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o. Introduction 

In chapter 6 of his dissertation [oJ Anne Kaldewaij presents 

an implementation of a trace structure called SEMi (a,b) in the 

form of a digital circuit (See fig. 6.2 in [oJ). At first sight 

I liked this circuit very much for its simplicity and its seeming 

symmetry. As far as I am concerned,the simplicity is completely 

beyond dispute but the symmetry is not there. This is a little 

surprising because, by its specification, SEMi (a,b) is 

symmetric in a and b in the sense that SEM
1 

(a,b) = a,SEM
1 

(b,a) 

The asymmetry due to the fact that a is the event to occur first 

I consider a minor one in the sense that it should be possible to 

derive a symmetric circuit in which the value of the initial state 

would account for the asymmetry. At closer scrutiny I became even 

more dissatified with the circuit for various reasons. 

Firstly, the implementation is such that a is "passive" and 

b is "active". This is a deliberate choice of the designer, but 

now it is not immediately clear whether and, if so, how a circuit 

with, say, a and b both passive can be derived from this 

circuit in a simple way, e.g. without the introduction of another 

C-element. Moreover, it might very well be that the asymmetry thus 

introduced is also responsible for the asymmetry mentioned above. 

Therefore, I decided to try to design a new circuit, preferably 

as simple as the original one, with a and b of the same 11 type " 

and retaining the symmetry. The activities arising from this 

decision are the immediate cause for writing this note. 

Secondly, the introduction of the, so-called, internal forks 

struck me as some sort of measure ad hoc to repair a delay-sensitive 

circuit that is supposed to be delay-insensitive. Initially, I 

thought that it would be possible to avoid the use of such forks 

altogether, thus simplifying the reasoning about such circuits. 

This, however, proved to be too optimistic an attitude. In the 

designs presented in this note internal forks do occur too. 

Thirdly, although the circuit is correct in the sense that 

it indeed implements SEM
1 

(a,b) it is a little bit overspecific 

because the transitions on the various wires are more strictly 

ordered than necessary, again in an asymmetric way. This is only 
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a minor inconvenience but it might be a s~tomthat the way of 

derivation is not yet what it could be. For example: according to 

the rules of the game the following is a valid sequence of events 

but the circuit will never produce it: 

ai+;aot;ai~;ao+ibo+;bi+;ait;ao+ • The circuit is such that the 

second aot is always preceded by bi+ . 

The latter two reasons for,dissatisfaction probably are due to 

the circumstance that we do not know yet what are the rules and 

proof obligations by means of which correct circuits are to be 

derived. In this respect I have not very much to add but nevertheless 

I was able to "derive" a circuit satisfying me better; moreover, its 

derivation required the invention of a generalisation of the' 

well-known C-element which I, therefore, will call G-element. As 

the implementation of a G-element is equally simple as the imple

mentation of a C-element, it might very well be that G-elements 

are more useful than C-elements. For such claims, however, it is 

still too early. 

This note is a report of my exper~ments. I have no other 

pretensions whatsoever with it than to share with others my 

experiences because they excited me very much. In fact, they 

still do. The discussion will be rather informal and operational: 

firstly, I am only an amateur circuit designer for whom his 

experience is probably more of a nuisance than of great help, and, 

secondly, formalisation probably would lead to a dissertation all 

by itself. I shall try to be somewhat explicit about the rules I 

use, especially when they differ from the ones adopted in [01, 

but I will not always be able to -- explain why I do so. 

Finally, I must confess that I have not read the paper by 

Alain J. Martin [1]. Hence, it may very well happen that some of 

the ideas developed here already occur in Alain's paper. Well, 

let it be. 
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1. Four-phase hand~shaking revisited 

Each event x of the trace structure to-be implemented is 

represented by two wires xi and xo, where xi is an input to 

and xo is an output from the circuit implementing the trace 

structure. The event x takes place when on the pair xi,xo the 

four-phase hand-shaking protocol takes place. This protocol is a 

sequence of 4 IIsmaller" events, called IItransitions", in such a way 

that any two successive transitions occur on different wires. This 

definition leaves room for exactly two such sequences, namely: 

xi;xo;xi;xo -_arid xo;xi;xo;xi I in which we used the names of the 

wires to denote transitions on those wires. Because xi is an 

input the happening of the event x is, to some extent, initiated 

by the environment when the first sequence is used. When the second 

one is used the circuit initiates the event, for xo is an output. 

For any event x always the same sequence is used; is it the first 

one than the event is called "pas~rive", is it the second one than 

the event is called "active"a All this is completely in accordance 

with [0] but we would like to stress that the distinction of 

active and passive events is an unavoidable consequence of the 

decision to use four-phase hand-shaking a Notice that, for this 

discussion, the directions ~~- up or down -- of the transitions 

are irrelevant: at any moment in time on each wire exactly one 

transition is possible, viz. from the current value to the other 

value a 

As the wires connecting the circuit and its environment may 

exhibit positive delays the protocol actually comprises 8 events: 

4 on the side of the circuit and 4 on the environment side. See 

also figure 1.0. As these events are separated in time we have to 

decide at which points of time we are allowed to say that x has 

happened; similarly, of course, we have to decide when we are 

allowed to say that x has not (yet) happened. Herewith, we adopt 

a convention that is slightly more restrictive than the one used 

in [0]. Surprisingly enough, the circuits proposed in [0] 

comply with this convention too, so it probably is not that bad. 
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fig. 1.0: four-phase hand-shake for passive x 

Firstly, an event may only happen if both the circuit and the 

environment are IIprepared" to let it happen. The earliest possible 

moment at which we could say that, for passive X, both the circuit 

and the environment are prepared to let x happen is -- see 

figure 1.0 -- the transition labelled 2, i.e. transmission of xef 

by the circuit. 

Secondly, the transition labelled 5 , i.e. reception of xii, 

is of interest: at this moment, the circuit "knows" that the 

environment has received the transition xa+ ; hence, from moment 5 

onwards we must accept that x has happened. 

What about the interval from 2 to 5 ? Well, we decide that we do 

not care. From the point of view of the circuit we say: x has 

happened somewhere in between xat and xi{ . Similarly, for active 

events -y: y has happened somewhere in between -- transmission 

of -- yot and -- reception of -- yit •. If the trace structure is 

such that two events should be ordered than we play it safely and we 

require the circuits to be such that the corresponding intervals of 

time are disjoint and that:cthey are appropriately ordered. Notice 

that this is sufficient because trace structures only define the 

relative orders of events: each event is now represen~ed by an 

interval of time. 

Summarising the above, the following rules of implementation 

may be formulated: 

---_.-- -
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for passive x: 

for active x: 

"x precedes yll 

"x precedes y" 

"xi+ precedes yet" 

"xit precedes yet" 

Notice that the in our opinion awkward -- notions "time" 

and "moment" have disappeared from these rules. This is a 

comforting observation. 
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2. Active or passive? 

In the introduction we announced that we are heading for a 

circuit for SEMi (a,b) that is symmetric in a and b • For this 

purpose, it seems wise to let a and b be of the same "type", 

i.e. both passive or both active. In [oJ the author shows -- see 

Theorem 6.3.0 and Theorem 6.3.1 -- that transforming a passive ~ .. 

event into an active one is much easier than the other way round; 

the latter transformation requires an additional C-element whereas 

the former one can be realised by the addition or removal! --

of a single inverter. Therefore, we decide that a and b shall 

be passive. 

(Aside: if each active event would be implemented as a passive 

event transformed using Theorem 6.3.0, then the transformation 
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of an active:-_event into a passive one---:also requires addition of 

a"s'ingle-inverter only .. This looks like a considerable simplification 

but'Warning6.3.1 [oJ might be an indication that this attitude is 

-a~little·:too:,naive; ) 

The trace structure of SEMi (a,b) is -- the pre'fix closure of -

(aib)* . In the"'following "handshaking expansion" we have, in order 

to avoid Qverspecification, separated the hand-shaking protocols 

for a and b from each other and from the requirement that a 

and b must alternate: 

(ait;aot;ai~;ao~)* , (bit;bot;bi~;bo~)* , 

(ai+;bot)* , (aot;(bi+;aot)*) 

The last "weavand", of course, can be rewritten as: (ao+ibi4-)* . 

Notice that all essential information is in the last two weavands: 

if it were only the two hand-shaking protocols that mattered then 

some length of wire would suffice for the implementation, or, to 

put it differently, the last two weavands express the interaction 

of the events a and b . 



The above trace structure may be taken as a specification of 

the circuit in terms of transitions. It now is a rather obvious 

step to trans scribe this trace structure into the following program: 

*[[ai];aot;[,ai];ao~] , *[[bi];bot;[,bi];bo~] , 

*[[,ai];bot] , *[aot;[,bi]] 

This program, however, is wrong: i~, initially, all wires are false 

and, subsequently, the transition bit occurs, then all guards 

preceding bot are true; hence, this programs allows b to happen 

before a, which is in conflict with the specification. The 

problem is that we should distinguish transitions from values. The 

sequence ai~;bot prescribes that a down-going transition on ai 

should precede bot, whereas [,ai];bot prescribes something like: 

"only if ai has value false bot may occur", or, even weaker: 

"only if ai has been observed to have had value false bot may 

occur". (The latter one, indeed, is very ugly and is usually avoided 

by some requirement of monotonicity). Apparently, ai~;bot ~and 

[,ai];bot are not the same. On the other hand, when taken in 

isolation, nothing is wrong with *[[ai];aot;[,ai];ao~] as a 

program for (ait;aot;ai~;ao~)* ; from that program the circuit 

consisting of a single wire is easily derived. So, a good question 

seems to be: under what conditions may transitions on an input wire 

be treated as if they were values? For the time being we shall not 

try to answer this question. 
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3. Intermezzo: a transition detector 

According to the specification derived in the previous section 

ait;aot;ai+;ao+ is a valid trace of the circuit. After this trace 

all wires have the same values as they had initially, but the 

circuit is in a state different from the initial state: after this, 

. b may happen. As ~~~se two states cannot be distinguished by 
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means of the values of the wires:, =_the introduction of additional 

variables is indicated. We shall call such variables II s tate variables ll
• 

The above observation is not at all surprising: the two states 

mentioned correspond to the two states of SEM! (a,b). What is surprising, 

however, is that two states and, hence, a single binary variable 

. are insufficient for the implementation of SEMi (a,b). At least two 

state variables are needed and initially it was unclear why this 

would be so. Therefore, we carried out the following little exercise. 

Suppose we wish to design a circuit with one input wire, a , and 

one output wire, x . Initially, both wires are false. For given 

constant k, k ~ 0, the output is to become true if on the input at 

least k transitions have occurred, after which ~x~ remains true 

forever. We think that such a circuit will have at least k + 1 

states. He~e, we shall treat the special case k 2 only. We do 
~ so by applying the old technique of constructing a state transition 

table. We silently assume that the output is a function of the states; 

hence, we may confine our attention to the changes of the state and 

deal with the output later. The states are numbered using the naturals; 

the state itself is represented by the abstract state variable s; 

the initial state is 0 : 

s -

o 
1 

2 

o 

o 
2 

2 

1 

1 

1 

2 

Both the first and the second transition on a give rise to a change 

of state, hence the introduction of 3 states. The output x can now 

be expressed in the state as follows: x = (s=2) . If one tries to 



reduce the number of states by identifying two of them one will 

discover that this is impossible without violation of the 

specification: either x becomes true too early or it remains false 

forever~ Apparently, the circuit must count the transitions that have 

occurred until the k-th transition. The moral of the story is that it 

seems impossible to exploit the circumstance that any two successive 

transitions on the same wire have opposite directions. 

The abstract state variable s can be implemented by two binary 

state variables x and y by means of the following state 

assignment (such that ::x automatically "is" the output) : 

s=o - 'x A 'y 

s=l - 'x A Y 

s=2 - x A Y 

From this a circuit is easily constructed, but this is none of our 

concerns here (See, however, section 6) • 

What is the relevance of the above to our original problem? 

Well, if we project the trace ait;aot;ai+iao+ on the inputs we 

obtain ait;ai+ and we conclude that the state of the circuit after 

this trace can only be IIreached" after the occurrence of 2 transitions 

on ai ; hence, we need at least 3 states,for the implementation of 

which at least 2 binary state variables are required a 

(Historical aside: When I" started this enterprise I was not able to 

derive a circuit for SEM
1 

(a,b) in the way presented in the next 

sections: I did not know what rules to use and chapter 6 in [oJ did 

not seem to provide much help either. Therefore, I did it the old-

fashioned waYa The result was the following state transition table; 

again, 0 is the initial state: 

s 

o 
1 

2 

3 

ai 0 

bi 0 

o 
2 

2 

o 

1 

o 

1 

1 

2 

o 

1 

1 

1 

1 

3 

3 

o 
1 

o 
2 

3 

3 
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Again, the outputs can be expressed in the state, as follows: 

ao = (s=1) ,and: bo = (s=3) • Notice the symmetry! The state 

can be represented by two state variables x and y . After having 

chosen the state assignment for the initial state and adopting the 

rule that on each transition at most one variable changes its value, 

the whole state assignment is fixed (but for permutation of x and 

y ). The rest of the derivation is quite standard -- Karnaugh maps 

and all that -- and, therefore, is omitted here. It was during this 

activity that I discovered the G-elements to be discussed later. 

Surprisingly enough the resulting circuit is completely identical 

to the circuit we shall derive in the next section. 

(Hint: use xA,y = (s=O) , xAy = (s=1) , and so on) . 

(End of historical aside) . 
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4. Is this a derivation? 

Now it is about time to do some useful work, i.e. to derive a 

circuit for SEM
1 

(a,b). Before doing so, however, we shall state the 

rules of our game. 

Firstly, we need some general properties of the "elements" used. 

An element has a single output and some -- zero or more -- inputs. 

An element with output x is completely specified by means of two 

boolean expressions, BO and B1 say; the specification is, as in 

[oJ and [lJ, denoted as follows: 

BO -+ xi I 

Bl -+ x+ 

BO and B1 are expressions in the names of the element's inputs; we 

shall call BO and Bl the "guards" of the element. In order to 

avoid conflicts on what the value of the output"cshould be we require 

each element to satisfy the following "rule of disjointness": 

,BO v 'Bl , for all values of the inputs. 

It is our impression that this rule has heuristic value too. 

A particularly effective and simple way to enforce the rule of 

disjointness is the following one: strengthen the one guard with a 

value y an input or a state variable -- and strengthen the other 

guard with 'y, thus giving ( y should be different from xl : 

BO A Y -+ xt , 

Bl A 'y -+ x+ 

The specification thus obtained satisfies the rule of disjointness 

independently of the structure of BO and Bl • 

In view of the above one probably will not be surprised when we 

present an element with three inputs 

the following specification: 

s, r, g and output x with 
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5 /\ g -+ xt I 

"lr A "lg + x+ 

The negation in front of r may seem somewhat arbitrary, but if we 

allow inverters to be used freely this negation is harmless. We call 

this element a IIG-element" and within pictures, we draw it as in 

figure 4.0. 

8 .... ; __ 6;--' 
fig. 4.0: a G~element fig. 4.1: a C-element 

The G-element is asymmetric in its inputs; therefore, in any drawing 

these inputs must be labelled. The G-element is a generalisation of 

the well-known C-element: a C-element is obtained by connecting the 

sand r inputs (See figure 4.1). This connection, however, must 

be considered as an internal fork. In section 5 we shall give an 

implementation of the G-element. 

Secondly, we require all circuits to be free from, so-called, 

transition interference which is either· transmission or computation 

interference (I do not very well know the difference, if any, between 

the latter two notions, hence the term transition interference): no 

transition may be sent along a wire before all previous transitions 

on the same wire have been "processed" by the receiving circuitry. 
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In the case of delay-insensitive circuits this requirement gives always 

rise to some sort of feed-back, e.g. such as embodied in the four-phase 

hand-shaking protocol. However, in order to avoid hazards we also 

impose this condition onto the lIinternal operations" of the circuit. 

As a special case this condition gives rise to the following rule of 

monotonicity: 

No true guard may be falsified before the transition guarded by 

it has taken place. 



Thirdly, we alaow programs with commas. The constituents of a 

comma-ed program are called "processes". The parallellism thus 

introduced may be useful; after all, all elements constituting the 

circuit operate always in parallel. Now however we need a 

"Gries-OWicki like" rule: 

No true guard in one process may be falsified by any action 

of the other processes. 

This rule is inspired by the observation that the guards in the 
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programs may be viewed as assertions. Notice that this rule equals "the 

rule of monotonicity as far as mutual internal operations are concerned. 

The rule of monotonicity, however, also pertains to inputs and to 

interference within a single process. 

* * * 

We recall from section 2 the specification of the circuit: 

(ait;aot;ai~;ao~)* , (bit;bot;bi~;bo~)* 

(ai~;bot)* , (aot;bi~)* . 

We already know that the first two weavands -- thanks to the fact 

that the environment respects the protocol -- can be coded without 

problems as a program: 

We now take this program for our starting point. The remaining two 

~ea,!.aJ?ds_ may_ 9~ q~~s.?:dered as additional restrictions on the traces 

allowed by this program -- this is in accordance with the 

conjunction-weave rule of trace theory -- . Additional restrictions 

may be implemented by strengthening the guards. Strengthening guards 

never destroys the correctness of the program but it "may introduce 

the danger of deadlock. From section 3 we remember that~at least one 

state variable is needed actually two, but we introduce them one 

at a time -- and thus we obtain our second approximation: 



*[[aiA x],aot,['ai],ao+,x+] , 

*[[biA,x],bot,[,bi],bo+,xt] 

Initially, x is true. The transitions of x have been placed~so as to 

implement the additional restrictions; we now have: aii precedes 

xi ahd x+ precedes bot ; hence, by transitivity: ai+ precedes 

bot . Similarly, by symmetry, bit precedes aot but for the 

IIfirst" aot::here the initial value of x comes in. If we derive 

a specification for (an element realising) x from this program 

then we obtain either 

iai -+ x+ , 

,bi ~ xt , or, strengthening the guards a little, 

Jai A ao -+ x+ , 

,bi A bo ~ xt 

In both cases the rule of disjointness is not satisfied. Therefore, 

we apply our standard trick to achieve disjointness by introducing 

a second state variable y; we now get: 

iai A Y -+ xi

,bi A ,y ~ xi 

The guards in the program are strengthened accordingly. Where can we 

safely insert a transition yt into the program? Well, yt may 

falsify the guard of xt, this causes no conflict with the rule of 

monotonicity if yt takes place in a state where x is true. 

Furthermore, yt never falsifies the guard of x+ . The transition 

y+ is dealt with symmetrically and so we arrive at our third 

approximation: 

*[[aiA x],aot,yt,[""laiA xA y],ao+,xJ.] , 

*[[biA,x],bot,y+,[,biA,xA,y],bo+,xt] 

On afterthought, the place of the transitions of y is not that 

surprising when we remember the structure of the transition counter 
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f.." 

Jj~ 

~ •.. ;l. ,,:, 
of section 3'. A spec~ffica:tion for 

ai 1\ X -+ yt 

bi A -'x + y~ 

y is: 

Notice that the program thus obtained satisfies the Gries-Owicki 

rule but that it does not satisfy the rule of monotonicity: 

aitjaot;ytjai{;ao+;ait is a valid trace but ait now falsifies 

the true guard [--'aiAxAy]. As a consequence, the circuit may "miss 

the opportunityll to perform xi- . This situation can be avoided by 

requiring x+ to occur before the next ait: then, ait occurs 

in a state where the guard [-'aiAxAy] already is false. To achieve 

this we exploit the freedom to replace ao+,x+ by x+;[-'x];ao+ . 

RH84a:15 

The guard [IX] is not an invariant of the other process howeve~'~~~'~·~:~;/~;::~'.l~' 
therefore we weaken it to [--,xV-'y], which is an invariant of the:-/:~~~~ ;'.~';.'. '~~'i' 

. . ", .. ~ 
other process. Thus, we arrive at our fourth and final approximation: 

*[[aiA x];yt;[ xA y];aot;[-'aiA xA y];x+;[-'xy--,y];ao+] , 

*[ [biA-'x]; y+; [-'xA-'y]; bot; [-'biA-'xA-'y]; xt; [ XV y]; bo+] 

The specifications of x and y have been given above; they indicate 

the use of G-elements. Initially, x is true and y is false. The 

specifications of ao and bo now follow immediately from the 

program; they satisfy the rule of disjointness: 

X /\ Y -+ aot , IX A -'y -+ bot , 

IX v -'y -+ ao+ , and: x v y + bo+ 

These specifications indicate an And-gate and a Nor-gate respectively. 

The circuit thus obtained is drawn in figure 4.2. The "fat dotsll in 

this drawing denote internal forks. Furthermore, notice that a can 

be made active by addition of an inverter whereas b can be made 

active by removal of an inverter (i.c. two inverters). 

"01· .,'~. 

. ..... ' .. \' 

. ...;. 
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fig. 4.2: SEMi (a,b) , a and b passive 



5. More onG-elements 

We consider elements with specification: 

BO -+ xt , 

Bl .,. x+ 

Remember that we require all elements to satisfy the rule of 

disjointness. Any such element~can be implemented as follows. 

Informally, x is true either because x becomes true or 

because x remains~true. x becomes true when BO is true and 

x remains true when lB1 A x holds. So, x is a fix-point of 

the following function f 

f.y _ BO V (,Bl A y) 

If we take into account the inputs of the element we observe that 

BO and B1 are functions of the inputs; hence, f is a function 

having one more argument than the number of inputs. This function 

can be implemented in a standard way as a "combinatorial circuit". 

It is, however, essential that this circuit be free from the danger 

of hazards. The element can now be formed by connecting the y-input 

of the circuit with its output. The remaining inputs then are the 

inputs of ~he element. See figure 5.0, where the inputs are 

collectively labelled u . 

• ." • -.1IIh' ? 

fig. 5.0: general element 

The feed-back connection thus introduced must not introduce hazards. 

Therefore, the feed-back path must be at least as fast as the output 
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to the environment; in this respect the node in figure 5.0 may be 

interpreted as a "one-sided forkll. 

An interesting special case arises if BO v B1 is true for all 

values of the inputs: 

BO v (,Bl 1\ y) 

= { calculus } 

BO v nBO 1\ ,Bl 1\ y)' 

= { de Morgan } 

BO v n (BOVB1) 1\ y) 

{ BOvBl ; more calculus } 

BO 

RH84a: 18 

Hence, the function f does not depend on y and the feed-back 

connection is superfluous. The resulting circuit is purely combinatorial; 

so, we might call such elements "combinatorial elements". 

The specification of the G-element is: 

By substitution into the above definition of f we obtain: 

f.y 

{ definition of f } 

(s 1\ g) v (,(,r 1\ ,g) 1\ y) 

{ de Morgan and distribution } 

(s 1\ g) v (r 1\ y) v (g 1\ y) 

{ change of order } 

(s 1\ g) v (g 1\ yl v (y 1\ r) 

{ calculus } 

(r v g) 1\ (g v y) 1\ (y v sl . 

The latter two forms are of interest: they give rise to-two 

possible realisations of the G-element using And-gates and Or-gates 



r 

9 

5 
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only. See figure 5.1. These two realisations are dual realisations 

with respect to negation; apparently, the G-element is invariant under 

negation of all wires provided the 5 and r inputs are interchanged. 

See also figure 5.2. 

Lemma: Any combinatorial circuit consisting of And-gates and Or-gates 

only, is free from the danger of hazards. 

proof: (omitted; hint: by structural induction) . 

(end of lemma) 

s - " H V 

'-
V 

)( 
/\ 

'- X 
V /\ 

-C L 
/\ r V 

fig. 5.1: realisations of G-elements 

Identification of the sand r inputs yields the well-known 

C-element; the resulting realisation is probably well-known too. 

The function f above then is what is sometimes called the 

"majority function". Finally, notice that any non-combinatorial 

element exhibits some form of storage: it has two states. Hence, in 

any practical realisation provisions must be made for the initialisation 

of the element's state. 

fig. 5.2: duality property of G-elements. 



6. In retrospect 

One of the things I disliked very much in the current approach 

to circuit design ·was the notion of internal forks. As we have seen 

the use of internal forks seems unavoidable. every now and then. Let 

us, in order to illustrate this unavoidability, pay some more 

attention to the transition detector of section 3. See figure 6.0 

for the circuit obtained by completing the design given in section 3. 

I use this example oecause of its relative simplicity. The names 

x and y in figure 6.0 correspond to the state variables introduced 

in section 3. 

v ~ ~ 
A 

V x 

F 

fig. 6.0: circuit for at;a+;xt, (at;a+)* 

The node labelled F in figure 6.0 must be considered a (one-sided) 

fork, otherwise the circuit is incorrect. Since I am tempted to 

consider this circuit as the prototype of transition-sensitive 

circuits and since I see no way to avoid the fork even in this 

simple case, I am tempted to conclude that in the current approach 

forks are essential elements. Whether this is a defect of the 
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theory or a consequence of the physic.al properties of delay-insensitive 

circuits is a question still to be answered. Unfortunately, the 

present theory does not cater for these forks; for a given circuit 

the internal forks are only identified by inspection, on afterthought 

so to speak. 

A more pleasant observation is the following one. With exception 

of figure 1.0 all figures in this note only serve as illustrations; 

for someone -- like me who traditionally is used to reason 

about circuits in terms of pictures this is a substantial step -

forward. The implementation of a trace structure now seems to consist 



of a number of steps: 

transformation of the trace structure into a trace structure 

specifying the circuit in terms of transitions a The greatest 

difficulty here seems to be the avoidance_ of overspecification. 

The distinction between active and passive seems to be of minor 

importance here. Actually, Asia van de Mortel-Froncak pointed out 

to me that when one derives a circuit for SEM
1 

(a,b) with b active, 

the same circuit, but for one inverter, is obtained as in section 4. 

- transformation of the expanded trace structure into a "program". 

This is difficult because of the transition from transitions to 

boolean values. Probably, even more strict ruies are. ,needed than 

the ones used in this note; it wouldn't surprise me at all when a 

Gries-OWicki like way of proving the correctness of the programs 

would turn out to be very effective. 

- transformation of the program into a collection of specifications, 

one for each output and one for state variable, of elements. It is 

not clear yet whether this step can be completely "Separated from 

the previous one. A problem here is that all elements always 

operate concurrently; hence, we need a way to "get rid of the 

semicolons II in the program. 
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