus-sign corresponds to a mode that is odd in the magnetic perturbation ψ1

(ψL = −ψR) and even in the perturbed electrostatic potential φ1 (φL = φR), the parity of a
kink mode.

The plus-sign corresponds to the mode that is odd in φ1 and even in ψ1, the parity of a
tearing mode: a chain of magnetic islands with wavelength 2π/k is formed, with reconnection
at x = 0.
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3 Kinetic collisionless tearing instability in slab geometry

Note furthermore that in the dispersion relation the kink and the tearing part are com-
pletely decoupled, so that the eigenfunctions Eq. (3.13) and (3.14) are exact.

The stability of the modes is completely determined by the factor R±. For the tearing
mode, an unstable solution is obtained when ω2 < 0 when R+ < 0, as ζ2

± > 0 always. This
is a purely geometric criterion, as R± is a function of the ratios of the scale lengths of the
mode with respect to the inertial skin depth, kde, L/de only.

For the kink mode, R−(k) = 0 has no solutions for real k, so only stable solutions exist.

3.4.2 Kinetic case

In order to include temperature gradients in the model, a fluid model does not suffice in the
collisionless limit. If two magnetic field lines that originate from regions of the plasma with
different temperatures reconnect, collisionless electrons from the ‘hot’ and ‘cold’ branches of
the reconnected field lines will redistribute themselves over the field line at different speeds.
This leads to the possibility of temperature gradient induced density and current density
perturbations [8]. It is the effect of such perturbations on the reconnection process that we
shall investigate in this section. Clearly, a kinetic model of the parallel electron velocity is
required. Therefore, the model necessarily includes resonant interactions between waves and
electrons and Landau damping.

We shall now linearize the kinetic system of equations (3.2), (3.3), and (3.4) for the
equilibrium (3.7). The linearized kinetic equation is

f1 = −k φ1 + (vz − Ωeψ0)ψ1

ω − k(vz − Ωeψ0)ψ′
0

f ′0, (3.17)

where the derivative of the equilibrium distribution is

f ′0 =
n0√
πvt

(

e−v
2
z/v

2
t − e−(vz/vt−ζ0)2

)

(δ(x+ L) − δ(x− L)). (3.18)

The linear system is closed by expressing φ1 and ψ1 in terms of f1 by means of the linearized
Eqs. (3.3) and (3.4). However, instead of evaluating two integrals of f1 over velocity space,
it suffices to linearize only Eq. (3.3) and then relate φ1 and ψ1 via the fluid equation (3.11),
which is the lowest moment of the linearized kinetic equation. Substituting (3.17) in the
linearized vorticity equation (3.3)

∇2φ1 =
Ωi

n0

∫

dvz f1, (3.19)

yields

∇2φ1 =
Ωi

n0

∫

dvz

(

−k
φ1 + (vz − Ωeψ0)ψ1

ω − kψ′
0(vz − Ωeψ0)

f ′0

)

= −
Ωi

ψ′
0vt

(

φ1 +
ωψ1

kψ′
0

)

(δ(x+ L) − δ(x− L))×

1√
π

∫

dvz
e−(vz/vt−ζ0)2 − e−v

2
z/v

2
t

ω/kψ′
0 + Ωeψ0 − vz

. (3.20)
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3.5 Connection to ∆′

where ψ′
0(±L) = ±k‖/k. As in the fluid case, the instability is a surface mode so that the

above equation has only contributions for x = ±L, and the eigenfunctions have the form
(3.13, 3.14). Substituting these expressions and evaluating the integrals at x = ±L yields

2kφL =
v2
A

v2
t

(

φ1(−L) + ζvtψ1(−L)
)

IL,

2kφR =
v2
A

v2
t

(

φ1(L) + ζvtψ1(L)
)

IR,

where

IL = − 1

2ζ0

(

Z(ζ + ζǫ +
1

2
ζ0) − Z(ζ + ζǫ −

1

2
ζ0)
)

,

IR = − 1

2ζ0

(

Z(ζ − ζǫ +
1

2
ζ0) − Z(ζ − ζǫ −

1

2
ζ0)
)

,

and

Z(ζ) ≡ 1√
π

∫ ∞

−∞
dt
e−t

2

t− ζ
, ζǫ =

ǫ− 1

2
ζ0.

Solving these equations and Eq. (3.11) in x = ±L for the four unknowns φL,R, ψL,R yields
the dispersion relation

D(ζ, k) = (IL + IR + q+)(IL + IR + q−) − (IL − IR)2 = 0, (3.21)

with

q± =
(

(R−1
± − 1)ζ2 − ζ2

± + 1
)−1

. (3.22)

Unlike the fluid dispersion relation (3.15), this equation has no explicit solutions in ζ, as
Z(ζ) is a complex-valued transcendental function. Inspection shows that {R+ = 0, ζ = 0} is
a solution, as it was in the fluid case.

Again, we see that the dispersion relation contains a mode that is even in ψ1 and odd in
φ1, and one that is just the opposite, but now a term proportional to (IL − IR)2 couples the
two. This means that the eigenfunctions (3.13 and 3.14) are now approximate only.

Inspection shows that R± = 0 are still stability boundaries, with marginal stability at
ζ = 0. Not entirely to be expected, though, is the fact that this is the only stability boundary
in this complex valued and coupled system. In the appendix we prove that for small enough
but finite values of ζ0 there are no other solutions to the dispersion relation, and hence no
other unstable modes in this model system.

3.5 Connection to ∆
′

The common definition of ∆′ in literature is the total amount of current inside a resistive or
non-ideal boundary layer,

∆′ =
∣

∣

∣

d lnψ1

dx

∣

∣

∣

x=0+

x=0−
,

i.e. the jump of the logarithmic derivative across this layer. But, as discussed, in the case
studied here this current cancels out as a result of the inertial shielding of the jumps.
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3 Kinetic collisionless tearing instability in slab geometry

We can apply an adjusted version of the ∆′-formalism to this equilibrium by expressing
the stability boundary as follows

∆′
new ≡ δψ′

1

ψ1

∣

∣

∣

x=L
>
δψ′′

0

ψ′
0

∣

∣

∣

x=L
,

where δψ′
1 and δψ′′

0 are the jumps of ψ′
1 and ψ′′

0 at x = L. Then

δψ′
1

ψ1

∣

∣

∣

x=L
= − 2ke

1 − e−2keL
,

and
δψ′′

0

ψ′
0

∣

∣

∣

x=L
= j0

k

k‖

,

giving the exact same stability boundary. Note that this criterion differs from the usual
form (∆′ > 0)that is found in equilibria with smooth current profiles. The complexity of the
differential form then often requires asymptotic matching, and constant ψ′′

0 or even ψ0 inside
the matching region.

The difference can be explained by the very different approach that is chosen in this paper.
Instead of assuming a smooth distribution function, and therefore smooth φ, ψ-profiles, the
primary focus lies in the region |x| < L. The tearing instability is now not driven by current
inhomogeneity far away from the reconnection region, but by a surface mode at |x| = L.

Here, the border between the inner and outer region is drawn differently: the distance
between the jumps in the electron distribution function, 2L, does not distinguish between
different regimes or different sets of equations, but can be used as an estimate of the maximum
island width w where linear theory may still apply. The stability criterion R+(L/de, kde) = 0
is a function of the ratio L/de and the product kde only. For any value L/de a wave number
k can be chosen such that the corresponding mode is arbitrarily close to marginal stability.

3.6 Discussion of the fluid limit of the kinetic equations

The kinetic description of the stability of the current layer equilibrium is more challenging
in a few ways than the fluid description, and it seems appropriate to track the differences in
the anatomy of the mode to which the equilibrium has become unstable.

First of all, the dispersion relation has become complex valued. This means that in general
the solutions are not either oscillatory or exponentially growing or evanescing, but a combina-
tion of both. This is a direct consequence of taking an integral with a resonant denominator,
resulting in a complex valued plasma dispersion function.

Secondly, the kinetic dispersion relation mixes modes with opposite parity, unlike the
fluid relations. The mode that is even in ψ and odd in φ, the tearing mode, excites the kink
mode through the mixing term that is proportional to (IL− IR)2. This term follows from the
transformation to the canonical momentum in the z-direction, vz = v‖ − Ωeψ, that leads to
a (φ − (e/2me)ψ

2)/B0 term in the streamfunction Φ. This term couples the parities of the
fields in a way that does not show up in the fluid analysis.

To understand why the point of marginal stability is unchanged in the kinetic description
of the mode, we look at the equation that is responsible for the stability criterion once more,
Eq. (3.11), which describes the linearized j×B force balance, and the stability of the tearing
mode in specific. Near marginal stability, ζ2 ∼ R+ ∼ 0, so that we can use ω as a small
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3.7 Influence of a temperature gradient on the linear stability

ordering parameter. Following this ordering, the electrostatic perturbation φ− is one order in
ζ smaller than the magnetic perturbation ψ+. If we apply this ordering for the whole system
of equations, we see that the coupling terms in Eq. (3.21) are maximally of order ζ0ζ for φ+

and ζ0ζ
2 for ψ−. Here we used the small-ζ expansion to estimate IL−IR as given in Appendix

3.B,

IL − IR ≈ 8ζǫζ − 2i
√
πζǫ,

which has a nonvanishing imaginary part for ζ → 0. Near marginal stability, at ζ = 0, this
does not result in a change in the dispersion relation.

When we want to see if the kinetic modes can be identified with the fluid solutions as found
before, we can take the limit ω/kvt → ∞, so that all wave phenomena travel much faster
than the thermal electrons, ω/k ≫ vt. In that case the effects of particle-wave resonances
become negligible.

In the kinetic dispersion relation, the limit

lim
ζ→∞

Z(ζ) ≈ −1

ζ
− 1

2ζ3
+ O(

1

ζ5
),

is a well defined limit of the plasma disperion function. Here, the argument of the dispersion
function is dimensionless, ζ = ω/k‖vt. Then, if we look at the dispersion relation Eq. (3.21),

(IL + IR + q+)(IL + IR + q−) = (IL − IR)2,

we see that if we are looking for a comparison with the fluid dispersion relation, we have to
look at the uncoupled case, IL − IR → 0, since there are no terms proportional to ζǫ, ζ0 in
the fluid case.

From the definition Eq. (3.22) we can rewrite the solutions of (3.21) so that

IL + IR
q±

+ 1 ≈ (−1

ζ
− 1

2ζ3
)
(

(R−1
± − 1)ζ2 − ζ2

± + 1
)

+ 1 = 0.

which gives ζ2 = (ζ2
± + 1

2)R± − 3
2 . This is to be compared with the fluid result (3.16):

ζ2
F = ζ2

±R±. The two expressions agree in the limit ζ± ≫ 1, so either by letting L → 0 (so
that ǫ → 0) or assuming vA ≫ vt. The former limit merely confirms that the limit in which
the layer becomes considerably smaller than de is equally ill-posed for both fluid and kinetic
theory, but the latter limit corresponds to the statement that magnetic pressure should be
considerably higher than thermal pressure, i.e. the plasma β ≪ 1.

3.7 Influence of a temperature gradient on the linear stability

Before treating the kinetic nonlinear physics of finite-size islands, we consider the effect of a
small temperature gradient in the x-direction on the linear kinetic tearing mode. Introducing
such a gradient in the equilibrium distribution,

f0 =
n0√
πvt(x)

e−v
2/v2t (x),

one finds

f ′0 ≈ 1

LT

( v2

vt(0)2
− 1

2

) n0√
πvt(0)

e−v
2/v2t (0)
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3 Kinetic collisionless tearing instability in slab geometry

Figure 3.3:

The effect of a temperature gradient
on the linear perturbation ψ1 of the
magnetic potential of the tearing mode
is illustrated here by showing ψ0 + ψ1

for a small but finite perturbation. The
x-dependence of the phase shift in the
y-direction is indicated by two lines.

x=−L x=0 x=L

y=0

y=2π/�k

for small gradients with vt(x) ≈ vt(0). We use this approximation in the following. The
temperature gradient T ′

0 gives rise to the electron drift frequency

ω∗ = −kT
′
0

eB
. (3.23)

The effects of ω∗ on the stability of the tearing mode have been extensively discussed in the
literature, see e.g. [9, 10, 24]. Instead, in the following we shall concentrate on the effects of
ω∗ on the eigenfunctions of the tearing mode.

3.7.1 Perturbed eigenfunctions

The gradient in the equilibrium distribution function perturbs the linear distribution function,
f1 = (φ1 +vzψ1)f

′
0k/ω. Away from kinetic resonances, i.e. assuming ω2 ≫ k2

‖v
2
t , this becomes

f1 ≈ k

ω
(φ1 + vzψ1 − Ωeψ1ψ0).

From Eq. (3.4), or equivalently Eqs. (3.11) and (3.19), we obtain for the perturbed eigen-
function ψ1 ∼ exp i(ky − ωt),

ψ′′
1 − (k2 + d−2

e )ψ1 = −e
∫

dvz vzf1,

≈ −e k
ω
ψ1

∫

dvz vzf
′
0,

≡ −e k
ω

(n0T
′
0

me

)

ψ1,

which we write as ψ′′
1 − k̃2ψ1 = 0, with solution

ψ1 ∼ e±k̃x+i(ky−ωt),

where

k̃ =

√

k2 + d−2
e (1 +

ω∗
ω

). (3.24)
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3.7 Influence of a temperature gradient on the linear stability

The frequency of the growing mode will generally be complex, ω = ωr + iγ, which means
that the application of a finite temperature gradient results in a complex k̃ = k̃r + ik̃i. The
eigenfunctions of the tearing symmetry inside the current layer (−L < x < L) will then have
a general form of

ψ1 ∼ cosh(k̃rx+ ik̃ix)e
i(ky−iωt). (3.25)

One sees that k̃i introduces an oscillatory term in the x-dependence of ψ1. Such oscillatory
behaviour was first reported in [24], where temperature as well as density gradients were
considered. Here we offer a different interpretation of the same effect, as an x-dependent
phase shift in the electron diamagnetic direction of the eigenfunction (3.14). This shift δy
depends on the temperature gradient through ω∗ in k̃i, and is illustrated in Fig. 3.3. It is
given by

δy(x) = arctan(tanh(k̃rx) tan(k̃ix)) ≈
k̃i
k
|x|, (3.26)

where the last expression holds in the limit |x| ≫ k−1
r , far away from the x-point of the island.

3.7.2 Linear phase shift near marginal stability

To properly quantify the diamagnetic shift of the magnetic island chain we have to take into
account the fact that marginal stability has shifted as well. The temperature gradient has
led to a new, phase velocity dependent, version of the magnetic wave number k̃. If we can
deduce the frequency at which the tearing mode becomes unstable for some known ω∗, then
we can estimate the phase shift of the magnetic island with respect to the perturbations at
the edges of the current layer.

When the growth rate is large, in the sense that for a complex frequency ω = ωr + iγ,
with γ ≫ ω∗, ωr, we have directly from the definition

k̃2 = k2 +
1

d2
e

(1 +
ω∗

ωr + iγ
) (3.27)

that
k̃i = − ω∗

2γk̃rd2
e

. (3.28)

When on the other hand γ ≪ ω∗, ωr, a more careful approach is called for. We are interested
in the behaviour of the shift for various regimes of T ′

0, but we can also look at this as the
difference between how fast modes are (in terms of a growth rate, in the linear case) compared
to the thermal velocity. This takes us to the dispersion relation, where we note that only R+

is a function of k̃, so that for small temperature gradients, we can say that for γ ≪ ω∗, ωr,

ω2
+ = ζ2

+R+(k̃) ≈ ζ2
+

(

R+(ke) +
dR+

dk̃

dk̃

dγ
γ + . . .

)

(3.29)

If we partially evaluate this expansion,

R+ = R+(ke) +R1
ω∗

2ked2
e

−iγ
ω2
r

+ O(γ2),

where in the last denominator we have neglected the γ2 terms. Here,

R1 ≡ dR+

dke
.
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3 Kinetic collisionless tearing instability in slab geometry

When we resubstitute this into the dispersion relation we get

ω2
+ = ζ2

+(R+(ke) − i
γω∗

2ked2
eω

2
r

R1 + O(γ2)),

which can be split into a real and an imaginary part:

Real: ω2
r − γ2 − ζ2

+R+(ke) = 0,

Imaginary: 2ωrγ − ζ2
+

( γω∗
2ω2

rked
2
e

)

R1 = 0.

From the imaginary part of the dispersion relation we get

ωr = − 3

√

ζ2
+ω∗

4ked2
e

R1 = ωc. (3.30)

This is the linear stability boundary for the collisionless tearing mode in the presence of a
small temperature gradient. For ω∗ → 0 we retrieve the former boundary at ω = 0.

The phase shifts in the small and large growth rate regimes can be summarized as

δy = −|x|
k

×
{

ω∗/(2γked2
e), if γ ≫ ωc,

2γωc/R1ζ
2
+, if γ ≪ ωc.

(3.31)

The last expression shows that the phase shift vanishes for small growth rates.

3.8 Nonlinear phase shift

Once the reconnection process is well underway, the magnetic island will start to have a
finite width w, and as already a finite amount of flux has reconnected, regions of increasing
temperature difference start to be drawn into the x-point area. A steepening temperature
gradient will accumulate across the x-point. It is reasonable to consider the case in which two
flux tubes of such finite δT will reconnect.

In the reconnected flux tube, the electrons originating from the high temperature side,
with say T = T+, will flow into the magnetic island with a larger thermal velocity than the
electrons that originate from the low T side with temperature T−.

The plasma will still follow lines of constant Φ, so for each value of vz there will be a
separatrix with Φ = 0 that separates the hot from the cold plasma. This leads to a position-
dependent distribution function, which, as shown in [25], results in a perturbed current density
inside the island. Because the island now has a finite width, this inbalance in the current
density causes an up-down asymmetry of the separatrices of the magnetic island.

If we assume at some stage that the reconnection process proceeds at a quasi-steady rate,
the kinetic equation (3.2) reduces to

[Φ, f ] = 0. (3.32)

This means that the distribution function does not evolve in time, and that we consider a
stationary structure in which the plasma flows along lines of constant Φ, without taking into
account saturation phenomena. We can trivially solve this equation by supposing a constant
distribution function on either side of the island chain,

f = f0 ± f̃ , (3.33)
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Figure 3.4: The perturbed fields of a tearing mode, ψ (a) and φ (b). The current density
is discontinuous at x = ±L. In the presence of a temperature difference across
the magnetic island, the island becomes up-down asymmetric and is shifted by
δy with respect to the outer mode structure, as can be seen in ψ0 + ψ1 + ψ̃ (c)
and φ1 + φ̃ (d).

with
1

2

∫

dvz v
2
z f̃ = n0(T+ − T−).

These two distribution functions meet at a separatrix, but, as outlined in [8], this is given by

Φ(vz, x, y) = 0,

which is a line that runs through the x-point and inside the island, and is different for each
value of vz. The distribution function as a function of (x, y) becomes

f(vz, x, y) = f0(vz) + f̃(vz) sign(vz − vs), (3.34)

where

vs(x, y) = −φ
ψ

+
e

2m
ψ,

is the resonant value of vz at a given position (x, y), or, the value of vz for which the distri-
bution functions meet at that position.
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Figure 3.5: Angular distribution of the current density (a.u.) in the x-point vicinity, as-
suming a constant reconnection rate, based on the kinetic analysis in [8]. The
dashed lines indicate the separatrix positions. The three cases shown have
vt = kwφL/8ψL (a), vt = kwφL/ψL (b), and vt = 8kwφL/ψL (c).

To calculate the perturbed current density inside the island as a result of the position
dependent distribution function, we can say that

j̃ = −e
∫ ∞

−∞
dvz vz(f − f0),

= −e
(

∫ vs

−∞
dvz vz f̃ +

∫ ∞

vs

dvz vz(−f̃)
)

= eδT (
1

me
+
v2
s

T0
) f0(vs) sign(y). (3.35)

This current perturbs the original magnetic island geometry through Ampère’s law (3.4),
stating that where there is more positive current, the outflow angle of the separatrix narrows,
and vice versa.

The degree in which this perturbed current density deforms the separatrices and induces
a diamagnetic shift in the y-direction depends on the ratio of the velocity of the mode and
the thermal velocity. This ratio makes the current distribution to be either confined to a
small region near the y-axis or spread out to the entire width of the island. In Ref. [8] this
was illustrated for the simplified case of a steady-state reconnection rate. In that case, the
current density in the vicinity of the x-point is a function of the angle θ = arctan(y/x) only.
Figure 3.5 shows the angular distribution of the current density based on the analysis in
Ref. [8], for three values of the reconnection rate.

First, if we consider the reconnection process to be fast in the sense that

φL
ψL

≫ vt
kw

,

(Fig. 3.5(c)) the perturbed current is concentrated near x = 0, in a layer much narrower than
the island width 2w. If we assume the perturbed current to have the form

j̃(x, y) =
A

k
sin(ky)δ(x), (3.36)
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3.8 Nonlinear phase shift

ignoring higher order Fourier harmonics in the y-direction that may arise near the o-point,
so that the amount of perturbed current can be given by

∫

j̃(x, y)dx = Ay. (3.37)

From Eq. (3.35) we then obtain

A = δT
en0

me

ψL
φL

.

The corresponding magnetic field perturbation is given by

ψ̃ = − A

2kke
sin(ky)e−ke|x|. (3.38)

This adds up to a total field ψ = ψ0 + ψ1 + ψ̃, of which we can determine how its x-point is
shifted with respect to the contour perturbations that initiated the tearing mode. This shift,
which vanishes for large x and is maximal for x = 0, is given by

δy(x) =
1

k
arcsin

( A

2kke

e−ke|x|

ψL(e−ke|x+L| + e−ke|x−L|)

)

/
A

2k2keψL
. (3.39)

When on the other hand the island grows slowly compared to the thermal velocity,
φL/ψL ≪ vt/kw, then the electrons that carry the perturbed current will have fanned out
completely, filling up the full width of the island with this current imbalance. We then assume
that the current near the x-point is constant,

j̃(x, y) =
en0

mevt
√
π
δT sign(y), (3.40)

and changes sign at the o-point in the middle of the island. This limit is illustrated in
Fig. 3.5(a). The peaks of j(θ) near the sepatrices become logarithmic singularities in the
limit, with a negligible contribution to the magnetic field.

Now, to calculate the behaviour of ψ̃ as a function of δT we have to solve Ampère’s
equation again by letting (3.40) be its source. We can do this analytically by taking j̃(x, y)
to be centered at the y-axis again for the sake of the algebra. So, if

∫

j̃(x, y)dx = A′y,

and

∫

j̃(x, y)dx =

∫ w sin(k|y|/2)

−w sin(k|y|/2)

A′

k
sin(ky)δ(x)dx,

=
A′

k
| sin(ky)|,

≈ A′|y|.
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3 Kinetic collisionless tearing instability in slab geometry

This should be the same as
∫

j̃(x, y)dx

∫ w sin(k|y|/2)

−w sin(k|y|/2)

en0

mevt
√
π
δT sign(y),

≈ w|ky| en0

mevt
√
π
δT.

Thus we obtain for the case of a relatively slowly evolving tearing mode

A′ =
en0kw

2mevt
√
π
δT. (3.41)

Summarizing the both limiting cases, we can say that the shift δy is

δy =
en δT

2mk2ke
×
{

1/φL φL/ψL ≫ vt/kw,
kw/(2

√
πvtψL) φL/ψL ≪ vt/kw.

(3.42)

Now we have calculated the diamagnetic shift of a chain of magnetic islands in four different
regimes: in the linear case for large and small growth rate and in the nonlinear stage for a
mode that is fast and slow compared to the thermal velocity. We can relate those regimes by
considering the role of the amplitude of the tearing mode.

From the linear dispersion relation Eq. (3.21), we can obtain an expression for the linear
growth rate,

φL
ψL

= iγ
kek‖v

2
A

kζ2
+

, (3.43)

and we can also relate the island width to the linear magnetic perturbation because

w2 =
2ψL
j0

e−L/de . (3.44)

Using these relations we can rewrite Eq. (3.42)

δy = − ω∗
2kede

ǫ(1 − ǫ)

kk‖

×







ζ2
+
v2A

kek2
‖

1
γw γw ≫ k‖vt/k,

1
2
√
πvt

γw ≪ k‖vt/k.
(3.45)

This draws a more complete picture of what we can expect in different regimes and how they
interconnect. When an equilibrium such as we have described becomes marginally unstable
with respect to the tearing mode, it will generally be in a linear regime with a small growth
rate, and a shift proportional to the growth rate itself will emerge. The growth rate may
increase considerably, e.g. by the inertia effects as treated in [5], and the corresponding shift
will become directly proportional to the local diamagnetic frequency ω∗ and linearly inversely
proportional to the growth rate.

But after a finite amount of time the island will have obtained a finite width w, and
the nonlinear effects are to be taken into account. When the island is still growing fast, the
nonlinear shift is also proportional to ω∗, and inversely proportional to the product of the
growth rate and the island width, a speed. When this speed starts to decrease, e.g. because
the island starts to saturate, γ → 0, still a finite shift δy of the island chain remains.

This means that this ‘settling’ of a diamagnetic shift of magnetic islands may play a
role well out of the linear and in a nonlinear, saturated, stage of a plasma in which several
interacting chains of magnetic islands of different helicity may be present. When low order
rational island chains grow secondary islands are created. Their mutual poloidal phase angle
has consequences for the path leading to stochastization when field lines fill a volume of space
ergodically.
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3.9 Discussion

3.9 Discussion

Although fluid models yield good qualitative and quantitative descriptions of a number of
aspects of magnetic reconnection, even in the near-collisionless regime, a number of effects,
most notably wave-particle resonances and non-thermal effects, require a kinetic approach.
The results of the present paper focus on the kinetic effects of the parallel motion of the
electrons along the field lines, as it is this motion that is most directly affected by a topology
change of the field lines. The effects presented in this paper are supplemented with results
obtained in the limit case of an isothermal fluid model, in order to identify which effects can
be called essentially kinetic.

In order to study the kinetic model in the nonlinear regime, the technique of contour
dynamics was used, which leads to an unorthodox choice of the initial current profile. This
simple but non-trivial equilibrium is found to be unstable with respect to a reconnecting
instability, that can be triggered by a surface mode along the central current layer.

Collisionless reconnection of magnetic field lines at different temperatures yields a phase
shift in the electron diamagnetic direction of the growing magnetic island chain relative to the
far fields. In the linear regime, this shift is related to the oscillatory behaviour of the tearing
mode eigenfunctions in the presence of density or temperature gradients reported in [24]. The
present paper arrives at a more general result, also valid in the nonlinear regime, e.g. in the
case of island saturation. The phase shift is a function of both the reconnection rate (growth
rate in the linear case), and the ratio of the eigenfunctions φ1/ψ1. In case of a linear mode,
these two parameters are related.

The phase shifts in the different linear and nonlinear regimes are summarized in Eqs. (3.31)
and (3.45). For large γ the phase shift decreases as γ−1 in both the linear case (3.31) and the
nonlinear case (3.45), while for small γ the linear phase shift is proportional to γ. Therefore
this shift, most pronounced at larger distances |kex| > 1, decreases as the reconnection rate
slows down. However, when the magnetic island grows into the nonlinear regime, a constant
phase shift (3.45), independent of w, remains near the island where |kex| < 1, due to the
finite temperature difference that builds up near the island.

While the dispersion relation (3.21) is specific for the equilibrium (3.7), the redistribution
of electrons after reconnection (3.34) is valid more generally, e.g. when the free energy for the
instability originates well outside the reconnection zone. Then the criterion for instability is
∆′ > 0, both in kinetic theory and in the collisionless fluid limit [6]. Thus, also Eq. (3.31) for
the phase shift is generally applicable, with γ and k in (3.31) related via the dispersion relation
for the case of interest. Likewise, within the range of validity of the kinetic model [8, 15],
Eq. (3.45) are applicable for arbitrary nonlinear evolution of the island width caused by an
instability or external forcing, by specifying w and γ independently.

A final point of attention is the validity of the strong guide-field limit used here. This limit
is analyzed in the ∆′ description in Refs. [18, 19] with a fluid model that includes compression
and the Hall term, i.e. coupling to the Whistler wave, which are important at scales below
the ion skin depth di = de

√

mi/m, but for sufficiently low β Refs. [18, 19] reobtain the drift-
Alfvén system as used in Refs. [6, 7]. In the present model the equilibrium scales are below di.
A complete stability analysis of the equilibrium (3.9) using the fluid model of Refs. [18, 19]
shows that the effects of compression and the Hall term are indeed significant, but only in
narrow layers of width de

√
β around the current density jumps. For β ≪ 1 these effects

are negligible in the dispersion relation, and neither affect the reconnecting mode nor create
another instability of the equilibrium (3.9). In this view, we conclude that the tearing modes
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3 Kinetic collisionless tearing instability in slab geometry

to which the ∆′ description applies are subject to Whistler wave physics because the relevant
scale length di lies between the (MHD) driving force at longer scale lengths and the shorter
reconnection scale length.

The model in the present paper uses an equilibrium with steep current gradients that
provide a driving force at short scales. This is a reductionist technique, isolating the kinetic
physics on the reconnecting field lines from the Hall-MHD physics at large scales.
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3 Kinetic collisionless tearing instability in slab geometry

Figure 3.6: Example of a Nyquist diagram for the dispersion relation (3.21), showing the
complex D-plane for real values of ζ. The left figure shows the complete curve
and the other two figures are successive magnifications near the origin. Here,
the wavenumber k is chosen so that the configuration is just above marginal
stability, R+(k̃) > R+(k̃c). The magnified figures help to show that the winding
number of the curve around the origin is zero, i.e., for these parameters there is
no unstable solution.

3.A Proof of the uniqueness of the tearing mode solution

The model system presented here is only interesting for more general purposes, like numerical
research, if we know what other instabilities it hosts. If one chooses parameters such that the
current layer is tearing-unstable to study collisionless magnetic reconnection with this mode,
one wants to be sure there is no small-wavelength instability that may even grow faster. This
would blur the vision on the tearing mode, and one might wonder whether it is not better to
choose a completely realistic current profile altogether.

In this section it will be shown that for a small enough equilibrium current compared
to the thermal velocity, i.e. for small enough ζ0 = j0/envt, there is no other solution to the
complete dispersion relation than the tearing mode that was discussed.

The dispersion relation, Eq. (3.21) is a complex function of a generally complex variable.
A second solution should part from the real axis at the point of marginal stability, so we are
looking for a solution of the dispersion relation for real ζ.

Nyquist proposed a method to determine whether an expression has solutions (roots)in
the complex plane. If one were to draw the image of ζ for ω ∈ R under D(ζ), this would give
a contour in the complex plane. The Nyquist theorem then states that the number of times
that this contour circles the origin is equal to the amount of complex roots of D(ζ) = 0.

This is a way to test for stability, but gives no proof that there cannot exist a region
that hosts an instability within the regions that were tested. So a more rigorous approach is
needed. The real and imaginary parts of the dispersion relation (3.21) are respectively

(ZR+ + q+)(ZR+ + q−) − Z2
R− − Z2

I+ + Z2
I− = 0, (3.46)

ZI+(2ZR+ + q+ + q−) − 2ZI−ZR− = 0, (3.47)

where ZR± = Re(IL ± IR) and ZI± = Im(IL ± IR). We can take a combination of these
equations to eliminate, say, q+,

ZI+Re(D) − (ZR+ + q−)Im(D) = 0,
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3.A Proof of the uniqueness of the tearing mode solution

to arrive at a quadratic equation for q−,

(q− −A)2 −B = 0, (3.48)

with

A = −ZR+ +
ZR−ZI−
ZI+

,

B =
(

1 + Z2
R−/Z

2
I+

) (

Z2
I− − Z2

I+

)

,

and solutions q− = A±
√
B. Note that the choice to eliminate q+ instead of q− was arbitrary,

and so the ± sign indicates the distinction between q∓. This solution q− of equation (3.48)
is a function of ζ, ǫ, and ζ0. We can calculate upper and lower boundaries for the plasma
dispersion function (see section (3.B)), and by taking the proper combination we can find

q− < q−max ≡ Amax +
√

Bmax

with

Amax = 2 +
2ζ2

0

G
,

Bmax = 4ζ2
ǫ

(

π + (4ζǫ/G)2
)

,

G = 1 − 1

4
ζ2
0 − 3

4
ζ2
ǫ .

Here G is a denominator of order unity. The second inequality for holds for ζ = 0: we note
that that we can find the extrema of the estimated qmax by differentiating (and by inspection),
as it is a polynomial, monotonous function, and find that these are located at ζ = 0. For
small ζ, ζ0, and ζǫ, the solutions q± approximate the value −ZR+ ≈ 2, which is larger than
zero.

This analysis of the value of q± is derived by looking at the dispersion relation, and by
solving it formally. The dispersion relation, however, consisted of terms that were already
defined before by the problem that we were trying to solve originally, the characteristics of a
straight current layer in a collisionless plasma.

In order for the q± as defined by (3.22) to be positive, it is clear that since R− > 0 always,
that for small enough ζ at least q− < 0, whereas the solution above decrees q− → 2 for small
arguments. This means that there is no solution to D = 0 possible for ζ > ζmin, with

ζmin =

√

ζ2
± − 1

R−1
± − 1

> 0.

Furthermore, to be certain that both q−1
± > 0,

1

R±
− 1 > 0 ⇒ R± > 0,

as ζ2
± − 1 > 0 always, which means that it is necessary that k > kc, the marginal value for

the tearing-stable region (R+(kc) ≡ 0). As R− > R+, R−1
+ < R−1

− and ζ+ < ζ−,

q− =
( 1

R−
− 1
)

ζ2 − ζ2
− + 1 <

( 1

R+
− 1
)

ζ2 − ζ2
+ + 1 = q+, ∀ζ ∈ R.
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3 Kinetic collisionless tearing instability in slab geometry

Figure 3.7:

The existence of a solution of
q−min = q−max as a function of L/de
(horizontal) and ζ0 (vertical). Below
the line no solution is possible, as there
q−max > q−min. The figure shows that
for ζ0 < 0.72 there is no solution for any
value of L/de, and this critical value of ζ
is found for L→ 0.

1 2
L / de

0.5

1

1.5

2

2.5
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These are the ingredients that constitute a lower bound from the definition of q−.
If the upper bound of the solution to the dispersion relation q− crosses the lower bound

of the definition of q−, there may be a solution that represents a mode in the system that we
are considering. Note, however, that this reasoning only holds as long as we are certain that
q+ > 0! Otherwise, the ζ for which the solution is reached might go to zero, and R−1

− may be
infinite: the ordering that we use becomes unusable.

Using these expressions we can find an upper and a lower bound for q−, and thus we can
solve for ǫ and ζ0 to find a q− that holds for both inequalities,

q−min < q−(ǫ, ζ0) < q−max. (3.49)

With these two versions of q− the equation (3.49) can be solved for every value of ζe and ǫ. But
it is necessary to remember that the lower bound q−min also depends on R−(kcde, L/de), so to
make a transparent estimate we solve this equation for ζ0, L/de (remember that
ǫ = 1− exp(−2L/de)), of which Fig. (3.A) is an illustration. It is clear that for L/de → 0 the
smallest maximal value of ζ0 is to be found, which is ζ0,max = 0.7. Equating the upper and
lower bound yields Fig. (3.A), which is minimal in ζ0 when L/de (and therefore ǫ) goes to
zero. Then the largest ζ0 for which with certainty can be claimed there are no solutions to
q−min = q−max, is ζ0 ≈ 0.7.

Now, we check for which value of ζ0 the lower boundary of q+ is still larger than zero.

q+min = Amin −
√

Bmax

where

Amin = 2 − 1

3
ζ2
0 − 4

3
ζ2
ǫ + ζ2

ǫ (8 − 2ζ2
0 + 32ζ2

ǫ )(1 − 1

3
ζ2
0 +

8

3
ζ2
ǫ ).

The inequality by filling in ζ = ζǫ, as the quantity q+min is monotonous in (ζ, ǫ, ζ0) for small
values of the argument, and certainly before it becomes zero at ζ0 = 0.57. As this is a lower
value than the ζ0,max found before, this proof is only valid up to ζ0 = 0.57. For higher values
of ζ0 we cannot guarantee there are no other modes possible in this plane slab configuration.

3.B Estimates for the plasma dispersion function

The definition of the plasma dispersion function for (ζ) > 0 is

Z(ζ) =
1√
π

∫ ∞

−∞
dt

e−t
2

t− ζ
, (3.50)
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consistent with
Z ′(ζ) = −2(1 + ζZ), Z(0) = i

√
π. (3.51)

The real part Re(Z) = ZR is an odd function, −ZR(ζ) = ZR(−ζ), which has only one zero,
ζ = 0, for real values of ζ. Thus one easily sees that

ζZR ≤ 0, ∀ζ ∈ R. (3.52)

From (3.51) and (3.52) one can conclude that Z ′
R ≤ 2. This equation can be used in the

integral

ZR =

∫ ζ

0
dt
dZR
dt

, (3.53)

to arrive at the inequality
ζZR ≥ −2ζ2.

This can be placed back into (3.51) to yield

Z ′
R ≤ −2 + 4ζ2 etc. (3.54)

In this way we can generate upper and lower estimates for the plasma dispersion function
and its derivatives. These boundaries can be to put bounds on the quantities ZR± and ZI±,
which involves the plasma dispersion function with arguments ζ ± (ǫ ± 1)ζ0. Some care is
needed since these arguments may change sign in the type of integrals used below.

First we tackle ZR− by writing it as the integral

ZR− =
1

2ζ0

∫ ζ0/2

−ζ0/2
dζ1

(

Z ′
R(ζ + ζ0 + ζ1) − Z ′

R(ζ − ζ0 + ζ1)
)

=
1

2ζ0

∫ ζ0/2

−ζ0/2
dζ1

∫ ζǫ

−ζǫ
dζ2 Z

′′
R(ζ + ζ1 + ζ2)

=
1

2ζ0

∫ ζ

0
dt

∫ ζ0/2

−ζ0/2
dζ1

∫ ζǫ

−ζǫ
dζ2 Z

′′′
R (t+ ζ1 + ζ2).

Here we can use the property that Z ′′′
R is an even function for which the method outlined in

Eqs. (3.51 - 3.54) gives the inequalities

8 − 32ζ2 ≤ Z ′′′
R (ζ) ≤ 8.

By applying these inequalities to the integrand of the triple integral expression for ZR−, one
finds

8ζǫ

(

1 − 1

3
ζ2
0 − 4

3
ζ2
ǫ − 4ζ2

)

≤ dZR−
dζ

≤ 8ζǫ,

which can be integrated to give

8ζǫζ

(

1 − 1

3
ζ2
0 − 4

3
ζ2
ǫ −

4

3
ζ2

)

≤ ZR− ≤ 8ζǫζ (3.55)

for ζ > 0. In a similar fashion the following estimates can be made for small argument ζ:

−2 ≤ ZR+ ≤ −2 + 4ζ2 +
1

3
ζ2
0 +

4

3
ζ2
ǫ ,

−2
√
πζ ≤ ZI+ ≤ −2

√
πζ

(

1 − ζ2 − 1

4
ζ2
0 − 3ζ2

ǫ

)

,

−2
√
πζǫ ≤ ZI− ≤ −2

√
πζǫ

(

1 − 3ζ2 − 1

4
ζ2
0 − ζ2

ǫ

)

.
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4 Temperature gradients in fast collision-

less magnetic reconnection

Abstract

Temperature gradients are shown to deform and shift the magnetic islands that
grow during fast collisionless reconnection when electron inertia decouples the
plasma motion from the magnetic field. A kinetic electron model describes the
collisionless processes during the reconnection of field lines originating in regions
with different temperatures. Using a novel model of the reconnecting instability
as a surface mode, the kinetic effects are treated analytically in the linear and
nonlinear stages of the instability of a current-carrying low-β plasma slab in a
strong magnetic guide field.
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4.1 Introduction

4.1 Introduction

Fast magnetic reconnection is observed in near-collisionless plasmas in the Earth’s magneto-
sphere [1] and in the laboratory. Fast internal plasma relaxations (sawteeth) observed in
tokamaks near thermonuclear fusion conditions have motivated the study of electron inertia
as a fast reconnection mechanism [2, 3, 4]. In thermonuclear magnetic confinement, recon-
nection is of particular concern as it connects field lines that originate in plasma regions
with different temperatures, thus reducing thermal insulation. In collisionless plasmas, where
electrons move rapidly along the reconnecting field lines, a temperature difference poses a
fundamental physics problem whose solution requires a kinetic model. A temperature differ-
ence was shown [5] to modify the magnetic geometry near the magnetic x-points that form
during reconnection. While that result was limited to the vicinity of x-points during recon-
nection at a constant rate, here we extend the description to a reconnecting instability that
produces finite-size magnetic islands. We show that in both the linear and nonlinear stages
of island growth, x-point deformations like those reported in [5] relate to a phase shift of the
island chain with respect to the distant magnetic perturbations. The nonlinear phase shift
may prove important in magnetic plasma confinement, where reconnection affects the heat
loss most when multiple island chains form. Interactions between primary island chains can
create secondary and higher order islands and a volume-filling chaotic magnetic field. Phase
differences between these island chains affect the onset of chaos. Via phase shifts at small
scales, temperature gradients can change the degree of ergodicity and hence plasma con-
finement, contrasting the more direct ways in which gradients affect growth rates of tearing
modes [6, 7], other instabilities, and the level of plasma turbulence.

4.2 Drift-kinetic model

The island geometry is captured in a 2D model with a strong magnetic guide field in the
z-direction with perturbations that only depend on (x, y): B = B0ez + ez × ∇ψ, with
|∇ψ| ≪ B0, in order to model a low-β tokamak. This ordering neglects magnetic curva-
ture and particle trapping due to ∇B. The electric field is E = ez∂ψ/∂t−∇φ and φ, ψ are
the electric and magnetic potentials. The electrons and their velocities ‖ B are described by
a distribution function f(t, x, y, v‖) that satisfies the collisionless drift-kinetic equation

∂f

∂t
+

1

B0
[φ, f ] + v‖∇‖f =

e

m
(
∂ψ

∂t
−∇‖φ)

∂f

∂v‖
. (4.1)

The bracket is defined as [g, h] = ez · ∇g ×∇h. Assuming the coordinate z to be ignorable,
a velocity coordinate change to the canonical momentum vz = v‖ + eψ/m reduces Eq. (4.1)
to an advective equation [8]

∂f

∂t
+ [Φ, f ] = 0, (4.2)

where Φ = (φ+ vzψ − ψ2e/2m)/B0 is a vz-dependent streamfunction. The fields depend on
f via the ion vorticity equation and Ampère’s law,

n0 + ∇2φ/(ev2
A) =

∫

f dvz, (4.3)

(∇2 − d−2
e )ψ = −e

∫

fvz dvz. (4.4)
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4 Temperature gradients in fast collisionless magnetic reconnection

Here de =
√

m/e2n is the inertial skin depth and vA = B0/
√
min0 the Alfvén velocity.

Equation (4.3) gives the quasineutral response of the ion polarization drift to electron density
variations for frequencies below the ion gyrofrequency and negligible ion thermal motion [9].

We consider the reconnecting instability of a plasma with current concentrated in a
straight slab. First, we describe the instability without temperature gradient, later intro-
ducing such a gradient ∇T perturbatively. The effect of ∇T on the stability is considered to
be negligible compared to the strong instability due to the current profile which overcomes
the stabilizing kinetic effects in the collisionless limit reported in Refs. [6, 7].

4.3 Equilibrium, linear stability

The system of equations (4.2)–(4.4) describes reconnection due to electron inertia in the
strong guide-field (low-β) limit. In order to apply this model nonlinearly, i.e., for finite size
islands, we avoid the usual ∆′ analysis [10], where the reconnection drive at large scales is
described with MHD. Instead, the driving force is modelled by positioning current density
jumps at scales ∼ de. The locations of the jumps are spatially separated from the reconnection
layer where the magnetic islands grow and thermal effects are concentrated, but there is no
separation of scales. The equilibrium electron distribution function is chosen as simple as
possible for this kinetic model: spatially constant except for jumps at x = ±L well outside
the reconnection region,

f0 =
n0

vt
√
π
×
{

e−v
2
z/v

2
t , |x| > L,

e−(vz/vt−ζ0)2 , |x| < L.
(4.5)

The density is spatially constant while the current source equals −e
∫

f0vz dvz = en0vtζ0 ≡ j0
in the layer −L < x < L and vanishes elsewhere. The current density ∇2ψ differs from this
piecewise constant function because in Eq. (4.4), electron inertia screens the currents on
distances larger than de, as shown in Fig. 4.1(a,b). The equilibrium potentials are φ0 = 0 and

ψ0(x) =
d2
e

2
j0
∑

±
sign(L± x)(1 − e−|L±x|/de). (4.6)

We linearize Eqs. (4.2)–(4.4) for perturbations of the form A = A0(x)+A1(x) exp(iky− iωt).
Since the kinetic equation (4.2) is purely advective and f0 is constant except at x = ±L, f1

is localized at x = ±L, i.e., the perturbations are surface modes, with exact eigenfunctions

f1(x, vz) = fL(vz)δ(x+ L) + fR(vz)δ(x− L), (4.7)

φ1(x) =
(

φL e
−k|x+L| + φR e

−k|x−L|)ekL, (4.8)

ψ1(x) =
(

ψL e
−ke|x+L| + ψR e

−ke|x−L|)ekeL. (4.9)

The modified wave number ke =
√

k2 + d−2
e arises in the linearized Ampere law,

ψ′′
1 − k2

eψ1 = −e
∫

f1vz dvz, (4.10)

where a prime denotes the x-derivative. With these eigenfunctions, the dispersion relation for
ω(k) is

(I+ + I− + q+)(I+ + I− + q−) = (I+ − I−)2, (4.11)
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−de0 de

x
−de 0 de
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0 de 2de
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5de

10de
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unstable

stable
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Figure 4.1: Equilibria with a current layer of width 2L, for L = 2de (a) and L = 0.5de
(b). Dashed curves: x-dependence of the electron distribution function f at
fixed v; solid curves: the current density ∇2ψ0(x), showing a current layer at
|x| < L and screening at distances > de; dotted curves: ψ0. Frame (c): Stability
of the current layer as a function of layer width and wavelength. At the stability
boundary ω = 0.

with

I± = 1
2ζ

−1
0

(

Z(ζ± + 1
2ζ0) − Z(ζ± − 1

2ζ0)
)

, (4.12)

ζ± = ω/(vtk‖) ± 1
2ζ0(1 − ǫ), (4.13)

q−1
± = (vtk‖)

−2(ω2/R± − Ω2
± − ω2) + 1, (4.14)

Ω2
± = k2

‖

(

v2
t + v2

A

1 ∓ e−2kL

kdeǫ

)

, (4.15)

R±(k) = 1 − 1 ± e−2keL

kedeǫ
, (4.16)

ǫ = 1− e−2L/de , the maximal parallel wave number k‖ = kBy(L)/B0 = kdeǫj0/2B0, and Z(ζ)
the plasma dispersion function. Although the dispersion relation (4.11) is complex-valued in
general, it has a very simple stability boundary for the tearing mode, viz. R+(k) = 0, where
ω = 0. This stability boundary, shown in Fig. 4.1(c), is proved to be unique for moderate elec-
tron currents, ζ0 < 0.5 (i.e. barring beam phenomena). In particular, the analogous stability
boundary for the kink mode, R−(k) = 0, has no solutions for real values of k. For ζ0 ≪ 1, one
finds that the dispersion relation reduces to two uncoupled equations I+ ≈ I− ≈ −1

2q± for
the eigenmodes with φL = ∓φR and ψL = ±ψR. The even-ψ and odd-ψ modes have tearing
and kink mode parity, respectively. For finite ζ0, the term on the right in Eq. (4.11) couples
the modes with kink and tearing parity, breaking their (anti)symmetry. This is a kinetic ef-
fect: At high frequencies, away from particle-wave resonances, the kinetic model (4.2)–(4.4)
reduces to the isothermal 2-fluid model of Refs. [3, 4, 9]. The fluid limit ζ± ≫ 1 of Eq. (4.12)
is I± = ζ−2

+ = ζ−2
− , yielding uncoupled tearing and kink parity modes with frequencies

ω2
± = Ω2

±R±. (4.17)
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4 Temperature gradients in fast collisionless magnetic reconnection

4.4 Influence of a temperature gradient

Before treating the kinetic nonlinear physics of finite-size islands, we consider the effect of
a small temperature gradient on the linear kinetic tearing mode. Introducing an equilibrium
temperature gradient T ′

0 gives f1 = (φ1+vzψ1)f
′
0k/ω and modifies Eq. (4.10) into ψ′′

1 ≈ k̃2ψ1,
with a wavelength k̃ ≡

√

k2
e + ω∗/ωd2

e that depends on the electron diamagnetic drift fre-
quency ω∗ = −kT ′

0/eB. The frequency is complex, ω = ωr + iγ, so that the linear effect
of the temperature gradient is a complex k̃ ≈ ke + iki with ki ≪ ke. This gives the eigen-
function ψ1(x) in Eq. (4.9) an x-dependent complex phase. For |x| ≤ L and ψL = ψR one
finds ψ1 ∼ cosh(kex + ikix) exp(iky). The oscillations in the x-direction were also reported
in Ref. [11], which in addition includes the diamagnetic effect of a density gradient. The
oscillation can be viewed as a phase shift of the magnetic perturbations at |x| ≫ k−1

e with
respect to the magnetic islands, of δy(x) = |x|ki/k in the y-direction. A fast growing mode
with γ ≫ ω∗, ωr has ki = −ω∗/(2γkrd2

e). In the opposite limit γ ≪ ω∗, ωr a Taylor expansion
of R+(k̃) shows the effect of ω∗,

R+(k̃) = R+(ke) − i
ω∗γ

2ked2
eω

2
r

R1 +O(γ2),

where R1 = dR+/dk̃ is in the range 1 < k̃R1 < 1 + de/L. Substitution in the fluid dispersion
relation (4.17) yields

ωr = ωc ≡
[

ω∗Ω
2
+R1/(4ked

2
e)
]1/3

.

The phase shifts in both regimes can be summarized as

δy = −|x|
k

×
{

ω∗/(2γked2
e), γ ≫ ωc,

2γωc/R1Ω
2
+, γ ≪ ωc.

(4.18)

The last expression shows that the phase shift vanishes for small growth rates.

4.5 Nonlinear shift

We shall now show that in the fully nonlinear regime, a finite phase shift is present even
for vanishing growth rates. Contrary to the linear phase shift, which is proportional to |x|,
this nonlinear shift is only present close to the magnetic island. It is caused by the finite
temperature difference δT across the island when the island grows to a finite width comparable
with de. Using the conservation properties of our equations [5, 8, 12] we can deal with the
following nonlinearities: (i) the advective nonlinearity of Eq. (4.2), and (ii) the temperature
difference δT across the magnetic x-points. However, temperature gradients are introduced
only perturbatively: terms nonlinear in ∇T are not considered.

In the nonlinear stage, the reconnection process draws flux tubes together that originate
in regions of the plasma with different temperatures. On the reconnected flux tubes, the
collisionless electrons originating on the high-T and low-T sides move into the magnetic
island with different thermal velocities. The nonlinear kinetic effect shown in Ref. [5] is that
this inbalance of the electron velocities perturbs the current density in the island, causing an
asymmetry in the y-direction. This can be seen by considering the vicinity of the magnetic
x-point. In the nonlinear stage the x-point angles are finite. Assuming that the reconnection
process proceeds at a quasi-steady rate, the kinetic equation (4.2) reduces to [Φ, f ] = 0, i.e.,
the electron distribution function near the x-point does not evolve and hence is aligned with
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Figure 4.2: The perturbed fields of a tearing mode, ψ (a) and φ (b). The current density
is discontinuous at x = ±L. In the presence of a temperature difference across
the magnetic island, the island becomes up-down asymmetric and is shifted by
δy with respect to the outer mode structure, as can be seen in ψ0 + ψ1 + ψ̃ (c)
and φ1 + φ̃ (d).

the stream-function, f(t, x, y, vz) = f(vz,Φ(vz, x, y)). In the plasma that streams towards the
x-point from the high-T side this equation is trivially satisfied by a constant, hot, distribution
function f(vz) = f0+ f̃ and the plasma that approaches the reconnection zone from the low-T
side has a constant distribution f0 − f̃ . As outlined in Ref. [5], the two distribution functions
meet at the separatrix of the stream function, which is inside the island. However, for each
value of vz, the separatrix Φ(vz, x, y) = 0 is a different curve through the x-point. Therefore,
inside the island the distribution function is position-dependent,

f(vz, x, y) = f0(vz) + f̃(vz) sign(vz − vs(x, y)), (4.19)

where vs = ψe/2m − φ/ψ is defined by Φ(vs, x, y) = 0. The island separatrices correspond
to vs = ±∞. Integrating vzf over vz yields a position-dependent current perturbation inside
the island,

j̃(x, y) = e δT (
1

m
+
v2
s

T0
)f0(vs) sign(y). (4.20)

Via Ampère’s law (4.4), this current perturbation perturbs the field ψ both inside and outside
the island.
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4 Temperature gradients in fast collisionless magnetic reconnection

Up to this point, the technique for combining the distribution functions of reconnecting
field lines is applicable to general magnetic configurations with an X-line in astrophysics
and in the laboratory. For the closed magnetic field of a tokamak, we now compute the
field perturbation from Eq. (4.20) in two limiting cases. First, if reconnection proceeds fast
(φL/ψL ≫ v̂t ≡ vt/kw), the perturbed current is concentrated near x = 0 in a layer much
narrower than the island width 2w with, for small y,

∫

j̃ dx = Ay, and A ≡ enψL
mφL

δT,

We neglect higher Fourier harmonics in the island period ky and consider the current to be
concentrated at x = 0,

j̃(x, y) = (A/k) sin(ky)δ(x). (4.21)

This leads to a magnetic field perturbation

ψ̃ = −(A/2kke) e
−ke|x| sin(ky).

The total field ψ = ψ0(x)+ψ1(x) cos(ky)+ψ̃ has a phase shift in the y-direction (see Fig. 4.2)
which vanishes for large x and has a maximal value at x = 0,

δy =
1

k
arcsin

( A

2kkeψL

)

≈ A

2k2keψL
.

In the other limit of slow island growth, φL ≪ v̂tψL, the perturbed current is broad. Near
the x-point it is almost constant, j̃ = δT en/(mvtπ

1/2)sign(y). This means that
∫

j̃ dx at
fixed y depends on the local island width w| sin(ky/2)|. Noting that j̃ changes sign in the
island center and again neglecting higher harmonics in ky, we once more solve Ampère’s law
∇2ψ̃ = j̃ approximately by considering j̃ to be concentrated in x = 0 as in Eq. (4.21). Thus
we find A = δT en/(2mv̂tπ

1/2) in the limit of slow island growth. The two limit cases can be
listed as

δy =
en δT

2mk2ke
×
{

1/φL, φL ≫ v̂tψL,
1/v̂tψL, φL ≪ v̂tψL.

(4.22)

In order to compare the linear (4.18) and nonlinear (4.22) phase shifts, and discuss the
role of the island width, we relate the ratio of the perturbed fields to the linear growth rate,
φL/ψL = iγkek‖v

2
A/(kΩ

2
+), relate the island width to the linear perturbation,

w2 = 8(ψL/j0)e
−L/de , and assume that the temperature difference near the x-point scales

linearly with the island width, δT ∼ T ′
0w. The phase shifts for fast and slow reconnection in

the nonlinear stage are then

δy = c1ω∗/k
2γw, γ ≫ k‖v̂t, (4.23)

δy = c2ω∗/kk‖vt, γ ≪ k‖v̂t, (4.24)

where c1, c2 are functions of kde and L/de of order unity.

4.6 Discussion

In conclusion, collisionless reconnection of magnetic field lines at different temperatures yields
a phase shift in the electron diamagnetic direction of the growing magnetic island chain
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relative to the far fields. The phase shifts in the different linear and nonlinear regimes are
summarized in Eqs. (4.18), (4.23), and (4.24). For large γ the phase shift decreases as γ−1 in
both the linear case (4.18) and the nonlinear case (4.23), while for small γ the linear phase
shift is proportional to γ. Therefore this shift, most pronounced at larger distances |kex| > 1,
decreases as the reconnection rate slows down. However, when the magnetic island grows into
the nonlinear regime, a constant phase shift (4.24), independent of w, remains near the island
where |kex| < 1, due to the finite temperature difference that builds up near the island.

While the dispersion relation (4.11) is specific for the equilibrium (4.5), the redistribution
of electrons after reconnection (4.19) is valid more generally, e.g. when the free energy for the
instability originates well outside the reconnection zone. Then the criterion for instability is
∆′ > 0, both in kinetic theory and in the collisionless fluid limit [3]. Thus, also Eq. (4.18) for
the phase shift is generally applicable, with γ and k in (4.18) related via the dispersion relation
for the case of interest. Likewise, within the range of validity of the kinetic model [5, 12],
Eqs. (4.23) and (4.24) are applicable for arbitrary nonlinear evolution of the island width
caused by an instability or external forcing, by specifying w and γ independently.

A final point of attention is the validity of the strong guide-field limit used here. This limit
is analyzed in the ∆′ description in Refs. [13, 14] with a fluid model that includes compression
and the Hall term, which are important at scales below the ion skin depth di = de

√

mi/m,
but for sufficiently low β Refs. [13, 14] reobtain the drift-Alfvén system as used in Refs. [3, 4].
In the present model the equilibrium scales are below di. A complete stability analysis of the
equilibrium (4.6) using the fluid model of Refs. [13, 14] shows that the effects of compression
and the Hall term are indeed significant, but only in narrow layers of width de

√
β around the

current density jumps. For β ≪ 1 these effects are negligible in the dispersion relation, and
neither affect the reconnecting mode nor create another instability of the equilibrium (4.6).
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5 Collisionless tearing mode in cylindrical

geometry

Abstract

Magnetic reconnection due to electron inertia is responsible for very fast and
violent phenomena in magnetized plasmas in which magnetic energy is converted
into electron kinetic energy on very short time scales. Considering an annular
current region that stands model for current that may be associated with the
helical transform ψ∗, we assume current density jumps in the radial direction.
In this way we may use the powerful Contour Dynamics (CD) methods to study
linear stability and nonlinear evolution of a tearing unstable equilibrium using a
two fluid model. We obtain analytical expressions for the linear dispersion relation,
that are in good agreement with the CD simulations.
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5.1 Introduction

5.1 Introduction

The violent transformation of magnetic energy into electron kinetic energy in a plasma known
as magnetic reconnection, occurs in various instances in nature, such as geomagnetic sub-
storms [1], solar flares [2], and the heating of the corona of the sun [3]. It converts magnetic
energy into kinetic energy of electrons in very small reconnection zones, where magnetic flux
originating from different regions in the plasma is broken up and recombined. The finite in-
ertia can decouple the motion of the electrons from the magnetic field lines and so establish
fast reconnection even in collisionless conditions, such as very hot or rarefied plasmas.

Though collisionless reconnection first saw applications in the field of astrophysics, where
rarefied and diluted plasmas displayed phenomena on a timescale that was generally too short
for resistive processes to take place, in the last two decades fusion experiments also raise
the same challenges. The central part of a tokamak can be prone to the so-called sawtooth-
instability, a process in which the plasma within the q = 1 surface is completely redistributed,
thermalized, and according to some models [4, 5] completely turned inside out. The time in
which this happens can be as little as a tenth of the mean Coulomb-collision time [6]. It was
shown that fast collisionless reconnection can be achieved when electron inertia is accounted
for as a current limiting factor [7, 8].

For larger values of q perturbations may lead to instabilities such as (neoclassical) tearing
modes that form a chain of helical magnetic islands around the torus. These magnetic islands
are long lived, coherent structures that can be described as localized and stationary solutions
of the equations that govern the plasma motion. When they reach a critical size they become
a threat for the magnetic confinement of the plasma.

Recently [9] equilibria with piecewise constant generalized vorticity constituting a periodic
straight current layer have been proven to be unstable to a reconnecting mode with tearing
symmetry. A surface perturbation that runs along the layer excites the mode that undergoes
exponential growth in the subsequent linear stage. The dispersion relation for this mode
can be derived from kinetic or fluid equations using the assumption that we have a strong
magnetic guide field in a low-β plasma, so that we can describe the perpendicular dynamics
of the plasma independent from the fast thermal motion along the field lines. In this way a
class of Lagrangian advection equations was found.

In this paper the linear stability of cylindrical equilibria will be considered, by means of
a dispersion relation pertaining to the collisionless two-fluid drift approximation. The thus
predicted growth rates will be compared to numerical simulations using a contour dynamics
code with symplectic time integration.

The paper is organized as follows. First, the two-fluid drift equations are outlined in sec-
tion 5.2. Then, in section 5.3 it will be sketched how a convenient formulation of the two-fluid
drift equations can be modelled using the Contour Dynamics (CD) technique. Subsequently,
an equilibrium will be constructed that satisfies the equations in an intuitive way, that can
be made unstable to tearing modes. The linear dispersion relations based on the two-fluid
model are detailed in section 5.4. Some details on the numerical simulation tool will be given
in section 5.5. The results of the simulations using the CD method will be discussed and
summarized in section 5.6 and 5.7.
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5.2 The two-fluid drift-Alfvén model

We consider a strongly magnetized, low-β plasma, with a strong magnetic guide field that
is given by B = B0ez + ez × ∇ψ and an electric field E = ez∂tψ − ∇φ, where φ, ψ are the
electrostatic and magnetic vector potential, respectively. We assume ∇ψ ≪ 1, so that the
dynamics are strongly anisotropic.

The plasma is described as an electron and an ion fluid. The electrons are assumed to be
collisionless, and their inertia is taken into account. We study two-dimensional motion only,
independent of the z-coordinate. No magnetic curvature effects and particle trapping due to
∇B will be taken into account here.

The ions are assumed to be cold in the sense that they respond to parallel fluctuations of
the electron density by moving perpendicularly to the magnetic field with the E×B-drift to
maintain quasi-neutrality. In this way the electron density and the vorticity are linked similar
to how the current and magnetic field are connected.

This response can be obtained from the compressibility of the ion polarization drift. From
vp,i = −∂tφ/(B0Ωi), with Ωi the ion cyclotron frequency, we can deduce from the continuity
equation that for small fluctuations from the ion density n0, we get that Ωiδn/n0 = ∇2φ/B0,
or ∇2φ≪ Ωi.

Following [10, 11, 12], the electron fluid is described by the parallel component of the
continuity and the electron momentum balance equation [12],

dn

dt
+ ∇‖nvz = 0, (5.1)

men
dvz
dt

= −enE‖ −∇‖pe, (5.2)

with

d

dt
=

∂

∂t
+ [φ, . ], ∇‖ =

d

dz
+ [ψ, . ],

and [A,B] = ez · ∇A × ∇B. We assume the current density j to be negligible in the plane
perpendicular to the dominant magnetic field, so that j ≈ ∇2

⊥ψ. The parallel electron velocity
vz is advected with the E × B-velocity, which is assumed to be the dominant perpendicular
flow, and parallel ion flow is neglected.

This leads to a system of equations [10],

∂t∇2φ+ [φ,∇2φ] = v2
A[ψ,∇2

e ψ], (5.3)

∂t∇̃2ψ + [φ,∇2
e ψ] = − v2

t

v2
A

[∇2φ, ψ], (5.4)

with ∇2
e = ∇2−d−2

e , vt the electron thermal velocity, v2
A = B2

0/min0 the Alfvén velocity and
de = c/ωpe the electron inertial skin depth.

5.3 Contour Dynamics

The equations (5.3, 5.4) can be cast in a Lagrangian form of two purely advective equations
for generalized vorticities [10], that are being advected by their own respective generalized
streamfunction,

∂tωα + [Φα, ωα] = 0, (5.5)
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5.3 Contour Dynamics

where α = +,− denotes the type of vorticity, given by ωα = ∇2φ − (v2
A/vα)∇2

e ψ, and their
streamfunctions by Φα = φ+ vαψ, where the parallel velocity v± = ±vt.

The Lagrangian formulation allows the simplification that is exploited when using contour
dynamics. Inverting the definition for the generalized vorticity (5.5), we obtain the stream
function as integrals over the vorticity distributions ω±(x),

Φα(x, t) =
∑

β=+,−

∫

d2x′Gvαvβ
(|x − x′|)ωβ(x′), (5.6)

where the Green’s function for the unbounded domain [13] is given by

Gvv′(r) ≡
1

2π

(

ln r +
vv′

v2
A

K0(
r

de
)
)

, (5.7)

with r = |x − x′|, vi = ±vt and K0 the modified Bessel function of the second kind. This
expression was used as an interaction potential between point vortices in [12]. By assum-
ing the (generalized) vorticity to be constant within a well-defined region C, bounded by a
contour ∂C, the dynamics are completely defined. Such a piecewise uniform distribution of
generalized vorticity will remain piecewise uniform by Eq. (5.5), and so the topology of the
initial distribution is also conserved in time.

The Green’s function Gvv′(r) can be seen as the streaming potential of the contour type
vi at x as a consequence of a contour line element of a patch of vorticity type vj at x′. The
streamfunction as a consequence of a distribution of N patches becomes [14]

Φj(x, t) =
N
∑

i=1

ωi

∫

Ci(t)
d2x′Gvivj

(|x − x′|), (5.8)

with Ci a piecewise uniform generalized vorticity distribution of a contour with velocity
type vi. The velocity of the j-th contour is then calculated by applying Stokes’ theorem and
integrating by parts [13, 14],

uj(x, t) = −
N
∑

i=1

ωi

∮

∂Ci(t)
dl′Gvv′(|x − x′|),

where the summation is over all contours ∂Ci and vi is the velocity type of the i-th contour.
This implies that the time evolution of a contour depends only of the location of the contours,
including itself.

Because the surface enclosed by ∂Ci(t) is conserved, all linear combinations of fluxes ωα
are conserved. This makes this approach very suitable for numerical purposes, as there are
no external boundary conditions to be observed.

As mentioned before, the surface enclosed by the contour represents an amount of flux
of
∫

Ci
d2xωα with ωα = ∇2φ − (v2

A/vα)∇2
e ψ, a combination of vorticity and current. By

superposing contours of the + and − type we can construct regions of pure current density
by giving them opposite weight. When the ω± contours no longer fully overlap as a result of
some (unstable) dynamics, regions of either ω+ or ω− start to form, that still contain current
but have nonzero vorticity and can accelerate the mode.
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5 Collisionless tearing mode in cylindrical geometry

Figure 5.1:

The fields of a current annulus equi-
librium. Here, the dashed curve shows the
x-dependence of the total generalized vor-
ticity, the solid curve shows the current
density ∇2ψ0 as a layer between R1 and
R2 that is shielded on a length scale de,
and the the dotted curve is ψ0.

1 2 3
r/de

5.4 Equilibrium, linear stability

We aim to study an equilibrium with a magnetic field aligned in the z-direction at some radius
rs in the plasma, in right-handed cylindrical coordinates (r, θ, z), so that the equilibrium ψ0

corresponds to a helical flux function ψ∗ for a flux surface for some rational value of the safety
factor, q.

We fulfill the requirements for equilibrium in a θ, z-independent cylindrical geometry
automatically by making a linear combination of two concentric patches of radius R1, R2, in
such a way that φ = 0 everywhere, i.e. no equilibrium background vorticity, and outside the
patches there is no parallel current: r > R2 : ∇2

e ψ0 = 0. To achieve this, two contours of
equal strength and radius but of opposite type (α) are superposed at r = R1 and r = R2, so
that we effectively have a system of four ωα contours, with net vanishing vorticity and with
magnetic vector potential

ψ0,j = −d2
ejj

{

1 − Rj

de
K1(

Rj

de
)I0(

r
de

) if r < Rj ,
Rj

de
I1(

Rj

de
)K0(

r
de

) if r > Rj ,

for j = 1, 2, with Ii,Ki modified Bessel functions of the first and second kind. Though
the current profile as depicted in Fig. 5.1 is peaked, and shows the shielding effects on a
length scale de caused by the electron inertia, the ψ0 constructed in this way is smooth and
differentiable everywhere. The quantities

ĵ1 =
ψ′

0(R1)

R1
= j1I11K11 + j2I11K12

R2

R1
,

ĵ2 =
ψ′

0(R2)

R2
= j1I11K12

R1

R2
+ j2I12K12,

give the relative gradient at R1 and R2, the edges of the annulus. They need to be of opposite
sign to have a neutral line within the annular region R1 < r < R2, or, in other words, for ψ0

to have a minimum there. This means that j1 < 0 < j2. We have defined

Imj ≡ Im(Rj/de), Kmj ≡ Km(Rj/de), j = 1, 2. (5.9)
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5.4 Equilibrium, linear stability

In this way we have constructed a smooth ψ0 whose radial derivative goes to zero for r → 0,∞,
and that hosts a region of nonzero mean electron velocity for r < R2. This results in a localized
current density j(x) that is shielded on the scale of de, the electron inertial skin depth, and
thus becomes invisible for large |x|. Integrated over the whole domain there is no net current
density.

The limit kR1, kR2 ≫ 1,and R1, R2 ≫ de while R2 − R1 ≪ R1, R2 leads to the straight
slab geometry that was investigated in [9].

Now that we have established an equilibrium, we seek to disturb it. We linearize Eqs. (5.3)
and (5.4), yielding

−ω∇2φ1 = v2
A

(

kψ′
0∇2

e ψ1 − kψ1∇2
e ψ

′
0

)

, (5.10)

−ω∇2
e ψ1 =

v2
t

v2
A

kψ′
0∇2φ1 + kφ1∇2

e ψ
′
0. (5.11)

where prime denotes derivation with respect to r. Here we note that we can only perturb the
equilibrium by changing the location of the contours of ω±. In the rest of the domain we have

∇2φ1 = 0,

with a general solution that is regular at r = 0, r = ∞,

φ1(r, θ) = ei(mθ−ωt)
∑

j=1,2

φj,m
2m







(

r
Rj

)m
, r ≤ Rj ,

(

Rj

r

)m
, r ≥ Rj .

(5.12)

Similarly,
∇2
e ψ1 ≡ ∇2ψ1 − d−2

e ψ1 = 0,

has regular solutions

ψ1(r, θ) = ei(mθ−ωt)
∑

j=1,2

ψj,m

{

KmjIm( rde
), r ≤ Rj ,

ImjKm( rde
), r ≥ Rj .

(5.13)

These functions determine the shape of the perturbed fields, and make sure that they remain
regular for r → 0,∞. They also contain a discontinuity in the first derivative. Evaluating
the jumps at the inner and outer surfaces r = R1 and r = R2,

ψ′
0(Rj) = Rj ĵj , (5.14)

∇2
e ψ

′
0 =

∑

j=1,2

−jjδ(r −Rj), (5.15)

∇2φ1 =
∑

j=1,2

−2m

Rj
φj,mδ(r −Rj), (5.16)

∇2
e ψ1 =

∑

j=1,2

−ψj,m
de

δ(r −Rj), (5.17)

these may give the coupling of the equilibrium with the perturbed field through Eqs. (5.10
and 5.11). Filling in the jump conditions (5.14) - (5.17), they can be written as

ω

(

φ1,m

φ2,m

)

= Mψ

(

ψ1,m

ψ2,m

)

, (5.18)

ω

(

ψ1,m

ψ2,m

)

= Mφ

(

φ1,m

φ2,m

)

, (5.19)
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5 Collisionless tearing mode in cylindrical geometry

Figure 5.2: The linear m = 3 mode in a cylindrical current annulus, with eigenfunctions for
the electrostatic potential φ (left) and the magnetic potential ψ (right).

with

Mψ = −v
2
A

2

(

j1Im1Km1 − ĵ1 j1Im1Km2

j2Im1Km2 j2Im2Km2 − ĵ2

)

Mφ = m

(

j1 + 2mĵ1v
2
t /v

2
A j1(R1/R2)

m

j2(R1/R2)
m j2 + 2mĵ2v

2
t /v

2
A

)

(5.20)

Matching the jumps in the derivatives in the eigenfunctions at R1 and R2 leads to the
dispersion relation in ω and k = 2m/(R1 +R2),

ω4 − ω2Tr(M) + det(M) = 0, (5.21)

with M = MψMφ.
We can identify three qualitatively different regimes in this description, with different

stability characteristics. For Tr(M),det(M) > 0 we have two unstable modes, for det(M) < 0
we have one unstable mode and for 0 < det(M) < 1

4Tr(M)2 the current channel is stable.
In the rest of the paper we will be interested in the part of parameter space where there
is one unstable mode. When we investigate the behaviour of this mode we find that it is a
reconnecting mode with tearing symmetry. We have to note, however, that the cylindrical
geometry couples the even and odd perturbations.

In the linear case, when two interfaces are perturbed sinusoidally, it is possible to distin-
guish between a perfectly symmetric (tearing) and a perfectly anti-symmetric (kink) case.
The difference between inner and outer circumference in a cylinder however couple these two,
creating mixed tearing and kink modes. The mixed character lies in the fact that for the
tearing modes the neutral line, on which the x- and o-points lie, are not exactly circular.
We speak of a tearing mode because of the clear formation of magnetic islands, and because
generally the eigenvalue corresponding to the tearing mode is considerably larger.

We note that this equilibrium is not forced into reconnection by an external driving
force, which leads to the well known ∆′ formalism through asymptotic matching techniques
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5.5 Numerical method

[15, 16]. Instead the process is set in motion by standing surface perturbations at the surfaces
r = R1, r = R2. In this configuration it is not suitable to assign a value of ∆′ to this
equilibrium, as this quantity is defined as the perceived current in the so-called ‘outer’ region,
(or the mismatch limx→−∞ dψ/dx− limx→+∞ dψ/dx ,) far away from the reconnection zone
at x = 0, with x a coordinate perpendicular to B and in the direction of the inhomogeneity.
In the equilibrium used here dψ0/dx → 0 for x → ±∞. As such, there is no boundary layer
and no small parameter expansion.

5.5 Numerical method

The specifics of the numerical method are described in detail in [13, 14], so only some relevant
or newly added features will be outlined here.

The input for the code consists of a set of boundaries of regions of piecewise constant
generalized vorticity. Initial sinusoidal perturbations of the form ∼ ε sin (mθ) of an initially
circular boundary can be specified per vortex patch, with m ∈ N and ε small enough to
make sure that the behaviour can be considered linear at first. Choosing ε of the inner and
outer patches of opposite sign results in a constricting, tearing perturbation. Note that in
general the boundary of the whole patch is deformed, instead of different perturbations for
the different generalized vorticities ω±. This results in an initial deformation that is not an
exact solution of the dispersion relation (5.21), but one that can be expressed as a sum of its
eigenmodes.

In this way we arrive at a set of finite area vortex patches that are described by a dicrete
set of points or nodes and the jump in the corresponding vorticity with respect to the external
value, taken to be zero.

The discretization of a contour is reconsidered by the code every timestep, inserting more
nodes when the local curvature of a segment becomes too large, or when a line segment of
the same vorticity type comes close, and deleting nodes vice versa. The velocity field of the
discretized system is shown to be divergence-free nevertheless [14].

The motion of the contours is given by the Eqs. (5.5), and the points that constitute
the contours can subsequently be calculated by a symplectic integration scheme. This means
that the method, an implicit predictor-corrector scheme using a second-order midpoint rule,
conserves the area of the initial contours very well [14].

When the amount of nodes per contour exceeds a preselected limit, the code breaks off.
The intricate features can pose considerable computational cost when a highly nonlinear
stage is reached, with the amount of computations scaling roughly with the amount of nodes
squared.

The code harbours the possibility for Contour Surgery, meaning that when the tolerance
for the closeness of two parts of a contour is surpassed, the code cuts the structure loose and
ties the enclosing ends together, ignoring the conservation of initial topology. This feature is
not used in our simulations and will not be discussed further, for details see [13].

The φ and ψ-fields as a function of x, with φ = (Φ+ +Φ−)/2 and ψ = (Φ+−Φ−)/2vt, can
be calculated by testing whether x is in- or outside a contour, and subsequently performing
the integral

Φj(x) =
∑

i

ωi

∫

Ci

d2x′Gij(|x − x′|),
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which is equivalent to

Φj(x) =
∑

i

ωi

∮

∂Ci

ez · dl′ × (x − x′)Fij(|x − x′|),

with

Fαβ(r) =
1

r2

∫ r

0
dr′ r′Gvαvβ

(r′).

The representation of this integral as a contour integral instead of a two-dimensional integral
over the infinite plain has the advantage that no assumptions need to be made as to at what
distance from the contours the velocity fields they create become negligible. Furthermore, the
performance is enhanced, as it requires line integrals instead of surface integrals.

5.6 Numerical results

The set-up of the numerical simulations is as follows. Four concentric circular patches are
superposed, two of radius R1 and of strength ω1 of their respective ω± type, and two of
radius R2 > R1 with equal but negative vorticity as their smaller counterparts. In this
way an annular zone of pure current density with j = (ω+,1 − ω−,1) − (ω+,2 − ω−,2) for
R1 < r < R2 is constructed. Analytically this equilibrium is tested for stability to perturba-
tions with tearing symmetry of ‘poloidal’ wave number m using the linear dispersion relation
(5.21). The parameters are chosen such that the current annulus equilibrium does not become
unstable with respect to the kink-type mode.

When the equilibrium is unstable to one or more modes, a simulation is started with the
corresponding parameters.

Furthermore, an equilibrium is almost always unstable with respect to more than one
mode. One may choose to excite a mode that does not have the largest growth rate, as this
is a free parameter in the input file. In the simulations that were performed by the authors
no evidence was found that a mode started to develop a mixed character, i.e. with more than
one mode number, not even in the deeply nonlinear stages. It is possible to excite a m = 1, 2
and M ∈ N mode simultaneously. In this situation the mode with the largest growth rate
becomes dominant after few timesteps.

It is possible to ‘tailor’ the central ψ0 profile to prevent collapse towards the centre as
this now corresponds to a zone of zero magnetic shear. By placing one or more contours in
the central region or by placing the equivalent of a current-wire or point-current vortex in
the centre it is possible to ‘smoothen’ the current profile in order to obtain a more realistic
starting point for the simulations. The following results have been obtained with flat central
profiles, however.

5.6.1 Comparison to the linear dispersion relation

In general, it should be noted that the linear dispersion relation (5.21) can only be properly
compared to a nonlinear simulation when the amplitude of the most unstable mode is small,
compared to the width of the current layer, w ≪ R2 − R1, but also compared to the radii
themselves, w ≪ R1, R2, because nonlinearly poloidal curvature effects may play a role. This
refers to consequences of the difference between the length of a part of a field line on the
inside and the outside of a magnetic island, that may diverge after the onset of the mode.
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Figure 5.3: Contour dynamics simulation of an m = 10 perturbed equilibrium after t = τA
(top) and t = 3τA (bottom). On the left we see the calculated contours, marking
the borders of areas of uniform generalized vorticity. Red areas consist of ω+,
blue areas of ω− and purple areas are purely current-carrying parts. The middle
column shows contours of the electrostatic potential φ and the right hand column
the magnetic vector potential ψ.

When we calculate the reconnected flux as a function of time by deducting the flux at an
o-point from the flux at an x-point,

ψrec = |ψo − ψx|,

we can estimate the growth rate yielded by the simulation by a logarithmic fit to the non-
saturated states. This phase is depicted in the top rows of Figures 5.3, 5.4, 5.6 and to a lesser
extent 5.8. But, as was pointed out, the initial deformation of the contours is not likely to be
an exact eigenstate of the dispersion function. The dispersion relation (5.21) has four linearly
independent solutions, two of which with tearing parity. The initial perturbation at t = 0
contains a superposition of the growing and decaying eigenfunctions, so that the perturbed
vector potential for small t behaves as

ψ1(t) = ψ1(0) cosh(γt), (5.22)

with ψ1(0) the perturbation at t = 0 and γ = Im(ω), the imaginary part of the eigenvalue
corresponding to the tearing mode solution. This is equivalent to

γt = log
( ψ(t)

ψ1(0)
+

√

(
ψ(t)

ψ1(0)
)2 − 1

)

, (5.23)
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5 Collisionless tearing mode in cylindrical geometry

Figure 5.4: Contour dynamics simulation of an m = 5 perturbed equilibrium after t = τA
(top) and t = 5τA (bottom).
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Figure 5.5: On the left the logψrec versus time of the mode with m = 5 in Alfvén time units,
τA = ρs/vA. The blue line is a fit considering the interval with the maximal slope,
yielding γ = 0.84. On the right the γefft using Eq. (5.23) which gives γ = 1.10,
in the linear stage, based on the same data.

illustrated in Fig. 5.5 for the case m = 5. This leads in general to a considerable correction
compared to a linear fit at the point of inflection in the stage between early linear growth
and saturation.

The fact that the initial perturbation has tearing symmetry does not rule out the pos-
sibility that also a mode with kink parity is excited. This mode is stable, but because it
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5.6 Numerical results

Figure 5.6: Contour dynamics simulation of an m = 3 perturbed equilibrium after t = τA
(top) and t = 5τA (bottom).

would always be excited ∼ cosωt, it could give a noticeable modification of the growth rate,
especially when the initial perturbation was not taken to be sufficiently small.

We consider a current annulus between 4 < r/de < 4.5, with jj = ±1.5d−1
e . The growth

rates of the tearing mode as predicted by the linear dispersion relation (γdis) and the ones
found numerically (γnum) are listed in Table 5.1. The growth rates are given in inverse Alfvén
times τ−1

A , with

τA = ρs/vA, (5.24)

a typical Alfvén transit time through a unit cell of the simulation, that is normalized to
ρs =

√
memivt/eB0, the ion-sound Larmor radius.

We observe good correspondence between γdis and γnum, especially for lower mode num-
bers. For m = 10, the deviation becomes more than 10 %.

It is possible that the fact that the initial condition is not an exact eigenfunction causes
a mixing of tearing and kink parity modes that in turn cause this underestimation. However,
the simulations and the dispersion relation are close enough to state that the model seems to
describe what the simulation is showing in the early, linear phase.

5.6.2 Nonlinear saturation of the magnetic islands

We have generally let the simulations carry on until the criterion for the maximum nodes per
contour broke it off, to see how the different types of nonlinear behaviour would develop.

From the analysis leading to the linear dispersion relation we can say that the island width
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modenumber R1/de R2/de γdis(τ
−1
A ) γnum(τ−1

A )

m = 1 1.8 2.5 0.47 0.47

m = 3 4.0 4.5 0.89 0.87

m = 5 4.0 4.5 1.15 1.10

m = 10 4.0 4.5 0.97 0.88

Table 5.1: Comparison of the analytically obtained growth rates from the linear dispersion
relation γdis and the growth rates of the numerically simulated modes γnum for
different poloidal mode number m.

has to be significantly smaller than the total width of the current layer, w < |R2 −R1|, to
be able to speak of linear or quasi-linear behaviour of the mode.

If we look e.g. at the case where m = 5, we see in the the top row of Fig. 5.4 that the
islands already stretch out to the borders of the current layer, that can be seen in the left
figure by the overlap of the contours of the blue and red ω±-type, depicted in purple. This
instance corresponds to t = τA. If we now turn to Fig. 5.5, we see that at this point the mode
is still exponentially growing and reconnecting.

When the amount of reconnected flux saturates, here, after approximately t ≈ 2.5τA,
the magnetic islands have grown well beyond the width of the original current layer. When
looking at the φ, ψ-fields, the new situation, seen in the left columns of e.g. Figs. 5.3, 5.4
and 5.6 does not change rapidly anymore, and seems stable. At this point we note that the
remaining current cables at the centre of the magnetic islands are of dimension de, analogous
to [13]. These cables host the most of the electrons. However, the contours of ω± are still
being advected under influence of their respective flowfields, especially near crossings of the
two vorticity types (the blue and the red contours), creating thin filaments of length scales
well below de. These filamentary structures eventually lead to the increase in nodes that
makes the code break off.

5.6.3 Scale collapse

Once the islands start to saturate, the narrow filaments of the patches that are drawn across
the x-point are stretched at ever smaller length scales, resulting in the extremely peaked
current distributions as reported in [7, 17]. In slab geometry the current spike that forms as
a result of the instability shrinks unboundedly and becomes a finite time singularity.

In our simulations, we see that for higher mode numbers the contours of ω± at the x-point
constrict, until the criterion for the amount of nodes per contour is violated.

When we turn to lower mode numbers, however, e.g. m = 3 in Fig. 5.6 we see how even
in the earliest stages the linear mode is already curved around the cylinder.

This leads to an ever more pronounced in-out asymmetry of the mode, i.e. between the
part facing inward and outward the cylinder. This asymmetry limits the sharply peaked
growth and simultaneous scale collapse of the current distribution that is seen e.g. in [17].
The current layer shrinks well below the size of de, but reaches a minimum width well before
the end of the simulation.
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5.6 Numerical results

Figure 5.7: Details of the x-points for simulations of m = 3 perturbed equilibria in approx-
imately the same phase of saturation with left vt = 2vA, middle vt = vA and
right vt = 0.5vA. The black line is the magnetic separatrix.

5.6.4 Effect of the electron temperature

The effect of electron temperature on the collisionless tearing mode was first reported in [11].
There, it was found that for ρs/de > 1, or, equivalently vt/vA > 1, the contours of ω± should
be approximately tangent to the separatrix of the magnetic island in ψ. In the opposite case,
vt/vA → 0, the angle between the contours of ω± would also become 0, or π. In [17] it is
discussed how the interplay between the electron thermal velocity and the velocity of the
mode itself, φ/ψ, brings about this behaviour.

In short: when the thermal velocity of the electrons is large compared to the mode velocity
of the mode, the electrons, with streamfunctions φ± = φ± vtψ, will have a relatively strong
tendency to follow the magnetic field lines. When on the other hand the mode is fast compared
to the thermal velocity vt, the dynamics of the electrons is mostly gouverned by the E × B-
drift, interacting through φ, more or less independently of the dynamics of the mode, that
interacts through ψ.

If we look at three different simulations, with R1 = 8de, R2 = 10de, but with decreasing
ratio of vt/vA, we see this phenomenon taking effect: in Fig. 5.7 on the left side, for vt = 2vA,
the blue and red contours of ω± indeed approximately align with the separatrix of ψ, whereas
for decreasing ratio vt/vA the contours move inwards, away from the magnetic separatrix,
forming an ever thinner ribbon of current between the bulk current density distributions
inside the islands. In the right figure in Fig. 5.7, the angle between the contours has become
so small, or the current density distribution has become so thin in this stage of the simulation
that the contours of ψ become distorted, resulting in the narrowing of the separatrices near
the x-point. In this example the fact that the thermal velocity of the electrons is so much
smaller than the velocity of the mode couples back to the shape of the mode itself.

5.6.5 Complete internal m = 1 reconnection

The sawtooth-instability in the centre of tokamaks has been associated with a large scale
reconnection event within the q = 1 surface of the plasma. In 1975, Kadomtsev [4], presented
a model on how a m = 1, n = 1 magnetic island could reconnect fully, replacing the original
magnetic axis by the centre of the island, redistributing the plasma density and temperature
as a result. This model has supporting evidence [18], but is probably a simplified picture [19].
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5 Collisionless tearing mode in cylindrical geometry

Figure 5.8: Contour dynamics simulation of m = 1 perturbed current equilibrium, after
t = 5τA (top) and 15τA (bottom).

Here, we have perturbed a current annulus with R1 = 1.8de, R2 = 2.5de, by displacing
the central annulus infinitesimally in the negative x-direction. This is equivalent to an m = 1
perturbation. In the quasi-linear part of the simulation, in the left column of Fig. 5.8, we
clearly see a m = 1 island appear in the ψ-contours, on the right. This island grows until it
fills up almost all of the former inside of the cylinder or patch.

As there is no magnetic shear on the inside of the current patch, the motion of the m = 1
island is not inhibited in any way, and ‘bounces’ from the righthandside to the left. This is
a result of the lack of magnetic shear in the centre of the annulus. When a current wire is
placed to prevent this the island folds around it and smaller structures appear in the central
region. This has not led to achieving a realistic ψ∗-profile, confining modes to a limited radial
interval.

5.7 Discussion

A minimal model was presented to study tearing modes in cylindrical geometry. The col-
lisionless drift two-fluid equations can be cast in an advective form that makes it possible
to characterize a sytem by two types of contours, that are advected in their own respective
flowfields.

In slab geometry, similar analysis was presented with a drift-kinetic model, containing
all the information of the electron parallel velocity distribution function. The linear stability
analysis then yields expressions for the linear dispersion relation containing the so-called
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plasma dispersion function Z(ζ), in which particle-wave resonances are fully resolved. The
argument ζ, is in this case dependent only on ω, k‖ and vt, and the equilibrium parameter
that measures the amount of current in the layer. In the cylinder, however, the argument ζ
becomes dependent on r (more precise, k‖ becomes m/r). This makes the proof to exclude
other modes that may or may not have larger growth rates very complicated, though some
initial parameter studies have not revealed any other instabilities.

Therefore, the stability of a system with four degrees of freedom was studied: dependent
on the formulation ∇2φ,∇2

e ψ or ω±, that were free to be chosen on the surfaces of R1

and R2. This leads to four independent modes, and, as was mentioned in section 5.4, three
generally accessible regions can be discerned. The choice of parameters that results in a ψ-
profile with a neutral line between R1 and R2, with an annular region carrying more current
than the in- or outside, has always been stable with respect to the kink mode. Also, a fourth
region, with Tr(M)2 − 4 det(M) > 0, is (very likely) impossible to reach with real plasma
parameters, but would correspond to overstable modes, i.e. modes with both an oscillatory
and an exponentially growing or damping part. This can be proven rigorously using a two-fluid
energy principle in cylindrical geometry, but this is beyond the scope of this paper.

The numerical results that are obtained with a fully nonlinear code are in very good
agreement with the predictions made by linear theory. The time evolution of the reconnected
flux shows that out of the initial conditions that were imposed to start up the mode with
a preferred mode number, a linear combination of a damped and a growing mode starts
to develop. This eventually leads to complete internal reconnection for the m = 1 case, or
saturating islands for larger mode numbers.

Furthermore we see that the variation of the ratio of vt/vA, effectively changing the
electron temperature in the simulation, confirms results by [11, 17], and suggests the formation
of a thin, filamentary current ribbon in the x-point region, connecting the the x- and the o-
points. In the nonlinear phase the lack of alignment of the current filaments flowing out of
the x-point region leads to the distortion of the local magnetic field. This is clearly visible in
the shape of the magnetic separatrix in the right figure in Fig. 5.7.

To summarize, the contour description of a current annulus within a plasma yields an
excellent starting point for both the analytical and numerical study of collisionless tearing
modes in cylindrical geometry.
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5.A The stability of a current-vortex patch

5.A The stability of a current-vortex patch

In section 5.4 the linear stability of an annular current distribution was determined. This was
achieved using eigenfunctions for φ and ψ. Here, it will be argued that using the formalism
that corresponds to general contour dynamics brings us to the same conclusions.

The interaction potential between generalized vortex patches consists of a logarithmic
part, i.e. a long-range potential, and a short-range interaction potential in the form of the
modified Bessel function K0 (MacDonald’s function) of the normalized distance.

The drift-Alfvén model has stationary solutions in the form of circular vortex patches. The
linear stability analysis of such patches is similar to the one performed in section 5.4, in the
sense that the only linear perturbations of a circular patch are the infinitesimal peturbations
of the circular boundary, the contour, of the form exp

(

im(θ − ωt)
)

where m is a positive
integer and θ is the polar angle. The difference is that the shape of the contours is not used
a priori to determine eigenfunctions.

5.A.1 A circular current-vortex patch

In the drift-kinetic model the current/circulation ratio of a point-vortex can be characterized
by a parallel velocity v‖. This value defines on the one hand the mix of long-range and short-
range potentials produced by the point-vortex, and on the other hand the velocity that the
point-vortex attains in the presence of external electric and magnetic fields.

In the drift-Alfvén model this parallel velocity can have one of three discrete values,
vi = 0, −vt, vt. When the ion vorticity is assumed to be constant, this reduces to vi = ±vt,
corresponding to the streamfunctions φ±.

The interaction potential between point vortices of types vi, vj and strengths ωi, ωj equals
Vij = ωiωj G1ij

(

|xi − xj |
)

, with Gij the Green’s function from Eq. (5.7),

Gij(r) ≡
1

2π

(

ln r +
vivj
v2
A

K0

( r

de

)

)

,

where r ≡ |x1 − x2|. The velocity of the second vortex due to the first vortex is given by

ωj
dxj
dt

= ez ×∇jVij . (5.25)

If we consider a vortex patch of radius ri, type v‖ = vj , and constant generalized vorticity
ωi. Due to this vortex patch a point vortex (test particle) of type v‖ = vj at position rj will
have an angular velocity

uθ = riωiL
1
ij , (5.26)

where we have defined

Lmij = Lmji ≡
1

2m

( ri
rj

)m − vivj
v2
A

ImiKmj . (5.27)

for ri < rj , using the shorthand notation from Eq. (5.9). We take ri < rj , so that

uθ = riωi

( ri
2rj

− vivj
v2
A

I1iK1j

)

.

The derivation of this interaction potential makes use of the integrals
∮

dθ cos(mθ)K0(r) = 2πImiKmj , (5.28)
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and
∮

dθ cos(mθ) log r =

{

− π
m

(

ri
rj

)m
, m > 0,

2π log rj , m = 0,
(5.29)

where r2 = |xi − xj |2 = r2i + r2j − 2rirj cos θ. In both integrals ri < rj . Hence for m > 0 we
obtain

∮

dθ cos(mθ)Gij(|xi − xj |) = Lmij (ri, rj). (5.30)

5.A.2 Linear perturbation of two concentric current-vortex patches

The starting point for the analysis will be the most general basic interaction, viz. between
two vortex patches of types v1 and v2, with vorticities ω1 and ω2, and with radii r1 and r2.
We consider linear displacements of these patches given by

r̃1(θ, t) = r1 + ε1e
im(θ−ωt), (5.31)

r̃2(θ, t) = r2 + ε2e
im(θ−ωt), (5.32)

where ω, ε1, and ε2 may be complex. Let us consider the effect of the second patch on the
perturbation of the first patch. The perturbation at r = r2 gives rise to a perturbed potential
at the position (r1, θ1), for test vortices of type v‖ = v1, (cf. Eq. (5.8))

φ̃(r1, θ1, t) = ω2r2

∮

dθ2 ε2e
im(θ2−ωt)G12(|x1 − x2|). (5.33)

The perturbation of the potential leads to a radial velocity

∂r̃1
∂t

= − 1

r1

∂

∂θ1

(

φ̃+ uθ(r1)r̃1
)

. (5.34)

at r = r1. The first term is caused by the perturbation at r = r2 and hence is proportional
to ε2ω2. The second term is a Doppler shift associated with the angular rotation of the per-
turbation at r = r1 due to the bulk of the second vorticity patch and therefore is proportional
to ε1ω2. The integral in Eq. (5.33) can be evaluated using Eq. (5.30). One obtains

∂φ̃

∂θ1
= −im ε2 r2 ω2L

m
12 e

im(θ−ωt). (5.35)

Using the same notation, uθ(r1) = r2 ω2L
1
12, and hence Eq. (5.34) becomes

ωε1r1 = −ω2 r2
(

ε2L
m
12 − ε1L

1
12

)

. (5.36)

5.A.3 Stability of a single current-vortex patch

We can apply the result (5.36) of the previous section to the case of a single vortex patch.
Identifying the two patches in the previous section (r2 = r1, ω2 = ω1, v2 = v1) and taking
ε2 = ε1, we obtain the dispersion relation

ω = ω1

(

L1
11 − Lm11

)

. (5.37)

It is clear from this relation that ω is real, i.e., the vortex patch is stable. One also sees that
for m = 1 the frequency vanishes. It is not surprising that a vortex patch is metastable to an
m = 1 perturbation, which is simply a rigid displacement.
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5.A.4 Stability of a pair of concentric patches

Applying Eq. (5.36) to the self-interactions and the mutual interactions between the pertur-
bations of two patches, one obtains the system of equations

ω

(

ε1r1

ε2r2

)

= M

(

ε1r1

ε2r2

)

, (5.38)

where
Mij = δij

∑

k

ωkL
1
ik − ωjL

m
ij . (5.39)

Equation (5.38) is a quadratic eigenvalue equation for ω. This dispersion relation has real
roots if its discriminant is positive. Hence the condition for stability is

(M11 −M22)
2 + 4M12M21 > 0. (5.40)

We first note that all configurations are stable for m = 1, i.e., for rigid displacements of the
two vortex patches with respect to each other.

Secondly, we observe that a sufficient condition for stability is

M12M21 = 4ω1ω2 (Lm12)
2 > 0.

Hence, all unstable configurations must have ω1ω2 < 0.
Thirdly, one can consider the limit r1 → 0. We thus obtain the combination of a vortex

patch and a central point-vortex. Keeping the total circulation Ω1 = πω1r
2
1 fixed,

M11 → ∞ because of the term ω1L
1
11, whereas M12, M21, and M22 remain finite. As a

result, the eigenvalues become ω = ∞ and ω = M22. The infinite eigenvalue belongs to the
eigenfunction that deforms the point-vortex, whereas the finite eigenvalue corresponds to
deformations of the vortex-patch. The frequency is

ω = ω2(L
1
22 − Lm22) + Ω1

( 1

2r22
− v1v2

v2
A

1

2r2de
K1

(r1
de

)

)

. (5.41)

Comparing this with Eq. (5.37) for a single vortex patch, the frequency-shift due to the
central vortex is evident.

5.A.5 Stability of a pure current patch

We can construct a patch that carries a current without vorticity by equating the radii of the
two patches, r1 = r2, and setting ω1 = −ω2, so v1 = −v2. In that case

L1
11 = L1

22, Lm12 =
1

2m
+
v2
2

v2
A

Im2Km2,

so that

M11 = −M22 = ω2

( v2
2

v2
A

I12K12 +
1

2m
− v2

2

v2
A

I12K12

)

, (5.42)

M12 = −M21 = ω2L
m
12 = ω2

( 1

2m
+
v2
2

v2
A

Im2Km2

)

. (5.43)
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Then Eq. (5.38) reduces to

ω2 = M2
22 − ω2

2M
2
12

= 2ω2
2

v2
2

v2
A

( 1

m
+ 2

v2
2

v2
A

I12K12

)(

I12K12 − Im2Km2

)

. (5.44)

5.A.6 Stability of a single current patch using eigenfunctions

With this formalism, it is possible to obtain the full dispersion relation for the current annulus,
given by Eq. (5.21). This would require extensive algebra, so for brevity here we compare the
stability of a single current patch as described by Eq. (5.41) to the results using eigenfunctions.
We note that ω should be replaced by mω because of the definition of the perturbations
defined by Eqs. (5.31), (5.32). In the case of eigenfunctions we consider the Eqs. (5.18) and
(5.19), and turn off the inner patch by setting j1 = 0. In this way, we obtain

ω2 = Mψ,22Mφ,22,

=
1

2
mv2

Aj
2
2(1 + 2m

v2
t

v2
A

I12K12)(I12K12 − Im2Km2). (5.45)

This is the same result as obtained in Eq. (5.44), when we set v2 = vt and identify
ω2 = 1

2 mj2v
2
A/vt. This expresses that the method using eigenfunctions is equivalent to

the formalism of interacting contours.

96



6 Kinetic effects in a cylindrical tearing

mode using Contour Dynamics

Abstract

Magnetic reconnection converts magnetic into electron kinetic energy on some-
times faster than resistive timescales. Electron inertia is a candidate to provide
a mechanism for fast collisionless reconnection. The low collisionality and tem-
perature effects can be captured using a drift-kinetic model, which exploits the
fact that electrons moving with the same canonical momentum behave as an in-
compressible fluid, and can be described and simulated by contour dynamics. The
growth rate of the unstable tearing mode agrees with theoretical estimates from
a linear dispersion relation from a two-fluid model. The effects of a temperature
gradient result in a shift and diamagnetic rotation of the magnetic island struc-
ture, that are compared to analytical predictions based on a slab geometry. Island
deformation as a result of a locally increasing temperature gradient is bound by
the formation of a negative current region in the island due to the shielding effect
of electron inertia.
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6.1 Introduction

The problem of collisionless magnetic reconnection has been extensively studied in different
fields of plasma physics, such as geo-astrophysics [1], solar physics [2] and more recently
also in the field of fusion applications [3], because the plasmas are so hot that they become
virtually collisionless. Reconnection manifests itself through the transformation of magnetic
into electron kinetic energy as the tearing and reconnection of magnetic field lines forms
structures, such as magnetic islands in tokamaks. This can be such a violent process that
it ends up in plasma instabilities that affect the confinement of the whole plasma, or even
a plasma disruption, in which the plasma is lost completely. The timescale in which these
phenomena develop in collisionless plasmas has challenged the physics community, as the
resistivity in those circumstances is too low to produce the growth rates were observed in
space [1] and in fusion experiments [4].

It was shown [3, 5] that taking into account finite electron inertia can provide fast magnetic
reconnection rates even in collisionless plasma regimes. The underlying model can be cast
in a Hamiltonian form, in which two or three fields are advected by their respective velocity
fields. The reconnection process, however, involved the acceleration of electrons inexceedingly
narrow current layers, displaying singular behaviour near the x-points. It was pointed out that
this is an artefact of the equation of state, and that this behaviour is resolved when applying
a kinetic approach [6].

There are more fundamental reasons to use a kinetic model to describe the particles
during a collisionless phenomenon. In the absence of collisions, there is no mechanism that
enables the equilibration of electrons with different energies during the reconnection process.
Especially when a temperature gradient over the reconnection region is present, electrons
originating from different regions with a different temperature, may get mixed as the field
lines over which they travel are connected.

The nonlinear drift-kinetic model has been studied in reduced x-point geometry [6] and
slab geometry [7]. It makes use of distribution function to describe the electron velocity
parallel to the magnetic field. In this way, the model can unite the assumptions that in the
perpendicular direction the plasma is both collisionless and at the smae time sustains a finite
temperature gradient. The two-fluid drift-Alfvén model [8] can be obtained as a special case
of the drift-kinetic system when the perturbed distribution function is discretized in velocity
space as consisting of populations of electrons that move with plus or minus the thermal
velocity.

By assuming the direction of the dominant part of the magnetic field to be ignorable, a
Lagrangian advective formulation of the drift-kinetic equations can be obtained by transform-
ing to the canonical momentum in the z-direction. This has the form of a conservation law in
which each combination of vorticity and current is pointwise conserved when it is advected
by a stream function that depends on the parallel velocity.

The full drift-kinetic equations were used to obtain an exact linear dispersion relation
in slab geometry [9]. To achieve an analytically tractable, the perturbed electron velocity
distribution function was spatially discretized, by imposing jumps in the current density to
mark the boundaries of the current layer. In the present paper, the perturbed distribution
function is discretized in both real as velocity space, creating finite area regions with a uniform
distribution function that in velocity space consists of a continuous equilibrium part and delta
distributions for the perturbed part. In this way for each parallel velocity a contour can be
specified that bounds the region in which this velocity is uniformly distributed.
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6 Kinetic effects in a cylindrical tearing mode

This model is applied to a force-free equilibrium that is constructed by imposing jumps
in the distribution function that correspond to a finite first moment or current density at two
concentric circles. In this way an annular current region can be established that is unstable
with respect to a tearing mode.

As a consequence of the advective formulation and the double discretization, we can
make use of numerical contour dynamics. Contour dynamics has been applied to the two-
fluid drift-Alfvén system [10, 11], but not to investigate magnetic reconnection. Here, we
present an extended version of the code used in [10, 11, 12], that now can handle an arbi-
trarily fine discretization in velocity space. This enables us to impose a finite jump in the
second moment, the electron temperature, as well. The consequences of a thus constructed
temperature gradient can be compared to the analytical results that were reported in [9].

In this way it is possible to obtain the distributions e.g. the current and the temperature
during the process of magnetic reconnection, and thus study the anatomy of a magnetic island
that is generated by a collisionless tearing mode.

The paper is organized as follows. In section 6.2 the drift-kinetic model is introduced
using a Lagrangian advective formulation which shows the resemblance to the 2-D Euler
fluid equations. To be able to apply the contour dynamics formalism, the perturbed electron
distribution function needs to be discretized, for which a method is proposed in section
6.3. The advective property of the Lagrangian formulation is exploited in section 6.4, where
the contour dynamics formalism is outlined. In section 6.5 we give a short linear stability
analysis of the equilibrium used for the two-fluid drift-Alfvén equations, as the full drift-
kinetic equations do not yield a closed form of the dispersion relation in cylindrical geometry.
Also, the effects of a temperature gradient on a slab equilibrium as shown in [9] are indicated.
The numerical tool that was used to perform the numerical simulations is briefly outlined
in section 6.6, and the results that were obtained are given in section 6.7. These results are
summarized and discussed in section 6.8.

6.2 The drift-kinetic model

This section outlines a model that describes the dynamics of collisionless electrons that expe-
rience the effects of finite inertia. It includes the effects of parallel electron compression and
all the fluid nonlinearities that are incorporated in Hazeltine’s three-fluid model [13]. This
model is generalized by using the drift-kinetic equation to describe the parallel motion of the
electrons instead of an isothermal equation of state.

We consider a strongly magnetized, low β plasma, with a strong magnetic guide field
B = B0(ez + ez × ∇ψ) and an electric field E = B0(ez∂tψ − ∇φ), where φ, ψ are the
electrostatic and magnetic vector potential, respectively. We assume ∇ψ ≪ 1, so that the
dynamics are strongly anisotropic. The z-direction is taken to be ignorable, and we study
two-dimensional motion only.

The ions are assumed to be cold in the sense that they respond to parallel fluctuations
of the electron density by moving perpendicularly to the magnetic field with the E×B-drift
to maintain quasi-neutrality. In this way the electron density and the vorticity are linked
similar to how the current and magnetic field are connected. Because of the larger mass of
ions, the electrons tend to carry the current, j ≈ −enevz ≈ ∇2

⊥ψ, and parallel ion flow is
neglected. Furthermore we assumed the drift ordering to apply, so that n ≈ n0, consistent
with ∇2φ≪ Ωi.
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6.3 Initial conditions

For the electrons we assume that they can be described by a distribution function f̃(x, v‖, t),
with v‖ the velocity parallel to the magnetic field, that satisfies the collisionless drift-kinetic
equation applies,

∂tf̃ +
1

B0
[φ, f̃ ] + v‖∇‖f̃ =

e

me
(∂tψ −∇‖φ)

∂f̃

∂v‖
. (6.1)

The brackets are defined as [A,B] = ez ·∇A×∇B, and ∇‖ = ∂z+[ψ, . ] is the derivative along
the total magnetic field B. Ion Larmor radius effects are neglected here, and the magnetic
moment is considered an ignorable coordinate in phase space and has been integrated over.

If we assume the z-coordinate to be ignorable, or ∂z = 0, and we change coordinates to
the canonical momentum,

vz = v‖ +
e

m
ψ,

we can write Eq. (6.1) as

∂tf + [Φ, f ] = 0, (6.2)

with f = f(t,x, vz) ≡ f̃(t,x, v‖) and Φ = (φ+ vzψ− (e/2me)ψ
2)/B0 a vz-dependent stream-

function. This describes the advection of Lagrangian invariants, conserving an infinite number
of fluid type distributions f(x, vz). It implies furthermore that any function of G(f, vz) is a
solution of Eq. (6.2). The first two moments of the new electron distribution function,

∫

dvz f = n0 +
1

ev2
A

∇2φ, (6.3)

−e
∫

dvz vz f = ∇2ψ − d−2
e ψ, (6.4)

where de =
√

m/e2n0 the electron inertial skin depth, and vA = B0/
√
n0mi the Alfvén

velocity, provide the sources for the electric and magnetic fields in the plasma.

6.3 Initial conditions

We can solve Eq. (6.2) for f by creating regions of finite area where the distribution function
is uniform. We assume f to be of the form f(x, y, vz, t) = f0(vz) + f1(x, y, vz, t), where f0 is
the solution of [Φ, f0] = 0, and can be chosen to be of Maxwellian type. We approximate f1

by a sum of δ-functions in vz, with weights f1,i, that may depend on space and time. These
weights can change from one area to the other, creating regions with a perturbed distribution
function. We define

f0(vz) =
n√
πvt

e−v
2
z/v

2
t , (6.5)

f1(x, y, vz, t) =
N−1
∑

i=0

f1,i(t, x, y) δ(vz − vi), (6.6)

with vt the electron thermal velocity. The function that describes an excursion from equi-
librium f1,i(x, y, t) δ(vz − vi) is the boundary of a region with uniform f , and will be called a
contour. With this discretization, the drift kinetic equation, Eq. (6.2), reduces to N evolution
equations

∂tf1,i + [Φ(vi), f1,i] = 0, i = 0, . . . , N − 1, (6.7)
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6 Kinetic effects in a cylindrical tearing mode

which describes the evolution of regions with uniform f as they are advected by N different
streamfunctions Φ(v0), . . . ,Φ(vN−1. The macroscopic quantities are retrieved by taking the
moments of the perturbed distribution function,

hj =

∫

dvz v
j
zf1 =

N−1
∑

i=0

vji f1,i(t,x). (6.8)

So when we make use of N support velocities v0, · · · , vN−1, imposing the first N moments
h0, · · · , hN−1 results in the weights f1,0, · · · , f1,N−1. This leaves the choice of the support
velocities vi as a degree of freedom in this system.

A method to determine these velocities is based on the point that low order moments
should correspond to basic deviations from a Maxwellian distribution function. Here, the
orthogonal Hermite polynomials Hn(vz/vt) are used to redefine the moments, with Hn(x)
satisfying

∫ ∞

−∞
Hm(x)Hn(x)e

−x2

dx = 2n
√
π n! δm,n. (6.9)

The j-th Hermite moment is then defined as

hHj =

∫

Hj(v/vt) f1 dv, j = 0, . . . , N − 1. (6.10)

In this way a perturbation of the distribution function proportional to vm exp(−v2/v2
t ) only

perturbs the lowest m+ 1 moments hH0 , . . . , h
H
m.

By chosing the N support velocities vi to be the zeroes of the N -th Hermite polynomial
HN (vz/vt), the N -th moment vanishes: hHN = 0. The first N moments do not vanish, and are
given by

hHj =
N−1
∑

i=0

fiHj(vi/vt), j = 0, . . . , N − 1. (6.11)

The first four moments have their usual meaning, viz. perturbation of density, current density,
temperature and heat flow.

For N = 1, the 2-D Eulerian fluid flow is described, as no current density is possible.
The region limited by the contour then corresponds to a finite area vorticity region. With
N = 2 the isothermal two-fluid plasma model is retrieved [8, 10, 11]. The areas can now be
enclosed by two types of contours, corresponding to plus and minus the thermal velocity,
where we have a finite generalized vorticity Ω± = ∇2φ∓ vt(vA/vt)

2∇2
e ψ. The perturbations

can be such that in a region where there is a negative deviation for the negative velocity and
a positive deviation for the positive velocity (or vice versa) a finite current density occurs.
The case with N = 3 may capture thermal effects, but also corresponds to the isothermal
three-field model [10, 14], that also models the time evolution of the ion response, but with
a different electron temperature with respect to the N = 2 case. For N ≥ 4 a truely kinetic
model arises.

6.4 Contour Dynamics

The Lagrangian formulation of Eq. (6.2) allows the simplification that is exploited when
using contour dynamics. Inverting Eq. (6.2), we obtain the stream functions for every parallel
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6.5 Equilibrium, linear stability

velocity vz as integrals over the distribution function f(x, vz, t),

Φ(x, v, t) =

∫

C
d2x′

∫ ∞

−∞
dv′Gvv′(|x − x′|)f(x′, v′, t), (6.12)

with G the Green’s function for the unbounded domain, given by [11]

Gvv′(r) =
1

2π

(

ln r +
vv′

v2
A

K0(
r

de
)
)

, (6.13)

with K0 the modified Bessel function of the second kind. By assuming the distribution func-
tion to be constant within a well-defined region C, bounded by a contour ∂C, the dynamics
are completely defined. A piecewise uniform distribution function will remain piecewise uni-
form by Eq. (6.2), and so the topology of the initial distribution is also conserved in time.
The Green’s function Gvv′ is the streaming potential of the contour corresponding to velocity
v at x as a consequence of a contour with support velocity v′ at x′.

When we apply this to the discretized form of f1 consisting of N δ-functions at v0, . . . , vN ,
we get

Φj(x, t) =

N
∑

i=1

f1,i

∫

Ci(t)
d2x′Gvivj

(|x − x′|), (6.14)

with Ci(t) a piecewise uniform electron velocity distribution with parallel velocity vz = vi. The
velocity of the j-th contour is then calculated by applying Stokes’ theorem and integrating
by parts,

uj(x, t) = −
N
∑

i=1

f1,i

∮

∂Ci(t)
dx′Gvivj

(|x − x′|), (6.15)

where the summation is over all contours ∂Ci and vi is the support velocity of the i-th
contour. This implies that the time evolution of a contour depends only of the location of the
contours, including its own location.

The plasma in the region that is bounded by ∂Ci corresponds to a flux f1,i. Because
the surface enclosed by ∂Ci is conserved, all linear combinations of fluxes F (f1,i) are also
conserved.

6.5 Equilibrium, linear stability

We will study an equilibrium with an annular current layer, yielding a ψ-profile comparable
to that of a flux function ψ∗ correspponding to a flux surface with a rational value of the
safety factor q = m/n, where m,n are the poloidal and toroidal mode number, respectively.

The equilibrium is constituted by overlaying two concentric circular patches with radii
R1, R2, (R1 < R2). We impose the first moment of the outer patch, hH1,R2

, to have a posi-
tive value, and the first moment of the inner patch to have the same value, only negative,
hH1,R1

= −hH1,R2
. Furthermore, we can simulate a density and temperature gradient by spec-

ifying jumps of the zeroeth and second moments at Rj : h
H
0,Rj

, hH2,Rj
, resulting in a staircase

or wedding cake structure. In this paper, we only consider equilibria with jumps in the tem-
perature.
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6 Kinetic effects in a cylindrical tearing mode

1 2 3
r/de

Figure 6.1: On the left the fields of a current annulus equilibrium. The dashed curve shows
the x-dependence of the total generalized vorticity, the solid curve shows the
current density ∇2ψ0 as a layer between R1 and R2 that is shielded on a length
scale de, and the the dotted curve is ψ0. Next is shown the linear m = 3 mode in
a cylindrical current annulus, with eigenfunctions for the electrostatic potential
φ (middle) and the magnetic potential ψ (right).

The perturbed first moment yields a current density jj , resulting in a magnetic vector
potential given by

ψ0,j = −d2
ejj

{

1 − Rj

de
K1(

Rj

de
)I0(

r
de

) if r < Rj ,
Rj

de
I1(

Rj

de
)K0(

r
de

) if r > Rj ,

for j = 1, 2, with Im,Km modified Bessel functions of the first and second kind. The current
profile as depicted in Fig. 6.1 is peaked, and shows the shielding effects on a length scale de
caused by the electron inertia. However, the corresponding ψ0 is smooth and its derivative
with respect to r continuous. The quantities

ĵ1 =
ψ′

0(R1)

R1
= j1I11K11 + j2I11K12

R2

R1
,

ĵ2 =
ψ′

0(R2)

R2
= j1I11K12

R1

R2
+ j2I12K12,

give the relative gradient at R1 and R2, the edges of the annulus. When they are of opposite
sign we have a neutral line within the annular region R1 < r < R2, or, in other words, ψ0

will have a minimum there. This is equivalent to requiring j1 < 0 < j2 or hH1,R1
< 0 < hH1,R2

.
Here,

Imj = Im(Rj/de), Kmj = Km(Rj/de), j = 1, 2.

This equilibrium can only be perturbed at the location of the contours, because of the absence
of gradients in f . Away from the contours we find solutions for φ1 and ψ1 that are regular in
r → 0, r → ∞,

∇2φ1 = 0,

gives

φ1(r, θ) = ei(mθ−ωt)
∑

j=1,2

φj,m
2m







(

r
Rj

)m
, r ≤ Rj ,

(

Rj

r

)m
, r ≥ Rj .

(6.16)
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6.5 Equilibrium, linear stability

Similarly
∇2
e ψ1 ≡ ∇2ψ1 − d−2

e ψ1 = 0,

has a continuous solution

ψ1(r, θ) = ei(mθ−ωt)
∑

j=1,2

ψj,m

{

KmjIm( rde
), r ≤ Rj ,

ImjKm( rde
), r ≥ Rj ,

(6.17)

where m is the poloidal mode number of the excitation. Evaluating the jumps at the inner
and outer surfaces r = R1 and r = R2,

ψ′
0(Rj) = Rj ĵj ,

∇2
e ψ

′
0 =

∑

j=1,2

hH1,Rj
=
∑

j

−jjδ(r −Rj),

∇2φ1 =
∑

j=1,2

−2m

Ri
φi,mδ(r −Ri),

∇2
e ψ1 =

∑

j=1,2

−ψi,m
de

δ(r −Ri).

These are the relations that couple the perturbed field as a consequence of the dislocated
contours back to the evolution equation (6.2).

In this way, a dispersion relation can be obtained. However, when this is attempted for
the full drift-kinetic system, in cylindrical geometry difficulties arise that have not yet been
overcome. For the linear periodic slab a dispersion relation has been obtained [9]. A closed
expression for the cylindrical dispersion relation cannot be obtained with the same approach.
Here, the dispersion relation for the discretized system with N = 2, the isothermal two-fluid
equations, will be given.

For N = 2, the zeroeth and first moment of the drift-kinetic equation, Eq. (6.2), reduce
to

∂t∇2φ+ [φ,∇2φ] = v2
A[ψ,∇2

e ψ], (6.18)

∂t∇2
e ψ + [φ,∇2

e ψ] = − v2
t

v2
A

[∇2φ, ψ], (6.19)

with ρs =
√
memivt/eB0 the ion-sound Larmor radius. Linearizing and filling in the jump

conditions at R1 and R2 leads to a set of four equations,

ω

(

φ1,m

φ2,m

)

= Mψ

(

ψ1,m

ψ2,m

)

. (6.20)

ω

(

ψ1,m

ψ2,m

)

= Mφ

(

φ1,m

φ2,m

)

, (6.21)

with

Mψ = −v
2
A

2

(

j1Im1Km1 − ĵ1 j1Im1Km2

j2Im1Km2 j2Im2Km2 − ĵ2

)

Mφ = m

(

j1 + 2mĵ1v
2
t /v

2
A j1(R1/R2)

m

j2(R1/R2)
m j2 + 2mĵ2v

2
t /v

2
A

)

(6.22)
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6 Kinetic effects in a cylindrical tearing mode

Matching the jumps in the derivatives in the eigenfunctions at R1 and R2 leads to the
dispersion relation in ω and k,

ω4 + ω2Tr(M) + det(M) = 0, (6.23)

with M = MψMφ. The value of ω is determined by hH1,Rj
, the ratio vA/vt and the geomet-

ric details of Rj , de and k = 2m/(R1 + R2). This relation reveals the existence of at least
one unstable tearing mode, that manifests itself as a chain of magnetic islands with m-fold
periodicity in the poloidal direction.

The influence of a temperature gradient on the evolution of the tearing mode that may be
excited by an infinitesimally small seed perturbation has been studied in slab geometry [9].
Though the results are not expected to apply fully on the cylindrical equilibrium studied
here, they will be used to compare the numerics to.

The jumps in the temperature ∆Tj = hH2,Rj
lead to a diamagnetic drift in the form

of a poloidal rotation with frequency ω∗ = kT ′
0/eB0, where T ′

0 corresponds to an effective
temperature gradient

T ′
0 =

∆T1 + ∆T2

R2 −R1
. (6.24)

This diamagnetic frequency ω∗ enters Ampére’s equation (6.4), resulting in a modified wave-
length 2π/k̃ for perturbations in the magnetic potential ψ. In the early, linear stage of the
mode, the rotation frequency of the chain of magnetic islands becomes

ωc =

{

ω∗ γ ≫ ωc,

(ω∗(γA+B))1/3 γ ≪ ωc
(6.25)

where A,B are functions of k̃, R2 − R1, de, and γ = Im(ω). This results in a phase shift of
the magnetic island with respect to the external perturbation of

δy = −|x|
k

×
{

ω∗/(2γk̃d2
e), γ ≫ ωc,

γωc/2(γA+B)k̃d2
e, γ ≪ ωc.

(6.26)

The last expression shows that the phase shift vanishes for small growth rates. When the
mode saturates and no longer grows, the shift remains and becomes

δy =

{

Cω∗/k2γw, γ ≫ k‖vt/kw,

Dω∗/kk‖vt, γ ≪ k‖vt/kw,
(6.27)

where C, D are functions of order unity of kde and (R2 −R1)/de.

6.6 Numerical method

The numerical implementation of the contour dynamics method is not new. The code used by
the authors is based on an existing code which is described in detail in [11, 12]. Some changes
had to be made to adapt it to dealing with an arbitrary number of types of contours, as every
support velocity vi corresponds to a different conserved flux and a different streamfunction
Φi. Some relevant or newly added features will be outlined here.
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6.6 Numerical method

The number of support velocities, or abscissas, N , is entered, and the imposed jumps
in the first moments of the distribution function, hHi , based on which the zeroes of HN (x)
and their respective weights are calculated. Then, for each patch, N circular contours are
generated with a sinusoidal perturbation ∼ ǫ sin (mθ) along the contour. Note that all
contours f1,i are initially equally deformed. Each contour is defined by a discrete set of points
hi(j). These points, or nodes, define line segments whose evolution in time is given by Eq.
(6.2) with a velocity solely dependent on the location of the set of contours, as expressed
in Eq. (6.15). The discretization of a contour is reconsidered by the code every timestep,
inserting more nodes when the local curvature of a segment becomes too large, or when a
line segment of the same type comes close, and deleting nodes in the opposite cases. The
velocity field of the discretized system is shown to be divergence-free nevertheless [12]. We
stress that line segments of contours of different type are allowed to cross, whereas segments
of contours with the same support velocity, or segments that belong to the same contour, are
not, as they are advected by the same potential flow.

The implicit predictor-corrector scheme using a second-order midpoint rule that is used
to calculate the motion of the line segments is symplectic, and therefore conserves the area
of the initial contours to a high degree [12].

When the number of nodes per contour exceeds a preselected limit, the code breaks off.
The intricate features can pose considerable computational cost when a highly nonlinear
stage is reached, with the amount of computations scaling roughly with the amount of nodes
squared.

The computational cost is not so much of an issue, since it takes the code generally a
few hours to reach the stage where the maximum number of nodes is used. Increasing the
maximum number will in general only lead to a few more timesteps, because the structure
of the contours will have become so complex and filamentary that every timestep a large
number of nodes will be added. By this time the simulated dynamics have become so deeply
nonlinear that chaotic phase-mixing has taken over, passing beyond the phenomena this paper
is focussing on.

The code harbours the possibility for Contour Surgery, meaning that when the tolerance
for the closeness of two parts of a contour is surpassed, the code cuts the structure loose
and ties the enclosing ends together. This leads to the loss of topological conservation of
the generalized fluxes, and the loss of thin structures. These thin filaments may contain
populations of electrons that can be of crucial importance for the kinetic modelling that is
pursued here. Therefore, this feature is not used in our simulations and will not be discussed
further, for details see [11].

The electrostatic potential φ and magnetic potential ψ can be calculated as a function of
x by testing whether x is in- or outside a contour, and subsequently performing the integral

Φj(x) =
∑

i

f1,i

∫

Ci

d2x′Gij(|x − x′|),

which is equivalent to

Φj(x) =
∑

i

f1,i

∮

∂Ci

dl′ × (x − x′)Fij(|x − x′|),

with

Fij(r) =
1

r2

∫ r

0
dr′ r′Gij(r

′).
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6 Kinetic effects in a cylindrical tearing mode

Because of the representation of this integral as a contour integral instead of a two-dimensional
integral over the infinite plain, it is not necessary to adapt the computational domain to in-
clude the dominant part of the integrand. Thus no assumptions need to be made as to at what
distance from the contours the velocity fields they create become negligible. Furthermore, line
integrals require less computational cost than surface integrals.

Aside of the electrostatic and magnetic potential, the first four moments of the distribution
function are given as output of this routine. The density, current density, temperature (if
N > 2) and heat flow (if N > 3) are calculated on a grid for a given time t. Furthermore, the
code tracks the location of the x- and o-points. The amount of reconnected flux is calculated
as the difference in magnetic flux between the x- and o-point,

ψrec = ψX − ψO.

Finally, the angle of the external perturbations with respect to the initial situation is calcu-
lated. To have an idea of how the excited mode is rotating with respect to the field perturba-
tions as perceived far away from the patch, the m-th coefficient of the Km expansion of the
whole structure is calculated,

Im =
∑

i

f1,i(−envi)
∮

dr r

∫

dθ Im(
r

de
)eimθ, (6.28)

so that

θext = arctan

(

Im(Im)

Re(Im)

)

. (6.29)

Now we can compare the rotation of the x- and o-points to the rotation of the perturbations
of the external field. This is the quantity that will be identified as the phase shift δy as
discussed in Eq. (6.26).

6.7 Numerical results

The numerical simulations were performed for different poloidal mode numbers, and different
levels of discretization. The radii of the annulus were chosen such that the excited poloidal
mode number corresponds to the fastest growing mode in the equilibrium.

Here we stress that we did not obtain a dispersion relation for the drift-kinetic model in
cylindrical geometry. To investigate the numerical results of the N -fold discretized system,
we assess the correspondence with the exact results obtained for two-fluid theory, and we
compare the non-isothermal results with the effects that were predicted in [9] for equilibria
in slab geometry.

6.7.1 Comparison with the two-fluid model

The results that are generated by the code are illustrated in Figs. 6.2, 6.3 and 6.4 for a tearing
mode with poloidal mode number m = 3, resp. for the cases with N = 5 and N = 2 without
an applied temperature gradient, and for N = 5 with a small temperature gradient.

We calculated the growth rate for different values of the discretization level N , and for
different values of the poloidal mode number m. The growth rate of the mode is measured
by the rate of change of the reconnected flux, ψrec(t), in the time interval where the amount
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6.7 Numerical results

Figure 6.2: Here we see the contours that are produced by the numerical code for discretiza-
tion levelN = 5. In this case no temperature gradient has been applied. Am = 3
mode has been excited, which is shown here at t = 10.0τA. The left figure shows
the contours that correspond to velocities vi = ±2.02vt, and with resp. weights
wi = ±0.091. The middle figure shows the contours with vi = ±0.96vt, and
wi = ±0.85, and in the right figure vi = 0, wi = 0. The red coloured areas corre-
spond to electrons with ωi = ∇2φ− vi∇2

e ψ, advected by Φi = φ+ viψ, and the
blue areas have ωi = ∇2φ+ vi∇2

e ψ,Φi = φ− viψ. The purple areas correspond
to areas where the vorticities cancel, and only current is carried, except in the
right figure, where vi = 0, and the corresponding electrons only move along with
the E×B motion in the plasma. The bottom row shows the isolines of φ, which
can be interpreted as the flowlines of the E × B velocity, and the isolines of ψ
mark the flux surfaces. On the right we see the temperature profile.

of reconnected flux increases exponentially. This is adjusted by deducting the effect of the
excited exponentially damped mode, assuming that initially

ψ1(t) = ψ1(0) cosh(γt),

with ψ1(0) the perturbation at t = 0 and γ = Im(ω), the imaginary part of the eigenvalue cor-
responding to the tearing mode solution. Then the growth rate as predicted by the dispersion
relation is given by

γ t = log
( ψ(t)

ψ1(0)
+

√

(
ψ(t)

ψ1(0)
)2 − 1

)

. (6.30)

The results are given in Table 6.1.
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6 Kinetic effects in a cylindrical tearing mode

m R1/de R2/de N γdis γnum ω∗,est ω∗,num δyest δynum

3 4.0 5.5 2 0.391 0.345

3 4.0 5.5 3 0.391 0.399 0.0197 0.0295 -0.0346 -0.0440

3 4.0 5.5 5 0.391 0.395 0.0197 0.0181 -0.0346 -0.0342

3 4.0 5.5 7 0.391 0.383 0.0197 0.0172 -0.0346 -0.0333

3 4.0 5.5 10 0.391 0.383 0.0197 0.0168 -0.0346 -0.0335

5 4.0 4.8 2 0.656 0.620

5 4.0 4.8 3 0.656 0.630 0.0663 0.0349 -0.0557 -0.0342

5 4.0 4.8 5 0.656 0.618 0.0663 0.0256 -0.0557 -0.0307

5 4.0 4.8 7 0.656 0.616 0.0663 0.0256 -0.0557 -0.0297

5 4.0 4.8 10 0.656 0.616 0.0663 0.0256 -0.0557 -0.0305

Table 6.1: Comparison of the growth rates of the numerically simulated modes γnum for
different discretization level N and poloidal mode number m. Also, the analyt-
ically obtained growth rates from the linear dispersion relation γdis are given.
Furthermore, for N > 2 the analytical estimate of ωc (cf. Eq. (6.25)) is given as
ω∗,est next to the frequency obtained by the simulation, ω∗,num, as well as for δy,
with δyest from Eq. (6.26), and δynum from the code. For N = 2 the plasma is
isothermal, hence ωc = 0, δy = 0.

First, if we look at Table 6.1 and Figs. 6.2 and 6.3, we note the good correspondence
between the theoretical linear N = 2 fluid predictions and the results from the non-linear
code in the early, linear regime. Furthermore, the growth rate converges for increasing N .

The simulations with the two-fluid conditions display a slightly smaller growth rate, so in
Fig. 6.3 the results of a later timestep is shown for comparison. The contours in the two-fluid
model with vi = ±vt look similar to the contours of the N = 5 simulation with vi = ±0.96vt
(Fig. 6.2, top row, middle picture).

In general, we observe that the fields of the electrostatic and magnetic potential φ and ψ
are qualitatively very similar for the cases N = 2 and N = 10. The kinetic effects that may
play a role for large N do not alter the basic features of the mode much. This is not very
surprising, as for slab geometry the fluid dispersion relation is a limiting case of the kinetic
version.

Also, if we look at the spatial distribution of the current-carrying electrons, denoted by
the coloured areas in the contour plots, we can see that for small N (notably N ≤ 3), these
areas do not cover the whole magnetic island and x-point region. Holes can start to appear
in the electron distribution before the magnetic island saturates. This seems not to lead to
obvious artefacts in the φ, ψ-fields, but it is clear that the kinetic approach smoothes the
dynamics and corresponds to a more physical picture.

Furthermore, we note that for large N , the numerical method is faced with more extreme
deformation of the contours than with the two-fluid or N = 2 case. The contours that
correspond to large |vi| are advected by streamfunctions that have a larger magnitude |φi|.
Those contours tend to follow the magnetic field lines more than the E×B-flow, which results
in the alignment with the magnetic separatrices. This motion brings the line-segments of the
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6.7 Numerical results

Figure 6.3: The numerical results of the two-fluid model (N = 2) at t = 12τA, with on the
left the contours that correspond to v± = ±vt next to isolines of the electrostatic
and magnetic potential φ and ψ.

contours very close, resulting in a fast multiplication of the number of nodes that define
the contour, and therefore the code breaks off because of exceeding the maximum number
of nodes soon in comparison to the case with N = 2. Still, the code manages to realise a
relatively large number of timesteps for N ≤ 10, reaching the stage where the tearing mode
starts to saturate. Simulations with N > 10 have not been performed yet.

6.7.2 Comparison with ∇T -effects in slab geometry

The application of a temperature gradient becomes straightforward with this version of the
code. The outer area (r > R2) has no temperature perturbation, but the contours of the outer
and the inner contours can both be adjusted in such a way that their weights correspond to
a finite step in the temperature ∆Tj , at radii j = 1, 2, by imposing the second moment
of the perturbed distribution function to assume some input value. This leads to a double
temperature step in the radial temperature profile. To be able to compare the movement of
the island chain as produced by the code to the expressions (6.25) and (6.26), that contain
ω∗ = kT ′

0/eB0, this temperature profile is approximated by Eq. (6.24). The temperature pro-
file for simulations with different N is shown in greyscale in Fig. 6.5. The spatial distribution
of temperature becomes smoother for increasing N . Where for N = 3 we see at t = 10τA
broad regions of black and white, indicating the temperature extremes, and a well delineated
region corresponding to the region of negative current density at the clockwise flank of the
magnetic island, this has become an almost featureless monochromatic region for N = 10.
We also note that the regions with negative temperature perturbation at the outboard side
of the islands become smaller for increasing N .

The effects of a temperature gradient that were described in [9] are a phase velocity ωc
and a shift with respect to the perturbed field as perceived in the external region δy. To be
able to quantify these, the timetraces of the relative angle of the x-point θX , the o-point θO
and the angle of the coefficient of the Bessel-expansion for poloidal mode number m, θext, as
given in Eq. (6.29) are shown in Fig. 6.6. This is for the case where m = 3, N = 3, 5, 7. The
phase velocity ωc is given by the slope of θX , θO during the time before saturation sets in,
here at t = 7τA. The shift δy is the angle between θX , θO and θext. This is not a constant
shift, as it becomes irregular from the point where saturation sets in, and it starts with a bit

111



6 Kinetic effects in a cylindrical tearing mode

Figure 6.4: Here we see the contours that are produced by the numerical code for the same
parameters and the same timestep as in Fig. 6.2, t = 10.0τA, again discretization
level N = 5. In this case a small temperature gradient has been applied by two
finite jumps at the initial contours at r = R1 and R2. The left figure shows
the contours that correspond to velocities vi = ±2.02vt, and with resp. weights
wi = ±0.17 and ∓0.01. The middle figure shows the contours with vi = ±0.95vt,
and wi = ±1.05 and ∓0.67, and in the right figure vi = 0, wi = −0.53. The
bottom row shows the isolines of φ and ψ and on the right the temperature
profile is given.

smaller value than during the interval between roughly t = τA and the time that the mode
starts to saturate. The value that we will take here is measured over this interval.

In Tab. 6.1 the results are given for various parameters. From the contour and fieldplots it
is already clear that the velocity with which the structure is rotating, ω∗,num, is considerably
smaller than the phase velocity of the mode, ∼ γ, as there are several turnover times of
the mode whereas the island chain only turns by less than half a radian. This means that
by (6.25) we should compare ωc to ω∗. This gives reasonable correspondence to the linear
estimate for the diamagnetic shift of the magnetic island chain ωc for the case with m = 3
and a value of the right order of magnitude for m = 5.

In general we can say that we have qualitative resemblance of the deformation of the
magnetic island as predicted in [9] and the shape of the magnetic islands as depicted in
Fig. 6.4. The deformation can be quantified as the difference in the relative phase angle
θX − θO. This becomes evident when saturation has set in, when θX starts to move faster
than θO, clearly seen in Fig. 6.6. This will be next topic of scrutiny.

112



6.7 Numerical results

Figure 6.5: Here the temperature profiles are shown for an m = 3 perturbed equilibrium at
t = 10.0τA, where temperature jumps were applied at the original contours at
r = R1, R2. The left figure corresponds to a simulation with discretization level
N = 3, the middle for N = 5 and the right figure for N = 10. Note that the
middle figure corresponds to the contours shown in Fig. 6.4.

6.7.3 Dynamical behaviour of the X-point

In Fig. 6.6, the angles of the x- and o-points are given as a function of time, as well as the
relative shift of the external field θext from Eq. (6.29), for N = 3, 5, 10. The ω∗,num, listed in
Table 6.1 is calculated as the time-derivative of the angle of the o-point, ∂tθO, in the time
interval where the mode can be assumed to be linear, so before the nonlinear saturation sets
in. The shift of the chain of magnetic islands with respect to the external perturbations,
θX,O − θext, is determined by the value at t = 0 of the fit of θext(t) in the linear regime,
approximately τA < t < 6τA.

Looking at Fig. 6.6, we notice several things. First of all, in the linear stage of the mode,
the whole structure is shown to rotate approximately rigidly. The x-point and the o-point do
not deviate from one another, and θext moves with the same frequency. Already in the first
few timesteps a finite phase shift δy between the magnetic islands and the external perturbed
field develops, which remains approximately constant until t ≈ τA. The magnitude of the
shift agrees with the estimate based on the linear dispersion relation of the straight current
slab, expressed in Eq. (6.26). This correspondence is less precise for the case with m = 5 (see
Table 6.1), but still of the right order of magnitude.

When nonlinear saturation of the mode sets in, we see the following: θext(t) becomes
irregular, and θX(t) starts to accelerate in what seems to be two distinct phases: first θX
deviates linearly with a slightly larger velocity than θO, but approximately τA later it accel-
erates again. This is not visible when we only take three contours, N = 3. This stage of steep
acceleration is followed by saturation, where θX − θO actually decreases again.

The fact that the rotational frequency of the x-points starts to increase can be explained
by the observation that at t ≈ 6τA, the contours of vi start to deform in such a way that the
jumps in temperature ∆Ti, carried by the contours, are closing in, so that the temperature
gradient estimated by Eq. (6.24) is no longer accurate, but should be adjusted by sustituting
R2 −R1 by R2(t) −R1(t) to take into account the actual position of the contours. However,
one might expect the opposite to happen for the o-points, a deceleration as a consequence of
a decreasing diamagnetic frequency because the contours come further apart as the magnetic
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Figure 6.6: Above are the timetraces of the deviation of the angles of the x-point, the o-
point and the angle of the external perturbations, θX , θO and θext, resp. the
upper, middle and lower trace in the figures, given in radians. The straight
line is a fit of θO in the time interval where the mode is assumed to be linear,
i.e. before it nonlinearly saturates. From left to right the figures correspond to
m = 3, N = 3, 5, 10. Again, the middle figure corresponds to the same case as
Fig. 6.4.

island grows. This is not the case, or very mildly so, not comparable to the change of the
phase velocity of the x-points.

To understand the decrease of the frequency of the x-points from t ≈ 9τA onwards, we
take a look at the shape of the contours and how they constitute the total current density,
as shown in Fig. 6.7. Here we depicted the contours and the current in the ez-direction jz
for the case with N = 5, m = 3, for three different timesteps, starting at t = 9τA. From
this point onward an asymmetry between the clockwise and the counterclockwise side of the
magnetic island starts to appear. The separatrices on the counterclockwise side of the x-point
are broader than on the other side. This effect was already predicted in [6], as the result of a
current perturbation caused by the difference in parallel electron velocity of the population
on the warm and the cold side of the current layer.

At t = 10τA, we see that within the magnetic island, at the clockwise side, a region
appears with negative current density. To explain how this can occur, we turn to Fig. 6.1.
On the lengthscale de, the current layer (solid curve) is shielded by a exponentially decaying
current sheet in the opposite direction. If the contours of two separate current regions (e.g.
the red and the blue area) are close with respect to de, these shielding current sheets overlap
and can cause a region with negative current density. This current structure has a diameter
of the order of de, and though the effect is most pronounced for small N , it converges to a
finite negative current region for large N . The appearance of structures on lengthscale de has
already been reported for monopolar current-vortices in [11].

The fact that this only happens at the clockwise side of the magnetic island is a direct
result of the temperature-induced asymmetry of the contours. On this side the current fil-
aments remain broader and the distance between the current regions smaller than on the
counterclockwise side.

This region of negative current interacts with the large region of positive current, which
pushes it away, like two electric wires that carry opposite current. This in turn pushes the
x-point away from the o-point, resulting in the decrease of the rotational velocity and in some
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6.7 Numerical results

Figure 6.7: Above figures pertain to the simulation with N = 5 and m = 3. On the left we
see the contours that contribute to the current density, with left vi = ±2.02vt
and in the middle figure with vi = ±0.95vt. On the right we see the total current
density in the ez-direction, where it is noted that j = 0 away from the current
layer. The top row corresponds to t = 9τA, middle for t = 10τA, bottom for
t = 11τA.

cases even to the complete halt of the x-point. This effect is present in all simulations that
we performed that include a temperature gradient.
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6 Kinetic effects in a cylindrical tearing mode

6.8 Discussion

This paper presented a novel method to study collisionless magnetic reconnection within the
framework of the drift-kinetic equations. The discretization of the perturbed electron velocity
distribution function both in space and in velocity space is possible because of the fact that
the drift-kinetic equation can be cast in a purely advective form, as in Eq. (6.2). This is
equivalent to the 2D Euler equation, describing the time evolution of vorticity, only now an
infinite class of conserved quantities emerges because of the v‖ dependence of both f and Φ.
This formalism was already studied in Ref. [7]. It enables us to use the powerful Contour
Dynamics method [12, 15] to calculate the evolution in time of the boundaries of areas with a
uniform electron distribution function. These boundaries, or contours, completely determine
the entire dynamics of the system.

By imposing the moments of f , such as current density and temperature perturbations, the
distribution of the support velocities that shape f1 is still arbitrary. Once those are specified,
the corresponding weights are fully determined. We have chosen the vi to be the zeroes of the
N -th Hermite polynomial, so that with N contours the N+1-th moment vanishes. This yields
an intuitive distribution of the vi, with more supports where there are more electrons, and
vice versa. Thus, we construct a system where the distribution function becomes a foliation
of a finite number of conserved fluid type distributions.

The numerical results obtained by the contour dynamics code can be divided into two
groups: isothermal and non-isothermal. The isothermal results show to a high degree resem-
blance with the two-fluid simulations that were performed earlier. Qualitatively we see the
same structures appear in the macroscopic fields. The magnitude of the growth rates and the
timetraces of the amount of reconnected flux are also very much alike. However, in the kinetic
case the distribution of small scales that appear in the nonlinear stage of the mode becomes
broader, which can be considered to be the effect of thermal spreading. The development of
small scale structures in the contours thus becomes an irreversible process, that is the spatial
variant of velocity phase space mixing.

The non-isothermal results show evidence that supports the analysis that was presented
in [9]. The magnetic island chain initially rotates with a velocity that is comparable to the
diamagnetic velocity, as predicted in Eq. (6.25), and displays a shift δy with respect to the
external perturbed field. The estimates given by Eqs. (6.25) and (6.26) are based on an
equilibrium in slab geometry, but agree to the numerical results in cylindrical geometry in
order of magnitude. Even though the simulations performed with a higher mode number m
could be expected to bear more resemblance to the slab results, this does not seem to be the
case when we compare the diamagnetic frequencies ω∗,est to ω∗,num, or or the linear shifts δyest

to δynum. The non-diagonal elements in Mψ,Mφ that account for the cylindrical coupling of
the kink and tearing solution may play a role in the deviation of those results.

Finally, we observe that in the nonlinear stage of the mode the magnetic islands start to
deform, and assume a ‘droplet’-like shape, as in [9]. This is attributed to the generation of a
current in the island region as a consequence of the fact that fast electrons from the region
in the plasma with higher temperature, here bounded by the contours at r = R1, fill up the
magnetic island faster than the electrons from the colder region, r > R2. The analysis that
predicted this effect was first described in [6].

The subsequent deceleration of the x-point is a consequence of the appearance of a region
of negative current inside the magnetic island structure, as shown in Fig. 6.7. This exerts a
repulsive magnetic force on the central positive current structure, thus pushing the x-point
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away from the o-point. The negative current is an effect of the screening of the current density
on a scale length de, which can result in a negative current when the contours that carry
positive current are sufficiently close, so that the shielding currents overlap. The emergence
of structures of a size of order de in contour dynamics has already been demonstrated as a
peeling effect of monopolar current vortices [11].
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6.A Evolution of the macroscopic quantities

f1,i
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t = τA t = 6τA t = 8τA t = 10τA
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7 Discussion and conclusions

The chapters of this thesis are ordered in such a way that they are in roughly chronological
order of the work done, as well as a logical order, going from simple to more detailed mod-
elling, ending with the numerical nonlinear kinetic modelling of reconnecting modes. Here,
the conclusions will be presented by subject, discussing the method, the linear, the nonlinear
and the numerical results, indicating the role of a temperature gradient where applicable.

7.1 Method

In this thesis, the problem of collisionless magnetic reconnection is investigated using contour
dynamics to study the drift-kinetic model of a strongly magnetized plasma [1, 2]. The term
contour dynamics is used for a variety of approaches of the drift-kinetic equation, pertaining
to either discretization in velocity space or real space, or both. When only discretization
of the perturbed distribution function in velocity space is applied the drift-kinetic equation
reduces to a fluid model. If only two or three discrete velocities are chosen, the result consists
of the two-fluid drift-Alfvén equations [3].

In Chapter 3 and 4 the distribution function is discretized only spatially, leaving the
smooth distribution in velocity space intact. The equilibrium that was considered could be
regarded as being built up by an infinity of velocity contours that constitute current jumps
located at two instances in space initially.

The number of contours necessary to model kinetic effects that differ from the fluid model
is at least four. The discretization in velocity space is essentially arbitrary. When the value
of a moment of the total distribution function is fixed this determines a combination of
weights wi of the support velocities vi. We have chosen the orthogonal Hermite polynomials
to determine the vi.

The calculation of the fields that result from the locations of the contours using the
Green’s function, as given in Eq. (5.7), can be done using line integrals over the contributing
patches instead of surface integrals. This has numerical benefits.

7.2 Linear stability

Exact linear dispersion relations for equilibria with slab and cylindrical geometries were
obtained, Eq. (3.21) for the full drift-kinetic model and Eq. (5.21) for the two-fluid model
respectively. It was found that a current layer in both slab and cylindrical geometry is unstable
for a tearing mode with a sufficiently long wavelength. In slab geometry it can be proven for
parameters within reasonable bounds that this is the only unstable mode present within the
drift-kinetic model. This excludes beam-type instabilities.

We explicitly assume that β ≪ 1, so that the Hall-term does not lead to whistler-type
instabilities. This stresses that the formulation of the drift-kinetic model that is used through-
out this thesis and the conclusions that are drawn are restricted to the low-β regime of the
tokamak ordering.

Though in slab geometry only the tearing mode is unstable, the kink and tearing parities
are coupled as a kinetic effect. In a cylindrical equilibrium, additional coupling occurs as a
consequence of the geometry. This means that even if only the tearing mode is unstable, some
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kink-character mixes into the mode. Thus, even without the kinetic kink-tearing coupling, in
a cylinder there is no analogy of the left-right (anti-) symmetry of the straight current layer
instability. This lack of symmetry in the cylinder results in the x- and o-points of a magnetic
island chain to be at slightly different radii.

In slab geometry, the fluid and the kinetic approaches lead to the same stability boundary,
which depends only on the ratios of the current layer width, the wavelength and the electron
inertial skin depth. The kinetic and fluid dispersion relations have identical behaviour for
high frequency phenomena with low plasma β. Away from the particle-wave resonance the
fluid description of an isothermal plasma is sufficient to capture the essential dynamics.

Influence of a temperature gradient

When a small temperature gradient is present in the straight current layer, a modified dis-
persion relation is found. This leads to a different point of marginal stability, and a phase
shift of the magnetic island chain with respect to the initial perturbation. This shift in the
electron diamagnetic drift direction is calculated here for both the regime with small and
large growth rate compared to the the diamagnetic drift frequency ω∗.

The oscillation in the eigenfunctions as reported in [4] is a manifestation of the same
effect. The x-dependent shift in the y-direction results in an oscillatory behaviour of the
eigenfunctions when they are viewed at a constant value of y.

7.3 Nonlinear effects of a temperature gradient

Once the growing magnetic island has reached a finite width, the difference between the
mean particle velocities of electrons originating from the side with high and low temperature
induces a current perturbation inside the magnetic island, breaking the up-down symmetry.
This has already been shown for a simplified geometry in which only the neighborhood of
the x-point is modelled [2], but is now established for a complete island chain. We observe
that the magnetic island is deformed: the magnetic separatrix angle at one side of the x-point
widens, whereas it narrows on the other side. This can also be understood as the x-point
region experiencing a larger ω∗-drift than the o-point because the local temperature gradient
at the x-point steepens due to the motion of flux surfaces towards the x-point.

Furthermore, it is shown that when the magnetic island saturates, i.e. for vanishing re-
connection rate, a phase shift of the island with respect to the external perturbed fields
remains. This result is established for saturated reconnecting instabilities. It is expected that
it also applies to island chains caused by external magnetic perturbations e.g. by other is-
land chains, leading to forced magnetic reconnection. The shift is relevant for the process of
magnetic field ergodization, because it means that finite size, saturated islands can still be
shifted with respect to other island chains. The consequences are still under investigation,
as the effect can either be that this leads to a form of self-organization through feedback of
diamagnetic shift and local temperature gradient, or leads to enhanced ergodization as some
preliminary calculations seem to show. In this way this shift can have consequences for the
confinement in tokamak plasmas in this regime.
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7.4 Numerical results

7.4 Numerical results

The numerical simulation code for the two-fluid drift-Alfvén system has been used before,
mainly for studying the interaction between current-vortex tubes [5, 6]. This thesis presents
the first systematic investigation of reconnection using this method. The annular current
layer equilibrium could straightforwardly be studied, as this is equivalent to a four-vortex
system with partly overlapping vortex regions. The initial linear growth rates that are in
good agreement with the analytic values that are given by the linear dispersion relation.

In the nonlinear regime, the reconnection rate was seen to saturate. After some time, no
flux was reconnected anymore, although the contours clearly did not reach a steady state.
At this point the contours become very filamentary and stretched, and are advected to areas
that are far from their initial location. This amounts to an irreversible transfer of energy to
small scales.

In cylindrical geometry there is no symmetry between the inner and outer contours,
compared to the left and right contour in slab geometry. The breaking of this symmetry
prevents the x-point from collapsing, which is the process where the characteristic length
scales keep shrinking indefinitely, almost resembling finite-time singularity, as reported in [2].
The shrinking part of the contours are advected away from each other, preventing a scale
collapse.

It was seen that by varying the ratio of the electron thermal velocity and the growth rate,
the electrons follow the field lines more closely for higher temperatures, and follow the E×B

drift streamlines more closely for lower temperatures. This extends a result that was reported
for slab geometry [7]. We also observed that when the electrons deviate strongly from the
magnetic separatrix, the highly localized current density deforms the separatrix, stretching
the x-point to a ribbon-like structure.

The code was successfully extended to handle an arbitrary number of N contours. There
is a high degree of qualitative and quantitative agreement between the two-fluid simulations
and the kinetic simulations there where it was expected from an analytical point of view, as
for isothermal applications and away from particle-wave resonances the kinetic equations are
only slightly different from the fluid equations.

A notable difference is that for higher N , we observe that the profiles of the macroscopic
fields become smoother. This is due to the fact that the different contours are advected by
different stream functions, so that they generally spread out. The contours that correspond
to the largest |vi| are the first ones to become thin and filamentary, leading to small scales
at different places for different vi, thus transferring energy to smaller scales in an irreversible
manner. This spatial mixing at small scales is the contour dynamics version of kinetic phase
mixing.

The contours that correspond to the largest |vi| require the most computational effort.
This may be solved by using contour surgery, a technique already available for the single-fluid
version of the contour dynamics code [6]. However, the criteria for contour surgery in plasma
modelling should be different from those in hydrodynamics or monopolar problems, as in
general the plasma model deals with overlapping and intersecting contours, as opposed to
the hydrodynamical case. The present implementation would remove all the contours that
are stretched to thin filaments, but in practice the x-point region in an advanced stage of the
simulation consists of such contours. Applied indiscriminately, contour surgery would remove
the locus of collisionless reconnection from the simulation.
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Influence of a temperature gradient

When the weights of the contours are chosen such that the contours correspond to a tem-
perature jump, the chain of magnetic islands starts to rotate with a frequency that agrees
with an estimated diamagnetic frequency given by the modified linear dispersion relation for
a slab equilibrium. Also the analytically predicted phase shift with respect to the external
perturbations is found, and of the same order of magnitude as analytically estimated. The
fact that we do not have a very good correspondence may be attributed to the different
geometry of the equilibrium, resulting in a.o. coupling effects.

When the mode starts to saturate, the x-points rotate faster than the o-points and far-
field perturbations, resulting in the deformation of the magnetic island. The start of the
acceleration coincides with the constriction of the contours, which results in a higher lo-
cal temperature gradient and therefore a higher diamagnetic frequency. This acceleration is
eventually slowed down or even stopped as a result of the emergence of a region of negative
current inside the magnetic island. This is a skin or shielding effect, that leads to a current
structure of approximately the size of de, that experiences repulsion from the larger positive
current channel around the o-point.

7.5 Discussion and outlook

The application of contour dynamics to non-thermal kinetic effects in magnetic reconnection
is new. There are many more approaches to model collisionless magnetic reconnection kineti-
cally, such as particle simulations [8, 9], that can resolve the dynamics of the parallel electron
motion during reconnection.

Before we can make claims as to the correctness of the qualitative description of the
magnetic field and quantitative results of growth rates compared to those measured in real
tokamak plasma discharges, we shall need to compare the data to results of other studies that
use the same model, and focus on the same unstable initial equilibria, but choose a different
approach to determine the temporal evolution of the system. The same set of drift-kinetic
equations was studied in [1], where it was applied to a double periodic equilibrium. Similar
qualitative features were observed, such as the shape of the vz-dependent streamfunctions.
The study of the same formulation of the drift-kinetic system is also discussed in [10] and
Ref. [45] therein. Here, the breaking of symmetry of the tearing parity is already reported.

Though the model that was developed was primarily intended to generate a better under-
standing of the various aspects of collisionless reconnection and the influence of temperature
gradients on this process, the research is ultimately aimed at contributing to the feasibility
of nuclear fusion as a commercial energy source. Therefore, the applicability of the results
presented here on current or future tokamak plasma conditions needs to be investigated more
thoroughly.

Furthermore, during the research that is presented here, several issues came up that are
still unresolved.

With respect to linear stability, we have studied the two-fluid dispersion relation in cylin-
drical geometry in Chapter 5. This relation, given in Eq. (5.21), formally seems to give way
to overstable modes: modes that are oscillatory and damped or growing at the same time.
However, no parameters have been found that generate a mode in this regime, so the question
rises whether they exist or not. Also, we can obtain a kinetic dispersion relation for an annu-
lar current layer, but not in a closed form, as in Chapter 4, Eq. (4.11). Still it can be useful
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to solve a kinetic dispersion relation numerically, to be able to quantify possible differences
with its fluid counterpart.

The parameter space of the system of equations that was used throughout this work is
huge. One particular regime that is worth investigating is that of modes closer to marginal
stability. In Chapter 6 we have studied the temperature gradient effects on a mode with a
significantly larger growth rate than the diamagnetic frequency. In Chapter 3 analysis of the
nonlinear kinetic behaviour of a tearing mode in slab geometry near marginal stability showed
that it matches the case for γ ≫ |ω∗|, and it is important to investigate whether numerical
simulations support this model.

The possibilities of the contour dynamics method are numerous. In this thesis we have only
studied equilibria with two interfaces, viz. slab and annular current regions, which yielded
basic results on reconnecting instabilities. By adding more contours at different locations
many more interesting phenomena can be studied. If we add more contours that induce
current density inside and outside of the annulus, we could construct a more realistic current
profile, simulating an equilibrium that corresponds more to a tokamak q-profile, the magnetic
winding number as a function of radius. We could also add contours inside of the current
annulus that do not make a current jump, but do impose small temperature differences,
causing a smoother temperature gradient instead of two discrete temperature jumps. And if
we would make one extra current jump of similar size, the equilibrium would correspond to
a q-profile with a local minimum, so with a region of negative magnetic shear, that could be
unstable with respect to a double tearing mode. This is the case when two flux surfaces with a
finite distance in between have the same magnetic winding number, and can become unstable
to perturbations of the same poloidal mode number. Experimental evidence of such modes
exists [11], and they are of particular relevance to future tokamak operation scenarios since
regions of negative magnetic shear also may improve the magnetic confinement properties of
a tokamak.

At this moment the numerical code is based on the idea that there is one equilibrium
electron distribution function, and the contours constitute a perturbation of this distribution
based on imposing moments. However, the fact that resistivity decreases with temperature,
or v‖, means that a totally different population of electrons might build up with a velocity
far from the thermal velocity of the equilibrium distribution. These electrons are also called
runaway electrons [12], and may have a significant influence on reconnection processes in the
core of the plasma. They require an extension of our models to include magnetic curvature
effects, which seems much more feasible than including e.g. ∇B-effects. It needs to be demon-
strated whether phase-space effects such as (inverse) Landau damping are indeed captured by
the contour dynamics method, and if so, how many contours are needed to do this properly.

At present, the contour dynamics method, while limited to very specific plasma models
and initial conditions, is computationally much more efficient than methods based on grids
or basis functions in (v‖, x, y)-space. Still, the numerical code can be improved and optimized
on several accounts. At this moment, all the contours interact with each other, and are
treated on equal footing. However, when the discretization level N increases, the contours
with largest |vi| represent a decreasing number of electrons. Because of their large velocity,
they may still have a substantial effect on the general structure of the magnetic field, but the
interaction with other small fractions of fast electrons may prove superfluous. Exactly those
contours also experience the highest degree of filamentation, which means that they need the
largest number of nodes to support structure of the contour. Cutting back on the interactions
between the contours with the largest |vi| saves considerable computational cost.
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Furthermore, the code is not completely free of numerical dissipation, which is manifested
as a slight decrease in the total area enclosed by a contour. This is a result of the algorithm
that decides when and where to place the additional supporting nodes on the contour, based
on the local curvature and the proximity of a contour segment with the same vi.

In conclusion, the kinetic contour dynamics method opens up a whole new area of inves-
tigation, with some exciting new physics that can be studied. The numerical code is directly
mirrored in tractable analysis, making it easy to interpret the various outcomes, that come
at relatively low computational cost. The results thus obtained can be compared to the re-
sults that are generated by the codes that model the reconnection region as a boundary layer
[1, 10].

Much remains to be learned about the importance of magnetic turbulence in anomalous
electron heat transport in tokamaks. Large gyrokinetic [13, 14], gyro-fluid, and two-fluid [15]
simulations of tokamak turbulence and anomalous transport typically use spatial resolutions
that do not resolve the width of a typical reconnection layer in a near-collisionless plasma.
If reconnection plays a significant role in anomalous transport, e.g. via magnetic turbulence,
an open problem is how to include these effects of reconnection in such large scale turbulence
simulations. The approach in the present thesis, to focus on the increase of fundamental
understanding of (in this case, collisionless) reconnection, is based on the view that such
understanding may lead to basic models of reconnection processess that are suitable for
inclusion into larger turbulence and transport models.
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A Cylindrical limit of slab results

The linear two-fluid dispersion relation of the tearing mode that is found in cylindrical ge-
ometry should become identical to the fluid version of the one found in the periodic slab.
To understand how the dispersion relation of the current annulus relates to the one of the
current slab, we have to take the limit R→ ∞, or

Ri = R0 ± L, r = R0 + x,

and let R0 go to infinity. First we shall compare the equilibria, and then the actual mode.

A.1 Equilibrium

There are three regions to be considered,

I: r < R1, the inner region, or x < −L,

II: R1 < r < R2 or −L < x < L, the current region,

III: r > R2, the outer region, or x > L,

Here, it is convenient to adopt some more slab nomenclature,

j = sign(r −R1)j− − sign(r −R2)j+,

so that

I j1 + j2 = j+ − j−,

II j2 = j+ + j−,

III 0 = −j+ + j−.

We see that because of the asymmetry between inner and outer region that the current patch
has an extra degree of freedom in which it is possible that j1 +j2 6= 0. For proper comparison,
however, we can put j1 = −j2.
In region I:

ψI = ψ01 + ψ02,

= −d2
e

{

(j1 + j2) − j1
R1

de
K1(

R1

de
)I0(

r

de
) − j2

R2

de
K1(

R2

de
)I0(

r

de
)
}

.

We note that

(detail) =
R1

de
K1(

R1

de
)I0(

r

de
),

=
R0 − L

de
K1(

R0 − L

de
)I0(

R0 + x

de
),

R0 → ∞ ≈ R0 − L

de

e−(R0−L)/de

√

2(R0 − L)/de

e(R0+x)/de

√

2(R0 + x)/de
,

!

≈
R0 − L

de

e−(R0−L)/de

√

2(R0 − L)/de

e(R0+x)/de

√

2(R0)/de
,

≈ 1

2
e(x+L)/de .
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A Cylindrical limit of slab results

where at the ! we reckoned that

lim
R→∞

∂xe
R+x ≫ lim

R→∞
∂x

1√
R+ x

,

and took the limits for large arguments and fixed m of Im(x),Km(x),

Im(x) ⇒ ex√
2πx

,

Km(x) ⇒ e−x
√

2x/π
,

So,

ψI/d
2
e = −(j1 + j2) +

1

2
j1e

(x+L)/de +
1

2
j2e

(x−L)/de .

In region II:

ψII = ψ01 + ψ02,

= −d2
e

{

(j2) + j1
R1

de
I1(
R1

de
)K0(

r

de
) + j2

R2

de
K1(

R2

de
)I0(

r

de
)
}

.

As before, we approximate

(detail) =
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I1(
R1
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)K0(

r
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),

=
R0 − L

de
I1(
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)K0(

R0 + x
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),

R0 → ∞ ≈ R0 − L

de

e(R0−L)/de

√

2(R0 − L)/de

e−(R0+x)/de

√

2(R0 + x)/de
,

!

≈
R0 − L

de

e(R0−L)/de

√

2(R0 − L)/de

e−(R0+x)/de

√

2(R0)/de
,

≈ 1

2
e−(x+L)/de .

So,

ψII/d
2
e = −j2 −

1

2
j1e

−(x+L)/de − 1

2
j2e

(x−L)/de .

As for region III,

ψIII = ψ01 + ψ02,

= −d2
e

{

j1
R1

de
I1(
R1

de
)K0(

r

de
) + j2

R2

de
I1(
R2

de
)K0(

r

de
)
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.

This becomes

ψIII/d
2
e = −1

2
j1e

−(x+L)/de − 1

2
j2e

−(x−L)/de .

If we were to put j2 = −j1 = 2j0,

ψI/d
2
e = −j0

{

e(x+L)/de − e(x−L)/de

}

,

ψII/d
2
e = −2j0 + j0

{

e−(x+L)/de − e(x−L)/de

}

,

ψIII/d
2
e = j0

{

e−(x+L)/de − e−(x−L)/de

}

,
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When we compare this to the slab equilibrium,

ψI/d
2
e = −j0

{

e(x+L)/de − e(x−L)/de

}

,

ψII/d
2
e = −2j0 + j0

{

e−(x+L)/de + e(x−L)/de

}

,

ψIII/d
2
e = j0

{

e−(x+L)/de − e−(x−L)/de

}

,

we see there we get the same result as the solution in the slab,

ψ0,slab = −d
2
e

2
j0

[

sign(x+ L)(1 − e−|x+L|/de) − sign(x− L)(1 − e−|x−L|/de)
]

.

A.2 Perturbations

Here, it is prudent to consider the radius of the patch as of being built up by the wavelength
of the perturbation, so

R0 = m
λ

2π
=
m

k
.

The perturbations of the electrostatic potential can be written (e.g. for r < R1),

φ1,m =

(

r

R1

)m

, =

(

R0 + x

R0 − L

)m

,

=

(

m+ kx

m− kL

)m
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(

1 +
k

m
(x+ L)

)m

,

⇒ ek(x+L),

just as for r > R1

φ1,m =

(

R1

r

)m

, =

(

R0 − L

R0 + x

)m

,

=

(

m− kL

m+ kx

)m

, =

(

1

1 + k
mx

− k

m
L

)m

,

⇒ e−k(x+L),

for m→ ∞, or
φ1,m ∼ e−k|x+L|.

The magnetic perturbations of the equilibrium are to be handled with a bit more care. Because
of the fact that the radius goes to infinity but the wavelength of the perturbation goes to
zero,

ψm ∼ Im(
R0 + x

de
) = Im(

m+ kx

kde
),

both the order of the Besselfunction as the argument go to infinity. Following [1], we have
that for large m (9.7.7, 9.7.8),

Im(mz) ∼ 1√
2πm

emη

(1 + z2)1/4

{

1 +
∞
∑

k=1

uk(t)

mk

}

, (A.1)

Km(mz) ∼
√

π

2m

e−mη

(1 + z2)1/4

{

1 +
∞
∑
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(−)k
uk(t)

mk

}

, (A.2)
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and (9.7.9, 9.7.10),

I′m(mz) ∼ 1√
2πm

emη

z
(1 + z2)1/4

{

1 +
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, (A.3)
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where

η =
√

1 + z2 + ln
z

1 +
√

1 + z2
, t =

1√
1 + z2

,

and uk(t) and vk(t) come from Debye’s asymptotic expansions of Jm, [1], 9.3.9. If we take
ψ1,m(r, θ) for r < R1 as an example, we have

ψ1,m ∼ R1

de
Km(

R1

de
)Im(

r

de
),

so if we split this up in the constant and the variable part for legibility, and we expand around
R0,
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where {· · · } is shorthand for the uk(t) expansion, we assumed m ≫ kL, and the ratio k/ke
enters through
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Similarly, the other part is
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so if we multiply the above

ψ1,m ∼ 1

2

m

kde

k

mke
(1 + keL+ . . .)(1 + kex+ . . .),

≈ 1

2kede
eke(x+L).

Note that the {· · · } expansion is irrelevant because all terms with k > 0 go to zero as m−k for
m → ∞. Furthermore is the somewhat complex expression for η also circumvented because
the modified Besselfunctions always show up in pairs.

For the expression for r > R1, the Im and Km are reversed, and we get two minus signs,

ψ1,m ∼ 1

2kede
e−ke(x+L),

so, compactly, for large radius but small wavelength, (large m),

ψ1,m ∼ 1

2kede
e−ke|x+L|.

A.3 Boundary conditions: the dispersion relation

To see if the dispersion relation Eq. (5.21) becomes the dispersion relation of the fluid case of
the current slab for large radius, or large m, we will fill in the boundary conditions at r = Ri
and take the proper limit.

First, we look at the terms with the Ii(x1)Ki(x2) for finite (fixed) i, and at the same
radius j:

R̄jIijKij =
Rj
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,

for m→ ∞, i fixed, j ∈ {1, 2}. If the radii are different (j 6= h), we get
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For terms with ImjKmh it also depends. When j = h we have
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using the same relations as before, and for j 6= h we have

R̄jImjKmh =
Rj
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Im(
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)Km(
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),
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See for details of this limit the notation given in the previous (sub)section. The limits for the
elements containing ratios of R1 and R2 are readily evaluated as

(

R1

R2

)m

=

(

m− kL

m+ kL

)m

⇒ e−2kL.

So we have

(

R1

R2

)m

⇒ e−2kL, (A.5)

RjIm1Km2 ⇒ 1

2
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kede
, (A.6)

RjImiKmi ⇒
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2

1

kede
, (A.7)

RjIklKgh ⇒ 1

2
, for k, g fixed, l = h,

⇒ 1

2
e−2L/de , for k, g fixed, l 6= h, (l = 1, h = 2). (A.8)

and m/Rj → kde for m → ∞. Now we can fill in the matrix elements of the cylindrical
two-fluid dispersion relation Eq. (5.21), given by

ω4 + ω2Tr(M) + det(M) = 0,

with

Mψ = −v
2
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using the substitutions (A.5) - (A.8). This gives

Mψ,11 =
v2
A

4
(j1(1 − 1

kede
) + j2e

−2L/de),

Mψ,12 = −v
2
A

4

j1
kede

e−2keL,

Mψ,21 = −v
2
A

4

j2
kede
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Mψ,22 =
v2
A

4
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and

Mφ,11 = j1kde(1 +
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s
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Mφ,12 = j1kde e
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Mφ,22 = j2kde(1 +
ρ2
s
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e

kde(1 +
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and calculate the corresponding dispersion relation. Setting also j1 = −j2 we should ar-
rive at the exact same dispersion relation as given in Eq. (3.16). Because in that case
Mψ,11 = −Mψ,22,Mψ,12 = −Mψ,21,Mφ,11 = −Mφ,22 and Mφ,12 = −Mφ,21, the dispersion
relation reduces to

ω4 − 2(Mψ,11Mφ,11 +Mψ,12Mφ,21)ω
2 + (M2

ψ,11 −M2
ψ,12)(M

2
φ,11 −M2

φ,21) = 0,

or

D(ω) = (ω2 − (Mψ,11 −Mψ,12)(Mφ,11 −Mφ,21))×
(ω2 − (Mψ,11 +Mψ,12)(Mφ,11 +Mφ,21))

= 0.

If we expand these expressions (use the shorthand ǫ = 1− exp(−2L/de)) we get the solutions

ω2
± = −v

2
A

4
j20
k

ke

(

kedeǫ− (1 ± e−2keL)
)

(

ρ2
s

d2
e

kdeǫ+ (1 ∓ e−2kL)

)

,

which are exactly the same as Eq. (3.16) from the current slab analysis. Here, ω+ corresponds
to the tearing configuration and ω− to the kink.
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A long time ago, mankind was a pretty pathetic species. We were cold, dependent on the
sun for light and heat, and our diet was abhorrent. Fortunately, Prometheus felt sorry for
us, and presented us the gift of fire. Zeus was not too keen on letting humans set fire to just
about everything they could, and Prometheus paid dearly for his act of compassion by being
chained to a mountain ridge in the Caucasus, where his liver got eaten out every single day
by a large eagle, after which it grew back on again. Mankind, on the other hand, were having
a ball [1].

To a certain extent, this is still the situation today. Mankind sets fire to anything that
provides comfort, to make it warm when it is cold, to make it cold when it is warm, using small
explosions inside cylinders of a car to make a baby sleep because it likes the humming sound.
And of course, Prometheus would still be up there somewhere if it were not for Heracles. But
in this day and age, we start to feel that the gift of Prometheus may no longer be enough to
lavish our lust for energy and we start to realize that we need to redirect our looting frenzy
towards a new source of energy if we want to sustain the luxury and abundance as we have
known the last decades. Of some sources we can see the bottom, of some we are not sure
under what restrictions we will be able to buy them, and in general we can see the side-effects
of the waste that we produce.

Therefore, we turn to Helios, the Sun. Not to become dependent once again on when
and where he will shine, but to usher him to reveal his secrets, so that we can make a sun
of our own. He has been relatively forthcoming in providing us with the theory of what is
supposed to happen: in a process called nuclear fusion two light atomic nuclei collide and
merge into a heavier one. The reaction products carry the energy that is released in such
a process as kinetic energy, i.e. by going extremely fast. The process that seems the most
likely or feasible candidate to produce fusion power in a reactor here on earth is between two
hydrogen isotopes, deuterium (D) and tritium (T) to yield helium (what’s in a name) and a
neutron,

2
1D + 3

1T → 4
2He + n + 17.6MeV.

Deuterium is a hydrogen isotope, and consists of a nucleus with a positively charged proton
and a neutron and a negatively charged electron surrounding it, whereas tritium has a proton
and two neutrons in the nucleus, which makes it unstable, so that it suffers from radio-active
decay.

If we know what the reaction is, what is stopping us? The resources will not run out for
the next couple of thousand years, as lithium is widely available to breed tritium from the
neutron shower inside the reactor, and deuterium can be extracted from sea water easily for
many more thousands of years. Also the reaction products are relatively clean: helium is used
to fill balloons at children’s parties, and the neutrons do cause radio-active activation of the
steel of which the reactor is built, but this is mildly radio-active and can be safely stored.

By blowing up innocent islands in the southern Pacific in the early 1950s it has been
proven in a most dramatic way that nuclear fusion does indeed work, and ever since the
challenge has become to master this process so that we can make it evolve in a controlled
and orderly, non-violent fashion. This is non-trivial, because the nuclei need to overcome the
electric repulsion, or the Coulomb interaction, to get close enough to merge. This requires
a very high mean velocity, or equivalently, temperature. At these high temperatures the
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electrons are separated from their nuclei, and the fuel mixture becomes a (hot) plasma, in
which the nuclei, or ions, and electrons can move independently but under the influence of
each others electromagnetic field.

This brings us back to Helios once more. Confiding in us as far as the energy source was
concerned may have seemed relatively safe. Zeus’ wrath is not yet upon him, as for us it is
not a matter of fusing the particles, but how we do this to create an efficient cycle. The Sun
confines plasma in its core at roughly 15 million degrees Kelvin, with its huge gravity field
pulling the plasma inward, which leads to a relatively slow, smouldering reaction.

We have to do better. And hotter. We want to maintain a fusion reaction with minimum
input power and maximum yield, which means that we have to heat the D-T plasma to 150
million degrees Kelvin. To keep it there, away from cold, melting walls, our present day fusion
reactor concepts make use of a magnetic field. Charged plasma particles in a magnetic field
describe gyrating orbits around magnetic field lines, so if the magnetic field does not touch
the walls of the containing vessel, neither will the particles. This can be achieved by giving
the vessel and the magnetic field a toroidal shape.

The best candidates for delivering net fusion power in the near future is called the tokamak,
a machine that is based on producing a strong, dominant, magnetic field in the toroidal

direction (the long way around the torus), and the ability to draw a current through the
plasma, either inductively or non-inductively, resulting in a smaller poloidal component. The
now helical magnetic field lines are thus neatly organized on nested concentric surfaces, also
called flux surfaces.

Here is where magnetic reconnection enters the story. When the magnetic field would con-
serve this nested topology, like a toroidal magnetic Russian matruschka doll, the confinement
of the particles and the heat would be excellent. But it does not. With all those particles
racing along magnetic field lines, the plasma actually becomes a wildly turbulent, swirling
mass, pushing those flux surfaces to and fro. When magnetic field lines that are not aligned
are pushed together, not only pressure builds up, but the magnetic tension of the field as well,
resulting in a large electric field hurling the electrons in place to shield the surfaces from one
another. If somehow this sheet of electrons does not do its shielding job properly, the magnetic
field finds its own way to release the pressure, by untying the magnetic field lines and connect
them to other field lines in a way that there is less magnetic stress. This is called magnetic

reconnection. It happens when e.g. the current sheet between the flux surfaces degrades by
resistivity, so when the electrons and the ions collide so much that the sheet becomes too
weak, or by turbulent eddies dislocating the meandering electrons. The once neatly organized
flux surfaces break up, and what used to be in- and outside the flux surface is no longer clear:
regions appear that no longer belong to the original surfaces, and the new boundaries are
now called separatrices. In a toroidal plasma these regions form helical ribbons around the
original surface, and when one looks at a cross section of the plasma, they can be identified
as a chain of magnetic islands, with an o-point in the middle, and an x-point where the field
lines break open and reconnect again. The release of magnetic tension then may result in a
pressure drop, sucking more plasma and magnetic field into this pit of magnetic annihilation,
and thus the process can feed itself, in a vicious cycle that because of the tearing of the flux
surfaces is called a tearing mode.

The effects of such a process are destructive for the confinement of hot particles that
should stay in the core of the plasma to eventually fuse together, which is the whole idea
behind a fusion reactor. It may result in (more) turbulence, it may induce other flux surfaces
to start tearing up, and when the magnet islands start to overlap this leads to magnetic field
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ergodization, which means that field lines become randomly displaced from their original flux
surface. They can fill up a three dimensional volume, and because particles race along them,
they can race out of the plasma (not the other way around, because the pressure inside is
much higher). When the islands grow really large, chances are that the plasma ends in a
disruption. All the energy that was stored in the magnetic field is released at once, leading
to considerable damage to the fusion reactor.

This may sound as if we have a pretty good idea of what is going on during reconnection
inside a tokamak plasma. But, as was mentioned before, a fusion plasma is very hot. Very
hot. In very hot plasmas the electron mass plays an important role in causing of magnetic
reconnection. In that case, we call this process collisionless magnetic reconnection, as in
cooler plasmas a more straightforward reconnection mechanism is more important, caused by
the collisions between the plasma particles. It was shown that collisionless reconnection can
explain the fast reconnection rates that have been measured in the centre of tokamak plasmas.
The model that is studied in this thesis relies on this mechanism for magnetic reconnection.

To model the effect that electrons do not collide but can have different temperatures, the
equations that determine the dynamics of electrons in a plasma with a dominant magnetic
field in one direction, make use of a distribution function that specifies how many electrons
have a certain velocity parallel to the magnetic field with respect to the bulk of the plasma.
They look like the equations that determine vorticity (the amount of rotation) in a two
dimensional, shallow, fluid system. Vorticity is generally dragged along or advected by a
stream function, or a flow field, like storms are advected by the wind. The difference is that
in this equation, the drift-kinetic equation, for each parallel velocity we have a different type
of vorticity, advected by a different stream function. To keep the metaphor of the weather,
it is analogous to having a different wind for each height, where height would correspond to
parallel velocity. This correspondence is very real: indeed storms are advected differently at
different heights, and are described by very similar equations.

This observation opens the way to make use of similar tools as in fluid theory to study
plasma, such as contour dynamics. Vorticity in two dimensions can be thought of of being built
up like a topographical map: a mountain is described with a line or contour that corresponds
to 100 meter altitude, and within this contour lies another contour corresponding to 200
meter altitude and so forth. The same is true for vorticity. One can draw a contour that
corresponds to a certain amount of vorticity, and within a contour that corresponds to more
vorticity etc. The locations of these contours may change in time, as vorticity evolves, but
it is clear that these contour lines cannot cross: on a map one can think of strangely shaped
mountains, but with vorticity this is just impossible. For plasma, we can draw these contours
for every different type of vorticity, i.e. for every parallel velocity. For different types, they
are allowed to cross, for the same type they may not. Very important is the fact that in this
way, all of the plasma dynamics is now captured by the location of the contours, and the
interaction between them and themselves.

Back to parallel electron velocities. A contour now describes the jump in the parallel
electron velocity. If we construct an area where electrons move with respect to the bulk in a
certain direction, this is equivalent to saying that there is a current density. Actually, it is a
bit more subtle, because electrons interact with the plasma by their electrical charge and, if
they move, by the magnetic field they generate, so we have ‘pure’ current if n less electrons
move in the negative direction and n electrons more move in the positive direction (or vice
versa).

If we construct a straight or annular layer with a current density in this way, this layer
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Figure S.1: From left to right: the contours of the electrons with the highest velocities for
a simulation where the mode number of the perturbation is m = 5, and the
distribution function is replaced by N = 5 contours that mark the boundaries
of the 5 corresponding parallel electron velocities. The middle figure shows the
isolines of the electrostatic potential (or the altitude lines of the electric field)
along which slow electrons drift, and the right figure shows the isolines of the
magnetic potential, or a top view of the flux surfaces along which the magnetic
field is confined. Fast electrons tend to move along these lines.

stays just as it is. Nothing happens. All the equations need an excursion from symmetry, be-
cause there is no gradient or gradual change anywhere, except at the location of the jumps.
We can only excite or perturb the system at these contours, and then calculate what happens.
There are three possibilities: when the contours are dislocated they can bend back again, re-
sulting in a (damped) wave, like in a guitar string. Then the system is called stable. The
contours can be moved and still nothing happens, like a ball on a horizontal plane, which is
called metastable. But if the contours are moved and they start moving in the same direc-
tion of the perturbation, the perturbation grows exponentially. The system is then linearly
unstable.

In Chapter 3 and 4 the stability of an equilibrium that consists of a straight slab of plasma
with in the middle a region with an electrical current is investigated. It is found that it can be
unstable with respect to a tearing mode, and only to a tearing mode. This leads to a chain of
magnetic islands through the middle of the current layer, whose growth rate depends on the
amount of current, the magnitude of the magnetic field and the electron mass and density.
The equation that links the linear growth rate to the other parameters is the linear dispersion

relation.

When a temperature difference across this layer is applied, having warmer plasma on one
side of the current layer than on the other, the island chain starts to move in the direction
perpendicular to both the magnetic field and the direction of the temperature gradient. And
if the islands have already obtained a finite width, and the dynamics of the island becomes
dependent on the width of the island, so in the nonlinear regime, a shift with respect to the
external perturbation remains. This shift is important, because if there are multiple chains
of magnetic islands next to each other, the local temperature gradient will depend on the
location of the islands. This can lead to self-organization of magnetic islands, so that they
fit better, or so that they start to overlap sooner. The onset of magnetic field ergodization
can depend on the way these islands shift with respect to each other. The magnetic island
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Figure S.2: These are resp. the density, current and temperature distributions of the same
mode as shown in the previous figure.

becomes ‘droplet’ (or onion) shaped, because the x-point is shifted more than the o-point.

In Chapter 5, the linear stability analysis of Chapter 3 and 4 is applied to an equilibrium
that is circular instead of straight. This was done for the two-fluid variant of the drift-kinetic
equation, using only two contours to describe the perturbed parallel velocity of the electrons.
For this shape of equilibria, the computer code that was developed in Eindhoven could be
used to calculate the evolution of those contours in time. The growth rates that we found
in this way showed good agreement with the theoretical predictions made by the linear
dispersion relation. The numerical code is fully nonlinear, which means that it can calculate
the evolution of the contours self-consistently, without assuming that they only move a little
bit. One purely nonlinear effect is that after a certain amount of time, the reconnection
stops, or in other words, the magnetic island saturates. And though the two-fluid model is
essentially isothermal, it is possible to study the effect of the ratio of the thermal velocity
of the electrons and the mode velocity with which the island grows. The simulations show
that when the electrons move fast compared to the velocity of the mode, they move more
along the separatrices of the magnetic island, following the magnetic field lines, whereas if
they are slow compared to the mode, they drift along isolines of the electrostatic potential,
perpendicular to the electric field.

The numerical code was extended so that we could use more than two types of contours,
and simulate the effect of a temperature gradient on the process of collisionless magnetic
reconnection. The rotation of the island chain with the diamagnetic velocity and the defor-
mation of the magnetic island are found to be in pretty good agreement with the predictions
that were made in Chapter 3 and 4. The x-point, that rotates faster than the o-point because
there the same temperature difference occurs over a shorter distance, is observed to decelerate
again after some time. This is attributed to the appearance of a region with negative current
density that pushes the x-point away from the o-point, because the o-point corresponds to a
region with positive current.

This concludes the work that was done for this thesis, which was done as part of a project
that should contribute to a working nuclear fusion device. But browsing through the contents
of this thesis the image of a power plant may not surface very often. However, magnetic
reconnection can lead to some of the most violent phenomena in magnetized plasmas, that
need to be controlled if we want to use nuclear fusion as an energy source. It has the power
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to reshape the magnetic configuration within the plasma, ultimately destroying confinement
altogether, and it may have the subtle, even useful effect of removing the Helium ‘ash’ out of
the core of the plasma, saving it from extinction.

It is essential to have a deeper knowledge of this process to be able to control it or prevent
it from happening. We have to understand how it works, what the electrons that are involved
in this process do and how they influence the evolution of the reconnection process, and how
important parameters like the temperature gradient may play a role, keeping in mind that
a tokamak generates the largest temperature gradient known in the universe. This was the
main question that was addressed in this thesis.
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Samenvatting

Lang geleden was de mensheid maar een erbarmelijke soort. We hadden het koud, waren
afhankelijk van de zon voor licht en warmte en ons dieet was weerzinwekkend. Gelukkig
had Prometheus medelijden met ons, en gaf ons macht over het vuur. Zeus was het hier
duidelijk niet helemaal mee eens, aangezien we alles wat ook maar een beetje wilde branden
in lichterlaaie hebben gezet, en liet Prometheus boeten voor zijn verraad. Hij ketende hem
aan de Kaukasus vast, en een grote arend at dagelijks van zijn lever, die vervolgens ’s nachts
gewoon weer aangroeide. De mensheid daarentegen kon zijn lol niet op [1].

Tot op zekere hoogte is dit nog steeds aan de gang. Mensen verbranden alles wat maar
branden wil om comfortabel te kunnen leven, om het warm te maken als het koud is, om
het koud te maken als het warm is, om kleine explosies in cilinders te veroorzaken in de
motor van een auto, zodat een baby van het licht ronkende geluid in slaap kan vallen. En
Prometheus zou nog aan de berg vastgeketend zijn als Heracles hem er niet een keer afgehaald
had. Tegenwoordig is het offer van Prometheus wellicht niet meer genoeg om onze honger
naar energie te stillen. Het besef gloort dat we een nieuwe bron van energie zullen moeten
gaan plunderen om de levensstijl die we ons de afgelopen decennia hebben aangemeten te
kunnen blijven volhouden. Van sommige bronnen ervaren we inmiddels de eindigheid, van
andere weten we nog niet of we ze kunnen veroorloven, en van de meeste beginnen we de
gevolgen van het grootschalige gebruik te zien.

Dus wenden wij ons tot Helios, de zon. Niet om weer afhankelijk te worden van waar en
wanneer hij schijnt, maar om hem de geheimen te ontfutselen hoe hij aan zijn energie komt,
zodat we zelf een zon kunnen maken. Wat er in theorie zou moeten gebeuren heeft hij al
een keer losgelaten: in een proces dat we kernfusie noemen smelten twee lichte atoomkernen
samen tot een zwaardere. De energie die daarbij vrijkomt wordt aan de reactieproducten
meegegeven als kinetische energie (ze bewegen heel snel). Het meest veelbelovende fusieproces
dat we in een reactor hier op aarde zouden kunnen bewerkstelligen is tussen twee waterstof-
isotopen, deuterium en tritium, wat bij versmelting (niet geheel toevallig) helium en een
neutron oplevert,

2
1D + 3

1T → 4
2He + n + 17.6MeV.

Deuterium lijkt op waterstof, maar heeft een extra neutron in zijn kern zitten, en tritium
heeft een proton en twee neutronen in zijn kern, waardoor het instabiel is en radio-actief kan
vervallen.

Als we weten hoe het werkt, wat houdt ons dan nog tegen? Er is genoeg brandstof voor
duizenden jaren als we lithium gebruiken om tritium te genereren met de neutronen die uit
de reactor komen. Deuterium kan schier oneindig uit zeewater gewonnen worden. Het afval,
of de as, is relatief schoon: helium wordt gebruikt voor kinderballonnen. De neutronen maken
de reactor weliswaar voor tamelijk korte tijd licht radio-actief, maar als de reactor afgebroken
wordt kan het afval veilig opgeslagen worden.

Dat fusie inderdaad werkt, is op nietsontziende wijze aangetoond door het her en der
opblazen van een atol in de Grote Oceaan. Sinds die tijd ligt de uitdaging met name daarin
om dit proces op een gecontroleerde en niet al te gewelddadige manier te laten verlopen. Het
probleem is dat de atoomkernen elkaar elektrisch afstoten, zodat we een hele hoge tempera-
tuur nodig hebben om de deeltjes genoeg snelheid te geven om de elektrische afstoting te
overwinnen. Onder deze omstandigheden worden de brandstoffen een (heet) plasma, waarin
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de atoomkernen los kunnen bewegen van de elektronen, maar wel onder invloed van elkaars
elektromagnetische veld.

En zo komen we weer bij Helios. De toorn van Zeus heeft hem nog niet geraakt, aangezien
we alleen nog maar weten wat er zich ongeveer afspeelt in het middelpunt van de zon. Het
plasma wordt hier door het enorme zwaartekrachtsveld onder niet al te hoge temperaturen
(pakweg 15 miljoen graden) bij elkaar gehouden, zodat de fusiereacties daar langzaam ver-
lopen en smeulend genoemd mogen worden. Hoe we op aarde een efficiënte reactor in elkaar
moeten zetten is een heel ander verhaal.

Op aarde moet dat vooral heter. Om een fusiereactie aan de gang te houden willen we
een minimale hoeveelheid energie toevoegen en er zoveel mogelijk uitkrijgen, moet het D-T
plasma tot zo’n 150 miljoen graden worden gestookt. Om dat voor elkaar te krijgen moet
het plasma weggehouden worden van de koude en smeltende wanden van de reactor, en dat
wordt tegenwoordig gedaan met behulp van een magnetisch veld. Ieder geladen plasmadeeltje
draait in een kurkentrekkerbaan rond een magnetische veldlijn, zodat als de veldlijn de wand
niet raakt, de deeltjes dat ook niet doen. Dit is mogelijk als we de reactor en het veld een
torus-vorm geven.

Op dit moment is de tokamak de beste kandidaat om binnen afzienbare tijd fusiestroom te
kunnen leveren aan het elektriciteitsnet. Het idee is dat magneetspoelen een sterk magnetisch
veld in de toroidale richting (de lange weg rond de torus) genereren, en dat een toroidale
stroom een kleiner, poloidaal (de korte weg rond de torus) veld maakt. De veldlijnen gaan
zo helisch de torus rond, en blijven keurig op tweedimensionale, geneste flux-oppervlakken

liggen.

Nu komt magnetische reconnectie in beeld. Als de geneste topologie van het magnetische
veld behouden zou blijven, als een soort magnetische Russische matruschka-pop, zou de op-
sluiting van deeltjes en warmte geweldig zijn. Maar dat is niet het geval. Met al die plas-
madeeltjes die langs de magneetveldlijnen spoeden, wordt het plasma een kolkende, turbu-
lente massa die de flux-oppervlakken heen en weer schudden. Als magneetveldlijnen met een
verschillende richting tegen elkaar aan geduwd worden, wordt niet alleen de druk daar heel
hoog, maar ook de magnetische energie. Dit leidt tot nieuwe elektrische stromen in het
plasma die het magnetische veld zó veranderen dat de flux-oppervlakken intact blijven. Als
deze beschermende stroom zijn werk niet goed doet, kan de magnetische energie vrijkomen
doordat veldlijnen elkaar naderen, openbreken, en op andere manieren weer versmelten. Dit
heet magnetische reconnectie. Dit gebeurt als de stroomlaag bijvoorbeeld afgebroken wordt
doordat de deeltjes teveel botsen, oftewel door resistiviteit, of als turbulente wervels de elek-
tronen uit hun baan schudden. De eerst zo keurig geneste flux-oppervlakken vallen lokaal
uiteen, en het is niet langer duidelijk wat de binnen- en wat de buitenkant van die flux-
oppervlakken was: er ontstaan gebieden in het plasma die niet meer bij de oorspronkelijke
oppervlakken horen, en de randen daarvan heten nu separatrices. In een toroidaal plasma zijn
deze nieuwe gebieden helische slingers rond het oorspronkelijke oppervlak, en als we naar een
doorsnede van de plasma-torus kijken zien ze eruit als magnetische eilanden, met een o-punt
in het midden en een x-punt waar de veldlijnen opengesneden en weer aan elkaar geknoopt
zijn. Doordat er daar nu minder magnetische druk heerst, kan er opnieuw plasma, met daarin
magnetische veldlijnen, naartoe gezogen worden, zodat het proces zichzelf blijft voeden in een
vicieuze cirkel die in het Engels een tearing mode genoemd wordt vanwege het openscheuren
van de flux-oppervlakken.

De gevolgen van dit proces zijn dramatisch voor de opsluiting van hete deeltjes die in een
reactor, net als in de zon, zouden moeten fuseren in het centrum van het plasma. Het kan

142



Samenvatting

leiden tot meer turbulentie, het kan ervoor zorgen dat flux-oppervlakken op andere locaties
open gaan breken, en als de magnetische eilanden van verschillende oppervlakken elkaar raken
kunnen die ook weer openbreken: veldlijnen liggen dan niet meer op een oppervlak maar
kunnen dwars door het plasma heen liggen, zodat de deeltjes die langs de magneetveldlijnen
racen ook zo het plasma uit kunnen racen. En als de eilanden te groot worden kan het
plasma eindigen in een disruptie, waarbij alle energie die in het magnetische veld zit in een
keer losbarst, wat stevige schade aan de binnenwand van een reactor kan toebrengen.

Tot dusver lijkt het alsof we tamelijk goed weten wat er zoal aan de hand is tijdens recon-
nectie in een tokamakplasma. Maar een fusieplasma is heet. Echt heet. In hele hete plasma’s
is een belangrijke oorzaak van reconnectie te herleiden tot de massa van de elektronen. In dat
geval noemen we dat botsingsloze magnetische reconnectie, omdat in minder hete plasma’s
een meer voor de hand liggend reconnectiemechanisme belangrijker is, dat veroorzaakt wordt
door de botsingen tussen de plasmadeeltjes. Het is aangetoond dat in hele hete tokamak-
plasma’s botsingsloze reconnectie de experimentele waarnemingen kan verklaren. Het model
dat in dit proefschrift bestudeerd is, maakt gebruik van dit mechanisme om reconnectie te
veroorzaken.

De methode die we gebruikt hebben om dit proces te bestuderen is nieuw. Elektronen van
verschillende veldlijnen botsen nauwelijks met elkaar maar kunnen wel verschillende tempera-
turen hebben. Om deze eigenschappen te kunnen combineren maken we gebruik van vergelijk-
ingen die gebaseerd zijn op een distributiefunctie die bepaalt hoeveel elektronen een bepaalde
snelheid parallel aan het magneetveld hebben. Deze vergelijkingen lijken op de vergelijkingen
die de vorticiteit (de mate van draaiing of werveling) bepalen in een tweedimensionale of
ondiepe vloeistof. Over het algemeen wordt vorticiteit meegesleurd door de stroming, zoals
stormen worden meegevoerd door wind. Het verschil is dat in de plasmavergelijkingen, of om
precies te zijn de drift-kinetische vergelijkingen, we voor elke parallelle snelheid een andere
soort vorticiteit hebben, die wordt meegevoerd door zijn eigen snelheisdveld. Het is te vergeli-
jken met dat er op elke hoogte andere wind waait. De overeenkomst met weersystemen is niet
uit de lucht gegrepen: stormen worden inderdaad op verschillende hoogtes door verschillende
winden meegevoerd, wat beschreven kan worden met vergelijkbare vergelijkingen.

Deze beschrijving maakt het mogelijk om voor onze plasmafysica gebruik te maken van
contourdynamica, zoals die ook toegepast wordt in de vloeistofdynamica. Als we vorticiteit
in twee dimensies willen beschrijven, kunnen we dat doen zoals we een topografische kaart
met hoogteverschillen maken: een berg ziet er bijvoorbeeld uit als een hoogtelijn of contour
die aangeeft waar het 100 meter hoog is, daarbinnen ligt een contour die aangeeft waar het
200 meter hoog is etcetera. Dat kan ook met vorticiteit. We kunnen een contour tekenen
waarbinnen massa met een bepaalde snelheid ronddraait, en daarbinnen een contour die
aangeeft dat daar massa sneller ronddraait, die dus duidt op een hogere vorticiteit. Deze con-
tourlijnen mogen elkaar niet snijden. Een berg kan een rare vorm hebben, zodat hoogtelijnen
dat wel zouden kunnen, maar voor vorticiteit kan dit niet. Voor plasma kunnen we voor elk
type vorticiteit, dus voor elke parallelle snelheid, een eigen contour trekken, waarbij contouren
van dezelfde parallelle snelheid elkaar niet mogen kruisen, maar van verschillende snelheid
wel. Alle dynamica van het plasma is nu vastgelegd in de ligging van deze contouren en hun
onderlinge interacties.

Terug naar plasma en parallelle snelheden. Een contour beschrijft in dit model een sprong
in de parallelle elektronensnelheid. Als een gebied binnen zo’n contour ligt, hebben elek-
tronen daar een snelheid ten opzichte van de gemiddelde snelheid, en dus heerst daar een
stroomdichtheid. Eigenlijk ligt het iets subtieler, aangezien elektronen met hun lading een
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elektrische en door hun snelheid een magnetische interactie hebben. We kunnen zeggen dat
er alleen een stroomdichtheid is als er evenveel elektronen extra in de positieve richting
bewegen als er minder in de negatieve richting bewegen (of vice versa).

Als we op deze manier een rechte stroomlaag of een ronde stroomring in een plasma aan-
leggen gebeurt er niks. Hij blijft daar gewoon liggen, omdat de contouren de enige plekken
zijn waar iets verandert, en die zo’n symmetrische vorm hebben. Als we die contouren een
klein zetje geven kunnen we berekenen wat er gebeurt. Er zijn globaal drie mogelijkheden: als
de contouren van hun plek getrokken zijn buigen ze weer terug, wat leidt tot een (gedempte)
golf, zoals in een gitaarsnaar. Dan is het systeem stabiel. Als de contouren verschoven wor-
den en er gebeurt nog steeds niets, zoals een bal op een horizontaal veld, heet het systeem
metastabiel. Maar als de contouren nadat ze verplaatst zijn verder bewegen in de richting van
de verplaatsing zodat de verstoring exponentieel groeit, heet het systeem (lineair) instabiel.

In Hoofdstuk 3 en 4 is de stabiliteit onderzocht van een evenwicht in een oneindige,
periodieke vlakke laag met in het midden een stroomlaag. Hier is aangetoond dat in deze laag
de tearing mode instabiel is. Deze mondt uit in een keten van magnetische eilanden in het
midden van die laag. De groeisnelheid is afhankelijk van de oorspronkelijke stroomdichtheid,
de sterkte van het magnetische veld en de elektronenmassa en -dichtheid. De vergelijking die
de groeisnelheid en golflengte koppelt aan de andere parameters is de dispersierelatie.

Als er een temperatuurgradiënt wordt aangebracht over de laag, zodat het plasma aan
de ene kant warmer is dan aan de andere, begint de eilandketen te bewegen in de richting
die loodrecht staat op die van het magneetveld en van de temperatuurgradiënt. En als de
eilanden al een zekere dikte hebben, zodat de dynamica van het eiland afhankelijk wordt
van zijn dikte, blijft deze verschuiving ten opzichte van de verstoring in het buitengebied
bestaan. Deze verschuiving is belangrijk omdat als er verschillende eilandketens naast elkaar
ontstaan, de lokale temperatuurgradiënt afhankelijk zal zijn van de onderlinge ligging van
de eilandketens. Dit kan zorgen voor zelforganisatie van de eilanden zodat ze beter in elkaar
passen, of juist eerder overlappen. De mate van ergodisatie van het magnetische veld kan
dus afhangen van de manier waarop de eilanden ten opzichte van elkaar verschuiven. Onder
invloed van een temperatuurgradiënt wordt het magnetische eiland ‘druppel’- (of ui-)vormig,
omdat het x-punt sneller beweegt dan het o-punt.

In Hoofdstuk 5 wordt de lineaire stabiliteitsanalyse van Hoofdstuk 3 en 4 toegepast op
een evenwicht dat cirkelvormig is in plaats van recht. Hiervoor hebben we de twee-vloeistof
variant van de drift-kinetische vergelijking toegepast, waarbij slechts twee soorten contouren
worden gebruikt. Voor deze vorm kon de simulatiesoftware gebruikt worden die aan de TU
Eindhoven ontwikkeld is om de beweging van contouren als functie van de tijd te berekenen.
De groeisnelheden die op deze manier gevonden zijn zijn in goede overeenstemming met de
theoretische waarden die volgen uit de lineaire dispersierelatie. De numerieke code is volledig
niet-lineair, wat betekent dat deze de evolutie van de contouren geheel zelf-consistent kan
uitrekenen zonder uit te gaan van slechts kleine afwijkingen van de beginposities. Eén puur
niet-lineair effect is dat na een bepaalde tijd de reconnectie stopt, met andere woorden dat er
saturatie van het magnetische eiland optreedt. En hoewel het twee-vloeistof model essentieel
isotherm is, is het mogelijk om de invloed van de verhouding van de thermische snelheid
van de elektronen ten opzichte van de snelheid van de verstoring te bestuderen. Simulaties
laten zien dat als de elektronen snel gaan vergeleken met de snelheid van de verstoring, ze
meer de magneetveldlijnen volgen, terwijl als de elektronen langzaam zijn ten opzichte van
de verstoring ze meer langs lijnen van constante elektrische potentiaal drijven, dus loodrecht
op het elektrische veld.
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De numerieke code is uitgebreid zodat we meer dan twee soorten contouren kunnen
gebruiken. Zo kunnen we door de sprongen in de parallelle snelheid niet exact even groot
te maken aan de twee kanten van de stroomlaag de invloed van een temperatuurgradiënt op
botsingsloze magnetische reconnectie bestuderen. De rotatie van de eilandketen met de dia-
magnetische snelheid en de vervorming van de magnetische eilanden komen best goed overeen
met de voorspellingen die gemaakt zijn in hoofdstukken 3 en 4 voor de vlakke laag. Het x-punt,
dat op een gegeven moment sneller beweegt dan het o-punt omdat hetzelfde temperatuur-
verschil over een kleinere afstand wordt verdeeld, wordt na een tijdje weer afgeremd. Dit wordt
toegeschreven aan het verschijnen van een gebied met negatieve stroomdichtheid, dat het
x-punt wegduwt van het o-punt, aangezien het o-punt een gebied met positieve
stroomdichtheid is.

Hoewel het onderzoek waaruit dit proefschrift is ontstaan, bij het project hoort dat aan een
werkende fusiereactor dient bij te dragen, zal er bladerende door dit proefschrift niet dikwijls
een beeld van een energiecentrale opgeborreld zijn. De relevantie van magnetische reconnectie
is echter aanzienlijk, aangezien het kan leiden tot een paar van de heftigste verschijnselen in
fusieplasma’s, die beheerst moet worden voor de implementatie van fusie als energiebron.
Het kan de magnetische configuratie van het plasma vervormen, een volledig eind maken aan
magnetische opsluiting, maar ook het subtiele, nuttige effect hebben van het regelmatig naar
buiten werken van de helium-‘as’, zodat het plasma niet uitdooft.

Het is essentieel een beter begrip te krijgen van dit proces om het te kunnen beheersen of
zelfs te voorkomen. We moeten begrijpen hoe het werkt, wat de elektronen die erbij betrokken
zijn doen en hoe ze het verloop van het reconnectieproces bëınvloeden. En we willen graag
weten welke rol belangrijke parameters zoals de temperatuurgradiënt spelen, als we bedenken
dat de grootste temperatuurgradiënt van het heelal gegenereerd wordt in een tokamak. Dit
was de hoofdvraag die in dit proefschrift aan de orde gekomen is.
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Magnetic reconnection in plasmas is the process where magnetic field lines 
break open and reconnect in a different way, transforming magnetic into 
kinetic energy. In fusion plasmas, reconnection can degrade the magnetic 
confinement of the plasma necessary to achieve efficient nuclear fusion. 
In this thesis reconnection is studied analytically and numerically with the 
theoretical technique of Contour Dynamics. This approach made it possible 
to use a kinetic model to study the influence of temperature gradients on 
the nonlinear reconnection process.
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