Some non-existence theorems for perfect codes over arbitrary alphabets

Citation for published version (APA):

Reuvers, H. F. H. (1977). Some non-existence theorems for perfect codes over arbitrary alphabets. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Hogeschool
Eindhoven. https://doi.org/10.6100/IR140570

DOI:

10.6100/IR140570

Document status and date:
Published: 01/01/1977

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

SOME NON-EXISTENCE THEOREMS FOR PERFECT CODES OVER ARBITRARY ALPHABETS

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE TECHNLSCHE WETENSCHAPPEN AAN DE TECHNISCHE HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF.Dr. P. VAN DER LEEDEN, VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP DINSDAG 18 JANUARI 1977 TE 16.00 UUR

door

HENRICUS FRANCISCUS HUBERTUS REUVERS

GEBOREN TE MAASTRICHT

Dit proefochrift is goedgeteurd
docr de promotoren
Prof. dr. J.H. van Lint
en
Prog. dr. J.H. de Boer

Voor Marian en de kleine Erik
aun mijn ouders
CONTENTS paq̧e
CHAPTER 1. INTEODUCTION 1
1+1. On error-ebriceating cocea 1
1.2. On perfect codes and the sphere phoking condition 2
1.3. On the number of gote wirds of welght k for some small k 3
1.4. ضn t-designs 4
1.5. On t-degigns in parfect codeg 5
1.6. The polyriminal condition 6
1.7. Some examples of perfect cotieg 11
1.它. A yemink about perfegt 1-codes 12
1.9. Summery of results 15
CHAPTER 2. SOME GENERAL REGULTS CONCERNTNG G 17
2.1. The general case q m p^{s} \{e z 2) 17
 19
2.3. Introduction to a restrlt concerning the number of primes dividing q 20
2.4. Statement of a result concerning the humber of primes diviaing q 23
2.5. Appligation to the atase o $=6$ 26
CHAPTER 3. SOME RESULTS CONGERNING THE CASE 日 $=2$ 27
3.1. Firat approach to the case e $=2$ 27
3.2. Fecond approach to the aage e $=2$ 30
3.7. The Epectal case $=p^{3}$ 32
3.4. A remari about the special mage $q=p_{1}^{s} p_{2}^{\hbar}$ 33
3.5. Some remarks wout the special ease $q=2 k p$ g 34
3.6. The special case a 34
3.7. The speaial case $q=30$ 53
GHAPTER 4. SOME GENERAL RESULTS CONCERNING A 71
4.1. A firgt zemark about n 71
4.2. A second ramark ebjut n 72
4.3. The exigtence of an thper bound $N(e, g)$ for n 74
4.4. An upper bourd $N(E, t)$ made explicit if e is odd 76
4.5:Application 81
CHAPTER 5. SOME RESULTS FOR SMALL VALUES OF E 82
5. i. The case e= 3 82
5.2. The case e $=4$ 83
5.3. The caee e $=5$ B
CHAPTER 6. SOME FESULTS CONCERNING PERFECT MIXED OODES 91
6.1. Preliminaries 91
6.2. A monexistange theorem concerning mixed perfect 2-codes 93
6.3. A nonexistence theorem concerning mixed perfect 3-codes 99
APPENDIX 102
HISTORICAL SUMMARY 116
REFERENCES 120
SAMENYATTING 125
CURRICULUM VITAE 127

CHAPTER 1 : INTRODUCTION
1.1. On error-correcting codes

Let S be aet of q symbols. We shall take $s:=\{0,1,2, \ldots, q-1\}$. we call 3 an atphobet.
Let, for some $n \in \mathbb{N}, v$ be the Gartesian proxict s^{7}. We sall v a space, and the elemente of V words.

Let C be a subaet of V. Then we call C a oode. The elements of C are called code worde and n is called the word tength of C.

C is callea a grow coce if ft is a group under codrtinatewise adeition (motulo q) .
Let $x \in V$. Then the Howning wetght $W_{H}(x)$ of x is the number of coorcinate places in which x hag a nonzeyo эymbol.

The guport of x is the vector supp (x) which has zeros in exaptly the pame cooridnate places in which x has zeros, and which has ones in the other coordinate places.

Fot any two words x and y in the spece V, we define the Baming distonce $G_{H}(x, y)$ between x and y to be the namber of obordithate places in which x and y have a differ ent symbol, so
i.1.1. $\quad d_{H}(\underline{X}, y)$ 血 $W_{H}(\underline{X}-Y)$
where subtraction means ooonginatewtge subtraction (mod g) .
By $d_{H}(x, C)$ we dencte the distanes from x to the code.
For any $x \in V$, let the Hanming sphere with radius e around x be defined by:

cistingt obde words x and y we have $d_{H}\left(\underline{x}, y_{i}\right) \geq 20+1,50$ if the spheres With radius e aroudd the ebde words are disjoimt.

If G is an e-emror-obrietting mode, and if we rhange at most e obordinates
of a code word x, then the cinanged word is still nearer to \underline{x} than to any other code word.
A. code C is oalled e-error-detedting if, for siny two distinct code words \underline{x} and y, we have $d_{d}(\underline{x}, y) \geq 2 e$.
The numbers, n, e and q are called the troditional parometene of a code.
1.2. On perfect codes and the sphere packing condetion

We call a code C a perfeat e-code if the Haming sphereswith radius e around the code words form a partition of V.
Such a code is not only e-error-conreoting, but the Hamming spheres fill the space V.
It was proved by Lenstra (see [19]) that a perfect code over a q-symbol alphabet oannot be a group cocie unless q is a power of a prime. The case where q is a power of a prime was settled completely by Vark Lint and Tietavafnen (see seations $1.7,2.2$ and the historical survey). They froved that unknown perfect codes over GF (G) do not exist. Examples of perfect codes can be found in section 1.7.

It is our purpose to prove nonexistence theorems for perfect codes with parametcrs $\mathrm{n}, \mathrm{e}, \mathrm{g}$, where q is not necessarily a power of a prime. In this case we call s an arbitrory alphabet.

An obvious necessary eondition fox the existence of perfect copes is balled the sphere paoking oondition:
1.2.1. $\left.\quad\left(1+n(q-1)+\left(\frac{\pi}{2}\right)(q-1)^{2}+\ldots+\left(\frac{n}{e}\right)(q-1)^{e}\right\} \right\rvert\, q^{n}$

Here the left hand side $1 s$ the number of words in a sphere with radius e, and g^{n} is the total number of words in the space V. If, fox instance, q is a prime power, say $q=p^{5}$, then we have the very strong condition that for some a $\leq \mathbb{N}$
1.2.2. $1+n(q-1)+\binom{n}{2}(q-1)^{2}+\ldots+\binom{$ h }{$q}(q-1)^{\text {e }}=p^{a}$.

From now on the symbol p witin deriote a prime.
The sphere packing obndition plays a basic role in our investigations.

1. 3. On the numben of code ubtids of weight k foh some smaile is

Assume that we have a perfect code with paraneters n, e, f. we can asgume without loss of generality that the werd 0 (having a zero in every coordinateplagel is a coce word.

In this case the minimum weight of a code word ia $2 \mathrm{e}+1$.
Then Eech woyd of weight e +1 is in exactiy ond Haming sphose with radius e around a code word, and this code word must be of wedegt $2 e+1$.
Therefoxe, since there axe $\binom{\pi}{e+1}(4-1)^{e+1}$ words of weighte +1 , and since in a Hamming ppheve with radiug e ayound a code word of weight $2 e+1$ there are $\binom{2 \mathrm{a}+1}{e+1}$ worts of weight e +1 , we fint that the number $a_{2 n+1}$ of code words of weight $2 e+1$ yust be:
$1.3+1 . \quad a_{2 e+1}-\frac{\binom{n}{e+1}(\underline{q}-1)^{e+1}}{\binom{2 e+1}{e+1}}$.

Furthermore, since each word of weighte +2 is in exsctly one famming sphere with radius e around a code word, and this coige word must be of weight $2 e+1$ बI $20+2$, we find, gounting the words of weight e +2 at a fistance e or e - 1 from such a code word, the following recurrence relation, which determines the number $a_{2 e+2}$ of code words of weight $2 e+2$:
$1.3 .7+\binom{n}{e+2}(q-1)^{e+2}=\binom{2 e+2}{e+2} a_{2 e+2}+\binom{2 e+1}{e+2} a_{2 e+1}+\binom{2 e+1}{e+1} e(q-2) a_{2 e+1}$
which yieldg:
1.3.3. $\quad a_{2 e+2}=\frac{\left(n-e^{2}-3 e-1\right)(a-1)+e(e+1)}{2 e+2} a_{2 e+1}$

In the same way we can deternine the mumber a 2en of code words of weight $2 e+3$ by means af the following resurrence relation:
$1.3 .4 . \quad\binom{n}{e+3}(q-1)^{e+3}=a_{2 e+3}\binom{2 e+3}{e+3}+a_{2 e+2}\left\{\binom{2 e+2}{e+3}+\binom{2 e+2}{e+2} e(q-2)\right\}$
$+A_{2 e+1}\left\{\binom{2 e+1}{e+3}+\left(\frac{2 e+1}{e+2}\right)(e-1)(q-2)+\binom{2 e+1}{e+2}(n-2 e-1)(\underline{e}-1)+\right.$

$$
\left.+\binom{2 e+1}{e+1}\left(\frac{e}{2}\right)(q-2)^{2}\right\}
$$

In this way we can go on.
So the numbers a_{k} depend on $k, i n$, and c,
For our purpose we shall only need these numbers for the cage en *
In the appendix (see A.1) we determine the numbers af for e $=4$ and $9 \leq 1 \leq 13$.

1.4. On t-designs

Fox the sections 1.4 and 1.5 we refer to [41], chapter 2, eection 4. We say that a word $y \in V$ covers another word x if we have:
$1.4,1 . \quad \forall i \in\{1,2, \ldots, n\}\left[x_{i} \neq 0 \Rightarrow x_{i}=y_{i}\right]$

So if under coordinatewise multiplication we have yesupp $(x)=x$. Now we define a (q-azy) degign of type t-(n, k, h) in v to be a colleation D of words of weight k in V, guch thet every word of weight t in V is covered by exdetly λ members of 0. This definition generalizes the concept of binary t-depigns (see [27])
to the oncept of $q-a r y$ t-deaigns.
If in v there existes a q-ary design of type tw (in, k, λ), then trivially λ must be an integer. But mbreover;
1.4.2, 茄 $0 \leq 1 \leq t$ we have $\lambda_{i} \in$ t. where
$\lambda_{1}:=\frac{\lambda\binom{n-1}{t-1}(q-1)^{t-1}}{\binom{k-1}{t-1}}$

This is trof bealuse a q-ary design of type $t \sim(n, k, \lambda)$ defines itary Aesigha of type $i-\left(n, k, \lambda_{i}\right)$ Ior $0 \leq i \leq t$, which le not difficult to underョtand +

Remark that for a desfgn D of type $t=(n, k, \lambda)$ we have
1.4.3. $\quad \lambda_{0}=|D|$

The following remark may be usefti for a better undergtanding of the propf of theorem 1.5.1:

Congidex a quary design D of type $t-(n, k, \lambda)$, and consider a set of $a+b$ positions where $a+b s t$.

Let us choose coordinates $x_{1}, x_{2}, \ldots, x_{j}$ on the b positions, all aifferant from 0.
 It is fmmediately clear thet the number of words in D which have 0 in the pregeribed a positions, and $x_{1}, x_{2}, \ldots, x_{j}$ in the presoribed b positions, dependa only on the numberg a and b.
1.5. On t-destens int perdect codes

Finally, lat $B(x, k)$ be the number of code worda at distance k from x

Ther the numbers $B(x, k)$ depend only on r, k, n, e and q.
This follow from theorem 2.4 .4 and 1 ts preliminarieg fn [41] anc mas nothitg to do with the question whether or not $v i s a$ lindear spanee, and whother of not $c i s$ a linear subspape of V. Now we are ready to prove the following theorem:

 ¥otm a feary design of type (e + 1) - (n, k, $\lambda(k))$.

PROGF. First we prove the capek a $2 \mathrm{e}+1$.
Let $x: V$ and $W_{H}(x)$ m +1 . Then it αs clear from the triangle inequality that $d_{i}(x, C)=$ e and x has diatanae e to exactly one code word of weight $2 e+1$. Glearly this code worc must cover \underline{x}, and \underline{x} is covered by no other code word of weight $2 e+2$.
So tha code worgs of weight $2 e+1$ form a g-ary degign of type $e+1-\{n, 2 e \neq 1,1\rangle+$
Now assume that, for all k < w, the code wordg of weight k form a grary design of type e $+1-(n, k, \lambda(k))$, for some $w \leq \pi$. Let $\underset{\sim}{x}$ be any word in V such that $W_{W}(\underline{x})=e+1$. Then, since the code words of weight k form a quary design of fype $i-(n, k, \lambda(k, i))$ for all $i \xi \sin , 1$, we see that the number of oode words of weight k at a given digtance from k is a constant incependerit of x (sere the end of section 1.4).
so the number A of code worcs of welght $\leq w-1$ at distance $w-e-1$ from x is independent of x.
 axe independent of $\underline{x}, ~ z c \quad B:=B(\underline{x}, w-e-1)$ is independent of x.
So the number of code words of weight w at distance $w-e-1$ from x is $B-A$, for adi \underline{x} with $W_{H}(\underline{X})=e+1$. Hence, since these code words are exactly those of weight w which cover \underline{x}, they form a q-ary dusign of type $e+1=(n, w, B-\neq$). So we have proved the theorem by induetion.

RENARK. The proof of the pregexing theorem strongly resembles the progit of theorem 2.4 .7 in [41], but is not exactly the fame.

Fot our purpose, we shall only need the reswits on t-aesigns in perfect codes for the case e $=4$ (sec $A+1$ in the appendix) .

1.6. The potynomial spndition

A class of orthogonal polynomials, the so-called Krawtohouk polyromitals, 1s defined byf

We yafer to [35] and [41]. Am important property of intawtohouk polynomials is the following identity:
1.白.2.

$$
\sum_{m=0}^{e} K_{m}(n, x)=K_{e}(n-1, x-1)
$$

From algebraïc considexations (see [10], [19] and [27]) it follows that if there exists a perfect code with parameters $n, ~ e, ~ q, ~ t h e n ~$

has ef distinct integral zeros.
This is a very strong condition for the oxistence of perfect codes. We call it the polphomiot condition. Like the sphere packing condition it plaý a basic role 1 n our investigations.
Usualiy the condition is called Ltotd's Theorem. The polynomial pe(X) 1s called the cloyd polynomial.

Since there are meny proofa in the literature, and we shall tse the concition as a tosi, we shall omit the proof.

Mostly the proofs deal with the gase that G is a linear subspace of a 11near space V over a finite field GF (q), where cis a prime power. It was first proved by Lenstra \{[19]\} that this is net necesgary at ail. A nice proof was given by cwetkovic / Van Lint ([9]).

In [27] one can find another representation of $\mathrm{F}_{\mathrm{E}}(\mathrm{X})$:
1.6.4. $\quad F_{e}(X)=(-1)^{e} \sum_{j=0}^{e}(-1)^{j} q^{j}\binom{n-x}{j}\binom{n-j-1}{e^{-j}}$.

Now we shadi introduce the theorem and give the gymetric expresaions obtained from the coefficients of the Zloyd polympmial, and from the values of $P_{f}(0)$ and $P_{i}(1)$.
1.6. 5 . THEOREM. If there exista a perfect code with parameters n, e, g, then the polynomial $F_{e}(X)$ has e distimot integral zeros $x_{1}, x_{2}, \ldots, x_{e}$ r which belong to the set $(0,1,2, \ldots, n)$, and we have
1.6.6. $\quad \sum_{i=0}^{e} x_{i}=\frac{e(n-e)(q-1)}{q}+\frac{e(E+1)}{2} \in Z$
1.E.7. $\sum_{1 \leq i \leq j \leq e} x_{i} x_{j}=\frac{e(e-1)(q-1)}{2 q^{2}}\left\{(n-e)^{2}(q-1)+(n-e)\{q \theta+q-1)\right\}+$

$$
+\frac{(e-1) e(e+1)(3 e+2)}{24} \in \pi
$$

1.6.B. $\quad \prod_{i=1}^{e} x_{i}=\frac{e!}{q^{e}}\left\{1+n(q-1)+\binom{n}{2}(q-1)^{2}+\ldots+\left(\frac{n}{e}\right)(q-1)^{e}\right\} \in Z$
$1.6 .9 . \quad \prod_{i=1}^{e}\left(x_{1}-1\right) \pm(n-1)(n-2) \ldots(n-e) \frac{(g-1)^{e}}{q^{e}}$ e z

Combining 1.6.8 with the sphere packing condition $1,2,1$ we find:
$1.6 .10 \quad \prod_{i=1}^{e} X_{i} \quad E!q^{n}$

In the special case that of 1 a prime power, say $q=p^{5}$, we find for some $t: \mathbb{I N}$ the very ptrong condition:
$1.6 .11 . \quad \prod_{i=1}^{e} x_{i}=A(e, p) p^{t}$,

Where $A(e, p)$ is defined by
1.6.12. $\quad A(E, P)=\frac{E!}{p^{2}}$
and $w \in \mathbb{I N}$ is chosen in such a way that $p^{l i}$ il ef
so there must be positive integers A_{i} and $t_{i}(1 \leq i \leq e)$ such that

and
$1.6 .74 . \quad x_{1}-a_{1} p^{t}$

However, it is clear that if there are many distinet primes ilviding q, then the formula 1.6 .10 becomes much less effertive.

For odde, say e $=2 m+1$, it turns out to be very effective to use a substitution θ, firct introduped by Van Lint in [23] for the ense e=3. Let

1+6.15. $\quad \theta:=\mathbf{g X}-\mathrm{n}(\mathrm{q}-1)=$

Remmrk that if θ m 0 , then $x=\frac{n(g-1)}{q}$, and that $\frac{n(q-1)}{q}$ resembles the

Then singe
3.6.16. $\sum_{e=0}^{\infty} P_{e}^{(x))^{e}}=(1+(q-1) z)^{n-x}(1-z)^{X-1}$,
we finc, if we take
$1.6 .17 . \quad F_{e}(\theta): F_{e}(x)$,
the followineq power sexies which generatea the trott formed LZoyd potyrumfals $F_{e}(\theta)=$
1.6.18. $\quad \sum_{\theta=0}^{\infty} F^{(\theta) z^{e}}=$

$$
(1+(q-1) z)^{-\theta / q}(1-z)^{(\theta / g)-1}\left((1+(q-1) z)^{1 / 4}(1-2)^{q-1 / g}\right\}^{n}
$$

We shall need this generating power series for lema 1.6.23.

We eonclude this section whth some remarkable properties of E_{e} (e).
It is known that the polynomials $F_{\mathrm{e}}{ }^{(\theta)}$ can be erpressed in a determinant form (see [7], [9]).

For instance we have, transforming $F_{3}(X)$ and $p_{5}(X)$ rebpectively by hand:
1.6.19. $\quad 3: F_{3}(\theta)=(n-1)(n-2)(n-3)-3(n-2)(n-3)(n-9)+$

$$
+3(n-3)(n-\theta)(n-\theta-\theta)-(n-\theta)(n-\theta-q)(n-\theta-2 g) .
$$

1.6.20.

$$
\begin{aligned}
5: F_{5}(\theta)= & (n-1)(n-2)(n-3)(n-4)(n-5) \cdots \\
& 5(n-2)(n-3)(n-4)(n-5)(n-\theta)+ \\
+ & 10(n-3)(n-4)(n-5)(n-\theta)(n-\theta-q)- \\
& 10(n-4)(n-5)(n-\theta)(n-\theta-q)(n-\theta-2 q)+ \\
+ & 5(n-5)(n-\theta)(n-\theta-q)(n-\theta-2 q)(n-\theta-3 q)- \\
& (n-\theta)(n-\theta-q)(n-\theta-2 q)(n-\theta-3 q)(n-\theta-4 q)
\end{aligned}
$$

In qenAral we have the following

$$
\begin{aligned}
& \text { 1.6.21. LEMMA. } F_{e}(\theta)=\operatorname{det}\left(a_{i j}\right)^{\prime} 0 j_{i, j \leq e} \text {, where } \\
& 1+6.22 . \quad a_{0 i}=\left(\frac{e}{i} \text { for } i=0,1 \ldots \ldots, E\right. \\
& a_{1 i}=n-1+i \text { for } i=1, \ldots, \text { e } \\
& a_{ \pm 1+1}=n-\theta-(1+1) q \text { for } i=0,1,+\ldots,{ }_{1} \\
& a_{i j}=0 \text { if } j \neq 1 \text { and } j \neq i+1 \text { and } 1 \neq 0 \text {. }
\end{aligned}
$$

Finally, let up conslder $F_{f}(\theta)$ as a polyñolal in n, say
$1.6 .23 . \quad F_{\theta}(\theta)=\sum_{k=0}^{\theta} \sum_{k}(\theta) n^{k}$

Then we heve the following
1.6.24. LEMMA. If $e=2 m+1$, then for $k>m$ the coefficients $a_{k}\langle\theta$ are all zero.

FROOF. Define ξ and n by
1.6.25. $\quad 5:=\frac{q-1}{2}$ and $\eta:=\frac{q-1-2}{3}$

Then we find
1.6.26. $\quad\left((1+(q-1) z)^{1 / q}(1-z)^{q-1 / q}\right\}^{n}=\left\{1+z^{2}(-\xi+\eta z+\ldots)\right\}^{n}=$

$$
=\sum_{j=0}^{n}\left(\frac{n}{n}\right) z^{2 j}(-\xi+n z+\ldots)^{j}
$$

So from 1.5 .18 we gee that F_{e} (θ) is the coefficient of z^{e} in
1.6.27. $(1-(\theta-1) z+\ldots)\left(\sum_{j=0}^{n}\left(y_{f}^{n}\right) z^{2 j}(-\xi+\eta z+\ldots)^{j}\right)$

So, as a polynomial in $n, F_{e}(\theta)$ is of degree $\leq e / 2$.

1,7. Some examples of perfect codes
The coneept of perfect codes would never have been studied if there would not exist examples.
Firet we have the trivial perfect codes with only one eode word, and the so-called repetition codes with $q=2$ and word length $n=2 e+1$, consisting of an all-zero code worc and an all-one code wbrd. Repetition codes are also called trivial.
Secondly we have the perfect Haming codes with $e=1$ and $n=\frac{q^{\text {mil }}-1}{q-1}$
which exist for all prime powers q. These ocies are described in [27]. Finally there are the two Gotcy oodes with parameters

$$
\begin{aligned}
& n=11, e=2, q=3 \\
& n=23, e=3, q=2
\end{aligned}
$$

zespectively:

A descripcion of these two eddes can alpo be found in [27].
The uniquenass of perfect coiles with the golay paxameterg was proved by Snover (for the binary code, see [34]) and by Delsarte - Goethals (Eor the ternary code, see [11]).

1.8. A remark about perfect 1-codes

Let G be a perfect code with parameters $n, E=1$, and g. From the sphere paoking condition 1.2 .1 we find that

$$
\text { 1.8.1. }\{1+\Omega(q-1)\} \mid q^{n}
$$

So if $q=p_{1}{ }^{1} \ldots p_{r}^{s}$ is the prime decomposition of q, then
$1.8 .2 . \quad 1+n(q-1)=p_{1}{ }_{1} \ldots p_{\mathbf{r}}{ }^{k}$
for some positive interters $\mathrm{k}_{\mathrm{i}} \quad(4=1, \ldots, \ldots)$.
From the polynomial condition 1.6 .5 we find that $P_{1}(x)$ [cfr. $1+6+3$) must have an integrial zuro x, sugh that
2.8.3. $\quad q^{\prime}-1-n(q-1)=0$
hetyed we have
1.8.4. $\quad \mathrm{g} \mid\{1+\mathrm{n}(\mathrm{c}-1)\}$

Hence we find from $1.8 .1,1.8 .2$ and $1,8+4$ that $s_{1} \leq k_{1} \leq n_{1}$, and
1.8 .5.

Indeec there exigt perfect codes if $r=1$ and n fa of the form $1+8,5$, as we mentioned in the prededing pection.

It was ahown by Block and thal (see [13]) that there doeg not exist a
phtfent 1-code of length 7 on 6 symbols (which was the next open case). The proof made use of the non-existence of a pair of orthogonal 6×6 Latin squares.

A Latin equate of gize k is a matrix guch that every row and every column is p permutation of the numbers $1,2, \ldots+k$.

A patir of Latin squares is called orthogoral if by taking the entries frof the place (i, j) from both squared, thos forming ${ }^{2}$ pairs of entries, one gets k^{2} diatinct pairs.
tht the fame why as Block and Eall did, we oonsidered the question of the existence of a pingle-error-correcting code of length 11 on 10 syubols. Indeed we found more genarally:
1.8.6. THEORFM. Let us guppose that there exists a perfect ainglewerrorcorrecting code of length $n=g+1$ over a g-symbol alphabet. Then there must be $(q-7)^{2}$ palre $\left(A_{i}, B_{i}\right)$ of orthogonal $q \times q$ Latin gequares such that, if for some $(k, l) \in\{1,2, \ldots-G\}^{2}$ we have

PROOF. Fingt we clanm that in $V(4, g):=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right\} \mid x_{i} \in\{1,2, \ldots\},\right)$ there must be ($4-2)^{2}$ digjoint 1 -codes of length 4 an g gymbols, each with q^{2} code words.

Inçed, suppose there exists a perfect 1 -code G of length n m $\quad 41$ on q symbols, hence
1.8.7. $\quad|e|=\frac{q^{q+1}}{1+(q+1)(q-1)}=c^{q-1}$.

Then each of the $q^{q-1}(q-1)$-tuples of g symbols is the initial (g - 1)euple of exactly one of the q^{q-1} code words. Fox if any woula occur twice, then the corresponding oode words would be at a distanee at most twor contrailcting that G is singleuerror-correctinc.
Then all $\mathrm{c}^{\text {q-3 }}$ (q - 3)-tupleg of q symbols are initial (q $=3$)-tuple of exactly q^{2} code words in C.
So, considerint a fixed initana (g - 3)-tuple, we get that the gi code wotan of C that bagin with the fice initial (f = 3)-tuple have 4-bymboltails that fotm in $V(4, q)$ a 1 -code D on q gymbola, of length $4, w i t h g^{2}$ cede morde.

Moreover, consicexłng a Fecond fixed initial (q - 3)-tuple, differing From the first in at most two coordinates, we must find a 1 -code D^{*} on g bymbpis, of length 4, with \dot{q}^{2} code worde and guch that D and D^{\prime} have no code word in comon.

Fence, considerlng all fixed initial (q - 3)-tuples that differ from the firgt in at moit one coordinate, gince each pair of them disagxés In at most two cooxdinates, we mast find $1+(\mathrm{q}-3)(\mathrm{q}-1)=(\mathrm{q}-2)^{2}$ citjoint single-error-correcting codes of length 4 on gymbola with G^{2} code wordar proving the elaim.

Now congider such a code of length 4 . Then each of the $\mathcal{q}^{2} 2-t u p h e s$ out of y^{g} elements $1 s$ initial 2-tuple of exactly one code word. Fot if any would occur twice, then the cortesponding code worts would be at a distance at most two apart, contradiating the one-error-correetingcapability of the code.

Thus, such a code is equivalant with a pair (A, B) of g x a matrices by the aorrespondence:
$(k, \ell, 1, n) \pm s$ a code word iff $A_{k, \ell} \pm m$ and $B_{k, \ell}=n$.
Moreover, if any one of A and E, say A, would have the same symbol twige

 So A and \bar{E} are Latin schurarea.

Furthermore, if fox gome pair of pairs ((k, l), (n, n)) we would have $\left(A_{k R}, B_{k \ell}\right)=\left(A_{m n}, B_{m i}\right)$, then again we whuld have two code words at a distance two, whlch is impogaible. So A and B form a paly of orthogonal Latim squares.
Finally, since all (q - 2) ${ }^{2}$ codeg are disjoint, taking from any two codes
 be diffexent, so they must have different tails, so the $(4-2)^{2}$ pairs of orthogonal Latin squares are distinct in the sense of the thedrem.

1.9. Sumary of resulets

The rest of our investigations is devoted to the question of the existence of parameters n, e, q that fit a perfect oote. We shall neglect trivial casea

In chapter 2 we shall explain how, by combining the sphere packing cone dition and the polynomial sondition, gome results can bep eptablithed about the number of primes dividing q.

After two theorems by Van Lint / Thetavalsen and by rietsvainen, who consider $q=P^{s}$ and $q=p_{1}^{s} p_{2}^{t}$ respectively, we shall introduce a generalization and epply it to the case emb.

This generalization states that in most of the cases, 4 must have at Least e distinct prime divisers.

In chapter 3 we give the zeros x_{1} and x_{2} of $\mathrm{F}_{2}(x)$ in a parameter form and cierive some partial results on 4 . Here to we use the combination of the sphere packing condition and the polynomial condition.
 thet e is odd, using the polynamial condttion only.

For this purpose we oonsider the transformed Lloyd polymomials F_{e} (θ)

$1.9 .1+\quad F_{e}\left(\theta_{0}\right)>0$ and $F_{e}\left(\theta_{2}\right)<0$
while in the interval $\left(\theta_{0}, \theta_{1}\right)$ there does not exiat an integer. The existence of guch an upper bound $N(e, q)$ for n in the case that e is even, is established fut not made explicit.

In chapter 5 we ghall derive olit main theorems.
Here we thall prove the non-existence of unknown nontrivial perfect codes with e $\mathrm{F} ~ 3$ or e $=4$ of e $=5$.
For the case o $=3$ and for the case $e=5$ we generaliae an early theorom
by Van Lint about the case e -3 and $q=p^{5}$.
For the gase $\otimes=4$ we use the recolvent of Lagrange to transiorm the Lloyd polyncmial $P_{4}(X)$ into a polynomial of the third degref, which in some sense can be treated as the "ode" polynomials $F_{3}(X)$ and $P_{5}(X)$. Again we find two values where the polynomial takes a different sign, whereas between them there does not exist an integer.

Fithally, we have added to our text the chapter 6, which shows how our methods can also serve for non-existence theorems concerning mixed perfect podes.

CHAPTER 2 :SOME GENERAL RESULTS CONCERNING g
2.1. The general case $q=p^{9}$ (e z 2)
since a few years it is known that there do not exist perfect e-codes over an alphabet $G F(q)$, where $q=p^{9}$, except the two folay codes, if - 2 2.

The profi was given by van Lint and Tietavainen (see our "historical sumimary")

The approach of Tietäoainen is the following leama, which we ghall use later on for the gase e $=2$.
2.1.1. LEMMA. Stapose there exists an unknown perfect code with parameters n, \dot{e}, q. Let the zeros of the Lloyd polynomial $p_{e}(X)$ be ordered In auch a way that $x_{1}<x_{2}<\ldots<x_{e}$ Then we have;
2.1.2. Either $x_{\theta}<\lambda x_{1}$ or $n<5 e^{2}$.

PROOF. Assume $x_{e} \sum 2 x_{1}$. Then we have also
2.1.3. $\quad x_{1} x_{e}=\frac{2}{9}\left(x_{1}+x_{e}\right)^{2}$
and hence from the geonetriont-arithmetront mean inequatity
2.1.4. $\quad x_{1} x_{2} \ldots x_{e} \leq \frac{8}{9}\left(\frac{x_{1}+\ldots+x_{\theta}}{e}\right)$

Furthermore, from the formulas 1.6 .6 and 1.6 .8 it follows thet
2.1.5. $\frac{n(n-1)+\ldots(n-e+1)(q-1)^{e}}{q^{e}}<x_{1} \ldots x_{e}$
and that
2.1.6. $\quad\left(\frac{x_{1}+\ldots+x_{e}}{e}\right)<\left(\frac{q-1}{q}\right)_{n} \theta^{e}$

So, combining the formilas 2.1.4, 2.1.5 and 2.1.6, we find
2.1.7. $\frac{n(n-1) \ldots(n-e+1)(q-1)^{e}}{q^{e}}<\frac{8}{9}\left(\frac{q-1}{q}\right)_{n}^{e}$
from which it is easily derived that
2.1.8. $n<5 e^{2}$,

With the help of lemma 2.1 .1 we ban prove our goal as follows:
In the case $\frac{\text { in }}{} \mathrm{p}^{3}$, it follows from $1.6 .12,1.6 .13$ and 1.6 .14 that for $1 \leq 1 \leq e$
2.1.9. $\quad x_{i}=a_{i} p^{t}$
where $a_{i} \in \mathbb{N}, t_{i} \in \mathbb{N}$, and either for some pair ($1, j$) we have $a_{1}=a_{j}$, or $p>e$ and the numbers a_{1} from a permutation of the numbers $1,2, \ldots, 4$. Hence in any cape, except for the case $e=2$ and $q=3^{3}$ which shall be treated in section 3.3 , we have:

$$
\text { 2.1.10. } \quad x_{e} \geq 2 x_{1}
$$

Ther from Lemma 2.1.1 we have 2.1.2,
2.1.11. $n<5 e^{2}$.

But on the other hand we find from 1.6 .9 , since $q=p^{3}$,
2.1.12. $P^{\text {es }} \mid(n-1) \ldots(n-\theta)$

Therefore, one of the numbers $n-i(1 \leq i \leq e)$ must be aivisible by p^{t}, where

$$
\text { 2.1.13. } \quad t>\text { es }-\frac{e}{p}-\frac{e}{p^{2}}-\frac{e}{p^{3}} \ldots=\text { es }-\frac{e}{p-1}
$$

Hence we find
$2.1 .14 . \quad n>e^{e / 2}$
Now, combining 2.1 .11 and 2.1.14, we see that there is only a finite number of possible parameters (n, e, p^{5}). These were ruled out by a Gomputer investigation (see the Historical Summary). Therefore we have the following
2.1.15. THEOREM. (Van Lint - Tietsiginen) * the Golay codes are the only perfect e-codes with e 22 over an alphabet GF (g), where $q=p{ }^{3}$.
2.2. The general cate $q=p_{1}^{p_{2}^{t}}(\in$ 3)

Eecently, the following theorem was proved by A. TletEvainen:
2.2.1. THEOREM. There does not exist a perfect e-code with a 3 and

We shall give an outline of the proof, which illustrates again how one aan treat of with Eew prime civisors.
The proof makes use of three inecqualities which contradict each other for large n.
The first inequality is the following about the zeros of the Lioyd polynomial $\mathrm{P}_{\mathrm{e}}(\mathrm{X})$, ofdered in such a way that $\mathrm{x}_{2}<\mathrm{X}_{2} \leqslant \ldots<\mathrm{x}_{\mathrm{e}}$:
2.2.2. $\left|x_{i}-x_{j}\right|>\operatorname{gcd}\left(x_{i}, x_{j}\right)$.

Remark that from 1.2 .1 atid 1.6 .8 it follows that for $1 \leq i \leq e$
2.2.3. $\quad x_{i}=d_{1} p_{1}{ }^{a_{i}}{ }^{b_{i}}$
where a_{1}, b_{4} are unspectified positive integers, and $A_{1} \in \mathbb{N}$ and
2.2.4. $\quad d_{1} d_{2} \ldots d_{e} \mid$ e:

From 2.2.3. 2.2.4 and lema 2.1.1 it follews that, if $\%$ 2, a pair (x_{1}, x_{j}) must exist which has a common divisor which is large with respect to x_{i}.
Furthermbre we have the following inecruality, which can be found in [27], page 115:
2.2.5. $x_{1}>\frac{(n-e)(\dot{1}-1)+e}{q-1+e}$

The third inequality is obtained from 1.6.6 and 1.6.7:
2.2.6. $\sum_{1=1}^{e} \sum_{j=1}^{e}\left(x_{i}-x_{j}\right)^{2} \leqslant \frac{3 e^{2}(e-1)(n-e)}{q}$

These three inequalities contradict each other if
$2.2 .7 \quad \mathrm{n}$ > $\mathrm{q}^{\mathrm{e} / 4}$
which can be establiched from 1.6.9. We refer to [40].
The inequality 2.2 .5 will also be important for our investigations in the case $e=2$. It follows from the fact that the terms in the alternating sum 1.6.3 decrease in absolute value if x is smaller than the bound mentioned in 2.2.5.
Remark that if $e=2$ then x_{1} and x_{2} need not have a large common givdsor at all.
In the following two sections we shall see that in general a parfect e-code is not possible if q has less than e prime divisors.
2.3. Introduction to a result concenning the number of primes dividing of As an introcuction to the section 2.4 we have the following theorem which is unimportant after section 5.2 .
2.3.1. THECREM. If a perfect Ecur-erfor-corracting code on q aymbale Goew oxiet, then Ather q is divisibie by at laast four dietimet primon, or $\operatorname{god}(G, 30)>1$.

Proof. By atculation of the coefficients of $P_{4}(X)$ (sea 1.6.6, 1.6.7) we have the following expressions in the zeros $x_{1}, x_{2}, x_{3}, x_{4}$, which must be 1ntegers;
2.3.2. $x_{1}+x_{2}+x_{3}+x_{4}=\frac{4(n-4)(q-1)}{q}+10$
2.3.3. $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-4(n-4)^{2}+20(n-4)+30$

$$
=\frac{4(n-4)}{q^{2}}[(2 q-1)(n-3)+4]
$$

2.3.4. $\quad x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=4(n-4)^{3}+30(n-4)^{2}+90(n-4)+100$

$$
\begin{aligned}
& +\frac{n-4}{q^{3}}\left\{(n-4)^{2}\left(12 q^{2}-12 q+4\right)+\right. \\
& \left.(n-4)\left(24 q^{2}+42 q-36\right)+\left(12 q^{2}+54 q+24\right)\right\}
\end{aligned}
$$

Now let p be a prime such that $p \geq 5$ and let $s \in \mathbb{N}_{0}$ be such that $p^{5} \| q$. Then from 2.3 .2 we see
2.3.5. $F^{5} \mid n-4$

Then from 1.6 .9 it follows that
2.3.6. $\mathrm{p}^{45} \mid \mathrm{n}-4$

Hence we have from 2.3.2, $2+3.3$ and 2.3.4:
$2,3.7 . \quad x_{1}+x_{2}+x_{3}+x_{4} \equiv 10\left(\bmod p^{3 \epsilon}\right)$
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv 30 \quad\left(\bmod p^{23}\right)$
$x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3} \equiv 100\left(\bmod p^{4}\right)$

Now let $q=p_{1}^{5_{1}} \ldots p_{r}^{5}$ and ged $(q, 30)=1$. Then from 1.6 .10 we find, sinee gad $(q, 30)=1$, for some $k_{1} \in \mathbb{N}_{0}$
2.3.8. $\quad x_{1} x_{2} x_{3} x_{4}=24 p_{1}^{k_{1}} \ldots p_{r}^{k}$

Now suppose that the smallest zero, x_{1}, would be at most 24 . Then from lemima 2.1.1 we see that either
2.3.9. $n * 90$
contradicting 2.3 .6 since ged $(9,30)$. 1 , or
$2.3 .10 . \quad x_{4} \leq 48$
from which it would follow that
2.3.11. $x_{1}+x_{2}+x_{3}+x_{4} \leq 24+46+47+48$
contradicting 2.4 .7 since ged $(q, 30)=1$ and since $p_{4}(1) \neq 0$.
Hence x_{1} is greater than 24 and all zeros are aiviョible by some P_{i}
dividing c .
So df g is divisible by no more than three primes, ther there exist x_{i} and $x_{j}(i \neq j)$ which are diviaible by the same prime $p(p \mid c)$.
So in that case it would follow from 2.3.7 that the other two zeros, x and y, satisfy

$$
\begin{array}{ll}
2.3 .12 . & x+y \equiv 10(\bmod p) \\
& x^{2}+y^{2} \equiv 30(\bmod p) \\
& x^{3}+y^{3} \equiv 100(\bmod p)
\end{array}
$$

Then, successively, the followlig congruences (modulo p) woulc hold:
2.3.13. $(x+y)^{2}=x^{2}+y^{2}+2 x y \equiv 100$
2.3.14. $30+2 x y \equiv 100,50 x y \equiv 35$
2.3.15. $\quad(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y) \equiv 1000$
$2.3 .16 . \quad 100+3.35 .10 \equiv 1000 \equiv 1150$
so p would atvide 250, contradicting gea $(\mathrm{q}, 30)=1$

In section 5.2 we shall see that perfect 4 -codes do not exist at all.
2.4. Statement of a result concerning the number of primes dividing a We have the following theorem, which generalizes in some sense what was gone (by Van Lint and Tietavainen) in the sections 2.1 and 2.2;
2.4.1. THEOREM. Let ${ }_{\mathrm{I}_{1}}$ assume s_{k} that there exists a perfect e-code on g symbols, where $q=p_{1}{ }_{1} \ldots p_{k}{ }^{s_{k}}$ and (for $i \in\{1,2, \ldots, k) p_{i}>\in$ and P_{i} fe: (I + $\left.1 / 2+\ldots+1 / e\right)$. Then $k \geq e$.

PROOF. Since for all 1 we have $p_{1}>e$, it follows from 1.6 .6 and 1.6 .9 that
2.4.2. $q^{e} \mid n-e$

Now in lemma 2.4.11 we shall see:
2.4.3. $\sum_{i=1}^{e} \prod_{j \neq i}^{e} x_{j} \equiv \sum_{i=1}^{e} \prod_{j \neq i}^{e} j \equiv e!(1+1 / 2+\ldots+1 / e)\left(\bmod \frac{n-e}{q^{e-i}}\right.$

Hence fxom 2.4.2 and 2.4.3 we have
2.4.4. $\sum_{i=1}^{e} \prod_{j \neq i}^{e} x_{j} \equiv e:(1+1 / 2+\ldots+1 / e) \quad(\bmod q)$

Then frout the conditiong on p_{i} we find for $1 \in\{1,2, \ldots, k\}$
2.4.5. $\quad \sum_{i=1}^{e}{\underset{j}{j \neq 1}}_{e}^{j} x_{j}$ 푸 $0 \quad\left(\bmod P_{1}\right)$

So at most one of $x_{1}, x_{2}, \ldots x_{e}$ is divisible by $p_{1}+$ Furthermore, since from 2.4.2
$2.4 .6 . \quad \mathrm{g}=\mathrm{q}$
and since from the
$2.4 .7 . \quad \mathrm{q}$: e
and since for the
it follows immedia
$2.4 .8 . \quad \mathrm{x}_{\mathrm{i}}>\mathrm{e}$
Hence, since from the conditions $p_{1}>$ and from 1.6.10 we have
$2.4,9+\prod_{i=1}^{e} x_{i}=e!p_{1}^{a_{1}} \ldots p_{k}^{a_{k}} \quad\left(a_{i} \in \mathbb{N}_{0}, i=1,2, \ldots k\right)$

We find that any zero x_{1} is Givisible by at least one of the primes $P_{1}, P_{2} \ldots P_{k}$.
Then, since from 2.4 .5 we conciuded that a given prime p_{1} divides at most one of the enirot x_{1}, \ldots, x_{e}, we may conclude
2.4.10. kze

So we have proved theorem 2.4.1 wher we have proved demma 2.4.11.
 $q=p_{1}^{1} \ldots p_{k}^{k}$, where $p_{i}>$ efor $i \in\{1,2, \ldots, k\}$. Then

$$
\left.\sum_{i=1}^{e} \prod_{j \neq i}^{e} x_{j} \overline{\bar{w}} \sum_{i=1}^{e} \prod_{j \neq 1}^{e} \quad \text { (modulc } \frac{n-e}{\varepsilon^{e-1}}\right)
$$

PRoof + since for all i we have P_{i} ' e, it follows from 1.6 .6 and $1,6.9$ tha
2.4.12. $q^{e} \mid n-e$

Now, for briefness, let ug define
$2.4 .13, \quad \mathrm{~F} \ddagger \mathrm{n}=\mathrm{e}$

Then, in zocordance with the definition 1.6 .3 of the Fioyd polynomial $P_{e}(X)$, we have
2.4.14. $e!P_{e}(x)=\sum_{i=0}^{e}(-1)^{1}(\underset{i}{e})(q-1)^{1}(3+e-x)(5+e-1-x) \ldots$

$$
(s+i+1-X)(X-1)(X-i+1) \ldots(X-1)
$$

Then, because
$2.4+15 . \quad \sum_{i=0}^{e}\left(\begin{array}{l}\mathrm{e}\end{array}\right)(q-1)^{ \pm}=(4$
we gee that there existy $Q_{Q}(X) \in \mathbb{Z}[X]$ such that

Now, considering $Q_{e}(X)$ дs a polynomial in s and X, say
2.4.17. $\quad Q_{e}(x):=\sum_{1, ~}^{\stackrel{e}{j}=0} a_{1 j} s^{i} x^{j}$
we see from 2.4 .14 and 2.4 .16 that for the coefficient of s we haven

Therefore we have

where $1 / 5$ means thet $1 / 5$ must be replaced by 0 .
 Now in the appendix (gec A.3) we shall prove:

2.4.20. $\sum_{i=0}^{e-1}(-1)^{i}\left(\frac{e}{i}\right) \sum_{j=i+1}^{e} \frac{e!}{j}(1+1 / 2+\ldots+M / j+\ldots+1 / e)=0$
and therefore we have from 2.4.19 and 2.4.20
2.4.21. $a_{01}=0($ mod $)$

Since by 2.4.12 clearly
2.4.22. \quad ㅍo (modq)
we gee from 2.4.17 and 2.4.21 that the cofficient of X in $Q_{e}(X)$ hag a divisor c.
Then it follows from 2.4 .13 and 2.4 .16 that lema 2.4 .11 holds.
2.5. Appeicatign to the case $\mathrm{e}=6$

In the dase e $=6$ we darive from theorem 2.4 .1 the following
$2.5 .1 \dot{j}_{1}$ THEOREM. If a perfect 6-code exista with q symbols, where $q=p_{1}^{1} \ldots p_{k}^{k}$, then elther $k \geq 6$, or q has at least one prime factor 2,3,5 or 7 .

Since, from the theorems $2.1,15$ and 2.2 .1 , q must in any case be divisible by at least three primes, the first open cage with e $=6$ is $q=30$. The smallest q with no factors $2,3,5$ or 7 which is possible for a perfect E-code is q $=11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$.

CHAPTER 3 : SOME RESULTS CONCERNTNG THE CASE e $=2$
3.1. Firstapproach to the case $e \pm 2$

In this section we shall derive a parameter representation for the zeros x_{1} and x_{2} of the Iloyd polymomial $P_{2}(X)$, defined in 1.6 .3. This representation is stated in the following lemma:
3.1.1. LmMMA. Assume that there exists a perfect double-error-correcting code with parametars n and g.

Then 1 f $q^{-2 q^{\prime}}$ and g^{\prime} is odd and $n-2$ is odd we have for some u E
3.1.2. $2 x_{1}=q^{r}\left(u^{2}-1\right)+u+3$

$$
2 x_{2}=q^{1}\left(u^{2}-1\right)-u+3
$$

In all othex eases wo have for ading $v \in \mathbb{N}$
3.1.3. $x_{1}=q v^{2}+q v+v+2$

$$
x_{2}=q v^{2}+q v-v+1
$$

PROOF. Define
$3.1 .4+\quad t=g\left(x_{1}-x_{2}\right)$

Then from the polynomial condition 1.6 .5 we know that tumat be an integer. Furthermore, from 1.6.6, 7.6 .8 and $3.1,4$ we see that
3.1.5. $\quad t^{2}=q^{2}+4(n-2)(q-1)$

Again, combining 1.6.6 and 3.1.5 we find
$3.1 .6+\quad t^{2}+\left(x_{1}+x_{2}-3\right)^{2}=\left(9+x_{1}+x_{2}-3\right)^{2}$

Now fixgtassume that q is odd (so from 3.1.5 t is odd). Than we have, ag 1s well-known:

$$
\text { 3.1.7. } \quad \begin{aligned}
\mathrm{t}=\mathrm{g}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) & =\mathrm{d}\left(\mathrm{u}^{2}-\mathrm{v}^{2}\right) \\
\mathrm{x}_{1}+x_{2}-3 & =d(2 \mathrm{uv}) \\
\mathrm{x}_{1}+\mathrm{x}_{2}-3+\mathrm{q} & =\mathrm{d}\left(\mathrm{u}^{2}+\mathrm{v}^{2}\right)
\end{aligned}
$$

where u and v are relatively prime positive integers and a is the common Givisor, which clearly must divide q.
Furthermore, if q is odd we find from 1.6 .6 and 1.6 .9
3.1.8. q| $\left(x_{1}+x_{2}-3\right)$

So in 3.1.7 we find $d=q$ and without loss of gengrality:
3.1.9. $u^{2}+v^{2}=2 u v+1$
3.1.10. $x_{1}-x_{2}=2 v+1$

$$
x_{1}+x_{2}=2 q v(v+1)+3
$$

from which 3.1.3 is derived immediataly.
Now if $4 \mid$ g, if also follows frow 1.6 .6 and 1.6 .9 that 3.1 .9 holda, so $A=q$.
Then, if we assume, instead of 3.1.7,
3.1.11. $\quad x_{1}+x_{2}-3=q\left(u^{2}-v^{2}\right)=G\left(u^{2}+v^{2}\right)-q$
we find
3.1.12. $\mathrm{Zv}^{2}=1$
which is impossible. So 3.1.7 holdg ana finally we have 3.1.3.

This is not true if $q=2 q^{\prime}, q^{\prime}$ is odd and $n-2$ is oca. In this tase we see from 1.6.6 and 1.6 .9 that $x_{1}+x_{2}-3$ is odd and
3.1.13. $q^{\prime} \mid\left(x_{1}+x_{2}-3\right)$
 selatively Frime:
3.1.14. $x_{1}-x_{2} \quad=\quad u v$

$$
\begin{aligned}
& x_{1}+x_{2}-3=q^{\prime}\left(u^{2}-v^{2}\right) \\
& x_{1}+x_{2}-3+2 q^{\prime}=q^{\prime}\left(u^{2}+v^{2}\right)
\end{aligned}
$$

From 3.i.14 it follows that
3.1.15. $\mathrm{u}^{2}+\mathrm{v}^{2}=\mathrm{u}^{2}-\mathrm{v}^{2}+2$

So we have $\mathbf{v}=1$ and
3.1.16. $x_{1}-x_{2}=u$

$$
x_{1}+x_{2}=q^{\prime}\left(u^{2}-1\right)+3
$$

from which 3.1.2 is derived immediately.
Remark that if $n-2$ is even, then in any base we have 3.1.3.
in 3.1.16 we have that u is even. So in in lemma 3.1.1, formula 3.1.2, is even. Note that if u would be odd, gay $u=2 v+1$, then 3.1 .2 would be reduced to 3.1.3.

We can find a more extensive parametritation as follows:
Again suppese 2 (q or $4 \mid$ q, 50 by 1.6 .6 and 1.6 .9
3.1.17. $\quad g^{2} \mid(n-2)$

Now define $n \in \mathbb{N}$ by
3.1.18. $n-2.4 \mathrm{~g}^{2}$

Then by combination of 1.6.6, 3.1.10 and 3.1.18 we heve
3.1.19. $v(v+1)=$ п (q - 2)

If $q=2 q^{\prime}$ and q ' is odd, then we find in the same way
3.1.20. $u^{2}-1=\Pi^{\prime}(q-1)$,
where
3.1.21. $n=2:=n^{\prime \prime} q^{2}$

Now we can substitute 3.1 .19 and $3,1,20$ in 3.1 .3 and 3.1 .2 respectively, to find a more extensive parametrisation.
3.2. Second approach to the case ef 2

The approach in this section found its inspiration in Van Int'a approach to the special case $q=10$, cfr. [28] . We shall say something about the prime divisore of the 2eros x_{1} and x_{2} of the Lloyd polynomial $F_{2}(X)$, using the parameter representations in the preceding gection and a combination of the polynomial and sphere packing conditions. Astume that there ${ }_{5}{ }_{1}$ ast a perfect double-error-correcting code of word length n with $q=P_{1}{ }^{1} \ldots P^{3}{ }^{\ell}$.
Then by the sphere pating condition 1.2.1 we have
3.2.1. $\quad 1+n(q-1)+\left({ }_{2}^{n_{2}}\right)(q-1)^{2}=F_{1}^{k+\alpha_{1}} \ldots p^{k+\alpha_{l}}$
where ${ }_{i}(i=1, \ldots, l)$ is a nonnegative integer and k is defined by $3.2 .2 . \quad a_{1} \ldots a_{\ell}=0$.

The formula $3,2,1$ car also be written in the following form:
3.2.3. $\quad(q-1)(q-1) n+q+1)(n-2)=2\left(p_{1}^{k+\alpha_{1}} \ldots p_{\ell}^{k+\alpha_{\ell}}-q^{2}\right)$

Now let us define for 1 a $1, \ldots, \ldots$
3.2.4. $\quad B_{i}=k+\alpha_{i}=2 s_{i}$

Then we find from 1.6.8 and 3.2.1
3.2.5. $\quad x_{1} x_{2}=2_{2}^{p_{1}} \ldots p_{\ell}^{B_{\ell}}$
3.2.6. $B_{i} z 0$ if $p_{i} \neq 2$ (and $\beta_{i} z-1$ if $P_{i}=2$)

The formula 3.2.5 is useful in combination with lemma 3.1.1 to show the nonexistence of double-error-correeting perfect codes for some special values of 9 ,

For thia purpoge we gather the relevant regults in the following
3.2.7. LEMMA. Under the assumptions mentloned above, let $x_{1}<x_{2}$. Then we haver
a) $x_{1} X_{2}={ }_{2} p_{1}^{B_{1}} \cdots P_{\lambda}^{\beta_{1}}$
b) if $p_{1} \neq 2$ then $x_{1}+x_{2}=3$ (mod $p_{1}{ }^{\text {i }}$)
c) trilama $P=2$ or $P=3, x_{1}$ and x_{2} canact hate a prime factor p in conmon.
d) Let s be a prime factori of g $=1$. Then either $x_{1} \equiv 1$ (mod s) and $x_{2} \equiv 2$ (mods) 아 $\quad x_{1} \equiv 2(\bmod 5)$ and $x_{2} \equiv 1(\bmod s)$

ब) $y\left(x_{1}-x_{2}\right)^{2}-2\left(x_{1}+x_{2}\right)=9-6$

g) $x_{1}>\frac{(n-1)(q-1)+2}{q+1}$
h) $x_{2} \& 2 x_{1}$

PROGF.
a) This is exactly 3.2.5.
b) This can be seen from 3.1.2 and 3.1.3.
c) This fallows reacily from b)
d) This follows from 3.1 .19 and $3.1,20$ respeetively, and the formules $3.1+2$ and 3.1 .3 regpectively, For example we find that g dividea eithar y or $v+1$ +
e) this follows from the formulas $2+6.6$ and 1.6 .6 , or from 3.1.10 and 3.1.16.
f) This follows from 3.2.1 and
3.2.9. $\sum_{i=0}^{n}\binom{n}{1}(q-1)^{i}=q^{n}$
g) This is known from [27], page 115. See also section 2.2.
h) From theorem $2+1.15$ we may assume $q \geq$. Hence this follows from g) and from the fact that $x_{2}<n$, if $n=3$. See also lemma 2.1 .1 .
3.3. The special case $q=p$

The case $\mathrm{q}=\mathrm{p}^{\text {ch }}$ was already done by Van Lint in [23], and is aleo eagily treated with lemin 3.2.7.

First, frem a) we have
3.3.1. $x_{1} x_{2}=2 p^{k}$

Ther since from h) $x_{2} \leqslant 2 x_{1}$ we see that
$3.3 .2, \quad P=3$
so for some positive integers a and b we have
3.3.3. $\quad\left\{x_{1}, x_{2}\right\}=\left\{2.3^{a}, 3^{b}\right\}$

Then from b) we see that if $s \geq 2$, then $x_{1}+x_{2}$ has exactly one factor 3 , so for some $\ell \in \mathbb{I}$
3.3.4. $\quad x_{1}=6$ and $x_{2} * 3^{\ell} \quad(\ell \geq 2)$,
or

$$
x_{1}=3 \text { and } x_{2}=2 \cdot 3^{\ell} \quad(\ell 31) .
$$

Hence, since $x_{2}<2 x_{1}$ we have
3.3.5. $x_{1}=5$ and $x_{2}=9$.

If $s=1$ we find from e)
3.3.6. $\quad 3\left(x_{1}-x_{2}\right)^{2}-2\left(x_{1}+x_{2}\right)=-3$

Then we see from 3.3 .3 and 3.3 .6 that $x_{1}+x_{2}$ has exactly one factor 3, to дgain we have $3+3,5$. Hence in any case
3.3.7. $\quad x_{1}+x_{2}=15$

Comparing this with 1.6.6 we find
3.3.8. $n(\underline{q}-1)=8 \mathrm{q}-2$,

50
3.3.9. (c $=1) \mid 6$

Hence $9=3$ and from 3.3.8 $n=11$. Then we finc the parametary of the termary Golay code.

This result is phrt of theorem 2.1.15.
3.4. A remath about the special case of $=P_{1}^{F}{ }_{2}^{t}$

Let assume the existence of a double-exror-coryecting code with parameters in and $q=p_{1}^{5} p_{2}^{t}$, where ged $(c, 6)=1$.
We shall use the results gtated in lemma 3.2.7.
From a) and c) it follows that for scme pogitive integerg a and b
3.4.1. $\left\{x_{1}, x_{2}\right\}=\left\{2 p_{1}^{a}, p_{2}^{b}\right\} \quad$ or $\quad\left\{x_{1}, x_{2}\right\}=\left\{p_{1}^{a}, 2 p_{2}^{b}\right\}$

Hence it follows from b) that
3.4.2. Either $2 p_{1}^{2} \equiv 3\left(\bmod \mathrm{E}_{2}\right) \quad$ or $P_{1}^{a} \equiv 3$ (mod p_{2})

Therefore we have the following theorem:
3.4.3. THEOREM. There does not exist д perfect 2-exrox-coxrecting code on q symbols if $q=p_{1}^{s} p_{2}^{t}$ and god $(q, 6)=1$ and $p_{1} \equiv 1\left(\bmod p_{2}\right)$.

PROOF. Assuming the existence of such a ebde, we would have a contraGiction with 3.4.2.

For example, an alphabet with $5^{5} 11^{t}$ symbola is impossible for a perfect 2 -cedie.
3.5. Foun nenarks about the speciat case en $=2^{k} p^{3}$

Suppose that there exists a perfect $7-c o d e$ with $q=2{ }^{k} p^{s}$. In this section we shall show that p gust satisfy some conditions.

We thall refer to lemma 3.2.7.
Firpt we mention a theorem which was proved by Bassalygo, innoviev, Leontiev and Feldman (see [6]).
3.5.1. THEDREM. There does not exist a perfect 2-code on q symbols if $G=2^{k} 3^{g}$.

Like 'fatavaznen's prodf of theorem 2.1.15, the proof makes use of a reitnement of the arithmatical-geometrical medur inequality.

This refinement was introxueded by Lagrange.
Iike tietavainen, Basanlyge tran needed a lowar bound Fox x_{2} / x_{1}. If the cage they treated this meant that a lower bound had to be found for $|A \log 2-B \log 3|$, wherse A and B are boundad since x_{1} and x_{2} have an upper bound n.

Hence without loss of generality we may assume $p \neq 3$. Then from a) in lemba 3.2.7 we fing for some poaitive integers a and b
3.5.2. $\quad x_{1} x_{2}=2_{p}^{a b}$

Hence from c) we Eind for eome pogitive integers c, d, such that $c+d=a$
3.5.3. $\quad\left\{x_{1}, x_{2}\right\}=\left\{2^{c}, 2^{a} p^{b}\right\}$

Furthermore we have c 22 beceuse
$3.5 .4+\quad P_{2}(1)=\frac{(n-1)(n-2)}{2}(q-1)^{2}>0$
3.5.5. $\quad P_{2}(2)=\frac{(n-2)(n-3)}{2}(q-1)^{2}-(n-2)(q-1) \quad 30$

Now we are ready to prove the next two theorems.
3.5.6. THEOFEM. There doeg not exist a perfect 2-code on q eymbols if $q=2^{k}{ }^{5}$ and, for some $t \in \mathbb{N}, p=2^{t}-1$. For inseance, q cannot be $2^{k} 7^{s}$ or $2^{k} 31^{s}$.

PROOF. From b) and 3.5.3 follows
3.5.7. $\quad 2^{\mathrm{G}}$ 푸 (moA p)

 c a $2^{k} p^{s}$ and k z 2 and $p \equiv 1$ (mod 4).
For ingtance, if $k \geq 2$ it is impossible that $y=2^{k} 5^{5}$.

FROOF, Assume $k \geq 2$. If X_{1} and x_{2} dre both even then we find a contradiction to A) considering this equation moduls \&.
 follows that
$3.5 .9 . \quad\left\{x_{1}, x_{2}\right\}=\left\{2^{a}, p^{b}\right\}$

Therefore the equation 日) becomes
3.5.10. $\quad 2^{k-1} p^{B}\left(2^{a}-p^{b}\right)^{2}-\left(2^{m}+p^{b}\right)=2^{k-1} p^{s}-3$

Then since d 22 and $p \equiv 1$ (mod 4) we have a contradiction, constdering the equation 3.5.10 module 4 .

Finally, for the fourth theorem we need to look back at section 3.2. If $p_{1}=2$ we find, because in 3.5 .3 we have $c \geq 2$, from 3.2 .5 and the fact that x_{1} and x_{2} are integers
3.5.11. $\quad B_{1}=1$

So from 3.2.4 we have $k+\alpha_{1}$ z 3, Hence from 3.2.3 we find:
3.5.12. $(\underline{q}-1)(\mathrm{q}-1) \mathrm{n}+\mathrm{q}+1)(\mathrm{n}-2) \underline{\underline{I}} 0(\bmod 8)$.

Now we are ready to prove the following theorom.
3.5.13. THEOREM. There does not exist a perfect 2 -code on q aymbols if $q=2 p^{5}$ and $p=1$ (mod 9), nox if $q=2 p^{2 t}$ and $p \equiv 5(\bmod g)$. For instance g cannot be of the form 2.17^{5} or 2.25^{t}.

PROOF. Like in the theorem, assume that $k=1$, so $q=2 p^{5}$. Now we distinguish between two cages;

1) n is even. Then from $3,5,12$ it follows that $n \equiv 2(\bmod 8)$. Herce from 1.б.б we find
3.5.14. $x_{1}+x_{2} \equiv 3(\bmod 8)$

So in 3.5.3 we find $d=0, c=a \operatorname{and}$
3.5.15. $\quad\left\{x_{1}, x_{2}\right\}=\left\{2^{a}, p^{b}\right\}$

Now if $a=2$, then from h) we see that $p^{b}=3,5$ or 7 . so from 3.5.1 and 3.5 .6 we have $E^{b}=5$, so $x_{1}+4$ and $x_{2}=5$. This contradicts e), So a ≥ 3 and from 3.5.14 we see
3.5.16. $\mathrm{p}^{b}=3(\bmod 8)$.

Se we have a contradiction $x f$ p $\equiv 1$ (mod B) or $p \equiv 5$ (mod 6).
1i) fis odd. Then from 3.5 .12 it follows that
3.5.17. ($(\mathrm{q}-1) \mathrm{n}+\mathrm{q}+1) \equiv 0(\bmod 8)$

Hence we have the following possibilitifes:
3.5.18. n $\quad 1$ (mod 8) and $2 \mathrm{q} \equiv 0(\bmod 8)$

$$
\begin{aligned}
& \mathrm{n} \equiv 3(\bmod 8) \\
& \text { and } 4 \mathrm{c} \equiv 2(\bmod 8) \\
& n \equiv 5(\bmod 8) \\
& \text { and } 6 \mathrm{~g} \equiv 4(\bmod 8) \\
& \mathrm{n} \equiv 7(\bmod 8) \\
& \text { and } 8 \mathrm{q} \equiv 6(\bmod 8)
\end{aligned}
$$

These are all contradictions except the third. So $\mathrm{n} \equiv 5$ (mod 0). Then from 1.6.6 we have, by the substitution $n=5+8 \pm$:
3.5.19. $\quad\left(2 p^{3}-1\right)(3+8 t)+3 p^{3}=p^{5}\left(x_{1}+x_{2}\right)$

From 3.5.19 we see immediately:
3.5.20, If $\mathrm{p}^{5} \equiv 1$ (mod 8) then $\mathrm{x}_{1}+\mathrm{x}_{2} \equiv 6$ (mod 8)

$$
\text { If } \mathrm{p}^{5} \equiv 5(\bmod 8) \text { then } x_{1}+x_{2} \equiv 2(\bmod 8)
$$

So from 3.5.3 we find od 1 ancl
3.5.21, $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}=\left\{2^{c}, 2 \mathrm{p}^{b}\right\}$

By substizution in a) we find
3.5.22. $p^{5}\left(2^{6}-2 p^{b}\right)^{2}-\left(2^{c}+2 p^{b}\right)=p^{5}-3$

Now we see as above that $x_{1}>4,50 c \geq 3$, kence we find
3.5.23, $4-2 P^{b} \equiv p^{3}-3(\bmod 8)$

This is a contratiction if $\mathrm{p} \equiv 1$ (mod 8), and if $\mathrm{p} \equiv 5$ (mod 8) and $\mathrm{s}=2 \mathrm{t}+$
3.6. The special case g 530 or $q=35$

In this section we shall treat the eates $q \leq 30 \mathrm{and} q=35$. The following values ate impotsible for g bocathee they are prime powers
3. $\mathbf{4}, 1 . \quad$ G cartot be $2,3,4,5,7,6,9,11,13,16,17,19,23,25,27,29$,

The following values are impessible because of the theorems 3.5.1, 3.5.6 and $3+5.8$ respectively:
3.6.2. ㅁ canot be 6,12,19,24
g cannot be 14,28

9 cannot be 20
Now, bevione we shafl treat the remaining values 10,15,21,22,26 anc 35 We shall treat the aase $q=6$ in an elementary way, uging the sphere packing condition only.
3.6.3. THEOREM. A perfect 2-code on 6 घymbols does not exist.

PROOF. Assume that there exiats such a code. Then by the sphere packing ondition 1.2.1 we have for some k, $\in \mathbb{N}_{0}$:
3.6.4. $\quad 1+\pi-5+\left(\frac{n}{2}\right) \cdot 25=2^{k} \hat{3}$

Usirg the substitution $x=10 n-3$ we have the diophantine equation
3.6.5. $\quad x^{2}=1=2^{k+3} 3^{2}$
whych reduces by $x=2 y+1$ to
3.6.6. $\quad y(y+1)=2^{k+1} 3^{k}$

Hence we have the follbwtng two possibllyties
3.6.7. Either $y=3^{\ell}$ and $y+1=2^{k+1}$ (A)

$$
\text { or } \quad y=2^{k+1} \text { and } y+1=3^{x} \quad \text { (B) }
$$

Now we shall treat both cages (A) and (B)

$$
\begin{equation*}
2^{k+1}-1=3^{x} \tag{A}
\end{equation*}
$$

Now unlese $\ell=0$ (so $k=0$ and from $3.6 .5 x=3$) we fimd that $k+1$ must be even, say $k+1=29$. Then we have
3.6.6. $\left(2^{8}+1\right)\left(2^{5}-1\right)=3^{2}$
which is a contradiction since $2^{3}+1$ and $2^{5}-1$ have no factor 3 in commor.
(B)

$$
3^{2}-1=2^{k+1}
$$

Now unless $k=0$ (so $\ell=1$ and from 3.6.5 $x=5$) we find that ℓ mugt be ever, say $\ell=2 t$. Then we have
3.6.9. $\left(3^{t}+1\right)\left(3^{t}-1\right)=2^{k+1}$

Hence we see that $t=1, \ell=2$ and $k=2$, so from 3.6.5: $x=17$.
so $\mathrm{x}=3$ or $\mathrm{x}=5$ or $\mathrm{x}=17$. Furthermore by definition $\mathrm{x}=10 \mathrm{n}-3+$
This is only possible if $n=2$. But for a nen-trivial perfect 2 -oode we must have n z 5 .

In the following ail umanounced symbols stand for ungpecified positive Integers. We shall repeatedly refer to lemma 3.2.7. As above we shall neglect trivial perfect codes.
3.6.10. THBOpeM. (efir Van Lint, [28]). A perfect 2 -code does not exist if $q=10$.

PROOF. Absume that there exists such a code.
Since $q=1015$ among the values of $q=2 p^{5}, ~ p \equiv 5$ (mod 8) we have as in the proof of theorem 3.5.13 (efr. 3.5.21)
3.6.11. $\left\{x_{1}, x_{2}\right\}=\left\{2^{\mathrm{c}}, 2 \cdot 5^{\mathrm{b}}\right\}$

Comparing this with 3.2 .5 we have the more detailed
3.6.12. $\quad\left[x_{1}, x_{2}\right\}=\left\{2^{\beta_{1}}, 2.5^{B_{2}}\right]$
where from 3.2.4 and 3.2 .2
3.6.13. $B_{i}=k+a_{i}-2$ and $a_{1} \alpha_{2}=0$

Now since frem b) we have x_{2} \& $2 x_{1}$ we find from 3.6 .12 and 3.6 .13
3.6.14. $\alpha_{2}=0$ and $\alpha_{1}>0$

Hence we have fiom fit
3.6.15. $\quad 2^{a} 1=1$ (mod 9),
so
3.6.16. $a_{1}=6 t$ where $t>0$.

Now from 3.6.12, 3.6.13, 3.6.14 and 3.6 .16 we find,replacing $k-2$ by u :
3.6.17. $\left\{x_{1}, x_{2}\right\}=\left\{2^{\mathrm{u}+6 \mathrm{t}}, 2.5^{\mathrm{u}}\right)$
where $u \geq 1$ since $x_{1}>2$. Hence we find by substitution in e)
3.6.18. $\quad 5\left(2+5^{4}-2^{u+6 t}\right)^{2}-\left(2 \cdot 5^{u}+2^{u+6 t}\right)=2$

Then aince t >0 (see $3,6,16$) we find
3.6.19. $4 \cdot 5^{24+1}-2 \cdot 5^{4} \doteq 2(\bmod 16)$
$2 \cdot 5^{2 \mathrm{a}+1}-5^{\mathrm{u}} \equiv 1$ (mod E)
$10-5^{\mathrm{ta}} \ddot{=1}\left(\begin{array}{l}\text { (mod } 8)\end{array}\right.$
$5^{\mathrm{u}} \equiv 1 \quad(\bmod \quad 8)$
so u must be even, say
3.6.20. $u=2 v$

Furthermore we see from 3.6.18
3.6.21. $\quad 2^{\mathrm{L}+6 \mathrm{t}} \equiv 3(\bmod 5)$,

50
7.6.22. u + 65 $\mathrm{m}=3 \mathrm{4w}$
contradicting 3.6.20. \$0 q = 10 is impossible.

Maybe the following case provides the best example of the method used in this section.
3.6.23. THEOREM. A perfect 2-coịe does not exist if q $=15$.

PROOF'. Assume that there Exists much a code. Then for the integral zeros x_{1} and x_{2} of the Lloyd polynomial $P_{2}(X)$ we have from 3.2.2, 3.2.4 and 3.2.5:
3.6.24. $\quad x_{1} x_{2}=2.3^{B_{1}} B_{2}$
3.6.25. $\beta_{i}=k+\alpha_{i}-2$ and $\alpha_{1} \alpha_{2}=0$

From leman 3.2 .7 m) it follow that $\mathrm{B}_{1}>0$.
From a) it follows that x_{1} and x_{2} are not both divisible by 5.
From b) it follows, since $\beta_{1} 30$, that x_{1} and x_{2} axe both divisible by 3.

Since $\alpha_{1} \alpha_{2}=0$ it follows from f) that if $\alpha_{1}>0$ then
3.6.26. $\quad P_{i}^{i} \frac{c^{4}}{} 1$ (mod 7)
so $\mathrm{q}_{\mathrm{i}}=6 \mathrm{~s}$. Therefore, replacing $k-2$ by m_{i} we have four possibilities:
3.6 .27.
a) $\left\{x_{1}, x_{2}\right\}=\{x, y\}, x=2 * 3^{B_{5}}{ }^{u+65}, y=3^{\gamma}, \quad B+\psi=u$
g) $\left\{x_{1}, x_{2}\right\}=\{x, y\}, x=3^{B_{5} u+6 \dot{b}}, y \pm 2+3^{\gamma}, B+y=u$
y) $\left\{x_{1}, x_{2}\right\}=\{x, y\}, x=2+3_{5} \beta^{u}, y=3^{\gamma}, \dot{y}+y=u+6 g$
5) $\left\{x_{1}, x_{2}\right\}=\{x, y\}, x=3^{\beta_{5}}, \quad y=2 \cdot 3^{\gamma}, p+y=u+65$

Now from h) it follows that of and e) are impossible, because in these casters we wound have $x \geqslant 2 y$.
Now we distinguish between the cases γ) and δ and we will use the equation e) which becomes in our cage
3.6.28. $15\left(x_{1}-x_{2}\right)^{2}-2\left(x_{1}+x_{2}\right)=9$
r) in this case we have by substitution in 3.6 .28
3.6.29. $\quad 15\left(2 \cdot 3^{\beta} 5^{u}-3^{\gamma}\right)^{2}-2\left(2 \cdot 3^{\beta} 5^{u}+3^{\gamma}\right)=9$
where \& and γ are positive and $\beta+\gamma=u+6 \leq \varepsilon 6$ aince $s>0$.
Hence we find from 3.6.29
3.6.30. $-2\left(2 \cdot 3^{A_{5}} 5^{u}+3^{\gamma}\right) \equiv 9($ mod 27$)$

Now suppose ti $=0$. Then, keeping in mind that $x_{2} \leqslant 2 x_{1}$, we have a contraaiction to 3.6.30. So $u \geqslant 0$ and since $B \geqslant 0$ we have $\gamma \geq 3$, because otherwise we would have a contradiction to h) .

Now it follows from 3.6.30 that
3.6.31. $\quad \beta=2$

Hence since $\beta+\gamma \geq 6$ we have $\gamma \geq$ 4. Therefore we find from 3.6.30
3.6.32. $-4 \cdot 5^{4} \equiv 1$ (mod 9).

80
3.6.33. $u+1=6 t$
where $t>0$ since $u>0$. Furthermbre we have from 3.6.29, since u >0.
3.6.34. $-2 \cdot 3^{Y} \equiv 4($ med 5),

90
3.6.35. $y=1+4 v$

Then since $p+\gamma=u+6 s$ it follows from 3.6.31 and 3.6.33 that
3.6.36. $\quad \gamma=6 t+6 \mathrm{~s}-3$
so we have from 3.6.35 and 3.6.36
3.6.37. $6 t+6 \mathrm{t}=4(\mathrm{y}+1)$
ac v + 1 muat be diviaible by 3 and
3.5.38. $6 t+6 \mathrm{~s}=12 \mathrm{w}$

Now it follows from 3.6.31, 3.5.33, 3.6.36 and 3.6.38 that
3.6.39. $\left\{x_{1}, x_{2}\right\}=\left\{18.5^{6 t-1}, 3^{12 w-3}\right\}$

Finally we shall use d) i.e.
3.6.40, $\quad x_{1}+x_{2} \equiv 3(\bmod 7)$

Since 27 - 1 (mod 27) it follows from 3.6 .39 and 3.6.40 that
3.6.41. $4 \cdot 5^{6 t-1}+(-1)^{4 w-1} \equiv 3(\operatorname{med} 7)$,

30
3.6.42. $5^{6 t-1} \equiv 1$ (mod 7),

80
3.6.43. $6 t-1=6 z$
which yields a contrediction. So the case γ) is impossible.
8) In this ease we have by substitution in 3.6.28
3.6.44. $\quad 15\left(3^{\beta_{5}}{ }^{\mathrm{L}}-2 \cdot 3^{\gamma}\right)^{2}-2\left(3^{B_{5}^{u}}+2 \cdot 3^{\gamma}\right)=9$
where β and γ are positive and $\beta+\gamma+u+6 \varepsilon \geq 6$.
Hence we find from 3.6.44
3.6.45. $\quad-2\left(3^{B_{5}}{ }^{4}+2.3^{\gamma}\right) \equiv 9($ med 27$)$

In the same way as after 3.6.30 we find $\gamma \geq 3$ so from 3.0 .45 we have
3.6.46. $B=2$

Hence since $8+\gamma \geqslant 6$ we have $\gamma \geq 4$ and we find from 3.6 .45
3.6.47. $-2 \cdot 5^{\mathrm{u}} \equiv 1(\bmod 9)$,
gо
3.6.48. $u=4+6 t$

Furthermore we have from 3.f.44 since u >0
3.6.49. $-4 \cdot 3^{Y} \equiv 4(\bmod 5)$,
so
3.6.50. $\gamma=2+4 v$

Then since $\beta+\gamma=\mathrm{u}+6 \mathrm{~s}$ at follows from 3.6.46, 3.6.48 and $3,5,50$ that
3.6.51. $2+4 \mathrm{v}=2+65+6 t$
3.6.52. $65+6 t=12 \mathrm{w}$

Now it follows from 3.6.46, 3.6.48, 3.6.50, 3.6.51 and 3.6.52 that
3.6.53. $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}=\left\{9 \cdot 5^{4+6 \mathrm{t}}, 2 \cdot 3^{2+12 \mathrm{w}}\right\}$

Finally we will use d), i+e,
3.6.54. $x_{1}+x_{2} \equiv 3(\bmod 7)$
which becomes, using 3.6.53:
3.6.55, $2 \cdot 5^{4}+2 \cdot 3^{2} \equiv 3(\bmod 7)$
3.6.56. $1 \equiv 3(\bmod 7)$
which yielde a contradiction. So the case δ) is also impossible.

By careful observation of the above proof we pee that our considerations modulo 5 are in this case puperfluous. In gencual there is not so much colncidence. For the following theorems we shall give the proof in a more concise form.
3.6.57. тнефrem. A perfect 2-code does not exist if g $=21$.

PRCOF. Assume that there exists such a code with $q=21$.
Then we have from 3.2.2, 3.2.4 and 3.2.5
3.6.58. $\quad x_{1} x_{2}=2.3^{\beta_{1}} 7^{\beta_{2}}$
3.6.59. $\beta_{1}=k+\alpha_{i}-2$ and $\alpha_{1} \alpha_{2}=0$

From lema 3.2.7 h) it follows that $\beta_{1}>0$, so from b) it follows that x_{1} and x_{2} are both divisible by 3 but not both by 7. Sinee $a_{1} a_{2}=0$ it follows from f) that if $a_{i}>0$, then
$3.6 .60+\quad p_{i}{ }^{\alpha_{i}} \equiv 1(\bmod 5), \quad 80 \quad \alpha_{i}=45$
Hence if we replace $k-2$ by u and if we set $\left\{x_{1}, x_{2}\right\}$ o $\{x, y\}$ then from h) it follows that there are only two possibilities:

$$
\begin{aligned}
3.6 .61 . & x=2 \cdot 3^{B} 7^{u}, y=3^{\gamma}, \beta+\gamma=u+4 z \\
x & =3^{B} 7^{u}, y=2 \cdot 3^{\gamma}, \beta+y=u+4 s \quad \text { (} \beta \text {) }
\end{aligned}
$$

where $\beta>0, \gamma>0, \beta+\gamma \geq 4$. We shall diatinguish between (α) and (β)
(a) In this case we find by gubstitution in e)
$3.6 .62+\quad 21\left(2.3^{B} 7^{4}-3^{Y}\right)^{2}-2\left(2 \cdot 3^{B} 7^{4}+3^{\gamma}\right)=15$
If $\gamma=1$ then by h) we have a contradietion sinee $B \geq 1$. So $\gamma \geq 2$ and we see by considering 3.6 .62 (module 9)
3.6.63. $\beta=1$.

Now, if $a=0$, then since $\beta=1$ we have $x=6$, so from h) $y=9$. But then we have a contradiction to e). So 4 ? 0 and from 3.6.62
3.6.64. $-2 \cdot 3^{Y} \equiv 1(\bmod 7)$
3.6.65. $\gamma=1+6 \mathrm{~V}$

Now from a) it follows

3-6. $66 . \quad x+y \equiv 3(\bmod 4)$
since from 3.6.63 and 3.6.65 we have
3.6.67. $\{x, y]=\left\{6-7^{u}, 3^{1+6 v}\right\}$
we find a contrabiction to 3.6.66. So the oase (a) ds impossible.
(B) In this oase we find by pubetitution in e)
3.6.68. $\quad 21\left(3^{B} 7^{4}-2 \cdot 3^{\gamma}\right)^{2}-2\left(3^{B^{4}}+2 \cdot 3^{\gamma}\right)=15$

Now if $y=1$, then by h) we see, since $\beta>0$, that $y=6$ and $x=9$.
But then we have a contradiction to el. So y 2 .
Therefore we see by congidering 3.6.68 (modulo 9)
3.6.69. $\quad \beta=1$
3.6.70. $-6.7^{\mathrm{u}} \equiv 6(\bmod 9)$
3.6.71. $\quad 7^{4} \xlongequal[2]{2}(\bmod 3)$

Whych yielaa a contradiction. so (B) is alse mpospible+

In the following example we ghall pere that scametmes we need consiedrations with congruencea modulo a prime which does not divide nor g -1 .
3.6.72. THEOREM. A perfect 2-code with $\mathcal{4} \mathbf{2 2}$ does not exist.

PROOF. Assume that there exists guch a tode. then we find from 3.2.5
$3.6 .73 . \quad x_{1} x_{2}=2^{\beta_{1}+1}{ }_{11}^{B_{2}}$

Fence we see from c) that for some d, b c \mathbb{N}_{0}
$3+6.74+\quad\left\{x_{1}, x_{2}\right\}=\left\{2^{a}, 2^{b} 1^{B}\right\}$, where $a+b=B_{1}+1$

Hence we have by substitution in e):
3.5.75. $\quad 11\left(2^{a}-2^{b} 11^{\beta}\right)^{2}-\left(2^{a}+2^{b} 11^{\beta}\right)=\theta$

From h) we see that $B_{2}>0$, so again uaing h we see that a 3 .
Therefore, by considering 3.6 .75 (modulo 8), the see that beanot be 1 or 2. Furthermbre, if $b \geqslant 3$, then by h) we see that $a>3$ and we find a contradiction by considering 3.6.75 (modulo 16). Sa beo or $b=3$.
a) Let us auppose $b=0$, 日品 from 3.6.74 and 3.6.75
3.6.76. $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}=\left\{2^{\mathrm{a}}, 11^{\mathrm{B}_{2}}\right\}$
and
3.6.77. $11\left(2^{a}-11^{\beta_{2}}\right)^{2}-\left(2^{a}+11^{\dot{B}_{2}}\right)=8$

From 3.6.77 we find
3.6.78. $2^{2} \equiv 3$ (mod 11). 30
3.6.79, $\quad a=8+10 u$

Hence tince a 28 we find aqain Erom 3.6 .77
3.6.80. $11^{2 B_{2}+1}-11^{8} \equiv 8($ mod 16).

50
$3.6 .81+\quad \mathrm{B}_{2} \mathrm{~m} 1+4 \mathrm{t}$
Now from d) we see
3.6.82. $2^{a} \equiv 1(\bmod 21)$ and $11^{\beta_{2}} \equiv 2$ (mod 21),

Or

$$
2^{a} \equiv 2(\bmod 21) \text { and } 11^{\beta_{2}} \equiv 1(\bmod 21) .
$$

Since frcm 3.6.79 a 1s even, we gee
3.6.83. $2^{2} \equiv 1(\bmod 3)$

So $5 \mathrm{rom} 3.6 . \mathrm{g} 2$.
3.6.84. $\quad 2^{a} \equiv 1$ (mod 21)
$3.6 .65-\quad a=6 \mathrm{w}$
So from 3.6.82 and 3.6.84 we have

$$
\begin{array}{ll}
3.6 .86 . & 11^{B 2} \equiv 2(\bmod 21) \\
3.6 .87 . & B_{2}=5+6 \mathrm{z}
\end{array}
$$

Now by combination of 3.6.79 ard 3.6.85, and 3.6.81 anc 3.6.67 respectiveiy, wa see
$3.6 .86 . \quad a=18+30 v$

$$
B_{2}=5+125
$$

$3.6 .89 . \quad\left\{x_{1}, x_{2}\right\}=\left\{2^{16+30 v}, 11^{5+125}\right\}$
Now since we have the following congruetices modulo 13:
$3.6 .90 . \quad 2^{18+30 \mathrm{y}}= \pm 1(\mathrm{mod} 13)$
$3.6+91.11^{5+125}=-6 \quad(\operatorname{mog} 13)$
we see that we have a bontradic*ion by swbstitution in 3.6.77, considering the equation modulo 13 .
B) Now let us Euppose that $b=3,50$, from 3.6.74 and 3.6.75
$3.6 .92 . \quad\left[x_{1}, x_{2}\right\}=\left\{2^{a}, 8 \cdot 11^{\beta_{2}}\right\}$
3.6.93. $11\left(2^{a}-8.11^{\beta}\right)^{2}-\left(2^{a}+8.11^{\beta}\right)=8$

Ifke in the case a) we have
3.6.94. $\quad a=16+30 \mathrm{v}$

But in this case we have insteda of 3.6.86
$3.6 .95 . \quad 8.11^{\beta_{2}} \equiv 2(\bmod 21)$
$3.6 .96 . \quad \beta_{2}=2+6 z$
Hence we find from $3.6 .92,3.6 .94$ and 3.6 .96
3.6.97. $\left\{x_{1}, x_{2}\right\}=\left\{2^{18+30 v}, 8 \cdot 11^{2+6 z}\right\}$

Now since we have the following congruences moduio 5:
3. $5.98 . \quad 2^{18+30 \mathrm{v}} \equiv \pm 1$ (mod 5)
3.6.99. $8 . \pm 1^{2+6 z} \equiv 3$ (虫めd 5)

We see that we have a contradiction by qubgtitution in 3.6.77, considering the ecpation module 5.
3.6.100. THEORAM. A perfect 2-code does net exist if q $=26$.

PROOF. Assume thet there exises such a eode.
Since $q=26 \mathrm{is}$ among the values of $q=2 p^{5}, p \equiv 5$ (mod 8), we have 뷰 in the proof of theoryem 3.5.13 (cfr. 3.5.2i)
3.6.101. $\quad\left\{x_{1}, x_{2}\right\}=\left\{2^{c}, 2.13^{b}\right\}$
†omparing this with $3.2 .5,3.2 .2$ and 3.2 .4 we have the more detalled
3.6.102. $\left\{x_{1}, x_{2}\right\}=\left\{2^{B}, 2.13^{3}\right\}$
where ${\underset{i}{i}}^{w}+k+\alpha_{i}-2$ and $a_{1} \alpha_{2}$ - 0 .

Now since from h) we have X_{2} a $2 \mathrm{X}_{1}$, we find fram $3.6,12$ and $3.6,13$
3.6.103. $a_{2}=0$ and $a_{2}=0$

Hence tit follows from f) that

```
3.6.104. 2 [ | = (m0ct 25),
se
3.6.105. }\mp@subsup{\alpha}{1}{}=205\mathrm{ and s >0
```

Now from 3.6.101, 3.6.102, 3.6.103 and 3.6.105 we heve, replacing $k-2$ by u.
3.6.106. $\left\{x_{1}, x_{2}\right\}=\left\{2^{\mathrm{u}+20 \mathrm{~s}}, 2.13^{4}\right\}$
where $u>0$ aince $x_{1}>2$. Hence we fine by cubstitution in e)
3.5.107. $13\left(2^{\mathrm{u}+20 \mathrm{~s}}-2.13^{\mathrm{u}}\right)^{2}-\left(2^{\mathrm{u}+20 \mathrm{~s}}+2.13^{\mathrm{u}}\right)=10$

Then aince $s=0$ (see 3.6 .105) we find
3.6.108. $4 \cdot 13^{2 \mathrm{u}+1}-2.13^{\mathrm{u}} \equiv 10($ mod 16$)$

$26-13^{\text {b }}=5(\bmod 8)$
$13^{\mathrm{L}} \equiv 5(\bmod 8)$
se umust be cdd, gay
3.6.109. $u=2 v+1$

Furthermore, we see from 3.6.107
3.6.110. $2^{\mathrm{u}+205} \equiv 3(\bmod 13)$,

90
3.6.111. $u+20 s=4+12 t$
contradicting 3.6.109. So q $=26$ is impossible.

We sce that the propf for the case in $=26$ is compIetely analogous to the proof for the case $q=10$. Yet we cannot find a general nonexistence proof for the case $q=2 p(p \equiv 5$ (mod 8)), since we need explicit congruences.

In the next theorem we meet the first value of q winch has no factor 2 or 3.
3.6.112. THEOREM. There does not exist a perfect 2 -code if $q=35$.

PRCOF, Assume that there exists such a code. Then we have from 3.2.2, 3.2 .4 and 3.2 .5 , and c) in lewima 3.2 .7

where $\beta_{i}=k+\alpha_{j}-2$ and $\alpha_{1} \alpha_{2}=0$.
Furthermore, since from h) $x_{2}<2 x_{1}$ we have
3.6.114. $\beta_{2}=2$ ©r $\left[x_{1}, x_{2}\right\}=\{7,10\}$

In the latter case it should follow from b) that
3.6.115. $7 \equiv 3$ (med 5)
which is not true. So we have
3.6.116. β_{2} と2.

Now if $\alpha_{2}>0$ then since $\alpha_{1} \alpha_{2}=0$ we have $\beta_{2}>\beta_{1}$, contradicting h. So we finc
$3.6 .117 . \quad a_{2}=0$.
Hence from f) we have
3.6.118. $5^{5^{1}} \equiv 1(\bmod 17)$
3.6.119. $d_{1}=16 s$, where $a \geq 0$

Then, replacing $k-2$ by 4 we have from 3.6.113, 3.6.117 and 3.6.119
3.6.120. Either $\left\{x_{1}, x_{2}\right\}=\left\{2.9^{r+16 s}, \quad 7^{u}\right\} \quad$ (a)
or $\quad\left\{x_{1}, X_{2}\right\}=\left\{\quad 5^{4+16 s}, 2 \cdot 7{ }^{4}\right\}$
where from 3.6.116 it follows that $u+165 \geq 2$

We shall treat the cases (a) and (b) peparately.
a) In this case we have by substitution in e)
3.6.121. $35\left(2 \cdot 5^{4+16 t}-7^{u}\right)^{2}-2\left(2 \cdot 5^{4+16 s}+7^{u}\right)=29$

So alnce u + 16 s z 2 we find
3.6.122. $5 \cdot 7^{2 \mathrm{u}+1}-2 \cdot 7^{\mathrm{u}} \equiv 4(\bmod 25)$

So since $49 \equiv-1$ (mod 25) we have
3.6.123. $10(-1)^{\text {11 }}-2.7^{\text {4 }} \equiv 4(\bmod 25)$
$3+6.124, \quad u=3+4 v$
Fur thermore we have from 3.6.121, since from 3.6.124 we have u is odd,
3.6.125. $3(4+4+1)-2(10+7)$ 프(mod 8)
which is a contradiction. So the cape (a) is impossible.
b) In this case we have by substitution in e)
3.6.126. $35\left\langle 5^{\mathrm{Q}+165}-2 \cdot 7^{\mathrm{Lu}}\right)^{2}-2\left(5^{\mathrm{D}+165}+2.7^{\mathrm{t}}\right\rangle=29$
se since $u+16 s \geqslant 2$ we find
3.5.127. $10 \cdot 4 \cdot 7^{2 u}-4 \cdot 7^{u}=4(\bmod 25)$
3.6.128. $10(-1)^{4}-7^{4} \equiv 1(\bmod 25)$

But this is a contradiction since the left hand side of 3.6 .126 1s (mod 25 equal to $8,11,22,9$ respectively if $4 \equiv 1,2,3$, 0 (mod a).

The next open cases are $q=30$, which will be treated in pection 3.7, and $q=33$.
The impatient reader may try to treat the okse $q=33 \mathrm{in}$ some way ilke 드 * 15 or $q=21$.

Remark that the case $q=34$ is ruled out by theoram 3.5,13, so after $q=33$ the firgt open case is $q=38$ (for q q 36 see theorem 3.5.1). But at thls moment we shall make a stop.
3.7. The special cose q $=30$

In our invegtigations the chse q $=30$ is often the firatopen case.
The reason is that 30 has three gmall digeinet prime divisorg (cfr. chapter 2).

In 3.6 the eane $q=30$ was left cut bectuse otherwine the paragraph would become too lengthy.

Newertheless, in the following We shall rafer to the reeules in lemma 3.2.7. The outcoge is the following non-existence theorem:
3.7.1. Theorem. A perfect 2-cocie on 30 symbols does not exist.

PRODF, Asgume that there exists such a coide Then Erem a) in lemma 3.2.7 we find that for some a,b,e \& \mathbb{N}_{0} we have
3.7.2. $\quad x_{1} x_{2}=2^{a} 3^{b} 5^{c}$

Now if two of $a, b, 0$ are equal to zero, then we have a contradiction to h). So at most one of them dan be mero. Now first we shall treat the dases $a=0, b \in 0$, and $c=0, r e s p e c t i v e l y . ~$
i) Let us suppote $a=0$. Then $b>0$ and $c=0$.

Then it follows fxom b) and o) that fox gome $b_{1}, b_{2} \in \mathbb{N}$ with $b_{1}+b_{2}=b$ we have
$3.7+3 . \quad\left\{x_{1}+x_{2}\right\}=\left\{3^{b_{1}}, 3^{b_{5}}\right\}$
Then we have by gubstitution in e)
3.7.4. $\left.\quad 15\left(3^{b}-3^{b} 5^{c}\right)^{2}=4^{b_{1}}+3^{b} 5^{c}\right)=12$

Now since $3^{b_{2}} 5^{c} \geq 15$, we have from h) that $b_{1} \geq 2$. Therefore we see by considering 3.7.4 modulo 9:
3.7.5. $\quad \mathrm{b}_{2}=1$
so 3.7.4 becomes
3.7.6. $\quad 15\left(3^{b} 1-3.5^{b}\right)^{2}-\left(3^{b}+3.5^{c}\right)=12$

Now by considering 3.7 .6 modulo 5 we gee that
$3.7 .7 . \quad 3^{b_{1}} \equiv 3(\bmod 5)$
3.7.3. $b_{1}=1+4 t$
go pince $b_{1} \geq 2$ we find $b_{1} \geq 5$. Hence we find from 3.7.6:
3.7.9. $3.5^{c} \equiv 15(\bmod 27)$

$$
5^{5} \equiv 5(\bmod 9)
$$

3.7.10. c-1 + 65

Herice since from 3.7 .8 and $3.7 .10 \mathrm{~b}_{1}$ and c are both odd we see by consibering 3.7.6 module 9:
3.7.11, $-(3-15)^{2}-(3+15) \equiv 4(\bmod 8)$
which Yields a contradietion. So it is impossible that a $=0$.

1i) Let us appose that $b=0$. Then $a>0$ and $c>0$. Then it follows from c) that for sone $a_{1}, a_{2} \in \mathbb{N}_{0}$ with $a_{1}+a_{2}=a$ we have
3.7.12, $\quad\left\{x_{1}, x_{2}\right\}=\left\{2^{a_{1}}, 2^{a_{5}}{ }^{a_{3}}\right\}$

Then we have by subetitution if e)
3.7.13. $\quad 15\left(2^{a}{ }^{a}-2^{a_{2}} c_{5}\right)^{2}-\left(2^{a}+2^{a_{5}}{ }^{c}\right)=12$

Now from 3.5.4 and 3.5.5 we find $a_{1} \geq 2$. If $a_{2}=0$ we therefore have from 3.7 .13
3.7.14. $2 \equiv 0$ (mad 4)
which is a contradictioh. If $a_{2}=1$ we have also 3.7.14. If $a_{2} \geqslant 3$ then from h) we see that $a_{1} z 3$, as wo have a contradiction to 3.7.13, considering the equation modulo 8. Hence we find :
$3.7 .15 \cdot \quad a_{2}=2$

玉о 3.7.13 becomes
3.7.16. $\quad 15\left(2^{a}-4+5^{6}\right)^{2}-\left(2^{a}+4.5^{6}\right)=12$

From $\$.7 .16$ we have
3.7.17. $2^{41} \equiv 3($ mod 5)
3.7.18. $a_{1}=3+45$
so a_{1} is odd. $\$ 0$ Erom d we have
3.7.19. $2^{4_{1}} \equiv 2$ (mod 29)
$4 \cdot 5^{5} \equiv 1$ (mod 29)
3.7.20. $\quad c=5+14 t$

Furthermore we see from 3.7.16
3.7.21. $\quad 2^{\mathrm{a}}+2^{\mathrm{C}} \equiv 0$ (mod 3)
which yields a contrainction, since following 3.7 .18 and $3.7 .20 \mathrm{f}_{1}$ and c aze both ocd. So it is imposaible that $b=0$.
iii) Let us suppose that $c=0$. Then $a>0$ and $b>0$ and it Follows that for some $a_{1}, a_{2}{ }^{r} b_{1}, b_{2} \in \mathbb{N}_{0}$ chosen in a way that $a_{1}+a_{2}=a$ and $b_{1}+b_{2}=b$ we have
3.7.22. $\left\{x_{1}, x_{2}\right\}=\left\{2^{a_{1}}{ }^{\mathrm{b}} 1,2^{a_{2}}{ }_{3}^{b_{2}}\right\}$

Furthermore, since $b \geqslant 0$ it follows from b) that
$3.7 .23 . \quad b_{1} b_{2}>0$
and from h) $1 t$ follows that
3.7.24. $\quad a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$

By substitution in e) we find
3.7.25. $\quad 15\left(2^{a} 1_{3}^{b} 1=2^{a_{2}} 3^{b}\right)^{2}=\left(2^{a} 1_{3}^{b}+2^{a_{2}}{ }^{b}{ }^{\text {b }}\right)=12$

So gince b_{1} and b_{2} are positive we find
3.7.26. $\quad 2^{a{ }^{a} 3^{b} 1^{1}+2^{a_{2}} 3^{b_{2}} \equiv 15(\bmod 27) ~}$

Therefoxe, and since we have 3.7 .23 and 3.7 .24 , we have without loss of \#enerality
3.7.27. $b_{1}=1$ and $b_{2} \approx 2$

So Eram 3.7.22 we find
3.7.28. $\quad\left\{x_{1}, x_{2}\right\}=\left\{3.2^{a} 1,3^{b_{2}}{ }^{a} 2\right\}$

Now since $b_{2} \geq 2$ we see from h) that $a_{1} \geqslant 1$.
Now suppose $\left.a_{1} \& 3 . T H e n ~ b y ~ h\right)$ and $3.7 .27\left(x_{1}, x_{2}\right\}$ is one of the following pairs:
3.7.29. $\left\{x_{1}, x_{2}\right\}=\{6,9\}$ or $\{9,12\}$ or $\{12,18\}$

Then we have a contxadiction by substitution in e]. So we have
3.7.30. $\quad a_{1}$ ¿ 3

Then we find from 3.7.25 and 3.7.27
3.7.31. $-\left(2^{a_{2}}{ }^{b_{2}}\right)^{2}-\left(2^{a_{2}}{ }^{b} 2^{2}\right) \geq 4$ (mor 8)

Therefore we see that we have two subcaseas
3.7.32. Either $a_{2}=0$ and b_{2} it oda (A)
or $\quad a_{2}=2$
(A) In this subcase we have from 3.7.28
3.7.33, $\quad\left\{x_{1}, x_{2}\right\}=\left\{3.2^{\frac{a}{1}}, 3^{b_{2}}\right\}$
3.7.34. $\quad b_{2}=1+2 \mathrm{~s}$

From 3.7.27 and 3.7.34 we have $b_{2} \geq 3$. So frem 3.7 .26 and 3.7.27 we have
3.7.35. $2^{a_{1}} \equiv 5$ (nod 9)
3.7.36. $\quad a_{1}=5+6 t$

From 3.7.33 we see by gubstitution in e)
3.7.37. $3.2^{a_{1}}+3^{b_{2}} \equiv 3$ (med 5)
sinee b_{2} and a_{1} axe both odd (see 3.7.34 and 3.7.36) this is oniy possible if
3.7.3. $\quad e_{1}=1+44$
$3.7 .39 . \quad b_{2}=3 \div 4 \mathrm{v}$
Now we have from al in 3.2 .7
3.7.40. Either $3^{b_{2}} \equiv 1(\bmod 29)$ or $3^{b_{2}} \equiv 2(\bmod 29)$
since b_{2} is odd we find that we must have the latter concyruence, so
3.7.41. $\quad b_{2}=17+28 w$

But 3.7.41 contradicts 3.7.39, so the abocase (A) 15 impossible.
(B) In this subcase we have following 3.7 .28
3.7.42, $\left\{x_{1}, x_{2}\right\}=\left\{3.2^{a}, 4-3^{b_{2}}\right\}$

Hence by gubstitution in el we have
3.7.43. $\quad 15\left(3.2^{a_{1}}-4.3^{b_{2}}\right)^{2}-\left(3.2^{a_{1}}+4 \cdot 3^{b_{2}}\right)=12$

From 3.7.27 we have $b_{2} 22$. Now if $b_{2}=2$ then we have from h)
3.7.44. $\left\{x_{1}, x_{2}\right\}=\{24,36\}$ or $\left\{x_{1}, x_{2}\right\}=\{48,36\}$
but these pairs contradiet e) in lemma 3.2.7. So we have $b_{2} \geq 3$, and we find from 3.7.26 and 3.7.27
3.7.45. $2^{\text {¹ }} \div 5$ (moa 9)
3.7.45. $\quad a_{1}=5+6 t$

So $a_{1} \geq$ 5. Therefore it follows from 3.7.43 that
3.7.47. $4 \cdot 3^{b_{2}} \equiv 4(\bmod 16)$

$$
3^{b_{2}} \equiv 1 \quad(\bmod \quad 4)
$$

$3.7 .48 . \quad b_{2}=25$

Purthermore we have from 3.7.43;
3.7.49. $\quad 3 \cdot 2^{a_{1}}+4.3^{b_{2}} \equiv 3(\bmod 5)$

Since a_{1} is odd and b_{2} is even (see 3.7.46, 3.7.48) this is only posedble if
3.7.50. $\quad a_{1}=3+4 u$ and $b_{2}=4 v$ Now egain we find from a)
3.7.51. Either $4.3^{b_{2}} \equiv 1$ (mod 29) or $4 \cdot 3^{b_{2}}=2$ (mod 29)

But from thege two congruences it would follow that, respectively
3.7.52. E1ther $b_{2}=22+26 \mathrm{w}$ or $\mathrm{b}_{2}=11+26 \mathrm{w}$
and we sed that 3.7 .52 contradists 3.7.50, Hence the subcase (B) is also impossible. Therefore we see that it is impossible that $\theta=0$.

Now we have seen in the eases 1), 1i), 1i1) :
3.7.53. abe >0

Hence we have from 3.7.2, and b) and b) 1 m lemma 3.2 .7 , some $a_{1}, a_{2} \in \mathbb{N}_{0}$ with $a_{1}+a_{2}=a$ and some $b_{1} b_{2} \in \mathbb{N}$ with $b_{1}+b_{2}=b$ such that
3.7.54. $\left\{x_{1}, x_{2}\right\}=\left\{2^{a_{1}}{ }^{b} 1_{1}, 2^{a} 2_{3} b_{2}{ }^{6}\right\}$

Now we shall first show that a_{1} and a_{2} are both positive.
Assume $a_{1} a_{2}=0$, so edther $a_{1}=0$ and by $3.7 .53 a_{2}{ }^{3} 0$, or $a_{2}=0$ and by $3.7 .53 a_{1}>0$.

1) Let us assume $a_{1}=0$ and $a_{2}>0$. Then we have $2^{a_{2}} b_{3} 2_{5}{ }^{c}{ }_{2} 30$, so from h) it follows that $b_{1} \geq 3$. Furthermore we have by substitution in e)
3.7.55. $\quad 15\left(2^{a_{2}}{ }^{b}{2_{5}}^{c}-3^{b}{ }_{1}\right)^{2}-\left(2^{a_{2}}{ }_{3}{ }^{b_{2}}{ }^{c}+3^{b}{ }_{1}\right)=12$

So since $b_{1} \geq 3$ we see from 3.7 .55
3.7.56. $\quad 2^{a_{3}{ }^{b} 2_{5}{ }^{\text {b }} \equiv 15(\bmod 27)}$
so we have
3.7.57. $\quad b_{2}=1$
3.7.58. $\quad 2^{a_{2}}{ }^{\mathrm{c}} \equiv 5(\bmod 9)$

Again it follows from 3.7.55 that
3.7.59. $3^{b_{1}} \equiv 3(\bmod 5)$
3.7.60. $b_{1}=1+4 s$
nence b_{1} is oda. Therefore we have from 3.7 .55, since $a_{2} \geqslant 0$
3.7.61. $3-2^{a_{2}} 5^{c}-3 \equiv 0(\bmod 4)$
so $a_{1} \geq 2$. Again from 3.7.55 we fina
3.7.62, $-1-2^{a} 3^{2}-3 \equiv 4($ med 8$)$
so $a_{2} \geq 3$. Then we find from 3.7 .55 and 3.7 .60
3.7.63. $-9-2^{a_{2}} 5^{c}-3 \equiv 12$ (trod 16)
3.7.64. $\quad a_{2}=3$

So from 3.7.57 and 3.7.64 we have
3.7.65. $\left\{x_{1}, x_{2}\right\}=\left\{3^{b}, 24.5^{a}\right\}$

Now from a) in lema 3.2.7 we find
3.7.66. Either $3^{b_{1}} \equiv 1$ (mod 29) and $24 \cdot 5^{c} \equiv 2$ (mod 29)
or $\quad 3^{b} \equiv 2(\bmod 29)$ and $24 \cdot 5^{a} \equiv 1(\bmod 29)$
Now since from $3.7 .60 \mathrm{~b}_{1}$ is odd, the latter congruences must hold. Hence we find
$3.7 .67+\quad b_{1}=17+28 v$
3.7.6В. $\quad=6+14 w$

In particular we fini a 2 2. Hence we find from 3,7,55
3.7.69. $\quad 15 * 3^{2 b}-3^{b_{1}}=12(\bmod 25)$

Now it is prraightforward to oheck that if b_{i} is odd, then
3.7.70. $\quad 15 * 3^{2 \mathrm{~b}} 1 \equiv 10($ (mod 25)
so from 3.7.69 and 3.7.70 we find
3.7.71. $\stackrel{3}{3}^{\mathrm{b}} \equiv 23(\bmod 25)$
3.7.72. $\quad b_{1}=13+20 t$

Now by substitution of 3.7 .65 in e) we have
3.7.73. $\quad 15\left(3^{b}-24-5^{c}\right)^{2}=\left(3^{b_{1}}+24 \cdot 5^{c}\right)=12$

Firthermore modulo $\$ 1$ we have:
3.7.74. $5^{\text {² }} \equiv 5,-6$ or 1
3.7.75. $3^{b} \equiv \pm 4, \pm 11$ or ± 7
because from 3.7.72 $h_{1} \equiv 3(\bmod 5)$. Now it is straightforward to cheek that 3.7.74 and 3.7.75 contradict 3.7.73. So the subcage 1) is impossible.
2) Now suppose $a_{2}=0$ and a_{1} ? 0 . Then we have by substitution in e) frem 3.7.54:
3.7.76. $\quad 15\left(2^{a} 1_{3}{ }^{b}{ }^{b}-3^{b} 2_{5} c^{2}\right)^{2}-\left(2^{a} 1_{3}{ }^{b} 1_{1}+3^{b_{2}}{ }_{5}\right)=12$

So gince b_{1} and b_{2} are positive
3.7.77. $\quad 2^{a_{1}} 3^{b_{1}}+3^{b_{2}}{ }_{5} \equiv 15(\bmod 27)$

Hence at least one of b_{1}, b_{2} ia equal to 1 . Therefore we shall treat
the (partly overlapping) subcases a) and B) where $f_{1}=1, b_{2}=1$ respectively.
a) Suppotee $b_{1}=1, ~ 50$
3.7.78. $\left\{x_{1}, x_{2}\right\}=\left\{3.2^{a}, 3^{b} 5_{5} c\right\}$
and by substitution in e)
3.7.79. $15\left(3.2^{a}-3^{a} 5^{c}\right)^{2}-\left(3.2^{a} 1+3^{b} 5^{c}\right)=12$
so
3.7.00. $3^{a^{a}} \cong 3(\bmod 5)$
3.7.81. $\quad a_{1}=48$
$50 \mathrm{a}_{1} \geq 4$ and from 3.7.79
3.7.82. $-\left(3^{2 b_{2}} 5^{2 c}\right)-3^{b_{5} c} \equiv 12(\bmod 16)$

So by checking all 16 possibilities we find
3.7.83. Either $b_{2}=1+4 u$ and $c=2+4 v$
or $\quad b_{2}=3+4 v$ and $c=4 v$
Let us suppose $b_{2}=1$. Then from d) we find:
3.7.84. Either $3.5^{6} \equiv 1(\bmod 29)$ and $3 \cdot 2^{4} \equiv 2(\bmod 29)$
or $3.5^{c} \equiv 2$ (mod 29) and $3.2^{a_{1}} \equiv 1$ (mod 29)
Since, from 3.7.83, a $1 s$ even we see that the latter congruences must hold. But then this contradicts 3.7.91. $30 \mathrm{~b}_{2}>1$.
Hence from 3.7.83 we find $b_{2} \geq 3$.
Therefore, and since in this subbase $b_{1}=1$ we find from 3.7.77
3.7.85. $2^{a_{1}} \equiv 5$ (mod 9)
3.7.86. $\quad a_{1}=5+6 t$
which yields a ofntradiotion to 3.7.81. So the case a) is impossible, so $b_{1}>1$.
b) So in the case 2) we have $b_{2}=1$ and $b_{1} \geqslant 1$ and
3.7.87. $\left\{x_{1}, x_{2}\right\}=\left\{3^{b} A^{a}{ }^{a}, 3.5^{C}\right\}$

Now first suppose $b_{1}=2$, Then from b) in lemma 3.2 .7 we find
3.7.88. $\quad 9.2^{a_{1}} \equiv 3$ (mod 5)
3.7.89. $a_{1}=1+4 s$

From d) we have
3.7.90. Either $9.2^{a^{1}}$ ज $1(\bmod 29) \quad$ or $9 \cdot 2^{a} \equiv 2(\bmod 29$
3.7.91. Either $a_{1}=18+28 v$ or $a_{1}=19+28 v$
which contradicts 3.7.89. Be $b_{1} \geq 3+$
By substitution of 3.7.87 in e) we have
3.7.92. $\quad 15\left(3^{b_{1}}{ }^{a} 1-3.5^{6}\right)^{2}-\left(3^{b_{2}}{ }^{a} 1+3.5^{b}\right)=12$

90 since $b_{i} \geq 3$ we find
3.7.93. $3-5^{\mathrm{a}}=15(\bmod 27)$
3.7.94, $\quad 5^{6} \equiv 5(\bmod 9)$
$3.7 .95, \quad 6 \pm 1+65$
Now from d) it fellong that
3.7.96. 51ther 3.5 ${ }^{\text {a }} \equiv 1(\bmod 29)$ or $3 \cdot 5^{\text { }} \equiv 2(\bmod 29)$

Ey cheoking all possible valuef of $c(\bmod 14)$ we flnc
$3.7 .97 .3 .5^{6} \equiv 2(\bmod 29)$ and $t=10+14 t$
which is a contradiction to 3.7.95. 5o 8) is impossibin.
So 2) is imposstible, and in 1) and 2) we have proved that we have
$3.7 .98+\quad a_{1} a_{2} \geqslant 0$

Now we gee that for positive integers $a_{1}, b_{1}, a_{2}, b_{2}$ and o
3.7.99. $\left\{x_{1}, x_{2}\right\}=\left\{2^{a_{1}}{ }^{b_{1}}, 2^{a_{2}} b^{b_{2}}{ }_{5}\right\}$

By substitation in e) we have
3.7.100. $\quad 15\left(2^{a} 1_{3}{ }^{b}{ }_{1}-2^{a} 2_{3}{ }^{b} 2_{5} c^{2}-\left(2^{a_{3}}{ }^{b_{1}}+2^{a_{2}}{ }_{3}^{b} 2_{5} c\right)=12\right.$ Now by eonsidering 3.7 .100 modulo 9 we sed that at least one of $\mathrm{b}_{1}, \mathrm{~b}_{2}$ must be equal to 1.
Furthermore, by considering 3.7.100 moaulo 0 we see that one of the following possibilities must hold
3.7.101. Either $a_{1}=a_{2}=1$, or one of a_{1}, a_{2} equals 2 and the other is at least 3.

Therefore we have six cases;

$$
\begin{equation*}
b_{1}=1 \text { and } a_{1}-a_{2}=1 \tag{1}
\end{equation*}
$$

$$
b_{2} \geq 1
$$

$$
\begin{equation*}
\mathrm{b}_{1}=1 \text { and } a_{2}=2 \text { and } a_{1} \geq 3 \quad \text { and } b_{2} \geq 1 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
b_{1}=1 \text { and } a_{1}=2 \text { and } a_{2} \geq 3 \text { and } b_{2} \geq 1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } b_{1}>1 \tag{4}
\end{equation*}
$$

$$
b_{2}=1 \text { and } a_{1}=a_{2}=1
$$

$$
\begin{equation*}
\text { and } b_{1}>1 \tag{5}
\end{equation*}
$$

$$
b_{2}=1 \text { and } a_{2}=2 \text { and } a_{1} 23
$$

$$
\begin{equation*}
b_{2}=1 \text { and } a_{1}=2 \text { and } a_{2} \geqslant 3 \quad \text { and } b_{1}>1 \tag{6}
\end{equation*}
$$

In this capge we fint from 3.7.99
3.7.102. $\left\{x_{1}, x_{2}\right\}=\left\{6,2-3^{b} 5^{c}\right\}$
which 15 impossible because of h) in lemma 3.2 .7
In this case we find from 3.7.99 and 3.7.100
$3.7 .103+\quad\left\{x_{1}, x_{2}\right\}=\left\{3 \cdot 2^{a}, 4 \cdot 3^{b_{2}}{ }^{c}\right\}$
3.7.104. $15\left(3.2^{a}-4.3^{b_{5}} 5^{2}-\left(3 \cdot 2^{a}+4.3^{b} 2_{5}{ }^{\text {b }}\right)=12\right.$

Now if b_{2}, 3 we have
3.7.105. $3.2^{a} \equiv 15(\operatorname{med} 27)$
3.7.106. $2^{a_{1}}=5$ (mod 9)
3.7.107. $\quad a_{1}=5+6 t$

Furthermore, in any case we have
3.7.108. $3+2^{a_{1}} \equiv 3$ (mbd 5)
3.7.109. $\quad a_{1}=4 s$

Hence 3.7.107 contradicts 3.7.109. So $\mathrm{D}_{2} \leq 2$
Now since from 3.7.109 a_{2} を 4 we see from 3.7.104
3.7.110. $4 \cdot 3^{b} 2_{5}$ 末 4 (mbd 16)
3.7.111. $3^{b_{2}} 5^{\mathrm{C}} \mathrm{E} 1(\bmod 4)$
3.7.112. $b_{2}-2 \mathrm{u}$
\$o aince $\mathrm{b}_{2} \leq 2$ we find
$3.7 .113+\quad b_{2}=2$

Hence we find from 3.7.104
3.7.114. $3 \cdot 2^{a_{1}}+36.5^{c}$ E 15 (mod 27)
3.7.115. $2^{a_{1}}+3.5^{c} \equiv 5(\bmod 9)$

But aince from 3.7.109 a_{1} is even, so
3.7.116. $2^{a_{1}} \equiv 4,7$ or $1(\bmod 9)$
we find a contradiction to 3.7.115. 5o (2) is impossible.
(3) In this cage we find from 3.7.99
3.7.117. $\left\{x_{1}, x_{2}\right\}=\left\{12,2^{a_{2}}{ }_{3} 2_{5} c^{c}\right\}$
where $a_{2} \geq 3$ and $b_{2} \geq 1$ and $a z 1$. This contradiets h)
(4) In this case we find from 3.7.99 and 3.7.100
3.7.118. $\left\{x_{1}, x_{2}\right\}=\left\{2,3^{b}, 6-5^{c}\right\}$
3.7.119. $15\left(2.3^{b}-6.5^{c}\right)^{2}-\left(2.3^{b}+6.5^{c}\right)=12$

From 3.7.119 it follows that
3.7.120. $2.3^{b_{1}}=3(\bmod 5)$
3.7.121. $b_{1} \mathrm{~m} 2+4 t$

Now from a) it follows that
3.7.122. E1ther $2.3^{b_{1}} \equiv 1$ (mod 29) or $2.3^{b_{1}} \equiv 2$ (med 29) 80
3.7.123. Either $b_{1}=11+28 v$ or $b_{1}=28 w$
and we seb that 3.7 .123 contradiets 3.7.121. Hence (4) is imposeible.

$$
\begin{equation*}
\text { In this case we find frem } 3.7 .99 \text { and } 3.7 .100 \tag{5}
\end{equation*}
$$

3.7.124. $\left\{x_{1}, x_{2}\right\}=\left\{2^{a} 3^{b}{ }^{b}, 12.5^{c}\right\}$
3.7.125. $\quad 15\left(2^{a_{3}}{ }_{3}^{b_{1}}-1245^{c}\right)^{2}-\left(2^{a_{1}}{ }^{b_{1}}+12 * 5^{c}\right)=12$

Now $1 f a_{1}$ z 4 then we see from 3.7 .125
3.7.126. $12.5^{6} \equiv 4(\bmod 16)$
3.7.127. $3 \cdot 5^{\text {c }} \equiv 1(\mathrm{mod} 4)$
which is a contraciction. So $a_{1} \leq 3$. Then since in (5) we have $a_{1} \geq 3$ we find
$3.7 .128, \quad a_{1}=3$
Hence we find from 3.7.125
3.7.129. $8 \cdot 3^{b_{1}} \cong 3$ (mod 5)
$3.7 .130 . b_{i}=45$
Now following a) we must have
3.7.131. Either $8.3^{b_{1}} \equiv 1(\bmod 29)$ or $8.3^{b_{1}} \equiv 2(\bmod 29)$
but it is straightiorward to show that this is impossible if 3.7 .130 holds. So the case (5) is impossible.
(6) In this case we find from 3.7.99 and 3.7.100
3.7.132. $\quad\left\{x_{1}, x_{2}\right\}=\left\{4.3^{b}, 3.2^{a_{2}}{ }^{5}\right\}$
3.7.133. $15\left(4.3^{b}-3.2^{a_{2}} c^{2}\right)^{2}-\left(4.3^{b}+3 \cdot 2^{a_{2} c}\right)=12$ Hence we find
3.7.134. $4 \cdot 3^{b /} \equiv 3(\bmod 5)$
$3.7 .135+b_{1}=3+43$
Now if $\mathrm{a}_{2} \geq 4$ then it followg from 3.7.133 that
$3+7.136 .4 \times 3^{b} \equiv 4(\bmod 16)$
$3.7 .137 .3^{b} \equiv 1(\bmod 4)$
3.7.138. $b_{1}=2 t$
fontradicting 3.7.135. $50 a_{2} \leq 3$. Since in the eage (6) we have $a_{2} \geq 3$ we find
$3.7 .139 . \quad a_{2}=3$
Hened we find from 3.7.132 and 3.7.133
3.7.140. $\left\{x_{1} r x_{2}\right\}=\left\{4.3^{B}, 24.5^{c}\right\}$
$3.7 .141+15\left(4.3^{b}-24 \cdot 5^{c}\right)^{2}-\left(4 \cdot 3^{b_{1}}+24 \cdot 5^{c}\right)=12$
Now since, from 3.7.135, $b_{2} \geq 3$ we finc
3.7.142. $24.5^{\circ} \equiv 15(\bmod 27)$
3.7.143. $8.5^{\square} \equiv 5(\bmod 9)$
$3.7,144, \quad \varepsilon=4+6 t$
so a is even. Hence
3.7.145. $5^{\circ} \equiv 1(\bmod 8)$
3.7.146. $24.5^{6} \equiv 24$ (mod 64)

Furthermore, from 3.7.135 we find
$3.7 .147, \quad 3^{b} \equiv 11(\bmod 15)$
3.7.146. $4.3^{b} \equiv 44(\bmod 64)$
and
3.7.149. $3^{2 \mathrm{~b}} \mathrm{i} \equiv 1(\bmod 4)$
3.7.150. $16.3^{2 b_{1}} \equiv 16(\mathrm{mod} 64)$

Hence from 3.7.141, 3.7.146. 3.7.149 and 3.7.150 we have
3.7.151. $15 \cdot 16-44-24 \equiv 12(\bmod 64)$
which is a contraciotion. 50 (6) is also impogsible.
Hence we have proved the theorem.

CHAPTER 4 :SOME GENERAL RESULTS CONCERNING n
4.1. A first remark about n
4.1.1. LeMMA. Let $n, q={ }_{p_{1}}^{a_{1}} \ldots p_{\ell}^{a_{\ell}}$, e be the traditional parameters of a perfect code e.
Let $1+n(q-1)+\ldots+\left(\mathrm{e}_{\mathrm{p}}\right)(\mathrm{q}-1)^{\mathrm{e}}=\mathrm{p}_{1}^{\mathrm{k}_{1}} \ldots \mathrm{p}_{\ell}^{\mathrm{k}_{\ell}}(\mathrm{cfr} \cdot 1.2 .1)$. Then for all $1 \in\{1,2, \ldots, k\}$ such that $k_{1}-e_{1} \geqslant 0$ and $p_{i}>e, n-e$ must have exactly ea; factors p_{i}.

PROOF. Let $p_{i}>e$ and let $n-e$ have exactly b_{i} factors p_{i} * Then, modulo $p_{i}{ }^{1}$, we have:
 so we have
4.1.3. $\quad p_{i}^{b_{i}} \mid\left(q^{e}-p_{1}^{k_{1}} \cdots p_{p_{l}}^{k_{l}}\right)$

Now from 1.6 .8 we find
$4.1,4+\quad \prod_{i=1}^{e} x_{i}=\frac{e_{i}^{i}}{q} p_{1}^{k} \ldots p_{R}^{k_{R}} \in z$
Hence we find $k_{i} \sum$ ea i_{i}, and we see from 4.1 .3 that $b_{i} \leq e a_{i}$ if $k_{i}>e_{i}$, that means: if
4.1.5. $\quad P_{i} \mid \underset{j=1}{e} x_{j}$.

Furthermore, from 1.6 .6 and 1.6 .9 we see, since $p_{i}>e$, that b_{i} a ea i_{i}. Thus $b_{i}=e_{i}$.
4.2. A second remark about n
4.2.1. LEMMA. Assume that there exists a perfect e-code with e 22 and c z 2 and $n \leq 1000$.

Then this code is one of the two folay oodes.

PROOF, From 1.6.9 we see that if p is prime and P (q, then
4.2.2. $p^{e} \mid(n-1)(n-2) \ldots(n-e)$

Bence there exitets an $1 \in\{1,2, \ldots, 0\}$ such that
4.2.3. $\quad p^{a} \mid n-i$

Where s is defined by
4.2.4. $s ; m e=\left[\frac{e}{p}\right]-\left[\frac{E}{p^{2}}\right]-\ldots$

Then since
$4.2 .5 . \quad a>e\left(\frac{p-2}{p-1}\right)$
we find from 4.2.3
4.2.6. $\quad \mathrm{s}=\mathrm{p}\left(\frac{p-2}{p-1}\right)$

Now firgt assume e $₹ 3$. Then since q must be Aivisible by at leagt three distinct primeg (if q does not belong to a triple of Golay parameters), cfr. 2.2.1, it must be aivisibie by a prime p which is at leapt 5, so we find from 4.2.6
$4.2 .7 . \quad n=5^{3 / 4 e}$
Then if th 51000 we find $e \leq 5$.
The cages e $=3$ anc $e=4$ are treated, independent of this segtion, in
5.1 and $5+2$. We only have the binary golay code.

If e $=5$ then, for the same reason as above, q must be divisible by a prime p which is at least 5, anc we find from 1.6 .9 that for a certain $1 \in\{1,2,3,4,5\}$
4.2.8. $p^{5} \mid(n-1)$
so we have
4.2.9. $\quad \rightarrow 5^{5}>1000$

So emust be 2. In this case we see from 1.6.6 that
4.2.10. G| $2(\pi-2)$

Now first assume that q 1s odd, Then from $4+2.10$ and 1.6 .9 we find
4.2.11. $g^{2} \mid(\pi-2)$
go if $n s 1000$ then $q \leq 31$. But the odd q with $q \leq 31$ were treated in ghapter 3 and we only found the terfary Golay cocie.

Now assume
4.2.12. $q=2^{k} q^{\prime}$ where q^{\prime} is odd.

Then Erom 4.2.10 we find
$4.2 .13 . \quad 2^{k-4} q \mid(n-2)$
Then if $k \geq 2$ we find fyom 4.2 .13 and 1.6 .9 that 4.2 .11 holds, so if
 chapter 3. No perfect code was found.
If $k=1$ we find frcm 4.2.13 and 1.6.9
4.2.14. $\mathrm{g}^{2} \mid(\mathrm{n}-2)$.

39
$4.2 .15 . \quad \tau^{2} \mid 4(\pi-2)$
 prime power, and gince g has exactly one faetor 2 , and since the cases $q \leq 30$ were already treated in chapter 3 , we have
$4.2,16, \quad q=34,38,42,46,50,54,58,62$
In the appendix (see $\mathrm{A}+4$) we shall explain how these last cases are treated.
4.3. The existence of an upper bound $\mathrm{N}(\mathrm{e}, \mathrm{q})$ for n

The following lemra follows from a well-known reault of G.I. SLegel from number theory (cer. [33], [37]).
4.3.1. LEMMA. Let $p(x)$ be a polynomital such that if $A \in \mathbb{Z}$, then $p(a) \in \mathbb{T}$. Assume that $p(X)$ is not of the form $s(u X+t)^{k}$, where $a, ~ w, ~ a n d t$ are real constants and $k \in \mathbb{N}$, For $n \in \mathbb{N}$, let q_{n} be the largest prime

With the help of lemma 4.3 .1 we can prove the following theorem.
4.3.2. THEORBM. Assume that there exists a perfect code with parameters n, e 22 and q. Then n is bounded by a number $N(e, q)$ depending only on e and q.

PROCF. Let the polynomial $p(X)$ be defined by:
4.3.4. $\quad P(x):=\sum_{i=0}^{e}\left(\frac{X}{1}\right\rangle(q-1)^{i}$

Then if $a \in \mathbb{Z}$ we have $p(a) \in \mathbb{Z}$, Moreover, assume that for some constants s and t and k e N we have

4:3.5. $\quad p(x)=s(t u x+t)^{k}$
Then $k=E$, and since from 4.3.4 and 4.3 .5
4.3.6. $\quad P(0)=1=s t^{k}=s t^{e}$
we finc
4.3.7. $\quad \mathrm{P}(\mathrm{X})=(\mathrm{r} \mathrm{X}+1)^{\text {自, }}$, where $\mathrm{y}=\frac{\mathrm{u}}{\mathrm{t}}$

From 4.3.4 and 4.3 .7 we have:
4.3.9. $\quad P(1)=q=(1+r)^{e}$
4.3.9. $p(2)=q^{2}=(1+2 r)^{\text {e }}$

Then, oomparing 4.3.8 and 4.3.9, we find
4.3.10. $\left(1+2 x+x^{2}\right)^{e}=(1+2 x)^{e}$
so $r=0$, whence from 4.3 .8 we have q $=1$, which is not pobeible.
So, aince $p(x)$ is not of the form 4.3.5, we can apply lemma 4.3.1.
Now take $Q>$ g. Then there 1ε a number $M=N(e, q)$ such that for $n>M$ we have for the largest prime factor q_{n} of $p(n)$
4.3.11. $\quad \mathrm{G}_{\mathrm{n}}>\mathrm{Q}^{3} \mathrm{~g}$

But since from the polynomiel condition 1.2.1 we find
4.3.12. $p(n) \mid q^{n}$
farmula 4.3.11 le a contradiction. Hence we have $n<M$.

Explicit lower bounds for f_{n} are known: there exist effeptively computable constants c, depending only on the polynomial $p(X)$, such that for large in

in particular, if $p(X)$ is of degree 2 , we have for $e>0$ and large n the following inequality:
4.3.14. $g_{n} \geq(0.25+e) \log \log n$

This was found recently by Langevin (see [18]), using a reault of Stark about the Aiophantine equation $x^{3}-y^{2}=k$.

However, these bounds are not of practical value for our purpose. For instance, ascume the existence of a perfect code with e $=2$ and, say, $q=3^{5} 5^{t}$.

Now let us derive an upper bound for n, using 4.3.14.
For this purpose we define the polynomial $p(x)$ of degree 2 by
4.3.15. $p(X):=1+X(q-1)+\frac{X(X-1)}{2}(q-1)^{2}$
where $q=3^{5} 5^{t}$.
Then it follows from the sphere packing condition that
4.3.16. $p(n)=3^{U_{5}}$, so $G_{n} \leq 5$

But on the other hand we have for large n the inequality 4.3 .14 , from which it follows that
4.3.17. $\quad G_{n}>5$ if $\log \log n>20$

We conclude that we find the following upper bound for n, which is very large indeed:
4.3.18. $n \leq \exp (\exp (20))$
4.4. An upper bound $N(e, g)$ made explicit if e is odd

For a bettex underptanding of this section, the reader is invited to read again the second half of section 1.6, about the transformed Lloyd poly* nomial $\mathrm{Fe}_{\mathrm{e}}(\theta)$.
Let e $=2 \mathrm{~m}+1$. Then by combination of 1.6 .23 and 1.6 .24 we may write:
4.4.1. $\quad E^{\prime}(\theta)=\sum_{k=0}^{m} \bar{F}_{k}(\theta) n^{k}$

Usint only the ternis with $j x m$, we find from 1.6.27.
4.4.2. $\quad a_{m}(\theta)=\frac{(-1)^{m m 1}}{m!} \xi^{m-1}(m n+\xi(\theta-1))$,
where ξ and 4 are defined in 1.6 .25 .
So 1亡 we define
4.4.3. $\quad \theta_{0}=p-\frac{(e-1)(9+1)}{3}$
we see that $a_{m}(\theta)$ changes sign in θ_{0}, that means
$4+4,4+\quad \quad \operatorname{am}(\theta)=0$
4.4.5. $\left|a_{m}\left(\theta_{0}+1 / 3\right)\right|=i a_{m}\left(\theta_{0}-1 / 3\right) \left\lvert\,=\frac{(q-1)^{m}}{m!}\left(\frac{(e-1) g-2 e}{2^{m}}\right)\right.$

Now let Lis define:

Then we have the fallowing iemma:
 of $\mathrm{F}_{\mathrm{e}}\left(\theta_{0}+1 / 3\right)$ and $\mathrm{F}_{\mathrm{e}}\left(\theta_{0}-1 / 3\right)$ are different.

PROOF, Jaing 1.6.21 and 1.6.22 we gee that
4.4.8. \quad е! $\boldsymbol{F}_{\mathrm{E}}(\theta)=(n-1)(n-2) \ldots(n-\theta)-e(n-2) \ldots(n-e)(n-\theta)+$

$$
\begin{aligned}
& +\left(\frac{e}{2}\right)(n-3), \ldots(n-e)(n-\theta)(n-\theta-q)-\ldots \\
& +(-1)^{e-1} \theta(n-\theta)(n-\theta) \ldots(n-\theta-(\theta-2) q)+ \\
& +(-1)^{e}(n-\theta)(n-\theta-\theta) \ldots(n-\theta-(n-1) q)
\end{aligned}
$$

Hence for the coefficlents $h^{(\theta)}$ of n^{k} in $\beta_{e}(\theta)$ we have iw $|\theta|<\frac{\theta}{3}$:

Now deptne b_{k} to be the right hard side of 4.4.9. Then ginee
4.4.10. $\frac{b_{k}}{b_{k+1}^{-}}=\frac{(k+1)\left(\frac{4}{3} e c\right)}{-\frac{k}{k}}$
we find that if
4.4.11. $n=\frac{b_{m-2}}{b_{m-1}}=\frac{(m-1)\left(\frac{4}{3} \mathrm{eq}\right)}{m+3}$
then we have for $k=0,1, \ldots, m-2$

4+4.12. $\quad b_{m-i} n^{m-1} m_{k} b^{k}$
So from 4.4.9 we have, if $|\theta| \leqslant \frac{\mathrm{eg}}{3}$ and 4.4 .11 holds,
$4.4 .13 \cdot \quad \sum_{k=0}^{m-1}\left|a_{k}(\theta)\right| n^{k} \leqslant m b m_{m-1} n^{m-1}$,
1.E.
4.4.14. $\sum_{k=0}^{m-1}\left|a_{k}(\theta)\right| n^{k} \varepsilon m \frac{(e+1)}{e!}\left(\frac{e}{m}\right)\left(\begin{array}{l}e-1\end{array}\right)\left(\frac{4}{3} e q\right)^{m+2} n^{m-1}$

Now, since obviousiy $E_{e}\left(\theta_{0}+1 / 3\right)$ and $F_{e}\left(\theta_{0}-1 / 3\right)$ have different aigns 1 for $|0|<\frac{\text { en }}{3}$
4.4.15. $\quad \sum_{k=0}^{m-1}\left|a_{k}(\theta)\right| n^{k}<\left|a_{m}\left(\theta_{\theta}+1 / 3\right)\right| n^{m}$
we see from 4.4 .5 and $4.4,14$ that this 15 true if 4.4 .11 holds and

Now we can check that this fnequality reduces to the bound M(e, g) for n, mentioned in 4.4.6, if we keep in mind the follewing inequalities;

$$
\begin{aligned}
& \text { 4.4.17. } \frac{9}{4-1} \leq \frac{30}{29} \text { and } 29>4.5 \\
& \text { (e-1)q-2e } 3 \text { g if } q \text { a } 6 \\
& m^{2} \leqslant m(m+1)
\end{aligned}
$$

 if we want an unknown perfect ecte (cir. 2.2).

Now assume that there exists a perfect code with parameterg $M, ~ G, ~ e$, and $e=2 m+1$. Let s and p be defined by
4.4.13. $\quad \mathrm{f}:=\operatorname{gcd}(\mathrm{g}, \mathrm{e})$
$4.4 .19 . \quad \stackrel{\rightharpoonup}{5}=\frac{9}{5}$
Then from 1.6.6 we have
4.4.20. $\quad \mathrm{p} \mid(n-$ e)

TherAfore if θ is a zero of the transformed Lloy polynomial $F_{i}(\theta)$, we sae from 1.6 .15 and the polynomial condition 1.6 .5 that for some integer w we hate
4.4.21. $\theta=\theta+p W$

Now we are able to prove:
4.4.22. LemMA. Assume that there existe a perfect code with parameterg
 zero of $F_{\mathrm{e}}(\theta)$.
Furthermore we have:
$4+4+23 . \quad 3 \mathrm{~m} \mid(1-9)(4+1)$
$4.4 .24 . \quad \mathrm{m}=9$

 be of the farm 4.4.21.
Therefore we have
$4.4 .25 . \quad 0_{0}-1 / 3<e+p w<\theta_{0}+1 / 3$
From 4.4.3 we see that 4.4.25 is equivalent to
4.4.26. ($\quad(1-e)(\mathrm{q}+1)-1<3 \mathrm{pw} \leqslant(1-e)(\mathrm{q}+1)+1$
4.4.27. $3 \mathrm{pw}=(1-\mathrm{b})(\mathrm{q}+1)$

Thus we have 4.4.23 and, comparing 4.4.27 with 4.4.3
4.4.26. $\quad=\mathrm{e}+\mathrm{pw}=\theta_{0}$

Finaliy 4.4.24 follows from 4.4.23, as will be explained in the appendix (aee A.5).

Like the coefficient $a_{m}(\theta)$ we can caloulate the coefficient $a_{m-1}(\theta)$. Thin will be done in the appendix (see A.6).
We find the following inecuality:
4.4.29. $\left|a_{m-1}\left(\theta_{0}\right)\right|=\frac{(q-1)^{m-3} g^{5} m^{3}}{2^{m-1} 5 \cdot 9 \cdot(m-1)!} \quad \quad(f \infty \mathrm{~m} \geq 30, \pm \geq 9)$

Now, finally, we are ready to prove what was the purpose of this section, with the help of lemme 4.4.22.
A.4.30. THECREM. For $n>M(e, q)$ ss defined in 4.4.6, there does not exist a perfect e-code if e $=2 m+1$ (m $c \mathbb{N}$).

FRCOF . Assume the existence of such a code with in $\geqslant \mathrm{M}(e, g)$. Then from 4.4. 4.4 .4 and lenme 4.4 .22 we find
4.4.31. $F_{e}\left(\theta_{0}\right)=\sum_{k^{*} 0}^{m-1} a_{k}\left(\theta_{0}\right)_{n}^{k} w 0$

Like in the proof of lemma 4.4.7 we have for $|\theta|<\frac{\operatorname{eg}}{3}$
$4,4,32 \cdot \sum_{k=0}^{m-2}\left|a_{k}(\theta)\right|_{n}^{k}<(m-1) \frac{(e+1)}{e!}\left(\frac{e}{m}\right)\left(\frac{e}{m-2}\right)\left(\frac{4}{3} e q\right)^{m+3} n-m-2$

Since obviously we have a contradiction with 4.4 .31 if for $|\theta| \leqslant \frac{\mathrm{Eg}}{3}$
4.4.33. $\sum_{k=0}^{\frac{\mathrm{m}}{2} 2}\left|a_{k}(\theta)\right| n^{k} \in\left|a_{m-1}\left(\theta_{0}\right)\right|$
we see from 4.4.29 and 4.4.32 that we have a contradiction if
4.4.34. $\quad(m-1)(e+1)\left(_{m}^{e}\right)\binom{e}{m-2}\left(\frac{4}{3} \mathrm{eq}\right)^{m+3} \leqslant \frac{e!(q-1)^{m-3} q^{5} m^{3} n}{2^{m-1} 5 \cdot 9(m-1)!}$
so, as is not difficult to see, if $n>M(s, g)$.
4.5. Application

As an application of theorem 4.4.30 we mention:
4.5.1. TEEOREM. Assume that there exists a perfect e-ede with of symbols and that all prime divisors of q are greater than e.
Then e cannot be odd if $\mathrm{a}_{\mathrm{a}}>1$.
PROOF. If all prime Avisors of q are greater than e then it follows from 1.6 .6 amd 1.6.9 that
6.3.2. $\mathrm{q}^{e} \mid(\mathrm{n}-\mathrm{e})$

Fur thermore, if we have an unknown perfect code with $e \geqslant 2$ then from the sections 2.1 and 2.2 we see that the number of these prime divisors is at 亡eagt 3, во
4.5.3. $\quad \mathrm{q}>\mathrm{e}^{3}$

Hence frem 4.5.2 and 4.5.3 we have
4.5.4. $n>q e^{6 m}$

Now it is straightforward to show thet 4.5 .4 contradicts the upper bound W(e, f) for n, mentioneq in 4.4.6, which is valid if e is ocd and at least 3.

CHAPTER 5 : SOME RESULTS FOR SMALL VALUES OF e

5.1. The case $=\mathrm{m} 3$

5.1.1. THEOREM. The only non-trivial perfect 3-code is the binary golay code of length 23.

PROOF. From the polynomial condition 1.6 .5 we find that, assuming the existence of a perfect code with parameterg n,e $=3$, q. 3 the Lloyd polynomial $P_{3}(\mathrm{X})$ must have three distinct integral zeros. Therefore application of the transformation $\theta(1.6 .15)$ learns that the transformed polynominl $F_{3}(\theta)$, as given in $1,6,19$, must have three integral zeroe of the form
5.1.2. $\quad \theta_{i}=\mathrm{qx}_{i}-\mathrm{n}(\mathrm{q}-1)$, where $\mathrm{x}_{\mathrm{i}} \in \mathbf{z} \quad(1-1,2,3)$

However, as is easily verified, we have
5.1.3. $3!F_{3}(1)=2(q-1)(q-2)(1-n)<0$
5.1.4. $\quad 3: F_{3}(3-q) \cdots(q-1)(g-2)(n-3)>0$

Hence for one of the aeros ${ }_{i}$ we must have
5.1.5. $3-q \leqslant \theta_{i} \leqslant 1$

So for the integer x_{i} assobiated with θ_{i} we have
5.2.6. $3-q<q x_{i}-n(q-1)<1$

However, we see from 1.6.6 that
5.1.7. g $\quad 3(\mathrm{n}-3)$

So for some integets v, w, respectively, we Eind
5.1.8. 1f 3 |q then $\mathrm{H}=3+$ प
5.1.9. If for some $p \in \mathbb{I} \quad q=3 \mathrm{p}$, then $\mathrm{n}=3+\mathrm{pw}$

So from 5.1.5. 5.1.6 and 5.1.8, 5.1.9 respectively we see that for sope integers v', w', respectively, we must have:
5.1.10. If 3 中 then $\theta_{i}=3+c v^{\prime}$ and $3-q<3+c v^{\prime}<1$

Hence, since 5.1.10 is impossible we see that of $3 p$ and, since $F_{3}\left(\theta_{i}\right)=0$,
5.1.12. $\quad F_{3}(3-p) \cdot F_{3}(3-2 p)=0$

Ebwever, we see after simple calculation, since for nontrivial perfect codes we have $n>7$, that
5.1.13. $\quad F_{3}(3-p)=-10 p^{3}+p^{2}(27-9 n)+p(9-3 n)+48+2 n<0$
5.1.14. $\quad F_{3}(3-2 p)=-g_{p}^{3}+p(18-6 n)+4 日+2 n<0$

Now we find that 5.1.13 and 5.1.14 contradict 5.1.12. \$o if a perfect code with parameters nee = 3 and q does exist, then $q=2$. Furthermore, if g F 2, or more generaliy a prime power, it is known that the only perfect 3 -code $1 s$ the binary Golay code with $n=23$, (efr. [23]).

5,2 . The case e $=4$

In the following we shall prove that there does not exist a perfect nontrivial four-erfor-correcting code.
In lemma 1 we make use of the well-known cubice resotvent of a polynomial of the fourth degree, which was first fintrofuced by Lagrange.

5, 2+1. LEMMA. Let $P(Z):=Z^{4}+p Z^{2}+r Z+s$ be a polynomial with integral zeros. Then the polynomial $Q(z)$, defined by $Q(Z) ; z^{3}-\mathrm{pz}^{2}-4 \mathrm{gz}+4 \mathrm{ps}-\mathrm{r}^{2}$ has thres integral zeros.

PROOF. Let $P(Z)$ have integral zeros $z_{1}, z_{2}, z_{3}, z_{4}$. Then we can write p,ris as the symmetric expressions:

$$
\begin{aligned}
& \text { 5.2.2. } \quad F=z_{1} z_{2}+z_{1} z_{3}+z_{1} z_{4}+z_{2} z_{3}+z_{2} z_{4}+z_{3} z_{4} \\
& -z=z_{1} z_{2} z_{3}+z_{1} z_{2} z_{4}+z_{1} z_{3} z_{4}+z_{2} z_{3} z_{4} \\
& s=z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

$$
\text { Now define } Q(Z):=\left(z-y_{1}\right)\left(z-y_{2}\right)\left(z-y_{3}\right) \text {, where }
$$

$$
\begin{array}{ll}
5.2 .7 . & y_{1}:=z_{1} z_{2}+z_{3} z_{4} \\
& y_{2}:=z_{1} z_{3}+z_{2} z_{4} \\
& y_{3}:=z_{1} z_{4}+z_{2} z_{3}
\end{array}
$$

Then, from 5.2.2 and 5.2.3, 1 t is straightforward to show that

$$
\begin{array}{lll}
5.2 .4 . & y_{1}+y_{2}+y_{3} & p \\
y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3} & =-4 s \\
y_{1} y_{2} y_{3} & =r^{2}-4 p s
\end{array}
$$

Then $Q(z)$ has the form as in the theorem, and its zeros y_{1}, Y_{2} and y_{3} are integers.

REUARK. Cfr: the theorem in van Der waerden [42], where $Q(z)$ has zeros $Y_{1}+Y_{2}, Y_{1}+Y_{3}$ and $Y_{2}+Y_{3}$. By now we are ready to prove:
5.2.5. THEOREM. A non-trivial perfeet four-eryor-coxrecting code does not exist.

PROOF. Assume there exists such a code with parameters n, e $=4$, and q. Then by the transformation $\theta(1.6,15)$ and by
5.2.6. $z:=20+3 q-8$
the Lloyd polynemial $P_{4}(X)$ is transformed into $F(Z)$ like in lemma 5.2.1, where p,r and s will not be mentioned.

Following the polynemial condition and the lema 5.2.1 we find a polyncmial $Q(z)$ like in lemma 5.2.1, with three integral zeros. Sinee the obefficient of $(n-4)^{3}$ in $Q(Z)$ is independent of Z we substitute
5.2.7. $2 \mathrm{y}:=\mathrm{z}+24(\mathrm{q}-1)(\mathrm{m}-4)$
and find that $F(Y)$ must have three integral zeres, where
5.2.8. $\quad F(Y):=a_{2}(Y)(n-4)^{2}+a_{1}(Y)(n-4)+a_{0}(Y)$,
and
5.2.9. $\quad a_{2}(y)=3 y+11 \mathrm{f}^{2}+16 q-16$

$$
\begin{aligned}
& a_{1}(Y)=-24(q-1)\left(Y+5 q^{2}\right)\left(Y+q^{2}+4 q-4\right) \\
& a_{0}(Y)=\left(Y-3 q^{2}\right)\left(Y+3 q^{2}\right)\left(Y+5 q^{2}\right)
\end{aligned}
$$

Hence if we define y_{0} by
5.2.10. $\quad X_{0}:=-\frac{1}{3}\left(11 q^{2}+16 q-16\right)$
then we find
5.2.11. $\quad a_{2}\left(y_{0}\right)=0$

$$
a_{2}\left(y_{0}-\frac{1}{3}\right)=-32(q-1)^{2}
$$

and for $y=y_{0}$ and $y=y_{0}-\frac{1}{3}$ we find
5.2.12. $\quad 72 q^{4}(q-1)<a_{1}(y)<88 q^{4}(q-1)$
$0 \quad<a_{0}(y)<8 q^{6}$
and hence:
5.2.13. $F\left(Y_{0}\right)>72 q^{4}(q-1)(\pi-4)>0$
5.2.14. $\quad F\left(y_{0}-\frac{1}{3}\right)\left\langle-32(q-1)^{2}(n-4)^{2}+88(q-1) q^{4}(\mathrm{n}-4)+8 q^{6}\right.$
so, as is easily established;
5.2.15. $F\left(y_{0}-\frac{1}{3}\right)<0$ if $n-4 \geq \frac{14}{5} \frac{q^{4}}{q-1}$

So we see from 5.2 .13 and 5.2 .15 that, if $n-4 \geq \frac{14}{5} \frac{g^{4}}{\frac{q}{4}-1}$, there must be an integral zero of $F(Y)$ in the open interval ($y_{0}=1 / 3, y_{0}$).
Hence, since from 5.2 .10 it is elear that this interval does not eontain an integer, we find
5.2.16. $\quad n-4<\frac{14}{5} \frac{q^{4}}{q-1}$

Now we shall see in the following two lemmas that this is also impossible Hence we have proved the theorem.
5.2.17. LEMMA. Suppose that there ex1sts a perfect four-error-correcting coce with word length n guen that

$$
n-4<\frac{14}{5} \frac{q^{4}}{q-1}
$$

and let $q=2^{k} 3^{\ell} q^{\prime}$ and $\operatorname{gcd}\left(6, q^{+}\right)=1$.
Then we have the following diagram of possibllities:

ℓk	$k=0$	$k=2$	$k=2$	$k \geq 3$
$\ell=0$	$q<4$	$q<46$	$q<718$	$q<7$
$\ell \geq 1$	$q<10$	$q<136$	$g<21.52$	$q<18$

PROOF. Like in section 2.3 we find that the following expressiong in the zeros x_{1}, x_{2}, x_{3} and x_{4} of $F_{4}(x)$ aust be integers:
5.2.18. $x_{1}+x_{2}+x_{3}+x_{4}=\frac{4(n-4)(q-1)}{q}+10$
5.2.19. $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=4(n-4)^{2}+20(n-4)+30-\frac{4(n-4)}{q^{2}}[(2 q-1)(n-3)+4\}$
5.2.20. $\quad x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+4(n-4)^{3}+30(n-4)^{2}+90(n-4)+100-$

$$
\frac{n-4}{q^{3}}\left\{(n-4)^{2}\left(12 q^{2}-12 q+4\right)+(n-4)\left(24 q^{2}+42 q-36\right)+\left(12 q^{2}+54 q+24\right)\right\}
$$

5.2.21. $\left(x_{1}-1\right)\left(x_{2}-1\right)\left(x_{3}-1\right)\left(x_{4}-1\right)=\frac{(n-1)(n-2)(n-3)(n-4)}{q^{4}}(q-1)^{4}$

Then if $3 \mid$ q we see from 5.2 .18 that $3 \mid(n-4)$. So $\left\{(n-4)^{2}\left(12 q^{2}-12 q+4\right)+(n-4)\left(24 q^{2}+42 q-36\right)+\left(12 q^{2}+54 q+24\right)\right\}$
has exactly one factor 3 .
Then since $27 \mid \mathrm{q}^{3}$, we see from 5.2 .20 that $9 \mid \mathrm{n}-4$,

Furthermore, if $8 \mid \mathrm{g}$ we sef from 5.2 .18 that $2 \mid(\mathrm{n}-4)$.
So $\{(2 q-1)(n-3)+4\}$ is dd.
Then, since $54 \mid \mathrm{q}^{2}$, we see from 5.2 .19 that $4 \mid$ (n - 4).

Hence, since from 5.2.18 and 5.2.21
5.2.22. $q \mid 4(n-4)$ and $q^{4} \mid(n-1)(n-2)(n-3)(n-4)$

We can make the following diagram of possibilities, with A chosen in such a way that $q^{4} \mid A(n-4)$

Now in each of the cases listed in the diagram we have the condition
3.2.24. $\quad \frac{t^{4}}{4} 5 n-4<\frac{14}{5} \frac{t^{4}}{t-1}$
mich ytald
$5.2 .25 . \quad$ ㄱ $<\frac{14}{5} A+1$

So by combination of 5.2 .23 and 5.2 .25 we have the diagran of possibilities listed \ln 5,2,17.

5+2.26. LEMMA. The values of g linted in 5.2.17 are also impossible.

RROOF, This will be froved in the apperdix (see A.2).
5.3. The case e $=5$
5.3.1. THEOREM. There does not exist a Mon-trivial perfect s-code,

PROOF. Assuming the existence of a perfect code with parameters n, $e=5$, and q, we find from section 2,2 that q must have at least three distinct prime divisors, so
5.3.2. $q \geq 30$

Now define λ < \mathbb{Q} such that
5.3.3. $\lambda:=\frac{4}{5}$
so by 5.3.2
5.3.4. $\lambda \geq 6$

In the appendix (see A.7) we shall show that we may agsume
5.3.5. n z 80れ

Now from the polynomal condition 1.6 .5 we find that the Lloyc polyncmial $P_{5}(X)$ must have five distinct integral zeros.
Therefore, application of the transformation θ (1.6.15) learns that the transformed polynomial $F_{5}(\theta)$, which was made explicit in 1.6.20, must have five integral keros of the form
5.3.6. $\quad \theta_{1}=q x_{i}-n(q-1)$, where $x_{i} \in Z \quad(1=1,2,3,4,5)$

Now we calculate $F_{5}(-6 \lambda)$ and $F_{5}(-7 \lambda)$ and find:
5.3.7. $\quad 5: F_{5}(-6 \lambda)=n^{2}\left(250 \lambda^{3}-1475 \lambda^{2}+560 \lambda-55\right\rangle+$
$+n\left(3300 \lambda^{4}-6510 \lambda^{3}+7220 \lambda^{2}-90 \lambda+224\right)$
$+\left(3024 \lambda^{5}=5400 \lambda^{4}+4800 \lambda^{3}-3600 \lambda^{2}-3600 \lambda-120\right)$
$5.3 .8 . \quad 5: F_{5}(-7 \lambda)=n^{2}\left(-125 \lambda^{3}-1325 \lambda^{2}+545 \lambda-55\right)+$
$+\pi\left(2150 \lambda^{4}-5330 \lambda^{3}+9180 \lambda^{2}-520 \lambda+224\right)+$
$+\left(4368 \lambda^{5}-8400 \lambda^{4}+8400 \lambda^{3}-8400 \lambda^{2}-4200 \lambda-120\right)$
Now it can be seen immediately that the following inequalitiea follow from, respectively, 5.3.4, and 5.3.4 and 5.3.5.
$5.7+9$.

$$
\begin{aligned}
& F_{5}(-6 \lambda)>0 \\
& F_{5}(-7 \lambda) \times 0
\end{aligned}
$$

Hence we have for one of the zeros θ_{i} (efr. 5.3.6), say B^{\prime}
5.3.16. $-7 \lambda \leqslant \hat{H}^{\prime} \leqslant-\xi^{2}$

Now we see from 1.6.6 that
5.3.11. \quad ($5(n-5)$

So for some integers v, w_{r} respectively we findi
$5 \cdot 3+72+$ If 5 (G) then $n=5+g v$
5.3.13. If $\lambda \in \mathbb{N}$ then $n=5+\lambda w$

Hence from 5.3.6, 5.3.10 and 5.3.12,5.3.15 respectively, we find for scone Integerg v^{\prime}, w^{\prime} respectively:
5.3.14. If $5 \hat{y}$ then $\theta^{\prime}=5+q v^{\prime}$ and $-7 \lambda<5+q v^{\prime}<-6 \lambda$
5.3.15. If $\lambda \in \mathbb{N}$ then $\theta^{\prime}=5+\lambda w^{\prime}$ and $-7 \lambda<5+\lambda w^{\prime}<-6 \lambda$

Now, since from 5.3.2 we have $q \geq 30$, there is no $v^{1} \in Z$ tuch that
$5,7.16-7 q<25+5 \mathrm{cy}^{\prime}<-$ Бс
so 5.3.14 is imposeible. Therefore 5.3.15 must hold and we see that
5.3.17. $\lambda \in \mathbb{N}$
and
5.3.18. $\theta^{\prime}=5=7 \lambda$

On the other hand, we calculate $F_{5}(5-7 \lambda)$ and find
5.3.19. $\quad 5!F_{5}(5-7 \lambda)=n^{2}\left(-125 \lambda^{3}+550 \lambda^{2}-205 \lambda+20\right)+$
$+n\left(2150 \lambda^{4}+1670 \lambda^{3}-1720 \lambda^{2}+1740 \lambda-176\right)+$
$+\left(4368 \lambda^{5}-10.750 \lambda^{4}-5225 \lambda^{3}+12.350 \lambda^{2}-4075 \lambda+380\right)$
Now it is stralghtforwaxd to show from 5.3.4 and 5.3.5
5.3.20. $\quad F_{5}(5-7 \lambda)<0$
but we shall orait the calculations.
Now 5.3.20 and 5.3.1s contradict anch other since θ^{\prime} was defined to be a zero of $F_{5}(\theta)$.
Therefore we have proved that a perfect 5 -code does not exist.

CHAPTER 6 :SOME RESULTS CONCERNING PERFECT MIXED CODES

6.1. Prebiminories

For $i=1,2, \ldots n$, let s_{i} be n set of q_{i} symbols, say
6.1.1. $\quad s_{i}:=\left\{0,1,2, \ldots, q_{1}-1\right\}$
where q_{i} is an integer at ieast equal to 2.
Then a miced code C is a subset of the cartesian product $V:=S_{1} \times S_{2} \times \ldots \times S_{n}$. The Hamming metric in V is defined as in soction 1.1.

C is called a miwed perfect e-code if the spheres S_{e} (g), with \underline{E} runing through C, form a partition of V.
Several mixed perfect 1 -codes are known with $q_{i}=p^{a_{i}} \quad(i=1,2, \ldots n)$. We refer to [15], [21].

In this chapter, our purpose is to prove some non-existence theorems ooncerning mixed perfect 2 - and 3-codes with the help of four necessary conditions.

First, the epheve packing condition besomes for mixed pexfect 2-eodes:
6.1.2. $1+\sum_{i=1}^{n}\left(q_{i}-1\right)+\sum_{i<j}^{n}\left(q_{1}-1\right)\left(q_{j}-1\right) \mid q_{1} q_{2} \ldots q_{n}$.

Furthermore, the following two conditions were derived by o. Heden (see [14]) in a paper which generalizes the polynomial condition to the ease of mixed perfect codes:
6.1.3. LEMMA. If a mised perfect e-code exists and for some 1 we have $p \mid g_{i}$, then $p \| \xi_{e}(\underline{q} \mid$.

Here, obviousiy, $\left|s_{e}(0)\right|$ is the left hand side of 6.1 . 2 . (It is also possible to prove that $p||c|$, but we shall not do that here.
6.1.4, LEMMA. If a mixed perfect ercode exists and for fome 1 we have $p \mid q_{1}$, then p divides at least $n-a+1$ of the number g_{i}.

We shall quote from [14] the polynomial condition for mixed perfect codes:
suppose that there exists a mixed perfoct e-code of length n. Without loss of generaiity we can assume that the cardinalities g_{i} of the alphabets increase (weakly) with i.

Let us defime the numbers $n_{1}, n_{2} \ldots n_{k}$ by
6.1 .5.

$$
\begin{array}{ll}
q_{1} & =q_{2} \\
q_{n_{1}+1} & =q_{n_{1}+2}=\ldots=q_{n_{1}} \\
\vdots & \vdots \\
q_{n_{k-1}}+1 & =q_{n_{n_{k-1}}+2}=\ldots=n_{2} \\
n_{k-1}+n_{k}
\end{array}=q_{n} .
$$

Furtharmore, let us define the set S by
6.1.6. S im $\left\{\left(s_{1}, s_{2} \ldots, s_{k}\right\} \mid s_{i} \in \mathbb{Z}\right.$ and $0 \leq s_{i} \leq n_{i}$ for

$$
\left.i=1,2, \ldots k \text { and } s_{1}+s_{2}+\ldots+s_{k} \leq e\right\}
$$

and let us define the polynomials $\operatorname{an}_{\left(g_{1}, \ldots, s_{k}\right)}\left(\mathrm{X}_{1}, \mathrm{X}_{2} * \ldots \mathrm{X}_{\mathrm{k}}\right)$ by

$$
=\prod_{i=1}^{k}\left(1+\left(q_{i}-1\right) Z_{i}\right)^{n_{i}-x_{i}}\left(2-z_{i}\right)^{X_{i}}
$$

Finally, let us define the polynomial $p\left(X_{1}, x_{2} \ldots x_{k}\right)$ by
6.i.e. $E\left(x_{1}, x_{2}, \ldots x_{k}\right)=\sum_{\left(s_{1}, s_{2}, \ldots s_{k}\right) \in S} \sum_{1}\left(s_{1}, \ldots, s_{k}\right)\left(x_{1}, x_{2}, \ldots x_{k}\right)$

Then there exist at least $|s|-1$ aistinct k-tuples ($x_{1}, x_{2}, \ldots x_{k}$) such that for $1=1,2, \ldots, k$
6.1.9. $x_{i} \in z$ and $0 \leq x_{1} \leq n_{1}$
and
6.1.10. $\quad E\left(x_{1}, x_{2} \cdots x_{k}\right)=0$.
6.2. A nonexistence theorem concenning mixed perfect 2-codes

We have the foliowing result concernint mixed perfeet double-error eorreeting codes:
6.2.1. THEOREM. A mixed perfect 2 -eode does not exist if, for $i=1,2, \ldots, \pi, q_{1} \mid 6$, unless this code $1 s$ a trivial one or the ternary
Golay code. PROOF, Assume the existence of such a code. Since we exclucie trivial cases we may assune n ≥ 5,

From theorem 2.1.15 we know that it is not possible that for all i $G_{i}=2$, or that all q_{i} are equal to 3 (unless we have the ternary golay code) Therefore, there exists an i such that $2 \mid q_{i}$ and there exists an i such that $3 \mid g_{i}$
50 from lemma 6.1.4 at least $n-1$ of the numbers q_{i} are divisible by 2, and at least $a-1$ of them are divisible by 3.
Furthermore, we know from thecrem 3.6.3 that it is not possible that ali q_{i} are equal to 6 .
Therefore wo etn without loss of genemality distinguish between 3 cases:
a) $q_{1}=2$ and for $i=2,3, \ldots n \quad q_{i}=6$
b) $q_{1}=3$ and for $i=2,3, \ldots \pi \quad q_{i}=6$
c) $q_{1}=2, q_{2}=3$ and for $1=3, \ldots$ g $q_{i}=6$.
a) In this case the sphere packing concition 6.1.2 becomest
6.2.2. $\quad 25 n^{2}-55 n+34=2^{k+1} 3^{\ell}$, where $\left|s_{2}(0)\right|=2_{3}^{k}$

Frofn 6.1.3 we find k z 1 and $\ell \geqslant 1$ so

From the generalized polynomial oondition of Heden (ธee [14]) the followin two quadratic equations must both have two integral molutiong:
6.2.5. $36 Y^{2}-(60 n-84) Y+25(n-1)(n-2)=0$
$6+2+5 . \quad 36 y^{2}-(60 n-60) y+25(n-1)(n-2)+20(n-1)+4=0$

Remerik that if we substitute $y=0$ in 6. 2.6 then we find from 6.2.2, $2\left|s_{2}(\underline{O})\right|$.

Eut the case we txeat $\ddagger s$ much easiex there must be two integral solutions y_{1} and y_{2} to equation 6.2.6, for which we have
6.2.7. $y_{1}+Y_{2}=\frac{60(n-1)}{36}=\frac{5(n-1)}{3} \in Z$
so we find
6.2.8. $3 \mid(\pi-1]$
contradioting 6.2.4. So the case a) is impossibie.
b) In this case the sphere packing condition 6.1.2 becomest
E.2.9. $\quad 25 n^{2}-45 n+26=2^{k+1} 3^{\ell}$, where $\left|S_{2}(0)\right|=2^{k} 3^{k}$
from 6.1.3 we find $k \geq 1,2 \geq 1, ~=0$
6.2.10. $\quad n(n+3)=10(\bmod 12)$
6.2.11. $n=a(m o d 12)$ where $a=2$ ox a 7 or $a=10$ or $a=11$.

From the gereralifeg polynomial condition of Heden the following two quadratic equations must both have two integral solutiong

```
6.2+12, 36Y'2-(60n-84)Y+25(n-1)(n-2) = 0
6.2.13. 36Y' - (60n-48)Y+25(n-1)(n-2)+30(n-1)+6 = 0
```

Remark that if we substitute $y=0$ in 6.2 .13 , then we find fyom 6.2.9, $2\left|s_{2}(0)\right|$.
In the case b) we do not need this consideration.
Now let us denote the zeros of equation 6.2 .12 by y_{01} and y_{02}, and those of equation $6.2,13$ by y_{11} and y_{12}.
Then we find from 6.2.12 and 6.2.13 respectively:
6.2.14. $y_{01}+y_{02}=\frac{60 n-84}{36}=\frac{5 n-7}{3} \leqq z$
$6.2 .15 * Y_{11}+y_{12}=\frac{60 n-49}{36}=\frac{5 n-4}{3} \varepsilon z$
so we find
6.2.16. $\quad \pi \equiv 2$ (mod 3)

Therefore we find from 6,2,11
6.2.17. $n \equiv 2(\bmod 12)$ or $n \equiv 11(\bmod 12)$

Furtherwore, we find from 6.2.12 and 6.2.13 respectively
6.2.18. $y_{01}-y_{02}=\frac{25(n-1)(n-2)}{36} \in z$
6.2.19. $y_{11}{ }^{\prime} y_{12}=\frac{25(n-1)(n-2)+30 n-24}{36} \in Z$

From 6.2.18 and 6.2.19 we derive
6.2.20. $36 \mid(30 n-24)$
6.2.21. $6 \mid(5 n-4)$
\$on must be even. Therefore it follows from 6.2.17 that
6.2.22. $\quad \mathrm{n} \equiv 2(\bmod 12)$

Using 6.2.22 we find from 6.2.15
6.2.23. $Y_{11}+Y_{12} \equiv 2(\bmod 4)$

Now we shall use our consideration that from 6.2 .9 and 6.2 .13 it follows that
6.2.24. $y_{11}{ }^{*} y_{12}=2^{k-1} 3^{2-2}$
sc \& 22 and, as we knew, $k 21$.
From $6,2,24$ it follows that for some $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{N}_{0}$
6.2.25. $y_{11}=2^{a} 1_{3}{ }^{b}$

$$
y_{12}=2^{a_{2}} b_{2}
$$

Furthermore, from 6.2.15 and 6.2.19 we find the following equality;
6.2.26. $3\left(y_{11}-y_{12}\right)^{2}=y_{11}+y_{12}-2$

Hence we find
$6.2 .27 \times 3 \mid\left(y_{11}+y_{12}-2\right)$
Therefore we must aistinguish between two cases:
a) $b_{1}=b_{2}=0$ and a_{1} and a_{2} are both even
3) $b_{1}=0, b_{2}>0$ and a_{2} is ofd
a) This subcase is impossible in view of 6.2.23.
8) I_{n} this subcase, let us first suppote $y_{11}=2$.

Then, from $6.2 .26, y_{12}$ must be a root of
6.2.28. $3 x^{2}-13 x+12=0$

So we find
6.2.29. $\mathrm{y}_{11}=2$ and $\mathrm{y}_{12}=3$
contradicting 6.2.23.
So $y_{11}>2$. Therefore we find from 6.2 .23 that $a_{2}=1$, so
6.2.30. $Y_{11}=2^{a_{1}}$

$$
y_{12}=2 \cdot 3^{b_{2}}
$$

Now since ${ }_{1}$ is oda, say
6.2.31. $a_{1}=1+2 \xi \geq 3$
we have from 6.2.26
6.2.32. $3 \cdot 4 \cdot 3^{2 b_{2}} \overline{=2 \cdot 3^{2}-2(\bmod 8)}$
6.2.33. $b_{2}=1+2 t$

Hence we have from 6.2.26
6.2.34. $3-4-3^{2+4 t} \equiv 2^{4}+2 \cdot 3^{1+2 t}-2(\bmod 16)$
6.2.35. $12 \equiv 2^{\mathrm{a}_{1}}+4(\bmod 16)$
6.2.36. $a_{1}=3$

So y_{11} - 8. Then, from 6.2.26, y_{12} must be a root of
6.2.37. $3 x^{2}-49 x+186=0$
so $y_{12}=6$. Hence we have
6.2.38. $y_{11}=8$ and y_{12} - 6

In combination with 6.2.15 this yieids
$6.2 .39 . \quad 5 n \neq 46$
Which is a contradiction. So the case b) is impossible too.
c) In this case the sphere packing oendition 6.2.2 becomes;
6.2.40. $25 n^{2}-85 n+82=2^{k+1} 2^{\ell}$, where $\left|s_{2}(\underline{0})\right|=2^{k} 3^{\ell}$

From 6.1.3 we have $k \geq 1, \ell \geq 1$, so
6.2.41. $\quad n(n-1) \equiv 2($ mod 12)
6.2.42. $n \equiv 2(\bmod 12)$ or $\mathrm{n} \equiv 11$ (mod 12)

Frbm the gencralized polymomial condition of Heden the following four quairatic equations must have elght rational solutions and at least seven of them must be integral.
$6.2 .43+362^{2}-(60 n-96) z+25 n^{2}-85 n+82=0$
6.2.44. $\quad 36 z^{2}-(60 n-132) z+25 n^{2}-115 n+130=0$
6.2.45. $36 z^{2}-(60 n-120) z+25 n^{2}-105 n+110=0$
6.2.46. $\quad 36 z^{2}-(60 n-156) z+25 n^{2}-135 n+170=0$

Remark that if we substitute $x=0$ in 6.2 .43 , then we find $2\left|s_{2}(0)\right|$ from 6.2.40.
But, like in the case a), we do not need this consideration in the case c) First, let us suppose that the equation 6.2.43 has two integral zeros x_{11} and x_{12}. Then we find from $6,2,43$
6.2.47. $z_{11}+z_{12}=\frac{60 \mathrm{n}-96}{36}=\frac{5 n-8}{3} \subset z$
$6.2 .48, \quad \mathrm{~A} \equiv 1(\bmod 3)$
contradicting 6.2.42. So z_{11} and z_{12} cannot both be integers. So the equations 6.2.44, 6.2.45, and 6.2.46 must each have two integral solutions, so also the equation 6.2.44.
Let us denote the xeros of equation 6.2 .44 by z_{21} and z_{22}. Then we find from 6.2.44
6.2.49. $\quad x_{21}+z_{22}=\frac{60 n-132}{36}=\frac{5 n-11}{3} \in 2$ 6.2.50. $n \equiv$ (mod 3)
contradicting 6.2.42. So the case o) is also impossible. Now we have concluded the proof of theorem 6.2.1.

6.3. A nonexistence theorem concerning mixed perfect 3-codes

A.s a consequence of the fact that the Lloyd polynomial $P_{3}(X)$ defined In 1.6.3, cannot have three integral zeros if $g>2$ (cfy, seation 5.1). we have the following monexistence theorm:
6.3.1. Tricorem. There do not exist nontrivial mixed perfect 3-codes for

PROOF. Agsume there exists such a code. Then, from thedrem 5.1.1, we may assune without loss of generelity that of $f \mathrm{q}_{1}$.
Now let $a_{i j}(X, Y)$ be defined by
6.3.2. $\quad \begin{aligned} \sum_{i, j=0}^{m} a_{i j}(x, y) z_{1}^{1} z_{2}^{j}= & \left(1+\left(q_{1}-1\right) z_{1}\right)^{1-x}\left(1-z_{1}\right)^{x} \\ & \left(1+(q-1) z_{2}\right)^{n-1-Y}\left(1-z_{2}\right)^{y}\end{aligned}$
and let $P(X, Y)$ be defined by
6.3.3. $\sum_{i=0}^{1} \sum_{j=0}^{3-1} a_{i j}(x, y):=P(X, y)$

Then we find from the generalized polynomial condition of Eeden that both $p(0, Y)$ and $P(1, Y)$ must have three integral zeros. on the other hand we find from 6.3.2 and 1.6.16:
6.3.4. $\quad P(1, Y)=a_{03}(X, Y) \pm P_{3}(Y+1)$

Now what about $g=27$ In addition to 6.3 .1 we have the following theorem:
6.3.5. THEOREM. The only nontrivial mixed perfect 3 -code for which, for $1=2,3, \ldots, n, g_{i}$ ig equal to 2 , is the binary golay code of length 23 .

PROOF. Assume that there exists such a code. Then we have n 3 and in view of lemma 6.1 .4 we mist have for fome $k \in \mathbb{N}$
6.3.6. $G_{1}=2^{k}$

Now in view of theorem 5.1.1 we may assume wothout lobs of generality thet k ? 1 .
By the generalized polynomial condition of Heden we find that both $P(0, Y)$ and $P(1, Y)$ must have three integral zeros.
By straightforward calculation we find for the ederos of $P(0, Y)$;
6.3.7. $y_{01}+y_{02}+y_{03}=\frac{3 \cdot 2^{k+2}+12(n-1)}{8}$
6.3.8. $Y_{01} Y_{2}+Y_{01} Y_{03}+y_{02} Y_{03}=\frac{3 \cdot 2^{k+2} n+6 n^{2}-18 n+16}{8}$
6.3.9. $Y_{01} \cdot Y_{02} \cdot Y_{03}=\frac{3-2^{k+1} n+3+2^{k}(n-1)(n-2)+(n-1)(n-2)(n-3)}{8}$

Now the right hand side of 6.3 .9 is exactly $\frac{3}{4} \xi_{3}(\underline{0})$, so by the sphere packing condition we must have for some $\& \in \mathbb{N}_{0}$
6.3.10. $Y_{01} * Y_{02} * y_{03}-3 \cdot 2^{\ell}$

Now from 6.3 .7 and whe fact that $\mathrm{Y}_{01}, \mathrm{Y}_{02}$ and Y_{03} are integers we find that n must be ode (since $k>1$).
From 6.3 .8 we find
6.3.11. $4 \mid n(n-3)$
so we have
6.3.12. $n \equiv 3(\bmod 4)$

Then since $k>1$ we see from 6.3 .7 that $y_{01}+y_{02}+y_{03}$ is ode.

50 from 6.3.10 we find

$$
6.3 .13 . \quad P(0,1\} \cdot P(0,3)=0
$$

Of the other hand we find by strianghtfoxward calculation:
6.3.14. $\quad 6 \cdot F(0,1)=n^{3}-12 n^{2}+41 n-42+3-2^{k}\left(n^{2}-5 n+6\right)$
6.3.15. $6+P(0,3) m n^{3}-24 n^{2}+173 n-378+3 \cdot 2^{k}\left(n^{2}-13 n+38\right)$ Hence we fird
6.3.16. $6 \cdot P(0,1)=(n-2)(n-3)\left(n-7+3-2^{k}\right)$
6.3.17 6-P(0,3) z 49-(2k -1$)$ if A 已 11

Keeplng in mind 6.3.12, we tind combining 6.3.13 with 6.3.16 and 6.3.17 respertively, since n 3 3:
6.3.18. $\quad 6 * P(0,3)=0$
4.3.19. $n=7$
$6.3 .20 . \quad-12 \cdot 2^{k}=0$
which is obviously a contradiction.

Remark that theorem 6.3.1 (without the restriction g 3 2) woula hola "oi arbitrary e if one could prove the nonekistence of ordinary perfect rextea using the Lloyd polynomial only.
This means that, with alphabets like above, the generalized polynomind condition reduces to the ordinayy polynomial condition.
$A F P E N D I X$
A.1. For the case $e=4$ we determine the numbers a_{i} of code words of weight i $x=9,10,11,12,13$.
For this purpose we need $1 \cdot 3 \cdot 1,1 \cdot 3 \cdot 3,1-3 \cdot 4$ and the following two rectrience relations:

$$
\begin{aligned}
& \text { A.1.1. } \left.\quad a_{12}\binom{12}{8}=\binom{n}{8}(q-1)^{8}=a_{11}\binom{11}{8}+\binom{11}{7} 4(q-2)\right\}- \\
& \left.a_{10}\binom{10}{8}+\binom{10}{7} 3(q-2)+\binom{10}{7}(n-10)(4-1)+\left(\frac{10}{6}\right) 6(4-2)^{2}\right) \\
& =a_{g}\left\{\left(\frac{9}{9}\right)+\left(\frac{9}{7}\right) 2(q-2)+\left(\frac{9}{7}\right)(n-9)(q-1)+\left(\frac{9}{6}\right) 3(q-2)^{2}+\right. \\
& \left.+\left(\frac{9}{9}\right) 3(q-2)(n-9)(q-1)+\left(\frac{9}{5}\right) 4(q-2)^{3}\right\} \\
& \text { A.1.2. } \quad a_{13}\binom{13}{9}-\binom{\pi}{9}(q-1)^{9}=a_{12}\left\{\binom{12}{9}+\binom{12}{8} 4(\square-2)\right\}- \\
& \left.a_{11}\binom{11}{g}+\binom{11}{8} 3(q-2)+\binom{11}{8}(n-11)(q-1)+\left(\frac{11}{7}\right) 6(q-2)^{2}\right\} \\
& -a_{10}\left\{\binom{10}{9}+\binom{10}{9} 2(q-2)+\binom{10}{8}(n-10)(q-1)+\left(\frac{10}{7}\right) 3(q-2)^{2}+\right. \\
& \left.+\left(\frac{10}{7}\right) 3(q-2)(n-10)(q-1)+\left(\frac{10}{6}\right) 4(4-2)^{3}\right)- \\
& a_{9}\left\{1+\left(\frac{9}{8}\right)(q-2)+\left(\frac{9}{8}\right)(n-9)(q-1)+\left(\frac{9}{7}\right)(q-2)^{2}+\right. \\
& +\left(\frac{9}{7}\right) 2(q-2)(n-9)(q-1)+\left(\frac{9}{7}\right)\binom{n-9}{2}(q-1)^{2}+\left(\frac{9}{6}\right)(q-2)^{3}+ \\
& \left.+\left(\frac{9}{6}\right) 3(q-2)^{2}(n-9)(4-1)+\left(\frac{9}{5}\right)(q-2)^{4}\right)
\end{aligned}
$$

Now let us define s, t, u, v by
A.1.3. $\quad=:=\frac{10 a_{10}}{a_{9}}$
$t:=\frac{11 \cdot 10 a_{11}}{a_{9}}$
$\psi:=\frac{12 \cdot 11 \cdot 10 a_{12}}{a_{9}} \quad v:=\frac{13 \cdot 12 \cdot 11 \cdot 10 a_{13}}{a_{9}}$

Then we find from the recurrence relations above:
A.1.4. $\quad a_{9}=\frac{\left(\frac{a}{5}\right)(q-1)^{5}}{\left(\frac{9}{5}\right)}$
A.1.5. $\quad=(n-29)(q-1)+20$
A.1.6. $t=(n-5)(n-6)(q-1)^{2}-4(q-1)(n-29)-28(q-1)(q-2)(n-29)$
$-28(q-1)(n-9)-252(q-2)^{2}-644(q-2)-92$
A.1.7. $\quad u=(n-5)(n-6)(n-7)(q-1)^{3}-t(32 q-60)-s\{32(c-1)(n-10)$
$\left.+336(q-2)^{2}+96(q-2)+12\right\}-(n-9)(q-1)(672 q-124 \theta)$
$-1344(q-2)^{3}-672(q-2)^{2}-192(q-2)-24$
A.1.8. $\quad v=(n-5)(n-6)(n-7)(n-8)(q-1)^{4}-u(36 q-68)-$
$t\left\{432(q-2)^{2}+10 \mathrm{P}(\mathrm{q}-2)+12+36(\mathrm{n}-11)(\mathrm{q}-1)\right\}-$
$5\left\{2016(\mathrm{q}-2)^{3}+864(\mathrm{q}-2)^{2}+216(\mathrm{q}-2)+24+\right.$
$+108(n-10)(q-1)+864(n-10)(q-1)(q-2)\}-$
$\left\{24+216(q-2)+864(q-2)^{2}+2016(q-2)^{3}+3024(q-2)^{4}\right.$
$+216(q-1)(\mathrm{m}-9)+2728(\mathrm{q}-1)(\mathrm{q}-2)(\mathrm{n}-9)+$
$\left.+6048(q-1)(q-2)^{2}(n-9)+432(q-1)^{2}(n-9)(n-10)\right\}$.

Now, since the code words of a given weight k form a degign of type (i. (n, k, λ) (see aection 1.5), where λ can be determined by 1.4.2, :.4. 3 and the numbers a_{k} mentioned above, we have from 1.4 .2 the followtng conditions for the existence of perfect 4-codes:
A.1.9.

$9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$	$n(n-1)(n-2)(n-3)(n-4)(q-1)^{5}$		(1)
8-7-6*5	$(n-1)(n-2)(n-3)(n-4)(q-1)^{4}$		(2)
7-6.5	$(n-2)(n-3)(n-4)(q-1)^{3}$		(3)
6. 5	$(n-3)(n-4)(q-1)^{2}$		(4)
5	$(n-4)(q-1)$		(5)
10-9-8-7-6.5	$n(n-1)(n-2)(n-3)(n-4)\left(n_{1}-1\right)^{5}$	E	(6)
$9 \times 8 \cdot 7 \cdot 6 \cdot 5$	$(n-1)(n-2)(n-3)(n-4)(q-1)^{4}$	$=$	(7)
8-7.6-5	$(n-2)(n-3)(n-4)(n-1)^{3}$	5	(8)
$7 \cdot 6 \cdot 5$	$(n-3)(n-4)(a-1)^{2}$	5	(9)
6:5	$(n-4)(q-1)$	5	(10)
5		5	(11)
$11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$	$n(n-1)(n-2)(n-3)(n-4)(\underline{n}-1)^{5}$	*	(12)
10.4.8+7.6.5	$(n-1)(n-2)(n-3)(n-4)(q-1)^{4}$	t	(13)
9-6.7.6.5	$(n-2)(n-3)(n-4)(n-1)^{3}$	t	(14)
$8 \cdot 7 \cdot 6 \cdot 5$	$(n-3)(n-4)(q-1)^{2}$		(15)
$7 \cdot 6 \cdot 5$	$(n-4)(5-1)$	t	(16)
$6 \cdot 5$		t	(17)
42-11.10.9.8.7.6.5	$n(n-1)(n-2)(n-3)(n-4)(q-1)^{5}$	1	(18)
$11.10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$	$(n-1)(n-2)(n-3)(n-4)(c-1)^{4}$	L	(19)
10.9-8.7-6.5	$(n-2)(n-3)(n-4)(q-1)^{3}$	1	(20)
9-8.7-6.5	$(n-3)(n-4)(4-1)^{2}$	4	(21)
8-7-6.5	$(n-4)(c-1)$	U	(22)
7-6.5		บ	(23)
$12 \cdot 12+11+10 \times 9+8+7 \times 6=5$	$n(n-1)(n-2)(n-3)(n-4)(q-1)^{5}$	V	(24)
$12 \cdot 11-10 \cdot 9 \cdot 6 \cdot 7 \cdot 6 \cdot 5$	$(n-1)(n-2)(n-3)(n-4)(q-1)^{4}$	V	(25)
11.10.9.8.7-6.5	$(n-2)(n-3)(n-4)(\underline{y}+1)^{3}$	v	(26)
$10 \cdot 9 \cdot 8 \cdot 7+6 \cdot 5$	$(n-3)(n-4)(s-1)^{2}$	v	(27)
9-8.7-5.5	$(n-4)(q-1)$	v	(28)
$8 \cdot 7 \cdot 6 \cdot 5$		v	(29)

A.2. In this section we shall explain how, using the conditions A.1.9, we have excluded those parametary (n, q) for a 4 -erfor-correcting perfect oode, which are given by
A.2.1. $q=2^{k} 3 q^{\prime}$ and $\operatorname{gcd}\left(6, q^{\prime}\right)=1$ and

el^{k}		k	k	k
$\chi=0$	q ¢ 4	q ¢ 46	q < 718	9
ℓ を	$q<10$	G 4136	cq < 2152	¢

A.2.2. $n-4<\frac{14}{5} \frac{g^{4}}{4-1}$

Thus we finish the proof of theorem 5.2.5 by proving lemma 5.2.26. First we exciude the numbert g with onily one or two distinct prime divisors, since these are impossible (see section 2.2). Therefore we need to look only at the part of the diagram A. 2.1 which is indicated below:
A. 2.3 .

For instance, for the case $k=1, \& \& 1$, the remaining q are:
2.2.4. $\quad \mathrm{G}=30,42,54,66,78,90,102,114,126$.

Now let $u s$ take for example $q=30$. In this case it follows from 5.2.23 that for some $\boldsymbol{m} \in \mathbb{N}$
A. $2+5, \quad n-4=m 3^{3} 5^{4}$
and from A. 2.2 that
A.2.6. $\mathrm{m} \leq 4$

Now from A. 1,9 (2) it followe that
A.2.7. $\quad 16 \mid(n-1)(n-2)(n-3)(n-4)$

Since from A. 2.5 we see that $\mathrm{n}-4 \equiv 3 \mathrm{~m}(\mathrm{mod}$ 8) we find from A.7.7 and A. 2.6 that m must be 2 , so
A.2.日. $n-4=2 \cdot 3^{3} \cdot 5^{4}$

Finally, it follows from A. 1.9 (3) that
A. $2.9 . \quad 7 \mid(n-2)(n-3)(n-4)$
contradicting A.2.8, because from A. 2.8 it follows that $n-4 \equiv 3(\bmod 7)$ So we may exclude $q=30$. In the aame way we exoluded all other cases separately by hand.
A.3. We shall show that the following ddentity holds:
A.3.1. $\sum_{i=0}^{e-1}(-1)^{1}\left(\frac{e}{i}\right) \sum_{j=1+1}^{e} 1 / j(1+1 / 2+\ldots+4(1 / j+\ldots+1 / e)=0$
where $1 / \mathrm{j}$ means that $1 / \mathrm{j}$ must be zeplaced by 0 .
For this purpose we remark that for $1=1,2, \ldots, 6-1$.
A.3.2. $\binom{e}{i}=\binom{e-1}{1-1}+\left(\begin{array}{c}e-1 \\ i\end{array}\right.$

So the left hand side of A, 3,1 fa equal to
A.3.3. $\sum_{i=0}^{e-2}(-1)^{1+1}\left({ }_{i}^{e-1}\right) \sum_{j=i+2}^{e} a_{j}+\sum_{i=0}^{e-1}(-1)^{1}\left({\underset{1}{a-1})}_{j=1+1}^{e} a_{j}\right.$
where d_{j} is defined by
A. $3.4 . \quad$ af $=1 / \downarrow(1+1 / 2+\ldots+1 / j+\ldots+1 / \theta)$

Now clearly the expression A. 9.3 1a equal to
A.3.5. $\quad \sum_{i=0}^{e-1}(-1)^{i}\left({\underset{i}{i}}_{i-1}^{A_{i+1}}\right.$

Hence, becaurge
A.3.6. $\quad a_{1+1}=\frac{1+1 / 2+\ldots+1 / E}{1+1}-\frac{1}{(i+1)^{2}}$
and because
A.3.7. $\quad\binom{e-1}{i}=\frac{1+1}{e}\binom{e}{1+1}$
we find that the expresgion A. 3.5 1日 equal to
A.3.3. $\quad(1+1 / 2+\ldots+1 / e) 1 / e \sum_{i=0}^{e-1}(-1)^{1}\left({ }_{1+1}^{e}\right)-1 / e \sum_{i=0}^{e-1}(-1)^{1}\left(\frac{e}{1+1}\right) \frac{1}{1+1}$

Now, since
A.3.9. $\quad \sum_{i=0}^{e}(-1)^{1}\left(\frac{e}{i}\right)=0$
we see that the expression A. 3.8 is citual to
$A+3,10+(1+1 / 2+\ldots+1 / e) i / e+1 / e \sum_{j=1}^{e}(\nu 1)^{-1}\left(\frac{e}{j}\right) 1 / j$

Finally to ehow that the expression $\operatorname{A.3.10}$, and hence the left hand stie

A.3.11. $\sum_{j=1}^{e}(-1)^{j+1}\left(\begin{array}{l}e \\ j\end{array} 1 / j-j+1 / 2+\ldots+I / \Delta\right.$

For this purpose we remark that for $j=1,2, \ldots, 0$
$A+3.12 . \quad(-1)^{j+1}\left(\frac{e}{j}\right) 1 / j=\int_{0}^{j}(-1)^{j+1}\left(\frac{E}{j}\right) x^{j-1} d x$
so we have
A.3.13. $\sum_{j=1}^{e}(-1)^{j+1}(\underset{j}{\mathrm{E}}) 1 / j=-\int_{0}^{1} \frac{(1-x)^{e}-1}{x} d x$

Hence, since $-\mathbf{x}=(1-x)-1$, we have
A.3.14. $\sum_{j=1}^{e}(-1)^{j+1}\left\langle{ }_{j}^{e} 1 / j=\int_{0}^{1} \sum_{k=0}^{e-1}(1-x)^{k} d x\right.$

Einalily, since
A.3.15. $\int_{0}^{1}(1-x)^{k} d x=\frac{1}{k+1}$
we find from A. 3.14
A. 3.16. $\sum_{j=1}^{e}(-1)^{j+1}\left(\frac{6}{j}\right) 1 / j=1+1 / 2+\ldots+1 / e$.
A.4. As an example, we thall explain why there does not exist a perfect doublemerror-correcting code with q $=38$ and $n \leq 1000$. Assuming the existence of such a code, we find from 4.2.14;
A.4.1. $19^{2} \mid(n-2)$

So fior m 1 or m = 2 we have
A. $4.2, \quad \pi=2+m \cdot 361$

Furthermore we have the sphere packing condition 1.2,1, which becomes in our case:
A.4.3. $\quad 1+n(q-1)+\left(\frac{n}{2}\right)(q-1)^{2}=2^{k} 19^{R}$
for some pair $(k, \ell) \in \mathbb{N}_{0}^{2}$
Now for $m=1$ and for $m=2$ we can calculate the left hand side of $A+4.3$ with the help of, say, an electronic pocket calculator, and see that in each of both cases there is a prime unegual to 2 and unecqual to 19 diviai it.

Hence we have a contradiction to A.4.3.
A.5. Let $m \in \mathbb{N}, q \in \mathbb{N}$, and let e, s and p be defined by:
A.5.1. e: $2 \mathrm{~m}+1$

$$
\begin{aligned}
& \text { g }:=\operatorname{god}(q, e) \\
& g:=p r
\end{aligned}
$$

Furtherpore, assume that
A.5.2. $\quad 3 p \mid(e-1)(q+1), \quad s o$ alsop|(e-1)

The purpose of this section is to show that there goes not exist a a as above with at least three prime divisors, 15 e <19 (or equivalently m < 9).

For this purpose we make the following list of g 's with q mps, $p \mid(e-1)$,

a) g is divisible by at least three distinct prime divisors
b) if $3(x-1)$ then $3 \mid q$
c) if $9 \|(e-1)$ then $3 \| p$

m $=1$	e-1 $=2$	$\mathrm{p}=1,2$	$s=1,3$	
$\mathrm{m}=2$	e-1m4	$\mathrm{F}=1,2,4$	$s=1,5$	
$\mathrm{m}=3$	$\mathrm{e}-1=6$	$\mathrm{P}=1,2$	$s=1,7$	
$m=4$	e-1 $=8$	$\mathrm{p}=1,2,4,8$	$s=1,3,9$	
]=5	e-1 = 10	$\mathrm{P}=1,2,5,10$	$\mathrm{s}=1,11$	$9=2 \cdot 5 \cdot 11$
m-6	$e-1=12$	$p=1,2,4$	$s=1,13$	
$\underline{y m}$	e-1 $=14$	$P=1,2,7,14$	$5=1,3,5,15$	q $=2 \cdot 5 \cdot 7$
$\mathrm{m}=8$	$\mathrm{e}=1=16$	$\mathrm{F}=1,2,4,8,16$	$\mathrm{E}_{9}=1,17$	

So we have anly two possibilities for q. But in these cases we have 3 h (e - 1). So from A. 5.2 we shoule have $3 \mid(q+1)$, which is not true.

A+ 旦. The purpose of this section is to give a lower bound for the woEfficient $a_{m-1}\left(\theta_{0}\right)$ of n^{m-1} in $F_{G}\left(\theta_{0}\right)$, where θ_{0} is defined in $4.4 .3, F_{e}(\theta)$ is defined in 1.6 .18 , and $m \in \mathbb{N}$ is at least equal to 9.
We also assume that $q \geq 30$, which holds if q has at least three prime divisors.
Define ξ, η_{i}, λ and μ as follows:
A. 6.5.

$$
\begin{aligned}
& \xi:=\frac{(q-1)}{2} \\
& \eta:=\frac{(q-1)(q-2)}{3} \\
& \lambda:=\frac{(q-1)\left(2 q^{2}-7 q+7\right)}{8} \\
& \mu:=\frac{(q-1)\left(6 q^{3}-29 q^{2}+51 q-34\right)}{30}
\end{aligned}
$$

Then it follows from 1.6 .19 then $a_{m-1}\left(\theta_{0}\right)$ is the coefficiant of $4^{e} n^{m-1}$ i.

$$
\begin{aligned}
& A+\ldots . \quad\left[1-(\theta-1) x+\left(\theta^{2}+(q-4) \theta+2\right) \frac{z^{2}}{2}-\left(\theta^{3}+3(q-3) \theta^{2}+\right.\right. \\
& \left.\left.\left(2 q^{2}-9 q+18\right) \theta-6\right) \frac{z^{3}}{6}+\ldots\right\}+ \\
& \left\{\sum_{j=0}^{n}\left(\sum_{j}^{\pi}\right) z^{2 j}\left(-z+\pi z-\lambda z^{2}+\mu z^{3}+\ldots\right)^{j}\right.
\end{aligned}
$$

:ance we can oalculate am-1 $\left(\theta_{0}\right)$ from A. 6.2 , coneldering only terms with

Lhe outcome in
\therefore is.3. $\quad a_{m-1}\left(\theta_{0}\right)=\frac{(-1)^{m\left(\frac{q-1}{2}\right)^{m-3}(q-1)^{2} g}}{16 \cdot 81 \cdot 5 *(m-1)!}$
where a is given by
A.6.4. $\quad a=-80 m^{3} q^{3}+480 m^{3} q^{2}-960 m^{3} q+640 \mathrm{~m}^{3}$

$$
-60 \mathrm{~m}^{2} \mathrm{q}^{3}+90 \mathrm{~m}^{2} q^{2}+90 \mathrm{~m}^{2} q-60 \mathrm{~m}^{2}
$$

$+708 m q^{3}-3582 m q^{2}+6498 m q-4332 m$
$-648 q^{3}+3132 q^{2}-5508 q+3672$

Now since mag and q e 30 we see from A.6.4 that
A.6.5. $\quad|a|>80 m^{3} q^{3}+60 m^{2} q^{3}-720 m q^{3}-480 m^{3} q^{2}-90 m^{2} q^{2}$

Hence, since $m^{3} z 9 m^{2}$ and m^{2} g 9m, we see:
А. в.б. $|a|=77 q^{3} q^{3}-480 m^{3} q^{2}-90 m^{2} q^{2}$

Since $q^{3} \geq 30 q^{2}$ we have
A.6.7. $|a|>61 m^{3} q^{3}=90 m^{2} q^{2}$

Finally, since $m^{3} q^{3} \geq 270 m^{2} q^{2}$
A.6.8. $|a|>60 m^{3} q^{3}$

Now it follows from A. 6.3 and A. 6.8 that the following bound holds 1f m 29 and \ddagger を 30 :
A.6.9. $\quad\left|a_{m-1}\left(\theta_{0}\right)\right|=\frac{(q-1)^{m-1} m^{3} q^{3}}{2^{m-1} \cdot 27 \cdot(m-1)!}$
A.7. The puppose of this section $1 s$ to show that, espuming the exiatenee of a perfect 5-code, we may assume that
A.7.1. $n \geq 16 q$

For this purpose we use the following conditions which are obtained fmmediately from 1.6.6 and 1.6.9.
A.7.2. \quad G $\mid 5(n-5)$

A+7.3. $\quad q^{5}((n-1)(n-2)(n-3)(n-4)(n-5)$

A.7.4. $\quad q-2_{3}^{k_{5} q^{\prime}}$

Then, if $m \geq 2$ and A is in the distinct oases defined by the following dxacgam:
A. 7.5.

k	$k=0$	$k=2$	$k=2$	$k \geq 3$
ℓ^{k}	$k=0$	$A=1$	$A=2^{4}$	$A=2^{8}$
$\ell=1$	$A=3^{4}$	$A=2^{4} 3^{4}$	$A=2^{8} 3^{4}$	$A=2^{3} 3^{4}$
$\ell \geq 2$	$A=3$	$A=2^{4}+3$	$A=2^{8} \cdot 3$	$A=2^{3} \cdot 3$

we find from A.7.2 and A.7.3
A. $7.6 . \quad q^{5}$ ($A(n-5)$

If $m=1$ we Eina
A.7.7. $\quad q^{5} \quad 5^{5} A(n-5)$

So in any oase we find from A.7.6. A. 7.7 and A. 7.5

A+7.8. $n=\frac{4^{5}}{5^{5}+2^{8} 3^{4}}$
so we have A.7.1 if
A.7.9. q $>120 \frac{4}{8}$

Furthemore it follows from 4.2.9 that
A.7.10. n 23125

So if q does not fuifil the inequality A.7.9, then A.7.1 follows from A. 7.10 .

Hostorical Summary

During the past twenty years many attempts bave been made to solve the guestion which we have consideved: whether or not there are other examples wf perfect codes thar those mentioned in section 1.7. We shall give a eumary of the history of progress in the approach to this curption. A detailed survey was given by van Lint in [29].

An important topic in the theory of perfect codes is the connection bem tween group theory and the theory of perfect ningle-uryox-correcting coces which was introanced by Taissky \& rodi (aee [36]). They consicer an abelian group g with base elementa g_{1}, \ldots, g_{n} of order q. and $1 t=$ subget s defined by

and ask for subsetg H with minimal cardinality auch that each group element
 We shall not go into this topio, but refer to [2g].

The nonexistence proofe up to now concerning perfect e-oodes with e 2 oan be divided into three classes: those which use the sphere packing condition only, those which combine the sphere packing condition and the polynomial condition, and those which use the polynomial oondition only.

Earky proofs belonging to the first olass make use of the conaideration that if e is odd and $q=2$. then
H.2. $\quad=:(n+1) \left\lvert\, \sum_{i=0}^{e}\binom{n}{i}(q-1)^{1}\right.$

So by the sphere parking condition e! (a + 1) must be a power of 2. These are procis by Shapriro and Stotntet (1959), Leontiov (1964), Johneon (1962) and domes, Gtanton ord Cowor (1970).

It can be seen immediately from 1．4．2 that（90，2，2）does not fit a perfect code．

Details about these searches oan be found in papers by Cohen（sen［8］）， Mc Andred（see［31］）and Van Limt（see［22］）．
The ranges eovered were

$$
\mathrm{e} \text { 上 } 20, \mathrm{~g}=2, \mathrm{n} \leq 2^{70} \quad \text { (Mc Andrew) }
$$

$$
e \leq 1000, g \leq 100, n \leq 1000 \quad \text { (Van Lint) }
$$

They uee 能边pted NewtonmRaphaon procedurea．

The most important step forward was made with proofe belonging to the вecond class by Vow Lint and Ttetävärnen．

First，the friltitil method of combining the sphere packing condition and the polyngmial condition was introduced by Von Lint（1970）for the cage e $=2$ ．

For a gendral explaridtion of thig method we refer to gection 1.6. In the same paper by Von Iint the cage e 3 was topated ugimg the polynomial zondition only．

Foth for $=2$ and for $e=3$ he proved that a perfect e－cocie over
 We refer to［23］．

Van Lints method for the oase a $=3$ was generalined by the author to provs the nonexistence of perfect ewcodes over arbstrdry alphabets for e $=3$ and $e=5$（see chapter 5）．

The method for $e=2$ was applied to the case w 4 by Tiretäqüznen（1970）． He proved that perfect 4 －codes ever $G F(q), q=p$ ，do not exigt（see［36］）． The nonexistence of perfect 5－6－and t－godes over GF（c）was proved by Von Lirtu in［24］．

Then，suctessively，the impossibility of unknown perfect codes over an
 （1973）．

Van Lint treated the case $p{ }^{\prime}$ e．This is in a sense the eagiest case，

In the first two proofs it was shown that, if $q=2$ and e is odd, then in must be bounded by a bound depending on e only. For this purpose the same theorem of siegel wap used that we use for the ance general case where q is arbitrary. We refer to [32], [20] and gut zection 4.3.

In the latter two proges the nonexigtenee was establiahed of perfect codes with $q=2$ e edd, and (respectively) $5 \leq e \leq 29, ~ 539$. For the paper by James c.s. sef [16]. The paper by fohnson ([17]) also contains proofe belonging to the third olass: by factoring the Lloyd polynomials of degree 2 and 3 in the case g $=2$ he proves the nomexistence of binaxy perfect 2- and 3- codes.

Other proofs belonging to the first olass treat some small values of g In the case E = 2, ftarting from the equation
$\mathrm{H}+3 . \quad \mathrm{x}^{2}-\left(\mathrm{q}^{2}-6 q+1\right)=8 q^{k}$
which is related to the sphere packing oondition 1.2.1.
The proofe bse diophantine theory. They were given by Alter (1968), Etren man (1961) and cohen (1964). See [1], [2], [12], [8].

The odses $7 \leq q \leq 9$ (Alter), q $=5$ (Engelman) and q 56 (Cohen) were excluded.

In the case $q=6$ the proof is false, beqause it this gase hat fs not related to 1.2.1.

By approaching the solutions of H .3 with Newton's method. Alter proved that these solutions cannot be integral, but ㅋggain this fact docs not prove the nonexintence df petfect codes with parametexg e $=2$ and $q=2 s^{2}$.

Several computer searohes have been made to find solutiona df
H. 4. $\quad \sum_{i=\dot{b}}^{e}\binom{n}{i}(c-1)^{i}=q^{k}$

Whese were very extensive, but did not yield nontrivial bolutions (a, e, q) except the Golay paraneters and $(90,2,2)$.
which should be clear from our section 1.6.
In Tietabocinen'g proof a sharpening of the arithmetical - geometrical mean fnecruality was used, which turned out to be very useful in later proofe (see [40], [6]).
tater on, simpler proofa were obtatned by Tietävąizlen (1974) and by vach Lint (1975).
We refex to [26], [39] and [30], and to our chapter 2, where some genexalizations gan be found.

Subsequently, gome nonexdstence theoremb were given for arbitrary q. Among these we mantion propfo by tietädazinen (1975), by Boesalygo,
 belonging to the second class.

Van Lint proved the monexistence of perfect codes with e $=2$ and q m 10 \{see [28]), In sctution 3.2 there are some more results of this kina given by the author *
Thet引vänen treated the case $G=p_{1}^{s} p_{2}^{t}$, e 3 , with a method cescribed in our section 2.2. See [40]).
Finally, Bassalygo c .s. proved the nonexistence of perfect eocies with g - $2^{k_{3}}$ and $e z 2$, using estimates by Baker a.s. and a sharpenirg of the geometrical ~ arithmetical mean inequality by Lagrange. We zefer to [6] and our theorem 3.5.1.

A fortheoming paper by Boonci (1976) proves the existence of an upper bound $N(由, q)$ for n for $e \geq 3$, as we did in our sections 4.3 and 4.4. This bound has not yet been made explicit.
For the purpose in uses Hermite polynomials to approximate the zeros of the Lloyd polynemials.

No use is made of the sphere packing condition, we refer to [4].

In this thesis there are some further contributions by the author. The most important is the proof of the nomexistence of perfect 4-coges over arbitrary alphabets in section 5.2.

In section 1.9 we give a survey of our results.

REFERENCES

[1] R. Alter, "On the non-existenge of blose-packed double-Eamming-exror-correcting codes on $q=7$ symbols".
Journal of Computer and Syptem Sciences 2 (1968), 169-176.
[2] R. Alter, "On the nonexistence of perfect double-Hamuing-errorcorrecting codes on $q=0$ and $q \times 9$ symbols". Informetion and Gontrol 13 (1968), 619-627.
L.A. Eapealygo, V.A. zinoviev, V.K. Ieontiev, W.I. Feldman, "Nonexistence of perfect coies over some alphabets". Problemy Peredači Informacif 11 (1975), 3-13.

L7] N. Biggs, "Perfect coies in graphs". Journal of Comblnatorial Theory B 15 (1973), 289-296.
[0] E.L. Coher, "A note on perfect double-error-correcting codes on q symbols".
Information and control 7 (1964), 361-384.
[9] D.M. Cvetkavio, J.H. van Lint. "Aflelementary proof of Lloyd's theorem".
Einchoven, The Netherlands. Technologiaal University Eindhoven, september 1976. Verschijnt in Proceedings van de Koninkliyke Nederlandse Akademie van Wetenschappen.
[10] F. Delsarte, "The association schemes of coding theory". Philips Research Reports. supplements 10 (1973).
[11] P. Delsarte, J.M. Goethals, "Unzestricted codes with the Golay parameters are unique".
Discrete Mathematics 12 (1975), 211-224.
[12] C. Engelman, "On close-patked double-exyox-correcting codet on P symbols"

IRE Twancactiong on Information Theory 7 (1961), 51-52.
[13] S.W. Golcmb, E.C. Posner, "Rook domains, Latin equaras, Aftime Planes and Exror-distributing codea".

IEEE Transactions on Information Theory, IT 10 (1964), 196-208.
[14] D. Heden, "A genexalizec hloyd theorem and mixed perfect codeg". Matematiska Institutionen stockholms Univergitet, 1974. Mตmorantum no. 8.
[15] M. Herzog, J. Schomhelm, "Gzowe partition, factorization ard the veetor coverimg problom"* Canadian Mathemat5\#al Bullerin d5 (1972), 207-214.
[16] L. 0. James, R.G. Stanton, D.D. Cowan, "A problem in coding theory". Proceedings of the Loulstana Conference on Combinatorios, Graph theory and Computing. Beton Rouge, Louisiana State Umiversity, 1970, 167-179.
[17] 5. Johnsen, "On perfect eryor-coryecting podes". Santa Monica, Californlar Rand Gorgoratiof, 1962. Memorandum FM-3403 PR.
[18] M. Langevin, "Plus qxand facteur premier d'entiexs consercutife. Seminaire Delange-Fisot-Poitou (Theorie des Nombies). Faris, Secretariat Mathématique, 1975.
[19] H.W. Lenstra, jr., "Two theorems on perfect codes". Discrete Mathematies 3 (1972), 125-132.
[20] V.K. Leontiev, "On a problem of Glose-packed codes". (Eusgian). Diskretnyil analiz. Ibornik Trudov (Novosibirsk) 2 (1964), 56-58.
B. Lindatrom, "Group partition and mixed perfect codes". To appear in the Canadian Mathematical Enlletin.
[22] J. H . van Lint, " 2967 m 1969 Report of the Discrete Mathematics group". Eindhoven, The Netherlands; Technological University Eindhoven, 1969. Report 69w WSk-04.
[23] J.H. van Lint, "On the nonexistence of perfect 2- and 3-errorobriecting codes over $\operatorname{\rho F}(\mathrm{g})^{\prime \prime}$. Information and control 16 (1970), 396-401.
[24"] J.H. van Lint, "On the nonexistence of perfect 5-, 6m and 7-errorcorrecting codes over GF (q)". Eindhoven, The Netherlands: Technologieal university Einchoven, 1970. Report 70-wsk-06.
[25] J.H. wan Lint, "On the nonexiatence of certain perfect eceaes". Computers in Number Theory. London-New York, Academic Fresa, 1971; 277-282,
[26] J.H, van Lint, "Nonexistence theorems for perfect error-coriecting codes".

Computers in algebra and number theory. Providence, American Mathematical Society, 1971, sisw-AMs Proceedinge, vol. 4, 89-95.
J.H. vath Lint, "Coding theoxy".
Berlin etc., 点pxinger Verlag, 1973.
Lecture Noters in Mathematics, vol. 201.
J.H. van Lint, "Recent results in perfect codes and reiated topics".
Combinatorics, vod, $1 ;$ ed, by M. Hall and J.H. van Lint.
Amstertam, Mathematjcal Center, 1974.
Matheratical Center Tracta, hr. 55; 163-183.
$J_{+} H_{+}$van tint, "\$ survey of perfect oodes".
Rocky Mountain Journal of Mathematica 5 . (1975), 199-224.
J.H. van Lint, H.C.A. van Titborg, "Gelijkmatig verdeelde eodes".
MC Syliabus 31. Amsterdam, Mathematische Centrim, 1976.
[40] A. Tietävăinen, "Nonexistence of nontrivial perfect codes in case
 To appear in Discrete Mathematics.
[41] H.c.A. van Tilborg, "Uniformly packed codes". Thepis, Technologigal university Eindhoven, tuhe 1976.
[42] B.L. Van qer Wearden, "Moderne Algebra I"* Berlin etc., Springer Verlag, 1964; 556.

SAMENUATTING

In dit proefschrift is de (non-heristentie aan de orde van drietallen (n, e, q) van parameters voor zogeramale perfecte codes.
Aan de hand van een tweetal voorwaarden worden nen-existentifestellingen bewezen. De eerste van deze twee voorwarden is de sphere paoking oondition:
s.1. $\quad 1+n(q-1)+\ldots+\left(e^{n}\right)(q-1)^{e q} q^{n}$

De tweede is de polynomial condition:
s.2. $\left.\quad P_{e}(X):=\sum_{i=0}^{e}(-1)^{i} t_{e-i}^{n-X}\right)\left(\begin{array}{c}X-i \\ i\end{array}(q-1)^{e-i}\right.$
heeft e verschillende gehele nulpunten in $\{1,2,++, n\}$.

Na het eerste hoofdstuk, dat een inleiding is tot het proefschyift, spitst het onderzoek zich toe op deze twee vobrwhardeh.

In hoofdstuk 2 wordt witeengezet hoe men, door beide voorwarden te combineren, iets kan zegcaen over het aantal priemdelens vat q. Na twee stellingen, respectievelijk van Van Lint / Tietảvainen en Tietavainen, over achtereenvolgens het geval q $=p^{5}$ en het geval G $=\mathrm{P}_{1}^{P} \mathrm{P}_{2}^{\mathrm{t}}$, geraken wij tot een generalisatie en paston deze toe in het Geval e $=6$.
Deae generalisatie houdt in dat q "meestal" tenminste e verschillende priemdelsra heeft.

In hoofittuk 3 geven wij de nulpunten x_{1} en x_{2} van $P_{2}(X)$ in een parau meterformule en leiçen enkele deelvesultaten angande of af.
Ook hier gebruiken wif de cominatie van beleie boven geneemde nowizakelijke Vobrwatiden.

In hoofdetik 4 wordt een bovergrens $N(e, g)$ yoor n afgeleid in het geval dat e oneven 1s, met behulp van de potynocmvoorwaax de alleen.

Hiertoe beschouwen we een transformatie θ die de polynomen $p(x)$ overvoert in polynomen $F_{i}(\theta)$ die eveneens e verschillende gehele nulpunten moetten hebben.

Voor deze polynomen $F_{f}(\theta)$ vinden we dan twee waraen van θ watiln $F_{g}(B)$ voor $n>N(e, g)$ ean vesemillend teken heeft, terwijl in het interval begrencd door belde wadrden van θ geen geheel getal voorkomt.

Ir hoofistuk 5 komen wif tot once voornaamste gtellingen.
Eier bewijzen wij dat onbekende niet-triviale perfecte codes met e = 3, 4 of 5 nfet bestann.

In de gevallen e $=3$ en $e=5$ wordt hiertoe een bewija van Van Lint (die zich beperkte tot het qeval $q=p^{S}$) gegeneraliseerc.
Voor het gevale $=4$ maken wij gebruik van de mebotvente van Lagrange an
 polynoom die in zekere zin kan worcen behandeld als de "oneven" polynomen $P_{3}(X)$ en $F_{5}(X)$.
Opnieuw vincien wid twee waarden x wadin het polynoom van teken veraehilt, terwijl in het interval begrengd dog beide warden geen geheal getal voorkomt.

Tenslotte hebben wij aun onze tekst het zeade hoofdatuk toegovoeyn, warin men kan zien hoe onze methoden eveneens gebrudkt ktanen worden om nonexistentiestellingen te bewijten angaande zogenamade miwed perfeat rodeg.

CURRICULLIM UITAE

De ontwerper van dit proefachrift werd in 1951 geboren te Maaptricht. Zijn enthoustasme voor de wiskunde werd hem bijgebracht door de wiskundelexaar ann het gymasium der paters Garmelketen te Zenderen (O.), de heer G.A. Jansen.

Na het eindexamen gymasium B in 1969 ging hij wiskunde studeren ana de Katholieke Universiteit in Nijwegen, waar hij colieges volgie van ondex andere prof. dr. A.H. M. Levelt en prof. dr. J. H_{f} Ge Boer, en in 1973 doctoragl examen deed.

Daaraa begon hij, onbezoldigd, met het samenceellen van dit proefschrift, begeleia en ge5napireerd coor prof. dir. J. H. van Lint, die hoogleratar ia aan de Techniache Hodeschool te Eindhoven. Hjertoe werd hif in staat gegteld doox een studentasgistentechap en een toelage van het Ministerie Yan Onderwijs en Wetenschappen. ginnes aumustus 1975 1s de ontwerper als docent wiskunde part-time in diengt van de Katholieke Leex çangen te Tilburg en Sittard.

Het Ls niet zo ganvoucig ecn wigenteme nonexighentiesteiling voor perferts

Van de andere kant aijn nongxistontiostolinngon vopx aulke codes eenvoudig te bewijzen als q ean vocraf gegrven notutriijk getah is, bijvoorbeeld $g=33$ of $q=35$.

Verqelijk dit met gtellimg 3.5 .13 en de maragrafen 3.6 en 3.7 van dit. FrotēnchriEt4

II

Indien e ean gegeven klein oneven fothtrizjk getal ig ongelijk aan 1
 facte e=eodeg bewiyzen met een bewijs analogg nan dat vah de titellingen 5.1.1 en 5.3.1 van dit proefschrift.

Verpelijk dit met de hoofidatukken 4 en 5 van dit probefschrift.

エIエ
 te bewljzen met behulp var te pølyroosinoorwabrie alleen.
Hievmee bewija men ramalijk metcen westalijk sterkere nonexigtentirbthlinhon

IV

$$
"_{\left.1 \in[1,2, \ldots,+\pi-5)^{\left[x_{1}\right.}=\Leftrightarrow<x_{1+1}=0\right]^{n}}
$$

 VEIEmaling van $V:=\left\{x \in \xi^{\text {fh }} / P(x)\right\}$.

Varibetererice codu met vaxiabele wooralengtel.

 voor de taalwetenschap interessanter dan codes met vastw woordlemgtun

V

Vergelijk F, Sohuh; "Het getalbegrip, in het bijzonder het onmeetbazar getal."; Groningen, Noordhois, 1927.

VI

 zinvul als $d=1,2,3,7$ ef 1 I.
De diophuntisehe vergelijking $x^{2}+7-11^{n}$ meept geen andere oplossing
 Ean bewijs in een (onder gonoemd) truikel van aleer en kubota.

Vergelijk: Handy $\&$ Wright: "An introduction to the theory of numbera";

 Hermann, Paris, 1967.

VII
 mari 1- Indien

$$
\forall(s, t) \in \mathbb{N}^{2}\left[p\left|\sum_{i=0}^{q} s^{1} t^{q-1}=p\right| \leqslant 1\right]
$$

(dit is bijusorbeeld her geval als p-q-2)
dan fs de functic $E: Q+$ R, gedefiniegrd door $f(x):=x\left(x^{f}-p\right)$ injectiefi.

Vergelijk dit met problom E 2554 in the American Mathematicel Monthly, cktober 1975, page 851.

VIII

Gedurende Een bepandds pericale in de midacleeuwen beschreven monniken in langdradige veribals teksten de oplossing yan lineaire vexgelijkingen van het type ax $+b=0 \mathrm{met}$ ae methode van single, resp. wable falae;

1) \quad is $A g+b=f, \operatorname{dan} i s x=\frac{g(f-b)-g i}{i-b}$.

$$
x=\frac{\mathrm{F}_{1} g_{2}-\mathrm{f}_{2} \bar{p}_{1}}{\mathrm{f}_{1}-\mathrm{F}_{2}}
$$

 notatie van algebralsche vergedijkingen in die tija nigt in awang waren, lijkt het onwarachijniljk dat de rechtatreekse oplosiong van het probieem fict and de meeste belangstellenden bekenc was.

Vargeligk Christoph scribe: "The voneept of numer": B-I-Hochschuiskripten 825/825n, Mannheim/zürich, Bibliographisches Institut, 1959,

IX

Het maximale profijt dat men als wiskundige kan trekkem uit deelname aan een filosofisoh debat is een getefrond vermogen toe het hardhaven van een vexbale consistentie, met ardere woorden: tor fet vermijaen van een contradictio in terminis.

brrata

On F=ge	(erter) iommula	stards	which should bes
9	1.6 .12	ตna t_{i}	and nonnegattve integers t_{1}
1.7	1.8 .2	positive	nenmegative
16	2.1.9	${ }^{\text {tin }}$, M M	$L_{i} \in \mathbb{N}_{0}$
20	2.2 .7		In "most" of the cuses
30	3.2	$E_{1}^{s_{1}}{ }^{s_{\text {d }}}$	$\mathrm{E}_{1} \ldots \mathrm{p}_{\ell}^{s_{\ell}}$
30	3.2.1	$\mathrm{E}_{2}^{\mathrm{k}+\alpha_{1}}-\mathrm{E}^{\mathrm{k}+\mathrm{s}_{0}}$	$\mathrm{F}_{1}^{\mathrm{k} \cdot \mathrm{ka}_{1}} \ldots \mathrm{~F}_{\mathrm{k}}^{\mathrm{k}+\mathrm{h}_{2}}$
34	3.5.2	positive	nonnegetsve
37	3.6	7 ≤ 30	9×30
34	3.6 .9	positive	positive or monnegative
43	3.6 .40	(mori 27)	(max 7)
63	5.2 .1	with 1 ntegral reros	with four integral nexce
117	H, ${ }^{\text {a }}$	3 L ¢ k ¢	$3 \leq k \leq 40.000$
119	H. 3	be integras.	be integral if q - $2 s^{2}$

The pages 1.17 and ilg should be read in revortod order.

