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The construction of four infinite hierarchies of ¢-independent and #-dependent conserved
functionals for the Federbush model is given. A formal proof of the existence of these infinite

hierarchies is given in Appendix B.

1. INTRODUCTION

In a recent paper’ one of the authors constructed four
infinite hierarchies of Lie-Backlund transformations of the
Federbush model.>* Moreover he computed four creating
and annihilating local (x,r)-dependent Lie-Bécklund trans-
formations that lead to these hierarchies. In this paper we
show that to these four creating Lie-Backlund transforma-
tions, we can associate four t-dependent conserved function-
als. By consequence the attempt to construct recursion®’
operators from these creating Lie-Bicklund transforma-
tions failed since they are Hamiltonian vector fields. By re-
cursive action of the Poisson bracket with these functionals
we construct infinite hierarchies of conserved functionals
associated to the (x,?)-independent Lie-Béicklund transfor-
mations. This will be done in Sec. II. In Sec. III we construct
four new (x,#)-dependent Lie-Backlund transformations
from which we shall prove the existence of four infinite hier-
archies of ¢-dependent conserved functionals, and conse-
quently hierarchies of (x,z)-dependent Lie-Béacklund trans-
formations of the Federbush model. A formal proof is given
in Appendix B, while a survey of the already known vector
fields is given in Appendix A.

We want to stress the fact that all computations have
been worked out on a DEC-system 20 computer using RE-
DUCE® and a software package”® to do these calculations.

Lie-Bicklund transformations are vector fields V' de-
fined on the infinite jet bundle® of M,N, J © (M,N), where M
is the space of independent variables and N the space of the
dependent variables. A Lie-Bicklund transformation of a
differential equation is a vector field V defined onJ < (M,N)
satisfying the condition

Ly (D=IYCD~I, (1.1
where I denotes a differential ideal associated to the differen-
tial equation at hand, while D I denotes its infinite prolon-
gationtoJ © (M,N);. , is the Lie derivative with respect to
the vector field ¥V (Ref. 9). Since the vector fields V are

supposed to depend only on a finite number of variables,
condition (1.1) reduces to

ZL,ICD’I for some r. (1.2)

Using this method we computed Lie-Béicklund transforma-
tion of the Federbush model.’
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It can be shown that the Lie-Béicklund transformations
in this setting are just symmetries in the works of Magri,*
Ten Eikelder,** and Fuchssteiner and Fokas,'® where (gen-
erators of) symmetries of partial differential equations of
evolutionary type are described as transformations on spe-
cial types of infinite dimensional spaces. Suppose that

du _ QO 'dH
dt
is an infinite dimensional Hamiltonian system, where ) is
the symplectic operator, H the Hamiltonian, H is the Fré-
chet derivative of H. Then to each Hamiltonian symmetry
(also called canonical symmetry) Y, there corresponds by
definition a Hamiltonian F(Y) such that

Y=0Q"'dF(Y), (1.4)
and the Poisson bracket of F and H vanishes.** Suppose that
Y,, Y, are two Hamiltonian symmetries, then [Y,,Y,]} isa
Hamiltonian symmetry and

F([Y2:Y1]) = {F(Y1):F(Y2)},
where {-,-} is the Poisson bracket defined by

{F(Y)), F(Y,)} = (dF(Y)),Y,), (1.6)

where (-,-) denotes the contraction of a one-form and a vec-
tor field. These notions shall be used throughout Sec. II and
II1.

(1.3)

(1.5)

Il. CONSERVED FUNCTIONALS FOR THE FEDERBUSH
MODEL

We shall discuss conserved functionals for the Feder-
bush model. This model is described by

i(8, +d,) — m(s) /8
( —m(s) (g, —8,,)) (t/'s,z)
W_o2)® ¥,
W_al® ¢

where ¥, (x,t) are two-component complex-valued func-
tions.? Suppressing the factor 47 (4’ = 47A) and introduc-
ing the eight real variables u,,v,,1,,0,,15,U5,t4,U4 by

=4s1'r/1( ) (s= +1), (2.1)

Yy =u+, Y_, =us+iv;, m(+1)=m,
. . (2.2)

¢l,2 =u, + w,, ¢_1,2 = U4+ Iy, m(— 1)=m2,
© 1986 American Institute of Physics 2140



Eq. (2.1) is rewritten as a system of eight nonlinear partial
differential equations for the functions u,,...,u,; i.e.,

Uy, +uy, —muy, =ARw,,

— Uy — Vi — My =ARu,,

Uy — Uyy — MU= — ARy,

— Uy + Uy —muy = — ARzu,, (2.3)
Uy, + Uy, — MUy = — ARY;, '
— U3 = U3 — My = — AR u;,

Uy — Uy — MU = AR v,
— Uy + Uy — Myuy = AR u,,
where, in (2.3),
R =u} +v}, Ry=uj +13,
Ry=u2 +vi, R,=u}+v}.
Equation (2.3) can be written as a Hamiltonian system*’

_d.’i = ﬂ—l dH,
dt

whereas in (2.4), 4 = (U ,Uyy...o84Vs),

(24)

J

J N 1)
; ,J—(_l o) (25

and

(-]
H= f oo, — gy, — 5,0, + U305,
-— 00

+ Uy U3 — Usly, — Uy Uy + Ugls, }
—m, (U, + v0,) — my (U, + V30,)

— (A/2)R R+ (A /2)R,R, (2.5b)
(by §= . we mean integration of the integrand with respect
tox). In (2.4), dH is the Fréchet derivative of H defined by

LHx+e)| = (dH,y).
de €e=0

In a previous paper' we constructed four first-order Lie-

Bicklund transformations ¥+, Y+ ,, Y7, ¥ —, (Appen-

dix A) that are Hamiltonian*® vector fields; the associated

Hamiltonian densities are given by

(2.6)

J

F(Y )= — (up0y — tpvy,) + (A /4)Ry R,
—dm, (u,u; + vy0,),
F(y 1) = —§(u vy —uwy, ) + (A /4)Ry,R,
_ + imy (uyuy + v0,), (2.72)
F(Y{)= —3(uy 04 — tgvs,) — (A /4)R 1R,
— im, (uzuy + vsv,),
FY2) = = J(u30, — 0, ) — (A /4)R ;R
+ dm, (uzuy + v3v,),
while the Hamiltonian densities associated to the gauge

transformations ¥ ;*, Y;~ (see Ref. 1 and Appendix A) are
given by

F(Y§&)=4(R,+R,), F(Yy)=4R;5+R,).
(2.7b)

In (2.7a), Ry, R,, are defined by
R12=R| +R2, R34=R3+R4- (2.8)

(Note that we use F forA_ the density of the conserved func-
tional F, so F= = _ F.) The associated Lie-Backlund
transformations can be derived from (2.7a) by the formula

Y=Q7'dF(Y), 2.9)

and for reasons of completeness they are surveyed in Appen-
dix A at the end of this paper. The Hamiltonian densities
associated with the second-order Lie-Backlund transforma-
tions Y,;*, Y *,, ¥, Y=, (see Ref. 1 and Appendix A)
are computed, yielding

F(Y;) = — 3, +02) + (A/2)Ryqg(thy02 — 0y,
—im (uy,0; —u0,,) — W RUR,
+ im ARy (uyuy + v,0;) — §miR
F(Y *,) = — 4, +03) + (A/2)Ryu(y,0, — upy,)
+3my(uy, 0 — upvy, ) —LRYR,
_ — im AR (uyu, + v,0;) — §miR,, (2.10)
F(Y;)= —4(ud, +v}) — (A/2)R (w404 — ugp,,)
— 4my (g 03 — usvy) — AR L,R,
— 3mAR (U3, + v30,) — M5 R,
F(YZ;) = — §(ul, +5) — (A/2)Ryp (83,05 — Uy, )
+ 4yt 0y — ) — 2R LR,
+ ImuAR 5 (usy — v30) — §m Ry

The Hamiltonian densities associated to the vector fields
Y;t, Y ¥, (seeRef. 1) are computed to be

F(Y) = — (UpaVsy — V) — AR3q(thytly + 0,,0,) + (A /2)Rsy (4 + 03,) — my(uy 1y, + 01,05,

2p2 2
— AR 3, (Uy 05 — U305, ) + 3M AR (4,0, — Ug0y, + Uy, Uy — UV, ) — jmi (g, 0 — Uy0,,)

—Am? Uy, 0, — uy0,, ) — M3 (siyuy + 010;,) + MR LR, — Im A PR 3, (uyuy + v10,) + PniAR (R, + 2R,)

and
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F(Yfa) = Uy Uiy — UpeViee + AR (Ut +01,00) + (4 /Z)Raa(“%x + U%x) —my (U Uy + Uy Vs, )

+ AR 5 (U, 0y — uwy,) + I AR (01,0, — U0y, + Uy Uy — Uy, ) + ’lm% (1,0 — Uy, )

+ 3m% (uy, 0, — g0y, ) — 3} (uyu, +00,) — AR R, — Im A PR 5, (uyu, + v10,) — JmiAR,, (2R, + R,).

Similar results are obtained for the Hamiltonians associated
to the Lie—Bécklund transformations ¥ ;~, Y ~ ;. The vector
fields Z ;" , Z ;- (see Ref. 1 and Appendix A) are Hamilton-
ian vector fields also, and the associated Hamiltonian densi-
ties are

F(Z&)=x(F(Y})-=F(Y*)))

+t(F(Y{) +F(Y 1)),
F(Zs)=x(F(Y])~F(Y—,))

+t(F(Y - +F(Y ). (2.12)

Now we arrive at the remarkable fact that the creating and
annihilating Lie-Bécklund transformations Z*, Z *,,
Z;,Z_,, (see Ref. 1 and Appendix A) turn out to be
Hamiltonian vector fields. The corresponding Hamiltonian
densities are

FZ ) =x{F(Y;) —ymF(Ys)}
+{F(Y;) + 1miF(Y )},
FZ*)=x{-F¥*)+mF¥:)}
+H{F(Y +,) + 1m}F(Y )},
FZ)y=x{F(Y;)—mF(ys)}
+{F(Y;)+1miF(Y )},
FZ-)=x{-FY2,) +mF¥)}

+{F(Y2,) +imiF(Y5)l  (213)

The Hamiltonians F(Z ;" ),..., F(Z ~,) act as creating and
annihilating operators on the r-independent Hamiltonians
F(Y *,),.,F(Y;"),F(Y Z3),.., F(Y; ) by the action of
the Poisson bracket (1.6), for example,

{F(Z ), F(YsH}=0,

{F(Z ), F(Y T )} =imI{§R, + 4R} = jm] F(Y "),
(2.14)

{FZ ), F(Y)}= —F(Y;),

and similar results for F(Z *,), F(Z ;" ), F(Z ). So the
Hamiltonians F(Z *),....F(Z Z,) generate four hierar-
chies of (probably commuting r-independent) Hamilto-
nians

F(Yt) (@(=01,.). (2.15)
Note that due to results described in Sec. I1I, we are more
likely to consider

(¥ T30 F(Y 5 ), s F(Y 5,0

and

s F(Y Z3)30 s F(Y 57 )y u F(Y 57 ).
as two hierarchies instead of four.

(2.16a)

(2.16b)
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—
lil. INFINITE HIERARCHIES OF (x,/)-DEPENDENT LIE~-
BACKLUND TRANSFORMATIONS AND THEIR
ASSOCIATED HAMILTONIANS

In this section we shall prove by construction the exis-
tence of infinite hierarchies of (x,#)-dependent Lie-Bick-
lund transformations

ANV A A AN VA Al R
Zr =282 )0

Zo+’Zi1’Z tz,Z tg = [Zil,Z 1'2],...,
(3.1)

ik = [Ztl,z—',:-_’,l,],....

Since the Lie algebra of Lie-Backlund transformations is a
direct sum of two Lie algebras,' we shall restrict our consid-
erations from now on to the “ + * part. First of all we con-
struct the vector fields Z ;*, Z *, (cf. Table I). Second, we
prove that [Z *,Z ;" ] is independent of Z", Z ¥, Z
and by an induction argument we obtain an infinite hierar-
chy. The same arguments apply to the other hierarchies.
Moreover we shall prove that the vector fields Z |, are Ha-
miltonian vector fields, and the associated Hamiltonian den-
sities are given.

Motivated by theresult of Z ", Z [V, Z *, (Ref. 1) we
search for a local (x,t)-dependent Lie-Bicklund transfor-
mation, linear in x,¢ and of degree 4. The structure of such a
Lie-Bécklund transformation has to be

3 3
X (i=23 aim?-li'Yi+) + t(i=z_33‘.m?‘|"|}".+) +C,
(3.2)

where, in (3.2), @, 8; (i= —3,...,3) are constants and Cis
(x,t) independent of degree 4. Eventually, after a huge com-
putation, we obtained two Lie-Backlund transformations

Z} =x(Y; +imiY ) +0(Y; —imiY )+ C;,
Zi2=X("_Yi3 +{meJ_'1)

+HY I +miY ) +C Ty, (3.3)
where, in (3.3),
TABLE I. The Lie-algebraic picture of the Federbush model.

' : Y; ) &'y : | deg =6
zy Yoy y; ! . Zi deg =4
zr ' yy y; ! §OZy deg =2
zy ¢ - “leyim = ayy =1 - s Z5 deg =0
z:, Iy, y-, ! P25 deg =2
zt, 1 v+, Y-, ! - Z-, deg =4

! 1oy, y-, v ! deg =6

| L
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C,h=1m,( — 2v,, — ARsau, + muy),
C; " = jm (= 2uy, — ARy, + my)),
Cie =Y — dup, + 4R340, + 24 (Ray) 0, — 2mp,,
+ AR % uy, — mAR U, + miu,), (3.4a)
C;rr =Y —4v,,, — 4R u,, — 2A(Ryy) 4y + 2myu,,

+ A2R 2,0, — m AR, + miv,),
Cir*u=(A/MoL;}, C;H*=—(A/2)ul;},
Clru=A72)vL;}, C;jt*=—(A/Q)ul;,
and
Clryv=3(—4u,, + 4R, + 2A(R34) 0, + 2mp,y,

+ AR %, uy + mARu, + miu,),
Cry=3—4,, —MRyu,, —24(Ry,), u, —2mu,,

+ AR 30, + mAR 0, + mivy), (3.4b)

C ¥+ ={m (20, + ARy + myuy),
C+2z=im ( 2ulx +/1R34v1+m102),

A

Cro=A/2)nlt, Ciy= _7;43[, *,,

C+"‘—(/1/2)U4L_2, Ct'zv‘= -—(/1/2)11414 tz,
while
L 2+ = 2u2xu2 + 21)sz2 _ ml(u102 - uzvl), (3‘40)
L tz = 2u1,,u, + 201,‘01 —_— ml(ulvz -_ uzvl).

Remarkably, the vector fields Z ;+, Z *, are again Hamil-
tonian vector fields, and the associated Hamiltonian densi-
ties are computed to be
F(Z;y=x(F(Y;)+mF(Y )+ t(F(Y5)

- imIF( Yl )) - (/l /2)R34(u2u2x + vzvzx)

+ (A /4)m Ry (4,0, — u,) — im, (uu,,
+ v0y,) (3.5a)
and 3 . .
F(Z*))=x(—F(Y*)+mF(Y*))+tF(YZ;)

+ %mfF(Y TN = (A/72)R;(uyuy, +v0y,)
+ (A /4)m Ry (uw, — uv)) —im,(u,u,,

+ v, ).

(3.5b)
J

Y0+=—Ula +ula

Y= imlvz

—v,0,, +u,9d,,
,—imu, 3, + Y2, +mp, —

Obviously, similar results will hold for vector fields Z ,-,
Z _, and their associated Hamiltonian densities. A formal
proof of the existence of infinite hierarchies of ~dependent
Hamiltonians and corresponding Lie-Béicklund transforma-
tions is given in Appendix B by application of Lemma 1.
Finally we computed the action of the vector fields Z ,*
on the hierarchy (Y ;* ), by a calculation of the Poisson
bracket of the associated Hamiltonians, which resulted in

{F(Zz+)9F(Yt2)}_ ;mlF(Yo ),
{FZ2*,),F(Y)}= —imiF(Ys),
{F(Z}),F(Yt)}= —ymiF(Y[), (3.6)

{F(Z*,),F(Y)}= —imlF(Y *)),
{F(Z}),F(Yy)}=0, {F(Z*,),F(Ys)}=0,

while the action on the F(Z ;' ), hierarchy is
{FZ}),F(Z*)}=—mlFZ}),
{F(Z*+,),F(Z{)}=—mFZ*)),
{KZ;),FZt)}=-—miF(Zs),

a result which is twice the action of Z 7 |, being similar to the
result obtained by Ten Eikelder'' for the massive Thirring
model.

3.7

IV. CONCLUSION

We obtained four infinite hierarchies of (x,¢)-indepen-
dent Lie-Bécklund transformations and four infinite hierar-
chies of (x,)-dependent Lie-Bicklund transformations,
which are all Hamiltonian vector fields. The corresponding
densities are given.
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APPENDIX A: LIE-BACKLUND TRANSFORMATIONS OF
THE FEDERBUSH MODEL

We summarize the Lie-Bicklund transformations ob-
tained in Ref. 1, only giving the “ 4 ” part, Y-, Y5, Y
ZS,Z7% e,

+2

AV (R3,))8,, + H2v,, —myu, + Auy(R34))0,,

- (/1 /2)U3R2 auJ + (A /2)u3R2 aus e (/l /2)U4R2 a“‘ + (A /2)u4R2 av ’

Y¥, =)2u, —mp,—

— (A /72)v3R, 8,,3 + (4 /2)usR, auJ

AV (R0, + H20y, + myuy + Au, (R340,
- (i /2)U4R1

—mw, 8, +imu,d,

au‘ + (4 /2)usR, a.,,:

Y= 1m.{ +2u,, — ARy +mp,}, Y= %m,{ + 205, + AuR3y — myuyl,

i = o, — 2R
Y5 = + duy,, — 2A0,(R,,),

Y= (A/2)K;, Y=
where

— (A 72)u;K

2143 J. Math. Phys., Vol. 27, No. 8, August 1986

- 4/1“sz34 + 2m|u|x

— Am Ry, + A 0,R%, + miv,},
— 440, Ry + 2mvy, + Amyu Ry, — A %u,R}, + miu,},
Y= (A/2)vK,,

Y=

— (A /7Q)ukK;,

P. H. M. Kersten and H. M. M. Ten Eikelder 2143



K2+ - 2u1xvl + 2ulle + ml(uluz + v1v2) +AR1R34,
Y tye=1{ - 4v,,, — 24u,(Rsy), — 44Uy, Ray — 2m iy, + AmwyRsq + A 20, RY, + miv ),
Yryp= :}{ + 4u,,, — 2A0,(R;y), — 440, Ry — 2m 1y, — AmyuRy — A %u, Ry, — m%ul}!

Y g =im{ —2u, + ARy + mp,}, Y= }ml{ — 0, — AuRyy — myu,},

Yie=(A/2)0,K*,, Yip=—(A/2)u,K?,,

where

K*, = —2u, v +2up, +m(uu,+vw,) +AR Ry,

Yip=UAR2wKE,, Yip=—A/2)ukK?,,

while the (x,7)-dependent Lie-Bécklund transformations are given by
Zg =x(Y" —YI)+eYF +Y ) +i(—-ud, —v,9, +u,d, +v,4,),
ZF=x(+Y; —miYH) +t(+ Y5 +imiY ) +3(—2v,, + mu, — AuyR54)0,,

+ 40+ 2u,, +mw, — Av,R3,)4, ,

ZH=x(=Y , —miYF ) +t(+ Y, +miY ) +4(+ 2y, + mu, + AuyR,,)0,,

+4( = 2uy, + m, — A0,R3,)9, ,
Yi=[Z} Y], Yi,=[Z%,,Y%,].

Similar results have been obtained for the “ — ” part.’

APPENDIX B: THE INFINITY OF THE HIERARCHIES

We shall prove a lemma from which the existence of infi-
nite hierarchies of Hamiltonians

F(YS), F(Y "), F(Y;),...,

F(Yg ), F(YX,),F(Y*,),.,

(B1)
F(Z&), F(Z), F(Z;),..,

F(Z),F(Z*),F(Z1*,),.,

and their associated Lie-Backlund transformations
Y Y Y, Z&Z1LZS ., (B2)

immediately follow. In this lemma the lower indices of u, v
refer to partial derivatives with respect to x (i.e., ¥, = u,,
Uy = Uyyye.). _ _

Lemma: Let H, (u,0), K, (u), H,(u0), and K, (u,0)
be defined by

H, (u,v) =r (u, +3),

oo
Kn(uyv)=j (un+lvn_vn+lun)’
— 0

w (B3)
H, (u) =f x(2 +v2),
I?(u,l)) =J x(un+lvn_vn+lun)’
and define the Poisson bracket of Fand L { F,L} by
° 8F 8L 6F 5L)
FL}= or oL 9T o), B4
{FL} f~m(+5v Su Su bv (B4
then the following results hold
{H,,H,} = + 4nK,, (Bsa)
{H,.K,}= +2(2n+ DH, |, (B5b)
{#,H}= +4(n—-1K,, (B5c)

2144 J. Math. Phys., Vol. 27, No. 8, August 1986

—
{H K,}=+202n-1)H, ;. (B5d)

Proof: We shall prove relations (B5a) and (B5c) (the
other proofs run along the same lines):

oH, 8H,
=(- 1)n2u2n’ =(- 1)"2v2n9 (B6a)
bu Sv
8H 8H
= (= D)20xu,) ", —2=(—1)™2(xv, ).
bu Sv

(B6b)
Substitution of (B6a) and (Béb) into (B4) yields
{I_I 1 1H n }

= _f 4( — 1)"uy, (x0)" — 4( — 1), (xu,)"
=4( — l)”‘J (xv)Pu, oy — (xu) ™o,

= +4nJ. Vplly oy — U0, = +4nKn’

which proves relation (B5a). Substitution of (B6b) into
(2.4) yields

{H,H,}= -r 4( — 1)"(xv,) " (xu, )™
—4( — 1" (xuy)P(xw, )
= 4= =1 G o)
— (xu,)"™ (xw,)Y )
= 4+ 4(n— I)J.jw x(u, U, — U0, )

= +4(n—-1K,,

which proves relation (B5c). This existence of infinite hierar-
chies H(Y %,) now follows from the explicit structure of
H(Z %£,)[Eq.(2.12)]and H(Y £,) [Eq. (2.6)] by consid-

P. H. M. Kersten and H. M. M. Ten Eikelder 2144



ering the (A,m;,m,)-independent parts and application of
part a and b of this Lemma. The existence of the infinite hier-
archies H(Z % ,) follows from a similar argument using
H, (uv), K, (u,v).
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