
 

Some non-existence theorems for perfect codes over arbitrary
alphabets
Citation for published version (APA):
Reuvers, H. F. H. (1977). Some non-existence theorems for perfect codes over arbitrary alphabets. [Phd Thesis
1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Hogeschool
Eindhoven. https://doi.org/10.6100/IR140570

DOI:
10.6100/IR140570

Document status and date:
Published: 01/01/1977

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR140570
https://doi.org/10.6100/IR140570
https://research.tue.nl/en/publications/21e3ccf1-6d84-4538-bb4c-fae128246b7e


SOME NON -EXISTENCE THEOREMS 
FOR PERFECT CODES 

OVER ARBITRARY ALPHABETS 

PROEFSCHRIFT 

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE 

TECHNISCHE WET ENS CHAPP EN AAN DE TECHNISCHE 

HOGESCHOoL EINDHOVEN, oP GEZAG VAN DE RECTOR 

MAGNIFICUS, PROF.Dr. P. VAN DER LEEDEN. VOOR 

EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN 

DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP 

OINSDAG 18 JANUARI 1977 TE 16.00 UUR 

door 

HENRICUS FRANCISCUS HUBERTUS REUVERS 

GEBOREN TE MAASTRICHT 



Pit ~oe6J~~rit ~ goedge~e~d 

doo~ de ~omoto4en 

P40n. dt. J.H. van Lint 

P40n. ~. J.H. de Bo~ 

DRUKKERIJ UIHl.V.AIJ BIJSTERVELD 
EINDHOVEN 



'IDOft M.vUtm en de Uurte Wk 

/lNI. m~jr. "t.«/vu 



CON'I'llNTS 

C!lJU>'I'llR 1. ImROJ:)UCTION 

1.1. On error-cQ~recting eQde~ 

1.2. on perfect codes and the sphere packing condition 

1.3. On the n~er of code words of weight k for some small k 

1.4. On t-deaigns 

1.5. On t-de~igns in perfeot codes 

1.6. The polynomial condition 

1.7. Some example~ of perfect code~ 

1.e. A remar~ about perfeot 1-codes 

1.9. S~ry of results 

CHlU>'I'ER 2. SOME GENE:AA.l.. RESULTS CONCEI\NWG q 

2.1- The general cast!! q; 
s 

(e " P <: 2) 

2.2. The general Case 
s t 

q '" P1P2 (e ;!; 3) 

2.3. Introauction to a result concerning the number of primes dividing q 

2 

4 

5 

6 

11 

12 

15 

17 

17 

19 

20 

2.4. Statement of a result concerning the number of primes dividing q 23 

:2.5. Application to the case e = 6 26 

~llR 3. SOME RESULTS CONCERNING THE CAsE e 

3.1. First approach to the case e = 2 

3.2. Second approaoh to the case e '" 2 

3.3. The special Oase q '" pS 

3.4. A remark abol,1t the special caee Q. = 

3.5. Some remarks about the special .ease 

3.6, The special case q < 30 or q '" 3S 

3.7. The special case q .. 30 

s t 
P 1P2 
q = 2\5 

CHAPTER 4. S~ GENERAL RESULTS CONCERNING n 

4.1. A first remark about n 

4.2. A second remark about n 

27 

27 

30 

32 

33 

34 

37 

53 

71 

71 

72 



4.3. ~he e~istence of an upper ~o~nQ N(e,q) for n 

4.4. ~ u~per bound N(e.q) maae explicit if @ is odQ 

4.5. Application 

CHAP'rIlR 5. SOMil .RESULTS FOR SMALL VALTJ:o:S OF e 

5.1. 'rhe case e 3 

5.2. The case e = 4 

5.3. The case e = 5 

CHAPTER 6. SOME R5SULTS CONCERNING PERF~cr MIX£D CODES 

6.1. preliminar~e5 

6.2. A none~istence the~~ concerning mixed pe~fect 2-codes 

6.3. A nonexi~tenoe theorem concerning mixed perfect 3-codes 

APPENDIX 

HISTORICAL SUMMARY 

REFERENCES 

SAMENVATTING 

CURRICULUM VI'r~ 

page 

74 

76 

81 

B2 

82 

83 

88 

91 

91 

93 

99 

102 

116 

120 

125 

127 



CHAPTER 1 : TNTROVUCTION 

Let S:be a set of q symbols. we shall take s := {O, 1 ,2, ... ,q - l}. 

We call S an alphabet. 

Let, for same n € IN, V be the Cartesian product Sn. We call V a spacl'l, 

and the elements of V wo:r>as. 

Let C be a subset of V. Then we call C a codl'l. The elements of C are 

called code wo:r>d8 and n is called the wo:r>d ~ength of C. 

C is called a ~oup code if it is a group Under coordinatewise addition 

(moOulo q). 

Let x € V. Th@n the Hamming weight Wn(~) of ~ is the number of cocrdinate 

places in which ~ has a nonzero sywbol. 

The ~«ppOrt of ~ is the vector supp (~) which has zeros in e~actly the 

same coordinate places in which ~ has ~er08, and which has ones in the 

other coordinate pLaces. 

FOr any two words x and l in the space V, we define thQ Hamming distance 

dH(~'~) between x and Z to be the number of ccordinate places in which ~ 

and ~ have a different symbol, so 

1.1.1. 

where subtraction means ccordinatewise subtraction (mea q) • 

By dH(~'C) we denote the distanoe from x to the oode. 

FOr any x ~ V, let the Hamming sphere W~th radius e arOund x be defined :by' 

1.1.2. 

A cOde C is caned (?-error-coX'recting (;fOr some e € IN) if for any two 

distinct code words ~ and :i we have dH(~.r) ~ 2e + 1, 50 if the spheres 

With radius e around the oode WOrds are di5joint. 

If C i6 an e-error-correctlng cod~, ~~d if W~ ahange at mo~t e ooordinates 
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of a cooe word ~, then the changed word is still nearer to ~ than to any 

other code woro. 

~ cooe C is called e-error-detecting if, for any two 01stinot code woros 

~ and ~, we have dH(~,r) ~ 2e. 

The numbers, n, e ana q are called the traditional parametep8 of a code. 

We call a code c a perfect e-code if the Hamming spheres with radJ.\18 e 

around the code words form a partition Of V. 

Such a code is not only e-error-correcting, but the Hamming spheres fill 

the space V. 

rt wae proved by Lenstra (see [19]) that a perfect code over Ii q-symbol 

~lphabet cannot be a group code unless q is a power of a prime. 

The case where q is a power of a prime was settled completely oy Van 

Lint and ~ietava1nen (see seotions 1.7, 2.1 and the historical survey). 

They proveo that unknown perfect codes over GF{q) do not exist. 

~xampleB of perfeCt codes can be found in section 1.7. 

It is O\1r pu~po?e to prove nonexistence theorems for perfect codes wLth 

p~r~metcrs n, e, q, where q is not necessarily a power of a prime. In this 

case we call S dn arbitrary alphabet. 

~ oovious necessary condition for tne existence of perfect codes is 

called the sphere paakil1lJ aondition: 

Here the left hand side is the n~mber of words in a sphere with radius e, 

and qn is the total number of words in the space V. 

If, to~ ~nstance, q ~s ~ prime power, sav q = po, then we have the ve~y 

str-ong condition that for SOme a " IN 



1. 2.2. 

From now on th~ symbol ~ will denote ~ p~ime. 

The sphere packing condition ~lays a basic role in our investi~ations. 

Ass~e that we have a perfect code with parameters n, e, q. we can 

assume without loss of gener~lity that the word Q (h~ving a zero in 

eve~y cocrdina te place) is a cede word. 

In this case the minimum weight of a cod~ word is 2~ + 1. 

~hen each word of weight e + 1 is in exactly one Hamming sphere with 

radius e around a code word, and this code word must pe of wei~ht 

2e + 1. 
n e+l 

Therefore, since the~e are (e+l) (q - 1) words of weight e + 1, and 

since in a Hamming 8~here with r~d!us e around a code word of wei~ht 
2a+l 

2e + 1 there are (e+l) words of weight ~ + 1, we find that the number 

a2e+1 of code words of weight 2e + 1 must be: 

1.3.1. 

~urthermore, since each word of weight e + 2 is in exactly one Hamming 

~~here with radius e a~ound ~ code wo~d, and th!s c04e wo~d must be of 

weight 2e + or 2~ + 2, we find, counting the words of weight e + 2 

3 

~t ~ distance e o~ e - 1 from such a code word, the following ~ecur~ence 

relation, which determines the number a
2e

+
2 

of code words of weight 2e + 2: 

1.3.2. 
2e+2 210+1 2e+1 

( e+2 ) a 2e+2 + (10+2) a 2e+1 + (e+l) e(q - 2)a2e+1 

which yields' 

1. 3. 3. (n - e 
2 

- 3e - 1) (9 - 1) + e (e + 1) 
a 2e+1 2e + 2 
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In the same Wi!J.y we car. Q.ete=ine the nwnber "'2e+3 of code words of 

weight 2e + ~ Py means of the following reCUrrenCe re~",tion: 

1. 3.4. 

In this way we can go on. 

So the numbers a
k 

depend on k, n, e and q. 

For our purpose we shall onll'" need the",e nwnbers for the case e .. 4, 

In the appendix (see A.l) we determine the numbers a
1 

for e = 4 and 

9 :;; i :;; 13. 

1.4. On -t-de1>igYL6 

For the sections 1.4 dnd 1.S We refer to (41J, chapter 2, section 4. 

We say that a word Z ~ V coverB another word x if we hav", 

so if under coordinatewise multiplication we have ~'5Upp(~) ~ x. 

NOW we define a (q-ary) design of type t-(n, k, A) in V to be a 

collection D of ·words of weight k in V, such that every word ot 

weight t in v is covered bl'" e~ctly A members of D. 

This definition generalizes the concept of binary t~de5i9nB (see [27J) 

to the concept of q-ary t-designs. 

If in V there exists a q-ary design of type t-(n, k, ~), then tr!vially 

~ must·be an integer. ~ut moreover, 

1.4.2. ~or 0 ~ i :;; t we have Ai ~ ~, where 

1) t-i 

. \ := 



This is true because a q-ary oesign of type t-(n, k, A) defines q-~ry 

designs of type i-(n, k, Ai) for 0 ~ i s t, which i~ not difficult to 

under etanO.+ 

~emark that for a design 0 of type t-(n, k, A) we have 

1.4.J. .0 = 101 

The fallowing remark may be useful for a better unoer~tanoin9 of the 

proof of theorem 1.5.1: 

Consider a q-ary design 0 of type t-(n, k, .l, ano consider a set of 

a + b pos~tions where a + b ~ t. 

Let us choose cooroinates X
1

'X2 '" "~ on the b positions, all diffe

rent from O. 

Then, beca~Se ~ defines q-ary designs of type i-In, k, A~) for i s t, 

it is immediately clear that the number of words in D which have 0 in 

the prescribed a positions, ano x1 ,x2 ' ""~ in the prescribed b posi

tions, depends only on the numbers a and h. 

~et ~5 Consider a perfect coOe C with parameters n, e, q. 

Let x ~ V and let dH(~'C) ~ r (50 r ~ e). 

Finally, let B(~,k) be the number of code words at distance k from ~ 

(eo Ynless k ~ r we have B(~,k) * 0). 

Then the numbers E(~,k) depeno only an r, k, n, e and q. 

This follows from theorem 2.4.4 and its preliminaries in [4lJ and has 

nothing to do with the question whether or not V is a linear spaee, 

and whether or not C is a linear subspace of v. 
Now we a~e ready to prove the following theor~m: 

1.S.1. THEO~l. Let C he a perfect cooe with parameters n, e, q ano 

SUppose that 2 ~ C. Then, for 0 S k S n, the eode WGrd~ of weight k 

for~ a q-ary design of type (e + 1) - tn, k, A(k)). 
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PROOF. F it"st we p>:ove the c,,~e k .. 2e + 1. 

~et ~ C V ~ld WH(~) N e + 1. Then it is clear from the tr~angle in-

equality that dH(~'C) e and x has distance e to exactly one code 

word of weight 2e + 1. Clearly th1s code word must cover x, and ~ ~s 

cove>:"d by no other code wOrd of weight 2e + 1. 

So the code words Of weight 2e + 1 form ~ q-ary design of type 

e + 1 - (n, 212 + 1, 1), 

Now ~ssume that, fo>: all k < w, the code words of we~ght k form a q-ary 

design of type e + 1 - (n, k, A(k)), for some w s n. 

Let x be any word in V S\1ch that WH(~) ~ e + 1. 

Then, ,.inc" the code words of weight k form iii: q-"ry design of type 

i - (n, k, ~(k,i)) for ,,11 i 5 e + 1, we see that the number of code 

words of weight k "t a given distance from ~, is a constant independent 

of ~ (see the end of s~ction 1.4). 

So the number A of code WOrds of w~ight ~ w - 1 at distance w - e - 1 

[>:om ~ is independent of ~. 

Mor00ver, 5~nce dH(~'C) = e if wH(~) 

"re indep~nd0nt of ~, so B := B(x, w - e - 1) is independent of ~. 

So the number of code words of weight W at oistanee w - e ~ 1 f>:Dm ~ 

is B - A, for all ~ with wH(~) = e + 1. 

Henes, sin,,'" these code words are eX<lctly tho~e of weight w which cover 

~, they form u q-ary design of type e + I - (n, w, B - A) • 

So we have proved the theorem by inductiOn. 

REMARK. The proof of the preceding theorem strongly resembles the proof 

of theorem 2.4.7 in [41J, but is not exactly the 8ame. 

For our pu>:pose, we shall only nesd the re~ults on t-designs in perfect 

code5 for the O<l$e e = 4 (se@ A.l in the appendix). 

1.6. Th~ potwno~ con~on 

A class of o>:thogonal polynomi"ls, the so-called Krawtahouk polynomia~~J 

is defined by; 
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1.6.1. to;r m" ~ 

we refer to [35 J «nd [41 J. An important prope>;ty of Y.l:'awtchouk polynom1als 

15 the following 1dentity: 

1."'.2. 
e r K (n.X) 

_Om 
Ke (n - 1, )! - 1) • 

From a1gebr«i~ ~onside;rations (see [10J. [19J and [27J) it tollows that 

if there exists a pertect code with p«rameters n, e, ~, then 

1.6.3. 

h«s e distinct integr«~ zeros. 

~hls is a very stronq condit1on tor the e~i6ten~e of perfect codes. We 

c«11 it the poZynomiaZ condition. Like the sphere packing condition it 

plays a b«"ic r5le in our investigations. 

~sually the condition is called Lloyd's TheOTem. ~he polynomial Pel)!) 

is called the LZoyd potynomia~. 
Since there are many proofs in the literature, «nd we shall uSe the 

condition as a tool, we Bh«l~ omit the p>;oof. 

Mostly the proofs deal with the case that c is a line«>; subspace of a 

linear space V over a finite tield GF(q), whe>;e q is a prime power. 

It was first proved by Lenstra ([19J) that this is not necessary at all. 

A nice proof was given by Cvetkovic I Van Lint ([9J). 

In [27J one can find another representation of Pe(X): 

P (x) 
e 

Now we ~hall intrcdu~e the theor~m and 9ive th~ symmetric expresBion~ 

Qbtalnea from the coefficients of th~ Lloyd polynomial. and from the 

values of Pe(O) and P~(l). 
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1.6.5. THEOREM. !f there exlst~ a perfect code with parameters n, e, q, 

then the polynomial Pe(X) has e distinct integral Zeros x
l
.x2 ' ...• xe • 

which belong to the 8et {O,1.2 •... ,n}, ana we have, 

1.6.6. 

A.6. 7. 

1.6.8. 

1.6.9. 

e r x, 
i=O 1. 

e(n-e)(q-l) + ere + 1) <; Z 
q :; 

I ){,x, 
l~i<j::::;e ~ J 

e(e-I)(q-l) 2 
2 {(n - e) (q -1)+(n - eli<;l8 +q-l)} + 

2q . 

e 
IT ){, 

i=1 l 

e~ (I .,. n(<;I _ 1) + (~) (q _ 1)2 + ... + (~) (<;I _ 1) e) 

q 

e e 

IT (xi - 1) " (n - l)(n - 2) ... (n - e)~ E Z 
i=1 q 

Combining 1.6.8 with the sphere packing condition 1.2.1 we finc: 

1.6.10 
e 
IT x. I e!qn 

i=1 l 

1n the speciul case that q 15 a prime power, say q 

some t IN the very strong comU tion: 

e 
1.6.11. IT x, m ~(e,p)pt • 

i~l l 

where A(e.p) is defined by 

1.6.12. A(e,p) 
e! 

and 1,1 <; IN is choserl in such a w&y that .,1,1 II e! 

p~, we find for 

0;0 there must be positive int€gers a
i 

ana t1 (1 sis e) such that 
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e 
1. 6.13. IT a i A(e,p) , 

i=l 

ana 

1.6.l-4. xi .. aiP 
ti 

However, it is olaar that if there are many distinQt primes dividing q, 

then the f~ula 1.6.10 becomes much less effaotive. 

For odd e, say e .. 2m + 1, it turns out to be very effective to use a 

substitution a, firstintrwuoeoby Van Lint in [23J for the OAM a=3, 

Lat 

1.6.15. 6 ;= qX - n(~ - 1) • 

RelMrk that if e '" 0, Ulen X .. ~ , and that !!.!.5!..:Jl resembles the 
q ~ 

ar1thmet1oal mean of the zero~ Xi of ~e(X) (see 1.6.6). 

Then sinGe 

1.6.16. 

we finO, if we take 

1.6.17. 

the following power series Which generates tha ~ansfo~ed Lloyd poZy

nomi"ts ;r' e (a), 

1.6.18. 

We shall need this genarating power series for lemma 1.6.23. 
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We ooncluae this section w1th some rema~kable properties ot Fete). 

It is known that the polynomials Fe'S) can he e~pressed in a determinant 

form (see [7], [9]). 

For instance We have, transforming P3(X) and ~5(X) respectively by hana' 

1.6.19. (n-l)(n-2)(n-3) -3(p-2)(n-3)(n-S) + 

+ :l (n - 3) (n - a) (n - e - q) - (p - a) (n - a - q) (n - 8 - 2q) 

1.6.20. (n - 1) (n - 2) (n - 3) (n - 4) (n - 5) -

5(n-2)(n-3)(p-4)(n-5)(n-a) + 

+ 10 (n - 3) (n - 4) (n - ') (n - 9) (n - 6 - "1) -

10(n-4) (n-5)(n-9)(n-9 -q)(n-e -2"1) + 

+ S(n-5)(n-S)(n-6-"1)(n-e-2q)(n-9-3q)-

(p - S) (n - e - q) (p - e - 2'1) (n - e - :l"1) (n - e - 4"1) 

In ~ener~l we have the following 

1.6,22. (~) for i = 0,1. ... ,e 

ali;;;;; n-i + 1 for i = l,t."e 

n-e- (i+Oq fori=O,l, ... ,e 

aij = 0 if j ~ i and j f i + 1 ana 1 f 0 . 

Finally, let us con~ider Fe(S) as a polynomial in n, say 

1.6.23. 
e k 
L ~(e)n 

k=O 

Then we have the following 
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1.6.24. ~. If e = 2m + 1, th~n for k > m the ccefficients ~(e) ar~ 

all zero. 

PROOF. D~fin~ ~ and D by 

1.6.25. and 
" 

. .,.!L- 1 9 - :2 
• 3 

Then we find 

1.6.26. 

so from 1.6.18 we see th~t F (8) is the coefficient of Ze in 
e 

1.6.27. 
n n 2j j 

(l - (6 - l)Z +- ... ) ( L (j)Z (- f,; + "Z + ..• ) ) 
j=O 

So, as a polynomial in n, Fe(e) i~ of degree ~ e/2 • 

1.1. Some ex.amptu 06 pe/t.6e.& codu. 

The concept of perfect codes WQ~ld n~v~r have been st~ied if there would 

not exist examples. 

Fir5t we have the trivial perfect codes with only on~ code word, and the 

so-called repetition caMs with 'I = 2 and word length n • 2e +- 1, con

sisting of an all-zero code wcrd and an all-one code word. Repetition 

codes are also ca~leQ ~ivi~l. 

secondly we have the perfect Hamming codea with e = 1 and n ~ ~ q - 1 

which exist for all ~ime powers q. Th~s~ codes are described in [27J. 

Finally there are the two Gctay oodes with par~eters 

n ~ 11, e = 2, 'I 3 

n 23, ~ 3, q 2 

respectively .~, 
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A description of th~6e two oOdes can also be fQ~no ~n C27], 

The uniqueness of perfect codes with the Golay pa~amete~s was proved cy 

Snover (for the c~nary code, see [34J) and by Delsarte - Goethals (for 

the ternary code, see [11]). 

Let C be a perfect code with parameters n, e = 1, and q. 

Fr~ the sphere packing condition 1.2.1 we find that 

1.8.1. {1 + n(q _ I)} I qn 

S 

So if ':l Pr
r 

is the prime decomposition of q, then 

1.8,2, 1 + n(q - 1) 

for some positive 1ntegers k i (i = 1, •.. ,r). 

From the polynomial condition 1.6.5 we find that Pi (X) (cfr. 1,6.~) must 

have an integral zero x, such that 

LB. 3. <;lX - 1 - n(q - 1) = 0 

henee we have 

1.8.4. q I {1 + n (q - 1») 

Hence we find frOm 1.8.1, 1.8,2 and 1.8.4 that 51 $ k1 ~ ns
i

, and 

\ k 
r 

- 1 P1 Pr 1.6.5, n = 
sl s 

r - 1 P1 Pr 

Indeed there exist perfect codes if r = 1 and rt is Of the form l.e.5, as 

We mentioned in the preoedin9 section. 

It was shown by Block and Hall (see [13J) that there does not exist a 
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perfe~t 1-cede of length 7 on 6 eymbols (which was the next open case) , 

The ~oof made use of the non-existence of a pai~ of orthogonal 6 x 6 

Latin sq;uares, 

A Latin aquare of size k is a ma~Lx such that every row and every column 

is a p~utation of the numbers 1,2, ••• ,k. 

A pa~r ~ Latin squares ~s called o~thogona~ if by tak~nq the entries 

from the place (i,j) f~om both squares, thus forming k
2 

pairs of entt1es. 

one gets k 2 di8t~nct pairs, 

In the same way as Block and Hall did, we considered the question of the 

existence Of a eingle-error-~Qrrect1n9 code of length lIon 10 symbols, 

Indeed we found mOre generally: 

I.B.6. rH~REM. Let us suppose that there exists a perfect single-error

correcting COde of length n = ~ + 1 over a q-symbol alphabet. Then there 
2 must be (q - 2) pairs (A.,B

i
) of orthog~al q x q Latin squares such 

l. 2 
that, if for some (k,i) € {1,2, ... q} we have 

«Ai)k,i' (Bi)k,jl,) = «AjJk,i' O~j)k,£)' then i '" j. 

PROOF. F1rst we cla~~ that in V(4,q) := {(x1,x2,x3,x4) x~ < {1,2, ... q}} 

there ~st be (q - 2)2 disjoint I-codes of length 4 On q symbols. each 

with q2 code words. 

Indeed, suppose there ex1sts a perfect I-code C of length n a q; + 1 on q 

symbols, hence 

1. 8. i. lei 
q+l 

q 
1+ (q+l) (q-I) 

q-l 
q; 

~hen each of the qq-l (q - 1)~tuple8 of q symbole 1s the initia~ (q - 1)

tuple of exactly OnE of the qq;-l code words. Fo~ if any would occur twic@, 

then the corresponding ~Ode words would be at a distance at most two, 

contradicting that c ~5 e~n9le-error-~orrecting. 

Then all qq-~ (q - 3)-tuple~ of q symbols are 1nitiAl (q; - ~)-tuple of 

exactly q2 code words in C. 

so, conSiaerinq a fixed initial (q - 3)-tuple, we gee thAt the q2 code 

wotde of C that begin with the fixed initial (q - 3)-tuple have 4-~ywbOl-
2 tails that fOrm in V(4,q) a I-code 0 on q symbols, of lanqth 4, with q 

code W<JrdS. 
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Moreover, considering a second fixed initial (q - 3)-tuple, differiny 

from the first in at most two coordinates, we must find a l-code D' 

on q symbols, ot length 4, with q2 code words and such that D and D' 

have no COde word in cowmon. 

Hence, considering all fixed initial (q - 3)-tuples that differ from 

the tirst in at most one coordinate, since each pair of them disagrees 

in at most two coordinates, we must find 1 4- (q - 3) (q - 1) = (q - 2)2 

disjoint sinqle-error-correctinq codes of length 4 on q symbols with 

q2 COde words, proving the claim. 

~ow con~ider 6uch a code of length 4. Then each of the q2 2-tuples out 

of q elements is in~t~al 2-tuple of exactly one code word. For if any 

would occur twice, then the corresponding code words would be at a 

distance at most two apart, contxadictinq the one-error-correctinq

capahility of the code. 

Thus, such a code ~s equivalent with a pair (A,B) of q x q matriCeS by 

the correspondence, 

(k,~,m,n) is a code word iff ~,~ ~ m and Bk,~ = n 

Moreover, 1f anyone of hand B, 6ay A, would have the same symbOl twice 

in any row or column, say ~~ m ~, then the code woras (~,~,Ak~'Bk~) 

and (~,m,Akm,akm) would b~ at a distance at most two, which is impossible. 

So A ~nd B are Latin squa~eB' 

FurtlH,rmore, if foX" SOllIe pair of pairs «k,i), (m,n» we woula have 

(A
k

£, B
k

£) = (A
mn

, B
mn

), then again we would have ,wo code words at a 

di5t9nce two, which is imposs1~le. So A and B form a pair of orthogonal 

Latin squares. 

Finally, since all (q - 2)2 codes ~e disjoint, taking from any two COdeS 

D and D' the code words def1nad by an initial 2-tuple \k,~), they must 

be different, so they must have different tails, sO the (q - ~)2 pai~s 
of orthogonal Latin squares are dLstinct in the sense ot the theOrem. 0 
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The rest of our investigations i~ devoted to the question of the existence 

of parameters n, e, q t.hat. fit a perfect. code. we shall neglect tl::iv;i.al cases 

In ohapter 2 we shall explain how, Py combining the sphere packing con

dition And t.he polynomial condit.ion, some results can be established 

about the m,1IIlber of IIT"ilnes divicUng q. 

After two theorems by Van Lint I Tietavainen and by Tiet!vainen, who 

id s d 5 t . 1 h 11 i d cons er q ~ p an q = P1P2 respect~ve y, we s a n~o lice a gene-

ralization and apply it to the case e • 6. 

This generali~at.ion states that in most. of the cases, q must have at 

least. e distinct ~ime divisors. 

In chapt.er 3 we give the zero~ Xl and x2 of P2(X) in a parameter form 

and derive some partial results on q. Here too we use the combination 

of the sphere packing condition and the polynomial condit.ion. 

In chapter 4 we shall derive an upper bound N(e,q) for n in the case 

t.hat. e is odd, using the polynomial condition only. 

For this p~pose we oonsider t.he transformed L1Cfd polynomials ~e(e) 

and find t.wo values 60 and 6
1 

of a, such t.hat for n > N(e,q) 

1. 9.1. 

while in the interval (9
0

,9
1

) there does not exist an int.eger. 

The existence of such an upper bound N(e,q) for n in the Case that 

e is even. ie established but. not. made explicit. 

In chapter 5 we shall derive our main theorems. 

Here we shall prove the non~existence of unknown nontr~vial pert@c~ 

coae5 with e ~ 3 o~ e ~ 4 o~ e = 5. 

For the Cae@ e = 3 and for the case e 5 we gene~al~ze an early theor~m 
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by van Lint about the oase e • J ~~ q = pS. 

For the oase ~ = 4 we uS~ the resoZvent of Lagvange to tr~nsfDrm the 

Lloyd polynomi~l ~4{X) into a polynomial of the thira aegree, which 

in some s<i:nse can be treated as the "oad" polynomials P3(X) and P5(X). 

Again we firtd two values wh~r~ the polynomial takes a differertt sign, 

wherea~ between them there do~s not exist an integer. 

Fin"lly, we h"ve added to our text the <;,hept~r 6, which shows how 01,11' 

methods can also eerve for non-e~istence theorems concerning mixed 
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CHAPTER 2 :SOME GENERAL RESULTS CONCERNING q 

2.1. The gen~ caJe q ~ ps (e ~ 2) 

since a few years it is known that the~e do not exist perfect e-cQdes 

over an alphabet GF(q) I where q = pS, except the two Gol~y codee. if 

e <: 2. 

'rhe ~oof was given by van Lint and Tietiiv;;inen (sae our "histaric~l 

slllllDl&ry") • 

The approach of Tietavainen is the following lemma. which we shall use 

later on for the oase e = 2. 

2.1.1. l.£MMA. suppose there exist:!! an unknawrt perfect oada with par~-

meters tJ.,e,q .. Lat the :<:aros of the LloyC! polyncmial P e (X) be ordered 

in ;;uch a w<,y that "1 < x.2 < ... ., 
xe' 

Then we have, 

2.1.2. or 

2.1. 3. 

and hence from the gl!lI;nwtl'iool-a1'ithmMioot mean inequaUty 

e 

2.1.4. 

FurthermOre. frOm the formulas 1.6.6 and 1.6.8 it follows that 

2.1.5. 
n (n - 1) ••• (n - e + 1) (9 - 1) e 

e < xl ....... xe 
q 

and that 
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2.1.6. 

So, c~ininy the formulas 2.1.4, 2.1.~ ~nQ 2.1.6, we find 

2.1. 7. 

from which it is easily derived that 

2.1.8. 

wi th the help 01" lemma 2.1.1 we can prove our goal as follows: 

In the case q = pS, it follows f.om 1.6.12, 1.6.13 and 1.6.14 that 

for 1 t; i ;5 e 

2,1.9, 

whel:e a
1 

~ lN, ti ~ lN, and either for some pair (i.j) we n<lve a
1 

= a
j

, 

or p > e and the numbers a
i 

from a permutation of the numbers 1,2, •.• e. 

Hen~e in any ~ase, except for the case e = 2 and q = 3
s whi~h shall 

be treated in section 3.3, we have, 

2.1.10. 

Then from lemma 2.1.1 we have 2.1.2, 

2.1.11. 

But on the other hand we find from 1.6.9, since q ~ pS. 

2.1.12. /'S I (n - 1) ••• en - e) 

Therefore, one of the n~er5 n ~ i 

where 

2.1.1J. 
e e e 

t > ee - r; -. 2" - 3"" 
p p 

(1 s 

e8 -

t 
i ;5 e) must be divisible by p , 



Henoe we find 

2.1.14. 

NOW, combining 2.1.11 and 2.1.14, we see that there is only a finite 

number of possible parameters (n, e, pS). ~ese were ruled out by a 

oomputer investigation (sea the Historical summary). Therefore we 

~ve the following 

2.1.15. THEOREM. (van Lint - Tiet&v&inen). ~e Golay codes are the 

only perfect e-codes with e ~ 2 over an alphabet GF(q) , where q = pS. 

Recently, the following theorem was proved by A. Tietavainen, 

2.2.1. THEOREM. There does nQt exist a parfect a-code with a ~ 3 and 
s t 

q of the form q = P1P2 

1';l 

we shall give an outline of the proof, which illustrates again how one 

oan treat q with few prime divisors. 

The proot makes use ot th~ee inequalities which cQntradiot eaoh other 

for large n. 

The first inequality is the following about the zeros of the Lloyd 

polyn~ial Pe(X), o~dered in such a way that Xl < Xz < ••• < xe' 

2.2.2. 

Remark that from 1.2.1 and 1.6.8 it follows that for 1 ~ i ~ e 

where ai' b
i 

are unspecified positive integers, and d
i 

~ ~ and 

2.2.4. 
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Fr~ 2.2.3, 2.2.4 ana lemma ~.l.l it follows that, if 0 > 2, a pair 

(xt,X
j

) must exist which has a common divisor which is large with respect 

to xi' 

Yurthermore we have the following inequality, which can ce found in [27J, 

page lIS, 

2.2.5. x ,,(n - e) (9 - 1) +~ 
1 q - 1 + e 

The third inequal!ty is octained from 1.6.6 and 1.6.7: 

2.2.6. 

These three inequalities contradict each other if 

n > 
e/4 

q 

which can ce established from 1.6.9. We refer to [40]. 

The inequality 2.2.5 will also be important fQr QUr inve~tigation5 in 

the case e = 2. It fallows from the fact that the terms in the alter

nating sum 1.6.3 decrease in absolute value if X is smaller than the 

bound mentionea in 2.2.5. 

Remark that if e = 2 then XI and x
2 

need not have a large cornman 

divisor at all. 

ln the following two aections we shall see that in general a perfeot 

e-code is not possible if q h~s less than e prime divisors. 

As an introduction to the section 2.4 we h~ve the follOWing tneorem 

whioh is unimportant after seotion 5.2. 

2.3.1. THEOREM. If a perfect feur-etrer-corractin; cede en q Mymbol. 

dee •• ~i.t, then either q i. divi.i~le by at lea.t four ai.tinct primD., 

or ;04 (q,30) > 1 . 



PROOF. sy e~leulation o~ the coefficients of P4(X) (see 1.6.6, 1.6.7) 

~e have the fol~owing expre$$ions in the zeros x 1,x 2 ,x3 ,x 4 ' whieh mu~t 

be 1ntegers, 

2.3.2. Xl + x 2 + X3 + ><4 
4(n-4) (9-1) 

+ 10 
C[ 

2 2. 2. 2 _ 4)2 -I- 20 (n - 4) "1 -I- :./2 + x
J + >1;4 • 4(n + 30 2.3.3. 

_ 4 (n - 4) {(2q _ l)(n 
2 - 3) + 4} 

q 

3 3 3 3 4(n-4)3 + SO(n - 4)2 -I- 90(n - 4) + 100 XI -I- x2 + x3 + li:.4 • 

n-4 2" + -3- {(n - 4) (12q - 12q + 4) + 
q 

21 

(n - 4) (24q2 + 42q - 36) + (12q2 -I- 54q + 24)} 

Now let p be a prime such that p "' 5 ano let s ~ lN
O 

be ",uoh that 

p'" II q. TheIl from 2.3.2 We see 

2.3.5. p$ I n - 4 

Then fram 1.6.9 it eollows that 

2,3.6. 
4$ 

P n - 4 

Henee We have from 2.3.2, 2.3.3 and 2.3.4, 

2.3.7. Xl + x 2 + "3 -I- )(4 ~ 10 
315 

(moCl p ) 

2 2 2 2 30 (mod p2S) 111 + x2 + x3 + 1(4 -

11 3 3 :> J 100 (mod p') 1 + 112 + x3 + x4 
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~\ 
Now let q .. P1 

S 
r P

r 
~nd gcd (q,30) • ~. Then from 1.6.10 we find, 

2.3.B. 

NOW ~uppose that the smalle~t zero, ~1' wo~lQ be at most 24. ~hen trom 

lemma 2.1.1 we see that either 

2.3.9. n ~ 80 

contradicting 2.3.6 since gcd (q,30) R 1, or 

2.3.10. 

from which it would tallow that 

2.3.11. 

contradicting 2.4.7 since gcd (q,3Q) = 1 and since P4(1) t O. 

Hence Xl is greater than 24 and all zero~ are divisible by ~ome Pi 

dividing q. 

SO if q is divisible by· no mOre than three prime~, then there exist Xi 

and Xj (i t J) which ~re Qivieible by the same prime pep I q). 

So in th~t case it would follow from 2.3.7 that the other two ~eros, 

x and y, satisfy 

x + Y _ 10 (mod p) 

x + y3 _ 100 (mod p) 

Then, succes~ively, the following congruences (modulo p) would hold, 

2.3.13 . 

2.3.14. 30 + 2xy _ lOa, so xy = 35 
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2.3.15. (x + y)3 = x3 + y3 + 3xy(x + y) _ 1000 

2.3.16. 100 + 3.35.10 " 1000 = 1150 

eO p would aiviae ISO. contradicting gcd (q.30) - 1. 

In secttoQ 5.2 we shall see that pe~teot 4-oodes ao not exist at all. 

We n?Ve the followin~ theorem. whioh generalizes in sOme BenBe what 

was aone (by Van Lint and ~ietavainenJ in the sections 2.1 and 2.2: 

2 .4. 1. TIlEOREM. Let U5 assume that there eX1~t5 a perfect e-coo€. on Cj 

syml:>ols, where '.I 
51 sk 

ana (for i ~ {1,2, .... k}) and = PI ... Pk Pi :> e 

P. i e: 
l, 

( 1 + 1/"Z + ••. + 1/£1) • Then k ~ e. 

PROOf. Since fo~ all i we have Pi > e. it follows from 1.6.6 and 1.6.9 

that 

2.4.2. 9,e I n - e 

Now ill lemma 2.4.11 we shall see; 

e £I e e 
2.4.3. I II " 1 II j e: (l 1/2+.~.+ lie) (moo x. - + 

1=1 j~i J 1=1 jfi 

Hence f~OIII .2.4.2 and 2.4.3 we have 

e e 
2.4.4. L II Xj - e: (1 + 1/2 + ••. + l/e) (mod 9,) 

i=1 jl'i 

Then frOm the conditions on Pi we find fo~ i ~ {1,2 ••.. ,k} 

2.4.5. 
e e 
I Il Xj F 0 (mod Pi) 

1=1 jl'J. 

n - e 
-~) 

e-! 
Cj 

[ 
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So at most one of x
l
,x2 , ",xe is divisible by Pi' 

Furthermore, since frOm 2.4.2 

2.4.6. 
e 

n > g 

and since from the conditions on Pi we h~ve 

2.4.7. q ~. e 

and since for the =mallest ~ero of ~e(X) we have the inequality 2,2,5, 

it EOllow~ ~mmediately th~t for 1 ~ i ~ e 

2.4.8. 

Hence,~ince from the cond1t~one ?i > e and from 1.6.10 we have 

e 
11 

i=l 
x. 
~ 

i 1, Z, .•• l<;) 

we fina that any zero xi is diviSible by ~t least ons of the primes 

P! 'P2 ••• f\:' 
Then, since from 2.4.5 we ooncluasd that ~ given prime Pi divides at 

mO$t one of the ~~r06 xl' .• +,xe ' we may ccnclud~ 

2.4.10. 

So we have ?roved theorem 2.4.1 when we h~ve proved lemma 2,4.11. 

2.4.1.1. LE:MMII. Let us assume that the;l;;e exist a perfect e~code with 
51 sl<; 

<;! = Pl'" Pk ' where Pi > e tor i £ {ltl, .• • ,l<;). Then 

e e 
I II 

i=l j# 
(modulo ~). 

e-1 
q 

PROOF. Since fOr all i We have p~ > e, it follows from 1.6.6 and 1,6,9 tha 

2.4.12. 



NOW, ror brierness, let us define 

2.4,13, :6 ;I=Q n - e 

Then, in accordance with the definition l.6.3 of the Lloyd polynomial 

P e (Xl, we have 

2.4.14. e!p (xl 
e 

Then, because 

2.4.16. 
e!P (X) 

e ---= e 
q 

e 1 e 1 r (-1) (1)(<;1- 1l (s+e-X)(s+e-l-X) ... 
i"O 

(s+1+1-X)(X - i)(X-i+l) ... (X - 1) 

NOW, conSidering Qe(X) as a polynomial in s and X, say 

2.4.17. 

we see from 2.4.14 and 2.4.16 that for the coefficient of sO we have, 

2.4.1B. 
e e 
I n 

j"1+l lII~j 
m=1 

(x - m) 

25 

2.4.l9. (1 + 1/2 + ... + f/j + ... + l/e) 
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/\ 
where L/j means that l/j must be re~laced by O. 

Now in the appendix (see A.3) we shall prove: 

2.4.20. 
e.-I i e e! /\ I (-1) (e) I T (l + 1/2 + ... + l/j + ••• + l/e) 
i=O i j=i+l -

o 

and there{ore we have f~om 2.4.19 and 2.4.20 

2.4.:l.l. a
01 

= 0 (mod q) 

Since by 2.4.12 clearly 

2.4.22. s ;; 0 (mod q) 

we see from 2.4.17 and 2.4.21 that the coefficient of x in Q (X) has a 
e 

,;UvisOJ: q. 

Then it follows {rem 2.4.13 and 2.4.16 that lemma 2.4.11 holds. 

In the case 8 = 6 we derive from theorem 2.4.1 the following 

2.5.1. ~~~ReM. If a perfect 6-ccde exists with ~ symbols, where 
sl sk 

q = P1 Pk' then either k ~ 6, or q has at least one pr~e factor 

2,3,5 or 7. 

Since,from the theor~s 2.1.15 and 2.2.1, q must in any case be divisible 

by at lea~t three primes, the first open caae with e = 6 is q = 30. 

The smallest q with no factors 2,3,5 or 7 which is possible fOl: a perfect 

6-code ia q = 11'13'17'19'23'29 . 

o 
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CHAPTER 3 : SOME RESULTS CONCERNING THE CASE e 2 

3. 1. F.bu..t a.pptoa.eh :to ;the c.tU e e '" 2 

In this section we shall ae~ive a parameter representation for the zeros 

Xl and Xl of the Lloyd polynomial PZ(X), defined in 1.6.3. This repre~ 

sentation is stated in the following lemma: 

3.1.1. LEMMA. Assume that there exists a perfect double-error-correcting 

code with pArameters n anO q. 

nJen if q • 2q' 1'100 g' is odd and n - Z is odd we have for some u ~ :to 

3.1. 2. g' (u
2 _ 1) + II + 3 

2xZ = g' (u
Z 

- 1) - \\ + ~ 

In all other oases we htlve for some v ~ :N 

3.1.3. 
2 

+COV+ v + 2 Xl qv 

2 
+qv-v+l Xl • gil 

PROOF. Define 

3.1.4. 

Then from the polynomil'11 condition 1.6.5 we know thtlt t must be tin 

integer. F~th~more. from 1.6.6, 1.6.8 and 3.1.4 we see that 

3.1.5. 
2 :2 

t ~ q .... 4(n - 2) (q - 1) 

Again, combining 1.6.6 a~ 3.1.5 we find 

3.1.6. 

Now t1~stass\lllle that q is odd (so from 3.1.5 t is odd). Then we hll.ve, 

as is well-~nown; 
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3.1. 7. 

~ d (2uv) 

where u and v are relatively prime positive intege~~ and d is the oommon 

divisor, which clearly must divide ~. 

Furthermore, if q is odd we find from ~.Q.Q and 1.6.9 

3.1.8. 

$0 in 3.1.7 we find d = ~ and without lOBS of generality: 

~.1.9. 
2 :2 

u + v 21,lV + 

3.1.10. 2v + I 

from which 3.1.3 ia derived Lffimediately. 

NOW if 4 I q, it also follows frem 1.6.Q and 1.6.9 that 3.1.9 holds, 

sO d = ~. 

:>.1.11. 

we find 

3.1.12. 

whioh is impossible. So 3.1.1 holds and finally we have 3.1.3. 

This is not true if ~ = 2~', ~' is oOd and n - 2 is odd. In this oase 

we See from 1.6.6 and 1.6.9 that Xl + x2 - is odd ana 

3.1.13. 

hence, from 3.1.6 we have a = q' and for some u,v £ :iN which are 

relativel~ prime: 
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3.1.14. x - x 
1 2 

uv 

~~om 3.1.14 1t follcws that 

3.1.15. 2 2 
u + v 

2 2 
u - v + 2 

So we have v 1 and 

3.1.16. Xl - x2 u 

xl + x2 = q'(u
2 

- 1) + 3 

f~om wh1ch 3.1.2 is derived immed1ately. 

~emark that 1f n - 2 is even, then in any oase we have 3.1.3. 

In 3.1.16 we have that u is even. so u in lemma 3.1.1, formu~a 3.1.2, 

is even. Note that if u would be odd, say u = 2v +1, then 3.1.2 would 

be reduced to 3.1.3. 

We can find a mo~e extensive parametrisation a8 follows' 

Again suppose 2 ~ q or 4 I q, ~o by 1.6.6 and 1.6.9 

3.1.17. 
2 

q (n - J) 

Now def ine n € :IN by 

3.1.18. n -

~hen by combination of 1.6.6, 3.1.10 and 3.1.16 we have 

3.1.19. v(v + 1) g n(q - l) 

If q = 2q' and q' 18 odd, then we find in the same way 

3.1.20. uZ 
- 1 .. n' (q - 1) , 

where 

o 
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3.1.21. 

Now we c~n substitute 3.1.19 ~nd 3.1.20 in 3.1.3 and 3.1.2 re5pective~y, to 

find a mOr~ ext~nsive parametrisation. 

3.2. Se~ond apptoach to the ~aQe e ~ 2 

The approach in this section found its insp1r~t1on in Van Lint's ap~oach 

to the special Caee q = 10,cfr. [28J . We shal~ say something about the 

prime divisors of the zeros Xl and K2 of the Lloyd polynomial P2(X), 

using the parameter representations in the preceding section and a 

comQ~nation of the polynomi~l and sphere packing conditions. 

ASSume that there exists a ierfect double-error-correcting 
sl " length n with q .. PI ... P • 

Then by the sphere packing condition 1.2.1 we have 

3.2.1. ( n) (eT _ 1) 2 1 ... n ('1 - 1) ... 2 ... 

Cooe of word 

where ~~ (1 = 1, ••• ,~) 15 a nonnsgative integer and k is defined by 

3.2.2. 

The f~rmul~ 3.2.1 c~n alsO be written in the following form, 

3.2.3. 
k+O:

1 
('1 - 1) «q - l)n + q + 1) (n - 2) ~ 2(Pl 

Now let us define for 1 ~ I, •• • ,l 

3.2.4. 

Then we find from 1.6.8 and 3.2.1 

3.2.5. 

3.2.6. if 2) 



Th~ formula 3.~.5 is useful in combination with lemma 3.1,1 to show 

the nonexistence of double-error-correoting perfect codes for some 

special vAlu~a of q. 

Far thie purpose we gather th~ relevant results in th~ following 

J.~.7. LEMMA. Under the assumptions ~ent1oned above, let xl < x2 ' 

'1'ho;n we have; 

c) unl~aa p 2 or p ~ 3, xl and x
2 

cannot hav~ a prime factor p in 

~omm.on. 

d) Let s b~ a prime factor of q - ~. 

Then either xl - (mod s) and X
2 

_ 2 (mod s) 

2 (~od s) and x
2 

~ 1 (mod s) 

q - is 

(mod q - 1) 

Nl (n - 1) (q - 1) + 2 
~ xl > ~ + ~ 

PROOF. 

a) This is exactly 3.2.5. 

b) This can b~ seen from 3.1.2 and 3.1.3. 

c) This follows readily from b) 

31 

d) This follows from 3.1,19 ana 3,1.20 respectively, and the fOrmula~ 3,1.2 

and 3.1.3 respectively. For example we find th~t 9 divides eith~~ v O~ 

v + 1. 
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e) 'l'hi,s fQllow8 from the formulas ,,6.6 and 1.6.8, or from 3.1.10 

and 3.1.16. 

f) This follows from 3.2.1 and 

J.2.8. 
rt 
L (~) (q 

1=0 

g) This is known from [27 J. page 115. See "lso section 2.2. 

h) From theorem 2,1.15 we m~y assume q ~ 6. Hence this fQllowB from 

g) und from the fact that x
2 

~ n,if n > 3. See also lemma 2,1.1. 

Th~ case q = pS was aLready done by Van Lint in [23J, and ~8 &l~o 

easily treated with lemma 3.2.7. 

First, from ~~ we have 

3.3.1. x x = 
1 2 

Then since from h) x
2 

< 2x1 we see that 

3.3.2. p = 3 

sO for some PQsitive integers a artd b we have 

3.3.3. 

Th~~ from b) we see that if s ~ 2, then Xl + Xz has exactly one faotor 3, 

so for some .i. " IN 

3.3.4, Xl = 6 and x2 
.. ::).i. (9.- ;t 2) , 

or 

"1 = 3 "nd x
2 

= 2.} ( ~ ;;; 1 ) 

Hence, since "2 < 2x
1 

we have 

3.3.5, Xl =' (; and x = 9 
2 
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If s • 1 we find from e) 

3.3.6. 

Then we see frow 3.3.3 an~ 3.3.6 that xl + x
2 

has exactly one faotor 3, 

~o a9ain we nave 3.3.5. Hence in any case 

3.3.7. 15 

Cowparin9 this with 1.0.0 we find 

3.3.8. n(q - 1) = 8q - 2, 

~o 

3.3.9. (q - 1) I 6 

lienee q 3 anct from 3.3.6 n • 11. Then we find the paramet@r~ of the 

ternary Golay cocte. 

This result i~ part of theorem 2.1.15. 

Let ~~~ume the existence of a double-error-correcting code with parameters 
5 t 

nand q = P1P2' where ged (q,o) = 1. 

We shall use the results stated in lemma 3.2.7. 

From a) and 0) it follows that for Some positive integers a and b 

3.4.1. 

Hence it follows from b) that 

3.4.2. 

Therefore we have the following the~em: 

3.4.3. THEOREM. There does not exist a perfect 2-error-correctin9 cocte 
s t 

on q symbols if q = P1P2 and gcd (q,6) = 1 anct P1 = 1 (mod P2) • 
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PROOF. Assuming the existence ot such a code, we would have a cont~~

diction with 3.4.2. 

For eXdmple, an alphabet with 5s 11 t symbol~ is impossible tor a per

fect 2-cOOe. 

Suppose thnt there exists a p8rfect 2-code with q 

section we shall show that p must satisfy some conditions. 

we shall refer to lemm~ 3.2.7. 

~~r~t we mention a theorem which was proved by Bassalygo, Zinoviev, 

~eontiev and Feldman (see [6)). 

3.5.1. ~HeOReM. There does not exist a perfect 2-code on q symbols if 

q = :t3 8
• 

~ike ~1et~v~inen's proof of theorem 2.1.15, the proot makes use of a 

refinement ot the arithmetical-geometric~l mean inequality. 

This refinement was introduced by ~a9range. 

~ike Tiet~v~inen, BassalygO C.s. needed ~ lower bound for x
2 

/ Xl' 

In the case they treated this meant that ~ lower bound had tu be found 

for IA log 2 - B log 31 , where A and S ~re bounded since Xl and Xl 

have an upper bounO n. 

ijence without 10s8 of generality we may assume p ~ 3. Then from al in 

lemma 3.2.7 we find fOr some positive integers a and b 

3.5.2. 

o 

H0nc~ from c) we find for Bome positive integers 0, d, such that c +d = a 

3.5.3. 
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Furthermore we have c ~ :2 because 

3.5.5. 

(n-l)(n-:2) (q _ 1)2 > 0 
2 

P (2) .. (n - ,2)(n - 3) (q _ 1),2 _ (n - 2)(q - 1) > 0 
.2 2 

Now we .;:I.l;e re.i;!.O-y to px-ove the "next two theorems. 

3.5.6. THEO~M. Th~e does not exist a pe~fect 2-cQQe on q symbols 1f 

q = 2kp S and, for some t l lIiI, P = 2t - 1. For instance, C[ oannot be 

2k7s or 2k 31s • 

PROOF. From b) and 3.5.3 follows 

3.5.7. 2" :;; 3 (mod p) 

New if P ,2t _ 1, then 3 ia not among the residues of ,2" (med p) • 

3.5.$. THEOREM. There aoes not exist a perfect 2-coae on q symbols if 

q g ZkpS ana k ~ .2 ana p = (mod 4) . 

for instance, if k 2 .2 it is impossible that q • 2kSS. 

o 

P~OF. Assume k ~ 2. ~f xl and Xz are both even then W@ find a contra

diction to e), considering this equation mOdulo 4. 

HenCe s~nce c ~ 2 we find d ~ 0, 50 C ; a and a 2 2 and from 3.~,3 1t 

follows that 

3.5.9. 

Therefore the equation 8) becomes 

3.5.10. 

Then since a 2 .2 and p = 1 (mod 4) we haVe a contradicti~, considering 

the equation 3.5.10 modulo 4 • o 
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Finally, for the fourth theorem we neeo to look oack at section 3.2. 

If Pl = 2 we fina, beoause in 3.5.3 we have c ~ 2, from 3.2.5 ana 

the fact that Xl and x2 are integers 

3.5.11. 

So trow 3.2,~ we have k + ~1 ~ 3. Hence from 3.2.3 we fina, 

3, S.l Z. (q - 1)( (q - 1)n + q + 1)(n - 2) ;; 0 (mod B). 

Now we are reaay Co prove the following theorem. 

3.5.13. THEOREM. There does not exist a ~erfect 2-oode on q symbols if 

q = 2ps and P ~ 1 (mod B), nor if q = 2p2C ana p = 5 (mea B). For 

instance ~ cannot be of the form 2.17s or 2.2S t
• 

PROOF. Like in the theorem, assume that k • 1, so q • 2ps. 

NOw we dlstingulsh between two ~ases; 

i) n is even. Then fr~ 3,5.12 it follows that n " 2 (mod 8). 

Hence from 1.6.6 we fina 

3.5.14. (mod 8) 

So in 3.5.3 we find d = 0, c a ana 

3.5.15. 

Now if a = 2, then from h) we see that pb = 3,5 or 7. So from 3.5.1 
b ana 3.5.6 w@ h~ve p = 5, ~o Xl d 4 ana x

2 
~ S. ~his contraaicts e). 

So a ~ 3 ~nd from 3.5.14 we see 

3.5.16. 

So we have a contradiction if p = 1 (mod B) or p S (mod B). 

ii) n is odd. Then tram 3.5.12 it follows that 
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3.5.17 . (Cq - l)n + q + 1) = 0 (moa 6) 

Bence we have the follow~n9 ~oe~~Q~~~t~e~' 

3.5.18. n - (llIQd 1)) <lnQ 2q '" 0 (mod. 6) 

n - 3 (mccl a) anQ 4q 2 (mod. 8) 

n - 5 (mccl 8) and 6q = 4 (mod 8) 

n - 7 (mccl 8) ana 8q - 6 (mod 8) 

Th~8e are all contraQ1ct1ons except the third. So nO'S (mod 8) • 

Then frcm 1.6.~ we have, by the substitution n 5 .. Bt 

(2pS - 1) (3 + Bt) 
8 s + x

2
) :3 .5.19. + 3p P (Xl 

Prom 3.5.19 we see ~ad~ately: 

3.5.20. It pS ~ 1 (mod 8) then xl + x
2 

_ 6 (mod 8) 

so frOm 3.5.3 we f1nQ d • 1 and 

3,5.21. 

By substitut~on in e) we find, 

3.5.22. 

Now we see as above that Xl > 4, so c ~ J. Kence we find 

3.5.23. 

This is a contradict~an it p = 1 (mod 8), and if p • 5 (mod 8) and 

8 = 2t. 0 

3.0. Tht ~p~cla! ~t q ~ 30 O~ q = 35 

In this s@ation we Shall treat the CaSe5 q ~ 30 and ~ = 35. 

Th~ following Value8 ate i=po~~ible fet ~ be~ause they are prime powersl 

3.6.1. 



38 

The following values are iwpossi~le Qecause of the theorems 3.5.1, 3.5.6 

and 3.5.6 re5pectively: 

~ cannot be Q,12,18,24 

~ cannot be 14,28 

q cannot: be 20 

Now, before we shall treat the remaining values lO,15,21,22,2Q and 35 

we shall treat: t:he case q = 6 in an elementary way, using the sphere 

packing condition only. 

~.6.3. THEOREM. A perfect 2-code on 6 symbols does not exist:, 

~ROO~. Assume that t:here exists such a code. Then ~y the sphere pack1ng 

condition 1.2,1 we have fcr some k,P. " :lN
O

' 

:>'6.4. 

Osing the sul;>sti tution X m 10n - 3 we have the diophant,l.ne. equation 

3.6.5. 

which reduces by x 2y + to 

3.6.6. 

Hence we have the following two possibilities 

3.6.7. Either y 

or (B) 

NOw we shall treat both cases (A) and (B) 

Now unless t = 0 (so k m 0 and from 3.6.5 x = 3) we find that k + 1 

must be even, say k + 1 = 23. Then we have 

:).6.8. 
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which is a contraaiction since 2
8 + 1 ana 2

s 
- 1 have no factor 3 in 

common.. 

(Bl 

Now unless k 

be even, say i 

3.6.9. 

o (so! = 1 and from 3.6.5 x 

2t. Then we have 

5) we find that ~ mu~t 

Bence we see that t = 1, ~ ~ 2 ana k • 2, so from 3.6.5: x = 17. 

so x = 3 or x = 5 Or x = 17. F~thermOre ~y Qetinition x • lOn - J. 

This is only possible if n ~ 2. But for a non-trivial perfect 2-code 

we must have n ~ 5. o 

In the following all unannounced symbols stand for unspecitied positive 

integers. We shall repeatedly refer to l~a 3.2.7. 

As a~OVe we shall neglect trivial perfect cades. 

3.6.10. THEOREM. (ct~. Van ~int, [28]). A p@rf@ct 2-code dOes not exist 

it q" 10. 

PROOF. Assume that the~e exists such a code. 

Since q = 10 is amonq the values of q = 2pB, P _ 5 (mod 8) we have as 

in the p~oot of theorem 3.5.13 (cfr. 3.5.21) 

3.6.11. 

comparing thia with 3.2.5 we have the more detailed 

3.6.12. 

where from 3.2.4 and 3.2.2 

3.6.13 . 

NOW ~ince from b) we have x2 < 2xl we find fr~ 3.6.12 ~nd J.6.1J 
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3.6.14. and Q: > 0 
1 

Hence WB h~vG frOm f) 

3.6.15. 1 (mod 9), 

so 

3.6.16. ~1 = 6t where ~ > O. 

NOW from 3.6.12, 3.6.13, 3.6.14 and 3.6.16 we find,replacing k - 2 by u: 

3.6.17. 

Whel'e \~ ~ 1 sinoe xl > 2. lienee we ;find by substitution ifl e) 

J .6.18. 5(2.Su ~ 2u+6t)2 _ (2.Su + 2u+6t) = 2 

Then since t > 0 (see 3.6.16) we tind 

3.6.19. 4·5 2u+1 _ Z·Su 2 (mod 16) 

2.S2u+1 Su (mod 8) 

10 _ Su (mod S) 

SU (mod 8) 

50 u must be even, say 

3.6.20. u = 2 ... 

Furthermore we see from 3.6.18 

3.6.21. 2u
+

o5t ~ 3 (mod 5) , 

sO 

~.6.22. u + 6t ~ :3 + <lw 

oontradicting 3.6.20. $0 q 10 is impossible. 

Maybe the fol~owing casG provides ~he best example of the method used 

in ~hi" seetion. 

o 



J.6.23. THEOREM. A perfect 2~coOe ooe~ not exist if q ~ 15. 

~ROOF. Assume that there exists such a cod@. Then for the integral 

zeros "1 and "2 of the Lloyd polynomial P2(X) we have from 3.~.2, 

3.2.4 and 3.2.5: 

61 82 
3.6.24. "1"2 2·3 !) 

3.6.25. ai = k + eli - 2 and Cl 1C1 2 = 0 

Ii'J:QJn lemma 3.2.7 h) it follows that Sl > 0 

FJ:OlIl c) it follows that Xl and x2 are not both divisible by 5. 

FJ:om b) it 1'o).l"",,>, 8itl.~tC! Sl > 0, thAt "1 ano. )<2 aJ:e both divisible 

by 3. 

Since "'10<2 o it folLow~ from f) that if "'i > 0 then 

41 
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i 

6s. The~e1'o~e, replacing k - :2 by u, we have four poSSibilities: 

3.6.n. y 

{x,y} , " = ~ + r" u + 65 

Now from h) lt fO~lOW~ that exl ~nd eJ are impossible, because in these 

oases we would have" > 2y. 

Now We di"'tin~ish between the cases y) and Q) and we will use the 

equation e) which becomes in our case 
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3.6.28. 

y) in this case we have by substitution in 3.6.28 

3.1;.29. 9 

where Sand yare positive and a .. y = u + 6s " 6 Sin~e s ,. O. 

Hence we find from 3.6.29 

3.6.30. 

Now suppose u ~ O. Then, keeping in mind that x
2 

< 2x1 , we have a contra

diction to 3.6.30. So u ~ 0 and since B > 0 we have y " 3, because other

wise we would have a contradiction to h) . 

Now it follows from 3.6.30 that 

3.6.31. 2 

!lence sinCe e + y ;t 6 we have y ;t 4. Therefore we find from 3.6.30 

3.6.32. (mod 9), 

eo 

3.6.33, u + 1 = 6t 

where t > 0 since u > O. Furthermore we have from 3.6.29, since u > 0, 

3.6.34. 

3.6.35. y = 1 + 4v 

Then since a + y u + 65 it follows from 3.6.31 and 3.6,33 th~t 

3,6.36, y = 6t + 6s - 3 

so we have from 3.6.35 and 3.6.36 

3.6.37. 6t + 6s = 4('1 + 1) 

sO v + 1 must oe divisible oy 3 and 



3.6.36. 6t + 6$ = 12w 

Now it follows f~cm 3.6.31, 3.6.33, 3.6,36 And 3.6.38 that 

3.6.39. 

Finally we shall use d) i.e. 

3.6.40. Xl + x 2 • 3 (~od 7) 

Since 27 ~ -1 (mod 27) it follows from 3.6.39 and 3.6.40 that 

3.6.41. 

so 

1 (mod 7), 

so 

3.6.43. 6t - 1 '" 620 

which yields a contradiction. So the case yl is impossible. 

~l In this case we have by substitution in 3.6.26 

3.6.44. 

where a and y Are positive and S + y ~ u + 6s ~ 6 • 

Bence we find from 3.6.44 

3.6.45. 

In the same way as atter 3.6.30 we find y ~ 3 so from 3.6.45 we have 

3.6.46. B 2 

Hence since 1;1 + y 2: 6 we havi!l y ~ 4 and we finO. f~OIIl 3.6.45 

3.6.47. -2 _su _ 1 (mod 9), 

eo 

3.6.48. u 4 + 6t 

43 
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Furthe~mo~e we have !~om 3.6.44 since u > 0 

3.6.49. -4'3Y = 4 (mod 5), 

so 

3.6.50. Y = 2 + 4v 

Th~n sinC~ e + y = U + 65 it follows from 3.6.46, 3.6.46 ana 3,6,50 

that 

3.6.51. 2 + 4v = 2 + 66 + 6t 

3.6.52. 68 + 6t = 12 ... 

Now it follows from 3.6.46, 3.6.48, 3.6.50, 3.6.51 and 3.6.52 that 

3.6.53. lx
1
,x

2
} = {9'S

4+6t , 2'3
2+12w} 

Finally we will use dJ, i.e. 

3.6.54. Xl + x2 ~ 3 (mod 7) 

whi~h becomes, using 3.6.5]: 

] (mod 7) 

3.6.56. 1 = 3 (mod 7) 

whi~h yields a contradiction. so the case 0) is also impossible. 

By careful observation of the above proof We ~ee that our oonsiderations 

modulo 5 a~e in this ~ase superfluous. In general there is not so much 

~oin~idence. Fo~ the foJ.lowing theorems WfC' sllall give the proof~ in a 

mo~e concis~ form. 

3.6.57. THEOREM. A perfect 2-code does not exist if ~ 21. 

PROOF. Assume that there exists such a code with q 21. 

Then we have from 3.2.2, 3.2.4 ana 3.2,5 
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3.6.58. 

3.6.59. 

~~om le~ 3.2.7 h) it follows that a1 ~ 0, 50 t~om b) it follows that 

x1 and x2 are both divisible by 3 but not both by 7. 

Since ~1~2 ~ 0 it follows from f) that it ~i > 0, then 

3.6.60. 

HenGe if we replace k - 2 by u and if we set (x
l

,x2 } ~ {x,y} then from 

h) it follows that there are only two possibilities: 

3.6.61. x = 6 + -r u + 4s 

" = ~ + Y = u + 4" 

where S > 0, y > 0, B + y ~ 4. We shall dietinguiSh between (~) and (6) 

(a) In this caSe we find by substitutiort in e) 

If Y = then by h) we have a contradiction sirtce 6 ~ 1. So Y ~ 2 and 

we see by considerinq 3.6.62 (module 9) 

3.6.63. 6 = 1 . 

New, if u = 0, then since B = 1 we have x = 6, so from h) y = 9. 

But then we have a contradiction to e). So u > 0 and from 3.6.62 

3.6.64. -2' 3'i _ 1 (mod 7) 

3.6.65. y = 1 + 6v 

NOw from d) it follows 
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" + Y = ~ (mod 4) 

5in~e from 3.6.63 and 3.6.65 w~ h~ve 

3.6.67. 

we find a contraoiction to 3.6.66. So the case (~) ie impossible. 

(8) In this case we fino ~y eubetitution in e) 

3.6.68. 

Now if Y = 1, t.hen by h) we e~e, since B , 0., th~t Y 

But then W8 have a oontradiction to e). s6 y ~ 2. 

"herefore we see ~y considering 3.6.68 (modulo 9) 

S = 1 

3.6.70. _6'7U ~ 6 (mod 9) 

3.6.71. 7
u 

" 2 (mod 3) 

6 and " 

which y~eldB a contradiotion. So (~) is also impossi~le. 

9. 

In the following example we ",llal).s«e that a=et.imes w« need consideration;, 

with oongruences modulo a prime which does not divide q nor q - 1. 

3.6.72. THEOREM. A perfect 2-cods with q ~ 22 does not e~ist. 

PROOF. Assume that there e~ist5 ",uch a oode. ~hen we find from 3.2.5 

3.6.73. 

Hence we see from 0) that tw ",oms a,b C lN
O 

3.6.74. ~1 + 1 

o 



Hence we have by substitution in e) , 

3.6.75. 

FrOm h) we see that ~~ > 0, so again using h) we see that a ~ J. 

Th~efore, by considering 3.6.75 (modulo 8), we see that b cannot be 

1 or 2. Furthermore, if b ~ 3, then h¥ h) we See that a > 3 and we 

finO a contradiction by considering 3.6.75 (modulo 16). So b a 0 or 

b .. 3. 

a) Let uS Bu~po5e b 0, so from 3.6.74 and 3.6.75 

3.6.76. 

and 

3.6.77. 
fl2 2 

11(2a 
- 11 l -

From 3.6.77 we find 

3.6.78. 2
a 

:: 3 (mod 11), 50 

3.6.79. 8 .. lOu 

8 

Hence since a ~ 8 we find again from 3.6.77 

3.6.80. 

so 

3.6.81. 

Now from ell we see 

2.!l :: 
e 

3.6.82. 1 (mod 21) and 11 2 - 2 (mod 21), 

or e 
2.!l ~ 2 (1Il0C. 21) and 11 2 - 1 (Illod 21) 

Since from 3.6.79 a is eve~ws lies 

47 
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3.6.83. 2
a = 1 (mod 3) 

So boom 3.6.S2. 

3.6.84. 2
a 

;; 1 (mod 21) 

a = 6w 

So from 3.6.82 and 3,6,84 we have 

3.6.66. 
S2 

11 (moo 21) 

3.6,87. ~2 5 + 6z 

Now by comb1nation of 3.6,79 and 3.6.85, 

"nd 3.6.81 "nd 3.6.87 respectively, we see 

3.6.88. a = 18 + 30v 

:.1.6.89. 

NOW since we have the following congruen",% modulo 13, 

J.6.90. ± (mod lJ) 

3.6,\Jl. 11 5 +125 
-6 (mod 13) 

we ,;,,'" that we have" contradiction by subst! tution in 3.6.77, consider1n~ 

the equation modulo 13. 

B) Now let uB BUFFo5e that b ~ 3, 50, from 3.6.14 ~nd 3.6,75 

3.6.92. 
a BZ 

{)<1')(2} = {J ,8·11 ) 

3.6.93. 6 

Like in the case cd we have 

~.6.94. a = 16 + 30v 



aut in this case we have instead of 3.6.86 

3.6.95. 2 (mod ~l) 

Hence we fina from 3.6.~2, 3.6.94 and 3.6.96 

3.6.97. 

Now sinc@ we have the following congruences modulo 5: 

3.6.98. 218+30v = ~ 1 (mod 5) 

3.6.99. 8'11
2
+6z = 3 (mod 5) 

we see that we have a contradict~on by e~st1tution in 3.6.77, con

s~der1ng the equation modulo 5. 

3.6.100. THEOREM. A perfect 2-cDae does not exist if q 26. 

FROOF. AS8~e that there exists such a code. 

Since q = 26 is among the values of q = 2pS, P ~ 5 (mod 8). we have 

a~ ~n the proof of theorem 3.5.13 (cfr. 3.5.21) 

C~~ing thi~ with 3.2.5. 3.2.2 and 3.2.4 we have the more detailed 

Now since from h) we have x2 < 2x1, we find fram 3.6.12 and 3.6.13 

3.6.103. ~2 = 0 and ~l ~ 0 

Hen~e it fo11ows f~om f) that 

o 
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3.6.104. /'1 _ 1 (moa 25), 

so 

3.6.105. a
l 

= 20s and 5 ~ 0 

Now from 3.6.101, 3.6.102, 3.6.103 and 3.6.105 we have, replacing ~ - 2 

by u. 

where u > 0 since xl > Z. Henoe we find by substitution in e) 

3.6.107. 13(Zu+20s _ 2'U u )2_ (Zu+20s 

Then since S > a (see 3.6.105) we find 

3.6.108. 40132u+1 2ol3u - 10 (mod 16) 

2. 13 2U+l UU 
- 5 (mod 6) 

26 13u .. 5 (moo 8) 

Uu 
~ 5 (rnoa 8) 

so U must ~e odQ, eay 

3.6.109. u = 2v + 1 

Furthermore, we see from 3.6.107 

3,6.110. 2u+20s ~ 3 (mod 13), 

so 

3.6.111. u + 20s = 4 + 12t 

+ 2·lJu) 

contradicting 3.6.109. So q = 26 is impossible. 

10 

We see that the proof for the case q = 26 is completely analogous to 

the proof for the case q = 10. Yet we cannot find a general nonexistence 

proof for the case q = 2F (p ~ 5 (mod B)), since we naed explicit con-

gruences. 

In the next ~heorem we meet the first val~e of q which has no factor 

;2 Or 3. 

o 



3.6.112. ~OREM. There does not exist a perfect 2-coae if q ~ 35. 

PROO~. Assume that there exists such a code. Then we have from 3.2.2, 

3.2,4 and 3.2.5, and oj in lemma 3.2.7 

3.6.113. or 

where 61 m k + a~ - 2 and ~1~2 ~ 0, 

Furthermore, since from h) x
2 

< 2x
1 

we have 

In the latter case it should follow from 0) that 

3.6.115. 7 = 3 (mod 5) 

which is not true. Bo we have 

3.6.116. ~2 ~ 2. 

NOW if a
2 

> 0 then since a
1a2 

So we Untl 

3.6.117. a 2 • O. 

Hence from f) we have 

3.6.118. 

3.6.119. al = 16s, where e ~ 0 

o we have 62 > 8
1

, contradicting hJ. 

Then, replacing k - 2 by u we have from 3,6.113, 3.6.117 and 3.6.119 

where from 3.6.116 it follows that u + 16~ ~ ~ 

51 
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We shall treat the cases (~) ~PQ (b) ijeparately. 

a) Ip this C~5e we have by substitution in e) 

So since u + 16s ~ 2 we finQ 

3.6.122. 5.7
2u

+
1 

- 2'7
u = 4 (mod 25) 

So since 49 = -1 (mod <5) we have 

3.6.123. 10(-1)~ - 2.1
u ~ 4 (mod 25) 

Furthermore we have fram 3.6.121, since from ~.6.124 we have u is odd. 

3,6.125. 3(4 + 4 + 1) - 2(10 + 7) ;, 5 (mod 8) 

which is a contradiction. so the case (a) is im~o8sible. 

b) In this case we have by substitution in e) 

sO since u + 16s ~ we f;i.pd 

J,6,127. 10'4'7
2u 

- 4'7u 
0: 4 (mod 25) 

3.6.128. 10(-1)u - 7ll = 1 (mod 25) 

But this is a contradiction since the left hand side Of 3,6.128 is (mod 25) 

equal to 8, 11, 22, 9 respectively if u = 1, 2. 3. 0 (mod 4). 

The next o~en cases are q 

.,.nd 'I = 33. 

30, which will be treated in section 3.7, 

~he imp~tleht re.,.eer may try to tre~t the c~s@ q = 33 in 80me way like 

q ~ is Or Q ~ 21. 

o 



Remark that the ease ~ = 34 is ruled out by theor~ 3.5.13, ~o ~!ter 

~ = 33 the tirst open ease is q = 38 (for q. 36 see theorem 3.5.1). 

But at this moment we shall make a stop. 

3.7. The ~pecia1 ~ahe ~ = 30 

In oux investigations the ease ~ = 30 is otten the first open case. 

Tne reason is that 30 has ~ee small distinct prime divi~ors (cfr. 

"napter 2). 
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In 3.6 the ease ~ = 30 was left out because otherwise the paragraph 

would become too lengthr. 

Nevertheless, in the following we shall refer to the results in lemma 

3.Z.7. The outcome 1s the following non-existence theorem, 

3.7.1. THEOREM. A perfect 2-code on 30 symbols does not exist. 

PROOf. Assume that there exists such a code. Then from a) in lemma 3.2.7 

we find that fOJ: some a,b,e ~ NO we have 

.>.7.2. 

Now if two of a,b,c ~e equal to zero, then we have a contradict~on to 

h). So at most one of them can be Z~O. Now first we shall treat the 

case" a "'0, b .. 0, and c = 0, respectively. 

~) Let us suppose a = O. Then b ~ 0 and c ~ 0. 

'rhen it follows from b) and c) that for sQIlle b 1 ,b,2 ~ :IN with 

b
1 

+ b2 = b we have 

3.7.3. 

Then we have by substitution in e) 

3.7.4. 



b 
Now since 3 25C ~ IS, we have from h) that b

1 
~ 2. 

The~efore we see by considering 3.7.4 ~odulo 9: 

3.7. S. 

~o 3.7.4 becomes 

3.7.6. 
b b 

15(3 1 _ 3.5c )2 _ (3 1 + 3.Sc ) = l~ 

NOW by oonsidering 3.7.6 modulo 5 we Bee that 

3.7.7. 
b

1 
5) 3 - 3 (mod 

3.7.8. b l = 1 + 4t 

~o since b
l :.: 2 we, find b

1 ~ 5. Ilence we find from 3.7,6: 

3.7.9. 

5
C 

_ 5 (mod 9) 

3.7.10. C .. 1 "' 68 

Hence since from 3.7.8 and 3.7,10 b1 and c are both odd we see by 

considering 3,7,6 mOdulo 8: 

3.7.11. - (3 - 1 5) 2 - (3 + 1 5) :: 4 (woo 8) 

which yields a contradiction. So it is impossible that a O. 

ii) Let us suppose that b = O. Then a > 0 and 0 ~ O. 

Then it follows from c) that for some a 1 ,a2 " lN
O 

with a 1 + a 2 
we have 

a a 
3.7.12. {x 1 'x2} .. {2 1,2 25"} 

Then we have by substitution 11' e) 

... a a a 
3.7.13. 15 (2 1 _ 2 25c )2 - (2 1 + 2 25 0

) 12 



NOW frOID 3.5.4 and 3.5.5 W@ find a
1 

~ 2. 

If a
2 

= 0 we therefore have frow 3.7.13 

3.7.14. 2 ;; 0 (mod. 4) 

which is a contradiction. If a 2 = 1 we have also 3.7.14. 

If a 2 ~ ~ then from h) we see that a
1 

~ 3, so we have a contra

diction to 3.7 •• 3, considering the equation modulo S. aence we 

fino. 

3.7.15. :2 

so 3.7.13 becomes 

3.7.16. 

3.7.17. 
.:I 

2 1 " 3 (mod 5) 

3.7.18. a 1 '" 3 + 4s 

so .:11 is odd. $0 from d) we have 

3.7.19. 
.:11 

2 ,,2 (mod 29) 

4_.,0 ';: 1 (mod 29) 

3.7.20. c = 5 + 141: 

Furthermore we see from 3.7.16 

3.7.21. 
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which yields a contraoiction, sinee follOWing 3.7.18 and 3.7.20 a
1 

and c are both odd. So it is impossible that b m O. 



:>6 

iii) Let us su~~ose that c = O. Then a > 0 and b > 0 ~nd ~t tollows 

that for some a
1 

'''2 ,b
l 
,b

Z 
• lN

O 
chosen in a way that a

1 
+ a 2 = a 

and b 1 + b2 ~ b we have 

3.7.22. 

Furthermore, since b > 0 it fallows from b) that 

~. -;. 2J. 

and from h) It follows that 

3."1.24. and 

By substitution in e) we find 

a b 
1~(2 13 1 

So since b 1 and b 2 are positive we find 

3.7.26. 

Therefore, and slnce we have 3.7.23 and 3.7.24, we have without 

10s8 of generality 

J. -;.27. and 

So from 3.7.22 we find 

3.7.28. 

NOW since b
2 

~ 2 w~ ~ee from h) that a 1 ~ 1. 

Now suppoee at < 3. Then by h) and 3.7.27 {Xl,x.) is one of the I 

following pairs, 

3.7.29. {6,9) or {9,12} or {12,18} 

Then we have a cont~adict~on by Bubstitution in e). so we have 



3.7.30. 

Th~n w~ f1~ from 3.7.25 and 3.7.27 

3.7.31. 

Thereto~e we see that we have two subeases. 

3.7.32, (Al 

(8) 

(Al In thiS 6ubcase we have from 3.7.~6 

3.7.34, 

a b 
{~1,x2} • {3·2 "1,3 2} 

Fr~ 3,7.27 and 3.7.34 we have b
2 

~ 3. So from 3.7.16 and 3.7 .• 7 

we have 

:3.7.35. 
a 

2 1 " 5 (mod 9) 

3.7.36. 

F~Om 3.7.33 we see by substitution in e) 

3,7.37. 3·2 
a

1 
+ 3 

b
2 :;; 3 (mod 5) 
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since b
2 

and a
1 

are both odd (see 3,7.34 and 3.7.36) this is only 

possible if 

3.7.38. a
1 

• 1 + 4u 

3.7.39. ... 4v 

Now we have from d) in ],2.7 



sa 

J,7.40. 
);>2 

Either 3 ~ 1 (mod 29) 

Since b2 is odd we find that we must have the latter cong~uenGe, 

so 

~.7.41. b2 = 17 + 28w 

But 3.7.41 contradicts 3,7.39, 50 the subcase (A) 15 1mpossibl@. 

(a) In this subcase we have followin9 3.7.28 

3,7.42, 
e b 

{x
1
,x

2
} = {3.2 1,4'3 2} 

Hence by eubstitution in e) we have 

3.7.43. 

From 3.7.27 we have );>2 ~ 2, Now if b
2 

2 then we heve from h) 

3.7.44. 

);>v~ these pairs contradiQt e) in lemma 3.2.7. so we have b2 2 3, 

and we find from 3.7.26 and 3.7.27 

3.7.45. 

3,7,46. 

So a 1 2 5. Therefore it follows from 3,7,43 that 

3.7.47. 4 (ll)Od 16) 

b
2 

3 1 (mod 4) 

3,7,48. 

Furthermore we h~ve frOm 3.7.43, 
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3.7.49. 
a b 

3.2 1 + 4'3 2 = 3 (mod 5) 

Since a
1 

!s 000 ano P
2 

is even (see 3.7.46, 3.7.49) this is only 

possible i;f 

3.7.50. 

Now again we f1nQ from Q) 

3.7.51. 
b b 

Either 4·3 ~ = 1 (mod 29) or 4.3 2 ; 2 (mod 29) 

Sut from these two congruences it woulo follow th~t, respectively 

3.7.52. Either b2 = 22 + 26w or b2 • 11 + 26w 

and we Bee that 3.7.52 con~aQicts 3.7.~0. Hence the stibcase (B) 

iB dl~g impos~ible. Therefore we see that it is impOSS!Ple that 

c '" o. 

NOW we have seen in the cases i), ii), iii): 

3.7.53. llbc :> 0 

Hence we have from 3.7.2, and b) and 0) 1m'lemma 3.2.7, some a 1,a2 € ~O 

with a
1 

+ a
2 

.. !l. anQ some b 1 ,b2 " ~ with b 1 + b 2 = b such that 

3.7.54. 

NOW we shall first show that a
1 

llnd ll2 are both poe!tlve. 

Assume a 1a 2 = 0, so either a 1 = 0 anQ by 3.7.53 a 2 ~ 0, Or !l.2 

by 3.7.53 a
1 

> Q. 

~ b 

o and 

) A ~ 0 h h 0 23 25 0 
1 Let us assume a

1 
= ~~ a

2
:> • T en we dVe ~ " 30, so from 

h) it follows that b
1 

~ J. 

Furthermore we have by substitution 1n e) 
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3.7.55. 12 

50 since b
1 

~ 3 we see from 3.7.55 

~.1.56. 15 (mod 27) 

so we have 

:1.7.57. 

;1.7.58. 

Again it follows fro~ 3.7.55 that 

3.7.59. 
);)1 

3 :: 3 (mcd 5) 

3.7.60. );)1 = 1 + 4s 

Hence );)1 is cdd. ~herefore we have from 3.7.55, since a2 > 0 

3.7.61. 
a 

3 - 2 43 SC - 3 = 0 (mod 4) 

so a
1 

~ 2. Again from 3.7.55 we find 

a 
-1 - 2 23 SC - 3 = 4 (mod 6) 

so &2 ~ 3. ~hen we find from 3.7.55 and 3.7.60 

3.7.63. 
a 

-9 2 23 SC - 3 _ 12 (mod 16) 

3.7.64. 3 

So from 3.7.57 and 3.7.64 we have 
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3.1.105. 
h 

{3 1,24'SG
} 

Now from d) in lemma 3.2.7 we find 

3.7.66. 
b

1 Either 3 _ 1 (mod 29) and 24.50 
_ 2 (mod 29) 

b
1 or 3 ~ 2 (mod 29) and 24.5

c = 1 (mod 29) 

Now since from 3.7.100 b
1 

is odd, the L~tter congruences must hold. 

Hlllnce we find 

:;1.7.107. b 1 .. 17 + 2ev 

3.7.6e. c = 6 + 14w 

In particul~r we find c ~ 2. Hence we find from 3.7,~5 

3.7.69. 
b 

3 1 ~ 12 (mod :25) 

Now it is ij~~i~htforward to oheck that if hI iij odd, then 

3.7.70. 
2b 

15.3 1 = 10 (mod 25) 

so from 3.7.69 ~nd ~.7.70 Will find 

3.7.71. 
b 

3 1 ~ ~3 (med 25) 

3.7.72. 

NOW by substitution of 3.7.65 in @) we have 

3.7.73. 
/;l b 

15(3 1 _ .;!4,'So)2 _ (3 1 + 24'5°) • 12 

Furth~more modulo 31 we have: 

3.7.74. 5
c 

;; 5, -6 OJ:" 1 
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3.7.75. 
°1 

3 _ * 4, ± 11 or ± 7 

because f~om 3,7.72 01 ~ 3 (mod 5). Now it is straightforwaro to 

coeck toat 3.7,74 ana 3.7.75 contradict 3.7.73. So the subcase ;) 

is impossible. 

2) Now suppose a 2 
from 3.7.54: 

Q ana a
1 

~ 0, ~ben we have by substitution in e) 

3.7.76. 12 

So s~nce 01 and b2 are positive 

3.7.77. 

lienee at least one of 01,b" is equal to 1. Therefo;t;e we shall treat 

the (partl:,' ove;t;lapping) subcases ~) and B) where 01 ~ 1, b 2 = 1 

respeotively. 

1, so 

;',7.78. 

ana by ~uo~titution in e) 

a b 2 a :0 
3.7.79. 1;,(3'~ 1 J 250 ) (]. 2 1 + 3 25°) 12 

so 

a 
3.7.80. J.2 1 3 (mad 5) 

3.7.B1. III = 4s 

so a 1 
;, .. "no ;f;;t;om 3.7.79 
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Zb 
_ 3bZSQ 

3.7.82. -(3 2S2c) - 12 (lood 16) 

So by checking- all 16 possibilities we find 

3.7.83. Eithe;t" °2 ~ + 4u and c - .2 + 4v 

or b
2 

+ 4v and c • 4v 

Let us suppose b 2 = 1. Then t~om d) we find; 

3.7.84. 
.!l 

Either 3.Sc _ 1 (med 29) and 3.2 1 _ 2 (mod 29) 

a 
3.5c ~ 2 (mod 29) and 3.2 1 _ 1 (mod 29) 

Since, froljl 3.7.83, c is even we see that the latter congruences must 

hold. But then this contradict6 3.7.81. So b
2 > l. 

Bence from 3.7.83 we Hnd 02 ;;, 3. 

'l.'he~afore, an<;l. !lince in this subcase b
i 

c 1 we find f~om 3.7.77 

3.7.85. 

3.7.66. 

which yields .!l Contradiction to 3.7.81. So the case a) 1s impos6ible, 

so hI > 1. 

~) So in the case 2) we have b
2 

3.7.87. 
h a 

{x1'~2} • {3 12 l,3'Sc } 

1 and );>1 > 1 and 

NoW f1rst suppose b
i 

= 2. ~hen from b) in lemma 3.2.7 we find 

3.7.88. 
a 

9· 2 1 " J (mod 5) 

3.7.89. 

FrQlll 0) we have 



.. 
S/.2

a1 
3.7.90. Either 9-2 1 - (mod ::29) or - 2 (mod 29 

3.7.91. Either "1 = 18 + 28v or a
1 

= 19 + <!6v 

which contradicts 3.7.69. So );)1 ;, 3. 

By substitution of 3.7.67 in e) we h .. ve 

).7.92. 12 

so ~ince );), ~ ] we find 

3.7.93. 3'S
O 

, 15 (mod 27) 

3.7.94. SO = 5 (mod 9) 

3.7.95. o ., 1 + &5 

Now frum d) it follows th .. t 

3.7.96. ~1ther 3_S
c ~ 1 (mod 29) or 3·S

c 
-' 2 (mod 29) 

By checking fill possl);)le values of c (mod 14) we find 

3.7.97. )'SO = 2 (mod 29) and C = 10 + 14t 

whiCh is a oontr .. d~ct10n to 3.7.95. SO S) is lm~o5s1ble. 

$0 2) is im~ossible/ and in I) and 2) we have proved that we h"ve 

3.7.99. 

By substitution in e) we h"ve 
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Now by considering 3.7.100 modulo 9 we see that at least one of b
l
,b

2 
must be eq~l to 1. 

Furthermore, by considering 3.7.100 modulo S "Ie see that one of the 

following possibilities must hold 

3.7.101. Either a 1 = "2 

is at least 3. 

1, or one of a 1 ,a2 equals 2 and the other 

Therefore we have six cases: 

(1) b
1 

• and a
1 

• a.
2 

• 1 

(2) b
l and a 2 " 2 and "'1 

~ 3 

(3) b
1 

.. and a1 = 2 a.nd 012 
~ 3 

(4) b
2 

and a
l 

a
2 

= 1 

(5) b 2 and "2 2 and a 1 
<; 3 

(6) b2 ;'ind OIl 2 ;'J.fid ''':: ;): 3 

(0 1n this caee "Ie find t:.;om 3.7.~9 

b 
3.7.102. {x

1
,x

2
} = {G , 2.3 2Sc} 

and 

and 

and 

and 

and 

which is impossible beca.use of h) in lemma. 3.2.7 

b2 " 

b2 
~ 

b2 " 

b
1 

> 1 

b
1 

,. 

b 1 
> 1 

(2) In this CaSe we find from 3.7.99 and 3.7.100 

3.7.104. 12 

Now if b2 ~ 3 we have 



'" J.7.105. 3'2 1 

3.7.107. 

15 (moct 27) 

Furthermore. in any ca5~ we have 

a 
3.7.108. 3-2 1 ~ 3 (mod 5) 

3.7.109. a
l 

= 4s 

Hence 3.7.107 contxadicts 3.7.10~. So b2 ~ 2 

Now since from ~.7.109 a
1 

~ 4 we see from 3.7.104 

3.7.nO. 
b 

4.3 25° 4 (Mod 16) 

3.7.111. 
b 

3 250 

" 1 (mod 4) 

3.7.112. b
2 

.. 2u 

$0 Bino" b
2 

~ 2 we fina 

3.7.113. b
2 

= 2 

Hence we find from 3.7.104 

3.7.114. 
a 1 36'5" 15 (IjlOd 27) 3'2 + -

3.7.115. :2 
a

1 + J.!;; 
c 

!;; (Illod 9) 

But since from 3.7.109 a
1 i" even, sO 

3.7.116. 2 
a

1 
~ 4, 7 or 1 (mod 9) 

we ;l;ind a contradiction to 3.7.U5. $0 (2) is impossible. 



(3) In thi" C;Jlee we Un<'! t~OllI 3.7.99 

a b 
3.7.117. {x

l
,x

2
} = {12,2 23 2Sc} 

where a
2 

~ 3 and b
2 

~ 1 and C ~ 1. This contradicts h) 

(4) In this Case we find from 3.7.99 and 3.7.100 

b 
3.7.118. {x

1
,x

2
} = {2.) 1.6 • Sc} 

b ~ 
).1.119. 15(2,3 1 _ 6_5°) 

F~o~ 3.7.119 it follow~ that 

b 
3.7.120. 2.3 1 ~ 3 (mod 5) 

Now from d) it follows that 

3.7.122. 
b 

Eith@r 2.3 1 _ 1 (mod 29) 

eo 

12 

. b 
2.3 1 _ 2 (~od 29) 

3.7.123. ~ithe~ b
i 

• 11 + 28v o~ b
i 

R 28w 

and W~ S@@ that 3.7.123 eontradicts 3.7.121. Hence (4) is impossible. 

(5) In this cas@ w@ find from 3.7.99 and 3.7.100 

a b 
3.7.124. {x

1
,x

2
} = {2 13 1,12.Sc } 

a b a b 
3.7.125. 15(2 13 1 _ 12.5c )2 _ (2 L~ 1 + 12.5°) 12 

Now if a
1 

2 4 then W@ ~@e from 3.7.1i5 

67 
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3.7.126. 12'5~ ~ 4 (moa 16) 

whioh is a con~adiction. So a
1 

~ 3. Then since in (5) we have a 1 ~ 3 

we fina 

3.7.12B. a
1 

= :> 

Hence we tina t~o~ 3.7.125 

b 
3.7.129. 8'3 1 _ :> (mod 5) 

3.7.130. 

Now following a) we must have 

b b 
3.7.131. Eithe~ 8'3 1 ~ 1 (mea 29) or 8.3 1 _ 2 (mod 29) 

but it is stralghtfo~wa~a to ehow that thie is impossible it 3.7.130 

holds. So the case (5) ia impossible. 

(6) In this case we find f~om 3.7.99 and 3.7.100 

b II 
3.7.132. {~1'X2} = (4'3 1,3'2 2Sc} 

b 
3.7.133. 15(4'3 1 

Hence we find 

l;l 

3.7. 134. 4.3 1 " 3 (mod 5) 

Now it a 2 ~ 4 then it tallows from 3.7.133 that 

b 
3.7.136. 4'3 1 4 (mod 16) 



3.7.137. 

3.7.138. 

b 
3 1 = 1 (mod 4) 

b .. 2t 
1 

~ontrad1cting 3.7.135. So a
2 

S 3. since in the case (6) we have ~2 ~ 3 

We fino 

3.7.139. 01
2 

= 3 

Hence we find from 3.7.132 and 3.7.133 

b 
3.7.140. {x

1
,x2 } = {4.3 1,24'Sc } 

b b 
3,7,141, 15(4.3 1 _ 24.S c )2 _ (4.3 1 + 24'5°) • 12 

Now since, from 3.7.135, b
1 

2 3 we find 

3.7.142. 24'5° 5: 15 (mod 27) 

3,7,143, B.5
e ~ 5 (mod 9) 

3.7.144. c = 4 + 6t 

So c is even. Henc~ 

3.7.145. 5° =' 1 (mod 8) 

3.7.146. 24'5° = 24 (mod 64) 

Purthermore, from 3.7.135 we find 

3,7.147, 11 (moo 16) 

b 
3.7.148. 4.3 1 _ 44 (mod 64) 

and 

3.7.14<;). 
21:>1 

3 ,,1 (mod 4) 

2b 
3.7.150. 16·J 1 .. 16 (m<;>oj, 64) 
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Hence from 3.7.141, 3.7.146. 3.7.14S ano 3.7.150 we have 

3.7.151. 15-16 - 44 - 24 = 12 (moo 64) 

which is a contradiction. So (6) is also impoeeible. 

Hence we have proved the th~or~m. o 
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CHAPTER 4 :SOME GENERAL RESULiS CONCeRNING n 

4. 1. A. 6.vw,t 1I.ema/1.k.abou.tn 

4.1.1. LEMMA. Let n, q 
a2. 

P~ ,e ~e the traditional parameters 

of ~ perfect code C. k 

Let 1 + n(q - 1) + .•• + (:) (q - lIe = P
I

1 

for all i € {1/2/ ... ,2.} such th~t k
i 

- e a
i 

' 0 and Pi > e, n - e 

PROOF. ~t Pi > e and let n - e have ex~otly 0i factors Pi' Then, 
i moQulo Pi ,we have: 

4.1.2. 1,. n(q - 1) + ••• + (n)(q_l)e_ 
e ~ i e l: (i) (q - 1) .. q 

~o we have 

4.1.3. 

Now from 1.6.S we find 

4.1.4. 
e ,k 
lIXi=~pl 

e 1 
1=1 q 

e 
1=0 

HenOe we find k i ~ eai' and We See from 4.1.3 that hi z eai if 

k
i 

> ea
i

, that means: if 

4.1. 5. 
e 
IT Xj • 

j=1 

Furthermore, from 1.6.6 and 1.Q.9 we see, since Pi > e, that b
i 

~ ea
i

. 

Thus hi = e"i' o 



72 

4.2. A ~e~ond 4em~h ~bo~ n 

4.2.1. LEMMA. Assume that there a~ists a perfect a-code with e ~ 2 and 

q 2 2 and 1'1 S 1000. 

Then this code i6 ona of the two Golay codes. 

~ROOf. From 1.6.9 we see that if p is prime and p I q, then 

4.2.2. pe I (n - 1) (n - 2) ... (1'1 - e) 

~ence there exists an i € {l,2, ... ,e} such that 

4.2.3. 

where 5 is defined by 

4.2.4. 

Then since 

s ;" e - [~J - [e
2 

] -
p :.> 

s > ,;,(.12....:..1.) 
p - 1 

we finO from 4.2.3 

4.2.6. 

Now first assume e ~ 3. Then since q must be divisible by at least th~ee 

distinct primes (if q does not belong to a triple Of Golay parameters) , 

afro 2.2.1, it must be divisible by a prime p which is at least 5, so 

we find fram 4.2.6 

4.2.7. n , ~3/4e 

Then if 1'1 ~ 1000 we find @ ~ 5. 

'rhe cases e = 3 ano e = 4 are treated, independent of this section, in 

5.1 ~nd 5.2. We only have the binary Golay code. 



If e = 5 then, for the same reason as ~ove, ~ ~ust ~e divi~i~le ~y 

a prime p which is at least S, and we find from 1.6.9 that for a 

certain i ~ {1,2,3,4,5} 

4.2.B. r/ I (n - i) 

sO we have 

4.2.9. 

oontradicting our 11~~umption~. 

So e must ~a 2. In this oa~e we ~ee f~om 1.6.6 that 

4.2.10. q I .2 (n - 2) 

Now first assume that q is oda. Then from 4.Z.10 and 1.6.9 we find 

4.2.11. </1 (n - 2) 

so if n ~ 1000 then ~ ~ 31. But the odd ~ with ~ ~ 31 were treated in 

chapter ~ and we only found the ternary Golay oode. 

Now ass=e 

4.2.12. q = 2kq' where q' is odd. 

Then from 4.2.10 we find 

4.2.13. 

Then if k ~ 2 we find from 4.2.13 and 1.6.9 that 4.2.11 hold~, so if 

n ~ 1000 then q ~ 31. But the q with k ~ 2 and q ~ 31 ware treated in 

ch~pter 3. No perfect cOde was tound. 

If k = 1 we find fram 4.2.13 amd 1.6.9 

4.2.14. q' Z I (n - 2), 

so 

4 • .2.1 S. 
2 

q I 4 (n - 2) 

So if n ~ 1000 then q ~ 63. Furthermore, since from 2.1.15 q is not a 

prime power, and since q has @xactly one tactor 2, and since the cases 

q S 30 were already t~eatad in chapter 3, we have 
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q = 34,38,42,46,50,54,58,62 

~n the appendix (see A.4) we shall e~plain how these last cases a~e 

treated. 

4.3. The e~tence 06 an upp~ bound N(e,q) 6o~ n 

The fallowing lemma follows from a well-known result of c.L. Siegel 

from number theory (ofr. [33], [37]). 

4.3.1. LEMMA. Let p(X) oe a polynomial such that if a f Z. then p(a),' ~. 

Assume that p(X) is not of the form s(uX + t)k, where s, u, and tare 

real constants and k ~ :iN, For n ~ IN. let ~ oe the largest p~1me 

factor of p(n). 'rhen "'NrilN 3M"lN "'n~~ [n ~ M .. qn :> N]. 

With the help of lemma 4.3.1 we can prove the foLlowing theorem. 

4.3.2. THEOREM. Assume that the~e exists a perfect code with p~ramete~5 

n, e ~ 2 and q. Then n is bounded by a number N(e,q) depending only on 

e and q. 

PROOF. Let the polynomial p(X) be defined by, 

4,3,4, p(X) 

Then if a ~ ~ we have pta) € 2, Moreover, assume that for sOme con5tant~ E 

and t and 1< ( IN wa have 

4.3.5. p(X) = s(UX + tlk 

?:hen k e, and since from 4.3.4 and 4.3.5 

we find 



4.3.7. where r j" u 
t 

From 4.3.4 an~ 4.3.7 we have: 

4.3.9. p(l) .. q ~ (I + r)e 

4.3.9. p(2) ~ ~2 .. (1 + 2r)e 

Th@n, oomparing 4.3.9 and 4.3.9, we find 

4.3.10. 

sO r = 0, whence from 4.3.8 we have q = 1, Which is not possible. 

So, since p(X) is not of the fOrm 4.3.5, we can apply lemma 4.3.1. 

Now take Q > q. Then there is a number M .. N(e,q) suoh that ;fOr n > M 

we have for the largest prime fActor qn of p(n) 

4.3.11. 

But Sinoe from the polynomial con~ition 1.2.1 we find 

4.3.12. pin) I q'" 

for~ula 4.3.11 is a con~adiction. Hence we "have n < M. 
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o 

Explicit lower bounds for ~ are known, there exist efre¢tively computable 

constants c, depending only on the polynomial p(X), such that for large n 

4.3.13. 

In particul&r, if p(X) is of degree 2, we have for £ > 0 and large n 

the following inequality: 

4.3.14. ~n ~ (0,25 + ~)log log n 

This was found recently by Langevin (5ee [18J), using e result of Stark 

about the dioph~tine equation x3 _ y2 k. 



76 

~oweve~, tn85e ~ovnd~ ~re not 6£ practical value for ou~ purpose. 

For instance, assume the existence ot ~ pe~fect code with e = 2 and, 

say, q = :lsst. 

Now let us derive an upPer bound for n, using 4.3.14. 

For this purpose we define the pol~nomial p(X) of degree 2 by 

4.:>.15. p(X) := X(X - I) (q _ l)~ + X(q - I) + 2 

where q = .Sst. 

Then it follows fram the sphere packing condition that 

4.3.16. 

But on the other hand we have tor large n the inequality 4.3.14, from 

which it follows that 

4.3.17. ~ > 5 if log log n > 20 

We conclude that we find the fallowing upper bound fOr n, which is very 

large iIldesd: 

4.3.18. n ~ exp(exp (20» 

4.4. An upp~ bound N{e,q) madt tXp~~t ~6 e ~ odd 

~Or ~ ~etter vnderstanding of this section, the reader is invited to read 

again the second half of section 1.6, about the transformed Lloyd poly

nomial F (el. 
e 

Let e = 2m + 1. Then ~y cambin~tion o£ 1.6.23 and 1,6,24 we may writ~: 

4.4.1. f' (e) 
e 

Using only the term~ with j z m, we find from 1.6.27: 

4.4.:<:. 



where; and ~ are defined in 1.6.25. 

so if \IE: define 

4.4.3. 

we see that a~(e) changes sign in 60' that means 

4.4.5. am (9
0 

- 1(3)1 

NOW let u~ define: 

4.4.6. 

Then we have the following lemma: 
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4.4.7. ~. For n > M(e,q) as defined in 4.4.6, and ~ 2 30, the signs 

of Fe(SO + l/J) and Fe(8 0 - 1/3) are different. 

PROOF. U~ing 1.6.21 and 1.6.22 we ~ee that 

4.4.8. el .. (9) - (n-l)(n-2) ... (n-e) -e(n-2) .•. (n-e)(n-8) + 
e 

" + (2l(n - J) ... (n ~ e)(n - 9)(n - 9 - q) - ..• 

,,-1 
+(-1) e(n-e)(n-9) (n-6-(e-:2)q) + 

+ (_l)e(n - El) (n - e -q) (n-9 - (e -1)q) 

k 
Hence for the coefficients ~(e) of n in Fe(S) we have if 

4.4.9. 
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4.4.10. 

we fit.d that if 

4.4.11. 

4 
(k+l)("3 eq) 

e ~ k 

4 
(m-l)(J"q) 

m+3 

then we hav" for k 0,1, I •• rm - 2 

so from 4.4.9 we have, if lei ~ ~ ana 4.4.11 holds, 
3 

4.4.13. 
k m-l n < mb

m
_

1
n , 

1. e. 

4.4.14. 

Now, ~ince obviously Fe,e
O 

+ 1/3) and ~e(eo - 1/3) have different 5ignS ij 

for Is I ~ 7 

4.4.15. 

we 5ee from 4.4.5 and 4,4,14 tllat this is true if 4.4.11 holds and 

4.4.16. 
III 

m,e + I)''') (e )(.! e )ffi+2 <: J.sL.;..U..- {(e-l)g-2e} n 
m m-l 3 q Ill. 2m 

NOW we can check that this inequality reduces to the bound M(e,q) for n, 

mentioned in 4.4.6, if we keep in mind the following inequalities. 
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4.4.17. 29 " 4'S 

(e - 1) 'I - 2e " q if q;;; 6 

rI? " m(m + 1) 

Here the first inequality is eq~1valent with q ~ 30. wh~~h is necessary 

if we want an unknown perfect code (cir. 2.2). 

Now assume that there exists a perfeot Dade with parameters n, q, e, 

and e = 2m + 1. Let s and p ce det1ned cy 

4.4.18. s ,= 'Jcd (<;i,e) 

4.4.19. p 'm !l . s 

Then from 1.6.6 we have 

4.4.20. p I (n - e) 

Therefore if a is a zero of the tranSformed Lloyd polynomial Fe,a), 

we see from 1.6.15 and the polynomial condition 1.6.5 that for some 

integer w we have 

4.4.21. S=e+pw 

NoW we are able to prove= 

4.4.22. ~MMA. Assume that there exists a perfect code with parameters 

n,q,e = 2m + 1, where n > M(e,q). Then 6
0

, as def~neQ ~n 4.4.J, is a 

zero of F (e). e 
Furthermore we have.: 

4.4.23. 3p I (1 - e) (q + 1) 

4.4.24. m ~ 9 

PROOF. ~rom lemma 4.4.7 we see that there must be a zero e of F€(S) 

between So - 1/3 and eo + 1/3, which from the polynomial cond~tion must 

be of the form 4.4.21. 

Therefore we have 

o 
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4.4.25. 

rram 4.4.3 ~e see that 4.4.25 is equivalent to 

4.4.26. (1 - e) (q + 1) - 1 -< 3J?W < (1 - e) (<;I + 1) + 1 

4.4.27. 3J?W = (1 - e) (q + 1) 

Thus we have 4.4.23 and, comparing 4.4.27 with 4.4.3 

4.4.28. 

Fina~ly 4.4.24 follOws f~om 4.4.23, as will be eXFlainsd in the aFpen

dix (see A.S). 

Like the coefficient am(S) we can calculate the coefficient am_1 (el. 
~hi$ will be done in the apFendix (see A.6). 

We find the tollowing inequality' 

4.4.29. (£o~ q;;' 30, m ;" 9) 

NOw, finally, we are ready to Frove what was the purpose of this seotion, 

with th~ help of lemma 4.4.22. 

4.4.30. THEOREM. rOr n > M(8,q) as defined in 4.4.6, there does not exist 

a perfect ,,-code if e = 2m + 1 (m c :IN) • 

PROOF. lIssume the exist.ence of suoh a COO" with n M(e,q). Th@n from 4.4.1 

4.4.4 and lemma 4.4.22 we find 

4.4.31. 

Like in the proof of lemma 4.4.7 we have for lei < ~ 

4.4.32. 
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Since Obviously we have a contradiction with 4.4.31 if for lei < ~ 

4.4.33. 

we see from 4.4.29 and 4.4.J2 that we have a contradiction if 

4.4.34. 

so, as is not diffieult to see, if n > M(e,q) . o 

4.5. Appti~on 

AS an application of theorem 4.4.30 we mention, 

4.5.1. THEOREM. Assume that there exists a perfeot e-oode with q symbols 

and that all prime divisors of q are greater than e. 
Then e cannot be odd if ~ > 1. 

PROOF. If all prime divisors of q are 9reater than e then it follows from 

1.6.6 amd 1.6.9 that 

4.5.2. 

Furthermore, if we have an unknown perfect code with e > 2 then from the 

sections •• 1 and 2.2 we see that the number of these prime divisors is 

at least 3, so 

4.5.3. 3 
q:> e 

Hence from 4.5.2 and 4.5.3 we have 

4.5.4. 
15m 

n :> qe 

Now it is straightforward to show that 4.5.4 contradicts the upper hound 

M(e,q) for n, ment~oned in 4.4.6, which i~ valid if e is odd and at least3. 
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CHAPTER 5 :SOM~ R~SULTS FOR SMALL VALUES OF @ 

5.1. The c~e e M 3 

5.1.1. TH~OREM. The onLy non-~~vtal perfect 3-~ode is the binary Golay 

code of length 23. 

PROO~. ~rom the polynom~al cahdttioh 1.6.S we find that, assumth9 the 

extstence of a ~erfect code with parameters n,e = 3, q > 2 the ~loyd 

polynomial ~3(X) must have three d~stih~t inteqral zeros. 

Therefore ap~lication of the transtorroatian e (1.6.15) learns that the 

transformed polynomtal F
J

(8), as given in 1.6,19, must have three integral 

zeroS of the form 

5.1.2. (1 .. 1,2,3) 

However, as is ~a5ily ver1£i~dt we have 

5.1. 3. 3!F
3

(l) = 2(q - l)(q - 2)(1 - n) < 0 

5.1. 4. 3~F3(3 - q)" (q - 1)(,. - 2)(h - J) > 0 

Hence for one of the zeros 8
1 

we must have 

5.1.5. 

So for the integer x~ associated with 6 i we have 

5.1.6, 3 - q < qXi - n(q - 1) < 1 

However, we see from 1.6.6 that 

5.1. 7. q I J (n - 3) 

So for some integers v, w, respe~tively, we tind 

$.1.8. if 3 t q th~h h = :3 + qv 



5.1.9. If for some p { ])'I q = 3p, then n = 3 + pw 

So from 5.1.5, 5.1.6 and 5.1.8, 5.1.~~espe~tively w~ B~~ that eor $~e 

integers v', w', respeot:i.vely, we must have: 

5.1.10. If 3 ~ q then ~:i. g 3 + qv' ana 3 - q < 3 + qv' < 1 

5.1.11. If q - 3p then 6
i 

- 3 + pw' and 3 - q < 3 + pw' < 1 

83 

Henoe, sinoe 5.1.10 is impossible we see that q'" 3p and, since f'3(6i.) "0, 

5.1.12. 

HOWever, we see after simple calculation, since for nontrivial perfect 

coQee we have n > 7, that 

5.l.13. 

5.1.14. F
3

(3 - 2p) = - 8p3 + p(lS - 6n) + 48 + 2n < 0 

NOW we fi.nd that 5.1.13 and 5.1.14 oontradiot 5.1.12. 

So if a perfeot ooOe with parameters n,e = 3 and q does e~ist, then q 2. 

F1ll'thermore, it q" 2, Or mOre generally a pr'im@ POWeT, it is known 

that the only perfect 3-coae is the binary Golay coOe with n = 23, 

(ofr. [23]). 

5.2. The caoe e - 4 

o 

In the following we shall prove that there does not exist a perfectnontriv:i.al 

tour-error-oorrecting oode. 

In l~s 1 we ma~e use of the well-known cubic pesolvent of a poly

nomial ot the fourth degree, which was eirst introaucea by Lagrange. 

~.2.1. ~MMA. ~et p(Z} := ~4 + Pz2 + rZ + s be a polynomial with integral 

zeros. Then the polynomib.l Q(Z), defined by Q(Z) ,_ z3 - pz:2 ~ 4sZ + 4ps _ r2 

has three integral 2ero~. 
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PROO¥. ~et ~(Z) have inteqral zeros zl,z2,z3,z4' Then we can write 

.,.r,s as the synlmetri.c Q><p~essions: 

5.2.2. 

5.2.3. Y1 
~= zl z2 + :1: :1: 

3 4 

1'2 := Zl:1:) + z2 z4 

Y3 
~= z1 z 4 + ~2z3 

Then. from 5.2.2 and 5.2.J. it is stra1qhtforward to show that 

5,2.4. Y1 + Y2 + "3 

Y1 1'2 + 1'1¥3 + Y2"3 - 4s 

2 
r - 4ps 

Then Q(z) has the form dB in the theorem, and its zero~ Y1'Y2 and y~ 

are integers. o 

RElIARK. cfr. the theo:cem in van Dar waerden (42J. where Q(z) has zeros 

Y1 + "2' Y1 + Y, and Y2 + Y3' 
~Y now we are ready to prove: 

5.2.5. THEOREM. A non-trivial PQrf~ct four-error-correcting code does 

not. exist;, 

PROOF. Assume t.here exist.s such a code wit.h parameters n,e 

Then ~y the txansformation e (1.6.15) and oy 

5.2.6. Z := 26 + 3q - 8 

4, and q. 



the Lloyd polynomial P4(X) is tranaformeo into P(Z) like in lemma 

5.2.1, where p,r and s will not be mentioned. 

Following the polynomial condition and the lemma 5.2.1 we find a 

polynomial Q(Z) like in lemma 5.2.1, with three integral ~eros. 

Sinoe the coefficient af (n - 4)3 in Q(Z) is independent of Z we 

substitute 

5.2.7. 2Y ,= Z + 24(q - 1) In - 4) 

and find that F(Y) must have three integral zeros, where 

5.2.8 • 

. and. 

5.2.9. a2 (Y) • 3Y + llq2 + 16q - 16 

- 24(q - 1) (Y + Sq2) (Y + q2 + 4q _ 4) 

Hence if we define Yo by 

5.2.10. 1 2 
YO ,= - 3(11q + 16q - 16) 

then We find 

5.2.11. a 2 (yO) = 0 

"'2 (yo 
1 

- 3) 32(q - 1) 2 

and fOr y = YO and y "" YO 
1 

- "3 we Una 

$,2,12. nq4(q _ 1 ) ~ a
1 

(y) < 88q4(q - 1 ) 

o () $q
6 

< "0 Y < 

and hence. 
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5.2.13. 

5.2.14. 

so, as is easily established; 

5.2.15. if 
_14 ,,4 

n - 4" ...a...-
S q - 1 

4 
So we see from 5.2.13 and 5.2.15 that, if n - 4 ~ ~4 ~ , there m~5t 
be an integral ~ero of F(¥) in the open interval (YO - 1/3,yO)' 

Hence, since from 5.2.10 it is clear that this interval doe~ not contain 

an integer, we find 

5.<-.16. 
4 

n-4<l.i...s...... 
5 q ~ 1 

NOW we shall see in the following two lemmas that this is also impossible 

Hence we have proved the theorem. 

5.2.17. LEMMA. Suppose that there exists a perfect (our-error-correcting 

code with word length n such that 

and let q m 2~3~q' and gcd(6,qt) 1. 

Then we have the follOWing diagram o( possibIlIties: 

1'.=0 

k o 

q"" 4 

q < 10 

k " 

q ~ 46 

q -< 136 

k 2 

q < 718 

q < 21S2 

k <: 3 

q < 7 

q < lS 

PROOF. Like in section 2.3 we find that the following expressions in 

the zeros x 1,x2,x3 dnd x4 of P4(x) must be integers' 
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5.2.16. + x
2 + x3 + x4 = 

4(n- 41 (a.-ll + 10 xl <;I 

2 :2 :2 :2 4(n - 4)2 + 20(n - 4) 4(n - 4) 
5.2.19. xl + x

2 + Xj + x4 = +30- 2 [(2<;!-1)(n-3)+4} 
<;I 

3 3 3 3 .. 4{n - 4) 3 + 30 (n _ 4):2 + 90 (n - 4) + 100 ~ 5.2.20. xl + X2 + X3 + x4 

n-4 :2 2 2 2 
-3-{(n-4) (12q -12q+4)+(n-4)(24q +42q-36)+(12q +54q+24)} 

q 

5.2.21. (n - 1) (n - 2) (n - 3) (n - 4) (q _ 1) 4 
(xl - 1){x

2
-1)("3- 1)(x4 -1) = 4 

q 

Then it 3 I q we see from 5.2.18 that .3 I (n ~ 4). 
:2 2 So {(n - 4) {l2q - 12q; + 4) + (n - 4) (24i + 42q - 36) + (12l + 54<;1 + 24)} 

~e exactly one factor 3. 

then since 27 I q;j, we see tram 5.2.20 that 9 n - 4, 

furthermore, if 8 <;! we see from S.2.18 that 2 (n - 4). 

So {(2<;1 - 1) (n - 3) + 4} is odd. 

rhen, s1nce 64 I 'I2, we see frOII) 5,2.19 that 4 I (n - 4), 

~ence, since from 5.2.16 and 5.2.21 

5.2.22, <;! I 4{n - 4) 
4 

and <;I I (11 ~ 1) (n - 2) (n - 3) (n - 4) 

~e cart make the following d1agr~ of poss1~i11ties, with A chosel1 111 

~ueh a way that q4 I A(n - 4) 

5.2.~3. n k 
k = 0 k • k = :2 k ;c, 3 

t - 0 A - A - 16 A '= 256 A - 2 

R. ;c, A = 3 A .. 48 A = 768 A • 6 

~ow in each of the eases lieted in the Qiaqram we have the condition 

1..4 _14 ... 4 
5n-4~ ...>0...-

A 5 q - 1 
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5.2.25. 

So by combination ot 5.2.23 ~nd 5.2.2$ we have the diagram ot po~sibil-

ities listed in 5,2,17. o 

5,2.26. LEMMA. The v~lues of q listed in 5.2.17 are also impossible, 

FROOF, ~hiB will be proved in the appendix (see A.2) , o 

5.3. The ~e e 5 

5.3.1. THEOREM. There doe~ not exist a non-trivial perfect S-CoOe, 

PROOF. Assuming the existence of a perfect code with parameters n, 

e = 5, and q, we find from section 2,2 that q must have at least three 

distinct prime divisors, so 

5.3.2. q ?: 30 

Now define A 

5.].3. 

so by 5.3.2 

5,3.4. 

Q such that 

s:. 
5 

In the appendix (see A.7) we shall show that we may assume 

5,3,5. n ?: 80A 

Now from th~ polynomial condition 1,6.5 we find that the Lloyd poly

nomial PS(x) must have five distinct integral zeros· 

Therefore, application ot the transformation a (1.6.15) learns that 

the transformed polynomial "t 5 (e), which was made I!!>:plici t in 1.6.20, 

must have five inte9ral ze~os of the form 

5.3,6. wnel'e x. 
1 

(J. = 1,2,3,4,5) 
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Now we calc~late F5 (- 6~) ~Q ~5(- 7A) and find: 

5.3.7. 
232 

5!F
S

(- 6,,) • n (250" - 1475A + 560" - 55) + 

+ n(3300\4 - 6510),3 + 7220A
2 

• \lOA + 2~4) 

5.3.8. 
2 3 2 

5:F5(~ 7A) = n (- 125A - 1325~ + 545" - ~5) + 

+ n(21S0,,4 - 5330,,3 + 9180,,2 - 520\ + 224) + 

Now it can be seen ~ediately that the follOWing inequalities follow 

f~om, respectively, 5.3.4, and 5.3.4 and ~.3.5, 

5.3.9. 

Hence we have fo~ one of the zeros 6
i 

(cfr. 5.3.6), saye' 

5.3.1G. -7).. <: e' <: -6'\ 

New we see from 1.6.6 that 

5.3.11. <;i I 5(n - 5) 

So for some integers v, "I, respectively We find, 

If 5 l q then n = 5 + qv 

5.3.1:3. If A ~ .Ii then n = 5 + AI.' 

IIence froll! 5.3.6, 5.3.10 and 5.3.12,5.3,13 respectively, "Ie find for SOlDe 

integers v', "I' respectively: 

5.3.14. If ~ q then e' 5 + qv' and -7), <: 5 + qv' < -671 

5.3.15. If \ f IN then e' " 5 + A w, and -n < 5 + AI." <: -6\ 



Now, ~ince from 5.3.i we have q ~ 30, there is no v' ~ Z ~uch that 

S. ~.16 -7q < 25 + 5qv' < -6q 

so 5.3.14 is ~pD8Bible. Therefore 5.3.15 ~UBt hold and we see that 

and 

5.3.18. a' = 5 - n 

On the other hand,we calculate FS(5 - 7A) ana find 

5.3.19. 5IF
S

(S - 7A) • n2 (_ 125~3 + 550A 2 - 205A + 20) + 

+ n(2150A 4 + 1670A3 - 4720~2 + 1740A ~ 176) + 

+ (4368A S - 10.750A
4 

- 5225A 3 + 12.350A
2 

- 407SA + 360) 

NOW it is straightforwaro to show from 5.3.4 and 5,3,5 

5.3.20. 

but we shall om1t the caloulations. 

NOW 5.3.20 and 5,3.18 contradiot eaoh other since S' WeB defined to be 

" zero of F 5 (e) • 

Therefore we have proved that a pertect 5-code does not exist. 
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CHAPTER [, :SOME RESULTS CONCERNING PERFECT MIXED CODES 

F~ ~ = 1.2 ••.. n. let 6
i 

be a set of qi symbols, say 

6.1.1. 

wh~r~ qi is an inte~er at least equal to 2. 

Then a mi;;:;ed aode C is a sIWset of the carte5ian product V:=61 )( 52 )( ••• " Sn' 

~he ~ammin9 me~ic in V is defined as in section 1.1. 

e is CElll~d a mixed perfeot e-oode if the 5ph~e5 Se(~)' with ~ running 

through c, form a partition of v. 

Several mi,«~d pe:c£~ct l-coaes are known with qi 

We refer to [15], [21]. 

1,2, ... n) • 

In this chapter. our purpose is to prove some non-existence the~ems 

conc~rning mixed perfect 2- ana 3-CodeS with the help of four necessary 

condi tions. 

First. the epheve packing condition becomes for mixect perfect 2-codes: 

n n 
6.1.2. 1 + I (q;l. - 1) + I (q;l. - l)(qj - 1) I qtq 2· •• q • 

;1.=1 i~j n 

~urthermore, the £ollow;l.ng two conditions were derived by O. Heden 

(see [14]) in a paper which ~eneralizes the polynomial condition to the 

case of mixed perfect cedes: 

5.1.3. L5MMA. If a mixed perfect e-code ex;l.sts and for some 1 we have 

p I qi ' then pi ISe(Q)I. 

Here, obviously, ISe(Q)1 is the left hand side of 5.1.2. (It is also 

pessible te prove that pi lei, but we shall not do that here.) 
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0.i.4. ~MMA. ~f ~ m1xeQ pe~feQt e-QoQe ex1~ts ~Q t~ ~Qme 1 we have 

p I qt' then p divides at least n ~ e + 1 of the number qi' 

we shall quote f~Qm (14] the po~ynomia~ ¢ondition fo~ mixed pB~feGt codes: 

Suppose th~t there exists a mixed perfect e-code of length n. W1thout 

1088 ot generality we can assume that the c~Q1nalit1e8 qi ot the 

alphabets increase (weakly) with i. 

Let us define the numbers nl,n2 •.. n~ by 

0.1.5. 

Furthermore, let us define the set S by 

6.1. 6. S ."" {(5 1,52 •••• sk) I 51 • a and 0 ~ 8 i ~ n 1 for 

1 q 1.2 •••• k and 31 + ~2 + ... + Bk ~ e}, 

and let us define the polynom1a~s a( ) (X 1.X2 ... Xk) oy 
Sl,.··· ,15k 

6.1. 7. 

i=l 

k n -x II 
II (1 + (q. - 1) z ) i 1 (1 _ z ) i 

~ 1 i 

6.1.8. 



~hen the~e exist at least lsi - 1 distinct k-tuples (x1,xZ""xk) 

such that for i * l,2, ..•• k 

6.1.9. 

6.1.10. 

We have the following result ooncerning mixed perfect double-er~or

correctin~ Codes: 

6.2.1. THEOREM. A mixed perfect 2-code does not exist it, tor 

i = 1,2, .. +. In, 
Golay code. 

"'1 I 6, unles!> thie oode is a triv1al one or the ternary 

PROOF. Assume the existence ot such a code. S1nce we exclude trivial cases 

we may aeeume n ~ 5. 

From the~em ~.1.15 we know thQt it is not possible that for all i 

(1;1, .. 2, or that all qi are equal to 3 (unless we have the ternary Gol<ly code) 

Therefore, there ex~sts <In 1 such that 2 I ~;I, and there exists <In i such 

that 3 I qi' 

So from lemma 6.1.4 at least n - 1 of the numbers ~i <I~e d~v~sible by 2, 

and at least n - 1 of them are divisible by 3, 

Furtherm~e, we know from theorem 3.6.3 that it ~s not possible that all 

qi are equal to 6. 

~herefore we can without loss of generality distinguish between 3 Cases; 

a) ql ~ 2 and for i 

b) ql ~ 3 and for i 

2,3, ..• n qi 

2,3, .•• n qi 

6 

2, q2 = 3 and for i = 3, ... n qi m 6, 

a) In this case the sphe~e pa~~;I,ng ~ondition 6.1.2 becomes, 
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FraIn 6. 1. 3 we find k ~ 1 and 9; ~ 1 so 

n(n + 5) ~ 2 (mod 12) 

6.2.4. n = 2 (mod 12) or n = 5 (mod 12) 

From the generalized ~olynomial oondition of Heden (see [14J) the foll0wi~ 

two quadratic equations m~st both have two integral sol~tione: 

b.2.S. 36y2 - (bOn - 84)Y + 25(n - 1) (n - 2) o 

36y2 (60n 60)l.'" -I- 25(n 1) (n 2) + 2Q(n - 1) + 4 o 

R~ark that if we substitute y ~ 0 in 6.~.6 then we find frQm 6.2.2, 

21 5
2 (2) I· 

But the case We treat is much easier' there mu~t be two integral solutions 

Y1 and Y2 to equation 6.2.6, for which we have 

6.2.7. 

so we find 

6.2.8. 

60(n - 1) 
36 

(n - I) 

5(n - 1) 
3 

contradicting 6.2.4. So the case a) is imposs1b~e. 

b) In thi~ case the sphere packing condition 6.1.2 becomes: 

];'rem 6. 1 • 3 we find k ~ 1, t " 1, so 

".2.10. n(n + 3) 10 (mod 12) 

6.2.11. n _ a (mod 12) where a = 2 or a ~ 7 or a = 10 or a = 11 . 

FrOul the generali~ed polynomial condition at Heden the following two 

quadratic equations must both hav~ two integral solutions; 

(bOn 84)Y + 25(n 1) (n 2) o 

6.2.13. (60n 48)Y + 25(n 1) (n - 2) + 30 (n - 1) + 6 o 
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Remark ~t if we substitute y 0 in 6.2.13, then w~ tind from 6.2.9, 

21 6 2 (9) J. 
In the ~~5e Q) we do not need this consideration. 

Now Let us denote the zeros of equation 6.2.12 by Y01 and Y02' and 

those of equation 6.2.13 by ¥ll &nd Y12 ' 

~hen we find from 6.2.12 and 6.2.13 respectively: 

6.:2.14. 60n - 84 Sn - 7 
Y01 + Y02· 36 = ----3--

60n ~ 48 5n - 4 
Y11 + Y12 • 36 ~ ----3--

so we find 

6.2.16. n ~ 2 (mod 3) 

Therefore we find from 6,2.11 

6.2,17. n ~ 2 (mod 12) or n ~ 11 (mod 12) 

F~thermore, w~ find from 6.2.12 and 6.2.13 respa~tively 

6.2.18. 

6.2.19. 

25 (n - 1) (n - 2) € z 
36 

25 (n - 1) (n - 2) + 301'1 - 24 
Yll 'Y12 = 36 ~ Z 

From 6.2.18 and 6.2.1~ we darive 

6,2.20. 36 I DOn - 24) 

6 J (5n - 4) 

So n must Qe even. Therefore it follows from 6.2.17 that 

n = 2 (mod 12) 

Using 6.2.22 we find fr~ 6.2.15 

6.2.23. 

Now we shall use our consideration tnat fr~ 6.2.9 and 6.2.13 it follows 

that 
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6.2.24. 

sO i 2 2 and, a~ we k~eWi k ~ 1. 

~urthermOre, from Q,2.15 and 6 .•• 19 we !ind the fol1owin~ e~uality: 

6.2.26. 

Hence we find 

6 .•. ;17 • 

Th8r~fore we must distinguish between two cases; 

a) This subcase is ~mFos8ible in view of 6 .•.• 3. 

~) In thiS subcase, let us first ~uFPose Y\l - 2. 

Then, from 6.2.26, Y12 mm,t be a .oot of 

6.2.28. 3X2 ~ 13x + 12 ~ 0 

so we find 

6.1.29. Yu = 2 and Yl2 

contradicting 6.2.23. 

SO Y
11 

> 2. Therefore we find from 6.2.23 that a 2 
1, so 



6.2.30. 

NOW since a 1 is odd, say 

6.2.31. 

we have f~Qm 6.2.26 

6.2.32. 
b 

" 2'] 2 ~ 2 (mod 8) 

6.2.33. 

Hence we have fram 6.2.26 

6.2.34. 

6.2.35. 
a

l 
12 _ 2 + 4 (mod 16) 

6.2.36. 3 

So Y11 • 8. Then, from 6.2.26, Y12 must be a root of 

6.2.37. 3X2 ~ 49X + 186 ~ 0 

so Y12 = 6. Henoe we have 

6.2.38. 

In combination with 6.2.15 this yielos 

6,2.39. 5n .. 46 

wh1ch ~s a oontradiction. so the case b) is impossible too. 

c) In thi~ case the sphere packing condition 6.1.~ becomes, 

6.2.40. 25n2 - 85n + 82 ~ 2k+13 X , where 18
2

(9) 1 = 2
k

3 i 

From 6,1.3 we have k ~ 1, £ ~ 1, sO 

6,2.41. n(n 1 ) (mod 12) 

6.2.42. n _ 2 (mod 12) or n ;; II (mod 12) 
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FrOm the gen~ralized polynomial condition of Heden the following four 

~uadratic equations must hav~ ~ight rational solutions and at least 

seven of them must be integral. 

6.2.4~. ~6Z2 - (60n - 96)z + 25n2 - 8Sn + sa .. 0 

6.2.44. 36Z 2 - (60n - 132)Z + 25n2 - IISn + 130 m 0 

6.2.45. (60n 120)Z + 25n2 - 105n + 110 o 

6.2.46. 36Z
2 

- (60n - lS6)Z + 25n
2 

- 135n + 170 = 0 

Remark that if we substitute z = 0 ~n 6.2.43, then we find 2 I 5
2

(2) I 
from 6. < • 40. 

But, like in the Oase a), we do not need this consideration in the case c) 

First, let us suppose that the equation 6.2.43 has two integral zeros 

z11 and ~12' Then we find from 6.2.43 

6.2.47. 60n - 96 Sn - 8 
36 = -3-- ~ z 

6.2.48. n - 1 (mod 3) 

contradicting 6.2.42. So z11 and z12 cannot both be integers. 

So the equations 6.2.44, 6.2.45, and 6.2.46 must each have two integral 

solutions, 50 also the e~uation 6.2.44. 

Let US denote the zero~ ot equation 6.2.44 by z21 and z22' 

Then we find from 6.2.44 

6.2.49. 
60n - 132 

z21 + z22 ~ 36 
Sn - II Z 

~ --3-- € 

6.2.50. n _ 1 (mod 3) 

contradicting 6.2.42. So the case c) is also impossible. 

Now we have co~cluoeo the p~oof ot theorem 6,2.1. 
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As a consequence of the fact that the L~Qyd polynom~al P3(X) defined 

in 1.6.3. cannot have three integral zeros if Q ~ 2 (ctr. eection 5.1), 

we have the following nonexistence theor~. 

6.3.1. THEOREM. There co not exist nontrivial mixea perfect 3-coOe5 for 

which. for i = 2.3 ••••• n. qi ie a constant q. and q > 2. 

PROO~. Aseume there exists euch a code. Then. frOm theorem 5.1.1. we 

may ass~me witho~t loss of generality that Q t Ql' 

Now let aij (~.Y) be aefinea ~y 

6.3.2. 

ana let P(~.Y) be oefined by 

1 3-i 
I I a

1j
(x,y) := P(X,Y) 

i=O j=O 

~hen we find fro~ the generalized ~olynomial condition of Heaen that both 

P(O.Y) and ~(1,1) m~st have three integral zeroe. 

on tIle othe,1; hano we f.1.nd from 6.3.2 and 1.6.16: 

6.3.4. 

&0 P(l,Y) oannot have three integral zeros unless q ~ 2. 

Now what about q 2? In addition to 6.3.1 we have the following theorem: 

6.3.5. THEOREM. The only nontrivial mixed perfect 3-code for which. for 

i = 2,3, ... ,n, qi is equal to 2, is the binary Golay ood@ of length .3. 

o 
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PROOF. Assume that there exists su~o ~ code. Then we have n > 3 and in 

view of lemma 6.1.4 we must have for ~ome k ~ W 

6.3.6. 

Now in view of theorem 5.1.1 we may as~ume wathout lOBS of general~ty 

that k; > 1. 

By the generalized polynomial condition of Heden we find that ooto 

P(O,Y) and P(l,Y) must have three integral zeros. 

By straightforward calculation we find tor the zeroS of p(O,~), 

6.3.7. 

"'.J.B. 

3'2k+Z + 12(n - 1) 
6 

3'2k+2n + 6n2 - 16n + 16 
6 

6.3.S!. 
3'2

k
+

1
n + 3'2

k
(n-1)(n-2) + (n-I)(n- 2)(r- 3 ) 

)'0I'YO:/)'03 = a 

NOW the right hand s~de of 6.3,9 is exactly 
3 
"4 S3'Q) , so oy toe sphere 

packing condition we must have tor some ~ € lN
O 

6.3.10. 

Now from 6.3.7 and the fact that Y01')'02 and )'03 are integers we find that 

n mu~t be odd (since k > I). 

From 6.3.8 we find 

6.3.11. 4 n(n - 3) 

sO we hdVE 

6.3.12 • n ~ 3 (mod 4) 

Th~n since k > 1 we see frOm 6.3.7 that YOl + Y02 + Y03 is odd. 



so from 6.3.10 we find 

6.3.13. P(O,l)'P(0,3) 

6.3.14. 6'P(O,1) 3 
n 

6.3.15. 6,.,(0,3) 3 .. n 

H@no@ w@ find 

a 

12n2 + 41n _ 42 + 3'2k (n2 - 5n + 6) 

24n2 + 173n - 378 + 3'2k (n2 - 13n + 38) 

6.3.16. (n - 2) (n - 3) (n - 7 + 3'2
k

) 

6.3.17 6'P(O,3) " 48' (2
k 

- 1) if n " 11 

tOl 

keeping in mind 6.3.12, we find cO!llbinlng 6.3.13 with 6.3.16 and. 6.3.D 

respeotiv~ly, since n > 3, 

6.3.1B. 

6.3.19. 

6.3.20. 

6'''(0,3) = 0 

n = 7 

which is obviously a contradiction. 

ReID<\X"k that theorem 6.3.1 (without the restriction q > 2) would hold "0: __ 

arbitrary e if one COu~d prove the nonexistence of ordinary perfect ,,·?des 

USing the L~Gyd po~ynomial only. 

This mea.ns tha1;, with alphabets like above, the genera~izeo polyr.om"".l 

condition reduces to the ordinary polynomia~ condition. 
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APPENV1X 

A.l. Fo" the Case e = 4 we deterlIline the m.untlers "'1of code words of weight i j 

;\. = ~,;O,Il,12,13. 

For this purpose we need 1'3'1, 1'3-3, 1-3'4 and the following 

two recurrence relations: 

A.1.!. 

( 13 n )9 {(12) (l
a
2 l4 (,.,-Ol)-a l3 9) ,. (9) {<;i - 1 - a 12 9 + .... 



Now let us define s, t, u, V by 

A.1.3. 

u ,= v ,= 
13'12·11'10 <113 

"'9 

Then we find from th~ r~GurrenGe rel",t1on5 <I~ove: 

1..1.4. 

A.l.5. e • (n - 29) (q - I) + 20 
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A.1.6. t = (n - 5)(n - 6)(q-l)2_ 4 (<.\_1)(n - 29) - 26('.1 - 1) (q-2) (n-29) 

- 28 ('.I - l}{n - Sl) - 252 ('.I - 2) 2 - 644 (q - 2) - 92 

A.1. 7. u = (n - 5) (n - 6) (n - 7) (q - I) 3 - t (32<.\ - 60) - s{32 ('.I - 1) (n - 10) 

"" 336(q-2)2+ 96 (q-2) +12} - (11-9)('.1-1)(672'.1-1248) 

- 1344('.1_2)3 - 672(q-2)2 - 1512('.1-2) - 24 

A.1.8. v .. (n - 5) (n - 6) (n - 7) (n - 6) (q - 1) 4 - u(36q - 68) -

t{432 (<.\ - 2)2 ,. 106('.1 -~) + I~ + 36(n - 11) ('.I - I)} -

e{2016(q - 2)3 + 864 ('.I -~) 2 + 216('.1 - 2) + 24 + 

+ 10S(n ~ lO)(q - 1) + 864(n - 10)('.1 - l)(q - 2)} -

+ 216 ('.I - l)(n - 9) + 1728 ('.I - 1)('.1 - 2)(n - 9) + 

+ 6048(q-I)(q-2)2(n-9) + 432(q-l)2(n-9) (n-tO)} 
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Now, sinc~ the code words of a given w~ight k form a deeLgn of type 

S " (n,k,A) (see sectioIl. 1.5), where" can be determined by 1.4_2, 

~ .,1.3 and che numbers ~k mentioned above, we have from 1.4.2 the 

following conditions for th€ existence of perfect 4-codes; 

)L I. 9_ 

9'8'7'6'5 

8-7-6'5 

7-6-5 

6·5 

H)-\l-8-7-6-5 

9'8-7-.,-5 

5 

11-10'9'8'7'6'5 

10'8·8·7·6·5 

9-8-7-.,-5 

7·6·5 

6-5 

12-11-10-~-8·7·6·5 

11·10-9-S-7-b-:; 

lO·9·8-7-b-S 

9·8-7-.,-5 

8-7-6-5 

7-6-5 

12-11-10·9·8·7·6·5 

11·10·9· B· 7-6- S 

10·9·8·7·6·5 

9-S-7-6-5 

8·7·6·5 

n (n - 1) (n - 2) (n - :J) (n - 4) (q - 1) 5 

(n - 1) (n - 2) (n - 3) (n - 4) (q _ 1) 4 

(n - 2) (n - 3) (n - 4) (q - 1) 3 

(n - 3) (n - 4) (<;I _ 1) 2 

(n - 4) (q - 1) 

n(n - 1) (11- 2) (n - 3) (n - 4) (q - 1)5 ;; 

(n - 1) (n - 2) (n - 3) (n - 4) (q - 1)4 B 

(Il.-:2)(n-3)(n-4)(q-l)J '" 

(n - 3) (n - 4) (q - 1) 2 5 

(n - 4) (q - 1) 5 

'" 
n(n - 1) (n -;2) (n - 3) (n - 4) (q - 1) 5 t 

(n - 1) (n - 2) (n - 3) (n - 4) (q - 1) 4 t 

(n - 2) (n - 3) (n - 4) (q - 1) J t 

(n - 3) (n - 4) (q - 1) 2 t 

(n - 4) (q - 1) t 

t 

n(n-l)(n-2)(n-3)(n-4)('l.-1)5 u 

(n - 1) (n -2) (n -3) (n- 4) (q_l)4 u 

(n - 2) (n - 3)(n - 4) (q - 1) 3 u 

(n - :3) (n - 4) (q _ 1) 2 u 

(n-4)(q-l) u 

u 

n(n-l)(Il.-2)(n-3)(n-4)(q- ll 5 V 

(n - 1) (tL - 2) (n - 3) (n - 4) (q - I) 4 V 

(n - 2) (n - 3) (n - 4) (q _ 1) 3 v 

(n - 3)(n _ 4)( q - ) 2 v 

(n-41 (<;1-1) v 

v 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11 ) 

(12) 

( 13) 

(14) 

( 15) 

( 16) 

(;7) 

(18) 

(19) 

(20) 

(21 ) 

(22) 

(n) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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A.2. In this section we shall explain how, using the condition~ A.l.9, 

we have excluded those parameters (n,~) tQ~ a 4-~~o~-cQrrecting 

perfect code, which are given by 

A.2.1. q ~ 2~3 q' and ged (6,q') = 1 &nd 

t\k k .. 0 k k 2 k ~ 3 

£ - 0 q < 4 q " 46 q <; ns q "' 
.\', 2: q "' 10 'II <: 1:36 q <: ~1.5~ q <: 16 

14 4 
n - 4 <: -~ 

5 q-l 
A.2.2. 

Thus we finish the proof of theorem 5.2.5 by proving le~a 5.2.26. 

First we exclude the number~ q with only one or two distinct prime 

divisors, since these are impossiQle (see section 2.2). 

~herefore we need to look only at the part of the diagram A.2.1 which 

is indicated below: 

A.2.3. k " 1 

l\ - 0 

q < 136 

k :2 

q< 716 

q <: 2152 

For instance, for the case k - It £ ~ 1; the remalning ~ are~ 

... 2.4. q = 30, 42, 54, 6&, 78, 510, 102, 114, 126 . 

Now let us take for example q 

that for some m E ]Il 

,!\.2.5. 

and fram A.2.2 that 

)\.2.6. m ,; 4 

30. In this case it follow~ from 5.2.23 

Now fram A.1.S (2) it follow~ that 
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A.2.7. 161 (n - 1) (n - 2) (n - 3) (n - 4) 

since from A.2.5 we see that n - 4 ~ 3m(mod 8) we fi~ f~cm A.~.7 and 

~.2.6 that m must be 2, eo 

A.2.B. 

Finally, it follows from A.l.9 (3) that 

71 (n - 2) (n - 3) (n - 4) 

contradicting A.2.B, because from A.2.S ~t followe that n - 4 S 3(mod 7) 

So we may exclude q = 30. In the smne way we excluded all other cases 

separately by h~d. 



A.3. we sh~ll show that the following 1d~ntity holds: 

1!-1 ~ A 
I (-1li(~l L I/j(l + 1/2 + •.• + I/j + ••• + 1/~) 

1=0 j=i+l 
A.).1. 

whez~ {jj ~eans that l/j must b~ ~eplaced by O. 

For this purpose we remarK that f~ 1 = 1,2 ••..• e - 1 • 

A.3.2. 

So the 1aft hand sid~ of A.3.l is equal to 

A.3.3. 

where a
j 

1s defined by 

r-
A.3.4. aj ;"" I/j (1 + 1/2 + ... '" I/j ...... + lie) 

Now clearly the expression A.3.3 is equ~l to 

A.3.5. 
e-1 i a-1 I (-1) ( i )a1+1 
i-O 

Henee, hecause 

A.3.6. 
1 ... 1/2 ...... + lIe 1 

i + 1 - (1 + 1) 2 

an.:1 because 

A.3.7. , ~-I) = i'" 1 ( II! ) 
i e H1 

wa find thAt the expression A.3.S is equal to 
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o 

A.3.B. 
e~l i e e-1 1 e I 

(l + 1/2 + ... + lIe) lIe ~ (~l) (i 1) - l/~ r (-I) '1+1)1+1 
1=0 ... i~O 
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Now, since 

A.3.~. o 

we see that the exp~eesion A.3.8 is equal to 

11.3.10. 
e 

(1 + 1/2 + •.. + l/e)l/« + lie I (-l)j(;)l/j 
j=l 

Finally to show that the expression A.J.l0, and hence the left hand side 

of A.~.l, 1~ equal to ze~o, we shall show, 

A.3.11. I (_l)j+l (~)l/j - 1 + 1/2 + .•. + lie 
j=l 

For this purpose we remark that to~ j 1,2, ... ,@ 

A.3.12. 

1 J (-1) j+l (;)X j -
1

dX 

° 
so we huV6 

1 

A.3.13. J 
e 

(l-x) -1 ax 

" o 

Hence, since - x (1 - x) -1, we have 

1 ",-1 
A.3.14. ~ (-1) j+l (e) l/j 

J I \1 - X)\IX 
j=l ] 

0 
k=O 

<'inally, since 

A.3.1S. 
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we find from A.3.14 

A.3.16. D 
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&.4. As an example, we shall expl~~n why the~e ODeS not exist a pe~fect 

double-error-co~~ect~ng oode with ~ 38 ana n ~ 1000. Assuming 

the existence of such a code, we find from 4.2.14; 

A.4.1. 19
2 I (11 - 2) 

50 for ill ~ 1 or m = 2 we have 

A.4.2. n = 2 + mo J61 

Fu~thermore we have the sphe~e packing conoition 1.2.1, whioh ~ecomes 

in our case; 

A.4.3. 1 + n (~ - 1) + (~l (q 

2 
for some pair (k, i) ~ lNO 
Now for mal and for m g 2 we can caloulate the left h~nd side of A.4.3 

with the help of, say, an electronic poc~et calculator, and see that in 

each of both cases there ie a prime unequal to 2 and unequal to 19 .;Iiv;l.di: 

it. 

Hence we have a contradiction to A.4.3. 
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A.5. Let m e :IN, q € :IN, and let !!I, sand p be defined by, 

A.5.l. e ,= 2m .. 1 

s ,= gcd(q,e) 

~urthermore, assume that 

A.5.2. 3p (e - 1) (',1 + 1), so also p I (e - 1) 

The purpose Of this section is to show that there aoes not e~ist a q as 

above with at least three prime aivisors, if e < 19 (or equivalently 

III <: 9). 

For this purpOse we make the follow:Lng list of': q's with q .. ps, p I (e ~ 1), 

s Ie, dnd the rest.ictions, 

a) q is divisicle cy at least three distinct prime divisors 

c) if ~ i (e ~ 1) then 3 i q 

c) if 9 i (e - 1) then 3 i p 

m e - 2 P = 1,2 S 1,3 

m 2 e - .. 4 P 1,2,4 s = 1,5 

m 3 e - 6 P 1,2 s .. 1,7 

m 4 e - 8 P 1,2,4,8 s = 1,3,9 

m .. 5 e 10 p 1,2,5,10 s 1,11 

III .. 6 e - 12 l? a 1,2,4 S 1,13 

III 7 e - 14 P '" 1,2,7,14 s 1,3,5,15 

m 8 e - 1 "' 16 P 1,2,4,8,16 s 1,17 

q 2·5·11 

',1 '" 2'5'7 

So we have only two possibilities fOr q. But in these cases we have 

3 t (e - 1). So frem A.5.2 we should have 3 I (q + 1), which is not true. 
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h,,,, The IlUrI'0Be of this seotion is to g'iva a lowel: bound for the 
m-l 

,;Oeff1l;'ient "m-l (8
0

) of n in "",(60 ), where 

eo is defined ~n 4.4.3, Fe(a) is detineQ in 1.6.1B, and m c ~ 

~s "t leaBt equal to 9. 

We also assume th«t q ~ 30, which holds if q has at le«st thrae 

pI:im<l divisors. 

Oefine ~, n, :I and \l as follows: 

A.(;.l. 

Po,'. ,;., 

t; := k=.lL 
2 

~ := (51- 1) (~- 2) 
3 

). _'" (q-l)(2i- 7s.+7) 
8 

3 2 
\l : = (g - 1) (6q - 2951 + 51q - 34) 

30 

2 z2 2 
(1 - (8 - 1):0 + (8 +(q-4)0+2)2- (8

3
+3(q-3)6 + 

2 z3 
(2q - 9q + 18) 8 - 10)6"" + ... } , 

n 
{ L (n) Z 2 j (_ ~ + Tlz _ ).Z 2 + \JZ 3 +... ) j 

j=O ] 

1;""ce we Cun calculate "m-l (6
0

) from 1'>.6.2, considering only terms with 

-_, -.-. ':\ - I,m lefI:. lenlma 1,,;,,24). 

~'" G. 3. 

wbel.:"-F.! a is given by 



A.6.4. a 

+ 70amQJ - 3SS2mq2 + 649Smq - 4332m 

- 64Sq3 + 3132q2 - 5508q + 3672 

Now sinoe m ~ 9 ~ q ~ 30 we see from A.6.4 that 

A.6.5. 

A.6.6. 

A.6.7. 

A.6.8. 

Now it follow~ f~~ A.6.3 and A.6.S that the following bound holds 
if m 2 9 and q ~ 30, 

A.6.9, 
( ll

m-l 3 3 

I I q - m 51 a
m

_
1

(8
0

) > 
2m- i • 27' (m - 1) ~ 
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~ The p~PGS8 of this section is to ehow that, assuming the e~!8tenc8 

of a perfect 5-code, we may as~~e that 

II.. 7.1. 

For this p~po8e we use the following conditionS whi~h are obtained 

Drrmediately from 1.6.6 ~nd 1.6.9. 

A. 7.2. q I 5 (n - 5) 

q5 I (n - l)(n - 2) (n - 3)(n - 4)(n - 5) 

\'lOW define k,~,m € IN and q' , IN with gco.(q' ,30) I by 

1'..7.4. 

Then, if m ~ 2 and A is in the distinct caseS defined by the fol10w~n9 

diagl:"am' 

A.7.S. \k k 0 
~ 

k k 2 k .. 3 

~ 0 A I A ~ 24 A 2
8 

A 23 

A 3
4 

A" 2
4

34 
A 2634 A 2334 

I!- " 2 A A .. 24. 3 A 2
8
'3 I'. ~ 2

3
'3 

we find from 1'..7.2 and 1'..7.3 

A.7.6. q5 I A (n - 5) 

If m = we find 

A. 7.7. 

So in any case we find from A.7.6, 1'..7.7 and A.7.S 

A..7.8. n > 
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so w~ hav~ A.7.1 if 

A.7.9. q: > 120 ~5 

Furthermore it follows from 4.~.9 that 

A. 7 .10. n ;;, 3125 

So if q does not fulfil the inequality A.7.9. then A.7.1 followe fr~ 

A.7.10. 0 
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During ehe past twenty years many attempts have been made to solve the 

ql,le~tion which we have consice);:""c: whether or not ehere ,u" other example5 

of pertect codes than those mentioned in section 1.7. We shall give 

a 8umm~ry of the history ot progres5 in the approach to this que~tion. 

A detailed 5urvey was given by Van Lint in [29J. 

An important topic in the theory of perfect codes is the connection be

tween group theory and the theory ot perfect single-erro);:"-correcting 

codes which was introduced by Taussky & 'rood (see [36J). 

~hey consider an aOelian group G with base elements 9
1 
•...• gn of order 

q. and its sub~et S defined by 

El.l. i = 1.2 •••• n. a = O.l •... q - I} 

and ask for Sl,lbsets H with minimal cardinality suoh that each group element 

9 can be written in the form g = h + s (h ~ H. s € 5). 

We shall not go 1nto this topic. but refer to [29J. 

The nonexistence proofs up to now concerning perfeot ,,-codes with e ~ 2 

can be divided into three classes: tho5a which use the ~phere packing 

condition only, those which combine the sphere packing cond1t1on and 

the polynomial condition. and those which use toe polynomial condition 

only. 

~arl~ ~roof~ belonging to the fir5t ola~s make use of the consideration 

that if e is odd and q 2, then 

H. 2. e! (n + 1) 

So by the ~phere packing condition e! (n + 1) must be a power of 2. 

~hese are proofs by Shapiro and Slotnick (L9S9).L~onti~~ (1964). Johnson 

(1962) and James, Stanton and Cowan (1970). 



It can be eeen immediately fr~ 1.4.2 that (90,2,2) doee not fit a 

perfect code. 
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Details about these searches can be found in ?apers by Cohen (see [8J), 

No Andrew (see [J1J) ~nQ Van Lint (see C~2)). 

5.5. e ~ 2, q OQQ, 3 ~ q ~ 125, 3t ~ k S 40.000 

e S 20, q 2, n ~ 270 

e S 1000, ~ S 100, n S 1000 

They use adapted Newton-Raphson ~ocedures. 

(Cohen) 

(Me Andrew) 

(Van Lint) 

The most ~portant step forw~d was made with ~oofe belonging to the 

second class by Van Lint and Tietavainen. 
First, the fruitful method of combining the sphere packing conQition 

and the polynomial conQition was introduced by Van Lint (1970) for 

the c~se e = 2. 

For a general explanation of this method we refer to section 1.6. 

In the Same paper by Vqn Lint the Ca~e e ~ ~ was treated using the 

polynomial cond1t1on only. 

seth for B = 2 and for e = 3 he proved that a perfect e-code over 

GF(q), q pS, cannot exist unless such a cOQe has the Golay parameters. 

We refer to [23J. 

Van Lints method for the case B = 3 was generali2ed by the author to 

prove the nonexistence of perfect e-codes over arbitrary alphabets for 

e = 3 and e ~ 5 (see chapter 5) . 

The method for e = 2 was applied to the case e ~ 4 by Tietdvdinen (1970). 

He proved that pe~fect 4~coQes over GF(q) , q = pS, do not exist (see [36J). 

The nonexistence of perfeot 5- 6- and 7-cades over GF(q) was proved by 

Van Lint in t24). 

Then, sUcceSsively, the impossibility of unknown perfect cooes over an 

~lphabet G~(q), q = pS, was established by Van Lint (1971) and TiBtaVQinen 

(1973) • 

Van Lint treated the case p > e. This is in a sens~ the e~$~eBt case, 
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In the first two ~OOf5 it was shown that, if q = 2 and e is odd, 

tllGn n must be bound eo );>y a bouno oepending on e only. 

~or this purpose the same theorem of Siegel was used that we use 

for elle more general Case where <;! is ,,,:-bitrary. 

We refer to [32J, [20J ano our section 4.3. 

In the latter two proois tne nonexistence was esta);,lished of perfect 

eod~s with q = 2, e cdo, and (respectively) ~ e ~ 29, e ~ 39. 

!:'or the paper );,y J=CS c.s. see [16J. 

'1"he paper by Johnson ([17 J) also contains proofs belonging to the third 

class' by factor~n9 the Lloyd polynomials of oe9ree 2 and 3 in the 

CdSe q = 2 he proves the noneX~stence of binary perfect 2- and )- coae5. 

Otller proofs belonging to the first class treat some sm"ll values of <;! 

in the case e = 2, starting from the equation 

tl. 3. 
2 J k 

x - (q - 6q + 1) - Sq 

which is related to the sphere packing condition 1.2.1. 

The proofs use diophant~ne theory. They were 9iven by Alter (1968), 

t:n{,1dman (1951) ana C(Jhen (1964). See ~lJ, (2], [12], [8]. 

Th~ oa~es 7 ~ q ~ 9 (Alter), 'l = 5 (~ngelman) and q 5 6 (Cohen) were 

exoluded. 

In the case q = 6 the proof i~ false, );,ecause in this case ».3 is not 

related to 1.2.1. 

By approachifi9 the solutions of H.3 with Newton's method, A~te~ proved 

that these solutions canno~ );,e integral, but again this fact does pot 

prove the nonexietence of perfect codes with parameter-5 e = 2 and 

q = 2s2. 

sever.~l C~Futer se~rches have been made to find solutions of 

H.4. k 
q 

These were very extensive, );,ut did not yield nont~~vial ~olutions (n,e,'l) 

except the Golay parametere and (90,2,2). 
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which shoulQ be clear from OQr eection 1.6. 

In Tietavainen'a p~oof a sharpening of the ~~1thmetical - geometrical 

mean inequality was used, wh~oh turneo out to be very useful in later 

proote (see [40J. [6J). 

Later on. simpler proofe We~e obtained by Tietavainen (1974) ~nd by 

Van Lint (1975). 

We refer to (26J. [39J and [30J. ~nd to o~ chapter 2, where some 

gen~alizations can be found. 

Subsequently, some nonexistence theorems were given for arbitrary q. 

Among these we mention proote by Tietavainen (1975). by Eae8atygo. 

Zinoviev. Leontiev and Feldman (1975) and by Van Lint (1974), all 

belonging to the seoond class. 

Van Lint proved tOe nonexistence of pe~feot codes with e = 2 and q - 10 

(see [2BJ). In seotion 3.2 there are some m~e ~esults of th~s kind 

given by the autho~. 
S t 

Tiet~v~lnen treated the case q m P1 P2' e ~ 3. with a method desc~ibeQ 

in our section 2.2. See [40J). 

Finally. Bdssalygo C.5. proved the nonexistenoe of pe~fect codes with 

q • 2
k

3
5 dnd e ~ 2. using esti~tes by Bak~r .a.e. and a sharpen~ng of 

the geometr~cal - arithmetical mean inequality by Lagrange. 

We refer to [6J and our theorem 3.5.1. 

~ forthcoming pape~ by Bannai (1976) proves the existence Of an upper 

bound N(e,~) fo~ n for e ~ 3, as we did in ou~ sections 4.3 and 4.4. 

Tn~s bound has not yet been made explicit. 

For the pu~pose he uses He~mite polynomials to approxi~te the ~eros 

Of the Lloyd polynomLals. 

No use is made of the sph~re packing oondition. We refer to [4J. 

In this thesis there are Some further contributions by the author. The 

most ~mportant ie the proof of the nonexistence of perteGt 4-codes over 

arbitrary alphabets in s~ction 5.4. 

In sect10n 1.9 we give a survey of o~ results. 
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SAMENtiATTING 

In ait proefschritt is oe (non-)exiBtentie aan oe orde Vdn dri~tallen 

(n,e,q) van parameters voor zogenaamae pe~f$ct$ cod$$. 
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Aan de hand van een tweetal voorwaarden worden non-existentiestellingen 

bewezen. oe eerste van deze twee voorwaarden is de 8phe~e packing 

aondition: 

oe tweede is de poZynomiaZ aondition: 

6.2. p (X) 
e 

heeft e verBchlllende gehele nulpunten ~n {1 , 2 / +. t/ n}+ 

Na het eerate hoofoatuk, oat een inleioing is tot het proefschrift, sp1tst 

het onaerZoe~ zich toe op deze twee voorwaarden. 

In hoofdstuk 2 wardt uiteenge~et hoe ~en, door beide voorwaarden te 

combineren, iets kan zeggen over het aantal priewdelers van q. 

Na twee stellingen, respectievelijk van van Lint I Tietavainen en 

Tietavainen, over achtereenvolgens het geva1 ~ 
5 

P en het geval 
s t 

q = P1P2' geraken w~j tot een generalisat1e en passen deze tOe in het 

geval e = 6. 

Deze genera11satie houot in oat q "meestal" tenminste e verschil1enoe 

priemdelers heeft. 

In hoofdstuk 3 geven wij de nul~nten Xl en x2 van P2(X) in een para

meterformule en leLoen enkele deelresultaten aangaande q af. 

Ook hier gebru1ken wij de combinatie van ceide boven genoemde nOodzakelijke 

VOO~W~ard~I'l. 

In hoofdstuk 4 worat een covengrens N(e,q) VOOr n afgeleid in het geval 

dat e oneven is, met behulp van de polynoomvoorwaarde alleen. 
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~iertoe be schouwen we een transformatie e ale ae polynomen Pe(x) over

voert in polynomen ~e(e) aie eveneens e verschillende gehele nUlpunten 

moeten hebben. 

Voor deze po~ynomen ~e(e) vinaen we aan twee waarden van e waarin Fe(S) 

voor n > N(e,q) een verschillend teken heeft, terw~jl in het interval 

begrensd door beida waardan van a qeen qeheel getal voorkomt. 

In hoofdstuk 5 kamen wij tot onze voornaamste stellingen. 

~ier bewijzen wij dat onbekende niet~triviale perfecte codee met e 

of 5 niet bestaen. 

3, 4 

In de gev~llen e = 3 en e = 5 wordt hiert~e een bew~j~ van Van Lint (die 

zich beperkte tot het geval q = pS) gegeneraliseerd. 

Voor het geval e = 4 ~aken wij gebruik van de ~eso~vente van Lagran~e om 

Vl1n het vierdegraads LZoyd poZYIlOOl!1 P 4 (X) te geraken tot aan dardegraads 

polynoom die in ",ekere zin kan worden behandel.;! ",is de "oneven" poly-nemen 

);>3 (x) en P5(X). 

Opnieuw vinden wlj twee wearden x "'aarln het polynoem voan teken verschilt, 

terwijl in het interval begrensd ooor beide waarden geen geheel geta~ 

voorkomt. 

Tenslotte hebben wij dan onze tekst het zesde hoofd5tUX toegevoegd, waoarin 

men kan zien hoe onze methoden eveneens gebru~kt kunnen worden om non

existentiestellingen te bewijzen aangaande ~ogenaamde mi~ed perfeat ao~e. 
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Hat is niet ~o eenvQudis ~en ~l~emene nonexiBten~ie8telling voor perisctG 

2-codss met q symbolen te bewij~~n, ~~~~ q = 2 F~ (~prLem). 
Van de andere kant zijn nonexi5tcntic5tellin~cn VQO. ~ulke codes eenvoudig 

te bewijzen als q sen vooraf geqav~n n~tu~~lijk getal iS t bijvoorbeeld 

q = 33 of q = 38. 

V=~~=l;j~ ~;e mee $telling 3.5.13 en de paragrafen 3.6 an 3.7 v~n ~., 

Foefseh:r;;ft-. 

In~ien e een gegeven klein on~ven n~tu~",",jk geta1 i. ongelijk aan 1 

(bijvoorbeeld e = 7,9,11), dan k~ m~n ¢~~ n~~~'$""ntLe.~elling voor per

fecte e-code$ bewijzen met sen bewijs analQQg aan ddt V~~ de $tellingen 

5.1_1 en 5.3.1 van dL~ proefBchrift. 

fiet i8 van belan~ non~~i~t-¢~t1e~tellLngen veer perfecta codes ~ove~l mogelijk 

te bewijzen met behulp v~n ae ~¢iynOQmvoo~waarde alleen, 

Riermee bewijs men n~61ijk mct~cn w~~e~lijk sterkere nonexiBtenti~~t~ll~nqen 

~ he'!: gebieCi. van de zogenaamdol3 "mixed perfeet e~e$" ~ 

IV 

!l.1.j, II'oor <j • :N, de verzameling S gedefinieerd door S ,= {O ,1. , .<j ). 

Zij n < 1'1 en laat voor ~ = (xI ')<2" '''1'1) < sn ~" u.1.t$l.'ruk p (~) 9'edefini

eerd d;ln doo>;" 

~n ,kM rQ.en een "code met variabele woordlengte" def1niij,"~:(f ~J,.$ e:en deel

ver&dmelin9 van V ,D {~ • Sfl I P(~)). 

a} Indien q = 1 ~ d;;"n be$t~;:.,t. e:;c vocr ledere n ~ ~ Ben "perfG¢te e-fout.en .. 



voar de taalwetenschap interessanter dan codes met va5t~ woordle~~t~. 

v 

I)~ I;Ql"lst::.r1).C::t..i.c d~r rlE'=ele- goaty.llen r ui tgaD.nd<3 v,,"n d~ r"'t-ionc.~ l~ r volgc~rl!:; d~ 

methoot: van a~ Nc.!dcr.l."n~~c w~r;;k.\lrnQ.j'\l"~ P~~l":t""c B.,,\ldct (lB91-1921) bi~d'L be

p~."ld~ vQordG:len boven de constructies van Cantor, U13d8kincl CJl W¢~,~~J:;~t..r.:ai;,,_ 

Vergeli jk F. Schuh; "Het getalbegr ip. in het bi)zonder het Qnmeetbaar get"),"; 

Groningen, Noo:t:dho.ff, 1927. 

VI 

2 
B.;i.j h~t. i:.O~kl:'"rl rl~~r Q~ cpl,os:;i;nc;J~n (J.;rr\} lJ v,,"n ri.i,eL-l:riv.i."le dicp!lantische 

Vergi!:lijk,i.ngt;!;n V.::\r"l r~~t t.ype x
2 + 0 = pn td kw",dr~.;t.tv:t'~j, p p,r;;i,~m) 1ij,kt het 

w~.rkt:!-n in ~.en gt;t~1.1~nJ.j"c::h.::\~ Q{/"""="d) ".inl.~QS -=.15 d ..::. 0, '=Il if]. i~der 9t::\l'al 

zinvo1 81$ d - 1,2,3,7 of 11. 

De dioph~nt.ische verg~llJ,kir"lg x 2 
+ 7 ~ lin heeft geen andere oplosBing 

(x.,n, (. ]N2 dan (2,1) _ Mi!:r"I. ktiil Ilier."vl::I.rl et::!;n b~wij~ g't::!;"ven dat analoog is aar. 

een beW1.:i:5< ~n een (onder g~Iloemd} e.rtikel van Alt.er en Kubota. 

Vergelijk. Hardy & Wright. ~'An ~nt.roduction EQ the theory of numbers II ; 

Oxf6~d Un~ver$~ty p~e$~f l~/l_ 

Pierre Samll.e1: "Theurle l-I.1geb.rique des Nombres"i Collection Methoo(~!i'l 

Hermnnn, p~ris, 1967. 

Ron~J.d A,1.t~r fJ. lCK~ K'l,l,~ot.~! liThe di.ophantine equation x
2 + 11 ]n 

and" rol",""'" ~"q\.\,,"o"'" J,,~,,""l. <'f N"mb.~ Tho .. O.-y 7... (1975), 5-10. 

vn 

Stel dat p .... n pr~ .. mget8l i8 en q een willekeurig n .. tuurli)k g€t"l ""IJ",,';'jk 

.,,~n 1. IrHlien 



(dit is bijvoorbeeld h~~ g~V~" "15 P ~ q - 2) 

dan is de!- £UfH::tj.~ f ;: Q + 1J2'., geijefinieard door :f (x) !~ x (:.8 - p) injectlet_ 

V~9~liJk dit wet ~Qblcm E 25~4 Lfi 81e Amcric~n MathematLc~l MQnthly, 

QktobGT 1975 r page 85~. 

VIII 

(;edurende een bep~;;,ldG periode in de middcleeuwen besC:h:rev~Jl mo;n,nik~n ~.n 

1~ngdradi9~ ver.b~la teksten de QP1Q~sing van linea~re v~~~clijkingen van 

het type ~~ + b = 0 met d~ m~thQde van aing!e l re~p. double false; 

i) i~ ... g + b 

K -

f, dim is " _ lif - b) - gf 
f-b 

f 2 , dan is 

N1ett~9~nstaande het feit d~t d~ moderne algebr~r~Ch~ m~thodcn en de moderne 

nctatie Vdn ~lgebraIgche ve~9~lijkingen in die tijd n~Gt in ~wang waren, 

lijkt ~~t onwaar8chijnl~jk Q~~ d~ re~ht8treekse oplQ~~inq v~n h~t probleem 

ni~t aan de meeste bel~n~5tellenden bekend W8$. 

V~l;'geliJk christoph Sc:r.ib.;s: IoThe t;:;oncept. of number" J B-I-HQchschulskripten 

225/825", M"""b .. im/zUr1C:h, B~),l;j'O\Jr",phisGbe8 InsH!:.,,!:., \ 9"~. 

IX 

Ret ~~i~le profijt dat ~en als wiskundige kan trek~~n ~it de~ln~e aan 

een filQsofisch debat is een geocfend vermogen tc~ ~~t h~ncth~v~n van sen 

v~~bdle GonsiBtentie~ m~t dndere woorden. tot h=t vG~mijrlen van een contra

dictio in termin~$. 

H.F.H.. Reuvet'"$, Eln~~cven, 18 januari 1977. 



On p;::Lg~ (..:t.i"ter) formula 

1.6.1::; 

1 ~ Ln." 

lb 2. \.9 

20 2.:1. 7 

:10 3.2 

30 ).2.1 

:;1 ).5.2 

37 J .6 

j~ 3.6.9 

13 3.&.4() 

!U '3.:;:: .1 

117 H. ~ 

Ill) ". :3 

o.nd t. , 

pU!::l-lLive 

t.. ( :IN 
1 

SI "~ "1 ... p 

1<+«1 k+o 9. 
PI ... p 

po~:itive 

q 30 

PQsit.:i.vG-

{mod 27) 

wi th integral 
:tlS~O$ 

3t s k 

be intl3gr",l 

.... t)ich should be 

.:md nonnegative intsrjers ti 

nonn~g'''"t1.v~ 

in I'most" of th~ c..:~!::;~!::: 

k OH:t
1 

k+tL£ 

PI .. 'P t 

nonn~g~ t.J.V~ 

OJ < ·.H) 

1'091. tive or nonn~g~ t.~,vt! 

Imm 7) 

with four integrul 
~t:;r.c;.;s 

40.000 

The pages 117 "",rlc? 11'-3 !:;llUllld be read. in rGv-c~!':~(!:d. order. 
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