

Some reflections on the implementation of trace structures

Citation for published version (APA):
Hoogerwoord, R. R. (1986). Some reflections on the implementation of trace structures. (Computing science
notes; Vol. 8603). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/6b33a306-dedb-4b20-b794-7c88869c609b

Some reflections on the

implementation of

trace structures

by

Rob Hoogerwoord

86/03

October 1986

Some reflections on the implementation of trace structures

contents

O. Introduction

1. Four-phase hand-shaking revisited

2. Active or passive?

3. Intermezzo: a transition detector

4. Is this a derivation?

5. More on G-elements

6. In retrospect

7. Acknowledgements and references

1

3

6

8

11

17

20

22

RH84a:0

o. Introduction

In chapter 6 of his dissertation [oJ Anne Kaldewaij presents

an implementation of a trace structure called SEMi (a,b) in the

form of a digital circuit (See fig. 6.2 in [oJ). At first sight

I liked this circuit very much for its simplicity and its seeming

symmetry. As far as I am concerned,the simplicity is completely

beyond dispute but the symmetry is not there. This is a little

surprising because, by its specification, SEMi (a,b) is

symmetric in a and b in the sense that SEM
1

(a,b) = a,SEM
1

(b,a)

The asymmetry due to the fact that a is the event to occur first

I consider a minor one in the sense that it should be possible to

derive a symmetric circuit in which the value of the initial state

would account for the asymmetry. At closer scrutiny I became even

more dissatified with the circuit for various reasons.

Firstly, the implementation is such that a is "passive" and

b is "active". This is a deliberate choice of the designer, but

now it is not immediately clear whether and, if so, how a circuit

with, say, a and b both passive can be derived from this

circuit in a simple way, e.g. without the introduction of another

C-element. Moreover, it might very well be that the asymmetry thus

introduced is also responsible for the asymmetry mentioned above.

Therefore, I decided to try to design a new circuit, preferably

as simple as the original one, with a and b of the same 11 type "

and retaining the symmetry. The activities arising from this

decision are the immediate cause for writing this note.

Secondly, the introduction of the, so-called, internal forks

struck me as some sort of measure ad hoc to repair a delay-sensitive

circuit that is supposed to be delay-insensitive. Initially, I

thought that it would be possible to avoid the use of such forks

altogether, thus simplifying the reasoning about such circuits.

This, however, proved to be too optimistic an attitude. In the

designs presented in this note internal forks do occur too.

Thirdly, although the circuit is correct in the sense that

it indeed implements SEM
1

(a,b) it is a little bit overspecific

because the transitions on the various wires are more strictly

ordered than necessary, again in an asymmetric way. This is only

RH84a: 1

a minor inconvenience but it might be a s~tomthat the way of

derivation is not yet what it could be. For example: according to

the rules of the game the following is a valid sequence of events

but the circuit will never produce it:

ai+;aot;ai~;ao+ibo+;bi+;ait;ao+ • The circuit is such that the

second aot is always preceded by bi+ .

The latter two reasons for,dissatisfaction probably are due to

the circumstance that we do not know yet what are the rules and

proof obligations by means of which correct circuits are to be

derived. In this respect I have not very much to add but nevertheless

I was able to "derive" a circuit satisfying me better; moreover, its

derivation required the invention of a generalisation of the'

well-known C-element which I, therefore, will call G-element. As

the implementation of a G-element is equally simple as the imple

mentation of a C-element, it might very well be that G-elements

are more useful than C-elements. For such claims, however, it is

still too early.

This note is a report of my exper~ments. I have no other

pretensions whatsoever with it than to share with others my

experiences because they excited me very much. In fact, they

still do. The discussion will be rather informal and operational:

firstly, I am only an amateur circuit designer for whom his

experience is probably more of a nuisance than of great help, and,

secondly, formalisation probably would lead to a dissertation all

by itself. I shall try to be somewhat explicit about the rules I

use, especially when they differ from the ones adopted in [01,

but I will not always be able to -- explain why I do so.

Finally, I must confess that I have not read the paper by

Alain J. Martin [1]. Hence, it may very well happen that some of

the ideas developed here already occur in Alain's paper. Well,

let it be.

RH84a:2

1. Four-phase hand~shaking revisited

Each event x of the trace structure to-be implemented is

represented by two wires xi and xo, where xi is an input to

and xo is an output from the circuit implementing the trace

structure. The event x takes place when on the pair xi,xo the

four-phase hand-shaking protocol takes place. This protocol is a

sequence of 4 IIsmaller" events, called IItransitions", in such a way

that any two successive transitions occur on different wires. This

definition leaves room for exactly two such sequences, namely:

xi;xo;xi;xo -_arid xo;xi;xo;xi I in which we used the names of the

wires to denote transitions on those wires. Because xi is an

input the happening of the event x is, to some extent, initiated

by the environment when the first sequence is used. When the second

one is used the circuit initiates the event, for xo is an output.

For any event x always the same sequence is used; is it the first

one than the event is called "pas~rive", is it the second one than

the event is called "active"a All this is completely in accordance

with [0] but we would like to stress that the distinction of

active and passive events is an unavoidable consequence of the

decision to use four-phase hand-shaking a Notice that, for this

discussion, the directions ~~- up or down -- of the transitions

are irrelevant: at any moment in time on each wire exactly one

transition is possible, viz. from the current value to the other

value a

As the wires connecting the circuit and its environment may

exhibit positive delays the protocol actually comprises 8 events:

4 on the side of the circuit and 4 on the environment side. See

also figure 1.0. As these events are separated in time we have to

decide at which points of time we are allowed to say that x has

happened; similarly, of course, we have to decide when we are

allowed to say that x has not (yet) happened. Herewith, we adopt

a convention that is slightly more restrictive than the one used

in [0]. Surprisingly enough, the circuits proposed in [0]

comply with this convention too, so it probably is not that bad.

RH84a:3

eovi rooW\e",+ : xi: --l
• t
• • • I :leO: I

•
l'Yle.c~Gl" i 6"" xi : · ·

.xD: t t
• • •

0 2. .3 '1 s 6 T +ime.-

fig. 1.0: four-phase hand-shake for passive x

Firstly, an event may only happen if both the circuit and the

environment are IIprepared" to let it happen. The earliest possible

moment at which we could say that, for passive X, both the circuit

and the environment are prepared to let x happen is -- see

figure 1.0 -- the transition labelled 2, i.e. transmission of xef

by the circuit.

Secondly, the transition labelled 5 , i.e. reception of xii,

is of interest: at this moment, the circuit "knows" that the

environment has received the transition xa+ ; hence, from moment 5

onwards we must accept that x has happened.

What about the interval from 2 to 5 ? Well, we decide that we do

not care. From the point of view of the circuit we say: x has

happened somewhere in between xat and xi{ . Similarly, for active

events -y: y has happened somewhere in between -- transmission

of -- yot and -- reception of -- yit •. If the trace structure is

such that two events should be ordered than we play it safely and we

require the circuits to be such that the corresponding intervals of

time are disjoint and that:cthey are appropriately ordered. Notice

that this is sufficient because trace structures only define the

relative orders of events: each event is now represen~ed by an

interval of time.

Summarising the above, the following rules of implementation

may be formulated:

---_.-- -

RH84a:4

for passive x:

for active x:

"x precedes yll

"x precedes y"

"xi+ precedes yet"

"xit precedes yet"

Notice that the in our opinion awkward -- notions "time"

and "moment" have disappeared from these rules. This is a

comforting observation.

RH84a:5

2. Active or passive?

In the introduction we announced that we are heading for a

circuit for SEMi (a,b) that is symmetric in a and b • For this

purpose, it seems wise to let a and b be of the same "type",

i.e. both passive or both active. In [oJ the author shows -- see

Theorem 6.3.0 and Theorem 6.3.1 -- that transforming a passive ~ ..

event into an active one is much easier than the other way round;

the latter transformation requires an additional C-element whereas

the former one can be realised by the addition or removal! --

of a single inverter. Therefore, we decide that a and b shall

be passive.

(Aside: if each active event would be implemented as a passive

event transformed using Theorem 6.3.0, then the transformation

RH84a:6

of an active:-_event into a passive one---:also requires addition of

a"s'ingle-inverter only .. This looks like a considerable simplification

but'Warning6.3.1 [oJ might be an indication that this attitude is

-a~little·:too:,naive;)

The trace structure of SEMi (a,b) is -- the pre'fix closure of -

(aib)* . In the"'following "handshaking expansion" we have, in order

to avoid Qverspecification, separated the hand-shaking protocols

for a and b from each other and from the requirement that a

and b must alternate:

(ait;aot;ai~;ao~)* , (bit;bot;bi~;bo~)* ,

(ai+;bot)* , (aot;(bi+;aot)*)

The last "weavand", of course, can be rewritten as: (ao+ibi4-)* .

Notice that all essential information is in the last two weavands:

if it were only the two hand-shaking protocols that mattered then

some length of wire would suffice for the implementation, or, to

put it differently, the last two weavands express the interaction

of the events a and b .

The above trace structure may be taken as a specification of

the circuit in terms of transitions. It now is a rather obvious

step to trans scribe this trace structure into the following program:

*[[ai];aot;[,ai];ao~] , *[[bi];bot;[,bi];bo~] ,

*[[,ai];bot] , *[aot;[,bi]]

This program, however, is wrong: i~, initially, all wires are false

and, subsequently, the transition bit occurs, then all guards

preceding bot are true; hence, this programs allows b to happen

before a, which is in conflict with the specification. The

problem is that we should distinguish transitions from values. The

sequence ai~;bot prescribes that a down-going transition on ai

should precede bot, whereas [,ai];bot prescribes something like:

"only if ai has value false bot may occur", or, even weaker:

"only if ai has been observed to have had value false bot may

occur". (The latter one, indeed, is very ugly and is usually avoided

by some requirement of monotonicity). Apparently, ai~;bot ~and

[,ai];bot are not the same. On the other hand, when taken in

isolation, nothing is wrong with *[[ai];aot;[,ai];ao~] as a

program for (ait;aot;ai~;ao~)* ; from that program the circuit

consisting of a single wire is easily derived. So, a good question

seems to be: under what conditions may transitions on an input wire

be treated as if they were values? For the time being we shall not

try to answer this question.

RH84a:7

3. Intermezzo: a transition detector

According to the specification derived in the previous section

ait;aot;ai+;ao+ is a valid trace of the circuit. After this trace

all wires have the same values as they had initially, but the

circuit is in a state different from the initial state: after this,

. b may happen. As ~~~se two states cannot be distinguished by

RH84a:8

means of the values of the wires:, =_the introduction of additional

variables is indicated. We shall call such variables II s tate variables ll
•

The above observation is not at all surprising: the two states

mentioned correspond to the two states of SEM! (a,b). What is surprising,

however, is that two states and, hence, a single binary variable

. are insufficient for the implementation of SEMi (a,b). At least two

state variables are needed and initially it was unclear why this

would be so. Therefore, we carried out the following little exercise.

Suppose we wish to design a circuit with one input wire, a , and

one output wire, x . Initially, both wires are false. For given

constant k, k ~ 0, the output is to become true if on the input at

least k transitions have occurred, after which ~x~ remains true

forever. We think that such a circuit will have at least k + 1

states. He~e, we shall treat the special case k 2 only. We do
~ so by applying the old technique of constructing a state transition

table. We silently assume that the output is a function of the states;

hence, we may confine our attention to the changes of the state and

deal with the output later. The states are numbered using the naturals;

the state itself is represented by the abstract state variable s;

the initial state is 0 :

s -

o
1

2

o

o
2

2

1

1

1

2

Both the first and the second transition on a give rise to a change

of state, hence the introduction of 3 states. The output x can now

be expressed in the state as follows: x = (s=2) . If one tries to

reduce the number of states by identifying two of them one will

discover that this is impossible without violation of the

specification: either x becomes true too early or it remains false

forever~ Apparently, the circuit must count the transitions that have

occurred until the k-th transition. The moral of the story is that it

seems impossible to exploit the circumstance that any two successive

transitions on the same wire have opposite directions.

The abstract state variable s can be implemented by two binary

state variables x and y by means of the following state

assignment (such that ::x automatically "is" the output) :

s=o - 'x A 'y

s=l - 'x A Y

s=2 - x A Y

From this a circuit is easily constructed, but this is none of our

concerns here (See, however, section 6) •

What is the relevance of the above to our original problem?

Well, if we project the trace ait;aot;ai+iao+ on the inputs we

obtain ait;ai+ and we conclude that the state of the circuit after

this trace can only be IIreached" after the occurrence of 2 transitions

on ai ; hence, we need at least 3 states,for the implementation of

which at least 2 binary state variables are required a

(Historical aside: When I" started this enterprise I was not able to

derive a circuit for SEM
1

(a,b) in the way presented in the next

sections: I did not know what rules to use and chapter 6 in [oJ did

not seem to provide much help either. Therefore, I did it the old-

fashioned waYa The result was the following state transition table;

again, 0 is the initial state:

s

o
1

2

3

ai 0

bi 0

o
2

2

o

1

o

1

1

2

o

1

1

1

1

3

3

o
1

o
2

3

3

RH84a:9

Again, the outputs can be expressed in the state, as follows:

ao = (s=1) ,and: bo = (s=3) • Notice the symmetry! The state

can be represented by two state variables x and y . After having

chosen the state assignment for the initial state and adopting the

rule that on each transition at most one variable changes its value,

the whole state assignment is fixed (but for permutation of x and

y). The rest of the derivation is quite standard -- Karnaugh maps

and all that -- and, therefore, is omitted here. It was during this

activity that I discovered the G-elements to be discussed later.

Surprisingly enough the resulting circuit is completely identical

to the circuit we shall derive in the next section.

(Hint: use xA,y = (s=O) , xAy = (s=1) , and so on) .

(End of historical aside) .

RH84a:10

4. Is this a derivation?

Now it is about time to do some useful work, i.e. to derive a

circuit for SEM
1

(a,b). Before doing so, however, we shall state the

rules of our game.

Firstly, we need some general properties of the "elements" used.

An element has a single output and some -- zero or more -- inputs.

An element with output x is completely specified by means of two

boolean expressions, BO and B1 say; the specification is, as in

[oJ and [lJ, denoted as follows:

BO -+ xi I

Bl -+ x+

BO and B1 are expressions in the names of the element's inputs; we

shall call BO and Bl the "guards" of the element. In order to

avoid conflicts on what the value of the output"cshould be we require

each element to satisfy the following "rule of disjointness":

,BO v 'Bl , for all values of the inputs.

It is our impression that this rule has heuristic value too.

A particularly effective and simple way to enforce the rule of

disjointness is the following one: strengthen the one guard with a

value y an input or a state variable -- and strengthen the other

guard with 'y, thus giving (y should be different from xl :

BO A Y -+ xt ,

Bl A 'y -+ x+

The specification thus obtained satisfies the rule of disjointness

independently of the structure of BO and Bl •

In view of the above one probably will not be surprised when we

present an element with three inputs

the following specification:

s, r, g and output x with

RH84a:ll

5 /\ g -+ xt I

"lr A "lg + x+

The negation in front of r may seem somewhat arbitrary, but if we

allow inverters to be used freely this negation is harmless. We call

this element a IIG-element" and within pictures, we draw it as in

figure 4.0.

8 ; __ 6;--'
fig. 4.0: a G~element fig. 4.1: a C-element

The G-element is asymmetric in its inputs; therefore, in any drawing

these inputs must be labelled. The G-element is a generalisation of

the well-known C-element: a C-element is obtained by connecting the

sand r inputs (See figure 4.1). This connection, however, must

be considered as an internal fork. In section 5 we shall give an

implementation of the G-element.

Secondly, we require all circuits to be free from, so-called,

transition interference which is either· transmission or computation

interference (I do not very well know the difference, if any, between

the latter two notions, hence the term transition interference): no

transition may be sent along a wire before all previous transitions

on the same wire have been "processed" by the receiving circuitry.

RH84a:12

In the case of delay-insensitive circuits this requirement gives always

rise to some sort of feed-back, e.g. such as embodied in the four-phase

hand-shaking protocol. However, in order to avoid hazards we also

impose this condition onto the lIinternal operations" of the circuit.

As a special case this condition gives rise to the following rule of

monotonicity:

No true guard may be falsified before the transition guarded by

it has taken place.

Thirdly, we alaow programs with commas. The constituents of a

comma-ed program are called "processes". The parallellism thus

introduced may be useful; after all, all elements constituting the

circuit operate always in parallel. Now however we need a

"Gries-OWicki like" rule:

No true guard in one process may be falsified by any action

of the other processes.

This rule is inspired by the observation that the guards in the

RH84a: 13

programs may be viewed as assertions. Notice that this rule equals "the

rule of monotonicity as far as mutual internal operations are concerned.

The rule of monotonicity, however, also pertains to inputs and to

interference within a single process.

* * *

We recall from section 2 the specification of the circuit:

(ait;aot;ai~;ao~)* , (bit;bot;bi~;bo~)*

(ai~;bot)* , (aot;bi~)* .

We already know that the first two weavands -- thanks to the fact

that the environment respects the protocol -- can be coded without

problems as a program:

We now take this program for our starting point. The remaining two

~ea,!.aJ?ds_ may_ 9~ q~~s.?:dered as additional restrictions on the traces

allowed by this program -- this is in accordance with the

conjunction-weave rule of trace theory -- . Additional restrictions

may be implemented by strengthening the guards. Strengthening guards

never destroys the correctness of the program but it "may introduce

the danger of deadlock. From section 3 we remember that~at least one

state variable is needed actually two, but we introduce them one

at a time -- and thus we obtain our second approximation:

*[[aiA x],aot,['ai],ao+,x+] ,

*[[biA,x],bot,[,bi],bo+,xt]

Initially, x is true. The transitions of x have been placed~so as to

implement the additional restrictions; we now have: aii precedes

xi ahd x+ precedes bot ; hence, by transitivity: ai+ precedes

bot . Similarly, by symmetry, bit precedes aot but for the

IIfirst" aot::here the initial value of x comes in. If we derive

a specification for (an element realising) x from this program

then we obtain either

iai -+ x+ ,

,bi ~ xt , or, strengthening the guards a little,

Jai A ao -+ x+ ,

,bi A bo ~ xt

In both cases the rule of disjointness is not satisfied. Therefore,

we apply our standard trick to achieve disjointness by introducing

a second state variable y; we now get:

iai A Y -+ xi

,bi A ,y ~ xi

The guards in the program are strengthened accordingly. Where can we

safely insert a transition yt into the program? Well, yt may

falsify the guard of xt, this causes no conflict with the rule of

monotonicity if yt takes place in a state where x is true.

Furthermore, yt never falsifies the guard of x+ . The transition

y+ is dealt with symmetrically and so we arrive at our third

approximation:

*[[aiA x],aot,yt,[""laiA xA y],ao+,xJ.] ,

*[[biA,x],bot,y+,[,biA,xA,y],bo+,xt]

On afterthought, the place of the transitions of y is not that

surprising when we remember the structure of the transition counter

RH84a: 14

f.."

Jj~

~ •.. ;l. ,,:,
of section 3'. A spec~ffica:tion for

ai 1\ X -+ yt

bi A -'x + y~

y is:

Notice that the program thus obtained satisfies the Gries-Owicki

rule but that it does not satisfy the rule of monotonicity:

aitjaot;ytjai{;ao+;ait is a valid trace but ait now falsifies

the true guard [--'aiAxAy]. As a consequence, the circuit may "miss

the opportunityll to perform xi- . This situation can be avoided by

requiring x+ to occur before the next ait: then, ait occurs

in a state where the guard [-'aiAxAy] already is false. To achieve

this we exploit the freedom to replace ao+,x+ by x+;[-'x];ao+ .

RH84a:15

The guard [IX] is not an invariant of the other process howeve~'~~~'~·~:~;/~;::~'.l~'
therefore we weaken it to [--,xV-'y], which is an invariant of the:-/:~~~~ ;'.~';.'. '~~'i'

. . ", .. ~
other process. Thus, we arrive at our fourth and final approximation:

*[[aiA x];yt;[xA y];aot;[-'aiA xA y];x+;[-'xy--,y];ao+] ,

*[[biA-'x]; y+; [-'xA-'y]; bot; [-'biA-'xA-'y]; xt; [XV y]; bo+]

The specifications of x and y have been given above; they indicate

the use of G-elements. Initially, x is true and y is false. The

specifications of ao and bo now follow immediately from the

program; they satisfy the rule of disjointness:

X /\ Y -+ aot , IX A -'y -+ bot ,

IX v -'y -+ ao+ , and: x v y + bo+

These specifications indicate an And-gate and a Nor-gate respectively.

The circuit thus obtained is drawn in figure 4.2. The "fat dotsll in

this drawing denote internal forks. Furthermore, notice that a can

be made active by addition of an inverter whereas b can be made

active by removal of an inverter (i.c. two inverters).

"01· .,'~.

. ' .. \'

. ...;.

RH84a: 16

y
bo V

r'
J. 'LA

Q.I

r 9 s G

G s r

0.0
J 'I

1\
,..... bi'

)C.

fig. 4.2: SEMi (a,b) , a and b passive

5. More onG-elements

We consider elements with specification:

BO -+ xt ,

Bl .,. x+

Remember that we require all elements to satisfy the rule of

disjointness. Any such element~can be implemented as follows.

Informally, x is true either because x becomes true or

because x remains~true. x becomes true when BO is true and

x remains true when lB1 A x holds. So, x is a fix-point of

the following function f

f.y _ BO V (,Bl A y)

If we take into account the inputs of the element we observe that

BO and B1 are functions of the inputs; hence, f is a function

having one more argument than the number of inputs. This function

can be implemented in a standard way as a "combinatorial circuit".

It is, however, essential that this circuit be free from the danger

of hazards. The element can now be formed by connecting the y-input

of the circuit with its output. The remaining inputs then are the

inputs of ~he element. See figure 5.0, where the inputs are

collectively labelled u .

• ." • -.1IIh' ?

fig. 5.0: general element

The feed-back connection thus introduced must not introduce hazards.

Therefore, the feed-back path must be at least as fast as the output

RH84a:17

to the environment; in this respect the node in figure 5.0 may be

interpreted as a "one-sided forkll.

An interesting special case arises if BO v B1 is true for all

values of the inputs:

BO v (,Bl 1\ y)

= { calculus }

BO v nBO 1\ ,Bl 1\ y)'

= { de Morgan }

BO v n (BOVB1) 1\ y)

{ BOvBl ; more calculus }

BO

RH84a: 18

Hence, the function f does not depend on y and the feed-back

connection is superfluous. The resulting circuit is purely combinatorial;

so, we might call such elements "combinatorial elements".

The specification of the G-element is:

By substitution into the above definition of f we obtain:

f.y

{ definition of f }

(s 1\ g) v (,(,r 1\ ,g) 1\ y)

{ de Morgan and distribution }

(s 1\ g) v (r 1\ y) v (g 1\ y)

{ change of order }

(s 1\ g) v (g 1\ yl v (y 1\ r)

{ calculus }

(r v g) 1\ (g v y) 1\ (y v sl .

The latter two forms are of interest: they give rise to-two

possible realisations of the G-element using And-gates and Or-gates

r

9

5

RH84a: 19

only. See figure 5.1. These two realisations are dual realisations

with respect to negation; apparently, the G-element is invariant under

negation of all wires provided the 5 and r inputs are interchanged.

See also figure 5.2.

Lemma: Any combinatorial circuit consisting of And-gates and Or-gates

only, is free from the danger of hazards.

proof: (omitted; hint: by structural induction) .

(end of lemma)

s - " H V

'-
V

)(
/\

'- X
V /\

-C L
/\ r V

fig. 5.1: realisations of G-elements

Identification of the sand r inputs yields the well-known

C-element; the resulting realisation is probably well-known too.

The function f above then is what is sometimes called the

"majority function". Finally, notice that any non-combinatorial

element exhibits some form of storage: it has two states. Hence, in

any practical realisation provisions must be made for the initialisation

of the element's state.

fig. 5.2: duality property of G-elements.

6. In retrospect

One of the things I disliked very much in the current approach

to circuit design ·was the notion of internal forks. As we have seen

the use of internal forks seems unavoidable. every now and then. Let

us, in order to illustrate this unavoidability, pay some more

attention to the transition detector of section 3. See figure 6.0

for the circuit obtained by completing the design given in section 3.

I use this example oecause of its relative simplicity. The names

x and y in figure 6.0 correspond to the state variables introduced

in section 3.

v ~ ~
A

V x

F

fig. 6.0: circuit for at;a+;xt, (at;a+)*

The node labelled F in figure 6.0 must be considered a (one-sided)

fork, otherwise the circuit is incorrect. Since I am tempted to

consider this circuit as the prototype of transition-sensitive

circuits and since I see no way to avoid the fork even in this

simple case, I am tempted to conclude that in the current approach

forks are essential elements. Whether this is a defect of the

RH84a:20

theory or a consequence of the physic.al properties of delay-insensitive

circuits is a question still to be answered. Unfortunately, the

present theory does not cater for these forks; for a given circuit

the internal forks are only identified by inspection, on afterthought

so to speak.

A more pleasant observation is the following one. With exception

of figure 1.0 all figures in this note only serve as illustrations;

for someone -- like me who traditionally is used to reason

about circuits in terms of pictures this is a substantial step -

forward. The implementation of a trace structure now seems to consist

of a number of steps:

transformation of the trace structure into a trace structure

specifying the circuit in terms of transitions a The greatest

difficulty here seems to be the avoidance_ of overspecification.

The distinction between active and passive seems to be of minor

importance here. Actually, Asia van de Mortel-Froncak pointed out

to me that when one derives a circuit for SEM
1

(a,b) with b active,

the same circuit, but for one inverter, is obtained as in section 4.

- transformation of the expanded trace structure into a "program".

This is difficult because of the transition from transitions to

boolean values. Probably, even more strict ruies are. ,needed than

the ones used in this note; it wouldn't surprise me at all when a

Gries-OWicki like way of proving the correctness of the programs

would turn out to be very effective.

- transformation of the program into a collection of specifications,

one for each output and one for state variable, of elements. It is

not clear yet whether this step can be completely "Separated from

the previous one. A problem here is that all elements always

operate concurrently; hence, we need a way to "get rid of the

semicolons II in the program.

RH84a:21

7. Acknowledgements "and;references

The activities leading to this report have been triggered by my

desire to actually construct a SEMI (a,b). according to Anne Kaldewaij IS

circuit and my simultaneous desire to understand what I was

constructing. The asymmetry mentioned in the introduction manifested

itself in the prototype in such an annoying way that I set out to look

for sy.mmetric solutions. Therefore, thanks are due to Anne Kaldewaij

for writing his thesis the way he did.

Furthermore, thanks are-due the other members of the Kleine Club

for providing an opportunity to experiment with various immature

RH84a:22

ideas, to Asia van de Mortel-Froncak for lending me her patient ear and

for her helpful suggestions, and,finally, to Martin Rem for his

encouragement.

references!

[0] Anne Kaldewaij: A formalism for concurrent processes.

dissertation, Eindhoven University of Technology, 1986.

[1] Alain J. Martin: The design of a self-timed circuit for distributed

mutual exclusion.

Proceedings 1985 Chapel Hill Conference on VLSI, ed. H. Fuchs.

Computer Science Press, Rockville, 1985.

(1986.4.21, revisited 1986.9.26)

COMPUTING SCIENCE NOTES

In this series appeared

Nr.

85/01

85/02

85/03

85/04

86/01

86/02

86/03

Author(s)

R.H. Mak

W.)1. C. J. van Overveld

w.J.n. Lemmens

T. Verhoeff

H.M.J.L. Schols

R. Koymans

G.A. Bussing

K.M. van Hee

M. Voorhoeve

Rob Hoogerwoord

Title

The Formal Specification and

Derivation of CMOS-circuits

On arithmetic operations with

M-out-of-N~codes

Use of a Computer for Evaluation

of Flow Films

Delay insensitive Directed Trace

Structures Satisfy the Foam

Rubber Wrapper Postulate

Specifying Message Passing and

Real-time Systems

ELISA, A Language for Formal

Specifications of Information

Systems

Some reflections on the

implementation of trace structures

	Content
	0. Introduction
	1. Four-phase hand-shaking revisited
	2. Active or passive?
	3. Intermezzo: a transition detector
	4. Is this derivation?
	5. More on G-elements
	6. In retrospect
	7. Acknowledgements and references

