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We know that one times one is one,

but an unicorn times a pear

have no idea what it is.

We know that five minus four is one

but a cloud minus a sailboat

have no idea what it is.

We know that eight

divided by eight is one,

but a mountain divided by a goat

have no idea what it is.

We know that one plus one is two,

but me and you, oh,

we have no idea what it is.

...........................

Only you and me

multiplied and divided

added and subtracted

remain the same...

Vanish from my mind!

Come back in my heart!

”Another kind of Mathematics”, in
The Grandeur of Coldness (1972)

N. Stanescu(1933-1983)

English translation by G. Mustea
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Modelling





Chapter 1

Introduction and Problem
Statement

1.1 Motivation of the research

In the project planning and control literature, the breakthrough that led to the Pro-
gram Evaluation and Review Technique in 1958 has been followed by many additions and
revisions. In the early PERT system descriptions, the PERT network was updated on a regular
basis. This allowed a formal process of status updating of all tasks scheduled to be started,
or completed during the prior period, of producing new time estimates for future tasks, as
well as the re-design process. According to (DOD/NASA, 1962), the current plan revision
in the PERT/COST System updated the precedence relationships and/or the content (deletion
and/or addition of tasks to the network) of the network. Later, in the project planning and
control research, the project concepts were narrowed down, and the dominant concepts were:

- precedence: a fixed partial order on a fixed set of tasks for the entire project
duration;

- time-cost task trade-off: task duration may be shortened, at a certain cost;
- task indivisibility: a task is a unity with start and finish times.
This explains why the various approaches to incorporate uncertainty in the project

planning and control techniques ((Elmaghraby, 1995); (Herroelen et al., 1998); (Krishnan
and Ulrich, 2001); (Tavares, 2002)) viewed a task as a unity and addressed the uncertainty
issue in the duration of tasks, while considering the product to be fully defined at the start
of the project. Explicit trade-offs in the product definition process in terms of design tasks
to be performed did not appear, not even in the generalized activity networks approach ((El-
maghraby, 1995); (Dawson and Dawson, 1995)), which assumed only an early partial product
definition.

According to (Pich et al., 2002) these attempts of modelling the uncertainty in
project management are referred to as aninstructionistapproach: policies are derived – ei-
ther a priori or as the project is executed – that completely determine the tasks executed in
response to the decisions taken by management. They do fail when the initial model is not
adequate. This can happen either due to the project ambiguity (i.e. a lack of awareness of
the project team about certain states of the world or causal relationships) or due to the project
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complexity (i.e. many different decisions and states of the world parameters interact, making
it difficult to asses the effect of decisions taken). (see (Pich et al., 2002)).

Recently, in the New Product Development literature another form emerged for
incorporating the uncertainty, based on ”flexibility”, which is the use of technologies and
processes that accommodate multiple possible outcomes of the project. Thus, in a highly
uncertain environment (see (Sobek et al., 1999)) it is recommended to use a ”set-based engi-
neering” approach in which multiple solutions should be pursued ”in parallel”, choosing the
best solution once their outcomes are observable (see also (Committee, 2000)). (Bhattacharya
et al., 1998) formalize trade-offs underlying the new product definition process emphasizing
the uncertainty caused by a highly dynamic market situation. Also, the empirical research of
(Tatikonda and Rosenthal, 2000b) suggests that in many firms, NPD projects start with lax
specifications of the new product requirements, which evolve during the project. This level
of uncertainty may be far beyond what can be modelled by Beta probability density functions
for the duration of design tasks (PERT) and what can be modelled by probabilities that design
tasks will have to be redone (GERT) ((Dawson and Dawson, 1998); (Oorschot, 2001)).

In summary, this new stream of research concentrates on complete probability
spaces with (subjective) probabilities – that is the project team knows the event is possi-
ble but they do not know whether it will happen. The implicit assumption of such an ap-
proach is that it is impossible to ”manage events that cannot be foreseen” (see (Wideman,
2000), (Williams, 1999)).This alternative way of modelling the projects uncertainty is called
in (Pich et al., 2002)selectionism. It is an extension of the instructionist approach in the sense
that the project management still relies on its ability to identify an optimal policy, modified
over time as the project model evolves. In an NPD environment the selectionist approach
might be viewed as planning multiple alternative product definitions, and retaining one of
those with the best market payoff value. The intermediate results should be shared among
these alternatives, which will thus all contribute to a successful new product.

In this research we focus on planning and control methods for a new type of projects
called time-constrained NPD projects with high technological product or process uncertainty.
They are referred to as experiential NPD projects (see (Eisenhardt and Tabrizi, 1995)).Expe-
riential product developmentprojects consists ofuncertain, ill-defined, and unstabledesign
tasks. At the start of the project, it is uncertain which design tasks are really necessary for
realizing the product specifications and it is even uncertain which (or the extent to which)
product specifications can be realized at a certain deadline. The set of design tasks is of-
ten reorganized during execution, and the product specifications of the product are gradually
reconsidered, fact sustained by numerous researchers ((Dawson and Dawson, 1998), (Bour-
geois and Eisenhard, 1988), (McDermott, 1999), (Turner and Cochrane, 1993); review in
(Krishnan and Ulrich, 2001), (Oorschot, 2001)). Moreover, a recent survey by (Thomke and
Reinerstein, 1998) showed that only 5% of product developing firms have complete product
specifications before starting a design, and on the average only 58% of specifications are
available before the design process begins. This type of projects has emerged over the last
decade in industry, and empirical research shows that its planning and control are strongly
influenced by its technological uncertainties. A model for the operational control of this type
of process has not been formulated before.

Existing NPD models focus on market uncertainty and do not consider the tech-
nological uncertainty appearing inside the firm as the result of its own innovation process.
In this research we propose a general control framework for managing NPD projects with a
high technological uncertainty under tight time constraints, including the experiential NPD
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projects. We explicitly allow the product definition to evolve after the beginning of the de-
tailed design phase. This is achieved by considering that product specifications can be broken
down via a specification tree into design tasks, and that design tasks can be performed at dif-
ferent performance levels. We use these levels as decision variables. Hence, the required
product specifications can be updated during the project, and the new product is dynamically
redefined until the deadline. Thus, a second contribution of our framework and of its subse-
quent computational models is to create an axiomatic system making explicit in measurable
variables the changes induced by the operational uncertainties. In the literature no other
approaches are found which integrate the technological uncertainty with the quality control
under time constraints. Thus, we expound the trade-offs in the new product definition in
terms of which design tasks at which performance level should be done before the deadline.

Another important aspect of the NPD projects that was previously neglected by the
analytical models is the human aspect. NPD projects have as primary resource the engineers
from the development team, not machines. Using psychological literature as well as recent
empirical research on NPD projects, we model the behavior of engineers under time pressure,
and their ability to perceive the concurrency and the relative urgency of design tasks.

Additionally, we have connected the value of product specifications to the expected
market value of the new product, using models from marketing literature. The key mod-
elling elements and relationships are based on recent empirical research from various fields
as product innovation, quality function deployment, design activities definition, concurrent
engineering, project structuring and management. The goal of such an approach is to fa-
cilitate the evaluation and acceptance of the computational results by managers. Also, the
initial control framework forms a basis from which we can derive more realistic constraints
for different computational models, allowing for a fair comparison of what the outcome of a
computational model is, versus its hypothesis. The control framework is used in this research
to formulate solvable mathematical problems, but it can also guide other formulations of
NPD projects stochastic models, as similar frameworks have previously done for production
processes in (Dempster et al., 1981), (Bensoussan et al., 1985) and (Hackman and Leachman,
1989), (Charalambous et al., 2000).

We formulated two mathematical problems specific for controlling time-constrained
NPD projects with high technological product or process uncertainty. Their formulation and
their analytical solutions are to the best of our knowledge new. The first problem was a
multiple-choice knapsack problem. By formulating it as a discrete deterministic dynamic
problem, we obtained a graph structure of the problem space. Based on established results
from heuristic search algorithms, we proposed an A* type algorithm to efficiently search an
optimal solution using the DP graph structure. The second problem was formulated as a
discrete-time, finite horizon non-stationary Markov decision process. To enable a more ef-
ficient computation of optimal policies in Markov models of sequential decision processes,
one is often interested in finding structured policies (monotonic, convex, etc.). To reduce the
exponential growth with respect to the size of our decision problem, and to enable the deriva-
tion of numerical solutions, we introduced a new type of structured policies called weakly
monotonic. Formulating the problem in a dynamic programming setting, it is shown that the
optimal policy follows a weakly monotonic optimal control by establishing the supermodu-
larity of the objective function. This is a new result, extending the monotonicity theory and
partial ordering programming techniques to bounded subsets without holes of integer vector
lattices.
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1.2 Problem statement and research questions

The research presented in this dissertation is meant to provide a general framework
to model the quality-time-cost trade-offs underlying the time-constrained NPD projects with
high technological product or process uncertainty and to be a contribution to the area of
developing and solving mathematical planning and control methods for these projects. In
particular we are interested in modelling the interaction between the low level scheduling
information and high level planning information.

In order to meet these goals the following questions are investigated.

1. What are the specific requirements needed for the planning and control of time-con-
strained NPD projects with high technological product or process uncertainty?

2. Which information should be exchanged between the low level of scheduling and the
high level of planning?

3. What degree of detail is needed in the mathematical models of these levels?

4. To what extent can existing planning and control techniques be used for the control of
time-constrained NPD projects with high technological product or process uncertainty?
Which are the new techniques for these projects?

5. How can new/already existing planning and control techniques be used to predict the
outcome of the time-constrained NPD projects with high technological product or pro-
cess uncertainty?

6. What are the characteristics of the policies which control the quality achieved at the
deadline by a time-constrained NPD project with high technological product or process
uncertainty?

The methodology that is used for answering these research questions is described
in the next section.

1.3 Research methodology

In this section are described the steps that are taken to perform this research. These
steps are:

• integration in a mathematical control model of the key characteristics of time-con-
strained NPD projects with high technological product or process uncertainty, as found
by earlier empirical research

• control model’s goals analysis and validation of the approximation made for the degree
of detail needed in the high planning level of the control model

• development of mathematical solution techniques

• analysis of solutions
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The final goal of my research was to build and present solutions for an adequate
model of time-constrained NPD projects with high technological product or process uncer-
tainty. The models in OR are built using mathematical relationships, which correspond to
relationships in the real world, like in our case, time and technological constraints. It it im-
portant to emphasize that a model is only an approximation of the real process being modelled
and that different models can be created for the same process.

Before starting with the mathematical modelling, in order to get a broader view of
the problem, we asked the following questions:

• What are the goals of our mathematical model?

• Which means are available to achieve these goals?

• Which precision is required in achieving the goals?

Our goal was to be able to maximize the new product quality (in terms of mar-
ket value) under a high time constraint and a high uncertainty regarding the number and
structure of the design tasks defining the new product. The means included in our case ad-
dition/deletion of design tasks, addition of new design activities, changing the design tasks
targeted quality and implicitly their solving time, allocating design tasks to engineers, intro-
ducing safety margins. The precision of achieving at the deadline a new product which is at
least fully functional is defined in probability terms.

These questions easily led to the conclusion that the general problem was too com-
plex to be straightforward and completely solved by means of already existing mathematical
tools. It was then a challenge to select appropriate computational sub-models which retain the
most significant features of the different parts of the process under study. (Williams, 1978)
gives a number of motives for building such computational models:

• The actual exercise of building a model often reveals relationships which were not ap-
parent to many people. As a result, a greater understanding is achieved for the process
being studied.

• Having built a model, it is usually possible to analyze it mathematically to help suggest
courses of action which might otherwise not be apparent.

• Experimentation is possible with a model whereas it is often not possible or desirable
to experiment with the process itself.

In the next section we describe the content of each chapter of this dissertation.

1.4 Outline of the dissertation

The remainder of this dissertation is organized into two parts.
Part I is dedicated to the modelling issues. In Chapter 2 the characteristics of

time-constrained NPD projects with high technological product or process uncertainty are
expressed in quantifiable measures and integrated into a general hierarchical control frame-
work with multiple review periods. The key modelling elements are indicators of the duration
of the NPD project as well as of the cost, the quality and the market value of the new product.
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Chapter 3 presents the mathematical formulation of the hierarchical control framework, and
discusses already available operations research methods and techniques that can be used for
the project analysis and for solving the detailed and aggregate decision level problems.

Part II is dedicated to the analytical solutions of the problems constructed in Chap-
ter 3. Two distinct problems are investigated.

In Chapter 4 an analytical solution is presented for the problem of allocating con-
current NPD design tasks to the engineers, at the detailed planning level. The other chapters
are devoted to solving the aggregate decision problem in a multi-period setting. In Chapter 5
we first introduce simple heuristics for both the engineering and the detailed planning pro-
cesses, and we construct a simple queueing model to estimate the solving time distribution
of design tasks in NPD projects. Later in the same chapter, the use of those heuristics allows
the computation of transition probabilities for a non-stationary Markovian decision process
model of the aggregate decision problem in a multi-period setting.

Due to the curse of dimensionality, it was only theoretically possible to derive the
optimal policies for the aggregate decision problem. Thus, in Chapter 7 and Chapter 8 we
investigated the structural properties of the optimal policies in two particular cases of the
general aggregate decision problem.

In Chapter 7 we focus on a concurrent NPD (i.e. without precedence constraints),
consisting of concurrent design tasks and described by a discrete-time, finite horizon non-
stationary Markov decision process. To enable a more efficient computation of optimal poli-
cies in our Markov model we derive new general conditions of obtaining weakly monotonic
optimal policies. This leads to a new weakly-monotonic backwards induction algorithm, as
well as to some robustness properties. General mathematical results that support this analysis
can be found in Chapter 6.

In Chapter 8 we focus on an NPD project with precedence constraints, consisting
of sequential design tasks only, described by a discrete-time, finite horizon non-stationary
Markov decision process. We assume that any design task is available as soon as we finished
with its direct predecessor. Using sample path analysis we reduced the initial multidimen-
sional control problem to a unidimensional one in both state and action space. In the new
control problem the optimal policy will decide only on how many review periods the team
of engineers should work on each design task, being optimal to always choose as decision,
while working on a design task, the maximal performance level.

Finally, in Chapter 9, conclusions are drawn and suggestions for further research
are given. Using the characterization of the optimal policies in those particular cases, one can
reduce the general aggregate decision problem from a multidimensional one to a unidimen-
sional one, and derive afterwards heuristic optimal policies for it.



Chapter 2

A Hierarchical Control
Framework (HCF)

2.1 Introduction

Using recent empirical studies, we formulate in this chapter a general framework
of the hierarchical control processes needed for managing a new product development (NPD)
project with a high technological uncertainty, under tight time constraints. Considering the
project delivery time and resources as given, the project and its control are organized to solve
the uncertainty in the new product specifications through repeated internal adjustments and
interactions with customers. Our framework integrates the uncertainty regarding both the
market requirements and technological uncertainties. They lead to the addition/deletion of
design tasks, and to a stochastic solving time of the design tasks.

Introducing concepts formalizing the quality-time trade-off in the product specifi-
cations, this chapter contributes to the area of NPD project control models, and to the devel-
opment of management-related NPD project control concepts, both areas presenting research
opportunities according to (Brown and Eisenhardt, 1995), and (Krishnan and Ulrich, 2001).

Our general framework manages NPD projects with a high technological uncer-
tainty under tight time constraints, including the experiential NPD projects, by explicitly
allowing the product definition to evolve after the beginning of the detailed design phase.
A first contribution of our framework is to create an axiomatic system making explicit in
measurable variables the variation induced by the operational uncertainties. In the literature
no other approaches are found which integrate the technological uncertainty with the quality
control under time constraints. Thus, expounding the trade-offs in the new product definition
in terms of which design tasks and up to which extent should be done before the deadline.

The framework’s key modelling elements and relationships are based on recent em-
pirical research, which facilitates the evaluation and acceptance of the computational results
by the management practitioners. So a second contribution of the framework is to form a
basis from which we can derive more realistic constraints for different computational mod-
els, allowing for a fair comparison of what the outcome of a computational model is, versus
its hypothesis. The framework is used in the next chapters to formulate solvable mathemati-
cal problems, and it can also guide other formulations of NPD projects stochastic models, as
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Figure 2.1. Phases of a flexible NPD process

similar frameworks have previously done for production processes in (Dempster et al., 1981),
(Bensoussan et al., 1985) and (Hackman and Leachman, 1989), (Charalambous et al., 2000).

Section 2.2 describes a hierarchical control model with multiple review periods,
which evaluates the NPD project progress and integrates the uncertainty regarding the product
specifications, the design tasks, and the time needed for realizing the project. The model is
based on accepted scientific knowledge on product innovation, quality function deployment,
design activities definition, concurrent engineering, project structuring and management. In
section 2.3 we define the model elements that play a role in the control framework. They will
be used in the mathematical modelling of the decision processes in the hierarchical control
structure of the framework. This mathematical model will be presented in Chapter 3. The
section 2.4 concludes this chapter, by discussing the implications of developing a general
framework for managing NPD projects with a high technological uncertainty under tight
time constraints.

2.2 A multiple review periods hierarchical New Product De-
velopment control structure

A complete NPD project can be divided in a sequence of phases (Ulrich and Ep-
pinger, 2000). For the design process, we consider the definition of (Doumeingts et al.,
1996): it translates customer/market requirements/specifications into a product definition and
a manufacturing process definition. Similarly to (McCormack et al., 2001), we distinguish
threeoverlappingphases: thesystem design/concept development(performing a first work
breakdown from customer needs into product specifications, and from product specifications
into design tasks), thedetailed design phase(consisting of solving the design tasks), and the
system level test(integrating the solved design tasks result into a complete system and tested)
(see Figure 2.1).

The first and the last phase are too problem-dependent to be integrated in a general
mathematical framework of the operational process. Therefore, the aim of this research is
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to construct a dynamic model for the management of the time and resource aspects of trans-
forming the customer needs into detailed product specifications during the detailed design
phase, taking into account the overlap with the other two phases.

During the concept development part, the initial system specifications are set. They
describe in precise, measurable terms what the product has to do. With them start both the
development of a first work breakdown structure (WBS) and the partitioning of each system
specification into a consistent set of specifications for all the intended units, assemblies and
modules of the new product (i.e. a specification tree).

As in (Aslasken and Belcher, 1992) and (Shtub et al., 1994) we consider the WBS
as being a product-oriented tree, which consists of a number of levels, starting with the com-
plete product, and progressing downwards through as many levels as are necessary to obtain
design elements that can be assigned to and performed by one of the engineers. Once this is
done, it is possible to arrange all its design elements in a network resembling a directed tree
with a single root node. The elements on the lowest level are always completely described
by: a complete task statement (i.e. what work has to be accomplished); an identification of
the necessary prerequisites to start it; a detailed description of what the output or result of
the work should be and in what form is to be presented (Aslasken and Belcher, 1992). Ele-
ments on higher levels may or may not have this property. The lowest level design elements
are calleddesign tasks. To secure accountability through the design elements created by the
WBS partitioning, a first specification tree will also be created. Thus, we assume aone to
one correspondence between a design task and a product specification from the module level
of detail(see Figure 2.2).

Later in time, more design tasks may emerge; design reviews are needed for mainly
three reasons. First, no matter how uncertain the project is, design tasks have to be defined
before its start, otherwise the WBS structure is not feasible (see (Shtub et al., 1994)). So, in
real life, the management of the project will be forced to specify some design elements by
decomposing them into design tasks, without being sure that the work content of those design
tasks reflects exactly the achievement of that design element. Thus, only for small periods of
time during the detailed design phase, the relationships between design tasks as well as their
number can be viewed as stable. Second, the product specifications and their refinements are
established before knowing all the constraints that either the technology or the market places
on what can or should be achieved at the design tasks level. Third, unplanned design tasks
may emerge as a result of the feedback from the system level tests.

Our NPD project control model performs decision/scheduling/execution cycles,
each time taking into account the new surroundings it is facing. At the beginning of each
new cycle, the state of the system is reviewed and updated by observing the technological
knowledge accumulated at the engineering level, and by incorporating new information about
customer needs. Thus, the uncertainty in the new product definition is decreased in time and
this model structure allows the controller to adapt its decisions to changing conditions.

The planning and control problem at the beginning of each new cycle is hierarchi-
cally approached for two reasons. First, by decomposition of the overall planning problem
into several sub-problems, the complexity of the planning problem is reduced. Second, the
effects of uncertainty regarding the structure and solving times of design tasks are split over
the levels. Thus, hierarchical planning leads to a consistent and controllable planning prob-
lem. The decisions made at a higher planning level provide targets and restrictions to the
lower level decision making.

Our approach to NPD projects is supported by the recent research in organization
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Figure 2.2. Specification tree after the flow-down of product specifications, (Aslasken and
Belcher, 1992)

design of (Haque et al., 2000). Their paper models and analyzes the NPD project and organi-
zation in terms of tasks, teams, roles and communication links, relating the project hierarchy
to the organization hierarchy. We assume in this paper similar project and resource levels, but
for the internal structure of these levels we also use the research results of (Oorschot, 2001),
which enable us to mathematically formulate the control problem of each of those levels.
Thus, at the highest level, the project manager evaluates the overall NPD project progress
and integrates the market and technological uncertainties. He decides then the structure of
the network of design tasks to be performed by the NPD team in a short-time planning hori-
zon. At the level of the NPD team, the design tasks are scheduled to the engineers, such that
each engineer receives a sequence of design tasks from the network to be solved (any two
such sequences are disjoint). In Figure 2.3 such a general NPD project and resource structure
is presented; each of the involved notions and concepts are thereafter detailed and enriched.

In Section 2.3 we address in detail the quality, time and resource characteristics of
NPD projects from a conceptual, and modelling point of view. As in (Ulrich and Eppinger,
2000) we use the termproduct specificationsfor the key product design variables. We intro-
duce new concepts for the design tasks internal structure, as well as measures of their relative
importance for realizing the product specifications. By a frequent NPD project progress eval-
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uation, these concepts allow either an optimal adjustment of product specifications, given
the resources remaining until project deadline, or a project abandonment. The last situation
occurs when either the project exceeds its budget or cannot longer meet the minimal require-
ments with a sufficiently high probability regarding the product specifications.

The proposed control model of the NPD project is a discrete time one. The project
is reviewed at equidistant points in time until the deadline,T . The hierarchical structure
proposed for each review period corresponds to a decision/scheduling/execution cycle, and
consists of three levels:aggregate decision level, detailed planning level(rescheduling deci-
sion, scheduling), andexecution level.
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2.3 Model elements

Our NPD control structure has multiple review periods. Thus, the essential mod-
elling assumptions are related to how we model the current knowledge about the NPD project
at the beginning of each review period. To end up with a practical operational control frame-
work, it is necessary to make the transition from a qualitative analysis dealing with concepts
and structures, to a quantitative analysis in terms of measurable variables. We select a state
variable set based on the significance of each variable in explaining some aspect of the prod-
uct’s status during its development, and to their aggregate ability of conveying the product
status at each point during its development. This set of variables contains indicators of the
duration of the NPD project as well as of the cost, the quality and the market value of the new
product.

In this section, we first give the exhaustive list of the key elements and assumptions
embedded in the structure of the model. For each of them we present the connections with
existing literature as well as indications of how their values can be computed. Thereafter, we
briefly describe the control levels in terms of the control elements introduced.

The NPD project model elements are grouped into:

2.3.1 General constraints:

- a fixed development budget for the NPD project

- a fixed deadline for the NPD project:((Eisenhardt and Tabrizi, 1995); (Reppening, 2000);
(Oorschot, 2001))

- a set of current customer needs with their corresponding normalized importance weights
(i.e. the weights sum up to one)

The importance weights can be found using the Analytical Hierarchy Process or a
similar procedure ((Kusiak, 1995)).

-a set of current product specifications with their:

• ideal and minimal target values for their corresponding metrics((Askin and Daw-
son, 2000); (Ulrich and Eppinger, 2000))

• relative importance rating

As in (Ulrich and Eppinger, 2000) we consider that each specification consists of
a metric (i.e. ”Lateral stiffness at brake pivots”) and avalue (i.e. ”more than650kN/m”)
which can be a number, range, or inequality. The process of establishing the current prod-
uct specifications includes the following (see (Ulrich and Eppinger, 2000)): prepare the list
of metrics and their relative importance, using needs-metrics matrix if necessary; collect the
competitive benchmarking information; set ideal and minimal (i.e. marginally acceptable)
target values for each metric; refine the specifications, making the trade-offs with the tech-
nological and cost constraints; flow down the specification to the lowest level of the WBS
structure. The initial metrics should be complete, practical, in general dependent variables.
After their flow-down via the specification tree we set the specifications of the lowest level of
the tree as the current product specifications.
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(Krishnan and Ulrich, 2001) acknowledge in their review that it is useful to repre-
sent a new product by both customer needs and product specifications. These attributes are an
abstraction of a product, and attribute-based methods are limited in their ability to represent
the customer satisfaction or market share, but it is the way recognized in the NPD literature
to build what is called the ”core product concept.” According to the same survey, it is an ac-
cepted knowledge that given the representation of a product into attributes one can determine
weights for the customer needs, and then target values for the product specifications can be
obtained. (Forman and Gass, 2001) give an overview of areas in which the Analytical Hierar-
chy Process (the general method of obtaining the weights, the target values, and how to order
the different design alternatives function of them) has been successfully applied.

The process of setting the metrics ideal target values is generally a subjective and
heuristic one. However, mathematical models are also available (Askin and Dawson, 2000).

The importance rating of a metric is derived from the weights of the customer needs
it reflects. (Ulrich and Eppinger, 2000) do not recommend a formal algorithm, but for the
case of few important specifications, conjoint analysis can be a solution. If the level of detail
of the product specifications supports the assumption of independent metrics their relative
importance can be obtained via regression analysis ((Askin and Dawson, 2000); (Yoder and
Mason, 1995)).

2.3.2 The set of system states:

The state of the system at the beginning of each review period isa directed acyclic
graph of design tasks with a source and a sink (i.e. a network). Similarly to (Sieger et al.,
2000), we choose the set of states of the system without abandoning the proven benefits
provided by network analysis in the management of projects.

Ideally, a decision making moment should occur whenever a design task starts, an
unplanned design task emerges or a new activity arrives changing the known information
about the project. To avoid the discretization of the project duration into very small units, one
can decompose the project into stages (review in (Tavares, 2002)). We construct stages for
our graph by associating a representation into independent sets to it: sets of unordered design
tasks (no precedence relations between any two of them) and all having the same length of
the longest path from the sink node to them(in the precedence graph) (see Figure 2.4).

The decomposition of the set of vertices of a directed acyclic graph into aT−parti-
tion (i.e a partition withT stages) is unique. Thus, the concept of aT -stage network naturally
associates thet-th decision moment with the allocation of design tasks from thet-th set of
the partition of nodes. Also, empty sets can be added to achieve equidistancy of the control
points, or for being able to control more often than the number of independents sets. The
partition of the set of nodes gives the sets of design tasks that can be allocated at the beginning
of a review period. All the design tasks allocated in the same review period can be performed
in parallel. However, design tasks allocated in previous periods review periods might not be
finished, thus during a review period the detailed planning problem has to take into account
a general digraph of precedence relationships.

For controllingcoupled (interdependent)tasks, the Design Structure Matrix (DSM)
was developed as an alternative for formal project-scheduling representations ((Eppinger
et al., 1994); (Krishnan and Ulrich, 2001)). If the DSM can be organized into a lower trian-
gular form, the coupling is eliminated. Otherwise, if one would collapse the diagonal blocks
for reducing the DSM matrix to a precedence network, the essential information on the de-
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Figure 2.4. Stages of the directed acyclic graph describing the state of the system at time
instantt0, built using the longest path from the sink

sign iteration within blocks would be lost. However, DSM-s require complete information
on the number of design tasks and their relationships, requirements not satisfied in the case
of a NPD with a high technological uncertainty. Our state representation tries to capture the
coupling information, while not giving up to the modelling of the technological uncertainty.
In the beginning of the NPD project we start with a DSM representation, we collapse each
remained block on its diagonal into one design task, and thus we model the task in detail,
up to all its constituting activities. Thus, we construct a network of design tasks, which is
however stable for only one review period. At its end, the structure of each design task is
updated, and so we keep track of most of the changes that occurred in the former blocks,
including a possible re-sequencing of the block elements.

2.3.3 The performance, cost and market-payoff structure:

The performance and valuation control concepts are to the best of our knowledge
new. They follow from the assumption of the one-to-one mapping between the current prod-
uct specifications and the design tasks, justified earlier (see Figure 2.2).

Each design taskhas

• a number ofincreasing performance levelsgiving the quality of its execution.
They are induced by a scaling in between the minimal and the ideal target val-
ues for the corresponding current product specification metric. Each perfor-
mance level consists of alist of planned activities(to be sequentially performed
(Aslasken and Belcher, 1992)) with solving times random variables that are in-
dependent identically exponentially distributed (see for empirical evidence (Best,
1995); (Reed, 1988)). To attain a performance level, we assume that the engineer
has to sequentially execute the design task at all previous performance levels,
which implies different stochastic durations for the solving time, depending on
the level initially specified (see Figure 2.5). The split of each level into activi-
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Figure 2.5. Internal structure of a design task

ties gives a uniform measure of the difficulty implied by its realization. For each
design task aminimal performance levelhas to be achieved.

In their research on how a novice and an expert solve physics and mechanics prob-
lems ((Reed, 1988), pp.326-329) and (Larkin and Raif, 1979) found that for both categories
the elapsed time between the solving of successive problems was random. Even if the novice
problem solving process showed more randomness than the expert’s one, for both cases a neg-
ative exponential law can be considered as governing their problem solving process. More-
over, according to (Loehle, 1994) innovation can be seen as a cumulative series of problem
solving activities, starting with an a flash of insight (”eureka”) which is mainly characterized
by its suddenness. In this paper we assume that an average engineer working on an innovative
design activity requires an exponentially distributed time to solve a problem.

In systems engineering, (see (Aslasken and Belcher, 1992) pp. 45) it is a common
assumption to consider the internal structure of a design task to be sequential/linear. The
mathematical advantages of combining this assumption with the assumption of the identical
exponentially distributed design activities are important. A sequence of exponential design
activities leads to an Erlang distributed solving time for the entire design task, which is ex-
actly the distribution that the recent research of (Innam, 1999) considers appropriate for man-
ufacturing systems with unreliable machines. Based on flexibility and goodness-of-fit using
moment matching for the data sets, this distribution fits well. The research of (Oorschot,
2001) pp.54-56 also finds a similar type of skewed, delayed, long-tailed distribution for the
solving time of design tasks in NPD projects.

• a cost functiongives the incremental change in cost associated with performing
one more planned activity, of one of its performance levels. This function models
all non-engineer capacity related costs.

• a time dependent design task contribution function. At the beginning of each re-
view period, using both the specification tree corresponding to our NPD project
and its associated Quality Function Deployment (QFD) waterfall chart, one can
obtain thevaluesΘ(n, δ, t) giving the current maximal contribution of each de-
sign taskn, in achieving each customer needδ. Afterwards, for each design
task its currentcontribution function in achieving a customer needδ is obtained
by scaling its corresponding current maximal contribution value, for its perfor-
mance levels(i.e. if Lmax is the maximal number of levels for the design task
n, its contribution function might bef(n, l, t) := Θ(n, δ, t) l

Lmax
). The scaling is

not necessarily linear.
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At the beginning of a review periodt0, we obtain the design tasks maximal con-
tribution values as follows. Without loss of generality we consider the specification tree in
Figure 2.6

Given the existence of a specification tree for our new product, one can always
obtain the associated Quality Function Deployment charts linking system specifications to
subsystem specifications, and subsystem specifications to sub-subsystem specifications, and
so on down to the specification level required to identify the design tasks. According to a
well-known method called AHP (Analytical Hierarchy Process), we do the following:

1. givenδ = 1, ..., ∆ objectives, determine their respective weight coefficientsωδ.

2. for each objectiveδ, compare thej = 1, ..., p alternatives and determine their weight
coefficientsαδj .

3. determine the final alternativej0 and its weight coefficientsAδ = α1j0ω1 + ... +
α∆jj0ω∆ with respect to all the objectives.

The AHP (see (Forman and Selly, 1999), (Forman and Gass, 2001)) is a resolu-
tion of choice problems in a multi-criterion environment based on pairwise comparisons of
objectives and alternatives.

Applying the steps 1. and 2. for the customer needs and the ideal targets of the
product specifications metrics, we get a set of coefficients which reflect how the ideal realiza-
tion of each product specification metricj affects each customer need. The same procedure
applies for product specifications to subsystem specifications, and so on, obtaining the Qual-
ity Function Deployment (QFD) waterfall chart shown in Figure 2.7.

Thewδ (t0) , δ ∈ {1, ..., ∆} represent the normalized weights (i.e.
∆∑

δ=1

wδ (t0) =

1) corresponding to the current customer needs. The first QFD chart contains the normalized
quantifiers,αij (t0) , δ ∈ {1, ..., ∆} , j ∈ {1, ..., p}, for the contribution of the maximal tar-
get value for the metric corresponding to the system specificationj, in achieving the customer
needδ. The second one contains the normalized quantifiers,βjk (t0) , j ∈ {1, ..., p} , k ∈
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{1, ..., r} , for the contribution of the maximal target value for the metric corresponding to the
subsystem specificationk, in achieving the maximal target value for the metric corresponding
to the system specificationj (thus one level down). Now, using both charts, we can compute
a normalized quantifier for the contribution of the maximal target value for the metric corre-
sponding to the subsystem specificationk (i.e. design taskk), in achieving the customer need

δ is given by
p∑

j=1

βjk (t0) αδj (t0). The maximal overall contribution of the design taskk at

t0 (to all custom needs) is:

p∑

j=1

∆∑

δ=1

βjk (t0)αδj (t0)wδ (t0) =
∆∑

δ=1

p∑

j=1

βjk (t0)αδj (t0)wδ (t0) =

=
∆∑

δ=1




p∑

j=1

βjk (t0) αδj (t0)


wδ (t0) .

It cumulates the contributions of the maximal target value for its corresponding metric in
achieving the maximal target values for the metrics corresponding to the system specifica-
tions.

Also, a more detailed QFD chart relates directly the customer needs to design tasks
specifications, and consequently to the realization of each design task up to its maximal
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performance level (see Figure 2.8) via
p∑

j=1

βjk (t0)αδj (t0) , δ ∈ {1, ..., ∆} quantifiers.

The project has a market payoff structure:

The design task contribution functionsare useful for maximizing the fulfillment of
the customer needs subject to technological and cost constraints. For each customer need, we
construct atime dependent cumulative contribution functionof the performance levels of the
design tasks belonging to it in the flow-down specification process. We obtain it byadding
the current design tasks contribution functionsto that customer need.

There are different levels of customer’s satisfaction for the achieved new product,
function of the distance between the cumulated and the ideal value for each of the customer’s
needs. We measure the expected market value for each cumulated value of a customer need
achieved at the deadline through what we call amarket payoff function. For the new products
which have to fulfill several customer needs, their market value is described withcumula-
tive market payoff functions. In literature we encounter differentS−shaped curves for the
one-customer-need and/or cumulative market payoff functions: general (Yoshimura, 1996;
Huchzermeier and Loch, 2001), linear (Askin and Dawson, 2000), etc.

For detailed planning level optimization purposes, we may derive design task mar-
ket payoff functions. In the linear case, these functions coincide with the design task contri-
bution functions (see Section 3.4 and Appendix).

2.3.4 The technological uncertainties:

Too much abstraction can cause a lack of information, but too much detail makes
the model solution intractable. So, as (Choi and Lee, 2001), (Reibman, 1990) and (Buzacott
and Shanthikumar, 1980) suggest, we focus on the key features of the system. Since the
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purpose of this framework is to be a basis for further computational models, our choices
are based also on the fact that most of the work on performance modelling relies on the
operational research techniques of queueing theory.

• a time dependent arrival rate of new activities:during a review period, new activities
arrive to the design tasks in progress. According to cognitive psychology, they appear
as a result of the incapacity of knowing beforehand all activities needed for performing
a design tasks, so we model them to have preemptive resume priority over the planned
activities (see (Best, 1995) pp.439). In later stages, the time dependent arrival rate
decreases. In order to ensure the mathematical tractability of such a technological
uncertainty we assume in the next chapters that the arrival process is Poisson.

• a time dependent arrival rate of unplanned design tasks:the integration of the knowl-
edge created by the interaction in between the three considered NPD phases into a
coherent product definition may add/delete design tasks from the project structure
(Tatikonda and Rosenthal, 2000b; Tatikonda and Rosenthal, 2000a; Oorschot, 2001).
Their deletion is modelled by allowing the controller to set their target performance
level to zero, if the current minimal performance level is zero. For reasons of mathe-
matical tractability, their addition is modelled by assuming general Markovian review
period-dependent arrival processes of unplanned design tasks. Thus, each arrival pro-
cess consists of design tasks concurrent either with design tasks to be allocated to the
team at the beginning of the current review period, or with those allocated in previous
NPD project review periods. We recall from Subsection 2.3.2 that to each review pe-
riod there corresponds a stage in the network of precedence relationships. For the same
reasons of mathematical tractability, each such newly arrived task concurrent with tasks
of the staget is to be performed only after all tasks of the staget − 1 are finished and
before any task of the staget+1 or newly arrived and concurrent with the ones in stage
t + 1 start to be solved.

As seen in real life (see (Oorschot, 2001)), their arrival rate decreases in time. In order
to use results already available in the class of queueing models, the unplanned design
tasks arrived during one review period are assumed to have a common performance
level structure, and an identical value function. Thus, for each period, instead of hav-
ing an arrival of different types of design tasks, with different value functions, we take
into account only an ”average” type of task for that review period, assuming statisti-
cal identical design tasks. They are associated to customer’s need transformation into
product specifications at the beginning of the next review period, and then their contri-
bution functions are calculated similarly as for the initial design tasks.

2.3.5 The state updating information (given at the end of each review
period):

• for each already allocated design task, the performance level already achieved, and, per
level, the number of remaining planned activities;

• for the sequences of newly arrived design tasks (statistically identical): their cardi-
nality, their common number of activities per performance level, their common value
function, and their precedence relationships as described above.
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Given the previous definitions of the model elements, let us look at the control
model we propose. The project horizon is split into a number of review periods. The scheme
of the control structure is given in Figures 2.9 and 2.10. It has a total numberT of review
periods. Review periodt starts at timet and ends at timet + 1.

At the start of each review period the state of the project is reviewed in order to
incorporate the new information about the customer needs (from the market), and about the
progress the engineers made in working on design tasks. In response to the new information,
the control framework considers the process of solving design tasks by the engineers, the
allocation of design tasks to engineers, and the updating of the performance levels of design
tasks. The control framework furthermore assumes that decisions are taken at the aggregate
decision level in order to maximize at the deadline the expected market value of the new
product, given the resources remaining until project deadline, or a project abandonment. The
last situation occurs when either the project exceeds its budget or cannot longer meet with a
sufficiently high probability the minimal requirements regarding the product specifications.
In the case of the continuation of the NPD, with a probability greater than a given safety
margin, this new product will be delivered at the deadline, to the market.

At the aggregate decision level the performance levels of the design tasks are set,
while at the detailed planning level a non-preemptive schedule is, generally, obtained for a
relatively short planning horizon, e.g. two review periods. After updating the design task
network structure, the project management may decide to decrease/increase the performance
levels of some of the already scheduled design tasks, but not finished yet, due to the addi-
tion/deletion of design tasks and the limited capacity available versus their stochastic solving
time. Then the design tasks and/or the number of their planned activities is changed. Since a
feasible schedule is obtained by means of stochastic ordering, re-scheduling may occur.

2.4 Conclusions

The defined model elements are rich enough to incorporate the available knowledge
from the relevant fields such as new product management and systems engineering, and still
allow at each control level for the mathematical analysis of the process. In Chapter 3 we
present the mathematical formulation of the hierarchical control framework, and discuss new
or already available operations research methods and techniques that can be used for the
project analysis, and for solving the detailed and aggregate decision level problems.
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Chapter 3

Mathematical Modelling of the
HCF

3.1 Introduction

In Chapter 2, Section 2.3 we first introduced a list of concepts, variables and re-
lationships that enable the mathematical modelling of the process of performing the design
tasks, of the dynamics in the design tasks that constitute the project, and of the relationship
between expected market performance of a product and the performance levels of the design
tasks of the project. These concepts, variables and relationships take into account relevant
knowledge in published literature or new product management, product development, system
engineering, project planning and control, production scheduling and human performance
management. Afterwards, we introduced a hierarchical control framework (HCF) for the
control of New Product Development (NPD) projects under a hard time constraint. Recall
that the HCF has an aggregate decision level, a detailed planning level and an engineering
level. The former deals with an overall evaluation of the NPD project. Recall also that time
is divided in review periods. In this chapter, we first construct these control levels to cycli-
cally operate for each review period individually (i.e. aggregate, detailed, engineering, then
feedback and again aggregate, etc.). These constructions need a rigorous mathematical for-
mulation: it makes things unambiguous and precise, and it enables us to see which parts have
already been solved in the literature. In this chapter we thus also discuss the relationships
of our constructions with well-known mathematical project models. This chapter therefore
contributes as well to the area of mathematical models for the organization of work in an
NPD, as to the development of management-related control concepts in the NPD projects,
both areas that present research opportunities according to (Brown and Eisenhardt, 1995).

Moreover, in the next chapters we build upon this rigorous formulation in extending
the model: since the aggregate decision level oversights the NPD project, it would clearly be
more efficient if we were able to solve the decision process for multiple review periods, thus
enabling the decision maker to foresee the outcome of the NPD project at the deadline. To this
purpose we need carefully built heuristic models for the lower control levels; in Chapter 5 we
thus present all the necessary models expressing the whole process seen from the aggregate
decision level as a non-stationary Markov decision process, for which optimal policies can
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be studied and computed.
This chapter is organized as follows. Section 3.3 describes the aggregate decision

process of periodically setting the design tasks performance levels, given the update of the
project status in view of the time and capacity remaining until the project deadline. Section
3.4 deals with the detailed planning process consisting of a re-scheduling decision function,
its associated re-scheduling problem, and the allocation of design tasks to the engineers sub-
ject to workload constraints. In section 3.5 we present the engineering process that transforms
the project state during each review period, by solving design tasks allocated to the engineers.

The aggregate decision process, as well as the detailed planning level allocation
problem are specific for controlling NPD projects under a hard time constraint, and their
formulation it is, to the best of our knowledge, new. The entire framework can be used
to determine in probabilistic terms the expected NPD project outcome, as it is discussed
in Section 3.6. It is not practical to separately solve for each review period the problems
defined at the hierarchical structure levels, but the review periods can be easy linked using
their approximate solutions. The chapter is concluded in Section 3.7.

3.2 Notation

The global variables of our NPD project model are:

T : the total number of review periods (review periods are numbered from0 to T − 1);

M : the total number of engineers;

N : the initial number of design tasks;

N : an upper bound for the maximum number of design tasks during the whole project;

Lmax(n) : the number of performance levels of the initial design taskn; n = 1, ..., N ;

∆ : the total number of customer needs considered;

h : the short time detailed planning horizon (i.e. a multiple number of review periods);

c (n) : the cost of performing one activity of the design taskn; n = 1, ..., N

µ : the rate of the exponential distribution of an activity solving time.

SinceN is an upper bound, we set to zero all the parameters depending on a virtual
n ∈ {N + 1, . . . , N}.

3.3 The aggregate decision process

In this section we construct the control level to operate for each review period indi-
vidually. The aggregate decision problem formulation deals with both the technological un-
certainty, and market requirement variability ((Huchzermeier and Loch, 2001); (Bhattacharya
et al., 1998)).

A T -stage network of design tasks reflects the precedence relations among design
tasks at the beginning of each review period (see Chapter 2 Subsection 2.3.2). The concept
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of T -stage network naturally associates thet−th decision moment with the allocation of the
t−th set of the partition of design tasks.

At the beginning of each review periodt, (t, t + 1], the aggregate decision maker
integrates in the NPD project the design tasks newly arrived during review periodt− 1.

We assume a general Markovian arrival process of statistically identical unplanned
design tasks during review periodt − 1 (see Chapter 2 Subsection 2.3.4). These unplanned
design tasks are concurrent with design tasks allocated/to be allocated during thei-th review
period, withi ∈ {0, ..., t}. Being statistically identical means they have a common perfor-
mance level structure, and an identical market payoff structure. Moreover, each such newly
arrived task concurrent with tasks of the stagei is to be performed only after all tasks of the
stagei− 1 are finished and before any task of the stagei+1 or newly arrived and concurrent
with the ones in stagei + 1 start to be solved. Afterwards, the aggregate decision process
itself takes place. We can briefly present it as follows.
Given at momentt

• the global variables of the NPD project (see Subsection 3.2)

• an updated networkRt := (J(Rt),A(Rt)) of design tasks with their precedence rela-
tions

• for each design taskn (planned or newly arrived) its maximum number of performance
levelsLmax(n, t), its minimum required performance levellmin(n, t) and its currently
achieved performance levell(n, t)

• for each performance levell of each design taskn, the numberNa(n, t, l) of sequential
activities planned to solve it, assuming all the previous levels already solved

• the current remaining budgetB(t) and the safety margins:α(t), to respect of the
project deadline, andβ(t) not to exceed the maximal solving capacity of the team
of engineers

Determine

• for each design task its target performance level, so as to maximize the expected market
payoff

Subject to the following constraints:

1. the target performance level of each design taskn is greater than
min(lmin(n, t), l(n, t)), and smaller thanLmax(n, t)

2. the completion time of the NPD project defined by the design tasks targeted perfor-
mance level is smaller than the remaining time until the deadline with a probability at
least the current safety marginα (t).

3. the remaining total workload does not exceed the team remaining maximal solving
capacity with a probability at least equal to the requiredβ (t) margin.

4. the total remaining cost for performing the design tasks up to their target performance
level does not exceed the remaining budgetB(t).
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Decisions on allocating design tasks to resources (engineers) are not considered at the ag-
gregate decision level, but at the detailed planning one (see Section 3.4). Now, in order to
rigorously formalize the setting, we need the following.

Input parameters (at the beginning of review periodt):
α(t) : the required current safety margin for the probability of completing the

project before the deadline;α (t) ∈ (0, 1)
β (t) : the required current safety margin for the probability of exceeding the max-

imal team solving capacity;β (t) ∈ (0, 1)
B(t) : the current remaining NPD project budget;
Rt := (J(Rt),A(Rt))) : the newly updatedT−partite directed acyclic graph of

unfinished design tasks precedence relations, whereJ(Rt) := Λ0
t−1 ∪ Λ1

t−1 ∪ ... ∪ ΛT−1
t−1 ∪

Ω0 (t− 1) ∪ . . . ∪ Ωt (t− 1); Λt0
t = Λt0

t−1 ∪ Ωt0(t − 1) forms the current design tasks set
to be allocated att0, andΩi (t− 1) is the set of newly arrived design tasks (during review
periodt − 1) concurrent with design tasks allocated/to be allocated during thei−th review
period;∀i = 0, ..., t.

Lmax(n, t) : the current maximal number of performance levels of the design task
n; Lmax(n, t) = Lmax(n) for n = 1, ..., N andLmax(n, t) = 0 if n 6∈ J(Rt) (i.e. there is
place reserved for design tasks not planned or not arrived yet up to the upper boundN but
we set to zero the maximal performance level depending on such a virtual design taskn);

lmin(·, t) : {1, ...N} → N : the minimal performance design task level function,
wherelmin(n, t) = 0 if n 6∈ J(Rt);

l(·, t) : 1, ..., N → N∪{−1} : the achieved performance design task level function,
where0 ≤ l(n, t) ≤ Lmax(n, t), for n ∈ J(Rt) and by convention we definel (n, t) = −1
for n 6∈ J(Rt);

Na(n, t, l): the number of sequential activities planned for solving the design task
n, at the performance levell, assuming the previous levels already solved. All activities are
assumed to have an exponentially distributed solving time with the same mean timeµ (see
Chapter 2), independent of the engineer which will perform them;∀ n = 1, ..., N, ∀l =
1, ..., L, whereNa(n, t, l) = 0 if n 6∈ J(Rt);

Notation (at the beginning of review periodt):
N(t− 1) : the random variable giving the number of design tasks arrived since the

NPD project beginning until the end of review periodt− 1, [t− 1, t);
Sn (t, l) : the solving time of the performance levell of the design taskn, assuming

the previous levels already solved. ;n = 1, ..., N . They are independent random variables
Erlang-(Na (n, t, i) , µ);

C (t, l (·, t) , Rt) : the completion time of the network of design tasks,Rt, if l (·, t)
gives the design tasks performance levels;

M
[
t,N, l (n, t)1≤n≤N

]
: the cumulated market payoff function, wherel (·, t)

gives the design tasks performance levels;
l̂ (·, t) : {1, ..., N} → {0, ..., L} : the target design task performance level function,

at the beginning of review periodt

Now, the aggregate decision problem can be mathematically formulated as follows:
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Given

• the input parameters defined above

Determinethe target design task performance level functionl̂ (·, t) for eachn ∈ {1, . . . , N}
so as to maximize the cumulated market payoff functionM

[
t,N, l̂ (n, t)1≤n≤N

]
.

Subject to

Lmax(n, t) ≥ l̂ (n, t) ≥ min (lmin (n, t) , l (n, t)) , n = 1, ..., N (3.1)

the completion time constraint

Pr
{

C
(
t, l̂ (·, t) , Rt

)
≤ (T − t)

}
≥ α (t) (3.2)

the workload constraint

Pr





∑

n∈J(Rt)
or

N+E[N(t−1)]+1≤ n≤N+E[N(T−1)], for t>0

l̂(n,t)∑

i=l(n,t)+1

Sn (t, i) ≤ M · (T − t)




≥ β (t) (3.3)

the budget constraint




∑

n∈J(Rt)
or

N+E[N(t−1)]+1≤ n≤N+E[N(T−1)], for t>0

l̂(n,t)∑

i=l(n,t)+1

Na (n, t, i) · c (n)



≤ B (t) (3.4)

In (3.2), the analytical evaluation of a general directed acyclic graph completion
time distribution is aNP−complete problem, but (Colajanni et al., 2000) gives a polynomial
time algorithm for determining a tight upper bound.

In (3.3), the workload is computed by adding both the remaining solving times of
the unfinished design tasks fromRt and the solving times of the average number of unplanned
design tasks expected to arrive in the future review periods until the deadline of the project.

In (3.4), the cost is computed by summing for each remaining activity of each
design task. The cost per activity may differ from one design task to another, refining the
previous constraint.

This aggregate project planning formulation studies the project risk in terms of the
probability of obtaining a total duration, a total quality, and a total cost, achieving dynami-
cally the product definition. During the aggregate decision making, the decision maker has to
assign numerical values toα (t), β (t). Those choices depend on the risk that the controller
is willing to take. The adoption of small values means that more time will be spent on the
design tasks already allocated, since more uncertainty is allowed for the outcome of the NPD
project. Adopting large values means precisely the opposite. A selection with a largeα (t)
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and a smallβ (t) means that the controller focuses more on the possibility of finishing the
design tasks situated on most ”stochastic critical paths ”, than on the capacity issue.

For rigorously presenting several types of market payoff functions encountered in
the literature we need more input parameters:

Market Payoff Related Input Parameters:
∆ : the total number of customer needs considered;
wδ (t) : the customer need normalized weightδ; ∀ δ = 1, ..., ∆;
Θ (n, t, δ) : the normalized maximal contribution of the design taskn in fulfilling

the customer needδ; Θ (n, t, δ) ∈ (0, 1]; ∀ n = 1, ..., N, ∀ δ = 1, ..., ∆;
Sδ (t, l (·, t)) : the normalizedS−function family giving the market payoff as func-

tion of the distance between the cumulated design tasks contribution per customer needδ,∑
n =1,..,N

Θ (n, t, δ) · l(n,t)
Lmax(n,t) , and the customer need ideal value given by the maximal target

performance levelsLmax(n, t) for each design taskn; Sδ ((t, l (·, t))) ∈ (0, 1), ∀δ = 1, ..., ∆.
The market payoff function describes the expected market value of a new product

which has to fulfill several customer needs. There are different levels of customer’s satisfac-
tion for the achieved new product, function of the distance between the cumulated and the
ideal value for each of the customer’s needs. AnS−curve type of market payoff function
gives an expected market value for each cumulated value of a customer need achieved at the
deadline. As mentioned in Chapter 2 Section 2.3, different types ofS−curve models and
analytical cumulative market payoff functions are encountered in literature. The simplest one

is
∆∑

δ=1

wδ (t)

[
∑

n =1,...,N

Θ(n, t, δ) · l(n,t)
Lmax(n,t)

]
– the linear weighted additive one of (Askin

and Dawson, 2000), while the most general function is the multiplicative one of (Yoshimura,

1996):
∆∏

δ=1

[
Sδ (t, l (·, t))]wδ(t)

.

3.4 The detailed planning process

The upper level of aggregate decision only sets the target performance levels for
each task. Here we construct a sequence of design tasks for each engineer, from the older
sequences and from the output of the aggregate decision process which took place at the
beginning of the current review period. This data consists of: left-over design tasks (i.e.
unallocated during the previous detailed planning process), unfinished design tasks already
in the schedule, newly arrived design tasks — concurrent either with the ones unfinished or
with the left over ones —, planned design tasks to be allocated at the beginning of the current
review period, and newly arrived design tasks — concurrent with the ones to be allocated
now. We shall distinguish between the planned design tasks for the current period together
with the newly arrived tasks concurrent with them and, on the other hand, all the ”old” design
tasks (unallocated or unfinished) together with the newly arrived design tasks concurrent with
design tasks from older review periods. The reason is that all these ”older” design tasks (from
the latter set) need to be finished as quickly as possible, while for the ”current” ones (from the
former set) the value function derived from market payoff maximization criteria can safely
be applied. We thus have the following three step general procedure, at the beginning of any
review periodt, (t, t + 1].
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Step 1 — Re-scheduling decision function
Given

• an updated subnetwork of design tasks from the aggregate decision level (i.e. until the
t + 1 stage of the network),

• for each engineerm, the old sequence of design tasks from the previous detailed plan-
ning process,

• for each design task, its updated number of planned stochastic activities,

• the mean of the exponential distribution for activity solving times

Find all the tasks from these old sequences not respecting anymore the precedence relation-
ships (i.e. the earliest start time of a design task should be greater or equal than the completion
times of all its predecessors), remove them from the sequences and mark them as unscheduled
in the network of tasks
Step 2 — (Re-)Scheduling of design tasks
Given

• the updated network from step 1

• for each engineerm, the updated old sequenceσ(m)\ of design tasks from step 1,

• for each design task its updated number of planned stochastic activities,

• the mean of the exponential distribution for activity solving times

Scheduleall the ”old” design tasks (the unallocated ones, unfinished ones and the newly
arrived concurrent with them) so as to minimize the expected makespan
Subject to the following constraints

• the precedence relationships from the updated network and from the updated old sched-
ule (received from step 1)

• each design task is scheduled to exactly one engineer

• for each engineer, the ”old” design tasks are scheduled at the end of the sequence from
step 1.

Step 3 — Allocation of concurrent design task
Given

• the number of engineers with their optimal work-pressure level

• the closeness parameterδ, the mean of the exponential distribution for activity times

• the short time planning horizonh (used only to compute the engineers work pressure,
see Subsection 3.4.3).

• for each engineerm, the updated old sequenceσ(m)\\ from step 2,

• the ”current” design tasks (the planned ones for the current review period and the newly
arrived concurrent with them) with their value function and number of planned stochas-
tic activities
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Allocate these ”current” design tasks so as to maximize the value function of the allocated
design tasks, andsetfor the allocated design tasks their due-date tot + h (t being the current
review period).
Subject to following constraints

• each design task is either allocated to exactly one engineer or is not allocated at all

• resources (engineers) have to be used close to their corresponding work pressure levels

• for each engineer, the current design tasks are allocated at the end of the sequence from
step 2.

The design tasks left over after the allocation procedure will be further available
at the detailed planning level. No due date will be set for them. This way of doing detailed
planning reflects the particular purpose of using due dates in NPD projects. Since the prece-
dence relationships between tasks are quite loose, the due dates are not mostly given to be
met, but to ensure the efficiency of the involved engineers, as we further explain in Subsec-
tion 3.4.3, based on organizational psychology literature. So, while the deadline of the whole
NPD project is a hard constraint, design tasks due dates are not.

An important remark concerning the optimality criteria of the allocation problem
is that the detailed planning level controller does not know the market payoff function, nor
the customer needs. For optimization purposes we then derivedesign task value functions,
as an indication of design task realizations influence on the market payoff function. They
are obtained by taking into account both themaximal contribution of each design taskn, in
achieving each customer needδ, and the type ofcumulative market payoff function(see with
the notation below the Appendix).

In order to formally present the setting, we first precisely define the input parame-
ters, and thereafter we formally describe each of above mentioned steps in greater detail.

Input parameters (at the beginning of review periodt):
α (m) : the optimal work pressure level for the engineerm, for all m = 1, ..., M .
ε : the closeness parameter, i.e. the allowed variation with respect to the optimal

work pressure level of each engineer.

σ
\
m (t) : them−th engineer scheduled design tasks sequence from review periods

prior to t, m = 1, ...,M ;
Ωi (t− 1) : the set of newly arrived design tasks (during review periodt − 1)

concurrent with design tasks allocated/to be allocated during thei−th review period,i =
0, ..., t;

Z(t) :=
⋃

m=1,...,M

σ
\
m (t) : the set of design tasks that were already scheduled in

previous review periods;
Y (t) := Ωt (t− 1)∪ Λt

t :the set of concurrent (planned or newly arrived) design
tasks to be allocated to the engineers at the beginning of review periodt;

Gt = (J(t) ∪ Y (t),A(Gt)) : the directed, acyclic graph of precedence relations

among design tasks at the detailed planning level, whereJ(t) := Z(t) ∪
(

t−1⋃
i=0

Ωi(t− 1)
)

;

l̂ (n, t) : the n−th design task performance level, as established at the aggregate
decision level,n ∈ J (t) ∪ Y (t);
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Na (n, t, l) : the n−th design task’s number of sequentially planned activities, if
its performance level isl, assuming the previous levels already solved; l = 1, ..., l̂ (n, t),
n ∈ J (t) ∪ Y (t); A design task that is in progress will start with the next activity not
performed yet.

V (n, t) : then−th design task value;∀n ∈ J(t) ∪ Y (t);

Notation (at the beginning of review periodt):
Sn (t): the random variable denoting then−th design task solving time;∀n ∈

J (t) ∪ Y (t);
Ω(t − 1) :=

⋃
i=0,...,t−1

Ωi (t− 1) : the set of newly arrived design tasks (during

review periodt− 1) concurrent with previously allocated ones;
k|σ : the real index (in the numbering of design task from1 to N ) of the k−th

design task from the sequenceσ, ∀k = 1, ..., |σ|
Pred (n) : the set of direct predecessors of the design taskn in the graphGt,

n ∈ J (t)
For an engineer, to solve a design tasksn, scheduled to him, means that he has to

sequentially solve the list of activities planned for it at the beginning of the review periodt,
for each level up tôl (n, t). Thus, we consider the solving time of any design taskn as being

a random variable distributed Erlang-

(
l̂(n,t)∑
i=1

Na (n, t, i) , µ

)
.

3.4.1 Re-scheduling decision function

At the beginning of each review periodt, (t, t + 1], the re-scheduling decision
function decides whether for the updated design tasks inZ(t) ∪ Ω(t− 1) we already have
a partial schedule, satisfying the precedence relations among the design tasks according to a
stochastic ordering.

Definition 1 Given two random variablesX1, X2 with distribution functionsFX1 , FX2 we
say thatX1 is stochastically smaller thanX2 (denoted byX1 ≤stoch X2 ) if FX1 (z) ≤
FX2 (z) , ∀z ≥ 0. The stochastic ordering is a partial order relationship among random
variables and distribution functions which is closed under multiplication and convolution.

We define the earliest starting time of a design task asE
k|σ\m(t)

(t) :=
k−1∑
i=1

[
S

i|σ\m(t)
(t)

]
and

its completion time asC
k|σ\m(t)

(t) :=
k∑

i=1

[
S

i|σ\m(t)
(t)

]
, for anyk ∈ Z(t).

So if there existsm0 andk0 such thatE
k|σ\m(t)

(t) <stoch maxstoch

j∈
n
Pred

�
k|σ\m(t)

�oCj (t)

(i.e. the earliest starting time of thek0 is stochastically smaller than the completion time of
one of its predecessors) then the design taskk0 and all its successors are added toJ (t) \Z(t)
and removed from the sequences assigned for the engineers, and implicitly fromZ(t).

3.4.2 (Re-)Scheduling of design tasks

The project controller of a design team will schedule to the engineers the design
tasks from the setJ (t) \Z(t) updated by the re-scheduling decision function. This is done
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mainly to minimize the expected makespan, because we want to avoid the delays that may
occur due to the precedence constraints relatingJ (t) \Z(t) to the set of concurrent planned
design tasks to be allocated next to the engineers.

As a result of solving the scheduling problem, we add for each engineerm an
optimal sequenceσ\\m (t) of design tasks, after its previous existing sequenceσ

\
m (t) of the

design tasks on progress from previous control periods. For the design tasks in the sequence
σ
\
m (t) the precedence relationships respect was already checked by the rescheduling decision

function (see Subsection 3.4.1). Thus, assuming that the engineer cannot work at more than
one design task at the same time and that no preemption is allowed, our (re-)scheduling
problem can be formulated as a stochastic identical parallel machine scheduling problem,
with non-unit jobs, and arbitrary precedence relationships. Its minimization criterion is the
expected maximum completion time. The precedence relationships are given by the directed,
acyclic subgraph ofGt spanned byJ (t) \Z(t).

Such a problem was solved analytically only for tree-like precedence constraints
(see for a review (Weiss, 1995)), while the research of (Foulds et al., 1991) and (Neumann and
Zimmerman, 1998)) gives polynomial heuristics even for more general types of precedence
constraints (i.e. stochastic precedence relationships).

Denoting byσ\\m (t) the sequence of design tasks fromJ (t) \Z(t) scheduled for
the engineerm in the beginning of review periodt (m = 1, ...M ), the detailed planning level
(re-)scheduling problem can be formulated as follows:
Minimize the makespan:

min�
σ
\\
1 (t),...,σ

\\
M (t)

�

{
max

m=1,...,M
E

[
C|σ\\m (t)|

���σ\\m (t)
(t)

]}
(3.5)

Subject to∀k ∈ 1, ...,
∣∣∣σ\\m (t)

∣∣∣ , ∀m = 1, . . . ,M

precedence relationship respect (i.e. a task only starts after all its predecessors all solved)

E
k|σ\\m (t)

(t) ≥ max
stoch

{
Cj (t) , j ∈ Pred

(
k|σ\\m (t)

)}
(3.6)

a task is scheduled to an unique engineer

∀n ∈ J (t) \Z(t), ∃!m ∈ 1, ..., M s. t.n ∈ σ\\m (t) (3.7)

where the completion and respectively the earliest starting time of a design task are given by:

C
k|σ\\m (t)

(t) :=
∑

i∈σ
\
m(t)

[
S

i|σ\m(t)
(t)

]
+

k∑

i=1

[
S

i|σ\\m (t)
(t)

]
(3.8)

E
k|σ\\m (t)

(t) :=
∑

i∈σ
\
m(t)

[
S

i|σ\m(t)
(t)

]
+

k−1∑

i=1

[
S

i|σ\\m (t)
(t)

]
(3.9)

3.4.3 Allocation of concurrent design tasks

After the (re-)scheduling, the design team project controller allocates the setY (t)
of concurrent (planned or newly arrived) design tasks to engineers.
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In order to investigate the problem more precisely, we need to model the depen-
dency between engineers’ productivity and their perceived work pressure. In (Bowers et al.,
1997) a first estimation of the work pressure is given by comparing, for a given engineer, the
estimated duration for completing the allocated design tasks and the available time until their
due date. For this reason, we introduce the notion of a common short planning horizonh
for all the engineers. We recall that for all the allocated design tasks it was set a common
due datet + h. Thus, we use the probabilityph(A, t) of finishing all design tasks of the
setA ∈ P(Y (t)) in time h. Therefore, we achieve efficiency for the engineers involved in
the process by requiring for each engineerm that |ph(Am, t)− α(m)| < ε, whereα (m) is
her/his optimal work pressure level. In words, this requires that for a short time horizonh,
the probability of finishing the design tasks allocated tom is close to an optimal subjective
value. This ensures both not overloading the engineers and not giving them too little work
to do. Organizational psychology (see for a review (Wickens and Hollands, 1999)) shows
that this dependency between the productivity and the work pressure is curvilinear (concave),
and this is the reason of the absolute value bound. The impact of work pressure on engineers
productivity has been confirmed by empirical research in (Oorschot, 2001).

The allocation of concurrent design tasks to engineers, as sketched in the beginning
of Section 3.4 (i.e. Step 3), is a multiple choice knapsack problem specific for NPD projects
under hard time constraint and was solved in (Dragut, 2002) (see Chapter 4). The stochastic-
ity and the fact that to each engineer we can assign more than one design task, allow neither a
mixed-integer formulation of the problem, nor a simpler formulation of the partial solutions
to be eliminated, as required by more efficient algorithms ((Ibaraki et al., 1978); (Dyer et al.,
1995)).

Remark 2 The solving timeSn(t) of an arbitrary design taskn ∈ A ∈ P(Y (t)) is a sum
of i.i.d. exponential random variables with meanµ. Since the meanµ is the same for the
activities of all tasks, the solving time of the entire setA of design tasks is Erlang(|A|, µ)
distributed. Thus the inequality|ph(Am, t)− α(m)| < ε leads to a minimal and a maximal
number of activities that can be performed by an engineer during the short-time planning
horizonh. This is a supplementary reason to keep the design task’s control at activity level.

Under the assumption that we have enough design tasks to be allocated to the en-
gineers, the allocation problem can be written as:

max
πM+1=(A1,A2,...,AM+1)∈ΠM+1


 ∑

m=1,...,M

∑

n∈A

V (n, t)


 (A0)

whereΠM+1 is the set of all(M + 1)-partitionsπM+1 = (A1, A2, ..., AM+1) of the set
of design tasksY which, for any engineeri with i ∈ {1, . . . , M}, satisfy the optimal work
pressure level condition|ph (Ai)− α (i)| < δ, and gather the left-over design tasks in the
last componentAM+1 of πM+1.

Starting from dynamic programming techniques, in Chapter 4 we propose a solu-
tion to this allocation problem. First we formulate this problem as a discrete deterministic
dynamic-programming problem. This formulation ensures the existence of an optimal solu-
tion, and creates a graph structure of the problem space. Afterwards, we avoid the exhaustive
search of the problem space by constructing a heuristic evaluation function of A* type for
a best-search algorithm. This function is based on aggregate information on the design task
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set. We discuss the efficiency of our algorithm, and we prove that it finds an optimal feasible
allocation, provided that there exists a feasible allocation.

If after solving the aggregate level problem, there are not enough design tasks to be
allocated to engineers, the engineers may receive design tasks from other projects to ensure
their efficiency. From this project point of view they will have zero-value, and hence will be
the last to be allocated.

3.5 Engineering process

During the review periodt, (t, t + 1], the engineers work concurrently, each on its
corresponding sequence of design tasks determined at the beginning of review periodt in the
detailed planning. Each design task has been allocated to only one engineer.

Input parameters (at the beginning of review periodt):
σm (t) : the sequence of design tasks allocated to the engineerm during the detailed

planning; m = 1, ...,M ;

Υ(t) :=
M⋃

m=1
{k| k ∈ σm (t)} : the set of all design tasks allocated to the team of

engineers;
Na (n, t, l) : the number of activities planned for solving the design taskn, at the

performance levell, assuming the previous levels already solved;l = 1, ..., L, n ∈ Υ(t);
l̂ (n, t) : the level at which the design taskn must be performed, as established at

the aggregate decision level,n ∈ Υ(t);
λ(t): the review-period dependent Poisson arrival of unplanned activities for all the

design tasks allocated to the engineers (λ(t)/µ < M ).

In real life, each engineer of the team ofM engineers has to perform the tasks allo-
cated to her/him by an NPD project control process, according to a certain priority order. As
discussed in Section 3.4, this order depends on the precedence relationships structure of the
NPD project, on the optimization criteria considered at the detailed planning level, and on the
type of market payoff function considered in the aggregate decision process. The sequence
of design tasks allocated to an engineer may contain design tasks that can be performed in
parallel and their order in a sequence reflects only the scheduler optimality criteria. However,
unlike machines, human beings are able to perceive the concurrency of design tasks. It is
reasonable to assume that during the execution process the engineers will not work all the
time on the allocated design tasks in the sequential order established by the scheduler.

During the solving process of the design tasks, several other disturbances may oc-
cur, resulting in new activities for the design tasks in progress. Also, addition/deletion of
design tasks in the NPD project may occur (see Chapter 2, Section 2.3). They appear as a
result of the incapacity to foresee at the outset all activities needed to complete the design
task. We model them to have preemptive resume priority over the planned activities.

All these uncertainties influence the execution of the schedule. Therefore, for the
next period, at the aggregate decision level the decision maker takes into consideration the
engineering level status at the end of the current review period. This fact is consistent with
real life situations where, on a weekly basis, each engineer measures how much time was
spent on solving each design task, what activities were solved, what activities were added.
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Thus, at the beginning of review periodt + 1, the output variables from the engineering
process are:

Na (n, t + 1, l) : the number of activities of design taskn, if design taskn is per-
formed at levell, assuming the previous levels already solved; l = 1, ..., L, n ∈ Υ(t);

l (·, t + 1) : {1, ..N} → {0, ..., L} : the achieved performance design task level
function;

3.6 Expected NPD project outcome

Before starting a new review period, the aggregate decision maker must update the
previous network of design tasks according to the technological changes occurred (deletion,
addition) of (unplanned) design tasks, arrival of new activities for the design tasks on which
the engineers have worked). In this chapter in Section 3.3 we have formulated the aggregate
decision process for one review period. Based on the previous mathematical descriptions,
one can link the review periods using approximate solutions for the detailed planning and
engineering process level problems, and assuming review period-dependent Poisson arrival
processes of unplanned design tasks with a common contribution function and identical per-
formance level structure.

In Chapter 5, after discussing how simple priority rules may be used to schedule
detailed planning level design tasks, we propose a simple queueing model to describe the
working behavior of an engineer/team of engineers in a NPD environment. We consider that
at the beginning of each staget the linkage problem gives a queueing system withM par-

allel servers, and a common queue ofÑa (t) =
∑

n∈Y (t)∪Z(t)

l(n,t+1)∑
l=l(n,t)+1

Na (n, t, l) planned

activities withExp (µ) distributed processing times. The solving process is disturbed by a
λ(t)-Poisson arrival of unplanned activities (λ(t)/µ < M ), having preemptive resume prior-
ity over the planned activities. By simplifying both the engineering, and the detailed planning
processes, this model is further enriched and used to compute the transition probabilities of
a non-stationary Markovian decision process model of the multi-period aggregate decision
problem (see Chapter 5). Thus, the aggregate decision process is extended from one-review
period to the multiple review period horizon. The Markov model can be further used to
predict the expected NPD project outcome in terms of market payoff, and to derive optimal
policies for achieving it.

3.7 Conclusions

Managing the new product definition is a complex managerial task. Based on recent
research, this chapter proposes a mathematical formulation of the NPD project management,
which includes two new problems specific for the NPD projects under hard time constraint.

We model the real-life project, and formalize the quality-time-cost trade-offs un-
derlying the NPD project mainly from the technological uncertainty point of view. This
chapter’s goal is to close the gap between the mathematical models world and management
world, providing a basis from which one can derive the constraints for computational models.
Thus, it facilitates the evaluation and acceptance of the computational results by managers.
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Part II

Analytical Solutions





Chapter 4

NPD Design Tasks Allocation

4.1 Introduction

Allocation problems appear in many decision making situations like the alloca-
tion of tasks to resources, of workers to jobs, of salespeople to regions, or of requirements
to suppliers. The problem definition and, in particular, the constraints depend on the pur-
poses of allocation ((Atan and Pandit, 1996), (Diks and Kok, 1998), (Romeijn and Morales,
2000)). The allocation problems involving people have recently received increased attention
of researchers, who developed optimal or heuristic allocation techniques for various real-life
situations ( (Abboud et al., 1998), (Bossert, 1998), (Reeves and Reid, 1999), (Haluk, 2000)).
The difficulty of these problems resides in both their combinatorial nature and in the diversity
of the real-life factors that have to be included in the model.

Based on the model choices from Chapter 3, Section 2.3, and Section 3.4 our allo-
cation problem can be stated as follows:
Given

• a finite number of design tasks, with their value function, and number of planned
stochastic activities i.i.d.Exp(µ)

• a finite number of engineers, with their optimal work pressure level

• the closeness parameterδ, the mean of the exponential distribution for activity timesµ
and the short time planning horizonh

Determine the allocation of design tasks to engineers

• in order to maximize the value function of the allocated design tasks

Subject to the following constraints:

• each design task is either allocated to exactly one engineer or is not allocated at all,
and resources (engineers) have to be used close to their corresponding optimal work
pressure levels.
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The remainder of this chapter is structured as follows. In Section 4.2 we state in a
mathematical way the problem and prove that it can be formulated as a discrete deterministic
dynamic-programming problem. This formulation ensures the existence of an optimal solu-
tion; through a graph structure of the problem space, it also allows the finding of an optimal
solution without an exhaustive search of the entire problem space. This graph structure can
actually be searched with much less computational effort with heuristic search algorithms.
Next, in Section 4.3, we construct such a heuristic evaluation function of A* type (see Def-
inition 7), using aggregate information (from the input data) on the design tasks set. Based
on established results from heuristic search algorithms, we propose an A* type algorithm
for solving the problem, with two possible implementations: standard best-first search (open
and closed priority lists, see for example (Russell and Norvig, 1995), and RBFS implemen-
tation (Korf, 1993). We also prove that owing to the properties of the proposed heuristic,
our algorithm is guaranteed to find an optimal cost allocation of the design tasks to engi-
neers. For the implementations, we have a complexity trade-off: the RBFS implementation
runs in linear space in the branching factor and the depth of the tree, and in linear time in the
number of generated nodes, at the expense of revisiting some nodes. The standard best-first
search implementation on the other hand is proven here to expand only a minimal number of
nodes (with respect to any other algorithm from its class), yet the spatial complexity may be
exponential: the branching factor elevated to the depth.

Experimental evidence of the tests we have performed shows however that the
RBFS solution revisits very few more nodes (having thus a small supplemental running time
with respect to the standard best-first), and the total number of visited nodes is very small
compared to the cardinality of the search space (second kind Stirling numbers). A detailed
discussion of these aspects concludes the chapter.

4.2 Problem formulation

In order to investigate the type of allocation problem more precisely, we recall from
Chapter 3, Section 3.4 that cognitive psychology studies (see for a review (Oorschot, 2001))
show there is a curvilinear dependency between engineers’ productivity and the time pressure
perceived by them. In (Bowers et al., 1997) a first estimation of the time pressure is given by
comparing, for a given engineer,the estimated duration for completing the allocated design
tasksandthe available time until the deadline.

As described in Chapter 3, Section 2.3, our design task solving times are stochastic,
and there is a total available timeh for all engineers (also calledshort time planning horizon,
and given as input); thus we use the probabilityph(A) of finishing all design tasks of a set
A in time h. We also assumed in Chapter 3, Section 2.3 the existence (i.e. input data) for
each engineerm of an optimal valueα (m) for this probability, calledoptimal work pressure
level. Therefore, we achieve efficiency for the engineers involved in the process by requiring
for each engineerm that|ph(Am)− α (m)| < δ. In words, this requires that for a short time
horizonh, the probability of finishing the design tasks allocated tom is close to an optimal
subjective value (the closenessδ being also an input). This ensures both not overloading the
engineers and not giving them too little work to do.

The notation used in this chapter is a simplification of the notation from Chapter
3, Section 3.4. The references to the target performance level or to the time moment were
removed from the notation. The current target performance levels are established during the
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aggregate decision level, so they cannot be influenced here. The allocation problem occurs
at the beginning of each review period, and we assumed that an approaching deadline of the
entire NPD project will not influence it.

Input parameters:
h : the short time planning horizon;
Y : the set of design tasks that have to be allocated;K := |Y |;
M : the number of engineers;
α (m) : the optimal workload level for the engineerm, for all m = 1, ...,M ;
δ : the closeness parameter, i.e. the allowed variation with respect to the optimal

workload level of each engineer;
µ : the rate of the exponential solving time for each activity (of any design task);
V (n) : the value function of the design taskn; V (n) is a real positive number, for

all n ∈ Y ;
Na (n) : the total number of activities of the design taskn; for all n ∈ Y ;

Definition 3 GivenY 6= ∅, |Y | ≥ m, we say thatπm = (A1, A2, ..., Am) is anm−partition

of the setY if
m⋃

i=1

Ai = X, Ai ∩Aj = ∅ andAi 6= ∅ for all i 6= j , i, j = 1, ...,m .

Notation:
Sn: the solving time of the design taskn.
σ : {1, ..., M} → R, whereσ(i) =

∑M
j=i+1 (α (j) + δ), for i ∈ {1, ..., M − 1},

with σ (M) = +∞.
v (A) :=

∑
n∈A

V (n) : the cumulated value of the design task setA ∈ P (Y );

u (∅) = 0;

ph (A) := Pr {Solving time(A) < h} = Pr
{ ∑

n∈A

Sn < h

}
: the probability of

solving the design tasks in time;A ∈ P (Y );
ΠM+1: the set of allM + 1-partitionsπM+1 of the set of design tasksY which,

for any engineeri with i ∈ {1, . . . ,M}, satisfy the optimal work pressure level condition
|ph(Ai)− α (i)| < δ, and gather the left-over design tasks in the last componentAM+1 of
πM+1.

The solving timeSn(t) of an arbitrary design taskn ∈ A ∈ P(Y (t)) is a sum
of i.i.d. exponential random variables with meanµ. Since the meanµ is the same for the
activities of all tasks, the solving time of the entire setA of design tasks is Erlang(|A|, µ)
distributed. Thus the inequality|ph(Am, t)− α(m)| < ε leads to a minimal and a maximal
number of activities that can be performed by an engineer during the short-time planning
horizonh.

Under the assumption that we have enough design tasks to be allocated to the en-
gineers, the optimization problem is defined as follows:

max
πM+1=(A1,A2,...,AM+1)∈ΠM+1


 ∑

m=1,...,M

v (Am)


 (A0)

In what follows, we reformulate the problem(A0) from a maximization to mini-
mization problem by subtracting the objective function from a strict upper bound of it. This
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allows us to associate to the new problem, calledA, a dynamic programming graph with
all the arc costs being positive numbers. Such a construction further enables us to find an
A∗-type heuristic since such an heuristic has to have positive values (see Definition 7).

Proposition 4 With the above notation, the problem(A0) is equivalent to the minimization
problem:

minπM+1∈ΠM+1C (πM+1) (A)

whereC (πM+1) = θ − ∑
m=1,...,M

v (Am), with θ = θ0 · K for K = |Y |, and withθ0 =

(1 + supk∈Y V (k)).

Proof. The functionC is correctly defined onΠM+1, becauseθ0 exists (finite
number of tasks, each with a finite value function). The equivalence of the objective functions
holds because we have that

π̃M+1 =
(
Ã1, ..., ÃM+1

)
is an optimal solution of(A0) ⇔

θ −
M∑

m=1

v
(
Ãm

)
≤ θ −

M∑
m=1

v (Am) for any πM+1 ∈ ΠM+1 ⇔

v (Y )− v
(
ÃM+1

)
≥ v (Y )− v (AM+1) ⇔

v
(
ÃM+1

)
≤ v (AM+1) ⇔

M∑
m=1

v
(
Ãm

)
= v (Y )− v

(
ÃM+1

)
≥ v (Y )− v (AM+1) =

M∑
m=1

v (Am) ⇔

π̃M+1 is an optimal solution of(A) .

4.2.1 Dynamic programming formulation of the reduced problem(A)

The DP approach for discrete optimization problems (such as planning, scheduling,
knapsack, etc.) has already been studied in the literature. The dynamic programming (DP)
formulation views the problem space as a directed graph with weighted arcs. This in turn
avoids an exhaustive search of the initial space, which, for many discrete optimization prob-
lems of practical interests, is huge. The basic DP methods can be improved through various
node selecting and pruning techniques, or through mixing them with other search methods.
We can mention (Dyer et al., 1995), (Martello et al., 2000), (Klamroth and Wiecek, 2000).
Also, many heuristic search methods can be used on this graph constructed by the DP formu-
lation, to search it much more efficiently (as (Grama and Kumar, 1995), for example). This is
the reason we first focus on the DP formulation of our problem, building a search space used
in the subsequent section, where we solve the problem through best-first search algorithms.

In some sense, the design task allocation problem we focus on is also linked to
multiple choice knapsack problems (studied in some of the above cited references). However,
for our problem, the stochasticity and the fact that to each engineer we can assign more
than one design task changes the setting quite substantially. The first feature of the problem
does not allow a mixed-integer formulation of the problem, while the second one changes
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dramatically the structure of partial solutions to be eliminated. Under the condition that
to each engineer we can assign one and only one design task, the concepts of IP or DP
infeasibility and dominance allow the development of more efficient algorithms as in (Dyer
et al., 1995), and (Ibaraki et al., 1978).

Many authors have proposed different formulations of DP ((Kumar and Kanal,
1988), (Ghalil and Park, 1992), (Eppstein et al., 1988), (Yao, 1980)). Following the (Grama
and Kumar, 1995) classification, the dependencies between subproblems in DP formulations
separate them in serial and non serial ones. The serial DP formulations are such that the
solution of a subproblem is constructed only from solutions of subproblems immediately
preceding the considered ones, and this is the type of our formulation as well.

Proposition 5 The(A) problem can be formulated as a finite-horizon discrete deterministic
dynamic problem.

Proof. Formulating, from an additive cost function, an optimization problem as
a discrete deterministic dynamic problem with(M + 1)−stages is equivalent to construct-
ing an oriented graph(Y, T ) called sequential or(M + 1)−stage graph and to defining the
corresponding costsC.

Let ∗ be a special symbol, denoting the finding of a solution. We define

X0 = {∅} , B0 = ∅

Xi =





(Bi−1, Ai) :

Bi−1 ∈ P (Y )
Ai ∈ P (Y \Bi−1)
|ph (Ai)− α (i)| < δ

p(M−i)h (Y \ (Bi−1 ∪Ai)) < σ (i)





for i s.t.1 ≤ i ≤ M − 1

XM =



(BM−1, AM ) :

BM−1 ∈ P (Y )
AM ∈ P (Y \BM−1)
|ph (AM )− α (M)| < δ





XM+1 = {∗}
Thus, each setXi represents possible allocations for the engineeri, whenBi−1

contains the design tasks already allocated to the previous engineers (from1 to i − 1).
The last condition for theXi (with i < M ) ensures there are enough design tasks left in
Y \ (Bi−1 ∪Ai), so that aδ−close optimal work pressure can be achieved also for the sub-
sequent engineers (fromi + 1 to M ). We recall that byσ(i) we have denoted the sum∑M

j=i+1 (α (j) + δ) This is so because what we want is actually

∀j ∈ {i + 1, ..., M} , |ph (Aj)− α (j)| < δ, where Aj ∈ P (Y \ (Bi−1 ∪Ai)) (4.1)

The absolute value inequality contains actually two inequalities, and the one bound-
ing from above the probability of finishing in timeh is the interesting one. Because the
engineers need to experience some pressure in order to be efficient, which means that the
probability of finishing should be not too large.

The other inequality of the absolute value inequality (4.1) ensures that the proba-
bility is not too low, i.e. the pressure is not too big. Yet, this could be dealt with by removing
some tasks, so this is not a necessary condition for the existence of a complete solution. Thus,
the inequality (4.1) implies

∀j ∈ {i + 1, ...,M} , ph (Aj) < α (j) + δ, where Aj ∈ P (Y \ (Bi−1 ∪Ai))
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By adding them, and by noting the independence of the solving times of the tasks from the
Aj sets (which are disjoint), we obtain a probability of either one of theAj task sets to be
finished beforeh:

Pr





M∨

j=i+1

Solving time(Aj) < h



 <

M∑

j=i+1

(α(j) + δ) = σ (i) .

We notice that

Pr



Solving time




M⋃

j=i+1

Aj


 < (M − i) h



 ≤ Pr





M∨

j=i+1

Solving time(Aj) < h





(because anytime the events of the left member occur, the ones on the right occur also). Since
M⋃

j=i+1

Aj ⊆ Y \ (Bi−1 ∪Ai) we also notice that

p(M−i)h (Y \ (Bi−1 ∪Ai)) ≤ Pr



Solving time




M⋃

j=i+1

Aj


 < (M − i)h



 ,

thus proving the last condition as necessary.
Further we define for each decision step the decision set and the transition function.

D1 (∅) = {A1 : A1 ∈ P (Y ) , |ph (A1)− α (1)| < δ, } , t1 (A1) = (∅, A1)

For (Bi−1, Ai) ∈ Xi , Bi = Bi−1 ∪Ai, i = 1, ...,M − 1 we define:

Di+1 (Bi−1, Ai) =



Ai+1 :

Ai+1 ∈ P (Y \Bi)
|ph (Ai+1)− α (i + 1)| < δ

p(M−i−1)h (Y \ (Bi−1 ∪Ai ∪Ai+1)) < σ (i + 1)





ti+1 ((Bi−1, Ai) , Ai+1) = (Bi−1 ∪Ai, Ai+1) = (Bi, Ai+1) where the set
Ai+1 ∈ Di+1 (Bi−1, Ai)

For (BM−1, AM ) ∈ XM we define

DM+1 (BM−1, AM ) =
{

AM+1 :
AM+1 ∈ P (Y \BM )
|BM ∪AM+1| = K

}

and for(BM−1, AM ) ∈ XM , AM+1 ∈ DM+1 (BM−1, AM ) let us define

tM+1 ((BM−1, AM ) , AM+1) = {∗}

For all (Bi−1, Ai) ∈ Xi, 1 ≤ i ≤ M let us define

T (Bi−1, Ai) =
{

(Bi, Ai+1) : (Bi, Ai+1) = ti+1 ((Bi−1, Ai) , Ai+1)
Ai+1 ∈ Di+1 (Bi−1, Ai)

}

and
T (BM−1, AM ) = {∗}
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The nodes connected by arcs are:
i) ∅ and(∅, A1) ∈ X1,
ii) (Bi−1, Ai) and(Bi, Ai+1) if (Bi−1, Ai) ∈ Xi and if (Bi, Ai+1) ∈ T (Bi−1, Ai), with
1 ≤ i ≤ M − 1,
iii) (BM−1, AM ) ∈ XM and{∗} .
The corresponding costs are:
i) C (∅, (∅, A1)) = θ0 · |A1| − v (A1) > 0
ii) C ((Bi−1, Ai) , (Bi, Ai+1)) = θ0 · |Ai+1| − v (Ai+1) > 0, 1 ≤ i ≤ M − 1;
iii) C ((BM−1, AM ) , {∗}) = θ0 · (K − |BM−1 ∪AM |) + 1 > 0

By construction, thus, we have the following.

Corollary 6 The problem of finding the minimal cost path in the(M + 1)−stage weighted
graph(Y, T ) is equivalent to the problem of obtaining an optimal allocationπM+1 of the set
of design tasksY to M engineers in the sense of problem(A).

Proof. One can easily see that the objective function of problem(A) can be ex-
pressed as the sum of the costs per arcs, since

C (πM+1) =
∑

i=1,...,M

(θ0 · |Bi \Bi−1| − v (Bi \Bi−1)) + θ0 · |Y \BM |

4.3 Heuristic search algorithms for solving the problem

4.3.1 State-space representation of a problem. Search graph, best-first
search.

Once a specific problem is given, we can obtain its associated graph of the state-
space representation type, where the nodes correspond to partial problem solution states and
the arcs correspond to steps in a problem solving process. An initial state, corresponding
to the given information in a problem instance, forms the root of the graph. The graph also
defines a goal condition, which is the solution to a problem instance. The search on a graph
of state space representation type characterizes problem solving as the process of finding a
solution path from the initial state to a goal (Russell and Norvig, 1995). In view of this
definition the(M + 1) stages dynamic programming oriented graph(Y, T ) is already a state
space representation of the problem(A), and the main result of the previous section was
that the problem of finding the minimal cost path in this graph is equivalent to the one of
obtaining an optimal allocation of the set of design tasksX (t0) to M engineers in the sense
of the problem(A).

It is helpful to think of the search process as building up a search graphS =
(Y

′
, T

′
) that is an oriented subgraph of(Y, T ) superimposed over it. Such a search graph is

determined by a triple(I, O,G), where:
1) I is the set of initial states of the problem
2) O is the set of legal rules/operators that can be applied in order to generate the

children of a node
3) G is the set of goal states of the problem.



48 CHAPTER 4. NPD DESIGN TASKS ALLOCATION

Assuming that we have constructed an heuristic evaluation function, the main steps
of a general heuristic graph best-first search method are:

1. Start with a vertex set called OPEN, containing just the initial states and an
empty vertex set called CLOSED

2. Until a goal node is found, or there are no nodes left on OPEN do:
· Pick the node having the smallest value of the evaluation function among the ones

in OPEN
· Generate its children, remove the node from OPEN and put it in the list of nodes

called CLOSED
· For each child do:
(a) If it has not been generated before, evaluate its heuristic function, add it to

OPEN, and record its parent
(b) If it has been generated before, change the parent if this new parent is better

(from the evaluation function point of view) than the previous one. In that case, update the
cost of getting to this node and to any children that this node may already have.
where

OPEN is the list of nodes that have been generated and have had the heuristic
evaluation function applied to them but which have not yet been expanded (i.e. their children
have not been generated yet) OPEN is actually a priority queue in which the elements with
the highest priority are those with the smallest value of the heuristic function.

CLOSED is the list of nodes that have already been expanded. We need to keep
these nodes in memory if we want to search a graph rather than a tree, since whenever a new
node is generated, we need to check whether it has been generated before.

The stopping rule of the algorithm contains a condition for the moment in which we
reach a goal state and also a condition for the problems which do not have feasible solutions.
It is obvious that the existence of a solution depends on the set of input data.

4.3.2 Construction of a monotonic A* heuristic evaluation function

We consider only(I, O,G) triples with only one initial state:|I| = 1. Let us denote
by g∗, h∗ : Y → R+ the functions defined such that for alln ∈ Y , g∗(n) is the cost of the
shortest path from the start node to noden and for alln ∈ Y , h∗(n) is the actual cost of the
shortest path fromn to a goal. Thus, the functionf∗ : Y → R+ defined, for alln ∈ Y , by
f∗(n) = g∗(n) + h∗(n) is in any noden the actual cost of the optimal path from a start node
to a goal node that passes through noden. And, letg, h : Y → R+ be two functions such that
for all n ∈ Y , g(n) equals the cost of the current path to the noden, obtained by summing
the costs of the arcs from the initial state ton, and for alln ∈ Y , h(n) is an estimate of the
actual cost fromn to a goal state.

Definition 7 A best-first search algorithm usingf = g + h as previously described, as an
evaluation function for ordering nodes in a general heuristic graph search method is called
an algorithm A, andf is called an A heuristic evaluation function. An A algorithm where
h(n) ≤ h∗(n) is called A* andf is called an A* heuristic evaluation function (see (Nilsson,
1982)).

Definition 8 A best-first search algorithm is said to be admissible or optimal if for any state-
space representation graph having a finite cost path to a goal state the algorithm finds an
optimal path. (see (Nilsson, 1982))
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We also have, by immediately combining several results from (Nilsson, 1982) the
following:

Proposition 9 All A* algorithms are admissible, provided there is some strictly positive con-
stantε such that the cost on each arc of the state-space representation graph is at leastε, and
each node in the graph has a finite number of children (if any).

Lemma 10 Consider the functionD : P(Y )×P(Y ) → R+ defined byD(A,B) = v(B\A),
then we have the following properties:

1. D (A,B) ≥ 0 for all A, B ∈ P (Y ).

2. D (A,C) = D (A,B) + D (B,C) for all A ⊂ B ⊂ C with A,B, C ∈ P (Y ).

3. C (πM+1) =
∑

i=1,...,M

(
θ0 · |Bi \Bi−1| −D (Bi−1, Bi)

)
+ θ0 · |Y \BM |

Proof. The first two properties hold due to the linearity and positivity of the cu-
mulated value functionu, while the last is straightforward from the definition ofD andC.

Proposition 11 There exists an evaluation functionf = g + h defining an admissible A* al-
gorithm for the(A) problem, provided that for the general search graph method we consider
the triple(Ĩ , Õ, G̃) where:

a) Ĩ := {∅}

b) Õ :=




∅ has as child(∅, A1) if A1 ∈ D1 (∅)
(Bi−1, Ai) has as child(Bi, Ai+1)

if Bi = Bi−1 ∪Ai with
Ai+1 ∈ Di+1 (Bi−1, Ai)





c) G̃ := {(BM , AM+1) |AM+1 = (Y \ (BM−1 ∪AM ))}

Proof. We consider as a state space representation of the problem(A) the(M + 1)
stages dynamic programming oriented graphG = (Y, T ) constructed in proposition 5 with
its corresponding costs.

For every node describing a state of the problem of the type(Bi−1, Ai) , i =
1, M + 1 we have according to the definition of an A* algorithm that:f∗ (Bi−1, Ai) =
g∗ (Bi−1, Ai)+h∗ (Bi−1, Ai), whereg∗ (Bi−1, Ai) is the cost associated to an optimal path
from ∅ to (Bi−1, Ai) andh∗ (Bi−1, Ai) is the cost associated with an optimal path from
(Bi−1, Ai) to a final node.

We can construct approximations for the above defined evaluation functions:

f (Bi−1, Ai) = g (Bi−1, Ai) + h (Bi−1, Ai)

g (Bi−1, Ai) =
i∑

j=1

[
θ0 · |Bj\Bj−1| −D (Bj−1, Bj)

]

h (Bi−1, Ai) = ε0 + θ0 · |Y \Bi| −D (Bi, Y ) ,∀i = 1, ..., M − 1
h(BM−1, AM ) = ε0 + θ0 · |Y \ (BM−1 ∪AM )|
h(BM , AM+1) = 0
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Since there existsθ0 such thath (Bi−1, Ai) ≥ 0,∀i = 1, ...,M+1 , if we can prove
that for any node(Bi−1, Ai) , i = 1, ...,M + 1 the relationh (Bi−1, Ai) ≤ h∗ (Bi−1, Ai)
holds, then the algorithm constructed with the above defined evaluation function is an A*
algorithm, according to the definition.

Since our oriented graphG is finite and all the costs associated with the arcs ofG
are strictly positive, we have that there exists anε0 > 0 such that the cost on each arc of the
state-space representation graph is at leastε0. So, if our algorithm is of A* type then by using
proposition 9 we have that our algorithm is an admissible one.

From the definitions of costs, we see that we can takeε0 = 1, because the minimum
cost, equal to1, is reached when|Ai+1| = 1 and its element (the design task) has maximal
value function. If from(Bi−1, Ai) we cannot reach a goal solution thenh (Bi−1, Ai) <
h∗ (Bi−1, Ai) = ∞. Otherwise, let((Bi−1, Ai) , (Bi, Ai+1) , ..., (BM , AM+1)) be the best
path (allocation) from the cost point of view which can be obtained by generating all the
children of(Bi−1, Ai) according to the rules from̃O. We have the following two possibilities

a) i < M. Then using lemma 10 we have that

h (Bi−1, Ai) = 1 + θ0 · |Y \Bi| −D (Bi, Y ) =

= 1 + θ0 · |Y \Bi| −
M+1∑

j=i+1

D (Bj−1, Bj) ≤

≤ 1 + θ0 ·
M+1∑

j=i+1

|Aj | −
M∑

j=i+1

D (Bj−1, Bj)

= h∗ (Bi−1, Ai)

b) i = M. In this case we haveh (BM−1, AM ) = h∗ (BM−1, AM ).
c) i = M + 1. In this case we also haveh (BM , AM+1) = 0 = h∗ (BM , AM+1).

Corollary 12 For the (A) problem there exists an evaluation function defining an A* type
algorithm which is guaranteed to find an optimal cost allocation of the design tasks to engi-
neers.

A* algorithms do not requireg(n) = g∗(n), therefore admissible heuristics may
initially reach non-goal, non-final states along a suboptimal path, as long as the algorithm
finds an optimal path to all states on the path to a goal. One way of describing the monotone
property is that the search is everywhere locally consistent (i.e. they consistently find the
minimal path to each state they encounter in the search) with the heuristic function used.
The difference between the heuristic measure for a state and any one of its descendants is
bound by the actual cost of going between the state and its descendent. This is to say that the
heuristic function is everywhere admissible, reaching each state along the shortest path from
its ancestors.

Definition 13 A heuristic functionh is said to satisfy the monotone restriction/consistency
assumption if:

1. for all ni andnj , wherenj is a descendant ofni (i.e. nj is obtained during the
process of expanding the children ofni) holdsh(ni) − h(nj) ≤ cost(ni, nj) := the actual
cost of a minimal path from stateni to statenj .

2. h(goal) = 0.(see (Nilsson, 1982))
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Proposition 14 If for the functionh the monotone restriction is satisfied, then A* has already
found an optimal path to any node it selects for expansion. That is, if A* selects noden for
expansion, and if the monotone restriction is satisfied,g(n) = g∗(n). (see (Nilsson, 1982))

Whenever a search algorithm using a monotonic heuristic rediscovers a state, it
is no longer necessary to check if the path to it is shorter than the previous one, because
it will surely not be! This allows any state that is rediscovered in the space to be dropped
immediately without updating the path information retained on OPEN or CLOSED. Hence
the computational complexity of the algorithm is reduced substantially.

Proposition 15 Applied to the problem(A), the functionh, defined in the proposition 11
satisfies the monotone restriction.

Proof. Let (Bi−1, Ai) and(Bi+m−1, Ai+m) with m ≥ 1, i ≤ M +1 be two nodes
connected by an arbitrary pathPi,i+m = (Bi−1, Ai) , (Bi, Ai+1) , .., (Bi+m−1, Ai+m) . Then,
by definition of the functionh and by lemma 10 we have that:

h (Bi−1, Ai)− h (Bi+m−1, Ai+m) = θ0 · [|Y \Bi| − |Y \Bi+m|]−D (Bi, Y )+

+ D (Bi+m, Y )

= θ0 · |Bi+m\Bi| −
i+m∑

j=i+1

D (Bj−1, Bj) .

By applying once more the same lemma 10, we have

h (Bi−1, Ai)− h (Bi+m−1, Ai+m) ≤ min
Pi,i+m



θ0 · |Bi+m\Bi| −

i+m∑

j=i+1

D (Bj−1, Bj)



 =

= cost((Bi−1, Ai) , (Bi+m−1, Ai+m))

For i + m − 1 = M the relation holds trivially sinceh (BM , AM+1) = 0 and
h (BM−m, AM−m+1) ≤ h∗ (BM−m, AM−m+1) =cost((BM−m, AM−m+1) , goal state) .

4.3.3 Implementation and experimental results

The problem with the general best-first search algorithm is its spatial complexity.
The general algorithm has to store in memory all the frontier nodes (of the already explored
subgraph out from the total search space). This can be exponential: in our case, one may
have to storeO(bM ) nodes in a worst case, whereb is the average branching factor, that is
the average number of children of a node. There are several variants of algorithms which
simulate the general best-first search, that is, they explore the state space also in best-first
order, yet with a different definition and management of the open and closed lists. These
variants have been designed in order to get around the spatial complexity difficulty. We can
mention iterative deepening (ID), node retraction, and recursive best-first search (RBFS) (see
(Korf, 1995) for a discussion). In order to gain on the side of spatial complexity the most,
we chose to implement an A*-RBFS variant for our A* algorithm. This variant combines the
ideas and advantages of IDA* and node retraction with an A* evaluation function (see (Korf,
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1995)), and it reduces the space complexity of the general best-first search from exponential
to linear. This is done at a cost of only a constant factor in time complexity, as experimental
evidence shows in (Korf, 1993), where the RBFS algorithm has first been presented.

In general, given an A*-evaluation function (as the one we have just constructed),
the RBFS variant can be shown to always terminate, and to find an optimal solution, if
there exists one (see (Korf, 1993)). Also, the same author shows that with a monotonic
A*-evaluation function, RBFS generates fewer nodes than IDA*, up to tie-breaking among
nodes whose cost equal the solution cost.

The RBFS algorithm always expands nodes in best-first order, storing in our case
O(bM) nodes at most. This algorithm goes as follows (see (Korf, 1993))

RBFS(node: N, bound: B)
if N.f > B then return N.f
if goal(N)=YES then EXIT
T:=children(N)
if length(T)=0 then return infinity
if length(T)=1 then a:=infinity
for each i from 1 to length(T) do

if T[i].f < N.F then T[i].F := max(N.F,T[i].f)
else T[i].F := T[i].f

sort(T) /* increasing order ofT[i].F */
while T[1].F ≤ B and T[1].F < infinity do

if length(T) >1 then a:=T[2].F
T[1].F := RBFS(T[1],min(B,a))
sort(T)

endwhile
return T[1].F
We see that besides the evaluation functionf , for each node there exists another

evaluation function, namelyF , which changes during the exploration. The initialization for
the root sets theF value tof , and the boundB to infinity. The RBFS algorithm may visit
nodes more than once, thus visiting a greater number of nodes overall speaking, because of
the updating of this functionF . Yet the advantage over standard best-first is that this it may
have to storeO(bM ) nodes in a worst case, while RBFS stores onlyO(bM).

Experimental evidence tends to show moreover that this rate of revisiting nodes
is very small, and this is in accord with the extensive experiments performed in (see (Korf,
1993)), comparing (when the available memory permitted it) RBFS with standard best-first
search. Our experiments have been done for various correlations of duration (number of
activities) with value function for the tasks, and for a few tens of tasks and a few engineers.

1. weak correlation: one cluster and a few outliers

2. weak correlation: three clusters

3. strong correlation: uniform distribution over one or two clusters

The results are collected in Table 4.1, giving, for 20 to 50 design tasks, and 5
engineers, the cardinality of the whole search space, and the average cardinality of the set of
effectively expanded nodes by the algorithm, for the three types of correlation. The rate of
revisiting nodes is under0.1%. This is why we only give the set cardinality. For each entry
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No. Cardinality of the Expanded nodes
tasks whole search space Weak correlation Strong

(Stirling number) outliers 3 cls correlation
uniform,
1 or 2 cls

20 749206090500 271 290 7821
25 2436684974110751 296 301 64231
30 7713000216608565075 322 412 2619156
35 24204004899040755811870 2142 21146 19645801
40 75740854251732106906082250 3600 472023 128452100
45 2367959979979225603927892426501 8352 1532010 392084301
50 74009586436825301627118813958762515170 11512501 859780221

Table 4.1. Expanded nodes versus cardinality of whole search space for RBFS implementa-
tion

in the table, the averages have been computed independently for25 different data sets. On
the average our numbers should be accurate only within an order of magnitude, since the data
was independently random generated for each test, and the space of all possible input data
has a very large size compared to the number of actual data sets we tested on.

As the number of design tasks increases (we have done experiments up to 50 tasks),
in the weak correlation case the numbers stay very small, while in the strong correlation, as
one would expect, the execution time and number of expanded nodes is increasing. Moreover,
from a practical point of view this allocation problem becomes more important when the
design tasks to be allocated are quite different (i.e. there is a weak correlation in between the
number of activities per design task).

4.4 Conclusions

The combinatorial nature of this allocation problem stems from the fact that the
number of alternative ways of groupingK objects intoM groups is given by a Stirling

number of the second kindS(M)
K , whereS

(M)
K = 1

M !

M∑
m=0

[
(−1)M−m

(
M
m

)
mK

]
(see

Table 4.1 for values). So, the solving method described in this paper starts with a dynamic
programming model but it uses heuristic search algorithms, primarily due to the lack of ana-
lytical solutions with a tractable computational complexity. However, the general algorithm
constructed in this paper has the property that if another algorithm of its type expands fewer
nodes than it, then that other algorithm runs the risk of missing the optimal solution.

Proposition 16 Among optimal algorithms (i.e. algorithms that find the highest quality so-
lution when there are several different solutions) of its type – algorithms that extend search
paths from the root – A* is optimally efficient for any given monotonic heuristicf . That is,
no other optimal algorithm is guaranteed to expand fewer nodes than A*. (see (Dechter and
Pearl, 1985))

Corollary 17 For the (A) problem we have constructed a general A* algorithm which is
guaranteed to find an optimal cost allocation of the design tasks to engineers and to expand
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for any given monotonic heuristicf the minimal number of nodes from its associated dynamic
programming graph.

We have chosen to implement this general algorithm through a variant: A* recur-
sive best-first search (RBFS). This variant also expands nodes in best-first order, yet with a
theoretic overhead of revisiting and reexpanding some nodes. However, the main advantage
is the linear space complexity ofO(bM) nodes stored, versus the exponential space com-
plexity of O(bM ) nodes in the general algorithm. Moreover, experimental evidence shows a
very low rate of revisited nodes, under0.1%, and is in agreement with theoretical arguments,
which show that in a particular abstract model, RBFS is asymptotically optimally efficient
(see (Korf, 1993)).

Experimental evidence from our tests also shows a very low rate of number of
nodes effectively visited, compared to the total number of nodes in the search space, given by
the Stirling number of the second kind.



Chapter 5

Multi-period Aggregate Decision
— A Markov Approach

5.1 Introduction

In Chapter 3 Section 3.3 we have discussed the aggregate decision problem for one
review period. With the purpose of predicting the outcome of the NPD project at its deadline,
we have to study this problem for multiple review periods. In order to be able to do that, we
need a mechanism to predict what happens at the lower levels. Such a mechanism will help
us have a formula to compute the transition probabilities of a discrete-time, finite-horizon,
non-stationary Markov decision problem, which is what we propose to solve the multi-period
aggregate decision problem. This Markovian decision process that we present in this chapter
is an extremely general framework that supports the dynamic achievement of the new product
definition. It takes into account not only a highly dynamic market situation, but also a high
technological uncertainty that affects the content of the project design tasks.

This chapter is organized as follows. In Section 5.2 we introduce simple heuristics
for both the engineering process, and the detailed planning process, and we construct and
validate a simple queueing model to estimate the solving time distribution of design tasks in
NPD projects. In Section 5.3 we reduce the influence of the market uncertainty on the NPD
project, focusing on its technological uncertainty. Therefore, we take into account only the
market payoff function values available at the deadlineT of the NPD project. These mod-
elling choices allow the computation of transition probabilities for a non-stationary Marko-
vian decision process model of the aggregate decision problem. In the end of Section 5.3, we
show that for this model there exists an optimal market payoff value as well as optimal poli-
cies to achieve it. In Section 5.4 we restrict the general Markovian decision problem to two
particular cases. The first case considered is the one of an NPD project without precedence
constraints. The second one is the case of an NPD project consisting of a sequence of design
tasks. In the following chapters we obtaine for both cases structured optimal policies. By
combining the derived insights we provided guidelines for heuristic policies in the general
case situation.



56 CHAPTER 5. MULTI-PERIOD AGGREGATE DECISION – MARKOV

5.2 An estimation model for the solving time distribution of
a set of NPD design tasks with precedence relationships

This section concerns the detailed planning level and the engineering level; here
we present the estimation model used as a tool to predict what happens at these levels, for use
in our multi-period aggregate decision control. We now focus on the detailed planning level
and engineering level.

Considering the potential risks of new product development projects (NPD), the
characteristics of their design tasks are critical for an effective management. From an oper-
ations management perspective it is important to realize what operational characteristics of
design tasks cause projects to be late. Earlier attempts to study and model the variability of
the NPD design tasks are due to (Oorschot, 2001), and (Tatikonda and Rosenthal, 2000a).
They identify the technological novelty, the magnitude of the design tasks, the interactions
between the design tasks in the NPD project, and the balancing between projects among
the most important causes of the unpredictability of the design tasks solving times in NPD
projects.

The main contribution of this section is the derivation of a simple mathematical
model for both the engineering and detailed planning level processes from Chapter 3. This
model allows the estimation of solving time distribution function of a set of design tasks with
precedence relationships from an NPD project. The model is based on operational character-
istics of NPD projects that evolved from theoretical and empirical research on these projects.
Moreover, we try to asses the validity of our model on real-life data.

5.2.1 Model description and analysis

We focus on both the detailed planning and engineering processes that take place
during an arbitrary review period of the NPD project control model from Chapter 3 Sec-
tion 3.4. We recall that at the beginning of each review period we have a subnetwork of
(planned or newly arrived) design tasks being subject to precedence constraints inherited
from the project network. As a consequence of the assumptions from Chapter 2, Section 2.3,
at the detailed planning level each design taskn can be viewed as alist of planned activities,
Na(n) (to be sequentially performed). The split of each task into activities gives a uniform
measure of the difficulty implied by its realization. For the unfinished design tasks, unplanned
activities arrive according to a Poisson process of rateλ. They appear as a result of the inca-
pacity to foresee at the outset all activities needed to complete the design tasks, so we model
them to have preemptive resume priority over the planned activities. The solving time of the
activities are random variables independent identically exponentially distributedExp(1/µ).

The notation used in this chapter is a simplification of the notation from Chapter
3 Section 3.4, and Section 3.5. The references to the target performance level, or to the
time moment were removed from the notation. The current target performance levels are
established during the aggregate decision level, so they cannot be influenced here. Also, the
detailed planning, and engineering process control problems occur at the beginning of each
review period, and we assumed that an approaching deadline of the entire NPD project will
not influence them.



5.2. ESTIMATION MODEL FOR THE SOLVING TIME DISTRIBUTION 57

Input parameters:
M : the number of engineers;
µ : the rate of the exponential solving time for each activity (of any design task);
λ: the rate of the Poisson arrival of unplanned activities for all the design tasks

allocated to the engineers at the beginning of the current review period;
η : the rate of the exponential solving time for the comparisons in between each

two design tasks during the detailed level reprioritization process;
G = (J(G),A(G)) : the directed, acyclic graph of precedence relations among the

design tasks;
V (n) : the value function of the design taskn; V (n) ∈ R+, for all n ∈ J(G);
Na (n) : the total number of activities of the design taskn; for all n ∈ J(G)Y ;
Even if all the design tasks allocated in the previous review periods are finished,

the previous chapters have shown that the detailed planning process is a complicated one.
Nevertheless, the knowledge about its results is crucial for the aggregate decision, and the
process of acquiring this knowledge should be very simple in order to allow the decision
maker to evaluate the various possible choices.

What, we propose is to assume that the team of engineers will work with all its
available capacity on any of the design tasks. Such an heuristic simplifies the detailed plan-
ning problem by allowing more than one engineer to work on a design task. The order in
which the design tasks are performed may be approximated. In the case of the general cumu-
lative market payoff functions from (Askin and Dawson, 2000), and (Yoshimura, 1996) we
can order the design tasks to the team of engineers according to their value (see Appendix
and Chapter 3 Section 3.4). Other heuristic orderings suitable in the case of a new product
which has to fulfill only one customer need might be heuristics for nonpreemptive scheduling
problems with identical processors (i.e. in our case the engineers) and precedence constraints.
There, the concept of list schedule turned out to be useful (see for a list (Neumann and Zim-
merman, 1998)). An unscheduled design task is said to be ready if all its predecessors, if any,
have been solved. A list schedule is a permutationσ of the set of all design tasks with the
following meaning: any time that a processor becomes idle, the solving of that ready design
task with the minimum index in the permutationσ is begun by the idle processor.

The sequence of design tasks allocated to the team may contain more than one
design task that can be performed in parallel and their order in a sequence reflects only the
optimality criteria of the scheduler from the detailed planning level. Unlike machines, human
beings are able to perceive the concurrency and the relative urgency of design tasks. There-
fore, it is reasonable to assume that during the planning period the engineers will not work all
the time on the sequenced design tasks in the order established by the scheduler. The decision
of an engineer of choosing or not a specific design task to work on is not really something
that can be exactly modelled, due to the large variety of variables implied and due to the lack
of detailed good quality empirical data to support theories. However, we can model this in
probabilistic terms, by assuming that at each time instant the team can decide, with a small
probability1 − p, to temporarily re-prioritize the order of the design tasks that can be per-
formed in parallel, by successively comparing the first activities to be done from each of the
other allocated tasks. Comparing design tasks requires capacity, which can be modelled as an
activity with exponential distribution with mean1/η. Thus, at any time instant the team will
either work with the probabilityp on the planned activities of the design tasks in the order
given by the scheduler, or, with a probability1 − p, will try to re-prioritize the design tasks
instead of trying to solve them.
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Proposition 18 LetΞ be the random variable giving the solving time of the allocated design
tasks, andi the number of concurrent design tasks allocated to the engineers. Then fori > 2,
Ξ’s cumulative distribution function equalsFY (h) = Pr{Ξ ≤ h} = p · Pr{Cmax (k) ≤
h}+(1−p) ·Pr{YErlang(i−1) ≤ h}, whereCmax(k) is the makespan of a queueing system of
M parallel servers with a common queue having a series ofk =

∑
n∈J(G)∪Y

Na (n) of planned

activities, and(1 − p) is the probability that during the solving process the design tasks
order is reconsidered. The planned activities have a common processing time, exponentially
distributed with mean1µ , and their solving process is disturbed by aλ−Poisson arrival of
unplanned activities. The arrival process of unplanned activities stops when all the planned
activities are finished. Thus, the cumulative distribution function ofY can be computed
numerically.

Proof. All the planned activities are assumed to be independent identically dis-
tributed, and once the design tasks are ordered, we have as well an ordering among all the
planned activities included in all the design tasks. Thus, the switches due to the re-prioritizing
decisions may change only the indices of the activities to be done. So, the solving time of the
planned activities already ordered is independent of the trials done in order to re-prioritize
the design tasks. However, this process creates extra work and will affect the completion
time distribution of the entire set of design tasks. Thus,Pr{Ξ ≤ h} := p · Pr{Cmax (k) ≤
h} + (1 − p) · Pr{YErlang(i−1) ≤ h}. Now we have to prove that the Laplace-transform
of the distribution function ofCmax(k) can be obtained, and inverted to complete our proof.
Let BP be the busy period in aM/M/1 queue with arrival rateλ and service rateMµ. Then
we have, fork = M + q ≥ M

Cmax(M + q) = BP + Cmax(M + q − 1)

and fork < M ,

Cmax(k) = Z(Θ(k)) +

{
Cmax(k + 1) with probability λ

Θ(k)

Cmax(k − 1) with probability kµ
Θ(k)

Cmax(0) = 0

whereΘ(k) = λ + kµ andZ is an exponential random variable. Let us consider the Laplace
transform ofCmax(k), and denote, fors ≥ 0,

f̂k(s) = Φ(k)(s) = E(e−sCmax(k))

After computing it, the Laplace transform̂fk(s) can be inverted according to the Euler Inverse
Laplace Transform method ((Abate and Whitt, 1995)). We have two cases, according to the
value ofk with respect toM .

Case 1:k = M+q ≥ M : Φ(k)(s) = β(s)Φ(k−1)(s) = · · · = β(s)k−M+1Φ(M−
1)(s), whereβ(s) is the Laplace-Stieltjes transform of the busy periodBP . From (Kleinrock,
1975), we have that

β(s) =
λ + Mµ + s−

√
(λ + Mµ + s)2 − 4λMµ

2λ

So we shall only need to know how to computeΦ(M − 1)(s). For that, we need the other
case.
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Case 2:k < M

Φ(k)(s) =
Θ(k)

Θ(k) + s

(
λ

Θ(k)
Φ(k + 1)(s) +

kµ

Θ(k)
Φ(k − 1) (s)

)

=
λ

Θ(k) + s
Φ(k + 1)(s) +

kµ

Θ(k) + s
Φ(k − 1) (s)

Φ(0)(s) = 1

Now, on the border, we have the following:

Φ(M − 1)(s) =
λ

Θ(M − 1) + s
Φ(M)(s) +

(M − 1)µ
Θ(M − 1) + s

Φ(M − 2) (s)

Φ(M)(s) = β(s)Φ(M − 1)(s)

=⇒ Φ(M − 1)(s) =
λβ(s)

Θ(M − 1) + s
Φ(M − 1)(s) +

(M − 1)µ
Θ(M − 1) + s

Φ(M − 2) (s)

=⇒ Φ(M − 1)(s) =
1

1− λβ(s)
Θ(M−1)+s

· (M − 1)µ
Θ(M − 1) + s

Φ(M − 2) (s)

=⇒ Φ(M − 1)(s) =
(M − 1)µ

Θ(M − 1) + s− λβ(s)
Φ(M − 2) (s)

We want to have a relation linking the values ofΦ(k)(s) either with respect toΦ(·)(s) of
greater values thank, or of smaller values, not both at the same time. Fixs and denote
by Φk = Φ(k)(s), by α(k) := λ

Θ(k)+s and byδ(k) := kµ
Θ(k)+s . Then we can rewrite the

recurrence of casek < M as follows

Φk = α(k) · Φk+1 + δ(k) · Φk−1

with the fact thatα(M − 2) = Θ(M−1)+s−λβ(s)
(M−1)µ and δ(M − 2) = 0. Because allΦk

are positive, but not zero (because they are the result of an integral from a strictly positive
function), we can also defineγ(k + 1) = Φk+1

Φk
. Then we can rewrite the last equation as

follows

Φk =
δ(k)

1− α(k) · γ(k + 1)
fk−1 = γ(k) · Φk−1 = Φ0 ·

1∏

j=k

γ(j) =
1∏

j=k

γ(j)

and for eachγ we have the recurrence relation

γ(k) =
δ(k)

1− α(k) · γ(k + 1)
, with γ(M − 1) =

(M − 1)µ
Θ(M − 1) + s− λβ(s)

This shows how to compute each of theΦk = Φ(k)(s), for an arbitrarys ≥ 0. Thus, we
completely solved the casek < M .

The shape of the distribution function obtained via this model is confirmed by the
data collected in the experimental research of (Innam, 1999) (time to repair distribution func-
tions in manufacturing systems), which suggest a long fat-tailed, skewed, maybe multi-modal
distribution function. In Subsection 5.2.2 we test with a goodness-of-fit test that the frequency
diagrams of the eight real-life data sets of (Oorschot, 2001) are consistent with our model cu-
mulative distribution function for the particular case of one engineer. The last data frequency
diagrams showed some similarity with gamma-type probability density functions as well, but
this hypothesis was rejected by a goodness of fit test atα = 0.01 in (Oorschot et al., 2002).
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5.2.2 Goodness-of-fit test results

We have tested the null hypothesis that the frequency diagrams of the eight real-life
data sets from (Oorschot, 2001) represent the model cumulative distribution function for the
lead times of the NPD design tasks. The eight sets of data were collected from ten engineers
of a firm that develops, produces and services advanced micro-lithography systems. Each
engineer worked on two or three design tasks allocated to him. Before starting to work on the
design tasks, the engineers made estimates from one to eight weeks for the design tasks lead
times. Thus, the first data set contained the design tasks that were supposed to be finished in
one week, the second contained the ones with estimated lead time two weeks, and so on. We
used only the initial engineers conjectured characteristics of the design tasks in setting the
parameters of the model. Since we did not have any information regarding the average time
of an comparing any two design tasks, we tested the data consideringη = µ.

However, two important issues have to be discussed in relationship with the model
testing. The first issue was that the data was collected separately per design task, and not per
engineer. We did not know which set of tasks was performed by each engineer. This lead
us to consider in our model that for each engineer the resequencing of its allocated design
tasks took place during the solving of each of its design tasks with the same probabilityp.
Thus, if an engineer hadi > 2 concurrent design tasks allocated to him/her, the cumulative
distribution function of one of them, sayn, was of the form:FY (h) = Pr{Ξ ≤ h} =
p · Pr{C (n) ≤ h} + (1 − p) · Pr{YErlang(i−1) ≤ h}, where(1 − p) is the probability that
during the solving process the design tasks order is reconsidered, andC(n) is the completion
time of queueing system with one server with a queue having a series of onlyNa (n) of
planned activities (i.e. those planned for that specific design taskn). The planned activities
have a common processing time, exponentially distributed with mean1

µ , and their solving
process is disturbed by aλ−Poisson arrival of unplanned activities. The arrival process of
unplanned activities stops when all the planned activities are finished.

The second issue was that the data collected referred to the design tasks lead times,
not to their solving times. If for the short lead times we could consider the lead time derived
directly from the solving time, a different situation held for the longer lead times (i.e. more
than three weeks). There were two main reasons for a design task to have a longer lead
time, but the data was not collected separately for each. Either the design task lead time
was indeed proportional with the amount of planned activities, or the engineer to whom was
allocated had other design tasks to be performed earlier. Thus, we checked our model for
both conjectured cases. For the first case we used a multiplication of the stochastic planned
activities proportional with the number of weeks given by the due date. For the second case
we delayed the distribution given by the model proportional with the number of weeks given
by the lead time. Based on the results of the Kolmogorov-Smirnov goodness of fit test,
the model showed in both cases no statistically significant difference with respect to data
sets considered. The Kolmogorov-Smirnov test finds the greatest discrepancy between the
empirical and expected theoretical cumulative distribution functions, which is called the ”D-
statistic”. We compared this against the critical D-statistic for that sample size. The results
are shown in Table 5.1.

In general, we cannot reject the null hypothesis that the distribution is of the ex-
pected form according to the above model. The D-statistic was less than the critical one (for
α = 0.1) for most of the tests. In the remaining tests we could get an acceptance for a lower
α, except for the fifth data set, for which the first conjectured hypothesis (i.e. without delay)
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Conjectured Sample Model Parameters D-statistic K-S K-S K-S
Lead Time size (A(n), µ, λ, p, i, delay) (0.01) (0.05) (0.1)

1 week 66 (4, 4, 1, 0.85, 2,−) .1829 .1972 .1644 .1480
2 weeks 85 (8, 4, 1, 0.85, 2,−) .1678 .1742 .1452 .1307
3 weeks 70 (12, 4, 1, 0.85, 2,−) .1236 .1916 .1597 .1438

4 weeks 52
(12, 4, 1, 0.85, 2, 1)
(16, 4, 1, 0.85, 2,−)

.1519

.1397 .2217 .1848 .1663

5 weeks 43
(12, 4, 1, 0.85, 2, 2)
(20, 4, 1, 0.85, 2,−)

.1676

.2792 .2433 .2028 .1825

6 weeks 41 (12, 4, 1, 0.85, 2, 3)
(24, 4, 1, 0.85, 2,−)

.2020

.1524 .2490 .2076 .1868

7 weeks 35 (12, 4, 1, 0.85, 3, 4)
(28, 4, 1, 0.85, 3,−)

.1951

.1908 .2686 .2242 .2018

8 weeks 32
(12, 4, 1, 0.85, 3, 5)
(32, 4, 1, 0.85, 3,−)

.2531

.1996 .2809 .2342 .2108

Table 5.1. Kolmogorov-Smirnov goodness-of-fit test results

was rejected. We explain this slight variation in the acceptance rates, as well as the one rejec-
tion by the fact that probably the design tasks were having a longer lead time for both above
mentioned reasons (the model(16, 4, 1, 0.85, 2, 1) was accepted at a higherα than both sep-
arated cases). It is worthwhile to mention that if the conjectured lead time was one or two
weeks we could also setp = 1, without rejecting the null hypothesis forα = 0.1, which was
not possible in all the other cases. Also, for the first two data sets which have a shorter ini-
tially estimated lead time, the application of our model in the second conjectured hypothesis
(i.e. with delay) lead to a rejection. This may allow a model simplification for very short
solving times. The psychological literature suggests that people tend to give more priority
to urgent design tasks, presumably because time pressure rises and this motivates people to
make progress.

5.3 Nonstationary Markovian multi-period aggregate con-
trol of NPD projects

This section focuses on the aggregate decision level, presenting the promised non-
stationary Markov decision process. In order to do that, we make use of the results from
Section 5.2 concerning the estimation model presented for the detailed planning level and
engineering level. We consider that the short-time planning horizonh to be equal to the
length of one review-period (i.e. h=1).

We propose a discrete-time control model, because it is too costly to continuously
measure the progress in a NPD project. The project will be reviewed at equidistant points in
time until the deadline,T .

At the beginning of each review periodt, (t, t + 1], the aggregate decision maker
integrates in the NPD project the newly arrived unplanned design tasks. We consider that
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all the new arrived design tasks during the review period(t − 1, t] are concurrent with the
ones to be allocated att, and each such task is to be performed only after all tasks of the
staget− 1 are finished and before any task of the staget + 1. However, the computation of
the transition probabilities can be easily extended to the case described in Chapter 2. There
we assumed an arrival of unplanned design tasks (during review periodt − 1) concurrent
with design tasks allocated/to be allocated during thei−th review period;∀i = 0, ..., t. For
reasons of mathematical tractability, the general Markovian review period-dependent arrival
process of unplanned design tasks from Chapter 2 and Chapter 3 Section 3.3 becomes a
Poisson review period-dependent arrival process of rateς(t). In later review periods the rate
ς(t) decreases. We recall from Chapter 2 Subsection 2.3.4 that for each periodt− 1 and for
eachi = 0, ..., t the unplanned design tasks are assumed be statistically identical (i.e. with a
common performance level structure, and an identical market payoff structure).

Afterwards, at the beginning of each review period the aggregate decision maker
decides whether to continue or not the NPD project. The abandonment is the result of either
an expected exceeded NPD budget, or of a low product performance, which does not enable
the achievement of a fully functional product before the deadline. In case of continuation the
controller modifies the design tasks performance levels in an interactive process aiming at a
maximal market payoff at the deadline. Thus, the targets on design tasks realization for the
detailed planning level are provided, under the several aggregate constraints of achieving the
currently target performance levels, at the deadline, with certain probabilities. AT−partite
directed acyclic graph of design tasks reflects the precedence relations among design tasks at
the beginning of each review period (see Chapter 2 Subsection 2.3.2).

During each review period, we estimate the outcomes of the detailed planning and
engineering process using the simple model built in Section 5.2. This model allows the
computation of the transition probabilities of the Markov decision process we propose for the
control of NPD projects. Thus, we assume that during an arbitrary review period the team
of engineers will always perform the tasks allocated to it, according to a priority order. We
also recall from Chapter 2, Section 2.3 that for each design task we have different levels of
performance, giving the quality of its execution. Each performance level consists of alist of
planned activitieswith solving times random variables independent identically exponentially
distributed. For each design task aminimal performance levelhas to be achieved, in order
to have a fully functional new product. New unplanned activities arrive at the design tasks
in progress during the review periodt according to a Poisson process of rateλ(t). In later
stages the rateλ(t) decreases.

The notation used in this chapter was introduced in Chapter 3 Section 3.3, with
the exception of the arrival rate of new activities. This rate is not an input parameter for the
aggregate control in itself, but for the model we use for the engineering and detailed planning
processes (see Section 5.2). In the Markov decision process formulation of the aggregate
decision process we take into account the arrival of unplanned design activities while com-
puting the transition probabilities of the process. Consequently, we will not update anymore
the number of sequential activities planned for solving a design taskn, at the performance
level l. In their corresponding notation the time index will be withdrawn, as well as in the
solving time of a performance levell of a design taskn, and in the minimal performance level
required.
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Input parameters (global variables):
T : the total number of review periods (review periods are numbered from0 to

T − 1);
M : the total number of engineers;
N : the initial number of design tasks;
N : an upper bound for the maximum number of design tasks during the whole

project;
Lmax(n) : the maximal number of performance levels of the initial design taskn;

n = 1, ..., N ;
lmin(n) : the minimal performance level at which the design taskn must be per-

formed in order to obtain a functional product;n = 1, ..., N

Na (n, l) : the number of sequential activities planned for solving the design taskn,
at the performance levell, assuming the previous levels already solved;∀ n = 1, ..., N, ∀l =
1, ..., Lmax(n);

µ : the rate of the exponential distribution of an activity solving time;
η : the rate of the exponential solving time for the comparisons in between each

two design tasks during the detailed level reprioritization process;
c (n) : the cost of performing one activity of the design taskn; n = 1, ..., N .
SinceN is an upper bound, we set to zero all the parameters depending on a virtual

n ∈ {N + 1, . . . , N}. If due to the arrival of unplanned design tasks more thanN design
tasks arrive then either they will be neglected, or the NPD project will be stopped.

Input parameters (at the beginning of review periodt):
α (t) : the required current safety margin for the probability of completing the

project before the deadline;α (t) ∈ (0, 1)
β (t) : the required current safety margin for the probability of exceeding the max-

imal team solving capacity;β (t) ∈ (0, 1)
B (t) : the current remaining NPD project budget;
ς(t) : the current rate of the Poisson review period-dependent arrival process of

unplanned design tasks;
Ω(t − 1) : the set of newly arrived unplanned design tasks (during review period

t− 1) concurrent with the design tasks to be allocated during thetth review period;
Rt := (J(Rt),A(J(Rt))) : the newly updatedT−partite directed acyclic graph

of unfinished design tasks precedence relations, whereJ(Rt) = Λ0
t ∪ Λ1

t ∪ ... ∪ ΛT−1
t and

Λt
t = Λt

t−1 ∪ Ω(t− 1) is the current design tasks set allocated/to be allocated att;
N(t− 1) : the random variable giving the number of design tasks arrived since the

NPD project beginning until the end of review periodt− 1, [t− 1, t);
Lmax(n, t) : the current maximal number of performance levels of the design task

n; Lmax(n, t) = Lmax(n) for n = 1, ..., N andLmax(n, t) = 0 if n 6∈ J(Rt) (i.e. there is
place reserved for the design tasks not planned or not arrived yet up to the upper boundN
but we set to zero the maximal performance level depending on a virtual design taskn);

l (·, t) : {1, ...N} → N : the achieved performance level of a design task function,
where0 ≤ l (n, t) ≤ Lmax(n, t), for n ∈ J(Rt) and by convention we definel (n, t) = −1
for n 6∈ J(Rt) (i.e. we mark the design tasks not arrived yet);

λ(t): the review-period dependent Poisson arrival of unplanned activities for all the
design tasks allocated to the engineers.
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Notation (at the beginning of review periodt):
zt :=

{
n ≥ N |N + E [N(t− 1)] + 1 ≤ n ≤ N + E [N(T − 1)]

}
: the esti-

mated set of all unplanned design tasks for NPD project;
Sn(l) : the solving time of the performance levell of the design taskn, assuming

the previous levels already solved;n = 1, ..., N . They are independent random variables
Erlang-(Na(n, l), µ).

C(t, l(·, t), Rt) : the completion time of the network of design tasks,Rt, if l(·, t)
gives the design tasks performance levels;

The decision time points:The decision points are equidistant and the horizon of
the problem is finite. The decision pointt corresponds to the beginning of reviewt + 1. Say
t ∈ {0, 1, ...T − 1}.

The state space and the action space:
At time t = 0, at the beginning of the NPD project the engineers start with zero

performance levels achieved for theN planned tasks, and preserve place for a numberN−N
of unplanned design tasks. Thus, fort = 0:
X(0) = {x0} = (0RN ,−1RN−N ).

The state setX (t) at momentt and the action setAt (xt) in the statext ∈ X (t)
have probability constraints similar to conditions 3.2, 3.3 and 3.4 from the one-period ag-
gregate decision problem presented in Section 3.3:

• the target performance level of each planned or newly arrived design taskn is greater
thanmin(lmin(n, t), l(n, t)), and smaller thanLmax(n, t)

♦ with the probability safety margins:

• the completion time must be smaller than the remaining time until the deadline

• the remaining workload of the team of engineers should not exceed their maximal
solving capacity

• the remaining budget must not be exceeded.

For the state space the probability constraints are computed using the minimal per-
formance levels,lmin(·, t), while for the action space are used the target performance levels,
l(·, t) + a(·, t). Why? Since the NPD project is stopped if in the achieved states, for the
existing design tasks (i.e.Lmax(n, t) > 0) one cannot take anymore actions which lead at
the deadline to a rewarded new product in the conditions required by the safety margins. The
rewarded region isR = {(l1, ..., lN )|ln ≥ lmin (n) , ∀n = 1, ..., N}.

For t ∈ {1, . . . , T} the statext ∈ X(t) describes how many performance levels
l(n, t) were solved for each design taskn:

X(t) =





xt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xt = (l(1, t), ..., l(n, t), ..., l(N, t)) ∈ {N ∪ {−1}}N

and − 1 ≤ l (n, t) ≤ Lmax(n, t), n ∈ {1, ..., N}
l(n, t) ≥ 0, ∀n ∈ {1, ..., N} s.t.Lmax(n, t) > 0

Pr {C (t, lmin (·) , Rt) ≤ (T − t)} ≥ α (t)

Pr

{
∑

n∈J(Rt)∪zt

lmin(n)∑
i=l(n,t)+1

Sn (i) ≤ M · (T − t)

}
≥ β (t)

[
∑

n∈J(Rt)∪zt

lmin(n)∑
i=l(n,t)+1

Na (n, i) · c (n)

]
≤ B (t)





(5.1)
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X(T ) =
{

xT

∣∣∣∣
xT = (l(1, T ), ..., l(n, T ), ..., l(N, T )) ∈ {N ∪ {−1}}N and

lmin(n) ≤ l (n, T ) ≤ Lmax(n, t), ∀n ∈ {1, ..., N}s.t. l(n, T ) ≥ 0

}

For t ∈ {0, ...T − 1}, xt = (l(1, t), ..., l(n, t), ..., l(N, t)) ∈ X(t) the actionat

in the statext decides how many other levels abovext we want to perform. The perfor-
mance level up to which the design taskn may be solved after the actionat was taken is

(l(n, t) + at(n))+
def
:= max(l(n, t) + at(n), 0).

At (xt) =





at

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

at = (at(1), ..., at(n), ..., at(N)) ∈ NN

l(n, t) + at(n) ≤ Lmax(n, t), ∀n ∈ {1, ..., N} s.t. l(n, t) ≥ 0
Pr

{
C

(
t, (l(n, t) + at(n))+ , Rt

)
≤ (T − t)

}
≥ α (t)

Pr

{
∑

n∈J(Rt)∪zt

(l(n,t)+at(n))+∑
i=l(n,t)+1

Sn (i) ≤ M · (T − t)

}
≥ β (t)

[
∑

n∈J(Rt)∪zt

(l(n,t)+at(n))+∑
i=l(n,t)+1

Na (n, i) · c (n)

]
≤ B (t)





(5.2)

An important thing related to the state and action space descriptions is that theyare
sensitive to the arrival of unplanned design tasks up to the upper boundN . If at a decision
point t an unplanned design taskn just appeared it will be numbered in an increasing way
from N + N(t − 1) up toN , andl(n, t) will be changed from -1 to zero. Thus, at the next
decision point their corresponding actions might be greater than zero, and the team of the
engineers might start working on any of the unplanned design tasks.

We notice as well that in the second probability constraint from (5.1) and (5.2)
the total workload is computed by adding the remaining solving times of both the design
tasks fromRt and of the expected unplanned design tasks, up to their minimal and respec-
tively maximal decided performance level. The computation can be easily done under the
assumption of review period-dependent Poisson arrival processes of statistically identical de-
sign tasks. Thus, the sum of the independent remaining solving times of the design tasks
leads to an Erlang distributed random variable.

The immediaterewards: ∀ xt ∈ X(t), xt+1 ∈ X(t + 1), anda ∈ At (xt), the
immediate reward is

ρt (xt, a, xt+1) = 0, ∀t = 0, ..., T − 1

and the final reward is

ρT (xT ) =
{

0, if ∃ 1 ≤ n ≤ N, l (n, T ) < lmin (n)
f (max(xT , 0)) otherwise

,

wheref(·) : NN → R+ is a nondecreasing function with respect to the partial order on
NN (i.e. we say thatx ≤ x̃, x, x̃ ∈ NN , if x (n) ≤ x̃ (n), ∀1 ≤ n ≤ N ). This type of
reward function is very general, describing the market value of a new product which has to
fulfill several customer needs including the analytical cumulative market payoff functions of
(Yoshimura, 1996); (Huchzermeier and Loch, 2001), and (Askin and Dawson, 2000).

The transition probabilities: In order to obtain a Markov decision process formu-
lation of the aggregate decision problem, the transitions should depend only on the decision
time point, the observed state and the chosen action and not on the whole history of the
process. The probability that the next state isxt+1, given that the state at the beginning of
staget is xt and that the actionat ∈ At(xt) is chosen, will be the nonstationary probability
pt(xt, at, xt+1).
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Due to the partial order of precedence relations induced by theT−partite acyclic
graph of design tasks,pt(xt, at, xt+1) = 0 if one of the following holds:

1. ∃n1, n2 ∈ {1, ..N} s.t. n1 is a predecessor ofn2 in the partial order,l (n2, t + 1) 6= 0
andl (n1, t + 1) 6= l (n1, t) + at(n1);

2. ∃n ∈ {1, ...N} s.t. l (n, t + 1) 6= 0 andn /∈ Λ0
t ∪ . . . ∪ Λt

t ∪ Ω(t− 1).

Otherwise, the transition probabilities can be calculated, by estimating during each
review period the results of team of engineers with the simple model built in Section 5.2.

We now wish to formally give the transition probabilities of the Markov decision
process. There are mainly two things which can happen during a transition from one state to
another:

• some design tasks are performed at some performance levels above their previous ones
and at most equal to the ones target, set by the action.

• new design tasks can appear due to technical uncertainties

We recall that each state is a vector storing the current performed levels (zero or
positive), and the value−1 for design tasks not in the system (i.e. unplanned, but theoretically
allowable to appear). Now, these two independent processes will respectively modify on the
one hand the zero or greater than zero components, and on the other hand, the−1 compo-
nents, making them become zero, i.e. new freshly arrived design tasks and not processed yet
at all. During each review period[t, t + 1) we take into account at most a numberKt of new
arrived design tasks. Moreover, as these new unplanned design tasks arrive, they ”receive”
indices in increasing order, so actually for any state, all its sayn0 components strictly greater
than−1 are at the beginning, from the first one to then0-th one, the other ones to the end
being equal to−1. The outcome of the first process is estimated using the estimation model
from Section 5.2.

Proposition 19 Let us assume that during each review period[t, t + 1) we take into account
at most a numberKt of unplanned design tasks which arrive with a probability greater than a
given thresholdϑ(t) > 0 (i.e. Pr{at mostKt arrivals during review period[t, t+1)} ≥ ϑ(t))

and
T−1∑
t=0

Kt = N − N . Then the transition probabilities of the Markov decision process

constructed above are given by
pt (xt, at, xt+1) =

=





pt (ξt+1 − xt, iat) · [ς(t)]k

k! e−ς(t)
, xt ≤ xt+1 ≤ xt + at + zt and

k ≤ Kt
def
:= card{n|zt(n) = 1}

0 , otherwise

where

ξt+1(n) =
{

xt+1(n) , xt(n) = l(n, t) ≥ 0
−1 , otherwise

, ∀n ∈ {1, . . . , N} (i.e. xt+1 restricted to

the progress made on the previous existing design tasks),
iat is the number of nonempty components in the actionat, corresponding to concurrent
design tasks (i.e. the number of concurrent design tasks given to the team of engineers), and
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zt(n) =





0 , xt(n) = l(n, t) ≥ 0
1 , xt(n) = −1, ∀n ∈ {n0 + 1, . . . , n0 + Kt}, andxt(n0) = l(n0, t) ≥ 0
0 , otherwise

,

∀n ∈ {1, . . . , N} (i.e. counts the maximal number of unplanned design tasks that might be
included in the project during the current review period). These transition probabilities can
be fast numerically approximated by the Euler Inverse Laplace Transform method (Abate and
Whitt, 1995).

Proof. As we have said before, during each review period there are two inde-
pendent processes that take place, and we will make use of the estimation model built in
Section 5.2. The first process is the solving process of the design activities from the design
tasks performance levels decided by the actionat. The second process that takes place is the
Poisson arrival process of unplanned design tasks to be added to the NPD project description.
According to our assumption the number of new design tasks that are taken into account at

the end of the review period[t, t + 1) is less thanKt, with
Kt∑
k=0

[ς(t)]k

k! e−ς(t) ≥ ϑ(t) (i.e. the

length of each review period is1).
To estimate the solving process we use the simple model built in Section 5.2. Its

basic assumptions are:

- the design tasks are sequenced, their order reflecting the optimality criteria of the detailed
planning level scheduler,

- the team of engineers works with all its capacities as one processor on all the design tasks

- unlike machines, human beings are able to perceive the concurrency and the relative ur-
gency of design tasks, and at any time instant the time will either work with the proba-
bility p on the planned activities of the design tasks in the order given by the scheduler,
or, with a probability1− p will try to re-prioritize the design tasks instead of working
on them.

Let Ξ(k, iat) be the random variable giving the solving time of the allocated design
tasks. In the line of reasoning of Proposition 18, Section 5.2, foriat > 2, Ξ(k, iat)’s cumu-
lative distribution function equalsFΞ(k,iat )(h) = Pr{Ξ(k, iat) ≤ h} = p · Pr{Cmax (k) ≤
h}+ (1− p) ·Pr{YErlang(iat−1) ≤ h}, whereCmax(k) is the makespan of queueing system

of M parallel servers with a common queue having a series ofk =
N∑

n=1

l(n,t+1)∑
i=l(n,t)+1

Na (n, i)

of planned activities, and(1 − p) is the probability that during the solving process the team
of engineers instead of working on the design tasks reconsider their order. They re-prioritize
the order of the design tasks that can be performed in parallel, by successively comparing
the first activities to be done from each of the other allocated tasks. Comparing design tasks
requires capacity, which can be modelled as an activity with exponential distribution with
mean1/η. This defines a complex queueing system, where the planned activities have a
common processing time, exponentially distributed with mean1

µ , and their solving process
is disturbed by aλ(t)-Poisson arrival of unplanned activities (λ(t)/µ < M ). The arrival
process of unplanned activities stops when all the planned activities are finished.

Following the proof of Proposition 18, Section 5.2 the cumulative distribution func-
tion of Ξ can be computed numerically.
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We set, as said before,h = t− (t− 1) = 1.
We consider that the transition probabilitiespt (xt, at, ξt+1) should give the prob-

ability that the solving time of the design tasks up to the performance levels fromxt+1 is
contained in an interval of lengthε around1 (i.e 1 is the length of a review period). However,

they do not equal exactly
∫ 1+ε/2

1−ε/2
fΞ(k,iat )(z)dz because when being in the statext, the same

number of planned activities to be done can be obtained for differentxt+1 ∈ X(t+1), which
we also assume to be equiprobable. Therefore in the previous integral,fΞ(k,iat )(z) which
actually isp · fCmax(k)(z) + (1 − p)fYErlang(iat−1)(z), has to be divided by the number of
possible ways of arriving at these equiprobablext+1.

Thus we have thatpt (xt, at, xt+1)
def
:=

∫ 1+ε/2

1−ε/2

[
p · fCmax(k)(z) + (1− p)fYErlang(iat−1)(z)

ς(Na (n, i) ; 1 ≤ n ≤ N, l (n, t) + 1 ≤ i ≤ l(n, t + 1))

]
dz

=
p · ∫ 1+ε/2

1−ε/2
fCmax(k)(z)dz + (1− p)

∫ 1+ε/2

1−ε/2
fYErlang(iat−1)(z)dz

ς(Na (n, i) ; 1 ≤ n ≤ N, l (n, t) + 1 ≤ i ≤ l(n, t + 1))

' ε

[
p · fCmax(k)(1) + (1− p)fYErlang(iat−1)(1)

ς(Na (n, i) ; 1 ≤ n ≤ N, l (n, t) + 1 ≤ i ≤ l(n, t + 1))

]

depends only on the following parameters:
N∑

n=1

l(n,t+1)∑
i=l(n,t)+1

Na (n, i), µ, λ(t), iat , whereε

is small andς(Na (n, i) ; 1 ≤ n ≤ N, l (n, t) + 1 ≤ i ≤ l(n, t + 1)) is the number of

partitions of
N∑

n=1

l(n,t+1)∑
i=l(n,t)+1

Na (n, i) into multiples of the number of activities per level. If

for each already available design task1 ≤ n ≤ N we have thatN (n, i) is constant for any
1 ≤ i ≤ Lmax(n, t)) then the correction factor can be easily computed. The term

∫ 1+ε/2

1−ε/2
fCmax(k)(z)dz

ς(Na (n, i) ; 1 ≤ n ≤ N, l (n, t) + 1 ≤ i ≤ l(n, t + 1))

depends only on theµ, λ(t), and on the number of activities between the statesxt andxt+1,
while the second term depends on theiat µ, λ(t), and on the number of activities between
the statesxt andxt+1. Thus, one can write forµ, λ(t) constant that

pt (xt, at, ξt+1) = pt(ξt+1 − xt, iat) = p · Pt(ξt+1 − xt) + (1− p) · Pt(iat)
κ(ξt+1 − xt)

Now we have to prove that
∑

xt+1∈X(t+1)

pt (xt, at, xt+1) ≤ 1 in order to show that

we obtain indeed a Markov process.
First we remark that in the queueing system described in Proposition 18, Section

5.2 both the arrival of new activities and the re-prioritization process stop when the last of
thek planned activity is solved. Thus, after a random finite numberQ of solved activities the
system stops, and

Pr{t < Ξ(K, iat) ≤ t + h|K = k} = Pr{t < SQ < t + h|Q = q}
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whereSq is the time of theq’th event of the queueing system (theq’th activity solved). The
queueing system under study is a version of an M/G/s queuing system, which has the proba-
bility of two or more events in(t, t + h) equal to ano(h). Why? Because the system without
re-prioritization was an M/M/s system (i.e. the departure process of the solved activities is
Poisson, and hence has this property), and the re-prioritization delays the solving process
without adding any solved activity. Consequently we can write that

Pr{t < Sq < t + ε} = Pr{£(t) = q − 1, one event in(t, t + ε)}+ o(ε)
= Pr{£(t) = q − 1}Pr{one event in(t, t + ε)}+ o(ε)

where£(t) is the total number of activities that have been solved up to timet. So
∑

k

Pr{t <

Ξ(K, iat) ≤ t+ε|K = k} =
∑

q

Pr{£(t) = Q−1|Q = q}Pr{one event in(t, t+ε)}+o(ε).

If we taket = 1 and we divide both sides of the last equation byε, we obtain for smallε that∑

k

∫ 1+ε/2

1−ε/2
fΞ(k,iat )(z)dz ' 1.

The arrival process of unplanned design tasks is a Poisson process of rateς(t).

ThenPr (k arrived design tasks in[t, t + 1)) = [ς(t)]k

k! e−ς(t) and
Kt∑

k=0

[ς(t)]k

k! e−ς(t) ≤ 1.

Thus, we obtain a stochastic process since by imposing for each pair(xt, at) upper
limits on the number of planned activities to be done the transition probabilities matrix is
sub-stochastic, i.e.

∑

xt≤xt+1≤xt+at+zt

pt (xt, at, xt+1)

=
Kt∑

k=0


 ∑

xt≤ξt+1≤xt+at

pt(xt, at, ξt+1)


 · Pr (k arrived design tasks in[t, t + 1)) ≤ 1

for anyxt ∈ X(t), wherecard{n|zt(n) = 1} = Kt.
In relation to the way of computing the transition probabilities two issues should

be discussed. The first one is that to computept(xt, at, xt+1) we do not even need to limit
the number of unplanned design tasks arrival. However, having a finite number of engineers
and desiring to finish with a probability higher than a given safety margin lead us to a finite
solving capacity until the deadline. Thus, there should exist an upper boundN on the total
number of design tasks included in the NPD project definition. Moreover, limiting during
each review period the number of new design tasks to be added to the project definition will
help us obtain structural results for the case of NPD without precedence constraints (see
Chapter 7).

The second issue is that while computing in a real life situation the transitions
probabilitiespt (xt, at, xt+1) of our Markov decision process we might not need the cor-
rection factorς(Na (n, i) ; 1 ≤ n ≤ N, l (n, t) + 1 ≤ i ≤ l(n, t + 1)). Why? Because
if we might have the same number of planned activities to be done for differentxt, xt+1,
we also might have somek ∈ {0, . . . ,∞} that cannot be written as a sum of the type
N∑

n=1

l(n,t+1)∑
i=l(n,t)+1

Na (n, i), for somext+1 ∈ X(t + 1). Moreover, due to this phenomenon
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we might skip quite a number of small values ofk, while repeating its higher values which
give a much lower probability of being finished in a unit of time. In conclusion, for a higher
number of activities per level, and a smallµ, the need of a correction factor for the actual
computation of the transition probabilities is purely theoretical.

Corollary 20 If we assume that there is no unplanned design tasks arrival process, the tran-
sition probabilities of the Markov decision process constructed above are given by

pt (xt, at, xt+1) = pt (xt+1 − xt, iat) =

=





p

(
N∑

n=1

l(n,t+1)∑
i=l(n,t)+1

Na (n, i) , µ, λ(t), η, iat

)
, xt ≤ xt+1 ≤ xt + at

0 , otherwise

whereiat is the number of nonempty components in the actionat, corresponding to concur-
rent design tasks (i.e. the number of concurrent design tasks given to the team of engineers)
and can be fast numerically approximated by the Euler Inverse Laplace Transform method
(Abate and Whitt, 1995).

Expected total reward criterion: The expected cost of a policyπ, starting from

in initial statex0 = 0RN is vπ
0 (x0) = Eπ

x0

[
T−1∑
t=0

ρt (xt, a) + ρT (xT )
]
, where the expected

reward during the time interval[t, t + 1) is:

ρt (xt, a) =
∑

x(t+1)

ρt (xt, a, xt+1) pt (xt, at, xt+1) = 0.

We are looking for the maximal expected total reward.

Remark 21 The targets on design tasks realization given by the actions of the Markov de-
cision process play also another role. We recall from Chapter 3, Section 3.4 that organiza-
tional psychology research (see for a review (Wickens and Hollands, 1999), (Oorschot, 2001))
shows that there is a curvilinear dependency of the engineers productivity on their workload.
For this reason the team of engineers should receive not only a maximal requirement of work
during one review period, but also a minimal one. Thus, one can restrict even more the action
space description:

Kmin :=



at ∈ At(xt)

∣∣∣∣∣∣
Pr





∑

n∈J(Rt)∪zt

l(n,t)+at(n)∑

l=l(n,t)+1

Sn(l) ≥ M · 1


 ≥ ρ > 0



 (5.3)

whereρ ∈ (0, 1]. However, then one should consider very carefully the choices made for the
parametersρ andβ(t), the risk being the one of obtaining an empty action set.

An even more restrictive and simpler way of introducing the minimal work restric-
tion will be to consider only the actionsat ∈ At(xt) such that

Kmin :=





at ∈ At(xt)

∣∣∣∣∣∣∣

at ≥ amin(t)

Pr

{
∑

n∈J(Rt)∪zt

l(n,t)+amin(n,t)∑
l=l(n,t)+1

Sn(l) ≥ M · 1
}
≥ ρ > 0





(5.4)
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whereamin (·, t) : {1, ...N} → N∗ denotes the function giving the minimal requirement
of work to be done during the review periodt. This function is time dependent such that
amin(n, t) > 0 for n = 1, ..., N andamin(n, t) = 0 if n 6∈ J(Rt) (i.e. we cannot decide to
work on the design tasks not planned or not arrived yet).

Remark 22 The above constructed Markov decision process has a partially ordered state
space, and action space, which can be viewed as bounded subset without holes of the lattice
{N ∪ {−1}}N and respectivelyNN (see Definition 33, from Chapter 6). The partial order
considered on them is the one induced by the order onNN : x,y ∈ NN andx ≤ y iff xn ≤ yn,
∀n = 1, ..., N . Since there is a total possible number of activities to be performed during one
review period (depending on the values ofα(t), β(t), B(t)), there will during each review
period a total maximal number of levels to be done for each design task. Thus, the action
space will be upper bounded.

Proposition 23 Close to optimal and optimal policies for our Markov decision process may
be obtained. by the backward induction algorithm.

Proof. The horizon, state and action space are finite, and the reward function is lin-
early additive. The backward induction algorithm can be used to find the optimal policies and
value functions (Puterman, 1994). Also a non-stationary version of the sequential backward
approximation algorithm for finite horizon problems (Bertsekas and Tsitsiklis, 1996) can be
used to find policies close to optimal.

However, no reasonable computational results can be derived directly from this
Markov decision model, due to the curse of dimensionality. Also, we could not derive an-
alytical results on the structure of the optimal policies. Thus, we decided to investigate an-
alytically the structural properties of the two basic particular cases of this problem. These
cases will be used in Chapter 9 to suggest possible ways of deriving heuristic solutions for
the general problem.

5.4 Particular cases of the nonstationary Markovian con-
trol of NPD projects

The first case considered is the one of an NPD project consisting of a set of con-
current design tasks (i.e. without precedence constraints), while the second one is the case
of an NPD project consisting of a sequence of design tasks. In order to simplify the problem
description, we have chosen not to consider the budget constraint in the particular cases. This
restriction was a refinement of the workload restriction, and we conjectured that its exclusion
will not essentially affect the structure of the optimal policies.

For enabling the mathematical tractability of the two particular cases we have made
two more general assumptions. The first one was that no arrival of unplanned design tasks
takes place in the NPD project consisting of a sequence of design tasks. In the other NPD
case, we only reduced our assumptions regarding the arrival process as well as the type of
newly arrived design tasks to the conditions of Proposition 19 (i.e during each review period
[t, t + 1) we take into account at most a numberKt of unplanned design tasks which arrive

with a probability greater than a given thresholdϑ(t) > 0 and
T−1∑
t=0

Kt = N −N ).
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The second assumption was that there is an identical number of activities for all
performance levels of the same design task (i.e.Na (n, l) := na(n), for anyn = 1, ..., N ,
and l = 1, ..., Lmax(n, t)). Thus, assuming the previous levels already solved, the solving
times of all the performance levels of the same design task will be i.i.d. random variables
distributed Erlang-(na(n), µ).

5.4.1 NPD without precedence constraints

In this subsection we restrict the nonstationary Markov decision model from Sec-
tion 5.3 to a NPD project without precedence constraints, consisting ofN concurrent design
tasks. All the design tasks are allocated to resources (engineers) from the first review period.
New design tasks may arrive during each review period, and they will become available to
the team of engineers at the beginning of the next review period. They are concurrent with
the initial design tasks allocated to the team of engineers. Their arrival is given by a Poisson
review period-dependent arrival process.

Due to the curvilinear dependency between the productivity and the workload of
the team of engineers, the targets on design tasks realization have to satisfy a minimal re-
quirement of work during one review period (see Remark 21, equation (5.4)). As mentioned
in the beginning of this section,no budget constraint will be considered in this Markov de-
cision process, andall performance levels of one design task will have the same number of
activities. An importantsupplementaryassumption concerning only this NPD case is related
to the maximal performance levels of the design tasks.

Supplementary Assumption: For each design taskn its maximal performance
level Lmax(n, t) is large enough so that even if the team of engineers will work with all
capacities on it,Lmax(n, t) cannot be achieved earlier than the deadline with the probability

min
t=0,...,T

β(t). However this holds only for planned or already arrived design tasks. Since

N is an upper bound, we have to set to zero all the parameters depending on a virtual
n ∈ {N + 1, . . . , N}.

This assumption requires no artificial preset bounding of the action spaces at each
decision point. Moreover since there is a total possible number of activities to be performed
during one review period (depending on the values ofβ(t)), there will a total possible number
of levels to be done for each design task. Thus, the action space will have as upper bound a
nondecreasing function.

This enlargement of the action space will prove to be useful in Chapter 7, since
otherwise we might not be able to prove in all the cases the existence of structured optimal
policies.

All the other assumptions and notation are given in Section 5.3.

The reduced state space and the action space:The state setX (t) at momentt
and the action setAt (xt) in the statext ∈ X (t) are defined by simplifying the ones from the
general Markov decision process from Section 5.3, by keeping only the workload constraint
among the main three ones:

• the target performance level of each planned or newly arrived design taskn is greater
thanmin(lmin(n, t), l(n, t)), and smaller thanLmax(n, t)

• the remaining workload of the team of engineers should not exceed their maximal
solving capacity with the probability greater than safety marginβ(t).



5.4. PARTICULAR CASES – NONSTATIONARY MARKOVIAN CONTROL 73

Similar with the general Markov decision process from Section 5.3 for the state space the
workload constraint is computed using the minimal performance levels,lmin(·, t), while for
the action space it is used the target performance levels,(l(·, t) + a(·, t))+.

For t = 0: X(0) = {x0} = (0RN ,−1NN−N ).
For t ∈ {1, . . . , T} the statext ∈ X(t) describes how many performance levels

l(n, t) were solved for each design taskn:

X(t) =





xt

∣∣∣∣∣∣∣∣∣∣∣

xt = (l(1, t), ..., l(n, t), ..., l(N, t)) ∈ {N ∪ {−1}}N and
−1 ≤ l (n, t) ≤ Lmax(n, t), n ∈ {1, ..., N}

l(n, t) ≥ 0, ∀n ∈ {1, ..., N} s.t.Lmax(n, t) > 0

Pr

{
∑

n∈{1,...,N+N(t−1)}∪zt

lmin(n)∑
i=l(n,t)+1

Sn ≤ M · (T − t)

}
≥ β (t)





(5.5)

X(T ) =
{

xT

∣∣∣∣
xT = (l(1, T ), ..., l(n, T ), ..., l(N,T )) ∈ {N ∪ {−1}}N and

lmin(n) ≤ l (n, T ) ≤ Lmax(n, t), ∀n ∈ {1, ..., N}s.t. l(n, T ) ≥ 0

}

For t ∈ {0, ...T − 1}, xt = (l(1, t), ..., l(n, t), ..., l(N, t)) ∈ X(t) the actionat

in the statext decides how many other levels abovext we want to perform. The perfor-
mance level up to which the design taskn may be solved after the actionat was taken is
(l (n, t) + at(n))+.

At (xt) =





at

∣∣∣∣∣∣∣∣∣∣∣

at = (at(1), ..., at(n), ..., at(N)) ∈ NN

0 < amin(n, t) ≤ at(n), ∀n ∈ {1, ..., N + N(t− 1)
l(n, t) + at(n) ≤ Lmax(n, t), ∀n ∈ {1, ..., N} s.t. l(n, t) ≥ 0

Pr

{
∑

n∈{1,...,N+N(t−1)}∪zt

at(n)∑
i=1

Sn ≤ M · (T − t)

}
≥ β (t)





(5.6)

We recall from Section 5.3 that the state and action space descriptions are sensitive
to the arrival of unplanned design tasks, up to the upper boundN .

Also the minimal work requirement function is time dependentamin(n, t) > 0 for
n = 1, ..., N andamin(n, t) = 0 if n 6∈ {1, ..., N + N(t − 1)} since we cannot decide to
work on the design tasks not planned or not arrived yet.

In the probability constraint from (5.6), the total workload is computed by adding
up the solving times of the total number of concurrent design tasks during the whole project.

The restriction has a simplified form since
(l(n,t)+at(n))+∑

i=l(n,t)+1

Sn(i) =
at(n)∑
i=1

Sn.

In the state and action space descriptions (5.5, (5.6) of this particular case we gave
up to the completion time constraint, since the completion timeC (t, l (·, t) + at(·), Rt) is

equal to max
n∈{1,...,N+N(t−1)}∪zt

at(n)∑
i=1

Sn, and thus it becomes similar to the workload inequal-

ity. To be coherent with the supplementary assumption made above for this particular NPD
case, and avoid an in depth discussion on the reasonable assumptions on the relationships in
betweenα(t), β(t), andM we kept only the most natural constraint in this particular case:
the workload inequality.
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5.4.2 Sequential NPD

In this subsection we restrict the nonstationary Markov decision model from Sec-
tion 5.3 to a NPD project consisting of a sequence ofN = N ≤ T design tasks. As in
Section 5.3 we consider that the team of engineers will work together on each of the design
tasks. We focus on a NPD project with precedence constraints, consisting ofN sequential
design tasks. We assume that the design tasks in the given sequence can be performed by
the team of engineers one after the the other and they can start only at the beginning of a
review period. The team may start working on first design task from the first review period.
No arrival of unplanned design tasks takes place in the case of the sequential NPD project
(i.e. N = N ). As mentioned in the beginning of the current section, no budget constraint
will be considered in the Markov decision process.An importantsupplementaryassumption
concerning only this NPD case is related to the form of the final reward.

Supplementary Assumptions:

1) We do not consider anymore a time dependent safety margin for the probability of
completing the project before the deadlineα(t) = α, t ∈ {1, ...T − 1}. However, our
results can be generalized for a decreasing sequence ofα(t), t ∈ {1, ...T − 1}.

2) The final reward is of the more restrictive form

ρT (xT ) =

{
0, if ∃ 1 ≤ n0 ≤ N, l (n0, T ) < lmin (n0)∑

n =1,...,N

l (n, T ) · V (n) otherwise

giving a linear (weighted additive) cumulated market payoff function in the arguments
V (n) which represent the scalable value functions associated with the design tasks.
Such a function is similar with the one defined by (Askin and Dawson, 2000).

If we consider a final reward of the form given in (Askin and Dawson, 2000) then

max
l(n,T ),

n∈{1,...,N}

∆∑

δ=1

wδ


 ∑

n =1,..,N

Θ(n, δ) · l (n, T )
Lmax (n)


 =

= max
l(n,T ),

n∈{1,...,N}

∑

n =1,..,N

l (n, T )
Lmax (n)

·
[

∆∑

δ=1

wδ ·Θ(n, δ)

]
,

wherel(n, T ) is the number of performance levels achieved at the deadlineT for the design
taskn.

Then a simple choice the value per a performance level for the design taskn is:

V (n) := 1
Lmax(n) ·

∆∑
δ=1

wδ · Θ(n, δ) , ∀ n = 1, ..., n, wherewδ is the normalized weight of

the customer needδ (∀ δ = 1, ..., ∆), andΘ(n, δ) is the normalized maximal contribution
of the design taskn in fulfilling the customer needδ (Θ (n, δ) ∈ [0, 1); ∀ n = 1, ..., N, ∀
δ = 1, ..., ∆;

∆∑
δ=1

Θ(n, δ) = 1).

All the other assumptions and notation are given in Section 5.3.
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The reduced state space and the action space:The state setX (t) at momentt
and the action setAt (xt) in the statext ∈ X (t) are defined by simplifying the ones from
the general Markov decision process from Section 5.3, by keeping only the completion time
constraint among the main three ones:

• the target performance level of each planned design taskn is smaller thanLmax(n, t)
and greater thanmin(lmin(n, t), l(n, t)),

• the completion time of the NPD project must be smaller than the remaining time until
the deadline with a probability greater than safety marginα(t).

Similar with the general Markov decision process from Section 5.3 for the state space the
completion time constraint is computed using the minimal performance levels,lmin(·, t),
while for the action space it is used the target performance levels,l(·, t) + a(·, t).

For t = 0 : X(0) = {x0}= {0RN }
For t ∈ {1, ...T − 1} the statex(t) ∈ X(t) indicatesn(t) as the current not yet

finished design task from the initial sequence, and describes how many performance levels
were solved for it, as well as for the finished design tasks.

X(t) =





xt

∣∣∣∣∣∣∣∣∣

xt = (l(1, t), ..., l(n(t), t), 0, ..., 0) ∈ NN , n(t) ∈ {1, . . . , N}
0 < l (i, t) ≤ Lmax(i), i ∈ {1, ..., n(t)}

Pr

{
N∑

n=n(t)+1

lmin(n)∑
i=1

Sn +
lmin(n)∑

i=l(n,t)+1

Sn(t) ≤ M(T − t)

}
≥ α





(5.7)

For t = T :

X(T ) =
{

xT

∣∣∣∣
xT = (l(1, T ), ..., l(N, T )) ∈ NN ,

lmin(n) ≤ l (n, T ) ≤ Lmax(n, T ), n ∈ {1, ..., N)}
}

For t ∈ {0, ..., T − 1} and xt = (l(1, t), ..., l(n(t), t), 0, ..., 0) ∈ NN , n(t) ∈
{1, . . . , N} the actionat decides how many other levels abovext we want to perform. The
level up to which the design taskn may be performed after the actionat was taken is:l(n, t)+
at(n).

At(xt) =





at

∣∣∣∣∣∣∣∣∣∣∣

at = (0, ..., 0, at(n (t)), ..., at(N)) ∈ NN

0 ≤ lmin(n)− l(n, t) ≤ at(n), ∀n ∈ {1, ..., N}
l (n, t) + at(n) ≤ Lmax(n, t)

Pr

{
N∑

n=n(t)+1

at(n)∑
l=1

Sn +
at(n(t))∑

l=1

Sn(t) ≤ M(T − t)

}
≥ α





(5.8)

In the probability constraint from (5.8) the analytical evaluation of the completion
time distribution of a sequence of design tasks is given by the convolution product of the
distributions of the design tasks solving times. This restriction has a simplified form because
l(n(t),t)+at(n(t))∑

i=l(n(t),t)+1

Sn(t)(i) =
at(n(t))∑

i=1

Sn(t). Moreover, in a sequential NPD the team of engi-

neers solves the design tasks one by one, and never comes back to a design task for which it
was achieved the performance level required by the controller.

In the the state and action space descriptions, (5.7) and (5.8), of this particular case
we gave up to the workload constraint since due to the analytical form of the completion time
distribution of a sequence of design tasks the two inequalities become similar again. In order
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to avoid more assumptions on the relationships in betweenα, β, andM we kept only the
most natural constraint in this particular case: the completion time distribution of a sequence
of design tasks inequality. The former workload inequality may be used to obtain for each
design task its maximal achievable performance level.



Chapter 6

Supplementary
Chapter–Monotonic and Weakly
Monotonic Nondecreasing
Optimal Policies

Monotonic optimal policies constitute one of the most well-known and useful characteriza-
tions (Chapter 8 in (Heyman and Sobel, 1984), or Section 4.7.3 in (Puterman, 1994)) for
reducing the exponential growth with respect to the size of a sequential decision process, and
enabling the derivation of numerical solutions. Our approach for obtaining weak monotonic-
ity is based on the monotonicity research of (White, 1980; Topkis, 1998). We formulate the
problem in a dynamic programming setting, and we show that the optimal policy follows
a weakly monotonic optimal control by establishing the supermodularity of the objective
function. This is a new result, extending the monotonicity theory and partial ordering pro-
gramming techniques to bounded subsets without holes of integer vector lattices.

The main structural property making all these mathematical tools applicable is the
presence of partial ordering in the state and respectively action spaces. Partial orderings have
been recognized as being important in many fields, and such structures have received an in-
creasing interest and spread out from mathematics to biology, economics and also physics. In
economics, the partial orderings, doubled by the lattice programming techniques of (Topkis,
1998), encompass many applications in many production planning models ((Hopenhayn and
Prescott, 1992; Garcia and Smith, 2000) for discrete-time production planning with stochas-
tic demand, (Athey, 2002), and (Athey and Schmutzler, 1995) for the analysis of several
attributes of a firm’s short-run innovative activity).

In physics, the presence of partial orderings stands in the same class as spatial sym-
metries and Hamiltonian structures for the study of dynamic systems. These properties make
them have specific types of behavior (for example, spatial symmetries give rise to conserva-
tion laws and multiple bifurcations). As pointed out in (Landsberg and Friedman, 1996), the
presence of partial orderings restrains significantly the behavior, yet it allows for interesting
trajectories and even chaotic ones. However, due to special consequences, the chaotic be-
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havior is unstable and not present for most initial conditions when physically observing the
system in the long run. With results such as the ones presented here, the presence of partial
orderings can also contribute to the control of such systems, especially if the optimal solution
changes non-chaotically upon changes of values for exogenous parameters.

Our approach for obtaining monotonic and weakly monotonic optimal policies is
based on the monotonicity research of (White, 1980; Topkis, 1998). This means that we
formulate our control problem in a dynamic programming setting, and we try to establish
the supermodularity of the objective function. General approaches to monotonicity results
can be also found in (Hinderer, 1984), (Hinderer and Stieglitz, 1994), and (Serfozo, 1976),
while for results on monotone properties of the optimal control policies in the context of
queueing systems we refer to (Naor, 1969), (Weber and Stidham, 1987), (Altman et al., 1992),
(Glasserman and Yao, 1994), (Altman and Stidham Jr., 1995), and (Altman and Koole, 1998).

In microeconomics, and in theories of production and consumer choice, supermod-
ularity of an utility function is equivalent to products beingsubstitutes. The substitute notion
appears very intuitive in the case of a concurrent NPD situation, where after we finish all the
design tasks at their minimal performance levels, having done more levels of performance for
one design task compensates for doing less performance levels of a different one.

This chapter is organized as follows. In Section 6.1, first we give a short review
of the main definitions, and of the basic notions needed to connect the lattice programming
techniques with the Markov decision processes (an exhaustive discussion can be found in
(Topkis, 1998)). In Section 7.2 we first state the sufficient conditions for the existence op-
timal monotonic policies. Following their line of reasoning, in Section 6.3 we give new
sufficient conditions for weakly-monotonic non-decreasing policies, and in Section 6.4 we
present a new weakly monotonic non-decreasing backward induction algorithm and illustrate
its behavior through an example. We also compare it to a monotonic backward induction
algorithm, which would require a much larger action space, thus a very impractically high
time to be run. In section 6.5 we explain previous and new conditions for the robustness of
the optimal monotonic nondecreasing and weakly monotonic nondecreasing solutions.

6.1 Preliminaries

The results developed in the following Sections 6.3, 6.4, 6.5 hold for a large class of
discrete-time nonstationary Markov decision processes with finite horizon, and can be easily
extended in the case of infinite horizon, but due to the computational complexity, the interest
of such a generalization is reduced. LetN the set of natural numbers including zero. We
consider as:

The decision time points: They are equidistant and the decision pointt corre-
sponds to the beginning of the review periodt + 1. Sayt ∈ {0, 1, ..., T − 1}.

The finite state space and the finite action space:X (t) ⊂ Nq and the action set
At (xt) ⊂ Nq in any statext ∈ X(t) for t ∈ {0, ..., T − 1}.

The immediate rewards:For any(xt, at) ∈X(t)×At (xt), the immediate reward
is ρt (xt, at) and the final reward isρT (xT ).

The transition probabilities: The nonstationary transition probabilities depend
only on the decision time point, the observed state and the chosen action and not on the
history of the process:pt (xt, at, xt+1), for any(xt, at, xt+1) ∈X(t)×At (xt)×X(t + 1).
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We give first some definitions concerning the partial ordered Markov decision pro-
cesses.

Definition 24 A binary relation on the setsS andT is a subsetR of S × T . WhenT = S,
we refer to just the binary relation on the setS.

We say that the binary relation has the properties of being
antisymmetric - if(x, y) ∈ R andx 6= y imply (y, x) /∈ R, for anyx, y ∈ S
reflexive -if(x, x) ∈ R, for anyx ∈ S
transitive - if(x, y) and(y, z) ∈ R imply (x, z) ∈ R, for anyx, y, z ∈ S

Definition 25 A setX endowed with a reflexive, antisymmetric and transitive binary relation
”≤X ” on X is called a partially ordered set (poset).

Definition 26 (see (Puterman, 1994)) A nonstationary Markovian (deterministic) policy is a
sequence of decision rules, i.e.π = (a0, . . . , aT−1), whereat(xt) ∈ At (xt) for anyxt ∈
X(t).

A nonstationary Markovian (deterministic) policy is said to be a monotonic non-
decreasing policy if for anyxt ≤Nq x̃t we haveat(xt) ≤Nq at(x̃t).

A nonstationary Markovian (deterministic) policy is said to be a weakly monotonic
non-decreasing policy if for anyxt ≤Nq x̃t eitherat(xt) ≤Nq at(x̃t), or at(x̃t) andat(xt)
are not comparable.

We recall now some well-known definitions concerning the partial ordered struc-
tures.

Definition 27 Let (X,≤X) be a finite poset. An antichain (resp. chain) inX is a set of
pairwise incomparable (resp. comparable) elements. The size of the longest antichain (resp.
chain) is called the partial order width (resp. length).

Definition 28 Let (X,≤X) be a finite poset. A chainC is called complete inX if for any
x, y ∈ C such thatx ≤X y, @z ∈ X such thatx <X z <X y.

Lemma 29 (Dilworth’s Lemma and its dual (Dilworth, 1950; Mirsky, 1971)) The partial
order width of a finite poset(X,≤X) is equal to the minimum number of chains needed to
coverX. The partial order length of a finite poset(X,≤X) is equal to the minimum number
of antichains needed to coverX. If N be the cardinality ofX, W the partial order width,
andL the partial order length thenN ≤ LW .

Definition 30 Let K a subset of a poset(X,≤X) and x ∈ X. We say thatx is an upper
bound (resp. lower bound) ofK, denoted byx ≥X K (resp.x ≤X K), if for all y ∈ K, we
havex ≥X y (resp.x ≤X y).

Definition 31 A lattice is a partially ordered set(X,≤X) where for any pair of elements
there is a least upper bound and greatest lower bound (belonging toX). Wherea is the
supremum (or least upper bound) ofA ⊂ X if a is an upper bound ofA and for all b ∈ X, if
b is an upper bound ofA thena ≤ b. Similara is the infimum (or greatest lower bound) of
A ⊂ X if a is a lower bound ofA and for all b ∈ X, if b is a lower bound ofA thenb ≤ a.

LetY ⊆ X a subset in the lattice. ThenY is a complete sublattice ofX if for any
a, b ∈ Y , both their maximum (denoted bya∨b), and their minimum (denoted bya∧b) taken
in X are elements ofY .
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antichains

max lattice

min lattice

antichains
≤X

≤X×Y

Figure 6.1. Representation of a vector-latticeX × Y as a set of antichains — layers, each of
them in turn also represented as as a union of antichains according to≤X

Definition 32 In the vector-lattice(X1 × . . .×XN ,≤X1 , . . . ,≤XN ) we have a natural ex-
tension of the partial orderings defined on eachXi, for any i ∈ {1, . . . , N}, and we say
that x, y ∈ X1 × . . . × XN are in the relation ”x ≤ y” if componentwisexi ≤Xi yi

, ∀i ∈ {1, . . . , N}.

Now, we want to introduce the notion of a subset without holes of a poset. A
general definition using distances and discs can be found in (Neverman and I., 1985), but
using Dilworth’s decomposition Lemma (i.e Lemma (29)) one can introduce a more intuitive
definition for the case of vector lattices.

As a consequence of Dilworth’s Dual Lemma each poset can be decomposed into
a fixed minimal number of antichains. Thus, one can decompose a vector-latticeX × Y (see
Definition 32) first according to the partial order≤X×Y , and afterwards all the elements of
any obtained antichain with respect to≤X×Y can be decomposed further into antichains with
respect to the order≤X on X. An intuitive representation of such a decomposition is given
by Figure 6.1. We notice that a complete chain inX × Y contains an element from each
horizontal layer of the graphic decomposition of the latticeX × Y .

Definition 33 Let (X × Y,≤X×Y ) be a vector-lattice andZ ⊆ X × Y . We say thatZ is a
subset without holes if for any(x, y), (x̃, ỹ) ∈ Z, Z includes all the minimal length complete
chains containing elements(a, b) ∈ X × Y such that(x, y) ≤X×Y (a, b) ≤X×Y (x̃, ỹ) (see
Figure 6.2).

Definition 34 Let (X × Y,≤X×Y ) be a vector-lattice andZ ⊆ X × Y a subset without
holes. Then Bot(Z) is the bottom ofZ if anyy ∈ Bot(Z) is such that@x ∈ Z with x < y (i.e.
a minimal element ofZ) and any two elements of Bot(Z) are not comparable. Likewise, by
reversing the order we define that Top(Z) is the top ofZ ⊆ X × Y .

Definition 35 A subsetK of a poset(X,≤X) is said to be increasing ifx ∈ K, x̃ ∈ X and
x ≤X x̃ imply x̃ ∈ K.
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(x, y)

(x̃, ỹ)

Z

min lattice

max lattice

Figure 6.2. Representation of a setZ without holes of the vector-latticeX × Y

Definition 36 LetX, Y be posets. A functiong : X×Y → R is supermodular/superadditive
onX × Y . if it satisfies:g(x+, y+) + g(x−, y−) ≥ g(x+, y−) +g(x−, y+) for anyx+ ≥X

x− in X, andy+ ≥Y y− in Y . (Section 4.7.2. (Puterman, 1994))

Definition 37 LetX, Y be posets. LetS ⊆ X × Y , we say thatSy = {x|(x, y) ∈ S} is the
section ofS at y ∈ Y .

Definition 38 LetX, Y be posets,S ⊆ X×Y , andSy the section ofS at y ∈ Y . A function
f : S → R has increasing differences in(x, y) on S if f(x, y+)− f(x, y−) is increasing in
x onSy− ∩ Sy+ , for all y+ ≥Y y− in Y . (Section 2.6.1. (Topkis, 1998))

We also have the following definition which consistent with Definition 36 forX a
lattice.

Definition 39 LetX be a lattice. A functionf : X → R is supermodular onX if it satisfies
f(x)+f(x̃) ≤ f(x∨ x̃)+f(x∧ x̃) for all x,x̃ ∈ X, where∨ denotes the maximum operator,
and∧ denotes the minimum lattice operator (Section 2.6.1. (Topkis, 1998)).

As we mentioned in the introduction there is an economic interpretation of super-
modularity. Suppose thatf specifies production costs in an economic system withn kinds of
inputs and suppose that all inputs are used as much as possible. Iff is supermodular onRn

+,
then

f(x + γei)− f(x) ≤ f(x + λej + γei)− f(x + λej)

for x ∈ Rn
+, γ > 0, λ > 0, andi 6= j. This inequality states that the extra cost of using

γ extra units of inputi is raised by havingλ extra units of inputj (notice that here we have
no economies of scales, but the opposite effect). In other words, having more of inputj
may reduce the effectiveness of using more of inputi. In this sense, inputsi andj substitute
each other’s effectiveness. In economics, nondecreasing differences, hence supermodularity,
is equivalent to commodities beingsubstitutes. Similarly, submodularity, is equivalent to
commodities beingcomplementary.
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Notions of ”substitute” and ”complementary” products arise in microeconomics in
theories of production and consumer choice. Two products are regarded as complements
(substitutes) if having more of one does not induce you to choose less (more) of the other.
Shoes and shoelaces are complementary, whereas spaghetti and macaroni are substitutes. Ob-
serve that the word definition of ”complementary” (”substitute”) is essentially the stipulation
that a utility function have decreasing (increasing) differences, hence that it is submodular
(supermodular).

6.2 Sufficient conditions for monotonic nondecreasing poli-
cies

The goal of this subsection is to review the sufficient conditions for the existence
of optimal monotonic policies from (Topkis, 1998; White, 1980), in the case of a nonsta-
tionary discrete-time Markov decision model with bounded partially ordered state space, and
action space in the vector-latticeRq

+ endowed with the componentwise partial ordering (see
Definition 32).

Definition 40 Let S ⊆ Rq andJ ⊆ Rm, and let
∫

S
dFj(w) be the probability measure of

S with respect to the distribution functionFj(w) onRq. Fj(w) is said to be stochastically
increasing inj onJ if

∫
S

dFj(w) is increasing inj onJ for each increasing subsetS in Rq.

Lemma 41 (general form in Theorem 3.9.1.(Topkis, 1998), (Athey and Schmutzler, 1995))
Let J a subset ofRmand {Fj(w) : j ∈ J} a collection of distribution functions onRq.
Fj(w) is stochastically increasing inj on J if and only if

∫
h(w)dFj(w) is increasing inj

onJ for each increasing real-valued functionh(w) onRq.

Corollary 42 (generalization of Lemma 4.7.2 from (Puterman, 1994)) Let{zj}j∈Y , {z̃j}j∈Y

, {vi}i∈Y be real-valued non-negative numbers indexed afterY ∈ Nq. Suppose
∑

j∈K

zj ≥
∑

j∈K

z̃j for any increasing subsetK ⊆ Y and the sums
∑
j∈Y

zj ,
∑
j∈Y

z̃j are less than one. If for

any i, j ∈ (Y,≤Nq ) such thati ≥Nq j we havevi ≥ vj then
∑

j∈Y

vjzj ≥
∑

j∈Y

vj z̃j .

Proof. If we take in the previous lemma the distribution functionFj(w) onNq ⊂
Rq is discrete, the expected value of the real-valued functionh(w) on Nq,

∫
h(w)dFt(w) ,

becomes
∑

h(w)P{Xj = w}. By takingJ = {1, 2} Fj(w) is stochastically increasing in
j on J is equivalent according to the Definition 40 with

∑
w∈K h(w)P{X2 = w} is larger

than
∑

w∈K h(w)P{X1 = w} for any increasing subsetK ⊆ Nq.
By taking in the previous Lemma the functionh(j) = vj as an increasing one and

P{Xt = j} = zj we can conclude the proof.

Theorem 43 (Theorem 2.8.1 (Topkis, 1998)) LetY is a lattice,X is a partially ordered set
andYx ⊆ Y for anyx ∈ X If we have

1. Yx is increasing inx ∈ X (Yx ⊆ Yx̃ for x ≤X x̃ ∈ X)

2. f(·, x) : Y → R is supermodular iny ∈ Y for eachx ∈ X, and has increasing
differences in(y, x) ∈ Y ×X
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thenarg max
y∈Yx

f(y, x) is increasing inx on

{
x ∈ X; arg max

y∈Yx

f(y, x) is nonempty

}
.

Proposition 44 (Lemma 3.9.4. from (Topkis, 1998)) Consider a discrete-time nonstationary
Markov decision process with finite horizonT , and finite state and action spaces as defined
in Section 6.1, but onRq instead ofNq. If we have for anyt ∈ {0, 1, ...T − 1}

1. At (xt) ⊂ At (x̃t) for anyt ∈ {0, 1, ...T − 1} and all statesxt ≤Rq x̃t ∈ X (t) ⊂ Rq

2. ρt (·, at) , ρT (·) : X(t) → R are nondecreasing inxt, for any(xt, at) ∈ X(t)×At (xt)

3. the distribution function for the statew in the periodt + 1 given the statex and the
actiona, Fx,a,t(w), is stochastically increasing inx, for any(xt, at) ∈ X(t)×At (xt)

Thenft(·) : X(t) → R is nondecreasing for anyt ∈ {0, 1, ...T} where

ft(xt) = max
at∈At(xt)

{
ρt(xt, at) + γ

∫
ft+1(w)dFx,a,t(w)

}
.

Definition 45 Let S ⊆ Rq andT ⊆ Rm, and let
∫

S
dFt(w) be the probability measure of

S with respect to the distribution functionFt(w) onRq. Ft(w) is said to be stochastically
supermodular int on T if

∫
S

dFt(w) is supermodular int on T for each increasing subset
S in Rq.

Theorem 46 (Theorem 3.9.2. from (Topkis, 1998)) Consider a discrete-time nonstationary
Markov decision process with finite horizonT , and finite state and action spaces as defined
in Section 6.1, but onRq instead ofNq. If we have for anyt ∈ {0, 1, ...T − 1}

1. St := {(xt, at)|(xt, at) ∈ X (t)×At (xt)} is a sublattice of the vector latticeR2q.

2. At (xt) ⊂ At (x̃t) for all statesxt ≤Rq x̃t ∈ X (t) ⊂ Rq

3. ρt (·, at) , ρT (·) : X(t) → R are nondecreasing inxt, for any(xt, at) ∈ X(t)×At (xt)

4. ρt (·, at) , ρT (·) : X(t) → R are supermodular in(xt, at) ∈ St

5. the distribution function for the statew in the periodt + 1 given the statex and the
actiona, Fx,a,t(w), is stochastically increasing inx, for any(xt, at) ∈ X(t)×At (xt),
and is stochastically supermodular in(xt, at) ∈ St

Then for anyt ∈ {0, 1, ...T − 1}
1. the functionρt(xt, at) + γ

∫
ft+1(w)dFx,a,t(w) is supermodular in(xt, at) ∈ St

2. ft(xt) = max
at∈At(xt)

{
ρt(xt, at) + γ

∫
ft+1(w)dFx,a,t(w)

}
is supermodular inxt ∈ X(t)

3. the set of optimal decisionsarg max
at∈At(xt)

{
ρt(xt, at) + γ

∫
ft+1(w)dFx,a,t(w)

}
is non-

decreasing in the statext ∈ X(t), and

4. there is a greatest (least) optimal decision for each statext and this greatest (least)
optimal decision is increasing inxt ∈ X(t) (i.e. there exists at least one monotonic
nondecreasing optimal policy).
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In Chapter 7 Section 7.2 we will use a discrete version (i.e. onNq instead ofRq) of
Theorem 46 to prove the existence of monotonic nondecreasing optimal policies for a slightly
modified version of the NPD problem without precedence constraints.

A more general form of Theorem 46 can be found in (White, 1980). The theorem
in (White, 1980) states when there exist optimal decision rules which are structured in the
state of the system for discrete Markov decision processes withSt := {(xt, at)|(xt, at) ∈
X(t)×At(xt)} sublattice of an arbitrary lattice, and with summarized utility functions. The
usual additive utility function used in Chapter 5 and in Chapter 7 is a special case of the
summarized utility functions. Also, some of general conditions from (White, 1980) are used
to prove the existence of an optimal policy for an infinite horizon problem

In the case of bounded subsets without holes of the infinite vector-latticeNq we
can use as in (Puterman, 1994) the terminology superadditive instead of supermodular, non-
decreasing instead of isotone, while considering maximization problems. The existence of
weakly monotonic optimal policies can be obtained under less restrictive requirements than
the one from (White, 1980), (Topkis, 1998): for anyt ∈ {0, 1, ...T − 1}, X (t) × At (xt) is
a sublattice of the vector latticeR2q.

6.3 Sufficient conditions for weakly-monotonic nondecreas-
ing policies

The goal of this subsection is to give new sufficient conditions for the existence
of weakly optimal monotonic policies, in the case of a nonstationary discrete-time Markov
decision model with bounded partially ordered state space, and action space in the vector-
latticeNq endowed with the componentwise partial ordering (see Definition 32).

Lemma 47 (extension of Theorem 43 Theorem 2.8.1 (Topkis, 1998),and Lemma 4.7.1 from
(Puterman, 1994)) LetX be a poset and letY := ∪x∈XYx be a poset indexed afterX, and
g : X × Y → R a real valued superadditive function on(x̃, ỹ) ∈ X × Yx, for eachx ∈ X,
with g(x, y) = 0, for any(x, y) /∈ X × Yx. If we have

1. for eachx ∈ X there existsmaxy∈Y g(x, y)

2. Yx ⊂ Yx̃ for anyx ≤X x̃ ∈ X, andYx = Yx̃ for anyx, x̃ ∈ X not comparable (i.e.
the family{Yx|x ∈ X} is expanding)

3. for anyx ≤X x̃ ∈ X, andy ≤ ỹ ∈ Yx ∪ Yx̃ we have thaty ∈ Yx and ỹ ∈ Yx̃ (i.e. the
family is ascending)

then for anyx+ ≥X x− in X, and anyy− ∈ Top arg maxy∈Yx− g(x−, y) either there
existsy+ ∈ Top arg maxy∈Yx+ g(x+, y) such thaty+ ≥Y y− in Y , or there is no element in
Top arg maxy∈Yx+ g(x+, y) comparable withy−.

Proof. Letx+ ≥X x− in X, and choosey ≤Y yx− ∈ Top arg maxy∈Yx− g(x−, y)
andy ∈ Y . Then there exists anx ∈ X such thaty ∈ Yx ⊂ Y .

By definition ofarg maxy∈Yx− g(x−, y) we haveg(x−, yx−)− g(x−, y) ≥ 0.
Becausey ≤Y yx− we have thaty ∈ Yx− by using hypothesis 3 withYx ∪ Yx− if

x ≥X x−, or by using hypothesis 2 otherwise. SinceYx− ⊆ Yx+ (by hypothesis 2) we have
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that bothy, yx− ∈ Yx+ . Now, sinceg is a superadditive function on(x̃, ỹ) ∈ X × Yx+ and
all the pairs are in the definition domain, we also have:g(x+, yx−) + g(x−, y) ≥ g(x+, y)
+g(x−, yx−).

Rewriting the second inequality asg(x+, yx−) ≥ g(x+, y)+[g(x−, yx−)−g(x−, y)]
and using afterwards the first inequality we obtain that:g(x+, yx−) ≥ g(x+, y) for all
y ≤Y yx− ∈ Top arg maxy∈Yx− g(x−, y), which concludes the proof by maximizing af-
teryx− andy simultaneously.

Proposition 48 Consider a discrete-time nonstationary Markov decision process with finite
horizonT , and finite state and action spaces as defined in Section 6.1 and endowed with the
componentwise partial order ofNq. If we have for anyt ∈ {0, 1, ...T − 1}

1. X (t) , At (xt), for anyxt ∈ X (t) are bounded subsets without holes of the infinite
vector-latticeNq

2. At (xt) ⊂ At (x̃t) for anyxt ≤Nq x̃t ∈ X(t), andAt (xt) = At (x̃t) for anyxt, x̃t ∈
X (t) not comparable (i.e. the family{At (xt) |xt ∈ X (t)} is expanding)

3. for anyxt ≤Nq x̃t ∈ X (t), anda ≤Nq ã ∈ (At (xt)×At (x̃t)) ∪ (At (x̃t)×At (xt))
we have thata ∈ At (xt) and ã ∈ At (x̃t) (i.e. the family is ascending)

4. ρt (·, ·) is superadditive in(xt, axt) ∈ X (t)×At (xt)

5. ρt (·, at) , ρT (·) : X(t) → R are nondecreasing

and if for any increasing subsetK ⊆ X(t + 1)

6. F (·, ·) :=
∑

xt+1∈K

pt(·, .·, xt+1) is superadditive in(xt, at) ∈ X (t)×At (xt)

7. F (·, at) :=
∑

xt+1∈K

pt(·, at, xt+1) is nondecreasing inxt ∈ X (t), for anyat ∈ At (xt)

8. if (∃)xt 6= x̃t ∈ X (t) such thatAt (xt) 6= At (x̃t) then
∑

xt+1∈K

pt (x, at, xt+1) is

nondecreasing inat ∈ At (x), for anyx ∈ X (t)

Then there exists optimal decision policies which are weakly monotonic nondecreasing in
the state, for anyt ∈ {0, 1, ...T − 1} (i.e. for anyxt ≤Nq x̃t ∈ X(t), and anyat ∈
Top arg maxa∈At(xt) wt(xt, a) either there exists̃at ∈ Top arg maxã∈At(x̃t) wt(x̃t, ã) such
that ãt ≥Nq at, or there is no element inTop arg maxã∈At(x̃t) wt(x̃t, ã) comparable with
at).

Proof. Let us define

u∗t (xt) = maxat∈At(xt)

{
ρt(xt, at) +

∑
xt+1∈X(t+1)

pt(xt, at, xt+1) · u∗t+1(xt+1)

}
, and

u∗T (xT ) = ρT (xT ).
If we provewt(xt, at) := ρt(xt, at) +

∑
xt+1∈X(t+1)

pt(xt, at, xt+1) · u∗t+1(xt+1) is

superadditive in(xt, at) ∈ X(t)×At(xt) we can apply Lemma 47 sincemax
at∈A(xt)

wt(xt, at)

is attained for finite action space and state space. Thus, for anyx̃t ≥Nq xt ∈ X(t), and
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any a∗xt
∈ Top arg maxaxt∈A(xt) wt(xt, axt

), At(xt) ⊂ At(x̃t) and there existsa∗x̃t
∈

Top arg maxax̃t∈At(x̃t) wt(x̃t, ax̃t) such thata∗x̃t
≥Nq a∗xt

or a∗xt
is not comparable with any

element inTop arg maxax̃t∈At(x̃t) g(x̃t, ax̃t
). This property ensures the existence of weakly

monotonic nondecreasing optimal policies.
Let x̃t ∈ X (t) such that̃xt ≥Nq xt.
We consider in Proposition 44 a distribution function onNq ⊂ Rq which is discrete.

Then the expected value of the real-valued functionft+1(w) onRq,
∫

ft+1(w)dFx,a,t(w),
becomes

∑
ft+1(w)P{Xx,a,t = w}.

Thus, from Proposition 44,u∗t+1(·) : X(t + 1) → R is nondecreasing (according
to the partial order onNq) for any t ∈ {0, 1, ...T − 1} because we haveρt (·, at), ρT (·),
F (·, at) :=

∑
xt+1∈K

pt(·, at, xt+1) : X(t) → R are nondecreasing inxt, for any(xt, at) ∈
X(t)×At (xt), and for any increasing subsetK ⊆ X(t + 1).

Let at ≤Nq ãt ∈ (At (xt)×At (x̃t)) ∪ (At (x̃t)×At (xt)) arbitrary. By hypoth-
esis, for anyxt ≤Nq x̃t ∈ X (t) ⊂ Nq, andat ≤Nq ãt as above, we have thatat ∈ At (xt)
and ãt ∈ At (x̃t). SinceAt (xt) ⊂ At (x̃t) for any xt ≤Nq x̃t ∈ X (t) ⊂ Nq we also
have thatat ∈ At (x̃t). If ãt ∈ At (xt) then for any increasing subsetK ⊆ X(t + 1)∑
xt+1∈K

[pt (x̃t, ãt, xt+1)+pt (xt, at, xt+1)] ≥
∑

xt+1∈K

[pt (xt, ãt, xt+1)+pt (x̃t, at, xt+1)] holds

directly because
∑

xt+1∈K

pt (xt, at, xt+1) is superadditive in(xt, at) ∈ X (t)×At (xt), for any

increasing subsetK ⊆ X(t + 1).
If ãt /∈ At(xt) then

∑
xt+1∈K

pt(xt, ãt, xt+1) = 0, andAt (xt) 6= At (x̃t). But in this

case we have thatat ≤Nq ãt, at, ãt ∈ At (x̃t) , and
∑

xt+1∈K

pt (x̃t, at, xt+1) is nondecreasing

in at ∈ At (x̃t) for any increasing subsetK ⊆ X(t + 1). This implies that∑
xt+1∈K

[pt (x̃t, ãt, xt+1) + pt (xt, at, xt+1)] ≥
∑

xt+1∈K

pt (x̃t, ãt, xt+1) ≥
∑

xt+1∈K

pt (x̃t, at, xt+1).

For anyj ∈ X(t+1) we denote byzj := [pt (x̃t, ãt, j)+pt (xt, at, j)], z̃j := [pt (xt, ãt, j)+
pt (x̃t, at, j)] , andvj := u∗t+1(j), in order to apply for them Corollary 42 . Its hypotheses
are fulfilled sinceX(t+1) ⊆ Rq,

∑
j∈K

zj ≥
∑

j∈K

z̃j , for any increasing subsetK ⊆ X(t+1)

and the sums are finite. Thus, we have
∑

j∈X(t+1)

[pt (x̃t, ãt, j) + pt (xt, at, j)]u∗t+1(j) ≥
∑

j∈X(t+1)

[pt (xt, ãt, j) + pt (x̃t, at, j)]u∗t+1(j), which implies that the function
∑

xt+1∈X(t+1)

pt (xt, at, xt+1)u∗t+1(xt+1) is superadditive in(xt, axt) ∈ X (t)× At (xt), for

anyt ∈ {0, 1, ...T − 1}.
We assumed thatρt (·, ·) is superadditive too in(xt, axt) ∈ X (t)×At (xt), for any

t ∈ {0, 1, ...T − 1}. Since the sum of superadditive functions defined on the same domain
remains superadditivewt(xt, at) is superadditive in(xt, at) ∈ X (t)×At (xt).

6.4 Weakly monotonic nondecreasing backward induction

An optimal policy has to give optimal actions for each state. This can be done
through a recursive computation, starting from the latest moments in time and working to-
wards the beginning of time, via a general backward induction algorithm. Even when mono-
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tonic policies can be found, as in (Puterman, 1994), a monotonic backwards induction al-
gorithm can be used only for very particular nonstationary Markov decision processes (that
is, only the states and the actions are not time-dependent) withX = {0, 1, . . . , M} with M
finite and withA (x) = A for all x ∈ X. Such amonotonic backward induction algorithm
is preferred to a normal backward induction algorithm because leads to computational ad-
vantages from considering only nondecreasing control actions. This restricts the backward
induction algorithm to look for candidate actions for thearg max for a given statex only in
the superior cones of the elements of thearg max of all states̃x which are smaller thanx.

However, here, from the results presented in Subsection 6.3, we can construct a
new algorithm from this family, which works on very general partially-ordered state and
respectively action spaces, speeding up the whole processing by a significant factor. We call
this new algorithm a weakly monotonic nondecreasing backward induction algorithm. One of
its main characteristics is the ordered sweeping of the state and action spaces when looking
for the max and thearg max, namely allowed by Lemma 47 and Proposition 48. These
results basically allow the algorithm to look for candidate actions for thearg max for a given
statex in the action space from which we extract all the inferior cones of the elements of
thearg max of all statesx′ which are smaller thanx, instead of looking for it in the whole
available action space.

The algorithm, with an illustrating example and comments

The goal of this part is to provide an easy-to-implement version of our algorithm, as well as
to illustrate through an example the characteristics and the differences between our algorithm
and a monotonic backwards induction algorithm. Our algorithm benefits from the fact that
both the state space and action space are subsets of a lattice without holes. Even small lattices
(e.g. subsets ofN3) cannot be entirely handled in the main computer memory (with all the
couples state-action subsets needed by any classical backward induction algorithm). Thus,
we use the fact that bothX(t) andA(t) can be covered by disjoint antichains (Lemma 29,
by Dilworth and Mirsky), exploring them in this ”ordered” manner. For each segment of
lattice explored during the execution of a backward induction algorithm , we only keep track
of the bottom and top, looking for the optimal action through an antichain sweep between
them. This is done in thewhile loop (lines8− 18), which thus maintains a current antichain.
The first such antichain is the very bottom ofX(t) (line 3): thus for eacht, this bottom
needs to be computed in advance, from the definition ofX(t). As thewhile loops, the other
antichains are recursively computed (line13). Then, inside this loop, for each state of the
current antichain, by looking in its reduced action spaceÂ (set in line10), its optimal actions
and the reward are computed (line11), in the firstfor loop (lines9-12). Thereafter, based on
that, the boundaries of the reduced action space of the new antichain (which will become the
current one) are iteratively computed, in the secondfor loop (lines14− 16).

1 for eachx ∈ X(T ) do u∗(x) ← ρT (x) endfor
2 for t from T − 1 to 0 do
3 CurrentStateAntichain0 ←BottomX(t)

4 for eachx ∈ CurrentStateAntichain0 do
5 initialize CurrentAction Bottom[x]
6 endfor
7 i ← 0
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8 while CurrentStateAntichaini 6= ∅ do
9 for eachx ∈CurrentStateAntichaini do
10 Â ← {a ∈ A (t) |∀c ∈ CurrentAction Bottom[x], a 6< c}

11 (u∗(x), A∗(x)) ← (max, Toparg max)
a∈ bA



ρt(x, a) +

∑

y∈X(t+1)

pt(x, a, y) · u∗(y)





12 endfor

13 CurrentStateAntichaini+1 ← Bot
⋃

x∈CurrentStateAntichaini

{
y ∈ Succ(x)|y ≤ TopX(t)

}

14 for eachx ∈CurrentStateAntichaini+1do
15 CurrentAction Bottom[x] ← Top

⋃

y∈CurrentStateAntichaini, with y∈Pred(x)

A∗(y)

16 endfor
17 i ← i + 1
18 endwhile
19 endfor
end

By Succ(x) we mean the set of direct successors of the elementx in the poset
X(t) (i.e. in Nq Succ(x) := {y|∃ 1 ≤ i ≤ q s.t. y = x + ei,whereei(i) = 1, and
ei(j) = 0,∀j 6= i}

Let us follow the algorithm through a simple NPD project example. We consider a
NPD problem without precedence constraints as described in Chapter 5 Section 5.4 Subsec-
tion 5.4.1. A more in depth discussion of this type of NPD follows in Chapter 7.

Let M = 2 engineers solving a number ofN = 3 concurrent design tasks available
at timet = 0, with µ = 100 andλ = 50 for botht = 0 andt = 1. The deadline isT = 2. In
this example, we do not consider any design tasks arrival process.

If the product is fully functional at the deadlineT = 2 (i.e. the levels achieved
will be greater than or equal to the minimum levelslmin (n) fixed in advance for each task
n ∈ {1, 2, 3}) we choose to reward the designed product with a multiplicative market payoff
function as in (Yoshimura, 1996). This type of reward function is to the best of our knowledge
the most generalS−type market payoff function encountered in literature. A discussion on
the market payoff functions appears in 2 Subsection 2.3.3, and the market payoff related
parameters are fully described in Chapter 3 Section 3.3. The reason for the ”S−type” name
comes from the fact that the graph of the function is somehow ”S”-shaped.

We consider a number of∆ = 2 customer needs, with the first task contributing
only to the first customer need, that isθ1,1 = 1 andθ2,1 = 0, and with the second and third
task contributing only to the second customer need, withθ2,2 = 0.6 andθ2,3 = 0.4, and
θ1,2 = θ1,3 = 0. These values stay the same after normalization. We then use the multiplica-

tive formula (from (Yoshimura, 1996)) given here on page 30:
∆∏

δ=1

[
Sδ(t, l(·, t))

]wδ(t)
. We

recall from page 30 thatSδ should be anS−type function giving the distance between the
cumulated design tasks contribution per customer needδ,

∑
n =1,..,N

Θ(n, t, δ) · l(n,t)
Lmax(n,t) , and

the customer need ideal value. Since in this example there is no new design tasks arrival we
have thatN = N and according to the notation from page 28 for all the planned design tasks
Lmax(n, t) = Lmax(n). For theS−type function, we choose the cdf of the normal distribu-
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Figure 6.3. The shape of the second customer need payoff function

tion Pr
N (0,1)

(X < x), appropriately scaled and centered on a positivex. Thus, the formula to

compute the reward for a final state(l(1, 2), l(2, 2), l(3, 2)) (i.e. att = 2) is

2∏

i=1

(
ai · Pr

N (0,1)

(
10X − 5 <

3∑
n=1

θi,n · l(n, 2)
Lmax(n)

)
+ bi

)wi

withN (0, 1) being the normal distribution function with mean0 and standard deviation1. In
the program implementation of the algorithm, we used the library error functionerf defined
as

erf(x) =
2√
π
·
∫ x

0

e−t2dt where Pr
N (0,1)

(X < x) =
1√
2π

∫ x

−∞
e
−t2
2 dt =

1 + erf
(

x√
2

)

2
.

The exponents have the valuesw1 = 0.3 andw2 = 0.7. the coefficients for the
final linear transformation before raising exponentiation area1 = 100 anda2 = 300, and the
free terms areb1 = 0 andb2 = 50.

Thus the shape of the second customer need payoff is as in Figure 6.3, and the
shape of the total market payoff becomes as in Figure 6.4.

We consider for each of the tasks, triples with the number of levels, the number of
activities per level (unit of work), and the minimum level required:

The task #1 has13 levels,80 activities per level, and minimum level equal to1.
The task #2 has17 levels,90 activities per level, and minimum level equal to2.
The task #3 has14 levels,73 activities per level, and minimum level equal to0.
The manager decides the levels up to which the design tasks should be performed.

He wants to be sure with the safety levelβ = 0.85 that at the deadline the decided levels will
be achieved.
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Figure 6.4. The shape of the total market payoff function

By computing the workload probability constraint for this NPD without precedence
constraints (see Chapter 5 Section 5.4 Subsection 5.4.1) we have the following state space
descriptions for the review periods:
X (0) = {(0, 0, 0)}
X (1) = {(0, 1, 0) , (0, 1, 1) , (0, 2, 0) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (2, 0, 0)}
X (2) = {(1, 2, 0), (1, 2, 1), (1, 3, 0), (2, 2, 0)}

The action space description will be independent of the state of the system. This
happens because an actionat in the statext decides how many other levels abovext we want
to perform, and not the performance level up to which the design taskn may be solved until
the end of the review period. A formal proof of this fact appears in Chapter 7 Proposition 57.
Thus, the action spaces are:
A (0) = {a| (0, 0, 0) ≤ a ≤ b, with b ∈ B}, where
B = {(0, 0, 5) , (0, 1, 3) , (0, 2, 2) , (0, 3, 1) , (0, 4, 0) , (1, 0, 4) , (1, 1, 2) , (1, 2, 1) ,

(1, 3, 0), (2, 0, 2), (2, 0, 3), (2, 1, 1), (2, 2, 0), (3, 0, 1), (3, 1, 0), (4, 0, 0)}
A (1) = {a| (0, 0, 0) ≤ a ≤ {(0, 0, 2), (0, 1, 1), (0, 2, 0) , (1, 0, 1) , (1, 1, 0) , (2, 0, 0)}}
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Let us now follow step by step the algorithm.

The rewards, for the four states ofX(2), are respectively2.03767, 2.03785, 2.03794
and5.22398, assigned in line1 of the algorithm.

The loop of lines from2 to 19 starts witht = 1. We have that BottomX(1) is
{(0, 1, 0), (1, 0, 0)}, from theβ confidence threshold constraint.

Thus, we set CurrentStateAntichain0.

Let us look farther, at line10, starting now the inner loops. The top of actions is

TopA1(1) = {(0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0)} (also from the
β confidence threshold constraint). Thus, all actions between(0, 0, 0) = 0R3 and this top are
gathered in the set̂A in line 10, because initially CurrentAction Bottom has been set to zero
for all the states in line5. This gives us forÂ the set

{0R3 , (0, 0, 1) , (0, 1, 0) , (1, 0, 0) , (0, 0, 2), (0, 1, 1), (0, 2, 0) , (1, 0, 1) , (1, 1, 0) , (2, 0, 0)}.
Since the minimum levels for the three tasks are(1, 2, 0), the only actions leading

to rewarded states (that is with levels above the minimum) among these ten are the action
(1, 1, 0) for the state(0, 1, 0) and the action(0, 2, 0) for the state(1, 0, 0), thus forming their
arg max in line 11, with u∗((0, 1, 0)) = 0.403761 andu∗((1, 0, 0)) = 0.265104.

Now the for each loop of lines9 to 12 has ended and a new antichain has to be con-
structed, from the immediate successors of these two states which have just been processed.

Thus the line13 sets

CurrentStateAntichain1 = {(0, 1, 1), (0, 2, 0), (1, 1, 0), (1, 0, 1), (2, 0, 0)},
and in the loop from the lines14 to 16, the first two states have the bottom of actions set to
(1, 1, 0) being successors only of(0, 1, 0), the last two states to(0, 2, 0) and the state(1, 1, 0)
to both.

The line-8-to-line-18 while loops withi = 1 from line 17, but this time, the set̂A
is smaller, showing now the advantage of this type of algorithm.

For instance, for the state(0, 2, 0), the actions(0, 1, 0), (1, 0, 0) and(0, 0, 0) are
eliminated thanks to the weak monotonicity, because they are smaller than the action(1, 1, 0)
which has been set to the bottom of actions of(0, 2, 0) in lines 14 to 16, as we have said
above. ThusÂ only contains seven actions. Among them, the actions(0, 0, 2), (0, 1, 1),
(0, 2, 0) and (0, 0, 1) do not lead to states having at least the minimum levels (because of
the first component), thus not to rewarded states. The action(1, 0, 1) leads to the rewarded
states(1, 2, 0) and (1, 2, 1), with a total value (after computing the transition probability)
of 3.02609. The action(1, 1, 0) leads to the rewarded states(1, 2, 0) and (1, 3, 0) with a
total value of2.44148. Finally, the action(2, 0, 0) leads to the rewarded states(1, 2, 0) and
(2, 2, 0) with a total value of3.82039. This is the greatest one, sou∗((0, 2, 0)) is set to it, and
A∗((0, 2, 0)) = {(2, 0, 0)}.

This computation in lines9 to12 continues for the other four elements of the current
antichain, which is also the last one. After considering a total of55 actions, it ends with the
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Table 6.1. Comparative results: our algorithm versus the natural extension of the unidimen-
sional one from (Puterman, 1994) in the sense of (Topkis, 1998) and (White, 1980)

parameters states searched by actions searched by
T N our algo nat. ext. our algo. nat. ext
2 3 12 6901 94 3956
2 5 21 > 5000 2881 > 27800
2 10 26 > 6000 10748 > 69000
2 15 28 > 12000 19457 > 132000
5 3 66 21902 498 18580
5 5 146 > 38700 2996 > 25700
5 10 168 > 118700 44993 > 756000
5 15 240 > 155000 204734 > 2640000

following values forx ∈ X(1):

x u∗(x) A∗(x)
(0, 1, 0) 0.403761 (1, 1, 0)
(0, 1, 1) 0.403798 (1, 1, 0)
(0, 2, 0) 3.82039 (2, 0, 0)
(1, 0, 0) 0.265104 (0, 2, 0)
(1, 0, 1) 0.265128 (0, 2, 0)
(1, 1, 0) 3.07276 (1, 1, 0)
(2, 0, 0) 0.679649 (0, 2, 0)

Now the for from lines2 to 19 loops once, the last time, witht = 0; all this
computation restarts, with only one state, namely(0, 0, 0), and39 possible actions, and it
ends withu∗((0, 0, 0)) = 2.02032 andA∗(0) = {(1, 2, 1)}.

Now, if we want to solve this problem with a monotonic multi-dimensional algo-
rithm in the sense of (Topkis, 1998) and (White, 1980), by naturally extending the unidimen-
sional algorithm presented in (Puterman, 1994), we have to complete the action space up to
a lattice. That is, for the values presented before, the action space contains now all triples up
to (4, 4, 5) for t = 0 and up to(2, 2, 2) for t = 1, which obviously adds many more actions
to test for. Moreover, this entails an increase of the state space, since the engineers were sup-
posed to work up to the required levels, and the only transitions with zero probability from a
statext upon action a being those for states outside the interval[xt, xt + at]. Here thus there
are actions greater than in the setting of our algorithm, leading to a serious extension of the
state space. We have run simulations for several values of the above parameters, and com-
pared the increase of number of considered states, and respectively actions when computing
the maximum, in both cases, of our algorithm and of the natural extension of (Puterman,
1994) in the sense of (Topkis, 1998) and (White, 1980). We give in table 6.1 these results for
a comparison. Our algorithm has finished in all cases, while the natural extension has been
able to finish only forN = 3 (andT = 2, T = 5) ; for the other cases, we decided to extend
the initially decided period of simulation from several minutes to several days, and thus only
reported lower bounds.
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Moreover, the weakly monotonic actions are more natural in a lot of practical sit-
uations like this one, and the weakly monotonic backward induction algorithm preserves the
robustness of the optimal policies (see Proposition 52 and Theorem 51).

6.5 Robustness of the optimal (weakly) monotonic nonde-
creasing policies

Dynamic programming problems provide optimal policies, which are very often too
complicated to be used for deriving insights about the given problem (see a survey in (Dixit
and Pindyck, 1996)). By studying only particular classes of structured optimal policies (as
the monotonic nondecreasing, and respectively weakly monotonic nondecreasing), we are
able to describe how the optimal policies change in response to some of the changes of the
exogenous parameters.

Intuitively one might expect that the monotonicity of the decision rules would im-
ply a stable structure of the optimal paths (i.e. an increase in a exogenous parameterθ will
lead to a uniform increase of the optimal path). While this statement is true in the unidimen-
sional stationary case (see (Denekere and Pelikan, 1986) for a proof), this is not necessarily
true in higher dimensions, since the optimal paths arising from monotonic decision rules can
be extremely complicated.

In (Friedman and Johnson, 1997) a two-dimensional example of a chaotic opti-
mal path for a monotonic decision rule is given, as well as an analysis of connections be-
tween monotonic policies and the optimal path whenAt (xt) are sublattices ofRm for any
xt ∈ X(t). The authors consider a general dynamic decision problem (DDP), where in
each period the set of allowable actions may depend on the action from the previous period,
as well as of the current state, and a set of exogenous parametersΘ := Θ1 × . . . × Θl,
whereΘi ⊆ R is locally compact. For the DDP considered is described by: an action space
A = A1 × . . . An, Ai ⊆ R, andAi locally compact, such thatA is a vector-lattice, a fi-
nite set of random stationary Markovian processesxt

i ∈ Xi, having a positive persistence of
uncertainty, whereX = X1 × . . . Xm, Xi ⊆ R, andXi locally compact, and payoff per pe-
riod F (at, at−1, xt; θ) +

∑
i κi(at

i), where bothF (at, at−1, xt; θ), and
∑

i κi(at
i) are upper

semi-continuous. The assumptions considered were:

1. the value function exists and is well defined under total expected reward criterion

2. the graphΓ := {(a, à, x; θ)|a ∈ A(à, x; θ)} is a sublattice ofA× A×X ×Θ (in the
product order), whereA(à, x; θ) is the set of allowable actions in statex.

3. A(à, x; θ) is a complete sublattice ofA.

4. F (a, à, x; θ) is supermodular in(a, à) ∈ Γ(x; θ) := {(a, à)|a ∈ A(à, x; θ)} and has
nondecreasing differences in((a, à), (x; θ)) onA(à, x; θ) (i.e. full complementarities)

Proposition 49 (see Corollary 1 (Friedman and Johnson, 1997)) Assume a Dynamic Deci-
sion Problem with a monotone decision rule (e.g. full complementarities). Then for any initial
conditionss0,x0 and any two parameter choicesθ+ ≥ θ−, for all t > 0, at(θ+) ≥ at(θ−)
along any sample path, where in every period the largest optimal action is always chosen.
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As a consequence of this result we have a robustness result for the nondecreasing
monotonic optimal policies of the discrete-time nonstationary Markov decision processes
with a simplified maximal work constraint from Equation (7.4) described in Section 7.2. This
result, given below, can be derived independently as a direct consequence of Theorem 43.
However, we included for the sake of completeness the Proposition 49.

Corollary 50 Let Y be a lattice,Θ ⊂ Rm a sublattice, andX a partially ordered set with
Yx,θ ⊆ Y for any(x, θ) ∈ X ×Θ. If we have

1. for each(x, θ) ∈ X ×Θ there existsmaxy∈Y g(x, θ, y)

2. Yx,θ is increasing in(x, θ) ∈ X ×Θ

3. g(·, x, θ) : Y → R is supermodular iny ∈ Y for each(x, θ) ∈ X × Θ, and has
increasing differences in(y; x, θ) ∈ Y × (X ×Θ)

then for anyx+ ≥X x− ∈ X, θ− ≤Rm θ+ ∈ Θ, we have that
max arg maxy∈Y g(x−, θ−, y) ≤ max arg maxy∈Y g(x+, θ+, y).

Our weakly nondecreasing monotonic policies have an even more complicated
structure since the setTop arg maxaxt∈At(xt) wt(xt, axt) may contain points that are un-
ordered with respect to each other, and then it can happen for some optimal decisions of the
same review period to be unordered. If we strengthen the assumptions on the action space and
we require it to be a lattice instead of partially bounded subset ofNq, for all these unordered
actions there will exist a greater action (their maximum) in the vector order that will be op-
timal. The problem is that the existence of such ”max ” actions implies in a lot of real-life
situations (i.e. economics, physics) a large increase of the action space, and implicitly of the
state space, as exemplified in Subsection 6.4. However, we are able to prove a non-chaotic
behavior even without the lattice requirement.

Theorem 51 Let Θ ⊂ Rm be a sublattice,X,Y := ∪(x,θ)∈X × ΘYx,θ be posets (i.e. par-
tially ordered sets), andg : X × Θ × Y → R a real valued superadditive function on
((x̃, θ̃), y) ∈ X × Θ × Yx,θ, , with g(x, θ, y) = 0, for any(x, θ, y) /∈ X × Θ × Yx,θ. If we
have

1. for each(x, θ) ∈ X ×Θ there existsmaxy∈Y g(x, θ, y)

2. for any ỹ ∈ Yx̃,θ̃ andy ≤Y ỹ there existsx ∈ X ⊂ Nq, andθ ≤Rm θ̃ ∈ Θ such that
y ∈ Yx,θ

3. Yx,θ ⊂ Yx̃,θ̃ for anyx ≤X x̃ ∈ X, θ ≤Rm θ̃ ∈ Θ, andYx,θ = Yx̃,θ for anyx, x̃ ∈ X
not comparable

4. for anyx ≤X x̃ ∈ X ⊂ Nq, θ ≤Rm θ̃ ∈ Θ, andy ≤Y ỹ, (y, ỹ) ∈
(
Yx̃,θ̃ × Yx,θ

)
∪(

Yx,θ × Yx̃,θ̃

)
we have thaty ∈ Yx,θ and ỹ ∈ Yx̃,θ̃ (i.e. the family is ascending)

then for anyx+ ≥X x− in X, θ− ≤Rm θ+ ∈ Θ and anyy− ∈ Top arg max
y∈Yx−,θ−

g(x−, θ−, y)

there existsy+ ∈ Top arg max
y∈Yx+,θ+

g(x+, θ+, y) such thaty+ ≥Y y− in Y, or there is no

element inTop arg maxy∈Yx+,θ+ g(x+, θ+, y) comparable withy−.
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Proof. Let x+ ≥X x− ∈ X, let θ− <Rm θ+ ∈ Θ, and choosey ≤Y yx− in the set
Top arg maxy∈Yx−,θ− g(x−, θ−, y). Then there existsx ∈ X, andθ ≤Rm θ− ∈ Θ such that
y ∈ Yx,θ (by hypothesis 2). Thus,y ∈ Yx,θ− (by hypothesis 3).

By definition ofarg max
y∈Y

g(x−, θ−, y) we haveg(x−, θ−, yx−)−g(x−, θ−, y) ≥ 0.

Becausey ≤Y yx− we have thaty ∈ Yx,θ− = Yx−,θ− , if x andx− are not comparable
(hypothesis 3);y ∈ Yx,θ− ⊂ Yx−,θ− , for x ≤X x− (by hypothesis 3); andy ∈ Yx−,θ− for
x >X x− (by hypothesis 4 withYx,θ− , Yx−,θ− ). SinceYx−,θ− ⊆ Yx+,θ+ (by hypothesis 3)
we have that bothy, yx− ∈ Yx+,θ+ .

Sinceg is a superadditive function we also have:g(x+, θ+, yx−) + g(x−, θ−, y) ≥
g(x+, θ+, y) +g(x−, θ−, yx−). Rewriting the second inequality as

g(x+, θ+, yx−) ≥ g(x+, θ+, y) + [g(x−, θ−, yx−)− g(x−, θ−, y)]

and using afterwards the first inequality we obtain that:g(x+, θ+, yx−) ≥ g(x+, θ+, y) for
all y ≤Y yx− in Top arg maxy∈Yx−,θ− g(x−, θ−, y). This concludes the proof.

A simpler behavior of the optimal sample paths occurs when in the parameterized
Markov process we have separable objectives, in the sense thatwt(xt, at, θ) = g(xt, at) +
hθ(xt).

Proposition 52 Let X,Y ∈ Rq be posets,g : X × Y → R a supermodular/superadditive
function, andh : X → R a nondecreasing function with respect to the partial order on
X. If for eachx ∈ X there existsmaxy∈Y g(x, y) then for anyx+ ≥X x− in X, and any

y−∈
{

Top arg max
y∈Y

g(x−, y) + h(x−)
}

there existsy+∈
{

Top arg max
y∈Y

g(x+, y) + h(x+)
}

such thaty+ ≥Y y− in Y , or there is no action inTop arg maxy∈Y g(x+, y) comparable
with y−.

Proof. h : X → R is a constant function iny ∈ Y . Thus, we have the following
Top arg maxy∈Y [g(x−, y) + h(x−)] = Top arg maxy∈Y g(x−, y) and we can apply now
Theorem 51 to conclude the proof.
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Chapter 7

Markovian Control of Concurrent
NPD

7.1 Introduction

In this chapter we focus on a concurrent NPD (i.e. without precedence constraints),
consisting ofN concurrent design tasks as described in Chapter 5 Subsection 5.4.1. To
control it we use a discrete-time, finite horizon non-stationary Markov decision process.

For enabling a more efficient computation of optimal policies in Markov mod-
els of sequential decision processes, one is often interested in finding structured policies
(monotonic, convex, etc.). When monotonic policies can be found, as in (Puterman, 1994), a
monotonic backwards induction algorithm can be used. It is known that in general dynamic
programming problems often the solutions are extremely complicated to be used for deriving
insights about the given problem (see for a survey (Dixit and Pindyck, 1996)). Moreover, in
general in higher dimensions the monotonicity of the decision rules does not imply a stable
structure of the optimal paths (i.e. an increase in an exogenous parameter will imply to a uni-
form increase of the optimal path). (Friedman and Johnson, 1997) prove that the existence
of monotonic policies leads to robust optimal paths, under several assumptions including the
one that the action spaces are sublattices ofRm for any state. This lattice type of action set is
required also by the monotonic backwards induction algorithm. We show that such a strong
condition can in real-life eliminate all the possible computational gains due to the existence
of monotonic optimal policies. Thus, assuming no lattice constraint, we derive the general
conditions of obtaining instead of monotonic optimal policies, weakly monotonic optimal
policies. This will lead us to a new weakly-monotonic backwards induction algorithm, and
we are able to prove, in this chapter, that our results exhibit as well this sought-after property
of robustness.

The NPD related results are the optimality of monotonic (in the partial order on the
state space) policies in the case of a simplified workload constraint, and respectively weakly
monotonic otherwise. The existence of the first type of monotonic nondecreasing optimal
policies confirms an intuitive ”greedy” feature of the optimal control policy ”The perfor-
mance requirement of a controller increases with the number of performance levels already
achieved by the engineers”. The existence of the weakly nondecreasing optimal control poli-
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cies refines the early heuristic. According to them, the NPD aggregate decision maker may
take actions which are not directly comparable (neither increasing, nor decreasing) from the
point of view of performance levels required. The actions are only comparable from the po-
tential cost/reward point of view, even if the states in which these decisions are taken are
comparable from the performance levels achieved point of view. The second type of optimal
policy leads to significant improvements in the computational efficiency as one can see from
the weakly monotone backward induction algorithm 6.4.

We recall from Chapter 6 that our approach for obtaining monotonic and weakly
monotonic optimal policies is based on the monotonicity research of (White, 1980; Topkis,
1998). This means that we formulate our control problem in a dynamic programming setting,
and we try to establish the supermodularity of the objective function. In microeconomics,
and in theories of production and consumer choice, supermodularity of an utility function is
equivalent to products beingsubstitutes. The substitute notion appears very intuitive in the
case of a concurrent NPD situation, where after we finish all the design tasks at their minimal
performance levels, having done more levels of performance for one design task compensates
for doing less performance levels of a different one.

Finally, we prove that the weakly monotonic optimal paths are robust to the vari-
ation of the safety margin for achieving the new product at the deadline. Using simulation
studies, we shown the robustness of the weakly-monotonic optimal paths with respect to small
variations of the solving rate of the design activities. We also investigated the optimal value
variation function of the degree of specification of the characteristics of the new product at
the beginning of the NPD.

This chapter is organized as follows. In Section 7.2 we prove that the Markov
decision model constructed for the parallel case of the NPD control problem (respectively
a simplified version of it) satisfies all the conditions for the existence of weakly monotonic
(respectively of monotonic) nondecreasing optimal policies. In Section 7.3 we prove that it
also satisfies the robustness conditions for its essential parameters.

7.2 Nondecreasing optimal policies for the control of NPD
without precedence constraints

In this section we investigate the properties of the value function arising in the
complex nonstationary discrete-time Markov decision model constructed for the control of
a NPD project without precedence constraints in Chapter 5 Subsection 5.4.1. We prove for
it the existence of weakly monotonic nondecreasing optimal policies. Monotonic nonde-
creasing optimal policies exist as well for a slightly modified form of the Markov decision
process from Subsection 5.4.1, but as shown in Section 6.4 their existence does not lead to
computational gains.

7.2.1 Problem setting

We recall from Chapter 5 Subsection 5.4.1 that the NPD situation considered con-
sists ofN concurrent design tasks allocated to team of engineers from the first review period.
Unplanned design tasks may arrive during each review period, and they will become available
to the team of engineers at the beginning of the next review period. For each review period
we take into account only an ”average” type of task for that review period (i.e. statistically
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identical design tasks with a common performance level structure, and an identical market
payoff structure). They are all concurrent with the initial design tasks allocated to the team
of engineers. Their arrival is given by a Poisson review period-dependent arrival process of
rateς(t). In later review periods the rateς(t) decreases. Moreover, as in the conditions of
Proposition 19 during each review period[t, t + 1) we take into account at most a number
Kt of unplanned design tasks which arrive with a probability greater than a given threshold

ϑ(t) > 0 and
T−1∑
t=0

Kt = N −N .

Due to the curvilinear dependency between the productivity and the workload of
the team of engineers, the targets on design tasks realization have to satisfy a minimal require-
ment of work during one review period (see equation (5.4) Remark 21, Subsection 5.4.1). No
budget constraint will be considered in the Markov decision process.An importantsupple-
mentaryassumption concerning only this NPD casewas made in Chapter 5 Subsection 5.4.1.

Supplementary Assumption:

For each design taskn its maximal performance levelLmax(n, t) is large enough
so that even if the team of engineers will work with all capacities on it,Lmax(n, t) cannot be
achieved earlier than the deadline with the probabilitymin

t=0,...,T
β(t). However, this holds only

for the planned or already arrived unplanned design tasks. SinceN is an upper bound, we
have to initially set to zero all the parameters depending on an virtualn ∈ {N + 1, . . . , N}.

This assumption requires no artificial preset bounding of the action spaces at each
decision point. Moreover since there is a total possible number of activities to be performed
during one review period (depending on the values ofβ(t)), there will a total possible number
of levels to be done for each design task. Thus, the action space will be upper bounded.
Without this enlargement of the action space, we are not able to prove in all the cases the
existence of structured optimal policies.

All the other assumptions and notation are given in Section 5.3. Thus, the team
of engineers will always perform the tasks allocated to it, according to a priority order (see
Chapter 5 Section 5.2). We recall from Chapter 2 Section 2.3 that each design task has differ-
ent levels of performance, giving the quality of its execution. Each performance level consists
of a list of planned activitieswith solving times random variables independent identically ex-
ponentially distributed. To attain a performance level, we assume that the engineer has to
sequentially execute the design task at all previous performance levels. For each design task
aminimal performance levelhas to be achieved, in order to have a fully functional new prod-
uct. New activities arrive at each of the design tasks in progress during the review periodt
according to a Poisson process of rateλ(t).

We recall from Chapter 5 Section 5.3 the assumptions and the notation related to
this particular case of NPD project. The notation was influenced as well by the fact that we
gave up to the budget constraint and by the assumptions we made in Chapter 5 Section 5.4.1.
We also assumed that there is an identical number of activities for all performance levels of
the same design task. Thus, assuming the previous levels already solved, the solving times
of all the performance levels of the same design task will be i.i.d. random variables Erlang
distributed.
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Input parameters (global variables):
T : the total number of review periods (review periods are numbered from0 to

T − 1);
M : the total number of engineers;
N : the initial number of design tasks;
N : an upper bound for the maximum number of design tasks during the whole

project;
Lmax(n) : the maximal number of performance levels of the initial design taskn;

n = 1, . . . , N ;
lmin (n) : the minimal performance level at which the design taskn must be per-

formed in order to obtain a functional product;n = 1, . . . , N

na (n) : the number of sequential activities planned for solving any performance
level l of the design taskn, assuming the previous levels already solved;∀ n = 1, . . . , N ;
l = 1, . . . , Lmax(n);

amin(n) : the minimal requirement of work to be done during a review period (see
Chapter 5);

µ : the rate of the exponential distribution of an activity solving time.
SinceN is an upper bound, at timet = 0 we set to zero all the parameters depend-

ing on a virtualn ∈ {N + 1, . . . , N}.
Input parameters (at the beginning of review periodt):
β (t) : the required current safety margin for the probability of exceeding the max-

imal team solving capacity;β (t) ∈ (0, 1);
ς(t) : the current rate of the Poisson review period-dependent arrival process of

unplanned design tasks;ς(t) > 0;
Λ0 := {1, . . . , N} : the set of design tasks set allocated att = 0;
Ω (t− 1) is the set of newly arrived design tasks (during review periodt − 1)

concurrent with design tasks allocated initially;
Lmax(n, t) : the maximal number of performance levels of the design taskn;

Lmax(n, t) = Lmax(n) for n = 1, ..., N andLmax(n, t) = 0 if n 6∈ Λ0∪Ω(0) . . .∪Ω(t− 1)
(i.e. there is place reserved for design tasks not planned or not arrived yet up to the upper
boundN but we set to zero the maximal performance level depending on a virtual design
taskn);

N (t− 1) : the random variable giving the unplanned design tasks number added
since the NPD project beginning until the end of review periodt− 1, [t− 1, t);

l (·, t) : {1, ...N} → {N ∪ {−1}} : the achieved performance design task level
function, where0 ≤ l (n, t) ≤ Lmax(n, t), for n ∈ {1, ..., N + N(t− 1)} and by convention
we definel (n, t) = −1 for n ∈ {N + N(t− 1) + 1, . . . , N};

λ(t): the review-period dependent Poisson arrival of unplanned activities for all the
design tasks allocated to the engineers (λ(t)/µ < M ).

Notation (at the beginning of review periodt):
zt :=

{
n ≥ N |N + E [N(t− 1)] + 1 ≤ n ≤ N + E [N(T − 1)]

}
: the esti-

mated set of all unplanned design tasks for NPD project;
Sn : the solving time of an arbitrary performance level of the design taskn, assum-

ing the previous levels already solved.;n = 1, ..., N . They are independent random variables
Erlang-(na (n) , µ).



7.2. NONDECREASING OPTIMAL POLICIES – CONCURRENT NPD 101

The decision time points:The decision points are equidistant and the horizon of
the problem is finite. The decision pointt corresponds to the beginning of reviewt + 1. Say
t ∈ {0, 1, ...T − 1}.

The immediaterewards, the final reward,the nonstationary transition proba-
bilities, and theexpected total reward criterion of this process, as well as a discussion on
the constraints defining the state and action space are provided in Section 5.3.

The state space and the action space:The state setX (t) at momentt and the
action setAt (xt) in the statext ∈ X (t) are defined two main constraints:

• the target performance level of each planned or newly arrived design taskn is greater
thanmin(lmin(n, t), l(n, t)), and smaller thanLmax(n, t)

• the remaining workload of the team of engineers should not exceed their maximal
solving capacity with the probability greater than safety marginβ(t).

For the state space the workload constraint is computed using the minimal performance levels,
lmin(·, t), while for the action space it is used the target performance levels,(l(·, t)+a(·, t))+.

For t = 0: X(0) = {x0} = (0RN ,−1NN−N ).
For t ∈ {1, . . . , T} the statext ∈ X(t) describes how many performance levels

l(n, t) were solved for each design taskn:

X(t) =





xt

∣∣∣∣∣∣∣∣∣∣∣

xt = (l(1, t), .., l(n, t), ..., l(N, t)) ∈ {N ∪ {−1}}N and
−1 ≤ l (n, t) ≤ Lmax(n, t), n ∈ {1, ..., N}

l(n, t) ≥ 0, ∀n ∈ {1, ..., N} s.t.Lmax(n, t) > 0

Pr

{
∑

n∈{1,...,N+N(t−1)}∪zt

lmin(n)∑
i=l(n,t)+1

Sn ≤ M (T − t)

}
≥ β (t)





(7.1)

X(T ) =
{

xT

∣∣∣∣
xT = (l(1, T ), .., l(n, T ), ..., l(N, T )) ∈ {N ∪ {−1}}N and

lmin(n) ≤ l (n, T ) ≤ Lmax(n, t), ∀n ∈ {1, ..., N}s.t. l(n, T ) ≥ 0

}

For t ∈ {0, ...T − 1}, xt = (l(1, t), .., l(n, t), ..., l(N, t)) ∈ X(t) the actionat

in the statext decides how many other levels abovext we want to perform. The perfor-
mance level up to which the design taskn may be solved after the actionat was taken is
(l (n, t) + at(n))+.

At (xt) =





at

∣∣∣∣∣∣∣∣∣∣∣

at = (at(1), .., at(n), ..., at(N)) ∈ NN

0 < amin(n, t) ≤ at(n), ∀n ∈ {1, ..., N + N(t− 1)
l(n, t) + at(n) ≤ Lmax(n, t), ∀n ∈ {1, ..., N} s.t. l(n, t) ≥ 0

Pr

{
∑

n∈{1,...,N+N(t−1)}∪zt

at(n)∑
i=1

Sn ≤ M · (T − t)

}
≥ β (t)





(7.2)

We recall from Section 5.3 and Subsection 5.4.1 that the state and action space
descriptions are sensitive to the arrival of unplanned design tasks, up to the upper boundN .
If at a decision pointt an unplanned design taskn just appeared it will be numbered in an
increasing way fromN + N(t− 1) up toN , andl(n, t) is changed from -1 to zero. Thus, at
the next decision point its corresponding actions might be greater than zero, and the team of
the engineers might start working on it.

We also recall that thisMarkov decision processhaspartially ordered state space,
and action space. They are bounded subsets without holes of the lattices{N ∪ {−1}}N

and respectivelyNN endowed with thecomponentwise partial ordering(i.e. x, y ∈ NN and
x ≤ y iff xn ≤ yn ∀n ∈ {1, . . . , N}, as in Definition 32). We remark that the spaces
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{N ∪ {−1}}N andNN are isomorphic and thus all the properties from the previous chapter
hold.

The action space description (7.2) of our Markov model may lead to the existence

of unordered points in the setarg max
axt∈A(xt)

{
∑

xt+1∈X(t+1)

pt(xt, at, xt+1) · u∗(xt+1)

}
, as well

as in its Top (see Definition 31). These sets, obtained from the optimality equations, are
searched by all the backward induction algorithms. So, some optimal decisions of the same
review period may be unordered. If we enlarge the action space to a lattice instead of a
partially bounded subset ofNN , for all these unordered actions there will exist a greater
action (their maximum) in the componentwise partial ordering that will be optimal. This will
happen, however, at the expense of a large increase of the action space, which leads in our
case to a numerical intractable model.

We may prove the existence of monotonic optimal policies for our NPD control
problem, by using instead of the finite solving capacity requirement constraint for the current
review period

Pr





∑

n∈{1,...,N+N(t−1)}∪zt

at(n)∑

l=1

Sn ≤ M (T − t)



 ≥ β(t) (7.3)

a simplified maximal work requirement of the type:

amax,t(n) ≥ at(n) ≥ amin (n) ≥ 0, ∀n = 1, ..., N

wherePr

{
∑

n∈{1,...,N+N(t−1)}∪zt

amax,t(n)∑
l=1

Sn ≤ M (T − t)

}
≥ β(t) (7.4)

If in the action space description (7.2) we consider the simplified maximal work
requirement restriction (7.4) the action space will be a sublattice and we can apply the results
of (Topkis, 1998) (see Subsection 6.2) to prove the existence of optimal decision rules which
are nondecreasing in the state of the system. Otherwise, the action space will not be anymore
a sublattice, but will be an upper bounded inf-sublattice. In this case we can use the less
restrictive set of requirements from Proposition 48 to prove the existence of optimal decision
rules which are weakly nondecreasing in the state of the system.

Consequently, in the case of using a simplified maximal work requirement we may
solve this problem with a monotonic multi-dimensional algorithm in the sense of (Topkis,
1998), by naturally extending the unidimensional algorithm presented in (Puterman, 1994).
Otherwise, we may use the new weakly monotonic nondecreasing backward induction algo-
rithm, speeding up the whole processing by a significant factor. The last one will not use
the existence of monotonic optimal policies, and hence nor the “max” actions existence, but
the existence of weakly monotonic ones. This allows it to look for candidate actions for the
arg max for a given statex in the action space from which we extract all the inferior cones
of the elements of thearg max of all statesx′ which are smaller thanx, instead of looking
for it in the whole available action space.

7.2.2 Analytical results

This subsection is organized as follows. First we prove that our Markov decision
model satisfies function of the type of action space description (either with the constraint
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levels design tasks2

levels design tasks1

lmin

xt0

xt0 + amin

Figure 7.1. Action spacesA(xt0) for N = 2, case1

(7.4), or (7.3)) the conditions given in subsections 6.2, 6.3 for nondecreasing monotonic,
and respectively weakly monotonic optimal control policies. Thus we establish the follow-
ing NPD related results: the optimality of policies that are nondecreasing monotonic for the
case of a simplified maximal work requirement, and respectively weakly monotonic nonde-
creasing otherwise (in the partial order on the state space) for the finite horizon. Refining
the intuitive ”greedy” feature of the nondecreasing monotonic optimal policy ”The perfor-
mance requirement of a controller increases with the number of performance levels already
achieved by the engineers”, the second type of optimal policy leads to gains in computational
efficiency as one can see from the weakly monotone backward induction algorithm 6.4.

Lemma 53 All the increasing subsets ofX (t) ⊆ {N ∪ {−1}}N , t ∈ {1, ..., T} are of the
form Ks1,...,sq = {x ∈ X (t) |∃i ∈ {1, ..., k} s.t.x ≥ si}, wheres1, ..., sq are not compara-
ble elements of{N ∪ {−1}}N , andq ∈ N arbitrary.

Proof. ”⊇” This implication holds obviously since for anỹx ∈ X (t) andx ≤ x̃ we
have from the transitivity property of a partial order relationship thatx̃ ≥ x ≥ si → x̃ ≥ si

for an arbitraryi = 1, ..., k
”⊆” X (t) is a subset of the infinite infimum-lattice{N∪{−1}}N . If we can prove

thatX (t), t ∈ {1, ..., T} is a bounded, without holes subset of{N ∪ {−1}}N we are almost
done. Under this assumption there are only a finite number of incomparable elements in any
subset ofX (t + 1). Thus,K will be spanned by those elements since being an increasing
set if it containssi, sj incomparable will contain anyx ≥ si or sj .

The constraint (7.2) leads to upper bounded, without holes action spaces for our
Markov decision process. Moreover since there is a total maximal number of activities to be
performed during one review period (depending on the value ofβ), there will a total maximal
number of levels to be done for each design task. Thus, the action space will have as an
upper bound a nondecreasing surface. ThenX (t) is a bounded subset of the infinite lattice
{N ∪ {−1}}N since from the definition ofx (t) = (l(1, t), .., l(n, t), ..., l(N, t)) ∈ X (t) we
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have thatl (n, t) ≤ l (n, t− 1) + a(n, t − 1), n = 1, ..., N . Thus, each state space will also
have as an upper bound a nondecreasing surface, and in{N ∪ {−1}}2 (i.e. for two design
tasks) this will have the shape of a step function.

Definition 54 A set of the formKs = {x ∈ X (t) |x ≥ s} is called an elementary increasing
subset of the action spaceX(t).

Corollary 55 All the increasing subsets ofX (t), t ∈ 1, ..., T are of the form
q⋃

j=1

Ksj , where

s1, ..., sq ∈ {N ∪ {−1}}N .

Proof. Obvious due to the construction of the increasing set
Ks1,...,sq = {x ∈ X (t) |∃i ∈ {1, ..., k} s.t.x ≥ si}

Proposition 56 For the Markov decision process constructed for the control of a NPD project
without precedence constraints as described Subsection 7.2.1 we have (with respect to the
partial order onX (t) ⊂ {N ∪ {−1}}N ):

a) ρt (·, ·) is supermodular in(xt, at) ∈ X (t)×At (xt), t ∈ {0, 1, ...T − 1}.
b) ρt (·, at) : X(t) → R is nondecreasing,t ∈ {0, 1, ...T − 1}
c) ρT (·) : X(T ) → R is nondecreasing.

Proof. The properties hold obviously due to the definition of the rewards and to the
expected total reward criterion we use.

a) +b)ρt (xt, at, xt+1)
def
= 0, for each(xt, at) ∈ X (t) × At (xt), xt+1 ∈ X(t +

1), t ∈ {0, 1, ...T − 1}
c) ρT (·) is by definition a nondecreasing function with respect to the partial order

on{N ∪ {−1}}N

Proposition 57 For the Markov decision process constructed for the control of a NPD project
without precedence constraints as described in Subsection 7.2.1 we have thatAt (xt) =
At (x̃t) = At, for anyx, x̃ ∈ X (t) ⊂ {N ∪ {−1}}N , t ∈ {0, 1, ...T − 1}.(i.e. as the state
of the system increases the number of decisions available to the decision-maker during one
review period does not decrease)

Proof. From its definitionAt (xt) is a bounded, without holes subset ofKamin ⊂
NN , having the same lower frontier as the elementary increasing setKamin := {x|x ≥ amin}.

If x, x̃ ∈ X (t) means that from bothx, x̃ we can arrive in the rewarded region:
R = {(l1, ..., lN )|ln ≥ lmin(n), ∀n = 1, ..., N} in T − t stages.

Since the solving times of the design tasks are considered independent random
variables, and each of them is a sum of independent identically exponentially distributed

random variables (i.e. the solving times of the activities), the
∑

n∈{1,...,N}∪zt

amax,t(n)∑
i=1

Sn from

the inequality (7.2) is distributed Erlang-
(
k, µ

)
,wherek :=

∑
n∈{1,...,N}∪zt

amax,t(n)∑
i=1

na (n).

Thus, for a maximal chosen action,amax,t, the inequality (7.2) is equivalent to

k−1∑

j=0

[µ (T − t)M ]j

j!
e−µ(T−t)M ≤ 1− β(t),
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Translate by

x

x̃

levels design tasks2

x + amin

x̃ + amin

x− x̃ componentwise

levels design tasks1

Figure 7.2. Non-decreasing action spaces forN = 2

which implies a maximal number of design activities to be done in(T − t) review periods.
Since we assumed that for any particular design task the number of activities needed to solve
each of its levels is the constant, the maximal number of possible levels to be achieved in
(T − t) review periods is constant as well. There exists as well a maximal number of possible
levels of the set of actions which decides that the engineers should perform more than the
minimal requirementamin(t).

According tothe supplementary assumption concerning the control of NPD with-
out precedence constraintsfor each already arrived design taskn its maximal performance
level Lmax(n, t) is large enough so that even if the team of engineers will work with all
capacities on it,Lmax(n, t) cannot be achieved earlier than the deadline with the proba-
bility min

t=0,...,T
β(t). So, there is no preset bounding of the action spaces at each decision

point. Thus, they are only naturally bounded by the engineers finite capacity and we have
At (xt) = At (x̃t) (see Figure 7.2).

For N = 2 we can easily see that as the state of the system increases the number
of decisions available to the decision-maker does not decrease.

Proposition 58 Let us consider no unplanned design tasks arrival in the Markov decision
process constructed for the control of a NPD project without precedence constraints as de-
scribed in Subsection 7.2.1. Then the function defined by

∑
xt+1∈K

pt (xt, at, xt+1) is nonde-

creasing inxt ∈ X (t), for anyK increasing subset ofX(t + 1), t ∈ {0, 1, ...T − 1} (with
respect to the partial order onX(t) ⊆ {N ∪ {−1}}N ).
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Proof. In the case of no unplanned design tasks arrival, from the Corollary 20 the
points inX(t + 1) for which we havept (xt, at, xt+1) 6= 0 belong to the set

Rxt,at+xt

def
=

{
x ∈ NN |xt ≤ x ≤ at + xt

}
.

Considerx ≤ x̃ such thatx, x̃ ∈ X (t). We first prove that for any elementary
increasing subsetKs we have:

∑

xt+1∈Ks

pt (x, at, xt+1) ≤
∑

xt+1∈Ks

pt (x̃, at, xt+1) (7.5)

For proving (7.5) we will discuss several cases:
Case 1.x, x̃ ∈ Ks

Then we havex + at, x̃ + at ∈ Ks. As a consequenceRx,at+x, Rx̃,at+x̃ ⊂ Ks

and both sums in (7.5) are taken over all their terms and according to Corollary 20 they are
equal.

Case 2.x + at, x̃ + at /∈ Ks

Thenx, x̃ /∈ Ks and we haveRx,at+x ∩ Ks = Rx̃,at+x̃ ∩ Ks = ∅ . Thus, both
sides equal zero.

Case 3.x, x̃ /∈ Ks but x̃ + at ∈ Ks .
Sincex ≤ x̃, x + at may or may not belong toKs .
If x + at /∈ Ks, Rx,at+x ∩Ks = ∅ and

∑

xt+1∈Ks

pt (x, at, xt+1) = 0 ≤
∑

xt+1∈Rx̃,at+x̃∩Ks

pt (x̃, at, xt+1)

sinceRx̃,at+x̃ ∩Ks 6= ∅ andpt (x̃, at, xt+1) ≥ 0.
If x + at ∈ Ks we prove that for each point in the intersectionRx,at+x ∩Ks we

have a unique point of equal probability in the intersectionRx̃,at+x̃∩Ks. And since the terms
of nonzero probability in

∑
x(t+1)∈Ks

pt(x, at, xt+1) are the ones belonging toRx,at+x ∩Ks

we conclude the proof. ForN = 2 we can draw an easy graphical description of the sets
involved in the proof.

Let z ∈ Rx,at+x ∩Ks. Thenz = x + y (t) (i.e. componentwise addition), where
amin(t) ≤ y (t) ≤ at, andx+y(t) ≥ s. Now consider the uniquely determinedz̃ = x̃+y (t)
which belongs toRx̃,at+x̃. SinceKs is an increasing set andx ≤ x̃ implies x + y (t) ≤
x̃ + y (t) we havẽz ∈ Ks. We claim that thept (x̃, at), z̃) = pt (x, at, z).

Sincex ≤ z ≤ x + at, andx̃ ≤ z̃ ≤ x̃ + at from the Corollary 20 we have the
equality:pt (x, at, z) = pt (z − x, λ(t), iat) = pt (y (t) , λ(t), iat) = pt (z̃ − x̃, λ(t), iat) =
pt (x̃, at, z̃).

Finally, if we take an arbitraryK an increasing set inX (t + 1) from Corollary

55 there exists1, ..., sq ∈ NN such thatK =
q⋃

j=1

Ksj . Since the elementss1, ..., sq are not

comparable one with the other the number of possible cases remains the same, as well as the
proofs which are based on translation arguments.

Proposition 59 Let us consider no unplanned design tasks arrival in the Markov decision
process constructed for the control of a NPD project without precedence constraints as
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x

x̃ + at

x + at

x̃

levels design tasks1

levels design tasks2

Figure 7.3. Verifying the nondecreasingness of
∑

xt+1

p(xt, at, xt+1)

described in Subsection 7.2.1. Then the function defined by
∑

xt+1∈K

pt (xt, at, xt+1) is su-

peradditive in(xt, at) ∈ X (t) × At (xt), for any K increasing subset ofX(t + 1), t ∈
{0, 1, ..., T − 1} (with respect to the partial order onX(t) ⊆ {N ∪ {−1}}N ).

Proof. In the case of no unplanned design tasks arrival, from the Corollary 20 the
points inX(t + 1) s.t.pt (xt, at, xt+1) 6= 0 belong to

Rxt,at+xt

def
=

{
x ∈ NN |xt ≤ x ≤ at + xt

}
.

Considerx ≤ x̃ such thatx, x̃ ∈ X (t), a ≤ ã ∈ At(x) = At(x̃) (see Proposition
57). LetK an increasing set inX (t + 1) . Let us first prove that for any elementary increasing
subsetKs we have:

∑

xt+1∈Ks

pt (x̃, ã, xt+1)−
∑

xt+1∈Ks

pt (x̃, a, xt+1) ≥

≥
∑

xt+1∈Ks

pt (x, ã, xt+1)−
∑

xt+1∈Ks

pt (x, a, xt+1) (7.6)

then due to the structure ofK the superadditivity is proved.
For proving (7.6) we will discuss several cases. But first we make a general obser-

vation on the structure of the probability sums involved in the inequality (7.6)
∑

xt+1∈Ks

pt (x, ã, xt+1)−
∑

xt+1∈Ks

pt (x, a, xt+1)

=
∑

x≤xt+1≤x+ã
xt+1∈Ks

pt (x, xt+1, λ(t), iã)−
∑

x≤xt+1≤x+a
xt+1∈Ks

pt (x, xt+1, λ(t), ia)

According to Corollary 20 we have for a fixedµ andλ(t) that:

pt (x, a, xt+1) = pt(xt+1 − x, ia) = p · Pt(xt+1 − x) + (1− p) · Pt(ia)
κ(xt+1 − x)

,
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x

x + a

x̃

x̃ + ã
levels design tasks2

levels design tasks1

x + ã
x̃ + a

Figure 7.4. Verifying the superadditivity of
∑

xt+1

p(xt, at, xt+1) (the casẽx ≤ x+a ≤ x̃+a)

for ia ≥ 2, andpt (x, a, xt+1) = pt (x, xt+1) otherwise. In this last case the inequality (7.6)
can be rewritten as:

∑

xt+1∈Ks

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

Pt (xt+1 − x̃) ≥
∑

xt+1∈Ks

xt+1∈Rx,x+ã\Rx,x+a

pt (xt+1 − x) ≥ 0 (7.7)

Case 1.x + ã, x̃ + ã /∈ Ks

It holds trivially since then both sides of 7.6 equal zero.

Case 2.x, x̃ ∈ Ks

Then sinceKs is an increasing setRx,x+ã\Rx,x+a, Rx̃,x̃+ã\Rx̃,x̃+a ⊂ Ks. As a
consequence both sums in (7.6) are taken over all their terms and we have two subcases.

Case 2a.

If the two actions have the same number of zero components, oria < 2 than using
the inequality (7.7) where forµ, λ(t) constantPt(xt+1 − x) depends only on the difference
of activities in betweenxt+1 andx. This inequality has an obvious graphical interpretation
in any dimension.

We claim that for each point in theRx,x+ã\Rx,x+a we have a point of equal prob-
ability in the Rx̃,x̃+ã\Rx̃,x̃+a. If this claim is true we conclude the proof, since the terms
of nonzero probability in (7.6) are the ones belonging toRx,x+ã\Rx,x+a we conclude the
proof. ForN = 2 we can draw an easy graphical description of the sets involved in the proof.

Let z0 ∈ Rs,x+ã\Rs,x+a. Now consider the translationT (z) = (z − x)+ x̃ onz0

and on the domainRs,x+ã\Rs,x+a. ThenT ((Rx,x+ã\Rx,x+a)) = (Rx̃,x̃+ã\Rx̃,x̃+a) Since
a translation is a linear injective functioñz = T (z0) ∈ Rx̃,x̃+ã\Rx̃,x̃+a andz0 − x = z̃− x̃.
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Case 2b.
According to Corollary 20 we have for a fixedµ andλ(t) that:

pt (x, a, xt+1) = pt(xt+1 − x, ia) = p · Pt(xt+1 − x) + (1− p) · Pt(ia)
κ(xt+1 − x)

.

Then the inequality (7.6) can be rewritten as:
∑

x(t+1)∈Rx̃,x̃+ã

pt (x̃, xt+1, iã) +
∑

x(t+1)∈Rx,x+a

pt (x, xt+1, ia)

≥
∑

xt+1∈Rx̃,x̃+a

pt (x̃, xt+1, ia) +
∑

x(t+1)∈Rx,x+ã

pt (x, xt+1, iã)

This equals further:
0 ≤ ∑

xt+1∈Rx̃,x̃+a

[pt (xt+1 − x̃, iã)−pt (xt+1 − x̃, ia)]+
∑

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

pt (xt+1 − x̃, iã)+

+
∑

xt+1∈Rx,x+a

[pt (xt+1 − x, ia)− pt (xt+1 − x, iã)]− ∑
xt+1∈Rx,x+ã\Rx,x+a

pt (xt+1 − x, iã).

But
∑

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

pt (xt+1 − x̃, iã) =
∑

x(t+1)∈Rx,x+ã\Rx,x+a

pt (xt+1 − x, iã) and
∑

xt+1∈Rx̃,x̃+a

[pt (xt+1 − x̃, iã)−pt (xt+1 − x̃, ia)] = − ∑
xt+1∈Rx,x+a

[pt (xt+1 − x, ia)−pt (xt+1 − x, iã)].

Thus, the above inequality holds by proving the equality to zero.
Case 3.x + ã /∈ Ks

Then sincea ≤ ã we have thatx + a /∈ Ks, and consequently we haveRx,x+ã ∩
Ks = Rx,x+a ∩Ks = ∅, and the right-hand side of (7.6) is zero.

Then sincex ≤ x̃, bothx̃, x̃ + ã may or may not belong toKs, but the inequality
(7.6) holds since

∑
xt+1∈Ks∩Rx̃,x̃+ã

pt (x̃, ã, xt+1)−
∑

xt+1∈Ks∩Rx̃,x̃+a

pt (x̃, a, xt+1) =

= p
∑

xt+1∈Ks

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

Pt (xt+1 − x̃) + (1− p)
∑

xt+1∈Ks

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

Pt(iã)
κ(xt+1−x̃) + (1− p)

∑
xt+1∈Ks

x̃≤xt+1≤x̃+a

[Pt(iã)−Pt(ia)]
κ(xt+1−x̃)

If the first two terms are clearly positive for the last one we have to use the special

form of thePt(ia) =
∫ 1+ε/2

1−ε/2
fYErlang(iat−1)(z)dz.

Sincea ≤ ã we have alsoia ≤ iã and (ηt)iã−2

(iã−2)! ≥ (ηt)ia−2

(ia−2)! since we can consider
thatηt ≥ iiã − 2 ≥ 1, for t ∈ [1− ε/2, 1 + ε/2].

It is reasonable to have the scale factor of the solving time distribution larger than
the number of concurrent design tasks.

Thus, we have an extension of the translation argument for the action-dependent
sums as well (i.e. by translating upwards the points we obtain a higher probability instead of
the same probability).

Case 4.x /∈ Ks butx + ã ∈ Ks.
Becausea ≤ ã we have thatx + a may or may not belong toKs.
Becausex ≤ x̃, x̃ + ã ∈ Ks, but x̃, x̃ + a may or may not belong toKs.
As in Case 2 we have two subcases.
Case 4a. We consider that the two actions have the same number of zero compo-

nents, oriat < 2. Similar to Case 2a. for each point in the intersectionRx,x+ã\Rx,x+a ∩Ks

we have a point of equal probability in the intersectionRx̃,x̃+ã\Rx̃,x̃+a ∩Ks, which gives us
the desired equality.
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Case 4b. Otherwise, we have to use the structure of the transition probabilities and
we detail out the equation 7.6 as:
p

∑
xt+1∈Ks

xt+1∈Rx̃t,x̃t+ãt\Rx̃t,x̃t+at

Pt (xt+1 − x̃)+(1−p)
∑

xt+1∈Ks

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

Pt(iã)
κ(xt+1−x̃) +(1−p)

∑
xt+1∈Ks

x̃≤xt+1≤x̃+a

[Pt(iã)−Pt(ia)]
κ(xt+1−x̃) ≥

p
∑

xt+1∈Ks

xt+1∈Rxt,xt+ãt\Rxt,xt+at

Pt (xt+1 − x)+ (1− p)
∑

xt+1∈Ks

xt+1∈Rx,x+ã\Rx,x+a

Pt(iã)
κ(xt+1−x) +(1− p)

∑
xt+1∈Ks

x≤xt+1≤x+a

[Pt(iã)−Pt(ia)]
κ(xt+1−x)

SinceKs is an increasing set ofX(t + 1) the setRx,x+ã\Rx,x+a ∩ Ks contains
less points thanRx̃,x̃+ã\Rx̃,x̃+a ∩ Ks. Also, as we have shown in before for each point in
the intersectionRx,x+ã\Rx,x+a ∩Ks we have a point of equal probabilityPt (xt+1 − x̃) in
the intersectionRx̃,x̃+ã\Rx̃,x̃+a ∩Ks (i.e. using the translation argument). Consequently,∑

xt+1∈Ks

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

Pt(xt+1−x̃)
κ(xt+1−x̃) ≥

∑
xt+1∈Ks

xt+1∈Rx,x+ã\Rx,x+a

Pt(xt+1−x)
κ(xt+1−x) .

The same reasoning leads to
∑

xt+1∈Ks

xt+1∈Rx̃,x̃+ã\Rx̃,x̃+a

Pt(iã)
κ(xt+1−x̃) ≥

∑
xt+1∈Ks

xt+1∈Rx,x+ã\Rx,x+a

Pt(iã)
κ(xt+1−x)

and
∑

xt+1∈Ks

x̃≤xt+1≤x̃+a

[Pt(iã)−Pt(ia)]
κ(xt+1−x̃) ≥ ∑

xt+1∈Ks

x≤xt+1≤x+a

[Pt(iã)−Pt(ia)]
κ(xt+1−x) ≥ 0. For the last inequality we

also take into account that the terms of the sum are positive as shown in Case 3.
Finally, if we take an arbitraryK an increasing set inX (t + 1) from Corollary

55 there exists1, ..., sq ∈ NN such thatK =
q⋃

j=1

Ksj . Since the elementss1, ..., sq are not

comparable one with the other the number of possible cases remains the same, as well as the
proofs which are based on translation arguments.

Corollary 60 For the Markov decision process constructed for the control of a NPD project
without precedence constraints as described in Subsection 7.2.1 let us assume that during
each review period[t, t + 1) we take into account at most a numberKt of unplanned design

tasks which arrive with a probability greater than a given thresholdϑ(t) > 0 and
T−1∑
t=0

Kt =

N −N . Then the function defined by
∑

xt+1∈K

pt (xt, at, xt+1) is

1. nondecreasing inxt ∈ X (t), for anyK increasing set inX (t + 1)

2. supermodular/superadditive in(xt, at) ∈ X (t)×At (xt), for anyK increasing set in
X (t + 1).

(with respect to the partial order onX(t) ⊆ {N ∪ {−1}}N )

Proof. During each review period there are two independent processes that take
place. The first is the solving process of the design activities from the design tasks perfor-
mance levels decided by the actionat. The second process that takes place is the Poisson
arrival process of unplanned design tasks to be added to the NPD project description. More-
over, the number of unplanned design tasks taken into account at the end of the review period

[t, t + 1) is limited to at mostKt, with [ς(t)]Kt

Kt!
e−ς(t) ≥ ϑ(t) (i.e. the length of each review

period is1).
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Thus, according to Proposition 19 the transition probabilities of our Markov deci-
sion process are given by

pt (xt, at, xt+1) =

=





pt (ξt+1 − xt, iat
) · [ς(t)]k

k! e−ς(t)
, xt ≤ xt+1 ≤ xt + at + zt and

k ≤ Kt
def
:= card{n|zt(n) = 1}

0 , otherwise

where

ξt+1(n) =
{

xt+1(n) , xt(n) = l(n, t) ≥ 0
−1 , otherwise

, ∀n ∈ {1, . . . , N} (i.e. xt+1 restricted to

the progress made on the previous existing design tasks),
iat is the number of nonempty components in the actionat, corresponding to concurrent
design tasks (i.e. the number of concurrent design tasks given to the team of engineers), and

zt(n) =





0 , xt(n) = l(n, t) ≥ 0
1 , xt(n) = −1, ∀n ∈ {n0, . . . , n0 + Kt} andxt(n0) ≥ 0
0 , otherwise

, ∀n ∈ {1, . . . , N}

(i.e. counts the maximal number of unplanned design tasks that might be included in the
project during the current review period).

The points inX(t + 1) for which we havept (xt, at, xt+1) 6= 0 belong to the set

Rxt,at+xt

def
=

{
x ∈ NN |xt ≤ x ≤ at + xt + zt

}
.

Considerx ≤ x̃ such thatx, x̃ ∈ X (t). Let K an increasing set inX (t + 1) .

From Corollary 55 there exists1, ..., sq ∈ {N ∪ {−1}}N such thatK =
q⋃

j=1

Ksj . If now we

are able to prove that for any elementary increasing subsetKs we have:∑
xt+1∈Ks

pt (x, at, xt+1) ≤
∑

xt+1∈Ks

pt (x̃, at, xt+1), then due to the structure ofK our corol-

lary holds.
But

∑

xt≤xt+1≤xt+at+zt

pt (xt, at, xt+1)

=
Kt∑

k=0


 ∑

xt≤ξt+1≤xt+at

pt(xt, at, ξt+1)


 · Pr (k arrived design tasks in[t, t + 1))

Now, we consider two cases which allow us to re-write
∑

xt≤xt+1≤xt+at+zt

pt (xt, at, xt+1) in

a convenient form.
Case 1.xt ∈ Ks then we can write∑

xt≤xt+1≤xt+at+zt

pt (xt, at, xt+1) =
∑

xt≤xt+1≤xt+at+zt

xt+1∈Ks

pt (xt, at, xt+1).

Case 2.xt /∈ Ks then the points in the bottom of the partially ordered set{xt+1 ∈
X(t + 1) ∩ Ks| pt (xt, at, xt+1) 6= 0} can be written asxt+1 = ξt+1(n) + zt(n) where
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kz := card{n|zt(n) = 1} ≤ Kt andxt ≤ ξt+1 ≤ xt + at, ξt+1(n) ≥ s(n) for anyn such
thatxt(n) = l(n, t) ≥ 0. Thus, the sum becomes

∑

xt≤xt+1≤xt+at+zt

xt+1∈Ks

pt (xt, at, xt+1) =

=
∑

z∈B

Kt∑

k=kz




∑

xt≤ξt+1≤xt+at

ξt+1(n)≥s(n),
∀n s.t.xt(n)=l(n,t)≥0

pt(xt, at, ξt+1)




Pr (k arrived design tasks in[t, t + 1))

whereB = Bot{xt+1 ∈ X(t + 1) ∩ Ks|pt (xt, at, xt+1) 6= 0}. From Propositions 58 and

59 we have that
∑

xt≤ξt+1≤xt+at

pt(xt, at, ξt+1) is nondecreasing inxt ∈ X (t) and supermod-

ular/superadditive in(xt, at) ∈ X (t) × At (xt). Consequently, our corollary holds since
these properties are preserved by the multiplication with a positive constant (i.e. in terms of
(xt, at) ∈ X (t) × At (xt)) and by summation of nondecreasing, respectively superadditive
functions.

Theorem 61 For the Markov decision process constructed for the control of a NPD project
without precedence constraints as described in Subsection 7.2.1 there exist optimal decision
rules which are nondecreasing in the state of the system if in the action space description
(7.2) we consider the simplified work requirements restrictions (7.4). Otherwise (i.e. with
the normal workload constraint given by (7.3)) there exist optimal decision rules which are
weakly nondecreasing in the state of the system.

Proof. For both Markov decision processes, there exists an optimal policy since
the horizon, state and action space are finite, and the reward function is linearly additive. By
summarizing the results of (White, 1980), (Puterman, 1994), (Topkis, 1998) given in Section
6 we have the following the general conditions under which for a discrete-time nonstationary
Markov decision process, with finite horizon and the usual additive utility function.

With respect to componentwise partial order on the vector-lattices{N ∪ {−1}}N

and respectivelyNN we have to have for anyt ∈ {0, 1, ...T − 1}:
1.

∑
xt+1∈K

pt (xt, at, xt+1) is nondecreasing inxt ∈ X (t), for anyK increasing set in

X (t + 1)

2.
∑

xt+1∈K

pt (xt, at, xt+1) is supermodular/superadditive in(xt, at) ∈ X (t) × At (xt),

for anyK increasing set inX (t + 1)

3. (a) ρt (·, ·) is supermodular/superadditive in(xt, at) ∈ X (t)×At (xt)

(b) ρt (·, at) : X(t) → R is nondecreasing

(c) ρT (·) : X(T ) → R is nondecreasing

4. (a) At (xt) ⊂ At (x̃t) for anyxt ≤ x̃t ∈ X (t) ⊂ {N ∪ {−1}}N (i.e. the family
{At (xt) |xt ∈ X (t)} is expanding)
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(b) St := X (t)×At (xt) is a lattice with respect to the componentwise partial order
on the product space{N ∪ {−1}}N × NN .

All the requirements up to 4b are fulfilled due to Propositions 56, 57, and to Corol-
lary 60 from above.

The state space of our Markov decision process constructed for the control of a
NPD project without precedence constraints is only a sup-lattice, in the sense that for each
pair of elements there exists only a least upper bound. However even if the Theorem 46 was
formulated for a notation simplicity for the case in whichSt is a lattice, the proofs hold also
for the case in whichX (t) is only a sup-lattice, whileAt (xt) is a lattice for anyxt ∈ X (t).
(see Theorem 43, and Proposition 44, as well as the proof of Proposition 48). Thus, the
monotonic optimal policies can be obtained in a direct way if one enlarge the state space up
to the vector-lattice{N ∪ {−1}}N , and considers, in the action space description (7.2), the
simplified maximal work requirement restriction (7.4), which leads to a lattice action space.

Otherwise (i.e. in the case of the normal workload constraint (7.3)), instead of a
sublattice the action space is a bounded subset without holes. In this case we can use instead
of the conditions from 4 the less restrictive set of requirements from Proposition 48 to prove
the existence of optimal decision rules which are weakly nondecreasing in the state of the
system. These conditions are:

1. X (t) , At (xt), for anyxt ∈ X (t) are bounded subsets without holes of the infinite
vector-lattices{N ∪ {−1}}N and respectivelyNN

2. At (xt) ⊂ At (x̃t) for anyxt ≤ x̃t ∈ X (t), andAt (xt) = At (x̃t) for anyxt, x̃t ∈
X (t) not comparable (i.e. the family{At (xt) |xt ∈ X (t)} is expanding)

3. for anyxt ≤ x̃t ∈ X (t), anda ≤ ã ∈ (At (xt)×At (x̃t)) ∪ (At (x̃t)×At (xt)) we
have thata ∈ At (xt) andã ∈ At (x̃t) (i.e. the family is ascending)

These conditions are obviously fulfilled since we have from Proposition 57 that
At (xt) = At (x̃t), for anyxt, x̃t ∈ X (t).

There might exist other optimal policies which are not monotonic nondecreasing,
or weakly monotonic nondecreasing.

7.3 Robust optimal nondecreasing policies for the control
of NPD without precedence constraints

We recall from Subsection 6.5 that in general, not even the monotonicity of the
decision rules does not always imply in higher dimensions a stable structure of the optimal
paths (i.e. an increase in a exogenous parameterθ will lead to a uniform increase of the
optimal path).

In this section we study how the optimal paths and optimal values are changing
with respect to the important parameters of our NPD model without precedence constraints.
We proved the robustness with respect to the variation of the safety margin for achieving
the new product at the deadline in the case of both nondecreasing monotonic, and weakly
nondecreasing monotonic optimal policies. We used simulation studies to investigate the
robustness of the weakly monotonic optimal paths with respect to the variation of the solving
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rate of design activities, as well as the variation of the optimal value as a function of the
degree of specification of the characteristics of the new product at the beginning of the NPD.

7.3.1 Analytical results

If the action space is a lattice and the state space and parameter space form a com-
plete sublattice under the product order then the Corollary 50 (consequence of Corollary 1
from (Friedman and Johnson, 1997)) states that the max and min selections of optimal ac-
tions will lead to non-chaotic optimal policies. As a direct consequence we have the following
corollary.

Corollary 62 For the Markov decision process constructed for the control of a NPD project
without precedence constraints as described in Subsection 7.2.1 for which we consider the
simplified work requirements restrictions (7.4), a decrease in the parameterβ (i.e. an in-
crease in1/β) leads to a uniform increase in the optimal decisions along any optimal sample
path, where in every period the largest action is always chosen (with respect to the partial
order onNN , {N ∪ {−1}}N ).

Proof. We verify one by one the hypotheses of Corollary 50. Letwt(xt, β, at) :=
ρt(xt, β, at) +

∑
xt+1∈X(t+1)

pt(xt, β, at, xt+1) · u∗(xt+1) as given in a backward induction

algorithm.
1.) max

at∈A(xt)
wt(xt, β, at) is attained for any(xt, β) ∈ Xt×(0, 1) since the decision

process has finite action space and state space.
2.) Let1/β ≤ 1/β̃ thenβ ≥ β̃ ∈ (0, 1) and with a smaller probability the team of

engineers can perform more activities during the same review period. So for anyxt ≤ x̃t ∈
X(t): At (xt, 1/β) ⊂ At(xt, 1/β̃) = At

(
x̃t, 1/β̃

)
.

3.) Following the same reasoning as in Theorem 46 Subsection 6.3 we can prove the
superadditivity ofwt(xt, β, at) by using thatu∗(xt, β) is nondecreasing, and that the function∑
xt+1∈K

pt(xt, β, at, xt+1) is nondecreasing on(xt, β) ∈ X(t) × Θ, and superadditive on

(xt, β, at) ∈ X(t)×Θ×A(xt, β), for anyK increasing set inX (t + 1).
According to Proposition 19 we have that the nonstationary transition probabili-

ties pt (xt, at, xt+1) do not depend onβ. Thus the previous requirements hold true due to
Proposition 44 and Proposition 59. To be in their hypotheses considerxt ≤ x̃t such that
xt, x̃t ∈ X (t), at ≤ ãt ∈ A(xt, β). Now, for anyj ∈ X(t + 1) we denote byzj :=

[pt

(
x̃t, β̃, ãt, j

)
+ pt (xt, β, at, j)], z̃j := [pt (xt, β, ãt, j) + pt

(
x̃t, β̃, at, j

)
] , andvj :=

u∗t+1(j), in order to apply for them Corollary 42 . Its hypotheses are fulfilled sinceX(t + 1)
⊆ NN ,

∑
j∈K

zj ≥
∑

j∈K

z̃j , for anyK increasing set inX (t + 1), and the sums are finite. Thus,

we have
∑

j∈X(t+1)

[pt

(
x̃t, β̃, ãt, j

)
+ pt (xt, β, at, j)]u∗t+1(j) ≥

∑
j∈X(t+1)

[pt (xt, β, ãt, j) +

pt

(
x̃t, β̃, at, j

)
]u∗t+1(j), which implies that∑

xt+1∈X(t+1)

pt (xt, β, at, xt+1)u∗t+1(xt+1) is a superadditive function in(xt, β, at) ∈ X(t)×
Θ×A(xt, β), for anyt ∈ {0, 1, ...T − 1}.



7.3. ROBUST OPTIMAL NONDECREASING POLICIES – CONCURRENT NPD115

Since the sum of superadditive functions defined on the same domain remains su-
peradditivewt(xt, β, at) is superadditive in(xt, β, at) ∈ X(t)×Θ×A(xt, β).

If in the action space description (7.2) we do not consider the simplified maximal
work requirement restriction (7.4) then there may be points that are unordered with respect to

each other inTop arg max
axt∈At(xt)

{
∑

xt+1∈X(t+1)

pt(xt, at, xt+1) · u∗(xt+1)

}
. Thus, it can happen

for some optimal decisions of the same review period to be unordered already, and thus the
risk of chaotic behavior intuitively increases. However, using Theorem 51 we are also able
to prove the robustness with respect to safety margin for achieving the new product at the
deadline in the case of weakly nondecreasing monotonic optimal policies.

Theorem 63 For the Markov decision process constructed for the control of a NPD project
without precedence constraints as described in Subsection 7.2.1 for any two choices of the
safety margin for achieving the new product at the deadline1/β ≤ 1/β̃ ∈ (0, 1), at any
decision point the optimal decision forβ is either smaller or not comparable with the optimal
action for β̃, along any optimal sample path, where in every period a maximal action is
always chosen. (for anyx+ ≥X x− in X, 1/β ≤ β̃ and anyy− ∈ Top arg max

y∈Y
g(x−, β, y)

there existsy+ ∈ Top arg maxy∈Y g(x+, β̃, y) such thaty+ ≥Y y− in Y, or there is no
element inTop arg maxy∈Y g(x+, β̃, y) comparable withy−).

Proof. In order to apply Theorem 51, Subsection 6.5 we have first to prove that
wt(xt, β, at) :=

∑
xt+1∈X(t+1)

pt((xt, β), at, xt+1) · u∗(xt+1, β) is superadditive on(xt, β, at) ∈
X(t) × Θ × A(xt, β), where we denote byu∗(xT , β) = ρT (xT ), and byu∗(xt, β) :=

max
at∈A(xt)

∑
xt+1∈X(t+1)

pt((xt, β), at, xt+1) · u∗(xt+1, β).

Following the same reasoning as in Proposition 48 Subsection 6.3 we can prove the
superadditivity ofwt(xt, β, at) by using thatu∗(xt, β) is nondecreasing, and that the function∑
xt+1∈K

pt(xt, β, at, xt+1) is nondecreasing on(xt, β) ∈ X(t) × Θ, and superadditive on

(xt, β, at) ∈ X(t)×Θ×A(xt, β), for anyK increasing set inX(t + 1).
According to Proposition 19 we have that the nonstationary transition probabili-

ties pt (xt, at, xt+1) do not depend onβ. Thus the previous requirements hold true due to
Proposition 44 and Proposition 59.

Now, for anyj ∈ X(t+1) we denote byzj := [pt

(
x̃t, β̃, ãt, j

)
+pt (xt, β, at, j)],

z̃j := [pt (xt, β, ãt, j) + pt

(
x̃t, β̃, at, j

)
] , andvj := u∗t+1(j), in order to apply for them

Corollary 42 . Its hypotheses are fulfilled sinceX(t + 1) ⊆ NN ,
∑

j∈K

zj ≥
∑

j∈K

z̃j , for anyK

increasing set inX(t+1) , and the sums are finite. Thus, we have
∑

j∈X(t+1)

[pt

(
x̃t, β̃, ãt, j

)
+

pt (xt, β, at, j)]u∗t+1(j) ≥
∑

j∈X(t+1)

[pt (xt, β, ãt, j) + pt

(
x̃t, β̃, at, j

)
]u∗t+1(j).

This implies that
∑

xt+1∈X(t+1)

pt (xt, β, at, xt+1) u∗t+1(xt+1) is a superadditive func-

tion in (xt, β, at) ∈ X(t)×Θ×A(xt, β), for anyt ∈ {0, 1, ...T − 1}.
Since the sum of superadditive functions defined on the same domain remains su-

peradditivewt(xt, β, at) is superadditive in(xt, β, at) ∈ X(t)×Θ×A(xt, β).
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We can now verify the other conditions of Theorem 51.
1.) max

at∈A(xt)
wt(xt, β, at) is attained for any(xt, β) ∈ Xt × Θ since the decision

process has finite action space and state space.
2.) Let 1/β ≤ 1/β̃ thenβ ≥ β̃ ∈ (0, 1) and with a smaller probability the team

of engineers can perform more activities during the same review period. So for anyxt ∈
X(t): At (xt, 1/β) ⊂ At(xt, 1/β̃) = At

(
x̃t, 1/β̃

)
, being by definition a bounded, without

holes subset ofNN , having as the same lower frontier as it. Consequently, for anyã ∈
At

(
x̃t, 1/β̃

)
anda ≤ ã, a admissible action at the time instantt (i.e. a > 0) we have that

a ∈ At

(
x̃t, 1/β̃

)
.

3.) Letxt ≤ x̃t ∈ X(t), 1/β ≤ 1/β̃ ∈ (0, 1), anda ≤ ã, (a, ã) ∈ At

(
x̃t, 1/β̃

)
×

At (xt, 1/β). Then ã ∈ At (xt, 1/β) ⊂ At(xt, 1/β̃) = At

(
x̃t, 1/β̃

)
and a ≤ ã ∈

At (xt, 1/β) and by the definition ofAt (xt, 1/β) (i.e. a bounded, without holes subset
of NN , having as the same lower frontier as it)a ∈ At (xt, 1/β). Thus, we have that

a ∈ At (xt, 1/β) andã ∈ At

(
x̃t, 1/β̃

)
and the family is ascending.

The other requirements of Theorem 51 are fulfilled since for our Markov model
At (xt, 1/β) = At (x̃t, 1/β), for anyxt, x̃t ∈ X (t), andβ ∈ (0, 1).

Corollary 64 For the Markov decision process constructed for the control of a NPD project
without precedence constraints as described in Subsection 7.2.1 a decrease in the parameter
β (i.e. an increase in1/β) leads to weakly increasing optimal decisions along any optimal
sample path, where in every period a maximal action is always chosen.

7.3.2 Experimental results

We have used simulation studies for two main investigations: the optimal value
variation function of the degree of specification of the characteristics of the new product at
the beginning of the NPD, and the robustness of the weakly monotonic optimal paths with
respect to the variation of the solving rate of design activities. We have considered that the
characteristics of the new product are underspecified (respectively overspecified) if we have
low (resp. high) values for the number of planned activities, and a high (resp. low) rate of
arrival of unplanned activities during the design tasks solving process.

The experiments were performed using synthetic data. For each of the parameters
whose influence we decided to study, we have established a set of values within a range. We
have thus synthetically generated20 data sets with design tasks of variable sizes for each
µ ∈ {8, 16, 24, 32}. We kept constantβ(t) = 0.85, M = 2, T = 5, andp = 0.90.

For the arrival rate for new unplanned tasks during the first review period, i.e.λ =
λ(0), we have decided to compute its value for the first revision period as a fractionfλ of µ,
under the assumption thatλ(0)/µ < M . For the other revision periods, theλ(t) value it is
decreased with10% per review period, the same during all the simulations.

For each design task the number of performance levels were generated indepen-
dently by rounding up to the closest integer the random outcome of a uniform distribution
inside the range[10, 30]. For each design task, the number of activities per performance
level has been independently randomly chosen from the interval[10, 100] in the following
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way. Given the correlation mentioned in the first paragraph of this section, when the arrival
rate of unplanned activities is high, the number of activities has to be low, and viceversa.
Thus, we also introduced the proportionfact, simultaneously varied withfλ but in the oppo-
site way:fact took the percentage values(150%, 100%, 50%), while fλ took the percentage
values(50%, 100%, 150%). We have chosen these values in order to sample the space of
possible values, when gradually going from underspecified characteristics of the new product
to overspecified characteristics, having also a middle value.

We have also split the interval[10, 100] in three disjoint and equal subintervals,
corresponding to thefact values. For each simulation having a certain value forfact and
its corresponding value forfλ we independently randomly drawn values from the specific
subinterval for the number of activities.

Then the optimal actions and values have been computed for each of the states,
for each of the revision periods, according to the weakly-monotonic backwards-induction
algorithm.

For the first part of the experimental study that we have performed, the goals were
twofold: investigating the variation of the optimal value as a function of the specification
degree of the characteristics of the new product, and comparing this variation for several
values of the solving rate of the activities.

In the following, we give the tests results and we comment upon them. The graphs
in Figures 7.5, 7.6, 7.7, and 7.8 give the optimal values as a function of the couple formed by
fact andfλ (i.e. the percentages of the number of activities and respectively the percentage
of lambda). Since they vary simultaneously, thex axis is labelled with the difference100 −
fact, the value offλ being easily obtained as200 − fact. This gives for thex axis values
(−50, 0, 50), the values(150, 100, 50) for fact and the values(50, 100, 150) for fλ.

Thus we observe a rather surprising effect. Under the assumption that we have a
correlation between the arrival rate of unplanned activities and the number of initially planned
activities, it seems that independently of the value ofµ, we have an increase of the optimal
value with the increase ofλ (and the decrease of the number of activities initially planned),
i.e. if the product is less specified at the beginning.

However, this effect is less significant when the solving rate of one activity in-
creases, i.e. the team of engineers is overall more performant.

For the second part of the experimental study, which concerned the robustness
of the weakly monotonic optimal paths with respect to the variation of the solving rate of
design activities, we did the following. We started withµ = 8, and for each statex we
have computed the set of optimal actions from Toparg max

y∈Y
g(x, µ, y). Then we varied

the value ofµ, as µ̃ from 16 to 32, we have computed, for each statex, how many ac-
tions among the ones of the set above satisfy one of the two following conditions, for each
y− ∈ Toparg max

y∈Y
g(x, 8, y):

• either there existsy+ ∈ Toparg max
y∈Y

g(x, µ̃, y) with y+ ≥ y−

• or for all y+ ∈ Toparg max
y∈Y

g(x, µ̃, y), y+ andy− are not comparable.

If these percentages added up to100%, then we can use Theorem 61 to say that
an increase in the solving rateµ may lead to weakly increasing optimal actions along the
optimal sample path. We experimentally see that in general these values are close to100%
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Figure 7.5. The optimal value variation as a function offact and offλ for µ = 8
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Figure 7.6. The optimal value variation as a function offact and offλ for µ = 16



7.3. ROBUST OPTIMAL NONDECREASING POLICIES – CONCURRENT NPD119

optimal value
Legend

O.V. Function of % activ. and % lambda

100000

200000

300000

400000

–40 –20 20 40

Figure 7.7. The optimal value variation as a function offact and offλ for µ = 24
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Figure 7.8. The optimal value variation as a function offact and offλ for µ = 32
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(fact, fλ) µ̃ = 16
µ̃− µ = 8

µ̃ = 24
µ̃− µ = 16

µ̃ = 32
µ̃− µ = 24

(150, 50) 98% 96% 41%
(100, 100) 80% 96% 84%
(50, 150) 96% 99% 53%

Table 7.1. Table of sums of percentages of actions in the two cases for robustness study

for smaller values of̃µ− µ. On the other hand, from the cited theorem we have that given a
µ, for anyx, x̃ ∈ X with x ≤ x̃, for all y ∈ Toparg max

x∈Y
g(x, µ, z)

• either there exists̃y ∈ Toparg max
z∈Y

g(x̃, µ, z) such that̃y ≥ y

• or for all ỹ ∈ Toparg max
z∈Y

g(x̃, µ, z), y andỹ are not comparable.

Thus, using what the experimental data shows forx being the same and for two
different valuesµ andµ̃, we may combine them with the theorem, inferring that for anyx, x̃ ∈
X with x ≤ x̃, for anyµ, µ̃ with µ ≤ µ̃ andµ̃− µ small, for ally ∈ Toparg max

x∈Y
g(x, µ, z)

• either there exists̃y ∈ Toparg max
z∈Y

g(x̃, µ̃, z) such that̃y ≥ y

• or for all ỹ ∈ Toparg max
z∈Y

g(x̃, µ̃, z), y andỹ are not comparable.

This suggests that indeed a robustness result similar with the one in Corollary 64
may then held for small variations of the solving rateµ as well.

Moreover, during the experiments we have seen that their sum was having some
variations for different values ofµ. We then decided to investigate this in more detail, also as
a function of the variation of the number of activities and of the variation of the rate of new
activities arrival. These two parameters have previously been introduced asfact andfλ. We
have used the sampling we already made for the first part of the experimental studies, and this
yielded several values, summarized in Table 7.1, and detailed in Figures 7.9, 7.10 and 7.11.

The figures in Table 7.1 indicate that achieving the robustness of the optimal sample
paths for larger variations of the solving rate (µ = 8 versusµ̃), might also depend on the
degree of specification of the NPD project.
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Figure 7.9. Proportion of actions satisfying each of the two conditions forfact = 150% and
fλ = 50%
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Figure 7.10. Proportion of actions satisfying each of the two conditions forfact = 100% and
fλ = 100%
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Figure 7.11. Proportion of actions satisfying each of the two conditions forfact = 50% and
fλ = 150%



Chapter 8

Markovian Control of Sequential
NPD

8.1 Introduction

In this chapter we focus on a sequential NPD, i.e. a NPD project with precedence
constraints, consisting of N sequential design tasks as described in Chapter 5 Subsection
5.4.2. To control it we use a discrete-time, finite horizon non-stationary Markov decision
process.

A popular way of dealing with complex Markov decision processes is to investigate
the structural properties of the optimal policies. The goal of such an approach is to describe
in a relatively easy way the optimal policies and to translate their properties into practical
procedures. The methodology used in this chapter is the one of the sample path analysis (see
for a rigorous theoretical framework (Liu et al., 1995)). This technique aims at comparing
sample path by sample path stochastic processes defined on a common probability space so
that ”characteristics of the optimal behavior” or even the ”optimal behavior” can be identified.
The proof techniques belong according to ((Liu et al., 1995)) to three classes: backward
induction, forward induction and interchange of the arguments. We will use a mixture of
the last two. The last one compares policies obtained through the interchange of control
decisions and/or the order of some events in the input sequence. An important issue with
respect to the sample path techniques is that not all the ways of describing the stochastic
evolution of a system allow for a comparison between two given policies. Thus, as (Liu et al.,
1995) the problem formulation should be carefully done. We carefully choose an appropriate
state description in Chapter 5 Subsection 5.4.2. However this is not enough. To perform a
sample path analysis we have to define in a very formal way the underlying probability space,
the class of admissible actions at a certain time moment under a given history, and the reward
function. Thus, in the rigorous framework of non-stationary models of (Hinderer, 1970) we
identify our sequential NPD control problem as being a nonstationary stochastic dynamic
decision model with stopping sets in the sense of (Hinderer, 1970) (see Section 8.3).

Due to an implicit probabilistic constraint on the sample paths of the process of
sequentially completing design tasks through the completion of a minimal number of design
activities, it can be shown that the optimal strategy belongs to a class of strategies deter-
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mined by a set of ”latest stopping times” for the design tasks. By restricting the action space,
eliminating the sample paths with zero final reward, splitting the final reward into rewards
to the transition moments, and finally by restricting simultaneously the number of decision
moments, decision sets and the state space we obtain a sequence of four reformulations of
the initial sequential NPD control problem. Using the sample path analysis we prove that the
optimal policies of all those reformulations are optimal policies for the initial problem. The
last reformulation reduces the initial multidimensional control problem to a unidimensional
one in both state and action space. In the new control problem the optimal policy will decide
only on how many review periods the team of engineers should work on each design task.
We thus prove that it is optimal to choose always, while working on a design task, as decision
the maximal performance level.

This chapter is organized as follows. In Section 8.2 we recall from Chapter 5 Sub-
section 5.4.2 the characteristics of the control problem of an NPD project with precedence
constraints, consisting of N sequential design tasks. In Section 8.3, first we review the basic
notions of non-stationary models from (Hinderer, 1970), and then we rigorously define the
admissible histories of our sequential NPD control problem. In the following sections we
construct the above mentioned reformulations of the initial sequential NPD control problem.
In Section 8.4 we identify an implicit probability constraint which will help us to perform a
first restriction of the action space of the initial problem. In Section 8.5 we eliminate from the
control model the sample paths with zero reward, while in Section 8.6 we simplify the way
of computing the expected value of the total reward, and we reduce the number of decision
moments. Finally, in Section 8.7 we show there exists a sequence of sufficient statistics in the
sense of (Hinderer, 1970), and (Dynkin, 1965) so that the solutions of a reduced unidimen-
sional optimality equation are optimal solutions for our initial control problem.

8.2 The initial S0- stochastic dynamic decision model

We recall from Chapter 5 Section 5.3 the assumptions and the notation related to
this particular case of NPD project. We denote this initial stochastic dynamic decision model
by S0.

As in Subsection 5.4.2 we consider no budget constraint, and the team of engineers
is assumed to work together on each of the design tasks. We focus on a NPD project with
precedence constraints, consisting ofN ≤ T sequential design tasks. We assume that the
design tasks in the given sequence can be performed by the team of engineers one after the
the other and they can start only at the beginning of a review period. The team may start
working on first design task from the first review period. No arrival of unplanned design
tasks takes place in the case of the sequential NPD project (i.e.N = N ).

An importantsupplementaryassumption concerning only this NPD case is related
to the form of the final reward.

Supplementary Assumptions:

1. The final reward is of the more restrictive form

ρT (xT ) =

{
0, if ∃ 1 ≤ n0 ≤ N, l (n0, T ) < lmin (n0)∑

n =1,..,N

l (n, T ) · V (n) otherwise
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giving a linear (weighted additive) cumulated market payoff function in the arguments
V (n) which represent the scalable value functions associated with the design tasks.
Such a function is similar with the one defined by (Askin and Dawson, 2000).

2. We do not consider anymore a time dependent safety margin for the probability of
completing the project before the deadlineα(t) = α, t ∈ {1, ...T − 1}. However, our
results can be generalized for a decreasing sequence ofα(t), t ∈ {1, ...T − 1}.

All the other assumptions and notation are given in Chapter 5, Section 5.3. The
notation was influenced as well by the fact that we gave up to the budget constraint and by
the assumptions we made in Chapter 5 Section 5.4.2. The first one was that no arrival of
new design tasks takes place in the case of the sequential NPD project. The second one was
that assuming the previous levels already solved there is an identical number of activities for
any performance level of the same design task. Thus, assuming the previous levels already
solved, the solving times of all the performance levels of the same design task will be i.i.d.
random variables.

Input parameters (global variables):
T : the total number of review periods (review periods are numbered from0 to

T − 1);
M : the total number of engineers;
N = N ≤ T : the total number of design tasks;
Lmax(n) : the maximal number of performance levels of the design taskn; n =

1, . . . , N (levels are numbered from0 to L;
lmin (n) : the minimal performance level at which the design taskn must be per-

formed in order to obtain a functional product;n = 1, . . . , N ;
na (n) : the number of sequential activities planned for solving the design taskn,

at the performance levell, assuming the previous levels already solved;∀ n = 1, . . . , N ;
l = 1, . . . , Lmax(n);

µ : the rate of the exponential distribution of an activity solving time.
α : the required safety margin for the probability of completing the project before

the deadline;α ∈ (0, 1)
Input parameters (at the beginning of review periodt):
l (·, t) : {1, ..N} → N : the achieved performance design task level function, where

0 ≤ l (n, t) ≤ Lmax(n);
λ(t): the review-period dependent Poisson arrival of unplanned activities for all the

design tasks allocated to the engineers.
Notation (at the beginning of review periodt):
Sn : the solving time of an arbitrary performance level of the design taskn, assum-

ing the previous levels already solved.;n = 1, ..., N . They are independent random variables
Erlang-(na (n) ,Mµ).

The decision time points ofS0: The decision points are equidistant and the hori-
zon of the problem is finite. The decision pointt corresponds to the beginning of reviewt+1.
Sayt ∈ {0, 1, ...T − 1}.

The state space and the action space ofS0: The state setX (t) at momentt and
the action setAt (xt) in the statext ∈ X (t) are defined by two main constraints:

• the target performance level of each planned design taskn is smaller thanLmax(n) and
greater thanmin(lmin(n), l(n, t))
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• the completion time of the NPD project must be smaller than the remaining time until
the deadline with a probability greater than safety marginα(t).

For the state space the completion time constraint is computed using the minimal performance
levels,lmin(·, t), while for the action space it is used the target performance levels,l(·, t) +
a(·, t).

For t = 0 : X(0) = {x0}= {0RN }
For t ∈ {1, ...T − 1} the statex(t) ∈ X(t) indicatesn(t) as the current not yet

finished design task from the initial sequence, and describes how many performance levels
were solved for it, as well as for the finished design tasks.

X(t) =





xt

∣∣∣∣∣∣∣∣∣

xt = (l(1, t), ..., l(n(t), t), 0, ..., 0) ∈ NN , n(t) ∈ {1, . . . , N}
0 < l (i, t) ≤ Lmax(i), i ∈ {1, ..., n(t)}

Pr

{
N∑

n=n(t)+1

lmin(n)∑
i=1

Sn +
lmin(n)∑

i=l(n,t)+1

Sn(t) ≤ M(T − t)

}
≥ α





(8.1)

For t = T :

X(T ) =
{

xT

∣∣∣∣
xT = (l(1, T ), ..., l(N, T )) ∈ NN ,

lmin(n) ≤ l (n, T ) ≤ Lmax(n, T ), n ∈ {1, ..., N)}
}

For t ∈ {0, ...T − 1} and xt = (l(1, t), ..., l(n(t), t), 0, ..., 0) ∈ NN , n(t) ∈
{1, . . . , N} the actionat decides how many other levels abovext we want to perform.
The level up to which the design taskn may be performed after the actionat was taken
is: l(n, t) + at(n).

At(xt) =





at

∣∣∣∣∣∣∣∣∣∣∣

at = (0, .., 0, at(n (t)), ..., at(N)) ∈ NN

0 ≤ lmin(n)− l(n, t) ≤ at(n), ∀n ∈ {1, ..., N}
l (n, t) + at(n) ≤ Lmax(n, t)

Pr

{
N∑

n=n(t)+1

at(n)∑
l=1

Sn +
at(n(t))∑

l=1

Sn(t) ≤ M(T − t)

}
≥ α





(8.2)

The immediate rewards ofS0: ∀ xt ∈ X(t), xt+1 ∈ X (t + 1) anda ∈ A (xt),
the immediate reward is

ρt (xt, a, xt+1) = 0, ∀t = 0, ..., T − 1 (8.3)

and the final reward is according to the supplementary assumption concerning the sequential
NPD case

ρT (xT ) =

{
0, if ∃ 1 ≤ n0 ≤ N, l (n0, T ) < lmin (n0)∑

n =1,..,N

l (n, T ) · V (n) otherwise (8.4)

If we consider a final reward of the form given in (Askin and Dawson, 2000) then
as pointed out in Chapter 5 Subsection 5.4.2, a simple choice for the value per a performance

level for the design taskn is: V (n) := 1
Lmax(n) ·

∆∑
δ=1

wδ ·Θ(n, δ) ,∀ n = 1, ..., n, wherewδ is

the normalized weight of the customer needδ (∀ δ = 1, ..., ∆), andΘ(n, δ) is the normalized
maximal contribution of the design taskn in fulfilling the customer needδ (Θ(n, δ) ∈ [0, 1);

∀ n = 1, ..., N, ∀ δ = 1, ..., ∆;
∆∑

δ=1

Θ(n, δ) = 1).
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The transition probabilities of S0: The transitions probabilities depend only on
the decision time point, the observed state and the chosen action and not on the whole history
of the process. The probability that the next state isxt+1, given that the state at the beginning
of staget is xt and that the actionat ∈ At (xt) is chosen, is the nonstationary probability:
pt (xt, at, xt+1) given in Corollary 20, Chapter 5.

Expected total reward criterion: The total expected reward) of a policyπ, starting

from initial statex0 = 0RN is vπ
0 (x0) = Eπ

x0

[
T−1∑
t=0

ρt (xt, a) + ρT (xT )
]
, where the expected

reward during the time interval[t, t + 1) is:

ρt (xt, a) =
∑

x(t+1)

ρt (xt, a, xt+1) pt (xt, a, xt+1) :
def
= 0.

We are looking for maximal expected total reward.

8.3 Preliminaries

In this section we recall from (Hinderer, 1970) a series of definitions and properties
of non-stationary dynamic programming models with discrete time parameter, and we present
the relationships with the initialS0- stochastic dynamic decision model. Due to the particular
form of our sequential control problem, we focus on the implications of Hinderer’s results
for the models with finite states and actions, with bounded rewards, and finite horizon.

Definition 65 The mathematical framework for a stochastic dynamic decision model with
countable state space consists of a tuple(X, A,D, p, (pt)t∈{0,1,2...} , (rt)t∈{0,1,2...}) of ob-
jects of the following meaning:

i) X, the so called state space, is a non-empty countable set,
ii) A, the so called space of actions, is either a non-empty countable or some non-

empty Borel subset ofRn. The setHt = (X × A) × (X × A) × ... ×X (2t + 1 factors) is
called the set of historiesht = (x0, a0, x1, a1, ..., xt) at timet.

iii) D is a sequence of mapsDt, t ∈ {0, 1, 2...} from certain setsHt ⊆ Ht to the
set of all non-empty subsets ofA with the property thatH0 = X, Ht+1 = {(h, a, x) | h ∈
Ht, a ∈ Dt (h) , x ∈ X}, t ∈ {0, 1, ...}.

Dt (h) is called the set of admissible actions at timet under historyh, whereas
Ht is called the set of admissible histories at timet. By Kt is denoted the set{(h, a) | h ∈
Ht, a ∈ Dt (h)}.

iv) p called the initial distribution, is a counting density onX, andpt(h, a, ·) called
the transition law between timet and t + 1, t ∈ {0, 1, ...} is a counting density onX,
(h, a) ∈ Kt.

v) rt, the so called reward during the time interval[t, t + 1), t ∈ {0, 1, ...} is an
extended real valued function onKt.

Any tuple(X,A, D, p, (pt)t∈{0,1,2...} , (rt)t∈{0,1,2...}) with the property (i)-(v) is
called a stochastic dynamic decision model (without stopping sets).

Definition 66 A (deterministic) policy for a stochastic dynamic decision model is a sequence
π = {πt}t∈{0,1,...}of mapsπt : X × ... × X (t + 1 factors)→ A with the property
πt (x0, x1, ...., xt) ∈ Dt (htπ (x0, x1, ...., xt)), where we denote the history at timet obtained
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by use of policyπ when the sequencex0, x1, . . . , xt of states (sample path or trajectory) oc-
curred byhtπ (x0, x1, . . . , xt) = {x0, π0 (x0) , . . . , xt−1, πt−1 (x0, . . . , xt−1) , xt}.
Definition 67 Models with finite horizonT ∈ N are models wherert = 0 for all t > T .

Definition 68 The mathematical model for a finite horizon decision process determined by a
policyπ (see (Hinderer, 1970))

is the probability space(Ω,z, Pπ) and a sequence(ζt)t∈{0,..,T} of random vari-
able on it where(ζt)t describes the state of the system at timet. We have:

1) as sample spaceΩ = XT+1 the set of all sequencesω = (x0, ..., xT ),
2) asσ− algebraz on Ω is considered the finite product(T + 1 factors) ofσ−

algebra determined by the factorsP(X) (the system of all subsets ofX),
3) ζt is the t− th coordinate variable, i.e.ζt (ω) = ζt (x0, ..., xT ) = xt, t ∈

{0, 1, .., T}
4) for the description ofPπ is used the notationptπ(y, x) = pt(htπ(y), πt(y), x)

wherey = (x0, ..., xt) ∈ Xt+1 andx ∈ X, i.e. ptπ is the transition law between timet and
t + 1 that results from the application of the policyπ.

Let ηt the random vector( ζ0, .., ζt) describing the history at timet. We have
Pπ(ηt = y) = Pπ((ζ0, .., ζt) = (x0, .., xt)) denoted by the followingPπ(x0, .., xt) =
p(x0)p0π(x0, x1)...pt−1,π(x0, x1, ..., xt).

If the policy π is used and if the sequence(x0, .., xt) of states (sample path or
trajectory in between the moments0 andt) has occurred, then the reward received during the
time period[t, t + 1), t ∈ {0, .., T − 1} is rtπ(y) = rt(htπ(y), πt(y)) and if the sequence
(x0, .., xT ) of states (sample path or trajectory) has occurred, the final reward(t = T ) is
rTπ(y) = rT (hTπ(y)).

If the policy π is used and if the sample path (x0, .., xT ) has occurred, then the

total reward received during the time[0, T ] is Rπ(x0, .., xT ) =
T−1∑
t=0

rt(htπ(y), πt(y)) +

rT (htπ(y)). If the policyπ is used then the expected total reward (or the expectation of the to-
tal reward) is

∑
(x0,..,xT )

Rπ(x0, .., xT )Pπ(x0, .., xT ) =
∑

(x0,..,xT )

rtπ(ηt(x0, .., xT ))Pπ(x0, .., xT ).

Remark 69 The application of any policyπ generates a stochastic process, the decision
process determined byπ. A stochastic dynamic decision model may be regarded as a family
of decision processes.

We are looking for the maximal expected total reward. The existence of a deter-
ministic optimal policy is insured for a stochastic dynamic decision process with countable
states and actions, with bounded rewards, and infinite horizon. Thus, the same holds in the
particular case of a finite horizon. (see (Hinderer, 1970) pp. 7-11).

Remark 70 In (Hinderer, 1970) (pp.12) there are presented two equivalent ways (i.e. they
lead to the same reward under the maximal expected total reward) to reduce a model in which
the reward between timet andt + 1 depends also onxt+1 (i.e. r′t (h, a, xt+1)) to the case of
the stochastic dynamic decision model from Definition 65. The first way to reduce this case to
the above model is to use the rewardrt(h, a) =

∑
xt+1∈X

r′t (h, a, xt+1) pt (h, a, xt+1) as new

reward function. However, in this chapter we will mostly use the second one, which consists
in usingr0 ≡ 0 andrt(h, a) = r′t−1 (h).
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Remark 71 Since, we deal with models with finite horizonT , we havert = 0 for all t > T.
Thus, in the finite horizon case, if the reward between timet and t + 1 depends also on
xt+1 (i.e. r′t (h, a, xt+1)), and we use the second way of reducing the model to the one from
Definition 65 we have to take care not to forget the rewardr′T−1 (h, a, xT ). If the horizon
would have been infinite this reward would have been the one of the period[T, T + 1). Thus,
in this chapter, we will introduce a final reward, which will correspond to the momentT , and
to the admissible history(h, a, xT ) ∈ HT . An alternative possibility would have been to
extend the model horizon with one unit.

In general, for a stochastic dynamic decision model, the set of states at any decision
moment is considered to be equal toX. For ourS0 model there exists a first restriction: at
the initial decision moment we can consider only the statex0 = 0RN which leads to a first
restriction on the set of admissible histories.

Such a situation occurs in most practical problems (see (Hinderer, 1970) pp.7).
The existence of a fixed statex0 in which the system starts with probability one ensures the
existence of an optimal policy in the case of countable state and action spaces. This policy is
calledx0− optimal.

The second restriction of ourS0 model is that at different decision moments we
have different state spaces and different action spaces. According to (Dynkin, 1965), (Hin-
derer, 1970) pp.11, (Hinderer, 1967), and (White, 1969) pp.23 the fact that at the times
t + 0, 1, 2, ... different state spaces and/or different action spaces are needed would not com-
plicate the theory. Nevertheless, the notation becomes a bit cumbersome.

Remark 72 Thus, coming back to ourS0 model we consider

X =
{
(l1, ..., li, 0, ..., 0) ∈ ZN , i ∈ {1, . . . , N}, 0 < lj ≤ Lmax(j), j ∈ {1, ..., i)}}∪{0ZN }

and we define alternatively the set of admissible histories. We start withH0 = X (0) =
{x0 | p (x0) > 0}.

We denote byA0 (h0) the set of admissible actions under the historyh0 (it will be
in fact anA0(x0)) and we define the set of admissible actions at the time instant0 as being
A (0) =

⋃
h0∈H0

A0 (h0).

For (h0, a0) ∈ H0 × A (0) we define the setX (1, ((h0, a0)) = {x1 ∈ X |
p1 (h0, a0, x1) > 0}, and the set of possible states at time instant1 is given by
X (1) =

⋃
(h0,a0)∈H0×A(0)

X (1, ((h0, a0)), H1 = X(0)×A(0)×X(1).

In general, if we inductively determineHt we may defineA (t) =
⋃

ht∈Ht

At (ht)

(the history dependence inAt(ht) is only given by the means ofxt), X (t + 1, ((ht, at)) =
{xt+1 ∈ X | pt (ht, at, xt+1) > 0}, where (ht, at) ∈ Ht × A (t), and also
X (t + 1) =

⋃
(ht,at)∈Ht×A(t)

X (t + 1, ((ht, at)), Ht+1 = X(0)×A(0)×· · ·×X(t)×A(t)×X(t+1).

From now on, we will use this construction for the admissible histories of the
stochastic dynamic decision modelS0.

Remark 73 The Definition 68 of a decision process determined by a policy can be easily
adapted for a model defined by the admissible state setsX (t) , t ∈ {0, .., T} by replacing
XT+1 with X(0)× ...×X(T ).
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We notice that at any decision momentt in theS0 model we eliminated some states

due to the conditionPr

{
N∑

n=n(t)+1

lmin(n)∑
i=1

Sn +
lmin(n)∑

i=l(n,t)+1

Sn(t) ≤ M(T − t)

}
≥ α. Only

after this elimination we obtainX(t) the set of admissible states at the decision moment
t. Not every state which can be reached fromX(t − 1) with a positive probabilitypt−1

is an element of the setX(t). Let X(t) (we call X(t) the set of possible states) the set
of states which can be reached fromX(t − 1) with a positive probabilitypt−1. X(t) =



xt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xt−1 ≤ xt ≤ xt−1 + at−1, xt ∈ NN

xt = (l(1, t), ..., l(n(t), t), 0, ..., 0) ∈ NN , n(t) ∈ {1, . . . , N}
0 < l (i, t) ≤ Lmax(i), i ∈ {1, ..., n(t)}

and Pr

{
N∑

n=n(t)+1

lmin(n)∑
i=1

Sn +
lmin(n(t))∑

i=l(n(t),t)+1

Sn(t) ≤ M(T − t)

}
≥ α

at = (0, .., 0, at(n (t)), ..., at(N)) ∈ NN

at(n) ≥ lmin (n)− l (n, t) ≥ 0,∀n ∈ {1, ..., N}
l (n, t) + at(n) ≤ Lmax(n)

Pr

{
N∑

n=n(t)+1

at(n)∑
l=1

Sn +
at(n(t))∑

l=1

Sn(t) ≤ M(T − t)

}
≥ α





At any decision momentt are neglected the states from the setX(t)−X(t).
We also observe that a state which is not admissible at the decision momentt will

not be admissible at any later decision moment. From a mathematical point of view this is
equivalent with saying thatX(t)−X(t) is a set of states in which we stop the process at the
decision momentt.

Definition 74 (Hinderer, 1970) Let(X,A, D, {pt}t=0,1,..., {rt}t=0,1,...) be a sequential dy-
namic decision process having{Ht}t=0,1,... as sets of the admissible histories. This decision
process is said to be with stopping sets if there exists the sets (possibly empty)Φt ⊂ Ht,
together with the instruction to stop the process at the earliest timet for whichht belongs to
the setΦt ⊂ Ht.

(One could allowΦt to depend on(ht−1, at); but if we define
Φt := {ht ∈ Ht : ht ∈ Φt (ht−1, at)}, then we are back in our original case.)

As a example we quote the task to proceed to a given pointc ∈ S as rapidly as
possible ((Boudarel et al., 1968), pp. 23, (Hinderer, 1970) pp.57).

Remark 75 S0 is a particular stochastic dynamic decision model with stopping sets. The
setsX(t) represent the sets of states in which the process is not stopped. Later, we will
fully define the stopping sets for theS1 model which will be constructed starting from theS0

model. This will help us to obtain a series of properties of theS1 model as a process with
stopping sets.

Remark 76 The initial process has as admissible states the states fromX(t). It is not the
initial process that we intend to formulate as a process in the sense of Hinderer. The idea is
to show that the initial process is equivalent with a stopped process that can be obtained from
the process with stopping sets in the sense Hinderer. The process in the sense of Hinderer has
as sets of states̄X(t), and as the set of admissible histories theHt = X̄(0) × A(0) × ... ×
X̄(t− 1)×A(t− 1)×X(t)
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In our S0 model the reward is final. Thus, we can assume without any loss of
generality that if the process enters in a possible, but not admissible state (i.e. a state in
which the process is stopped) at thet decision moment, it will remain in that state until theT
moment. This is equivalent with saying that any decision momentt, . . . , T − 1 in the above
mentioned states we take the action0RN , which does not allow the process to further evolve.
With this assumption we can extend the set of states (fromX(t) to X), as well as the action
states at any decision momentt (with the action0RN for all the possible, but not admissible
states, no matter the decision moment at which they did became not admissible).

We remark that in ourS0 model for the final statexT = (l(1, T ), .., l(N, T )) we
havel(n, T ) = l(n, tn), wheretn is the moment in which we stop working on then−th de-
sign task. Thus, ifl(n, T ) ≥ lmin(n), for anyn ∈ {1, . . . , N} the total expected final reward
corresponding toxT may be considered as a sum of rewards

∑∑
n

V (n) l (n, tn), where the

first sum is taken after all the trajectories that end up intoxT = (l(1, T ), .., l(N, T )).
Moreover, the levell(n, tn) may be considered as a sum of the levels performed in

between the decision momentstn−1 andtn. In this way the final reward becomes the sum of
all rewards corresponding to the periods in between the decision momentstn−1 andtn. If we
assume that a possible, but not admissible state at the decision momentt remains unchanged
until T , and if we think of the final reward as a sum of rewards per period, we have to consider
not only that no reward will be accumulated fromt to T , but also that the reward possibly
obtained from the work of the engineers team up to thet− th moment has to be subtracted.
Only then the final reward of a non admissible state will be zero.

8.4 Restricting the action space ofS0

In this section we identify an implicit probability constraint which lead to a refor-
mulation of the action space of theS0 model. We denote the new model byS1. First we
determine a sequence of time momentsT1, .., TN−1. A Tn moment is that moment in time
after which we decide not to work anymore on the design task numbern. Doing otherwise
will prevent the team to finish the minimal performance levels for the remaining(n+1, . . . N)
design tasks (i.e. achieving a functional new product) until the deadline, with the required
probability. In theS1 model the actions will have at most one nonzero component which will
be decided at theTn moments. In between two such consecutive moments the vector defining
the action will preserve the same rank for the nonzero component.

Proposition 77 By considering both the probability constraint from (8.2) and the one from
(8.1) we obtain a sequence of time momentsT1 ≤ T2 ≤ ... ≤ TN−1 ≤ TN = T , whereTn

represents the latest moment in time at which we have to stop working on the design taskn,
such that with a fixedα probability the team could still have the time to achieve the minimal
performance levels for the remaining design tasksn + 1, . . . , N . We call from now on theTn

moments the ”latest stopping times” of the design tasks.

Proof. Since the solving times of the design tasks are considered independent
random variables, and each of them is a sum of independent identically exponentially dis-

tributed random variables (i.e. the solving times of the activities), the
N∑

n=n(t)+1

lmin(n)∑
l=1

Sn +
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lmin(n)∑
l=l(n,t)+1

Sn(t) from the inequality (8.1) is distributed Erlang-k :=
N∑

n=n(t)+1

lmin(n)∑
l=1

na (n) +

lmin(n)∑
l=l(n,t)+1

na(n (t)), with mean
k

µ
. Thus for any state:xt the inequality (8.1) is equivalent to

k−1∑
j=0

[µ (T − t)M ]j

j!
e−µ(T−t)M ≤ 1−α, which implies a maximal number of possible activ-

ities to be done in(T − t) review periods. Since we assumed that for any particular design
task the number of activities needed to solve each of its levels is the constant, the number
of possible levels to be achieved in(T − t) review periods with the probabilityα for each
design task is constant as well.

Thus, if we want to arrive in(T − t) review periods in the rewarded region (i.e.
corresponding to a fully functional product) we have always to choose our actions such that
the minimal levels should be always achieved. Thus, the latest stopping timeTn for the design
taskn can be obtained by subtracting from the deadline the time needed to solve the minimal
performance levels on each of the design tasks fromn + 1 to N . Consequently,Tn is the

largest time moment verifying

NP
q=n(t)+1

lmin(q)P
l=1

na(q)−1

∑
j=0

[µ (T − Tn) M ]j

j!
e−µ(T−Tn)M ≤ 1− α.

The real ”total decision time” available for the decision maker will be obtained
after subtracting from the total time horizon (given by the deadline) the latest stopping of the
first design task, as well as the time needed to solve it to its minimal performance level with
the probabilityα. For this time we should seek to decide, for each design taskn the number
(i.e. an integer) of performance levels (all the performance levels of a given design task are
equal) to be given to the engineers so as to maximize the total reward without exceeding the
deadline.

Consequently, the horizonT has to be initially chosen such that at least all the
minimal performance levels can be solved with a given probability. If we denote byT0 the
minimal time horizon, we have to initially haveT ≥ T0 for a non-trivial control problem.

Remark 78 The time momentsTn are not necessarily integer positive numbers. However,
we may truncate the time moments necessary to achieve the minimal performance levels on
each of the design tasks fromn + 1 to N , for eachn ∈ {1, . . . , N − 1}.

Lemma 79 Consider that the design tasks in the given sequence can be performed by the
team of engineers one after the the other and they can start only at the beginning of a review
period. Then, by restricting the action space ofS0, the stochastic dynamic decision modelS0

may be formulated as a stochastic dynamic decision modelS1, where the actions will have
at most one nonzero component which will be decided at theTn moments. In between two
such consecutive moments the vector defining the action will preserve the same rank for the
nonzero component.

Proof. Let Tn for eachn ∈ {1, . . . N−1} be the latest stopping times of the design
tasks from the sequence considered in the sequential NPD control problem. LetTN = T .
Then we have:

I.a. t < Ti0 , xt (i0) < lmin (i0) :
I.a.i. if xt ∈ X(t)−X(t) and at,max(n) + xt(n) < lmin(n), then
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at = (0, ..., 0, at (i0) = 0, ..., 0) = 0RN ,
I.a.ii. if xt ∈ X(t)−X(t) and at,max(n) + xt(n) ≥ lmin(n), then

at = (0, ..., 0, at (i0) 6= 0, ..., 0).
I.b. t < Ti0 , lmin (i0) ≤ xt (i0) < Lmax(i0) thenat = (0, ..., 0, at (i0) 6= 0, ..., 0),

or at = (0, ..., 0, at (i0 + 1) 6= 0, ..., 0), since we have considered that a design task always
starts at the beginning of a review period. I.c.t < Ti0 , xt (i0) = Lmax(i0) then at =
(0, ..., 0, at (i0 + 1) 6= 0, ..., 0),

II.a. t = Ti0 , xt (i0) < lmin (i0), thenat = (0, ..., 0, at (i0) = 0, ..., 0) ,
II.b t = Ti0 , xt (i0) ≥ lmin (i0), then at = (0, ..., 0, axt

(i0 + 1) 6= 0, ..., 0) ,
III.a. t > Ti0 , xt (i0) < lmin (i0), at = (0, ..., 0, at (i0) = 0, ..., 0) = 0RN

for any xt ∈ Xt, t ∈ {1, . . . T}, and i0 with l(j, t) > 0 for any j ≤ i0, and
l(j, t) = 0 for anyN ≥ j > i0, where we denote byxt (i) = l (i, t) the i−th coordinate of
the vectorxt.

Definition 80 Let {ξt}t∈{0,1,2,...} a stochastic dynamic decision model with countable state
space defined by the tuple(X, A,D, p, (pt)t∈{0,1,2,...} , (rt)t∈{0,1,2...})). We say that the tran-
sition probabilitiespt(ht, at, xt+1) are coupled if there exists the following:

1) a sequence of independent controlled random variables{Y at
t }t=0,1,...with val-

ues in an arbitrary countable setF , whereat ∈ A(t).
2) a sequence of measurable functionsft : Ht−1×A(t− 1)×F t−1 → X(t) such

that

Pr((ξt = xt)|ht−1, at−1) = Pr
{

ft

(
ht−1, at−1, {Y as

s }s=0,...,t−1

)
= x(t)

}

= Pr
{
{yas

s }s=0,...,t−1 | ft

(
ht−1, at−1, {yas

s }s=0,...,t−1

)
= x(t)

}

whereht−1 = (x0, a0, . . . , xt−2, at−2, xt−1) , andyat
t is an instance (value) of the random

variableY at
t .

Remark 81 We may rewrite equivalently this definition as

ξt = ft

(
{ξs}s=0,1,...,t−1 , {πs}s=0,...,t−1 , {Y πs

s }s=0,...,t−1

)

whereπ = (πt)t=0,1,...... is a policy of the process{ξt}t=0,1,... , πt(x0, .., xt)
not= at ∈ A(t).

Consequently, the coupling property of the transition probabilities can be written
either on any sample path or with random variables. We will study the process properties on
sample paths, hence with states and decisions (values and realizations of random variables
and policies).

Sequential decision processes with coupled transition probabilities do appear in
many applications to queues and related processes. Thus, in (Liu et al., 1995) the mathemat-
ical setting used through the paper is the following:

”Let (Ω,z, P ) be a probability space, where a generic element inΩ is written in
the formω =

(
ω0

1 , ω1
1 , . . . , ω0

n, ω1
n, . . .

)
. The coordinate processes(φm

n )m,n on Ω is defined
asφm

n (ω) = ωm
n for all n = 1, 2, . . ., m = 0, 1, so thatφ =

(
φ0

1, φ
1
1, . . . , φ

0
n, φ1

n, . . .
)
. Here,

φ0
n andφ1

n may represent the arrival time and the service requirement of then-th customer in
a queuing system, respectively.
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The stochastic processes(Xn)n considered are of the form

Xn = fn

(
φ, (Xi)

n−1
i=1 , (Ui)

n−1
i=1

)
∈ Sn, n = 2, 3, . . . ,

where the initial stateX1 ∈ S1 is known,Ui ∈ A for i = 1, . . . , n−1, andfn is a measurable

mapping fromΩ×
n−1∏

i=1

Si ×An−1 into Sn, respectively. Here,u = (Un)n is thecontroland

A is the action set.”
Also in (Altman and Stidham Jr., 1995) we encounter the same coupling assump-

tion, in the sense that the state after a transition is distributed as a deterministic function of
the current state and two random variables, one of which is controllable and the other uncon-
trollable:

”For any actiona let Y a be random elements of a partially ordered standard Borel
spaceY. Denote the partial order onY by >. LetZ be a random element of a standard Borel
spaceZ. We assume thatY 0, Y 1 andZ are mutually independent. There exists a function
g : X × Y × Z → X , measurable with respect to the productσ-field onX × Y × Z and
non-decreasing in the first argument, such that

q (B : x, a) = P {X1 ∈ B|X0 = x,A0 = a} = {g (x, Y a, Z) ∈ B} , x ∈ X , a ∈ A
for every Borel subsetB of X .”

We recall from Section 8.3 our assumption that once the process enters a state
which is possible, but not admissible, it remains in that state until the deadline. Thus, in such
a non-admissible state the only admissible action until the deadline is0RN .

Proposition 82 Consider that the design tasks in the given sequence can be performed by
the team of engineers one after the the other and they can start only at the beginning of a
review period. Then, the transition probabilities of the stochastic dynamic decision modelS1

are coupled and their system equation is

xt+1 = xt + yat
t (8.5)

wherext = (l (1, t) , ..., l (N, t)) is the state of the system,at = (at (1) , ..., at (N)) is an
action in At(xt), such thatat(i) ≤ min{Lmax(i), at,max(i)} for 1 ≤ i ≤ N , and also
yat

t = (wt (1, at(1)) , ..., wt (N, at(N))) is an instance of a random variable with probability
distribution parameterized only by theat such that0 ≤ wt (i, at(i)) ≤ at (i), at the time
instantt.

Proof. We prove that for any admissible history(x0, a0, . . . , xT ) the system equa-
tion 8.5 is respected.

For t = 0 we haveX(0) = {x0} = {0RN }.
Fix t ∈ [1, T ] and takext ∈ X(t), and denote thei−th coordinate of xt by

xt (i). Then there exists ani0 such that forxt, xt(j) = l(j, t) > 0 for any j ≤ i0, and
xt(j) = l (j, t) = 0 for anyi0 < j ≤ N .

We prove now that if we take an admissible action of the stochastic decision model
S1 at an arbitrary time instant, we can construct a well-defined system equation of the type
8.5 at that time instant. For that, we will consider several cases.

I. t < Ti0 .
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I.a. If xt (i0) < lmin (i0), then the action is always of the form:
I.a.i. if xt ∈ X(t)−X(t) and at,max(n) + xt(n) < lmin(n), then

at = (0, ..., 0, at (i0) = 0, ..., 0) = 0RN ,
I.a.ii. if xt ∈ X(t)−X(t) and at,max(n) + xt(n) ≥ lmin(n), then

at = (0, ..., 0, at (i0) 6= 0, ..., 0).
Thus yat

t = (0, ..., 0, wt (i0, at(i0)) , 0, 0, ..., 0), where0 ≤ wt (i0, at(i0)) ≤
at(i0) are the effective worked levels on the design taski0 during the review period[t, t + 1)
if we took the actionat at the time instantt.

I.b. If lmin (i0) ≤ xt (i0) < Lmax (i0), then the action is either of the type
at = (0, ..., 0, axt (i0) 6= 0, 0, ..., 0), with yat

t = (0, ..., 0, wt (i0, at(i0)) , 0, ..., 0), or at =
(0, ..., 0, axt (i0 + 1) 6= 0, ..., 0), with yat

t = (0, ..., 0, wt (i0 + 1, at(i0 + 1)) , 0, ..., 0), since
we have considered that a design task always starts at the beginning of a review period.

I.c. If xt (i0) = Lmax (i0), then the action isat = (0, ..., 0, axt (i0 + 1) 6= 0, ..., 0),
with yat

t = (0, ..., 0, wt (i0 + 1, at(i0 + 1)) , 0, ..., 0)
II t = Ti0 .
II.a. If xt (i0) < lmin (i0), then the action is always of the form

at = (0, ..., 0, at (i0) = 0, ..., 0). Thusyat
t = 0RN .

II.b. If xt (i0) ≥ lmin (i0), then the action is of the form
at = (0, ..., 0, axt (i0 + 1) 6= 0, ..., 0), with yat

t = (0, ..., 0, wt (i0 + 1, at(i0 + 1)) , 0, ..., 0).
III t > Ti0 .
III.a. xt (i0) < lmin (i0), then, consistently with the case IIa, we have the same

unique action and its correspondingyat , both being0RN .
Thus the action remains admissible forS1, since on the control intervals included

in (Ti0 , t), the team of engineers cannot continue working on the design taski0.
III.b. xt (i0) ≥ lmin (i0). This case is impossible, since an admissible policy forS1

cannot ask the team of engineers to work on the design taski0 on the intervals(Ti0 , Ti0+1],
..., (Tn−1, T ]. An optimal decision rule takes actions with thei0-th component non-zero only
on the intervals(T0 − 1, T0], ...,(Ti−1, Ti].

Remark 83 The random variablesY at
t depend on the pair(ht, at) only through the action

at (i.e. the action indicates by its nonzero component the current design task to work on,
as well as how many levels the team should work on it), and they are independent random
variables.

Corollary 84 Let s ∈ {0, . . . , T − 1}. Then for any(hs, as) ∈ Hs × As(xs) we have

xs+1 :=
s∑

t=0

yat
t .

Corollary 85 For any admissible historyhT of the stochastic dynamic decision modelS1

(∃) k ∈ {1, . . . , N} and 0 = t0 < t1 < . . . < tk ≤ T , with ti ∈ Z+, ti ≤ Ti+1,
i ∈ {1, .., N − 1} andtN ≤ T such that for anyt ∈ {ti, . . . , ti+1 − 1}, 0 ≤ i ≤ k − 1 we
haveyat

t = (0, ..., 0, wt(i + 1, at(i + 1)) 6= 0, 0, ..., 0) and for anyt ∈ {tk, . . . , T} we have
yat

t = 0RN .

Corollary 86 For any admissible historyhT of the Markov decision processS1 if xT =

(l (1, T ) , ..., l (N,T )) thenl(i, T ) =
ti−1∑

s=ti−1

ws(i, as(i))



136 CHAPTER 8. MARKOVIAN CONTROL OF SEQUENTIAL NPD

For any given history we give in the following Corollary a formal characterization
of the realized value of the random number of review periods (i.e.τi ) on which the team
works on the design taski. Thus we will define

• σ1
i = min

{
t ∈ Z∗+

∣∣∣∣
t∑

s=1
y

ati−1+s−1(i)

ti−1+s−1 ≥ lmin(i)
}

as the smallest integer timet at

which the sum of the levels realized by the engineer can exceed the minimal level.
So the engineers should work on the taski until at least timeσ1

i .

• σ2
i = min

{
t ∈ Z∗+

∣∣∣∣
t∑

s=1
y

ati−1+s−1(i)

ti−1+s−1 ≥ Lmax(i)
}

as the smallest integer timet at

which the sum of the levels realized by the engineer can exceed the maximal level. So
the engineers should stop working on the taski before timeσ2

i .

Corollary 87 For any admissible historyhT of the stochastic dynamic decision modelS1

there exists the numbersDi ∈ {1, . . . , Ti − ti−1}, i ∈ {1, . . . N} such thatti = ti−1 + τi,
whereτi = min

{
Ti − ti−1,max

(
σ1

i , Di

)
, min

(
σ2

i , Di

)}
.We recall thatTi was the latest

time at which the team should stop working on the design task i such that there is enough time
to perform the remaining design task at least at their minimal level, and from the Corollary
85 we have that the team is asked to work on the design taski only for any discrete decision
point t ∈ {ti, . . . , ti+1 − 1}.

Proof. The existence of the sequence0 ≤ t1 ≤ . . . ≤ tk ≤ T , with ti ∈ Z+,
ti ≤ Ti+1 is due to Corollary 85.

In order to prove the desired equality we consider several cases.
I. If σ1

i ≥ Ti − ti−1 thenτi = Ti − ti−1, and we can consider an arbitrary value
for Di ∈ {1, . . . , Ti − ti−1}.

II. If σ1
i < Ti − ti−1 then

II.a. if σ1
i = ti − ti−1 thenDi can take any integer value in between1 andσ1

i .
II.b. if ti − ti−1 = σ2

i ≤ Ti − ti−1 thenDi can take any integer value in between
σ2

i andTi − ti−1.
II.c. if σ1

i ≤ ti − ti−1 ≤ σ2
i thenDi := ti − ti−1.

8.5 Eliminating the sample paths with zero final reward

In order to compute the expected value of the total reward for theS1 model we first
construct an equivalent model with reward per period structure. Secondly, we show thatS1

can be obtained from this last model by introducing a series of stopping sets. Finally, we
obtain the functional equations of theS1 model starting from the functional equations of a
stochastic dynamic model with stopping sets.

Proposition 88 Consider the stochastic dynamic decision modelS1. Then there exists the
functions:r0 : X (0) → R, rt : X (t− 1) × A (t− 1) × X (t) → R, t ∈ {1, ..., T}, such
that for any admissible history(x0, a0, . . . , xT−1, aT−1, xT ) with final statexT , the final

reward can be written asρT (xT ) = r0(x0) +
T∑

t=1
rt(xt−1, at−1, xt). (i.e. we can obtain a

structure with both final rewardrT and reward per review periodrt, t ∈ {0, T−1} equivalent
with the initial structure having only final reward)
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Proof. For the review period[0, 1) andh0 = x0 we definer0(x0) = r0(x0, a0) = 0
for all a0 ∈ A (0).

For the review period[t, t+1), 1 ≤ t ≤ T−1, for xt−1 ∈ X (t− 1) , xt ∈ X (t) ,
xt = (l(1, t), .., l(i, t), 0, .., 0), at−1 ∈ At−1 (xt−1) andat ∈ At (xt) we take

rt(xt−1, at−1, xt) = rt(xt−1, at−1, xt, at) =

=





V (i) · wt−1(i, at−1(i))

−
i∑

j=1

V (j) · l(j, t)

0

t < Ti or (t = Ti andl(i, t) ≥ lmin(i))

t = Ti

andl(i, t) < lmin(i)

t > Ti

For anyaT−1 ∈ A (T − 1) , xT−1 ∈ X (T − 1) andxT = (l (1, T ) , ..., l (N, T ))
we consider the final reward:

rT (xT−1, aT−1, xT ) =





V (N) · wT−1(N, aT−1(N))

−
N∑

j=1

V (j) · l(j, T )

0

l(N, t) ≥ lmin(N))

0 < l(N, t) and
l(N, t) < lmin(N)

l(N,T ) = 0

Then the desired equality holds by Corollary 86 which says thatl (i, T ) =
ti−1∑

s=ti−1

ws(i, as(i)).

In Proposition 88 we constructed a reward structure having for any review period
[t, t+1) a reward depending on an admissible history of the process only by the means of the
state of the system at the time instantt, xt, and of both the state, and the action at the time
instantt − 1, xt−1, at−1. However, this reward does not depend on neither the state of the
system, nor the action at the time instantt + 1.

From now on we will call the new model,the stochastic decision modelS1 with the
nonzero reward structure per review periodsto distinguish it from the initialS1 which will
be calledthe stochastic decision modelS1 with the final or terminal reward structure.

Remark 89 The stochastic dynamic decision modelS1 can have as stopping setsΦt = ∅
for t ∈ {0, 1, .., T − 1} andΦT := {hT |∃ 1 ≤ i0 ≤ N, xT (i0) = l (i0, T ) < lmin (i0)}
since stopping the process at its end, or stopping it before are equivalent from the point of
view of the final reward (any stopped state during the process development can be retrieved
among the states stopped at the end).

We denote by{ξt}t=0,...,T := Sstop
1 the stochastic dynamic decision model ob-

tained from the Markov decision modelS1 with the nonzero reward structure per review
periods by considering the stopping sets:
a) Φt := ∅ for t 6= Ti, t ≤ N − 1, i ∈ {1, .., N}, whereTN = T ,
b) ΦTi := {hTi ∈ HTi |xTi = (l(1, Ti) . . . , l (i, Ti) 6= 0, 0, ..., 0) , l (i, Ti) < lmin (i)}, i ∈
{1, .., N} and
c) for N < t ≤ T : Φt := {ht ∈ Ht|xt = (l(1, t) . . . , l (N, t) 6= 0) , l (N, t) = Lmax (N)}

Each design task starts at the beginning of a review period and from the most
optimistic perspective can be finished during only one review period. This means that for
theN−th design task the earliest starting point isN − 1 and the earliest finishing time isN .
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Thus, at theN -th moment it is mandatory to stop the process if the team reached the maximal
level of the last design task. (so for eachN < t ≤ T ).

Remark 90 The modelSstop
1 can be viewed as model with stopping sets, and with a ran-

dom duration. Its duration equals the smallest value of the time momentt such thatxt =
(l(1, t) . . . , l (N, t) 6= 0) , l (N, t) = Lmax (N). We denote this duration withtN and we
remark thattN ≤ T .

For the modelSstop
1 we observe that stopping at any time moment is equivalent

with stopping only at theTn moments because any state stopped betweenTn−1 andTn will
be stopped at the time momentTn as well.

Proposition 91 Let ũ∗t be the optimal reward of the process{ξt}t=0,...,T := Sstop
1 for the

period [t, T ] under the total expected reward criterion. Thenũ∗t verifies the functional equa-
tion

ũ∗t (xt−1, at−1, xt) =

=

[
rt(xt−1, at−1, xt) + max

at∈A(t)

∑
xt+1∈X(t+1)

pt(xt, at, xt+1)ũ∗t+1(xt, at, xt+1)

]
· 1Bt(xt)

wherext−1 ∈ X(t− 1), xt ∈ X(t) andat−1 ∈ At−1(xt−1).

Proof. Let us consider the setBt of historiesh ∈ Ht which do not result in a stop,
i.e.

Bt := {ht ∈ Ht : hν 6∈ Φν for 1 ≤ ν ≤ t} .

We notice that the stopping sets depend on an admissible history of the process,ht, only
through the statext Thus,1Bt(ht) = 1Bt(xt).

The proof is done by induction fort from T to 0. For t = T we have
ũ∗T (xT−1, aT−1, xT ) = rT (xT−1, aT−1, xT ) · 1BT (xT ).

The induction step is obvious since according to ((Hinderer, 1970) pp.57) one can
describe the stopped process by changing the reward functionsrt to functionsrt (h, a) . Then
we just have to definert (h, a) := rt (h, a) · 1Bt (h), t ∈ Z, (h, a) ∈ Ht × A(t). If h /∈
Bt, then(h, at, . . . , xm) /∈ Bm for all m > t and for all (h, at, . . . , xm) ∈ Hm, hence
rm (h, at, . . . , xm, am) = 0, hence

ũ∗t (h) = 0, t ∈ N, h /∈ Bt.

Then, the optimality equation becomes:

ũ∗t (h) = max
a∈Dt(h)


rt (h, a) +

∑
xt+1

pt (h, a, xt+1) ũ∗t+1 (h, a, xt+1)


·1Bt (h) , t ∈ N, h ∈ Ht

whereDt(h) not= At(h) being the decision rule that determines the set of admissible actions
at the decision pointt.

More precisely fort ∈ {1, .., T − 1} the optimality equations are:
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ũ∗t (xt−1, at−1, xt) =

=

[
rt (xt−1, at−1, xt) + max

at∈At(xt)

∑
xt+1∈X(t+1)

pt (xt, at, xt+1) ũ∗t+1 (xt, at, xt+1)

]
· 1Bt

(xt)

For t = 0 we haveũ∗0 (x0) = max
a0∈A0(x0)

∑
x1∈X(1)

p0 (x0, a0, x1) ũ∗1 (x0, a0, x1)]

since1B0(x0) = 1, while for t = T we havẽu∗T (xT−1, aT−1, xT ) = rT (xT−1, aT−1, xT ) ·
1BT

(xT ).

Proposition 92 Sstop
1 is a non-stationary Markov decision model with stopping sets.

Proof. We already noticed that we preserve the initial rewards value while we
may consider transition probabilities which do not depend on the actions, and rewards which
depend on the actions and are nonzero only for the performance levels values in between
the lmin(̇·) and Lmax(·). So, rt (xt, at) =

∑
xt+1∈X(t+1)

pt (xt, at, xt+1) rt (xt, at, xt+1) equal

rt (xt, at) =
∑

xt+1∈X(t+1)

pt (xt, at, xt+1) rt (xt, at, xt+1), wherext ∈ X(t), t ∈ {0, 1, .., T − 1}.

But in a Markov model its rewards per period should depend on the state known at the begin-
ning of the review period. For that, in the stopped process, we reduce the cost structure per
period. Thus, the reward for the period[t, t+1) equalsrt (xt, at), and we still have the same
reward under the maximal expected total reward criterion.

Let ut(xt) be the optimum of the expected value for the reward during the period
[t, T ] for the processSstop

1 obtained by reducing the reward structure. Ifxt ∈ X(t) is an
admissible state for anyt (i.e. we eliminate the sample paths which do not belong toBt =
{ht ∈ Ht : hν 6∈ Φνfor1 ≤ ν ≤ t} and thus are at moment stopped) then the optimum of
the expected value for the reward during the period[T − 1, T ] is

uT−1(xT−1) = max
aT−1∈AT−1(xt)

∑

xT∈X(T )

pT−1 (xT−1, aT−1, xT ) rT−1 (xT−1, aT−1, xT )

and the optimum of the expected value for the reward during the period[t, T ], with t ∈
{0, .., T − 1} is

ut(xt) = max
at∈At(xt)

[rt (xt, at) +
∑

xt+1∈X(t+1)

pt (xt, at, xt+1) u∗t+1 (xt+1)]

Thus, we have fort = T − 1

uT−1(xT−1) = max
aT−1∈AT−1(xt)

∑

xT∈X(T )

pT−1 (xT−1, aT−1, xT ) rT−1 (xT−1, aT−1, xT )

= max
aT−1∈AT−1(xt)

rT−1 (xT−1, aT−1)

= ũ∗T−1(xT−2, aT−2, xT−1)− rT−1 (xT−2, aT−2, xT−1) ,

for t ∈ {1, .., T − 1}
ut(xt) = ũ∗t (xt−1, at−1, xt)− rt (xt−1, at−1, xt) ,
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and fort = 0 holdsu0(x0) = ũ∗0(x0).
We recall thatX(t), t ∈ {1, .., T − 1} does not contain stopping states andX(T )

contains those statesxT with lmin(i) ≤ l(i, T ) ≤ Lmax(i) for any i ∈ {1, .., N}. So, for
xt ∈ X (t) we have both̃u∗t (xt) > 0 andrt (xt−1, at−1, xt) ≥ 0.

Now we can conclude that the actions, the transitions probabilities and the rewards
at any momentt depend on an admissible history only by the means of the system state at the
decision momentt. Therefore, the processSstop

1 is a general or non-stationary Markovian
model with stopping sets (see (Hinderer, 1970) pp. 39, pp.57).

Corollary 93 For any admissible history of the decision processSstop
1 there existsti ∈ Z+,

with i ∈ {0, .., N}, ti ≤ Ti+1 for i ∈ {0, .., N − 1}, TN = T , tN ≤ T and0 = t0 < t1 <
. . . < tN ≤ T such that:

1. for anyt ∈ {ti, . . . , ti+1 − 1}, i ∈ {0, .., N − 1} we have

yat
t = (0, ..., 0, wt(i + 1, at(i + 1)) 6= 0, 0, ..., 0)

2. for anyt ∈ {tN , . . . , T} we haveyat
t = 0RN .

We call the momentsti the transition moments of the processSstop
1 .

Proof. The Corollary 93 is a consequence of the Corollary 85, since on all the
sample paths of the process with stopping sets{ξt}t=0,...,T := Sstop

1 all the design tasks are
done, and for all of them the minimal performance level is achieved. For the design taskN
the team of engineers can finish the design task even before the deadline.

8.6 Associating the rewards to the transition moments of
Sstop

1

In this section we establish the equivalency between theSstop
1 model and a model

in which the actions are taken at the transition moments of the modelSstop
1 . The new model

reduces the number of decision moments. The purpose of this new reformulation of the initial
sequential control model is to simplify the way of computing the expected value of the total
reward.

The admissible actions for a design taskn on which the team is currently working
may vary from zero toLmax(n). They depend on the maximal number of design activities
that can be done on this particular design task in between the decision momentst andTn.
In (8.2) there exists a condition of choosing an action which leads at least to the minimal
performance level of each design task. It is obvious that an arbitrary decision momentt
there exists states from which the minimal performance level of then−th design task is not
achievable (i.e with a probability greater than the safety marginα) even if the team will solve
at,max(n) performance levels (i.e. the maximal number of performance levels that can be
decided at the decision momentt for the design taskn so that there is time left to solve for
the remaining design tasks their minimal performance levels with a probability greater than
the safety marginα) from t to Tn Since the reward of a stopped sample path is zero no matter
when the stopping took place (i.e. the current sequential NPD control model does not look
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as well for a minimization of the loss due to an aborted NPD project) we can assume that the
team may work on the design taskn until Tn, and the process is stopped only atTn if the
case appears. If from the performance level achieved for the design taskn until the decision
momentt the team cannot reach its minimal performance level untilTn we can assume that
the state is preserved untilTn. In this case for the actions one can assume as admissible action
either the zero action from the decision momentt until T (as considered previously when we
proved that theS1 model has coupled transition probabilities), or the action which from the
decision momentt until Tn allows the exact achievement of the minimal performance level
contradicting the last condition from (8.2). In this way bothX(s), s ∈ {t, Tn − 1}, and the
action sets are enlarged in a controlled way (i.e. instead of the set of admissible statesX (s)
we considerX(s)).

It seems more natural, and gives a more intuitive reason for choosing theTn mo-
ments as stopping moments if we require the team of engineers to work on a design taskn
until Tn in the following way:

1) if there still are admissible actions that lead to at least the minimal performance level,
then take one of these actions

2) if there are no more admissible actions that lead to the minimal performance level (the
last condition from (8.2) does not hold anymore), then enlarge the action set to allow
the work untilTn with the purpose of realizing ”the miracle” of achieving the minimal
performance level.

However, all the proofs in this chapter (previously done, and following) hold for
both ways of enlarging the action space.

Proposition 94 (Proposition 1. (Kreps, 1977b)) Let a countable state, finite action decision
problem (X1 × X2 × . . . , A, (pt), U), whereU is an extended real valued utility function
defined on the space of complete historiesH := H0 ×X1 ×X2 × . . .. We denote for each
policy π, timet, and historyht ∈ Ht := Ht−1 ×Xt the expected total utility usingπ given
ht asvt(π, ht) := Eπ[U(h)|ht]. Then

1) vt(π, ht) = Eπ[vt+1(π, ht+1)|ht], for all policiesπ, decision pointst ∈ N, and
historiesht ∈ Ht

2) sup
π∈Π

vt(π, ht) = max
π∈Π

Eπ

[
sup
π∈Π

vt+1(π, ht+1)
∣∣∣∣ ht

]
, for all t ∈ N, and histories

ht ∈ Ht

The equations from Proposition 94 are called optimality equations for a generalized
utility function and they are the analogue of the Bellman optimality equations in the case of
additive utility.

Proposition 95 Let{ξt}t=0,...,T := Sstop
1 the Markov decision model obtained from the

stochastic dynamic modelS1 with the nonzero reward structure per review periods, with
the stopping setsΦt and let t0 = 0 < t1 < . . . < tN ≤ T the transition moments of

the process. We consider the process{ξ̃t}t=0,...,T defined byξ̃t :=
N−1∑
n=0

ξtn1tn≤t<tn+1 +

ξtN · 1tN≤t<T . In this decision process we consider that the decisions are taken at the
transition momentstn (i.e. at the momenttn we start the design taskn + 1) and they
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are of the formD̃n+1 := (Dn+1, a
n+1
[tn,Tn+1]

), whereDn+1 ∈ {1, . . . , Tn+1 − tn} and

an+1
[tn,Tn+1]

= (atn(n + 1), atn+1(n + 1), . . . , aTn+1−1(n + 1)).

Then there exists for the process{ξ̃t}t=0,...,T a reward structure consisting from
rewards obtained at the transition moments such that the optimal rewards of the processes
{ξt}t=0,...,T and{ξ̃t}t=0,...,T are equal.

Proof. This proof starts with the construction of new reward structure. Afterwards,
in order to prove the equality of the optimal rewards for the two processes we show that for
any policy of the first process, there is a policy of the second process (and conversely) such
that their associated rewards are equal. The second part of the proof uses the probability
spaces associated with the two decision processes.

Let rt(xt−1, at−1, xt) the reward functions defined in Proposition 88, and also let
rt(xt−1, at−1, xt) be the rewards of the Markov decision process{ξt}t=0,...,T := Sstop

1 and
let rtπ(xt−1, xt) be the rewards of the Markov decision process{ξt}t=0,...,T := Sstop

1 under
the policyπ.

We reduce the reward structure per period of the process{ξt}t=0,...,T using the first
way discussed in Section 8.3. Consequently, for each review period[t− 1, t) we receive the
reward

∑
xt∈X(t)

rtπ(xt−1, xt)pt−1,π(xt−1, xt) at the beginning of it (i.e. at the time moment

t− 1).
We define the reward functions{r̃n}n=0,...,N which represent the total rewards for

the interval[tn, tn+1) expected at the time momenttn and the functioñrN representing the
final reward.

The rewards{r̃n}n=0,...,N will be constructed using the second way (i.e.r1 ≡ 0,
rt(h, a) = r′t−1(h)) of reducing the reward structure per period depending onxt, at, and
xt+1 of a process to the one of a standard model (see Definition 65), applied to a review
period determined by two transition moments, namely[tn, tn+1). This enables the process
{ξ̃t}t=0,...,T to inherit the stopping sets of the process{ξt}t=0,...,T := Sstop

1 .
Let hT = (x0, a0, ..., xT−1, aT−1, xT ) ∈ HT an admissible history of the process

{ξ̃t}t=0,...,T , and lett0 = 0 < t1 < . . . < tN ≤ T the transition moments associated with
hT . If the state at the time momenttn is xtn = (l (1, t) , .., l(n, t), 0, .., 0), if the sample path
of the process{ξ̃t}t=0,...,T is hT , then on the interval[tn, tn+1), n ∈ {1, .., N − 1} the sum

of the rewards equalsV (n)
tn−1∑

s=tn−1

w (n, as (n)), where
tn−1∑

s=tn−1

w (n, as (n)) = l (n, t).

The n is running untilN − 1 because according to the second way of reducing
the reward structure we consider the reward realized in the interval[tn−1, tn) for the interval
[tn, tn+1), n ∈ {1, .., N − 1} and the sample pathhT = (x0, a0, ..., xT−1, aT−1, xT ) ∈ HT

The final reward isV (N)
tN−1∑

s=tN−1

w (N, as (N)) and it corresponds to thetN mo-

ment.
Let n ∈ {1, . . . , N − 1}. If the n − 1−th transition moment istn−1, with the

corresponding actioñDn (i.e. π̃n−1(tn−1) = D̃n), if then−th transition moment istn and if
at momenttn the process is in statextn , we define as the reward at momenttn for the interval

[tn, tn+1) the expressioñrn

(
tn−1, tn, D̃n, xtn

)
=

∑
V (n)

tn−1∑
s=tn−1

w (n, as (n)). The sum is
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taken over all the sample paths of the process determined by the time momentstn−1 andtn

such that
tn−1∑

s=tn−1

w (n, as (n)) = l (n, t). Let W (tn−1, tn, xtn
) the set of all these sample

paths.

Similarly we define the final reward̃rN

(
tN−1, tN , D̃N , xtN

)
.

For emphasizing the dependence of the rewardsr̃n on the policy considered we
denote them bỹrn,eπ (tn−1, tn, xtn) .

The expression of̃rn depends on the history of the process only throughtn−1,
tn, D̃n , and through the statextn

(more precisely only throughxtn
(n),i.e. the last nonzero

component of the vectorxtn ).

For n = 0 (i.e. for the period[0, t1)), the reward expected at momentt0 = 0 is
zero.

Let π a policy for the process{ξt}t=0,...,T := Sstop
1 . Using the Corollaries 85, 86,

87 we can associate to the policyπ, a policy π̃ = {π̃n}n∈{0,1,..,N−1}, π̃n(xtn , tn)=π̃n(tn)
=D̃n+1 for the process{ξ̃t}t=0,...,T by choosing an admissible sequence(D1, ..., DN ) (see
Corollary 87), and by completing for any interval[tn, Tn+1) the vector of admissible actions(
atn(n + 1), ..., atn+1−1(n + 1

)
) with arbitrary admissible choices in between the time mo-

mentstn+1 − 1 andTn+1 − 1.

Conversely, using the necessary number of components of the vectoran+1
[tn,Tn+1]

=
(atn(n + 1), atn+1(n + 1), . . . , aTn+1−1(n + 1)) we can obtain from a policỹπ a policyπ.
We say that the policiesπ andπ̃ obtained as discussed above constitute a pair of policies.

The key-observation in writing the expected value of the total reward for the pro-
cessSstop

1 is that the set of all sample paths(x0, ..., xT ) can be written as a union taken over
all the sets of transition moments(t1, .., tN ), and all the sets of the form(yπ0

0 , ...., y
πT−1
T−1 )

such that for anyn ∈ {1, .., N} holds lmin(n) ≤
(

tn−1∑
t=tn−1

yπt
t

)
(n) ≤ Lmax(n). This

remark is a consequence of the existence in the processSstop
1 of the sequence(t1, .., tN )

such thatxT =
T−1∑
t=0

yπt
t =

N∑
n=1

tn−1∑
t=tn−1

yπt
t and for anyt ∈ {tn−1, . . . , tn − 1} we have

yπt
t = (0, ..., 0, w (n, πt(n)) , 0, .., 0).

Let π a policy for the process{ξt}t=0,...,T := Sstop
1 , andπ̃ a policy for the process

{ξ̃t}t=0,...,T , both with their associated probability space. We want to prove that under the
total reward criterion the policies are equivalent. For this we need to show that

∑

(x0,...,xT )

T∑
t=0

rtπ(xt−1, xt)Pπ(x0, ..., xT )

equals the expression

=
∑

(xt1 ,...,xtN
,t1,...,tN)

N∑
n=1

r̃neπ (tn−1, tn, xtn)Peπ(xt1 , ..., xtN
, t1, ..., tN )
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Now, we will further re-write both members of the desired equality. Thus,

∑

(x0,...,xT )

T∑
t=0

rtπ(xt−1, xt)Pπ(x0, ..., xT ) =
∑

(x0,...,xT )

T∑
t=1

rtπ(xt−1, xt)Pπ(x0, ..., xT )

=
∑

(x1,...,xT )

T∑
t=1

rtπ(xt−1, xt)Pπ(x0, x1, ..., xT )

=
∑

(x1,...,xT )

N∑
n=1

tn∑
t=tn−1+1

rtπ(xt−1, xt)pt0,x0,π (xt−1, xt)

=
∑

(x1,...,xT )

N∑
n=1

tn∑
t=tn−1+1

rtπ(xt−1, xt)× p0,π(x0, x1)...pt1−1,π(xt1−1, xt1)×

× pt1,π(xt1 , xt1+1)...pt2−1,π(xt2−1, xt2)× ...

× ptn−1,π(xtn−1 , xtn−1+1)...ptn−1,π(xtn−1, xtn)

where we denoted bypt0,x0,π (xt−1, xt) the probability that at time momentst − 1, and
respectivelyt the system is in the statext−1, respectivelyxt, being given the state and ini-
tial time moment and assuming that the policyπ is the one being used. We notice that
pt;π(xt, xt+1) = pt;π(yπt

t ).
Thus, we obtain

∑
(x0,...,xT )

T∑
t=1

rtπ(xt−1, xt)Pπ(x0, ..., xT ) =

∑
(t1,...,tN )

∑
(y

π0
0 ,...,y

πtN−1
tN−1 ) s.t.

lmin(n)≤
 

tn−1P
t=tn−1

y
πt
t

!
(n)≤Lmax(n)),n∈{1,...,N}

T∑
t=1

rtπ(yπt
t )Pπ(t1, ..., tN , yπ0

0 , ..y
πtN−1
tN−1

) =

∑
(t1,...,tN )

∑
(y

π0
0 ,...,y

πtN−1
tN−1 ) s.t.

lmin(n)≤
 

tn−1P
t=tn−1

y
πt
t

!
(n)≤Lmax(n)),n∈{1,...,N}

T∑
t=1

rtπ(yπt
t )Pπ(t1, ..., tN )p(yπ0

0 )...p(y
πtN−1

tN−1
) =

∑
(t1,...,tN )

∑
(y

π0
0 ,...,y

πtN−1
tN−1 ) s.t.

lmin(n)≤
 

tn−1P
t=tn−1

y
πt
t

!
(n)≤Lmax(n)),n∈{1,...,N}

N∑
n=1

tn∑
t=tn−1+1

rtπ(yπt
t )×Pt0π(t1, ..., tN )p(yπ0

0 )...p(y
πtN−1

tN−1
) =

N∑
n=1

∑
(t1,...,tN )

∑
(y

π0
0 ,...,y

πtN−1
tN−1 ) s.t.

lmin(n)≤
 

tn−1P
t=tn−1

y
πt
t

!
(n)≤Lmax(n)),n∈{1,...,N}

tn∑
t=tn−1+1

rtπ(yπt
t )× Pt0π(t1, ..., tN )p(yπ0

0 )...p(y
πtN−1

tN−1
) =

=
∑

(t0,t1)

∑
(y

π1
0 ,...,y

πt1−1
t1−1 )∈U(t0,t1)

(
t1−1∑
t=0

rtπ(yπt
t )

)
× p(yπ0

0 )...p(yπt1−1
t1−1

)pt0,π(t0, t1)+
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+
∑

(t1,t2)

∑
(yt1 ,...,yt2−1)∈U(t1,t2)

(
t2−1∑
t=t1

rtπ(yπt
t )

)
× p(yπt1

t1 )..p(yπt2−1
t2−1 )pt0,π(t1, t2) + ....

+
∑

(tN−1,tN )

∑
(y

tN−1
tN−1

,...,y
πtn−1
tN−1 )∈U(tN−1,tN )

(
tN∑

t=tN−1+1
rtπ(yπt

t )

)
× p(yπN−1

tN−1
)...p(y

πtN−1

tN−1 )×

×pt0,π(tN−1, tN )

whereU(tn−1, tn) = {(yπtn−1
tn−1

, ..., y
πtn−1
tn−1 ) | lmin(n) ≤

(
y

πtn−1
tn−1

+ ... + y
πtn−1
tn−1

)
(n) ≤

Lmax(n)} andPπ(t1, ..., tN , yπ0
0 , ..y

πtN−1

tN−1
)=Pπ(x0, ..., xT ).

We used the fact that the random variablesY at
t are independent, and we parame-

terized them only as a function of the action (respectively policy).
We recall that if the state at the time momenttn isxtn = (l (1, t) , .., l(n, t), 0, .., 0),

if the sample path of the process{ξ̃t}t=0,...,T is hT , then on the interval[tn−1, tn), n ∈

{1, .., N − 1} the sum of the rewards equalsV (n)
tn−1∑

s=tn−1

w (n, πt(n)), where l (n, t) =

tn−1∑
s=tn−1

w (n, πt(n)). We can further rewrite the previous expression, because it depends on the

random variablesY at
t only through their nonzero components, which are at the time moment

t ∈ [tn, tn+1) of the formw (n + 1, πt(n + 1)).
As a consequence:

T∑
t=1

rtπ(xt−1, xt)Pπ(x0, ..., xT ) =

=
N∑

n=1
V (n)

∑
(tn−1,tn)

∑
[w(n,πtn−1 (n)),...,w(n,πtn−1(n))]∈W (tn−1,tn)

(
tn−1∑

t=tn−1

w(n, πt (n))

)
×

×P
(
w

(
n, πtn−1(n)

)
, .., w (n, πtn−1(n))

)
pt0,π(tn−1, tn) =

=
N∑

n=1
V (n)

∑
(tn−1,tn)

Lmax(n)∑
k=lmin(n)

kP (w (n, πtn(n)) + ...

+w
(
n, πtn+1−1(n)

)
= k)pt0,π(tn−1, tn)

whereW (tn−1, tn) = {[w(n, πtn−1(n)), ..., w(n, πtn−1(n))] | 0 ≤ w (n, πs (n)) ≤ πs (n) ,

s ∈ {tn, ..., tn+1 − 1}, lmin (n) ≤
tn−1∑

s=tn−1

w(n, πs (n)) ≤ Lmax (n)} andπs (n) is then–th

component of the vectorπs.
We denote bypt0,π( tn−1, tn) the probability that then−1−th and then− th tran-

sition moments equaltn−1 respectivelytn. We remark that the random variablesw(n, πt (n))
do not depend on the momentstn−1 andtn. They depend only on the policyπ.

Now consider̃π a policy for the process{ξ̃t}t=0,...,T , and let the probability space
associated to it.
Let W (tn−1, tn, xtn) = {[w(n, πtn−1(n)), ..., w(n, πtn−1(n))] | 0 ≤ w (n, πs (n)) ≤
πs (n) , s ∈ {tn, ..., tn+1 − 1}, lmin (n) ≤

tn−1∑
s=tn−1

w(n, πs (n)) = xtn(n) ≤ Lmax (n)}.
SincePeπ(xt0 , ..., xtN , t0, ..., tN ) = Peπ(xt1 , ..., xtN , t1, ..., tN ) =

=pt0,xt0 ,eπ(t1, xt1)× ...× ptN−1,xtN−1 ,eπ(tN , xtN
) =

=pt0,xt0 ,eπ(t1)pt0,xt0 t1,eπ(xt1)....ptN−1,xtN−1 ;eπ(tN )ptN−1,xtN−1 ,tN ,eπ(xtN ) =
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=pt0,eπ(t1)pt0,t1,eπ(xt1)....ptN−1,eπ(tN )ptN−1,tN ,eπ(xtN
)

where
ptn−1,tn,eπ(xtn

) =
∑

P ((yπs
s )t∈{tn−1,..,tn−1}) =

∑
P ((w(s, πs(n))t∈{tn−1,..,tn−1})=

=
∑

[w(n,πtn−1 (n)),...,w(n,πtn−1(n))]∈W (tn−1,tn,xtn )

tn−1∏
t=tn−1

P (w(t, πt(n)).

It results that
∑

(xt1 ,...,xtN
,t1,...,tN)

N∑
n=1

r̃neπ (tn−1, tn, xtn)Peπ(xt1 , ..., xtN , t1, ..., tN ) =

=
∑

(xt1 ,...,xtN
,t1,...,tN)

N∑
n=1

r̃neπ (tn−1, tn, xtn) pt0,eπ(t1)pt0,t1,eπ(xt1)....ptn−1,eπ(tn)ptn−1,tn,eπ(xtn) =

=
N∑

n=1
V (n)

∑
(tn−1,tn,xtn )

∑
[w(n,πtn−1 (n)),...,w(n,πtn−1(n))]∈W (tn−1,tn,xtn )

(
tn−1∑

t=tn−1

w(t, πt(n))

)
×

×
(

tn−1∏
t=tn−1

P (w(t, πt(n))

)
pt0,eπ(tn−1, tn) =

=
N∑

n=1
V (n)

∑
(tn−1,tn)

Lmax(n)∑
k=lmin(n)

kP
(
w (n, πtn(n)) + . . . + w

(
n, πtn+1−1(n)

)
= k

)
pt0,eπ(tn−1, tn)

wherePtn−1,xtn−1 ,tn,eπ(xtn) = Ptn−1,tn,eπ(xtn) is the probability that the state at the moment
tn is xtn knowing that then−th andn−1−th transition moments weretn, respectivelytn−1

and that the state at thetn−1 moment wasxtn−1 ; ptn−1;xtn−1 ,eπ(tn) = ptn−1;eπ(tn) is the
probability that then−th transition moment istn knowing that the previous transition mo-
ment wastn−1, andtn−1corresponding state wasxtn−1 , andpt0,eπ(tn−1, tn) is the probability
that then−th andn− 1−th transition moments aretn, respectivelytn−1.

Thus, we obtain the equality of the total expected rewards of the pair of policiesπ
andπ̃. Moreover, one can obtain the optimality equations of the process{ξ̃t}t=0,...,T .

Let ũ∗n
(
tn−1, tn, D̃n, xtn

)
for n ∈ {1, . . . , N − 1} be the maximum for the total

expected reward from then−th transition moment up to the end of the process, knowing that
then−th transition moment istn, the state of the process at that moment isxtn , the previous
transition has taken place at momenttn−1 and the decision at momenttn−1 wasD̃n. Also

let ũ∗N
(
tN−1, tN , D̃N , xtN

)
= r̃N

(
tN−1, tN , D̃N , xtN

)
· 1BtN

(xtN ).
By iteratively applying the optimality equations from Proposition 94 and taking

into account that there is no reward at any momentt 6= tn for n ∈ {1, . . . , N} and that the
random variablesY at

t are independent, we obtain the following equations

ũ∗n−1

(
tn−2, tn−1, D̃n−1, xtn−1

)
= [r̃n−1

(
tn−2, tn−1, D̃n−1, xtn−1

)

+max
D̃n

∑
tn

∑

×tn∈X(tn)

ptn−1,D̃n
(tn) ptn−1,tn,D̃n

(xtn) ũ∗n
(
tn−1, tn, D̃n, xtn

)
] · 1Btn

(
xtn−1

)

wheren ∈ {2, ..., N − 1} and

ũ0 (x0 = 0) = max
D̃1

∑
t1

∑
×t1∈X( t1)

pt0,D̃1
(t1) pt0,t1,D̃1

(xt1) · ũ∗1
(
t0, t1, D̃1, xt1

)
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whereptn−1,D̃n
(tn) is the probability that then−th transition moment istn if at the mo-

ment tn−1 was taken the actioñDn andptn−1,tn,D̃n
(xtn

) is the probability that the state
corresponding to then−th transition moment isxtn knowing that then−th andn − 1−th
transition moments weretn, respectivelytn−1.

For any admissible sample path(x0, xt1 , .., xtN
, .., xT ) of the process{ξ̃t}t=0,...,T ,

xtn ∈ X (tn) , n ∈ {1, .., N}, xT ∈ X(T ) we may write

ũ∗N
(
tN−1, tN , D̃N , xtN

)
= r̃N

(
tN−1, tN , D̃N , xtN

)
,

ũ∗n−1

(
tn−2, tn−1, D̃n−1, xtn−1

)
= [r̃n−1

(
tn−2, tn−1, D̃n−1, xtn−1

)
+

max
D̃n

∑
tn

∑

×tn∈X(tn)

ptn−1,D̃n
(tn) ptn−1,tn,D̃n

(xtn
) ũ∗n

(
tn−1, tn, D̃n, xtn

)
],

ũ0 (x0 = 0) = max
D̃1

∑
t1

∑
×t1∈X(t1)

pt0,D̃1
(t1) pt0,t1,D̃1

(xt1) · ũ∗1
(
t0, t1, D̃1, xt1

)

For the process{ξ̃t}t=0,...,T we may consider both ways of reducing the reward
structure in between two transition moments. Using the first way we may define a reward of

the typeV (n+1)
Lmax(n+1)∑

k=lmin(n+1)

k Pr

[
tn+1−1∑
s=tn

w (n + 1, as (n + 1)) = k

]
for the review period

[tn, tn+1).
We denote byu∗n(tn) = u∗n(tn, xtn), n ∈ {0, ., N − 1} the optimal reward during

[tn, T ] (which is the same as the reward for the period[tn, tN ]) constructed for the process
{ξ̃t}t=0,...,T using the first way of reducing the reward structure, knowing that then−th tran-
sition moment istn. Then the following functional equations are verified

u∗N−1 (tN−1) = max
D̃N

∑

(tN ,xtN )
r̃N

(
tN−1, tN , D̃N , xtN

)
ptN−1,D̃N

(tN ) ptN−1,tN ,D̃N
(xtN ) ,

and forn ∈ {1, .., N − 2}

u∗n−1 (tn−1) = max
D̃n

[rn

(
tn−1, D̃n

)
+

+
∑
tn

∑

×tn∈X(tn)

ptn−1,D̃n
(tn) ptn−1,tn,D̃n

(xtn)u∗n (tn)],

wherern

(
tn−1, D̃n

)
=

∑
(tn,xtn )

r̃n

(
tn−1, tn, D̃n, xtn

)
ptn−1,D̃n

(tn) ptn−1,tn,D̃n
(xtn) is

the reward corresponding to the period[tn−1, tn) according to the first way of reducing the
reward structure.
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8.7 Sufficient statistic — Decide only on how many review
periods the team of engineers should work

In this section we show that there exists a sequence of sufficient statistics in the
sense of (Hinderer, 1970), and (Dynkin, 1965) so that the solutions of a reduced unidimen-
sional optimality equation are optimal solutions for the model introduced in the previous
section. This leads to the construction of a last unidimensional model which is equivalent
with all the previous ones and which has a reduced number of decision moments, as well as
smaller set of admissible states and actions.

Definition 96 (Sufficient statistics, from (Hinderer, 1970)) LetFn be an arbitrary non-empty
set andλn : Hn → Fn an arbitrary surjective map. The sequence(λn)n is called a sufficient
statistic of the stochastic dynamic decision process(X, A,D, (pn) , (rn)) if there exists the
functions D′

n, p′n, r′nsuch that:




Dn (h) = D′
n (λn (h)) ,

pn (h, a, x) = p′n (λn (h) , a, x) ,
rn (h, a) = r′n (λn (h) , a) ,



 , n ∈ N, (h, a, x) ∈ Hn+1

and if n ∈ N, h ∈ Hn, h′ ∈ Hn, then λn (h) = λn (h′) implies λn+1 (h, a, x) =
λn+1 (h′, a, x) for all a ∈ Dn (h) andx ∈ X.

Theorem 97 (see (Dynkin, 1965), Theorem 6.0 (Hinderer, 1970)) Let(λn)nbe a sufficient
statistic of the stochastic dynamic decision model(X, A, D, p, (pn)n , (rn)n). Then the fol-
lowing statements hold:

1) There exists for anyn ∈ N a unique map̃u∗n : F → R̄ such thatu∗n = ũ∗n ◦ λn

2) (ũ∗n)n is a solution of the reduced optimality equation

Proposition 98 For the process{ξ̃t}t=0,T there exists a process{Zt}t=0,T which is equiva-
lent in the sense of (Hinderer, 1970) (i.e. there exists a sequence of sufficient statistics).

Proof. Let t0 = 0 < t1 < . . . < tN ≤ T the transition moments of the process

{ξ̃t}t=0,...,T . Let Zt =
N−1∑
n=0

tn · 1tn≤t<tn+1 + tN · 1tN≤t≤T
, that is, a process which at the

transition momentstn, takes the valuestn themselves, and the valuetn is kept for anyt such
thattn ≤ t < tn+1. Thus its set of states is{0, . . . , T}.

At the momenttn, for n ∈ {0, . . . , N − 1} we take the decisioñDn+1. We obtain
the sojourn timeτn+1= τn+1(tn, D̃n+1), and that the next transition timetn+1 = tn + τn+1.
We associate the reward

V (n + 1)
Lmax(n+1)∑

k=lmin(n+1)

k Pr

[
tn+1−1∑
s=tn

w (n + 1, as (n + 1)) = k

]
for the review pe-

riod [tn, tn+1).
For the period[tN , T ] we define the reward associated as being zero. This definition

is equivalent with saying that the process{Zt}t=0,T stops at a random time moment, more
precisely at the random momenttN .

For 0 ≤ n ≤ N , let hn = {xt0 = 0RN , D̃1, xt1 = (l (1, t1) , 0, . . . , 0) , D̃2, xt2 =
(l (1, t1) , l (2, t2) , 0, . . . , 0) ,
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. . . , xtn
= (l (1, t1) , l (2, t2) , . . . , l (n, tn) , 0, . . . , 0)} an admissible history of the process

{ξ̃tn}n=0,...,N .

Let λn (hn) =
(
t0 = 0, D̃1, t1, . . . , D̃n, tn

)
. We can prove that the functions

(λn)n form a sequence of sufficient statistics for the process{ξ̃t}t=0,T becauseDn (hn) =
Dn (λn (hn)), i.e. the decision taken at the transition momenttn depends only ontn, be-
cause we know that at the transition momenttn the engineers start working on the design
task numbern. They may continue working until at most the time momentTn+1.

We also havern+1

(
hn, D̃n+1

)
= rn+1

(
tn, D̃n+1

)
= rn

(
λn (hn) , D̃n+1

)
.

According to Theorem 97 (Theorem 6.0 pp. 37 from (Hinderer, 1970)), we have
that the processes{ξ̃t}t=0,...,T and{Zt}t=0,...,T are equivalent.

All the previous results in this chapter were designed to reformulate the sequential
NPD control problem in a way that helps us to characterize the ”optimal behavior” of the
process. This is done in the next result, where we prove that the policies induced by the
actionsãs (n + 1) = min (Lmax (n + 1) , as,max (n + 1)) exhibit an optimal behavior.

Proposition 99 Denote byΠ the set of policies for the process{ξ̃t}t=0,...,T , and by

Π̂ =
{

π̂ = (π̂n)n=0,...,N−1 |π̂n (xtn , tn) = π̂n (tn) =
(
Dn+1, ã

n+1
[tn,Tn+1]

)}

whereãn+1
[tn,Tn+1]

=
(
ãtn (n + 1) , ãtn+1 (n + 1) , . . . , ãTn+1−1 (n + 1)

)
, with

ãs (n + 1) = min (Lmax (n + 1) , as,max (n + 1)) and
xtn = (l (1, tn) , l (2, tn) , . . . , l (n, tn) , 0, . . . , 0).

Then, for any policyπ ∈ Π of the process{ξ̃t}t=0,...,T , there existŝπ ∈ Π̂ with the
property that the total expected reward ofπ̂ is greater or equal than the total expected reward
of π.

Proof. Denote byD̃max
n+1 =

(
Dn+1, ã

n
[tn,Tn+1]

)
, by D̃n+1 =

(
Dn+1, a

n
[tn,Tn+1]

)
,

wherean+1
[tn,Tn+1]

=
(
atn

(n + 1) , atn+1 (n + 1) , . . . , aTn+1−1 (n + 1)
)
, with as (n + 1) be-

tween0 andãs (n + 1).

Let π ∈ Π, π = {πn}n∈{0,1,..N−1}, πn(xtn , tn) = πn(tn) = D̃n+1 =
(
Dn+1, a

n+1
[tn,Tn+1]

)
,

andπ̂ ∈ Π̂, π̂ = {π̂n}n∈{0,1,..N−1}, π̂n(xtn , tn) = π̂n(tn) = D̃n+1 =
(
Dn+1, ã

n+1
[tn,Tn+1]

)

two policies having for any sample paths of the process{ξ̃t}t=0,...,T the same sequence
(D1, . . . , DN ).

We prove, by using forward induction forn, that for any pairπ ∈ Π, π̂ ∈ Π̂.with
the above property the total expected reward ofπ̂ is greater or equal than the total expected
reward ofπ.

In this proof we will use the second way of reducing the reward structure. The
choice of how to reduce the reward structure is given by how easily one can write the expected
values defining the rewards.

Let π ∈ Π. The verification step of the induction holds forn = 0, because the
reward of the first review period is zero no matter the decision taken at the transition moment
t0.

Let R̃1 be the reward for the first two review periods. We have that



150 CHAPTER 8. MARKOVIAN CONTROL OF SEQUENTIAL NPD

R̃1

(
0, t1, D̃1, xt1

)
= r̃1

(
0, t1, D̃1, xt1

)
= r̃1 (0, t1, π0(t0, x0), xt1)

not= r̂1π (x0, t1, xt1),

whereD̃1 = π0(t0, x0). Let pt0,x0,π(t1) the probability that first transition moment ist1,
if we use the policyπ, andpx0,t0,t1π(xt1) the probability that the state at the first transition
moment isxt1 , knowing that the first transition moment wast1, that the state at the previous
moment wasx0 = 0RN , and that we use the policyπ.

We notice thatpt0x0,π(t1, xt1) = pt0,x0,π(t1)·pt0,x0,t1,π(xt1) wherept0x0,π(t1, xt1)
is the probability that given the policyπ the first transition moment equalst1 and that the state
of the system at the first transition moment isxt1 .

Then the expected value of̃R1, let it R1π (0) is
R1π (0) =

∑
(t1,xt1 )

r̃1π (x0, t1, xt1) pt0x0,π(t1, xt1) =

=
∑
t1

∑

xt1∈X(t1)

pt0,x0,π(t1) · px0,t0,t1π(xt1)r̃1π (x0, t1, xt1) =

=V (1)
∑
t1

pt0,x0,π(t1) ·
Lmax(1)∑

k=lmin(1)

k · Pr

(
t1−1∑
s=0

w (1, as (1)) = k

)

where0 ≤ w (1, as (1)) ≤ min {as (1) , Lmax (1)}.andk = l (1, t1) = xt1(1).
We observe thatpx0,t0,t1π(xt1) = pt1(x0, D̂1, xt1)=

=Pr

(
t1−1∑
s=0

w (1, as (1)) = l (1, t1) = xt1(1)

)
≤ Pr

(
t1−1∑
s=0

w (1, as,max (1)) = l (1, t1)

)
=

= pt1(x0, D̂
max
1 , xt1) = px0,t0,t1eπ(xt1) because the number of possible combinations of ele-

mentsw having the sum equal tol (1, t1) = xt1(1) is greater foramax,s (1) and all possible
combinations foras (1) are also among the ones foras,max (1).

We remark that for anyt1value

pt0,x0,π(t1) = pt0

(
x0, t1, D̃1

)
≤ pt0

(
x0, t1, D̃

max
1

)
= pt0,x0,eπ(t1), because the probabil-

ity that the sojourn time for the statex0 (i.e. the time while the engineers are working for the
design task1) be equal to a given value is the probability of all combinations of elementsw
which lead to the realization of the levellmin (1) or of the levelLmax (1).

We are now ready to prove the induction step. Suppose the property is true for the
first n review periods, and let us prove this is also true forn + 1. Consider a policyπ ∈ Π.

Let Rn,π (0) be the expected value of the reward for the firstn + 1 review periods,
and letR̃n,π (0, tn, xtn) be the expected value of the reward for the firstn+1 review periods
if the n−th transition moment istn, the state at that moment isxtn , and the policyπ is
used. We observe thatRn,π (0) is the expected value of̃Rn,π (0, tn, xtn) with respect to the
variablestn andxtn . Let R̃n,π

(
0, tn−1, xtn−1,tn, xtn

)
be the expected value of the reward

for the firstn + 1 review periods if then− 1−th and then−th transition moments aretn−1

and tn, the states at those moments arextn−1 andxtn , and the policyπ is used. Hence

R̃n,π (0, tn, xtn) =
∑

(tn−1,xtn−1)
R̃n,π

(
0, tn−1, xtn−1,tn, xtn

)
ptn−1,xtn−1π(tn, xtn) =

=
∑
tn−1

∑
xtn−1

R̃n,π

(
0, tn−1, xtn−1,tn, xtn

)
ptn−1,xtn−1 ,π(tn)ptn,xtn−1 ,π(xtn) =

=
∑
tn−1

∑
xtn−1

[R̃n−1,π

(
0, tn−1, xtn−1

)
+r̃nπ (tn−1, tn, xtn)].ptn−1,xtn−1 ,π(tn)ptn,xtn−1 ,π(xtn).
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Also, Rn,π (0) =
∑

(tn,xtn )

R̃n,π (0, tn, xtn) px0,t0,π(tn, xtn) =

=
∑

(tn−1,xtn−1)
R̃n−1,π

(
0, tn−1, xtn−1

)
px0,t0,π(tn−1, xtn−1)+

+
∑

(tn−1,tn,xtn )

r̃nπ (tn−1, tn, xtn) · px0,t0,π(tn−1, tn, xtn) =

= Rn−1,π (0) +

+V (n)
∑
tn−1

∑
tn

Lmax(n)∑

k=lmin(n)

k · Pr




tn−1∑
s=tn−1

w (n, as (n)) = k


 px0,t0,π(tn−1)ptn−1,π(tn) =

=Rn−1,π (0) +

+V (n)
∑
tn−1

∑
τn

Lmax(n)∑

k=lmin(n)

k · Pr




tn−1∑
s=tn−1

w (n, as (n)) = k


 px0,t0,π(tn−1)ptn−1,π(τn) =

whereptn−1,xtn−1,
π(tn, xtn) is the probability that then−th transition moment istn.and

that the state corresponding to then−th transition moment isxtn knowing that then −
1−th transition moment wastn−1 and that the state corresponding to then − 1−th tran-
sition moment wasxtn−1 ; px0,t0,π(tn−1, xtn−1) is the probability thatn − 1−th transition
moment istn−1 and that the state corresponding to then − 1−th transition moment is
xtn−1 ;.px0,t0,π(tn−1, tn, xtn).is the probability that then−th and then − 1 − th transition
moments aretn and respectivelytn−1.and that the state corresponding to then−th transition
moment isxtn ; px0,t0,π(tn−1) is the probability thatn − 1−th transition moment istn−1;
and.k = l(n, tn) = xtn(n).

We remark thatptn−1,tn,π(xtn) = Pr




tn−1∑
s=tn−1

w (n, as (n)) = k = xtn(n)


.

Together the induction hypothesis forn and the verification step (forn = 1; n
being the number of periods for which the property is proven) give us the desired property,
concluding the proof.

Corollary 100 Consider that the design tasks in the given sequence can be performed by the
team of engineers one after the the other and they can start only at the beginning of a review
period. Then, the optimal policies of the Markov decision process{ξ̃t}t=0,...,T ,belonging
to Π̂ (i.e. the optimal policies which decide only on how many review periods the team of
engineers should work on each design task, instead of deciding also the levels up to which the
team has to work on each of the design tasks) are optimal policies of the Markov sequential
decision problemS0.

8.8 Conclusions

By imposing a probabilistic constraint on the sample paths of the process of se-
quentially completing design tasks through the completion of a minimal number of design
activities, it can be shown that the optimal strategy belongs to a class of strategies determined
by a set of stopping times. At each point in time, given the current state of the system, it is
decided how long to proceed with the current design task. As this expires, one can decide
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to stop the project with no pay-off or to proceed with either the same design task or the next
one. In the mean time at each review point in time these stopping times are recalculated.

The final model required the definition of the following elements:

1. T1 ≤ T2 ≤ ... ≤ TN−1 ≤ TN = T , latest stopping times.Tn represents the latest
moment in time at which we have to stop working on the design taskn, such that with
the probabilityα we can still achieve the minimal performance levels of the design
tasksn + 1, .., N . The existence of theTn moments allows us to reduce the set of
actions (theS1 model) actions which have at most one non-empty component, which
will be decided at theTn moments. In between two such moments the rank of the
non-empty component remains the same.

2. t0 = 0 < t1 < . . . < tN ≤ T , the transition moments. They can be determined since
the transition probabilities of the stochastic dynamic decision modelS1 are coupled
and their system equation isxt+1 = xt + yat

t wherext = (l (1, t) , ..., l (N, t)) is
the state of the system,at = (at (1) , ..., at (N)) is an action inAt(xt), such that
at(i) ≤ min{Lmax(i), at,max(i)} andyat

t = (wt (1, at(1)) , ..., wt (N, at(N))) is a
random object with probability distribution parametrized only by theat such that0 ≤
wt (i, at(i)) ≤ at (i), at the time instantt.

We proved that for any admissible historyhT of the stochastic dynamic decision model
S1 (∃) k ∈ {1, . . . , N} and0 = t0 < t1 < . . . < tk ≤ T , with ti ∈ Z+, ti ≤ Ti+1,
i ∈ {1, .., N − 1} andtN ≤ T such that for anyt ∈ {ti, . . . , ti+1 − 1}, 0≤ i ≤ k − 1
we haveyat

t = (0, ..., 0, wt(i + 1, at(i + 1)) 6= 0, 0, ..., 0) and for anyt ∈ {tk, . . . , T}
we haveyat

t = 0RN .

3. Di ∈ {1, . . . , Ti − ti−1}, i ∈ {1, . . . N} such that being given an admissible history
hT of the stochastic dynamic decision modelS1we haveti = ti−1 + τi, whereτi =
min

{
Ti − ti−1, max

(
σ1

i , Di

)
, min

(
σ2

i , Di

)}
, with

σ1
i = min

{
t ∈ Z∗+

∣∣∣∣
t∑

s=1
y

ati−1+s−1(i)

ti−1+s−1 ≥ lmin(i)
}

and

σ2
i = min

{
t ∈ Z∗+

∣∣∣∣
t∑

s=1
y

ati−1+s−1(i)

ti−1+s−1 ≥ Lmax(i)
}

.

4. D̂n+1 :=
(
Dn+1, ã

n+1
[tn,Tn+1]

)
, whereDn+1 ∈ {1, . . . , Tn+1 − tn} and

ãn+1
[tn,Tn+1]

=
(
ãtn (n + 1) , ãtn+1 (n + 1) , . . . , ãTn+1−1 (n + 1)

)
, with

ãs (n + 1) = min (Lmax (n + 1) , as,max (n + 1))

With these elements we defineZt =
N−1∑
n=0

tn · 1tn≤t<tn+1 + tN · 1tN≤t≤T
, that is,

a process which at the transition momentstn, takes the valuestn themselves, the valuetn
being kept during the intervaltn ≤ t < tn+1 Thus, its set of states is{0, . . . , T}. At the
momenttn, for n ∈ {0, . . . , N − 1} we take the decision̂Dn+1.

The process{Zt}t=0,T is a process with a random end, namelytN . The transition
mechanism is (i.e. the state of the process at transition timetn+1) is tn+1 = tn + τn+1 where
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τn+1 = τn+1(tn, D̂n+1) is the sojourn time. Thus the transition probabilities are determined
by the sojourn times.

We associate the rewardV (n + 1)
Lmax(n+1)∑

k=lmin(n+1)

k Pr

[
tn+1−1∑
s=tn

w (n + 1, as (n + 1)) = k

]
for

the review period[tn, tn+1). For the review period[tN , T ] the reward will be zero.
The first implication of this results is that the we reduced a multidimensional

Markov decision process to an unidimensional one, by partially identifying the optimal pol-
icy. Moreover, this characteristic of the optimal strategies can be described in a relatively
easy way and it is likely that given the structure of these optimal strategies, that these poli-
cies can be computed numerically in a more efficient way than by applying some generic DP
algorithm.
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Chapter 9

Conclusions and Further Research

9.1 Overview

In this dissertation we have studied planning and control methods for a new type of
projects called time-constrained New Product Development (NPD) projects with high techno-
logical product or process uncertainty. The engineers in the development team have to quickly
design a new product, starting from loose specifications, which evolve until the project dead-
line. The product specifications can be broken down via a specification tree into design tasks,
and these design tasks have to be solved by the team. The design tasks are subject to prece-
dence relationships. Later in time, design reviews are needed and more design tasks may
emerge.

These projects have gained increased momentum in recent years, as the economi-
cal and technological environment of many firms underwent significant changes, calling for
shorter development times, and more flexible organizing guidelines and methods. Although
the modern research in general planning and control is at least half-a-century old, stemming
from NASA’s Program Evaluation and Review Technique, new methods have to be devised.
Recent empirical research shows that one of the main characteristics significantly differenti-
ating this type of NPD projects from more classical ones is the large amount of uncertainty,
both market and technology related, which requires to be intimately taken into account in
planning and control procedures.

In the extensive literature that we have surveyed, the NPD models, which allow the
product specifications to be gradually reconsidered, were dealing with the market uncertainty
and not with the technological uncertainty appearing inside the firm as the result of its own
innovation process. One of the contributions of this dissertation is to incorporate technolog-
ical uncertainty as well, through a very general framework. This setting consists of formal
definitions and axioms which we propose, based on numerous surveys and empirical studies
closely monitoring the design planning and control in many firms. This model thus brings
measurable variables into play in order to accurately account for the uncertainties and the
quality control. Moreover, our model also integrates some human aspects, through the prob-
abilistic dependency of engineers’ behavior of their perceived time-to-the-due-date pressure,
as well as through their ability to take concurrency and relative urgency of different design
tasks into account. Since, on the one hand, the product specifications play a central role by
the nature of the problem, and on the other hand, for practical purposes, managers would like
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to see a dependency on expected market value of the new product, we have connected these
two notions in the model. Finally, the model can also serve as a basis for further addition of
constraints, for close tune-up to different situations encountered in real-life.

The second part of the dissertation builds upon the modelling stage, presenting
concrete analytical problems and solutions as theorems and algorithms with provable prop-
erties. These formulations and solutions are, to the best of our bibliographical knowledge,
new, and they focus on concurrent (i.e. without precedence constraints) NPD’s, as well as on
sequential NPD’s. We use discrete-time finite horizon non-stationary Markov decision pro-
cesses, and give results concerning their optimal policies. Several of these results also extend
what is called the monotonicity theory (of these optimal policies) and also the partial order
programming techniques to bounded subsets without holes of integer vector lattices.

Finally, we have used computer simulations to further gain insight in the interre-
lationship of various parameters, and to pave the way for devising heuristic optimal control
policies.

In the remaining of this chapter we shall, in a more in-depth manner, review the
characteristics of the model and thereafter the details of the analytical problems, tools and
solutions, closing with a few directions which could be pursued in future studies.

9.2 Modelling proposals

For these NPD projects we distinguish threeoverlappingphases: thesystem de-
sign/concept development(performing a first work breakdown from customer needs into
product specifications, and from product specifications into design tasks), thedetailed de-
sign phase(consisting of solving the design tasks), and thesystem level test(integrating the
solved design tasks result into a complete system and tested). Since the first and last phases
are too problem dependent to be modelled in a general mathematical framework, we focus on
the management of the time and resourcesin the control of the evolution of the new product
specifications, specifically during thedetailed design phase. The overlap of the three phases
translates the very influence of uncertainty during the design process, andby allowing the up-
date of the product specifications at regular intervals, our model allows the product definition
to evolve after the beginning of the detailed design phase.

Among given inputs we have the project delivery time, as well as the available re-
sources (a finite number of engineers). The NPD project can be described at any time moment
by a network of design tasks. Each design taskhas a number ofincreasing performance lev-
elsgiving the quality of its execution. Each performance level requires the execution of alist
of planned activities. For each design task aminimal performance levelhas to be achieved in
order to obtain a fully functional new product. We use these performance levels as decision
variables. Thus, the new product is dynamically redefined until the deadline We integrate in
the model both the market requirement uncertainties and the technological uncertainties, and
make explicit the trade-offs in the new product definition in terms of which design tasks, and
up to which performance level should be performed until the NPD deadline.

The proposed control model of the NPD project is a discrete time one. The project
will be reviewed at equidistant points in time until the deadline,T . The hierarchical struc-
ture proposed for each review period corresponds to a decision-scheduling-execution cycle,
and consists of three levels:aggregate decision level, detailed planning level(rescheduling
decision, scheduling), andexecution/engineering level. At the aggregate decision level the
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performance levels of the design tasks are controlled, while at the detailed planning level a
nonpreemptive schedule of design tasks is obtained for a relatively short planning horizon.
After updating the design task network structure, the project management may decide to de-
crease/increase the performance levels of some of the already scheduled design tasks, but
not finished yet, due to the addition/deletion of design tasks and the limited capacity avail-
able versus their stochastic solving time. Then the design tasks and/or the number of their
planned activities is changed. Since a feasible schedule is obtained by means of stochastic
ordering, re-scheduling may occur.

The defined model elements are rich enough to incorporate the available knowledge
from the relevant fields such as new product management and systems engineering, and still
allow at the detailed and aggregate decision level for the mathematical analysis of the process.
Some of the problems constructed were new: the aggregate decision problem and the problem
of allocating concurrent NPD design tasks to the engineers, at the detailed planning level. The
dissertation provides analytical solutions for them.

9.3 Analytical results

We now move onto the mathematical formulation and solving of the new problems.
We concentrate first on the design task allocation problem, and then on optimal policies for
the aggregate decision problem.

9.3.1 Design task allocation

We state in a mathematical way the allocation problem and prove that it can be for-
mulated as a discrete deterministic dynamic-programming (DP) problem, linked to multiple
choice knapsack problems.

The DP formulation of our allocation problem ensures the existence of an optimal
solution; also, through a graph structure of the problem space, it also allows the finding of an
optimal solution without an exhaustive search of the entire problem space. This graph struc-
ture can actually be searched efficiently with heuristic search algorithms. Using aggregate
information (from the input data) on the design tasks set, a heuristic evaluation function of
A* type is constructed to perform such a search. Based on established results from heuristic
search algorithms, we propose an A* type algorithm for solving the problem, with two pos-
sible implementations: standard best-first search (open and closed priority lists, and RBFS
implementation (Korf, 1993). It is proven that owing to the properties of the proposed heuris-
tic, our algorithm is guaranteed to find an optimal allocation of the design tasks to engineers.
For the implementations there is a complexity trade-off: the RBFS implementation runs in
linear space in the branching factor and the depth of the tree, and in linear time in the number
of generated nodes, at the expense of revisiting some nodes. The standard best-first search
implementation on the other hand is proven to expand only a minimal number of nodes (with
respect to any other algorithm from its class), yet the spatial complexity may be exponential:
the branching factor elevated to the depth. Experimental evidence of the tests shows however
that the RBFS solution revisits very few more nodes (having thus a small supplemental run-
ning time with respect to the standard best-first), and the total number of visited nodes is very
small compared to the cardinality of the search space (second kind Stirling numbers).
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9.3.2 Aggregate planning decision overview

Based on lower levels (i.e. the detailed planning and the engineering level) mathe-
matical description, the model review periods were linked into a multi-period aggregate deci-
sion problem. We first introduced simple heuristics for both the engineering and the detailed
planning processes, and we afterwards constructed a queueing model to estimate the solving
time distribution of design tasks in NPD projects. The shape of the distribution function ob-
tained via this model is similar to the one from data collected in the recent empirical research
on the time-to-repair distribution functions in manufacturing systems, which suggest a long
tailed, skewed, multi-modal distribution function. For the case of only one engineer, we tested
with a goodness-of-fit test if the eight data sets collected in a very recent empirical research
from an advanced micro-lithography systems firm can be derived from our model cumulative
distribution function. Based on the results of the Kolmogorov-Smirnov goodness-of-fit test,
the model showed no statistically significant difference with respect to data sets considered.

Later, the use of this queueing model allows the computation of transition probabil-
ities for a non-stationary Markovian decision process model of the aggregate decision prob-
lem in a multi-period setting. This process focuses on the NPD technological uncertainty (i.e
we take into account only the market payoff function values available at the deadlineT of the
NPD project) and supports the dynamic achievement of the new product definition taking into
account a high technological uncertainty that affects the content of the project design tasks.
The type of information used is in line with the design approach to hierarchical production
control systems: at the highest decision level we obtain only an aggregate plan based on the
estimation of the time and capacity needed, leaving the lower planning levels to elaborate de-
tailed plans for subnetworks of the entire project, and only for a review period horizon. This
is more efficient, because due to the high technological uncertainties in the time-constrained
new product development, a detailed plan for the entire NPD horizon (i.e. fromt = 0 to T )
might be completely changed at each review period.

The principal drawback of a Markov model is the tendency for the underlying state
space to grow explosively with respect to the size of the system. The final goal was to enable
a more efficient computation of optimal policies in the aggregate decision process, as well as
the characterization of its optimal policies. Thus, in Chapter 7 and Chapter 8 we investigated
the structural properties of the optimal policies in two particular cases of the general aggregate
decision problem. The first case considers an NPD project without precedence constraints,
and with stable market conditions. The second considers an NPD project consisting of a
sequence of design tasks, and with stable market conditions as well.

9.3.3 Concurrent NPD aggregate decision planning overview

In Chapter 7 we focus on a concurrent NPD (i.e. without precedence constraints),
consisting ofN concurrent design tasks and described by a discrete-time, finite horizon non-
stationary Markov decision process. For enabling a more efficient computation of optimal
policies in Markov models of sequential decision processes, one is often interested in find-
ing structured policies (monotonic, convex, etc.). When monotonic policies can be found, a
monotonic backwards induction algorithm can be used. It is known that in general dynamic
programming problems often the solutions are too complicated to be used for deriving in-
sights about the given problem. Moreover, in general, in higher dimensions the monotonicity
of the decision rules does not imply a stable structure of the optimal paths (i.e. an increase in
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an exogenous parameter will imply a uniform increase of the optimal path). In the existing
literature it is proven that the existence of monotonic policies leads to robust optimal paths,
under several assumptions including that the action spaces are sublattices ofRm for any state.
This lattice type of action set is required also by the monotonic backwards induction algo-
rithm. However, we show in Chapter 6 that such a strong condition (of having lattices) can in
real-life eliminate all the possible computational gains that can be obtained from the existence
of monotonic optimal policies. Thus we have extended the existing monotonicity theory to
take into account this fact.

9.3.4 Extension of monotonicity theory

In Chapter 6 we start by assuming no lattice constraint. Because due to the require-
ments of the lattice notion, the derived backwards induction algorithms become completely
infeasible we tried to relax this notion in such a way that we can still take advantage of the fact
that the Markov processes under study had partially ordered state and action spaces. When
reviewing the well-established theory in the literature, we only found results dealing with
lattices. We thus extended the setting, to namely deal with fragments of lattices: bounded
subsets without holes of integer lattices. We derived the general conditions of obtaining in-
stead of monotonic optimal policies, weakly monotonic optimal policies. This has lead to a
new weakly-monotonic backwards induction algorithm, and we also have been able to prove,
in this chapter, that our results exhibit this sought-after property of robustness.

These results are general and they might be applied to other types of problems, es-
pecially since partially ordered structures have been recognized as being important in many
fields from mathematics to biology, economics and also physics. In economics, the partial or-
derings, doubled by the lattice programming techniques of (Topkis, 1998), encompass many
applications in many production planning models ((Hopenhayn and Prescott, 1992; Garcia
and Smith, 2000) for discrete-time production planning with stochastic demand, (Athey,
2002), and (Athey and Schmutzler, 1995) for the analysis of several attributes of a firm’s
short-run innovative activity). In physics, as pointed out in (Landsberg and Friedman, 1996),
the presence of partial orderings restrains significantly the behavior, yet it allows for inter-
esting trajectories and even chaotic ones. However, due to special consequences, the chaotic
behavior is unstable and not present for most initial conditions when physically observing the
system in the long term. This makes partially ordered dynamical systems interesting and rich
of possibilities. Moreover, since these studies emphasize the passive aspect, that is observing
the system and predicting its behavior, now, with results such as the ones presented in this
chapter, the presence of partial orderings can also benefit to the control of such systems.

9.3.5 Concurrent NPD aggregate decision planning theoretical results

The NPD related results are the optimality of monotonic (in the partial order on
the state space) policies in the case of a simplified workload constraint, and respectively
weakly monotonic otherwise. To achieve that we formulate our control problem in a dynamic
programming setting, and we try to establish the supermodularity of the objective function.
In microeconomics, and in theories of production and consumer choice, supermodularity of
an utility function is equivalent to products beingsubstitutes. The substitute notion appears
very intuitive in the case of a concurrent NPD situation, where after we finish all the design
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tasks at their minimal performance levels, having done more levels of performance for one
design task compensates for doing less performance levels of a different one.

The existence of the first type of monotonic nondecreasing optimal policies con-
firms an intuitive ”greedy” feature of the optimal control policy ”The performance require-
ment of a controller increases with the number of performance levels already achieved by
the engineers”. The existence of the weakly nondecreasing optimal control policies refines
the early heuristic. According to them, the NPD aggregate controller may take actions which
are not directly comparable (neither increasing, nor decreasing) from the point of view of
performance levels required. The actions are only comparable from the potential cost/reward
point of view, even if the states in which these decisions are taken are comparable from the
performance levels achieved point of view. The second type of optimal policy leads to signifi-
cant improvements in the computational efficiency as one can see from the weakly monotonic
backward induction algorithm.

Finally, we prove that the weakly monotonic optimal paths are robust to the varia-
tion of the safety margin for achieving the new product at the deadline.

9.3.6 Concurrent NPD aggregate decision planning simulation results

We used simulation studies to investigate the robustness of the weakly monotonic
optimal paths with respect to the variation of the solving rate of design activities. The exper-
iments were performed using synthetic data. For small variations of the solving rate of the
design activities we noticed a relatively stable structure of the optimal paths (i.e. an increase
in the solving rate leads to a uniform increase of the optimal path).

We also used simulation studies to investigate the variation of the optimal value
as a function of the degree of specification of the characteristics of the new product at the
beginning of the NPD. The experiments were performed using synthetic data. We observed
a rather surprising effect. It seems that independently of the value of the solving rate of a
design activity, we have an increase of the optimal value if the product is less specified at
the beginning. However, this effect is less significant when the solving rate of one activity
increases, i.e. the team of engineers is overall more performant.

9.3.7 Sequential NPD aggregate decision planning overview

In Chapter 8, we focus on a NPD project with precedence constraints, consisting of
N ≤ T sequential design tasks, described by a a discrete-time, finite horizon non-stationary
Markov decision process. We assume that the design tasks in the given sequence can be
performed by the team one after the other, and they can only start at the beginning of a review
period. The first design task may start in the first review period. No arrival of new design
tasks takes place in the case of the sequential NPD project, and the final reward form has to
be given by a linear (weighted additive) function. The methodology used to deal with the
complex Markovian structure of the sequential NPD control process is the one of the sample
path analysis.

9.3.8 Sequential NPD aggregate decision planning theoretical results

The sample path analysis technique aims at comparing sample path by sample path
stochastic processes defined on a common probability space so that characteristics of the ”op-
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timal behavior” or even the ”optimal behavior” can be identified. An important issue with
respect to the sample path techniques is that not all the ways of describing the stochastic
evolution of a system allow for a comparison between two given policies. Thus, the problem
formulation should be carefully done, and particular care was taken in choosing an appropri-
ate state description in Chapter 5. However this is not enough. To perform the sample path
analysis we have to define in a very formal way the underlying probability space, the class of
admissible actions at a certain time moment under a given history, and the reward function.
Thus, in the rigorous framework of non-stationary models of (Hinderer, 1970) we identify
our sequential NPD control problem as being a nonstationary stochastic dynamic decision
model with stopping sets in the sense of (Hinderer, 1970).

Due to an implicit probabilistic constraint on the sample paths of the process of
sequentially completing design tasks through the completion of a minimal number of design
activities, it can be shown that the optimal strategy belongs to a class of strategies deter-
mined by a set of ”latest stopping times” for the design tasks. By restricting the action space,
eliminating the sample paths with zero final reward, splitting the final reward into rewards
to the transition moments, and finally by restricting simultaneously the number of decision
moments, decision sets and the state space we obtain a sequence of four reformulations of
the initial sequential NPD control problem. Using the sample path analysis we prove that the
optimal policies of all those reformulations are optimal policies for the initial problem. The
last reformulation reduces the initial multidimensional control problem to a unidimensional
one in both state and action space. In the new control problem the optimal policy will decide
only on how many review periods the team of engineers should work on each design task,
being optimal to always choose, while working on a design task, as decision the maximal
performance level.

9.4 Generalizations and future directions suggestions

9.4.1 From the multidimensional setting to the unidimensional one

First of all, let us notice that is it possible to use the characterization of the optimal
policies in those particular cases to reduce the general aggregation decision problem from a
multidimensional one to a unidimensional one.

9.4.2 Guidelines for deriving heuristic optimal policies

Our goal here is to advance further in the direction of methods for finding opti-
mal control policies, by devising and justifying as much as possible heuristics, based on the
findings exposed before.

As discussed in Chapter 2, we assure that an NPD problem can be formulated for
a short period of time as a general task network (i.e. an acyclic digraph with a source and a
sink). Since we have devised techniques for dealing with parallel and respectively serial task
networks, we can think along the line leading to simplifying an arbitrary acyclic task network
in these terms. In the sequel, we shall describe a general method of breaking down the initial
arbitrary network in subsets of tasks to be separately dealt with.

Recall that the engineers working in the development team are all assumed to solve
any activity of any task with the same average solving rate (see Chapter 2, Section 2.3).
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We will suppose as well that any engineer can handle any task. What we need is a way
to transform the partial ordering of the tasks given by the initial network into a total and
non-strict ordering: that is, the initial network allows for uncomparable tasks (but has no
cycles), and we need to complete it such as any two tasks become comparable, one preceding
the other (“less than”) or both being executable at the same time (“equal”). Once we have
achieved this, we separately take care of each group of “equal” tasks, in “increasing order”.
The equal tasks are dealt with by the parallel case method, and the sequence of these groups
is dealt with by the sequential case method. This completion of the partial ordering can be
achieved by any exact or heuristic method, and for this reason that method is a parameter of
our procedure.

We outline below the details of the steps of the general procedure we propose here.

1. consider all the tasks having a solving time given by their maximum performance level

2. use a heuristic priority-ruleR which proposes a list schedule for the engineers

3. group each subset of tasks having the same priority in the list into a so called “ag-
gregated” task; if there is only one task with a certain priority value, then it forms an
“aggregated” task by itself

4. derive an optimal policy for the sequential NPD control problem defined by the “aggre-
gated” design tasks. Following the results on optimal control policies for the sequential
NPD case from Chapter 8, there exist optimal policies which ask the team of engineers
to perform all the design tasks at the maximal level and afterwards set for each “aggre-
gated” design task an optimal number of periods on which the team should work on it.
We call this number the optimal time horizon of the “aggregated” design task.

5. derive an optimal/near-optimal policy for the control of each set of concurrent design
tasks which constitute an “aggregated” design task. The time horizon in which each of
these reduced concurrent NPD problems has to be solved is given by the optimal time
horizon of its corresponding “aggregated” design task.

The priority-ruleR can have different objectives when building the list schedule.
For example, it can minimizeE(Cmax), or max E(C), or E(

∑
C). As (Neumann and

Zimmerman, 1998) mention, these rules are based on several general insights: to minimize
E(Cmax), somehow corresponds to minimizing idle time; to minimizemaxE(C), tasks with
large expected completion times (caused by the precedence constraints) should be scheduled
as early as possible; finally, to minimizeE(

∑
C), tasks with small expected durations should

be scheduled first.
We claim that the most appropriate objective for an NPD problem is the minimiza-

tion of E(Cmax), because this is linked to the time-to-market deadline constraint, given the
economic setting as explained in Chapter 2.

We can give two examples of possible priority-rules to use with our general proce-
dure. Other rules can be found for example in (Neumann and Zimmerman, 1998).

The first example makes use of the distancedn to the sink for any given taskn:
this distance simply gives the longest path (in terms of number of nodes) from the task to the
sink. Formally,

dn =

{
0 if n = sink
1 + max

j∈succ(n)
dj otherwise.
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Figure 9.1. Example for priority-ruleRd

sink1,2 3,4 8,95,6,7source

Figure 9.2. “Aggregated” task sets giving the sequential part for the example for priority-rule
Rd started in Figure 9.1

The priority-ruleRd based on this distance orders the tasks according to their de-
creasing distance to the sink. Two tasks fall into the same “aggregated” task set if they
have the same distance to the sink. Clearly two tasks such that one is successor of the other
one cannot be found in the same “aggregated” task set. This ensures the correctness of the
method.

A simple example illustrating the application of this rule can be given by the net-
work of Figure 9.1.

Applying Rd we obtain the sequential problem having as “aggregated” tasks the
following sets.

Each of these “aggregated” task sets then forms a parallel problem to be solved
individually, as shown in Figure 9.2.

A further refinement to this rule can be made in a analogous way to the one of (Neu-
mann and Zimmerman, 1998). First of all, the distance to the sink is changed so that it also
takes into account the expected duration of each task (recall we have required the maximum
performance level), formally giving

dn =

{
0 if n = sink

max
j∈succ(n)

(dj + Sn(T,Lmax(n, T ))) otherwise.

We clearly also have here that two tasks such that one is the successor of another one are
not being put into the same “aggregated” task set. In order to see why this is so, suppose
the contrary. Let tasksn andp be such thatp ∈ succ(n) and thatdn = dp. Then, ac-
cording to the definition ofd, we havedn ≥ dp + Sn(T, Lmax(n, T )), which amounts to
0 ≥ Sn(T, Lmax(n, T )), which would lead to void tasks: a clear contradiction.

The second part of the refinement separates tasks with the samed, in decreasing
order of their outdegrees| Â (.)|. This rule, which further breaks down the “aggregated”
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Figure 9.3. Example for priority-ruleRd, with expected durationsSn(T, Lmax(n, T )) for
each task
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Figure 9.4. “Aggregated” task sets giving the sequential part for the example for priority-rule
Rd started in Figure 9.3

tasks into smaller ones which are serialized, is to be applied only when the size of the initial
“aggregated” task is greater than the numberM of engineers.

Another example, forM = 2, illustrating the use of this improved rule is given by
the network of Figure 9.3. We give also the expected durationsSn(T,Lmax(n, T )) near each
task, to show how to compute the distanced.

Applying Rd we obtain the sequential problem having as “aggregated” tasks the
sets of Figure 9.4. Note that tasks6, 7, 4 and5 all haved equal to8, but the first two have a
greater outdegree| Â (.)|, and thus are separated and come first. However, even though the
tasks2 and3, which have the samed equal to10, have different outdegrees| Â (.)|, they still
stay in the same “aggregated” task, since its cardinality is less than or equal toM = 2.

As for the previous example, each of these “aggregated” task sets then forms a
parallel problem to be solved individually.

The next step in improving our general procedure is finding heuristics for near
optimal policies for the particular cases of parallel respectively sequential orderings.

In the parallel case, following the results in Chapter 7, we see that the behavior of
the optimal policy does indeed seem to have some greedy features. In general, the proven
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existence of monotonic optimal policies usually leads to the optimality of such a greedy
behavior. The reason is that greedy algorithms are less ambitious than non-greedy ones, in
that they continuously look for a better solution, instead of looking for the best one, while
searching for a global optimum. In such a step-by-step approach, the monotonic properties
are usually useful. Thus, more study can be done along this path, in several directions: more
simulations can give more confidence in the near optimality of such greedy myopic policies,
and more theoretical investigation can lead, maybe with a few more model restrictions, to a
formal proof of the optimality (or quantification of the near optimality) of the greedy myopic
policies.

In the sequential case, the landscape looks more complicated. We have shown that
the general multidimensional problem can be reduced to a uni-dimensional one; the next
step would then be to construct a way of computing the transition probabilities in the uni-
dimensional case corresponding to any given multidimensional sequential problem. Then
simulation studies can be performed in order to give more insight about the structure of
the optimal policies, and appropriate heuristics can be tested against the theoretical optimal
solution. Thereafter more analytical studies might help consolidate these heuristics, assessing
in a more formal way their performance characteristics.

9.4.3 Open analytical problems

Further developments of the concepts of weak monotonicity can include their ap-
plication to other problems than the ones from the NPD framework. We namely suggest
the characterization of other families of Operational Research problems, which on the one
hand do not fulfill the necessary conditions to have optimal policies more structured than the
weakly-monotonic ones, but for which on the other hand the existence of weakly-monotonic
optimal policies could be a first step in devising or justifying the usage of appropriate greedy-
type algorithms.

Specifically concerning the NPD problems, it might be interesting to try to assess
in an analytical way whether the weakly monotonic optimal paths are robust to the variation
of the solving rate of the design activities, and which are the relations between the optimal
value and for instance the degree of specification of the characteristics of the new product at
the beginning of the NPD. These studies could be helped perhaps by adding more real-life
related constraints to the model, thus narrowing the domain of possible dependency families.
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Samenvatting (Dutch Summary)

In dit proefschrift leveren we een aantal bijdragen aan het vinden van analytische oplossingen
voor wiskundige geformuleerde problemen die onderdeel zijn van een hiërarchische model
van de beheersing van productontwikkelingsprojecten (NPD-projecten). De NPD-projecten
kenmerken zich door een hoge technologische onzekerheid en een korte, harde levertijd.
Gebruikmakend van de resultaten van recent empirisch onderzoek naar ontwikkelprojecten
stellen we eerst een hiërarchisch dynamisch model op van de beheersing van capaciteittoewi-
jzing aan ontwerptaken: ontwerptaken hebben betrekking op het omzetten van functionele
productspecificaties in technische productspecificaties. Het ontwikkelproject bestaat uit een
netwerk van ontwerptaken. Functionele productkenmerken worden gerealiseerd door het
uitvoeren van een of meer ontwerptaken. Een ontwerptaak bestaat uit een aantal ontwer-
pactiviteiten; naarmate de eisen gesteld aan het ontwerp stijgen, stijgt het aantal ontwer-
pactiviteiten van een ontwerptaak. De levertijd,T , en de beschikbare ontwikkelcapaciteit,
bestaande uit een team vanM engineers, worden als gegeven beschouwd. De beheersing
reageert op zowel de stochastische voortgang van het ontwikkelproject zelf, als de stochastis-
che ontwikkeling van de markteisen, door aanpassing van de functionele productspecificaties
gedurende het ontwikkelproject. Hierbij wordt een expliciete afweging gemaakt tussen de
verschillende dimensies van de functionele productspecificaties, in het licht van de markt-
waarde van de functionele productkenmerken, en van de nog beschikbare capaciteit tot de
project deadline. Het ontwikkelde beheersingsmodel is geformuleerd in discrete tijdsperi-
odes. De projectstatus wordt met vaste tijdsintervallen beoordeeld tot aan de deadlineT .
Na elk tijdsinterval wordt een hiërarchische beslissingscyclus doorlopen, bestaande uit twee
niveaus: het aggregaatbeslisniveau, en het detailbeslisniveau, en gedurende elk tijdsinter-
val worden ontwerptaken uitgevoerd. Op aggregaatniveau worden de ontwerpeisen gesteld
aan de ontwerptaken beheerst; op detailniveau wordt een non-preemptive schedule van on-
twerptaken opgesteld voor een relatief korte planningshorizon. Uitgaande van het netwerk
van ontwerptaken en uitgaande van en de geboekte voortgang tot moment t, kan de project-
manager besluiten de ontwerpeisen gesteld aan geschedulde ontwerptaken te verhogen of te
verlagen; dit met het oog op de nog beschikbare capaciteit tot de deadline, en de onzekerheid
m.b.t. het aantal nog uit te voeren ontwerptaken en de benodigde capaciteit per ontwerptaak.
Dit kan leiden tot een nieuw detailplan, aangezien detailplanning is gebaseerd op stochastis-
che ordening van ontwerptaken. In het hiërarchische model is een aantal elementen uit de
productmanagementliteratuur en de systems engineering literatuur verwerkt, en dat maakt
het mogelijk om de beslisproblemen op aggregaat- en detailniveau wiskundig te analyseren.
Sommige van deze problemen zijn nieuw.

Het detailplanningsprobleem wordt opgevat als een allocatieprobleem. We laten
zien dat het kan worden geformuleerd als een deterministisch dynamisch programmeringsprob-
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leem. Het allocatieprobleem is ook gerelateerd aan het multiple-choice knapsack-probleem.
De DP formulering van het allocatieprobleem garandeert het bestaan van een optimale oploss-
ing: het maakt het ook mogelijk om een optimale oplossing te vinden zonder de gehele
oplossingsruimte af te zoeken. Gebruikmakend van geaggregeerde informatie over de verza-
meling ontwerptaken construeren we een heuristische evaluatiefunctie van het A* type. Uit-
gaande van bekende resultaten op het gebied van de heuristische zoekalgoritmen, stellen we
een A* type algoritme voor, met twee mogelijke implementaties: standaard best-first search
(open en gesloten prioriteitslijsten) en RBFS implementatie. We bewijzen dat ons algoritme
een optimale allocatie van ontwerptaken aan engineers vindt. Met betrekking tot de im-
plementaties bestaat er een complexe afweging: de RBFS implementatie heeft een runtijd
lineair met de vertakkingsfactor en met de diepte van de zoekboom, en lineair met het aan-
tal gegenereerde knopen; echter de kans bestaat dat sommige knopen opnieuw geëvalueerd
worden. Van de standaard best-first implementatie is bewezen dat het een minimaal aantal
knopen ontwikkelt (relatief t.o.v. enig ander algoritme binnen haar klasse); echter de run-
tijd kan exponentieel toenemen (de vertakkingsfactor verheven tot een macht gelijk aan de
diepte). Experimenteel onderzoek laat echter zien dat de RBFS implementatie slechts enkele
knopen extra bezoekt (leidend tot een kleine extra runtijd vergeleken met standaard best-first)
en dat het totale aantal bezochte knopen zeer klein is in vergelijking tot de kardinaliteit van
de zoekruimte (Stirling getallen van de tweede soort).

De achtereenvolgende tijdsintervallen in het hiërarchische model zijn met elkaar
verbonden via benaderende oplossingen voor het allocatieprobleem en voor de engineeringac-
tiviteiten. De verbinding is gebaseerd op een eenvoudig wachtrijmodel waarmee de distribu-
tiefunctie geschat wordt van de tijdsduur die gemoeid is met het uitvoeren van ontwerptaken.
De vorm van de distributiefunctie die uit dit model volgt vertoont overeenkomsten met de data
die verkregen zijn uit recent empirisch onderzoek naar de time-to-repair distributiefunctie in
productieprocessen; een scheve, multi modale distributiefunctie met een lange staart. Daar-
naast hebben we ons model getest door vergelijking met acht verzamelingen van gegevens
over de doorlooptijd van ontwerptaken, verzameld bij een ontwikkelbedrijf van geavanceerde
lithografische systemen. Vergelijking van ons model met de data uit de acht gegevensverza-
melingen op basis van de Kolmogorov-Smirnov goodness-of-fit test laat geen significante
verschillen zien. Het verbindingsmechanisme tussen de achtereenvolgende tijdsintervallen
maakt het mogelijk om de overgangskansen te berekenen voor het niet-stationaire Markov
beslissingsmodel van het aggregaatprobleem. Dit levert een zeer algemeen raamwerk op dat
het mogelijk maakt om on line op de voortgang te reageren, daarbij rekening houdend met
de grote technologische onzekerheid zowel aan de marktkant als aan de ontwikkelkant. Het
aldus verkregen raamwerk vertoont grote gelijkenis met bekende hiërarchische raamwerken
voor productiebeheersing: op het hoogste niveau nemen we aggregaatbeslissingen, gebaseerd
op schattingen van benodigde tijd en capaciteit, en het wordt aan de lagere niveaus overge-
laten om over een korte horizon detailplannen uit te werken voor delen van het netwerk.

We zijn er slechts ten dele in geslaagd theoretische uitspraken te doen over de op-
timale oplossing van het aggregaatprobleem. De primaire oorzaak hiervan is gelegen in het
feit dat de toestandsruimte voor het probleem explosief toeneemt als functie van de grootte
van het probleem. Ons einddoel was om zowel een karakterisering te kunnen geven van de
optimale policies, als om efficinte algoritmen te ontwikkelen. In de hoofdstukken 7 en 8
onderzoeken we de structurele eigenschappen van de optimale policies voor twee specifieke
situaties. De eerste situatie bestaat uit een NPD project met ontwerptaken zonder onderlinge
volgorde relaties (zuivere concurrency), in een stabiele markt. De tweede situatie bestaat
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uit een NPD project met ontwerptaken die zuiver serieel moeten worden uitgevoerd (geen
concurrency), ook in een stabiele markt. In hoofdstuk 7 beschouwen we een zuiver concur-
rent NPD project bestaande uitN ontwerptaken, gemodelleerd als een niet-stationair Markov
beslisprobleem met een eindige horizon in discrete tijd. Voor de efficiënte bepaling van op-
timale policies in Markov-modellen van sequentiële beslisproblemen is men vaak geinter-
esseerd in het vinden van structurele eigenschappen (monotoniciteit, convexiteit, etc.). Voor
monotone policies kunnen monotonic backward induction algoritmes worden gebruikt. Het is
bekend dat de oplossingen van dynamische programmeringproblemen vaak zodanig complex
zijn dat daaruit geen inzichten kunnen worden gedestilleerd m.b.t. de aard van het gegeven
probleem. Bovendien geldt dat in hogere dimensies monotoniciteit van de beslissingspoli-
cies niet inhoudt dat er een stabiele structuur is van de optimale paden (d.w.z. een verhoging
van een exogene parameter houdt niet in dat er een uniforme verhoging is van het optimale
pad). In de literatuur is bewezen dat onder bepaalde voorwaarden, waaronder de voorwaarde
dat de actieruimtes voor elke toestand sublattices zijn vanRm, het bestaan van monotone
policies leidt tot robuuste optimale paden. Actieverzamelingen van dit lattice-type zijn ook
vereist voor het gebruik van monotonic backward induction algoritmen. In hoofdstuk 6 wordt
aangetoond dat deze sterke voorwaarde alle voordelen teniet kan doen die gepaard gaan met
het bestaan van monotone optimale policies. Daarom laten we de lattice-voorwaarde vallen,
en ontwikkelen we de algemene voorwaarden waaronder er zwak monotone policies bestaan.
Dit leidt tot een nieuw weakly monotonic backward induction algoritme. We bewijzen dat
onze resultaten leiden tot de gezochte robuustheids-eigenschappen. We tonen verder de opti-
maliteit aan van monotone policies onder de voorwaarde van een eenvoudige werklastbeperk-
ing (eerste type), en de optimaliteit van weakly monotonic policies in andere gevallen (twede
type). We verkrijgen dit resultaat door het probleem te formuleren in een Dynamische Pro-
grammering context en door de supermodulariteit van de objectfunctie aan te tonen. In de
micro-economie, in de productietheorie en, in de theorie rond consumentengedrag is super-
modulariteit van een nutsfunctie equivalent met substitueerbaarheid van producten. Het idee
van substitueerbaarheid heeft intuitief betekenis in een concurrent NPD project, waar, na-
dat alle ontwerptaken zijn gerealiseerd op het minimale vereiste niveau, het minder bereiken
in de ene ontwerptaak (ten dele) gecompenseerd kan worden door meer te bereiken in an-
dere ontwerptaken. Het bestaan van het eerste type monotoon niet-dalende optimale policies
bevestigt de intuitieve notie dat de optimale policy ”greedy” is: de eisen die de beslisser
stelt aan het ontwerpresultaat stijgen naarmate er meer bereikt is. Het bestaan van weakly
nondecreasing optimal control verfijnt ons heuristiek inzicht. Volgens de weakly-monotoon
intutieve notie kan het voorkomen dat er op aggregaatniveau acties mogelijk zijn die onder-
ling niet direct vergelijkbaar zijn in termen van het geëiste ontwerpresultaat. De acties zijn
alleen vergelijkbaar met betrekking tot de potentiële kosten en opbrengsten, zelfs als de toes-
tanden van waaruit deze acties genomen kunnen worden wel onderling vergelijkbaar zijn met
betrekking tot het al bereikte ontwerpresultaat. Zoals blijkt uit het weakly monotonic back-
ward induction algoritme leidt het tweede type optimale policy tot substantile verbeteringen
van de rekentijd. We hebben via simulatiestudies onderzocht hoe de optimale beslissing
afhangt van de mate waarin de functionele productkenmerken aan het begin van het ontwerp-
project gespecificeerd zijn. De productkenmerken noemen we onder (over) gespecificeerd
als er relatief weinig (veel) ontwerpactiviteiten aan het begin van het project bekend zijn,
en er relatief veel (weinig) ontwerpactiviteiten gedurende het ontwerpproject bijkomen. De
simulatiestudie wees uit dat, onafhankelijk van de tijd nodig voor het uitvoeren van ontwer-
pactiviteiten, de optimale waarde van het vereiste ontwerpresultaat stijgt naarmate er meer
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nieuwe activiteiten ”ontstaan” gedurende het project (en minder al activiteiten bekend zijn
aan het begin van het project). Echter, dit verband zelf is zwakker naarmate de tijd nodig voor
het realiseren van een ontwerpactiviteit kleiner is. In hoofdstuk 7 bestuderen we een zuiver
serieel NPD project, bestaande uitN ≤ T sequentïele ontwerptaken, dat gemodelleerd wordt
als eindige horizon, niet-stationair Markov beslissingsproces in discrete tijd. We nemen aan
dat met de volgende ontwerptaak gestart kan worden, zodra de voorafgaande ontwerptaak
klaar is. Aan de eerste ontwerptaak kan onmiddellijk bij aanvang van het project gestart
worden, en er komen geen nieuwe ontwerptaken bij gedurende het project. De waarde van
het ontwerpresultaat aan het einde van het project (tijdstipT ) is een lineaire additieve func-
tie van de bereikte resultaten per ontwerptaak. We maken gebruik van sample path analyse
voor dit probleem. Sample path analyse vergelijkt de sample paden van stochastische pro-
cessen die gedefinieerd zijn op een gemeenschappelijke kansruimte, teneinde kenmerken van
het optimale gedrag, of het optimale gedrag zelf, te achterhalen. Een belangrijk probleem
bij het gebruik van sample path analyse is dat de mogelijkheid om twee gegeven policies te
kunnen vergelijken, afhangt van de manier waarop de stochastische ontwikkeling van het sys-
teem beschreven wordt. De keuze voor de toestandbeschrijving van het ontwerpproject zoals
weergegeven in hoofdstuk 8 is gebaseerd op deze overweging. Echter de toestandbeschrijving
zelf is nog niet voldoende. Teneinde een sample path analyse te kunnen uitvoeren moeten de
onderliggende kansruimte, de klasse van toegestane acties als functie van de tijd en de historie
tot op dat moment, en de waardefunctie op formele wijze gedefinieerd worden. Gebruikmak-
end van het formele raamwerk voor niet-stationaire modellen, kenmerkt ons sequentieel NPD
probleem zich als een niet-stationair dynamisch beslisprobleem met ”stopping sets”. De sam-
ple paden van het proces van achtereenvolgende uitgevoerde ontwerptaken met een minimaal
aantal ontwerpactiviteiten per ontwerptaak zijn stochastisch begrensd. Op grond hiervan kan
worden aangetoond dat de optimale strategie behoort tot de klasse van strategieën die geken-
merkt worden door een verzameling ”laatste stop tijdstippen” voor de ontwerptaken. Door
vervolgens de actieruimte in te perken, sample paden die tot een eindwaarde van nul leiden
te elimineren, de eindwaarde te relateren aan waardes op de beslismomenten, en gelijktijdig
het aantal beslismomenten, de beslismogelijkheden en de toestandruimte verder in te perken,
verkrijgen we een viertal herformuleringen van het initiële sequentiële NPD probleem. Ge-
bruikmakend van sample path analyse bewijzen we dat de optimale policies voor elk van
deze herformuleringen optimaal zijn voor het initiële probleem. De laatste van de vier herfor-
muleringen reduceert het initiële multidimensionale beslisprobleem tot een eendimensionaal
beslisprobleem, in zowel de toestandruimte als in de actieruimte. In het nieuwe beslisprob-
leem hoeft er enkel beslist te worden hoeveel achtereenvolgende perioden het team van en-
gineers werkt aan elk van de ontwerptaken, waarbij ze, zolang aan een ontwerptaak werken,
ernaar streven het maximale ontwerpresultaat te bereiken. In hoofdstuk 6 combineren we de
resultaten uit de zuivere parallelle situatie en de zuivere sequentiële situatie teneinde het al-
gemene aggregaatbeslisprobleem terug te brengen van een multi-dimensionaal probleem tot
een eendimensionaal probleem. Verder geven we richtlijnen voor het ontwikkelen van goede
heuristische beslispolicies voor het algemene aggregaatprobleem.



Appendix

Let Θ(n, t, δ) be thecurrent maximal contribution of each design taskn, in achieving the
customer needδ. As described in Subsection 2.3.3a time dependent design task contribution
function in achieving the customer needδ is given byf(n, l(n, t), t) := θ(n, δ, t) l(n,t)

Lmax(n,t) .
At the detailed planning level, the criterion used in the allocation step is the one

of maximizing the value of the concurrent allocated design tasks. Now, a good choice for
the design task value functions,V (·, t) is one which leads to the maximization of the market
payoff function, while maximizing the sum of design task values for the performance levels,
l̂ (·, t), decided at the aggregate decision level.

We show below that in the case of the linear market payoff of (Askin and Dawson,
2000) one can find a formula describingV (·, t) such that maximizing the market payoff
function (at the aggregate decision level) is exactly the same as maximizing the sum of design
tasks value functions (at the detailed planning level). So in the linear case the coherence of
objectives at the two control levels is exemplary. If (see (Askin and Dawson, 2000))

M

[(
Θ(t, ·, δ)1≤δ≤∆ , l̂ (·, t)

)
1≤n≤N

]
def
:=

∆∑
δ=1

wδ (t)

[
∑

n =1,..,N

Θ(n, t, δ) · l̂(n,t)
Lmax(n,t)

]
then

max
l̂(n,t), n∈{1,...,N}

M

[(
Θ(t, ·, δ)1≤δ≤∆ , l (·, t)

)
1≤n≤N

]
=

max
l̂(n,t), n∈{1,...,N}

∑

n =1,..,N

l̂ (n, t)
Lmax(n, t)

·
[

∆∑

δ=1

wδ (t) ·Θ(n, t, δ)

]

Thus, an obvious choice for design task value functions is

V (n, t) :=
l̂ (n, t)

Lmax(n, t)
·
[

∆∑

δ=1

wδ (t) ·Θ(n, t, δ)

]
,∀n = 1, ..., n ∈ J(t) ∪ Y (t),

wherel̂ (n, t) is then−th design task target performance level.
In the more complicated case of the market payoff introduced by (Yoshimura, 1996)

the coherence of objectives between the aggregate decision level and the detailed planning
level is not complete. However, we introduce below a formula describingV (·, t) such that
maximizing the sum of design tasks value functions (at the detailed planning level) provides
at least a lower bound on maximizing the market payoff function (at the aggregate decision
level). Thus, the criterion used in the allocation step of the detailed planning level will par-
tially reflect the intention of the aggregate decision maker.
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If M

[(
Θ (t, ·, δ)1≤δ≤∆ , l̂ (·, t)

)
1≤n≤N

]
def
:=

∆∏
δ=1

[
Sδ

(
t, l̂ (·, t) , δ

)]wδ(t)

(see (Yoshimura, 1996)) we have no direct decomposition indexed by the design tasks num-
bers.

Since

max
l̂(n,t), n∈{1,...,N}

M

[(
Θ(t, ·, δ)1≤δ≤∆ , l̂ (·, t)

)
1≤n≤N

]

≈ max
l̂(n,t), n∈{1,...,N}

log
{

M

[(
Θ (t, ·, δ)1≤δ≤∆ , l̂ (·, t)

)
1≤n≤N

]}

we defineV (n, t) := log
{

∆∏
δ=1

[
Sδ

(
t, l̂ (n, t)

)]wδ(t)
}
−Vmin+ε ≥ ε > 0 to obtain positive

design task value functions, where

∃Vmin = inf
n∈J(t)∪Y (t),∀δ=1,...,∆

log

{
∆∏

δ=1

[
Sδ

(
t, l̂ (n, t)

)]wδ(t)
}
∈ (−∞, 0)

sinceSδ

(
t, l̂ (n, t)

)
∈ (0, 1), ∀n ∈ J(t) ∪ Y (t), ∀δ = 1, ..., ∆ represent a finite number of

finite values.
If

LHS
notation

:=
∑

n∈J(t)∪Y (t)

V (n, t)

≤ log
{

M

[(
Θ(t, ·, δ)1≤δ≤∆ , l̂ (n, t)

)
n∈J(t)∪Y (t)

]}
notation

:= RHS

holds, then the detailed level allocation solution (which maximizes the value of the allocated
design tasks) provides an heuristic lower bound for the aggregate decision targets.

LHS =
∑

n∈J(t)∪Y (t)

∆∑

δ=1

wδ (t) log Sδ

(
t, l̂ (n, t)

)

=
∆∑

δ=1

wδ (t)
∑

n∈J(t)∪Y (t)

log Sδ

(
t, l̂ (n, t)

)

=
∆∑

δ=1

wδ (t) log
∏

n∈J(t)∪Y (t)

[
Sδ

(
t, l̂ (n, t)

)]

SinceSδ (t, l (·, t)) ∈ (0, 1),∀δ = 1, ..., ∆ are normalizedS−functionsLHS ≤
∆∑

δ=1

wδ (t) log
[
Sδ

(
t, l̂ (n0, t)

)]
. Sincelog (·) andSδ (t, l (·, t)) (beingS− functions of the

∑
n =1,..,N

Θ (n, t, δ) · l̂(n,t)
Lmax(n,t) ) are increasing functions of the levels:

LHS ≤
∆∑

δ=1

wδ (t) log





∑

n∈J(t)∪Y (t)

[
Sδ

(
t, l̂ (n, t)

)]


 ≤ RHS
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