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SlDOLS 

The symbol definitions are tabulated below. Symbols that are used only in 

passing are not included. The meaning of subscripts is given for only a few 

cases. 

Roman capitals: 

A
0 

unloaded relative distance between inner and outer bearing raceway 

Aj loaded relative distance between inner and outer bearing raceway 

B face width 

C compliance function 

F tooth force 

F2 mean square force 

H{f) frequency response function 

I moment of inertia 

J polar moment of inertia 

[K]bm mean bearing stiffness matrix (6x6) 

K effective bearing stiffness coefficient 
n 

LF{f) force level 

L area level 
s 

Lv(f) surface-averaged mean square velocity level of the gearbox housing 

Lw{f) sound power level 

Lw{f) angular velocity level at the gears 

Lv(f) radiation index 

M torque; mass matrix 

N number of contact points; plate stiffness 

P point load force 

P sound power 

Qj normal bearing element load 

s surface area; stiffness matrix 

S tooth stiffness per unit width 

SP mean plate surface area 

S (t) time variable tooth stiffness 
t 

T torque; time period 

T
60 

60 dB decay time 

TFF Transfer function with force input 

TFM Transfer function with moment input 

TF~ Transfer function with angular velocity input 
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u perimeter 

W force distribution along the line of contact 

Lower-case Roman letters: 

a acceleration; radius of a baffled piston 

c speed of sound in air " 344 m/s 

c tooth curvature factor 
0 

d gear shaft diameter; pitch diameter 

f tooth deflection function; frequency 

fband centre frequency of a (1/3-)octave band 

f critical frequency 
c 

f transitional frequency of a baffled piston 
p 

transitional frequency of a sphere 

ftooth tooth frequency 

{f\m mean bearing load vector 

h plate thickness 

h addendum coefficient 
a 

hd dedendum coefficient 

i integer; transmission gear ratio 

j integer; ~ 

k integer; addendum reduction factor 

kbij bearing stiffness component of [K]bm 

l length of profile correction (measured along the line of contact) 

m module; mass 

n bearing exponent; rotational speed 

p2
(f) mean square sound pressure 

Pt transverse pitch 

{q}bm mean bearing displacement vector 

rL bearing radial clearance 

v velocity 

v2
(f) surface-averaged mean square velocity 

vR velocity at the surface of a pulsating sphere 

x,y coordinates in Cartesian coordinate system 

x velocity in Cartesian coordinate system 

x acceleration in Cartesian coordinate system 

x
1
,x

2 
addendum modification factor of pinion respectively wheel 

z number of teeth; number of rolling bearing elements 

z
1
,z

2 
number of teeth of pinion respectively wheel 

v 



Lower-case Greek letters: 

« material factor; pressure angle 

a
0
,«j unloaded and loaded bearing contact angle 

«t transverse pressure angle 

~ helix angle; angular displacement in bearing Cartesian coordinate 

system 

~b base helix angle 

a deflection 

total contact ratio 

£ transverse contact ratio 
« 
£~ overlap ratio 

r deflection ratio factor; rotation angle of roller element bearing 

~ loss factor 

~j angle in bearing Cartesian coordinate system 

A wave length 

w angular velocity 

w2
(f) mean square angular velocity 

p density of air ~ 1.2 kg/m
3 

~ radiation efficiency 

coordinate along the line of contact; damping coefficient ~/2 

VI 



1. GDERAL IR'l'RODUC'l'ION 

':J h,Lo_ clu:Lpten pn,e.o.ento, a q.en.ettal iJttrulductLan ta m.ad.eUnq ae qeatt&aa: 

~ and no.i..oe and an OJ..tttin,e ae the o.tudtJ ae ~ ~. 

1.1 Field of interest covered this thesis 

The airborne and structureborne noise produced by gearboxes is a well known 

problem to gearbox users. Especially high power gearboxes can give rise to 

high noise levels. The demand for less noisy gearboxes has led to many 

investigations all over the world. None of them has given a complete 

solution to the problem. 

This thesis presents new contributions to the modeling of the sound 

generating and transmission mechanisms of a gearbox with parallel shafts. 

Attention is paid to the gears as the primary source of vibrations and 

noise and to the transmission chain between the gears and the surrounding 

air. The bearings will be investigated thoroughly, being important 

components in this transmission chain. Also the computational modeling of 

the vibration response of the housing is studied and the sound radiation by 

the housing. A combination of theoretical and experimental work is 

reported, resulting into guidelines for designing less noisy gearboxes in a 

cost effective way. 

Fig. 1.1 shows the model scheme which is used in this thesis. The sound 

generation mechanism is modeled as depicted by the three separate blocks. 

The first block describes the dynamical behaviour of the gears. The second 

block describes the vibration transmission from the gears via the shafts 

n,T 
----? 

vibration 
generation 

at the gears 

!fl,q.wte 1.1: 

LW(f) 
vibration 

transmission 
via shafts 

and bearings i 

to the housing. 
I 

:f(UJJl,(j. q.enerw,ti..on 4lCheme ae a qea;t ~. 

L 
v 

(f) 
sound 

radiation 
from the 
housing 

n and T atte the c.peed [rev/min] and the appUed iartque [Nm] a& the qeatt&aa:, 

L (f) iA the anq,uiart ~ tooei at the ~~ L (f) iA the ~ w v 
tooe£ at the ~ ae the qeatt&aa:, and Lw (f) iA the ~ p.au9.eit tooe£. 
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and bearings and resulting in the velocity response of the housing. The 

third block quantifies the sound radiation process by which the housing 

vibrations are converted into sound. 

This thesis does not pretend to cover the complete field of gears which 

consists of many different types. The gearboxes of interest here have 

parallel shafts with spur, helical and double helical gears. For simplicity 

only single stage gearboxes are taken into consideration. Gearboxes with 

more than one stage are somewhat more complex to describe mathematically, 

but from a fundamental point of view there is no great difference with 

single stage gearboxes. 

The gearboxes of interest have a power range from 10 up to 2000 kW and are 

heavily loaded. These are industrial gearboxes, as mentioned in the VDI 

2159 guideline /1.1/, which are mainly in use for applications where an 

electric motor has to be connected to some kind of machinery. The gearbox 

acts as a transmission of torque and rotational speed. 

In this thesis only the vibrations and noise of a gearbox are considered 

that are caused by the meshing of the gears. Vibrations due to external 

machinery (i.e. outside the gearbox) are neglected. Also vibrations caused 

by internal unbaiance, squeezing of oil between the gear teeth and bearing 

noise are neglected. 

The most important assumption is the limitation to high quality gears with 

high tooth loads because for them the dynamic consequences of the tooth 

deflections are much greater than those due to the tooth errors which are 

permitted by the DIN or AGMA standards (Chapter 2 of this thesis) . 

1.2 Vibration source 

The dynamic deformations of the teeth even under a constant torque load are 

the main cause of vibrations. The change of the tooth deflections is a 

result of the changing positions of the teeth that are in contact with each 

other. Under the given assumptions a totally rigid gear pair without tooth 

errors would result in a noiseless gearbox. However, because such rigid 

structures do not exist, every gearbox makes some noise. In practice the 

sound power levels of gearboxes are often unacceptable. 

Noise measurements of many gearboxes have shown that the sound power level 

decreases when the gear quality is increased (/1.2/, /1.3/). However, even 

high quality gears may produce too much noise. It was recognized that due 
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mass m 

'JU:p.J.rue 1.2: 

s4rt.ato.q,lj wUh. tune ~ ~· 

to the bending of the teeth an engagement shock is introduced because the 

next tooth pair to come into contact will meet a fraction too early. This 

can be ameliorated by introducing a tooth profile correction. This profile 

correction or tip relief, which generally is not greater than 50 microns 

(11.4/, /1.5/, /1.6/}, prevents the engagement shock when the load is 

applied for which it was designed. 

Nevertheless, an optimal tip relief does not take away all the vibrations. 

First of all a tip relief is only optimal for one tooth load /1.7/. Second

ly, the variation in tooth stiffness, which under the given assumptions is 

a periodical function of time, is another source of vibration. This thesis 

studies both vibration sources, i.e. engagement shock and tooth stiffness 

variations. 

Fig. 1.2 shows the analogy between the variation of a tooth stiffness in a 

gearbox with constant torque load and the variation of a spring stiffness 

with a constant load. In both cases the variation of the stiffness causes 

the system to vibrate even when the load is constant. In order to minimize 

these vibrations the stiffness variations have to be as small as possible. 

This can be done by choosing suitable gear parameters such as tooth width, 

helical angle and modulus. These parameters determine the overlap ratio e~. 

According to the literature (see e.g. /1.8/) for values of e~ = 1 or 

greater the variation of tooth stiffness will be significantly smaller than 
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for values smaller than one. 

A new method to get small variations of tooth stiffness and of engagement 

shocks is a three dimensional profile correction, which can be produced by 

highly advanced so called topological or 3-D grinding machinery relatively 

recently developed. 

1.3 Vibration transmission through bearings 

The vibrations that are produced at the gears are transmitted to the gear 

shafts and reach the bearings. The bearings transmit the vibrations into 

the gearbox housing. Apart from the vibration transmission through 

bearings, the bearings themselves produce vibrations and noise. But as 

stated before, those contributions to the gearbox vibrations do not form 

part of this study and will be carefully excluded during measurements. 

Pittroff /1.9 I states that bearing noise will become noticeable when no 

other strong time varying forces are present. This is the case, for 

example, in some electric motors, but not in gearboxes where tooth forces 

are predominant. 

The vibration transmission through bearings can be described by the stiff

ness matrices and if necessary also the damping matrices of these bearings. 

This thesis deals with rolling element bearings and fluid film bearings for 

which the stiffness matrices are calculated. In the literature many inves

tigations were made to calculate the bearing stiffness of rolling element 

bearings. White /1.10/ describes a method to calculate the radial stiffness 

of rolling element bearings. It is concluded that the bearing stiffness is 

dependent on the bearing load. Especially when the applied load is small 

the stiffness is highly dependent on that load. Here, a slight increase in 

load will produce a large change in stiffness. At higher loads this effect 

is less. Under high loads where the noise problem has to be considered, the 

stiffness may be linearised in order to simplify further calculations. 

White /1.10/ also states that for a bearing with a relatively small 

clearance, the number of rolling elements present in the load zone at any 

instant has an insignificant effect on the bearing nonlinear stiffness 

characteristics. Therefore, in this thesis the bearing stiffness is assumed 

not to be affected by the changing numbers of elements rolling through the 

load zone during bearing operation. 
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Gargiulo /1.11/ presents formulas to approximate radial and axial bearing 

stiffnesses of different types of bearings. Ophey /1.12/ measured radial 

stiffnesses of ball bearings in the frequency domain. It was concluded that 

the radial stiffness of a ball bearing can be calculated accurately with 

the methods as described in the above mentioned references. Kraus et al. 

/1.13/ presented a method for the extraction of rolling element bearings 

characteristics (stiffness and damping) under operating conditions. In 

essence, they came to the same conclusions and also found very small 

influence of running speed on bearing stiffness. Bearing stiffness varies 

very little between static and dynamic conditions. Thus it is sufficient, 

for practical purposes, to use the static bearing stiffness when modeling 

the vibration transmission properties. 

Lim /1.14/ has shown that radial and axial bearing stiffnesses are not 

sufficient to describe the vibration transmission through bearings correct

ly. For example, a shaft connected with a bearing perpendicular to a casing 

plate with a force on the shaft in the plane of the plate, will not be able 

to cause bending waves in the plate according to the simple mathematical 

bearing model. However, in practice, the casing plate motion is primarily 

flexural. Lim introduces moment stiffnesses which can be used for analysis 

as well as design studies of rotating mechanical systems with multiple 

shafts and gear pairs or multi-staged rotors. He describes a complete 

bearing stiffness matrix in six degrees of freedom /1.15/. 

Fluid film bearings can be described mathematically in a similar way as 

rolling element bearings. The stiffness and damping coefficients for plain 

cylindrical bearings are widely published in the literature on rotor 

dynamics, see e.g. /1.16/, /1.17/, /1.18/ and /1.19/. Because of the need 

to validate these theoretical models of bearings, much work took and takes 

place on measurement of bearing stiffness and damping. Stiffness coeffi

cients have mostly been measured by the application of static loads only 

/1.20/, but usually the damping coefficients are required too for rotor 

dynamic applications. This necessitates the application of a dynamic load 

to the bearing /1.21/. The major difficulty encountered in obtaining 

accurate experimental results is that the equations needed to process the 

measured data are ill-conditioned, so that small inaccuracies of measure

ments can result in substantial differences in the observed values of 

stiffness and damping. Nevertheless, radial and axial stiffnesses and 
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damping coefficients can be easily derived from graphs in the references 

mentioned. In contrast, literature for deriving the moment stiffness and 

damping coefficients is extremely scarce. Kikuchi /1.22/ and Mukherjee and 

Rao /1.23/ have created graphs for that purpose, but these are not widely 

used. Probably moment stiffness and damping coefficients are usually 

considered to be of negligible influence on rotor dynamic behaviour. 

However, analysis of vibration transmission through fluid film bearings 

requires the moment stiffness coefficients and possibly also damping 

coefficients in order to predict out-of-plane vibrations on a gearbox. In 

this thesis the graphs of Kikuchi and of Mukherjee and Rao will be used. 

1.4 Housing dynamics and noise radiation 

A number of publications contain experimental data on gear housing vibra

tion due to gear excitation at the mesh frequencies and their multiples. 

Most of these give the acceleration spectra of the housing plates. Although 

extensive experimental studies were undertaken, attempts to correlate these 

test results with computational predictions were limited. One reason may be 

the complexity of the housing geometry involved. The modeling of gear 

housing vibration can be grouped as Experimental Modal Analysis (EMA), 

Finite Element Method computations (FEM), and Statistical Energy Analysis 

(SEA). 

The Experimental Modal Analysis technique has been widely used not only in 

dynamic analysis of gearboxes but also of many other mechanical systems. 

Modal analysis may be defined as the characterization of the dynamic 

properties of an elastic structure through the identification of its mode 

shapes and natural frequencies. The general steps involved are measurements 

of force and response signals, determination of frequency response 

functions using Fourier Transforms, and curve fitting to obtain natural 

frequencies, mode shapes, damping and transmissibility from one point to 

another. Van Haven et al. /1.24/ used the Experimental Modal Analysis 

technique to characterize a gear-motor housing which radiated excessive 

noise. They claimed that the fundamental frequency coincided with one of 

the gear mesh frequencies, and by ribbing the housing interior the natural 

frequency was shifted away from the excitation frequency. 

6 



~iq.wte 1.3: 

~i.ni.te 15tement Atodeto. ae enqln.e &tack and ~ 11. 261. 

The Finite Element Method is widely used due to the availability of general 

purpose finite element programs such as NASTRAN, ANSYS, ABAQUS, COSMOS, 

etc. In the few cases that are known from literature, the gear housing is 

modeled independently from the geared transmission. These FEM-models of 

empty gearboxes are used to calculate natural frequencies. The reason for 

independent modeling and analysis of gearbox and gears lies in the fact 

that this reduces the model size, which has a favourable effect on time and 

memory consumption of the finite element programs used. However, the steady 

increase of computing power leads to an increase of cases that analyze a 

complete system. 

Kato et al. I 1. 25/ used 480 plate elements to obtain the vibration modes 

and natural frequencies of a simple gearbox with two gears. A similar 

approach was undertaken by Sung and Nefske /1.26/ to model an engine block 

with a crankshaft connected to each other by bearings. Fig. 1.3 shows the 

finite element models of engine block and crankshaft. 

Not only natural frequencies and vibration modes were calculated, but also 

a prediction was made of the surface-averaged mean square velocity, up to 

2000 Hz, due to cylinder combustion excitation. The regions of the engine 

block with the highest levels of vibration were stiffened, and this led to 

a significant predicted noise reduction (about 10 to 20 dB) for a wide 

frequency range above 400 Hz. However, the coupling of the crankshaft to 

the engine block was done by using simple radial springs. 
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Another way to pinpoint the areas that should be stiffened is to use strain 

energy methods with the above mentioned finite element models to calculate 

the strain energy density for each troublesome vibration mode. The 

structural elements with the highest strain energy per unit volume can be 

determined as the best choice for structural modification. Drago /1.271 

applies this method to a helicopter transmission. However, no mention is 

made of the sound radiation efficiency of the structure. Apparently it is 

assumed to be equal to unity. As will be seen later in Chapter 4 of this 

thesis, only in that case the proposed method leads with certainty to noise 

reduction. 

The Statistical Energy Analysis method has been used to analyze power flow 

in marine geared transmissions from the gears to the housing (11.28/, 

/1.29/). This SEA approach is valid when a large number of vibration modes 

takes part in the vibration transmission. A complex system like a gearbox 

can be divided into many subsystems. Energy flow balance equations are then 

formulated for the entire system by considering energy stored, energy loss 

to the environment and energy transfer from one subsystem to another. The 

response of each subsystem is computed in terms of the average and standard 

deviation of the rms response in a frequency band. 

Lu et.al. /1.29/ summarized that the SEA method is suitable for determining 

the averaged response in the high frequency range where enough vibration 

modes are present in each frequency band considered and also for averaging 

over a certain speed range because of the tonal force spectrum of a gear 

transmission. On the other hand, the Finite Element Method was recommended 

for estimating the response in the lower frequency range due to the 

detailed model information available. In the postprocessing, ·for example, 

this information can be too detailed and may be reduced by spatial 

averaging and by summation over frequency bands. 

Gearbox noise radiation models have been semi-empirical in nature due to 

the complexity of the interactions between a vibrating box structure, such 

as a gearbox housing and its surroundings. An analytical solution to a 

sound radiation problem has been restricted to simple sound sources and 

highly idealized environment. Examples are pulsating and oscillating 

spheres, cylinders and ellipsoids {/1.30/, /1.31/). The noise radiation of 

more complex structures can be calculated numerically with the Boundary 

Element Method {BEM). However, with increasing frequency the element mesh 
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becomes finer and computational time becomes very large. 

There have been many attempts in the past to characterize and correlate 

gearbox noise spectra with the structural vibration spectra using semi

empirical prediction formulas, for example /1.32/ and /1.33/. Most have 

concluded that the noise prediction is quite complicated and hence an 

analysis requires many assumptions. A rather common approach is the use of 

the so-called radiation efficiency. 

The radiation efficiency relates structural vibrations and radiated sound 

power. Modal radiation efficiencies can be calculated mathematically for 

such idealized structures as simply supported rectangular plates and 

cylinders. However, generally speaking analytical expressions for complex 

structures like gearbox structures are not available. Fortunately, above a 

certain frequency, the so-called critical frequency, the radiation effi

ciency becomes unity. Approximate estimation of this critical frequency 

seems not too difficult even for rather complex structures. Therefore, 

above a certain frequency the modeling of the relation between structural 

vibrations and radiated sound power becomes very simple. 

1.5 Outline of the 

This thesis pays attention to all previously mentioned parts of the 

vibration and noise model of a gearbox as shown in Fig. 1.1. In Chapter 2 

an analytical model is developed and experimentally tested for modeling the 

vibration source of a gearbox. The model describes the time variable tooth 

stiffness and the engagement and disengagement shocks which are considered 

to be the main vibration sources in high quality gearboxes. The purpose of 

the analytical model is to create a fast calculation method as an alterna

tive to the often used time consuming Finite Element Method computations. 

Chapter 3 describes the vibration transmission through bearings. Bearing 

stiffnesses of various types of rolling element bearings are predicted and 

these predictions are to some extent verified by experiments. The bearing 

stiffness consists of a stiffness matrix for six degrees of freedom which 

is considerable more complex than the commonly used radial and. axial 

stiffness coefficient of a bearing. New contributions are made for roller 

bearing and for tapered roller bearing stiffness calculations. It will be 

shown that especially the bearing moment stiffness plays an important role 

in the vibration transmission from shaft to gearbox housing. 
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Chapter 4 studies Finite Element Modeling (FEM) of several simple gearbox 

structures. The surface-averaged mean square velocity of simple gearbox

like structures is predicted and those predictions are verified by Experi

mental Modal Analysis. A step by step approach is used to investigate the 

usefulness of FEM for very simple up to complex structures such as a gear

box housing with shafts and bearings. Special attention is paid to the 

connection of bearings to the gearbox housing in the finite element model 

and to the influence of the bearing stiffness matrix. The purpose of this 

chapter is to verify by experiments the results of the FEM calculations and 

thereby to increase the knowledge of a proper modeling of the structure for 

practical use. Chapter 4 also studies analytical and statistical models for 

the relationship between housing vibration and radiated noise. 

In Chapter 5 a gearbox test rig is described on which vibration and sound 

power levels have been measured. The test rig contains a single stage 

gearbox in which different sets of single helical and double helical gears 

with different profile corrections have been used. Also various kinds of 

bearings have been used to measure their effects on vibrations and sound 

power levels. 

In this chapter the synthesis of the developed theories is tested. The 

complete mathematical model containing the analytical description of the 

vibration source, the stiffness matrices of the bearings, the finite 

element model of the gearbox housing and the model of the radiation 

efficiency is used to predict vibration and sound power levels. Special 

attention is paid to different kinds of profile corrections used. Part of 

the experiments is used to investigate the practical value of the proposed 

theories of the previous chapters. This forms a new contribution to the 

analysis of the noise problem of gear transmissions because no such 

complete investigations are known from the literature. Furthermore, this 

chapter investigates the influence on the vibration and sound production of 

several practical design measures such as bearing choice and the change 

from single helical to double helical gears. 

A final evaluation of this study is found in Chapter 6. The proposed 

theories of this thesis are discussed and design guidelines for noise and 

vibration control of gearboxes are presented. The influence on the sound 

power level of gearboxes of bearing choice, tooth profile corrections and 

the use of double helical gears are the most important ones. 
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2. VIBRA'l'IOH SOURCB 

.4n a.n.ah.j.Ucal met.hod ~ deuetaped to. catcui.ate the fuoth ~ .at an 

Uwa&tte qewt paill.. ':1 he met.hod ~ ooUd lOft <lpU/t ~' heUcal ~ and 

d.o.u&te heUcal ~ uW.h patUJiJ,el ~· ':!he ~ due to. the 

~ ~ (~ and &.endinq,J a/!..e taken U1ta a.ccaunt au. w.eU. A 

tumped ~ madei. .at the q.ea.tt&oa: i..nten..Lort ( L. e. the I'Ulta.Un.q et.emen.ta. J 

uW.h the ti.m.e ~ fuoth ~ and the .en.qaq,emen:t ~ ~ the 

~ depen.deJtt ~ f.ooelo, at the ~· ':1~ ~ teuel 

U9LU .&.e U4ed taten, au. Lnpu.t lOft &wtthert ~ .at the ~ 

~~~to. the q.ea.tt&oa: ~· 

':1 he ~ a.n.ah.j.Ucal tnOdeUnq. ~ a taw. coot aUertrtat.We lOft fuoth 

pi'tO.(.Ue ~ uW.h the !fi.n.Ue g>f.ement Method and ln.clu.deo. the tnOdeUnq. 

.at 2-D and 3-D pi'tO.(.Ue ~. 

2.1 Introduction 

The basic source of noise and vibration inside a gearbox can be described 

with the time variable tooth stiffness and the engagement shocks. Fig. 2.1 

shows the generation and propagation chain of vibrations and sound of a 

gear transmission. In this Chapter the first part of this chain is being 

investigated. Most investigators use the Finite Element Method for calcula

ting the time variable tooth stiffness, see e.g. /2.1/, /2.2/. This proves 

to be a time and computer storage consuming process. Since for every gear 

pair a new FEM model has to be made, it looks attractive to look for a 

faster method. In this chapter an analytical method for calculating the 

tooth stiffness is developed which is based upon work from Schmidt /2.3/. 

n,T 
-------7 

I vibration 
generation 

at the gears 

!f.Lqun.e 2.1: 

I 
vibration 

Lw(fl transmission I 

via shafts 
and bearings 

to the housing 

!I(),IJJ'td qenerw;tion. ./lChem,e .at a qewt ~. 

sound I 
L (f) radiation 

v 
from the 
housing 

n and T a/!..e the ~ {rev/min] and the a.ppUed i.attq.ue {Nrn] .at the q.ea.tt&oa:, 

L ~ the anqulart ~ teuel at the ~' ~ the ~ teuel at 
(.() 

the ~ .at the q.ea.tt&oa:, and Lw ~ the oound ~ teuel. 
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This results in a universal computer program that calculates tooth deflec

tions, tooth force distributions and tooth stiffnesses. It also gives 

suggestions for an optimum tooth profile correction to achieve smaller 

engagement shocks. 

In contrast to what is stated in the literature, see e.g. /2.1/, it will be 

shown that profile corrections have no significant effect on the tooth 

stiffness. However, the commonly used profile corrections have certainly a 

significant effect on the engagement shock. The vibrations at the gears are 

a result of both effects, the time variable tooth stiffness and the 

engagement shocks. 

Furthermore, this chapter contains a dynamical model of a single stage gear 

transmission in order to predict the vibration levels at the gears which 

are originated by the time variable tooth stiffness and the engagement 

shocks. 

To describe the behaviour of a gearbox as a source of noise and vibration, 

one has to know the mechanisms that are responsible for the noise genera

tion. Noise and vibration problems in gear technology are concerned less 

with the strength of gears than with their smoothness of drive, since it is 

speed variation and the resulting force variation that generates unwanted 

sound. This imperfect smoothness of drive is called Transmission Error. The 

Transmission Error is defined as the deviation from the position at which 

the output shaft of a gear drive would be if the gearbox would be perfect, 

i.e. without errors or deflections and the actual position of the output 

shaft when no force is applied. It may be expressed, for example, as an 

angular rotation from the "correct• position or sometimes more conveniently 

as a linear displacement along the line of action /2.4/. 

The Transmission Error is a resultant of all kind of tooth errors such as 

pitch errors, helical errors, misalignement errors and once per revolution 

errors. Since the Transmission Error is measured without any load applied, 

here a distinction is made between an unloaded Transmission Error and a 

loaded Transmission Error. The loaded T.E. also contains the deflections of 

the teeth and the gear shafts due to the gear load. For lightly loaded 

gears with normal or large pitch errors the difference between the unloaded 

and loaded T.E. will be insignificant. However, for highly loaded gears 

with small tooth errors the unloaded T.E. will be very small in comparison 

with the loaded T.E.. This is the case for the gearboxes which are of 

interest in this thesis. This means that for these types of high accuracy 

gearboxes the tooth errors can be neglected for modeling purposes because 
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the tooth deflections dominate the loaded Transmission Error. 

The loaded Transmission Error is caused by the time dependent variation of 

stiffness of the meshing teeth which is a result of the bending of the 

teeth and gear shafts. This stiffness variation always occurs even in a 

perfect gearbox without unloaded Transmission Error. As a consequence of 

tooth deflection, tooth engagement and disengagement shocks will occur as 

well. In the computational models in this thesis it is assumed that the 

Transmission Error and the resulting vibrations and noise are primarily 

caused by variations in tooth stiffness and by the tooth engagement and 

disengagement shocks. These errors result from the elasticity of the 

materials. 

High quality gears are often modified by adding some kind of a profile 

correction. These modifications consist of corrections that generally do 

not exceed one tenth of a millimeter. In practice such small profile 

corrections have great influence on the dynamic behaviour of the gears. 

This supports the assumption that the Transmission Error is mainly deter

mined by the tooth deflection variations and the engagement shocks when 

high quality gears are used. 

In this chapter the tooth stiffness is being calculated as a function of 

geometrical parameters and as function of the linear displacement along the 

line of action by the use of analytical formulations of the tooth deflec

tions according to Schmidt /2.3/ and not by the use of Finite Element 

Method. The same route was followed by Placzek /2.5/ who's work was 

published at a time where our investigations were completed (Roosmalen 

/2.6/ and /2.7/) . Placzek calculated force distributions along the tooth 

profiles that were in agreement with our computations. However, he did not 

calculate the tooth stiffness. 

The investigations resulted in a computer program which enables fast calcu

lations by simply downloading the geometrical parameters of the gear trans

mission such as number of teeth, modulus etc. The gears are supposed to be 

geometrically perfect (high quality gears). The calculations are valid for 

involute gears with parallel shafts. The gears can be spur ({3 = 0) or 

helical ({3 > 0) and configured single helical or open-V. The tooth 

stiffness S per unit width is defined as follows: 

s [ (N/mm) /pm] 1
l 

a a 

1) throughout this thesis SI-units will be used and for the convenience 

of the reader they will often be put between brackets 

(2 .1) 
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Where F is the total tooth force, B is the tooth width and o is the tooth 

deflection in microns measured at the contact points of the mesh in the 

direction along the line of action (in the transverse plane). 

The total tooth force is known as the quotient of torque and radius of one 

of the gears. The tooth width B is a constant that can be obtained from the 

drawings of the gears. The tooth deflection o is the unknown part in the 

formula of the tooth stiffness S. To obtain the tooth stiffness one has to 

calculate tooth deflections for two slightly different tooth forces F. By 

doing this the approximation of the quotient 8F/8o can be calculated. The 

difficulty lies in finding the tooth deflection o for a given tooth force F 

and tooth width B. For this purpose it is necessary to take a closer look 

at the teeth in meshing. 

2. 2 Deflections 

Two involute gears that are meshing make contact in the contact area. The 

contact consists of straight lines along the teeth. When the applied force 

F is zero the gears touch one another at these lines. By increasing the 

force the teeth in contact will bend. The gears will move towards each 

other by a displacement of 6 micron. During this process it is assumed that 

the displacements are small enough to assume that the contact lines remain 

the same. This assumption makes it possible to calculate the contact lines 

in advance and they do not have to be altered as a function of the 

displacements. 

In order to obtain the tooth deflection o of the entire contact, the 

contact is divided into N contact points. Each point lies upon a contact 

line of one of the meshing teeth. The partial deflection of each contact 

point will be calculated as a function of one point-force. Linearity of the 

systems makes it possible to add up all the partial deflections to get the 

total deflection of each point. By dividing the contact lines into N points 

it should be possible to calculate their deflections by looking at the 

points separately. The only problem that remains is the calculation of the 

partial deflections oi of the contact points (i = l ... N) when one of the 

points is loaded by a force 

* The deflection o. . of point i as result of force F. that is applied on 
1,) J 

point j can be divided into four parts. These are: 
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* * * * a a + a + a + [m} {2.2) 
i' j tooth Hertz bend 

* with i5 tooth deflection 
tooth 
* i5 Hertzian deflection {if i j) 
Hertz 
* 1

\end 
deflection due to bending of the gear shafts 

* a 
torsion 

deflection due to torsion of the gear wheels 

The total deflections of all N points can then be calculated by summation: 

N 

I 
j=l 

* i5 
i,j 

[m} i 1,2, ...• N {2.3) 

Now that all N deflections i5
1 

are calculated the question arises how large 

the deflection of the entire mesh will be. To answer that question it is 

necessary to look a little bit closer at the mesh. If one of the gears is 

supposed to be rigid (which is not true, but is done for simplicity) then 

the other gear will have to take on all the deflections ai. When both gears 

are fixed to their places the deflections o
1 

create space between the 

teeth. After this the only thing to do, in order to obtain the final 

position of the gears, is to turn one or both gears towards each other 

until they touch. If the partial deflections are all different from each 

other, which is probably the case when a uniform force distribution is 

assumed, the gears will touch at only one point. All the other points will 

leave a gap between the teeth. This means that these loose points could not 

have been loaded by the previously assumed force. 

The only conclusion that can be drawn from this is that all partial 

displacements i5 i have to be equal to one another. This demands a force 

distribution of a particular kind. One way of obtaining this force 

distribution is to start with a uniform force distribution over all points 

and calculate the partial deflections. After this has been done a new force 

distribution has to be calculated that will result in a uniform deflection 

distribution. If all four parts of the partial deflections were linear with 

respect to force this would require only one iteration. However, as will be 

shown, one of the parts is nonlinear with respect to force. This part is 

the deflection due to Hertzian contact of both gears. 

The Hertzian deflection is for this level of loading only slightly non

linear with the applied force. Therefore, no large error will be made by 

assuming the Hertzian deflection linear with respect to force. This 
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linearisation is only made in order to obtain a new force distribution out 

of the calculated deflections. This results in an almost perfect force 

distribution which will produce a uniform deflection over all the contact 

points. In order to get a better force distribution, this iteration process 

is put to an end when the difference between minimum and maximum partial 

deflection is smaller than a specified maximum error. 

After this iteration process has come to an end, two things are known. 

These are the deflection of the teeth (this is the average of all partial 

deflections) and the force distribution over the contact field. The latter 

being a by-product to the problem of finding the tooth stiffness. 

The tooth deflection 5 as function of gear geometry and applied tooth force 

can be calculated in the manner described above. By repeating this for two 

slightly different forces the tooth stiffness can be calculated by using 

Eq. (2.1). 

To be able to calculate the tooth deflection the four partial deflections 

have to be calculated first. The next sections will deal with these four 

deflections. 

2.2.1 Tooth deflection 

Schmidt /2.3/ describes a method to calculate deflections of a tooth with a 

point load. He combines two theories. One that is valid for spur gears 

/2.8/ and one that describes the deflection of a cantilever plate /2.9/. 

Schmidt has made a comparison between his calculations and measurements 

that were made by Hayashi /2.10 I. Here it was found that theory and 

practice are in good agreement with one another. Placzek /2.5/ uses the 

method described by Schmidt to calculate tooth force distributions and 

profile corrections but does not calculate the tooth stiffness. This 

chapter will describe the method of Schmidt and will use it as input for 

the calculation of the tooth stiffness and for dynamical calculations. 

A tooth that makes contact with another tooth will do so along a contact 

line t with a force distribution W(~). See Fig. 2.2. The deflection of the 

tooth can be described as follows: 

l 
J c

1 
(x,~)W(~)d~ [m] (2 .4) 

0 

Also a similar equation describes the deflection of the opposite tooth: 
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W(t;) 

ntact line 

'l'i.qwte 2. 2: 

'l'ortee ~ a£artq the line at cantact. 

l J c
2 
(x,~)W(~)d~ [m] (2. 5) 

0 

The coordinates x and ~ are along the contact line l as is shown in Fig. 

2.2. C (x,~) and C (x,~) are functions that describe the flexibility of the 
1 2 

teeth. f
1

(x) and f
2

(x) are deflections of both teeth at position x in the 

direction of the force W(i;J. The flexibility functions describe how much 

the tooth deflects at position x due to the point force W(i;) at point 1;. 

The total deflection of both teeth will then be: 

f (x) ~[c1 (x,i;J + c2 (x,i;)]w(i;Jdi; 

0 

~C(x,i;)W(i;Jdi; [m) (2.6) 

This means that the two contacting teeth can be replaced by one beam that 

can be described by the compliance function C(x,i;J. This function will be 

evaluated by putting a point force P(i;) at the edge of a cantilever plate 

as is shown in Fig. 2.3. The deflection f(x) due to this load is schema

tically shown in the figure. These deflections are determined by a 

differential equation of the following kind /2.8/: 
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:fUp.vte 2.3: 

v~ .a& a ~ ptate taaded at m pwe edQ.e. 

+ s f 
3 

P(~) [N] (2.7) 

In this way the plate is being described by three stiffnesses. s
1 

is the 

bending stiffness of the plate, s
2 

is the stiffness against bending at the 

root of the plate and is the stiffness against displacements at the root 

of the plate. These three stiffnesses are being obtained as follows. 

18 

s 
1 

s 
2 

s 
3 

with 

h N 
p 

« 

2(1-v) 
h 

p 

3N 
'i/

h3 
p 

h 
p 

N 

(2.8) 

N (2.9) 

(2 .10) 

height of the plate 

12 (1-i) 
plate stiffness 

E elasticity modulus 

d thickness of the plate 

v poisson's constant 



12 

(2 .11) 

fe deflection of the plate only, 

the foot is rigid 

total deflection of the plate, 

with foot-deflection 

The differential Equation (2. 7) can be solved by setting the right hand 

side equal to zero. This homogeneous differential equation then describes 

the deflections f(x) of the unloaded part of the plate. The equation can be 

written as follows: 

d
4

f s2 d
2

f s3 
f 0 + 

dx4 
(2.12) 

or 

(n4 
s s 

2 D2 
+ s: ) f 0 (2.13) 

or 

(D ~) (D + ~) (0 - ~) (D + ~) 0 (2.14) 

with 

/,:' ; I[:: J' 4S 

~ 
3 

+ -s-
1 1 

(2.15) 

/,:' ; I [ :: J' 4S 

~ 
3 

-s-
1 1 

(2.16) 

There are two solutions to Eq. (2.14) depending on the values of the three 

stiffnesses s
1

, s
2 

and s
3

. 
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If 
4S 

3 

s 
1 

then the solution has the form 

with 

f (x) 
e 

r 
1 

r 
2 

r x 

Ae 
1 

+ 

f.--/.(1~) 
p 

'[;-/.(1-v) 
p 

Be 

+ 

-r x 
1 

+ 
r x 

Ce 
2 

~ 1[2~(1-v) r 
~ /(2~(1-v) r 

+ De 
-r x 

2 

12~-r 

12~-r 

(2 .17) 

(2.18a) 

(2.18b) 

The index e indicates that the solution is only correct for the edge of the 

plate. 

If ( :: r < 

4S 
3 

s 
1 

then the solution has the form 

f (x) 
e 

with p 

q 

epx( A cos(qx) + B sin(qx) II ) 

II 

e -px( C cos(qx) + D sin(qx) II ) 

_l_J,r;;; 
ffh 

p 

_l_J,r;;; 
ffh 

p 

+ ~(1-v) 

- ~(1-v) 

+ 

(2.19) 

(2.20) 

(2 .21) 

The constants A, B, C, D or A , B , c and D can be derived from the 

following boundary conditions. 
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a) to the left of where the point load is applied: 

X 0 then the torque M(O) = 0 and transverse force Q ( 0) 

( 0) 
0 

d3 2(1-V)« df (0) 
el 

0 
h2 dx 

p 

b) to the right of where the point load is applied: 

x = t then the torque M{l) 0 and transverse force Q(f) 

d
2

f (t) 
er 

0 
dx2 

d
3

f (t) 2(1-V)IX. df (f) 
er er 

0 
h2 dx 

p 

c) continuity at the loaded point x ~ 

(~) 

dx 

d) force and torque equality at the loaded point x ~ 

~ t 

I slel (x)dx + I s3 (x)dx 

X=O 

E; 

I S f (x) (i;-x) dx 
3 el 

t df 

+ I S ---=.:... dx 
2dx 

X"~ 

p 

dx 

t 

I s f (x) (x-t;l dx 
3 er 

X=~ 

0 

(2.22) 

(2 .23) 

0 

(2 .24) 

{2.25) 

{2 .26) 

(2.27) 

(2 .28) 

+ 

(2.19) 
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The calculation of the constants for every point force leads to 8 linear 

equations because the differential equation has to be solved separately for 

the left and the right side of the point force. These 8 equations can be 

solved by introducing a matrix A and vectors b and c; 

A*b {2 .30) 

A 8x8 matrix 

b vector with the eight unknown constants 

c load vector 

Vector b can be solved with help of LU-decomposition techniques as 

described in the literature, e.g. /2.11/. The 64 parts of matrix A and 

vector b and c can be obtained from Appendix A for both Eqs. ( 2 .17) and 

(2 .19) . 

The deflection at the edge of the plate can be calculated with the above 

equations. Deflections at an arbitrary point of the plate can be derived by 

introducing a function g(x). The deflection at an arbitrary point x due to 

a force at point ~ can then be calculated like: 

(2.31) 

In Eq. {2.31) f (x,~) stands for the deflection at the edge of the plate. 
e 

f (x,~) can be calculated in a way as described above. The functions g(x) 
e 

and g(~) are defined as: 

g{x) 
/f . {x) tot 

f 
and g{~) (2.32) 

etot 

The three deflections f (x), ftot {~) and f are being calculated by tot etot 
using the theory of Weber and Banaschek for spur gears. For that purpose a 

helical gear will be looked upon as a spur gear. The tooth form is deter

mined by looking at the gears in the normal plane. In Appendix B the 

formulas to calculate these profile forms are presented. These profile 

forms of the gears are used to calculate the deflection at the top of the 

tooth and the deflections at positions x and ~ by applying a unit load of 

one Newton. 
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h 

Yp 
y 

To be able to calculate the value of stiffness S
3

, the factor 7 has to be 

calculated ( r = f /f etot) • This means that the deflection f e has to be 

calculated. This also is done by using the theory of Weber and Banaschek. 

For this purpose the tooth deflection is being divided into two parts. 

These are: deflection without movement of the root 5 and deflection due to 
t 

the root of the tooth without movement of the tooth itself 5 . Together 
* they add up to the tooth deflection atooth 

a* 
tooth = 5 + 5 

t r 
[m] 

r 

(2.33) 

To calculate 5 and 5 the boundary between root and tooth has to be 
t r 

defined. See Fig. 2.4. The x-axis makes contact with the tooth profile at 

the point where the trochoid stops and passes into the root circle. 

The applied force F stands perpendicular towards the surface of the tooth. 

It has horizontal and vertical components D and N respectively as can be 

seen in Fig. 2.4. 

D Fcos («'), and N Fsin{«') [N] (2.34} 

In an arbitrary section S - S of the tooth a torque M = D{y y) works as 
p 

well as both forces D and N. To obtain the deflection at at the point where 

the force acts, the tensile energy inside the tooth is put equal to the 
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deflective energy Fot/2. The tensile energy can be written down for torque 

M and forces D and N. This yields: 

or: 

0 
t 

1 
T rp M2 

--------------dy 

__ E __ 2:._ B{2x} 3 

12 

1 rp N2 
+ T ------- dy 

__ E __ 2Bx 

1-11
2 

+ 

(y - y) 2 

1 
T 

Fcos2 
(a.') 

EB 
_...:.P _____ dy 

(2x) 
3 

rp 1.2D2 

2GBx dy 

+ 

• {2.4{1w) • (1-v')tan'<•'>} [' ;x dy} 
y:O 

+ 

(2.35) 

{2 .36) 

The root deflection o can be obtained in a similar way. For that purpose 
r 

the tooth is considered stiff. At the root of the tooth ( y = 0 ) a torque 

M = Fcos(a.')y and the forces D and N act. Here also deflective energy and 
p 

tensile energy are used to obtain the deflection at the point where the 

force acts: 

1 
Fo (2.37) 

2 r 

The factors c
11

, c
12

, c
22 

and c
33 

are obtained after a long process of well 

chosen assumptions and calculations. For further detail see Weber and 

Banaschek /2.8/. Eventually it yields: 

9 1-11
2

) ( l+v) ( 1-211) 
c 

2EBd 11 

(2.38) 

2.4(1-i) (1-11
2

) (1-11) 
tan

2
(a.') c 

n:EB 33 n:EB 
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0 
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line of action [rom] deflection [~) 

~iqwte 2.5: 

j';a.tcu.R.a.ted and meaQ.UI'I.ed total ~ a& ~ ~ ~ /2. 6/. 

a. 15 teeth, b. 24 teeth ( - tlw:Jiuj, <> ~) • 

The root deflection can be calculated as: 

Fcos
2 

{«') 

EB 
2 ( l+V) ( l-2V) 

d 
yp + 

(2.39) 

The accuracy of these formulas has been tested in Roosmalen /2.6/. Two 

aluminium spur gears with 15 and 24 teeth respectively with modulus m = 30 

rnm and a tooth width of 20 rnm were submitted to a load of 4000 Newton. 

Fig. 2.5 shows the calculated and measured total deflections ~t as function 

of the position at the line of contact. It is seen that for both cases the 

deflections increase with the position at the line of contact. This can be 

expected as the tooth load is applied at the foot of the tooth when this 

position is zero and at the tooth tip when this position reaches its 

maximum. The Figure also shows that the calculations are in good agreement 

with the measurements for any position at the line of contact. Therefore, 

it is concluded that the given theory for calculating the tooth deflections 

may be used for further calculations. 

25 



2.2.2 Hertzian deflection a* 
------------------- Hertz 

The Hertzian deflection of two teeth can be compared with two solid 

cylinders with different radii that make contact along a straight line of 

length B. The radius of each cylinder is equal to the radius p of the tooth 

at the momentary point of contact. Due to the fact that the theory of Hertz 

is only valid for two bodies of infinite dimensions it does not apply 

exactly to the problem of two teeth. This is because the finite thickness 

of the teeth. Hertz states that the inside stresses will decrease away from 

the point of contact, but only at an infinite distance they will become 

zero. 

The teeth have a finite thickness, so it is supposed that at a distance t 

the stresses are equal to zero. Weber and Banaschek chose t to be the 

distance from the contact point to the point where the contact line 

intersects with the tooth line of symmetry. For both teeth this yields a 

different distance t
1 

and t
2

• Eventually Weber and Banaschek /2.8/ come to. 

the following formula for the total deflection of both teeth: 

c/ 
Hertz 

(2.40) 

with (2 .41) 

It can be seen that the Hertzian deflection is not linear with respect to 

the force F. 

2.2.3 Deflection due to bending of the gear shafts a* 
--------------------------------------------- bend 

Each point force Fj makes the gear shafts bend. To calculate the amount of 

deflection at positions i in the mesh, it is assumed that the Euler theory 

of beams can be applied. For this purpose the shaft is divided into three 

parts with different diameter d
1

, d
2 

and d
3

• See Fig. 2.6. 

The middle part with diameter d
2 

and length ~ is the gear. At the outer 

parts the bearings are attached at a distance £
1 

and ~ from the gear. In 

this section it is assumed that the bearing radial stiffnesses are infinite 

and that the bearing moment stiffnesses are zero. The deflections at 

positions i are of interest. These points all are part of the gear. 

A distinction has to be made whether point i lies left or right from the 

point force position j. This is being referred to as i < j (left} and i > j 

(right). If i is equal to j then both formulas apply. 
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The formulas are: 

(2.42) 

> 

F l_3 t-tj 
with: a fJ t -

j 1 
= 6EI -t-B Al 

1 

(2.44) 

Fj t-t, [ t:-J~lj -t' .,, t' -2t' l 
a rp t. + + 

j j 1 1 

c A J 6EI -t- I 12 1 1 

(2 .45) 
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F [ l-f { 6Ei ~ 2t~ 

rp -
A 

rp -
B 

t-t { 
+ ~ 2l~ 

2 J 

tJ. { 3 3 
+ -- 2t - 2l + 2R? + R? t ti 2 j j 

2 

t-t 
j 

-y-

(2. 46) 

(2.47) 

(2.48) 

The deflections due to bending are linear with respect to the force F. 

* Hence, the calculation of abend(xi) is rather straight forward. 

2.2.4 Deflections due to torsion of the gear wheels a* 
---------------------------------------------- torsion 

As a rule investigators in the literature pay no attention to the phenome-

non of wheel torsion, as they believe it is of no importance to the tooth 

stiffness. They are right when narrow gears in relation to the diameter are 

concerned, but in general gear wheel torsion may not be neglected. Deflec

tions due to torsion of the gear wheels are a main source of a non-uniform 

tooth force load distribution along the tooth width with its influence on 

the tooth stiffness. Especially for slender gears the following 

formulations are relevant. 

Each wheel has a torque T
1 

or Nm on one side and is torque-free on the 

other side. Thus the variation in torque along the axis of each wheel makes 

the wheel deflect due to torsion. This effect will increase when the width 

of the gears becomes larger. There are two different torque configurations 

to be considered, see Fig. 2.7. 

In the first configuration the torques are situated on the same side of the 

gearbox. This will lead to high tooth forces on this side with according 

deflections due to torsion. The second configuration will compensate this 

effect. 

The deflections due to torsion can be calculated when the tooth forces Fj 

are known. For this we can use the formulas that describe torsion of solid 
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shafts. The gears are considered to be solid and the outside diameter is 

equal to the pitch diameter d
1 

or d
2

• The angle ~over which the wheel with 

length twill rotate can be calculated as follows: 

~ Tt/ {GI ) [rad] (2.49) 
p 

with T torque [Nm] 

t length [m] 

G shear modulus [N/m
2

] 

I n:•r
4 
/2 [m4] 

p 

r pitch radius (m] 

In the case of the gear wheels with N point forces Fj we obtain: 

~(i, j) 
Fjrb 

k 

L 6L{q) [rad] 
~ 

p 
q:l 

(2. 50) 

with radius of the base circle [m] 

6L(q) length at point q [m] 

k: 
configuration 1 configuration 2 

k = wheel 1 wheel 2 wheel 1 wheel 2 

i:Sj i i i j 

i!:j j j j i 
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The deflection o(i,j) at point i as a result of force Fj at point j can be 

calculated from: 

a(i,j) (2 .51) 

The deflections a* (i) result after a summation of a(i,j) over all 
torsion 

forces Fj. They can be calculated as follows: 

N k 

a* <il 
torsion L {F(j) L AL(q)} [m] (2.52) 

j =1 q:l 

2.3 Force distribution along the line of contact 

In order to calculate the force distribution along the line of contact the 

deflections described in the previous section are needed. The deflections 

a* 1 a* 1 a* and a* can be calculated when the force distri-
tOOth Hertz bend torsion 

bution is known. As pointed out in the beginning of this chapter the 

problem lies in the fact that this distribution is unknown. This problem 

can be solved by means of an iterative process. This process is started 

with a uniform force distribution. This will most likely result in a non

uniform deflection distribution. As stated in the beginning of this chapter 

one needs to find the force distribution that gives a uniform deflection 

distribution along the line of contact. In order to be able to choose a 

better force distribution we make use of the formulas for the deflections. 

A compliance matrix c is used for this purpose. 

a(i) 

N L c(i,j)F(j) [m] 

j =1 

(2.53) 

This means that the deflections a(i) are proportional with the tooth forces 

F ( j} • This is not completely true because the Hert zian deflection is not 

proportional with the tooth force. However, to get a better force distribu

tion the assumption is good enough, although it means that the problem has 

to be solved by iteration. The linear problem to be solved looks as 

follows: 
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-1 F(1) 0 
F(2) 0 

C{i, j) 
= (2.54) 

-1 
-1 
-1 F(N) 0 

1 1 1 1 1 0 T F 
tot 

The vector on the left hand side in this equation has unknown elements. 

F{l) up to F{N) are the point forces and T is the mean deflection. The 

problem can be solved with standard numerical techniques. Next, the N 

forces are used to calculate the exact deflections 6(i). When the indivi

dual differences between these deflections become negligible than the 

iteration process can be stopped. Then the force distribution F{i) and the 

mean deflection T are known. 

The tooth stiffness can be obtained by repeating the calculation with a 

somewhat larger (e.g. 1/lOth percent) tooth force F' This results in a 
tot 

mean deflectionlr. From this we can calculate the tooth stiffness per unit 

width S: 

s 
(F' - F ) /B 

tot tot 
[ (N/mm) /IJID) (2.55) 

2.4 Tooth stiffness of spur ahd helical gears 

A single stage gearbox with spur gears is chosen to illustrate the results 

that can be obtained from Eq. (2.55). Fig. 2.8 shows the tooth stiffness of 

a spur gear set as function of the position on the line of action. This 

position is 100 percent when one tooth has passed. Therefore, the function 

is periodical as it is assumed that the gears are perfect. When the 

running speed n is known, this horizontal axis could also represent the 

time axis (position 100 % = ttooth = 60/nz) . 

The variation in tooth stiffness is striking. It resembles a block function 

with a low and a high stiffness. This is caused by the fact that the number 

of teeth in contact changes abruptly from one to two and vice versa. This 

is characteristic for spur gears. When two teeth of each wheel are in 

contact the tooth deflections are small compared to the situation when only 
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one tooth of each gear is in contact. Therefore the tooth stiffness is 

smaller when only one tooth is in contact. 

The temporal variation of the tooth stiffness of helical gears is smoother 

than that of spur gears. This is due to the fact that helical teeth 

gradually make contact with each other. The amplitude of the stiffness is 

smaller than that of spur gears. Therefore, helical gears produce lower 

vibration levels. Helical gears are used to minimize the produced sound 

power level of gearboxes. They are designed in such a way that the overlap 

ratio e~ equals an integer. It is believed to be true that a gearbox with 

an integer overlap ratio will minimize the produced noise. However, Lachen

maier /2.12/ could not confirm this hypothesis in his noise measurements. 

He only found that the sound power level decreases with increasing overlap 

ratio. 

Another way to look at this phenomenon, is to calculate the tooth stiff

nesses of different gear transmissions, and to plot the tooth stiffness 

amplitude against the overlap ratio. The tooth stiffness amplitude is a 

measure for the intensity of vibration generation at the gear mesh. Fig. 

2.9 shows the result of such a calculation. 

The calculations are based upon a gear set with following dimensions: 

z
1 

18, z
2 

= 90, m 2.25 rom, a = 20 degr., ha = 1, hd = 1, 0.25, 

x
1 

0.472 and x
2 

-0.110. The tooth face width B has been varied from 

20.25 to 81 rom, with steps of 10.125 rom. Since d
1
= m·z

1 
40.5 rom this 
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means that B/d
1 

was varied from 0.5 to 1.5 with steps of 0.25. The tooth 

force F was corrected in such a way that F/B remained a constant value of 

50 N/mm. 

As can be seen from Fig. 2.9, the tooth stiffness amplitude becomes small 

when the overlap ratio ~~ reaches a value of 0.8 or more. There are minima 

in the figure at integer values of ~~· This means that gear transmissions 

with an integer overlap ratio will have a smaller loaded Transmission Error 

than those with a non-integer e~. But for~~> 0.8 the differences in 

stiffness amplitude are small, and this probably explains why Lachenmaier 

could not measure any difference in sound power levels in this area for ~~-

2.5 Dynamic behaviour of the gearbox interior 

As a result of the previous sections of this chapter the time variable 

tooth stiffness of a spur, single helical or double helical gear transmis

sion can be calculated quickly by the use of a computer program which 

contains the equations needed. As input for this computer program the 

geometrical dimensions of the gears have to be known after which in a few 

minutes the time variable tooth stiffness is being calculated. This varia

tion of tooth stiffness is one of the reasons for a gear transmission to 

generate vibrations and sound. In this section it will be used to predict 

vibration levels at the gears of a single stage helical gear transmission. 
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The loaded Transmission Error is influenced by the time variable tooth 

stiffness and by the (dis)engagement shocks. To make a distinction between 

these two influences the T.E. will firstly be characterized only by the 

tooth stiffness. The {dis)engagements shocks will be put into the calcula

tions in later sections of this chapter. 

In order to calculate the vibration levels of the gears, the time variable 

tooth stiffness is used in a lumped parameter model of the gearbox 

interior (i.e. the rotating elements). For simplicity, the model does not 

include any exterior machinery. Normally, such a model does not represent 

the dynamical behaviour of a gearbox. Only when the couplings with the 

exterior machinery are sufficiently flexible, this model is valid. The test 

rig of Chapter 5 consists of a (test) gearbox which is connected to another 

gearbox with long, torsionally weak shafts. In this case the simple lumped 

parameter model does apply. The following calculations in this section are 

made for this test gearbox. 

The masses and moments of inertia of the gears, gear shafts and couplings 

are connected by massless springs and dampers. The gears are connected by 

the time variable tooth stiffness. The gear shafts are connected with the 

gearbox housing by radial and axial bearing stiffnesses. The gear housing 

is assumed to be rigid. 

Fig. 2.10 shows the lumped parameter model of the gearbox interior. For 

simplicity, the dampers are not shown in the figure. The dynamics of this 

system can be described as follows: 

[M]X + [D]x + [S(t)]X {F) [N] (2.56) 

This matrix equation of dimension 15 contains the following matrices: 
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Mass-matrix [M] diag(m ,m ,m ,I ,I ,J, 
gl gl gl xgl ygl gl 

m ,m , m , I , I , J , J , J , 0} 
g2 g2 g2 xg2 yg2 g2 cl c2 

Damping-matrix [D(i,j)] 2
1/1 [M(i, i)] [M(j, j)] 

[M(i,i) ]+[M(j,j)) 
I[S{i,j)JI 

Stiffness-matrix [S(t)] [S (t}] + [S ] + [S . ] 
tooth shafts bear1ng 

Force vector {F}T (0,0,0,0,0,0,0,0,0,0,0,0,0,0,T
15

) 



massless torsion spring 

massless spring 

earth 
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The elements of the stiffness matrix [S(t) ·B] are presented in Appendix C. 

Degree Of Freedom (OOF) number 15 provides a torsional preload to the 

system. This preload, which equals the applied torque, is necessary to make 

the system vibrate by the time variable tooth stiffness Stooth(t). The 15th 

DOF consists of an angular displacement ~ at the far end of shaft number 1, 

which is calculated at the start of the dynamical calculations and is held 

constant during the rest of the calculations. This angular displacement has 

to be calculated in advance to ensure that at this position a prescribed 

torque T
15 

is present. In the test rig, which will be described in Chapter 

5, the torque at position 15 can be varied between 400 and 2000 Nm. For the 

measurements, the resultant angular displacement ~ at the test rig is not 

important, the torque however is what counts. However, this situation is 

reversed when the dynamical calculations are considered. A prescribed 

torque will then have to be achieved by an appropriate angular 

displacement. This is done by using Eq. (2.56) for the situation when all 

accelerations and velocities are zero, i.e. the static solution. 

The time variable tooth stiffness Stooth (t) is a periodic function. The 

time of one period T depends on the number of teeth z and the gear running 

speed n rev/min. 

T = 
60 
n·z = 

1 
f tooth 

[s] (2.57) 
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The high speed gear of the test rig has 24 teeth. The running speed varies 

from 50 to 1500 rev/min. Thus the period timeT becomes respectively 0.05 s 

and 0.00167 s. The tooth frequency ftooth varies from 20 Hz to 600 Hz. The 

tooth stiffness stooth (t) is obtained from the theory discussed in the 

previous sections. Stooth (t) consists of a discrete series with r 0, 

1, 2, ... , (N-1). In Fig. 2.11 S is plotted as dots, the spline through 
r 

these dots is used as input for the dynamic calculations. This spline can 

be written as a discrete Fourier transform series X : 
k 

N-1 
2_ \' S e -j (2'1lkr/N) 
N L r 

r~o 

0, 1, 2, .... , (N-1) (2.58) k 

(2.59) 

The time variable tooth stiffness is calculated as follows: 

(t) (2.60) 

This procedure guarantees a Stooth (t) function which can be differentiated 

at any value of t. Because of this, the differential equations can be 

solved by using a Runge-Kutta-Merson numerical solution procedure. These 

numerical procedures are commonly used, and they provide an evenly time 

spaced solution that can be Fourier transformed by using a FFT routine. 
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n = 1500 rev/min, T = 2000 Nm, ftooth = 600Hz. 

As output signal of the dynamic calculations the angular velocity w of the 

gear wheel has been chosen, mainly because this velocity is believed to 

represent the vibration level of the total gearbox interior /2.12/. This 

angular velocity level of the gear wheel will be measured at the test rig 

as will be explained in Chapter 5. Comparison between these measurements 

and the dynamical calculations will be presented in Chapter 5. However, one 

measurement result is shown in Fig. 2.12-b to verify the dynamical calcula

tions. In this section the theoretical background of the computer program 

and its results will be emphasized. 

The angular velocity level of the gear wheel Lw{f) will be presented in the 

frequency domain. Lw(f) is defined as follows: 

L (f) 
w 

with 

lOlog( ;;;:;f) ) [dB) 

0 

5 ·10 -e rad/s 

(2.61) 

As result of the periodic tooth stiffness variation, the angular velocity 

level Lw(f) contains high peak levels at the tooth frequency ftooth and its 
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higher harmonics 2·ftooth' 3·ftooth et cetera. The actual levels are depen

dent on the amount of internal damping of the lumped parameter model. Some 

measurements have been carried out on the test rig to determine the damping 

loss factor 11· It turned out to vary quite a lot between the different 

resonant frequencies that were investigated. It was decided to take for the 

calculations an averaged frequency independent damping loss factor of 11 = 
0, 1. This kind of loss factor is also used by other investigators for 

comparable dynamical calculations. 

Fig. 2.12 shows the results of calculations with a frequency resolution of 

af = 2,44 Hz and with a 1/3-octave band representation. It also shows the 

measured level of Lw(f) from which can be seen that the prediction does not 

completely coincide with the measurement. At the tooth frequency a 

difference of 12 dB occurs, while at higher frequencies prediction and 

measurement agree somewhat better. 

This phenomenon was observed in all similar calculations for different 

operational conditions of the gearbox, i.e. for different running speeds 

and torques. 

From this it is clear that the present prediction model which only includes 

the time variable tooth stiffness does not completely describe the dynamic 

behaviour of the gearbox interior. The time variable tooth stiffness can 

not be the only cause of the vibration levels. This confirms the well known 

fact that the engagement shocks have to be taken into account as well. 

However, most investigators in the literature incorrectly try to combine 

these two vibration sources in one model as will be shown in section 2.7. 

Some investigators use the tooth stiffness model (e.g. /2.1/) and others 

use the Transmission Error {e.g. /2.4/) as basis for their calculations. 

The next section will deal with the implementation of both the time 

variable tooth stiffness and the engagement shock into the dynamic model. 

The engagement shock model will be introduced as a new contribution to the 

modeling of the vibration and sound generating mechanism of gear 

transmissions. 

2.6 Engagement and disengagement shock 

The engagement shock occurs due to the bending of the gear teeth. Without 

any tooth load, geometrically perfect gears rotate smoothly as result of 

the involute tooth shapes. When a tooth force is applied, the teeth in 

contact will bend and the teeth that are on the point of coming into 
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contact will do so too early and therefore with a shock. This can be seen 

in Fig. 2.13 where the teeth come too soon in contact by the amount of a 

Jim· The tooth that is coming into contact has to deflect by o almost 

instantaneously which will produce a shock and resultant vibrations of the 

gears·. At the end of engagement a similar process takes place; the 

disengagement shock. 

The engagement and disengagement shocks will both occur at tooth frequency 

ftooth" Hence, they will contribute to the vibration level of the gearbox 

interior especially at ftooth and its higher harmonics. So, these shocks 

are acting in the same way upon the system as the time variable tooth 

stiffness. But to describe the shocks mathematically is not straight 

forward nor known from literature. Therefore a new engagement shock model 

has to be introduced. This model has to meet certain requirements. It has 

to be periodical, and it has to depend on the tooth load as well as on the 

rotational speed of the gears. As will be discussed later on in this 

chapter, the engagement shock will strongly depend on the chosen profile 

corrections of the gear and pinion. 

Fig. 2.14 shows the teeth in contact between gear and pinion in a schematic 

way. Every spring in this figure depicts a tooth pair of gear and pinion. 

The stiffnesses of these springs are all assumed to be equal, in such a way 

that the total stiffness equals the tooth stiffness stooth(t). The distance 

between the springs equals the distance between the teeth: pt. The number 

of teeth in contact is controlled by the total length of contact etot •pt. 

After 1/ftooth seconds, which is the same as pt mm in Fig. 2.14, the 

situation of contact repeats itself. Thus, the requirement for periodic 
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behaviour of the model is satisfied. 

The tooth force has its influence on the model by the amount of deflection 

Stooth(t)/F. The higher this tooth load will be, the greater the 

engagement shock is. The dependence on the rotational speed of the gears is 

controlled by the velocity v = w
1
·r

1
. The engagement shock is implemented 

in the dynamic model of the gearbox interior by an extra tooth force F . 
e 

e 
<t>·<.ra,-a >le [NJ L ~ mean tot 

2=1 
{2. 62) F 

with n number of teeth in contact 

This engagement force exists between the teeth of the gears in a direction 

which is dependent on the transverse pressure angle «~ and the helix angle 

at the base circle ~b. The non-zero elements of the force vector {F} look 

like: 

F(l) 

F(3) -F sin(~ ) 
e b 

F(7) -F(l) I F{8) 

40 

F(2) 

-F(2), F{9) -F(3), F(l2) F(6), F{l5) T 
15 
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The inclusion of these supplementary forces affects the results of the 

dynamic calculations mainly at tooth frequency ftooth" Fig. 2.15 shows the 

angular velocity level Lw(f) at n 1500 rev/min of the pinion with and 

without the engagement shock. The calculated angular velocity level with 

engagement shock is approximating the measured angular velocity level 

better than without, as is seen when Fig. 2.15-a is compared with Fig. 

2.15-b. 

From this it can be seen that the engagement shock plays an important role 

in the dynamic behaviour of the gearbox interior. Time variable tooth 

stiffness with corresponding tooth deflections as well as the engagement 

shock have to be taken into account to predict angular velocity levels that 

will agree with practice. The importance of the separation of the time 

variable tooth stiffness and the engagement shock in the dynamic calcula

tion model will be further emphasized in the next session when profile 

corrections are being scrutinized. 
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2.7 Profile corrections and their influence on L --------------------------------------------w 
In the previous sections the Transmission Error and the resulting vibration 

levels at the gears have been characterized by the time variable tooth 

stiffness and the engagement shocks. In order to be able to reduce the 

resulting angular velocity level Lw(f) at the gears, profile corrections 

are introduced. 

In gear technology it is well known that proper profile corrections can 

have a desirable effect .on gearboxes when vibrations and sound pressure 

levels are concerned. Highly loaded gears of high quality, which are 

considered in this thesis, are almost without exception provided with some 

kind of profile correction. Tip and foot relief are well known corrections 

which can be manufactured on a grinding machine. 

The amount of relief is often in the order of a few up to 100 J.lill. The 

actual relief is often chosen on basis of experience, but can be calculated 

by formulas given by Sigg /2.13/. In essence, the amount of correction is 

optimal when it equals the tooth deflections. This can only be true for one 

tooth load. When the tooth load varies, due to variable operational condi

tions of the gearbox, the profile corrections will not be optimal for all 

conditions. Therefore an optimal profile correction exists only for those 

situations where the operational conditions stay the same, which form a 

small percentage of practical applications. However, this does not mean 

that in all other cases profile corrections are useless. On the contrary, 

they are very useful because the vibration levels for tooth loads around 

the optimum load are still smaller then when no corrections are used. 

To ameliorate engagement and disengagements shocks, profile corrections 

have to be added to one or both gears. Normally both gears are being 

corrected on the tips of the teeth. When the pinion drives the wheel, the 

tip relief of the wheel ensures that the engagement shock will be weakened 

and the tip relief of the pinion will do so at the end of engagement. In 

Fig. 2.16 this is shown in the schematic model of the engagement shock. In 

practice, both profile corrections of pinion and gear can have different 

amounts of correction with different correction lengths t
1 

and t
2

• 

When the amount of correction •\ equals the tooth deflection, the tooth 

pair that comes into contact will do so in a smooth way. The length of 

correction in combination with the rotational speed of the gears will 

smoothen the engagement shock even further when they are long respectively 

slow enough. The same arguments apply for the disengagement shock. 
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Calculations of the time variable tooth stiffness have been performed for a 

number of profile corrections on the test gears of Chapter 5. These are: 

a t a t 
1 1 2 2 

1. uncorrected 0 0 0 0 

2. correction A 31 4,1 13 1,3 

3. correction B 40 4,8 15 1,4 

4. correction c 18 2,0 0 0 

5. correction D 30 5,2 37 6,0 

IJ.m mm IJ.m mm 

The gears with the profile corrections A, B, C and D are used for measure

ments as described in Chapter 5. The uncorrected gears are used as 

reference and are no part of the measurements since uncorrected gears are 

not representative when highly loaded precision gears are considered. 

Correction A has been proposed by 'the gearing industry' and thus is a 

result of experience of a gear. manufacturer. Correction B, C and D have 

been calculated with the computer program as described in the previous 

sections of this chapter. 

Correction B includes a helical profile correction of the pinion as well as 

tip relief of both gears. The tip relief of the pinion had to be the same 
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as the tip relief of the gear namely 40 IJlil. But due to manufactural 

inaccuracies this was not achieved. A too small tip relief was the result. 

It was not reground because it concerned the disengagement shock which was 

believed to be of minor importance. 

Correction C has only tip relief on the gear wheel. The amount of relief is 

about half as large as for the other gear pairs. The purpose of this 

correction is to investigate the influence on vibration and sound of too 

small a correction. 

Correction D is a so called three dimensional profile correction in the 

shape of triangles on both pinion and gear wheel tooth flanks. This makes 

it possible to create longer paths of engagement l
1 

and l
2

• This would be 

expected to result in the lowest vibration levels of all gear sets. 

With these five different gear sets calculations have been performed with 

the dynamic model as described before. Fig. 2.17 shows the small 

differences in tooth stiffnesses that occur for these profile corrections. 

From this is can be said that profile corrections have a very small 

influence on the tooth stiffness. 

Fig. 2.18 shows the influence of the applied torque on the angular velocity 

level at the tooth frequency. The uncorrected gear set has the highest 

level at any torque. This is what one can expect since the engagement 

shocks will be the greatest for this set. Gear set C shows an angular 

velocity level that almost equals the curve of the uncorrected set. Because 

of the very small amount of profile correction on set c. the angular 

velocity level decreases only a little. 

Set A and set B are showing better results due to a proper chosen correc

tions (\ and (\. Set B differs from set A in a positive way, due to an 

additional profile length correction and somewhat larger corrections. Here 

it must be stated that according to the computer program, the optimal 

amount of corrections should be 40 IJ1Il when a torque of 2000 Nm is being 

applied at the pinion. 

Curve D shows a complete different type of line. At low torques it 

approximates the uncorrected curve. This is due to the fact that the long 

correction length in combination with low tooth loads shortens the line of 

action. This leads to a smaller actual £tot which means that the average 

number of teeth in contact decreases. As the tooth force stays the same, 

the tooth deflections will increase and with it the engagement shock. 
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Fig. 2.19 shows the influence of the running speed on the angular velocity 

level. The level increases with increasing speed for torque loads up to the 

'optimum' torque of 2000 Nm. At this torque, the angular velocity level L 
w 

drops considerably as the running speed decreases. This shows the effect of 

the perfect profile correction for this particular torque load. At higher 

speeds this effect is less pronounced but the angular velocity level stays 

low for a large torque area. 

The effect of the correction length t of gear set D is shown in Fig. 2.20. 

The amount of correction is held constant for these calculations at 40 !Jill, 

which is about optimal as the tooth deflections are of this magnitude. The 

uncorrected gears are represented by t = 0 and they show the highest levels 

as would be expected. By increasing t the angular velocity levels decreases 

considerably. When t reaches 4 mm the curves show the previous mentioned 

dip at varying torque loads. At low torque loads the angular velocity level 

approximates the level of the uncorrected gears due to the imperfect 

meshing of the teeth. When the gears should be operated at a torque load of 

2000 Nm, a correction length of 5.5 mm appears to be the best choice. 

However, when the load will vary between 1000 and 2000 Nm a correction 

length of 4 or 5 mm should be used. 
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When the length of correction l is held constant at .5 rom, the influence of 

the amount of correction a can be seen from Fig. 2.21. Again, the uncorrec

ted gears (o = 0) show the highest angular velocity levels for any torque 

load. Any other a leads to an angular velocity level optimum at a torque at 

which the tooth deflections equal the correction. So, when the torque of 

the gears, i.e. the tooth force, is constant during operation, the amount 

of correction should be chosen properly to ensure a low angular velocity 

level of the gears. 

2.8 Summary 

In this chapter the vibration generation of a gearbox is analyzed. The main 

cause that makes the gears vibrate is the loaded Transmission Error. This 

T.E. is caused by the time variable tooth stiffness and the engagement and 

disengagement shocks. The variable tooth stiffness of spur gears, helical 

gears and double helical gears can now be calculated as function of the 

positions of the gears by using a newly developed computer program that is 

much faster than any of the Finite Element Method programs that are 

commonly used to achieve the same results. The tooth stiffness is a 

periodical function of time when the gears rotate at a constant speed. When 

running, the Transmission Error will excite the gearbox interior, i.e. the 

gears and shafts. To reduce these vibrations the tooth stiffness variation 

has to be smoothened as much as possible. This can be· done by applying a 

helix angle to the gear teeth, i.e. increasing the overlap ratio e~. When 

no helix angle is applied, i.e. spur gears with e~ = 0, the tooth stiffness 

will resemble a block function as is shown in this chapter. In contrast, 

helical gears have the advantage of a smooth take-over of the teeth which 

results in a much smaller variation of the tooth stiffness. When the 

overlap ratio e~ 2:: 0.8 the tooth stiffness amplitude is small enough to 

ensure this favourable effect. In contrast to what is found in the 

literature, an integer value of e~ is not necessarily required. 

The engagement and disengagement shocks are a result of the tooth geometry, 

the tooth load and the elasticity of the gear material. This makes the gear 

teeth bend under load which leads to an incorrect engagement of the teeth 

that come into contact. At the end of contact a similar imperfection will 

occur when the teeth separate. 

The engagement and disengagement shocks have been described mathematically 

in this chapter as part of a computer program for a dynamical model of the 
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gearbox interior. This computer program predicts angular velocity levels 

Lw(f) of the gears. The test gears of chapter 5 are used for illustrative 

calculations. From this it is predicted that proper profile corrections can 

decrease the angular velocity level considerably. The amount of correction 

6 is optimal when it equals the tooth deflections under load. The correc

tion length t over which the correction is applied can be varied as well. 

When this length reaches a certain value, the angular velocity level shows 

a minimum at a certain torque load, i.e. tooth force. This enables the gear 

manufacturer to optimize the gears when the operational conditions are 

known. 

With the help of the available computer programs it is now possible to 

calculate angular velocity levels Lw(f) of the gears that will be used as 

input for further calculations. The angular velocity level of the gears 

will be used to calculate the velocity level L (f) at the surface of the 
v 

gearbox housing and to calculate the resulting sound power level Lw(f) of 

the gearbox. 

The computational tool developed in this chapter is useful even when quan

titative data on other parts of the sound generation scheme of Fig. 2.1 are 

unknown or prove to be inaccurate. Besides for the calculation of L (f) as 
w 

a model input it can also be used to obtain optimum profile corrections for 

a certain tooth load or to calculate the force distribution at the teeth. 
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3 • VIBRA!l.'ION !l.'RANSFER TDOt1GH BEARINGS 
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3.1 Introduction 

In the literature many investigations have been made to calculate the 

bearing stiffness of rolling element bearings. White /3.4/ describes a 

method to calculate the radial stiffness of rolling element bearings. He 

concludes that the bearing stiffness is nonlinear with respect to load or 

deflection. Especially when the applied load is small, the stiffness is 

very nonlinear. Here, a slight increase in load will produce a large change 

in stiffness. At higher loads the effect of nonlinearity is less. When the 

applied load doesn't change too much, the nonlinear stiffness may be 

linearised in order to simplify further calculations. 

White /3.4/ also states that for a bearing with a relatively small clear

ance, the number of rolling elements present in the load zone at any 

instant has an insignificant effect on the bearing stiffness characteris

tics. Therefore, the bearing stiffness should not be affected by the 

changing numbers of elements rolling through the load zone during bearing 
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operation. 

Gargiulo /3.5/ presents formulas to approximate radial and axial bearing 

stiffnesses of different types of bearings. Ophey /3.6/ measured radial 

stiffnesses of ball bearings in the frequency domain. He concluded that the 

radial stiffness of a ball bearing can be calculated accurately with the 

methods as described in the above mentioned references. Kraus et al. /3.7/ 

presented a method for the extraction of rolling element bearings 

characteristics (stiffness and damping) under operating conditions. In 

essence, they came to the same conclusions and also found very small 

influence of rotor speed on bearing stiffness. Bearing stiffness varies 

very little between static and dynamic conditions. Thus it is sufficient, 

for practical purposes, to use the static stiffness when modeling the 

vibration transmission properties. 

Lim /3.8/ has shown that radial and axial bearing stiffnesses are not 

sufficient to describe the vibration transmission through bearings correct

ly. For example, a shaft connected with a bearing perpendicular to a casing 

plate with a force on the shaft in the plane of the plate, will not be able 

to cause bending waves in the plate according to the simple mathematical 

bearing model. However, in practice, the casing plate motion is primarily 

flexural. Lim introduces moment stiffnesses which can be used for analysis 

as well as design studies of rotating mechanical systems with multiple 

shafts and gear pairs or multi-staged rotors. He describes a complete 

bearing stiffness matrix in six degrees of freedom /3.1/. 

Fluid film bearings can be described mathematically in a similar way as 

rolling element bearings. The stiffness and damping coefficients for plain 

cylindrical fluid film bearings are widely published in the literature on 

rotor dynamics, see e.g. /3.9/, /3.10/, /3.11/ and /3.12/. Because of the 

need to validate these theoretical models of bearings, much work took and 

takes place on measurement of bearing stiffness and damping. Stiffness 

coefficients have mostly been measured by the application of static loads 

only /3.13/, but usually the damping coefficients are required too for 

rotor dynamic applications. This is also the case when computations for the 

vibration transmission through fluid film bearings are of interest because 

the vibration dissipation in fluid film bearings will not be negligible as 

is assumed here to be the case for rolling element bearings. This necessi

tates the application of a dynamic load to the bearing in order to measure 

the damping coefficients /3.14/. The major difficulty encountered in 
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obtaining accurate experimental results is that the equations needed to 

process the measured data are ill-conditioned, so that small inaccuracies 

of measurements can result in substantial differences in the observed 

values of stiffness and damping. 

Nevertheless, radial and axial stiffnesses and damping coefficients can be 

easily derived from graphs in the references mentioned. In contrast, 

literature for deriving the moment stiffness and damping coefficients is 

extremely scarce. Kikuchi /3.2/ and Mukherjee and Rao /3.3/ have created 

graphs for that purpose, but these are not widely used. Probably moment 

stiffness and damping coefficients are usually considered to be of 

negligible influence on rotor dynamic behaviour. However, analysis of 

vibration transmission through fluid film bearings requires the moment 

stiffness coefficients and possibly also damping coefficients in order to 

predict out-of-plane vibrations on a gearbox. In this thesis the graphs of 

Kikuchi and of Mukherjee and Rao will be used. 

3.2 Stiffness matrix of ball bearings 

In this section the theory according to Lim /3.1/ will be explained. This 

theory applies to deep groove ball bearings, angular contact ball bearings 

and thrust ball bearings. The theory for straight roller bearings and taper 

roller bearings will be explained in section 3.3. 

It is assumed that ball bearings have elliptical contacts between the inner 

race, rolling elements and outer race when loaded. The bearing stiffness 

matrix [K]bm can be calculated when the following kinematic and design 

parameters of the bearing are known. These are the unloaded contact angle 

a
0

, radial clearance rL, effective stiffness coefficient Kn for inner ring 

- single ball - outer ring contacts, angular misalignement, preloads and 

radius of inner and outer raceway groove curvature centre. 

The mean bearing displacements {q}T {o ,o ,o ,f3 ,f3 ,f3 } as shown 
bm xm ym zm xm ym zm 

in Fig. 3.1 are given by the relative rigid body motions between the inner 

and outer rings. The total bearing displacement vector is given as {q}b = 

{q\m + (q}ba (t} where {q}ba is the fluctuation about the mean point {q}bm 

during the steady state rotation. Accordingly one must consider time 

va~ying bearing coefficients. However in this analysis, such time varying 

bearing stiffness coefficients are neglected by assuming very small 

vibratory motions i.e. {q}ba << (q}bm' and high bearing preloads. 
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inner ring raceway 
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bearing centre line z 

Consequently, only the mean bearing preloads and displacements are included 

in the derivation of [K] . The basic load-deflection relation for each 
bm 

elastic rolling ~jdement is defined by the Hertzian contact stress theory 

(see for example /3.15/}, and the load experienced by each rolling element 

is described by its relative location in the bearing raceway. Furthermore, 

it is assumed that the angular position of the rolling elements relative to 

one another is always maintained due to the rigid cages. Secondary effects 

such as centrifugal forces and gyroscopic moments (see for example /3.16/} 

on the bearing are ignored as these effects are evident only at extremely 

high running speeds. Tribological issues are beyond the scope of this study 

and hence the analysis assumes bearings to be unlubricated. For this reason 

the bearing damping properties are assumed to be of the same order as the 

damping coefficient of the complete structure of which the bearing is a 

part. 
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In this section, the relationships between the bearing forces {F , F , 
xbm ybm 

Fzbm} and moments {Mxbm' 

bearing, and the bearing 

M } 
ybm 

transmitted through the rolling element 

displacements {q} 
bm 

as shown in Fig. 3 .1 will be 

derived. The mean applied loads at the shaft and the bearing preloads 

generate the mean bearing displacements {q}bm and loads {f) . 
bm 

These 

displacements {q} bm are used to derive the resultant elastic deformation 

8(~.) of the j-th rolling element located at angle ~. from the x-axis. From 
) ) 

the ball bearing kinematics shown in Fig. 3.1 o(~.l is 
J 

{ Aj A oj > 0 

o<~j l 
0 

[m] 
0 o. :s 0 

J 

' 
Aj I <o·l~j + (o * l 2. [m] 

rJ 

. 
<o > zj 

A
0
sin (a

0
} + <o> zj 

[m] 

* <o l "' A
0
cos (a.

0
} + (o) rj [m] rj 

( 3 .1) 

(3 .2) 

(3 .3) 

(3 .4) 

where A
0 

and Aj are the unloaded and loaded relative distances between the 

inner a i and outer raceway groove curvature centres. Note that o j :s 0 

implies that the j-th rolling element is stress free. The effective j-th 

rolling element displacements 

are given in Fig. 3.2 and Eq. 

in axial (o) and radial (o) . directions 
zj rJ 

(3.5) in terms of the bearing displacements 

<ol . 
ZJ 

a + r.{£3 sin(~.) - {3 cos(~.)} [m] 
zm Jxm J ym J 

(3. 5) 

[m] 

where r j is the radial distance of the inner raceway groove curvature 

centre. Eqs. (3.1) (3.5) in conjunction with the Hertzian contact stress 

principle /3.17/ yield the load-deflection relationships for a single 

rolling element. 

K an [N] 
n j 

(3 .6) 

where Qj is the resultant normal load on the rolling element, and is the 
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?Jiqwr,e 3. 2: 

R r. 
~"'xm J 

~ean.i.n.q ~ m. the~~ /3.1/. 

X 

effective stiffness constant for the inner race-rolling element-outer race 

contacts and it is a function of the bearing geometry and material proper

ties /3.18/. Note that the exponent n is equal to 3/2 for the ball type 

with elliptical contacts and 10/9 for the roller type with rectangular 

contacts. 

The loaded contact angle «j may alter from the unloaded position «
0

. The 

sign convention is such that «. is positive when measured from the bearing 
J 

x-y plane towards the axial z-axis as shown in Fig. 3 .1. For the ball 

bearing the loaded contact angle «j is determined by 

A
0
sin(«

0
) + (o) zj 

A
0
cos(«

0
) + (o)rj 

where (o) . and (o) . are given by Eq. (3 .5). 
ZJ rJ 

3.2.2 ~=~~!~g-~~!~~~=~~-~~~!~_[K]bm 

(3. 7) 

The proposed bearing stiffness matrix [K]bm is a global representation of 

the bearing kinematic and elastic characteristics as it combines the 

effects of z rolling element stiffnesses in parallel given by a > 0. 
j 
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First, the resultant bearing mean load vector {f)bm has to be ·related to 

the bearing displacement vector {q}bm· This can be achieved through vecto

rial sums Q (o ,/3 ; w = x,y,z and p x,y) in Eq. (3.6) for all of the 
j wm pm 

loaded rolling elements which lead to the following bearing forces {F } 
wbm 

and moments {Mwbm} as follows 

COS(IX.)cos(l/J.) } 
J J 

cos (IXj) sin (l/lj) 

sin (IX.) 
J 

[N] 

{3. 8) 

{::}· ~ 
zbm 

rjQ.sin(IX.) 
J J 

[Nm] 

Replacing Q. by Eq. (3.6) 
• J 

( o *) .I A . and cos (IX ) 
ZJ J j 

(o ) ./A. as can be seen 

and using sin(IXj) 

from Fig. 3. 1, yields the following explicit 
rJ J 

relationship between (f}bm and {q}bm for ball bearings. 

{ 

:xbm } 
ybm 

F 
zbm 

{ 

:xbm } 
ybm 

M 
zbm 

[N] 

{ 

sin(I/Jj) } 
-cos (1/J.) 

J 

0 

(3 .9) 

[Nm] 

Approximate integral forms of Eq. ( 3. 9) are often used instead of the 

summation forms to eliminate explicit dependence on 1/J., especially in the 
J 

case of only one or two degrees of freedom bearings as they are widely used 

in the literature. The explicit Eq. (3 .9) is used to define a symmetric 

bearing stiffness matrix [K] bm of dimension 6. The index b denotes the 

bearing and index m denotes the mean displacements, as it is assumed that 

{q} « {q} • 
ba bm 
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8F 
wbm 

8F 
wbm 

ao Bf;Jirn 
[K] brn 

irn 
w,i (3.10) x,y, z 

8M 8M wbrn wbm 

85. Bf;Jim J.rn 

Here each stiffness coefficient must be evaluated at the mean point {q}bm" 

Note that [K] bm is symmetric i.e. kbiw = kbwi 

Explicit expressions for the ball bearing stiffness are presented in Appen

dix D. All stiffness terms associated with the torsional degree of freedom 

{3zm are zero due to the fact that an ideal bearing allows free rotation 

about the z-direction. The coefficients kbiw are numerically computed after 

the mean bearing displacement vector {q}bm has been calculated. Eq. (3.9) 

has to be satisfied by {q}bm· This requires an iterative process, as the 

equations are nonlinear with respect to displacements. The Newton-Raphson 

method is chosen for its good convergence characteristic. To implement this 

method, Eq. (3.8) is rearranged as 

{ :: } { :~~}- ~ Qj{ :::::::::::::: } { : } 
H F j sJ.n (a. ) 0 

3 zbm j 

sin {t/1.) 
J 

-cos(t/J.l 
J 

(3 .11) 

where {Hk} are functions defined for computational reasons. Using Taylor's 

series, any function Hk in Eq. {3.11) can be expanded about the solution 

vector X = {q}brn as follows by neglecting second and higher order terms. 

k 1,2,3,4,5 (3 .12) 

The solution for the incremental vector oX can be obtained by setting 

Hk (X+5X) = 0 in Eqs. (3 .11) and {3 .12) which yields a set of linear 

algebraic equations. This vector oX is added to the previously computed 

vector X given by Hk(X) = 0 for the next iteration until the convergence 

criterion, say that oX is within a specified tolerance, is satisfied. 
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The numerical scheme starts with a guess for the bearing displacement 

vector {q}bm and a given load vector {f}bm. Usually, only a few iteration 

steps are required to satisfy the specified tolerance when the guessed 

bearing displacement vector {q}bm is good enough. For this purpose the 

Newton-Raphson method for nonlinear systems of equations can be used 

/3.191). 

3.3 Stiffness matrix of roller bearings 

Roller bearings can be divided into two groups, straight roller bearings 

and tapered roller bearings. However, the first group is a special case of 

the more general group of tapered roller bearings. As is shown in Fig. 3.3 

the contact angle «
0 

can vary between zero and 90 degrees. Straight roller 

bearings have a contact angle «
0 

= 0 or «
0 

= 90 degrees. From this point 

on, both groups of roller bearings are being referred to as roller 

bearings. 

3.3.1 ~~!~~~~~~-~~~!~-~~~~~~!~~-~~-~!~-~~:!~ 
It is assumed that roller bearings have rectangular contacts between the 

inner race, rolling elements and outer race when loaded and that the loaded 

contact angle «. remains relatively constant; «. !!! «
0

• Furthermore, the 
J J 

same assumptions are made as was done for the ball bearings in section 3.2. 

The relationships between the bearing forces {F ...... -' F , F } and moments 
""""'' ybrn zbrn 

r 

z 
bearing centre line 

iiiQwte 3.3: 

:Ro.Uett &ealUJlq. ~ /3 .1/. 
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{Mxbm' Mybm} transmitted through the roller bearing, and the bearing 

displacements {q)bm are derived in a similar fashion as was done in section 

3.2. The displacements {q}bm are used to derive the resultant elastic 

deformation a(~jl of the j-th rolling element located at angle ~j from the 

x-axis. From the roller bearing kinematics shown in Fig. 3.3 a(~jl is: 

{ 

(a) .cos(« l + (a) sin(«) 
r] 0 zj 0 

0 
(3 .13) 

The effective j-th rolling element displacements in the axial (a) . and 
Z) 

radial {a) . directions are given in Fig. 3.2 in terms of the bearing 
r] 

displacements {q}bm' 

(a) . a + r {fl sin(~) - fl cos(~.)} [m] 
ZJ zm j xm j ym J 

(3 .5) 

(a) = a cos(~) + a sin{~.) - r [m] 
rj xm j ym J L 

where rj is the pitch bearing radius of the roller bearing. Also, the 

Hertzian contact stress principle, Eq. (3.6), is used for each rolling 

element. The resultant bearing mean load vector {f}bm and the bearing 

displacement vector {q}bm are related to one another through vectorial sums 

Q (a , (3 ; w = x,y,z and p = x,y) for all the rolling elements. This 
j wm pm 

leads to the same bearing moments {Mwbm} and forces {Fwbm} as for ball 

bearings (Eq. (3.8)). This yields the following explicit relationship 

between {f}bm and {q}bm for roller bearings: 

{ ;: } ·. ~ { (aJ cos (a. l 
rj 0 

+ (o) .sin(« l }n{ 
ZJ 0 

cos(a.0 )cos(~jl } 

cos (a
0

) sin (1/tj J 

sin (a.
0

) 
zbm 

{ 
:xhm } = K sin(a ) 

ybm n 0 

M 
zbm 

z 

I r { (a) COS (IX ) 
j rj 0 

+ (o) .sin(a J )n{ 
ZJ 0 

(3.14) 

where (a) and (IS) are functions of {o , (3 } as defined by Eq. (3 .5) 
rj zj wm pm 

and the exponent n is equal to 10/9. The explicit Eq. (3.14) is used to 

define the symmetric bearing stiffness matrix [K]bm of dimension 6 in an 

analog way to the ball bearing of section 3.2. Explicit expressions for the 
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roller bearing stiffness matrix elements are presented in Appendix D. 

3.3.2 !~~~~~=~=~~-~~-~~~:~-~~=~~ 
The theory for roller bearings was derived in a similar way as for ball 

bearings. This is not completely correct. The load-deflection relationship 

(3.6} for a single rolling element is only valid when the resultant normal 

load Q. on the rolling element is taken into consideration. Ball bearings 
J 

have point contacts between inner race, ball and outer race which remain 

point contacts when loaded. Even when the actual positions of point contact 

move as a result of changing loaded contact angle« .. 
J 

Roller bearings have line contact between inner race, roller and outer 

race. The load distribution along the line of contact does not have to be 

uniform as is assumed when using Eq. (3.6). Under the assumption that each 

rolling element has a uniform load distribution, the elements do not have 

any resistance against tilting. This can be shown by looking at a straight 

roller bearing with contact angle a
0 

= 0 degrees. For this bearing Lim's 

theory produces a stiffness matrix in which the majority of the stiffness 

elements is equal to zero. Only k , k and k are nonzero. This would 
bxx bxy byy 

suggest that the straight roller bearing can freely rotate around all three 

axes, which is not the case. 

The moment stiffnesses around the x and y-axis are of great importance to 

the vibration transmission through roller and tapered bearings. Therefore, 

the theory has to be altered by introducing a line contact over the rolling 

elements with non-uniform load distributions. This will result in a (more 

~omplex) new formulation of the load-deflection relationship (3.6). 

The assumptions made are first of all that the rolling elements are 

cylindrical which is not completely true when tapered roller bearings are 

taken into account. The inner and outer ring are supposed to be rigid when 

displacements along the roller are calculated. This means that the 

cylindrical roller elements will become tapered when submitted to bearing 

displacements {q}bm" 

Fig. 3.4 introduces the coordinate a along the line of contact of a rolling 

element. Each element of a roller bearing has length t. The coordinate a is 

defined between -l/2 and +l/2. The centre of the unloaded roller element m 

coincides with a = 0. The unloaded centre line lies under the pressure 

angle a
0 

and will rotate over r/2 when loaded, where 
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loaded 
centre line 

unloaded 
centre liflf? 

~ lq.utz.e 3 . 4 : 

:K~ ae a ttollett dement. 

r = fJ sin ( 1/1.) 
Xlll J 

fJ cos (1/1.) [rad] 
ym J 

(3 .15) 

is the angle over which the inner ring rotates while the outer ring stands 

still, as can be seen from Eq. (3.5). The centre m of the loaded element 

has moved to m' according to Eq. (3.13} over a distance oCI/I.l in a direc-
J 

tion perpendicular to the unloaded centre line. At a distance a from m' the 

roller element will have moved o(l/lj,a) perpendicular to the loaded centre 

line. This is the displacement we are looking for. 

From Fig. 3.4 it follows: 

o(l/1. l - a·sin Cr/2) 
J 

cos <rt2l 
[m] 

where o(l/l.l can be obtain by Eqs. (3.13) and (3.5). 
J 

( 3 .16) 

The force distribution which satisfies o(l/lj,a) can be calculated by intro-

ducing the force-displacement formula which is also used in Chapter 2 to 

obtain the Hertzian displacements on gear teeth. 

a tn{ 
t

1
t

2
nE(8t) 

) } [m] (3 .17) 
'R'E(8t) 
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where at is the length of the rolling element that belongs to position a 

and F is the force at this position; F{l/l .• al. As t and t
2 

where set to 
J 1 

halve the tooth width in Chapter 2, they are set to halve the roller 

diameter here. From Eq. (3 .17} it is obvious that, with given displace

ments, the force F has to be calculated iteratively. For this purpose the 

Newton-Raphson method is used. 

In this way, from a mean displacement vector (q}bm' the force distribution 

over all rolling elements can be calculated. These force distributions are 

correct when the total forces and moments on the complete bearing are 

(almost) the same as the given load vector { f} bm. For this purpose the 

forces and moments on the bearing have to be calculated for each force 

F(I/J.,al. 
J 

Fig. 3.5 shows the force Fat position a of element j. This force acts upon 

the bearing centre and can be rewritten as F , F , M and M • For the 
X y X y 

calculation of the moments Mx and MY the length L of Fig. 3. 5 has to be 

known. From this Figure it follows: 

L (r +(~) ./2)sin(a. +',Y/2) - g- a [m] 
jm ZJ 0 

(3.18) 

or: 

L (r. +(6} ./2)sin(IX +',Y/2) - {~) ./2cos(a. +',Y/2) -a [m] 
)m ZJ 0 Z) 0 

(3 .19) 
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Now all ingredients are known to calculate the total resulting forces and 

moments which act upon the bearing centre. For this purpose a summation has 

to be made over all rolling elements and all positions a along the contact 

of each rolling element. The stiffness coefficients of roller bearings can 

be calculated in the same manner as is done for the ball bearings, namely 

by changing the mean displacement vector {q} a little so that aF. ;ao. 
qbm 1 1 

can be calculated as Eq. (3.10) shows in the case of ball bearings. 

Experiments have been carried out to obtain the elements of the stiffness 

matrix of a rolling element bearing. For this purpose an experimental setup 

was made as is shown in Fig. 3.6. This setup consisted of a shaft with one 

ball bearing of which the outer race was connected to a rigid housing. The 

bearing preloads were applied at three points of the shaft by the use of 

long (thus relatively low stiffness} piano strings which were lead over 

pulley-blocks. The force was applied at the ends of the strings with 

different masses. In this way any given load vector {f}bm could be applied 

to the bearing. 

The shaft and the bearing can be modeled as a one-mass-spring system with 

~iq.wte 3 . 6: 

F2 

F:force 

a= acceleration 

8a;perUmental Mdup &art the deten.mina.ti.o .ol the ~ ma.tru.a; .o1 a 

ltOULnq, element ~-
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five degrees of freedom. The rotational stiffness around the shaft axis is 

assumed to be zero. The stiffness matrix can be calculated when all 

transfer functions are measured. Each transfer function describes the 

relationship between a displacement or rotation of a certain degree of 

freedom and an applied force spectrum at another degree of freedom. This 

results in a 5x5 matrix of transfer functions which all have to be 

measured. 

The calculation of the stiffness matrix out of these measured transfer 

functions is based upon the equation of motion of the shaft-spring system: 

u (3. 20) 

The diagonal mass matrix M contains the mass m and the moment of inertia I 

of the shaft: 

M = diag.{m,m,m,I,I} (3.21) 

The damping matrix~ contains the damping coefficients which will be 

assumed unknown just like the stiffness coefficients of the stiffness 

matrix K . The displacement vector qT {x,y,z,~ ,~) and the force vector 
X y 

u will be measured. The transfer function matrix H is defined as the 

matrix containing all transfer functions H = q/u and can be expressed as 

follows: 

H {3.22) 

When the inverse of this theoretical transfer matrix is multiplied with the 

experimental transfer matrix He one should get the unity matrix I as an 

answer. However, the experimental transfer matrix will contain errors so 

that the result of the multiplication will be: 

I + S ( 3. 23) 

where S is a matrix containing the errors. The matrices K and B will 

have to satisfy this relationship with a matrix S which has to be as 

small as possible. This problem will be solved by using a minimization 

scheme based upon the least squares method. For this purpose Eq. (3.23) is 

divided into a real and imaginary part: 

65 



[ He + j He ] · [ -1i M + jw B + K ] 
-Re Im - I + S Re+ j S Im 

This can be written as: 

-: :j. [: l = [ 

or: ( A X - E ) R ---

with: A 
[ .. -· .. ] -Re -Im 

He W He ' X 
-Im Re 

[~· "'""··~] w2He M and 
-Im 

E 

I+S +WH M 
2 e l 

R 

-Re -Re-

S + w2 
He M 

-Im -Im-

[: l 
[ : ··] 
-Im 

{3 .24) 

(3 .25) 

(3.26} 

The unknown matrix X has to be calculated by minimizing the following 

expression: 

{3.27) 

which results in: 

{3. 28) 

This expression must be valid for every spectral line of the transfer 

matrix. By summing Eq. {3.28) over all angular frequencies w it follows: 

(3.29) 

or: A X = R 
tot- -tot 

(3 .30) 

so that the stiffness matrix and the damping matrix can be found as follows: 

[ : ] X A- 1 R 
-tot -tot 

(3 .31) 
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These experimental matrices are most likely not symmetric matrices which of 

course they should be. The matrices are made symmetric by putting the mean 

values of the coefficients k .. and k .. (bi. and bj
1

) at their places in the 
~J J ~ J 

matrices. In this way an experimental stiffness matrix Ke will be obtained 

which can be compared with the analytical stiffness matrix. 

Measurements were carried out to obtain the 25 frequency response functions 

of the experimental transfer matrix He. The frequency range of interest 

was from 0 Hz to 2500 Hz which contained spectral lines with Af = 2.9 Hz. 

For the estimation of the stiffness matrix Ke not all spectral lines were 

taken into account. Only those spectral lines which were located at peaks 

of He were used because the other spectral lines are of relatively minor 

importance to the summation of Eq. (3 .29). Nevertheless, a satisfying 

result of the calculations of the stiffness and damping matrices could not 

be obtained with the method described. Possibly the least squares method 

needs further improvement or has to be replaced by a better method. 

However, the measured frequency response functions provided five natural 

frequencies of the shaft-bearing test rig. The natural frequencies that 

belong to the rotational eigenmodes were 145 Hz and 132 Hz for the rota

tions around the x-axis and y-axis respectively. The equation of motion 

(3 .20) with the calculated bearing stiffness matrix resulted in natural 

frequencies for these directions of 152 Hz and 120 Hz respectively. This 

gives a strong indication that the proposed theoretical model predicts the 

moment stiffness coefficients, which are diagonal elements in the stiffness 

matrix, sufficiently accurate. Therefore, it is judged that the use of the 

theoretical model for the prediction of the six-dimensional bearing 

stiffness matrix in Chapters 4 en 5 is justified. For the time being it can 

only be concluded that the experimental identification method of the 

bearing stiffness matrix is not yet complete and needs further refinement. 

3.5 Stiffness and damping matrices of fluid film bearings 

The stiffness and damping matrices of radial fluid film bearings has been 

subject to investigations all over the world. Especially the radial stiff

ness matrix with four stiffness elements (k , k , k and k has been 
xx xy yx yy 

widely published (/3.9/, /3.10/, /3.11/, /3.12/ and /3.20/). They deduced 

the oil-film forces from the basic Reynolds equation in order to get the 

linearised stiffness coefficients. This is done under the assumptions that 

the bearings are sufficiently short to ignore one term of the Reynolds 
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equation. Also, it is assumed that there is no pressurized oil supply to 

the bearings and that the viscosity is constant throughout the lubricant 

film. The results are conveniently represented in graphs with dimensionless 

parameters as function of the static eccentricity ratio n
0

. Figs. 3.7 and 

3.8 give examples from /3.9/. 

In Figs. 3.7 and 3.8 the dimensionless stiffness coefficients and the 

dimensionless damping coefficients are presented. They are made 

dimensionless by multiplying the stiffness coefficients k by C/F and the 
ij 

damping coefficients j by ~/F. Where C is the bearing clearance, w is 

the angular velocity of the shaft and F is the radial force on the fluid 

film bearing in the x-direction. 

The radial and axial stiffnesses and damping coefficients of fluid film 

bearings can be easily derived from these figures. However, as said before, 

literature for deriving the moment stiffness and damping coefficients is 

extremely scarce. Fig. 3. 9 shows the graphs for the moment stiffness 

coefficients of fluid film bearings according to Kikuchi /3 .2/. Here the 

coefficients are made dimensionless by multiplying the moment stiffness 

k
11 11 

by 60C/(FL
2

) and the damping coefficients b
11 11 

by 
i j i j 

coefficients 

In the publication of Mukherjee and Rao /3.3/ these coeffi-

cients were made dimensionless bY using the factors C/ (FLD) and ~/ (FLD) 

respectively, where D is the diameter of the bearing. Since the graphs of 

Kikuchi are based upon a bearing with D/L 40/24, this means that the 

graphs of Kikuchi have exactly 100 times higher stiffness and damping 

coefficients. Nevertheless, when for this factor is corrected both 

investigators come to the same results. 

The Figs. 3.7 through 3.10 were used to obtain the stiffness and damping 

coefficients of the fluid bearings which were used in the test rig of 

Chapter 5 of this thesis. The fluid film bearings were only used for the 

double helical gear set and had the following proportions: 
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pinion wheel 

D 80.250 95.200 rom 
L 56 70 rom 
Ar 125 100 IJlll 
n 1500 500 rev/min 
W=2'1m/60 157.1 52.4 rad/s 
F 20763 20763 N 

0 
71(60 C) 0.049 0.049 Nsm 

-2 

h 22 17 IJlll 0 

e=Ar-h 
0 

103 83 IJlll 

n
0
=e/.6r 0.82 0.83 

With resulting stiffness matrices: 

0.11 0.06 0 0 0 0 
0.01 0.02 0 0 0 0 

K K 
F 0 0 0 0 0 0 

!!! -· pinion wheel c 0 0 0 0. 03 ·LD -0.02·LD 0 
0 0 0 -0.02•LD 0.22·LD 0 
0 0 0 0 0 0 

and damping matrices: 

Note: 

70 

0.09 0.02 0 0 0 0 
0.02 0.01 0 0 0 0 

B 
F 0 0 0 0 0 0 

B !!! --· pinion wheel we 0 0 0 0.09·LD -0.02•LD 0 
0 0 0 -0.02•LD O.Ol·LD 0 
0 0 0 0 0 0 

In Chapter 5 only the stiffness matrices will be implemented in 

a Finite Element Method model of tbe test gearbox with the double 

helical gears. The damping matrices can not be implemented in the 

finite element analysis which uses the modal analysis approach in 

the frequen~ domain. Because this approach was used in the FEM 

analysis of Chapters 4 and 5, the damping matrices have not been 

incorporated. However, experiments on the transmission of 

structure-borne sound via fluid film bearings have shown that 

they may dissipate more vibration power than that they transmit 

for excitation~ a shaft in bending, see /3.21/. Therefore, this 

approach may appear to be not appropriate when fluid film bearings 

have to be modeled. 



The differences in vibration transmission through bearings will be investi

gated in Chapter 5 by replacing the fluid film bearings by roller bearings. 

This will be done in the FEM calculations and will be investigated experi

mentally as well. However, the FEM calculations could only be performed 

when symmetrical matrices were used for numerical reasons. The stiffness 

matrices of the fluid film bearings are not symmetrical (k ;1: k 
xy yx 

and 

therefore they had to be made symmetrical in order to use them in FEM 

calculations. This is done by taking the mean value of k and k in these 
xy yx 

matrices. Together with the not included damping matrices in the FEM model 

it might seem useless to perform these calculations. However, they will be 

performed because it represents the present-day state of the art. 

3.6 Summary 

The stiffness matrix of a rolling element bearing can be calculated with 

the theory presented in this chapter. The stiffness matrix contains not 

only radial and axial stiffness coefficients but also has moment stiffness 

coefficients. Generally speaking, until very recently, in the literature 

these moment stiffness coefficients are not used when dynamical calcula

tions are performed on rotor-bearing structures. However, these moment 

stiffness coefficients have to be considered to be of great importance when 

vibration transmission to housings is of interest. 

The theory of this chapter makes it possible to calculate the complete 

stiffness matrix of rolling element bearings such as ball bearings, angular 

contact bearings, roller bearings and tapered roller bearings. The calcula

tion method of Lim /3.1/ is used for this purpose. However, it has been 

improved for the cases of roller bearings and of tapered roller bearings. 

The stiffness matrix of a ball bearing has been calculated as an example of 

this calculation method and has been partially verified experimentally. The 

predicted rotational natural frequencies of a shaft-bearing test rig proved 

to be in very good agreement with the measurements. Therefore, it could be 

concluded that the moment stiffness coefficients of the bearing, which are 

diagonal elements in the stiffness matrix, were correctly calculated. 

As will be seen later on in this thesis, especially these moment stiffness 

coefficients of the bearing will prove to play an important role in the 

vibration transmission from gears to gearbox housing. 
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The stiffness and damping matrices of fluid film bearings have been taken 

from the literature. However, literature for deriving the moment stiffness 

and damping coefficients is extremely scarce. The stiffness matrices of the 

gear test rig of Chapter 5 that were presented for illust.rative reasons 

proved to be unsymmetrical. In the work of Chapter 5 they were made 

symmetrical to include them in our FEM modeling. However, it is impossible 

to implement the damping matrices in these FEM models because only one 

damping factor can be assigned for the whole structure. This is a result of 

the method that was used for the FEM calculations of transfer functions. 

Perhaps another calculation method should be used which is able to imple

ment the damping matrices of the fluid film bearings in the FEM modeling 

correctly. 
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4. VIBRATIONAL BBHAVIOUR AND SOUND RADIATION OF GBARBOX HOUSINGS 

~lni.te li:lement Af.ethad (FEM) caf.cut.atW.no. haw:! &eert ~ OJ1, a ~ 
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v 

the ~ hcu.uWI.q ~ u., catcu1,a;ted. 

~M .o.ou.nd fUld1ati.,an iiuj the ~ hcu.uWI.q a ~ ~ mod.eUn.q, wUt 

&e~. 

4.1 Introduction 

In the previous chapters the generation of vibrations at the gear mesh 

(Chapter 2} and the vibration transmission properties of bearings (Chapter 

3) have been investigated. In this chapter the modeling of two main blocks 

in the vibration and sound transmission chain are investigated (see Fig. 

4 .1} . First the vibration transmission in the gearbox housing will be 

studied by the use of the transfer function TF. It will be defined as the 

ratio of the surface-averaged mean square velocity of the housing and the 

mean square angular velocity of the gears or alternatively the mean square 

force applied on the housing or gear mesh. Next the modeling of the sound 

radiation from the housing will be studied. This will be defined as the 

ratio of the radiated sound power and the surface-averaged mean square 

velocity of the housing surface. 
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The main purpose of this chapter is to investigate whether FEM calculations 

can predict these velocity levels accurately enough to be used as a design 

tool for low noise gear transmissions. This will be studied by calculating 

and measuring eigenfrequencies and their vibration modes of simple struc

tures that look like gearbox housings and of a scale model gearbox. Also 

comparisons will be made between computed and measured forced vibration 

responses. 

The gearbox housing can be modeled as a transfer system between input 

(vibrational level Lw(f) at the gear mesh of the scale model gearbox or 

force level (f) at a certain position of the box-like structures) and 

output (surface-averaged mean square velocity on the housing surface 

L (f)). The transfer function of the structure is frequency dependent and 
v 

can be determined by either calculations or by experimental techniques. 

Given the size and the excitation frequencies of many gearboxes, the 

dynamic behaviour of the gearboxes which determines the noise production is 

often dominated by a rather small number of vibration modes. Therefore, 

computational and experimental methods which take this modal behaviour into 

account properly are more appropriate than methods such as the Structural 

Energy Analysis (SEA), which ignore a detailed modal modeling. Therefore, 

the modeling methods that will be considered are the Finite Element Method 

(FEM) for computational purposes and Experimental Modal Analysis (EMA) for 

experimental purposes. If the data resulting from these methods turns out 

too detailed for design purposes, appropriate data reduction can easily be 

obtained. 

The Finite Element Method is a numerical tool that can be used at an early 

stage in the design process of a gearbox. In contrast, the Experimental 

Modal Analysis (see Chapter 1) has to be performed on an existing gearbox 
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housing. From the design engineer point of view it will be clear that FEM 

is preferable to EMA. FEM gives the possibility to perform numerical expe

riments without the need for a physical model. The question rises to what 

extent and for what purposes the results of FEM calculations will be valid. 

The FEM model has to be as complicated as necessary to describe the dynamic 

behaviour of the structure properly. The designer has to know how far he 

has to go with modeling of details. A small but incomplete FEM model will 

result in acceptable computation time but may provide useless answers. A 

very detailed model might give accurate answers but would probably require 

an immense computer memory and impractical long calculation times. 

In the literature extensive experimental studies were undertaken (see e.g. 

/4.1/ and /4.2/). However, attempts to correlate these tests with computa

tional predictions were limited. One reason may be the complexity of the 

housing geometry involved, which makes the use of FEM complex and expen

sive. Some examples for gear transmissions are reported in /4.3/ and /4.4/ 

which illustrate the complexity of the proper use of FEM in gear transmis

sion technology. However, they use very simple FEM models with no interior 

shafts nor gears and often the gearbox housing plates are modeled separate

ly. Therefore, the use of FEM analysis as a design tool for low noise gear 

transmissions is still limited and should be investigated more thoroughly. 

This is the main intention of the work following in this chapter. 

In this chapter a compromise will be sought between simplicity and size of 

the FEM models and the expected accuracy of the results. Modeling aspects 

will be studied by using a step by step approach starting with a very 

simple (gearbox-) housing model. This approach results in FEM models with a 

size that can be analyzed within acceptable time limits and still provide 

reliable answers. The final step in this chapter using FEM modeling is the 

investigation of a complete gearbox with geared transmission and bearing 

stiffness matrices. But before testing the reliability of FEM for such a 

complex structure, the calculation method will be evaluated for some 

simpler structures. 

This is done by starting with a simple box-like housing without any 

bearings or shafts. After comparison between the calculation and Modal 

Analysis measurements on the simple model, the next step is taken. A 

housing which consists of two box-like parts bolted together is then 

subjected to investigation. After that, a more complex gearbox scale model 

is taken as study object, without and with gearbox interior elements. 
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The sound radiation block of Fig. 4.1 will only be modeled for L (f) data 
v 

summed up over 1/3-octave bands which usually contain several eigenfrequen-

cies of vibration modes of the gearbox. Approximate data for Lw(f)-Lv(f) 

will be used as is common practice in SEA applications. The rationality of 

this approach will be discussed in section 4.7. 

4.2 Unsupported simple box-like structure 

The frequency range of interest in the FEM calculations was set to 0 up to 

4 kHz. This frequency range is determined by the spectrum of the angular 

velocity level Lw(f) of a gear transmission which can be calculated using 

the method described in Chapter 2 of this thesis. This vibration spectrum 

contains the tooth frequency and its higher harmonics. 

The FEM calculations provide frequency response functions which can be 

highly dependent on the structural behaviour, i.e. eigenfrequencies and 

their vibration modes. To investigate the practical value of FEM calcula

tions for designing low noise gearboxes this method is applied to a simple 

(gearbox) housing. 

This structure consists of no more than five plates with thickness of 8 mm 

and a foot of 15 mm thickness that are welded together. This gearbox 

housing should rather be called a box model as preparation of modeling more 

complex housing structures. Fig. 4.2 shows the dimensions of the housing. 

The housing has no bottom in order to be able to bolt two of these housings 

together for the purpose of calculations and measurements on a more complex 

structure, for which the results will be presented later in this chapter. 

To exclude any uncertainties in boundary conditions the housing was unsup

ported by putting it on soft rubber elements. A more stiff support of the 

housing would introduce the problem as to how to model it in the FEM calcu

lations. This will be done in the next section of this chapter. The FEM 

calculations were performed using 647 shell elements. The bending wave-

_ length of a plate of the same dimension as the top plate and at a frequency 

of 4000 Hz was used to choose the mesh dimensions. The model has at least 

four elements within one wavelength at 4000 Hz, by which a good visual 

presentation is guaranteed at any eigenfrequency of the structure so that 

they can be distinguished when modal analysis results are available. 

In the frequency range up to 4000 Hz, 35 mode shapes were calculated /4.5/ 

apart from six rigid body modes at eigenfrequencies of 0 Hz. A few mode 
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shapes are shown in Fig. 4.3. The eigenfrequency of 641 Hz is the lowest 

non-zero eigenfrequency. All examples in Fig. 4.3 show plate-like vibration 

modes. 

For experimental usage two identical box-like structures were made 

according to Fig. 4.2. For both gearboxes model analysis techniques have 

been used to determine their modes and eigenfrequencies. In both cases 30 

modes were found in the frequency range up to 4000 Hz. The other 5 eigen

modes were not found in the modal analysis which is possibly due to the 

fact that the position of the accelerometer coincided with a nodal line of 

zero vibration. By comparing the eigenfrequencies of the corresponding 

modes of these two box-like models it turned out that the differences are 

very small, within 1 percent. From this it can be concluded that the manu

facturing of these simple structures had no noticeable influence on the 

measured eigenfrequencies and modes. 

The degree of agreement between the numerical (FEM) and the experimental 

eigenfrequencies is shown in Fig 4.4 /4.6/. The mode shapes were compared 

with each other and the corresponding frequencies were plotted against each 

other in this figure. The mean relative difference between calculated and 

measured eigenfrequencies is 5 percent which is very acceptable. Hence, the 

Finite Element Method is an accurate tool in predicting modes and eigen

frequencies of this simple, unsupported box model. 
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The following point that will be considered is whether the FEM is able to 

predict transfer functions accurately as well. For a real gearbox this 

transfer function will be defined as the surface-averaged mean square 

velocity of the housing divided by the mean square angular velocity w2 (f) 

at the input. However, the simple box-like structures which contain no 

gears will be excited by a force spectrum, therefore the transfer function 

TFF(f) is written as: 

lOlog( F:;fl ) = 

0 

(4.1) 

where we use v
0 

-8 5 · 10 m/ s and F 
0 

1 N. 

Other definitions are possible as well, but for the purpose of this study 

the surface-averaged mean square velocity is defined as the rssponse 

quantity. 

To investigate the utility of FEM for predicting the transfer function, a 

first validation was made for the simple box-like structure of Fig. 4. 2. 

The excitation force was applied at the top plate for one validation and 

was applied at the front plate for another. The velocity level L (f) was 
v 

calculated by averaging the computed v
2 

(f) over the housing area. The 
rms 

values of v2 (f) were computed at equidistant frequencies (~f = 4.88 Hz). 
rms 

To model the damping, decay times T
60 

on the box were measured for every 

1/3-octave band which contains eigenfrequencies. The decay time is defined 

as the time in which the root mean square acceleration response decreased 

60 dB after switching off a vibration exciter /4.7/. This estimation method 

was practical thanks to the low damping of the structure (i.e. long T
60

): 

2.2 
(4.2) l) 

f T 
band 60 

On the basis of the measurements the loss factor l) for the calculations of 

the forced response was set at 0.0026 for the 500 Hz 1/3-octave band and 

decreased to l) = 0.0010 for the frequency band of 3150Hz /4.8/. 

The computational predictions of the forced velocity level were carried out 

taking into account the responses of various collections of nodes. The 
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numbers of nodes that were used were respectively 18, 36, 48 and 94 to find 

a convergency point for the results. This proved to occur for 36 nodes. For 

the experimental determination of (f) 166 measurement points were used. 

Now, in contrast to the results in Fig. 4.4 less good agreement is seen 

between calculations and measurements in Fig. 4.5. At low frequencies the 

1/3-octave bands contain only one or none eigenfrequency of the housing. It 

can be seen that for these low frequencies the comparison between measure

ment and calculations is not satisfactory. From 1000 Hz on the measurements 

and calculations are in better agreement. 

In bands where no resonances are present the computed results are under

estimations. This might be caused by neglecting the modes with eigen

frequencies above 4 kHz. The rigid body modes determine the mass-like 

behaviour at low frequencies. The high frequency modes may contribute to 

the local deformations in frequency bands where resonant modes are lacking. 

However, the overall response is determined by the peaks and not by the low 

level bands so that these deviations may turn out to be acceptable. In the 

band of 630 Hz where one resonance is present a deviation of 8 dB occurs 

when the force is applied at the front plate of the structure. The reason 

is unknown. Also the 2500 Hz 1/3-octave band of Fig. 4.5-a shows a 
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remarkable difference between calculation and measurement. This may be due 

to the fact that the number of vibration modes in this frequency band for 

FEM is different than for EMA as can be seen in Fig. 4.4 where two dots are 

far away from the ideal line. 

The Finite Element Method is thus a reasonably reliable tool for predicting, 

modes, eigenfrequencies and velocity levels for simple, unsupported box

like structures as the one in this section in cases that the frequency 

bands contain at least one eigenfrequency. The only parameter that has to 

be estimated or measured accurately is the loss factor of the structure. 

When this parameter is known, the results of FEM calculations of the velo

city levels might be acceptable when the structure is excited at frequency 

bands containing eigenfrequencies. If octave bands are used instead of 

1/3-octave bands somewhat better results will be obtained since the number 

of vibration modes per band will increase. However, octave bands give less 

information about the frequency dependency of the dynamic behaviour of the 

structure, This is why 1/3-octave band results are used in this thesis. 

From the designers point of view the results can often be presented in 

octave bands. In many practical applications of gear transmissions the 

running speed and thereby the tooth frequency will vary considerably. Then 

the strong frequency dependent vibration transfer function TFF(f) = Lv(f)

LF (f) calls for the use of larger frequency bands to obtain averaged 

results of L (f). On the other hand when the velocity levels L (f) of a 
v v 

gear tra~smission operating under a constant speed is of interest, the use 

of narrow frequency bands has to be preferred. 

81 



4.3 Supported simple box-like structure 

In the previous section the reasonable accuracy of FEM predictions for 

dynamical behaviour was shown for the case of the simple (gearbox} housing 

without any boundary conditions. However, in practice gearboxes make 

contact with the surrounding world by bolting them to a supporting 

structure. The question of how to model these bolted joints of gearbox 

housings in the FEM analysis is the topic of investigation described in 

this section. 

For this purpose the simple gearbox housing was bolted to a large frame 

with eight bolts. Experimental Modal Analysis was performed and FEM 

calculations were carried out using three different boundary conditions for 

the gearbox feet. For all three boundary conditions the nodes at the 

positions of the eight bolts were fixed in all six degrees of freedom. The 

differences followed from the boundary conditions for the other element 

nodes of the bottom flange: 

1) no kinematic constraints 

2} all remaining node motions were suppressed in normal direction 

3} all remaining node motions were suppressed in all six degrees of 

freedom 

The first boundary condition also allows free movement of the bottom flange 

perpendicular to the joint except at the bolts. This is not correct in 

practice since the frame to which the gearbox is mounted restricts this 

movement. But on the other hand the other two boundary conditions are 

possibly too restrictive for this movement. The third boundary condition 

restricts the movements of the bottom flange in all directions which will 

lead to higher eigenfrequencies of the gearbox housing. Whether or not 

these three different boundary conditions have great influence on the 

calculated eigenfrequencies of the structure can be seen in Fig. 4.6. Of 

the 29 calculated eigenmodes in the frequency range up to 4000 Hz only 11 

modes could be identified from the measurements. The mode shapes of these 

frequencies were compared to obtain Fig 4.6 from which it can be seen that 

the differences between the three boundary conditions used in the FEM 

analysis are small. It should be noticed that two eigenfrequencies almost 

coincide at 1167 Hz and 1176 Hz. Most of the calculated eigenfrequencies 

are somewhat higher than the measured ones, probably due to a slight over

estimation of the stiffness in the FEM model. The mean differences compared 
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to the measured frequencies are 4, 6 and 5 percent respectively for the 

three boundary conditions. From this it may be concluded that all three 

boundary conditions are equally good. 

For further calculations the third boundary condition will be taken. Since 

the differences between the three are very small this choice was made 

because the first and second set of boundary conditions showed for unknown 

reasons a few zero energy modes {or hour-glass modes /4.9/). 

For the calculation of the velocity level Lv(f) the frequency range of 

interest is from 0 to 4000 Hz, where 29 eigenfrequencies are present. The 

loss factor ~ was estimated by using some modal loss factors resulting from 

the EMA on the gearbox housing. The decay time measurement method of the 

previous section could not provide accurate estimates due to too short 

decay times T
60 

which resulted after the impact hammer excitation. It 

turned out that a frequency independent damping coefficient ~ (= ~/2) of 

0.002 had to be used in the FEM calculations /4.8/. This is a somewhat 

higher damping coefficient than which was used in the previous section 

where the s~cucture was unsupported. 

The resulting velocity levels for two excitation points are presented in 

Fig 4. 7. These two excitation points are the same as in the previous 

section, i.e. at the top plate and at the front plate. The figure shows a 
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good resemblance between the calculated and measured levels, especially for 

the higher frequency bands where more eigenfrequencies per band are 

present. When octave bands are· used instead of 1/3-octave bands, the 

results for the 1kHz-band and the 2 kHz-band are very good. However, the 

500 Hz-band still shows large differences due to the fact that no vibration 

modes correspond with eigenfrequencies in this frequency band. Neverthe

less, this is not very important since the overall velocity level L (f) is 
v 

dominated by the higher frequency bands which contain resonant modes. From 

this it can be concluded that frequency bands without eigenfrequencies will 

give less good predictive results, possibly because the FEM modeling 

contains no eigenmodes above 4 kHz which are responsible for the local 

deformations. It can also be concluded that the uncertainty about the 

computed eigenfrequencies of the vibration modes recommends the use of 

1/3-octave bands or octave bands. 

The Finite Element Method is therefore a good tool for calculating velocity 

levels of simple rigidly mounted gearbox housings. The support can be 

modeled in a rather simple way by restricting all six degrees of freedom at 

the nodes of the housing FEM model that make contact in the joint zone. 

However, the FEM predictions of forced responses can only be reliable when 

realistic damping factors ~ are known. 
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4.4 Two assembled box halves 

Normally speaking, a gearbox housing is bolted to a frame as discussed in 

the previous section. However, this is not the only bolted joint of a 

gearbox housing. The majority of the industrial gearboxes consist of a 

lower and a upper gearbox housing part which are bolted together. In order 

to know the influence of these joints on the FEM calculation accuracy, two 

identical simple gearbox housings of sections 4.2 and 4.3 were bolted 

together at their bottom flanges. This assembly was dynamically free from 

the surroundings and in practice realized by putting it on soft rubber 

elements. It was used for measurements and calculations of modes and eigen

frequencies. Due to the larger dimensions of this gearbox assembled 

structure, the number of eigenfrequencies in the frequency range up to 4000 

Hz turned out to increase significantly compared to that of the separate 

structure discussed before. For computational reasons it was decided to 

look at a smaller frequency range of 0 to 2000 Hz. In this frequency range 

24 eigenfrequencies were calculated of which 19 could be assigned to 

measured vibration modes. 

The measurements (EMA) were carried out with and without a paper gasket of 

0.15 rnm thickness between the flanges of the box structure. The gasket had 

a very small influence on the measured eigenfrequencies. At the most 3 

percent and on the average 1 percent relative difference was seen between 

the individual corresponding modes. However, the loss factor ~was influen

ced by the gasket as Fig. 4.8 shows. These values of ~ were obtained with 

the measurements of decay times per 1/3-octave band. Slightly higher values 

(approximately 10 percent) for the loss factor were measured over the total 

frequency range when the gasket was applied. However, the differences are 

not significantly when the velocity level L (f) will be calculated. The 
v 

expected differences in the predicted Lv (f) due to the gasket will not 

extend 1 dB since a doubled loss factor influences 1/3-octave bands levels 

of L (f) by approximately 3 dB and in Fig. 4.8 it can be seen that the 
v 

differences are much smaller than this factor two. 

The correlation between the calculated and measured eigenfrequencies is not 

influenced by the loss factor. However, the calculation (FEM) of the eigen

frequencies of the two assembled box halves is not as straightforward as in 

the previous sections. A realistic bolted joint FEM-model with GAP-elements 

would be preferable to calculate the joint behaviour accurately. However, a 

simplification of this FEM-model will be used since a realistic FEM-model 
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would consume too much valuable computer memory and execution time. The 

joint was modeled by assuming that no joint exists at all; as if the gear

box housing is welded together to one piece. This is the simplest possible 

model of such a joint and it is interesting to investigate how well this 

modeling of the joint describes the dynamical behaviour of the structure. 

Fig. 4.9 shows the numerical and experimental eigenfrequencies of the two 

assembled box halves. It can be concluded that the FEM model predicts 

slightly too high eigenfrequencies. The largest relative error is 11 

percent, while the mean relative error is not more than 3 percent. There

fore, the joint modeling used is assumed to be an acceptable model for the 

bolted joint. 

The calculations and measurements for the transfer function TF F (f) were 

performed for three excitation directions at the same point of the struc

ture. The point is located at the joint where a bearing could be positioned 

when the housing would contain gears. At this point a radial force, an 

axial force and a moment were applied in order to simulate a bearing 

stiffness matrix which transmits these possible excitation directions. The 

reciprocity principle was used to obtain the measured point-to-point 

transfer functions needed. This reciprocity principle for mechanical 

systems says for example: 

Hl2 (f) 

v
2

(f) v
1 

(f) 

H21 (f) ~ ~ 
1 2 

(4.3) 

Hl2 (f) 

v
2 

(f) w
1 

(f) 
H

21 
(f) or: = ~ 

2 

(4.4} 

In this way the measurement for the moment input with velocity level L (f) 
v 

as output could be realized by measuring the angular velocities w at the 

'bearing point' when an impact hammer produced input force impulses F at 

selected points on the surface of the structure. Two accelerometers were 

used at the joint to measure the angular accelerations. The signals were 

subtracted from each other to obtain the angular accelerations and to 

derive the corresponding angular velocity level spectra. Fig. 4.10 shows 

transfer functions TF F (f} and TF M (f) resulting from the experiments and 

from the FEM model for the three excitation directions at the bearing 

position. Fig. 4.10-c is based upon a moment being applied. This is the 

reason for levels being different from those in the other two figures. 
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Apart from the lower frequency range, where the eigenfrequency density is 

low, the predictions made by the Finite Element Method are in good agree

ment with the measurements. In the 500 Hz frequency band no eigenfrequen

cies of the structure are present so that the incompleteness of the FEM 

model is probably responsible for the underestimation by the calculation. 

When octave bands would be calculated for TFF(f) and (f), the results 

would be somewhat better. However, the 500 Hz band of Fig. 4.10-b and the 1 

kHz band of Fig. 4 .10-b and 4 .10-c will still show a difference between 

calculation and measurement. 
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Fig. 4.10-b and 4.10-c are closely related because the radial force of Fig. 

4.10-b was applied at a distance of a = 15 mm from the heart line of the 

front plate. This introduces a radial force as well as a moment of magni-

tude ·a. Assuming that the result of Fig. 4 .10-b is mainly determined 

by the moment excitation, Fig. 4.10-c could be estimated as follows: 

TFM(f) 
Fig.4.10-c 

where t
0 

1 m 

I 
TFF(f) + 36.5 dB 

Fig.4.10-b 

(f) 
ig.4.10-b 

- 20log (a/l ) 
0 

(4.5) 

The importance of the angular excitation of the structure by a bearing 

force or moment is hereby clearly shown. The moment stiffness coefficients 

of a bearing seem therefore essential for accurate predictions of velocity 

levels of gearbox housings and for this reason they have to be known or 

calculated (see Chapter 3 of this thesis) preliminary to FEM calculations 

of transfer functions TF w - L • w 

The rather good agreement between the predicted and measured eigen

frequencies of corresponding modes and predicted and measured forced 

responses justifies the simplified modeling of the bolted connection of the 

two box halves. Of course, again, a reliable estimation of modal loss 

factors is another requirement for a good prediction of forced responses. 

4.5 Empty gearbox model 

The experience gained in the previous sections was used in a FEM analysis 

of a realistic gearbox housing model. This gearbox housing is a somewhat 

simplified version of a scale model (at 80 percent scale) of the gearbox of 

Chapter 5 on which extensive vibration and sound measurements have been 

performed. In this section the gearbox housing model is considered empty, 

i.e. without any shafts or bearings. Fig. 4.11 shows the dimensions of the 

gearbox housing model. The usual joint between upper and bottom case 

section has been omitted, i.e. the gearbox model was build as a single 

structural component just like the FEM model of section 4.4. This was 
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realized by welding the parts of the gearbox model together so that a 

one-piece structure was created without any bolted joints. In order to be 

able to connect a shaker to the shafts in a later experiment (see the next 

section of this chapter) the gearbox model has no bottom plate. 

The FEM model consists of 570 4-node shell elements for the 8 rom plates of 

the structure and of 460 8-node brick elements for the thicker parts (38 

rom). The total FEM model contains 1370 nodes. The connection between shell 

elements and bricks was carefully made by ensuring correct force and moment 

transmissibility between these elements. The gearbox model is dynamically 

free from the surrounding, which is realized in practice by putting the 

housing on soft rubber elements. 

The FEM calculations were performed for the frequency range up to 4000 Hz 

where 42 eigenfrequencies and mode shapes were found after 11 iterations 

/4.10/. The first non-zero eigenfrequency was found at 387 Hz, the second 

at 703 Hz and the third at 1119 Hz. This means that the 1/3-octave bands up 

to 1250 Hz are sparsely filled with eigenfrequencies of the gearbox 

housing. In fact the bands of 400 Hz, 630 Hz, 1000 Hz and 1250 Hz are 

occupied by only one eigenfrequency, and the 1/3-octave bands of 500 Hz and 

800 Hz have none at all. Therefore, resulting velocity levels L (f) at 
v 

these frequency bands are predominated by none or a single resonant mode. 

Since the predictions are expected to improve in accuracy when more modes 
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are present in a 1/3-octave band, the comparison between calculations and 

measurements will be expected to give better results for the higher 

frequencies, i.e. 1600 Hz and more. 

The FEM calculations and the EMA measurements were linked together by 

searching for similar vibration modes by visual inspection. 42 FEM modes 

were calculated and 27 clear EMA modes were measured of which 25 could be 

assigned to FEM modes. As an example the calculated mode shape at 1777 Hz 

is shown in Fig. 4.12 together with the corresponding measured mode shape 

at 1894 Hz. 

The Experimental Modal Analysis was carried out with the help of LMS soft

ware using Single Degree Of Freedom (SDOF) curve fit procedures to estimate 

the modal parameters. This was done by peak picking in the sumblock of all 

measured transfer functions. Only peaks were picked that could be clearly 

distinguished among others. This meant that small peaks and peaks with 

frequencies close together were not taken into consideration so that not 

all calculated eigenmodes were extracted from the experiments. 

The numerical {FEM) and experimental (EMA) eigenfrequencies of the empty 

gearbox model are shown in Fig. 4.13. Here it can be seen that the calcula

ted eigenfrequencies are too small, on average 10 percent. This was thought 

to be a result of the fact that the FEM model was not stiff enough, 

91 



~ 4000 
"' ::r: 
~ 

f3 300) 

!i. 

"' ..... 

2QXl 

0 1000 2000 300) 4000 

f (EMA) [Hz] 
e 

Y'iqwle 4.13: 

H~ (FEM) and ~ (EMA) ~ a& ~ 
~ ae the eiTipi,lj ~ mad..el.. 

"' 
4000 

::r: 

i 3000 
ii. 
~ 

aJ 
..... 

• 
2000 

0 1000 2000 300) 4000 

f (EMA} [Hz] 
e 

Y'tq. 4.14: 

H~ (FEM) and ~ (EMA) ~ a& ~ 
~ a& the eiTipi,lj ~ mad..el. altett a£tei1.Lnq. the FEM-mad..el. (&rt.icl't 

~ inotead ae ~ ~ at the p<U>lti.an ae the &at.t jo.ini.J . 

92 



especially the rim which replaces the bolted joining. This rim has a cross 

section of 30 mm x 30 mm and was modeled with shell elements instead of 

brick elements. 

The calculations have been repeated after modifying the FEM model. The 

joint was modeled with brick elements by which the number of nodes and 

consequently the necessary calculation time increased slightly. The new 

results are shown in Fig. 4.14 where it can be seen that especially at 

higher frequencies the calculations and the measurements are still not in 

good agreement with each other. The points in the figure have an average 

difference with the ideal 45 degree line of 9 percent which is an 

improvement of only 1 percent. Therefore, the more complex FEM-model does 

not improve the results as much as was hoped. This shows the difficulty of 

modeling a gearbox housing correctly in order to obtain valid eigen

frequencies. 

Nevertheless, further calculations have been performed using this 

"stiffened" FEM-model such as the prediction of the velocity level (f) of 

the gearbox. Fig. 4.15 shows the calculated and measured transfer functions 

TFF(f) for the case of an axial force excitation at the thicker part of the 

structure between the two bearing openings at the front plate. The figure 

shows how well the FEM model predicts the resulting vibrations at the 

surface of the gearbox model, if one looks at a frequency band which 

contains at least a few eigenfrequencies. Therefore, it can be concluded 
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that the exact values of the eigenfrequencies does not have too much 

influence on the calculated velocity levels in frequency bands where at 

least a few eigenfrequencies are present. 

Furthermore, the excitation point is positioned at a thick part of the 

gearbox model while the excitation points in the previous sections of this 

chapter were situated at thin plates. This means that at frequencies below 

the first eigenfrequency or at a 1/3-octave band where no vibration modes 

are present, the local distortions close to the excitation point are 

probably less present. And hence, that the vibration modes with eigen

frequencies above 4 kHz would probably not play an important part in 

describing the behaviour of the structure at these lower frequencies. 

4.6 Gearbox model with shafts and ball 

The final part of our investigations on the potential use of FEM for 

prediction of structural responses of gearboxes will be described in this 

section. Again calculations and measurements were performed on the gearbox 

model as described in the previous section. However, now the model complex

ity was increased by adding two shafts and four appropriate ball bearings. 

The shafts were connected with each other with a rod by which a radial 

force could be applied between the two shafts to simulate a static tooth 

force. In the experiments a static radial force was applied which was 

checked by the use of strain gauges which were put on the rod in order to 

measure the tensile stress. 

First the two shafts were axially loaded to an axial force of 4000 N 

followed by a radial force of 20000 N. The axial and radial forces together 

build up a force vector for each of the four ball bearings so that the 

bearing stiffness matrices could be calculated by using the computer 

algorithm of Chapter 3. The ball bearings had the following dimensions: 

pinion shaft wheel shaft 

ball bearing type SKF 6312 SKF 6215 

shaft diameter [rom] 60 75 

house diameter [rom] 130 130 

width [rom] 31 25 

number of elements 8 11 

element diameter [rom] 22.22 17.46 
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The resulting bearing stiffness matrices were as follows: 

Pinion shaft: 

[K] 5.05·10
8 

0 0 0 -5.48•10
6 

0 
brn 

5.74·10
8 

-7.10·10
7 

0 4.89•10
6 

0 0 

0 -7 .10·10
7 

1.29 ·10
8 

-1.12·10
6 

0 0 

0 4.89·10
6 

-1.12 ·10
6 

1.70·10
5 

0 0 

-5.48·10
6 

0 0 0 1.22•10
5 

0 

0 0 0 0 0 0 

Wheel shaft: 

[K] = 5.66·10
8 

1.42·10
4 

-6.10·10
3 

5.27•10
2 

-6.86•10
6 

0 
bm 

-8.26·10
7 

6.08·10
6 

-5.27·10
2 

1.42 ·10
4 

6.46·10
8 

0 

-6.10·10
3 -8.26·10

7 
1.59·10

8 
-1.46•10

6 
2.71·10

2 
0 

5.27·10
2 

6.08·10
6 

-1.46·10
6 

2.45·10
5 

-1.32•10
1 

0 

-6.86•10
6 

-5.27·10
2 

2.71·10
2 

-1.32·10
1 

1. 73 ·10
5 

0 

0 0 0 0 0 0 

The implementation of the bearing stiffness matrices in the FEM model was 

given special attention. Each bearing stiffness matrix describes the stiff

ness between two points of the gearbox FEM model. It is obvious that one 

point lies in the centre of the bearing, i.e. the centre of the shaft. This 

point is part of the shaft and transmits gear shaft vibrations through the 

bearing stiffness matrix to the gearbox housing. 

The other point which belongs to the housing structure is positioned at the 

same location in the centre of the bearing opening. These two points are 

connected through the stiffness matrix which couples three displacements 

and two rotations of both the shaft and the gearbox housing. 

The connection of the 'shaft point' to the shaft will be clear since the 

shaft is modeled by beam elements so that this point is part of one beam 

element. However, the connection of the 'housing point' to the housing is 

more complicated. The 'housing point' was modeled as being part of a very 

stiff and relatively massless beam element in the middle of the bearing 

opening. This beam element is connected with the gearbox housing by a 

number of relatively stiff and massless rods which form a star configura

tion. First the FEM calculations were performed with a connection of the 

bearings to a rigid support instead of a flexible gearbox housing to see 
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whether the bearing stiffness matrices could be implemented correctly. Fig. 

4.16 shows this FEM model without the gearbox housing at a mode shape of 

419 Hz and 864 Hz. The dotted lines show the undeformed positions of the 

shafts. It can clearly be seen that the gearbox interior (i.e. the rotating 

elements) moves while the rods stay in their initial places. The first 

eigenfrequency was encountered at 419 Hz and there are 12 modes with eigen

frequencies in the frequency range up to 4kHz /4.8/. At the eigenfrequency 

of 419 Hz the connecting rod bends and the shafts rotate around the bearing 

axis without moment stiffness while at an eigenfrequency of 864 Hz the two 

shafts and the connecting rod move as a whole on the stiffnesses of the 

bearings. For higher eigenfrequencies the gearbox interior moves on the 

bearing stiffnesses or shows bending motions of the three shafts. 

As a next step this gearbox interior was added to the FEM model of the 

gearbox model, only two modes were found at which mainly the interior 

moves. These were for the first eigenfrequency of 420 Hz and for the third 

eigenfrequency of 884 Hz. The other 45 modes were mainly gearbox housing 

modes. 

In the Experimental Modal Analysis only 25 clear mode shapes could be 

distinguished ·of which 19 could be appointed to calculated mode shapes 
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I 4 .11/. The measurements which were performed after the calculations had 

been carried out showed peaks with high damping. Furthermore, many peaks 

were close together, which made their identification difficult. For these 

reasons the SDOF curve fitting could not give reliable estimations of the 

modal parameters so that a Multi Degree Of Freedom {MDOF) routine was used. 

The LMS modal analysis software supports three different MDOF routines of 

which the Least Square Complex Exponential method was used. The measure

ments were carried out in the same way as was done for the empty gearbox 

model using 399 points at the gearbox model surface. 

The 19 measured eigenmodes were gearbox housing modes and the calculated 

gearbox interior modes with eigenfrequencies of 420 Hz and 884 Hz were not . 
present. Fig. 4.17 shows the numerical (FEM) and experimental (EMA) eigen-

frequencies of these 19 mode shapes with an (absolute) average difference 

of 13 percent. Below 2 kHz the Finite Element Method predicts slightly too 

high eigenfrequencies as where it predicts too low eigenfrequencies above 2 

kHz. Therefore, the FEM model describes the dynamical behaviour of the 

gearbox model not very well when eigenfrequencies and mode shapes are 

considered. 

The prediction of velocity levels at the gearbox surface, as a result of a 

force excitation at the 'meshing point' of the interior, is the next step 
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in the calculation process. The transfer function TFF(f), which describes 

the relationship between force excitation at the meshing point and the 

surface velocity level Lv(f) of a gearbox, is a crucial part of the sound 

generation mechanism. When the excitation level at the gear mesh is known 

(see Chapter 2) this relationship can be used in order to calculate the 

velocity level at the gearbox surface. · 

In order to simulate a gear mesh excitation, the interior of the gearbox 

model was excited at the rod between the two shafts. For this purpose a 

shaker was used as is shown in Fig. 4.18. The velocity level L {f) was 
v 

calculated by using as many as 183 points to obtain the spatially averaged 

velocity level as accurately as possible. The measurements were carried out 

with considerable less points {20) for time-saving reasons. Fig. 4.19 shows 

the measured and calculated transfer functions TF F {f) L {f) - L (f) in 
v F 

1/3-octave bands. The high levels at 1 kHz and 1.6 kHz which are predicted 

by the FEM model were not found during measurements. This is probably due 

to the fact that the damping coefficient used in the FEM calculations was 

too small. It was set at a frequency independent value of 0.002 after a few 

response functions had been measured. 

The full Experimental Modal Analysis of the structure was carried out after 

the FEM calculations were performed. The modal damping coefficient of the 

single corresponding FEM vibration mode in the 1 kHz band proved to be as 

large as 0.014. This is seven times as large as was assumed for the FEM 
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calculations. When taking this difference in damping coefficient in 

account, the calculated transfer function of the 1 kHz band can be correct

ed with -10log(7) = -8.5 dB to a value of 69.1 dB instead of 77.6 dB as 

Fig. 4.19 shows. From this it may be concluded that correct damping coeffi

cients are very important for accurate FEM calculations of the transfer 

function. 

Also the fact that only 19 of the 45 calculated modes could be identified 

by the use of EMA, gives an indication that only modes with small damping 

coefficients could be distinguished. The other 16 modes calculated with FEM 

proved to have even higher damping coefficients than the 19 modes that 

could be appointed to calculated modes. In the FEM calculation these 16 

modes contribute probably too much to TF F. The experimental observations 

show that the damping coefficient of the gearbox model with shafts and 

bearings is highly dependent on the vibration modes and is certainly not 

frequency independent as was assumed for the FEM calculations. 

This shows how difficult it is to predict TFF(f) of such a complex struc

ture with shafts and bearings. The empty gearbox model can be modeled quit 

well, but when shafts and bearings are added to the model and crudely 

estimated frequency dependent damping values are used, the FEM predictions 

prove to be rather poor. 

99 



A gearbox is normally excited at the tooth frequency and its higher 

harmonics as is pointed out in Chapter 2 of this thesis. It will be shown 

in Chapter 5 that for the used gearbox variants, the tooth frequency deter

mines the overall velocity level and the radiated sound power level at 

given operational conditions, i.e. running speed n and torque load T. 

Therefore, for predicting the overall velocity level L only the levels of 
v 

Lw(f) (or LF(f) for force excitation) and the transfer function TFw(f) 

L (f)-L (f) (or TF (f) L (f)-L (f)) have to be known at the tooth 
v W F v F 

frequency. The overall velocity level can be calculated by combining source 

strength and transmission data. In the case of the gearbox model which is a 

80 % scale model of the test gearbox of Chapter 5, which is run from zero 

to 1500 rev/min (gear pinion) with corresponding tooth frequencies of zero 

to 600 Hz, the gearbox model is assumed to be excited at tooth frequencies 

which lie 1/0.8 = 1.25 times higher. This means that the gearbox model 

would be subject to tooth frequencies from zero up to 750 Hz. 

When this is taken into account and when calculations at the tooth frequen

cy are performed using both calculated and measured curves of Fig. 4.19, 

then the resulting overall vibration levels L would consistently differ by 
v 

roughly 8 dB for tooth frequencies up to 710 Hz which is the upper boundary 

for the 1/3-octave band of 630 Hz. For tooth frequencies up to 750 Hz the 

differences are considerably less: 2 dB. 

The conclusion is that this type of FEM calculations are not yet good 

enough to predict accurate overall velocity levels which are relevant for 

the sound production of a gearbox. This is seen from the fact that the 

differences between calculation and measurement of Fig. 4.19 are too large 

for a large part of the frequency range of vital interest, i.e. up to 750 

Hz. This frequency range covers frequency bands which contain no or only a 

few eigenfrequencies. From the studies which were made in this chapter it 

follows that the prediction of the transfer function TFF(f) in this 

frequency range needs further investigations. 

In the frequency range above the tooth frequency the calculated transfer 

function of the gearbox model shows higher levels than those measured. For 

this frequency range a better estimation or measurement of the damping 

coefficient seems the answer to the improvement of the theoretical modeling 

of the transfer function. However, this frequency range is of less practi

cal importance when vibration transfer functions are concerned of gear 

transmissions because, as will be seen in Chapter 5, the tooth frequency 

typically determines the overall vibration and sound levels. 

100 



4.7 Sound radiation 

The last part of the vibration and sound transmission chain of gear trans

missions is the sound radiation by the vibrating gearbox housing as is 

shown in Fig. 4.20. Although it may be said that the mechanism of genera

tion of sound by surface vibration is common to all kind of sources, the 

effectiveness of radiation in relation to the amplitude of vibration may 

vary widely for different types of sources. For a vibrating surface in 

order to radiate sound effectively, it must not only be capable of 

compressing or changing the density of the fluid with which it is in 

contact, but must do so in such a manner as to produce significant density 

changes in the fluid remote from the surface. Surfaces vibrating in contact 

with air displace air volume at the interface. Consequently it is sensible 

to investigate the sound field generated by the air volume displacement 

produced by a small element of a vibrating surface. By the principle of 

superposition one would expect to be able to construct the field by summa

tion of the fields from elementary sources distributed over the entire 

surface. Although such an exercise seems simple at first, it is generally 

not so, because the field generated by an eiementary source depends upon 

the geometry of the whole surface of which it is a part, and upon the 

presence of any other bodies in the surrounding air. However, there are 

many cases of practical importance to which a relatively simple theoretical 

expression applies with reasonable accuracy. 

Especially for rather compact box-like structures Feller and a number of 

other researchers from the Technical University of Darmstadt have developed 

powerful approximation models, which enable a quick estimation of the sound 

power when the vibration levels on the radiating surface are known (/4.12/, 

/4.13/ and /4.14/). The main results of their work will be quoted here and 

applied to compare with some of our experimental results to prove their 

relevance and accuracy. Also the advantages and the limitations of this 

type of modeling will be evaluated (see Chapter 6). 
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It is shown in books on acoustics (see e.g. /4.14/ and /4.15/l that the 

sound power of a uniform radially pulsating sphere of radius R at frequency 

f can be written as 

p 
(f/f )

2 
2 2 s 

2npcR VR ------
1 + (f/f )

2 
s 

[W] (4.6) 

where vR is the radial velocity amplitude at the surface and f
5 

is the 

transitional frequency of a pulsating sphere. 

f [Hz] (4.7) 
s 

Eq. (4.6) shows the following properties: 

1. At frequencies below f (f « f ) the emitted sound power is small. The 
s s 

reason is that at these low frequencies the inertia of the surrounding air 

is too small to generate pulsating compression. This occurs only at higher 

frequencies. At low frequencies the air close to the sphere is locally just 

moving in and out. 

2. For f » f the term (f/f }
2
/(1+(f/f )

2
) of Eq. (4.6) approaches unity. 

s 2 2 s s 
The term 2xpcR vR thus represents the maximum emitted sound power. The 

power level at f = 2·f
8 

is 1.0 dB less. From this frequency on the radiated 

sound power level deviates less then 1 dB from the maximum radiated power. 

3. When the transitional frequency f of a pulsating sphere is increased 
s 

with the excitation frequency f kept constant, the radiated sound power P 

decreases. Eq. (4.7) shows that f
8 

increases for decreasing R. Therefore, 

to minimize the radiation of sound power by a pulsating sphere the 

dimensions have to be as small as possible. 

The radiation efficiency~ of a structure is defined as: 

def 
~ 

p 

peS 

[-) (4.8) 

where v2 
is the surface-averaged mean square velocity of the surface area 

S. For the pulsating sphere the rms velocity is v 
surface areaS= 4nR

2
• Identical velocities occur at 
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sphere so that v = v = vR/2. Therefore, using Eqs. {4.6} and (4.8} the 

radiation efficiency of a pulsating sphere can be written as: 

(f/f )
2 

= 
s [-] (4.9} 

1 + (f/f )
2 

s 

Fig. 4.21 shows the radiation index Lcr = lOlogcr of the pulsating sphere as 

function of the normalized frequency {f/f ) . For f > f the radiation index 
s s 

approaches to 0 dB. For lower frequencies it is almost equal to the 

straight dotted line which represents the approximation cr ~ (f/f ) 2 so that 
s 

in this frequency range Lcr increases with 20 dB per decade. Often this 

approximation with two straight lines is used instead of Eq. {4.9} and by 

doing so a maximum error of 3 dB occurs at f = . Here a doubling of the 

actual radiated sound power is predicted using the approximation. 

The model of a rigid circular disc vibrating transversely to its plane in a 

coplanar rigid baffle is called a baffled piston. The radiation index can 

be expressed in a similar manner as was done for the pulsating sphere. For 

a piston with radius a, the result is closely equal to that for a sphere 

when a = Rff For this value of radius a it holds that. f = f , because: 
s p 
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f 
p 

c 
[Hz] (4.10) 

The result is shown in Fig. 4.21 where it can be seen that the curves for 

both radiators are closely equal. However, the radiation index of the 

baffled piston reaches values greater than 0 dB due to extra energy 

radiated by the edges of the piston into the radial direction. 

For both cases the radiation index becomes close to 0 dB when half the 

wavelength A becomes about as large as the maximum distance between oppo

site parts of the source. For a sphere one has: ~R = 0.5A at f = f and for 
s 

a piston: 2a = 0.5A at f . Large structures are therefore better sound 

radiators at low frequencies than small structures. 

Somewhat more complex radiation mechanisms are present for plate-like 

structures. For the purpose of estimating their sound radiation character

istics, many structures of practical interest may be modeled rather 

accurately by rectangular flat plates. Flexural-mode patterns of such 

rectangular panels take the general form of adjacent regions of roughly 

equal area and shape, which vary alternately in vibrational phase and are 

separated by nodal lines of zero vibration. The radiation efficiency 

depends on the ratio of acoustic wavenumber to structural wavenumber. When 

the structural bending wavelengths are smaller than the corresponding 

wavelengths in air, the sound radiation efficiency is below unity. This is 

due to the cancellation of the sound pressures by adjacent plate regions. 

The corresponding regions of opposite phase of the panel constitute dipoles 

or quadrupoles that are much less efficient sound radiators than pure 

volume velocity (monopole) sources. Hence, the low-frequency radiation 

efficiency is far less than the baffled piston equivalent. This cancella

tion effect decreases as frequency increases and the acoustic wavenumber 

approaches the structural wavenumber. 

The radiation efficiencies of the pulsating sphere and of the baffled 

piston can be obtained analytically, but this is not generally possible for 

structures like gearbox houses. It is normally impossible to find a simple 

analytical expression for the radiation efficiency corresponding to arbi

trary single-frequency excitation, because a number of modes will respond 

simultaneously, each vibrating with a different amplitude and phase. There

fore, it is more usual to try to estimate the average radiation efficiency 

of the modes having their eigenfrequencies within a certain frequency band. 
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For this purpose it is necessary to assume a distribution of vibration 

amplitudes, or energies, over the modes. On this basis the model for the 

radiation index of plate-like structures such as gearbox housings can be 

divided in three parts of the frequency range; one for a baffled piston at 

low frequencies, one for full radiation at high frequencies and an optional 

one for plates with acoustic cancellation at intermediate frequencies. As 

examples the radiation indices of the model gearbox of the previous section 

and of the test gearbox of chapter 5 will be discussed. 

The plates of a gearbox housing are acoustically coupled when they may not 

be considered as separate uncorrelated sound sources. At low frequencies 

the small and thick plated gearbox housing of the previous section and the 

gearbox housing of Chapter 5 will form such acoustically coupled struc

tures. An approximation of the radiation efficiency can be made according 

to /4.12/. This approximation is shown in Fig. 4.22 where the radiation 

index LO" (f) is shown as an example. The estimated radiation index is the 

minimum of two curves: LO", and L 7 . The solid curve for o-' (f) is the 
p Pl p 

radiation index of an equivalent baffled piston which can be constructed as 

follows. At the mean critical frequency 

O"'(f) 1.13• u. 
p c 

.:lb 10 

. ' 
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A straight line with a slope of 25 dB/decade can be constructed through 

point P. The part of this line below 0 dB is the estimated radiation index 

at low frequencies. For frequencies where this line exceeds the 0 dB level, 

the estimated radiation index is taken to be 0 dB. 

The mean perimeter U of the plates of the gearbox housing and the mean 

critical frequency f have to be known in order to calculate point P. The 
c 

mean critical frequency 

f 
c [ 

--==:::::::::::u ]
2 

!3 

U/f3/2 
c 

can be calculated as follows: 

[Hz] (4.12) 

For steel and aluminium the critical frequency of a homogeneous plate is 

only dependent on the thickness of the plate: f ~ 12/h Hz, when h is in 
c 

meters. Eq. (4.12) can be used for box-like structures with plates of 

various thicknesses to obtain a mean critical frequency 

structure. 

of the 

Above a certain frequency the plates of the housing are acoustically 

uncoupled and acoustic cancellation can occur. The broken curve in Fig. 

4. 22 is more complicated and can be calculated by using the radiation 

efficiencies of the separate plates of the structure for the case of 

acoustic cancellation. This results in a mean radiation efficiency of 

the plates which is defined as follows: 

0'' 
Pl 

The individual radiation efficiencies of the plates are: 

Uc 
2 

(l-a
1
)ln{(1+«

1
)/(1-a

1
)} + 2a

1 

( 1-«2) 312 
i 

with 
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However, when the plate area S decreases or the plate thickness h 

increases, the radiation efficiencycr-- will increase to 1 (= 0 dB) so that 
Pl 

for thick and compact housings the radiation efficiency is only determined 

by (1'; at frequencies below and no acoustic cancellation occurs. This 

is true when the following relation holds: 

2 
c 

s· p 

> 1.31 

with S the mean plate area. 
p 

(4.15) 

The model gearbox of the previous section and the test gearbox of Chapter 5 

are examples of such compact housings. The radiation indices of these 

gearboxes are shown in Figs. 4.23 and 4.24 respectively. The calculations 

which were performed to obtain these results are presented in Appendix E. 

Fig. 4.23 shows the calculated approximation for the gearbox model together 

with the measured radiation index. The measurement of L consisted of a 
(1' 

sound power level measurement according to DIN 45635 /4.16/ with nine 

microphone positions and a measurement of the velocity level L . The 
v 

radiation index was calculated as follows: 
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p f -2 
peS v (f) ·cr(f) 

peS v
2 

0 0 

or: lOlog( p~:) ) lOlog( S ) + lOlog( v:~f) ) + lOlog(O'(f)) 

0 

[dB] 

or: L (f) - L (f) -w v 
[dB) 

1 m
2 

and v 
0 

(4.16) 

-8 
5•10 m/s. 

The total area of the gearbox model surfaces is 0.408 m
2 

so that L = -3.9 
s 

dB. L (f) 
w 

and Lv(f) were obtained with a shaker attached to the gearbox 

model interior (i.e. rotating elements) as described in section 4.6. White 

noise which covered the complete frequency range of interest was used as 

input signal. The resulting measured radiation index shows rather good 

agreement with the predicted radiation index as can be seen in Fig. 4.23. 

Since the mean critical frequency of the test gearbox of Chapter '5 is 

about 450 Hz and the tooth frequency of the meshing gears reaches as high 

as 600 Hz, the radiation index Lcr(f) of the test gearbox is estimated to be 

0 dB for the frequency range of main interest. This frequency range is 

namely determined by the tooth frequency and its higher harmonics up to 4 

kHz. Its calculated and measured radiation index is shown in Fig. 4. 24 

where it can be seen that the radiation index is about 0 dB for frequencies 

above 365 Hz. 

-2 
According to Eq._(4.8) the sound power level P = pcSv cr. Therefore, it is 

the product of v2
·cr which has to be minimized in order to design low noise 

gear transmissions. If a box-like structure, such as the test gearbox of 

Chapter 5, composes of plates with a radiation index LO' il 0 dB would be 

modified in such a way that Lcr « 0 dB, this would imply severe modification 

of the stiffness of the housing. Therefore, probably v2 
would increase and 

no significant reduction of v2
•cr and thus of the radiated sound power would 

be obtained. Therefore, the use of the Boundary Element Method for calcula

ting the sound radiation of this kind of gear transmissions, instead of the 

use of the described estimation method, would be unnecessarily cumbersome 

and not necessarily more accurate. 
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When noise reduction measures are of interest in the design of low noise 

gear transmissions, it must be concluded that none or only small benefit 

can be obtained from the point of view of the radiation index optimization 

in case of small and compact gearboxes. The reason is, as could be seen 

from the given examples, that in the frequency range of main excitation the 

radiation efficiency is at its maximum value and can not easily be reduced, 

because this would imply drastic changes in the housing stiffness. Other 

measures are likely to have a greater impact on the noise reduction such as 

minimizing the internal excitations (Lw) and the vibration transmission 

towards the surface of the gearbox housing by altering the housing 

structure or using another bearing type. 

From the literature no publications are known where predictions of the 

vibrational response of gearbox housings with gears and shafts are veri

fied. This chapter investigates the computation of the free and forced 

vibrations of box-like structures with and without gears and bearings. This 

is accompanied with experimental modal analysis to examine the validity of 

calculated FEM results. It turns out that the FEM models require rather 

detailed meshes but that certain simplifications are allowed. For example, 

the bolt joints between upper and lower casing may be modeled by assuming a 

one-pieced gearbox structure and the gearbox feet can be modeled with foot 

node motions of which all six degrees of freedom have been suppressed. The 

importance of the use in the FEM modeling of full bearing stiffness matri

ces, has been made plausible. However, it was concluded that the prediction 

of forced responses of gearboxes with shafts and bearings inside is at 

present insufficiently accurate for design purposes and needs further 

investigations. 

Since the investigations of this chapter show that the modeling of empty 

gearbox housings is rather accurate in terms of eigenfrequencies, eigen

modes and forced vibrations, it seems for the time being useful to study 

optimization of gearbox housings without the gears, shafts and bearings 

inside and for force and moment excitations at the bearing positions to get 

low velocity responses on the housing surface. 

The modeling of the sound radiation efficiency of a gearbox housing was 

briefly investigated. The radiation efficiency proved to be equal to unitv 
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for a large part of the frequency range of interest for compact gearbox 

housings as the one that is used in Chapter 5. This value approximates the 

maximum value which will be found for a box-like structure. The radiation 

efficiency decreases only at frequencies well below the prevailing tooth 

frequencies. Therefore, it would seem obvious to try to reduce the radia

tion efficiency of the gearbox housing structure. However, such a reduction 

would require rather unrealistic structural changes of the gearbox housing. 

Therefore, it was concluded that there is no room for noise level reduc

tions in high power compact gear transmissions by reducing the radiation 

efficiency of the gearbox structure. Other noise reduction measures are 

likely to be more successful such as minimizing the internal excitations of 

meshing gears and the vibration transmission to the surface of the gearbox 

housing by modifying the housing structure or using another bearing type. 
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5 • EXPERIMEN'l'S 
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5.1 Introduction 

Noise and vibration control by predictive modeling ideally requires a 

computational model of the entire gearbox system, its attachments and other 

connected structures. This is due to the fact that the dynamics of each of 

the components, which serve as vibrational energy transfer paths, may have 

significant effects on the overall system dynamics. For example, the 

discrete frequency excitations generated :by the meshing gears are transmit

ted through various structural parts such as the shafts, :bearings, housing, 

mounts and other attachment points as said :before in Chapter 4. There are 

no examples in the literature that offer a rigorous treatment on the 

overall gearbox dynamics which includes dynamic interactions between gear

shaft system, support bearings, gearbox housing, gearbox mounts and noise 

radiation. In most cases one or more components are modeled in detail and 

the other components are modeled with only a few degrees of freedom or are 

assumed uncoupled from the rest of the gearbox /5.1/. 

This thesis makes contributions to an improved situation of modeling by 

looking in detail at the various parts of the sound generation and 

transmission chain and by using them for the overall sound power level 

prediction of a gear transmission. 
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The sound generation and transmission chain has been described in the 

previous sections of this thesis. It was divided into three parts: the 

vibration source (Chapter 2), the vibration transfer through bearings into 

the gearbox housing (Chapters 3 and 4) and the sound radiation (section 

4.7). For all these separate parts theoretical calculations were performed 

and to some extent they were verified by experiments to investigate the 

relevance of the strategies followed. 

In this chapter the three parts will be combined in order to investigate 

the behaviour of a complete gear transmission. For the purpose of experi

mental verification a test rig was developed on which various experiments 

were carried out. The test rig allowed well controlled measurements of 

vibration levels and sound power levels at different operational conditions 

such as running speed and torque load. Tests were carried out on four 

single helical and one double helical gear set. The single helical gears 

all had the same geometry but had different profile corrections. One of the 

single helical gear sets was used for experiments with different kinds of 

rolling element bearings. The double helical gears were used for two 

experiments, one with roller bearings and one with fluid film bearings. 

For all these gear sets the angular velocity levels at the gears, the 

velocity levels at the gearbox housing surface and the sound power level 

were measured. The measurements were used to partially validate the 

proposed theories of this thesis and also to evaluate the relative impor

tance of certain low-noise design options in view of cost-effectiveness 

considerations. 

5.2 The test rig 

A single stage, high precision gear transmission was designed for the 

experiments. As this thesis focuses on high precision gears under high 

loads, the transmission had to meet the requirement that the unloaded 

Transmission Error (T.E.) had to be negligible, because it is assumed that 

the tooth deflections are several times as large as the profile errors. To 

realize this, the gears were hardened and ground in order to get within 

DIN-class 5, so that the maximum tooth profile errors were no more than a 

few micrometers. The tooth deflections were in the order of magnitude of 40 

~ at a maximum tooth load of 41500 N, which corresponds with a torque load 

of 2000 Nm at the pinion and 6000 Nm at the gear wheel. 

To exclude unwanted non-periodical signals in the measurements each 
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measurement existed of many data samples which were averaged. The transmis

sion gear ratio was chosen to be an integer (i = 3). In this way the data 

samples which had a constant time length of 0.41 seconds could be taken 

quickly after each other by using a trigger point at the gear wheel. After 

each completed rotation of the wheel the same teeth meet in the gear mesh 

due to the integer transmission gear ratio. However, an integer transmis

sion gear ratio is seldomly used in practice because it emphasizes the 

unloaded T.E. But as the unloaded T.E. of the test gearbox is very small in 

comparison to the tooth deflections, it is of no importance to the test rig 

situation. 

The gears were designed for large tooth deflections as can be seen from the 

gear dimensions and operational conditions which are given in Appendix F. 

The reason for this choice is that this will result in a relatively small 

unloaded T.E. in comparison to the loaded T.E. The gearbox contains a 

pinion and a wheel which transmit 300 kW power at maximum torque load and 

running speed. These loads and speeds can be established accurately at any 

given value as will be described later on in this section. 

The test gearbox was connected to a similar gearbox in a back to back 

configuration as is shown in Fig. 5.1. This auxiliary gearbox has the same 

transmission gear ratio of 3.0 but with different tooth numbers to prevent 

coinciding tooth frequencies of both gearboxes. The contribution of the 

auxiliary gearbox to the dynamic behaviour of the test gearbox, i.e. to the 

velocity levels Lw(f) and Lv(f) and to the sound power level Lw(f) could 

hereby be eliminated. The ratio of the tooth frequencies of test and 

auxiliary gearbox is in proportion to the tooth numbers of the pinions 

respectively the wheels, namely 24 to 19 (or 72 to 57), independent of the 

speed. 

f /f 
tooth.test tooth.auxiliary 

24/19 72/57 1.26 (5.1) 

In the measured narrow-band spectra these tooth frequencies and their 

harmonics could clearly be distinguished. The unwanted contributions of the 

auxiliary gearbox could be removed from the spectra by setting the corres

ponding spectral lines at n·ftooth to the mean values of the adjacent 

narrow-band levels. After this 'spectrum cleaning' the 1/3 -octave band 

spectra were calculated. However, this procedure proved to be necessary 

only for the tooth frequency of the auxiliary gearbox and now and then for 

a higher harmonic of this tooth frequency when it coincided with a eigen

frequency of the test gearbox structure. Mainly, this was thanks to the 
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long and torsionally flexible quill shafts between the two gearboxes that 

supplied a low eigenfrequency of the back to back test rig of about 50 Hz. 

The tooth frequencies and their harmonics are in practice always much 

higher than 50 Hz and therefore with these flexible shafts a good vibration 

isolation was created between the two gearboxes for these high frequencies. 

The test rig was driven by an electric motor which was attached to the 

pinion shaft of the auxiliary gearbox as is shown in Fig. 5.1. As it con

cerns a back to back test rig the electric motor only has to provide the 

energy losses of the test rig. While a maximum power of 300 kW could be 

transmitted through the test gearbox the electric motor only has to deliver 

a few percent of this power. The motor was chosen to have a maximum power 

of 20 kW which proved to be sufficient under any given operational condi

tion. The running speed of the electric motor could be set to any value 

between 0 and 1500 rev/min by the use of a frequency controlled power unit. 

The torque load could be adjusted at standstill by the use of the specially 

designed torque coupling which is positioned at the pinion quill shaft near 

the auxiliary gearbox. This coupling consists of two flanges with a rolling 

element bearing inside connecting the two flanges. The flanges can be 

bolted to each other at any given angular position giving the test rig a 

specified torque load at the pinion quill shaft with at the same time a 

three times larger torque load at the wheel shaft. Steel profiles of 2 

meter length were bolted to the flanges to provide the angular displace

ment. At one profile a load of 0 to 100 kg could be hung while the other 

profile was lifted until the first profile was in equilibrium. At that 

position the torque loads are known under the condition that the test rig 

frictional resistance is negligible. This is the reason for choosing the 

rolling element bearing between the flanges. The applied torque loads were 

also monitored by the use of strain gauges which were fixed on the pinion 

quill shaft. 

The pinion and wheel quill shafts were connected to the test gearbox by 

flexible couplings which allow slight movements in five degrees of freedom. 

In this way the test gearbox is provided with a pure torque load and with 

no other unwanted moments or forces. This guarantees that the boundary 

conditions were as they were assumed to be in the dynamical calculations of 

Chapter 2. 

The sound power level of the test gearbox was measured with eight micro

phones positioned on a fictitious box-like area around the test gear unit. 

To get test circumstances for reliable sound power measurements the test 
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gearbox was installed in a semi anechoic sound insulated room. This room 

was vibration isolated from the building using rubber isolators. To 

eliminate any background noise caused by the auxiliary gearbox and by the 

electric motor, these were installed in a separate motor room. As can be 

seen in Fig. 5.1 the two quill shafts were led through a double brick wall. 

Care was taken to prevent any harmful mechanical contact. At both walls an 

array of lip seals on the shafts was used to prevent as much as possible 

sound transmission from the motor room into the test room. 

5.3 Angular velocity level Lw~ .................... ~ .......... 

The first part of the sound generation and transmission chain of gear 

transmissions is the vibration production at the gear mesh. As stated in 

Chapter 2 of this thesis these vibrations are a result of the time variable 

tooth stiffness and the engagement shocks. The dynamical behaviour of the 

gears with their bearings and connected shafts was predicted by the lumped 

parameter model described in Chapter 2. It resulted in an angular velocity 

level L {f) at the gears which is dependent on the gear dimensions as well 
w 

as on the operational conditions such as running speed and torque load. To 

facilitate the validation of the predictions the angular velocity level 

Lw{f) was calculated and measured at the wheel which provides more space 

for the attachment of accelerometers than the pinion. 

For the measurements the accelerometers were positioned in opposite 

positions and directions near the rim of the wheel at a radius of 136 rnm. 

They measured the circumferential accelerations {see sketch). Both accel

erometers recorded the vibrations of the wheel plus the change in gravita

tional acceleration which provided a sinusoidal signal at the rotation 

frequency superimposed on the gear vibrations. This unwanted gravitational 

acceleration was eliminated by summation of both time signals and dividing 

them by two: 
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The angular velocity w(f) was obtained after an integration of dw/dt. Four 

data blocks with 4096 points each were taken to get a smooth estimate of 

the mean square angular velocity w2
(f). The angular velocity level L (f) is 

w 
defined in Eq. (2.61). 

The measurement data were obtained as a narrow-band frequency spectrum with 

8f = 2.44 Hz from 0 to 5000 Hz from which a 1/3-octave band spectrum was 

calculated. Since an analog low pass filter was used that suppressed 

responses above 4.5 kHz, the resulting spectra show 1/3-octave bands up to 

4 kHz. 

Fig. 5.2 shows the measured angular velocity level Lw(f) of the single 

helical gear set with profile correction A (which will be called gear set A 

from now on) at three different running speeds and maximum torque load of 

2000 Nm (see Appendix F for detailed information about the test gears 

used) . At the tooth frequency a high peak can be observed for each speed. 

The spectra are dominated by the l/3 octave band in which the tooth 

frequency lies. The relationship between the running speed n
1 

(or simply 

called n) of the pinion and the tooth frequency is straightforward: 
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f tooth 
n ·z /60 = n·24/60 = n•0.4 

1 1 
(5.3) 

in the case of the single helical gear sets). Therefore, the tooth frequen

cies in Fig. 5.2 are 200, 400 and 600 Hz respectively. It can be seen that 

the vibration levels at all 1/3-octave bands increase with the running 

speed n. 

Fig. 5.3 shows the measured and calculated angular velocity level L (f) at 
w 

maximum power of 300 kW of gear set A. The calculation using the modeling 

of Chapter 2, predicts high peak levels at the frequency bands of the tooth 

frequency and its higher harmonics. The measured vibration levels at the 

second and third harmonic of ftoot:h are smaller than those predicted. 

However, these higher order frequency bands are of less importance because 

the tooth frequency band determines the overall angular velocity level L . 
w 

It will be shown in the next sections that the peak at the tooth frequency 

determines the overall vibration level and thereby is of main interest for 

further calculations. The predicted peak at the tooth frequency of Fig. 5.3 

differs by 2.3 dB from the measured level. Somewhat larger differences 

between measured and calculated levels were obtained for many other 

operational conditions of the gear unit as is shown in Fig 5.4. 

Fig. 5.4 shows the angular velocity level Lw of gear set A as function of 

the running speed of the pinion. In this Figure only the angular velocity 

levels of the 1/3-octave band in which the tooth frequency lies are taken 

- o- calculation 

-•- measurement 
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n 
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into account. This is justified by the fact that the tooth frequency 

dominates the overall angular velocity level. 

The three curves of Fig. 5.2 are reduced to three points in Fig. 5.4 which 

are situated at n 500, 1000 and 1500 rev/min. These levels are 109 .9, 

111.2 and 120.8 dB respectively. The figure also shows that the curves are 

not particularly smooth but have peaks due to resonances. Because the 

measurements were taken at r.p.m. intervals of 50 rev/min, the measured 

curve in Fig. 5.4 has a limited resolution. 

With increasing running speed the angular velocity level fluctuates 

sometimes by 10 dB. This figure shows the dependence of the angular 

velocity level on the running speed of a gear transmission. In the litera

ture most investigators leave this feature out when presenting their 

results. Mostly, conclusions are drawn from measurements at maximum opera

tional conditions without considerations of structural resonances as they 

can be seen in Fig. 5.4. 

From Fig. 5.4 it can be seen that the calculated Lw also shows the influen

ce of resonances but at different running speeds than those that were 

measured. However, especially in the noisy speed range above 800 rev/min 

(see Fig. 5 .15) the mean level of the measured and calculated angular 

velocity levels are about the same and the differences not more than a 

factor of about 2. The figure shows that the calculations are useful when 

the maximum level is taken. For those gear transmissions which are being 

operated at varying running speeds, a calculated maximum angular velocity 

level seems to be a useful tool for predicting the vibration generation of 

gear transmissions. 

The differences in measured and calculated angular velocity levels are at 

least partially due to the fact that the lumped parameter model of Chapter 

2 is incomplete. The main reason is the assumption of a rigid gearbox 

housing. The lumped parameter model uses the bearing stiffnesses but 

neglects the flexibility of the housing. This is certainly incorrect in 

view of the test results that have been reported in section 4.6. 

Whether or not the calculation method is still useful to predict the 

effects of modifications of the gears or bearings on noise production will 

be investigated in later sections of this chapter. 

119 



Ill 
'0 

!> 
..:I 

(1/3-octaves) 

100 

90 

eo ··0·· n= 500 

-v- n= 1000 
70 

-·- n=1500 

60 

60 

125 260 500 1000 2000 4000 

f [Hz] 

:'f.i.qull,e 5.5: 

.M.e.aowt.eci ~ too.el L a& 
v 

the ~ &art q,en.tt .o.et A at 
m.a.a:i.mum ta/l,que i.aad ( T = 2 0 0 0 Nm) 

&art t1vJ,ee ~ IU.LIUlln.q 

~ a& the pUU.alt. 

110 
Ill 
'0 

100 
!> 

..:I 

90 

80 

70 

60 

60 
0 500 

:'f.i.qull,e 5.7: 
n 

(1/3-octaves) 

P-1 
100 

'0 

!> 
90 

..:I 

80 

-o- prediction 

70 -·- measurement 

60 

60 

260 500 1000 2000 4000 

f [Hz] 

:'f.i.qull,e 5.6: 

'Prtedi.cted and mea<l.W"ted ~ 

too.ei L 
11 

a& the ~ &art q,en.tt 

.o.et A at m.a.a:i.mum ta/l,que i.aad and 

IU.LIUlln.q 4peed 

(T = 2000 Nm and n = 1500 rev/min). 

measurement 

- - - calculation 

1000 1500 

[rev/min] 

.M.e.aowt.eci and .cal.culated ~ too.ef L at tooth ~ a& the ~ 
v 

&art q,en.tt .o.et A ® &uncftan a& the IU.LIUlln.q 4peed n a& the pUU.alt at m.a.a:i.mum 

ta/l,que laad (T = 2000 Nm} • 

120 



The second part of the sound generation and transmission chain of gear 

transmissions is the vibration transfer from the gears into the gearbox 

housing which will initiate vibrations at the gearbox surface with a 

velocity level Lv(f) as described in Chapter 4. The velocity level of the 

test gearbox was measured with eight accelerometers distributed over the 

gearbox housing surface. Each accelerometer position was assigned to a 

certain surface area Si of the housing. The surface weighted velocity level 

L (f) over eight partial areas results from the following equation: 
v 

L (f) 
v 

lOlog( v:~f) ) 

0 

a v~ (f) 

lOlog( ~ ri · T) [dB) 

i=l 0 

with v 
0 

{5.4) 

Just like in the previous section, the velocity data were analysed using a 

narrow-band spectrum with Af = 2.44 Hz. From this narrow-band spectrum a 

1/3-octave band spectrum was calculated as, for example, Fig. 5.5 shows for 

gear set A. The same operational conditions are taken as in the previous 

section, using maximum torque load T = 2000 Nm and running speeds n = 500, 

1000 and 1500 rev/min. The l/3-octave bands in which the tooth frequency 

(200, 400 and 600 Hz) and their second harmonic {400, 800 and 1200 Hz) lie 

show clear peaks for the three curves. 

Again the 1/3-octave band in which the tooth frequency lies, dominates the 

overall velocity level as was observed in the previous section for the 

angular velocity level L (f). Nevertheless, the velocity levels L (f) and w w 
L (f) show relative differences due to the dynamical behaviour of the 

v 

bearings and the gearbox housing. The angular velocity level Lw{f) of Fig. 

5.2 increases with increasing running speed. In contrast, the velocity 

level L (f) of Fig. 5.5 shows a smaller peak for n = 1500 rev/min at the 
v 

tooth frequency of 600 Hz than for lower running speeds. The highest 

measured overall velocity level is not reached at the maximum speed but at 

n = 850 rev/min as Fig. 5. 7 shows. This figure illustrates the strong 

dependency of the velocity level on the structural behaviour of the gear

box. Three speeds result in high measured levels at maximum torque load, 

these are 450, 850 and 1300 rev/min which correspond with tooth frequencies 

of 180, 360 and 550 Hz. They coincide with eigenfrequencies of the gearbox. 
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At this place it should be noticed that the high velocity levels at the 

lower running speeds will not necessarily result in high sound power 

levels. The lower value of the radiation index of the test gearbox which is 

shown in Fig. 4.24, will decrease the sound power level below frequencies 

of 366 Hz. But more important is the A-weighing of the sound power level 

which decreases the levels at frequencies well below 1kHz significantly. 

Fig. 5.6 shows the predicted and measured velocity level Lv(f) at maximum 

operational conditions, i.e. 300 kW power. Again the tooth frequency and 

its second harmonic are clearly distinguishable. The prediction was done 

using the FEM calculation of the transfer function TF~(f), using the calcu

lated angular velocity level L~(f) of the wheel as input and with Lv(f) as 

output. 

-2 2] v ·~ 
0 

[dB] (5.5) 

The FEM calculations were carried out using a sinusoidal torque with ampli

tude of 1 Nm and frequency f which was applied at the wheel centre point. 

The velocity levels Lv(f) and L~(f) were calculated in order to obtain the 

transfer function TF~(f) according to Eq. (5.5). The calculations were 

performed using a frequency independent modal damping coefficient ~of 0.04 

and using eight positions at the gearbox housing surface and one on the 

centre of the gear wheel. The damping coefficient of 0.04 was an averaged 

result of measured modal damping factors of a few frequency response 

functions of the gearbox housing. The eight points on the gearbox surface 

corresponded with the eight positions at which the measurements were 

carried out. 

This transfer function was calculated for narrow-bands and was added to the 

calculated angular velocity level L~(f) according to Eq. (5.5). This 

resulted in a narrow-band spectrum of a velocity level L (f) from which the 
v 

1/3-octave band spectrum was calculated. 

Fig. 5.7 shows the running speed dependency of the measured and predicted 

velocity level L at the 1/3-octave band in which the tooth frequency lies. 
v 

This is justified by the fact that the tooth frequency dominates the 

overall velocity level. It can be seen from this figure that the levels of 

the measurements are on average higher than those predicted. This is in 

accordance with what was found in Chapter 4 (see e.g. Figs. 4.5, 4.7, 4.10 

and 4.19) where the predicted transfer function TFF(f) in the frequency 
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range of interest was too small. This frequency range is determined by the 

tooth frequency and lies in a region where no or only a few eigenfrequen

cies of the structure are present in a 1/3-octave band. A partial reason 

for these too low levels is possibly the neglect of modes with eigen

frequencies above 4 kHz as was stated in Chapter 4. Even when the maximum 

measured and predicted velocity levels are compared, a difference of about 

10 dB is found. 

The FEM calculation of the transfer function TFW(f) between angular 

velocity level L (f) at the gear wheel and the velocity level L (f) at the w v 

surface of the gearbox housing provides hereby not an accurate tool for 

predicting the vibration transfer between gear shafts and the gearbox 

housing surface. The low frequency modeling of the housing behaviour and 

the implementation of shafts and bearing stiffness matrices to the FEM 

model seems to be the bottle-neck for these kind of predictions as was also 

concluded for the scale model of Chapter 4. Therefore, more investigations 

should be made to improve the FEM modeling of gearbox housings with and 

without shafts and bearings. 

5.5 Sound power level Lw(f) of the test gearbox 

For the purpose of sound power measurements a fictitious box was defined 

around the test gear transmission at 0.5 meter from its surfaces. According 

to DIN 45635 /5.2/ this measurement box should be at a distance of 1.0 

meter from the gearbox but this would mean that the top and side areas of 

the measurement box came very close to the ceiling and walls of the semi 

anechoic sound insulated room. Therefore, it was decided to take a smaller 

measurement box. Special attention was paid to the fact that at these short 

distances from the noise source, the air pressure and velocity waves could 

be out of phase so that simple sound pressure measurements would not be 

sufficient to calculate the total emitted sound power of the gearbox. For 

this reason sound intensity measurements were performed simultaneously with 

the sound pressure measurements. At several operational conditions of the 

gear transmission it turned out that both measurements gave exactly the 

same results for the radiated sound power estimation. This meant that the 

smaller measurement box was still sufficiently large for sound power deter

mination, using sound pressure measurements, so that the more complex sound 

intensity method could be omitted for the rest of the sound measurements. 
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The fictitious measurement box has four planes since the gearbox stands on 

a frame and the input and output shafts are shielded by a wooden box, both 

covered externally with sound insulating materials. Hence, four planes are 

left on which six microphones should be positioned according to DIN 45635, 

one at the middle of every plane and two in the corners of the box. 

Furthermore, DIN 45635 prescribes that the number of microphones should 

always be larger than the maximum difference in dB between the measured 

sound pressure levels. After a few measurements it was decided that 

according to this rule eight microphone positions were sufficient. 

The sound power level Lw{f) could be derived from the eight sound pressure 

measurements in the following way: 

lOlog[ t, -2 

l Lw(f) lOlog( p:~f) ) 
pi (f) •Si 

[dB) {5.6) 
p2•S 

0 0 0 

with p 1·10-12 w, -5 2 
1 

2 
Po 2·10 N/m and s m 

0 0 

The eight microphone positions were at almost equal distances to each other 

so that all surface areas S 
1 

could be assumed to be the same: S i = S/8. 

This leads to a further simplification of Eq. (5.6) since the total area of 

the measurement box is 3.95 m
2

: 

L (f) 
w 

dB (5. 7) 

Measurement results at different operational conditions of gear set A were 

processed according to Eq. ( 5. 7) . The results are shown in Fig. 5. 8 for 

three running speeds at maximum torque load. The 1/3-octave bands in which 

the tooth frequency and its second harmonic lie can be distinguished 

clearly in the figure. Just like in the previous section with the velocity 

level Lv(f), the overall sound power level Lw(f) at maximum running speed 

is not the highest. The resemblance of Fig. 5.5 and Fig. 5.8 is remarkable 

but not unexpected since the sound radiation index L~(f) is about zero dB 

for the whole frequency range of these figures as was shown in Chapter 4 of 

this thesis (see Fig. 4.24). 

The predicted sound power level at maximum running speed and torque load is 

shown in Fig. 5.9 together with the results of the measurements. The 
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predicted curve resulted after calculation of the angular velocity level 

Lw(f) and the velocity level Lv(f) and by assuming a sound radiation effi

ciency cr{f) of unity. Therefore, the prediction is entirely based upon 

theory apart from the fact that a frequency independent measured loss 

factor~ of the structure was used for the calculation of L {f). Hereby, 
v 

the complete sound transmission chain has been described mathematically. 

Fig. 5.10 shows the measured and predicted overall sound power level Lw of 

gear set A as function of running speed. Just like in the previous section 

this figure resembles Fig. 5.7 by showing three extremities around n = 500, 

950 and 1350 rev/min. When comparing these two figures one should take 

notice of the difference in quantity which belong to the vertical axes. The 

sound power level was A-weighted to obtain a quantity which is in rather 

general use as a dose measure in relation to noise annoyance or hearing 

damage. This results in lower levels compared to linear {i.e. unweighted) 

levels, especially for the left part of the figure where the tooth 

frequency is low. At these low frequencies the A-weighing has a significant 

decreasing effect. 
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Fig. 5.10 shows a tendency which is known from the literature (15.3/, 

/5. 4/l, namely that the sound power level increases approximately with 6 

dB(A) per speed doubling. However, especially for running speeds above 400 

rev/min rather large fluctuations are seen because of resonances. 

When considering n = 500 with Lw = 80 dB(A) as reference point, the "speed 

law" would imply an increase from a level of 74 dB(A) at 250 rev/min, to 86 

dB(A) at 1000 rev/min and to 89 dB(A) at 1500 rev/min in Fig. 5.10. This 

trend can be seen although a rather large scatter of 5 to 10 dB(A) is seen 

as well. 

The actual values of the calculated and measured sound power levels as they 

are shown in Fig. 5.10 are not well matched. However, it should be said 

that gear transmissions are often driven at various speeds and torque loads 

so that resonances will define the sound power level of a particular gear 

transmission when classifications have to be made. For this purpose one 

should look at the maximum measured and calculated sound power levels which 

are 100.5 dB and 89.4 dB respectively. From this it is clear that the 

calculations predict a seriously underestimated sound power level. 

The unweighted measured sound power levels and the measured velocity levels 

have also been used for determining the sound radiation index L (f) of the 
(J' 
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gearbox. For this purpose Eq. (4.16} has been used with an area level L
8 

of 

-1.0 dB. Because the measurements of L (f} and of L (f} were taken at 
v w 

r.p.m. intervals of 50 rev/min, the radiation index was averaged over 30 

running speeds. The result is shown in Fig. 4.24 which confirms the simpli

fied model that was used for the prediction of the radiation index of the 

compact gearbox housing. 

This section shows that the sound power level of the test gearbox is 

strongly dependent on the running speed and that the sound power level can 

be predicted by the proposed theory of this thesis with only moderate 

accuracy. Figs. 5. 7 and 4.19 indicate that at the relatively low tooth 

frequency an underestimation of the velocity and sound power levels occurs 

due to an incorrect calculated transfer function. Therefore, the main 

factor that still needs more investigations seems to be the transfer 

function TFW(f) at low frequencies. 

Nevertheless, a big step forward has been made in predicting sound power 

levels of gear transmissions. It is now possible to predict the sound power 

level by only using drawing board knowledge. It is therefore possible to 

estimate to some extent the influence on the velocity level and the sound 

power level of structural measures without actually building and testing 

the gearbox alternatives. 

5.6 Scatter in sound power levels for a single gearbox variant 

Before proceeding with the results of further measurements some practical 

considerations have to be discussed to put the forthcoming measurements in 

their perspective. The accuracy and repeatability of the measurements at 

the test rig have to be investigated. Also the assumed negligible profile 

faults or unloaded Transmission Error have to be verified. This is done in 

order to distinguish significant differences in later experiments and to be 

able to relate them to the changes made in bearing types or tooth profile 

corrections used. Therefore, the random scatter in measured levels for a 

single gearbox variant has to be known first. 

For this purpose sound power measurements have been performed on the same 

gear transmission at different days of the week. The results are shown in 

Fig 5.11 where the differences between two measurement days are given. As 

function of the running speed the differences are shown and they are as 

they should be, namely oscillating around zero dB with a small mean value 
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of +0.3 dB and with a small standard deviation of 0.5 dB. From this it can 

be concluded that the repeatability of the sound power measurements is very 

good. 

Fig. 5.12 shows the sound power level differences for three different 

pinion-wheel configurations. Since the transmission gear ratio is exactly 

3.0 the same teeth of pinion and wheel meet every rotation of the wheel. 

The influence of the unloaded Transmission Error can therefore be investi-

gated by removing and turning the pinion through an angle relatively to the 

wheel and then assembling them together again. This was done for 1/3 and 

2/3 revolutions of the pinion which corresponds with 8 and 16 teeth of the 

pinion relative to the wheel. The mean differences in sound power level 

were 0. 3 dB with a standard deviation of 0. 8 dB. Taking Fig. 5.11 into 

account, this means that these differences are not significant. From this 

it may be concluded that the unloaded Transmission Error of the test gears 

is well distributed over all teeth of the pinion and the wheel and that the 

positions of pinion and wheel is irrelevant to the measurements. Neverthe

less, the positions of pinion and wheel were always kept the same in the 

measurements of section 5.8, where the influence of rolling bearing 

elements is investigated with the same test gears. 

129 



Fig. 5.13 shows the influence of the oil temperature on the sound power 

level. Measurements were carried out at the start of a day where the oil 

temperature was equal to the surrounding air temperature which was about 20 

degrees Celsius. At the end of that day, after intense operation of the 

test rig, the measurement was repeated with a much higher oil temperature 

of about 80 degrees Celsius. The temperature difference corresponds with a 
-2 

difference in oil viscosity between 0. 48 Nsm at room temperature and 

0.023 Nsm-2 at high temperature. This can be interpreted as if another oil 

was used. At low temperatures slightly lower sound power levels were 

measures as could be expected since the oil viscosity is higher with 

corresponding higher damping properties. The mean difference over the speed 

range of zero to 1500 rev/min of the pinion is 0.8 dB which is just above 

the standard deviation of Fig. 5.11. Therefore, this is a significant 

result when measurement accuracy is concerned, but it is rather insignifi

cant when sound reduction measures are concerned. A low oil temperature or 

a high viscosity oil would not result in a remarkable sound reduction of 

gear transmissions. 

Profile corrections were discussed in Chapter 2 of this thesis. They may 

influence the dynamical behaviour of the gearbox interior (i.e. the rota

ting elements) by changing the engagement shocks of the gears. According to 

the theory appropriate profile corrections should reduce the velocity level 

and hence the sound power level of a gear transmission. This is also known 

from practice and many articles in the literature describe this feature. 

However, the amount of vibration reduction and sound power reduction in 

dB (A) is not mentioned in these articles, or only in a few practical 

examples. This thesis wants to calculate the level reductions beforehand 

and verify them by measurements. 

For this purpose four identical sets of pinion and wheel were manufactured 

with different profile corrections. An uncorrected set was not included 

because this seemed irrelevant since almost all high precision gear sets, 

which form the topic of this thesis, have some kind of profile correction. 

The four profile corrections are described in Appendix F and they are 

indicated as correction (or set) A, B, C and D. 

Correction A has been proposed by the gearing manufacturers and hence is 

based on experience. It consists of tip relief corrections on pinion and 
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wheel of 31 ~and 13 ~ over a length of 4.1 mm and 1.3 mm respectively. 

This gear set has been used in the previous sections of this chapter and 

can be seen as the reference gear set with which the other corrections will 

be compared. 

Correction B resulted from calculations made with the newly developed 

computer program of Chapter 2. It resulted in a tip relief of the pinion of 

40 ~ over 4.8 mm and of the wheel of 15 ~ over 1.4 mm. Supplementary a 

profile width correction was established over half the tooth width of the 

pinion with maximum relief at the ~dge of 9 ~· 

Correction C was meant for illustrative purposes to show the influence of 

too small a tip relief respectively too large a torque load. This was 

realized with a pinion tip relief of 18 ~ over 2.0 mm and an uncorrected 

wheel. 

Correction D has an experimental character by combining a tip relief and a 

tooth width correction. Fig. 5.14 shows this three-dimensional profile 

correction. The tip relief has a triangular shape on the tooth surface with 

two triangular points on the tip of the tooth (Q and R) and one along the 

tooth profile at the tooth edge (point P}. The line P-R is chosen in such a 

way that this line becomes a contact line of the meshing teeth at one 

moment. Therefore, line P-R is parallel to the lines of contact which lie 

at the base helix angle ~b. Both pinion and wheel are equipped with these 

three-dimensional profile corrections. Depending on the torque and rotation 

directions, two meshing teeth of pinion and wheel will meet at point Q of 

pinion or wheel. In our case this is the wheel since the torque and 
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rotation direction on the driving pinion are both clockwise when looking 

from the electric motor to the test gearbox (see Fig. 5.1). During meshing 

this contact point will progress along the tooth surfaces in the corrected 

area with contact lines parallel to P-R until they reach P-R. At this point 

the mesh is uncorrected so that the route from Q to P-R of the wheel deter

mines the engagement shock. The same arguments apply to the disengagement 

shock where the route from P-R to Q of the pinion is responsible. 

Fig. 5.15 shows the results of sound power level measurements with increas

ing running speed for these four gear sets. They all have resonances at 

450, 950 and 1300 rev/min but the relative differences are small. From n = 
800 rev/min up to 1500 rev/min the sound power levels are as large as 90 

dB (A) or more and here the mean differences between the sets are as 

follows: 

L - L 
w_setc W_setA 

L - L 
w_setD W_setA 
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measurements 

standard 
mean deviation 

-0.9 4.0 

+0.4 4.1 

-0.3 3.1 

calculations 

standard 
mean deviation 

-0.4 0.2 

+2.9 0.2 

-5.1 0.2 

dB 

dB 

dB 



The calculated differences are a result of differences in L at the tooth 
w 

frequency because it was assumed that the vibration transmission through 

the shafts, bearings and housings as well as the sound radiation efficiency 

is not influenced by changing the tooth profile correction. The differences 

between measurements and calculations are rather large, especially in case 

of the three dimensional profile correction D where a mean sound power 

level reduction was expected of 5.1 dB. 

The mean measured differences are within 1 dB of the sound power level of 

the gear set with correction A. Since the standard deviation of a sound 

power measurement within the same gear set is about 0.5 dB, as shown in the 

previous section, it can only be concluded that the sound power level over 

the speed range is on the average only slightly or not influenced by the 

applied profile corrections. 

However, the standard deviations of the individual measurements indicate a 

stronger fluctuation with running speed, as can be seen in Fig. 5.15. At a 

certain running speed, sound power level differences between the gear sets 

occur of 5 dB or even more. The differences between the four gear sets can 

also be shown when the maximum sound power levels are compared. These 

levels are: 

max(L ) 
W_setA 

max(L ) 
W_setC 

100.5 dB(A) 

99.5 dB(A) 

max(L ) 
W_setB 

max(L ) 
W_setD 

98.3 dB(A) 

99.2 dB(A) 

The measurements clearly show that the actual shape of the profile correc

tion has a small influence on the sound power level. However, it should be 

mentioned that the amount of correction (i.e. tip relief) of the gear sets 

used is the same except for gear set C. This gear set shows on average a 

slightly higher sound power level over the speed range of interest. Similar 

calculations have been performed for an uncorrected gear set which resulted 

in a predicted sound power level that on average is 3.5 dB higher than that 

of gear set A. 

For these gears the expected reduction in vibration and sound power level 

due to the 3-D tooth profile correction could not be confirmed. Although 

this is in contrast with expectations on the basis of the modeling 

described in Chapter 2, this is a very important practical result. With the 

present understanding no definitive explanation can be given for it, but it 

can be suspected that the finite stiffness of the housing has an important 

influence on Lw' which up to now has been neglected in dynamic models such 

as described in Chapter 2. 
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5.8 Rolling element bearings 

The vibration transmission from the gears to the gearbox housing is influ

enced by the stiffness and damping properties of the bearings. In Chapter 3 

of this thesis the stiffness matrices were introduced of several types of 

bearings such as ball bearings, roller bearings, taper roller bearings and 

fluid film bearings. However, given the chosen calculation method, the 

damping properties of the bearings could not be properly implemented in the 

FEM calculations of the transfer functions of the gearbox. 

The gear sets in the previous sections of this chapter were equipped with 

ball bearings. The two bearings on the pinion shaft were of the type SKF 

6316 and on the wheel of type SKF 6219. Both bearings have the same outer 

diameter of 170 mm but have different inner diameters of 80 mm and 95 mm 

respectively. 

One single helical gear set was selected to do measurements with several 

rolling element bearings attached to it. For this purpose gear set B was 

used. Four sets of rolling element bearing types were used with of course 

the ball bearings type SKF 6316 and SKF 6219 as one of them. Ball bearings 

are commonly used in gear transmissions and therefore they are taken as 

reference for the rest of this section. 

The second bearing type is the single row angular contact ball bearing 

which was used in combination with a ball bearing. On every shaft an 

angular contact ball bearing was situated at the shaft side where the axial 

force is encountered by the bearings. With the single helical gears this 

axial force is a result of the tooth helix angle {J and could become a"' 

large as 8272 Newton at maximum torque load. This axial load was encoun

tered by the angular contact ball bearings of pinion (SKF 7316B) and wheel 

(SKF 7219B) . The other two ball bearings had only radial forces to encoun

ter. The angular contact ball bearings were situated at the front (pinion) 

and at the back (wheel) of the gearbox. 

The third bearing type was a double row self-aligning roller bearing which 

was used at all four bearing positions. These bearings were of the type SKF 

21316CC for the pinion and SKF 22219CC for the wheel shaft. Double row 

self-aligning roller bearings are expensive but are used here and there ·in 

gearing practice to enable the gear shafts to bend freely especially in 

cases where these shafts are flexible. The construction of this bearing 

type allows limited rotations around coordinate axes perpendicular to the 

shaft axis. 
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The fourth bearing type is the taper roller bearing which was also used in 

combination with ball bearings. The same reasons apply as for the angular 

contact ball bearings to use only two of such bearings. Four taper roller 

bearings would give too much bearing air in the axial unloaded bearings 

which can result in an unwanted radial movement of the gears with excessive 

vibrations as a result. 

Figs. 5.16 and 5.17 show the results of the sound power level measurements 

for the four configurations of gear set B (for T = 2000 Nm). The differen

ces are larger than those encountered in the previous section where the 

influence of profile corrections was investigated. Here, the sound power 

level differences are up to 15 dB which is considerable. This is mainly due 

to changes in resonance frequencies caused by the different bearing 

stiffness matrices. The mean differences with regard to the ball bearing 

set, over the speed range of 800 to 1500 rev/min are: 

standard 
mean deviation 

L -4.2 4.5 dB 
w_angular 

L 
w_selfaligning 

-5.1 6.0 dB 

L 
w_capered roller 

-3.6 4.1 dB 
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However, the angular contact ball bearing configuration shows an excessive 

peak around 500 rev/min which is probably due to a resonant vibration mode 

of the gears in axial direct ion. For the rest of the speed range it is 

somewhat quieter than the ball bearing configuration resulting in a mean 

difference of -4.2 dB. However, at n = 950 rev/min the difference is 13.7 

dB in favour of the angular ball bearing. 

The other two bearing configurations show better results with the double 

row self-aligning roller bearings as being the best with an average sound 

power level difference of -5.1 dB with regard to the ball bearing configu

ration. The tapered roller bearing configuration gives a somewhat less 

distinct improvement on the sound power level, but still by 3. 6 dB on 

average. 

When looking at the maximum sound power levels per bearing configuration 

the following values are obtained from Fig. 5.16: 

max(L ) 98.3 dB(A) 
W_ball 

max(L ) 95.1 dB(A) 
w_angular 

max(L . . ) 92.3 dB(A) 
w_selfa l ~ gn 1 ng 

max(L ) 97.4 dB(A) 
W_tapered ro 11 er 
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The double row self-aligning roller bearing configuration is clearly the 

most quiet of the four, with a difference of 6.0 dB(A) in comparison with 

the ball bearing configuration. 

The maximum difference in favour of the double row self-aligning roller 

bearing is -15.1 dB. This probably is a result of the zero stiffness for 

angular displacements for this kind of rolling element bearing. Angular 

displacements excite the gearbox housing in a way at which the housing 

responds easily with bending waves on the surface. This is prevented by the 

use of these bearings in gear transmissions. The absence of any peak in the 

sound power level of Fig. 5.16 for the double row self-aligning roller 

bearing variant confirms this statement. 

A FEM model of the test gearbox was equipped with stiffness matrices of the 

ball bearings according to Chapter 3 and also equipped with the stiffness 

matrices of the double row self-aligning roller bearings. Because the 

latter is not discussed in chapter 3, the stiffness matrix of the ball 

bearings was used with zero moment stiffness coefficients instead of the 

stiffness coefficients of the ball bearing. Both FEM models provided the 

transfer function TFw(f) between the wheel angular velocity level Lw(f) and 

the gearbox housing velocity level L {f) according to Eq. (5.5). Fig. 5.18 
v 

shows the differences between these two calculated transfer functions. It 
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shows a mean difference of 7.3 dB with a standard deviation of 4.5 dB in 

favour of the FEM model with the double row self-aligning roller bearings. 

The measured differences in TFw(f} are shown in the figure as well. This is 

done by assuming that the tooth frequency is mainly responsible for the 

overall velocity levels Lw and Lv so that the pinion speed of 1500 rev/min 

corresponds with the frequency of 600 Hz in Fig. 5.18. Apart from a slight 

frequency shift both curves show a similar frequency dependency. The figure 

shows that the FEM models predict the transfer function differences in a 

rather good manner. The zero moment stiffness coefficients of the double 

row self-aligning roller bearings can hereby be made responsible for the 

advantageous difference. Although more expensiv~ it seems a very effective 

way of reducing the radiated sound power of a gear transmission by the use 

of self-aligning bearings. 

Concluding, it seems that the FEM calculations can be used to investigate 

effects of noise reduction measures which are related to the vibration 

transmission block of the sound generation scheme of Fig. 1.1. The influen

ces on the transfer function of different bearings (i.e. stiffness 

matrices) or modifications of the (empty) gearbox housing can hereby be 

investigated. For this purpose the FEM model of a gear transmission has to 

be sufficiently accurate, i.e. a high number of elements has to be used, 

and the dynamical calculations have to be carried out with appropriate 

measured or estimated damping factors. 

5.9 Double helical gears with roller bearings and fluid film bearings 

Another way of transmitting 300 kW with a transmission gear ratio of 3.0 is 

by the use of double helical gears instead of single helical gears. The 

manufacturing of double helical gears is more complex and hence more expen

sive but it gives certain advantages as well. The main advantage is the 

fact that double helical gears do not exert any axial force upon the 

gearbox housing. The axial force components of the two helical parts of the 

gears cancel each other out. This makes it possible to use a bearing con

struction that, in theory, gives no axial vibration input into the housing. 

The pinion bearings were combined radial and thrust bearings to restrict 

axial movements of the gears while both wheel bearings can freely move in 

axial direction. The wheel is axially positioned by the double helix of the 

gear mesh. 
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A second advantage of double helical gears is that by the absence of an 

axial force component on the bearings, fluid film bearings can be used in 

the test rig. In the experiments the tooth force has to be applied during 

standstill of the test rig and this means that fluid film bearings will 

make metallic contact. To enable a start-up of the test rig these metallic 

contacts have to be minimized since they give rise to friction which has to 

be conquered. This is not possible with single helical gears because the 

axial or thrust bearings would increase the friction by an enormous amount. 

When only radial bearing forces are present the contact areas are much 

smaller with consequently less friction. At every start-up of the test rig 

this friction has to be conquered which results in a slight bearing damage. 

For this reason the number of start-ups was restricted to a few and special 

attention was paid to the selection of fluid film bearing types. 

The double helical gears were tested with fluid film bearings and with 

single row cylindrical roller bearings in the same gearbcx as was used in 

the previous sections of this chapter. The fluid film bearings are of the 

type Glyco E-135-80 for the pinion and Glacier 095 KSA 070 for the wheel. 

These are two-part bearings with 1 mm white metal as bearing material. The 

pinion thrust bearings are only used to position the gears axially so that 

no axial force is present and hence no friction is introduced at start-up. 

The fluid film bearings were supplied with oil (Shell Omala 150) by the use 

of a small oil pump which was installed outside the semi anechoic sound 

insulated room. 

The roller bearings were of the type SKF NJ 316 and SKF NU 2219 for pinion 

and wheel respectively. Here the pinion bearings have two rims on the outer 

ring and one on the inner ring to prevent axial movements in the same way 

as the fluid film bearings do. The wheel bearings have plain inner rings to 

enable axial movements of the wheel which of course are restricted by the 

double helix of the gear mesh. 

The two parts of the double helical gears on which the teeth lie are sepa

rated by a distance of 54 mm to enable the grind stone to enter. Both parts 

have face widths of 25 mm (pinion} and 23 mm (wheel) with the same numbei 

of teeth as the single helical gears of the previous sections of this 

chapter to give the same tooth frequencies at the measurements. The helix 

angle has been increased to 33 degrees to ensure an overlap ratio 

exceeds unity. This resulted in the use of a smaller module m 
£{3 

3.5 

that 

mm 
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instead of m = 4.0 rom for the single helical gears. 

Fig. 5.19 shows the results from sound measurements of the double helical 

gear set with roller bearings and with fluid film bearings for the maximum 

torque load of 2000 Nm and also the results of the single helical gear set 

A with ball bearings. At low running speeds the sound power curves of the 

double helical gears are similar to each other but from 1100 rev/min on the 

gears with fluid film bearings are significantly more silent, up to 5.9 dB 

at 1350 rev/min. over the speed range of interest (i.e. n = 800 ton = 1500 

rev/min.) the mean difference is 1. 9 dB in favour of the gears with the 

fluid film bearings in comparison with the roller bearings, with a standard 

deviation of 3.0 dB. 

The differences between the single helical gear set and the double helical 

gear sets is very remarkable. On average the double helical gear sets have 

a lower sound power level of 5.3 dB for the roller bearing configuration 

and 7.2 dB for the fluid film bearing configuration in the speed range of 

interest. Even when the single helical gear set B is taken with the double 

row self-aligning roller elements the differences are in favour of the 

double helical gear sets (0.2 dB for the roller element bearing 
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configuration and 2.1 dB for the fluid film bearing configuration). When 

the maximum sound power levels are taken to classify the different bearing 

configurations, th~ following levels are obtained: 

max{Lw_ball) 100.5 dB(A) 

max (Lw_selfa 1 ign ing ) 92.3 dB(A) 

max(L element) 91.0 dB(A) 
W_roller 

max (Lt-<_fluid ) = 87.7 dB(A) 
film 

The possible sound power level reductions that can be obtained by changing 

the gear transmission design from single helical gears to double helical 

gears and by changing the bearing types are hereby clearly shown. For the 

test gearbox of this chapter a maximum difference in sound power level was 

obtained of 12.8 dB(A) in favour of the double helical gear set with fluid 

film bearings. 

Furthermore, the large sound power level fluctuations with varying running 

speed which are seen in Fig. 5.19 for the single helical gear set are not 

present in the results of the double helical gear sets. They show very 

smooth curves as function of the pinion speed. From these curves the 

previously mentioned relation between running speed and sound power level 

{i.e. 6 dB(AJ increase per speed doubling) can be seen clearly. 

FEM calculations have been performed on the double helical gear sets with 

roller bearings and with fluid film bearings using the bearings stiffness 

matrix according to Chapter 3. Fig. 5.20 shows the differences in Transfer 

Functions TF~(f) of these two variations. However, in contrast to Fig. 5.18 

the calculations are not satisfactory at all. This is probably due to the 

fact that the damping properties of the fluid film bearings, which were 

ignored at the FEM calculations for computational reasons, have a great:. 

influence on the transfer function. This asks for further investigations in 

order to be able to predict differences in TF (f) 
w 

between the roller 

bearing and the fluid film bearing configurations. Also effects of the 

non-symmetry of the stiffness matrices as they are derived with the graphs 

given in Chapter 3 need further investigations. 

As additional illustration of the dependency of the sound power ~evel on 

the operational conditions Fig. 5.21 shows the influence of the torque load 

(or tooth load) on the sound power level at six different running speeds n. 
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The results of the roller bearings are presented on the left of this figure 

(a) and the results of the fluid film bearings on the right (b). Both 

figures are similar and they more or less support the assumptions mentioned 

in the literature (/5.3/, /5.4/) that states a dependency of the sound 

power level to the transmitted torque load of the following kind. With 

every doubling of the transmitted torque load, the sound power level 

increases with 3 dB(A) on average. However, the curves of Fig. 5.21 confirm 

this statement only for higher torque loads. When the transmitted torque 

load T is being increased from 1000 to 2000 Nm (which is a doubling) the 

sound power level increases by 3.4 dB(A). The same relation holds for the 

gear set with fluid film bearings, from which resulted a similar increase 

of 2. 7 dB (A) . 

In conclusion, it seems that the use of double helical gears forms a very 

good alternative for single helical gears to achieve low noise gear trans

missions. The difference in maximum measured sound power levels of the 

standard single helical gear set A with ball bearings and the double 

helical gear set with roller bearings was 9.5 dB(A). A further noise reduc

tion was measured for the double helical gear set with fluid film bearings 

of 12.8 dB(A) relative to the standard single helical gear set. 

5 .10 Summary 

The theoretical models which were developed in the previous chapters of 

this thesis could be verified to some extent with the help of a test rig 

with a single stage gear transmission which was built for the measurement 

of angular velocity levels at the wheel, velocity levels at the gearbox 

housing and sound power levels. The three parts of the sound generation and 

transmission chain were measured, being the vibration generation at the 

gear mesh, the bearing and housing dynamical behaviour and the sound radia

tion. This was done for the so-called gear set A which has tip relief 

corrections on the pinion as well as on the wheel according to gear 

manufacturer's standard practice. 

The angular velocity level Lw(f) was calculated with help of the lumped 

parameter model which was introduced in Chapter 2. It showed resonances as 

function of the running speed but at different speeds than those that were 

measured. The mean level of the measured and calculated velocity levels are 
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about the same, but differences up to a factor two are found at maximum 

torque load in the high speed range of the gearbox (i.e. n 800 up to 1500 

rev/min.). The results of the calculations are useful when the maximum 

level over a certain speed range is taken. Since many gear transmissions 

are being operated at varying running speeds, a calculated averaged velo

city level is not a very useful tool for predicting the vibration genera

tion of gear transmissions but the maximum velocity level is. However, the 

predicted levels are not very accurate when the speed dependency is taken 

into account. This is probably caused by the assumption. of a rigid gearbox 

housing support of the bearings in the lumped parameter model. 

The FEM calculation of the transfer function TFw(f) between angular veloci

ty level L (f) at the gear wheel and the surface averaged velocity level w 
L (f) at the surface of the gearbox housing provides not an accurate tool 

v 

for predicting the vibration transfer between gear shafts and the gearbox 

housing surface. The proper modeling of the coupling between the shafts and 

the housing seems to be the bottle-neck for these kind of predictions. 

The sound power level of the test gearbox proved to be strongly dependent 

on the operational conditions {i.e. running speed and torque load). The 

sound power level can be predicted by the proposed theory of this thesis 

with rather low accuracy. A main factor which still needs more investiga

tions seems to be the low frequency behaviour prediction of the vibration 

transmission from shafts to gearbox housing surface. This concerns both the 

modeling of the housing dynamics and the estimation of modal damping 

values. 

Nevertheless, a big step forward has been made in predicting effects of 

alterations in the structure of gear transmissions. For example the posi

tive influence of the double row self-aligning roller bearings on the 

transfer function could be predicted rather well. The zero moment stiffness 

coefficients of the bearing could be made responsible for this favourable 

effect. The sound transmission behaviour of fluid film bearings could not 

be modeled accurately in this study. 

The sound power measurements on a single gearbox variant could be 

reproduced very accurately as an averaged value of 0.3 dB with a standard 

deviation of 0.5 dB shows. It was also confirmed that the unloaded 

Transmission Error had no influence on the measurements, as was assumed at 
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the start of this thesis. This shows the quality of the test rig and puts 

all measurements in their perspective. 

The influence of the viscosity of the gearbox oil was investigated by 

measuring at different oil temperatures. An averaged difference of 0.8 dB 

was measured which means that the gear transmission with high viscosity oil 

produces slightly less noise. Nevertheless, this difference is so small 

that the use of a high viscosity oil to obtain significant sound reductions 

seems not realistic. 

Sound power measurements of different kinds of profile corrections clearly 

showed that the actual shape of the profile correction had a small influen

ce on the sound power level. A reduction of the maximum sound power level 

by 2.2 dB(A) could be realized by using calculated tip reliefs instead of 

the standard profile correction which was prescribed by a gear manufac

turer. However, it should be mentioned that the amount of correction (i.e. 

tip relief) does have influence, because an uncorrected gear set would on 

average produce 3. 5 dB more than the corrected gear sets. From this it 

could be concluded that when the amount of tip relief is correctly chosen 

for the prevailing tooth force, no significant gain can be obtained by the 

use of sophisticated profile corrections such as the three dimensional 

profile correction which was used during the measurements. This important 

result was not in agreement with the expectations on the basis of the 

modeling in Chapter 2. As a partial explanation it is suggested that the 

lumped parameter model use~ in Chapter 2 for the gearbox interior (i.e. the 

rotating elements) is incorrect. 

Measurements were performed on a single helical gear set with several kinds 

of rolling element bearings attached on the pinion and wheel shafts of the 

test gearbox. Ball bearings were taken as reference in these measurements 

because this kind of rolling element bearing is widely used in gear trans

missions. This gear set proved to give rise to the highest sound power 

level. Tapered roller bearings were slightly better by 0. 9 dB (A) for the 

maximum sound power level. The use of single row angular contact ball 

bearings decreased the maximum sound power level by 3. 2 dB (A) . The best 

results were obtained with double row self-aligning roller bearings which 

resulted in a maximum sound power level that was 6.0 dB(A) lower than the 

one of with ball bearings. This good result can be explained by the fact 

that these bearings have a zero moment stiffnesses. This reduces the 
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transmission of vibrations into the gearbox housing which would directly 

give rise to bending waves in the housing surface. Although more expensive 

it seems a very effective way of reducing the radiated sound power of a 

gear transmission by the use of self-aligning bearings. 

Measurements have been performed on a double helical gear set with single 

row cylindrical roller bearings and with fluid film bearings. At low 

running speeds no noticeable differences in sound power level could be 

detected for these two bearing configurations. However, at higher running 

speeds the sound power level differences increased up to 5.9 dB at most. 

The maximum sound power level of the roller bearings configuration was 91.0 

dB(A) and that of the fluid film configuration was 87.7 dB(A). From this it 

can be concluded that fluid film bearings have a favourable effect on the 

sound power level. When a comparison is made between the standard single 

helical gear set with ball bearings and the double helical gear set with 

fluid film bearings the noise reduction is impressive. The difference 

between the maximum sound power levels of these two gear transmission 

variants is as large as 12.8 dB(A). 
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6. !VALUATION 
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6.1 Theoretical achievements 

In the foregoing study much attention was paid to th"' development and 

testing of computational tools for the purpose of designing low noise gear 

transmissions. The work concerned both the influence of the tooth geometry 

and of the tooth flank profile corrections on the origin of the vibrations 

and noise. Furthermore, the transmission of the vibrations via shafts and 

bearings to the outer surfaces of the gearbox housing were studied, where 

the vibrations are causing sound radiation into the surrounding air. 

6.1.1 ~~~~~~~~~~-~~-~~~~-~~e~~~~~~~ 
An important step was the development of a computer program for the fast 

calculation of the time variable tooth stiffness and the engagement and 

disengagement shocks. These phenomena are considered to be the main vibra

tion sources in high quality gear transmissions. The computer program is 

based upon an analytical model instead of a time consuming Finite Element 

Method model which is used by many other investigators. The analytical 

model is much faster and is applicable for any gear transmi·ssion with spur 

gears, single helical gears or double helical gears. 

The basis for this analytical model was taken from other investigators and 

it was extended to a multi purpose computer program that calculates tooth 

deflections, tooth force distributions and the time variable tooth stiff

ness of a gear pair. Moreover, a model was included which describes the 

engagement and disengagement shocks of the tooth pairs. This model is based 

upon the actual geometry of the tooth profile corrections and the amount of 

tooth deflections that result from the applied torque load. 

The new model is considered to form a valuable addition to the gearing 

technology because it can help the gear designer to effectively outline a 

gear transmission with respect to the tooth geometry in order to produce 

low noise gear transmissions. Nevertheless, further developments appear to 

be needed as it comes to predicting the vibrations of the gear wheels 

accurately. 

In the present study the prediction of the gear wheel vibrations was 
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obtained by integrating the data for the time variable tooth stiffness and 

for the engagement and disengagement shocks with a dynamic model for the 

gearbox interior. This is a lumped parameter model for the gear wheels, 

shafts and bearings and is based on the assumption that a rigid gearbox 

housing provides the boundary conditions for the bearings. 

However, Finite Element studies in Chapter 4 reveal that dynamic boundary 

conditions at the interface of housing and bearing have a severe influence 

on the dynamic behaviour of the gearbox interior. As a consequence one may 

expect prediction errors for gear wheel vibrations when assuming rigid 

boundaries for the lumped parameter model of the gearbox interior. 

Another indication for this error source is found in Chapter 5 where the 

predicted angular vibrations of a gear wheel are compared with measurement 

results (see Figure 5.4). The differences between the predicted and 

measured values show a large scatter as a function of running speed. Never

theless, the results are not useless. Especially for the higher speeds (~ 

1000 rev/min) the averaged angular velocity levels are predicted quite well 

and the differences remain within 6 dB, i.e. a factor 2 in magnitude. 

A further indication for the incompleteness of the present modeling is 

found in section 5.7, where measured sound power levels have been compared 

for single helical gears with different tooth profile corrections. It was 

found, for example, that the noise reduction for a 3D-profile correction 

was significantly less than expected on the basis of the predicted 

reduction in gear wheel vibrations. 

Although the foregoing study has revealed that there are still some short

comings in the prediction model for gear wheel vibrations, we consider the 

approach developed in this thesis as basically sound and as a good step 

forward in the development of cost-effective computational modeling. 

However, further research is needed to investigate when and how more 

elaborate modeling of the dynamics of the gearbox interior has to be 

incorporated. 

6.1.2 ~~~~~~~~~-~~~~~~~~~~~~-E~~~-~~~~~-~~-~~~-~~~~~~~ 
As a further important step in computational modeling an extensive study 

has been made of the coupled dynamical behaviour of the gearbox interior 

and the housing. The modeling aims at calculating a system transfer 

function between the angular velocity level at a gear wheel as input and 

the surface-averaged mean square velocity level on the housing as an 
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output. The transfer system consists of the assembly of wheels, shafts, 

bearings and housing structure. The modeling approach taken in this thesis 

is that the system is assumed to be linear and that the Finite Element 

Method is the most promising tool for obtaining the desired transfer 

function. For the actual calculation the Modal Analysis approach has been 

followed. Much attention has been paid to the modeling of the stiffness 

matrices for bearings, especially for ball and roller bearings. 

With respect to the modeling of the housing a step by step approach was 

followed comparing computational and experimental results for structures 

with increasing complexity. 

From the results of the present study a number of lessons can be learned. 

Both computational and experimental results have made it plausible that the 

inclusion of moment stiffnesses in the bearing stiffness matrix is essen

tial for a proper modeling of vibration transmission. With respect to the 

modeling of the housing structure it was shown that rather detailed meshes 

are required, but that nevertheless certain simplifications are allowed. 

For example, the bolt joints between upper and lower casing may be modeled 

by assuming a one-pieced gearbox structure and the gearbox feet which are 

attached to a stiff supporting structure may be modeled by suppressing the 

contact node vibrations for all six degrees of freedom. 

With respect to the transfer functions for forced vibration the present 

study shows both promising as well as disappointing agreements between 

computational and experimental results. For an empty gearbox housing the 

predicted transfer function agrees quite well with measured results in 

frequency bands which contain several eigenfrequencies (see Figs. 4.5, 4.7, 

4.10 and 4.15). However, at lower frequencies the prediction tends to give 

significant underestimations of the transfer functions, which might be an 

indication for incompleteness of the modal model. This point requires 

further attention because it concerns a range which often covers tooth 

frequencies. 

For a gearbox model with shafts and bearings the predicted transfer 

functions did agree less favourably with experimental results. A main 

uncertainty follows from the estimation of damping factors. Moreover, from 

a methodological point of view it needs further investigation whether or 

not the followed Modal Analysis approach in the FEM computations in this 

thesis is appropriate. Certainly for the modeling of fluid film bearings, 

ignoring the proper implementation of the damping matrices, seems to lead 

149 



to useless predictions (see Fig. 5.20). On the other hand the prediction in 

Chapter 5 of the effect of replacing the ball bearings by double row self

aligning roller bearings on the housing vibrations seems more promising 

(see Fig. 5.18). However, further research is needed to improve the accura

cy of the predictions. 

In summary it may be concluded that with the presented work the results of 

FEM predictions of gearbox housing vibrations remain rather uncertain with 

respect to their accuracy. A major topic for further research is the 

improved modeling of the coupling between the gearbox interior (i.e. the 

rotating elements) and the housing. Both for modes dominant in the interior 

and for modes dominant on the housing the •coupled" eigenfrequencies may 

deviate very much from the "uncoupled" eigenfrequencies. Nevertheless, when 

averaging over running speeds the effect of replacing ball bearings by 

self-aligning bearings was predicted reasonably correct. 

6.1.3 §~~~~-~~~~~~~~~-!~~~-~e~-e~~~~~~-~~~!~~~ 
In the present study a simple model for obtaining the radiation efficiency 

of the housing was used. Comparison between predictions and experiments 

proved that this modeling was quite accurate. Moreover, it was observed 

that for the rather compact gearboxes which were investigated in this 

study, the radiation efficiency was close to its maximum value, i.e. unity, 

for the range of prevailing tooth frequencies. This also implies that the 

radiation efficiency will not be subject to large changes when structural 

modifications would be made to reduce the vibration response of the 

housing. Therefore, from a designers point of view it would be sufficient 

to have tools available for optimization towards a low vibration response 

of the housing. 

However, this will not be necessarily the case for less compact gearboxes, 

i.e. bigger and relatively less stiff housings. In that case it might be 

incorrect to ignore the effect of structural optimization changes on the 

sound radiation efficiency. Then still it would be advisable to explore the 

use of simplified modeling as known, for example, from the Statistical 

Energy Analysis approach. It is suspected that the cost-effectiveness of 

int.roducing a much more demanding Boundary Element Method modeling will be 

disappointing in the majority of applications. 
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6.2 Practical results 

The extensive experimental program reported in this study has provided 

results which are of great practical value for the designer of low noise 

gear transmissions. These results concern the effectiveness of tooth 

profile corrections, the evaluation of alternative bearings for a gearbox 

with single helical gears and the evaluation of replacing single helical 

gears in combination with ball bearings by double helical gears in combina

tion with other types of bearings. Although certain design changes may lead 

to the use of more expensive components, a larger noise reduction may save 

additional so-called secondary noise reduction measures. This makes such 

design changes cost-effective options for certain applications. 

The results reported in this thesis concern data over a wide range of speed 

and torque load. Especially the dependency of certain effects on running 

speed is striking. This is often not observed in other publications, 

because many investigators have published measured results at a single or a 

small number of operational conditions to test their theoretical predic

tions. This tends to obscure the important effects of such conditions as 

running speed and torque load upon the dynamical behaviour of the gearbox. 

6.2.1 !~~~~-~~~~!~~-~~~~~~~!~~~ 
For a gearbox with single helical gears with ball bearings, the radiated 

noise was measured for four different tooth profile corrections including a 

sophisticated 3D-correction. The major observation was that the differences 

in radiated sound power levels between the four variants were not more than 

2 dB. Especially, for the 3D-correction this was disappointing in view of 

the predicted larger reduction. Possible reasons have been discussed 

already in 6.1.1. An uncorrected gear pair was not part of the measurements 

because most high power gear transmissions have corrected gears. With the 

correct amount of tip relief, corresponding with the tooth deflections for 

the prevailing tooth force, no further gain could be established by the use 

of sophisticated tooth profile corrections such as the three dimensional 

tooth profile correction which was used during the measurements. 

For the designer this seems to suggest that expensive variants of tooth 

profile corrections may be avoided in favour of more effective measures. 

However, care should be taken in generalizing this statement to gears that 

deviate strongly from those under study in this thesis. Especially, for 
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gears with a larger width, a strongly uneven force distribution along the 

tooth width probably necessitates the use of 3D-profile corrections. Use of 

the design tool described in Chapter 2 of this thesis, may then still be 

most favourable, for the time being, in terms of cost-effectiveness. 

6.2.2 ~~~~!~~-~~~!~~~~ 
The bearing choice can have a very significant influence on the radiated 

sound power level of a gearbox. When the design of the gear transmission 

allows different kind of bearings to be used, it should be recommended to 

use bearings with low values for moment stiffnesses. Such bearings are for 

example the double row self-aligning roller bearings which were used in 

some tests of Chapter 5. Compared to a variant with ball bearings this lead 

to a reduction of the maximum sound power level 9f 6 dB. 

Another and more expensive alternative is the use of double helical gears 

with roller bearings. This variant has, in theory, no axial force input to 

the gearbox housing and has a larger mass of the wheels. In the tests of 

Chapter 5 this resulted in a 9 dB lower maximum sound power level in compa

rison with the single helical gears with ball bearings. This favourable 

result was obtained in spite of the non-zero moment stiffnesses of the 

roller bearings, probably because the moment excitation played a less 

important role due to a higher bending stiffness of the shafts. However, 

when the flexibility of the shafts decreases, due to another gear transmis

sion design, self-aligning bearings should be used to cancel out any moment 

excitation to the gearbox housing. 

The measured noise reduction was even more increased when fluid film 

bearings were used instead of the roller bearings. A reduction of 13 dB of 

the maximum sound power level was observed in comparison with the single 

helical gears with ball bearings variant. 

From these observations it is concluded that at least for rather small size 

and compact high power gear transmissions, for noise reduction purposes, 

priority should be given to alternative combinations of gears and bearings 

rather than to more advanced tooth profile corrections. 
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SUMMARY 

This thesis presents new contributions to the modeling of the sound genera

ting and transmission mechanisms of a gearbox with parallel shafts and to 

the experimental evaluation of noise reduction measures. The complete chain 

of vibration generation at the gears, of vibration transmission through 

bearings to the gearbox housing and of the sound radiation to the 

surrounding air is investigated. 

In Chapter 2 attention is paid to the gears as the primary source of vibra

tions and noise. A computer program based on analytical modeling has been 

developed for fast calculations of the force distributions at the teeth and 

of the time variable tooth stiffness. Furthermore, the time variable tooth 

stiffness and the profile corrections are used as input for calculating the 

angular velocity (vibration) level at the gears which is the main vibration 

phenomenon in high quality gear transmissions. For this purpose a new 

dynamic model has been used which describes the engagement and disengage

ment shocks as function of tooth load and the amount of profile correction. 

Different types of 2D and 3D profile corrections can be used as input for 

these calculations. 

Chapter 3 describes a method for calculating the stiffness matrix of ball 

bearings taken from the literature. Further developments of this method 

have been made for roller bearings. The stiffness matrix includes radial, 

axial and moment stiffness coefficients as well as their cross terms. The 

moment stiffness coefficients are of particular interest because they are 

assumed to have a significant influence on the vibration transmission of 

gearboxes. In addition the stiffness and damping matrices of fluid film 

bearings are presented as found in the literature. 

In Chapter 4 Finite Element Method (FEM) calculations are presented for 

gearbox housings with and without bearings and shafts. A step by step 

approach is followed, from a simple empty box-like structure to a scale 

model of a gearbox, to investigate the usefulness of FEM calculations for 

the prediction of eigenfrequencies, eigenmodes and forced responses. In 

addition Experimental Modal Analysis lEMA) measurements are presented of 

these housings to evaluate the relevance of the FEM results. 
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The last part of the chain of the vibration and sound generation of gear 

transmissions is the modeling of the sound radiation efficiency of a gear

box housing. A simplified modeling method is briefly discussed and the 

radiation efficiency is proved to be close to its \maximum value (i.e. 

unity) for a large part of the frequency range of ·i~terest for compact 

gearbox housings. It is concluded that extensive numerical calculations of 

this radiation efficiency are superfluous and moreover that significant 

reduction of it by design measures is not practically feasible. Therefore, 

the fundamental strategy for gear noise reduction in compact highly loaded 

gearboxes should be the reduction of gear vibrations, of transmission to 

the housing and of the housing vibration response but not the reduction of 

the radiation efficiency. 

Chapter 5 presents the results of experiments carried out on a gear test 

rig. The proposed modeling methods of this thesis are tested to some extent 

and important results on practical noise reduction measures are obtained. 

The proposed model for calculating the angular velocity levels at the gears 

is reasonably good for the high speed range with respect to its magnitude. 

However, the predicted advantage of a sophisticated 3D-correction is not 

observed in the experiment. This and other experimental and computational 

results leads to a critical appraisal of the degree of completeness of the 

model of Chapter 2. 

The FEM calculations of the transfer function between angular velocity 

level and the surface-averaged velocity level at the gearbox housing did 

not give very precise predictions. A major topic for further research is 

the improved modeling of the coupling between the gearbox interior (i.e. 

the rotating elements) and the housing. However, the prediction of the 

difference in vibration response between two gearbox alternatives such as a 

variant with ball bearings and another with double row self-aligning roller 

bearings was quite promising. 

With respect to the effectiveness of noise reduction measures, sound power 

measurements for different kind of profile corrections on a single helical 

gear set are presented. They show a disappointingly small difference 

between the maximum sound power levels of these gearbox variants of only 2 

dB. In addition, the influence on the sound power level of several kinds of 

rolling element bearings is shown. Here a maximum difference was measured 

of 6 dB in favour of the double row self-aligning roller bearing. 
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Furthermore, measurements on a double helical gear set with cylindrical 

roller bearings and with fluid film bearings are presented, They show an 

impressive improvement of the maximum sound power level by almost 13 dB 

when the single helical gear set with 'standard' profile correction A and 

ball bearings is compared with the double helical gear set with fluid film 

bearings. 

Finally, in Chapter 6, an evaluation is made of the achievements in this 

study with respect to computational models. It is discussed which further 

developments and investigations are needed. Furthermore, the experiments 

are evaluated with respect to practical consequences for design decisions. 

It is also discussed whether or not the findings of this study may be 

extrapolated to less compact gearboxes. 
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SADHV'A'l"l'ING 

Dit proefschrift presenteert nieuwe bijdragen aan de modellering van het 

geluidopwekkend en -doorleidend mechanisme van een tandwielkast met 

parallele assen en van 

maatregelen. De gehele 

tandingrijping, van de 

experimentele resultaten van geluidverminderende 

keten van het ontstaan van trillingen in de 

doorleiding van trillingen via lagers naar de 

tandwielkast en van de geluidsafstraling naar de omringende lucht wordt 

onderzocht. 

In hoofdstuk 2 wordt aandacht besteed aan de tandwielen die als primaire 

trillingsbron worden beschouwd. Een computerprogramma is ontwikkeld dat 

gebaseerd is op een analytische modellering welke op een snelle wij ze de 

tandkrachtverdelingen en de tijdsafhankelijke vertandingsstijfheid 

berekent. Een ander computerprogramma dat ontwikkeld is, gebruikt de 

tijdsafhankelijke vertandingsstijfheid en de profielkorrekties als 

invoergegevens voor de berekening van rotatie trillingsniveaus van de 

tandwielen van hoge kwaliteit tandwielkasten. Hiervoor is een nieuw 

rekenmodel geintroduceerd dat de intree- en uitreestoot beschrij ft als 

functie van de tandkracht en de profielkorrekties. Verschillende soorten 

profiel korrekties (2D en 3D) kunnen worden toegepast als invoergegeven van 

dit programma. 

Hoofdstuk 3 beschrijft een methode uit de literatuur om de stijfheidsmatrix 

van een groefkogellager te berekenen. Deze methode is uitgebreid voor 

cilinderlagers en kegellagers. De stijfheidsmatrix bevat radiale, axiale en 

moment stijfheidscoefficHmten alsook hun kruistermen. De moment stijf

heidscoefficienten verdienen bijzondere aandacht omdat hiervan vermoed 

wordt dat ze een belangrijke invloed hebben op de trillingsdoorleiding in 

tandwielkasten. Tevens worden in dit hoofdstuk de stijfheid en demping 

matrices gepresenteerd van glij lagers zoals ze in de literatuur gevonden 

zijn. 

In hoofdstuk 4 worden Eindige Elementen Methode (EEM) berekeningen gepre

senteerd van tandwielkasten met en zonder assen en tandwielen. Een stap 

voor stap methode wordt gevolgd, van een lege doosachtige kast tot aan een 

schaalmodel van een tandwielkast, om de bruikbaarheid te onderzoeken van de 

EEM resultaten van eigenfrequenties, eigenmodes en overdrachtsfuncties. 
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Tevens worden resultaten van Experimentele Modale Analyse (EMA) metingen 

van deze kasten gegeven om de toepasbaarbeid van de EEM resultaten aan te 

tonen. 

Het laatste deel van de keten van de trillings- en geluidsopwekking van 

tandwielkasten is de modellering van de geluidsafstraling. Dit wordt 

beknopt bescbreven waarbij de afstraalfaktor, voor een groot gedeelte van 

bet frequentiegebied dat van belang is voor compacte tandwielkasten, dicbt 

bij zijn maximum waarde van 1 blijkt te liggen. Er wordt geconcludeerd dat 

uitgebreide numerieke berekeningen van de afstraalfaktor overbodig zijn en 

dat een belangrijke vermindering van de afstraalfaktor niet praktiscb 

uitvoerbaar is door veranderingen in bet ontwerp aan te brengen. De 

fundamentele strategie voor ge1uidsvermindering van compacte boog belaste 

tandwielkasten moet dan ook worden gericbt op de vermindering van de 

tandwieltrillingen, van de trillingsdoorleiding naar bet buis en van de 

buisresponsie en niet op bet verminderen van de afstraa1faktor. 

Hoofdstuk 5 geeft de resultaten van experimenten die uitgevoerd zijn op een 

testopstelling. De voorgestelde modelleringsmetboden van dit proefscbrift 

worden tot op zekere boogte getest en enkele belangrijke resultaten van 

praktiscbe ge1uidsreductie maatregelen worden bescbreven. Het voorgestelde 

model voor de berekening van de boeksne1beid trillingsniveaus van de tand

wielen blijkt met betrekking tot zijn grootte redelijk goed voor bet boge 

toerentalgebied. De voorspelde geluidsreductie ten gevolge van een gecom

pliceerde drie-dimensionale profielkorrektie wordt ecbter niet gevonden in 

de experimenten. Dit en andere experimentele en voorspelde resultaten 

leiden tot een kritiscbe waardebepaling van de belangrijkbeid van bet model 

van Hoofdstuk 2. 

De EEM berekeningen van de overdracbtsfunktie tussen boeksnelbeid tril

lingsniveau en bet oppervlakte-gewogen snelbeidsniveau op bet kastoppervlak 

leverde geen erg preciese voorspellingen. Een belangrij k onderwerp voor 

verder onderzoek is de verbetering van de modellering van de koppeling 

tussen bet binnenwerk van een tandwieloverbrenging en de tandwie1omkasting. 

De voorspelling was ecbter zeer goed betreffende bet verscbil in over

dracbtsfuncties van twee tandwielkast alternatieven, zoals de variant met 

groefkogellagers en die met dubbelrijige tonlagers. 

158 



Ge1uidmetingen veer verscbi11ende soorten profielkorrekties van een enkel 

scbuine tandwie1set zijn gegeven. Zij tonen een te1eurste11end klein 

verscbi1 van slecbts 2 dB van bet maximum ge1uidvermogenniveau tussen deze 

varianten. Tevens wordt de invloed getoond op bet ge1uidvermogenniveau van 

verschi1lende soorten wentellagers. Hier wordt een maximum verscbi1 gemeten 

van 6 dB in bet voordeel van de dubbe1rijige tonlager variant. Verder 

worden resultaten van metingen gegeven van een pijlvertanding met cilinder

lagers en met glij1agers. Zij tonen voor de onderzocbte tandwielkast 

configuratie een indrukwekkende vermindering van bet geluidvermogenniveau 

van bijna 13 dB voor de glijlager variant in vergelijking met de enkel 

scbuine tandwielset met standaard profielkorrektie en groefkogellagers. 

Hoofdstuk 6 geeft een evaluatie van betgeen bereikt is in dit proefscbrift 

met betrekking tot de rekenmodellen. Er wordt beschreven welk verder 

onderzoek noodzake1ijk is. Tevens worden de experimenten besproken met 

betrekking tot hun praktische consequenties voor ontwerp vraagstukken. Er 

wordt ook bekeken in hoeverre de bevindingen van dit proefschrift ge1dig 

zijn voor andere, minder compacta tandwie1kasten, in welke mate de gehe1e 

tri1lings- en ge1uidketen is opge1ost en wat er in de toekomst nog gedaan 

zou moeten worden. Tevens worden rege1s gepresenteerd veer het ontwerpen 

van trillings- en geluidarme tandwie1kasten. 
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APPENDIX A: 

CON'l'ENTS OP' THE SCHMIDT-MATRIX 

The contents of the matrix A and vectors b and c are presented in this 

Appendix. They are needed to calculate the eight unknown constants to 

describe the deflection of a cantilever plate. The equation A•b c looks 

as follows (Schmidt /2.3/): 

a a a a a a a17 alB A c 
11 12 13 14 15 16 Bl 1 

a a a23 a24 a a a a28 c 
21 22 25 26 27 cl 2 

a a a a a a a a c3 31 32 33 34 35 36 37 38 Dl 
a41 a a a a a a a c 

42 43 44 45 46 47 48 Al 4 
a a a a a a a a c (A-1) 

51 52 53 54 55 56 57 58 Br 5 
a a62 a a a a a a c 

61 63 64 65 66 67 68 cr 6 
a a a a a a a77 a c 

71 72 73 74 75 76 78 Dr 7 
a a a a a a a87 a c 

81 82 83 84 85 86 88 r 8 

The contents of vector b is unknown: A
1

, B
1

, c
1

, , A , B , c , D . 
r r r r 

In principle the contents of matrix A and vector c are known. There are two 

different possibilities for filling up A and c. They depend on the values 

of the stiffnesses S
1

, S
2
and S

3
. 

Firstly for 

then A looks like: 

a 
11 

a 
31 

a 
41 

= a 
26 

e 

-a31 

a 
27 

a 
36 

a 
42 

a 
13 

a 
28 

= 0 

-rl~ 
e 

-r a 
1 32 

a 
37 

e 

a 
43 

r2~ 

a 
23 

a 

ra 
2 33 

a 
34 

38 

e 

-a 

a 
18 

(1-v}o:r /h
2 

2 p 

-r2~ 

34 

-r a 
2 34 

(A-2) 

0 

-a23 
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a 
4S 

a 
51 

a 
61 

a 
71 

-a 
41 

a 52 

r b 
2 

r e 
1 

r b 
1 

1 

a46 

a 
53 

a 
63 

e a 
21 

=-a 

a54 

a =-a a 
42 47 43 48 

0 

-r b r b 
1 2 2 

a 57 r e 
2 

= 0 

-rl~ 
a

72 
= -(e -1} /r

1 

-r ~ 
-(e 

2 
-1)/r 

2 
(e 

a 
73 

a 
58 

a 
68 

a 
76 

2 
r e 

2 

e 

-(e 

-r b 
2 

a 
24 

-r ~ 
-e l ) /r 

1 

a 
77 

r b r I; 
2 2 

(e -e ) /r2 ; a7B 

-r b -r ~ 
-(e 2 -e 2 ) /r 

2 

-2 rl~ 
- ~/rl a {r

1 
-S/S

3
) {e -1) a 

81 82 

-2 r2~ 
- ~/r2 a83 {r

2 
-S

2
/S

3
) (e -1) a84 

r b r £; 
{ e 1 -e 1 ) ( r -2 

1 
) + e (~-b)/r1 

a 
86 

-r b -r I; 
( e 1 -e 1 

) ( r -z -S IS ) 
1 2 3 

+ e 

(e + e 

-r b -r ~ 
( e 2 -e 2 

) ( r - 2 
-S IS ) 

2 2 2 

and c looks like: 

c c 
1 2 
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c = 
4 

c 
6 

+ e 

0 

-2 -rl~ 
{r

1 
-S

2
/S

3
) (e -1) 

-2 -r2~ 
{r

2 
-S/S

3
) (e -1} 

F {j) 

s 
3 

+ 1;/r 1 

+ £;/r2 



Secondly for 

( :2 r < 

1 

4S 
3 

s 
1 

then A looks like: 

2 2 2qp a = p -q 
11 

a a16 a17 = a18 15 

a 
13 

0 

3 2 2 
- 3q p - 2p(l-V)«/h a = p 

21 

= 

a =a 

-a 
42 

53 54 

a = a = 0 
63 64 

0 

a 
47 

p 

a a 
11 14 

3 
a =-q 

22 
+ 3p

2
q - 2q(l-V)«/h

2 

-a 
34 

=-a 
44 

a 
34 

p 

(A-3) 
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qa +pa -epb(l-v)2a:(qcos(qb)+psin(qb))/h
2 

55 56 p 

a
67 

= -pa -qa +e -pb (1-v) 2a:(pcos (qb) +qsin (qb)) th
2 

57 58 p 

a 
73 

qa -pa -e-pb(l-v)2c:(qcos(qb)-psin(qb) )/h
2 

57 58 p 

(psin(qb)-qcos(qb))-a
72

+q 

a e-pb(qsin(qb)-pcos(qb))-a
73

+p; a = e-pb(-psin(qb)-qcos(qb))-a +q 
77 78 74 

a 
82 

(cos(qb) (p(~-b)+V)+sin(qb)(q(~-b)+2qp)) 

e-pb(cos(qb) (p(~)+v)+sin(qb) (q(~-b)-2qp))-e-p~(cos(q~)v-2qpsin(q~)) 

with: v 
-2 

-q 

and c looks like: 

c 
1 
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APPEHDIX B: 
TOOTH PROPILB PORK OF INVOLUTE GBARS 

Equations to calculate the profile form of an involute gear are presented 

in this Appendix. These formulas are taken from Roosmalen /B.l/ in which 

Bronner /1.5/ is taken as an example for spur gears. The formulas are 

extended for the more general case of helical gears. The fillet curve (or 

trochoid) can be determined by newly developed formulas. 

The profile of a gear tooth can be divided into four parts. These are: 

1 - tip 

2 - involute 

3 - trochoid or fillet curve 

4 - root 

Due to symmetry only one half of the tooth profile needs to be calculated. 

This will be the right hand part. In the following the four parts are being 

described as function of x and y. The tooth form is part of a Cartesian 

coordinate system as shown in Fig. B .1. The origin of this coordinate 

system coincides with the gear centre point. 

tip 

involute 

trochoid 

root 

~.i.qurl.e B.l: 

1'~ &<:wn ae an ~ q,eart tao:th. 

This profile form is based on the rack with which it is manufactured. The 

dimensional properties of the rack are essential to the tooth profile form. 

Fig. B.2 gives the parameters that describe the form of the rack. 
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Mathematically the four parts of the tooth profile can be described as 

follows: 

1) tip 

r 
tip 

m(z/2 + h + x - k) [m] 

with m 

z 

h 
a 

X 

k 

2) involute 

{:: 
with r 

0 

0: 
t 

'f) 

t{i 
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a 

module 

number of teeth 

addendum coefficient 

addendum modification factor 

tip radius 

addendum reduction factor 

pitch radius 

transverse pressure angle 

n/2z 

parameter 

[m] 

[-] 

[-] 

[-] 

[m] 

[-] 

(m] 

[rad] 

[rad] 

[rad] 

(B-1} 

(B-2) 



with r 
b 

h 
d 

1 

base circle radius 

dedendum coefficient 

pressure angle a' at radius r: 

a' (r) ( 
rrb ) _ arccos 

r+xm 
-

0
-- tan (a ) + 
r t 

0 

3) trochoid or fillet curve 

with 

q>{u) 

4) root 

r 
root 

with 

~z coordinate (Fig. B.2) 

l)z coordinate {Fig. B.2) 

p radius factor {Fig. B.2) 

u parameter 

sin(~)-cos(u} 
llz sin(u) 

m{z/2 - hd - c 0 + x} 

r root circle radius 
root 

see Fig. B.2 

4 (h -xcos (cl) 
d t 

[m) 

[-) 

1 { ~b r 

[m) 

[m) 

[-) 

[-) 

1l 
2 -13 

1 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

sin(~)cos{~) }} 
1-sin(~)cos(u) 

[-) 

[-) 

(B-7) 

(B-8) 
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APPENDIX C: 

S'l'J:PPNESS IIA.'l'IUX AND O'l'BER VARJ:ABLBS OP 'l'HB LUMPED PARAIIJI'l'ER MODBL OP 

CHAPTER 2 

The stiffness matrix [S (t)] has 
tooth 

dimension lSxlS. It contains non-zero 

elements in the upper left 12xl2 corner. This corner looks like: 

k k -k 0 0 rlkx6 -k -k k 0 0 r2kx6 XX xy xz XX xy xz 
z z 

k k 0 0 r k 
6 

-k -k 0 0 rk
6 xy yy 1 y xy yy 2 y 

z z 
-k -k k 0 0 -r k k k -k 0 0 -r k 

xz yz zz 1 z6 xz yz zz 2 z6 
z z 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

-r k 0 
2 -r k -r k r1kz6 r1kx6 rk

6 
0 rlk6 6 0 0 rlr2k6 6 1 y 1 z;f} 1 xi} 1 y;{} 

z z z z z z z z z z 
-k -k k 0 0 -r k k k -k 0 0 -r k 

XX xy xz 1 xi} XX xy xz 2 x6 z z 

-k -k k 0 0 -r k k k -k 0 0 -r k 
xy yy yz 1 y;{} xy yy yz 2 y;{} 

z z 
k k -k 0 0 r1kz6 -k -k k 0 0 r2kz6 xz yz zz xz yz zz 

z z 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

-r k 0 0 rlr2k6 6 -r2kx6 -r k r2kz6 0 0 
2 

r2kx;{} r k 
6 r2k;{} 6 2 y 2 z;f} 2y6 

z z z z z z z z z z 

where r and r = 
1 2 

k s (t) (/3 ) sin
2 

(a:') k S (t)sin(a:')cos2 (f3) 
XX t b t x6 t t b 

z 

k = (t)cos2 (f3 )sin(a:')cos(a:') \;{} (t)cos (ex' )cos2 (/3 ) 
xy b t t t b 

z 

-St(t)sin(/3b)cos(/3b)sin(ex~} k ;; (t)sin(f3b)cos(f3bl z6 
z 

2 2 
k;{} ;{} 

2 
k (t)cos (/3b)cos (ex~) st (t)cos (/3bl 

yy z z 

k -~t'c)sin(f3b)cos(f3b)cos(ex~) k s (t)sin
2

(/3) 
yz zz t b 
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Non zero elements of the matrix [S ] 
shafts 

are: 

(6,6) = 1lG (d4/t) [Nm/rad] 
s 32 shaft2 

s (12,12) 1lG (d4/t) [Nm/rad] 
shafts 32 shaft3 

S shafts 
( 13' 13) 1lG [<d

4
/t) +(d

4
/t) ] 32 shaft 1 shaft2 

[Nm/rad] 

s (14,14) 1lG [<d
4
/t) +{d

4
/t) ] [Nm/rad] 

shafts 32 shaft3 shaft4 

s {15,15) 1lG (d4 /t) [Nm/rad] 
shafts 32 shaftl 

s 
shafts 

(6,13) s 
shafts 

( 13' 6) 1lG (d4/t) -32 shaft2 
[Nm/rad] 

s (12,14) (14,12) 1lG (d4 /t) [Nm/rad] 
shafts s -32 shaft3 

(13, 15) s (15,13) - 1lG (d4/l) [Nm/rad] 
shafts 32 shaftl 

The bearing stiffness coefficients are calculated with the computer program 

mentioned in Chapter 3. The non zero elements of [S . ] 
bear1ng 

are: 

s (1,1) 5.3•10
8 

N/m (7,7) 5.3•10 8 N/m 
bearing 

8
bearing 

(2,2) 7.3·10 8 N/rn s 
bearing 

(8,8) 5.7•10 8 N/rn 

s (3 t 3) 1.6·108 
N/m s (9,9) 1.3•108 N/rn 

bearing bearing 

s { 4, 4} 5.2•10
6 

Nm/rad 
bearing 

s (10,10) 3.7·106 Nm/rad 
bearing 

s (5,5) = 3 .8·10
6 

Nm/rad s (11, 11) 3.4•106 Nrn/rad 
bearing bearing 
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The values of the parameters in the formulas, for the case of the gearbox 

interior of the test rig with single helical gears, are: 

T 
15 

= 2000 Nm 

a.' 20,410 degr. 
t 

f3 = b 
11,267 degr. 

r = 0,045992 m 
gl 

r 0,137976 m 
g2 

m 28,0 kg 
gl 

m 86,0 kg 
g2 

2 
I = I 0,550 kg•m 
xgl ygl 

2 
J = 0, 0240 kg•m 

gl 

kg·m2 
I 0,260 

xg2 

kg·m2 
J 0,430 

g2 

kg·m2 
= 0,0520 

J = 0,450 kg•m2 

c2 
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APPENDIX D: 
CONTENTS OF THB ROLLDIG BLBMBH'l' BEARDIG S'l'IPPNBSS MA'l'RIX 

The contents of the symmetrical &atl &eanLnq stiffness matrix [K] can be 
bm 

derived from Eqs. (3.1) (3.10) when considering 

* * 8Aj <a l (a l zj 

a a A. 
cos(I/Jj) 

8fl A 
rjsin(I/Jj) 

X J X j 

* * 8A. <a l rj 8A. <a l 
J sin(I/Jj) J 

r cos {1/J ) = 
a a Aj 8fl A. 

j j 

y y J 

* 8A. <a l 8A 
J zj j 

0 = 
a a A 8f!l

2 z j 

It then follows 

z 
{A. -Aol" { 

k L ) • 2 } 2 K + (a )
2
j cos (1/Jjl {C-1a) 

bxx n A3 Aj -A j 0 

z 
(Aj -A )0 

{ nA ( .. ), 

L 0 j rj * 2} k K + (a ) . sin ( 1/J ) cos ( 1/J. ) (C-lb) 
bxy n A

3 
A -A 

Z) j J 

j j 0 

z 
(Aj - •o>" { 

k K L - l}(o*) . us·) .cos(I/J.) {C-lc) 
bxz n A

3 
A Ao 

r] ZJ } 

j j 

z 
{Aj - •o>" { .. , L } . . 

kbl<'tt = K 1 r. (o ) (o ) .sin (1/J ) cos (1/J l 
n 

A
3 

A A J rj ZJ j j 
X 

j j 0 

(C-1d) 

z 
(A. -A )n 

{1 

nA 

\,X't} L J 0 j } • * 2 K r (a ) . (a ) cos ( 1/J ) (C-1e) 
n A3 Aj -A 

j r) zj j 
y 

j 0 
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z 
(Aj -A )n 

{ nA.(c'5.)
2

. 

k K L 0 J r] 
(<5.)

2 
.}sin

2 
(t/1.) (C-lf) + 

byy n A3 A. -A ZJ J 

j J 0 

L 
(A. -A )n { nAj 

} * * k K 
J 0 

- 1 (<5 ) . (<5 ) .sin(t/1.) (C-1g) 
byz n A3 A -A 

r] ZJ J 

j j 0 

z 
(A, -A )n { nA 

L J 0 j } * * 2 
kb~ K -1r.(c'5) .(<5) .sin(t/J.l (C-1h) 

n A~ A -A J r] ZJ J 
X 

J j 0 

k 
by'i} 

-k 
bx-tJ 

(C-1i) 
y X 

z 
(A. -A )n 

{ nA,(c'5*)
2

. 

L J 0 J ZJ 
(<5*)2.} (C-1j) k K + 

bzz n A~ A -A 
r] 

J j 0 

z 
(A. -A )n { nA,(c'5*)

2
. 

L J 0 J ZJ * 2 } k K + (<5) . r.sin(t/J.l (C-1k) 
bz-t} n A~ A -A r] J J 

X j 0 

z 
(A. -A )n { nA.(c'5*)

2
. 

L J 0 J ZJ * 2 } (C-lt) k -K + ( <5 ) . r. cos ( 1/J.) 
bz-tJ n A~ A -A r] J J 

y 
J j 0 

L 
(A. -A )n { nA.(c'5.)

2
. 

(5.) 2 .}r~sin2 (t/l.l J 0 J ZJ 
(C-1m) kb-t} -t} = K + 

n A3 A -A r] J J 
X X 

j j 0 

L 
(A. - •,'" { nA,(c'5*)

2
. 

* 2 } 2 J J ZJ 
kb'i} -t} = -K + (<5) . r.sin(t/J.)cos(t/J.l (C-1n) 

n A3 A -A r] J J J 
X y 

j j 0 

z 
(A, 

- •,'" { nA.(c'5*l
2

. 

L J J ZJ * 2 } 2 2 
kb'i} -t} = K + (<5 ) . r.cos (t/l.l (C-1a) 

n A~ A -A r] J J 
y y 

j 0 

kbi-tJ kb-tJ -t} 0 i = x,y,z (C-1p) 

z i z 

* * 
where ( (5 ) ·' ( (5 ) and A. are defined by Eqs. (3 .2) - (3. 4}. 

r] zj J 
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The contents of the symmetrical ~tt~ &eaninq stiffness matrix [KJ brn can 

be derived from Eqs. (3 .5)' (3 .6), (3 .8), (3 .10), (3.13) and (3.14). 

It follows: 

z 
2 I an-lcos2 (1/1 ) k nKncos («

0
) (C-2a) 

too< j j 

z 

k bxy 
n 2 

TI<ncos («0) I a~-1 sin(21/1.l 
J ) 

(C-2b) 

z 
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APPENDIX E: 

RADZATIOR BPPICIIDI'CY OJ!' 'l'WO QBARBOX: HOOSIRQS 

The radiation efficiency of two gearbox housings will be estimated in this 

Appendix using the method described in section 4.7 of this thesis. The two 

gearbox housings of interest are the housings of the test gearbox of 

Chapter 5 and its 80 percent scale model of Chapter 4. The frequency depen

dent radiation efficiency is the link between the vibration level at the 

surface of the housing and the produced sound power level. 

Before the calculation method for estimating the radiation efficiency of a 

gearbox as described in Chapter 4 can be used, the surface areas and peri

meters of the individual plates of the gearbox have to be known. For this 

purpose the gearbox housing has to be modeled as if it consists of a number 

of plates which are homogeneous, i.e. have a constant thickness h. Of 

course, this is not the case for actual gearbox housings which often have 

ribs. This means that some simplifications may be necessary for the purpose 

of modeling. 

In Fig. E.l both housings are shown. It has been supposed that the housings 

can be divided into a number of homogeneous plates. These plates will only 

differ by their thickness, perimeters and areas. The perimeters of these 

plates are chosen to be at either edges of the housings, the flange between 

upper casing and lower casing or the boundary between two plates of 

different thickness. The top plate is a single plate while the two sides of 

9ii..qut"Le E.l: 

§'eanlwa: ~ o& the 80 perteen.t o.cale m.o.del (on the tettJ and ae the 

teot ~ o& ri:hapte!t 5 (on the rUq/lt) . 
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the housings were divided in two plates each. The front and back parts of 

the housings were divided in a thin plate at the lower housing part, a thii. 

plate at the upper housing part and a thick plate which contains the 

bearing openings. These openings are part of the plate area because for 

both housings these openings are covered by flanges. 

The approximi!ltion of the ri!ldii!!tion index of the complete housing can be 

done according to Fig. 4. 22 by looking i!lt the homogeneous plates of the 

gearbox housing. Point P can be calculated with the use of Eq. (4.11) for 

which the mean perimeter U and the mean critical frequency T (Eq. ( 4.12)) 
c 

have to be calculated. 

For reasons of simplicity the L-shaped plates i!lt the front and back of the 

gearboxes are considered to be rectangular with the surface area of the 

L-shaped plates and the ribs are not taken into account. The foot plates of 

the test gearbox housing were mounted to a supporting structure so that 

these plates do not contribute to the sound radiation. In contrast, the 

scale model of section 4.6 was put on soft rubber elements so that the foot 

plates do take part and have to be taken into account for the approximation 

of the radiation efficiency of the scale model housing. This leads to the 

following dimensions and frequencies for the 80 percent scale model: 

s [m2] U [rn] h [rn] [Hz] 

top 0.0544 1.07 0.008 1500 

side up 0.0177 0.532 0.008 1500 

side low 0.0224 0.602 0.008 1500 

front up 0.0243 0.922 0.008 1500 

front low 0.0303 0.952 0.008 1500 

front 0.0657 1.07 0.038 316 

foot 0.0240 0.920 0.025 480 

0.423/13 = 0.0326 
2 

m u 11.1/13 0.852 m 

[ 
0'' ( 

p 

point P: 
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u r/3 643 

U/f3/2 
c 

1.13· u. T /c 
c 

10log(o-' < T l l 
p c 

Hz 

1.80 

2.6 dB at 643 Hz 

(4.12) 

(4 .11) 



The dimensions of the 

frequencies are: 

s [m2] 

top 0.0833 

side up 0.0281 

side low 0.0340 

front up 0.0442 

front low 0.0494 

front 0.106 

0. 606/11 = 0.0551 

[ 
(1'' { 

p 

point P: 

u r/3 
U/f3/2 

c 

1.13·U· 

10log(cr' ( 
p 

test gearbox of Chapter 5 and the resulting 

U [m] h [m) f [Hz] 
c 

1.32 0.010 1200 

0.670 0.010 1200 

0.740 0.010 1200 

1.21 0.010 1200 

1.23 0.010 1200 

1.36 0.065 185 

2 u 11.7/11 1.07 m m 

433 Hz (4.12} 

/c 1.52 (4.11) 

)) 1.8 dB at 433 Hz 

The radiation index of the housings below the mean critical frequency T 
c 

can be constructed by applying a line through point P with a gradient of 25 

dB/octave. This line crosses the Lcr = 0 dB line at 508 Hz for the scale 

model housing and at 366 Hz for the test gearbox housing. The radiation 

index of the equivalent baffled piston is zero for higher frequencies and 

drops down to -15.2 dB and -11.7 dB at f = 125 Hz for the scale model 

housing and the test gearbox housing respectively. 

Whether the radiation index of these housings is also partially determined 

by the radiation efficiency c;:;-, as Fig. 4.22 indicates, can be 
Pl 

investigated by checking when Eq. (4.15) holds: 

2 
c 

s·T 2 
p c 

> 1.31 (4.15) 

For both housings this equation holds because the left hand side of Eq. 

(4.15) is 8.79 and 11.4 respectively for the scale model housing and the 

test gearbox housing. This means that both radiation indices can be modeled 

by the two straight solid lines for Lcr, as shown in Fig. 4.22. 
p 
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APPENDIX P: 
GBOME~RY AND PROPZLB CORRBC~IONS OP PZVB ~BST GEAR SBTS 

The test gears used in Chapter 5 are four identical single helical gear 

sets and one double helical gear set. The four single helical gear sets 

differ only by the amount and form of the profile corrections. In fact, to 

represent these four sets physically, only two gear sets were needed 

because both tooth flanks were used. Between measurements the pinion could 

be turned over 180 degrees around an axis perpendicular to the gear shaft 

axis. With the same torque direction as before, the other tooth flanks come 

into contact with identical gear geometry apart from the profile correc

tions. Thus, only three gear sets were used for the experiments. The single 

helical gears had the following dimensions: 

pinion wheel 

transmitted power l? 300 

centre distance a 200 

module m 4 

number of teeth z 24 72 

gear ratio i 3.000 

maximum running speed n 1500 500 

pressure angle a. 20.000 

helix angle ~ 12.000 

addendum modification factor X 0.50000 0.48728 

tooth width B 66 62 

quality {DIN 3962) Q 5 5 

material 17CrNiMo6 17CrNiMo6 

oil Shell Omala 150 

addendum coefficient h 1. 00 1.00 
a 

dedendum coefficient h 1.40 
d 

1.40 

rack radius factor p 0.40 0.40 

Which gives the following geometry of the single helical gears: 

pitch diameter 

outer diameter 

root diameter 

d 

d 

d 
0 

r 

98.145 

109.668 

90.945 

294.434 

305.855 

287.132 

kW 

mm 

mm 

rev/min 

degr. 

degr. 

mm 

mm 

mm 

mm 
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base diameter d b 91.983 275.949 rom 

addendum reduction k•m -0.239 rom 

transverse contact ratio €: 1.441 a 
overlap ratio ef3 1.026 

total contact ratio e 2.467 
tot 

maximum velocity v 7.709 m/s 

circumferential tooth load F 38918 N 

axial tooth load F 8272 N 
ax 

torque T 1910 5730 Nm 

transverse pressure angle a 20.410 degr. 
t 

operating transverse 

pressure angle a 23.099 degr. 
wt 

helix angle on the 

base circle f3b 11.267 degr. 

The double helical gears had the following dimensions: 

pinion wheel 

transmitted power p 300 kW 

centre distance a 200 rom 

module m 3.5 rom 

number of teeth z 24 72 

gear ratio i 3.000 

maximum running speed n 1500 500 rev/min 

pressure angle a 20.000 degr. 

helix angle f3 33.000 degr. 

addendum modification factor X 0.00000 -0.09020 

tooth width B 2x25 2x23 rom 

quality (DIN 3962) Q 5 5 

material 17CrNiMo6 17CrNiMo6 

oil Shell Omala 150 

addendum coefficient h 1.00 1.00 
a 

dedendum coefficient h 1.40 
d 

1.40 

rack radius factor p 0.40 0.40 
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Which gives the following geometry of the single helical gears: 

pitch diameter d 100.159 300.476 mm 

outer diameter d 107.156 306.841 mm 
0 

root diameter d 90.359 290.044 mm 
r 

base diameter d 
b 

91.879 275.637 mm 

addendum reduction k•m -0.001 mm 

transverse contact ratio e 1.333 a. 
overlap ratio e(3 2xl.ll4 

total contact ratio £ 2.447 
tot 

maximum velocity v 7.867 m/s 

circumferential tooth load F 38136 N 

external axial tooth load F 0 N 
ax 

torque T 1910 5730 Nm 

transverse pressure angle a. 23.460 degr. 
t 

operating transverse 

pressure angle a. 23.250 degr. 
wt 

helix angle on the 

base circle f3b 30.783 degr. 

The single helical gears had four different profile corrections which are 

named correction A, B, C and D. 

Correction A has been proposed by a gear manufacturer which is based on 

experience. It consists of tip relief corrections on pinion and wheel. The 

maximum tip relief of the pinion was prescribed to be 24 to 31 ~ over a 

length of 2.0 to 2.7 mm along the line of action. After grinding the gears 

profile measurements were performed which showed a tip relief of 31 ~ over 

a length of 4.1 mm along the line of action. The wheel showed a tip relief 

of 13 ~ (should be 29 to 36 ~) over a length of 1.3 mm (2.7 to 3.4 mm). 

This means that the grinding of the gears was not completely done as it 

should be, but the resulting gears were used in the experiments anyway and 

in the numerical analyses according to Chapter 2 the measured profile 

corrections were used. 

Correction B results from calculations with the developed computer program 

of Chapter 2. It resulted in tip reliefs of pinion (30 to 37 ~ over a 
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length of 2.5 to 3.2 rom) and of the wheel (29 to 36 pro over a length of 2.7 

to 3.4 rom) with a correction in tooth width direction at the pinion of 4 to 

11 pro over half the tooth width (33 rom). The profile measurements revealed 

a tip relief at the pinion of 40 pro over 4.8 rom and a tip relief at the 

wheel of 15 pro over 1.4 rom. The width correction was exactly as intended 

namely 9 pro over 32 rom. 

Correction C was meant for illustrative reasons to show the influence of a 

too small tip relief respectively a too large tooth load. They were pre

scribed to be 12 to 19 pro over 0.9 to 1.6 rom at the pinion and 11 to 18 pro 

over 1. 0 to 1. 7 rom at the wheel. The profile measurements revealed tip 

reliefs of 18 pro over 2.0 rom (pinion) and of 0 pro over 0 rom (wheel). 

Correction D has an experimental character by combining a tip relief and a 

tooth width correction in one. Fig. F .1 shows this three-dimensional 

profile correction. The tip relief has a triangular shape on the tooth 

surface with two triangular points on the tip of the tooth (one at the very 

end: Q) and the third point along the tooth profile at the very end (P). 

The line P-R is chosen in such a way that this line becomes a contact line 

of the gears at one stage in the mesh. Therefore, line P-R is parallel to 

the lines of contact which lie under an angle of ~b. Both pinion and wheel 

are equipped with these three-dimensional profile corrections. Depending on 

the torque and rotational directions, two meshing teeth of pinion and wheel 

/ 
/ 

p 

~iq.u/te F.l: 

/ 
/ 

/ 

7 
/ 

/ 

3"M.ee-d.iJn.en..olona ~~a& q,ealt .ad D. 
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will meet at point Q of pinion or wheel (in the experiments of Chapter 5 it 

is the wheel). During meshing this contact point will progress along the 

tooth surfaces in the corrected area with contact lines parallel to P-R 

until they reach P-R. At this point the mesh is uncorrected so that the 

route from Q to P-R of the wheel determines the engagement shock that the 

gears will encounter. The same arguments apply to the disengagement shock 

where the route from P-R to Q of the pinion is responsible. 

The maximum amount of relief occurs at point Q and it measured 30 pro for 

the pinion and 37 pro for the wheel. The length at the line of action from 

point Q to P measured 5. 2 mm and 6. 0 mm respectively while the length in 

tooth width direction was 25 mm (pinion) and 30 mm (wheel) respectively. 

The double helical gear set was corrected with a tip relief of 20 pro over 

2.2 mm (pinion) and of 42 pro over 3.3 mm (wheel). This profile correction 

was laid out on both helices on only one tooth flank side of each gear 

because the corrections were not of prime, importance in this particular 

investigation. The double helical gear set was meant to show the difference 

in roller bearings and fluid film bearings on the dynamical behaviour and 

sound generation of the gear transmission. 
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van berekeningen met de Eindige Elementen Methode. We hebben menige discus

sie gevoerd over de toepasbaarheid van deze rekenmethode op tandwielkasten. 
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grote problemen. Hij was van begin tot eind betrokken bij het onderzoek en 

leverde bijdragen op allerlei gebied zoals vak-inhoudelijk, financieel en 
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experimenten. Samen hebben we de praktische problemen altijd kunnen 
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leverde hij waardevolle suggesties bij het schrijven van het proefschrift. 
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kritische benadering van het vak. Hij hield de rode draad van het onderzoek 
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besprekingen hebben mij erg geholpen bij het planmatig uitvoeren van het 

onderzoek en bij het schrijven van dit proefschrift. 
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De figuren van dit proefschrift en het ontwerp van de kaft zijn mede tot 

stand gekomen met de hulp van oom Jan van der Vlis en mijn aanstaande 

Ingrid Festen. 

Vanzelfsprekend gaat mijn dank uit naar mijn ouders die mijn studie 

mogelijk gemaakt hebben, en zeker wat betreft dit onderzoek hebben zij mij 

altijd gesteund en waren zeer geinteresseerd in mijn werk. 

Tot slot wil ik Ingrid op deze plaats bijzonder bedanken, want zonder haar 

steun en aanmoedigingen was dit proefschrift zeer waarschijnlijk nooit 
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STELLINGEN BEHORENDE BIJ HET PROEFSCHRIFT 

MDESIGN TOOLS FOR LOW NOISE GEAR 'l'RANSMISSIONS" 



1 De in de tandwielprakt.ijk bekende regal om een overlappingsquotienl c
13 

met een gehele waarde na t.e st.reven om tot eert geluidarm antwerp t.e kornen 

i$ te beperkt. Het is voldoende om e~ grater of gelijk aart O.A te nemen. 

Een gehele waarde voor e~ is daarnaast inderdaaCl opt.imaal maar leverl itt 

hat genoemde gebied niet veel extra op. 

(Hoofdstuk 2) 

2 Het toepassen van profielkorrekt.ies bij relatief smalle tan<iw:ie1en 

belnvloedt de intree- en uittree-stoot op een gunstige wijze ind1en de 

maxima 1e mate van korrekt. i•~ ongeveer gel i j k ~s a an d·~ opt t·edende 

doo;J;."buigingen van de tanden. l)aarnaast brengt de exacte vorm van de 

profielkorrekties weinig tot. geen verbetering met zich mee. Het 

investeren in moeilijk te vervaardigen (drie dimen$iona.le) profiel-

korrekties heeft dan ook weinig zin. 

(Hoofd~tuk 2 en 5) 

3 De in de lit:e;J;."atuur vaak gebruikte karakterisering van lage£St.ijfheden 

met behulp van slechts radiale en axiale stijfheden i~ onvoldoende voor 

O.e beschr ijving van de tri 11 ingsdoorleiding via lagers n.;...u· .-Je tandwie l

kast. Hiervoo.t· zijn ook moment.stij fheden van be lang. Zo heeft hel 

toepassen van wentellagers met een lage momentstijfneid, zoals zich 

instellende twaerijige tonlagers, een zeer gunstige invloed op het door

geleide geluidniveau van een tandwielkast. 

(Hoofdst.uk 3 en 5) 

4 De E:indige Elementen Methode is het meest in aanmerking komende ger.eed·· 

schap om net trilgedra~ van een compacts tandwielkast te berekenen. Het 

voorspellen van de ligQing van de eigenf:requenties van de kast met 

binnenwe);"k blijkt vrij ztccuraat mo~eltjk, de voorspelling van $ne)heids~ 

velden op de ka:stwand daarentegen vooralsnog niet.. 

(Hoofd:stuk 4) 

5 Een goede konstruktieve maatregel om tot geluidarme tandwielkastett te 

komen is het toepassen van een J;>i]1vertanding met glijlager~ i.n plaats 

van een enkel~schuine vertandinq met wentellagers. Dit i~ t.c~ ve1·kiezen 

ooven het zoeken naar de 'optimale' t.andprofielkorrektievorm. 

(Hoofdstuk 5) 



6 De menselijke waarheming v~n cte tandfrequentie in het geluidspectrum v~n 

een tandwielov~rbrenging betekent niet dat deze ook w~rkelijk aanwezig i.s 

in het spectrum. De mens kent namelijk een grondtoon toe aan een 

harmonisch complex, ook ala deze grondtoon ontbreekt in het complex. 

(J .J, Gr<)Cn, Sle<;:hthorendheid en hoort:oestGllen, Hl6S) 

7 Vooroordelen en generalisaties zijn e:r voor het ge!Th!lk van hun gebruikers. 

8 Golf wordt gekerunerkt door "fair play and gentlemanship"- O;i.t wordt rnede 

bereikt door het toepassen van een etiquette- en regelboek waarrnee alle 

golfers bekend dienen te zijn. Ben aoortgelijk boek zou geen overbodige 

lu~e zijn bij vele andere takken van sport. 

9 De afstandsbediening van TV's is een bedreiging voor de volksgezondheid. 

10 Het rneest in het oog springende verschil tussen bromfiets en snorfiets 

is doorgaans niet cte maximaal haalbare snelheid maar de kleur van het 

plaatje op het voorspatbord_ Heroverweging van de valhelmdraagplicht is 

daardoor noodzakelijk_ 

11 De lettercombinatie "dB" heeft in de pra.ktijk veelal een negatieve klank 

en wordt vaak in verband gebracht met lawaai en overlast_ Hierbij wordt 

voor:O;i.jgegaan aun de positieve eigenschappen :;o::oala die tot uiting komcn 

in iernands lievelingsrouziek of het onde1;ataande anagram. 

A.. v~n RQQ~m.,)..:::n, P. 1~ Grand 

<><>r~t<> p1aacsinQ 

2± 

1. Pf5 dr~igt 2. Dd4 

1._. TbWill. 2. Dxc3 
l. . 'b4 2. Dxc5 

1. -·· h~4· 2. Dxe4 
1 ..... ~>!~5 2. Dxeo 

A.N.~. van ~oosmalen 

oktol:;ler l994_ 


