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We know that one times one is one,
but an unicorn times a pear

have no idea what it is.

We know that five minus four is one
but a cloud minus a sailboat

have no idea what it is.

We know that eight

divided by eight is one,

but a mountain divided by a goat
have no idea what it is.

We know that one plus one is two,
but me and you, oh,

we have no idea what it is.

Only you and me

multiplied and divided

added and subtracted

remain the same...

Vanish from my mind!

Come back in my heart!

"Another kind of Mathematics”, in
The Grandeur of Coldness (1972)

N. Stanescy1933-1983)
English translation by G. Mustea
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Chapter 1

Introduction and Problem
Statement

1.1 Motivation of the research

In the project planning and control literature, the breakthrough that led to the Pro-
gram Evaluation and Review Technique in 1958 has been followed by many additions and
revisions. In the early PERT system descriptions, the PERT network was updated on a regular
basis. This allowed a formal process of status updating of all tasks scheduled to be started,
or completed during the prior period, of producing new time estimates for future tasks, as
well as the re-design process. According to (DOD/NASA, 1962), the current plan revision
in the PERT/COST System updated the precedence relationships and/or the content (deletion
and/or addition of tasks to the network) of the network. Later, in the project planning and
control research, the project concepts were narrowed down, and the dominant concepts were:

- precedence a fixed partial order on a fixed set of tasks for the entire project
duration;

- time-cost task trade-offtask duration may be shortened, at a certain cost;

- task indivisibility: a task is a unity with start and finish times.

This explains why the various approaches to incorporate uncertainty in the project
planning and control techniques ((EImaghraby, 1995); (Herroelen et al., 1998); (Krishnan
and Ulrich, 2001); (Tavares, 2002)) viewed a task as a unity and addressed the uncertainty
issue in the duration of tasks, while considering the product to be fully defined at the start
of the project. Explicit trade-offs in the product definition process in terms of design tasks
to be performed did not appear, not even in the generalized activity networks approach ((El-
maghraby, 1995); (Dawson and Dawson, 1995)), which assumed only an early partial product
definition.

According to (Pich et al., 2002) these attempts of modelling the uncertainty in
project management are referred to adrestructionistapproach: policies are derived — ei-
ther a priori or as the project is executed — that completely determine the tasks executed in
response to the decisions taken by management. They do fail when the initial model is not
adequate. This can happen either due to the project ambiguity (i.e. a lack of awareness of
the project team about certain states of the world or causal relationships) or due to the project
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complexity (i.e. many different decisions and states of the world parameters interact, making
it difficult to asses the effect of decisions taken). (see (Pich et al., 2002)).

Recently, in the New Product Development literature another form emerged for
incorporating the uncertainty, based on "flexibility”, which is the use of technologies and
processes that accommodate multiple possible outcomes of the project. Thus, in a highly
uncertain environment (see (Sobek et al., 1999)) it is recommended to use a "set-based engi-
neering” approach in which multiple solutions should be pursued "in parallel”, choosing the
best solution once their outcomes are observable (see also (Committee, 2000)). (Bhattacharya
et al., 1998) formalize trade-offs underlying the new product definition process emphasizing
the uncertainty caused by a highly dynamic market situation. Also, the empirical research of
(Tatikonda and Rosenthal, 2000b) suggests that in many firms, NPD projects start with lax
specifications of the new product requirements, which evolve during the project. This level
of uncertainty may be far beyond what can be modelled by Beta probability density functions
for the duration of design tasks (PERT) and what can be modelled by probabilities that design
tasks will have to be redone (GERT) ((Dawson and Dawson, 1998); (Oorschot, 2001)).

In summary, this new stream of research concentrates on complete probability
spaces with (subjective) probabilities — that is the project team knows the event is possi-
ble but they do not know whether it will happen. The implicit assumption of such an ap-
proach is that it is impossible to "manage events that cannot be foreseen” (see (Wideman,
2000), (Williams, 1999)).This alternative way of modelling the projects uncertainty is called
in (Pich et al., 20023electionismit is an extension of the instructionist approach in the sense
that the project management still relies on its ability to identify an optimal policy, modified
over time as the project model evolves. In an NPD environment the selectionist approach
might be viewed as planning multiple alternative product definitions, and retaining one of
those with the best market payoff value. The intermediate results should be shared among
these alternatives, which will thus all contribute to a successful new product.

In this research we focus on planning and control methods for a new type of projects
called time-constrained NPD projects with high technological product or process uncertainty.
They are referred to as experiential NPD projects (see (Eisenhardt and Tabrizi, BOQ®).
riential product developmergrojects consists afncertain, ill-defined, and unstabtkesign
tasks. At the start of the project, it is uncertain which design tasks are really necessary for
realizing the product specifications and it is even uncertain which (or the extent to which)
product specifications can be realized at a certain deadline. The set of design tasks is of-
ten reorganized during execution, and the product specifications of the product are gradually
reconsidered, fact sustained by numerous researchers ((Dawson and Dawson, 1998), (Bour-
geois and Eisenhard, 1988), (McDermott, 1999), (Turner and Cochrane, 1993); review in
(Krishnan and Ulrich, 2001), (Oorschot, 2001)). Moreover, a recent survey by (Thomke and
Reinerstein, 1998) showed that only 5% of product developing firms have complete product
specifications before starting a design, and on the average only 58% of specifications are
available before the design process begins. This type of projects has emerged over the last
decade in industry, and empirical research shows that its planning and control are strongly
influenced by its technological uncertainties. A model for the operational control of this type
of process has not been formulated before.

Existing NPD models focus on market uncertainty and do not consider the tech-
nological uncertainty appearing inside the firm as the result of its own innovation process.
In this research we propose a general control framework for managing NPD projects with a
high technological uncertainty under tight time constraints, including the experiential NPD
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projects. We explicitly allow the product definition to evolve after the beginning of the de-
tailed design phase. This is achieved by considering that product specifications can be broken
down via a specification tree into design tasks, and that design tasks can be performed at dif-
ferent performance levels. We use these levels as decision variables. Hence, the required
product specifications can be updated during the project, and the new product is dynamically
redefined until the deadline. Thus, a second contribution of our framework and of its subse-
guent computational models is to create an axiomatic system making explicit in measurable
variables the changes induced by the operational uncertainties. In the literature no other
approaches are found which integrate the technological uncertainty with the quality control
under time constraints. Thus, we expound the trade-offs in the new product definition in
terms of which design tasks at which performance level should be done before the deadline.

Another important aspect of the NPD projects that was previously neglected by the
analytical models is the human aspect. NPD projects have as primary resource the engineers
from the development team, not machines. Using psychological literature as well as recent
empirical research on NPD projects, we model the behavior of engineers under time pressure,
and their ability to perceive the concurrency and the relative urgency of design tasks.

Additionally, we have connected the value of product specifications to the expected
market value of the new product, using models from marketing literature. The key mod-
elling elements and relationships are based on recent empirical research from various fields
as product innovation, quality function deployment, design activities definition, concurrent
engineering, project structuring and management. The goal of such an approach is to fa-
cilitate the evaluation and acceptance of the computational results by managers. Also, the
initial control framework forms a basis from which we can derive more realistic constraints
for different computational models, allowing for a fair comparison of what the outcome of a
computational model is, versus its hypothesis. The control framework is used in this research
to formulate solvable mathematical problems, but it can also guide other formulations of
NPD projects stochastic models, as similar frameworks have previously done for production
processes in (Dempster et al., 1981), (Bensoussan et al., 1985) and (Hackman and Leachman,
1989), (Charalambous et al., 2000).

We formulated two mathematical problems specific for controlling time-constrained
NPD projects with high technological product or process uncertainty. Their formulation and
their analytical solutions are to the best of our knowledge new. The first problem was a
multiple-choice knapsack problem. By formulating it as a discrete deterministic dynamic
problem, we obtained a graph structure of the problem space. Based on established results
from heuristic search algorithms, we proposed an A* type algorithm to efficiently search an
optimal solution using the DP graph structure. The second problem was formulated as a
discrete-time, finite horizon non-stationary Markov decision process. To enable a more ef-
ficient computation of optimal policies in Markov models of sequential decision processes,
one is often interested in finding structured policies (monotonic, convex, etc.). To reduce the
exponential growth with respect to the size of our decision problem, and to enable the deriva-
tion of numerical solutions, we introduced a new type of structured policies called weakly
monotonic. Formulating the problem in a dynamic programming setting, it is shown that the
optimal policy follows a weakly monotonic optimal control by establishing the supermodu-
larity of the objective function. This is a new result, extending the monotonicity theory and
partial ordering programming techniques to bounded subsets without holes of integer vector
lattices.
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CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT
Problem statement and research questions

The research presented in this dissertation is meant to provide a general framework

to model the quality-time-cost trade-offs underlying the time-constrained NPD projects with

high technological product or process uncertainty and to be a contribution to the area of
developing and solving mathematical planning and control methods for these projects. In
particular we are interested in modelling the interaction between the low level scheduling
information and high level planning information.

1.

In order to meet these goals the following questions are investigated.

What are the specific requirements needed for the planning and control of time-con-
strained NPD projects with high technological product or process uncertainty?

. Which information should be exchanged between the low level of scheduling and the

high level of planning?

. What degree of detail is needed in the mathematical models of these levels?

. To what extent can existing planning and control techniques be used for the control of

time-constrained NPD projects with high technological product or process uncertainty?
Which are the new techniques for these projects?

. How can new/already existing planning and control techniques be used to predict the

outcome of the time-constrained NPD projects with high technological product or pro-
cess uncertainty?

. What are the characteristics of the policies which control the quality achieved at the

deadline by a time-constrained NPD project with high technological product or process
uncertainty?

The methodology that is used for answering these research questions is described

in the next section.

1.3

Research methodology

In this section are described the steps that are taken to perform this research. These

steps are:

integration in a mathematical control model of the key characteristics of time-con-
strained NPD projects with high technological product or process uncertainty, as found
by earlier empirical research

control model’s goals analysis and validation of the approximation made for the degree
of detail needed in the high planning level of the control model

development of mathematical solution techniques

analysis of solutions
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The final goal of my research was to build and present solutions for an adequate
model of time-constrained NPD projects with high technological product or process uncer-
tainty. The models in OR are built using mathematical relationships, which correspond to
relationships in the real world, like in our case, time and technological constraints. It it im-
portant to emphasize that a model is only an approximation of the real process being modelled
and that different models can be created for the same process.

Before starting with the mathematical modelling, in order to get a broader view of
the problem, we asked the following questions:

e What are the goals of our mathematical model?
e Which means are available to achieve these goals?
e Which precision is required in achieving the goals?

Our goal was to be able to maximize the new product quality (in terms of mar-
ket value) under a high time constraint and a high uncertainty regarding the number and
structure of the design tasks defining the new product. The means included in our case ad-
dition/deletion of design tasks, addition of new design activities, changing the design tasks
targeted quality and implicitly their solving time, allocating design tasks to engineers, intro-
ducing safety margins. The precision of achieving at the deadline a new product which is at
least fully functional is defined in probability terms.

These questions easily led to the conclusion that the general problem was too com-
plex to be straightforward and completely solved by means of already existing mathematical
tools. It was then a challenge to select appropriate computational sub-models which retain the
most significant features of the different parts of the process under study. (Williams, 1978)
gives a number of motives for building such computational models:

e The actual exercise of building a model often reveals relationships which were not ap-
parent to many people. As a result, a greater understanding is achieved for the process
being studied.

e Having built a model, it is usually possible to analyze it mathematically to help suggest
courses of action which might otherwise not be apparent.

e Experimentation is possible with a model whereas it is often not possible or desirable
to experiment with the process itself.

In the next section we describe the content of each chapter of this dissertation.

1.4 Outline of the dissertation

The remainder of this dissertation is organized into two parts.

Part | is dedicated to the modelling issues. In Chapter 2 the characteristics of
time-constrained NPD projects with high technological product or process uncertainty are
expressed in quantifiable measures and integrated into a general hierarchical control frame-
work with multiple review periods. The key modelling elements are indicators of the duration
of the NPD project as well as of the cost, the quality and the market value of the new product.
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Chapter 3 presents the mathematical formulation of the hierarchical control framework, and
discusses already available operations research methods and techniques that can be used for
the project analysis and for solving the detailed and aggregate decision level problems.

Part Il is dedicated to the analytical solutions of the problems constructed in Chap-
ter 3. Two distinct problems are investigated.

In Chapter 4 an analytical solution is presented for the problem of allocating con-
current NPD design tasks to the engineers, at the detailed planning level. The other chapters
are devoted to solving the aggregate decision problem in a multi-period setting. In Chapter 5
we first introduce simple heuristics for both the engineering and the detailed planning pro-
cesses, and we construct a simple queueing model to estimate the solving time distribution
of design tasks in NPD projects. Later in the same chapter, the use of those heuristics allows
the computation of transition probabilities for a non-stationary Markovian decision process
model of the aggregate decision problem in a multi-period setting.

Due to the curse of dimensionality, it was only theoretically possible to derive the
optimal policies for the aggregate decision problem. Thus, in Chapter 7 and Chapter 8 we
investigated the structural properties of the optimal policies in two particular cases of the
general aggregate decision problem.

In Chapter 7 we focus on a concurrent NPD (i.e. without precedence constraints),
consisting of concurrent design tasks and described by a discrete-time, finite horizon non-
stationary Markov decision process. To enable a more efficient computation of optimal poli-
cies in our Markov model we derive new general conditions of obtaining weakly monotonic
optimal policies. This leads to a new weakly-monotonic backwards induction algorithm, as
well as to some robustness properties. General mathematical results that support this analysis
can be found in Chapter 6.

In Chapter 8 we focus on an NPD project with precedence constraints, consisting
of sequential design tasks only, described by a discrete-time, finite horizon non-stationary
Markov decision process. We assume that any design task is available as soon as we finished
with its direct predecessor. Using sample path analysis we reduced the initial multidimen-
sional control problem to a unidimensional one in both state and action space. In the new
control problem the optimal policy will decide only on how many review periods the team
of engineers should work on each design task, being optimal to always choose as decision,
while working on a design task, the maximal performance level.

Finally, in Chapter 9, conclusions are drawn and suggestions for further research
are given. Using the characterization of the optimal policies in those particular cases, one can
reduce the general aggregate decision problem from a multidimensional one to a unidimen-
sional one, and derive afterwards heuristic optimal policies for it.



Chapter 2

A Hierarchical Control
Framework (HCF)

2.1 Introduction

Using recent empirical studies, we formulate in this chapter a general framework
of the hierarchical control processes needed for managing a new product development (NPD)
project with a high technological uncertainty, under tight time constraints. Considering the
project delivery time and resources as given, the project and its control are organized to solve
the uncertainty in the new product specifications through repeated internal adjustments and
interactions with customers. Our framework integrates the uncertainty regarding both the
market requirements and technological uncertainties. They lead to the addition/deletion of
design tasks, and to a stochastic solving time of the design tasks.

Introducing concepts formalizing the quality-time trade-off in the product specifi-
cations, this chapter contributes to the area of NPD project control models, and to the devel-
opment of management-related NPD project control concepts, both areas presenting research
opportunities according to (Brown and Eisenhardt, 1995), and (Krishnan and Ulrich, 2001).

Our general framework manages NPD projects with a high technological uncer-
tainty under tight time constraints, including the experiential NPD projects, by explicitly
allowing the product definition to evolve after the beginning of the detailed design phase.
A first contribution of our framework is to create an axiomatic system making explicit in
measurable variables the variation induced by the operational uncertainties. In the literature
no other approaches are found which integrate the technological uncertainty with the quality
control under time constraints. Thus, expounding the trade-offs in the new product definition
in terms of which design tasks and up to which extent should be done before the deadline.

The framework’s key modelling elements and relationships are based on recent em-
pirical research, which facilitates the evaluation and acceptance of the computational results
by the management practitioners. So a second contribution of the framework is to form a
basis from which we can derive more realistic constraints for different computational mod-
els, allowing for a fair comparison of what the outcome of a computational model is, versus
its hypothesis. The framework is used in the next chapters to formulate solvable mathemati-
cal problems, and it can also guide other formulations of NPD projects stochastic models, as
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Figure 2.1. Phases of a flexible NPD process

similar frameworks have previously done for production processes in (Dempster et al., 1981),
(Bensoussan et al., 1985) and (Hackman and Leachman, 1989), (Charalambous et al., 2000).

Section 2.2 describes a hierarchical control model with multiple review periods,
which evaluates the NPD project progress and integrates the uncertainty regarding the product
specifications, the design tasks, and the time needed for realizing the project. The model is
based on accepted scientific knowledge on product innovation, quality function deployment,
design activities definition, concurrent engineering, project structuring and management. In
section 2.3 we define the model elements that play a role in the control framework. They will
be used in the mathematical modelling of the decision processes in the hierarchical control
structure of the framework. This mathematical model will be presented in Chapter 3. The
section 2.4 concludes this chapter, by discussing the implications of developing a general
framework for managing NPD projects with a high technological uncertainty under tight
time constraints.

2.2 A multiple review periods hierarchical New Product De-
velopment control structure

A complete NPD project can be divided in a sequence of phases (Ulrich and Ep-
pinger, 2000). For the design process, we consider the definition of (Doumeingts et al.,
1996): it translates customer/market requirements/specifications into a product definition and
a manufacturing process definition. Similarly to (McCormack et al., 2001), we distinguish
threeoverlappingphases: thasystem design/concept developmgmarforming a first work
breakdown from customer needs into product specifications, and from product specifications
into design tasks), théetailed design phageonsisting of solving the design taskand the
system level tegintegrating the solved design tasks result into a complete system and tested
(see Figure 2.1).

The first and the last phase are too problem-dependent to be integrated in a general
mathematical framework of the operational process. Therefore, the aim of this research is
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to construct a dynamic model for the management of the time and resource aspects of trans-
forming the customer needs into detailed product specifications during the detailed design
phase, taking into account the overlap with the other two phases.

During the concept development part, the initial system specifications are set. They
describe in precise, measurable terms what the product has to do. With them start both the
development of a first work breakdown structure (WBS) and the partitioning of each system
specification into a consistent set of specifications for all the intended units, assemblies and
modules of the new product (i.e. a specification tree).

As in (Aslasken and Belcher, 1992) and (Shtub et al., 1994) we consider the WBS
as being a product-oriented tree, which consists of a number of levels, starting with the com-
plete product, and progressing downwards through as many levels as are necessary to obtain
design elements that can be assigned to and performed by one of the engineers. Once this is
done, it is possible to arrange all its design elements in a network resembling a directed tree
with a single root node. The elements on the lowest level are always completely described
by: a complete task statement (i.e. what work has to be accomplished); an identification of
the necessary prerequisites to start it; a detailed description of what the output or result of
the work should be and in what form is to be presented (Aslasken and Belcher, 1992). Ele-
ments on higher levels may or may not have this property. The lowest level design elements
are calleddesign tasksTo secure accountability through the design elements created by the
WBS patrtitioning, a first specification tree will also be created. Thus, we assume &
one correspondence between a design task and a product specification from the module level
of detail (see Figure 2.2).

Later in time, more design tasks may emerge; design reviews are needed for mainly
three reasons. First, no matter how uncertain the project is, design tasks have to be defined
before its start, otherwise the WBS structure is not feasible (see (Shtub et al., 1994)). So, in
real life, the management of the project will be forced to specify some design elements by
decomposing them into design tasks, without being sure that the work content of those design
tasks reflects exactly the achievement of that design element. Thus, only for small periods of
time during the detailed design phase, the relationships between design tasks as well as their
number can be viewed as stable. Second, the product specifications and their refinements are
established before knowing all the constraints that either the technology or the market places
on what can or should be achieved at the design tasks level. Third, unplanned design tasks
may emerge as a result of the feedback from the system level tests.

Our NPD project control model performs decision/scheduling/execution cycles,
each time taking into account the new surroundings it is facing. At the beginning of each
new cycle, the state of the system is reviewed and updated by observing the technological
knowledge accumulated at the engineering level, and by incorporating new information about
customer needs. Thus, the uncertainty in the new product definition is decreased in time and
this model structure allows the controller to adapt its decisions to changing conditions.

The planning and control problem at the beginning of each new cycle is hierarchi-
cally approached for two reasons. First, by decomposition of the overall planning problem
into several sub-problems, the complexity of the planning problem is reduced. Second, the
effects of uncertainty regarding the structure and solving times of design tasks are split over
the levels. Thus, hierarchical planning leads to a consistent and controllable planning prob-
lem. The decisions made at a higher planning level provide targets and restrictions to the
lower level decision making.

Our approach to NPD projects is supported by the recent research in organization
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Figure 2.2. Specification tree after the flow-down of product specifications, (Aslasken and
Belcher, 1992)

design of (Haque et al., 2000). Their paper models and analyzes the NPD project and organi-
zation in terms of tasks, teams, roles and communication links, relating the project hierarchy
to the organization hierarchy. We assume in this paper similar project and resource levels, but
for the internal structure of these levels we also use the research results of (Oorschot, 2001),
which enable us to mathematically formulate the control problem of each of those levels.
Thus, at the highest level, the project manager evaluates the overall NPD project progress
and integrates the market and technological uncertainties. He decides then the structure of
the network of design tasks to be performed by the NPD team in a short-time planning hori-
zon. At the level of the NPD team, the design tasks are scheduled to the engineers, such that
each engineer receives a sequence of design tasks from the network to be solved (any two
such sequences are disjoint). In Figure 2.3 such a general NPD project and resource structure
is presented; each of the involved notions and concepts are thereafter detailed and enriched.
In Section 2.3 we address in detail the quality, time and resource characteristics of
NPD projects from a conceptual, and modelling point of view. As in (Ulrich and Eppinger,
2000) we use the terproduct specificationfor the key product design variables. We intro-
duce new concepts for the design tasks internal structure, as well as measures of their relative
importance for realizing the product specifications. By a frequent NPD project progress eval-
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Figure 2.3. NPD project and resource structure

uation, these concepts allow either an optimal adjustment of product specifications, given
the resources remaining until project deadline, or a project abandonment. The last situation
occurs when either the project exceeds its budget or cannot longer meet the minimal require-
ments with a sufficiently high probability regarding the product specifications.

The proposed control model of the NPD project is a discrete time one. The project
is reviewed at equidistant points in time until the deadlihe, The hierarchical structure
proposed for each review period corresponds to a decision/scheduling/execution cycle, and
consists of three levelsiggregate decision level, detailed planning lefrescheduling deci-
sion, scheduling), aneixecution level
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2.3 Model elements

Our NPD control structure has multiple review periods. Thus, the essential mod-
elling assumptions are related to how we model the current knowledge about the NPD project
at the beginning of each review period. To end up with a practical operational control frame-
work, it is necessary to make the transition from a qualitative analysis dealing with concepts
and structures, to a quantitative analysis in terms of measurable variables. We select a state
variable set based on the significance of each variable in explaining some aspect of the prod-
uct’s status during its development, and to their aggregate ability of conveying the product
status at each point during its development. This set of variables contains indicators of the
duration of the NPD project as well as of the cost, the quality and the market value of the new
product.

In this section, we first give the exhaustive list of the key elements and assumptions
embedded in the structure of the model. For each of them we present the connections with
existing literature as well as indications of how their values can be computed. Thereafter, we
briefly describe the control levels in terms of the control elements introduced.

The NPD project model elements are grouped into:

2.3.1 General constraints:
- a fixed development budget for the NPD project

- a fixed deadline for the NPD projedffEisenhardt and Tabrizi, 1995); (Reppening, 2000);
(Oorschot, 2001))

- a set of current customer needs with their corresponding normalized importance weights
(i.e. the weights sum up to one)

The importance weights can be found using the Analytical Hierarchy Process or a
similar procedure ((Kusiak, 1995)).

-a set of current product specifications with their:

e ideal and minimal target values for their corresponding met({@skin and Daw-
son, 2000); (Ulrich and Eppinger, 2000))

e relative importance rating

As in (Ulrich and Eppinger, 2000) we consider that each specification consists of
ametric (i.e. "Lateral stiffness at brake pivots”) andvalue (i.e. "more than650kN/m”)
which can be a number, range, or inequality. The process of establishing the current prod-
uct specifications includes the following (see (Ulrich and Eppinger, 2000)): prepare the list
of metrics and their relative importance, using needs-metrics matrix if necessary; collect the
competitive benchmarking information; set ideal and minimal (i.e. marginally acceptable)
target values for each metric; refine the specifications, making the trade-offs with the tech-
nological and cost constraints; flow down the specification to the lowest level of the WBS
structure. The initial metrics should be complete, practical, in general dependent variables.
After their flow-down via the specification tree we set the specifications of the lowest level of
the tree as the current product specifications.
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(Krishnan and Ulrich, 2001) acknowledge in their review that it is useful to repre-
sent a new product by both customer needs and product specifications. These attributes are an
abstraction of a product, and attribute-based methods are limited in their ability to represent
the customer satisfaction or market share, but it is the way recognized in the NPD literature
to build what is called the "core product concept.” According to the same survey, it is an ac-
cepted knowledge that given the representation of a product into attributes one can determine
weights for the customer needs, and then target values for the product specifications can be
obtained. (Forman and Gass, 2001) give an overview of areas in which the Analytical Hierar-
chy Process (the general method of obtaining the weights, the target values, and how to order
the different design alternatives function of them) has been successfully applied.

The process of setting the metrics ideal target values is generally a subjective and
heuristic one. However, mathematical models are also available (Askin and Dawson, 2000).

The importance rating of a metric is derived from the weights of the customer needs
it reflects. (Ulrich and Eppinger, 2000) do not recommend a formal algorithm, but for the
case of few important specifications, conjoint analysis can be a solution. If the level of detail
of the product specifications supports the assumption of independent metrics their relative
importance can be obtained via regression analysis ((Askin and Dawson, 2000); (Yoder and
Mason, 1995)).

2.3.2 The set of system states:

The state of the system at the beginning of each review periadii®cted acyclic
graph of design tasks with a source and a sink (i.e. a netwdkhilarly to (Sieger et al.,

2000), we choose the set of states of the system without abandoning the proven benefits
provided by network analysis in the management of projects.

Ideally, a decision making moment should occur whenever a design task starts, an
unplanned design task emerges or a new activity arrives changing the known information
about the project. To avoid the discretization of the project duration into very small units, one
can decompose the project into stages (review in (Tavares, 2002)). We construct stages for
our graph by associating a representation into independent sets to it: sets of unordered design
tasks (no precedence relations between any two of them) and all having the same length of
the longest path from the sink node to th@mthe precedence graph) (see Figure 2.4).

The decomposition of the set of vertices of a directed acyclic graph ihtegarti-
tion (i.e a partition withl" stages) is unique. Thus, the concept Gf-atage network naturally
associates theth decision moment with the allocation of design tasks from¢ttte set of
the partition of nodes. Also, empty sets can be added to achieve equidistancy of the control
points, or for being able to control more often than the number of independents sets. The
partition of the set of nodes gives the sets of design tasks that can be allocated at the beginning
of a review period. All the design tasks allocated in the same review period can be performed
in parallel. However, design tasks allocated in previous periods review periods might not be
finished, thus during a review period the detailed planning problem has to take into account
a general digraph of precedence relationships.

For controllingcoupled (interdependensks, the Design Structure Matrix (DSM)
was developed as an alternative for formal project-scheduling representations ((Eppinger
et al., 1994); (Krishnan and Ulrich, 2001)). If the DSM can be organized into a lower trian-
gular form, the coupling is eliminated. Otherwise, if one would collapse the diagonal blocks
for reducing the DSM matrix to a precedence network, the essential information on the de-
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Figure 2.4. Stages of the directed acyclic graph describing the state of the system at time
instantt, built using the longest path from the sink

sign iteration within blocks would be lost. However, DSM-s require complete information
on the number of design tasks and their relationships, requirements not satisfied in the case
of a NPD with a high technological uncertainty. Our state representation tries to capture the
coupling information, while not giving up to the modelling of the technological uncertainty.

In the beginning of the NPD project we start with a DSM representation, we collapse each
remained block on its diagonal into one design task, and thus we model the task in detalil,
up to all its constituting activities. Thus, we construct a network of design tasks, which is
however stable for only one review period. At its end, the structure of each design task is
updated, and so we keep track of most of the changes that occurred in the former blocks,
including a possible re-sequencing of the block elements.

2.3.3 The performance, cost and market-payoff structure:

The performance and valuation control concepts are to the best of our knowledge
new. They follow from the assumption of the one-to-one mapping between the current prod-
uct specifications and the design tasks, justified earlier (see Figure 2.2).

Each design taskas

e a number ofincreasing performance levetiving the quality of its execution.
They are induced by a scaling in between the minimal and the ideal target val-
ues for the corresponding current product specification metric. Each perfor-
mance level consists oflat of planned activitiegto be sequentially performed
(Aslasken and Belcher, 1992)) with solving times random variables that are in-
dependent identically exponentially distributed (see for empirical evidence (Best,
1995); (Reed, 1988)). To attain a performance level, we assume that the engineer
has to sequentially execute the design task at all previous performance levels,
which implies different stochastic durations for the solving time, depending on
the level initially specified (see Figure 2.5). The split of each level into activi-
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Figure 2.5. Internal structure of a design task

ties gives a uniform measure of the difficulty implied by its realization. For each
design task aninimal performance levéias to be achieved.

In their research on how a novice and an expert solve physics and mechanics prob-
lems ((Reed, 1988), pp.326-329) and (Larkin and Raif, 1979) found that for both categories
the elapsed time between the solving of successive problems was random. Even if the novice
problem solving process showed more randomness than the expert’s one, for both cases a neg-
ative exponential law can be considered as governing their problem solving process. More-
over, according to (Loehle, 1994) innovation can be seen as a cumulative series of problem
solving activities, starting with an a flash of insight ("eureka”) which is mainly characterized
by its suddenness. In this paper we assume that an average engineer working on an innovative
design activity requires an exponentially distributed time to solve a problem.

In systems engineering, (see (Aslasken and Belcher, 1992) pp. 45) it is a common
assumption to consider the internal structure of a design task to be sequential/linear. The
mathematical advantages of combining this assumption with the assumption of the identical
exponentially distributed design activities are important. A sequence of exponential design
activities leads to an Erlang distributed solving time for the entire design task, which is ex-
actly the distribution that the recent research of (Innam, 1999) considers appropriate for man-
ufacturing systems with unreliable machines. Based on flexibility and goodness-of-fit using
moment matching for the data sets, this distribution fits well. The research of (Oorschot,
2001) pp.54-56 also finds a similar type of skewed, delayed, long-tailed distribution for the
solving time of design tasks in NPD projects.

e a cost functiorgives the incremental change in cost associated with performing
one more planned activity, of one of its performance levels. This function models
all non-engineer capacity related costs.

e atime dependent design task contribution functiéhthe beginning of each re-
view period, using both the specification tree corresponding to our NPD project
and its associated Quality Function Deployment (QFD) waterfall chart, one can
obtain thevalues©(n, ¢, t) giving the current maximal contribution of each de-
sign taskn, in achieving each customer neéd Afterwards, for each design
task its currentontribution function in achieving a customer neet$ obtained
by scaling its corresponding current maximal contribution value, for its perfor-
mance levelgi.e. if L,,,. is the maximal number of levels for the design task
n, its contribution function might bé(n,[,t) := O(n, d,t) erm). The scaling is
not necessarily linear.
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At the beginning of a review periot}, we obtain the design tasks maximal con-
tribution values as follows. Without loss of generality we consider the specification tree in
Figure 2.6

Given the existence of a specification tree for our new product, one can always
obtain the associated Quality Function Deployment charts linking system specifications to
subsystem specifications, and subsystem specifications to sub-subsystem specifications, and
so on down to the specification level required to identify the design tasks. According to a
well-known method called AHP (Analytical Hierarchy Process), we do the following:

1. givend = 1,..., A objectives, determine their respective weight coefficiegts

2. for each objectivéd, compare thg = 1, ..., p alternatives and determine their weight
coefficientsoy;.

3. determine the final alternativgy and its weight coefficientsls = aqj w1 + ... +
anji,wa With respect to all the objectives.

The AHP (see (Forman and Selly, 1999), (Forman and Gass, 2001)) is a resolu-
tion of choice problems in a multi-criterion environment based on pairwise comparisons of
objectives and alternatives.

Applying the steps 1. and 2. for the customer needs and the ideal targets of the
product specifications metrics, we get a set of coefficients which reflect how the ideal realiza-
tion of each product specification metriaffects each customer need. The same procedure
applies for product specifications to subsystem specifications, and so on, obtaining the Qual-
ity Function Deployment (QFD) waterfall chart shown in Figure 2.7.

Thews (to), 6 € {1, ..., A} represent the normalized weights (i. §: wg (to) =

1) corresponding to the current customer needs. The first QFD chart contalns the normalized
quantifiersey; (to), 6 € {1,...,A}, j € {1,..., p}, for the contribution of the maximal tar-

get value for the metric corresponding to the system specificgtiorachieving the customer
needs. The second one contains the normalized quantifigsis(to), j € {1,....p},k €
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Figure 2.7. QFD waterfall for the above specification tree

{1,...,r}, for the contribution of the maximal target value for the metric corresponding to the
subsystem specificatidh in achieving the maximal target value for the metric corresponding
to the system specificatign(thus one level down). Now, using both charts, we can compute
a normalized quantifier for the contribution of the maximal target value for the metric corre-
sponding to the subsystem specificatiofi.e. design task), in achieving the customer need

P
d is given by >~ B (to) as; (to). The maximal overall contribution of the design taskt
j=1
to (to all custom needs) is:

P

Z Bjk (to) asj (to) ws (to) =

j=146=1

> Biw (to) s (to) ws (to) =

Jj=1

Mo 1M

Z Bjx (to) asj (to) | ws (to) .

1 \j=1

>
I

It cumulates the contributions of the maximal target value for its corresponding metric in
achieving the maximal target values for the metrics corresponding to the system specifica-
tions.

Also, a more detailed QFD chart relates directly the customer needs to design tasks
specifications, and consequently to the realization of each design task up to its maximal
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P
performance level (see Figure 2.8) Via 3;x (to) as; (to),0 € {1,..., A} quantifiers.
j=1

The project has a market payoff structure:

The design task contribution functioase useful for maximizing the fulfillment of
the customer needs subject to technological and cost constraints. For each customer need, we
construct @ime dependent cumulative contribution functadrthe performance levels of the
design tasks belonging to it in the flow-down specification process. We obtairedding
the current design tasks contribution functidnghat customer need.

There are different levels of customer’s satisfaction for the achieved new product,
function of the distance between the cumulated and the ideal value for each of the customer’s
needs. We measure the expected market value for each cumulated value of a customer need
achieved at the deadline through what we catlarket payoff functionFor the new products
which have to fulfill several customer needs, their market value is describectwithla-
tive market payoff functionsin literature we encounter differeist—shaped curves for the
one-customer-need and/or cumulative market payoff functions: general (Yoshimura, 1996;
Huchzermeier and Loch, 2001), linear (Askin and Dawson, 2000), etc.

For detailed planning level optimization purposes, we may derive design task mar-
ket payoff functions. In the linear case, these functions coincide with the design task contri-
bution functions (see Section 3.4 and Appendix).

2.3.4 The technological uncertainties:

Too much abstraction can cause a lack of information, but too much detail makes
the model solution intractable. So, as (Choi and Lee, 2001), (Reibman, 1990) and (Buzacott
and Shanthikumar, 1980) suggest, we focus on the key features of the system. Since the
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purpose of this framework is to be a basis for further computational models, our choices
are based also on the fact that most of the work on performance modelling relies on the
operational research techniques of queueing theory.

e atime dependent arrival rate of new activitieduring a review period, new activities
arrive to the design tasks in progress. According to cognitive psychology, they appear
as a result of the incapacity of knowing beforehand all activities needed for performing
a design tasks, so we model them to have preemptive resume priority over the planned
activities (see (Best, 1995) pp.439). In later stages, the time dependent arrival rate
decreases. In order to ensure the mathematical tractability of such a technological
uncertainty we assume in the next chapters that the arrival process is Poisson.

e atime dependent arrival rate of unplanned design tasis:integration of the knowl-
edge created by the interaction in between the three considered NPD phases into a
coherent product definition may add/delete design tasks from the project structure
(Tatikonda and Rosenthal, 2000b; Tatikonda and Rosenthal, 2000a; Oorschot, 2001).
Their deletion is modelled by allowing the controller to set their target performance
level to zero, if the current minimal performance level is zero. For reasons of mathe-
matical tractability, their addition is modelled by assuming general Markovian review
period-dependent arrival processes of unplanned design tasks. Thus, each arrival pro-
cess consists of design tasks concurrent either with design tasks to be allocated to the
team at the beginning of the current review period, or with those allocated in previous
NPD project review periods. We recall from Subsection 2.3.2 that to each review pe-
riod there corresponds a stage in the network of precedence relationships. For the same
reasons of mathematical tractability, each such newly arrived task concurrent with tasks
of the stage is to be performed only after all tasks of the stage1 are finished and
before any task of the stage- 1 or newly arrived and concurrent with the ones in stage
t + 1 start to be solved.

As seen in real life (see (Oorschot, 2001)), their arrival rate decreases in time. In order
to use results already available in the class of queueing models, the unplanned design
tasks arrived during one review period are assumed to have a common performance
level structure, and an identical value function. Thus, for each period, instead of hav-
ing an arrival of different types of design tasks, with different value functions, we take
into account only an "average” type of task for that review period, assuming statisti-
cal identical design tasks. They are associated to customer’s need transformation into
product specifications at the beginning of the next review period, and then their contri-
bution functions are calculated similarly as for the initial design tasks.

2.3.5 The state updating information (given at the end of each review
period):

o for each already allocated design task, the performance level already achieved, and, per
level, the number of remaining planned activities;

o for the sequences of newly arrived design tasks (statistically identical): their cardi-
nality, their common number of activities per performance level, their common value
function, and their precedence relationships as described above.
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Given the previous definitions of the model elements, let us look at the control
model we propose. The project horizon is split into a number of review periods. The scheme
of the control structure is given in Figures 2.9 and 2.10. It has a total nunioéreview
periods. Review periotistarts at time and ends at time+ 1.

At the start of each review period the state of the project is reviewed in order to
incorporate the new information about the customer needs (from the market), and about the
progress the engineers made in working on design tasks. In response to the new information,
the control framework considers the process of solving design tasks by the engineers, the
allocation of design tasks to engineers, and the updating of the performance levels of design
tasks. The control framework furthermore assumes that decisions are taken at the aggregate
decision level in order to maximize at the deadline the expected market value of the new
product, given the resources remaining until project deadline, or a project abandonment. The
last situation occurs when either the project exceeds its budget or cannot longer meet with a
sufficiently high probability the minimal requirements regarding the product specifications.
In the case of the continuation of the NPD, with a probability greater than a given safety
margin, this new product will be delivered at the deadline, to the market.

At the aggregate decision level the performance levels of the design tasks are set,
while at the detailed planning level a non-preemptive schedule is, generally, obtained for a
relatively short planning horizon, e.g. two review periods. After updating the design task
network structure, the project management may decide to decrease/increase the performance
levels of some of the already scheduled design tasks, but not finished yet, due to the addi-
tion/deletion of design tasks and the limited capacity available versus their stochastic solving
time. Then the design tasks and/or the number of their planned activities is changed. Since a
feasible schedule is obtained by means of stochastic ordering, re-scheduling may occur.

2.4 Conclusions

The defined model elements are rich enough to incorporate the available knowledge
from the relevant fields such as new product management and systems engineering, and still
allow at each control level for the mathematical analysis of the process. In Chapter 3 we
present the mathematical formulation of the hierarchical control framework, and discuss new
or already available operations research methods and techniques that can be used for the
project analysis, and for solving the detailed and aggregate decision level problems.
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Chapter 3

Mathematical Modelling of the
HCF

3.1 Introduction

In Chapter 2, Section 2.3 we first introduced a list of concepts, variables and re-
lationships that enable the mathematical modelling of the process of performing the design
tasks, of the dynamics in the design tasks that constitute the project, and of the relationship
between expected market performance of a product and the performance levels of the design
tasks of the project. These concepts, variables and relationships take into account relevant
knowledge in published literature or new product management, product development, system
engineering, project planning and control, production scheduling and human performance
management. Afterwards, we introduced a hierarchical control framework (HCF) for the
control of New Product Development (NPD) projects under a hard time constraint. Recall
that the HCF has an aggregate decision level, a detailed planning level and an engineering
level. The former deals with an overall evaluation of the NPD project. Recall also that time
is divided in review periods. In this chapter, we first construct these control levels to cycli-
cally operate for each review period individually (i.e. aggregate, detailed, engineering, then
feedback and again aggregate, etc.). These constructions need a rigorous mathematical for-
mulation: it makes things unambiguous and precise, and it enables us to see which parts have
already been solved in the literature. In this chapter we thus also discuss the relationships
of our constructions with well-known mathematical project models. This chapter therefore
contributes as well to the area of mathematical models for the organization of work in an
NPD, as to the development of management-related control concepts in the NPD projects,
both areas that present research opportunities according to (Brown and Eisenhardt, 1995).

Moreover, in the next chapters we build upon this rigorous formulation in extending
the model: since the aggregate decision level oversights the NPD project, it would clearly be
more efficient if we were able to solve the decision process for multiple review periods, thus
enabling the decision maker to foresee the outcome of the NPD project at the deadline. To this
purpose we need carefully built heuristic models for the lower control levels; in Chapter 5 we
thus present all the necessary models expressing the whole process seen from the aggregate
decision level as a non-stationary Markov decision process, for which optimal policies can
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be studied and computed.

This chapter is organized as follows. Section 3.3 describes the aggregate decision
process of periodically setting the design tasks performance levels, given the update of the
project status in view of the time and capacity remaining until the project deadline. Section
3.4 deals with the detailed planning process consisting of a re-scheduling decision function,
its associated re-scheduling problem, and the allocation of design tasks to the engineers sub-
ject to workload constraints. In section 3.5 we present the engineering process that transforms
the project state during each review period, by solving design tasks allocated to the engineers.

The aggregate decision process, as well as the detailed planning level allocation
problem are specific for controlling NPD projects under a hard time constraint, and their
formulation it is, to the best of our knowledge, new. The entire framework can be used
to determine in probabilistic terms the expected NPD project outcome, as it is discussed
in Section 3.6. It is not practical to separately solve for each review period the problems
defined at the hierarchical structure levels, but the review periods can be easy linked using
their approximate solutions. The chapter is concluded in Section 3.7.

3.2 Notation

The global variables of our NPD project model are:

T : the total number of review periods (review periods are numbered frtoi” — 1);

M : the total number of engineers;

N : the initial number of design tasks;

N : an upper bound for the maximum number of design tasks during the whole project;
Luax(n) : the number of performance levels of the initial design task = 1, ..., N;

A : the total number of customer needs considered,;

h : the short time detailed planning horizon (i.e. a multiple number of review periods);
¢ (n) : the cost of performing one activity of the design taske = 1,..., N

u : the rate of the exponential distribution of an activity solving time.

__ SinceN is an upper bound, we set to zero all the parameters depending on a virtual
ne{N+1,...,N}.

3.3 The aggregate decision process

In this section we construct the control level to operate for each review period indi-
vidually. The aggregate decision problem formulation deals with both the technological un-
certainty, and market requirement variability ((Huchzermeier and Loch, 2001); (Bhattacharya
etal., 1998)).

A T-stage network of design tasks reflects the precedence relations among design
tasks at the beginning of each review period (see Chapter 2 Subsection 2.3.2). The concept
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of T-stage network naturally associates theh decision moment with the allocation of the
t—th set of the partition of design tasks.

At the beginning of each review periad(t, ¢ + 1], the aggregate decision maker
integrates in the NPD project the design tasks newly arrived during review geridd

We assume a general Markovian arrival process of statistically identical unplanned
design tasks during review period- 1 (see Chapter 2 Subsection 2.3.4). These unplanned
design tasks are concurrent with design tasks allocated/to be allocated durirth tegiew
period, withi € {0, ...,t}. Being statistically identical means they have a common perfor-
mance level structure, and an identical market payoff structure. Moreover, each such newly
arrived task concurrent with tasks of the stageto be performed only after all tasks of the
stagei — 1 are finished and before any task of the stagel or newly arrived and concurrent
with the ones in stagé+ 1 start to be solved. Afterwards, the aggregate decision process
itself takes place. We can briefly present it as follows.
Given at moment

¢ the global variables of the NPD project (see Subsection 3.2)

e an updated networR, := (J(R:), A(R:)) of design tasks with their precedence rela-
tions

o for each design task (planned or newly arrived) its maximum number of performance
levels L (n, t), its minimum required performance levgl, (n, t) and its currently
achieved performance levéh, t)

o for each performance levebf each design task, the numbeiV, (n, ¢, ) of sequential
activities planned to solve it, assuming all the previous levels already solved

e the current remaining budge®(¢) and the safety marginsw(t), to respect of the
project deadline, and(t) not to exceed the maximal solving capacity of the team
of engineers

Determine

o for each design task its target performance level, so as to maximize the expected market
payoff

Subject to the following constraints:

1. the target performance level of each design task is greater than
min(lmin(n, t),1(n,t)), and smaller thah,;,,x (n, t)

2. the completion time of the NPD project defined by the design tasks targeted perfor-
mance level is smaller than the remaining time until the deadline with a probability at
least the current safety margin(t).

3. the remaining total workload does not exceed the team remaining maximal solving
capacity with a probability at least equal to the requised) margin.

4. the total remaining cost for performing the design tasks up to their target performance
level does not exceed the remaining budgét).
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Decisions on allocating design tasks to resources (engineers) are not considered at the ag-
gregate decision level, but at the detailed planning one (see Section 3.4). Now, in order to
rigorously formalize the setting, we need the following.

Input parameters (at the beginning of review periag:

a(t) : the required current safety margin for the probability of completing the
project before the deadline;(t) € (0, 1)

B (t) : the required current safety margin for the probability of exceeding the max-
imal team solving capacityj (t) € (0, 1)

B(t) : the current remaining NPD project budget;

R, := (J(R:), A(Ry))) : the newly updated”—partite directed acyclic graph of
unfinished design tasks precedence relations, wiigke) := A9 , UA} , U..UAT U
Qot—1)U...uQ(t—1); Ale = Alo, UQ,, (t — 1) forms the current design tasks set
to be allocated aty, and{; (¢t — 1) is the set of newly arrived design tasks (during review
periodt — 1) concurrent with design tasks allocated/to be allocated during-thte review
period;Vi = 0, ..., t.

Luax(n, t) : the current maximal number of performance levels of the design task
15 Limax(n,t) = Liax(n) forn = 1,..., N and Ly,ax(n,t) = 0if n & J(R;) (i.e. there is
place reserved for design tasks not planned or not arrived yet up to the upper Ndoutd
we set to zero the maximal performance level depending on such a virtual design;task

Imin (-, t) : {1,...N} — N : the minimal performance design task level function,
wherelyin(n,t) = 0if n & J(Ry);

I(,t): 1,..., N — NU{-1} : the achieved performance design task level function,
where0 < I(n,t) < Lmax(n,t), forn € J(R:) and by convention we defirlgn,t) = —1
forn & J(Ry);

N,(n,t,1): the number of sequential activities planned for solving the design task
n, at the performance levél assuming the previous levels already solved. All activities are
assumed to have an exponentially distributed solving time with the same mean {gee
Chapter 2), independent of the engineer which will perform them; = 1,..., N,VI =
1,..., L, whereN,(n,t,l) = 0if n & J(R:);

Notation (at the beginning of review periag:

N(t — 1) : the random variable giving the number of design tasks arrived since the
NPD project beginning until the end of review period 1, [t — 1, ¢t);

Sn (t,1) : the solving time of the performance levalf the design task, assuming
the previous levels already solvedn ;= 1,..., N. They are independent random variables
Erlang{N, (n,t,i), u);

C(t,1(-,t), R:) : the completion time of the network of design tasks, if I (-, )
gives the design tasks performance levels;

M {t,N,l(n,t)1<n<N} : the cumulated market payoff function, wheré, )
gives the design tasks performance levels;

[(t):{1,..,N} — {0,..., L} : the target design task performance level function,
at the beginning of review periad

Now, the aggregate decision problem can be mathematically formulated as follows:
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Given
e the input parameters defined above

Determinethe target design task performance level funcfi(}r,]t) for eachn € {1,...,N}
So as to maximize the cumulated market payoff funcMr{t, N, (n, thgngN} :
Subject to

Linax(n,t) > 1 (n,t) > min (lyin (n,2),1(n,t)), n=1,..., N (3.1)
the completion time constraint

Pr {O (t,i(-,t) ,Rt) <(T— t)} > a(t) (3.2)

the workload constraint

I(n,t

)
Pr > Y Sulti) <M-(T—t) 3 >5(t) (33)
ne.(])gﬂRt) i=l(n,t)+1
N+E[N(t—1)]+1< n <N+E[N(T—-1)], for t>0

the budget constraint

i(n,t)
> > Na(nti)-c(n)| <B(t) (3.4)
nE‘(])gRt) i=l(n,t)+1

N+E[N(t—1)]+1< n <N+E[N(T-1)], fort>0

In (3.2), the analytical evaluation of a general directed acyclic graph completion
time distribution is @V P—complete problem, but (Colajanni et al., 2000) gives a polynomial
time algorithm for determining a tight upper bound.

In (3.3), the workload is computed by adding both the remaining solving times of
the unfinished design tasks fraRy and the solving times of the average number of unplanned
design tasks expected to arrive in the future review periods until the deadline of the project.

In (3.4), the cost is computed by summing for each remaining activity of each
design task. The cost per activity may differ from one design task to another, refining the
previous constraint.

This aggregate project planning formulation studies the project risk in terms of the
probability of obtaining a total duration, a total quality, and a total cost, achieving dynami-
cally the product definition. During the aggregate decision making, the decision maker has to
assign numerical values to(t), 8 (t). Those choices depend on the risk that the controller
is willing to take. The adoption of small values means that more time will be spent on the
design tasks already allocated, since more uncertainty is allowed for the outcome of the NPD
project. Adopting large values means precisely the opposite. A selection with anlé e
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and a small3 (¢) means that the controller focuses more on the possibility of finishing the
design tasks situated on most "stochastic critical paths ”, than on the capacity issue.

For rigorously presenting several types of market payoff functions encountered in
the literature we need more input parameters:

Market Payoff Related Input Parameters:

A : the total number of customer needs considered,;

ws (t) : the customer need normalized weightV 6 =1, ..., A;

O (n,t,0) : the normalized maximal contribution of the design task fulfilling
the customer neeff © (n,t,0) € (0,1;Vn=1,..N,Vi=1,..., A;

S5 (t,1(-,t)) : the normalized —function family giving the market payoff as func-
tion of the distance between the cumulated design tasks contribution per customét need

> 6(n,t,0)- Ll(”i(tn)f) and the customer need ideal value given by the maximal target
n=TN max (751

performance level§,,..(n, t) for each design task; Ss ((¢,1(-,t))) € (0,1),V6 =1,..., A.

The market payoff function describes the expected market value of a new product
which has to fulfill several customer needs. There are different levels of customer’s satisfac-
tion for the achieved new product, function of the distance between the cumulated and the
ideal value for each of the customer’s needs. $Ancurve type of market payoff function
gives an expected market value for each cumulated value of a customer need achieved at the
deadline. As mentioned in Chapter 2 Section 2.3, different types-afurve models and
analytical cumulative market payoff functions are encountered in literature. The simplest one

A
is 52 ws ()| 2 N@(n,t,a) -t | — the linear weighted additive one of (Askin

and Dawson, 2000), while the most general function is the multiplicative one of (Yoshimura,
A =l w
1996): T] [Ss (t,1(-,1))]"*".
6=1

3.4 The detailed planning process

The upper level of aggregate decision only sets the target performance levels for
each task. Here we construct a sequence of design tasks for each engineer, from the older
sequences and from the output of the aggregate decision process which took place at the
beginning of the current review period. This data consists of: left-over design tasks (i.e.
unallocated during the previous detailed planning process), unfinished design tasks already
in the schedule, newly arrived design tasks — concurrent either with the ones unfinished or
with the left over ones —, planned design tasks to be allocated at the beginning of the current
review period, and newly arrived design tasks — concurrent with the ones to be allocated
now. We shall distinguish between the planned design tasks for the current period together
with the newly arrived tasks concurrent with them and, on the other hand, all the "old” design
tasks (unallocated or unfinished) together with the newly arrived design tasks concurrent with
design tasks from older review periods. The reason is that all these "older” design tasks (from
the latter set) need to be finished as quickly as possible, while for the "current” ones (from the
former set) the value function derived from market payoff maximization criteria can safely
be applied. We thus have the following three step general procedure, at the beginning of any
review period, (¢,t + 1].
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Step 1 — Re-scheduling decision function
Given

¢ an updated subnetwork of design tasks from the aggregate decision level (i.e. until the
t + 1 stage of the network),

o for each engineer, the old sequence of design tasks from the previous detailed plan-
ning process,

o for each design task, its updated number of planned stochastic activities,
o the mean of the exponential distribution for activity solving times

Find all the tasks from these old sequences not respecting anymore the precedence relation-
ships (i.e. the earliest start time of a design task should be greater or equal than the completion
times of all its predecessors), remove them from the sequences and mark them as unscheduled
in the network of tasks

Step 2 — (Re-)Scheduling of design tasks

Given

¢ the updated network from step 1

o for each engineer, the updated old sequeneém)\ of design tasks from step 1,
o for each design task its updated number of planned stochastic activities,

¢ the mean of the exponential distribution for activity solving times

Scheduleall the "old” design tasks (the unallocated ones, unfinished ones and the newly
arrived concurrent with them) so as to minimize the expected makespan
Subject to the following constraints

o the precedence relationships from the updated network and from the updated old sched-
ule (received from step 1)

e each design task is scheduled to exactly one engineer

o for each engineer, the "old” design tasks are scheduled at the end of the sequence from
step 1.

Step 3 — Allocation of concurrent design task
Given

e the number of engineers with their optimal work-pressure level
o the closeness parametgithe mean of the exponential distribution for activity times

e the short time planning horizal (used only to compute the engineers work pressure,
see Subsection 3.4.3).

e for each engineer, the updated old sequeneém)\\ from step 2,

e the "current” design tasks (the planned ones for the current review period and the newly
arrived concurrent with them) with their value function and number of planned stochas-
tic activities
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Allocatethese "current” design tasks so as to maximize the value function of the allocated
design tasks, angetfor the allocated design tasks their due-date-toh (¢ being the current
review period).

Subject to following constraints

e each design task is either allocated to exactly one engineer or is not allocated at all
e resources (engineers) have to be used close to their corresponding work pressure levels

o for each engineer, the current design tasks are allocated at the end of the sequence from
step 2.

The design tasks left over after the allocation procedure will be further available
at the detailed planning level. No due date will be set for them. This way of doing detailed
planning reflects the particular purpose of using due dates in NPD projects. Since the prece-
dence relationships between tasks are quite loose, the due dates are not mostly given to be
met, but to ensure the efficiency of the involved engineers, as we further explain in Subsec-
tion 3.4.3, based on organizational psychology literature. So, while the deadline of the whole
NPD project is a hard constraint, design tasks due dates are not.

An important remark concerning the optimality criteria of the allocation problem
is that the detailed planning level controller does not know the market payoff function, nor
the customer needs. For optimization purposes we then deesign task value functions
as an indication of design task realizations influence on the market payoff function. They
are obtained by taking into account both thaximal contribution of each design task in
achieving each customer neédand the type o€umulative market payoff functigeee with
the notation below the Appendix).

In order to formally present the setting, we first precisely define the input parame-
ters, and thereafter we formally describe each of above mentioned steps in greater detail.

Input parameters (at the beginning of review periag:

a (m) : the optimal work pressure level for the engineerfor allm =1, ..., M.

¢ : the closeness parameter, i.e. the allowed variation with respect to the optimal

work pressure level of each engineer.

o (t) : them—th engineer scheduled design tasks sequence from review periods

priortot,m =1, ..., M;

Q; (t —1) : the set of newly arrived design tasks (during review petiod 1)
concurrent with design tasks allocated/to be allocated during-thie review period; =
0,....t

zZ(it) = U o (t) : the set of design tasks that were already scheduled in

m=1,....M
previous review periods;

Y (t) := Q (t — 1)U A} :the set of concurrent (planned or newly arrived) design
tasks to be allocated to the engineers at the beginning of review period

Gy = (J(tH)UY (1), A(G,)) : the directed, acyclic graph of precedence relations

t—1
among design tasks at the detailed planning level, whiére:= Z(t) U < U Qi(t— 1));
=0

Z(n,t) : the n—th design task performance level, as established at the aggregate
decision levelp € J (t) UY (t);
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N, (n,t,1) : then—th design task’'s number of sequentially planned activities, if
its performance level i$, assuming the previous levels already sojvied= 1, ...,Z(n, t),
n € J(t) UY(t); A design task that is in progress will start with the next activity not
performed yet.

V (n,t) : then—th design task valu&'n € J(t) U Y (t);

Notation (at the beginning of review periag:

Sp (t): the random variable denoting the-th design task solving timeyn €
J () UY(t);

Qt-1) := U Q;(¢t—1) : the set of newly arrived design tasks (during

i=0,...,t—1

review period: — 1) concurrent with previously allocated ones;

klo : the real index (in the numbering of design task fr@rnto N) of the k—th
design task from the sequenegvk =1, ..., |o|

Pred (n) : the set of direct predecessors of the design task the graphG;,
n e J(t)

For an engineer, to solve a design taskscheduled to him, means that he has to
sequentially solve the list of activities planned for it at the beginning of the review p&riod
for each level up td (n,t). Thus, we consider the solving time of any design tasis being

=1

i(n,t)
a random variable distributed ErIar(g—Z N, (n,t,1) ,u> .

3.4.1 Re-scheduling decision function

At the beginning of each review periad (¢,t + 1], the re-scheduling decision
function decides whether for the updated design tasks(in U €2 (¢ — 1) we already have
a partial schedule, satisfying the precedence relations among the design tasks according to a
stochastic ordering.

Definition 1 Given two random variableX;, X, with distribution functionsf'y, , Fix, we
say thatX; is stochastically smaller thaiX, (denoted byX; <gioen X2 ) if Fx, (2) <

Fx, (z),Vz > 0. The stochastic ordering is a partial order relationship among random
variables and distribution functions which is closed under multiplication and convolution.

k—1
We define the earliest starting time of a design tasEka}g ® t):= > [SZ.‘U\ ® (t)} and
" = m
k
its completion time aé?k‘o\ - t):=> {Sila\ ) (t)} ,foranyk € Z(t).

m

So if there existsn, andk, such thatEkkr,\,L(t) () <stoch p MaXstoch O ()

je Pred klon(t)
(i.e. the earliest starting time of thg is stochastically smaller than the completion time of
one of its predecessors) then the design kasknd all its successors are added't@) \ Z (t)

and removed from the sequences assigned for the engineers, and implicitly ftdm

3.4.2 (Re-)Scheduling of design tasks

The project controller of a design team will schedule to the engineers the design
tasks from the sef (¢) \ Z(t) updated by the re-scheduling decision function. This is done
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mainly to minimize the expected makespan, because we want to avoid the delays that may
occur due to the precedence constraints relafifig \ Z(t) to the set of concurrent planned
design tasks to be allocated next to the engineers.

As a result of solving the scheduling problem, we add for each enginean
optimal sequence\\ (t) of design tasks, after its previous existing sequefk;egt) of the
design tasks on progress from previous control periods. For the design tasks in the sequence
07\n (t) the precedence relationships respect was already checked by the rescheduling decision
function (see Subsection 3.4.1). Thus, assuming that the engineer cannot work at more than
one design task at the same time and that no preemption is allowed, our (re-)scheduling
problem can be formulated as a stochastic identical parallel machine scheduling problem,
with non-unit jobs, and arbitrary precedence relationships. Its minimization criterion is the
expected maximum completion time. The precedence relationships are given by the directed,
acyclic subgraph of; spanned by/ (¢t) \Z(t).

Such a problem was solved analytically only for tree-like precedence constraints
(see for a review (Weiss, 1995)), while the research of (Foulds et al., 1991) and (Neumann and
Zimmerman, 1998)) gives polynomial heuristics even for more general types of precedence
constraints (i.e. stochastic precedence relationships).

Denoting bym\n\ (t) the sequence of design tasks frohit) \ Z(¢) scheduled for
the engineem in the beginning of review period(m = 1, ...M), the detailed planning level
(re-)scheduling problem can be formulated as follows:
Minimize the makespan:

s G o O] @9
Subject tovk € 1, ..., [op (O)|, Ym=1,...,. M

precedence relationship respect (i.e. a task only starts after all its predecessors all solved)

By (1) > max {c (t), j  Pred (k\a (t ))} (3.6)

stoch

atask is scheduled to an unigue engineer

Yne J()\Z(t),3Imel,..,Ms.t.nec o) (t) (3.7)

where the completion and respectively the earliest starting time of a design task are given by:

k
Cunin = D[Sy }+Z;{ v )] (3.8)

i€ay () v
k—1

b ® = 2 [ o (o) ( ]+ [ oo € } (3.9)

i€o (1) =1

E

3.4.3 Allocation of concurrent design tasks

After the (re-)scheduling, the design team project controller allocates thé(set
of concurrent (planned or newly arrived) design tasks to engineers.
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In order to investigate the problem more precisely, we need to model the depen-
dency between engineers’ productivity and their perceived work pressure. In (Bowers et al.,
1997) a first estimation of the work pressure is given by comparing, for a given engineer, the
estimated duration for completing the allocated design tasks and the available time until their
due date. For this reason, we introduce the notion of a common short planning hiorizon
for all the engineers. We recall that for all the allocated design tasks it was set a common
due datet + h. Thus, we use the probabilif, (A, t) of finishing all design tasks of the
setA € P(Y(t)) in time h. Therefore, we achieve efficiency for the engineers involved in
the process by requiring for each engineethat|p;, (A,t) — a(m)| < &, wherea (m) is
her/his optimal work pressure level. In words, this requires that for a short time hdrjzon
the probability of finishing the design tasks allocatedhias close to an optimal subjective
value. This ensures both not overloading the engineers and not giving them too little work
to do. Organizational psychology (see for a review (Wickens and Hollands, 1999)) shows
that this dependency between the productivity and the work pressure is curvilinear (concave),
and this is the reason of the absolute value bound. The impact of work pressure on engineers
productivity has been confirmed by empirical research in (Oorschot, 2001).

The allocation of concurrent design tasks to engineers, as sketched in the beginning
of Section 3.4 (i.e. Step 3), is a multiple choice knapsack problem specific for NPD projects
under hard time constraint and was solved in (Dragut, 2002) (see Chapter 4). The stochastic-
ity and the fact that to each engineer we can assign more than one design task, allow neither a
mixed-integer formulation of the problem, nor a simpler formulation of the partial solutions
to be eliminated, as required by more efficient algorithms ((Ibaraki et al., 1978); (Dyer et al.,
1995)).

Remark 2 The solving time5,, (¢) of an arbitrary design task € A € P(Y(¢)) is a sum

of i.i.d. exponential random variables with mean Since the meap is the same for the
activities of all tasks, the solving time of the entire deof design tasks is ErlafgA|, 1)
distributed. Thus the inequality, (4,.,t) — a(m)| < ¢ leads to a minimal and a maximal
number of activities that can be performed by an engineer during the short-time planning
horizonh. This is a supplementary reason to keep the design task’s control at activity level.

Under the assumption that we have enough design tasks to be allocated to the en-
gineers, the allocation problem can be written as:

max Z Z V(n,t) (A0)

=(A1,A2,...,A 11
Tar+1=(A1,A2,...,Apg1) €l m=1.... M neA

wherell,, ., is the set of al(M + 1)-partitionsmyr1 = (Aq, Aa, ..., Apr41) Of the set
of design task¥” which, for any engineetwith ¢ € {1,..., M}, satisfy the optimal work
pressure level conditiofp, (A;) — « (i)| < ¢, and gather the left-over design tasks in the
last componentl ;.1 Of wps 1.

Starting from dynamic programming techniques, in Chapter 4 we propose a solu-
tion to this allocation problem. First we formulate this problem as a discrete deterministic
dynamic-programming problem. This formulation ensures the existence of an optimal solu-
tion, and creates a graph structure of the problem space. Afterwards, we avoid the exhaustive
search of the problem space by constructing a heuristic evaluation function of A* type for
a best-search algorithm. This function is based on aggregate information on the design task
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set. We discuss the efficiency of our algorithm, and we prove that it finds an optimal feasible
allocation, provided that there exists a feasible allocation.

If after solving the aggregate level problem, there are not enough design tasks to be
allocated to engineers, the engineers may receive design tasks from other projects to ensure
their efficiency. From this project point of view they will have zero-value, and hence will be
the last to be allocated.

3.5 Engineering process

During the review period, (t, ¢ + 1], the engineers work concurrently, each on its
corresponding sequence of design tasks determined at the beginning of review jrettosl
detailed planning. Each design task has been allocated to only one engineer.

Input parameters (at the beginning of review periag:

om (t) : the sequence of design tasks allocated to the enginelering the detailed
planningm =1, ..., M;

M

Y(t) := U {k|k € o (t)} : the set of all design tasks allocated to the team of
engineers m

N, (n,t,1) : the number of activities planned for solving the design tasht the
performance levedl, assuming the previous levels already solved;1, ..., L, n € T(t);

[ (n,t) : the level at which the design taskmust be performed, as established at
the aggregate decision levelc Y (t);

A(t): the review-period dependent Poisson arrival of unplanned activities for all the
design tasks allocated to the enginei@)/p < M).

In real life, each engineer of the team/af engineers has to perform the tasks allo-
cated to her/him by an NPD project control process, according to a certain priority order. As
discussed in Section 3.4, this order depends on the precedence relationships structure of the
NPD project, on the optimization criteria considered at the detailed planning level, and on the
type of market payoff function considered in the aggregate decision process. The sequence
of design tasks allocated to an engineer may contain design tasks that can be performed in
parallel and their order in a sequence reflects only the scheduler optimality criteria. However,
unlike machines, human beings are able to perceive the concurrency of design tasks. It is
reasonable to assume that during the execution process the engineers will not work all the
time on the allocated design tasks in the sequential order established by the scheduler.

During the solving process of the design tasks, several other disturbances may oc-
cur, resulting in new activities for the design tasks in progress. Also, addition/deletion of
design tasks in the NPD project may occur (see Chapter 2, Section 2.3). They appear as a
result of the incapacity to foresee at the outset all activities needed to complete the design
task. We model them to have preemptive resume priority over the planned activities.

All these uncertainties influence the execution of the schedule. Therefore, for the
next period, at the aggregate decision level the decision maker takes into consideration the
engineering level status at the end of the current review period. This fact is consistent with
real life situations where, on a weekly basis, each engineer measures how much time was
spent on solving each design task, what activities were solved, what activities were added.
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Thus, at the beginning of review periagd+ 1, the output variables from the engineering
process are:
N, (n,t+ 1,1) : the number of activities of design task if design taskn is per-
formed at level, assuming the previous levels already sojNed 1, ..., L, n € Y(t);
I(t+1): {1,..N} — {0,...,L} : the achieved performance design task level
function;

3.6 Expected NPD project outcome

Before starting a new review period, the aggregate decision maker must update the
previous network of design tasks according to the technological changes occurred (deletion,
addition) of (unplanned) design tasks, arrival of new activities for the design tasks on which
the engineers have worked). In this chapter in Section 3.3 we have formulated the aggregate
decision process for one review period. Based on the previous mathematical descriptions,
one can link the review periods using approximate solutions for the detailed planning and
engineering process level problems, and assuming review period-dependent Poisson arrival
processes of unplanned design tasks with a common contribution function and identical per-
formance level structure.

In Chapter 5, after discussing how simple priority rules may be used to schedule
detailed planning level design tasks, we propose a simple queueing model to describe the
working behavior of an engineer/team of engineers in a NPD environment. We consider that
at the beginning of each stagehe linkage problem gives a queueing system wiifhpar-

I(n,t+1

allel servers, and a common queuelf (t) = > ( > ) N, (n,t,1) planned

ne€Y (H)UZ(t) I=l(n,t)+1
activities with Exp () distributed processing times. The solving process is disturbed by a
A(t)-Poisson arrival of unplanned activities(() /. < M), having preemptive resume prior-
ity over the planned activities. By simplifying both the engineering, and the detailed planning
processes, this model is further enriched and used to compute the transition probabilities of
a non-stationary Markovian decision process model of the multi-period aggregate decision
problem (see Chapter 5). Thus, the aggregate decision process is extended from one-review
period to the multiple review period horizon. The Markov model can be further used to
predict the expected NPD project outcome in terms of market payoff, and to derive optimal
policies for achieving it.

3.7 Conclusions

Managing the new product definition is a complex managerial task. Based on recent
research, this chapter proposes a mathematical formulation of the NPD project management,
which includes two new problems specific for the NPD projects under hard time constraint.

We model the real-life project, and formalize the quality-time-cost trade-offs un-
derlying the NPD project mainly from the technological uncertainty point of view. This
chapter’s goal is to close the gap between the mathematical models world and management
world, providing a basis from which one can derive the constraints for computational models.
Thus, it facilitates the evaluation and acceptance of the computational results by managers.
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Chapter 4

NPD Design Tasks Allocation

4.1 Introduction

Allocation problems appear in many decision making situations like the alloca-
tion of tasks to resources, of workers to jobs, of salespeople to regions, or of requirements
to suppliers. The problem definition and, in particular, the constraints depend on the pur-
poses of allocation ((Atan and Pandit, 1996), (Diks and Kok, 1998), (Romeijn and Morales,
2000)). The allocation problems involving people have recently received increased attention
of researchers, who developed optimal or heuristic allocation techniques for various real-life
situations ( (Abboud et al., 1998), (Bossert, 1998), (Reeves and Reid, 1999), (Haluk, 2000)).
The difficulty of these problems resides in both their combinatorial nature and in the diversity
of the real-life factors that have to be included in the model.

Based on the model choices from Chapter 3, Section 2.3, and Section 3.4 our allo-
cation problem can be stated as follows:

Given

¢ a finite number of design tasks, with their value function, and number of planned
stochastic activities i.i.dExp(u)

e afinite number of engineers, with their optimal work pressure level

o the closeness parameteithe mean of the exponential distribution for activity times
and the short time planning horizén

Determine the allocation of design tasks to engineers
e in order to maximize the value function of the allocated design tasks
Subject to the following constraints:
e each design task is either allocated to exactly one engineer or is not allocated at all,

and resources (engineers) have to be used close to their corresponding optimal work
pressure levels.
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The remainder of this chapter is structured as follows. In Section 4.2 we state in a
mathematical way the problem and prove that it can be formulated as a discrete deterministic
dynamic-programming problem. This formulation ensures the existence of an optimal solu-
tion; through a graph structure of the problem space, it also allows the finding of an optimal
solution without an exhaustive search of the entire problem space. This graph structure can
actually be searched with much less computational effort with heuristic search algorithms.
Next, in Section 4.3, we construct such a heuristic evaluation function of A* type (see Def-
inition 7), using aggregate information (from the input data) on the design tasks set. Based
on established results from heuristic search algorithms, we propose an A* type algorithm
for solving the problem, with two possible implementations: standard best-first search (open
and closed priority lists, see for example (Russell and Norvig, 1995), and RBFS implemen-
tation (Korf, 1993). We also prove that owing to the properties of the proposed heuristic,
our algorithm is guaranteed to find an optimal cost allocation of the design tasks to engi-
neers. For the implementations, we have a complexity trade-off: the RBFS implementation
runs in linear space in the branching factor and the depth of the tree, and in linear time in the
number of generated nodes, at the expense of revisiting some nodes. The standard best-first
search implementation on the other hand is proven here to expand only a minimal number of
nodes (with respect to any other algorithm from its class), yet the spatial complexity may be
exponential: the branching factor elevated to the depth.

Experimental evidence of the tests we have performed shows however that the
RBFS solution revisits very few more nodes (having thus a small supplemental running time
with respect to the standard best-first), and the total number of visited nodes is very small
compared to the cardinality of the search space (second kind Stirling numbers). A detailed
discussion of these aspects concludes the chapter.

4.2 Problem formulation

In order to investigate the type of allocation problem more precisely, we recall from
Chapter 3, Section 3.4 that cognitive psychology studies (see for a review (Oorschot, 2001))
show there is a curvilinear dependency between engineers’ productivity and the time pressure
perceived by them. In (Bowers et al., 1997) a first estimation of the time pressure is given by
comparing, for a given engineeahe estimated duration for completing the allocated design
tasksandthe available time until the deadline

As described in Chapter 3, Section 2.3, our design task solving times are stochastic,
and there is a total available timkefor all engineers (also calleshort time planning horizagn
and given as input); thus we use the probability A) of finishing all design tasks of a set
Ain time h. We also assumed in Chapter 3, Section 2.3 the existence (i.e. input data) for
each engineer: of an optimal valuex (m) for this probability, calledbptimal work pressure
level Therefore, we achieve efficiency for the engineers involved in the process by requiring
for each engineen that|p, (A..) — o (m)| < 4. In words, this requires that for a short time
horizonh, the probability of finishing the design tasks allocatearids close to an optimal
subjective value (the closenesbeing also an input). This ensures both not overloading the
engineers and not giving them too little work to do.

The notation used in this chapter is a simplification of the notation from Chapter
3, Section 3.4. The references to the target performance level or to the time moment were
removed from the notation. The current target performance levels are established during the
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aggregate decision level, so they cannot be influenced here. The allocation problem occurs
at the beginning of each review period, and we assumed that an approaching deadline of the
entire NPD project will not influence it.

Input parameters:

h : the short time planning horizon;

Y : the set of design tasks that have to be allocatéd:= |Y|;

M : the number of engineers;

a (m) : the optimal workload level for the engineer, for allm = 1,..., M;

0 : the closeness parameter, i.e. the allowed variation with respect to the optimal
workload level of each engineer;

1 : the rate of the exponential solving time for each activity (of any design task);

V (n) : the value function of the design taskV (n) is a real positive number, for
alln eY;

N, (n) : the total number of activities of the design taskfor all n € Y;

Definition 3 GivenY =# (), |[Y| > m, we say thatr,, = (A1, As, ..., A,,) is anm—partition
oftheset if |J Ai=X,A;nA;=0andA; #0foralli#j,i,j=1,...,m.

=1

Notation:

S,: the solving time of the design task

o {1,..M} — R, whereo(i) = Y10, | (a(j) +0), fori € {1,..,M —1},
with o (M) = +o0.

v(A) := > V(n) : the cumulated value of the design task getc P (Y);

neA
u(0) =0;
Dy, (A) := Pr{Solving timgA) < h} = Pr{ > 8, < h} : the probability of

neA

solving the design tasks in timg; € P(Y);

Ips41: the set of allM + 1-partitionsm,,; of the set of design tasks which,
for any engineet with i € {1,..., M}, satisfy the optimal work pressure level condition
D5, (4;) — a(4)] < 6, and gather the left-over design tasks in the last compaAgnt; of
TM+1-

The solving timeS,, (¢) of an arbitrary design task € A € P(Y (¢)) is a sum
of i.i.d. exponential random variables with mean Since the meap is the same for the
activities of all tasks, the solving time of the entire gebf design tasks is ErlarfitA|, i)
distributed. Thus the inequalitp;, (A,.,t) — a(m)| < ¢ leads to a minimal and a maximal
number of activities that can be performed by an engineer during the short-time planning
horizonh.

Under the assumption that we have enough design tasks to be allocated to the en-
gineers, the optimization problem is defined as follows:

max v (A, A0
Tr41=(A1,A2,...,Anr+1) €N 41 72 ( ) ( )

In what follows, we reformulate the proble(0) from a maximization to mini-
mization problem by subtracting the objective function from a strict upper bound of it. This
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allows us to associate to the new problem, calleda dynamic programming graph with
all the arc costs being positive numbers. Such a construction further enables us to find an
A*-type heuristic since such an heuristic has to have positive values (see Definition 7).

Proposition 4 With the above notation, the problefd0) is equivalent to the minimization
problem:

minﬂzv[+1€1_[z\/1+1c (7T1W+1) (A)

whereC (my41) = 60— >, v(Ay), withd = 6y - K for K = |Y|, and with¢, =

m=1,...,

(1 +suppey V (K)).

Proof. The functionC is correctly defined oril,;,,, becausd), exists (finite
number of tasks, each with a finite value function). The equivalence of the objective functions
holds because we have that

Fag1 = (ﬁl, " /TMH) is an optimal solution of (A0) <

M M
0 — Z v </~1m) <60-— Z v(Ay,) forany mypq € My <
m=1 m=1

M
— 0 (Y)—v (EMH) > oY) —v(Aus) = Y v(An) &

Ta+1 IS an optimal solution of (A) .

4.2.1 Dynamic programming formulation of the reduced problem(A)

The DP approach for discrete optimization problems (such as planning, scheduling,
knapsack, etc.) has already been studied in the literature. The dynamic programming (DP)
formulation views the problem space as a directed graph with weighted arcs. This in turn
avoids an exhaustive search of the initial space, which, for many discrete optimization prob-
lems of practical interests, is huge. The basic DP methods can be improved through various
node selecting and pruning techniques, or through mixing them with other search methods.
We can mention (Dyer et al., 1995), (Martello et al., 2000), (Klamroth and Wiecek, 2000).
Also, many heuristic search methods can be used on this graph constructed by the DP formu-
lation, to search it much more efficiently (as (Grama and Kumar, 1995), for example). This is
the reason we first focus on the DP formulation of our problem, building a search space used
in the subsequent section, where we solve the problem through best-first search algorithms.

In some sense, the design task allocation problem we focus on is also linked to
multiple choice knapsack problems (studied in some of the above cited references). However,
for our problem, the stochasticity and the fact that to each engineer we can assign more
than one design task changes the setting quite substantially. The first feature of the problem
does not allow a mixed-integer formulation of the problem, while the second one changes
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dramatically the structure of partial solutions to be eliminated. Under the condition that
to each engineer we can assign one and only one design task, the concepts of IP or DP
infeasibility and dominance allow the development of more efficient algorithms as in (Dyer
etal., 1995), and (Ibaraki et al., 1978).

Many authors have proposed different formulations of DP ((Kumar and Kanal,
1988), (Ghalil and Park, 1992), (Eppstein et al., 1988), (Yao, 1980)). Following the (Grama
and Kumar, 1995) classification, the dependencies between subproblems in DP formulations
separate them in serial and non serial ones. The serial DP formulations are such that the
solution of a subproblem is constructed only from solutions of subproblems immediately
preceding the considered ones, and this is the type of our formulation as well.

Proposition 5 The(A) problem can be formulated as a finite-horizon discrete deterministic
dynamic problem.

Proof. Formulating, from an additive cost function, an optimization problem as
a discrete deterministic dynamic problem with/ + 1) —stages is equivalent to construct-
ing an oriented grapll, T) called sequential ofM + 1) —stage graph and to defining the
corresponding cosiS.

Let x be a special symbol, denoting the finding of a solution. We define

Xo={0}, Bo=10
B, € P(Y)

Ai ep (Y \ Bifl)

[ (Ai) —a (i) <6
Par—ipn (Y \ (Bim1 U Ay)) <o (i)

By € P(Y)
Xy =4 Bu-1,Am): Ay € P(Y\ Buy-1)

P (Anr) —a (M) <6

X; = (Bi_l,Ai)Z foristl1<i<M-1

Xn1 = {*}

Thus, each seX; represents possible allocations for the engineaevhen B;
contains the design tasks already allocated to the previous engineersi(frorh — 1).
The last condition for theX; (with i < M) ensures there are enough design tasks left in
Y\ (B;—1 U A,;), so that a—close optimal work pressure can be achieved also for the sub-
sequent engineers (from+ 1 to M). We recall that byo (i) we have denoted the sum

> 11 (a(j) + 0) This is so because what we want is actually

Vieli+1,...M}, |p,(4;)—a(j)| <6, whered; e P(Y\(B;-1UA4;)) (4.1)

The absolute value inequality contains actually two inequalities, and the one bound-
ing from above the probability of finishing in timk is the interesting one. Because the
engineers need to experience some pressure in order to be efficient, which means that the
probability of finishing should be not too large.

The other inequality of the absolute value inequality (4.1) ensures that the proba-
bility is not too low, i.e. the pressure is not too big. Yet, this could be dealt with by removing
some tasks, so this is not a necessary condition for the existence of a complete solution. Thus,
the inequality (4.1) implies

Vie{i+1,..,M}, p,(4;) <a(j)+9, whered; e P(Y\ (Bi-1UA,))
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By adding them, and by noting the independence of the solving times of the tasks from the
A; sets (which are disjoint), we obtain a probability of either one ofdhdask sets to be
finished beforé:

M M
Pr{ \/ Solving time(4;) < h} < Z (a(g) +96) =0 (7).

j=i+1 j=i+1

We notice that

M M
Pr {Solving time( U AJ) < (M —1) h} < Pr{ \/ Solving time(4;) < h}

j=i+1 j=i+1
(because anytime the events of the left member occur, the ones on the right occur also). Since

M
U A4; CY\ (Bi;—1 UA;) we also notice that
j=i+1

M
Pov—ipp (Y \ (Bi—1U4;)) <Pr {Solving time( U Aj> < (M —1) h} ,

j=i+1

thus proving the last condition as necessary.
Further we define for each decision step the decision set and the transition function.

Dy (0) ={A1: A e P(Y),[py (A1) —a(1)] <4}, t1 (A1) = (0, A1)
For(Bi_l,Ai) e X; ,Bi =B,_1 U Ai, 1 =1, ,M — 1 we define:

A1 € P(Y\ By)
D1 (Bi—1,A;) = { Aigr: P (Aip1) —a(i+1)] <9
Pv—i—yn Y\ (Bic1UA;UAi)) <o(i+1)

ti+1 ((Bi—17Az')aAi+1) = (Bi—l UAi, Ai+1) = (Bi7Ai+1) where the set
Aiy1 € Diy1 (Bi—1, Ay)
For(By—1, An) € Xy we define

A eP(Y\B
Dpry1 (By—1,An) = {AM+1 : |A35]\+/[1U AM(+1|\: Af? }

and for(Ba—1, An) € Xar, Anvi+1 € Daryr (Bu—1, Ar) let us define
tarv1 (Byv—1, Anr), Angr) = {+}
Forall (B;_1,4;) € X;, 1 <i < M letus define

(Bi, Aig1) = tiy1 ((Bic1, Ai), A1) }

T (Bioy, Ai) = {(Bi’AiH) : Aig1 € Diyy (Bi1, Ay)

and
T (Buy-1,Am) = {*}
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The nodes connected by arcs are:
i) P and(0, A1) € X1,
Zl) (Bi—17Ai) and (BivAi+1) if (Bi—17Ai) € X; and if (Bi7Ai+1) € T(Bi_l,Ai), with
1<:<M-1,
i11) (Bapr—1, Anr) € X and{x} .
The corresponding costs are:
Z) C(@, (@,Al)) = 6y |A1‘ — v (Al) >0
Z’L) C((Bi_l,Ai) s (BiaAi+1)) =0 - ‘Ai+1| - (A’i-i-l) >0,1<:1<M—-1;
ZZZ) C((BM,DAM) , {*}) =6 - (K - |BM,1 @] AMl) +1>0m
By construction, thus, we have the following.

Corollary 6 The problem of finding the minimal cost path in {id + 1) —stage weighted
graph (Y, T) is equivalent to the problem of obtaining an optimal allocation 1 of the set
of design task¥” to M engineers in the sense of problé¢rh).

Proof. One can easily see that the objective function of prob{eihcan be ex-
pressed as the sum of the costs per arcs, since

C(mus)= Y. (B0-|Bi\ Bisa| = v(Bi\ Bi-1)) + 0o |Y \ Byl

4.3 Heuristic search algorithms for solving the problem

4.3.1 State-space representation of a problem. Search graph, best-first
search.

Once a specific problem is given, we can obtain its associated graph of the state-
space representation type, where the nodes correspond to partial problem solution states and
the arcs correspond to steps in a problem solving process. An initial state, corresponding
to the given information in a problem instance, forms the root of the graph. The graph also
defines a goal condition, which is the solution to a problem instance. The search on a graph
of state space representation type characterizes problem solving as the process of finding a
solution path from the initial state to a goal (Russell and Norvig, 1995). In view of this
definition the(M + 1) stages dynamic programming oriented gréphrl’) is already a state
space representation of the problér), and the main result of the previous section was
that the problem of finding the minimal cost path in this graph is equivalent to the one of
obtaining an optimal allocation of the set of design ta&k&,) to M engineers in the sense
of the problem(A).

It is helpful to think of the search process as building up a search gsaph
(Y/, T’) that is an oriented subgraph @f, T") superimposed over it. Such a search graph is
determined by a triplél, O, G), where:

1) I is the set of initial states of the problem

2) O is the set of legal rules/operators that can be applied in order to generate the
children of a node

3) G is the set of goal states of the problem.
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Assuming that we have constructed an heuristic evaluation function, the main steps
of a general heuristic graph best-first search method are:

1. Start with a vertex set called OPEN, containing just the initial states and an
empty vertex set called CLOSED

2. Until a goal node is found, or there are no nodes left on OPEN do:

- Pick the node having the smallest value of the evaluation function among the ones
in OPEN

- Generate its children, remove the node from OPEN and put it in the list of nodes
called CLOSED

- For each child do:

(a) If it has not been generated before, evaluate its heuristic function, add it to
OPEN, and record its parent

(b) If it has been generated before, change the parent if this new parent is better
(from the evaluation function point of view) than the previous one. In that case, update the
cost of getting to this node and to any children that this node may already have.
where

OPEN is the list of nodes that have been generated and have had the heuristic
evaluation function applied to them but which have not yet been expanded (i.e. their children
have not been generated yet) OPEN is actually a priority queue in which the elements with
the highest priority are those with the smallest value of the heuristic function.

CLOSED is the list of nodes that have already been expanded. We need to keep
these nodes in memory if we want to search a graph rather than a tree, since whenever a new
node is generated, we need to check whether it has been generated before.

The stopping rule of the algorithm contains a condition for the moment in which we
reach a goal state and also a condition for the problems which do not have feasible solutions.
It is obvious that the existence of a solution depends on the set of input data.

4.3.2 Construction of a monotonic A* heuristic evaluation function

We consider only !, O, G) triples with only one initial statdZ| = 1. Let us denote
by g*,h* : Y — R, the functions defined such that for allc Y, ¢*(n) is the cost of the
shortest path from the start node to nedand for alln € Y, h*(n) is the actual cost of the
shortest path from to a goal. Thus, the functiofi* : Y — R, defined, for alln € Y, by
f*(n) = g*(n) + h*(n) is in any noden the actual cost of the optimal path from a start node
to a goal node that passes through nedénd, letg, h : Y — R, be two functions such that
foralln € Y, g(n) equals the cost of the current path to the nadebtained by summing
the costs of the arcs from the initial statertpand for alln € Y, h(n) is an estimate of the
actual cost fromm to a goal state.

Definition 7 A best-first search algorithm usinfy= g + h as previously described, as an
evaluation function for ordering nodes in a general heuristic graph search method is called
an algorithm A, andf is called an A heuristic evaluation function. An A algorithm where
h(n) < h*(n) is called A* andf is called an A* heuristic evaluation function (see (Nilsson,
1982)).

Definition 8 A best-first search algorithm is said to be admissible or optimal if for any state-
space representation graph having a finite cost path to a goal state the algorithm finds an
optimal path. (see (Nilsson, 1982))
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We also have, by immediately combining several results from (Nilsson, 1982) the
following:

Proposition 9 All A* algorithms are admissible, provided there is some strictly positive con-
stante such that the cost on each arc of the state-space representation graph is at l@adt
each node in the graph has a finite number of children (if any).

Lemma 10 Consider the functio® : P(Y)xP(Y) — R, defined byD(4, B) = v(B\A),
then we have the following properties:

1. D(A,B) >0forall A,BeP(Y).
2. D(A,C)=D(AB)+D(B,C)forall AC BC Cwith A, B,C € P (Y).
3.C(mms1)= X (60-|Bi\ Bi—1| = D(Bi-1,B;)) + 6y - |V \ By

i=1,...,.M

Proof. The first two properties hold due to the linearity and positivity of the cu-
mulated value functiom, while the last is straightforward from the definition BfandC'.
]

Proposition 11 There exists an evaluation functign= ¢ + & defining an admissible A* al-
gorithm for the(A) problem, provided that for the general search graph method we consider

the triple (1, O, G) where:

a) I:= {0}
N () has as child((), A;) if Ay € Dy (0)
D) O:=1{ (Bi_,, A;) has as child(B;, As1) 'Lljl:e %’;11 L(JBA:"’T)

¢) G == {(Bu, Anr+1) [Ans1 = (V\ (Bar—1 U An))}

Proof. We consider as a state space representation of the pr@diethe (M + 1)
stages dynamic programming oriented gré@phk= (Y,T') constructed in proposition 5 with
its corresponding costs.

For every node describing a state of the problem of the §Bg 1, 4;),i =
1, M + 1 we have according to the definition of an A* algorithm that! (B;_1, A;) =
9* (Bi—1,A;) +h* (Bi—1,A;), whereg* (B;_1, A;) is the cost associated to an optimal path
from @ to (B;_1,A;) andh* (B;_1, A;) is the cost associated with an optimal path from
(Bi—1, 4;) to afinal node.

We can construct approximations for the above defined evaluation functions:

f(Biz1,4i) = g(Bi—1, Ai)) + h(Bi—1, A;)

7

9(Bi—1,A)) = [00-|B;\B;_1| = D (B;_1, B;)]
=1
h (Bifl,Ai) =¢&0+ 90 . |Y\Bl| 7E(BZ,Y) ,VZ = 1, ,M —1
h(Bnr—1,Am) = €0+ 00 - |Y\ (By—1 U Ay)|

h(Bar, Arvi+1) =0



50 CHAPTER 4. NPD DESIGN TASKS ALLOCATION

Since there existé such that, (B;_1, A;) > 0,Vi = 1,..., M+1, if we can prove
that for any nodeB;_1, 4;),i = 1,..., M + 1 the relationh (B;_1, A;) < h* (B;_1, 4;)
holds, then the algorithm constructed with the above defined evaluation function is an A*
algorithm, according to the definition.

Since our oriented grapfi is finite and all the costs associated with the arc& of
are strictly positive, we have that there existssgn> 0 such that the cost on each arc of the
state-space representation graph is at lgas$o, if our algorithm is of A* type then by using
proposition 9 we have that our algorithm is an admissible one.

From the definitions of costs, we see that we can tgke 1, because the minimum
cost, equal td, is reached whep4,,,| = 1 and its element (the design task) has maximal
value function. If from(B;_1, A;) we cannot reach a goal solution theiB;_1, A;) <
h* (Bz'—h AL) = o0. Otherwise, |e‘((Bi_1, Az) s (Bl, Ai+1) yaney (B]\/], AM+1)) be the best
path (allocation) from the cost point of view which can be obtained by generating all the
children of(B;_1, A;) according to the rules frorf?. We have the following two possibilities

a) i < M. Then using lemma 10 we have that

h(Bi—1,4;) =1+6y-|Y\B;|— D (B;,Y) =

Myl
=1+06-[Y\B;| - Z D (Bj-1,Bj) <
j=it1
M+1 Mo
<1460 Y |Ajl= Y D(Bj-1,By)
j=it1 j=it1

=h"(Bi-1,4;)

b) i = M. In this case we have (By;—1, Ay ) = h* (By—1, Aum).-
¢) 1= M + 1. In this case we also have(Bys, Ayr+1) = 0 = h* (Bar, Avt1)-
[ ]

Corollary 12 For the (A) problem there exists an evaluation function defining an A* type
algorithm which is guaranteed to find an optimal cost allocation of the design tasks to engi-
neers.

A* algorithms do not requirg/(n) = g*(n), therefore admissible heuristics may
initially reach non-goal, non-final states along a suboptimal path, as long as the algorithm
finds an optimal path to all states on the path to a goal. One way of describing the monotone
property is that the search is everywhere locally consistent (i.e. they consistently find the
minimal path to each state they encounter in the search) with the heuristic function used.
The difference between the heuristic measure for a state and any one of its descendants is
bound by the actual cost of going between the state and its descendent. This is to say that the
heuristic function is everywhere admissible, reaching each state along the shortest path from
its ancestors.

Definition 13 A heuristic functiom: is said to satisfy the monotone restriction/consistency
assumption if:

1. for all n; andn;, wheren; is a descendant of; (i.e. n; is obtained during the
process of expanding the childrensf) holdsh(n;) — h(n;) < cost(n,,n;) := the actual
cost of a minimal path from statig to staten;.

2. h(goal) = 0.(see (Nilsson, 1982))
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Proposition 14 If for the functionh the monotone restriction is satisfied, then A* has already
found an optimal path to any node it selects for expansion. That is, if A* selectsiniote
expansion, and if the monotone restriction is satisfigd) = ¢*(n). (see (Nilsson, 1982))

Whenever a search algorithm using a monotonic heuristic rediscovers a state, it
is no longer necessary to check if the path to it is shorter than the previous one, because
it will surely not be! This allows any state that is rediscovered in the space to be dropped
immediately without updating the path information retained on OPEN or CLOSED. Hence
the computational complexity of the algorithm is reduced substantially.

Proposition 15 Applied to the probleniA), the functionh, defined in the proposition 11
satisfies the monotone restriction.

Proof. Let (B;_1, 4;) and(B;m—1, Ai+m) Withm > 1,7 < M + 1 be two nodes
connected by an arbitrary pat ;+,, = (Bi—1,4;), (Bi, Ait1) 5 -y (Bitm—1, Aixm) . Then,
by definition of the functiork and by lemma 10 we have that:

h(Bi-1,4i) = h (Bitm-1, Aixm) = 6o - [Y\Bi| = [Y\Bitml|] = D (B;,Y) +
+ D (Bixm,Y)
i+m
=060 |Bitm\Bil— > D(Bj1,B;).
j=it1

By applying once more the same lemma 10, we have

+m
h(Bi-1,4:) —h (Bigm-1,Aiym) < Pmin o - |Biym\Bi| — Z D(Bj_1,Bj) p =

i,i4+m G=it1

= cost((Bi—1,4;) , (Bitm—1,4itm))

Fori +m — 1 = M the relation holds trivially sincé (Bys, Ay+1) = 0 and
h (Byi—my Avi—m+1) < W (By—my Av—m+1) =COS((Brr—m, Arvi—m+1), goal state.
[ ]

4.3.3 Implementation and experimental results

The problem with the general best-first search algorithm is its spatial complexity.
The general algorithm has to store in memory all the frontier nodes (of the already explored
subgraph out from the total search space). This can be exponential: in our case, one may
have to store) (™) nodes in a worst case, whelrés the average branching factor, that is
the average number of children of a node. There are several variants of algorithms which
simulate the general best-first search, that is, they explore the state space also in best-first
order, yet with a different definition and management of the open and closed lists. These
variants have been designed in order to get around the spatial complexity difficulty. We can
mention iterative deepening (ID), node retraction, and recursive best-first search (RBFS) (see
(Korf, 1995) for a discussion). In order to gain on the side of spatial complexity the most,
we chose to implement an A*-RBFS variant for our A* algorithm. This variant combines the
ideas and advantages of IDA* and node retraction with an A* evaluation function (see (Korf,
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1995)), and it reduces the space complexity of the general best-first search from exponential
to linear. This is done at a cost of only a constant factor in time complexity, as experimental
evidence shows in (Korf, 1993), where the RBFS algorithm has first been presented.

In general, given an A*-evaluation function (as the one we have just constructed),
the RBFS variant can be shown to always terminate, and to find an optimal solution, if
there exists one (see (Korf, 1993)). Also, the same author shows that with a monotonic
A*-evaluation function, RBFS generates fewer nodes than IDA*, up to tie-breaking among
nodes whose cost equal the solution cost.

The RBFS algorithm always expands nodes in best-first order, storing in our case
O(bM) nodes at most. This algorithm goes as follows (see (Korf, 1993))

RBFS(node: N, bound: B)

if N.f > B then return N.f

if goal(N)=YES then EXIT

T:=children(N)

if length(T)=0 then return infinity

if length(T)=1 then a:=infinity

for each i from 1 to length(T) do

if T[i].f < N.F then T[i].F := max(N.F,T[i].f)
else T[i].F := T[i.f
sort(T)  /* increasing order of T[i.F  */
while T[1].F < B and T[1].F < infinity do
if length(T) >1 then a:=T[2].F
T[1].F := RBFS(T[1],min(B,a))
sort(T)

endwhile

return T[1].F

We see that besides the evaluation functfgrior each node there exists another
evaluation function, namely’, which changes during the exploration. The initialization for
the root sets thé" value to f, and the bound3 to infinity. The RBFS algorithm may visit
nodes more than once, thus visiting a greater number of nodes overall speaking, because of
the updating of this functior’. Yet the advantage over standard best-first is that this it may
have to store)(b™) nodes in a worst case, while RBFS stores an(pM).

Experimental evidence tends to show moreover that this rate of revisiting nodes
is very small, and this is in accord with the extensive experiments performed in (see (Korf,
1993)), comparing (when the available memory permitted it) RBFS with standard best-first
search. Our experiments have been done for various correlations of duration (number of
activities) with value function for the tasks, and for a few tens of tasks and a few engineers.

1. weak correlation: one cluster and a few outliers
2. weak correlation: three clusters

3. strong correlation: uniform distribution over one or two clusters

The results are collected in Table 4.1, giving, for 20 to 50 design tasks, and 5
engineers, the cardinality of the whole search space, and the average cardinality of the set of
effectively expanded nodes by the algorithm, for the three types of correlation. The rate of
revisiting nodes is under.1%. This is why we only give the set cardinality. For each entry
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No. Cardinality of the Expanded nodes
tasks whole search space Weak correlation Strong
(Stirling number) outliers 3cls correlation
uniform,
lor2cls
20 749206090500 271 290 7821
25 2436684974110751 296 301 64231
30 7713000216608565075 322 412 2619156
35 24204004899040755811870 2142 21146 19645801
40 75740854251732106906082250 3600 472023 128452100
45 23679599799792256039278924265(01 8352 1532010 392084301
50 | 7400958643682530162711881395876245170 11512501 859780221

Table 4.1. Expanded nodes versus cardinality of whole search space for RBFS implementa-
tion

in the table, the averages have been computed independenfy éifferent data sets. On

the average our numbers should be accurate only within an order of magnitude, since the data
was independently random generated for each test, and the space of all possible input data
has a very large size compared to the number of actual data sets we tested on.

As the number of design tasks increases (we have done experiments up to 50 tasks),
in the weak correlation case the numbers stay very small, while in the strong correlation, as
one would expect, the execution time and number of expanded nodes is increasing. Moreover,
from a practical point of view this allocation problem becomes more important when the
design tasks to be allocated are quite different (i.e. there is a weak correlation in between the
number of activities per design task).

4.4 Conclusions

The combinatorial nature of this allocation problem stems from the fact that the
number of alternative ways of grouping objects intoM groups is given by a Stirling

(M) _ M
m

ing(M) a5 gy K
number of the second kinfl,."’, whereS"" = w5 > |(—1) m*| (see
0

Table 4.1 for values). So, the solving method desanibed in this paper starts with a dynamic
programming model but it uses heuristic search algorithms, primarily due to the lack of ana-
Iytical solutions with a tractable computational complexity. However, the general algorithm
constructed in this paper has the property that if another algorithm of its type expands fewer
nodes than it, then that other algorithm runs the risk of missing the optimal solution.

Proposition 16 Among optimal algorithms (i.e. algorithms that find the highest quality so-
lution when there are several different solutions) of its type — algorithms that extend search
paths from the root — A* is optimally efficient for any given monotonic heurjstithat is,

no other optimal algorithm is guaranteed to expand fewer nodes than A*. (see (Dechter and
Pearl, 1985))

Corollary 17 For the (A) problem we have constructed a general A* algorithm which is
guaranteed to find an optimal cost allocation of the design tasks to engineers and to expand
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for any given monotonic heuristitthe minimal number of nodes from its associated dynamic
programming graph.

We have chosen to implement this general algorithm through a variant: A* recur-
sive best-first search (RBFS). This variant also expands nodes in best-first order, yet with a
theoretic overhead of revisiting and reexpanding some nodes. However, the main advantage
is the linear space complexity @#(bM) nodes stored, versus the exponential space com-
plexity of O(b™) nodes in the general algorithm. Moreover, experimental evidence shows a
very low rate of revisited nodes, undei %, and is in agreement with theoretical arguments,
which show that in a particular abstract model, RBFS is asymptotically optimally efficient
(see (Korf, 1993)).

Experimental evidence from our tests also shows a very low rate of number of
nodes effectively visited, compared to the total number of nodes in the search space, given by
the Stirling number of the second kind.



Chapter 5

Multi-period Aggregate Decision
— A Markov Approach

5.1 Introduction

In Chapter 3 Section 3.3 we have discussed the aggregate decision problem for one
review period. With the purpose of predicting the outcome of the NPD project at its deadline,
we have to study this problem for multiple review periods. In order to be able to do that, we
need a mechanism to predict what happens at the lower levels. Such a mechanism will help
us have a formula to compute the transition probabilities of a discrete-time, finite-horizon,
non-stationary Markov decision problem, which is what we propose to solve the multi-period
aggregate decision problem. This Markovian decision process that we present in this chapter
is an extremely general framework that supports the dynamic achievement of the new product
definition. It takes into account not only a highly dynamic market situation, but also a high
technological uncertainty that affects the content of the project design tasks.

This chapter is organized as follows. In Section 5.2 we introduce simple heuristics
for both the engineering process, and the detailed planning process, and we construct and
validate a simple queueing model to estimate the solving time distribution of design tasks in
NPD projects. In Section 5.3 we reduce the influence of the market uncertainty on the NPD
project, focusing on its technological uncertainty. Therefore, we take into account only the
market payoff function values available at the deadlihef the NPD project. These mod-
elling choices allow the computation of transition probabilities for a non-stationary Marko-
vian decision process model of the aggregate decision problem. In the end of Section 5.3, we
show that for this model there exists an optimal market payoff value as well as optimal poli-
cies to achieve it. In Section 5.4 we restrict the general Markovian decision problem to two
particular cases. The first case considered is the one of an NPD project without precedence
constraints. The second one is the case of an NPD project consisting of a sequence of design
tasks. In the following chapters we obtaine for both cases structured optimal policies. By
combining the derived insights we provided guidelines for heuristic policies in the general
case situation.
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5.2 An estimation model for the solving time distribution of
a set of NPD design tasks with precedence relationships

This section concerns the detailed planning level and the engineering level; here
we present the estimation model used as a tool to predict what happens at these levels, for use
in our multi-period aggregate decision control. We now focus on the detailed planning level
and engineering level.

Considering the potential risks of new product development projects (NPD), the
characteristics of their design tasks are critical for an effective management. From an oper-
ations management perspective it is important to realize what operational characteristics of
design tasks cause projects to be late. Earlier attempts to study and model the variability of
the NPD design tasks are due to (Oorschot, 2001), and (Tatikonda and Rosenthal, 2000a).
They identify the technological novelty, the magnitude of the design tasks, the interactions
between the design tasks in the NPD project, and the balancing between projects among
the most important causes of the unpredictability of the design tasks solving times in NPD
projects.

The main contribution of this section is the derivation of a simple mathematical
model for both the engineering and detailed planning level processes from Chapter 3. This
model allows the estimation of solving time distribution function of a set of design tasks with
precedence relationships from an NPD project. The model is based on operational character-
istics of NPD projects that evolved from theoretical and empirical research on these projects.
Moreover, we try to asses the validity of our model on real-life data.

5.2.1 Model description and analysis

We focus on both the detailed planning and engineering processes that take place
during an arbitrary review period of the NPD project control model from Chapter 3 Sec-
tion 3.4. We recall that at the beginning of each review period we have a subnetwork of
(planned or newly arrived) design tasks being subject to precedence constraints inherited
from the project network. As a consequence of the assumptions from Chapter 2, Section 2.3,
at the detailed planning level each design taglan be viewed asl&st of planned activities
N,(n) (to be sequentially performed). The split of each task into activities gives a uniform
measure of the difficulty implied by its realization. For the unfinished design tasks, unplanned
activities arrive according to a Poisson process of kaf€hey appear as a result of the inca-
pacity to foresee at the outset all activities needed to complete the design tasks, so we model
them to have preemptive resume priority over the planned activities. The solving time of the
activities are random variables independent identically exponentially distriutedl /).

The notation used in this chapter is a simplification of the notation from Chapter
3 Section 3.4, and Section 3.5. The references to the target performance level, or to the
time moment were removed from the notation. The current target performance levels are
established during the aggregate decision level, so they cannot be influenced here. Also, the
detailed planning, and engineering process control problems occur at the beginning of each
review period, and we assumed that an approaching deadline of the entire NPD project will
not influence them.
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Input parameters:

M : the number of engineers;

1 : the rate of the exponential solving time for each activity (of any design task);

A: the rate of the Poisson arrival of unplanned activities for all the design tasks
allocated to the engineers at the beginning of the current review period;

7n : the rate of the exponential solving time for the comparisons in between each
two design tasks during the detailed level reprioritization process;

G = (J(G), A(Q@)) : the directed, acyclic graph of precedence relations among the
design tasks;

V' (n) : the value function of the design taskV (n) € Ry, foralln € J(G);

N, (n) : the total number of activities of the design taskor all n € J(G)Y;

Even if all the design tasks allocated in the previous review periods are finished,
the previous chapters have shown that the detailed planning process is a complicated one.
Nevertheless, the knowledge about its results is crucial for the aggregate decision, and the
process of acquiring this knowledge should be very simple in order to allow the decision
maker to evaluate the various possible choices.

What, we propose is to assume that the team of engineers will work with all its
available capacity on any of the design tasks. Such an heuristic simplifies the detailed plan-
ning problem by allowing more than one engineer to work on a design task. The order in
which the design tasks are performed may be approximated. In the case of the general cumu-
lative market payoff functions from (Askin and Dawson, 2000), and (Yoshimura, 1996) we
can order the design tasks to the team of engineers according to their value (see Appendix
and Chapter 3 Section 3.4). Other heuristic orderings suitable in the case of a new product
which has to fulfill only one customer need might be heuristics for nonpreemptive scheduling
problems with identical processors (i.e. in our case the engineers) and precedence constraints.
There, the concept of list schedule turned out to be useful (see for a list (Neumann and Zim-
merman, 1998)). An unscheduled design task is said to be ready if all its predecessors, if any,
have been solved. A list schedule is a permutatiaof the set of all design tasks with the
following meaning: any time that a processor becomes idle, the solving of that ready design
task with the minimum index in the permutatieris begun by the idle processor.

The sequence of design tasks allocated to the team may contain more than one
design task that can be performed in parallel and their order in a sequence reflects only the
optimality criteria of the scheduler from the detailed planning level. Unlike machines, human
beings are able to perceive the concurrency and the relative urgency of design tasks. There-
fore, it is reasonable to assume that during the planning period the engineers will not work all
the time on the sequenced design tasks in the order established by the scheduler. The decision
of an engineer of choosing or not a specific design task to work on is not really something
that can be exactly modelled, due to the large variety of variables implied and due to the lack
of detailed good quality empirical data to support theories. However, we can model this in
probabilistic terms, by assuming that at each time instant the team can decide, with a small
probability 1 — p, to temporarily re-prioritize the order of the design tasks that can be per-
formed in parallel, by successively comparing the first activities to be done from each of the
other allocated tasks. Comparing design tasks requires capacity, which can be modelled as an
activity with exponential distribution with mealyr. Thus, at any time instant the team will
either work with the probability on the planned activities of the design tasks in the order
given by the scheduler, or, with a probability— p, will try to re-prioritize the design tasks
instead of trying to solve them.
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Proposition 18 Let= be the random variable giving the solving time of the allocated design
tasks, and the number of concurrent design tasks allocated to the engineers. Then far
='s cumulative distribution function equalsy (k) = Pr{E < h} = p - Pr{Chax (k) <
h}+(1=p)-Pr{Ygrangi—1) < h}, whereCyax (k) is the makespan of a queueing system of
M parallel servers with a common queue having aseridsef >° N, (n) of planned
neJ(G)UY
activities, and(1 — p) is the probability that during the solving process the design tasks
order is reconsidered. The planned activities have a common processing time, exponentially
distributed with mear‘%, and their solving process is disturbed by\a Poisson arrival of
unplanned activities. The arrival process of unplanned activities stops when all the planned
activities are finished. Thus, the cumulative distribution functiort’ofan be computed
numerically.

Proof. All the planned activities are assumed to be independent identically dis-
tributed, and once the design tasks are ordered, we have as well an ordering among all the
planned activities included in all the design tasks. Thus, the switches due to the re-prioritizing
decisions may change only the indices of the activities to be done. So, the solving time of the
planned activities already ordered is independent of the trials done in order to re-prioritize
the design tasks. However, this process creates extra work and will affect the completion
time distribution of the entire set of design tasks. THASE < h} := p - Pr{Cpax (k) <
h} + (1 = p) - Pr{Ygpangi—1) < h}. Now we have to prove that the Laplace-transform
of the distribution function o>, ...(k) can be obtained, and inverted to complete our proof.
Let BP be the busy period in®[/M/1 queue with arrival rate. and service raté/u. Then
we have, folk = M +q¢> M

Cmax(M + Q) =BP+ Cmax(M + q— ]-)
and fork < M,

Cmax(k +1)  with probability (_)(*k
Cumax(k — 1) with probability

=

Cax(k) = Z(0(k)) + {

Cimax(0) =0

where©(k) = A+ ku andZ is an exponential random variable. Let us consider the Laplace
transform ofCy,,.x (%), and denote, fos > 0,

Fu(s) = ®(k)(s) = B(e™Crmnx(k))

After computing it, the Laplace transfopﬁ*(s) can be inverted according to the Euler Inverse
Laplace Transform method ((Abate and Whitt, 1995)). We have two cases, according to the
value ofk with respect tal/.

Caselk = M+q> M :®(k)(s) = B(s)®(k—1)(s) = --- = B(s)F "M+ (M~
1)(s), whereg(s) is the Laplace-Stieltjes transform of the busy pedB. From (Kleinrock,
1975), we have that

A Mp+s—+/(A+Mu+s)2—4\Mp

So we shall only need to know how to compudtéM — 1)(s). For that, we need the other
case.
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Case 2k < M
(k) (s) = e(i()kis (G)E\k)fb(k +1)(s) + (;(/Ii)cb(k —1) (s)>
B A ku
D(0)(s) = 1
Now, on the border, we have the following:
(M —1)(5) = M@(M}(s) T W@(M —2)(s)
(M) (s) = B(s)2(M —1)(s)
— B(M — 1)(s) = 9(]\25_(51))“@(1\4 ~1)(s) + 9((]]\‘44_ ))“ ~a(M —2) (s)
1 (M —-1p
— (M —1)(s) = — (M —2)(s)
1— @(%(1))-%3 O(M —1)+s
e (M —1)(s) = M=Di gar—2)(s)

O(M —1)+s— A\3(s)

We want to have a relation linking the values®fk)(s) either with respect t@(-)(s) of
greater values thah, or of smaller values, not both at the same time. fiand denote
by @, = ®(k)(s), by a(k) := grjs and byd(k) := %. Then we can rewrite the
recurrence of case < M as follows

P, = Oé(k) cDPpig + 5(]43) - Pp_q
with the fact thata(M — 2) = SULDE=A0E) and 6(M — 2) = 0. Because allby,
are positive, but not zero (because they are the result of an integral from a strictly positive
function), we can also defing(k + 1) = ‘I)q’;—:l. Then we can rewrite the last equation as
follows

5(k) 1 ‘ 1 .
b, = o =~(k) - B = D, - =
k 1_a(k),7(k+1)fk 1=7(k) - ®p1 = Do jl_lkv(J) jl_lkv(J)
and for eachy we have the recurrence relation
3(k) (M~ 1)u

ywithv(M —1) =

(k) = 1—ak) v(k+1) O(M —1)+s—MN3(s)
This shows how to compute each of tikg = ®(k)(s), for an arbitrarys > 0. Thus, we
completely solved the cage< M. m

The shape of the distribution function obtained via this model is confirmed by the
data collected in the experimental research of (Innam, 1999) (time to repair distribution func-
tions in manufacturing systems), which suggest a long fat-tailed, skewed, maybe multi-modal
distribution function. In Subsection 5.2.2 we test with a goodness-of-fit test that the frequency
diagrams of the eight real-life data sets of (Oorschot, 2001) are consistent with our model cu-
mulative distribution function for the particular case of one engineer. The last data frequency
diagrams showed some similarity with gamma-type probability density functions as well, but
this hypothesis was rejected by a goodness of fit test-at0.01 in (Oorschot et al., 2002).
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5.2.2 Goodness-of-fit test results

We have tested the null hypothesis that the frequency diagrams of the eight real-life
data sets from (Oorschot, 2001) represent the model cumulative distribution function for the
lead times of the NPD design tasks. The eight sets of data were collected from ten engineers
of a firm that develops, produces and services advanced micro-lithography systems. Each
engineer worked on two or three design tasks allocated to him. Before starting to work on the
design tasks, the engineers made estimates from one to eight weeks for the design tasks lead
times. Thus, the first data set contained the design tasks that were supposed to be finished in
one week, the second contained the ones with estimated lead time two weeks, and so on. We
used only the initial engineers conjectured characteristics of the design tasks in setting the
parameters of the model. Since we did not have any information regarding the average time
of an comparing any two design tasks, we tested the data consideting

However, two important issues have to be discussed in relationship with the model
testing. The first issue was that the data was collected separately per design task, and not per
engineer. We did not know which set of tasks was performed by each engineer. This lead
us to consider in our model that for each engineer the resequencing of its allocated design
tasks took place during the solving of each of its design tasks with the same probgability
Thus, if an engineer had> 2 concurrent design tasks allocated to him/her, the cumulative
distribution function of one of them, say, was of the form: Fy(h) = Pr{Z < h} =
p-Pr{C(n) <h}+ (1 —-p) Pr{Yeriangi-1) < h}, where(1l — p) is the probability that
during the solving process the design tasks order is reconsidered;(ands the completion
time of queueing system with one server with a queue having a series of\gnly) of
planned activities (i.e. those planned for that specific desigmtaskhe planned activities
have a common processing time, exponentially distributed with meaand their solving
process is disturbed by &—Poisson arrival of unplanned activities. The arrival process of
unplanned activities stops when all the planned activities are finished.

The second issue was that the data collected referred to the design tasks lead times,
not to their solving times. If for the short lead times we could consider the lead time derived
directly from the solving time, a different situation held for the longer lead times (i.e. more
than three weeks). There were two main reasons for a design task to have a longer lead
time, but the data was not collected separately for each. Either the design task lead time
was indeed proportional with the amount of planned activities, or the engineer to whom was
allocated had other design tasks to be performed earlier. Thus, we checked our model for
both conjectured cases. For the first case we used a multiplication of the stochastic planned
activities proportional with the number of weeks given by the due date. For the second case
we delayed the distribution given by the model proportional with the number of weeks given
by the lead time. Based on the results of the Kolmogorov-Smirnov goodness of fit test,
the model showed in both cases no statistically significant difference with respect to data
sets considered. The Kolmogorov-Smirnov test finds the greatest discrepancy between the
empirical and expected theoretical cumulative distribution functions, which is called the "D-
statistic”. We compared this against the critical D-statistic for that sample size. The results
are shown in Table 5.1.

In general, we cannot reject the null hypothesis that the distribution is of the ex-
pected form according to the above model. The D-statistic was less than the critical one (for
a = 0.1) for most of the tests. In the remaining tests we could get an acceptance for a lower
«, except for the fifth data set, for which the first conjectured hypothesis (i.e. without delay)
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Conjectured| Sample| Model Parameters D-statistic| K-S K-S K-S

Lead Time | size (A(n), p, A, p, i, delay) (0.01) | (0.05) | (0.1)

1 week 66 (4,4,1,0.85,2, —) .1829 1972 | .1644 | .1480

2 weeks 85 (8,4,1,0.85,2, —) 1678 1742 | 1452 | 1307

3 weeks 70 (12,4,1,0.85,2, —) 1236 1916 | .1597 | .1438
(12,4,1,0.85,2,1) 1519

4 weeks 52 (16,4, 1,0.85,2, ) 1397 2217 | 1848 | .1663
(12,4,1,0.85,2,2) 1676

5 weeks 43 (20,4, 1,0.85,2, —) 9792 2433 | .2028 | .1825
(12,4,1,0.85,2,3) 2020

6 weeks 41 (24,4,1,0.85,2, - 1524 .2490 | .2076 | .1868
(12,4,1,0.85,3, 4) 1951

7 weeks 35 (28,4, 1,0.85,3, —) 1908 2686 | .2242 | .2018
(12,4,1,0.85,3, ) 2531

8 weeks 32 (32,4,1,0.85,3, ) 1996 2809 | .2342 | .2108

Table 5.1. Kolmogorov-Smirnov goodness-of-fit test results

was rejected. We explain this slight variation in the acceptance rates, as well as the one rejec-
tion by the fact that probably the design tasks were having a longer lead time for both above
mentioned reasons (the modeb, 4, 1,0.85, 2, 1) was accepted at a higherthan both sep-
arated cases). It is worthwhile to mention that if the conjectured lead time was one or two
weeks we could also set= 1, without rejecting the null hypothesis far= 0.1, which was

not possible in all the other cases. Also, for the first two data sets which have a shorter ini-
tially estimated lead time, the application of our model in the second conjectured hypothesis
(i.e. with delay) lead to a rejection. This may allow a model simplification for very short
solving times. The psychological literature suggests that people tend to give more priority
to urgent design tasks, presumably because time pressure rises and this motivates people to
make progress.

5.3 Nonstationary Markovian multi-period aggregate con-
trol of NPD projects

This section focuses on the aggregate decision level, presenting the promised non-
stationary Markov decision process. In order to do that, we make use of the results from
Section 5.2 concerning the estimation model presented for the detailed planning level and
engineering level. We consider that the short-time planning horizém be equal to the
length of one review-period (i.e. h=1).

We propose a discrete-time control model, because it is too costly to continuously
measure the progress in a NPD project. The project will be reviewed at equidistant points in
time until the deadlineT".

At the beginning of each review periad(¢,t + 1], the aggregate decision maker
integrates in the NPD project the newly arrived unplanned design tasks. We consider that
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all the new arrived design tasks during the review pefipe 1,¢] are concurrent with the

ones to be allocated af and each such task is to be performed only after all tasks of the
staget — 1 are finished and before any task of the stagel. However, the computation of

the transition probabilities can be easily extended to the case described in Chapter 2. There
we assumed an arrival of unplanned design tasks (during review perot) concurrent

with design tasks allocated/to be allocated duringithth review periodyi = 0, ..., ¢. For
reasons of mathematical tractability, the general Markovian review period-dependent arrival
process of unplanned design tasks from Chapter 2 and Chapter 3 Section 3.3 becomes a
Poisson review period-dependent arrival process ofgle In later review periods the rate

¢(t) decreases. We recall from Chapter 2 Subsection 2.3.4 that for each peribdnd for

eachi = 0, ..., ¢ the unplanned design tasks are assumed be statistically identical (i.e. with a
common performance level structure, and an identical market payoff structure).

Afterwards, at the beginning of each review period the aggregate decision maker
decides whether to continue or not the NPD project. The abandonment is the result of either
an expected exceeded NPD budget, or of a low product performance, which does not enable
the achievement of a fully functional product before the deadline. In case of continuation the
controller modifies the design tasks performance levels in an interactive process aiming at a
maximal market payoff at the deadline. Thus, the targets on design tasks realization for the
detailed planning level are provided, under the several aggregate constraints of achieving the
currently target performance levels, at the deadline, with certain probabilitids—-partite
directed acyclic graph of design tasks reflects the precedence relations among design tasks at
the beginning of each review period (see Chapter 2 Subsection 2.3.2).

During each review period, we estimate the outcomes of the detailed planning and
engineering process using the simple model built in Section 5.2. This model allows the
computation of the transition probabilities of the Markov decision process we propose for the
control of NPD projects. Thus, we assume that during an arbitrary review period the team
of engineers will always perform the tasks allocated to it, according to a priority order. We
also recall from Chapter 2, Section 2.3 that for each design task we have different levels of
performance, giving the quality of its execution. Each performance level consiststbh
planned activitiesvith solving times random variables independent identically exponentially
distributed. For each design taskrmanimal performance leveias to be achieved, in order
to have a fully functional new product. New unplanned activities arrive at the design tasks
in progress during the review periedaccording to a Poisson process of rate). In later
stages the rat&(¢) decreases.

The notation used in this chapter was introduced in Chapter 3 Section 3.3, with
the exception of the arrival rate of new activities. This rate is not an input parameter for the
aggregate control in itself, but for the model we use for the engineering and detailed planning
processes (see Section 5.2). In the Markov decision process formulation of the aggregate
decision process we take into account the arrival of unplanned design activities while com-
puting the transition probabilities of the process. Consequently, we will not update anymore
the number of sequential activities planned for solving a design/task the performance
level . In their corresponding notation the time index will be withdrawn, as well as in the
solving time of a performance levibf a design task, and in the minimal performance level
required.
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Input parameters (global variables)
T : the total number of review periods (review periods are numbered fram

T-1);

M : the total number of engineers;

N : the initial number of design tasks;

N : an upper bound for the maximum number of design tasks during the whole
project;

Lax(n) : the maximal number of performance levels of the initial design task
n=1,.. N;

Imin(n) : the minimal performance level at which the design taskiust be per-
formed in order to obtain a functional produgat=1,..., N

N, (n,1) : the number of sequential activities planned for solving the desigmtask
at the performance levél assuming the previous levels already soled;= 1, ..., N,VI =
1y eeey Linax(n);

1 : the rate of the exponential distribution of an activity solving time;

n : the rate of the exponential solving time for the comparisons in between each
two design tasks during the detailed level reprioritization process;

¢ (n) : the cost of performing one activity of the design taske = 1, ..., N.

SinceN is an upper bound, we set to zero all the parameters depending on a virtual
n € {N +1,...,N}. If due to the arrival of unplanned design tasks more tVadesign
tasks arrive then either they will be neglected, or the NPD project will be stopped.

Input parameters (at the beginning of review periag:

a(t) : the required current safety margin for the probability of completing the
project before the deadline;(t) € (0, 1)

B (t) : the required current safety margin for the probability of exceeding the max-
imal team solving capacityj (¢) € (0, 1)

B (t) : the current remaining NPD project budget;

¢(t) : the current rate of the Poisson review period-dependent arrival process of
unplanned design tasks;

Q(t — 1) : the set of newly arrived unplanned design tasks (during review period
t — 1) concurrent with the design tasks to be allocated durindtthesview period;

R, = (J(Ry), A(J(Ry))) : the newly updated—partite directed acyclic graph
of unfinished design tasks precedence relations, wiighe) = A9 U Al U... U AT~ and
Al = Al UQ(t — 1) is the current design tasks set allocated/to be allocated at

N(t —1) : the random variable giving the number of design tasks arrived since the
NPD project beginning until the end of review period 1, [t — 1,1);

Liax(n, t) : the current maximal number of performance levels of the design task
15 Limax(n,t) = Liax(n) forn = 1,..., N and Lyax(n,t) = 0if n & J(R;) (i.e. there is
place reserved for the design tasks not planned or not arrived yet up to the upperound
but we set to zero the maximal performance level depending on a virtual design)task

1(-,t): {1,..N} — N : the achieved performance level of a design task function,
where0 < I (n,t) < Lmax(n,t), forn € J(R;) and by convention we defirién,t) = —1
forn ¢ J(R;) (i.e. we mark the design tasks not arrived yet);

A(t): the review-period dependent Poisson arrival of unplanned activities for all the
design tasks allocated to the engineers.
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Notation (at the beginning of review periag:

Fe = {n>N|N+E[Nt-1)]+1< n <N+ E[N(T-1)]} : the esti-
mated set of all unplanned design tasks for NPD project;

Sn(1) : the solving time of the performance levebf the design task, assuming
the previous levels already solved;= 1,..., N. They are independent random variables
Erlang{ N, (n,1), u).

C(t,1(-,t), R:) : the completion time of the network of design tasks, if (-, t)
gives the design tasks performance levels;

The decision time points: The decision points are equidistant and the horizon of
the problem is finite. The decision poihtorresponds to the beginning of reviéw 1. Say
te{0,1,..T —1}.

The state space and the action space:

At time ¢ = 0, at the beginning of the NPD project the engineers start with zero
performance levels achieved for theplanned tasks, and preserve place for a numberN
of unplanned design tasks. Thus, foe 0:

X(0) ={zo} = (Ogw, —1gn-w)-

The state seX (¢) at moment and the action sed, (z;) in the stater; € X (¢)
have probability constraints similar to conditions 3.2, 3.3 and 3.4 from the one-period ag-
gregate decision problem presented in Section 3.3:

e the target performance level of each planned or newly arrived desigm tastreater
thanmin(lmin(n, t),1(n, t)), and smaller that, ;. (n, )

¢ with the probability safety margins:
e the completion time must be smaller than the remaining time until the deadline

¢ the remaining workload of the team of engineers should not exceed their maximal
solving capacity

e the remaining budget must not be exceeded.

For the state space the probability constraints are computed using the minimal per-
formance levelsi;iy (-, t), while for the action space are used the target performance levels,
I(-,t) + a(-,t). Why? Since the NPD project is stopped if in the achieved states, for the
existing design tasks (i.eL,ax(n,t) > 0) one cannot take anymore actions which lead at
the deadline to a rewarded new product in the conditions required by the safety margins. The
rewarded region it = {(l1,....In)|ln = lmin (n),Yn=1,..., N}

Fort € {1,...,T} the stater; € X (¢t) describes how many performance levels
I(n,t) were solved for each design task
zp = (I(1,t), ..., l(n, 1), ..., (N, t)) € {(NU{-1}}
and — 1 <1 (n,t) < Lyax(n,t), n€{1,...,N}
I(n,t) >0,¥n € {1,..., N} S.t. Lipax(n,t) >0
Pr{C (t,lin (), Re) < (T — )} > a(t)

X(t) = Tt Imin (1) (51)
Pr > oo S, (@) <M (T—-t)y >0()
neJ(R)UF ¢ i=l(n,t)+1
lmin(n)

Na (n,i) - ¢ (n)
ne€J(Ry)UF ¢ i=l(n,t)+1

< B(t)
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=, T),....1n,T),...(N,T)) € {NU{-1}}" and
X(T) = {IT Limin )s (n T) <Lmax(n t) Vn e {1,..,N}st.l(n,T) >0 }

Fort € {0,..T — 1}, ax = (I(1,¢),...,l(n,t),...,l(N,t)) € X(t) the actiona,
in the stater; decides how many other levels abavgwe want to perform. The perfor-
mance level up to which the design tasknay be solved after the actian was taken is

(I(n,t) + ay(n)) " i max(l(n,t) + at(n),0).
ar = (ag(1), ., ap(n), ..,ar(N)) € NV
I(n,t) + at(n) < Lyax(n,t),Yn € {1,..., N} s.t.l(n,t) > 0

Pr {c (t, (I(n,t) + ag(n))" ,Rt) < (T - t)} > a(t)
(Un,t)+as(n)*

SRS S Sy < Mo(T -1\ > A 0)
ne€J(R)UF ¢ i=l(n,t)+1
(I(n,t)+a(n))™
Na (nal) : c(n)

At (l’f) a¢

(5.2)

< B(t)

n€J(R)UF ¢+ i=l(n,t)+1

An important thing related to the state and action space descriptions is that¢hey
sensitive to the arrival of unplanned design tasks up to the upper bauriflat a decision
pointt an unplanned design taskjust appeared it will be numbered in an increasing way
from N + N (¢t — 1) up to N, andi(n, t) will be changed from -1 to zero. Thus, at the next
decision point their corresponding actions might be greater than zero, and the team of the
engineers might start working on any of the unplanned design tasks.

We notice as well that in the second probability constraint from (5.1) and (5.2)
the total workload is computed by adding the remaining solving times of both the design
tasks fromR, and of the expected unplanned design tasks, up to their minimal and respec-
tively maximal decided performance level. The computation can be easily done under the
assumption of review period-dependent Poisson arrival processes of statistically identical de-
sign tasks. Thus, the sum of the independent remaining solving times of the design tasks
leads to an Erlang distributed random variable.

The immediaterewards: V z; € X (t), z141 € X(t + 1), anda € A; (z), the
immediate reward is

Pt (xha,x“rl) = O,Vt = 07 ,T —1

and the final reward is

( )— 07 |f31§’l’LSN7 l(an) <lmin (n)
prieT) = f (max(zr,0)) otherwise )

where f(-) : N¥ — R, is anondecreasing function with respect to the partial order on
NV(i.e. we say thatr < 7, z,7 € NV, if 2 (n) < #(n), V1 < n < N). This type of
reward function is very general, describing the market value of a new product which has to
fulfill several customer needs including the analytical cumulative market payoff functions of
(Yoshimura, 1996); (Huchzermeier and Loch, 2001), and (Askin and Dawson, 2000).

The transition probabilities: In order to obtain a Markov decision process formu-
lation of the aggregate decision problem, the transitions should depend only on the decision
time point, the observed state and the chosen action and not on the whole history of the
process. The probability that the next state:js;, given that the state at the beginning of
staget is x; and that the action; € A;(z;) is chosen, will be the nonstationary probability
pt($t7@t79€t+1)-
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Due to the partial order of precedence relations induced by thpartite acyclic
graph of design taskg, (z, a;, x¢+1) = 0 if one of the following holds:

1. 3nq,ne € {1,..N} s.t.ny is a predecessor of; in the partial order] (n2,¢ + 1) # 0
and! (TL17t+ ].) 7é l (nl,t) + at(nl);

2.39ne{l,..N}sti(n,t+1)#0andn ¢ A U...UALUQ( —1).

Otherwise, the transition probabilities can be calculated, by estimating during each
review period the results of team of engineers with the simple model built in Section 5.2.

We now wish to formally give the transition probabilities of the Markov decision
process. There are mainly two things which can happen during a transition from one state to
another:

e some design tasks are performed at some performance levels above their previous ones
and at most equal to the ones target, set by the action.

e new design tasks can appear due to technical uncertainties

We recall that each state is a vector storing the current performed levels (zero or
positive), and the value 1 for design tasks not in the system (i.e. unplanned, but theoretically
allowable to appear). Now, these two independent processes will respectively modify on the
one hand the zero or greater than zero components, and on the other hand,capo-
nents, making them become zero, i.e. new freshly arrived design tasks and not processed yet
at all. During each review peridd, ¢t + 1) we take into account at most a numb€r of new
arrived design tasks. Moreover, as these new unplanned design tasks arrive, they "receive
indices in increasing order, so actually for any state, all itsgagomponents strictly greater
than—1 are at the beginning, from the first one to thgth one, the other ones to the end
being equal to-1. The outcome of the first process is estimated using the estimation model
from Section 5.2.

Proposition 19 Let us assume that during each review peffiod + 1) we take into account
at most a numbek; of unplanned design tasks which arrive with a probability greater than a
given threshold(¢) > 0 (i.e. Pr{at mostK arrivals during review periodt, t+1)} > 9(¢))
T-1 .
and > K; = N — N. Then the transition probabilities of the Markov decision process

t=0
constructed above are given by

pe (Te, a1, 41) =

& < T < 2 +ap + 2 and

; [s()* —<(t)
— X, 0q,) - e )
= PG mania) By k< K; 9! card{n|z:(n) = 1}
0 , otherwise
where
= > . .
&q1(n) = T (n) w(n) =l ) 20 {1,...,N} (i.e. z,,, restricted to

-1 , otherwise’
the progress made on the previous existing design tasks),
iq, IS the number of nonempty components in the actigrcorresponding to concurrent
design tasks (i.e. the number of concurrent design tasks given to the team of engineers), and
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0 ,x¢(n) =1(n,t) >0
zin)=¢ 1 ,az¢(n)=-1,Vne{ng+1,...,n0+ K:}, andzi(ng) = l(no,t) >0 ,
0 , otherwise
Vn € {1,..., N} (i.e. counts the maximal number of unplanned design tasks that might be

included in the project during the current review period). These transition probabilities can
be fast numerically approximated by the Euler Inverse Laplace Transform method (Abate and
Whitt, 1995).

Proof. As we have said before, during each review period there are two inde-
pendent processes that take place, and we will make use of the estimation model built in
Section 5.2. The first process is the solving process of the design activities from the design
tasks performance levels decided by the actipriThe second process that takes place is the
Poisson arrival process of unplanned design tasks to be added to the NPD project description.
According to our assumption the number of new design tasks that are taken into account at

K .

the end of the review period, ¢t + 1) is less thark;, with > %e*(” > 9(t) (i.e. the
k=0

length of each review period ig.

To estimate the solving process we use the simple model built in Section 5.2. Its
basic assumptions are:

- the design tasks are sequenced, their order reflecting the optimality criteria of the detailed
planning level scheduler,

- the team of engineers works with all its capacities as one processor on all the design tasks

- unlike machines, human beings are able to perceive the concurrency and the relative ur-
gency of design tasks, and at any time instant the time will either work with the proba-
bility p on the planned activities of the design tasks in the order given by the scheduler,
or, with a probabilityl — p will try to re-prioritize the design tasks instead of working
on them.

Let=(k, i4,) be the random variable giving the solving time of the allocated design
tasks. In the line of reasoning of Proposition 18, Section 5.2;,for> 2, Z(k, i,,)’s cumu-
lative distribution function equalBz ;. ;,,)(h) = Pr{Z(k,iq,) < h} = p - Pr{Chax (k) <
h} + (1 =p)  Pr{Yesiang(i,, —1) < h}, WhereCpax (k) is the makespan of queueing system

N l(n,t+1
of M parallel servers with a common queue having a seridsof > ( > ) N, (n,1)
n=1i=l(n,t)+1

of planned activities, anfll — p) is the probability that during the solving process the team
of engineers instead of working on the design tasks reconsider their order. They re-prioritize
the order of the design tasks that can be performed in parallel, by successively comparing
the first activities to be done from each of the other allocated tasks. Comparing design tasks
requires capacity, which can be modelled as an activity with exponential distribution with
meanl/n. This defines a complex queueing system, where the planned activities have a
common processing time, exponentially distributed with mgaand their solving process
is disturbed by a\(¢)-Poisson arrival of unplanned activities(¢)/u < M). The arrival
process of unplanned activities stops when all the planned activities are finished.

Following the proof of Proposition 18, Section 5.2 the cumulative distribution func-
tion of = can be computed numerically.
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We set, as said before,=¢t — (t — 1) = 1.

We consider that the transition probabilities(x;, a;, £&:+1) should give the prob-
ability that the solving time of the design tasks up to the performance levelsiffamis
contained in an interval of lengtharoundl (i.e 1 is the length of a review period). However,

they do not equal exactlylfs’s/z2 fg(m-at)(z)dz because when being in the state the same
number of planned activities to be done can be obtained for diffegente X (¢+ 1), which
we also assume to be equiprobable. Therefore in the previous intggral, )(z) which
actually isp - fe,,..)(2) + (1 = P)fYe,10n00a, 1) (2), NaS to be divided by the number of

possible ways of arriving at these equiprobable; .

d
Thus we have thai; (x¢, a;, z41) :e:f

/1+€/ 2 P fCrnac0)(2) + (1= P) Yiriangin, 1) (%) p
z
1 S(N,

w(n,1);1<n<N/int)+1<i<l(n,t+1))

—e/2

1+e/2 1+e/2
fl—aa//2 JCmax(k)(2)dz + (1 = p) fl—se//2 FYeriangtiay -1 (2)dz

¢(Ng (n,i);1<n<NI(n,t)+1<i<lI(nt+1))
o~ p- an]ax(k)(l) + (1 _p)fYErlan_q(iat—l)(l)
T s(Na(n,i);1<n < N, (n,t)+1<i<lI(nt+1))

7p'

depends only on the following parameteré\:[j l(nfl) N, (n,4), p, A(t), iq,, Wheree

is small ands(N, (n,i);1 < n < N,l(n,z)_lﬁzll(?);lg l(n,t + 1)) is the number of
partitions of ]ij l("fl) N, (n,4) into multiples of the number of activities per level. If
for each alrena;dl;j\(/gitlgﬁle design taskl n < N we have thatV (n, 7) is constant for any
1 <4 < Lpax(n, t)) then the correction factor can be easily computed. The term

1+e/2
f1_56//2 JCran () (2)d2

¢(Ny (n,i);1<n< N,i(n,t)+1<i<lI(nt+1))

depends only on thg, A(¢), and on the number of activities between the stateendx; 1,
while the second term depends on the i, A(¢), and on the number of activities between
the states:;; andz, 1. Thus, one can write fqu, \(¢) constant that

Pt(iat)

Dt (9Ct7at7§t+1) = pt(£t+1 - xmiat) =D Pt(ft+1 - xt) + (1 —p) : m

Now we have to prove that Z Dt (x4, a¢, 2441) < 1in order to show that
zi41 €EX (E+1)
we obtain indeed a Markov process.
First we remark that in the queueing system described in Proposition 18, Section
5.2 both the arrival of new activities and the re-prioritization process stop when the last of
thek planned activity is solved. Thus, after a random finite nundgpef solved activities the
system stops, and

Pr{t < 2(K,ia,) <t +h|K =k} = Pr{t < So < t + h|Q = ¢}
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whereS, is the time of the;'th event of the queueing system (thi¢h activity solved). The
gqueueing system under study is a version of an M/G/s queuing system, which has the proba-
bility of two or more events irft, ¢t + k) equal to arv(h). Why? Because the system without
re-prioritization was an M/M/s system (i.e. the departure process of the solved activities is
Poisson, and hence has this property), and the re-prioritization delays the solving process
without adding any solved activity. Consequently we can write that

Pr{t < S, <t+e} =Pr{£(t) =q—1,0neeventint,t+¢c)} + o(c)
= Pr{£(t) = g — 1} Pr{one event int,t + )} + o(e)
where£(t) is the total number of activities that have been solved up totirﬁaz Pr{t <

k
E(K,iq,) <t+e|K =k} = ZPr{.f(t) = Q-1|Q = ¢} Pr{one eventir(t, t+¢)}+o(e).

q
If we taket = 1 and we divide both sides of the last equatiorebwe obtain for smalt that
1+e/2
Zfl—s//Q f2(kyin,) (2)dz = 1.
k

The arrival process of unplanned design tasks is a Poisson process oftjate

K
ThenPr (k arrived design tasksjnt + 1)) = L0 =<0 andZ%e‘““ <1
k=0
Thus, we obtain a stochastic process since by imposing for eactupais ) upper
limits on the number of planned activities to be done the transition probabilities matrix is
sub-stochastic, i.e.

Z Dt ($t,at,$t+1)

Tt <Ttp1<Trtar+2z¢
K.
=> > piwiar,&4)| - Pr(k arrived design tasks ift, ¢ + 1)) < 1

k=0 | x: <& 1<xt+ay

foranyz; € X (t), wherecard{n|z(n) =1} = K;. m

In relation to the way of computing the transition probabilities two issues should
be discussed. The first one is that to compyte:;, a;, z:+1) we do not even need to limit
the number of unplanned design tasks arrival. However, having a finite number of engineers
and desiring to finish with a probability higher than a given safety margin lead us to a finite
solving capacity until the deadline. Thus, there should exist an upper b¥uml the total
number of design tasks included in the NPD project definition. Moreover, limiting during
each review period the number of new design tasks to be added to the project definition will
help us obtain structural results for the case of NPD without precedence constraints (see
Chapter 7).

The second issue is that while computing in a real life situation the transitions
probabilitiesp; (x¢, as, x++1) Of our Markov decision process we might not need the cor-
rection factors(V, (n,4);1 < n < N,l(n,t) +1 < i < l(n,t +1)). Why? Because
if we might have the same number of planned activities to be done for diffefent. 1,

we also might have somk € {0,...,00} that cannot be written as a sum of the type
N l(n,t+1)
> > Ng(n,i), for somez;y; € X (¢t + 1). Moreover, due to this phenomenon
n=1i=[(n,t)+1
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we might skip quite a number of small valueskgfwhile repeating its higher values which
give a much lower probability of being finished in a unit of time. In conclusion, for a higher
number of activities per level, and a small the need of a correction factor for the actual
computation of the transition probabilities is purely theoretical.

Corollary 20 If we assume that there is no unplanned design tasks arrival process, the tran-
sition probabilities of the Markov decision process constructed above are given by

Pt (T4, p, Tq1) = Dt (Tegp1 — Tty la,) =

N I(n,t+1) ) )
p Z Z Na (n72)7/147)‘(t)77772at y Lt S (EtJrl S xt"‘at
n=1i=l(n,t)+1

, otherwise

wherei,, is the number of nonempty components in the actiororresponding to concur-

rent design tasks (i.e. the number of concurrent design tasks given to the team of engineers)
and can be fast numerically approximated by the Euler Inverse Laplace Transform method
(Abate and Whitt, 1995).

Expected total reward criterion: The expected cost of a poliey, starting from
T—-1
in initial statexg = O~ is vf(20) = E, [Z pt (x4, a) +pT(xT)} , Where the expected
t=0

reward during the time intervéd, ¢t 4 1) is:

pt (z¢,a) = Z pt (Te,a, xp41) Dt (T, ap, T441) = 0.
z(t+1)

We are looking for the maximal expected total reward.

Remark 21 The targets on design tasks realization given by the actions of the Markov de-

cision process play also another role. We recall from Chapter 3, Section 3.4 that organiza-

tional psychology research (see for a review (Wickens and Hollands, 1999), (Oorschot, 2001))
shows that there is a curvilinear dependency of the engineers productivity on their workload.
For this reason the team of engineers should receive not only a maximal requirement of work
during one review period, but also a minimal one. Thus, one can restrict even more the action
space description:

l(n,t)+at(n)
Komin 1= a € Ay(zy) [Pr{ > Y Su)=M-13>p>0, (5.3)
neJ(Ry)UF ¢ I=l(n,t)+1

wherep € (0, 1]. However, then one should consider very carefully the choices made for the
parameters and 3(t), the risk being the one of obtaining an empty action set.

An even more restrictive and simpler way of introducing the minimal work restric-
tion will be to consider only the actions € A;(x;) such that

ag 2 Amin (t)

Kmin =4 a; € At (l‘t) Pr { Z l(n,t)Jr%fﬂn(n,t)

Su(l) 2M¢1} >p>0 [ O

neJ(Ry)UF ¢ I=l(n,t)+1
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whereamin (+,t) : {1,...N} — N* denotes the function giving the minimal requirement
of work to be done during the review period This function is time dependent such that
Amin(n,t) > 0forn =1,..., N andamin(n,t) = 0if n ¢ J(R;) (i.e. we cannot decide to
work on the design tasks not planned or not arrived yet).

Remark 22 The above constructed Markov decision process has a partially ordered state
space, and action space, which can be viewed as bounded subset without holes of the lattice
{NU {~1}}" and respectivelN" (see Definition 33, from Chapter 6). The partial order
considered on them is the one induced by the ordé¥8n z,y € NV andz < y iff z,, < y,,

VYn = 1,..., N. Since there is a total possible number of activities to be performed during one
review period (depending on the valuescddt), 5(t), B(t)), there will during each review
period a total maximal number of levels to be done for each design task. Thus, the action
space will be upper bounded.

Proposition 23 Close to optimal and optimal policies for our Markov decision process may
be obtained. by the backward induction algorithm.

Proof. The horizon, state and action space are finite, and the reward function is lin-
early additive. The backward induction algorithm can be used to find the optimal policies and
value functions (Puterman, 1994). Also a non-stationary version of the sequential backward
approximation algorithm for finite horizon problems (Bertsekas and Tsitsiklis, 1996) can be
used to find policies close to optimak

However, no reasonable computational results can be derived directly from this
Markov decision model, due to the curse of dimensionality. Also, we could not derive an-
alytical results on the structure of the optimal policies. Thus, we decided to investigate an-
alytically the structural properties of the two basic particular cases of this problem. These
cases will be used in Chapter 9 to suggest possible ways of deriving heuristic solutions for
the general problem.

5.4 Particular cases of the nonstationary Markovian con-
trol of NPD projects

The first case considered is the one of an NPD project consisting of a set of con-
current design tasks (i.e. without precedence constraints), while the second one is the case
of an NPD project consisting of a sequence of design tasks. In order to simplify the problem
description, we have chosen not to consider the budget constraint in the particular cases. This
restriction was a refinement of the workload restriction, and we conjectured that its exclusion
will not essentially affect the structure of the optimal policies.

For enabling the mathematical tractability of the two particular cases we have made
two more general assumptions. The first one was that no arrival of unplanned design tasks
takes place in the NPD project consisting of a sequence of design tasks. In the other NPD
case, we only reduced our assumptions regarding the arrival process as well as the type of
newly arrived design tasks to the conditions of Proposition 19 (i.e during each review period
[t,t + 1) we take into account at most a numbe€r of unplanned design tasks which arrive

T-1 e
with a probability greater than a given threshéid) > 0and > K; = N — N).
t=0
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The second assumption was that there is an identical number of activities for all
performance levels of the same design task (Ng.(n,1) := n.(n), foranyn = 1,..., N,
andl! = 1,..., Lyax(n,t)). Thus, assuming the previous levels already solved, the solving
times of all the performance levels of the same design task will be i.i.d. random variables
distributed Erlang+,,(n), p).

5.4.1 NPD without precedence constraints

In this subsection we restrict the nonstationary Markov decision model from Sec-
tion 5.3 to a NPD project without precedence constraints, consistingadncurrent design
tasks. All the design tasks are allocated to resources (engineers) from the first review period.
New design tasks may arrive during each review period, and they will become available to
the team of engineers at the beginning of the next review period. They are concurrent with
the initial design tasks allocated to the team of engineers. Their arrival is given by a Poisson
review period-dependent arrival process.

Due to the curvilinear dependency between the productivity and the workload of
the team of engineers, the targets on design tasks realization have to satisfy a minimal re-
quirement of work during one review period (see Remark 21, equation (5.4)). As mentioned
in the beginning of this sectiomo budget constraint will be consideredl this Markov de-
cision process, andll performance levels of one design task will have the same number of
activities An importantsupplementargssumption concerning only this NPD case is related
to the maximal performance levels of the design tasks

Supplementary Assumption: For each design task its maximal performance
level L,,.x(n,t) is large enough so that even if the team of engineers will work with all
capacities on itLn,.x(n, t) cannot be achieved earlier than the deadline with the probability
. %ﬂnTﬂ(t). However this holds only for planned or already arrived design tasks. Since

.....

N is an upper bound, we have to set to zero all the parameters depending on a virtual
ne{N+1,...,N}.

This assumption requires no artificial preset bounding of the action spaces at each
decision point. Moreover since there is a total possible number of activities to be performed
during one review period (depending on the values(@j), there will a total possible number
of levels to be done for each design task. Thus, the action space will have as upper bound a
nondecreasing function.

This enlargement of the action space will prove to be useful in Chapter 7, since
otherwise we might not be able to prove in all the cases the existence of structured optimal
policies.

All the other assumptions and notation are given in Section 5.3.

The reduced state space and the action spac&he state sekX (¢) at moment
and the action set, (z;) in the stater, € X (¢) are defined by simplifying the ones from the
general Markov decision process from Section 5.3, by keeping only the workload constraint
among the main three ones:

o the target performance level of each planned or newly arrived desigm tasfreater
thanmin(lmin(n, t), 1(n, t)), and smaller thath,,;,,x (n, t)

e the remaining workload of the team of engineers should not exceed their maximal
solving capacity with the probability greater than safety mafir).
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Similar with the general Markov decision process from Section 5.3 for the state space the
workload constraint is computed using the minimal performance leigls(-, ), while for
the action space it is used the target performance leélst) + a(-,¢))*.

Fort = 0: X(O) = {Jjo} = (ORW7 —1NN,W).

Fort € {1,...,T} the stater; € X (¢) describes how many performance levels
l(n,t) were solved for each design task

e = (I(1,t),....1(n, 1), ... 1(N,t)) € {NU{-1}}* and
-1 <1(n,t) < Lypax(n,t), n € {1,...,N}

X(t) =< a l(n,t) > 0,Yn € {1,1..j,(ZV)} S.t. Liax(n,t) > 0 (5.5)
Pr{ 2 ) SnSM'(Tt)}zﬁ(t)
ne{l,....N+N(t—1)}Uf , i=l(n,t)+1

x() = {2 =l ( T),..,(n,T),...,I(N,T)) € {NU{-1}}*¥ and
"V i ) <1 (n T) < Liax(n, t) Vn e {1,..,N}st.i(n,T) >0

Fort € {0,..T — 1}, x&y = (I(1,%),...,1(n,t),....,l(N,t)) € X(¢) the actiona,
in the stater; decides how many other levels abavewe want to perform. The perfor-
mance level up to which the design taskmay be solved after the actian was taken is

(1(n,t) +ar(n)) "

= (ar(1), ..., as(n), ..., ar(N)) € NV
0<amm(,)<at()Vn€{1 N+N(t—1)
At (-Tt) = Q¢ l(n t) + G/t( ) S L (n tg (Y:;/ S {1 N} Stl(n,t) Z 0 (56)
Pr{ > ZSn§M~(Tt)}Zﬂ(t)
n€{l,...N+N(t—-1)}uF, =1

We recall from Section 5.3 that the state and action space descriptions are sensitive
to the arrival of unplanned design tasks, up to the upper baund

ALso the minimal work requirement fﬂnction is time dependept, (n,t) > 0 for
n=1,...,N andayin(n,t) = 0if n € {1,..., N + N(¢t — 1)} since we cannot decide to
work on the design tasks not planned or not arrived yet.

In the probability constraint from (5.6), the total workload is computed by adding
up the solving times of the total number of concurrent design tasks during the whole project.

F . e . (I(n,t)+ae(n)) ™ ar(n)
The restriction has a simplified form since >~ Sn(i) = 3 S,
i=l(n,t)+1 ;

In the state and action space descriptions (5.5, (5.6) of this particular case we gave
up to the completion time constraint, since the completion e, (-,¢) + a.(-), R:) is
ai(n
equal to max Z(:) Sn, and thus it becomes similar to the workload inequal-
ne{l,...,N+N(t—1)}UF; i=1
ity. To be coherent with the supplementary assumption made above for this particular NPD
case, and avoid an in depth discussion on the reasonable assumptions on the relationships in
betweenu(t), 4(t), and M we kept only the most natural constraint in this particular case:
the workload inequality.
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5.4.2 Sequential NPD

In this subsection we restrict the nonstationary Markov decision model from Sec-
tion 5.3 to a NPD project consisting of a sequence\of= N < T design tasks. As in
Section 5.3 we consider that the team of engineers will work together on each of the design
tasks. We focus on a NPD project with precedence constraints, consisti¥igsefuential
design tasks. We assume that the design tasks in the given sequence can be performed by
the team of engineers one after the the other and they can start only at the beginning of a
review period. The team may start working on first design task from the first review period.
No arrival of unplanned design tasks takes place in the case of the sequential NPD project
(i.e. N = N). As mentioned in the beginning of the current section, no budget constraint
will be considered in the Markov decision proce&s. importantsupplementarassumption
concerning only this NPD case is related to the form of the final reward

Supplementary Assumptions:

1) We do not consider anymore a time dependent safety margin for the probability of
completing the project before the deadling) = «, ¢t € {1,...T — 1}. However, our
results can be generalized for a decreasing sequeneg ot < {1,...T — 1}.

2) The final reward is of the more restrictive form

0, IfalgnogN, l(nU,T)<lmin(nU)
pr(zr) = S 1(n,T)-V(n) otherwise
n=1,....,N
giving a linear (weighted additive) cumulated market payoff function in the arguments
V(n) which represent the scalable value functions associated with the design tasks.
Such a function is similar with the one defined by (Askin and Dawson, 2000).

If we consider a final reward of the form given in (Askin and Dawson, 2000) then

S I(n,T)
LEE TP TR NP DIRLL IS o)
nef{l,.., N} 0=1 n=1,.,N
A
_ I(n,T)
= z(Hnl%“))( Z Lo (1) ;wﬁ @(n,é)]7

nef{l,...,N} n=1,..,N

wherel(n, T) is the number of performance levels achieved at the deadlifoe the design
taskn.
Then a simple choice the value per a performance level for the desigm task
A
V(n) = 5y - 2 ws - ©(n,8),Y n=1,..,n, wherews is the normalized weight of
max 6—1

the customer need (v 0 =1,..,A), andO (n,d) is the normalized maximal contribution
of the design task in fulfilling the customer need (© (n,d) € [0,1);Vn = 1,...,N,V

A
§=1,..,A; 3 0 (n,d) =1).

5=1
All the other assumptions and notation are given in Section 5.3.
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The reduced state space and the action spac&he state seX (¢) at momentt
and the action setl; (z) in the stater, € X (t) are defined by simplifying the ones from
the general Markov decision process from Section 5.3, by keeping only the completion time
constraint among the main three ones:

e the target performance level of each planned designitdasismaller tharn’,,.x (n, t)
and greater thamin (i, (1, t), 1(n, t)),

e the completion time of the NPD project must be smaller than the remaining time until
the deadline with a probability greater than safety maedit).

Similar with the general Markov decision process from Section 5.3 for the state space the
completion time constraint is computed using the minimal performance levglg;, ),
while for the action space it is used the target performance leyels) + a(-, t).

Fort =0:X(0) = {zo} = {0~}

Fort € {1,..T — 1} the statex(t) € X(¢) indicatesn(¢) as the current not yet
finished design task from the initial sequence, and describes how many performance levels
were solved for it, as well as for the finished design tasks.

ze = (I(1,1),...,1(n(t),1),0,...,0) € NV n(t) € {1,...,N}
0 <1(iyt) < Lmax(?),7 € {1,...,n(t)}

X(t) = q z N lwin(n) Imin (1) (5.7
Pr > Y St Y Sy <MT-t); >«
n=n(t)+1 i=1 i=l(n,t)+1
Fort=T
- zr = (L, T),...,l(N,T)) € NV,
X(T) = {IT lnin(n) < 1(1,T) < Lunase(n, T), € {1, ..., N)}

Fort € {0,...,T — 1} andz; = (I(1,%),...,1(n(t),1),0,...,0) € NV n(t) €
{1,..., N} the actiona; decides how many other levels abawewe want to perform. The
level up to which the design tagkmay be performed after the actiopwas taken isi(n, t)+

ar(n).

a; = (0,...,0,ar(n (t)), .., a:(N)) € NV
0 < luia(n) — 1(n,1) < ar(n).¥n € {1,..., N}
Ai(zy) = < ay l(n,t) + at( ) < Lmax(n,1) (5.8)
N ai(n) at(n(t))
Pr{ oY Su+ XY Sa )§M(T—t)}2a
n=n(t)+1 =1 =1

In the probability constraint from (5.8) the analytical evaluation of the completion
time distribution of a sequence of design tasks is given by the convolution product of the
distributions of the design tasks solving times. This restriction has a simplified form because
I(n(t),t)+ar(n(t)) ai(n(t))

Spw)(i) = > Spe. Moreover, in a sequential NPD the team of engi-
i=l(n(t),t)+1 i=1
neers solves the design tasks one by one, and never comes back to a design task for which it
was achieved the performance level required by the controller.

In the the state and action space descriptions, (5.7) and (5.8), of this particular case
we gave up to the workload constraint since due to the analytical form of the completion time
distribution of a sequence of design tasks the two inequalities become similar again. In order
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to avoid more assumptions on the relationships in betwege®, and M we kept only the

most natural constraint in this particular case: the completion time distribution of a sequence
of design tasks inequality. The former workload inequality may be used to obtain for each
design task its maximal achievable performance level.



Chapter 6

Supplementary
Chapter—Monotonic and Weakly
Monotonic Nondecreasing
Optimal Policies

Monotonic optimal policies constitute one of the most well-known and useful characteriza-
tions (Chapter 8 in (Heyman and Sobel, 1984), or Section 4.7.3 in (Puterman, 1994)) for
reducing the exponential growth with respect to the size of a sequential decision process, and
enabling the derivation of numerical solutions. Our approach for obtaining weak monotonic-
ity is based on the monotonicity research of (White, 1980; Topkis, 1998). We formulate the
problem in a dynamic programming setting, and we show that the optimal policy follows

a weakly monotonic optimal control by establishing the supermodularity of the objective
function. This is a new result, extending the monotonicity theory and partial ordering pro-
gramming techniques to bounded subsets without holes of integer vector lattices.

The main structural property making all these mathematical tools applicable is the
presence of partial ordering in the state and respectively action spaces. Partial orderings have
been recognized as being important in many fields, and such structures have received an in-
creasing interest and spread out from mathematics to biology, economics and also physics. In
economics, the partial orderings, doubled by the lattice programming techniques of (Topkis,
1998), encompass many applications in many production planning models ((Hopenhayn and
Prescott, 1992; Garcia and Smith, 2000) for discrete-time production planning with stochas-
tic demand, (Athey, 2002), and (Athey and Schmutzler, 1995) for the analysis of several
attributes of a firm’s short-run innovative activity).

In physics, the presence of partial orderings stands in the same class as spatial sym-
metries and Hamiltonian structures for the study of dynamic systems. These properties make
them have specific types of behavior (for example, spatial symmetries give rise to conserva-
tion laws and multiple bifurcations). As pointed out in (Landsberg and Friedman, 1996), the
presence of partial orderings restrains significantly the behavior, yet it allows for interesting
trajectories and even chaotic ones. However, due to special consequences, the chaotic be-
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havior is unstable and not present for most initial conditions when physically observing the
system in the long run. With results such as the ones presented here, the presence of partial
orderings can also contribute to the control of such systems, especially if the optimal solution
changes non-chaotically upon changes of values for exogenous parameters.

Our approach for obtaining monotonic and weakly monotonic optimal policies is
based on the monotonicity research of (White, 1980; Topkis, 1998). This means that we
formulate our control problem in a dynamic programming setting, and we try to establish
the supermodularity of the objective function. General approaches to monotonicity results
can be also found in (Hinderer, 1984), (Hinderer and Stieglitz, 1994), and (Serfozo, 1976),
while for results on monotone properties of the optimal control policies in the context of
gqueueing systems we refer to (Naor, 1969), (Weber and Stidham, 1987), (Altman et al., 1992),
(Glasserman and Yao, 1994), (Altman and Stidham Jr., 1995), and (Altman and Koole, 1998).

In microeconomics, and in theories of production and consumer choice, supermod-
ularity of an utility function is equivalent to products beisgbstitutesThe substitute notion
appears very intuitive in the case of a concurrent NPD situation, where after we finish all the
design tasks at their minimal performance levels, having done more levels of performance for
one design task compensates for doing less performance levels of a different one.

This chapter is organized as follows. In Section 6.1, first we give a short review
of the main definitions, and of the basic notions needed to connect the lattice programming
techniques with the Markov decision processes (an exhaustive discussion can be found in
(Topkis, 1998)). In Section 7.2 we first state the sufficient conditions for the existence op-
timal monotonic policies. Following their line of reasoning, in Section 6.3 we give new
sufficient conditions for weakly-monotonic non-decreasing policies, and in Section 6.4 we
present a new weakly monotonic non-decreasing backward induction algorithm and illustrate
its behavior through an example. We also compare it to a monotonic backward induction
algorithm, which would require a much larger action space, thus a very impractically high
time to be run. In section 6.5 we explain previous and new conditions for the robustness of
the optimal monotonic nondecreasing and weakly monotonic nondecreasing solutions.

6.1 Preliminaries

The results developed in the following Sections 6.3, 6.4, 6.5 hold for a large class of
discrete-time nonstationary Markov decision processes with finite horizon, and can be easily
extended in the case of infinite horizon, but due to the computational complexity, the interest
of such a generalization is reduced. Dethe set of natural numbers including zero. We
consider as:

The decision time points: They are equidistant and the decision padirdorre-
sponds to the beginning of the review periogd 1. Sayt € {0,1,...,T — 1}.

The finite state space and the finite action spaceX (¢t) C N? and the action set
A¢ (z¢) € N?in any stater; € X (¢) fort € {0,...,7 — 1}.

The immediate rewards: For any(z;, a;) € X (t) x A; (z¢), the immediate reward
is pt (zt, a¢) and the final reward isr (x7).

The transition probabilities: The nonstationary transition probabilities depend
only on the decision time point, the observed state and the chosen action and not on the
history of the process; (x4, at, vev1), forany (e, a, wry1) € X (¢) x Ay (x) x X(t+1).
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We give first some definitions concerning the partial ordered Markov decision pro-
cesses.

Definition 24 A binary relation on the setS and T is a subse? of S x T. WhenT = S,
we refer to just the binary relation on the s&t
We say that the binary relation has the properties of being
antisymmetric - if z,y) € Randz # y imply (y,z) ¢ R, foranyz,y € S
reflexive -if(z, z) € R, foranyz € S
transitive - if (z, y) and(y, z) € Rimply (z, z) € R, foranyz,y,z € S

Definition 25 A setX endowed with a reflexive, antisymmetric and transitive binary relation
"<x"on X is called a partially ordered set (poset).

Definition 26 (see (Puterman, 1994)) A nonstationary Markovian (deterministic) policy is a
sequence of decision rules, i.e.= (ao,...,ar—1), wherea;(z;) € A; (x;) for anyx; €
X(¢).

A nonstationary Markovian (deterministic) policy is said to be a monotonic non-
decreasing policy if for any; <y« Z; we haveu;(x:) <y¢ a:(Z:).

A nonstationary Markovian (deterministic) policy is said to be a weakly monotonic
non-decreasing policy if for any; <y« Z; eithera;(z;) <y« a¢(Z¢), Or a;(Z¢) andag(zy)
are not comparable.

We recall now some well-known definitions concerning the partial ordered struc-
tures.

Definition 27 Let (X, <x) be a finite poset. An antichain (resp. chain)ihis a set of
pairwise incomparable (resp. comparable) elements. The size of the longest antichain (resp.
chain) is called the partial order width (resp. length).

Definition 28 Let (X, <x) be a finite poset. A chai@ is called complete irX if for any
z,y € C suchthatr <x y, Pz € X suchthatr <x z <x v.

Lemma 29 (Dilworth’'s Lemma and its dual (Dilworth, 1950; Mirsky, 1971)) The patrtial
order width of a finite posetX, <x) is equal to the minimum number of chains needed to
coverX. The partial order length of a finite poseX, <x) is equal to the minimum number
of antichains needed to covéf. If N be the cardinality ofX, W the partial order width,
and L the patrtial order length thedv < L.

Definition 30 Let K a subset of a posétX,<x) andz € X. We say that: is an upper
bound (resp. lower bound) df, denoted by >x K (resp.x <x K), ifforall y € K, we
haver >x y (resp.x <x y).

Definition 31 A lattice is a partially ordered setX, <x) where for any pair of elements

there is a least upper bound and greatest lower bound (belonging)toWherea is the

supremum (or least upper bound)4fC X if a is an upper bound oft and for allb € X, if

b is an upper bound oft thena < b. Similara is the infimum (or greatest lower bound) of

A C X if ais alower bound ofd and for allb € X, if b is a lower bound ofd thenb < a.
LetY C X asubset in the lattice. Thék is a complete sublattice of if for any

a,b € Y, both their maximum (denoted by b), and their minimum (denoted lay\ b) taken

in X are elements of .
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e max lattice

antichains
<x

i et

® . .
min lattice

Figure 6.1. Representation of a vector-lattiex Y as a set of antichains — layers, each of
them in turn also represented as as a union of antichains accordihg to

Definition 32 In the vector-latticg X; x ... x Xn,<x,,..., <x,) We have a natural ex-
tension of the partial orderings defined on eakh, for any: € {1,..., N}, and we say
thatz, y € X; x ... x Xy are in the relation xr < y” if componentwiser; <x, v;
Vie{l,...,N}

Now, we want to introduce the notion of a subset without holes of a poset. A
general definition using distances and discs can be found in (Neverman and 1., 1985), but
using Dilworth’s decomposition Lemma (i.e Lemma (29)) one can introduce a more intuitive
definition for the case of vector lattices.

As a consequence of Dilworth’s Dual Lemma each poset can be decomposed into
a fixed minimal number of antichains. Thus, one can decompose a vector-JatHcE (see
Definition 32) first according to the partial ordery «y, and afterwards all the elements of
any obtained antichain with respectdq, «y can be decomposed further into antichains with
respect to the ordef x on X. An intuitive representation of such a decomposition is given
by Figure 6.1. We notice that a complete chainXinx Y contains an element from each
horizontal layer of the graphic decomposition of the latticex Y.

Definition 33 Let (X x Y, <xxy) be a vector-lattice and C X x Y. We say that/ is a
subset without holes if for any, y), (Z,4) € Z, Z includes all the minimal length complete
chains containing elemengs, b) € X x Y such that(z,y) <x«y (a,b) <xxy (Z,7) (see
Figure 6.2).

Definition 34 Let (X x Y, <xxy) be a vector-lattice andZ C X x Y a subset without
holes. Then B4Y) is the bottom of if anyy € Bot(Z) is such thaffz € Z withz < y (i.e.

a minimal element of) and any two elements of B&t) are not comparable. Likewise, by
reversing the order we define that Tdf) is the top ofZ C X x Y.

Definition 35 A subsetX of a poset X, <) is said to be increasing if € K,z € X and
x<x Zimplyz € K.
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e max lattice
~ /’.\(g;y)
LLAL7
Sk
¥
A

min lattice

Figure 6.2. Representation of a getithout holes of the vector-latticE x Y

Definition 36 Let X, Y be posets. A function: X xY — R is supermodular/superadditive
on X x Y. ifit satisfies:g(zT,yT) + g(z=,y™) > gla™,y™) +g(x~,y ") foranyz™ >x
x~in X, andy™ >y y~ inY. (Section 4.7.2. (Puterman, 1994))

Definition 37 Let X,Y be posets. Let C X x Y, we say thatS, = {z|(z,y) € S} is the
sectionofS aty € Y.

Definition 38 LetX,Y be posetsS C X x Y, andS, the section of aty € Y. A function
f S — R has increasing differences i, y) on S if f(z,y")— f(z,y™) is increasing in
zonS,- NS, foralyt >y y~ inY. (Section 2.6.1. (Topkis, 1998))

We also have the following definition which consistent with Definition 36.Xoa
lattice.

Definition 39 Let X be a lattice. A functiorf : X — R is supermodular orX if it satisfies
f@)+f(@) < flavE)+ f(xAz)forall 2,z € X, whereV denotes the maximum operator,
and A denotes the minimum lattice operator (Section 2.6.1. (Topkis, 1998)).

As we mentioned in the introduction there is an economic interpretation of super-
modularity. Suppose thgtspecifies production costs in an economic system wiinds of
inputs and suppose that all inputs are used as much as possiple.dfipermodular o,
then

f@+ve) = f(z) < f(x+ Aej +vei) — flz+ Aej)

forz € R}, v > 0, A > 0, andi # j. This inequality states that the extra cost of using

~ extra units of input is raised by having\ extra units of inputj (notice that here we have

no economies of scales, but the opposite effect). In other words, having more ofjinput
may reduce the effectiveness of using more of inpun this sense, inputsand; substitute

each other’s effectiveness. In economics, nondecreasing differences, hence supermodularity,
is equivalent to commodities beirgybstitutes Similarly, submodularity, is equivalent to
commodities beingomplementary
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Notions of "substitute” and "complementary” products arise in microeconomics in
theories of production and consumer choice. Two products are regarded as complements
(substitutes) if having more of one does not induce you to choose less (more) of the other.
Shoes and shoelaces are complementary, whereas spaghetti and macaroni are substitutes. Ob-
serve that the word definition of "complementary” ("substitute”) is essentially the stipulation
that a utility function have decreasing (increasing) differences, hence that it is submodular
(supermodular).

6.2 Sufficient conditions for monotonic nondecreasing poli-
cies

The goal of this subsection is to review the sufficient conditions for the existence
of optimal monotonic policies from (Topkis, 1998; White, 1980), in the case of a nonsta-
tionary discrete-time Markov decision model with bounded partially ordered state space, and
action space in the vector-latti®, endowed with the componentwise partial ordering (see
Definition 32).

Definition 40 Let.S € R? andJ C R™, and let [, dF};(w) be the probability measure of
S with respect to the distribution functiafi;(w) onR?. F}(w) is said to be stochastically
increasing inj on J if fs dF;(w) is increasing inj on J for each increasing subsgtin R?.

Lemma 41 (general form in Theorem 3.9.1.(Topkis, 1998), (Athey and Schmutzler, 1995))
Let J a subset ofR™and {F;(w) : j € J} a collection of distribution functions oR?.
F;(w) is stochastically increasing if on J if and only if [ h(w)dF;(w) is increasing inj

on J for each increasing real-valued functidrfw) onR?.

Corollary 42 (generalization of Lemma4.7.2 from (Puterman, 1994)}ke} ey, {Z; }jey
,{vi}iey be real-valued non-negative numbers indexed &ftee N?. Suppose)_ z; >
jeK
>~ Z; forany increasing subsét C Y and the sumsy z;, > Z; are less than one. If for
jEK jey = jey
any i,j € (Y, <ns) such that >n. j we havev; > v, then - vz > > v;Z;.
JjEY JjEY

Proof. If we take in the previous lemma the distribution functibj(w) on N? C
R? is discrete, the expected value of the real-valued fundii@n) on N?, [ h(w)dF,(w) ,
becomesy” h(w)P{X; = w}. By takingJ = {1,2} F;(w) is stochastically increasing in
j onJ is equivalent according to the Definition 40 with - h(w)P{X, = w} is larger
than}_ . h(w)P{X; = w} for any increasing subséf C N¢.

By taking in the previous Lemma the functidin(j) = v; as an increasing one and
P{X; = j} = z; we can conclude the prooi

Theorem 43 (Theorem 2.8.1 (Topkis, 1998)) L¥tis a lattice, X is a partially ordered set
andY, C Y foranyz € X If we have

1. Y, isincreasingint € X (Y, C Yz forz <x & € X)

2. f(-,z) : Y — Ris supermodular iny € Y for eachxz € X, and has increasing
differencesiny,z) € Y x X
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thenarg max f (y, ) is increasing inz on {x € X;argmaxf(y,x)Is nonempt*
YEY, yeY,

Proposition 44 (Lemma 3.9.4. from (Topkis, 1998)) Consider a discrete-time nonstationary
Markov decision process with finite horiz@ih and finite state and action spaces as defined
in Section 6.1, but oR? instead ofNY. If we have for any € {0,1,..7 — 1}

1. Ay (x) C A (3) foranyt € {0,1,..T — 1} and all statese; <gs & € X (t) C R?
2. pt (-yae), pr(-) : X(¢t) — Rare nondecreasing in;, for any(z, a;) € X (t)x A; (x4)

3. the distribution function for the state in the periodt + 1 given the state: and the
actiona, F, , +(w), is stochastically increasing in, for any(x;, a;) € X (t) x A (x)

Thenf;(-) : X(t) — Ris nondecreasing for anye {0,1,...7} where

fe(z) = max {pt(xhat)+7/ft+1(w)dFm,aﬂt(w)}.

as €A ()

Definition 45 Let.S € R?and7T C R™, and Ietfs dFi(w) be the probability measure of
S with respect to the distribution functiofi,(w) on R?. F;(w) is said to be stochastically
supermodular int onT' if [ dF,(w) is supermodular irt onT" for each increasing subset
Sin RY.

Theorem 46 (Theorem 3.9.2. from (Topkis, 1998)) Consider a discrete-time nonstationary
Markov decision process with finite horiz@h and finite state and action spaces as defined
in Section 6.1, but olR? instead ofN?. If we have for any € {0,1,..T — 1}

oSy = {(z,a0)|(z,a0) € X (t) x Ay (z4)} is a sublattice of the vector lattide?.
. Ag (zy) C Ay (74) for all statesz; <gs 7 € X (t) C RY
. pe(,ae), pr(-) : X(t) — R are nondecreasing im;, forany(x;, a;) € X (t)x A (x)

. pt (yae), pr(s)  X(¢) — R are supermodular iz, a;) € Si

ga »h W N P

. the distribution function for the state in the periodt + 1 given the state: and the
actiona, F, , . (w), is stochastically increasing i, for any(z,, a;) € X (¢) x A, (z4),
and is stochastically supermodular (&, a;) € S;

Then foranyt € {0,1,..T — 1}
1. the functionp; (z¢, a;) + v [ fig1(w)dFy 4 (w) is supermodular iz, a;) € S;

2. fi(xy) = enixaf(x ){pt($t,at) + 7 [ fir1(w)dF, o4 (w)} is supermodularin, € X (t)

3. the set of optimal decisionsg Iria>(< ){pt(xt,at) + 9 [ fe41(w)dFy 44 (w)} is non-
at€AL(xt
decreasing in the state, € X (¢), and

4. there is a greatest (least) optimal decision for each statand this greatest (least)
optimal decision is increasing im; € X (t) (i.e. there exists at least one monotonic
nondecreasing optimal policy).
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In Chapter 7 Section 7.2 we will use a discrete version (i.eNomstead ofR?) of
Theorem 46 to prove the existence of monotonic nhondecreasing optimal policies for a slightly
modified version of the NPD problem without precedence constraints.

A more general form of Theorem 46 can be found in (White, 1980). The theorem
in (White, 1980) states when there exist optimal decision rules which are structured in the
state of the system for discrete Markov decision processesSyith= {(z, a.)|(x¢,a;) €
X (t) x Ai(z,)} sublattice of an arbitrary lattice, and with summarized utility functions. The
usual additive utility function used in Chapter 5 and in Chapter 7 is a special case of the
summarized utility functions. Also, some of general conditions from (White, 1980) are used
to prove the existence of an optimal policy for an infinite horizon problem

In the case of bounded subsets without holes of the infinite vector-latiose
can use as in (Puterman, 1994) the terminology superadditive instead of supermodular, non-
decreasing instead of isotone, while considering maximization problems. The existence of
weakly monotonic optimal policies can be obtained under less restrictive requirements than
the one from (White, 1980), (Topkis, 1998): for ang {0,1,..7 — 1}, X (t) x A (z¢) IS
a sublattice of the vector lattidg??.

6.3 Sufficient conditions for weakly-monotonic nondecreas-
ing policies

The goal of this subsection is to give new sufficient conditions for the existence
of weakly optimal monotonic policies, in the case of a nonstationary discrete-time Markov
decision model with bounded partially ordered state space, and action space in the vector-
lattice N? endowed with the componentwise partial ordering (see Definition 32).

Lemma 47 (extension of Theorem 43 Theorem 2.8.1 (Topkis, 1998),and Lemma 4.7.1 from
(Puterman, 1994)) LeX be a poset and let” := U,cx Y, be a poset indexed aftéf, and

g: X xY — R areal valued superadditive function @f, §) € X x Y, for eachz € X,

with g(z,y) = 0, forany(z,y) ¢ X x Y,. If we have

1. for eachz € X there existsnax,cy g(z,y)

2.Y, CcY;foranyx <x ¥ € X, andY, = Y; foranyz,Z € X not comparable (i.e.
the family{Y,.|z € X} is expanding)

3. foranyz <x 7 € X,andy < § € Y, UY; we have thay € Y, andy € Y; (i.e. the
family is ascending)

then for anyz* >x =~ in X, and anyy~ € Top argmaxyecy,  g(z~,y) either there
existsyt € Topargmax,cy | g(z*,y) suchthay™ >y y~ inY, or there is no element in
Top arg max,cy , g(+*,y) comparable with~.

Proof. Letz™ >x =~ in X, and choosg <y y,- € Topargmaxyecy _ g(z~,y)
andy € Y. Then there existsane X suchthayy € Y, C Y. ‘
By definition ofarg max,cy_ _ g(z~,y) we haveg(z~,y,-) — g(z~,y) > 0.
Because; <y y,- we have thay € Y,- by using hypothesis 3 with, U Y, - if
x >x x~, or by using hypothesis 2 otherwise. Sifiée C Y,+ (by hypothesis 2) we have
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that bothy, y,- € Y,+. Now, sincey is a superadditive function ofx, ) € X x Y+ and
all the pairs are in the definition domain, we also haye:*,y,-) + g(z~,y) > g(zT,y)
+9(27, Yp- ).

Rewriting the second inequality aée™, v, ) > g(z ™, 9)+[g(z™, yu- ) —g(z ™, y)]
and using afterwards the first inequality we obtain thatz™,y,-) > g(z™,y) for all
Yy <y Y- € Topargmax,ecy  g(z~,y), which concludes the proof by maximizing af-
tery,— andy simultaneously.m

Proposition 48 Consider a discrete-time nonstationary Markov decision process with finite
horizonT, and finite state and action spaces as defined in Section 6.1 and endowed with the
componentwise partial order &f¢. If we have for any € {0,1,..T — 1}

1. X (t), At (z), for anyz, € X (t) are bounded subsets without holes of the infinite
vector-latticeN?

2. Ay (x) C Ay (Zy) foranyxy <pe« & € X(t), and A; (x¢) = A; (3¢) for anyzy, 2, €
X (t) not comparable (i.e. the familyA; (z) |x: € X (t)} is expanding)

3. for anyx; <N« i’t e X (t), anda SNq a e (At (It) X At (Ii't)) U (At (it) X At (It))
we have that € A; (x;) anda € A, (Z;) (i.e. the family is ascending)

4. p: (-, ) is superadditive i, a,,) € X (t) x Ay (a4)

5. pt (-yay), pr(-) : X(¢¥) — R are nondecreasing
and if for any increasing subséf C X (¢t + 1)

6. F(-,-):= > pi(-,.-,x411) is superadditive if(z;, a;) € X (t) x Az (z)

Te1€EK
7. F(,at) = > pi(-,a¢,2441) isnondecreasing im; € X (t), foranya; € A; (x4)
Te1 €K
8. if (3)3715 7é .’ft € X(t) such thatAt (l’t) 7é At (:Et) then Z Dt (m,at,le) is

T 1€EK
nondecreasing i, € A; (x), foranyz € X ()

Then there exists optimal decision policies which are weakly monotonic nondecreasing in
the state, for any € {0,1,..7 — 1} (i.e. for anyz; <y« Z: € X(¢), and anya; €

Top arg max,e 4, (z,) Wt (¢, a) either there existd; € Top arg maxge 4, (z,) e (T+, @) such
thata; >na ay, Or there is no element iffop arg maxze 4, (z,) wt(Z¢, @) comparable with

at).

Proof. Let us define

uy (T¢) = MaXy, e A, (a,) § Pt(Tt, at) + > v, ap, xq1) - up g (Te41) o, and
wt+1EX(t+1)
wp(zr) = pr(er). _
If we provew; (.’I,'t7 at) = Pt (xt, at) + Z Dt ($t, ag, .’Et+1) . uz‘+1(l't+1) IS
:Et+1€X(t+1)

superadditive iz, a;) € X(t) x A(x;) we can apply Lemma 47 since(nﬁx )wt(xt, a)
at€A(T¢

is attained for finite action space and state space. Thus, fofamyw. z; € X(t), and
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any a;, € Topargmax,, ea(s,) Wt(Tt,az,), Ai(ze) C Ai(T:) and there exista; €
Top arg max,, ca,(z,) Wi(%:, az,) suchthau; >y aj, oraj, is not comparable with any
element inTop arg max,, e4,(z,) 9(Z¢, az,). This property ensures the existence of weakly
monotonic nondecreasing optimal policies.

Letz, € X (t) such thati; >ne 2.

We consider in Proposition 44 a distribution functiondh c R? which is discrete.
Then the expected value of the real-valued functfpm (w) onR?, [ fiyq(w)dEy q4(w),
becomes” fir1(w)P{ Xy 0t = w}.

Thus, from Proposition 4447 ,(-) : X(t + 1) — R is nondecreasing (according
to the partial order olN?) for anyt¢ € {0,1,...T — 1} because we havg: (-, a;), pr(-),
F(-ya:) :== > pe(tyae,2e41) + X(t) — R are nondecreasing ir, for any (z, a:) €

T 1 €EK
X (t) x Ay (x;), and for any increasing subsktC X (¢ + 1).

Letas <me ar € (As (z1) X A (T1)) U (A¢ (Z) x Ay (x4)) arbitrary. By hypoth-
esis, for anyr; <y« ; € X (t) C N?, anda; <y« a; as above, we have that € A, (z,)
anda; € A;(%;). Sinced; (zy) C A; (%) for anyz; <yo & € X (t) C N? we also
have thata; € A;(%:). If a; € A; (z¢) then for any increasing subs&t C X(t + 1)

o (e (@, apy Teg1)4pe (T, ae, 2e1)] = D [De (@4, Gp, Tpr1)+pe (T4, ag, 441)] holds
T 1€EK Ti1€EK
directly becaused | p: (¢, at, x+41) is superadditive ifa:, a;) € X (t) x A; (x¢), for any

Ti1€K
increasing subset’ C X (¢ + 1).
If th ¢ At(It) then Z pt(xt, dt, It—‘,—l) = O, andAt (If) 7& At (i’f) Butin this
i1 €K
case we have that <y« at, at,a: € Ay (), and > pt (T4, at, x+41) IS nondecreasing
i1 €EK

ina; € A (z;) for any increasing subséf C X (¢ + 1). This implies that

Do Ipe (&g, @py 1) + 1 (T, @, 1)) 2> Y D Ty Gy ) > D D (B, g, Tygr)-
Tip1 EK CL‘t+1€K i1 €K
Foranyj € X (t+1)wedenote by; := [p; (T, as,7) +p¢ (4, ar, 5)], Zj := [pe (24, 8¢, 5) +
pe (T4, a4,7)] , andv; == uj,,(4), in order to appl